

Nature

Nature
 $5438 x$

A WEEKLY

ILLUSTRATED JOURNAL OF SCIENCE

VOLUME XXIX
NOVEMBER 1883 to APRIL 1884

" Io the solid ground
Of Nature trusts the mind which builds for aye."-WORDSWORTH

Tonoon and tetw fork MACMILLAN AND CO.
7345°

LONDON :

R. CLAY, SONS, AND TAVIUR, PRINTERS
bread street hill. enc.

Dative by Google

I N D EX

Absade: (A, d'), the Remarkable Sunsets, 1,32
Abney (Capt., F.R.S.), Wave-lengths of $\frac{1,2}{A} a$, and Lines in Infra-red of Visible Spectrum, 190
Abyssinia, Dr. Stecker's Travels in, 347
Achard's Continuous Flectric Brake, 245
Affinity, Chemical, Oswald's Studies of, 321 ; Flavitsky's Theory of, 39^{2}
Africa: Exploration of Stanley's Congo Expedition, 15 ; Portuguese Experdition to West, 64,245 ; Dr. IIolub's Expedition, 135, 346 ; Russian Expeclition to West, 296 ; Dr. Emin-Bey's Explorations, 160 ; Dr. Richard Böhm's and P. Reichardt's Explorations, 272 ; Races of Western Tropical, H H Johnston, 303 ; Junker's Expedition, 318 ; O'Neill's Explorations, 346; Dr. Chavanne's Expredition, 346 ; Sketch of the Modern Languages of Africa, Robt. Needham Cust, Prof. A. H Keane, 377 ; Geology of Central Africa, H. Drummond, 551 ; African Spiders, 408; Dr. Junker's Discoveries in the Welle Region, 584
Agardh (Dr.), on Alge, Mary P. Merrifield, 340
Agassiz (Prof. Alex.), Embryological Monographs, 16; the Porpiridx and Velellidx, 262
Agates, Prof. M. Forster Heldile, 419
Agriculture, an American Rothamsted, Prof. W. Freann, 238
Agriculture in Sussex, 575
Agricultural Society, Royal, Journal of, $\mathbf{7 5}$
Air, Velocity of Sound in, D. J. Blaikley, 148
Air, Dusty, on the Formation of Suall Clear Spaces in, John Aitken, 322 ; Phenomena exhibited by, in the Neighbourhood of Strongly-Illuminated Bodies, Profs, Oliver J. Lodge and J. W. Clark, 417

Air-Wave, the Krakatoa, General Strachey, F.R.S., 181
Air-Waves, Earthquakes and, General Strachey, F.R.S., and Maxwell Hall, 427
Airy (Sir G. B., F.R.S.), on Chepstow Railway Bridge, 75
Aitken (John), on the Formation of Small Clear Spaces in Dusty Air, 322
Alaska: Zoology and Botany ot, 362 ; the Volcanic Eruption of Mount St. Augustin, Geo. Davidson, 441
Albany (Duke of), Death of, 534
Alexander (Thos.), Protection by Mimicry-a Problem in Mathematical Zoology, 405
Alexeyeff's Theory of Solutions, 391
Alfta, Kemarkable Meteor and Aurora at, 159
Alga, Drs. Agardh and Kabenhorst on, Mary P. Merrifield,

Algeria, Sinking of Earth at Bona, 460
Algiers, Earthquake in, 415
Almanae, the Nautical, 89
Alpine Clubs, German, 462 ; Austrian, 462 ; French, 488
Alps of New Zealand, Green's, 1'rof. Bonney, F. R.S., 28 ,
Aluminium, Peculiar Absorption of Iodic Acid by, Dr. G. Gore, F.R.S., 254

Amambara Creek, Flegel's Map of, 585
Amazons (Upper Regions), Topography and Ethnography of, Colini, 272
America; Co-education of the Sexes in, 158 ; November Meeting of National Academy of Sciences, $\frac{10}{62}$; Clifford Richardson on Ameriean Wheat, Prof. J. Wrightson, 173 ; American Geology, F, V. Ilayden, A. Geikie, F.R.S., 233i an American Kothamsted, Prof. W. Fream, 238 ; American Naturalist, 165,375 ; American Journal of Science, $144,252,397,466,540$, 613; American Association for the Advancement of Science, 87; Recent Low Temperatures in America, Dr. John Rae, F.R.S., 287

Amu-Daria, Russian Explorers on the Old Bed of the, 416, 557 Amur, Changes of Level of, 15
Anatomy for Artists, John Marshall, 30, 56, 12;
Anderson's Handbook of Archaoological Collections in Indian Museum, 27 ; Guide to Calcutta Zoological Gardens, 426
Anemometer, a New, Prof. Börnstein, 28 a
Animal Body, Nuclein in, Prof. Kossel, 352
Animal Intelligence, J. M. Hayward, 357
Aninals: Mental Evolution in, F. J. Faraday, 335, 381,428 ; G. J. Romanes, F. R.S., $330,336,404,428$

Animals, Teaching, to Converse, Sir J. Lubbock, F.R.S., 216, 237, 547 ; Col. H. Stuart Wortley, 261
Annalen der Physik und Chemie, 94, 253, 276, 495
Annals of Mathematics (Magazine), 135
Annelida of the North Atlantic, 25
Anthropology: Anthropolugical Tnstitute, 119, 166, 254, 303, 351, 446 , 542 ; the Study of, Prof. Flower, F. K.S., 3192388 ; Foundation of an Anthropological Society at Bordeaux, 389 ; Anthropological Society of Paris, 414 ; Anthropological Notes in Solomon Islands, Surgeon Guppy, 429 ; Anthropological Results of Dr. Finsch's Journey to the Pacific, 462 ; Firkert's Anthropological Measurements in Cancasus, 557 ; at the British Association Meeting at Montreal, 582
Aphides, British, G. B. Buckston, F.R.S., 258
Arabia, Geology of, Prof. T. G. Bonney, F.R.S., 350
Arabin Gums, C. O'Sullivan, 253

Archoological Collections of the Indian Museum, 27
Archibald (E. D.), the Remarkable Sunsets, 176
Archives, Italiennes, de Biologie, 23, 142
Arcbives of the Physical and Natural Sciences, Geneva, 277, 349
Arctic Expedition (Dijmphna), New, 88
Arctic Fxpedition, another attempt to rescue the Greely, 415
Argentine Repnblic, Splenic Fever in, Dr. Roy, 91
Argyll (the Duke of), the Unity of Nature, 474, 524
Aristotelian Society, 45
Arizona, Geological Survey of, H. M. Wilson, 272
Arlberg Tunnel, Completion of, 64, 87
Artists, Anatomy for, 30, 56, 123
Ascidia Compositx, Classification of the, Prof. Herdman, 429
Ash (Volcanic), Analy is by Dr. Keusch of Krakatoa, 388
Ash of Grain grown at Rothamsted, Analy is of, Lawes and
Gilbert, 445
Ashes (Volcanic), Analysis of Krakatoa, Renard, 134
A.ia (Central), Dr. Regal's Explorations in, 416

Asia Minor, Earthqnakes in, 437
Asian Explorations, Dr. Riebeck's, 417
Asiatic Society of Bengal, Centenary of, 316
Association of German Naturalists and Physicians, 18
Association, Scientifique de France, 272
Astronomical Column, 45, 69, 88, $112,135,159,185,246,273$,
$296,345,367,390,415,536,558,606$
Astronomische Gesellschaft, 558
Astronomical Station on Pic du Midi, Studies made for estallish-
ment of permanent, MM. Thollon and Trépied, 7
Atlantic (North), Norwegian Expedition: Zoology, 25
Atlantic Soundings, 188
Atlantic, Relative Level of Mediterranean and, Tillo and Bourdalou, 185
Atlantic, Greatest Depth of, 319
Atmosphere, the Upper Currents of the, 154
Atmosuhere of China, Dust, Prof. J. P. O'Reilly, 260
Atomic Weight of Tellurium, Brauner, 391
Atomic Weights, Redeterminations of, 391
Atti dell' Accademia Reale dei Lincei, 47, 95, 443, 466, 565, 614
Attraction et Gravitation d'après Newton, Mme. Clémence Royer, 235
Audebert (J.), Wild Tribes of Madagascar, 347
Auricular Sensations, Subjective, Prof. Luce, 568
Aurora and Meteor at Alfta, 159
Aurora Borealis: Prof. Lemstrum's Observations of the, 11 , on the Height of the, Adam Paulsen, 337 ; Measuring the, Dr. Sophus Tromholt, 409 ; in leeland, Dr. Sophus Trom holt, 537
Austral Judgment, the, 49
Australia: Initiation Cercmonies, A.W. Howitt, 254 ; Geological Exploration in Western, E. T. Hardman, 294; Water in, F. T. Mott, 311; Exploration by Winnicke of anknown interior of, 346 ; Volcanic Eruption in Western, 388 ; Australian Observatories, 390
Austrian Polar Expedition, Results of, Lieut. Wuhlgemuth, 246; Botanical Expedition to Azerbijan, 316
Austro-Hungary, Ornithological Observatories in, 246
Axioms of Geometry, Edward Geogbegan, 551 ; Prof. O. Henrici, F.R.S., 573
Azerbijan, Austrian Botanical Expedition to, 316

Bacas (Dario) Determinants, 378
Bacillus of Typhoid Fever, Prize offered for Fissay on, 583
Backhouse (T. W.), Pons' Comet, 7 ; the Quadiantids, 104 ; the Kemarkable Sunsets, 251.
Bacteria, 559 ; Bicentenary of, Ferdinand Cohn, 154
Bacterioscopic Measurements of Neva Water, Dr. Pehl, 557
Bailey (Prof. W. W.), Sprengel on Fertilisation of Flowers, 171 ; Ravens in United States, 478
Baker (J. G.) Review of Tuber-bearing Solanums, 328
Balance, Delicate, Suggestions for facilitating the use of a, Lord Rayleigh, F. R.S., 91 ; Hugles' New Magnetic, 263
Balfonr (Prof. J. Hutton) Death of, 365 ; Obituary Notice of, 385
Baltic Scientific Researches, Finnish Government Steamer for, 225

Bamboo in Transcaucasia, Proposed Cultivation of, Wueikoff, 184
Barlow (Capt.), Sea covered with Pumice, 488
Barlow (W.), Internal Symmetry of Crystal. 186, 205; Probable Nature of the Internal Symmetry of Crystals, 404
Barometer, the Ear a. Dr. W. 1I. Stone and Geo. Kayleigh Vicars, 356 ; C. V. Boys, 333
Barometrical Sympathy with Earthquakes, Dr. Hector, F.K.S., 87
Barometro Araucano, Baron Maclay, 303
Barrett (Prof. W. F.), on a Magnetic Sense, 476
Barrington (R. M.), the Remarkable Sunsets, 153; on the Absence of Earthworms from Canadian North-West Prairies, 237
Barytes from Chirbury, H. A. Miers, 29 ; C. J. Woodward, 77 ; 11. A. Miers, 124
Bashfo th (Rev. F.), On a Method of Estimating the Steadiness of Elongated Shot when Fired from Large Guns, 527
Bathymetrical Survey of Scottish Lochs, 487
Batteries, New Elements for Primary, Lalande and Chaperon, 227
Bead Ornaments of Palaolithic Man, Worthington G. Smith, 83
Beadon (Robert), the Kemarkable Sunsets, 225
Bealhy (J. P.), Java Eruption and Earthquake Waves, 30
Beardmore (N. B.), the Green Sun, 28
Beequerel (1i.), Kescarches on Infra-red Rays of the Spectrum, 227
Beddard (F. E.), the New Prosector of the Zoological Society, 294
Bees, Habits of, Isahella Herschel, 104
Behm (Dr.), Death of, 487
Beketoff (Prof.), on Dr. Sachs' Theory of the Relations between the Increase and Segmentation of Cells in the Embryonal Parts of Plants, 461
Bengal Dyes and Tans, H. W. McCann, 147
Bengal Asiatic Society, Centenary of, 316
Beanett (A. W.), on the Reproduction of the Zygnemacex, 142
Ben Nevis Observatory, 14, 86, 134; a Christmas Visit to,
l'rof. G. Chrystal, 219; Ascent of, 9, 365 ; Weather on, T. Sington, 26t; Meteorological Observations from, 342
Berghaus (Prof. H. K.), Death of, 437
Berlin: Cremation Society, 461; l'hysiological Society, 72, 144
168, 255, 280, 352, 448, 543 ; Physical Society, 48, 168, 192,
$279,304,400,472,498,568$; Geographical Society, 160
Berly's Electrical Iirectory,. 524
Bermuda, Eartbquake in, 15
Bernstein ([r. R.), Death of, 415
Berwick-on-Tweed, Remarkalle Meteor seen at, 272
Beryllium, Spectrum of, 90 ; Hartley on, 391
Beyerinck (Dr.), the Remarkable Sunsets, 175, 308
Bittleston (Lieut. G. H.), the Remarkable Sunsets, 152
Bias in Walking, Unconscious: G. H. Darwin ; Thos. Hawksley, 286 ; Sara S. Owen, 336; Dr. J. Kae, F.R.S., 311, 384 ; W. G. Simpson, 356 ; Dr. Garson, 310 ; R. Melachlan, F.K.S., F. M. Campbell, Stephen A. Marshall, 311

Bibliography: Scientific, Quaritch's Catalogue, 212; Meteorological, C. J. Symons, F.R.S., 550
Bickmore's (Prof.), Lectures on Natural History to School Teachers, 184
Bicycles and Tricycles, C. V. Boys, 478
Biddulph (Sir R., C. B.), the Cedar Forents of Cyprus, 597
Bidwell (Shelford), on an Explanation of Hall's Phenomenon, 468
Biological Notes, 16
Biological Laboratory on the English Coast, a, 473
Biological Investigation of the British Coasts, Society for, 533 Birds, Towering of, Sir J. Fayrer, F. R.S., 55
Birds' Eggs, the Structure of, Prof. Tarkbanoff, 46I
Birds of Japan, New List of, 604
Birmingham Philosophical Society, 254
Birvari, Farthquake at, 415
Bishop (S. E.), Kemarkable Sunsets, 259, 549, 573
Blaikley (D. J.), Velocity of Sound in Air, 148
Blake (Jas.), on the Incubation Period of Scientific Links, 168 Blake (Prof. J. G.), Volcanic Group of St. David's, 303
Blakiston (Capt. T.), Protection by Mimicry-a I'roblem in
Mathematical Zoology, 405 ; List of the Birds of Japan, 604 Bleaching, Dyeing, and Calico Printing, John Gardner, 425

Bles (E. J.), the Remarkable Suusets, 427
Blue Sun, a, E. Metzger, 252
Blyth (A. W.), Poisons, Dr. Thos. Stevenson, 451
Bock's (Carl) Siam, Prof. A. H. Keane, 258
Bogies, Mr. Ruvkin's, Rev. W. Clement Ley, 353
Böbn's (Dr. R.) African Explorations, 272
Bolletino della Societa Italiana Geografica, 346
Bona, Subsidence of Naiba Mountain, near, 15
Bone Caves of Ojcow, Prof. Dr, F, Römer, 449
Bonney (Prof. F.R.S.), Geology of South Devon Coast, 119; Cambrian Conglomerates, 208 ; the Alps of New Zealand, W. S. Green, 281 ; Geology of Arabia, 350

Bordeaux, Foundation of Anthropological Society at, 389
Borgen (Prof.), Nordenskjöld's Theories in connection with his Greenland Expedition, 14
Borneo Commercial Development, 462
Bornstein (Prof.), a New Anemometer, 280
Bosnia, Earthquake in, 159
Boston (U.S.A.). Water-Supply, Contamination by Spongilla fluviatilis of, 391
Botanic Garden Board. Report of New Zealand, 206
Botanical Work in China, Chas, Ford, 134
Botanical Expedition to Azerbijan, Austrian, 316
Botanico-Physiological Station in North Sweden, Proposed, 225
Botany in India, Progress of, 111
Botany of Alaska, Zoology and, 362
Botany : Relations between the Increase and Segmentation of Cells in the Embryonal Parts of Plants, Prof. Beketoff on Dr. Sachs' Theory, $\mathbf{4}^{61}$
Botany, Economic, the Kew Museums of, 581
Boardalou, Relative Level of Mediterranean and Atlantic, 185
Roulenger (G.A.), the Ophidian Genus Simotes, 149
Bournemouth Natural Science Society, 64
Bovey (Prof.), Applied Mechanics, A. R. Willis, 122
Bower (F. O.), Rhyncopetalus montavum, 23°
Bows, Circular Cloud, E. H. I. Firmstone, 406
Boys (C. V.), the Ear a Barometer, 333; Bicycles and Tricycles, 47^{8}
Borward (J. LJ.), the Remarkable Sunsets, 131, 178
Brain, Tourguénief's, 389
Brake, Achard's Continuous Electric, 245
Brauner (B.), the Remarkable Sunsets, 223
Brauner, Atomic Weight of Tellurium, 391
Brazil, Pale Sun in, 87
Bremen Geographical Journal, 161
Bremen, Geographical Society of, 535,585
Breguet (M.), Death of, 14
Bridge, on Chepstow Railway, Sir G. B. Airy, F. R.S., 75
Brioschi (Prof. Francesco), Appointed President of the Academy of the Lincei, 582
British Association, Montreal Meeting, 435, 459; Arrangements for Section F, 534 ; Anthropology at, 582
British Islands, Origin of the Scenery of the, A. Geikie, F.R.S., $325,347,396,419,442$
British Noblemen during last three Generations, Weights of, Fras. Galton, F.R.S., 266
Brodhurst (B. F.), the Remarkable Sunsets, 153
Bromn (Dr. H. G.), Klassen und Ordnungen des Thierreichs, 5
Brooks' Comet, W. T. Sampson, 335?
Brorsen's Comet, 88
Brounofi's Recearches into Variations of Temperature in consequence of Cyclones, 414
Brown (E.), the Remarkable Sunsets, 132
Brown (Dr. J. C.), Finland: Its Forests and Forest Management, Prof. W. Fream, 101
Brown (Prof. W. G.), the Remarkable Sunsets, 309
Brown (Wm.), Instinct, 428
Browne (Walter R.), Science and Engineering, 57
Browne (Lennox), Voice, Song, and Speech, Dr. W. H. Stone, 570
Brognone (A bbé), Death of, 436
Brusea, Earthquahe near, 272
Bryce's Bill to secure Access to Mountains and Moorlands in scolland, 487
Brydone-Jack (W.), the Remarkable Sunsets, 250
Buckston (G. B., F.R.S.), British A phides, 288
Budde (Dr.), the Remarkable Sunsets, 177

Budge (E.), New Inseription of Nebuchadnezzar, 375
Buhla, Prehistoric Burial Ground near, 460
Buildings, Earthquakes and, Dr. A. Ernst, 595
Bulletin de la Socićté de Géographie, 160
Bulletin of the American Geographical Society, 16!
Bulletin of the Belgian Royal Academy, 190
Bulletins de la Societé d'Anthropologic de Paris, 277
Bulletin de l'Académié, Imperiale des Sciences de St. Pétersbourg, 422
Bulletin de la Socićté des Naturalistes de Moscou, 300
Bulletin de l'Académie Belgique, 142, 421, 466, 565
Bunge (Dr.), Lena Polar Meteorological Station, 318
Bunkofer (Prof. W.), Determinants, 378
Burder (George F.), Remarkable Sunsets, 251, 525
Burial Ground at Cobern, Discovery of Franconian, 246
Burial Ground at Buhla, Prehistoric, 460
Burnett Lectures, Oa Light, G. G. Stokes, Prof. P. G. Tait, 545
Burnham's (Mr.) Double-Star Measures, 409
Burton (F. M.), the Remarkable Sunsets, 225
Bushel of Corn, a (A. S. Wilson), Prof. Wrightson, 26
Busley (Carl), Die Schiffsmasehine, 426

Cable-Protection Convention, 487
Cadell (H. M.), Gcognosy of the Harz Mountains, 303, 447.
Calcutta Zoological Gardens, Guide to, 426
Callorhynchus antarcticus, on some Embryos of, T. J. Parker, 46
Cambrian Conglomerates, H. Hicks, M.D., and I'rof. Bonney, F.R.S., 208

Cambridge: Fellowship Examinations, Independent Work at, 43 ; Natural Science at, L.ocal Examinations, 63 ; Philosophical Society, $96,143,166,357,470,543$
Cameron (Donald), Meteors, 56, 123, 287
Campbell (Prof. Iewis), the Kemarkable Sunsets, 196
Camphell (F. M), Uneonscious Bias in Walking, 311
Canadian North. West Prairies, Absence of Earthworins from, R. M. Christy, 213; R. M. Barrington, 237; Timothy E. Wileox, 486
Cannibalism among Cave-Dwellers, Prof. Nehring, 366
Canoe unearthed at Pulborough, 15
Cape Horn, Report of French Mission to, Dr. Hyades, 191
Carniola, Discovery by Prof. Linhart of Great Ice Cavern in, 296
Carpenter (W. Lant), Energy in Nature, 74; Science Teaching in Elementary Schools, 317
Carpineto-Romano, Meteorological Observatory, 556
Casey (J., F.R.S.), Sequel to the First Six Books of Fuclid, 571
Cats, Heredity in, F. B. Puulton, 20 ; Deafness in White, 237, 312 ; a Colony of, Geo. Rayleigh Vicars, 551 ; Cats on the District Railway, E. de M. Malan, 573 ; Rooke Pennington, 596
Cauca-us, Science in the, 488 ; Erkert's Anthropological Measurements in, 557 ; the Iopulation of, 605
Cave-Dwellers, Cannibalism among, Prof. Nehring, 366
Cecil (Henry), the Rcmarkable Sunsets, 132, 334
Cedar Forest of Cypras, Sir R. Biddulph, C. B., 597
Cell, Reynier's Maximum, 227
Ceratodus for teri, Morton, 16
Cetacea, Evolution of the, S. V. Wood, 147 ; Prof. W. H. Flower, F.R.S., 170
Challenger (II,M.S.), Zoological Reports of Voyage of, vols. v. vi. vii., 1, 521 ; Znological Reports, F. B. White, 29

Chapman (E., M.A.), Physiology in Oxford, 76
Chavanne (Dr.), Antwerp, 296; African Expedition, 346
Chenistry : Chemical Soeiety, 76, 95, 231, 253, 302, 399, 445,
$469,541,566,591,616 ;$ Chemical Notes, 391 ; Oswald's Studies of Chemical Affinity, 391; Flavitsky's 'Theory of Chemical Affinity, 392 ; Refracting Power of Solid Chemical Compounds, Kanonnikoff, 391 ; Thermal Chemistry, Julias Thomsen, M. M. P. Muir, 209 ; Ira Remsen's Principles of
Theoretical Chemistry, 283 ; General Principles of Chemistry,
M. M. P. Muir, 317

Chenery (Thomas) Death of, 364
Chepstow Railway Bridge, on, Sir G. B. Airy, F.R.S., 75
Chester, Proposed Muscum for, 88

Chicago Observatory, 69
China, Botanical Work in, Cbas. Ford, 134 ; Magnetic Dip in South Chir a and Formosa, Dr, Doberck, 214 ; Dr. Fritsche's Explorations in, 416 ; Explorations of South- Western, 462 : Dust Atmosphere of China, Prof. J. P. O'Reilly, 260 ; Chinese Meteorology, Dr. Doberck, 271 ; Green Sun in China, 436; Chinese Palxentology, Prof. R. K. Douglas, 551
Chios, Earthquake at, 88
Chirbury, Barytes from, H. A. Miers, 29, 124 ; C. J. Woodward, 77
Chlorophyll, Note on the Constitution of, Edw. Schunck, F.R.S., 277

Cholera Commission, Report of German, $365 \mathrm{5}, 460$
Chrystal (Prof. G.), A Christmas Visit to Ben Xevis Observatory, 219; Three Hundredth Anniversary of the Edinburgh University, 572
Christiania Society of Science, 472
Christy (R. M.), Absence of Earthworms from Canadian North-West Prairies, 213
Christy's Notes on Useful Plants, 488
Chukche Peninsula, Dr. Aurel Krause on the Inhabitants of, 161
Cincinnati, the Observatory, 558
Circle, the Division of the, Antoine d'Abbadie, 28
Cireling to the Left in a Mist, W. Larden, 262
Circular Cloud Bows, E. H. L. Firmstone, 406
Circular Kainbow, J. A. Fleming, 310; J. M. White, 357; T. R. Maynard, 357 ; G. K, Gilbert, 451

Circumpolar Expedition, British, 63 ; Capt. Dawson, 247
City and Guilds of London Technical Institute, 534
Civil Engineers, Institution of, 43
Clark ($]$. E.), the Remarkable Sunseto, 131, 225, 286
Clark (1'rof. J. W.) and Prof. Oliver J. Lorige on the Phenomena exhibited by Dusty Air in the Neighbourhood of strongly Illuminated Bodies, 417
Clarke (Dr. Hyde), Green Sunlight, 76 ; the Remarkable Sunsets, 152
Clark Cells, on the Absolute Electromotive Force of, Lord Rayleigh, F.R.S., 565
Cleeve (Prof.), the Farth " Samaria," 391
Clerkenwell Road, Palxolithic Implement found in, 15
Clifton (Prof.), Measurement of Curvature of Lenses, 143
Cloud lows, Cirenlar, E. H. L. Firmstone, 406
Cloud-glow after Sunset, Unusual, Hon. F. A. R. Russell, 55 ; J. J. Walker, ZZ

Clocks, Sudden Stoppage of, G. H. Kinahan, 105
Clock, New Normal, at Yale College Observatory, 604
Cluckwork in Parcels, Scheme for Discovering, W. de Fonvielle, 437
Cobern, Discovery of Franconian Burial Ground at, 246
Coccidx in New Zealand, Ravages of, 200
Co-education of the Sexes in America, 158
Cohn (Ferdinand), Bicentary of Bacteria, 154
Cohn's Beitrage zur Biologie des Pflanzen, 443
Cold in Smyrna, 345
Colini (Dr.), on Lucioli's Topography and Ethnography, 2
College, Firth, Proposed Technical Department in, 883
Colman (A. P.), Ice Volcanoes-Mountain Rainbow, 550
Colony of Cats, Geo. Rayleigh Vicars, 551
Colour-Blind, Experime ts on Neutral Points in Spectrum of, Dr. Kcenig, 168
Colour-sensitiveness, Dr. Kornig's Experiments ons 496
Colours, Photography of, Greenwood $\mathrm{l}^{\prime} \mathrm{im}, 470$
Comet, Brooks', W. T. Sampson, 335 ; Comet, Brorsen's, 88 ; Comet, D'Arrest's, 70; Comet, Encke's, 159: Comet, Pons', T. W. Backhouse, $Z_{2} 45,112,185,273,296,367$; Drawings of, 460 : Tempel's, 1873 II., 45,70 , 185 ; ${ }^{\text {a }}$ Southern, 296, 606 ; Comet of 1664,345 ; First Comet, 1798, 135 ; Great Conet, 1882, 135 ; Comet, 1884, 558
Composite Portraiture adapted to the Reduction of Meteorological and other Similar Observations, G. M. Whipple, 420
Conglomerates, Cambrian, Dr. Hichs and Prof. Bonney, F.R.S. 208
Congo Expedition, Stanley's, 15; Departure of Lieut. Wissmann on New Expedition to the, 87; Ethnological Expedition of Dr. Zintgraff to the, 416 ; the Congo, H L L. Johnston, Prof. A. H. Keane, 579

Conn (H. W.) and J. S. Kingsley, on the Embryology of the Teleosts, 16
Conrny (Sir John), Reflection of Light from Metallic Surfaces, 398
Constable (F. C.), the Java Eruption, 55
Convection (Electric), Rowland's Experiment Demonstrating the Magnetic Action of, Dr. E. Leeber, 558
Converse, Teaching Animals to, Sir John Lubbock, F.R.S., 216. 257

Converse, Teaching Animals to, Col. H. Stuart Wortley, 261
Cope (Prof. E. D.), Evidence for Evolution in History of Extinet Mammalia, 227,248
Copper and Iron, Did they Precele Tin, A. Tylor, 84
Copper Island, Exploration of, 605
Coprosma baueriana, Walter Gardiner, 231
Cordeanx (J.), Wild Duck Laying in Rook's Nest, 596
Coral-Reefs, Origin of, A. Geikie, F.K.S., 107, 124 ; Sargeon Guppy, 214
Coralla, Epitheca in Serial, Prof. P. M. Duncan, 142
Corea, the, 437
Corn, a Bushel of (A. S. Wilson), Prof. Wrightson, 25
Cortambert (Richard, fils), Death of, 343
Cortical Area of Voluntary Muscles of Larynx and Jaws, Experimental Proof of Prof. Munk's Theory of Centre of, Dr. H. Krause, 168
Cosmie Dust, Dr. H. Rink, 148, E. Metrger, 261 ; Volcanic Ashes and, J. Murray and A. Renard, 585
Cosmical Space, on the Transmission of Organic Germs through, by Meteoric Stones, J. H. Stewart, 595
Coventry, Technical Education in, 64
Cranial Characters of Timorese, Ir. Garson, 166
Crawley (H. H), Earthquake, 2
Crema (Capt. C. F.), Journey to Morocco, 462
Cremation Sociely, Berlin, 461
Crookes (W.), Recent Discoveries in High Vacua, 25
Crotte (Dr. I'rimo), La Musica e una Scienza, 108
Croupous Pneumonia, Micrococcus in, Dr. Friedlander, 144
Crystallography, 195
Crystals, Internal Symmetry of, W. Barlow, 116. 205
Crystals, Probable Nature of the Internal Symmetry of, W. Barlow, 404 ; P'rof. L. Sohncke, 383
Cunninubam (Allan), Royal Engineer Professional Kaper $=$ Major Vetch, 146
Cunningham (David), the Storm of Jannary 26, 1884, 336
Cunningham (J. P), the Oban Penuatulida, 46
Currents (Upper), of the Atmosphere, 154
Curtis (John), Farm Insects, 170
Cust (Robt. Needham), Sketeh of the Modern Languages of Africa, Prof. A. H. Keane, 377
Cyclones, Brounof's Researches into Variations of Temperature in consequence of, 414
Cypras, the Cedar Forests of, Sir R. Biddulph, C. B., 597

D'Abbadie (Antoine), the Division of the Circle, 28
Dallas (James), Indians of Guiana, 382
Dallmeyer (L. H.), Death of, 271
Dam (Dr, Van), the Remarkable Sunsets, 175
Danish Greenland Expeditions, 44
Dani-h (Godthaab), Meteorological Expedition, 134
D'Arrest's Comet, zo
Darwin's l'ostbumous E.say on Instinct, 110, 228
Darwin (Prof. G. II., F.K.S.), Kipple-Marks, 162; in the Figure of Equilibfium of a Planet of Heterogeneou- Density, 230 ; Unconscious Bias in Walking, 286
Davidson (Geo.), Voleanic Eruption of Mount St. Aujustin, Alaska, 44!
Dawson (Capt.), Report of English Circumpolar Expedition, 247
Deafness in White Cats, Dr. I awson Tait, 164, 237, 312
Deep-Sea Expedition of 1883 , French, Dr. J. G. Jeffreys, F.K.S , 216
Deep-Sea Fishes of the Talisman, 483
Deep-Sea Dredgings of the Ta/isman, Crustacea, 531
Deer and their Horns, Sir J. Fayrer, F. R.S , 121
Deer's 1 lorns at Moritzburg, the Collection of, 307
De la Kue (Dr. Warren, F.R.S.), the Green Sull, 28: Re searches on the Electric Discharge, 325, 349

De la Rue's Diaries, acc., 158
De Morgan's Five-Figure Logarithms, 185
Denning (W. F.), the Observation of Meteors, 6; Meteors, 56
Denza (Prof.), the Remarkable Sunsets, 180
Determinants, Reeent Text-books of. Dr. H. Kaicer, Prof. W.
Bunkofer, P. Mahsion, Dario Bacas, Ramón Escandón, 378
Devon (South) Coast, Geology of, Prof. Bonney, F. R.S., 119
Devonian Rocks, Metamorphism among the, 315
Dew, Salt Rain and, F. Gillman, 172
Dickson (Prof, Alex.), Nepenthe, 254
Dijmphwa, New Arctic Expedition, 88
Díp (Magnetic) in South China and Formosa, Dr. Doberck, 214
Dispersive Powers, a Fluid of Extraordinary High Refractive and, Carl Kohrbach, 63
District Kailway, Cats on the, E. de M. Malan, 573
Divers (Prof.), the Remarkable Sunsets, 28.3
Dixon (Dr. R.), Storm of January 26, 384
Doberck (Dr.) : Magnetic Dip in South China and Formosa, 214; Chinese Meteorology, 271; Hong Kong Obvervatory, 596
Dohson's (G. E., F.R.S.) Monograph of the Insectivora, Prof. Flower, F.R.S., 282
Donnelly (Col., R.A.), the Remarkable Sunsets, 132
Doorn (M. C. van), the Eruption of Krakatoa, $26 \frac{8}{8}$
Doran (Alban), Khytina stellere, 230
Double-Stars, Close, Perrotin, 185
Double-Star a Iferculis, 536
Double-Star Measures, Mr. Burnham's, 409
Douglas (Prof. R. K.), Chinese Palaentology, 551
Draper (11. N.) Salt Rain and Dew, 77
Dresden. Isis Natural History Society of, 23; Muscams, Re. ports of, 226
Drummond (H.), Geology of Central Africa, 551
Dublin: Royal Society, $166,278,470$, 542; Univenity Experimental Science Association, $19 \mathrm{I}_{\mathrm{a}} 567$
Duchesne, A. N., W. T. Thiselton Dyer, 215
Duck (Common Domestic) Diving for Food, Dr. John Rae, F.R.S., 428

Dumas, the Death of, 58 i
Duncan (Prof. P. M.), Epitheca in Serial Coralla, 142
Dunlop (M. F.), Lunar Kainbow, 172
Dast Atmosphere of China, Prof. J. P. O'Reilly, 266
Dust, Cosmic, Dr. H. Rink, 148 ; E. Metzger, 261
Dust Envelope, A Vast, Prof. S. P. I angley, 324
Dust-Free Spaces, Dr, Oliver J. Lodge, 6ıo
Dust, Snow in Norway covered with Gray and Black, 135
Dusty Air, on the Formation of Small Clear Spaces in, Jwhn Aithen, 322 ; Phenomena Exhibited by, in the Neighbourhood of Strongly Illuminated Bodies, Profs. Oliver J. Lodge and J. W. Clark, 417

Dvorak's Sound-Mills, Prof. S. P. Thompson, 363
Dyer (W, T. Thiselton, F.R.S.), A Forgotten Evolutionist, 215 Dyes and Tans of Bengal, H. W. McCann, 147
Iykes, Petrological Notes on Some North England, J. J. II. Teall, 259

Ear a Barometer, the, C. V. Boys, 333 ; Dr. W. H. Stone, 356; Geo. Rayleigh Vicars, 356
Ear-Trumpets, Prof. W. F. Barrett, 166
Earth, Movements of the, J. Norman Locker, F.R.S., 65, 201
Earth Tremors in Tasmania, 244
Earth Tremors, Prof. John Milne, 456
Earthquakes, 15 ; H. H. Crawley, 2 ; Sir J. H. Lefroy, 56 ; Probability of Earthquake at Salt Lake City, G. K. Gilbert, 45; Harometrical Sympathy with Earthquakes, Dr. Hector, F.K.S., 87 ; Earthquakes at Malaga, Cbios, Salerno, 88; in Styria, Bosnia, and Greece, 159; in IIunyary and Portugal, 200; in Switzerland, Italy, Portugal, Styria, Turkey in Asia, Siberia and Sicily, 272; in IIungary and Ischia, 557 ; in Koumania and France, 244 ; in Turkey, Central Asia, and Italy, 317 i in Italy and Turkey, 366 i in Algiers, Central Asia, and Asiatic Turkey, 415 ; in Asia Minor and Monte Video, 437 ; at San Francisco, 153h $\$ 36$; in Slavonia, 583 ; in England, Dr. J. E. Taylor, 602 : Percy Smith, 602 ; Henry O. Forbes, 603 ; Earthquake Wave, Java Eruption aud, J. T. Bealby, $30 ;$ Mr. Meldrum on, 32 ;

Earthquakes and Air-Waves, Gen. Strachey, F.R.S., and Maxwell Hall, 427 ; Earthquake Waves, San Franciscs, 4.37 ; Earthquakes and Ruildings, Prof. John Milne, 2go ; Dr. A. Ernst, 595 ; Earthquake Disturbance of Indian Tides, Lieut.Gen. Walker, F.R.S., 358
Earthworms, J. Lovell, 551 ; Absence from Prairies of Canadian North-West, R. M. Christy, 213i R. M. Barrington, 237 i Timothy E. Wilcox, 406
East London Institute, Proposed, 183
Eclipse, Solar, of 1806 , December 10 , 415
Edelinann's Electrometer, 239
Edinburgh: International'Forestry Exhibition, 14 ; Mathematical Society, $96,208,278,376,592$; Royal Thysical Society, 120 , 278. 303. 447 ; Royal Society, $166,254_{4} 328.351_{2}, \frac{470_{2}}{3} \frac{495}{36}$ 567 ; Lord Moncreiff on Past Hundred Tears' History of, 368 ; Award of Prizes, 387 ; Three Iundredth Anniversary of the Univerity, Prof. G. Chrystal, 577: Notices of Illustrious Members of, 582 ; University Feitival, 593 ; Marine Station, 483
Education, U.S. Bureau of, III; Mealth and Education Exhibition, 133: Fducation in Southern States, 200; Science Teaching in Elementary Schools, W. I.. Carpenter, 317 ; Higher Education of Women, 387 ; Technical Education, 392 ; in Coventry, 64; Dr. IIarris on, 184 ; the Com vission on, 390
Eggers (Baron), on Porto Rico, 129
Eggs of Birds, the Structure of the, Prof. Tarkhanoff, 461
Egypt, Ancient, the Flora of, Dr. Schweinfurth, 312 ; Inscovery of an Unexplored Necropolis in, 603
Egyptian Sudan, the, Prof. A. H. Keane, 221
Ehhmeem, Discovery of an Un'xplored Necropolis at, 603
Electricity : "Electricita et Magnetismo," Prof. A. Roiti, 5 ; Electrical Resistance of Human Rody, W. H, Stone, 21, 528 ; International Society of Electricians, 4488 ; Electricians' Directory, 476 ; Vienna International Electric Exhibition, 42 ; Electricity in India, C. Michie Smith, 54; Electricity and Magnetism, Mascart and Joubert, 24; Transmision to a Distance of Electricity, 316; Prof. von Waltenhcfen's Experiments with Noe's Thermo-Electric Generators, 227 ; Achard's Continuous Electric Brake, 245 ; Lalande and Chaperon's New Elements for Primary Batteries, 227; Keynier's Maximum Cell or Standard of Electromotive Force, 227 ; Single Electrolyte Batterics, E. Reynier, 227; Striking Distance of Electric Discharge, Warren De la Rue, F.R.S., and H. W. Miller, F.R.S., 325, 349; on the Measurement of Electric Currents, Lord Rayleigh, F.R.S., 465 : Electrical Standards, 465 : Berly's Electrical Directory, 524 ; A bsolute Measurements in Electricity and Magnetivm, Andrew Gray, 546; Rowland's Experiment demon-trating the Magnetic Action of Electric Convection, Dr. E. I echer, 558 ; Transition-Rexistance in Electrolytic Cells, 558 ; the Determination of Units of, 6,3 ; Electric Shadows, Prof. S. P. Thompson, 156 ; W. F. Smith, 260 ; Electric Lighting at Firth Bridge Works, 135 ; Electric Lighting on Di-trict Railway, 295 ; Edison Incandescent Lights in Ilôtel Dieu, 366 ; Flectrical Lighting of Trains, W. H. Massey, 48_{9}; Is Steam Condensation a Cause of Electrification? S. Kalischer, 227 ; Electro-Chemical Equivalent of Silver, Lord Rayleigh, F.R.S., 565 ; Electrolysis of Dilute Sulphuric Acid, \&c., Gladstone and Tribe, 422 ; Electrolytes, Relations of IIeat to Action of Metals in, Dr. Gore, F.R.S., 300 ; Electrolytes, Prof. Macgregor's. Arrangement for Measurement of Resistance of, 558 ; Transition-Resistance in Electrolytic Cells, 558; Edelmann's Electrometer, 239; Electromotive Force of Clark Cells, Lord Rayleigh, F.R.S., 565 ; Reynier's Maximum Cell as Standard of Electromotive Force, 227 ; Electrotechnisches Jahrbuch von der hiesigen Gesellschaft in Frankfurt am Main, 235
Flephant, Barnum's W bite, 294
Elevation and Subsidence, S. V. Wood, 5 ; J. S. Gardner, 6 ; Prof. Joveph LeConte, 212
Ellery (Kobt.) Remarhable Sunset 3,549
Ellis (William), the Remarkable Sunets, 309
Elongated Shot when Fired from Iarge Guns, on a Method of Estimating the Steadiness of, Kev. F. Mashforth, 527
Elsas (1)r.), Experiments on Vibration, 227
Embryological Monngraphs, Prof. Alex. Agaviz, 16
Embryology of the Teleosts, King ley and Conn, 16
Emin-Bey's (Dr.) African Explorations, 160
Encke's Comet, 159

Encyclopredia Britannica, vol. xv., 5 I
Eneyclopredia of Natural Sciences, Trewendt's, 44
Energy in Nature, W. Lant Carpenter, 24
Engelmann (Dr. Geo.), Death of, 460,535 ; Ohituary Notice of, Dr. Maxwell Masters, 599
Engineers, Institution of Mechanical, 38
Engineers, Civil, Institution of, 43
F.ngineer, Royal, Professional Papers, Major Vetch, Allan Cunningham, 146
Engineering, science and, Walter R. Browne, 57
Engineering, Marine, Carl Busley, 426
England, Earthgxake in, Dr. J. E. Taylor, 602; Percy Smith, 6 fon ; Ilenry O. Forbes, 603
Engler's Botanische Jahrbucher, 349
English Circumpolar Expedition, Report of, Capt. Dawson, 2.47

Entomology: Entomologist retainell by Suedish Government, 44; Entomology in the United States, 344 ; Entomological Society, 446
Envelope, a Vast Dast, Prof, S. P. I.angley, 324
Epilepsy, " Experimental," Prof Munk, 72
Equatorial, the New, at the Paris Obiervatory, 36
Equilibrium of a Planet of Ifeterogeneous Ilensity, on the Figure of, Prof. G. LI Darwin, F.K.S., 230
Fricson's (Capt. J.) Sun Motor, 217
Erkert's Anthropological Measurements in Caucasus, 557
Ernst (Dr. A.), Earthquakes and lluildings, 595
Errera (M.), Glycogen in Fungi, 16
Eruption, the Java, F. C. Constable, 55 ; J. J. HI Teall, 170 ; and Earthquake Waves, J. T. Bealby, 30 ; Mr. Meldrum on, 32 ; and Earthquake Waver, 153 ; E. Metzger, 240; M. C. van Doorn, 268; G. J. Symons, F. K.S., 355, 365 .
Escandón (Ramón), Determinants, 378
Essex Field Club, Meeting of, 582
Ethnographical Expedition to the Congo, Dr. Zintgraffs, 416
Ethnography of Upper Amazons Regions, Colini, 272
Etna, Eruption of Mount, 366
Euclid, Sequel to the First Six Books of, J. Casey, F.R.S., 571
Evershed (Henry), Fairy Rings, 384
Evolution, Evidence for, in Ifistory of Extinct Mammalia, Prof. E. D. Cope, 227,248

Evolution in Animal, Mental, F. J. Faraday, $335,381,428$; G. J. Komanes, F.R.S., $3,30,336,404,428$

Evolution of the Cetacea, S . $\sqrt{3}$. Wood, $\frac{42}{142}$; f'rof. W. IL Flower, F. R.S., 170
Evolutionist, a Forgotten, W. T. Thiselton Dyer, 215
Ewart (Prof. J. C.), Early Ifistory of the Herring, IO5; on the Natural and Artificial Fertilication of MIerring Uva, 538
Exhibition, International Health, 133, 388

Fairy Rings, Heary Evershed, 384
Falk (1)r.), Transmission of Poisons from Mother to Frrtus, 2 So Family Records, Francis Galton, F.R.S., 244, 257 ; G. J. Romanes, F.K.S., 257
Faraday (F. J.), Mental Evolution in Animals, 335, 381, 428
Farm Insects, John Curtic, 170
Farrer (J. A.), Samoa, Gco. Turner, LI.D., 569
Fats, Absorption of, in Animal Body, Dr. J. Munk, 477
Faulds (Ifenry), Thread-T'wisting, 550
Fayrer (Sir J., F.R.S.), Toweting of Birds, 55 ; Deer and their

- Horns, 171 ; Red-Deer Horns, 213

Federation of Scotch Scient fic Societies, Proponed, 295, 367
Fellowship Examinations, Independent Work at, 43
Ferro, Fir-t French Meridian that of, 44
Fertilisation of Flowers, Sprengel on, Prof. W. W. Bailey, 171
Fertilisation of Herring Ova, Natural and Artificial, Prof. J. Cossar Ewart, 538
Fever (Splenic), in the Argentine Kepublic, Dr. Roy, 21
Finland: Its Forests and Forest Maragement, J. C. Brown, LL.D., I'rof. W. Fream, LeI; I'rof. Lemilnim's Observa. ti ons of the Auro ra Borealis in, 111
Finnish Government Steamer for Baltic Scientific Researches, 205
Finsbury Technical College, 158
Finsch (Dr.), Authropological Kesults of Journey to the Pacific, 462
Firmstone (E. 11. L) , Circular Cloud Bows, 406

Firth College, Proposed Technical Department, 183
Fish, Poisonous, in Japanese-Seas, 184 ; Saccopharyngoid Fishes, Theo. Gill, 236; II ahits of Sea Fish, Prof. Melntosh, 271, 316 ; the Monk Fish, 348 ; Sea Fish in Freshwater Kivers, F., F. Hardman, 452 ; Deep-Sea Fishes of the Talisman, 483 ; Salt-water Finh-Types in Fresh Water, Prof. Theo. Gill, 573 ; the Literature of the Fisheries Exhibition, 33; Fisheries Commission, German, Fourth Report of, 73 Zoological Results of the Work of the United Siates Fish Commission in $\mathbf{1 8 8 3}$, Kalph S. Tarr, 407
Flavit:ky's Theory of Chemical Affinity, 302
Fleming (J. A.), Circular Kainbow, 310
Flics, 1 anger from, 482
Flora of Ancient Fgypt, the, Dr. Schweinfurth, 312
Flower (Prof, W. II, F.R.S.) Mammalia (Encyc. Brit.), 53: Rudolph's Korqual, 104 ; Evolution of the Cetacea, 170; $\frac{3.3}{\text { on }}$ Dolson's Insectivora, 282; the Study of Anthropology, 319; Lectures on Anthropology, 388 ; the Koyal College of surgeons, 531
Flowers, Spreaget on Fertilisation of, Prof. W. W. Bailey, 171
Fluid of Extraordinarily High Refractive and Dispersive Power, Carl Rohrbach, 63
Fog Rowx, G. H Kinahan, to5
Fog IIorns, Novel, 159
Fondacaro (Capt.), Proposed Italian North Pole Expedition, 462
Fonvielle (W. de), Scheme for Discovering.Clockwork in Parcels, 4372
Forbes (Henry O.), Earthquake in Fngland, 602
Forbes (W. A.), Proposed Memorial Volame of, 200
Ford (Chas.), Botanical Work in China, 134
Forecast, an Indian Weather, 27.
Forest Lands of Finland, J. C. Brown, LL.D., Prof. W. Fream, 101
Forests, Cedar, of Cyprus, Sir R. Biddulpb, C.B., 597
Forestry Exhibition, Iuternational, 14
Formosa, Magnetic Dip in South China, Dr, Doberek, 214
Fort Willia n Remarkable Meteor seen at, 272
Firth Bridge Works, Electric Lighting at, $1 \frac{172}{35}$
Fox (Howard), the Remarkable Sunsets, $1 \frac{152}{}$
France, Institute of, Annual Meeting, $1 \underline{14}$; Public Instruction Budget, 245 ; Earthquakes in, 245
French Deep-Sea Expedition of 1883 , Dr. J. G. Jeffreys, F.R.S., 216
French Commission on Phylloxera, 389
Franconian Burial Ground at Cobern, Discovery of, 246
Frank furt am Main, Meteor at, 226; Electrotechnisches Jahrbuch von der hiesigen Gesellschaft in, 235
Franklin Institute Journal, 24
Franklin Expedition, lieut. von Payer's Pictures illustrating,
Frean (Prof. W.), the Rothamsted Grass Experiments, 81 ; Brown's Finland: Its Forests and Forest Management, ion ; an American Kothamsted, 238
Freshwater Rivers, Sea Fish in, E. F. Ifardman, 452
Friedlander (Dr.), Micrococcus in Croupous Pneumonia, 144
Fritsche's (Dr.) Explorations in Southera China, 416
Frog ${ }^{4}$, on the Spinal Marrow in, Dr. Gind, 568
Frotuch (Dr.), Measurements of Solar Heat, 48
Fungi, Glycogen in, M. Errera, 16

Gad (Dr.), on the Spinal Marrow in Frogs, ${ }^{6} 68$
Galbraith and IIaughton's Manual of Mathematical Tables, 282 Galloway (Wm.), New Method of Shaft-sinking in Watery Ground, 2
Galton (Francis, F.R.S.), Prizes offered for Family Records, 244 ; Family Recurds, G. J. Romaner, F.R.S., 257 ; Weights of British Noblemen during last three Generations, 2616
Galvanometers, New Forms of, Thos. and Andrew Gray, 444
Gardiner (Walter), Coprosam baueriana, 231
Gardner (J. S.), Snake Bite, 6; Elevation and Subsidence, 6
Gardner (Jno.), Bleaching, Dyeing and Calico Printing, 425
Garson (Dr.), Cranial Characters of Timorese, 166: Unconscious Bias in Walking, 310
Gas Engine (ihe "Otto "), Addition to Self-starting Apparatus to, 414

Gases, Reduction of Metallic Solutions by means of, Dr. G. Gore, F.R.S., 255
Gegentaur's Morptologisches Jabrbuch, 165
Geikie (Dr. A., F.R.s.), the Origin of Coral Reefs, 107.124 ; American Geology, F. V. Hayden, 233; Origin of the Scenery of the British Islands, $325,347,3964119,442$
Geodetic Conference, International, 14
Geudetic Survey of the United States, 573
Geoghegan (Edward), Axioms of Geometry, 55!
Geognosy of the Harz Mountainc, H. M. Cadell, 303, 447
Geography: Universal Geographies, 45; Geographical Notes, $160,318,346,415,462,584,606$; Mittheilungen of (ieographical Suciety of 1 lamburg. $\frac{160 \text {; Discontinuance of (ieographical }}{}$ Society's Examinations, 388 ; Geographical Society of Rremen, 535 ; Geographisches Jahrbuch, Ninth Issue, 318; Fourth German Geographical Congress, 416
Geology : Geological Society, $119_{2} 165,208,254,303,350_{7}, 470$, 566,591 ; Annual General Meeting, 444 ; Geology of South Devon Coast, Prof. Bonney, F.R.S., I19: of the Libyan Devert, K. A. Zittel, 121 ; Geological Association of Liverpool, $135 ;$ F. V. Hayden, American Geology, A. Geikic, F.K.S., 233; Geological Expedition, Prof. Hull's Palestine, 245 ; Geological Expluration in Western Australia, E. F. Ilarduan, 294; Geological Survey of Russia, 270; Geoligical Survey of New Mexico and Arizona, H. M. Wilon, 272 ; Geological Survey of the United Kingdom, 395 ; Metam irphi-m among Devonian Rocks, 315 ; Orixin of the Scenery of the Britist INand, A. Geikie, F.K.S., $325,347,396,419$. 442 ; Jurasic Kocks under I.ondon, Prof. J. D. Judd, F.R.S., 329 i Geulogy of Arabia, Prof. T. G. Bonney, F.R.S., 350° the " Jxtte, ryder" of Orholm, Herr Cicelmuylen, 414, Grological Position of Human Skeleton found at Tilbury, T. V. Ilolms, 440 ; (ieological Structure of Russia, Interesting Featare of the, Prof. Karpinshy, 461 ; Geology of Central Africa, U. Irummond, 551; on the Progress of Geology, Frof. Julius yon Ilaast, F.K.S., 607
Geometry, Axioms of, I'ruf. O. Henrici, F.R.S., 4532 573 ; Edward Geoghegan, 551
Germany : German Association of Naturalists and Physicists, 17 ; the Telephone in, 63 ; Fourth Report of German Fwheries Commision, 23 ; Unusually Bright Meteor in Western, 366 ; Keport of German Cholera Commission, $365_{5}, 401_{4}, 460$; Fourth German Geographical Congress, 416 ; German Meteorology, G. Hellmann, 523
Gilbert, (G. K.), Probability of Earthquakes at Salt Lake City, 45
Giltert (G. K.), Circular Rainbow, 451
Gilbert (Dr. J. II.) Analyses of Ash of Grain grown at Kothansted, 445
Gill's Parallaxes of Southern Stars, 273
Gill (Prof. Theo.), saccopharyngoid Fiwhes, 236 ; Salt-water Fish-Types in Fresh Water, 573
Gillman (F.), Salt Rain and Dew, 172 ; the Remarkable Sunvets, 172
Ginte (Dr. W.), Death of, 246
Girdlestone (E. P.), Vivisection, 60_{4}
Girton College, 428
Glacial Cavities, Prof, Schwalbe, 68
Glaciation in Siteria, Traces of, Solokoff, 461
Gladstone (J. H.) , F.lectrolysis of IIydrated Salts, 422
Glasgow Philo-ophical Society, 80
Glaygow, University of, Lequest to, 87 ; Naval Architecture Chair, 200
Glangow Catalogue of Stare, 368
Glarebrook (K. T., F.R.S.), Diffusion of Scientific Memoirs, 287, 335
Glycugen in Fungi, Errera, 16
G dthab Meteorolngical Expedition, Danish, 134
Goodwin (Prof. W. L.), the Dust of Krakatoa, 595
Gore (Dr. G., F.R.S.), I'eculiar Ab-orption of Jodic Acid by Aluminium, 254 ; Relations of Ilcat to Vol'aic and ThermoElectric Action of Metals in F.lectrolyter, 300 ; Sime Relations of Chemical Corronion to Voltaic Current, 46 S ; Uulity and Morality of Vivisection, 604
Grain Ash, Analyses of Rothamsted, Lawes and Gilbert, 445
Granton, Marine Station at, 460
(irass Experiments, the Rothamsted, Prof. W. Fream, 8I
Graves (Rev. James), In-tinct of Magpied, 596

Gravitation et Attraction d'après Newten, Mme. Clénence Royer, 255
Gray (Andrew), Absolute Mcasurements in Electricity and Magnetivm, 546
Gray (Thos, and Andrew), New Forms of Galvanometers, 444 Greely Expedition, Another Attempt to Rescue the, 415
Greece, Farthquake in, 159
Green Moon, a, 604 ; in Swerlen, 366
Green (J. R.), Organs of Secretion in Hypericacex, 231
Green's (W,S.), Alps of New Zealand, Prof. Honney, F.R.S. 28 St
Gireen Sun, the, $Z_{2} 28$; C. Michie Smith, 28 ; Warren de la Rue, 28 ; N. B. Beardmore, 28 ; C. Michie Smith, 54 ; in China 436; Green Sunlight, Prof. Win. Swan, 76 ; Dr. Ilyde Clarke, 76
Greenland Expedition, Nordenskjöld's, 10, 39, 79 ; Prof, llorgen on Nordenskjold's Theories in connection with his, 14 ; Danish Expeditions, 44
(ireenland, Edward Whymper's Journeys in, 416
Greenwich, Sunshine at, IIt
Greenwood (W, H.1, steel and Iron, 425
Grinevetsky's Explorations in Nuvaya Temlya, 346
Grubb (Howard, F.R.S.), a New Form of Equatorial Telescope, 470
Guiana, Among the Indians of, E. F. Im Thurn, Dr. Tylor, F.R.S., 305 ; James Dallas, 382

Guinea, Spanish Pussessions in Ciulf of, 462
Gums of the Arabin Group, C. O'Sullivan, 253
Guns, on a Method of Kstimating the Steadiness of Elongated Shot when fired from Large, Kev. F. Rashforth, 527
Guppy (Surgeon), the Origin of Coral Keefs, 214; IIOLuthurians, 384 ; Anthropological Notes in Solomon Islands, 429
Guy (Prof. P.), Remarkable Sunset at Perpignan, 295
Guyut (Prof, A. H.) Death of, 365

Haat (Prof. Julius von, F.R.S.), on the Progress of Geology, 607
Haeckel (l'rof. E.), the Radiolaria, 274, 296
Ilagen (Dr. G. H. L.), Death of, $4 \frac{15}{5}$
Hagen (Dr. H. A.), Christian Cuarad Sprengel, 29. 572
Haldiane (R. B.), Benedict de Spinoza, 354
Hall (Prof. Asaph), the Map of saturn, 185
1 lall (Maxwell), Earthquakes and Air-Waves, 427
IIall's Phenomenon, ou an Explanation of, Shelford Bidwell, 467
Halt, Effect, 558
Hamburg Meteorological Society, 159; Gengraphical Society, Mittheilungen, 160 ; New Naiural Tistory Museum, 460
Ilamilt in (W.), the Kemarkable sunsets, 153
Ilarding (C. W.), the Kemarhable Sunsets, $\frac{132}{11}$
Hardman (E. F.), Geological Exploration in Western Australia,
294: "Suicide" of Black Snakes, 452; Sea Fish in Fresh. water Rivers, 452
Hares, Strongylusin, Prof. Heileerg, $\frac{184}{}$
Harris (Dr.), on T'echnical Education, 184
Hart (H. Chichester), J'aletine Exploration, 384
Hart (Prof. Sam.), Natural Rainbuws, 428
Hartlcy (Prof. W. N.), Re-earches on Spark Spectra, 89: Diffraction Spectroscopes, 470
Harvard University, Bulletin of, 563
Harvey (Wm .), the Re-entumbment of, 13
Harz Mountains, Gengnosy of the, H. M. Cadell, 303n 447
Harz, l'eculiar Ice-Furmation in the, Prof, Schwalbe, 472
Ilauyliton's Manual of Mathematical Tables, Galbraith and, 282
Ilaughton (Kev. S., F.K.S.), Unusual Sunrises and Sunsets in is83, 470
Huwell (Kev. John), the Remarkahle Sunsets, 285
Hawk-ley (Ihos,), Uncon-ciuus Blias in Walhing, 286
Hayden (T. V.), American (ieelogy, A. Geikie, F.R.S., 233
Mayward (J. M.), Meteor, 30: Animal Intelliger ce, 357
Health Exhibition, International, 133. $388,489,556$
Health, Kelation of Meteorology to, 344
Health Society, National, 488
Heat (Solar), Measurements of, Dr. Frölich, 48
Heat in Relation to Voltaic and Thermo-E.lectric Action of Metals in Electrolytes, Ir, Gore, F.R.S., 300
Ileat, an Introduction to the Study of, J. Hamblin Smith, 333

Hector (Dr., F.R.S.), Barometrical Sympathy with Earthquakes, 87
Heddle (Prof. M. Foster), Agates, 419
Heiberg (Prof.), Strongylus in Hares, 184
Hellmann (G.), German Meteorology, 523
Helmholtz (Prof. Kobert von, F.R.S.), the Remarkable Sunsets, 130
Helmholtz (Prof, von), Galvanic Polarisation explained according to Thermodynamic Principles, 192
Helvetic Society of Natural Sciences, 188
Hemias pidx, Prof. Fr. Schmidt, 461
Henfrey's Elementary Course of Botany, 604
Henrici (Prof. O., F.R.S.), Axioms of Geometry, 453. 573
Herdman (Prof.), Classification of the Ascidiae Composite, 429
Heredity in Cats, 20 ; E.. B. Poulton, 20
Hernösand, Sweden, Meteor at, 44
Herring, Early Hitory of the, Prof, J. C. Evart, Io5; Norway Fisheries, 344 ; on the Natural and Artificial Fertilisation of Herring Ova, I'rof. J. Cossar Ewart, 538
Herschel (Isabelia), IIabits of Bees, IO4
Hicks (W. M.), Diffusion of Scientific Memoirs, 146
Hicks (Dr. H.), Cambrian Conglomerates, 208
Hliggins (H. H.), Meteors, 123
Hill (S. A.), Influence of the Weather upon Death-rate and Crime in India, 3,38
Hirschgeweih-sammlung zu Moritzburg, Die, 307
Histogeny of the Retina, Koganei, 255
Hodges (Sydney), the Kemarkable Sunsets, 153
Hoffaneyer (Capt.), Obituary Notice of, 4,34
Holmes (T. V.), Geological Pusition of Human Skeleton found at Tilbury, 440
Holothurians, H. B. Guppy, 384
Holotharioidea of the North Atlantic, 25
Holub's (Dr.) Expedition Io Africa, 135,346
Hong Kong Observatory, Dr. W. Doberck, 596
Hop Culture in New Zealand, 201
Hope (Lieut. C. K., R.N.), the Remarkable Sunsete, 153
Hopkins (B. J.), the Remarkable Sun iets, 179
Hopkins (G. H.) the Green Sun, 7, 28
Hopkins (Rev. Gerard, S. J.), Shadow-Beams in East after Sunset, 55 ; the Remarkable Sunsets, 223
Horns, Deer and their, Sir J. Fayrer, F.R.S., IZI ; Sir J. Fayrer, F.R.S., James Inglis, 213i the Moritzburg Collection of Horns, 307
Howard (J, E., F.R.S.), Death of, 110
Howard Medal of Statistical Society, 111
Howarth (E.), Meteor, 336
Howitt (A. W.) Australian Initiation Ceremonier, 254
Hughes ;Prof. T. McK.), Fossil Tracks, 166
Hughes (Prof. D. E., F.R.S.), New Magnetic Balance, 263; the Mechanical Theory of Magnetism, 459
Hull's (Prof.) Palestine Geological Expedition, 245: 318 ; Return of, 389
Human Body, Electrical Resistance of the, Dr. W. L. Stone, 21. 528

Hungary, Earthquake in, 200,557
Huxley (Prof.) on Technical Education, 63: Royal Society Anniversary Address, 136; Address at Finsbury Technical College, 158 ; on Science and Engineering, 534
Hyades (Dr.), Keport of Freach Mission to Cape Horn, 191
Hydrostatic Pressure, Measurement of Magnetic Forces by, Frof. Quincke, 489
Hydrated Salt*, Electr-3lysis of, Gladstoue and Tribe, 422
Hydr ngen, Solidification of, 316
Hydromedusse, Prof. Aug. Weismann on Sexual Cells of, Pr.f.
H. N. Moscley, F.R.S., 114

Hypericacex, Organs of Secretion in, J. R. Green, 231

Ice Cavern in Carniola, Discovery by Prof. Linhart of Great, 296
Ice.Formation in the Ilarz, Peculiar, Prof. Schwalbe, 172
Ice Volcanoes, Mountain Rainb sw, A. D. Colman, 550
Iceland: Volsanic Phen mens in, 226, 343; Sun-Glows and
Volcanic Eruptions in, I)r. Sophus Tromholt, 420 ; Aurora
Borealis in, Dr. Sophus Trouholt, 537; Icelandic Polar
Fixpedinion in A.D. 1266,416
Iktis, is it in Cornwall? A. Tylor, 84

Impressions, Waking, Wm. Radford, 77
Im Thurn (E. F.), Among the Indians of Guiana, Dr. E. B, Tylor, F.R.S., 305
Incubation Period of Scientific Links, on the, Jas Blake, 148
Independent Work at Cambridge Fellowship Examinations,
43
Iudia: Indian Museum, Anderson's Handbook of Archecological Collections in, 27; Electricity in, C. Michie Smith, 54; an Indian Weather Forecast, 77 ; Progress of Botany in, uI; Im Thurn's Indians of Guiana, Dr, E. B. Tylor, F.R.S., 305 ; James Dallas, 382 ; the Indian Survey, 360 ; Influence of Weather on Death-rate and Crine in India, S. A. Mill,
338 ; Earthquake Disturbance of Indian Tides, Lieut.-Gen.
Walker, F.K.S., 358
Inglis (James), Deer and their Horns, 171, 213
Insects, Farm, John Curtic, 170
Insects, Marine, A. W. Pearson, 184
Insect Life, Guide to Methods of, Eleanor A. Ormerod, 308
Insectivora, Prof. Flower, F.R.S., on Dobs in's, 282
Instinct, Darwin on, 110,128 ; C. I Loyd Morgan, 370 , 379, 405 ; Dr. G. J. Komanes, F.R.S., 379, 428, 477i Wm Brown, 428 ; of Magpies, Kev. James Graves, 596
Institute of Naval Archilects, 5.35
Institution of Civil Engineers, $\mathbf{1 6 6}, 328$, 447
Institution of Mechanical Engineers, 582
Instruction in France, Budget of Public, 245
Insulating Support, a Cheap, Prof. Silvanus T. Thompson, 385
Intelligence, Animal, J. M. Hayward, 357
International Polar Observatories, Prof. Wild, 201
International Society of Electricians, 44
International Weights and Measures, 529
Invention, an Inquiry into the Origin of, Col. F. A. Seely, 226
Iodic Acid, Peculiar Absorption by Aluminium of, Dr. G. Gore, F.R.S., 254

Iron and Copper, Did they precede Tin ! A. Tylor, 8_{4}
Iron and Steel Institute, Annual Meeting, 603
Ischis, Earthquake in, 557
Isis Natural 11 istory Society, Dreden, 23
Italy, Earthyuake in, 272, 317, 366
Izvestia of Ea+t Siberian Geographical Society, 15

Jacobson (Herr), Return of, 8 Z
Jadeite, Dr. Meyer, 15
"Ja?tegryder " of Orholm, the, Herr Geelmuyilen, 414
Japan: Meteorology in, 112; the Japanese Languriidx, G. Lewis, 142: Poisonous Japanese Sea Fish, 184 ; Catachthonic Obvervatory in Japan, 413 ; Aucient Japan, 485 ; Seismo. longical Society of Japan, 584 ; List of the Birds of. 604 the Chemistry of Japane e Lacquer, 604 ; Mines and Mining, in, 605
Java Eruptions, Detonations heard in Philippine Islands, 44 ; F. C. Constable, 55 ; Capt. Watson, 140 ; J. J. H. Teall, 170 i and Earthquake Waves, J. T. Bealhy, 30 ; Mr. Meldrum on, 32,153
Jeffreys (Dr. J. Gwyn, F.R.S.), Obituary Notice of Prof. Nilsson, 172; Frencb Deep-Sea Expedltion of 1883,216
Johns Hopkins Univer-ity, 183
Johnston (II. 1I.), Races of Wes'ern Tropical Africa, 303 ; Departure of, for Zanzibar, 415; the Congo, Prof. A. H, Keane, 579
Johnston-Lavis (Dr. 11. J.), the Rsmarkable Sun ets, 152 ; Vesuvius, Eruption of January 1884,291
Jones (W.C), I'artials, 6
Joubert, Mascart and, Electricity and Magnetism, 74
Journal of Pbysiology, 47, 375
Journal of Royal Microscopical Society, 47, 375
Journal of Royal Agricultural Society, 75
Journal of Anatomy and Physiology, 141
Jourual of Franklin Institute, 276, 425
Journal de Physique, $277_{2} 495$
Journal of Sincietv of Arts, 345
Journal of the Rus-ian Chemical and Physical Society 397 , 422,443
Journal of Botany, 349,443, 540,613
Judd (Prof. J. W., F.R.S.), the Remarkable Sunsete, If

525; Jurassic Rocks under London, 329; the Dust of Krakatoa, 595
Jung (Dr.), Deutsche Kolonien, 594
Junker's (Dr.) African Expedition, $318,462,482_{2}, \frac{584}{2}$
Jurassic Rocks uuder London, Prof. J. W. Jud है F.R.S., 329

Kaiser (Dr. H_), Determinants, 378
Kalischer (S.), Is Steam Condensation a Cause of Electrification? 227
Kamschatka Expedition, Steineger's, 416
Kanonnikoff, Refracting Power of Solid Chemical Compounds, 391
Kara Sea, Baron Nordenskjöld's Theory as to Navigability of, 14
Kara-kum Desert, Konshin's Explorations in the, 416
Karpinsky (Prof.), Interesting Feature of the Geological Structure of Russia, 461
Keane (Prof. A. HI.) Carl Bock's Siam, 258; the Egyptian Sudan, 291; Sketch of the Motern Languages of Africa, Robert Needham Cust, 377; the Congo, H. H. Johnston, 579
Kennel (Dr . von), on the Development of Peripatus, 22
Kent (W. Saville), Appointed Inspector of Fisheries for Tasmania, 534
Kernahan (1. C.), a I.unar Rainbow, 105
Kew, the Museums of Economic Botany, 581
Kilimanjaro (Mount), Mr. Johnston's Expedition to, 200, 415
Kinahan (G. H.), Sudden Stoppage of Clocks, 105 ; Fog Bows, 105; Storm of January 26,358
Kingsley (J. S.), and H. W. Conn, on the Embryology of the Teleosts, 16
K!inkerfues (Prof.), the late, 415
Knowledge, the Six Gateways of, Sir Wm. Thomson, F.R.S., 43^{8}. 462
Koganei, Histogeny of the Retina, 255
König (Dr), Experiments on Neutral Points in Spectrum of Colour-Blind, 168 ; Experiments on Colour-sensitiveness, 496
Konshin's Kara-kum Explorations, 416
Koncheldt (O.), on the Chemistry of Japanese I acquer, 604
Kossel (Prof.), Nuclein in Animal Body, 452
Krakatoa Eruption, 157 344. 437 ; E. Metzger, 240; M. van Doora, 268 ; G. J. Sywions, F.R.S., 355 ; 365 ; Analysis of Krakatoa Volcanic Ashes, Renard, $134 ;$ Dr. Reusch, 388; Prof. J. W. Judd, F.R.S., 595; Prof, W. L., Goodwin, 595; the Krakatoa Air-Wave, Gen. Strachey, F.R.S., 881
Krause (Dr. Aurel), on the Inhabitants of the Chukche Peninsula, 161 ; Experimental Proof of Prof. Munk's Theory of Cenire of Corical Area of Voluntary Muscles of Larynx and Jaws, 168
Krystallographische Untersuchungen, Dr. Brezina, 195

Lahoratory, Biological, on the English Coast, a, 473
Lacquer, Japanese, the Chemistry of, 604
Lalande and Chaperon, New Elements for Primary Batteries, 227
I angley (Prof. S. P.), a Vast Dust Envelope, 324
I.anguriidx, the Japanese, G. Lewis, 142

Lankester (Prof. E. Ray), Living Scorpions, Mygale, and Protopterus, 54
Ia Nuova Scienza, 557
Lapparent (A. De), Cours de Minéralogie, 403
Larden (W.), Circling to the Left in a Mist, 262
Larynx and Jaws, Experimental Proof of Psof. Munk's Theory of Centre of Cortical Area of Voluntary Muscles of, Dr. H. Krause, 168
Iaughtos (J. K.), Address as President of Meteorological Society, 302
Lawes (Sir J. B.), Analyses of Ash of Grain grown at Rothamsted, 445
I ayard (E. L.), the Remarkable Sunsets, 461
Leadville, Ores of, and their Mode of Occurrence, Louis D. Kicketts, 578
Leaves, Starch in, on the Formation of, Prof. IL. Marshall Ward, 552
Lecher (1)r. E.), Rowland's Experiment demonstrating the Magnetic Action of Electric Convection, 558; Experiments on Polarisation of light, 559

LeConte (Dr. J. L.), Obituary Notice of, R. McLachlan, F.R.S., 128
IeConte (Prof. Joseph), Elevation and Subsidence, 212; the Remarkable Sunsets, 403 ; Right-sidedness, 4.52
Lefroy (Sir J. H.), Earthquake, 56
Left, Circling to the, in a Mist, W. Larden, 262
Lemström's Observations of Aurora Borcalis, 111
Lena Polar Metcorological Station, Dr. Bunge, 318,389
Ienses, Measurement of Curvature of, Prof. Clifton, 143
Lessar's Transcaspian Explorations, 416
Iewis (G.), the Japanese Languriidæ, 142
Iey (Annie), the Remarkable Sunsets, 130
Ley (Rev. W. Clement), the Remarkable Sunsets, 175; Mr. Ruskin's Bogies, 353
Libraries, Report of Manchester Free, 159 ; Sheffield Free, 344
Libyan Desert, the (ieology of the, K. A. Zittel, L2I
Light, Reflection of, W. J. Trentler, 104
Light, Reflection from Metallic Surfaces of, Sir John Conroy, 328
Lights, Zodiacal, G. M. Whipple, 453
Light, G. G. Stokes on, Prof. P. G. Tait, 545
Light, Polarisation of, Dr. Lecher's Experiments on, 559
Lighting, Electric, on District Railway, 295
Lilise, 5,30
I.incei, the Academy of the, Prof. Brioschi appointed President, 582
Linhart (Prof.), Discovery of Great Ice Cavern in Carniola, . 296
Links, on the Incubation Period of Scientific, Jas. Blake, 148
Linnean Society, 71, 110, $142_{2} 191_{2}, 230,328,393_{2}, 469_{2} 591$
Linnean Society of New South Wales, 279
Lisbon, Earthquake at, 200, 272
Liverpool, Geological Association, 135 ; Royal Institution, 366 Lizard, Extinct Australian, Sir R. Owen, F.R.S., 327
Local Science Societies and Minor Prehistoric Remains of Britain, 19
Lochs, Bathymetrical Survey of Scottish, 487
Lock (Rev. J. B.), a Treatise on Higher Trigonometry, 547
Lockyer (J. Norman, F.R.S.), Movements of the Earth: Measurement of Time, 65 ; Rotation of the Earth, 201
Lodge (Prof. Oliver J.), and Prof. J. W. Clark, on the Phenomena exhibited by Dusty Air in the Neighbourhood of Strongly Illuminated Kodies, 417
Logarithms, De Morgan's Five-Figure, 185
London, East, Proposed Institute for, 183
London, Jurassic Rocks under, I'rof.J. W. Judd, F.R.S., 329
Lovell (J.), Earthworms, 551
Lowe (Rev. W. Besant), Meteors, 56
Lubbock (Sir John, F.R.S.), Teaching Animals to Converse, 216, 547
Luce (Prof.), Subjective Auricular Sensations, 568
Lunar Rainbow, J. C. Kernahan, 105 ; C. H Romanes, 172 ; M. F. Dunlop, 172

Macaulay (Dr. Jas.), the Remarkable Sunsets, 176
McCann (H. W.), Dyes and Tans of Rengal, $\frac{147}{47}$
Macgregor's (Prof.) Arrangement for Measurement of Electrolytes, 558
McIntosh (Prof.), Inspection of Scotch Trawling-Grounds by, 200: Habits of Sea-Fish, 271
Mclachlan (R., F.R.S.), Obituary Notice of Dr. J. I. LeConte, 128; Unconscious Bias in Walking, 318
Maclay (Baron), Barometro Araucano, 303
Macpherson (Josepl), the Remarkable Sunsets, 224
Madagascar, Nild Tribes of, J. Audebert, 347
Magnetism : Magnetic Dip in South China and Formosa, Dr. Doberck, 214 ; Hughes New Magnetic Balance, 263; Magnetic Polarity and Neutrality, Prof. D. E. Ilughes, F.R.S., 468 ; on a Magnetic Sense, Prof. W. F. Barrett, 476 ; Measurement of Magnetic Forces by IIydrostatic Pressure, I'rof, Quincke, 489; Rowland's Experiment demonstrating the Magnetic Action of Electric Convection, Dr. E. Lecher, 558 ; Electricity and Magnetism, Mascart and Joubert, 74 ; the Mechanical Theory of Magnetism, Prof. Hughes, 459; Absolute Measurements in Electricity and Magnetism, Andrew Gray, 546
Magpies, Instinct of, Rev. James Graves, 596
Malaga, Earthquake at, 88

Malan (E. de M.), Cats on the District Railway, 573
Malay Peninsula, Geography of, 460
Malta, Meteorological Observations at, 225
Mammalia, Prof. Flower (Encyc. Brit.), 53
Mammalia, Extinct, Evidence for Evolution in History of, Prof. E. D. Cope, 227, 248

Manchester: 1.terary and Philosophical society, 143, 191, 592 ; Report of Free Libraries, 159
Mangrove as a Destructive Agent, Capt. W. J. L. Wharton, R.N., 76

Mansion (P.), Determinants, 378
Marine Zoological Iaboratories, 16
Marine Insects, A. W. Pearson, 184
Marine Eugineering, Carl Busley, 4^{26}
Marine Station at (iranton, Scottish Metenological Soeiety's, 460
Marine Station, Ellinburgh, 483
Marshall's Anatomy for Artists, 30,56
Marshall (Prof. H. D.), the Remarkable Sunsets, 310
Marshall (Stephen A.), Unconscious Bias in Walking, 311
Martin's (Joseph) Siberian Explorations, 319
Mascart and Joubert, Electricity and Magnetism, 74.
Massenat (Lieut.), Discovery of Roman City in Tunis by, 15
Masters (Dr. Maxwell), Obituary Notice of Dr. Engelmann, 599
Mathematical Society, 21, 190, 278, 399, 495, 566
Mathematical Tables, Galbraith and Tlaughton's Manual of, 282
Mathematical Zoology, a Problem in, Protection by Mimiery,
Capt. T. Blakiston and Thomas Alexander, 405
Mathematies, Annals of, 135
Mathematical and Physical Papers, Prof. Stokes', Prof. P. G. Tait, 145
Maynard (T. R.), Circular Rainbow seen from a Hill-top, 357
Measurement of Time, J. Norman Lockyer, F.R.S., 65
Measures, Weights and, Report of Board of Trade, 111
Measures, Mctrical, More Convenient Equivalents for Converting British into, G. J. Stoney, F. K.S., 278
Measuring the Aurora Borealis, Dr. Sophus Tromholt, 409 Measuring Heights, 526
Mechanical Engineers, Institution of, 38
Mechanics, Prof. Tait (Encye. Brit.), $\frac{32}{52}$
Mechanics, Applied, by Prof. Rovcy, A. R. Willis, 122
Medicine, the Ifistory of, Dr. Payne (Fincye. Brit.), 51
Mediterranean and Atlantie, Relative level of, Tillo and Bourdalou, 185
Meldola (R.), the Remarkable Sunsets, 224
Meldrum (R.), on the Java Eruption, 32
Memoria della Societa Geografica Italiana, 159
Memoirs, Diffusion of Scientific, 361 , $311 ;$ Prof. Silvanus P'.
Thompson, 171 ; W. M. Hicks, 197i Prof. P. G. Tait, 197 ;
R. T. Glazebrook, 287, 335

Meudon Observatory, the, 64
Mental Evolution in Animals, F. J. Faraday, 335, 381 ; Gco. J. Romanes, F.R.S., 404
Meridian, First French, that of Ferro, 44; Universal, 183
Meridian, Prime, Conference, International, 367,413
Merrifield (Dr.), a Treatise on Navigation, 169,237
Merrifield (C. W., F.R.S.), Death of, 244 : Obituary Notice of, 270
Merrifield (Mary P.), Drs. Agardh and Rabenhorst on Algre, 340
Merv Oasis, Alikhanoff on, 585
Messina, Earthquake at, 272
Metallie Solutions, Keduetion by means of Gases of, Dr. G. Gore, F.R.S., 255
Metallic Surfaees, Kefection of Light from, Sir John Conroy, 398
Merals, in Electrolytes, Relations of Heat to Voltaie and ThersoElectric Action of, 1rr. Gore, F.R.S., 300
Meramorphism anoig the I evonian Rochs, 315
Metcalfe (A. T.) Vertelrate Kemains in Triassie Strata, 303
Meteorology: Distritution of Kaiu-Guager, 64; an Indian Weather Forecast, 77i Meteorology in Japan, II2; the Remark: able Sunsets, 130 ; Ren Nevis Oliservatory, 134,342 ; Danish Meteorological Expedition, 134 ; Danish Godlhaai, Metcorological Expedition, 134 ; 1 amburg Meteorological Society, 152 ; Meteorological Observations at Malta, 225 ; Swedish Meteorological Expedition, 263 ; Chinese Meteorology, Dr. Doberek, 271 ; the Kecent Storm, 316 ; Lena Polar Meteorological Station, Dr. Bunge, 318, 389 ; Relation of Meteorology
to Health, 344 ; Meteorology in Sweden, 365 ; Establishment of Weather Warnings on Spani-h Coast, 365 ; Sentis Meteorological Observatory, 413 ; Extraordinary High Tide, 413 ; Composite Pirtraiture adapted to the Reduction of Meteorological and other Similar Observations, G. M. Whipple, 430 : Pic du Midi, Pyrences, Olscrvatory, 431 ; Mariue Station at Granton, 460 ; German Meteorology, G. Hellmann, 523 ; Meteorological Bibliography, G. J. Symons, F.K.S., 550 ; Meteorological Observatory at Carpineto-Romano, 556; Meteorological Society, ser Royal
Meteors: the Observation of, W. F. Denning, 6, 56; and Whirlwind in Sweden, 15; J. M. Hayward on, 30; at Hernösand, Sweden, 44; 1) W. Besaut Lowe, 56 ; T. W. Backhouse, 104 ; F. J. Mott, 104 ; Wm. Wickham, 123 ; J. B. Oldham, $\frac{123}{}$; H_{s} U. Higkins, 123; G. M. Whipple, 148; and Aurora at Alfta, 159; at Frankforton-Maine, 226; seen at Fort William and Berwiek-on-Tweed, 272; E. Howarth, 336; Unusually Bright, in Western Germany, 366 ; in Sxeden, 114
Meteorite in Sweden, 437
Meteorie Dust, L. P'. Muirhead, 494
Meteorie Stones, on the Trau-mission of Organie Germsthrough Cosmical Spaee by, J. H Stewart, 595
Metrieal Measures, More Convenient Equivaleuts for Converting British into, G. J. Stoney, F.K.S., 278
Metzizer (\mathbf{E}.), the Krakatoa Eruption, $\frac{240 i}{}$ a Blue Sun, 252 ; Cosmie 1)ut, 265 ; on Mining in Japan, 6 cs
Mexico (New), Geological Survey of, H. M. Wilson, 272
Meyer, Dr., Jadeite, 15
Meyer (I'rof. V.), Thiophen, 391
Mierocoeeus in Cropous Pneumonia, Dr Friedlinder, 144
Miers (H. A.), Barytes from Chirbury, 29, 124
Mildness of the Sea on, the, 236
Milne (Prof. John), Earthquakes and Buildings, 290; Catachthonie Observatory in Japan, 413 ; Earth Tremors, 456
Milne-Edwards (Prof. A.), the Talisman Expedition, 197
Mimicry, Protection by-a Problem in Mathematical Zoology, Capt. T. Blakiston and Thomas Alexander, 405
Mineral Resourees of the United States, 598
Mineralogical Society, 24, 191, 400
Minéralogie, Cours de, A. De I.apparent, 403
Mist, circling to the Left in a, W. I, arden, 262
Modern Languages of Africa, Sketch of, Roljert Needham Cust, Prof. A. H. Keane, 377
Möbius (Prof. K.), Christian Conrad Sprengel, 406
Moneel (Count Du), Death of, 387 ; Obituary Notiee of, 412
Monk Fish, the, 348
Moncreiff (Lord), Past Hundred Years' History of Edinburgh Royal Society, 368
Monte Video, Earthquakes in, 437
Montsouris Observatury, 437
Moon, a Green, 604 ; in Sweden, 366
Morkan, (C. Lloyd), Instinct, $370_{3} 405$; Geo. J. Romanes, F.R.S., 379

Moritzburg Collection of Deers' Horns, the, 30%
Morocco, Captain Crema's Journey to, 462
Morton (Mr.), Ceratolus forsteri, 16
Moseley (Prof. H1. N., F.K.S.), Prof, Aug. Weismann on Sexual Cells of Hydromedusx, 114 ; Peripatux, 196
Motion of Prujectiles, E. Ristori, 572
Mott (F. T.), Meteor, 120 ; Water in Australia, 311
Mouchez (Admiral), Proposed Removal of Paris Observatory,
Mountain Rainbows, Iee Volcanoes, A. P. Coloman, 550
Movements of the Earth, the, J. Norman Lockyer, F.K.S., 65, 201
Muller (Dr. F.), C. C. Sprengel, 334
Mulf. r (1)r. Herma n), Memorial t., 244
Müller (H. W., F.R.S.), Strihing Dissance of Electrie Discharge, 325
Muller (Hugo, F.R.S.), Researehes on the Eleetric Di-ehar rge,
Muir (M. M. P.), Julius Thonsen's. Thormochemische Untersuehungen, 209: General Prineiples of Chemistry, 317
Muirhead (L. P.), Meteoric Dust, 494
Munk (Prof.) "1 Experimental "Epilepsy, 72; Absorption of Fat in Animal Body, 472

Marray (J.) and A. Renard, Volcanic Ashes and Cosmic Dust, 585
Muscles (Voluntary) of Larynx and Jaws, Experimental Proof of Prof. Munk's 'Theory of Cortical Area of, Dr. H. Krause, 168
Museum for Chester, Proposed, 88
Museums (Dresden), Keports of, 226
Music and Science, Dr. W. H. Stone, 198
Musica e nna Scienza, La, Dr. Primo Crutti, 198
Mygale, Protopterus, and Scorpions, Prof. E. Ray Lankester, 54

Nachrichten of the Royal Society of Sciences and of the University of Götıingen, 277, 300, 375
Nagasaki, Catachthonic Observatory near, 413
Naiba Mountain near Rona, Subsidence of, 15
National Academy of Sciences (America), November Mecting of, 161
Natural History, Prof. Bickmore's Lectures to Sebool Teachers on, 18_{4}
Natural History for Working Men, Rev. W. Tuekwell, 344
Nataral History Museum, South Kensington, 556
Natural Seience at Cambridge Lieal Examinations, 63
Nature, Unity of, Duke of Argyll, 474, 524 ; Geo. J. Romanes, F.R.S, 474, 548

Nautical Almanac, the, 89
Naval Architects, Institute of, 535,563
Navigation, a Treatise on, Dr. Derrifield, 169. 237
Nebuchadnerzar, New Inscription of, E. Budge, 375
Nebning (Prof.), Cannibalism among Cave-Dwellens, 366
Nepenthes, Prof. Alex. Diekson, 254
Neva, M. Solokofi's Kevearche, on Water of, 345
Neva Water, Bacterioscopic Measurements of, Dr. Pehl, 557
New Guinea, Mr. Wilfrid Powell's Expedition to, $3 t 8$
New York, $\$ Sunshlne Kegistered at, 111
Ner Zealand Botanic Garden Board, Report of, 200; Ravages of Coccidxe in, 200 ; Hop Culture in, 20I ; the Alps of, W.S. Green, Pruf. Bonney, F.R.S., 28 I
Nice Universal Exhibition, 44
Niger Expedirion (Contemplated) by Dr.' E. Rieheck, 161
Nilsson (Prof. Sven), Death of, $134 i$ Obituary Notice of, Dr. J. G. Jeffress, F.R.S., 172

Noblemen during lavt Three Generations, Weight of British, Fras. Galton, F.R.S., 266
Noe's Thermo-Electrie (ienerators, Prof, von Waltenhofen's Experiments with, 227
Nordenskjold's Greenland Expedition, 10, 39, 29 ; Theories in connection with, Prof. Borgen on, 14; Nordenshjold's 1 heory as to Navigability of Kara Sex, 14 ; the Scientifie Work of the Vera Expedition, 455 ; Catalogue de la Mbliotheque Japonaise de Nordenskjold, Léon de Kosny, 594
North Pule, Iroposed Italian Expedition to the, 462
Norway, Gray and Black Dusi on Snow, 135
Nurway Herring Fisherics, 344
Norwegian North Allantic Expedition: Zoology, 25
Notiosaurus Dentatus, Sir Kichard Owen, F.K.S., 327
Nottingham Free Library, Catalogue of Scientific Fooks in, 317
Novaya Zemlya, Grinevetsky's Explorations in. 346
Nuclein in Animal Body, Prof. Kussel, 352
Nuovo Giornale Botanics Italiano, 613

Obin Pennatulida, the, J. T. Cunningham, 46
Otservatorics: Ben Nevis, $14 i^{\text {a }}$ Chrast nas^{2} Vi-it to. Prof. G. Cbrystal, 219; the Meudon, 64; the New Equatorial al the Jaris, 36 ; Proposed Removal of the Paris, 64 , 185 , 343, 374. 413,436 , 487 : Endowment of the Paris 22G: Chicago, 60; International l'olar Observatorie ${ }^{2}$, I'sof. Wild, 201: Ornithological, in Au-tro-Hungary, 246; the Torrenc, 345 ; Au tralian, 390 ; Sentis Meteorol gical, 413 ; Pic du Midi, Pyrences, 431 ; Montsourıs, 437 i i Cincinnati, 558 ; Hong Kong, Dr. W. Doherck, 596 ; Palerino, 606
Oceanie Languisric Affinities, Semitico, Prof. A. H. Keane, 172
Ojcow Hone Caves, Prof. Dr. F. Ko.uer. 449
Oldham (J. B.), Meteors, 123

Omond (R. T.), the Remarkable Sunsets, 259
O'Neill's African Explorations, 346
Oosh, Earthquake at, 317
Ophidian Genus Simotes, C. A. Boulenger, 149
Optical Phenomena, J. L.. Hozward, 102; Dr. H. Airy, A. Tarn, Annie Ley, M. Carey-Hobson, 103
O'Reilly (l'rof. J. P.), the Kemarkable Sunsets, 180, 549 ; Dust Atmosphere of China, 260
O'Reilly (M. G. K.), the Ringhals, 278
Ores of Leadville, and their Morle of GOccurrence, Louis D. Ricketts, 571
Organic Germs, on the Transmission of, through Cosmical Space by Meteoric Stones, J. H. Stewart, 595
Orholm, the "Jattegryder" of, Herr Geelmuyden, 414
Ormerod (Eleanor A.), Guide to Methods of Insect Life, 308
Ornithological Congress at Vienna, 556, 582, 390
Ornithological Observatories in Austru-HIungary, 246
O^{*} Sullivan (C.), Gums of the Arabin Group, 253
Ostrof Mednij, Exploration of, 605
Oswald's Studies of Chemical Affinity, 391
Otayo University Museum, Notes from, Trof. T. J. Parker, 46, 189
"Otto" Gas Engine, Addition of Self-starting Apparatus to, 414
Oudh, Field and Garden Crops of the North-Western Provinces and, J. F. Duthie, 547
Orambo Land, Expliration of, 585
Owen (Sir Richard, F.R.S.), Kesignation of, 157 ; Sceparnolon
racusayi, 165 ; Shull and Dentition of Tritytudon longavus,
165 ; an Fxtinct Australian Lizard (Notiosauru: denlalus), 327 ; Presentarion of Address to, 487
Owen (Sara S.), Unconscious Bias in Walking, 336
Oxford Convocation, Vivivection in, 34,3
Oxford, Physiology in, E. Chapman, M.A., 76
Oxygen, \&e., Liquefaction of, Wroblewski and Olszewshi, 25
Ozone at sea, C. L. Wragge, 336

Pacific, Anthropological Revults of Dr. Finsch's Journey to the, 462
Palrolithic Implement found in Clerkenwell Road, 15
Paleolithic Man-His Bead Ormaments, Wurthington G. Smith, 83
Palieontology, Chinese, Prof. R. K. Douglas, 551
Palernno, Otservatory of, 606
Palestine Geological Expeditıon, Prof. Hull's, 245, 318 ; Return of Prof. Hulls, 389 ; 11. Chichester Hart, 384
Palinurus, Prof. T. J. Parker, 182
Pamir Expledtions, Kussian, 319
Parallaxes of Southern Stars, Giil's, 273
Parcels, Scheme for discovering Clockwork in, W. de Fonvielle, 437
Parss: the Academy of Science $, \frac{24,}{48}, 22,96,120,143,167$, 191, 231. $255,279,304,351,376,423,4472,470,495,543$. 507,592 ; Dlaservatory, the New Equatorial at, 36 ; D'ropuoed Renoval of the Olwervatory, $64,185,343,374,313,436$, $4{ }^{8} 7$: the Endowment of, 226 ; Ediron Incandescent Lights in Thitel Dieu, 366 ; Exhibition of Gbjects eolleeted hy Romanche Expedition, 366 ; Anthropologeal Socicty of, 414 i Lectures at (ieographical society of, 436 ; Lighting of Ojera Ilouse by Eleetricily, 584
Parker (Prof. 'T. J.), on some Embryos of Callorhynehus antaretieus, 46 ; P'alinurus, 189
Partial © W. C. Jone", 6; C. O. Varley, 57
Patagonia, Gien. Roca's Expedition to, 451
Paul (II. M.), the Kemarkable Sunset ${ }^{\text {, } 284}$
Paulsen (Adam), on the Height of the Aunira Borealis, 337
Payer (Julus), Contradiction of Keinirt of lleath of, 135 ;
J'ietures Illustrating Franklin Exiedtion, 317
Payne (1)r.), the History of Meriei e (Iincyc. Brit.). 51
Pearson (A. W.), Marine Insects, $18 \frac{1}{4}$
Pehl (1r.), Bacterioscopic Measurements of Neva Warer, 557
Pennatulida, the Oban, J. T. Cunningham, 46
['ennington (Kooke), Cats at Victoria Station, 596
P'enny Science Lectures at Victoria Coffee Ilall, 389
Ieripatus, on the Development of, Dr. von Kennel, 62 ; Prof. L. N. Moseley, F. R.S., and A. Sedgwick, 196

Perpignan, Kemarkable Sunset at, 295

Perrier's Map of Tunisia, 488

Perrotin, Close Double-Stars, 185
Perth Natural History Society, 225
Perulia (Raphael), Detonations of Java Eruptions heard at Philippine Islands, 44
Petermann's Mittheilungen, $160,584,585$
Petut (M.), Return of, from the Congo Region, 158
Petrological Notes on some North England Dykes, J. J. H. Tcall, 254
Pettersen (Dr. Karl), Sagvandite (a New Rock), 196
Phenomena Exhibited by Dusty Air in the Neighbourhood of Strongly Illuminated Bodies, Profs. Oliver J. Lodge and J. W. Clark, 417

Philippine Islands, Java Eruption Detonations heard in, 44
Phonograph to be used in African Exploration, 460
Photography of Colours, Greenwood Pim, 470
Phylloxera, C. S. Riley, 87 ; in Victoria, 245 ; French Commission on, 389
Physical Notes, 489,558
Physical Papers, Prof. Stokes' Mathematical and, Prof. P. G. Tait, 145
Physical Society, 71, 142, 231, 350, 392, 446, 495, 541
Physiological Society, 472, 568
Physiology in Oxford, E. Chapman, M.A., 76
Pic du Midi, Studies made on Summit of, with a View to the Establishment of a Permanent Astronomical Station, MM. Thollon and Trépied, 7 ; Meteorological Observatory, 431
Pidgeon (D.), the Remarkable Sunsets, 195
Pim (Greenwood), Photography of Light and Dark Colours, 470
Pitman (Elizabeth M.), the Remarkable Sunsets, 153
Planet of Heterogeneous Density, on the Figure of Equilibrium of a, Prof. G. H. Darwin, F. K.S., 230
Planets, Minor, 273
Plants (Useful), Christy's Notes on, 488
Plateau, Posthumous Memoirs by, 489
Plummer (W. E.), Solar Motion in Space, 246
Pneumonia (Croupous), Micrococcus in, Dr. Friedlander, 144
Pogge (Dr. Paul), Death of, 584
Poisons, Uterine Transmission of, Dr. Falk, 280
Poisons, A. W. Blyth, 451
Polar Observations, International, Prof. Wild, 201
Polar (Austrian) Expedition, Results of, Lieut. Wohlgemuth, 246
Polar Expedition in A.D. 1266, Icelandic, 416
Polar Congress at Sienna, 416
Polarisation, Galvanic, Explained accorling to Thermodynamic Principles, Prof, von Helmholtz, 192
Polarisation of Light, Dr. Lecher's Experiments on, 559
Polarity and Neutrality, Magnetic, Prof. D. E. Hughes, F.R.S., 468
Polīh Bone Caves, Prof. Dr. F. Römer, 449
Pons' Comet, 45, 104, 112, 185, 273, 296, 367 ; T, W. Backhouse, $\mathrm{Z}, 104$: Drawings of, 460
Porpitidx and Velellidx, the, Prof. Alex. Agarsiz, 262
Porto Rico, Baron Eggers on, 129
Portraitare, Composite, Adapted to the Reduetion of Meteorological and other Similar Observations, G. M. Whipple, 420
Portuguese Expedition to West Africa, 64, 245
Poulion (E. B.), Heredity in Cats, 20
Powell's (Mr. Wilfrid) Expedi:ion to New Guinea, 318
Poynting (Prof. J. H.), Seismology, 489
Prague, Human Sknill Dise vered near, 557
Prairies of the Canadian North-West, on the Absence of Earth. worms from the, Timothy E. Wilcox, 406
Prehistoric Remains of Britain, the Minor, Local Science Societies and, 19
Prehistoric Burial Ground near Buhla, 460
Pringsheim's Jahrbücher für wissenschaftiche Botanik, 349
Prjeval.ky's (Col.) Thibet Expedtion, 416; Travels in Central Asia, 593
Proceedings of Isis Nataral History Society, Dresden, 23
Proceedings of Linnean Society of New Sutith Wales, 47
Projectiles, on the Motion of, E. Kistori, 572
Protopterus, Mygale, and Scorpions, Prof. E. Ray Lankester, 54
Protozoa, Dr. H. G. Brown on, 5

Prussia, Geological Survey of, 270
Pulborough, Canoe nnearthed at, 15
Pumice, Sea covered with, Capt. Earlow, 488

Quadrantids, the, Thos. W. Backhouse, 104
Quaritch's General Catalogue, 212
Quarterly Journal of Microscopical Science, 141

Rabenhorst (Dr.), on Algre, Mary P. Merrifield, 340
Radiolaria, the, Prof. E. Haeckel, 274, 296
Radford (W.), Waking Impressions, 77
Rac (Dr. John, F.K.S.), Recent Low Temperatures in America, 287; Unconscious Bias in Walking, 311 ; Wind Sand Ripples,
357 ; Common Domestic Duck diving for Food, 428 ; Right-
sidedness, 477; Thread-Twisting, 550
Railroad Time, Standard, C. A. Schott, 70
Railway, Cats on the District, E. de M. Malan, 573
Rain and Dew, Salt, H. N. Draper, 77 ; F. Gillman, 172
Kain-band Spectroscopy Attacked Again, Prof. C. PiazziSmyth, 525
Rainbow, Circular, J. A. Fleming, 310: J. M. White, 357 T. R. Maynard, 357 ; Dr. W. H. White, 428 ; G. K. Gilbert, 451
Rainbow, a Lunar, J. C. Kernahan, 105 ; C. H. Romanes, 172; M. F. Dunlop, 172; J. A. Fleming, 310; A. P. Colman, 550
Rain-Guages, Distribution of, 64
Ravens in United States, 33^{6};Ira Sayles, w. W. Bailey, 478
Rayleigh (t.ord, F.R.S.), Suggestions for Facilitating the Use of a Delicate Balance, 21 ; on the Measurement of Electric Currents, 465 ; on the Electro Chemical Eqnivalent of Silver, 565
Records, Prizes offered by Mr. Fras. Galton for Family, 244. 257 ; Dr. G. J. Romanes, F. R.S., 257
Red-Deer Horns, Sir J. Fayrer, F.R.S., James Inglis, 213
Redeterminations of Atomic Weights, 391
Redman (J. B.), Abnormal High Tides in Thames, 237
Reefs, the Origin of Coral, Surgeon Guppy, 214
Reflection of Light, W. J. Trentler, 104
Reflection of Light from Metallic Surfaces, Sir John Conroy, 398
Refracting Power of Solid Chemical Compounds, Kanonnikoff, 391
Refractive and Dispersive Power, a Fluid of Extraordinarily High, Carl Rohrbach, 63
Regal's (Dr.) Explorations in Central Asia, 416
Reichardt's (Paul) African Explorations, 272
Reis (Philipp), Anniversary of Birth of, 295
Remarkable Sunsets, the, 132, 174, $195,222,251,259,308$; Fdward Whymper, 200; Prof. O. N. Stoddard, 355 ; Prof. C. Michie Smith, 381 ; Robt. J. Ellery, 542 ; Prof. J. P. O'Reilly, 549; S. E.. Bishop, 549, 573
Remsen's (Ira), Principles of Theoretical Chemstry, 283
Renard's Analysis of Krakatoa Volcanic Ashes, 134.
Renard (A.) and J. Murray, Volcanic Ashes and Cosmic Dust, 585
Rendiconti del Real Istituto Lombardo, 300, 375, 443, 467, 495, 565, 613
Rendiconti dell Accademia di Bologna, 349
Rendiconti of the Sessions of the Accademia delle Scienze di Bologna, 422
Retina, Histogeny of the, Koganei, 235
Reusch (Dr.), Analysis of Krakatoa Volcanic Ash, 388
Revue d'Anthropologie, 22, 397, 467
Revue Internationale des Sciences Biologiques, 47, 375
Revue Positive, Stoppage of, 159
Rcynier (E.), Maximum Cell as Standard of Electromotive Force, 227; Single Electrolyte Batteries, 227
Reynolds (Prof. O., F.R.S.), General Theory of ThermoDynamics, $\mathrm{L2}$; Thomson's Motion of Vortex Rings, 193
Rhyncopetalus montanum, F. O. Bower, 230
Khytina stelleri, Herr Steineger, 226: Alban Doran, 230
Richardson (Clifford), American Wheat, Prof. J. Wrightson, 173

Rickets (Lewis D.), Ores of Leadville and their Mode of Occurrence, 571
Riebeck (Dr. E.), Niger Expedition, 164, 417
Riess (Prof. P. J.), Death of, 44
Right-sidedness, Prof. J. LeConte, 452 ; H. T. Wharton, Dr. John Rae, F. R.S., 477
Riley (C. V.), Phylloxera, 87
Kinghals, the, M. G. R. O'Reilly, 278
Kings, Fairy, Henry Evershed, 384
Rink (Dr. H.), Cosmic Dust, 148
Ripple Marks, Prof. G. H. Darwin, F.R.S., 162
Ripples, Wind Sand, Dr. John Rae, F.R.S., 357
Rio Negro, Zuology of the, 45!
Ristori (E.), Motion of Projectiles, 572
Rivers, Rossian, Tillo's Measurements of, 184
Kivista Scientifico Industriale, 95, 467, $165,300,443,565,614$
Roca's iGen.) Expedition to Patagotia, 451
Kogosinski Expedition to West Africa, 296
Rohrbach (Carl), on Method of Procuring a Fluid of Extraor.
dinarily High Refractive and Dispersive Power, 63
Roiti's Elementi di Fisica, vol. iv., 5
Romanche, Arrival of the, 64; Expedition, Exhibition of objects collected by, 366
Romanes (C. H.) Lunar Rainbow, 172
Ropanes (Dr. G. J., F.R.S.), Family Records, Francis Galton, F.R.S., 257; Mental Evolution in Animals, 330, 336, 404, 428; Instinct, 428.477 ; Lloyd Morgan on Instinct, 379 ; the Remarkable Sunsets, 477 ; Unity of Nature, 548 ; the Duke of Argyll's Unity of Nature, 474
Rome, Science in, Prof. A. H. Keane, 433
Römer (Prof. Dr. F.), Bone Caves of Ojcow, 449
Rook's Nest, Wild Duck laying in, J. H. Willmore, 573 ; J. Cordeaux, 596
Root-Hairs of Flowering Plants, F. Schwarz, 488
Korqual, Rudolphi's, Prof Flower, F.R.S., 104
Rosny (Léon de), Catalogue de la Bibliotheque Japonaive de Nordenskjold, 594
Rotation of the Earth, J. Norman Lockyer, F.R.S., 201
Rothamsted Grass Experiments, Prof. W. Fream, 8I ; all
American Rothamsted, ProL. W. Fream, 238; Analyses of
Ash of Grain grown at, Lawes and Gilbert, 445
Roumania, Earthquakes in, 244
Rowell (G. A.), the Kemarkable Sunsets, 251
Rowland's Experiment demonstrating the Magnetic Action of Electric Convection, Dr. E. Lecher, 558
Roy (Dr. C. S.), Splenic Fever in the Argentine Republic, 2^{2}
Koyal Astronowical Society Gold Medal, 387
Royal Institution, Lectures, 88, 183, 390, 582
Royal Metecrological Society, $142,208,302,446,541$
Ruyal Microseopical Society, 541
Royal Society, $165,190,230,277,300,325,349,375,398$, 422,444467 ; Officers of, 43 ; Adjudication of Medals for IS83, 62 ; Prof. Huxley's Anniversary Addrese, 136 ; Committee on the Krakatoa Eruption, 365
Royal Society of New South Wales, 24
Royal Military Academy and Natural Science, 535
Royer (Mme. Clémence), Attraction et Gravitation d'aprés Newton, 235
Rudolphi's Korqual, Prof. Flower, F. R.S., 104
Ruskin's (Mr.) Bogies, Rev. Clement Ley, 353
Russell (IIon. F. A. R.), Unusual Cloud-Glow after Sunset, 55. 151, 196, 286

Ruxsia: Science in, 273; Interesting Feature of the Geological Structure of, Prof. Rarpinsky, 461 ; Russian Academy of Science, 88; Kussian Expedition to West Africa, 296 , Russian Explorers on the Old Bed of the Amu Daria, 416 ; Russian Pamir Expeditions, 319 ; Measurements of Russian Rivers, Tillo, 184

Saccopharyngoid Fishes, Theo. Gill, 236
Sachs' (Dr.) Theory of the Relations Feetween the Increase and Segmentation of Cells in the Embryonal Parts of Plants, Prof. Beketoff on, 461
Sagvandite (a New Rock), Dr. Karl Pettersen, 196
St . Barbe (C.), on the Green Moon, 604
St. David's, Volcanic Group of, Prof.J. G. Blake, 303
Salerno, Earthquake at, 88

Salomon (Dr.), Urine of Swine, 280
Salt Rain and Dew, H. N. Draper, 77; F. Gillman, 172
Salt Lake City, Probability of Destructive Earthquakes at, \mathbf{G}.
K. Gilbert, 45

Salts, Hydrated, Electrolysis of, Gladstone and Tribe, 422
Salt-Water Fish-Types in Fresh Water, Prof. Theo. Gill, 573
Samaria, the Earth, Prof. Cleeve, 391
Samoa, Geo. Turner, LL. D., J. A. Farrer, 569
Sampson (W. G.), Brooks' Comet, 335
Sand Ripples, Wind, Dr. John Rae, F.R.S., 357
San Franciseo, Earthquake Waves, 437 ; Earthquake at, 536
Saturn, the Mass of, Prof. Asaph Hall, 185
Saunders (Sir Sidney Smith), Death of, 581
Sayles (Ira), Ravens in United States, 478
Scenery of the British Islands, Origin of the, Arch. Geikic, F.R.S., $347,396, \frac{119,}{P} 442$

Sceparnodon ramsayi, Prof. Owen, 165
Schiffsmaschine, Die, Carl Busley, $\frac{426}{}$
Schlegel (Prof. Dr. H.), Death of, 343
Schmidt (Prof. Fr.), Hemiaspidx, $\frac{461}{}$
Schopenhauer (Arthur), the World as Will and Idea, Prof. Andrew Seth, 402
Schott (C. A.), Standarl Railroad Time, 70
Schunck (E., F.R.S.), Note on the Constitution of Chlorophyll, 277
Schwalbe (Prof.), on Glacial Cavities, 168 ; Peculiar Ice-Formation in the Harz, 472
Schwarz (F.), Root-Hairs of Flowering Plants, 488
Schweinfurth (Dr.), the Flora of Ancient Egypt, 312
Schuver (Mr.), Murder of, 319
Science Societies and the Minor Prehistoric Remains of \{Britain, 19
Science and Engineering, Walter K. Browne, 57
Science, Natural, at Cambridge Iocal Examinations, 63
Science, Music and, Dr. W. H. Stone, 198
Science in Russia, 273
Science Teaching in Elementary Schools, W. L. Carpenter, 317
Science and the l'ublic Service, 596
Scientific Memoirs, Diffusion of, $261_{2} 311$; Prof. Silvanus P.
Thompson, 171 ; Wm. Hicks, Prof. P. G. Tait, 196 ; R. T. Glazebrook, 287, 335 ; Prof. P. G. Tait, 357
Scientific Wortilies: Sir Charles Williain Siemens, F.R.S., Sir William Thomson, F.R.S., 97
Scorpions, Mygale, and Protopterus, Prof. E. Ray Lankester, 54
Scotch Trawling-Grounds, Inspection by Prof. McIntosh of, 200
Scotch Coast, Torpedo taken off, 205
Scotch Scientific Societies, Proposed Federation of, 295. 367
Scotch Meteorological Society's Marine Station at Granton, 460
Sca, (ozone at, C. L. Wragge, 336
Sea-Fish, Habits of, Prof. McIntosh, 271
Season, the Mildness of the, 236
Sedgwick (A.), Peripatus, 196
Secly (Col. F. A.), an Inquiry into the Origin of Invention, 226 Seismological society of Japan, 413, 584
Seismology, Prof. J. L. Poynting, 489
Semitico-Oceanic 1.inguistic Affanities, Prof. A. H. Keane, 172
Sennis Country, Junker's Travels in, 462
Sentis Meteorological Observatory, 413
Seth (Prof. Andrew), the World as Will and Idea, Arthur Schopenhauer, 402
Severn (Arthur), the Remarkable Sunsets, 177
Sexes, Co-Education of the, in America, $1 \frac{158}{31}$
Sexton (Samuel), Deafness in White Cats, 312
Shadow-Heams in the East after Sunset, Rev. Gerard Hopkin., S. J., 55

Shadows, Electric, Prof. S. P. Thompson, 156; W. F. Smitt, 260
Shaft-Sinking in Watery. Ground, New Method of, William Galloway, 2
Sheffeld Free Libraries, 344
Ships, Stability of, Prof. Elgar, 559
Shot, Elongated, when Fired from Large Guns, on a Methois of Estimating the Steadiness of, Rev, F. Rashforth, 527
Siam, Carl Bock's, Prof. A. H. Keane, 258
Siberia: Earthquakes in, 272; Martin's Explorations, 312 ;
Traces of Glaciation in, Solokoff, 461
Siemens (Sir Charles William, F.R.S.), Death of, 87 ; Obituary Notice of, Sir William Thomson, F.R.S., $\underline{\underline{7}}$

Signal-Service and Standard Tine, the, 389
Simotes, G. A. Houlenger, 149
Simpson (W. G.), Unconscious Bias in Walking, 356
Single-Electrolyte Batteries, E. Reynier, 227
Sington (T.) Weather on Ben Nevis and Snowdon, 264
Siwalik Carnivora, 599
Skeleton, Ifuman, found at Tilbury, Gcological Position of, T.
V. Holmes, 440

Skull, Human, discovcred near Prague, 557
Slavonia, Farthquakes in, 583
Smith (Prof. C. Michic), the Green Sun, 28, 54 ; Elcctricity in India, 54: the Remarkable Sunsets, 381
Smith (J. Mamblin). Mental Evolution in Animals, 333
Smith (Lawrence), Death of, 63
Smith (Percy), Earthquake in England, 602
Smith (W. F.), Electric Sladows, 260
Smith (Worthington (i.), Palzolithic Man: his Bead Ornaments, 83
Snithsonian Institution, the, 135
Smyrna, Cold in, 345 ; Earthquakes 2t, 15
Smyth (Prof. Piazzi), the Remarkable Sunsets, 142 ; Kain-band
Spectroscopy Attacked Again, 525
Snake-Bite, J. S. Gardincr, 6
Snake, the Ringhals, M. G. R. O'Reilly, 278
Snakes, Black, "Suicide" of, E. F. Hardman, 452
Snow covered with Gray and Black Dust in Norway, 135
Snow, Volcanic Glassy Dust in Fresh, 367
Snowballs, Natural, Prof. Samuel Hart, 428
Snowdon, Weather on, T. Sington, 261
Soap-making, Alex. Watt, 425
Socotra, 575
Society of Arts, 43, 245
Société des Flectriciens, 226
Sociology, Proposed Index to Study of, 437
Sohncke (Prof. L.), Probable Nature of the Inter nal Symmetry of Crystals, 383
Solanums, Review of Tuber-beariug, J. G. Baker, 328
Solar Eclipse Expedition (U.S.), Report of, 582
Solar Eelipse of 1806, December to, 415
Solar Heat, Measurements of, Dr. Frolicb, 48
Solar Motion in Space, W. E. Plummer, 246
Solid Chemical Compounds, Refracting Power of, Kanonnikoff, 391
Solokof's Researches on Water of Neva, 345 ; Traces of Glaciation in Siberia, 461
Solomon Islands, Anthropological Notes in, Surgeon Guppy, 429
Solutions, Alexeyeff's Theory of, 391
Sorghum Culture, 111
Sound, Velocity of, in Air, D. J. Blaikley, 148
Sound-Mills, Dvorak's, Prof. Silvanus P. Thompson, 363
Scundingw, Aslantic, 158
Southern Comets, 606
Southerm States, Education in, 200
Space, Solar Motion in, W. E. Phummer, 246
Spaces. Dust-Free, Irr. Oliver J. Lodge, 6 ro
Spanish Coast, Establishment of System of Weather Warnirgs on, 365
Spark Spectra, Researches, Pmf. W. N. Hartley, 89
Spectroscopes (Diffraction), Prof, W. N. Hartley, 470
Spectrascopy, Rain-band, Attacked Again, Prof. C, Piazzi Smyth, 525
Spectrum Analysis : Spectra, Spark, Researches on, Prof. W. N. Hartley, 89; Spectrum of Berylliam, 90, 391 : Experiments on Neutral Points in Spectrum of Colour-Blind, Dr. König, 168; Wave-lengths of A, a, and Lines in Infra-rel of Visible Spectrum, Capt. Abney, F.R.S., 190; Researches on Infra-red Rays of the Spectrum, H. Becquerel, 222
Spiders, African, 408
Spinoza (Benedict de), Ethic, R. B. Haldane, 354
Spitzbergen, Winter I.ife at, 263
Splenic Fever in the Argentine Republic, Dr. Roy, 91
Spongilla fluviatilis, Contamination of Boston (U.S.A.) Water Supply by, 39I
Spontaneous Generation, Prize for Essay on, 413
Spottiswoode Memorial, 134, 158, 271
Sprengel (C. C.), Dr. He A. Hagen, 29,572 ; Dr. F. Muiller, 334 ; Prof. K. Möbius, 4c6; on Fertilisation of Flowers, Prof. W. W. Bailey, 171

Stability of Ships, Prof. Elgar, 559
Stalactite Cave in Ain (France), ${ }^{583}$
Standards, Electrical, 465
Stanley's Congo Expedition, 15
Starch in Leaves, on the Formation of, Prof. H Marshall Ward, 552
Stars: a New Star Catalogue, Hoek and Kam, 45 ; Variable, 135. 536 ; Close Double-Stars, Perrntin, 185 ; Mr. Burnham' Double-Star Measures, 409 ; the Donble-S'ar a Herculis, 536 ; Gill's Parallaxes of Southern Start; 273;*Variahle Star U Geminorum, 368; Glargow Cataloguc of Stars, 368
Starling at Christmas at Trondhjem, 184
Statistical Society, 44 ; Howard Medalof, 111
Steam Condensation a Cause of Electrification, Is, S. Kalischer, 227
Stecker's (Dr.), Travels in Abyssinia, 347
Stecl and Iron, W. A. Greenwond, 425
Steineger (Dr. L.), Rhytina stelleri, 226 ; Kamehatka Expedition, 416 ; Keturn of, 87 ; on Ostrof Mednij, 605
Stevens (Joseph), Deafness in White Cats, 237
Stevenson (Dr. Thos.), 131,th's Poisons, 451
Stewart (lames, C.E.), Death of, 87
Stewart (J. H.), on the Transmission of Organic Germs through Cosmical Space by Meteoric Stones, 595
Stoddard (Prof. O. N.). Remarkable Sunsets, 355
Stohes' (Prof. G. G., F.R.S.) Mathematical and Physical Papers. I'rof. P. G. Tait, 145 ; on Light, Prof. P. G. Tait, 545
Stone (Prof. G. H.), the Remarkable Sunsets, 404
Stone (Dr. W. H.), Electrical Resistance of the Human Body, 21 ; Music and Science, 198 ; the Ear a Barometer, 356 ; Third Note on the Electrical Kesistance of the Human Thorly, 528 ; Voice, Song, and Speech, leunox Browne, 570
Stoney (G. J., F.R.S.), More Convenient Equivalents for Converting Britich into Metrical Measures, 278
Storm of January 26, 1884, 316; David Cunniugham, 3.36 : G. Henry Kinahan, 358 ; Dr. R. Dixon, 384

Story-Maskelyne (T.), the Remarkable Suncets, 285

Strachey (Gen., F.R.S.), the Krakatoa Air-Wave, L8I; Earthquakes and Air-Waves, 427
Strawberries, Natural History of, A. N. Duchesne, 215
Strongylus in Hares, Prof. Heiberg, 184
Styria, Earthquakes in, 159
Sulsidence of Nabba Mountain near Bona, 15
Sub-idence, Elevation and, Prof. Joseph LeConte, 212
Sudan, the Ekyptian, Prof. A. H. Keane, 291
"Suicide" of Black Snakes, E. F. I Iardman, 452
Sully (James), Romanes' Mental Evolution in Animals, 333
Sun: the Green, 7; C. Michie Smith, 28 ; Warren De la Kue, 28; W. B. Beardmore, 28 ; C. Michie Smith, 54 ; in China, 4.36; P'ale Sun in Brazil, 87 ; a Blue Sun, E. Metzger, 252; Sun-Glows and Volcanic Erupticne in Jeeland, Dr. Sophus Tromholt, 420 ; Green Sunliyht, Prof, W. Swan, 76 ; Dr. Hyde Clarke, 76: Ericsson's Sun Motor, 217 ; Unusual Sunsets and Sunrises in 1883. Rev. S. Haughton, F.R.S., 470 ; the Remarkable Sunsets, 130, 174, 195, 222, 250, 259, 308, 366, 603,604 ; Edward Whymper, 2000 ; Prof. O. N. Stoddard, 355 ; Prof. C. Michie Smith, 381 ; Prof. John I.eConte, 403 ; Prof. G. H. Stone, 404 i E. L. Layard, $46 t$; Prof. J. W. Judd, F.R.S., 525 : George F. Burder, 525 ; Robt. J. Ellery, 542 ; S. E. Bishop, 549 ; Prof. J. P. O'Reilly, 549 ; S. E. Bishop, 573 ; Hon. 1 . A. R. Ruscell, 55 ; Remarkable Sunset at Perpignan, 295 ; Sunshine (Registered) at New York and Greenwich, 111
Sunda Straits Volcanic Eruption, Capt. Hon. F. C. F. Vereker, 375
Sunday Society, the, 366, 536
Survey, the Indian, 360
Sussex, Agriculture in, 575
Swan, (Prof. W.), Green Sunlight, 76
Sweden: Mcteor and Whirlwinds in, 15 ; Proposed BotonicoPhytiological Station in North, 225 ; Entomelogist retained by Swedish Government, 44; Meteors in, 344. 414 ; Meteorite in, 432 ; Meteorological Expedition of, 263 ; Meteorology in, $\frac{365}{185}$; Green Moon in, 366 ; Swedish Vanadis Expedition, 185
Swine, Urine of, Dr. Salmon, 280

Switzerland, Earthquake in, 272
Sydney, Linnean Society of New South Wales, $\frac{120,303, ~ 423,}{12}$, 543. 616; Royal Society of New South Wales, $\frac{272}{27}$ 400
Sylvester (Prof. J. J., F.R.S.), appointed Savilian Professor of Geometry at Oxford, 1571 183, 271 ; Departure from America of, 365
Symons (G. J., F.R.S.), Meteorological Bibliography, 550; Krakatoa Eruption, 355, 365

Tait (Dr. Lawson), Deafness in White Cats, 164
Tait (Prof. P. G.), Mechanics (Encyc. Brit.), 52 ; Prof. Stokes' Mathematical and Physical Papers, 145 ; Diffusion of Scientific Memoirs, 196, 311 , 357 Zi G. G. Stokes on Light, 545
Talisman Exnedition, the, Prof. A. Mílne Edwards, 197 ; Deep-Sea Fishes and the, 483 ; Deep-Sea Dredgings of the, Crustacea, 53:
Tans of Benga, Dyes and, H. W. McCann, 147
Tarkhanoff (Prof.), the Structure of Birds' E.GEs, 461
Tarr (Ralph S.), Zoological Results of the Work of the United States Fish Commission in 1883, 407
Tashkend, Earthquakes in, 15, 317
Tasraania, Earth Tremors in, 244; Fisheries of, 534
Taylor (W. W.), the Remarkable Sunsets, 334
Taylor (Dr. J. E.), Earthquake in England, 602
Tea in Transcaucasia, Proposed Cultivation of, Woeikoff, 184
Teachers, Prof. Bickmore's Lectures on Natural History to, 184.

Teaching Animals to Converse, Sir J. Labbock, F.R.S., 547
Teall (J. J. H.) , the Java Eruption, 170; Petrological Notes on some North England Dykes, 254
Technical College, Finshury, 158
Technical Department (Proposed) in Firth Cullege, 183
Technical Education, 392^{i} in Coventry, 64; Dr. Marris on, 184 ; the Commission on, 390
Technology, Text-books on, Prof. T. E. Thorpe, F.R.S., 425
Telegraphy and Telephony on the same Wires simultaneously, 554
Teleosts, the Embryology of the, Kingsley and Conn, 16
Telephone, in Germany, the, 63 ; the Static Induction Telephone as an Instrument of Research, Prof. Sylvanus P. Thompson, 231 ; Anniversary of Birth of Philipp Reis, 295; Telephony and Telegraphy on the same Wires simultanenuly, 554
Telescope (Equatorial), a New Form of, Howard Grubl, F.R.S., 470
Tellurium, Atomic Weight of, Brauner, 391
Tempel's Comet, 1873 II., 45, 70, 185
Tentperatures in America, Recent Low, Dr. John Rae, F.R.S., 287
Thames, Abnormal High Tides, J. B. Redman, 237
Thermal Chemistry, Julius Thomsen, M. M. P. Muir, 209
Thermochemische Untersuchungen, Julius Thonsen, 209
Thermo-Dynamics, General Theory of, Prof. O. Reynolds, F.R.S., 112

Thermodynamic Principles, Galvanic Polarisation explained according to, Prof, von Helmholtz, 192
Thermo-Electric Generators (Noe's) Pruf. von Waltenhofen's Experiments with, 227
Thermo-Electric Action of Metals in Electrolytes, Relations of Heat to Voltaic and, Dr. Gore, F.R.S., 300
Thernometers, Exhibition of, 366
Thibet Expedition, Col. Prjevalsky's, 416,585
Thierreichs, Klassen und Ordnungen des, Dr. H. G. Bronu, 5
Thinphen, Prof. V. Meyer, 391
Thollon and Trépied (MM.), Studies made on Summit of Pic du Midi for Establishment of Permanent Avtronomical Station, z Thompson (Prof. S. P.), Electric Shadows, 156 ; Diffusion of Scientific Memoirs, 171; the Static Induction Telephone as an Instrument of Research, 231; Dvorak's Sound-Mills, 363 ; a Cheap Insulating Support, 385
Thomsen's (Julius) Thermochemische Untersuchungen, 209
Thomson (J. J.), the Motion of Vortex Rings, Prof. Osborne Reynolds, F,R.S., 193

Thomson (Sir William, F.R.S.), Obituary Notice of Sir Charles William Siemens, F.R.S., 27 ; the Six Gateway: of Knowledge, 438, 462; on the Efficiency of Clothing for maintaining Temperatures, 567
Thorpe (Prof. T. E., F.R.S.), Text-books on 'Technology, 425 ; the Chemical Work of Wöhler, 489
Thread-Twisting, 525 ; Dr. J. Rae, F.R.S., 550 ; Henry Faulds, 550
Tide, Extraordinary High, 413: J. B. Redman, 237
Tides (Indian), Earthquake Disturbance of, Lieut.-Gen. Walker, F.R.S., 358

Tifis, Earthquakes at, 317
Tilbury, Geological Position of Human Skeleton found at, T. V. Holmes, 440

Tillo's Measurements of Russian Rivers, 184
Tillo on the Relative Level of Mediterranean and Atlantic, 185
Time, Measurement of, J. Norman Lockyer, F.R.S., 65
Time, Railroad, Standard, C. A. Schott, 70
Time (Standard), the Signal-Service and, 389
Timorese, Cranial Characters of, Dr. Garson, 166
Tin, Did Iron and Copper precerle, A. Tylor, 84
Torthunter (Dr. Isaac, F.R.S.), Death of, 436
Toes, Abnormal Number of in Cats, 20
Topography of Upper Amazon Regions, Colini, 272
Torpedo taken off Scotch Cnast, 295
Torpedo, Dr. W. Wolff, 448
Torrens Observatory, the, 345
Tourgenief's Brain, 389
Towering of Birde, Sir J. Fayrer, F.R.S., 55
Tracks (Fossil), Prof. T. McK. Hughe, 166
Train, Lighting Fxperiment on a, W. H. Massey, 489
Transcaspian Explorations, Lessar's, 416
Trancaucasia, Proposed Cultivation of Ten and Ban'wo in, Worikoff, 1_{4}
Transition-Resistance in Electrolytic Cells, 588
Trawling-(irounds (Scotch) Inspection by Prof. McIntosh of, 200
Tremors, Earth, in Tasmania, 244 ; Prof. Jobn Milne on, 456
Trentler (W. J.), Reflection of Light, 104
Trépied (Thollon and), Studies made on Summit of Pic du Midi for Establishment of Permanent Astronomical Station, Z
Trewendt's Encyclopaedia of Natural Sciences, 44
Triassic Strata, Vertebrate Remains in, A. 'T. Metcalfe, 303
Tribe (A.), Electrolysis of Hydrated Salts, 422
Trichine and Extreme Cold, 584
Trigonometry, a Treatise on Higher, Rev. J. B. Iock?
Tritylodon longrevuc, Skull and Dentition of, Prof, Owen, 165
Tromholt (Dr. Sophus), Departure of, for Iceland, 44; Measuring the Aurora Borealis, 409 ; Aurora Borealis in Iceland, 537 ; Sun-Glows and Volcanic Eruptions in Iceland, 420
Trondhjem, Starling at Cbristmas at, 184
Tribner (Nicolas) Death of, 534
Tuckwell (Rev. W.), Natural History for Working Men, 344
Tunis, Discovery of Roman City in, 15
Tunisia, Perrier's Map of, 488
Tunnel, Arlberg, Completion of the, 64, 87
Turkestan, Earthquakes in, 415
Turkey, Earthquakes in, 317,366
Turner (Geo., LI..D.), Samna, J. A. Farrer, 569
Tylor (A.), Is Itkis in Cornwall? 84 ; Did Iron and Copper precerde Tin ? 84
Tylor (Prof. E. B, F.R.S.), Im Thurn's Indians of Guiana, 305

Unconscious Bias in Walking, W. G. Simpson, 356
United Kingdom, Geological Survey of the, 395
United States: Bureau of Education, $111 ;$ Ravens in, 3.36 : Entomolngy in, 344: Zonlogical Results of the Work of United States Fish Commission in 1883 , Ralph S. Tarr, 407 ; Gendetic Survey of, 573 ; Solar Eclipee Expedinion Report, 582; Bulletin of Harvard University, 583; Mineral Resources of the, 598

Unity of Nature, Duke of Argyll, 4742 524 : Geo. J. Romanes, F.R.S., 474,548

University and Educational Intelligence, 22, 46, 70, 93,119 , $\frac{141}{51}, \frac{164,}{590}, 207,252,276,299,348,374,420,443,466,495$, .540, 590,613
U-pper Amazons Regions, Topography and Ethnography of, 272
Urine of Swine, Dr. Salomon, 28 O

Vacun, Kecent Discoveries in High, W. Crooker, 25
Vanaais Expedition, Departure of, 185
Variable Stars, 135, 536, 558; U Gewinorum, 368
Varley (C. O.), Partials, 57
$V_{\text {ria }}$ Fxpedition, the Scientific Work of the, 455
Velellidx, the Porpitidx and, Prof. Alex. Agasiz, 262
Vereker (Hon. F. C. P.), Sunda Straits, Volcanic Eruption, 375.

Vesuvius, Eruption of January 1884, 271; H. J. JohnstonLavis, 291
Vetch (Major), Royal Engineer Professional Papers, Allan Cunningham, 146
Vibration, Experiment in, Dr. Elsas, 227
Vicars (Ceo. Rayleigh), the Ear a Barometer, 356; Colony of Cats, 551
Victoria, Phylloxera in, 245
Victoria Institute, 166,592 ; New Inscription of Nebuchadnezzar, E. Budge, 375
Victoria Coffee Hall, Penny Science Lectures, 389
Victoria Station, Cats at, Kooke Pennington, 596
Vienna: International Electric Exhibition, 42; Inperial Academy of Sciences, 256, 400, 544; Ornithological Exhibition, 390 , 556, 582 ; Polar Congress at, 416
Villarceau (Yvon), Death of, 200; Obituary Notice of, 246
Vivisection in Oxford Convocation, 343
Vivisection, Pamphlets on, 604
Voice, Song, and Speech, Lennox Browne, Dr. W. H Stone, 57°
Volcanoes: Krakatoa Eruption, 15\% 344, 437; E. Metzger, 240; M. van Doorn, 268 ; G. J. Symons, F.R.S., 355 , 365 ; Analysis of Krakatoa Volcanic Ashes, Renard, 134 ; Dr. Reusch, 388 ; Prof. J. W. Judd, F.K.S., 595 ; Prof. W. L. Goodwin, 595 ; the Krakatoa Air-Wave, Gen. Strachey, F.R.S., 181; Folcanic Glassy Dust in Fresh Snow, 367 ; Volcanic Ashes and Cosmic Dust, J. Murray and A. Kenard, 585 ; Volcanic Phenomena in Iceland, 226, 343 ; Sun-Glows and Vulcanic Eruptions in Iceland, Dr. Sopbus Tromholt, 420 ; Volcanic Eruption in Sunda Straits, Capt. Hon. F. C. P. Vereker, 375 ; in Western Australia, 388 ; of Mount St . Augustin, Alaska, George Davidson, 441 ; of Vesuvius, 271 ; Volcanic Group of St. David's, Prof. J. G. Blake, 303 ;Volcanoes, Ice, A. P. Colman, 550
Voltaic and Thermo-Electric Action of Metalsin Electrolytes, Relations of Heat to, Dr. Gure, F R.S., 300
Voltaic Current, Some Relations of Chemical Corrosion to, Dr. Gore, F.R.S., 468
Vortex Rings, the Motion of, J. J. Thomson, Prof. Osborne Reynolds, F.R.S., 193

Waking Impressions, Wm. Radford, 77
Walker, (J. J.), the Cloud.Glow of November 2,77
Walker (Lieut.-Gen., F.R.S.), Earthquale Disturbance of Indian Tides, 358
Walking, Unconscious Bias in, G. H. Derwin, Thos. Hawksley, 286: Dr. Garson, 310; R. McLachlan, F.k.S., F. M. Campbell, Stephen A. Marshall, 311 : Dr. J. Rae, F.R.S., $311,384 i$ Sara S. Owen, 336 i W. G. Simpson, 356
Waltenhofen's (Prof. von) Experiments with Noe's ThermoElectric Generators, 227
Ward (Prof. H. Marshal), on the Formation of Starch in Leaves, 552
Washington (U.S.A.): Philoscphical Society, 87; Prof. Bickmore's Lectures on Natural History to School Teachers, 184 : the Meridian C. ngress of, 413
Water in Australia, F. T. Mutt, 311

Water of Neva, M, Solokof's Researches on, 345
Water Supply (Boston, U.S.A.), Contamination by Spongilla fluviatilis of, 391
Watson (Capt.), the Java Disaster, 140
Watt (Alex.), Soap Making, 425
Weather on Ben Nevis and Snowdon, T. Sington, 261
Weather, Influence of, upon Death-rate and Crime in India, S. A. Hill, 338

Weights of British Noblemen during the last Three Genera tions, Fras. Galton, F.K.S., $2 \in 6$
Weights and Measures, Keport of Board of Trade, 111 ; International, 529
Weismann (Trof. Aug.), on Sexual Cells of Hydromeduspe, Prof. H. N. Moseley, F.R.S., 114
Wentzl (Ad., Jun.), the Remarhable Sunsets, 260
Western Microscopical Clut, 95
Wharton (Capt. W: J. L., R.N.), Mangrove as a Destructive Agent, 76
Wharton (H. T.), Right-sidedness, 477
Wheat Harvest of 1883 , Prof. John Wrightson, 8
Wheat, American, Cliford Kichardson on, Prof. J. Wrightson,
Whipple (G. M.), Meteor, 148 ; Composite Portraiture adapted to the Reduction of Meteorological and other Similar Observations, 420 ; Zodiacal Light, 453
Whirlwind and Meteor in Sweden, 15
White (F. B.), Challenger Zoological Reports, 29
White (J. M.), Circular Raiuliow seen from a Hill-top, 357
White (W. H.), the Ausiral Judgment, 49
White (Dr. W. Hale), Circular Rainbow, 428
White Elephant, Harnum's, 294
Whymper (Edward), the Kemarkable Sunsets, 200: Journeys in Greenland, 417
Wickham (Wm.), Meteors, 123
Wilcox (Timothy E.), on the Absence of Earthworms from the Prairies of the Canadian North-West, 406
Wild Duck Laying in Kook's Nest, J. . IL. Willmore, 573 ; J. Cordeaux, 596
Wild (Prof.), International Polar Observatories, 201
Willis (A. R.), Prof, Hovey's Applied Mechanics, 122
Willowere (J. H.), Wild Duck Laying in Kook's Nent, 573
Wilson (H. M.), Geological Survey of New Mexico and Arizona, w^{272}
Wilson (A. S.), a Bushel of Corn, Prof. Wrightson, 26
Wind Sand Ripples, Dr. John Rae, F.R.S., 357
Winnicke's Exploration of Unknown Interior of Australia, 346
Wismann (Lieut.), New Expedition to the Congo, 87
Woeihoff, Proposed Cultivation of Tea and Bamboo in Transcaucasia, 184
Wohler, the Chemical Works of, Prof. Thorpe, F.R.S., w^{489}
Woh gemuth (Lieut.), Results of Austrian Polar Expedition, w^{246}
Wolff (Dr. W.), Torpedo, 448
Women, Higher Education, 387
Wood (S. V.), Elevation and Subsidence, 5i Evolution of the Cetacea, 147
Woodward (C. J.), Barytes from Chirbury, ZZ
Working Men, Natural History for, Rev. W. Tuckwell, Worla, the, as Will and Idea, Arthur Schopenhauer, Irof. Andrew Seth, 402
Wortley (Col. H. Stuart), Teaching Animals to Converse, 264
Wragge (C. I..), Ozone at Sea, 336
Wrightson (Prof. Jolin), the Wheat Harvest of 1883. 8; a Busbel of Corn, A. S. Wilson, 26 ; Clifford Richardson on American Wheat, 173

Yale College Observatory, Normal Clock at, 6c4
Yorkshire College Students' Association, 64

Zeitschrift für wi seuschaftliche Zologic, 23, 142, 397
Zintgraff's (I r.) African Expedition, 416, 460

Zittel (K. A.), Beitrage zur Geologie der Libyschen W_{u} iste, 121
Zodiacal Light, G. M. Whipple, 453
\%oological Reports of Challenger Voyage, vols. v., vi., vii., F. B. White, 29

Zoological Gardens, Additions to, 15, 45, 64, 88, 112, 135, 159, $185,201,226,246,272,296,317,345,367,390,415,437$, $461,489,536,558,584,606$
Zoological Gardens, Dr. Anderson's Guide to the Calcatta, 426

Zoological Society, 119, 191, 253. 302, 445, 469, 541, 566 ; Mr. Beddard, the New Prosector of the, 294
Zoological Results of the Work of the United States Fish Com. mission in 1883 , Ralph S. Tarr, 407
Zoology and Botany of Alaska, 362
Zuology, a Problem in Mathematical, Protection by Mimicry, Capt. T. Blakiston and Thomas Alexander, 405
Zoology of the Rio Negro, 451
7ygnemacex; on the Keproduction of the, A. W. Bennett, 142

A WEEKLY ILLUSTRATED JOURNAL OF SCIENCE

"To the solid grownd
Of Nature trusts the mind which builds for ayc."-WORDSWORTH

THURSDAY, NOVEMBER 1,1883

ZOOLOGICAL REPORTS OF THE VOYAGE OF H.M.S. "CHALLENGER"

Report on the Scientific Results of the Voyage of H.M.S. "Challenger" during the Years 1873-76, wnder the Command of Capt. Gcorge S. Nares and Capt. F. T. Thomson. Prepared under the Superintendence of the late Sir C. Wyville Thomson, Director of the Civilian Scientific Staff on board, and now of John Murray, one of the Naturalists of the Expedition. Zoology-Vol. V., 1882 ; Vol. VI., 1882 ; Vol. VII., 1883. (Published by Order of Her Majesty's Government.)

THE editor has made most excellent progress in the work of publishing the Reports of the scientific results of the voyage of H.M.S. Challenger during the past year, as the three bulky quarto volumes now before 113 well indicate. Vol. V. contains an elaborate Report on the Ophiuroidea by Theodore Lyman, who has made this group so long his special study, and who bas in this monograph given us a most elaborate and beautifully illustrated contribution to science. The memoir contains the description of some twenty-one genera and of 170 species, but as several already described species were also collected, Mr. Lyman has judiciously given not only all these but also the names of all others previously described, arranged under their genera, constituting therefore this Report a more or less complete monograph of the Ophiuroidea. There are very claborate tables of distribution, geographical, bathymetrical, and thermal, with brief remarks on their indications, and at the end of these is a note on the fossil forms and their relations to those living. In the descriptive part of the monograph Mr. Lyman has ventured to use simple words as often as possible, so as not to add to "the jargon in which zoology is now smothering."
Amid the three hundred pages of description of species there is of necessity little that will bear transcribing in a general notice of this important work; and still among them we find the following, which in the writer's mind awakened similar emotions to those referred to by Mr .

Lyman :-" In my noteboo's of 1861 I find, "Euryale exiguum, Lamk., original of Peron and Leseur, 1803, young.' This prosaic line is poetical to me. It takes me back to the Jardin des Plantes as it was twenty years ago, and I can see the laboratories of the 'mollusques et zoophytes' where I studied under the kindly direction of old Valenciennes. He has gone, and so has his suscessor Deshayes, and their place is now worthily held by Perrier, who was a very young man when first I knew him. But still that poor little broken Astrophyton exiguum lies on its shelf, the survivor. It was with a real emotion that in unpacking the Challenger collection I drew from a large jar two fine specimens. I felt like a scholar who had found a duplieate of the Codex argenteus. After more than two generations the unique treasure of the Jardin des Plantes has at last other representatives, and to celebrate its rediscovery I could do no less than give a figure of the animal" (Plate 47).
So far as the geographical distribution of the group is concerned, it would appear that although deep-sea species are more inclined to extensive wanderings than those frequenting shallows, yet, speaking generally, they offer similar differences. Among littoral forms there are those which are found all over the great ocean from the Sandwich Islands to the east coast of Africa, and even south to the Cape of Good Hope. One species, Amphiura squamata, is found in the North and South Atlantic, at the Cape of Good Hope, and in Australia. Others, again, are considerably restricted; for example, the abundant fauna of the Carribean Sea, which reaches only Brazil on the south and the Carolinas en the north. Ophiacantha vivipara and Gorgonocephalus pourtalesii going to 140 and 600 fathoms, are remarkable for their extension in longitude, being found from the Kerguelen Islands on the west to the east coast of South America. As to the very deep-water species, Ophiomusiunt lymani occurs well up in the North Atlantic, in the extreme South Atlantic, near New Zealand, off Japan, and off the south-west coast of South America. Ophiacantha cosmica is found off the Brazil coast, between the Cape of Good Hope and the Kerguelen Islands, off the south-west coast of South America, and at intermediate points. Some of these deep-sea species are, however, quite restricted in their
area, such as Pectinura heros, Ophiomusium avalidum, and Astroschema arenosum, the first living near the Celebes, the last two in the Carribean Sea. While speeies differ thus much in the extent of their migrations, there are certain botoms where they secm to decline to live at all. Thus in all the deep water from the centre of the North Pacific to near the southwest coast of South America, there was not a single Ophiuran found. As to their distribution in depth, a very large proportion live exclusively on the littoral zone, and therein are included species both of cold and of hot water, though the number of the later is much the largerSome fifty species live exclusively below 1000 fathoms, and have to endure a degree of cold near to freczing, an enormous water pressure, and an entire absence of sunlight.
The forty-eight, rather crowded, plates have been drawn with skill and fidelity by Miss K. Pierson and Mr. L. Trouvelot with the exception of Plate 48 , which represents half of an arm of Gorgonocephalus verrucosus, carried out to its extreme twigz, and which stands as quite a monument of patience on the part of Mr. Lyman's assistant, Miss Clark.
The Second Report in this volume is by Prof. D. J. Cunningham, on some points in the anatomy of Thylacinus cynociphalus, Phalangista maculata, and Phascogale calura, with an account of the comparative anatomy of the intrinsic muscles and the nerves of the mammalian pes. This Report gives details of the anatomy of three little known mammals, representing types which differ widely from each other both in physique and habits. A special interest attaches to the anatomy of the Thylacine, as it is rapidly becoming extirpated. In examining the intrinsic muscles of the marsupial manus and pes, Prof. Cunningham encountered a somewhat puzzling multiplication of the elements. To clear this up and at the same time to connect the condition with that found in other animals he was induced to extend his inquiries upon this point into mammals in general, and we are therefore favoured with the results of this comparative research in a very elaborate report on the comparative anatomy of the mammalian foot.

Vol. VI. contains also two memoirs : the first is a Report on the Actiniaria, by Prof. Richard Hertwig. As a considerable number of specimens did not reach Königsberg until this Report was finished, we are promised a supplementary report to describe these additional forms. Fourteen plates accompany this Report. Beginning with a detailed description of a typical Actinian, we have also a comparative survey of the chief characteristics of the several divisions and genera. Six tribes of Actiniana are distinguished: (1) Hexactinix; (2) Paractinix; (3) Monaulex ; (1) Edwardsix; (5) Zoanthear ; (6) Cerianthexe. Objecting to Verrill's assertion that all specimens of Actinix which are only known from preserved specimens should be thrown away as of no scientific value, Prof. Hertwig has laboured manfully over the unfortunately rather badly preserved specimens of the Challenger voyage; and by keeping in view such factors in their description as the structure of the tentacles, of the septa, of the oral disk, of the circular muscie, \&.c., he his presented a most minute and elaborate description of an immense variety of new forms, the scientific value of
which will go without dispute. As the collections of the Challonger were for the most part made in the open oceans, the littoral zone, which would have furnished the larger proportion of Actinie was almost entirely neglected, and but one littoral species occurs in the list. As a rule the number of the Actinix decreases as the depth increases; they have not been observed at a depth of over 2900 fathoms, but the greater the depth the more the fauna was found to vary from that of the coast. Of the twenty-one forms from 500 to 3000 fathoms described, no less than six species are found to have undergone some extreme modifications of their tentacles, whilst a like phenomenon has never been observed in a single one of the forms of the coast fauna, which greatly exceed the deep-sea fauna in number. These alterations lie for the most part in the direction of transforming the tentacles into tubes and openings, and Prof. Hertwig connects this with the nutriment of these deep-sea forms, which is not of a nature to be captured by tentacles.
The Second Report is on the Tunicata, by Prof. Herdman. It is Part 1 ., on the Simple Forms. The collection generally was found to be in a state of excellent preservation, and consisted of eighty-two species, which are referred to twenty genera. Of these, seventy-four of the species and nine of the genera are new to science, but it has not been found necessary to form any new families The new genera are mostly instituted for very deep-sea species. In scveral instances the new genera have been of great interest, as they have demonstrated affinities between known forms, and have exhibited combinations of characters which in some instances necessitated a revision of the definitions of old genera, and even affected one's ideas with regard to the characters of the families. The new species are all beautifully illustrated in thirtyseven plates. The memoir has prefixed to it a history and bibliography of the group and a neat and well-written account of its anatomy, which is accompanied by an excellent series of woodcuts. So little is known as to the geographical distribution of the group that Prof. Herdman thinks any generalisation on this head would be of little value. A few facts of interest are, however, mentioned : thus the Tunicata are greatly more numerous in the southern than in the northern hemisphere, and they reach a maximun of abundance in the far south. As to their distribution in depth, the four families are found to have the following limits :-

The Molgulide range from the shore to 600 fathoms.		
The Cynthiidx	"	"
The Ascididre	2600	"
The Clavelinidx	"	"
The	2600	"

Seven species were found at depths of from 2000 to 3000 fathoms.

Calcareous spicules are noticed as present in the tests of several species of the genera Culeolus and Cynthia. They are very different in the two genera, being irregularly branched and with smooth surfaces in Culeolus, while they are rod-shaped or fusiform, with their surfaces minutely echinulated in Cynthia. Neither of the two previously known genera in which the test is remarkably modified-Rhodosoma and Chelyosoma-were collected during the Challenger Expedition, but two of the new forms show notable peculiarities in the test, Pachychloena having it greatly thickened all over, while Hypobythius calycodes,

Moseley, has a series of symmetrically placed nodular cartilaginous thickenings in the otherwise thin and membranous test. This Report of Prof. HerIman's may be regarded as almost a monograph of the Tunicates, and is a most valuable addition to our knowledge of this little known group of forms.

Volume VII. contains four Reports. The first of these is by Prof. Morrison Watson, on the anatomy of the Spheniscidx collected during the voyage. The collection contained three or four adult specimens of each of the species obtained, preserved for the most part in brine, but in some instances in spirit, as well as a number of immature birds taken from the nest, together with eggs in various stages of hatching, preserved partly in spirits and partly in bichromate of potash. In the present Report only the anatomy of the adult birds is treated of; that of the young being reserved for a second part. Selecting Eudyptes chrysocome from Tristan d'Acunh3 as a standard, the anatomy of the other seven species is compared with it; thus in every section the anatomy of the standard species is given in detail, and then the variations met with in each of the others is appended. In those cases in which no variations are reported the anatomy of the forms was identical. The descriptive anatomy of the various systems of tissues seems to leave little to future investigators to record. In the section devoted to osteology, while treating of the bones of the anterior extremity, the author remarks that in several particulars the penguin's wing differs from that of other birds-movements of pure flexion and extension in the joints beyond the shoulder can scarcely be said to be possible; the articulations, however, admit of a very considerable amount of rotation, and consequently, instead of the limb being converted into an absolutely rigid paddle or oar, the rotation in question converts the wing into a screw-like blade, the curvatures of which are constantly varying in accordance with the amount of rotation which the forms of the different joints permit. U pon carefully watching a living specimen of Aptenodytes in the Zoological Society's Gardens, the author observed that the wing of the penguin is never used in the manner of a rigid oar, which would imply the simultaneous movement of both wings in the same direction in order to propel the bird. On the contrary, the wings were often and indeed usually brought into use alternately, much in the same manner as the pectoral fins of a fish, and in every movement of the wing wiry, screw-like curvatures, which are due to the rotation of the different segments of the limbs upon one another, are strongly developed. In fact, a constant screwing and unscrewing of the separate alar segments upon one another takes place simultaneously with the forward and backward movement of the organ as a whole.

From general considerations of the anatomy of the penguin, Prof. Watson concludes that these birds together form a natural group, every member of which is possessed of certain anatomical peculiaritics which serve at once to associate it with its fellows and to separate it from the members of other groups which may more or less closely resemble the Spheniscide. From an anatomieal point of view he would recognise but three genera-Aptenodytes, Spheniscus, and Eudyptes. The remarks on the characteristics of these genera and the limits of the
species contained in them are among the most interesting in this Report.

As to the phylogeny of the penguins the author concludes that they form the surviving members of a group which had early diverged from the primitive avian stem, but that at the time when the separation took place, the members of that stem had so far diverged from the primitive ornithoscelidan form as to be possessed of anterior extremities, which, instead of forming organs of terrestrial, had become transformed into organs adapted to aërial progression, or true wings. If this view be correct, palæontological research may, in the course of time, disclose the existence of Spheniscidine remains which may enable us to trace the line of descent of the penguins of the present day from the original avian stem, and through it the relationship which exists between the modern Spheniscus or Eudyptes, with their separate metatarsal bones and aborted wings on the one hand, and the majority of modern birds, with their conjoined metatarsal bones and perfect wings on the other.

The geographical distribution of these birds is of great interest. They are entirely confined to the southern hemisphere, none of them straying north of the equator. Within this area their distribution is very extensive, reaching from the Galapagos Islands on the equator, southwards to the Antarctic Islands. Prof. Watson surmises that this distribution does not depend on temperature, but may depend on a relative abundance of the food supply (Cephalopods and Crustacea) found in the two hemispheres respectively; but the editor, Mr. J. Murray, in a footnote, says: "The penguins reach the equator only on the coasts of Chili and Peru. Now the Peruvian current from the Antarctic skirts along this coast, and takes a low temperature as far north as the Galapagos Isles; the temperature of the sea being there (equator) 62° to 66°, while in the middle of the Pacific (equator) the surface temperature is 81° to 88°. Temperature, therefore, most probably has something to do with the limitation of the geographical distribution of the Spheniscidx."

The second memoir is by Dr. F. Buchanan White, on the Pelagic Hemiptera collected during the voyage. These, the only truly pelagic insects, belong to the genera Halobates and Halobatodes. The first of these was founded sixty years ago by Eschscholtz for three species taken during the well-knowa voyage of Kotzebue round the world. But few species are known, and they are very rarely to be found in collections, though they seem to be abundantly distributed in tropical seas. Their structure would seem to indicate that they are archaic forms of great antiquity, and as doubtless many species yet remain to be discovered, it is to be hoped that some one with the will and the opportunity will be found to turn their attention to the group. In the meanwhile Dr. White has in this Report given a detailed account of the literature of these genera, followed by an account of the anatomy and description of the genera and species. Of the genus Halobates he describes eleven species, of which three were first described by Eschscholtz, one each by Templeton and Frauenfeld, and six for the first time in this memoir. In his remarks on the species we notice that, after a very bad fashion adopted by some entomologists, these are alluded to under their trivial
names only, thus: "according to Frauenfeld, micans differs from wiillerstorfii." This is the only departure from the ordinary rules of nomenclature that we have as yet noticed in these Reports, and we call attention to it in the earnest hope that it will not occur again.

Species of Halobates are recorded in Mr. Murray's journal as found twenty-one times in the Atlantic between latitudes $35^{\circ} \mathrm{N}$. and $20^{\circ} \mathrm{S}$., and thirty-eight times in the Pacific between latitudes $37^{\circ} \mathrm{N}$. and $23^{\circ} \mathrm{S}$. The majority of the specimens taken by the tow net were dead when brought on board, but some were taken alive and were observed skimming over the surface of the water in the glass globes. On one occasion a species was seen to dive. Of the species of Halobates now known, five occur in the Atlantic, but one only is restricted to that ocean, though the headquarters of another appear to be there. Six species, of which two are peculiar, occur in the Indian Ocean west of long. $100^{\circ} \mathrm{E}$., while to the east of this, and chiefly in the West Pacific, eight species occur, of which four are restricted to that region. But taking the West Pacific and Indian Ocean together, we find that nine out of the eleven known species occur there, and five nowhere else. Of Halobatodes H. lituralus occurs in the Chinese Sea, H. compar is from India, H. stali from Ceylon. All the species are figured on three plates.

The Third Report is by Prof. Allman, on the Hydrozoa, Part I. Plumularidx. Of the Hydroids, a large number of exotic species have been recently described, notably the collections made during the exploration of the Gulf Stream, and during the expedition of H.M.S. Porcupine, by Dr. Allman himself. But to this number the collection brought home by the Challenger makes a large and valuable addition. Of this collection the family of the Plumularidx forms a considerable proportion. Only one form can be identified with a species occurring in the European seas. This species, Cladocarpus formosus, was dredged by the Porcupinc from the seas lying to the north of Scotland, and by the Challenger from the seas at Japan. It is a well-marked species, and the great disfance between the Atlantic and Pacific stations, without any intermediate station having been discovered, is a remarkable and significant fact. By far the larger number of the forms brought home by the Challenger consist of species new to science, while among these a considerable number have had to be assigned to new genera. Many of the species are of great interest from the light they throw on the external morphology of the group, and from the aid which they afford towards a philosophical conception of the significance of parts otherwise enigmatical. The Report is prefaced by some introductory remarks on the general morphology of the Plumularidx. While not yet possessing the data necessary for a complete exposition of the geographical distribution of this group, it may be generally asserted that it attains its greatest development in the warmer seas of both hemispheres, and that in tropical and subtropical regions it has its maximum in multiplicity of form, in the size of the colonies and in individual profusion. The dredgings of the Challenger and of the United States Exploration of the Gulf Stream would further scem to point to two centres of maximum development within the area thus indicated-an eastern centre, which is situated in the warm seas around the

Philippines and other islands of the East Indian Archipelago, and a western centre, which will be found in those which lie around the West Indian Islands and bathe the eastern shores of Central and Equinoctial America. In bathymetrical distribution the Plumularidæ present considerable variation. Among the species described some are quite littoral, having been dredged from depths ranging from between 8 and 20 fathoms. The greater number, however, have been obtained from depths between 20 and 150 fathoms, while three species, Aglaophenia filicula, A. acacia, and Polyplumaria pumila, are from a depth of 450 fathoms. The striking and beautiful genus Cladocarpus consists of eminently deep-water forms, and of the two species described, one-C. formosus-was obtained in the Japan seas from a depth varying between 420 and 775 fathoms; the same species from the north of Scotland was found at depths of from 167 to 632 fathoms. The second species-C. pectiniferus-was dredged off the Azores from 900 fathoms, being the greatest depth from which any Plumularidan is known to have been obtained. This Report is illustrated by twenty plates.

The last Report in this volume is on the genus Orbitolites, by Dr. W. B. Carpenter, with eight beautiful plates by Mr. George West, jun. Some thirty-six years ago Dr. W. B. Carpenter received from Prof. Edward Forbes some small discoidal bodies which had been dredged between 1842 and 1846 by Prof. J. Beete Jukes on the coast of Australia, with the hint that these were probably the Marginopora of Quoy and Gaimard. From this time to the present Dr. Carpenter has made a pretty constant study of these interesting Foraminifers, and he gives us a highly instructive account of the views beld from 1823 by the various authors who have written on the genus, from the strange misconceptions of Ehrenberg to the accurate descriptions of Prof. Williamson, who first clearly determined the close affinity between Orbitolites and Orbiculina, thus disposing of the Bryozoic doctrine of Ehrenberg, and relegating these organisms to the Foraminifera. As the final result of Dr. Carpenter's laborious researches on this group, he concludes that while the ordinary notions of species will not apply to it any more than it will to any of the Foraminifera, still particular types of form are transmitted with marked genetic continuity, and he distinguishes four very well marked types of Orbitolites, around which the entire assemblage of specimens collected over a very wide geographical area, and from a great bathymetrical range, can be grouped without diffi. culty. Treating of the subject of descent, the author declares that "it seems to him that the evolution of this type from the simplest monothalamous Milioline has taken place according to a definite plan, of which we have the evidence in the wonderful uniformity and regularity of the entire sequence of developmental changes, whilst we are entirely unable to account for those changes without attributing to the subjects of them a capability of being affected by external agencies or modes so peculiaz as to indicate a previous adaptation."

From an editorial note prefixed to this volume we learn that the various large incidental collections of terrestrial forms, such as insects, spiders, reptiles, \&c., will not have any detailed reports published concerning them, but thas they will be referred to in the narrative of the cruise, the first volume of which is announced for 1884

OUR BOOK SHELF

Elementi di Fisica. Vol. IV., Elettricita e Magnetismo. By Prof. Antonio Ròiti. (Florence, 1883.)
SUrely, and not slowly, the views of Thomson, Maxwell, and the modern electricians generally are finding acceptance throughout the Continent. The absolutely unanimous acceptance of the British Association's system of electrical units since the indorsement of that system by the Paris Congress of 188 s has proved the immense gain to the electrical world of having a uniform means of expressing electrical quantities, and has compelled electricians not only to read but to comprehend the writings of the pioneers of this most important reform. The work now before us for review, though professing to be but a text-book for use in the lyceums and schools of Italy, gives ample evidence that its author, Prof. Roiti, of the Royal Institute of Higher Studies in Florence, is not only abreast of all the latest developments of electricity, but that he has mastered the theory also. Few text-books of its size have we seen that will compare favourably with Prof. Roditi's little volume of 356 duodecimo pages. The faults which bave been hitherto so conspicuous in most of the Continental text-books on electricity are in this work conspicuously absent. As an example we may refer to the author's treatment of the relation between the capacities, potentials, and charges of similar conductors. The elementary theory of the magnetic shell and that of the mutual potential of two magnetic shells are neatly expounded in pages ${ }^{131}$ to 133 . The absolute electrometer and the quadrant electrometer of Sir W. Thomson are both described, and illustrative figures given. The system of absolute and derived (C.G.S.) units, and that of the practical units of electric quantities based upon them, are explained at length on pages 204-5. There is a short chapter on the electric light, and another on electric motors, in which the anello elettromagnetico di Pacinotfi is described, the author remarking with emphasis that it contained the germ of almost all the machines by which the marvellous strides recently made in the applications of electricity have been achieved. The experiments of Deprez at Paris on the electric transmission of power, and the economic questions involved are also touched upon. Crookes's researches on "radiant matter" are mentioned and illustrated. Amongst points of novelty may be mentioned Pellat's method of measuring the electromotive force due to polarisation, which has not yet, we believe, found its way into any English text-book. Two points of criticism we lave to offer in conclusion. The first is that the author defines electric tension as identical with the electric force, equal to 4π times the surface density of the charge, instead of defining it, in the sense of Faraday and Maxwell, as the stress on the dielectric, which is proportional to the square of the surface density, and therefore proportional also to the square of the electric furce or electromotive intensity at the point of the surface considered. The only other complaint we have to make of the workand this does not detract greatly from its value-is that the author does not acknowledge the sources from which some of his descriptions and cuts are taken. S. P. T.
Dr. H. G. Bronn's Klassen and Ordnungen des ThierReichs, wissenschafllich dargestellt in Wort wnd Bild. Erster Band, Frotozoa. Neu bearbeitet von Dr. O. Bütschli. (Leipzig and Heidelberg: C. F. Winter, 1880-83.)
THE first nineteen parts of this new edition of vol i. of IJr. Bronn's well known and important work on the classes and orders of animals, nearly completing the volume, prove that Prof. Bütschli has spared no pains to keep ir up to the most modern investigations of the Protozoa. In no one division of the animal kingdom has observation gone so hand in hand with discovery as in this, the lowest
of her classes. Glancing at the portion treating of the Gregarinida, what strides have been made in our knowledge of these forms within the last ten years. Adopting Leuckart's titles for the class of Sporozoa, under which are the sub-classes Gregarinida, Coccidia, Myxosporidia, and Sarcosporidia, we find 137 pages and eight plates crowded with figures devoted to a sketch of the characteristics of the class with diagnoses of the genera and the number of species, and references to the places where fuller details of these hatter will be found. The illustrations are clear and effective, and copied from every available source. The bibliography appears to be well to date, and this volume when complete will be an indispensable, handbook for the student of the lower forms of animal life.

LETTERS TO THE EDITOR

[The Editor does not hold himself responsible for opinions expressed by his carrespondents. Neisher can he underlake to relurn, or to correspond with the woriters of, rejected mannseriths. No motice is taken of anomymous communications.
[7he Edior wrgently rrquers correspondemts to kapp their leters as short as possible. The pressure on his space is so great that it is impousible, otherwise to insure the applarance even of communications containing interesting and novel facts.]
"Elevation and Subsidenee"
Tre view that the glacial subsidence was due to the pressure of the accumulating land ice, has been accompanied with the corollary that subsequent elevation was due to the removal of this pressure by the melting of the ice; but though I think the first is true, the corollary is not so, in England at least.
In my memoir "On the Newer Pliocene Period in England" (Qwart. Fourn. Gool. Soa. for 1880 , p. 457 , and 1882 , p. 667), 1 have endeavoured to show how the inclination of this eountry changed during the progress of the major glaciation, and the flow of the land ice from the mountain districts to the sea altered in accordance therewith, as well as pointed out (p. 709) the connection of this ehange of inclination with the accumulation of the land ice on the mountain districts; but I have al:o traced in detail in it how the east side of England rose to an extent that brought Noriolk and Suffolk from a submergence of more than 300 feet to their present level at least, and Essex proportionately so, while the land ice continued to push over the sea-bed of sand and gravel, as this rose into land, covering it with its moraine, until by this rise the easterly movement of the ice was arrested, while the west and south of England still remained to a great extent submerged. Since that memoir was published, Mr. David has in the same journal described the glacial clay which represents the moraine of the Welsh land ice in East Glamorganshire, itself ancovered by any marine deposit, as covering beds of stratified sand and gravel, which, from their containing many chalk flints, can be only the bottom of the antecedent sea, as low down as 80 feet above Ordnance datum. When this is compared with the evidence of more than 1300 feet of submergence afforded by the shell bearing gravels of North Wales; of 700 feet afforded by the Gloucestershire gravels to the east; and of between 500 and 600 feet afforded by the gravels of Devon to the sjuth of Glamorganshire, it becomes evident that the amount of rise which took place in the west of England before the land ice began to retreat was even greater than in Eiast Anglia. It is to subterranean movements engendered by this pressure, and not to its removal, that the rise in England seems to me to have been due; and I have given several sections in this memoir in illustration of the abrupt and violent character of the upthrows connected with it.
Although in this memoir I remarked upon the coincidence of the westerly increment in the great submergence with the augmenting quantity of the land ice on Cumberland, Westmoreland, and Wales, as the major glaciation went on, yet this coincidence between augmenting land iee and submergence is, 1 now see, more complete than had then occurred to me; for though I described the evidenees that show the passage from the Crag to the glacial marine beds of Norfolk and Suffolk to have been accompanied by a northerly subsidence which submerged the valley of the Crag river, in the north of the former county, while the other extremity of its estuary (in East Suffolk) was elevated, so that islands formed of Crag beds came there into
existence, around and up to which the earliest glacial marine accumulations of sand and shingle were bedded, and which, as subsequent soatherly and westerly subsidence ingalphed all bat the highest downs of the south of England, eventually spread over these islands, yet I did not connect this first movement with the pressure of the land ice. I have since, however, perceived that this connection exists; for, as the Glacial period came ou, the precipitation must necessarily, on account of latitade, have taken more exclusively the form of snow in 'Scotland before it did so in Cumberland and Wales; and, by thus accumulating land iee earlier in Scotland, caused this northerly subsidence. As the cold increased the precipitation in the form of snow reached its maximum in Westmorcland and Cumberland, and yet later somewhat in Wales; and as it did so, the pressure of the land ise engendered by it tarned the depression increasingly in those directions, so that eventually all England, save the highest downs, and even the lower ends of the river valleys of NornhWestern France became submerged proportionately to their contiguity to the foci of pressure. These iucrements of depression I have in this memoir traced by more than one train of evidence, and shown how this change of inclination, by diverting the directions taken by the land ice to the sea, ehanged also the character of the materials of which the resuling morainic clay is made up, aud so gave rise to those Upper and Lower clays of the najor glaciation in Yorkshire, which have been seized upou to support the hypothesis of alternations of climate during that glaciation.

The conuectiou between the augmenting weight of the land ice and subsidence seems to me so clear, that I cannot but think that American geologists have fallen into an error, in regarding the Champlain period as belonging to the wane of the great glaciation, instead of to its culmination. It seems to me that although the increasing volume of the land ice in the Lake (or St. Lawrence) basin caused this ice at its western extremity, where the parting between the two basins is very low, to invade the upper part of the great Mississippi basin, yet its weight where thickest -that is to say, towards its eastern extremity, which was that of greatest snow precipitation-so pressed this extremity down that the seaward termination of this ice in the Gulf of St. Lawrence retreated before the greater depth of sea there which thus resulted, and so allowed the sea to penetrate to Montreal and Lake Champlain, near the former of which places the remains of its inhabitants have been left at an elevation of about 600 feet.
With all this, however, we must not be led into regarding all movements of subsidence as a result of increasing accumulations, whether of sediment or otherwise; for such is evidently not the case, though to instance this would lead me beyond the object of this letter.

Searles V. Wood
Martlesham, near Woodbridge, October 11

The above remarks require lout little comment, and chicfly tend to show that Mr. S. V. Wood attaches increaved importance to the idea that weight produces subridence. He speaks of elevation commencing before the retreat of the glaciers, but that they would be enormously lightencd before retreating is a fact that I can hardly suppose he has overlooked. In ascending the Jungfrau many years ago, when the Swi-s glaciers were diminishing, I crossed from the Grindel wald on to the Aletsch, and had to descend a cliff of nearly vertical ice, which ny recollection tells me was some sixty feet high, in order to pass from oue to the other. The difference in level was caused by the extra rapid melting of the Aletscb, owing to its more southern aspect and exposure to the Foln wind. This was at the head of the glacier, and the melting was much more rapid lower down, though the superficial area had not eontracted to any appreciable extent. This loss of weight would lead to elevation long before the disappearance of the ice.
J. Starkie Giskoner

Snake Bite

If Was an eye-witness to the following:-My brother was walking within a field of the Land's End wheu he stooped to pick up a large snake, appareutly nearly a yard long, which bit him on the thumb. The bite became very painful in a few moments, and we realisel for the first tige that it was poisoned. In less than five minutes lie was in the botel and swallowed half a pint of reat brandy, and soon after some ammonia and watcr, without any effect. The wound bad been well zucked aud nas
stceped in ammonia, but the arm 5 万on swelled to the size of the body, and the swelling began to extend down the ribs. The thumb was lanced while iamersed in hot water, and the resul: was similar to the first gashes in a shoulder of mutton, the exposed flesh being dark mulberry colour, and not a drop of blool flowing. He recovered in seven or eight days, but was weak for some time.
J. S. Gardier

I'ark House, St. John's Wood Park, N. W.

The Observation of Meteors

Accounts of large metcors form a frequent suljest of correspondence in the colamas of scientific journals, but it is not ofien the case that the deseriptions of the e phenomena are sufficiently exact to be valuable for purposes of calculation. Rough estimates of the direction and position of flight are of little utility, and the vague stateurents often made occasion an endless source of difficulty in the satisfactory reduction of results. It is true that observers of fireballs are generally taken unawares by the suddenness of the apparitions, and that the visible paths are seldom to be noted accurately. Before the observer collects him.self to record the facts of the display it has disappeared, and he has to rely solely upon the impressions retained in his memory.

But, notwithatanding this drawlack, the observations of large meteors as pul, ilished from time to time would posse-s far greater scieatific value if observers would attend more scrupulonsly to that most essential detail, the diriction of flight, and express it by some method of uniformity. Sometımes we find the path vaguely stated as being from "cant to south," without any attempt to estimate the altitude of the be, inning and ead points of the course. On other occasions a meteor is described as passing above or bclow certain stars or plinets. The latter method, though an improvement upon the furmer, is to some extent indefinite, and therefore unsatisfactory, as giving unnecessary trouble to those who undertaie the reduction of such materials. For instance, a meteor is oberve. 1 early in August, 1851, shooting from "some distance below Saturn towards Conet B." Now in reducing this account troubles one references have to be made to find the places of the two otjects on the dates mentioned, and then we are left to gues at the "distance below Saturn" implied in the description. These olyjections would disappear, and the comparisun of ub-ervations be greally facilitated, could observers be induced to give the right aceension and declination of the beginning and eted px.ints of the vi-ible paths. These elements adunit of ready deterinination by projecting the observed flights upon a star chart or cele-tial globe and reading them off. Excn in cises where the olseervations are uncertain, the observer should fix the farh according to this method as nearly as possible, for it is matifest that it is iufinitely preferable to the sague and ofien worthless attempts to guess altitudes, compass Learinge, \&c, and, moreover, it renders the after comparison of observations a work of greater facility and precision.
Though the direction of fight is the all-important element to be determined by meteor olservers, there are some minor points which should alzo be carefully recorded. The time of appearance, brightness, approxiuate duration, and whether accompanied by phosphoric streaks or spark treins, are cach important in their way, and wust be sitcel wtenerer featible. If this nere done more sytematically, the observations of firehalls. would acquire alditional value, and may quite possibly develop some new facts cither as to their appcasance or crigim.

Bristul, Octuber 22
W. F, Denning

"Partials"

It is a well known fact that no mu-ical sound is produced alone, but the instant it is sounded a series of other sounds springs from it, and aluays in a certain order and rati). Next to the pimary tone, the octave is lieard, then the octave fifth. the double octave, the dontle oelave third, the double octave fifth, the extra llat donble cetave seventh, the treble octave, and so ou. The origin of these "fartials" has long been an interesting study, and a solution has occuried to me which I think is the true one.

We hnve the fact that an olject seen by the eye for ever so short a time leaves itvimpression on the optic nerves about the eighth of a seconal ajler it has fassed atauy. By analogy it seems highly probabie that all uur acrves, including those of the
ear, retain impressions made upon them for a momentary period after the cause has ceased to act. If this sarmise is correct, then the following would easue. All musical tones being produced by vibrations striking ajon the ear in rapid succession, the first vibration would continue to be felt during the strokes of a number of suczeeding vibrations.

The second vibration coming upon the ear before the first ceased to be felt would produce the effect of two in the time of one, making the octave sound.

The third would produce the effect of three in the time of one, making the octave fifth ; the fourth, four in one, the double octave; the fifth, five in one, the double octave third, and so on,

the order exactly corresforting with that in which the fartials are heard.

Of course while the successive strokes occur the first is becoming fainter in effect, and thus each partial in the above order is heard with fainter intensity.

What the first vibration is to the second and its successors the second vibration is to the third and its suecessors, and thus the series of fartials is hept upas long as the primary tone exists. This also aecounts for the strong partials heard in the rough vibrations of the harmonium and the few partials heard from the smooth tones of the flute.
W. C. Jones

Chester, October 18

The Green Sun

On Sunday, September 9, the residents in Colombo, while enjoying their evening stroll on Galle Face, were astonisbed by a strange appearance in the heavens. The sky was cloudy, and frequent squalls were passing over the sea, one of which just
touched Colombo. As soon as it was past, the sun emerged from behind a cloud, of a bright green colour. It was then abont 10° above the visible horizon. The whole disk was distinctly seen, and the light was so subdued that one could look steadily at it ; indeed I should say its intensity was searcely half that of the full mion. The same phenomenon was also observed on Monday and Tuesday. Wiednesday was overcast, and I have n theard of any observations being mede; and on Thursday the sun had resumed its normal appearanee. I was not in a position to observe it in the morning; but from reports from other parts of the island I learn that the sun appeared green at its rising, and afterwards changed to blue, Jike the flame of sulphur, giving little light till it had attained an altitade of about 20°, when it cotrld no longer be watched with the naked eye. During the day the light had a bluish tinge; and in the evening the same phenomena were repeated in inverse order. The moon also, to some extent, was affected in the same way.

Can any of your correspondents give an explanation of this? It has been suggested that a convulsion in the sun may have given prominence to vapours emitting a green light ; but to me it seems more probable that the cause is to be sought in the upper strata of the earth's atmosphere. Can it have any eonnection with the recent volcanic eruption in the Straits of Sunda?

Colombo, September 19
W.

In a clear sky, as the disk of the кun sinks down beneath the horizontal line of the ocean, the parting ray is a brilliant emerald green. I have occasionally, but not often, had the pleasure of secing this interesting phenomenon, as the clear atmosphere has to be aecompanied with a cloudless region of the sky where the sun is setting. The same effect is not produced by the suu setting behind a distant bank of clouds. Probably the first ray from the rising sun would be the same unexpected colour.

Week St. Mary Rectory, Cornwall
G. II. Horkins

Pons' Comet

This comet already has a tail, though a very faint one. With a 4 - inch refractor I tiaced it last night to a distance of 20^{\prime} from the nucleus, at a position augle of about 75°.

October 26
T. W. BACKHOUSE

Earthquake

Seersg in your last issue (vol. xxviii. p. 623) that Mr. Cecil describes two distinct tremors of earthquake felt here by him, I write to say that the same phenomena were experienced by myself. I was disturbed in the night by what I mistook for an alarum going off, but found that it was a glass on my waterbottle vibrating violently. After a short pause the glass again vibrated. I found next morning that I could exactly reprodnce this sound by shaking the washing-stand. I have never known the washing stand to tremble before, even in a gale.
H. Howard Crawley

Pine View, Bournemoutb, October 29

STUDIE゙S MADE ON THE SUMMIT OF THE PIC DU MIDI WITH A VIEJV TO THE ESTABLISHMENT OF A PER.MANENT AS. TRONOM/C.4L STATIOV'

THANKS to the indefatigable zeal of General de Nansouty and the engineer Vaussenat, a meteorological observatory has already been erected on the Pic du Midi. After visiting the place with the Director of the Higher Instruction on the occasion when this observatory was handed over to the State, Admiral Mouchez came to the conclusion that it might be possible to establish an unrivalled astronomical station on the summit, which is now perfectly habitable. In the month of August last he did us the honour of requesting us to study on the spot the advantages and possible drawbacks attending an installation made under such exceptional conditions. The details of our observations will form the subject of a special memoir far too extended for insertion in the Comples Rendus. For the present our remarks must a Note by MM. Thollon and Trepled, from Complics Newdws of Octuber 15 .
be limited to a simple communication of the more interesting results obtained by us from August 17 to September 22.

On reaching the summit of the Pic du Midi (2877 metres), where the barometer maintains a mean height of 538 mm ., everything presents itself to the observer as if the density of the veil formed above him by the atmosphere were diminished by about a third. The aërial region left behind him being unquestionably the most charged with mist, dust, and aqueous vapour, he may expect to find at once more light and less diffusion. Thus, during the mornings of September 19 and 20 , by masking the sun with a screen held at some distance, and exploring the surrounding space with a small spectroscope with an aperture of ooo2m., we were able to observe the planet Bcnus at a distance of 2^{2} from the solar disk. We could even subsequently distinguish it with the naked eye. But what most surprised us was the marvellous definition at this station. The limb of the sun projected on the slit of a spectroscope showed a spectrum with a boundary as sharp as if produced by a punching machine. We can positively state that we never elsewhere saw anything similar either at Nice, in Italy, Algeria, or even Upper Egypt. We should add that this complete absence of undulation was noticed only in the morning. After the slopes of the mountains had been exposed for several hours to the beat of the sun, the undulations were produced as they are everywhere else, and even became excessive for the rest of the day.

During clear nights, using a telescope with an aperture of 0.16 m ., and a reflector by Henry of 0.20 m ., we found the perfect definition observed in the case of the sun in the morning reproduced in the case of the moon, planets, and stars. Under such conditions observations of extreme precision could certainly have been obtained.

For the study of solar physics we had set up the horizontal telescope and the large spectroscope which we usually employ. On observing the solar spectrum at a favourable moment, it seemed streaked in its entire length with a considerable number of fine lines, some bright, others dark, at a mean distance of $3^{\prime \prime}$ of arc from each other. They certainly belonged to the solar image, for they followed all its displacements, and they could have arisen from the granulations of the photosphere alone. Under the same conditions, that is, when the images were perfectly still, the hydrogen bands C and F had no longer any sort of continuity, but seemed formed of distinct bright and dark fragments, of the same magnitudes as the intervals between the lines. ${ }^{1}$ This phenomenon was observed not merely at certain times and places, but constantly over the whole surface of the disk We feel satisfied that the chromosphere presents a system of granulations analogous to that of the photosphere. The two systems thus superimposed become separated in the spectroscope, yielding, one a continuous, the other a linear, spectrum, and blending together in the telescope as on a photographic proof. If this chromosphere, thus rendered visible on the full disk, happened to be traversed by a protuberance, the band C increased in luminosity and for a greater length. By giving sufficient breadth to the aperture, we were then able to observe the protuberance itself, as when on the edge, although naturally with less brilliance, and foreshortened. Nor is this the first instance of protuberances thus observed on the full disk. On this subject the delicate observations of Young and Tacchini are well known. But instead of being accidentally visible, instead of being produced only under special circumstances, as for instance in the neighbourhood of a spot or on the bridge of a spot in process of segmentation, these phenomena were constant for us with varying degrees of intensity, and under the sole condition of using an image entirely free from undulations.
a These phenomena referred to by Messrs. Thullon and Trepied were bserved and recorded in Eingland under exceptionally fine atuonpheric con-
tous during the last sunspot maximum.

The observations made outside the edge of the solar disk were no less pregnant with results. We know that in the spectrum of the chromosphere there are eight lines always visible under ordinary conditions. On the Pic dis Midi, during the five days when we were able to make our records at favourable moments, we saw the number of these bright lines always visible increased to over thirty in the portion of the spectrum which is comprised between D and F . Here we subjoin a table of the wavelengths of these lines :-

5533*6	5273.2	520.8	5122%
$5525 \cdot 8$	52589	5199.5	5114.4
5469.9	5254.3	51969	$5112 \cdot 1$
5361.5	5252.2	$5183{ }^{\circ}$	$5087{ }^{\circ}$
$5324{ }^{\circ}$	5248.8	$5172{ }^{\circ}$	5029.8
$5318 \cdot 7$	5233.9	5168.3	5017.9
$5292{ }^{\circ} 4$	5225.6	5166.7	4983.6
5283.1	52074	5147°	$4923{ }^{\circ}$
$5275{ }^{\circ}$	5206.8	$5130^{\circ} 2$	4882.9

It will be seen that, at the altitude at which our observations were made, an approach was made to the conditions prevailing during a total eclipse.

To resume. The observations we were able to make on the Pic du Midi during the five weeks of our sojourn on its summit justify us in concluding that science will gain much by the completion of the astronomical station begun by the directors of the Paris and Pic Observatories. Here we should have a permanent establishment always open to savan/s wishing to undertake special researches. To mention those points only towards which our attention was mainly directed, we are of opinion that good opportunitics would here be found of furthering the solution of many problems connected with solar physics and the spectral analysis of the stars.

THE WHEAT HARVEST OF 1883

THE public must be somewhat puzzled with the divergent opinions of authorities upon the yield of the wheat crop of the present year. On the one side, for example, stands Sir John Lawes with his accurate balances and wonderful wheat field, which experience has taught him usually proves a fair criterion of the yield of the English crop. On the other side is arrayed a somewhat formidable party, which we may take as well represented and led by the very able article in the Times of Saturday last, headed " The Result of the Harvest." To put the matter briefly, there is a difference of opinion as to whether we have reaped an average crop or an underaverage crop of wheat. And there is also a good deal of difference in opinion as to what an average crop is. The point of greater interest no doubt to us is whether we have just secured an abundant harvest or not. It is a point of very great importance not only intrinsically but as a matter of opinion. If business men believe that our national wealth has been recently increased by an unusual augmentation of our food supply, they may make this opinion a basis for enterprise or speculation. If the opinion which prompted them to action should prove a false one, the results would be inflation, panic, and loss. It is therefore very essential that public opinion should be guided in a right direction upon this important point. Any person who has read our leading newspapers carefully upon the subject of harvests for a series of years will probably have observed a tendency to over-estimate production. The prospect is usually depicted coulcur de rose, and the public is congratulated upon its harvest prospects, while practical farmers remain in doubt as to the yield of their cornfields. Of one thing we may be eertain-that wheat needs heat. The average temperature of our islands is scarcely suitable to the wheat plant, which is rightly viewed as somewhat exotic in its requirements. A slight elevation above the sea-level, or a slight decrease in solar heat, invari-
ably lowers the yield of wheat. Properly read with regard to its distribution throughout the season, the temperature of the summer months ought to guide us to a judgment with regard to the probable yield of wheat. It is the same with regard to wine. Good wheat and good wine years run together. 1868,1870 , and 1874 will probably all continue to be remembered as good wine years, and they are well known as among the best wheat years of the present half-century. In judging as to the effects of temperature upon the wheat crops, we must not only take average temperature but fluctuations between night and day. A single cold night may do incalculable damage, and a few cold days at blooming time may do much to blight a wheat-grower's prospects. Those who watch the weather closely will usually lay the foundation of a sound judgment upon wheat prospects. We require, first, a good seed time ; second, a dry March; third, a hot June, July, and August. So much for the weather. We require also a good "plant," i.c. plenty of young wheat plants uniformly scattered over the surface. The growing crop must be fairly free from those unaccountable visitations known as "blights," both insect and vegetable, and if we can secure these good conditions we reap a good wheat crop. Let us then endeavour to apply these rules to the actual state of things during the months between seed time of 1882 and harvest of 1883 , and let us glance at the various opisions expressed as to the yield of wheat for the present year in the light of tbese facts. First, then, we passed through a period of incessant rainfall during the time when farmers usually sow their wheat. A worse seed time we have rarely experienced. Constant rain and destructive floods were the characteristics of October, November, January, and February last. Now we owe to Sir John Lawes, in a great measure, the knowledge of the fact that a wet winter washes out that element of fertility which of all is the most important, namely, the nitrates. Here then we have to record a yery wet winter, in which seeding was interrupted and nitrates were washed through into the drains and subsoil, and that to an unusual degree.

The consequence was that in the spring a thin plant was the rule upon all stiff soils. After this the wheat improved under the influence of a singularly fine spring, and farmers rejoiced in the opportunity afforded them to get on with their root cultivation. Unfortunately this state of things did not last. At the most critical period for the wheat crop summer forsook us. The nights became bitterly cold in June, and a continuation of wet weather set in which lasted almost up to harvest. Accompanying this untoward state of affairs were blights, and the ears became greatly affected with wheat-midge, smut, and ear-cockle, so that wheat-growers became sensible that their main crop was in extreme danger of ruin, and that before the papers began to publish their estimates.
This feeling among wheat-growers was quite general, as they knew that empty ears could not lead to full measures. Examination of the ears just before harvest showed clearly that small and shrivelled grains were only too common, and that many of the florets were barren. Accordingly crops were valued low, and the results from the thresbing machine are bearing out the wisdom of these low valuations. As to Sir John Lawes' estimates, based on the experimental field at Rothamsted, no one knows better than Sir John that this coincidence between his average yield and that of the country generally must be liable to be upset by local disturbances. As a criterion of the harvest Sir John Lawes' field may be useful, but certainly cannot be infallible. A local frost, a local hailstorm, a local loss of plant, or fauly cultivation, must be always liable to affect any field and rob it of its general average character when compared with the harvest of millions of other acres. All this is simple truth, and in this season we are inclined to think that Sir John's field "told a flattering tale." The opinion of the writer of the
present article is based, first, upon the meteorological conditions to which the wheat crop was exposed during its growth. Secondly, upon his own experience as a grower. Thirdly, upon information obtained from other growers, and from observation and reading.
He has come to the conclusion that the wheat crop of 1883 is below an average, and will be disappointing to the grower. Not only was the crop subjected to many bad conditions during its growth, but a large proportion of it was badly harvested, and is now in wretched condition. If we are not deeply disappointed with the 20 to 26 bushels of wheat per acre which our own liberally treated crops are yielding of marketable corn, it is because we have never expected more since those frosty nights of last June, when we resigned our hopes of a good wheat crop. The subject is almost too long for treating in a single article, and we must leave it here. If space had permitted, we should have entered upon the question as to what constitutes an average crop of wheat-a point upon which we appear to be in a state of great ignorance, unless we are to believe that an average which thousands of our best farmers have not been able to touch for the last ten or twelve years is that of the entire country with its millions of badly cultivated acres. This we cannot admit, and after a careful study of the estimates made as to average yield in various counties, we are driven to the same conclusion as that of the writer to the Times last Saturday, namely, that little reliance is to be placed upon them. Average, over-average, and under-average are somewhat vague terms, and difficult to fix. We can, however, base an opinion upon the fact that cheerless, cold, and wet summers that are unfavourable for fruit, bees, and vines, or even to pleasure parties, lawn tennis, and picnics, are not going to be favourable to wheatgrowers. We have not touched upon barley and oats, but are prepared to allow that circumstances have been more favourable towards these crops than towards the most important cereal.

John Wrightson
College of Agriculture, Downton, Salisbury

ON A NEW METHOD OF SINKING SHAFTS IN WATERY, RUNNING GROUND

$W^{H E N}$ an attempt is made to sink a shaft in very watery deposits of gravel, sand, and mud in the ordinary way-that is, by digging out the solid matter by hand and pumping the water to keep the bottom dry-it is found that, after a certain depth has been reached, the current of water which flows up through the bottom brings solid matters along with it as fast as they can be removed, and further downward progress is then completely arrested. Under these circumstances it is necessary to resort to certain special methods of sinking, two of which have been hitherto employed with more or less success. According to one of these methods the shaft-lining consists of an air-tight iron cylinder fitted with an air-tight cover. When the excavation is continued below the natural level of the water, compressed air is forced into the interior of the shaft so as to drive back the water and leave the bottom dry. The workmen can then stand in the bottom and remove the solid matter by hand as easily as if the ground had been naturally free from water. The lining sinks downward as its lower end is laid bare, and is lengthened at the top as required. The pressure of the air is gradually augmented as the depth increases, but unfortunately this process cannot be carried beyond three atmospheres without prejudicially affecting the health of the workmen. When the depth of the watery running ground surpasses the limit represented by a pressure of three atmospheres, it is necessary to resort to the second method. In this case the water is allowed to stand at its natural level in the shaft, and the solid matters are removed from the bottom by a revolving dredger. The lining or casing consists of a cylinder of masonry or iron
provided with an iroa shoe or cutting ring, and sinks downwards at first in virtue of its own weight, being lengthened at the top as in the previous case, but after a time it generally becomes necessary to force it down by the pressure of screws, assisted by the blows of an instrument resembling a pile-driver. When it cannot be made to sink deeper, another similar cylinder of smaller diameter is introduced into its interior, the same series of operations are again gone through, and so on until the solid ground is reached.

Simple as the last described process may appear, its application is sometimes attended with difficulties of almost incredible magnitude. As an example we may mention two shafts which were sunk through about 400 feet of the kind of ground in question at the Colliery Kheinprenssen, near Ruhrort in Gerimany. One, begun in 1857, was not finished after more than cighteen years' constant perseverance; while the other, begun in February, 1867, was only completed down to the solid ground in June, 1872.

The new method invented by Herr Poetsch is described by Bergassessor G . Kohler in the Bergund Hiuttenmännische Zcilung, No. 38, xlii. Jahrgang, September 21, 1883. It consists in freezing the water contained in that portion of the running ground which occupies the position of the intended shaft into a solid mass of ice, and then sinking through it by hand without having to pump any water. To this end a preliminary shaft of larger dimensions than the intended shaft is sunk down to the natural level of the water. A number of vertical bore-holes about one metre apart are then put down round about its sides at the bottom, so that they pass through the ground just outside the lining of the intended shaft. Others are put down within the area of the intended shaft, and one is put down in its centre. All of these bores are continued down to the bottom of the running ground. They are made by means of the sand-pump, and are lined with sheet-iron tubes in the usual way. A circular distributing pipe with small copper tubes branching from it is placed at the bottom of the preliminary shaft. One copper tube extends to the bottom of each bore-hole, and each tube is provided with a stopeock. At the surface are several iceinaking machines of the Carre type. The liquid intended to circulate through the bore-holes and effect the operation of freezing consists of a solution of the chlorides of magnesium and calcium, whose freezing-point lies between $-35^{\circ} \mathrm{C}$. and $-40^{\circ} \mathrm{C}$. By means of a small force.pump it is made to circulate at such a rate that it leaves the cooling-trough with a temperature of about $-25^{\circ} \mathrm{C}$. It descends into the distributing pipe, passes through the copper tubes to the bottom of the bore-holes, ascends outside the copper tubes to the top of the bore-holes, finds its way into a collecting tube, reascends to the surface, passes through the cooling-trough, and then commences the downward journey again.

Herr Poetsch estimates that, under ordinary conditions -that is, when the outer ring of bore-holes can be made in the ground outside the lining of the intended shaftthe freezing process will occupy from ten to fourteen days.

When it has been ascertained by means of bore-holes that the wall of ice round about the intended shaft is thick enough, the operation of sinking is commenced. The ice is cut out by hand, and a descending cylinder of masonry or iron is carricd down at the same time. The lining prevents the surrounding ice-wall from breaking inwards, and the bottom cannot burst upwards.

Herr Kohler made a personal inspection of this process at the shaft Archibald now being sunk to the lignite beds at Schneidlingen, in Germany. The shaft passes through a bed of running sand four metres thick. Twenty-three bore-holes were employed in two rows near its sides. The freczing process was completed on August so last, when the running sand had become a compact mass of such great bardness that no impression could be made on
it by the finger-nail, and it was with considerable diffculty that a flake 15 mm . thick could be broken from it.

Sufficient data do not yet exist for estimating the cost of this process as compared with those already known, but we are of opinion that if the operation of freezing can be effected in two or three weeks, or even months, it with compare favourably with them in this respect under almost any circumstances. We believe also that it is capable of application under a variety of circumstances not mentioned in Herr Kohler's article, such as damming back an excessive flow of water in solid ground, driving horizontal drifts or tunnels through mud and sand, and so on. We would therefore recommend the inventor rather to turn his attention in this direction than to think of condensing the intake air of mines by the application of cold, with the view of dispensing, with ventilating furnaces and enabling winding operations to be carried on in upcast as well as in downcast shafts. The former field, if we mistake not, will be a large one; the latter, we can safely promise him, will be a very small one.

Whliam Galloway

NORDENSKJOLDD'S GREENLAND
 EXPEDITION

I^{\wedge}N a series of letters to Mr. Oscar Dickson, Baron Nordenskjöld bas given a detailed report of the leading incidents and results of his recent expedition, though it will still be some time ere we can learn what are the full gains to science. The leading novelty of the expedition was, of course, the journey into the interior of Greenland. We have already given some account of Dr. Nathorst's visit to the Cape York region, and in the present article will confine ourselves mainly to Nordenskjold's own journey up the interior. We reproduce a sketch map of this journey, which Mr. Dickson has been good enough to send us. After mentioning his attempt to approach the south-east coast of Greenland, Nordenskjold says :-

The ice much resembled the big rough blocks which are encountered north of Spitzbergen. The surface here carries a cold current which sets the ice on shore. The polar curtent is however not very voluminous; thus in a depth of a couple of fathoms Herr Hamberg discovered, through careful survey, a decided warm current from the south. The depth of the sea was not great, and the bottom consisted of large blocks which tore the trawling net and prevented dredging.
After landing Dr. Nathorst and his party at Waigatz Sound, Nordenskjöld went back to Egedesminde, which he reached on June 29. He then proceeds :-
The following day I leff for Auleitsivik Fjord, from which my expedition was to start. This ford is about 130 kilometres long, and very narrow in the middle, not unlike a river, which widens at the bottom into a bay, Tessiusarsoak, into which an arm of the inland ice shoots. This remarkable formation, and the great tides which favour this part of Greenland, make the navigation here very difficult. As in most of the Greenland tjords the sea is deep and free from reefs. A remarkable feature, too, is that icebergs coming athwart the narrows in the fjord cause the water in the bay suddenly to rise some tea to twenty feet. The Esquimaux relate that some years ago a boat with men, women, and dogs was drawn under here by the whirl currents. They are, in consequence, afraid of rowing in the narrows.

In 18701 had paid a visit to this fjord and examined these difficulties, which I believed would have increased rather than otherwise during the last thirteen years, through those changes which so often occur in the position and size of the moving glaciers which shoot down from the inland ice. On inquiry I was told that no European had been in the fjord since 1870 . Still my knowledge of
the feasibility of getting at least some 50 kilometres inland from this spot decided me to select it as my point त"appuzi.

On July 1 the Sophia anchored in the bay just north of the inland ice. We found here a splendid harbour with clay bottom, some seven fathoms deep, surrounded by gneiss rocks from 600 to 1000 feet in height, the sides of which are in some places covered with low but close shrubs, or clothed with some species of willow, mosses, and lichen, which, when we arrived, were ornamented with a quantity of magnificent blossoms. From one of the slopes a torrent descended, the temperature of which was $12^{\circ} \cdot 3 \mathrm{C}$. The weather was fine, the sky cloudless, and the air very dry. July t to 3 were employed in making preparations for the ice journey, while the naturalists made exctursions to various places in order to collect objects relating to the conditions of the country. On the night of the 3rd everything was ready for a start, and after some difficulty in reaching the spot where the baggage was we were fairly off. The spot from which we set out on the journey was only five kilometres from the actual shore, and situated below a little lake into which a number of glacier rivers fell. We proceeded up the river in a Berton boat purchased in England. On the night of the 4 th we camped for the first time on the ice. The expedition consisted of nine men besides nlyself. After a great deal of hard work in getting the sledges over the ice, which was here very rough, we found on the morning of the 5 th that it was impossible to proceed eastwards, but were compelled to return to the border of the ice and then continue to the north or north-east until finding smoother ice. This first part of the ice was furrowed by deep crevasses and ravines, causing us much trouble. We covered, however, a good distance that day, and pitched our tent near a land ridge in the ice 240 m . above the sea. ${ }^{1}$ On July 6 I sent the Lapp Lars forward to reconnoitre, and he reported that it was still impossible to proceed eastwards, but if we marched for a day or so to the north we would find the country accessible to the east. As 1 feared, however, the impossibility of dragging the sledges with the weight on them over the rough ice, 1 selected provisions, \&c., for forty-five days and left the rest in a depot in the ice. We now resumed the march. It was very interesting to witness the great ease with which the Lapps proceeded among the ice ravines, how easily they traced a road discovered, and with what precision they selected the least difficult track.

The Lapp Lars carried, instead of an alpenstock, a wooden club, with which he had slain more than 25 brown bears, full of marks from their teeth, and his eyes sparkled at the thought of encountering a white one. On the night of the 6 th we held our third camp on the ice, and now several officers and men from the Sophiir, who had accompanied us thus far, left us. Besides the most advantageous requisites for such a joarney, we had with us a cooking apparatus for petroleum, and here I beg to say that I found this kind of oil far more suitable than train or vegetable oils, which I had used on my former expeditions, and 1 recommend the same most warmly to Arctic explorers. Of scientific instruments 1 may mention compasses, two chronometers, a circle by Pistor and Martin, a small sextant, in case of the former being damaged, a mercury horizon, three aneroid barometers, thermometers, magnets, for the study of the clay deposit in the snow, a topographical board, a photographic apparatus, blowpipes, flasks, nautical tables, \&c. The sledges "kalkar," six in number, were of the same kind as those on which Swedish peasant women bring their wares to market ; the harness was made so strong that it would hold a man in case of his falling into a crevasse. In

[^0] whole too low.
addition to these thing 3 we had a manills rope specially spun for the expedition at the Alpine purveyor's in Paris. The food supplied per day may perhaps interest explorers. It was-breakfast: coffee, bread, butter, and cheese (no meat or bacon) ; dinner : 42 cubic c.m. Swedish corn brandy (bränvin), breaf, ham or corned beef, with sardines; supper : preserved meat, S wedish or Australian. Sometimes preserved soup was served with dried vegetables. Five men were teetotalers, but there was no need of supplying them with extra rations. For cooking, 0 .7 litres of spirits were consumed per day. Our whole baggage weighed a ton, a weight which might easily have been drawn across a smouth snow or ice tield, but which was very difficult of transporting over the rough and cutup surface we had to traverse. Our dally march, between July 7 and 9 , was, therefore, not great, viz. 5 kilometres a day. In addition to the crevasses and ravines, we encountered innumerable rivers, swift, and with steep banks which were difficult of crossing, which was generally accomplished by laying three alpenstocks across them. If I had not selected these of the toughest wood obtainable, we should often have had to make detours of many kilometres.

On these days we found on several occasions large bones of reindeer on the snow, and it was but a natural and pardonable conclusion to arrive at, that they were those of animals who had fallen in their wandering over the "Sahara of the Arctic regions." But that good signs are not always true ones we soon discovered.

During the entire journey we had great difficulty in finding suitable camping places. Thus either the ice was so rough that there was not a square large enough for our tent, or else the surface was so covered with cavities, which 1 will fully describe later on, that it was necessary to pitch it over some hundred smaller, and a dozen larger, round hollows, one to three fect deep, filled with water, or else to raise it on a snow-drift so loose and impregnated with water that one's feet became wet even in the tent. An exception to this was the place where we camped on July 9, viz. camping-place No. 6. We encountered here a small ice-plain, surrounded by little rivers, and almost free from cavities, some thirty metres square. All the rivers flowed into a small lake near us, the water from which rushed with a loud roar through a short but strong current into an enormous abyss in the ice plateau. The river rushed close to our tent, through a deep hollow, the sides of which were formed of magnificent perpendicular banks of ice. I had the sfot photographed, but neither picture nor description can give the faintest idea of the impre潼ive scene, viz. a perfectly hewn aqueduct, as if cut by human hand in the finest marble, without flaw or blemish. Even the Lapps and the sailors stood on the bank lost in admiration.

At first we had followed the plan of bringing the baggage forward in two relays, but, finding this very fatiguing, I decided to bring all with us at once. I found this to answer better. On July to we covered thus nine and a half, on the 1ith ten, and on the 12 th eleven, kilometres. The road was now much better than before, although stiff cnough. An exception to this was, however, formed by the part we traversed on the itth, when we proceeded alongside a big river, the southern bank of which formed a comparalively smooth ice plain, or 1ather ice road, with valleys, hills, cavities, or crevasses, some five to ten kilometres in width, and five kilometres in length. This plain was in several places beautifully coloured with "red" snow, especially along the banks of the river. It was the only spot on the whole inland ice where we found "red" snow or ice in any quantity. Even yellow-brown ice was seen in some places, but, on the other hand, ice coloured grayish-brown or grayishgreen, partly by kryokonite, and partly by organisms, was so common that they generally gave colour to the ice landscape.

Even on July 12-between camps Nos. 7 and 8-we found blades of grass, leaves of the dwarf-birch, willows, crackberry, and pyrola, with those of other Greenland flora, on the snow. At first we believed they had been carried hither from the interior, but that this was not the case was demonstrated by the circumstance that none was found east of camp No. 9. The only animals we discovered on the ice were, besides the few birds seen on our return journey, a small worm which lives on the various ice alge, and thus really belongs to the fauna of the inland ice, and two storm-driven birds from the shore. I had particularly requested each man to be on the lookout for stones on the ice, but after a journey of about half a kilometre from the ice border no stone was found on the surface, not even one as large as a pin's point. But the quantity of clay dust (". kryokonite") deposited on the ice was very great; I believe several hundred tons per square kilometre.

We now ascended very rapidly, as will be seen from the subjoined statement of our camps :-

$4{ }^{\text {th }}$	"	355	"	"
51h	"	374	"	"
6th	"	382	"	"
71 h	,	451	"	"
8th	"	546	"	"
$9{ }^{\text {ch }}$	"	753	"	"

The 9th camp lay on the west side of an ice ridge close by a small, shallow lake, the water from which gathered as usual into a big river, which disappeared in an abyss with azure-coloured sides. From this spot we had a fine view of the country to the west, and saw even the sea shining forth between the lofty peaks on the coast ; but when we reached east of this ice ridge the country was seen no more, and the horizon was formed of ice only.
Through an optical illusion, dependent on the mirage of the ice horizon, it appeared to us as if were proceeding on the bottom of a shallow, saucer-shaped cavity. It was thus impossible to decide whether we walked up or down hill, and this formed a constant source of discussion between us, which could only be decided by the heaviness of the sledges in the harness. The Lapps, who seemed to consider it their sole business that we should not be lost on the ice, came to me in great anxiety and stated that they had no more landmarks, and would not be responsible for our return. I satisfied them, however, with the assurance that I would find the way back by means of a compass and solar measurements. In spite of this the Lapps easily traced our route and our old camps with an accuracy quite marvellous:

During our outward journey I determined the site of each camp astronomically, and thus the distances which, when the determinations have been calculated, will be given on the map to be drawn of the journey will be abso-

The heights are given provisionally in metres. Swedish mile $=6.64$ English miles.
lutely correct. But the distances covered by the Lapps have been made according to their own judgment. The kilometres we covered every day, including the numerous detours, were ascertained by two pedometers.

Up to the 9 th camp we were favoured by the finest weather, generally with a slight south east wind, cloudless sky, and a temperature in the shade, three feet above the ice, of 2° to $8^{\circ} \mathrm{C}$., and in the sun of even $20^{\circ} \mathrm{C}$. The centre of the sun's disk sank in this spot for the first time below the horizon on July 15, and the upper rim, if allowance is made for refraction, on July 21. After the middle of July, when at an elevation of 4000 to 7000 feet, the nights became very cold, the thermometer sinking to 15° and 18° below freezing-point of Celsius.

The constant sunshine by day and night, reflected from every object around, soon began to affect our eyes, more so, perbaps, because we had neglected to adopt snowspectacles at the outset of our journey, and snow-blindness became manifest, with its attendant cutting pains. Fortunately Dr. Berlin soon arrested this malady, which has brought so many journeys in the Arctic regions to a close, by distributing snow-spectacles and by inoculating a solution of zinc vitriol in the blood-stained eyes. Another malady--if not so dangerous, at all events quite
as painful-was caused by the sunshine in the dry, transparent, and thin air on the skin of the face. It produced a vivid redness and a perspiration with large burning blisters, which, shrivelling up, caused the skin of the nose, ears, and cheeks to fall off in large patches. This was repeated several times, and the pain increased by the effect of the cold morning air on the newly-formed skin. Any similar effect the sun has not in the tropics. With the exception of these complaints none of us suffered any illness.
On July 13 we covered thirteen, on the 14 th ten, and the 15 th fourteen, kilometres (9 th to 12 th camps). At first the road gradually rose, and we then came to a plain which I in error believed was the crest of the inland ice. The aneroids, however, showed that we were still ascending : thus the 9 th camp lies 753 , the 10th 877 , the 1 ith 884 , and the 12 th 965 metres above the sea. Our road was still crossed by swift and strong rivers, but the ice became more smooth, while the kryokonite cavities became more and more troublesome. This was made more unpleasant by rain which began to fall on the afternoon of July 13, with a heavy wind from south-east. It continued all the night, and the next morning turned into a snowstorm. We all got very wet, but consoled
ourselves with the thought that the storm coming from south-east argued well for an ice-free interior. When it cleared a little we strained our eyes to trace any mountains which would break the ice horizon around us, which everywhere was as level as that of the sea. The desire soon "to be there" was as fervent as that of the searchers of the Eldorado of yore, and the sailors and the Lapps had no shadow of doubt as to the existence of an ice-free interior. And at noon, before reaching camp No. 12, everybody fancied he could distinguish mountains far away to the east. They appeared to remain perfectly stationary as the clouds drifted past them, a sure sign, we thought, of its not being a mass of elouds. They were scanned with telescopes, drawn, discussed, and at last saluted with a ringing cheer. But we soon came to the conclusion that they were unfortunately no mountains, but merely the dark reflection of some lakes further to the east in the ice desert.
A. E. Nordenskjöld
(To be continued.)

THE KE-ENTOMBMENT OF WILLIAM HARVEY

FOR two hundred and twenty-six years the mortal remains of the immortal discoverer of the circulation of the blood rested, unburied, in a vault of a little church in the parish of Hempstead, about seven miles from Saffron Walden, in Essex.

Harvey died on the 3rd of June, in the year 1657, being then in his eightieth year, but the precise place of his death is not known. He fell, full of days and honours, and retained his faculties so completely to the last day of his life that he directed bis apothecary, Samboke, what to do in the way of treatment. He beckoned to Samboke to take blood from under the tongue as the speech was failing,-a line of treatment which would have little favour in these days,-and as the sun of June 3 went down he went down also. His death, no doubt, took place in London, and probably near to Smithfield.

On June 26, twenty-three days after the death, the body of William Harvey was laid in the vault at Hempstead. In the interval a cast had been taken from the face for a rough and ready sculptor to work from, and the body, after a custom of the time, rolled first, in all probability, in a cere cloth, had been inclosed in a leaden chest. It was then conveyed to Hempstead, a distance of about fifty miles, in those days a journey of no slight importance. The body was followed by many of the Fellows of the College of Physicians out of town, and it may be that some of them went as far as Hempstead. Certainly one scholar, though he was not a Fellow, namely Aubrey, the historian, was present when the body was put into the vault. "I was at his funeral, and helpt to carry him into the vault." These are Aubrey's words. The vault referred to had been built by Eliab, the merchant brother of the anatomist, and over it was erected a chapel connected with the church at the north-eastern corner. The vault was afterwards filled with the bodies of members of the Harvey family, some few "lapt in lead," like their great relative, others laid in coffins.

For nearly two centuries little seems to have been recalled of the remains of the anatomist. They lay with their kindred in the village sepulchre without reference being made to them. In 1847 Dr. Richardson, F.R.S., then assisting Mr. Thomas Browne, a surgeon in Saffron Walden, was told one day by a cottager that the great Dr. Harvey was buried in Hempstead Church, and next day discovered that it was really Harvey the anatomist and physiologist, and that the body, "lapt in lead" as Aubrey described, lay there probably as it had originally been placed.

At that time the foot of the leaden chest lay under the
open window of the vault. There was then no opening in the lead, but the upper surface towards the middle of the body was beginning to show signs of sinking in. There was much dust and several stones on the chest, which were removed. The remains were reported upon after this by Dr. Tyler Smith, who had visited the place, to the Royal College of Physicians, and in 1859 the College deputed the late Dr. Alexander Stewart and Dr. Quain to visit and report. They made their report, and some changes were carried out in the vault ; but the window, although protected by the addition of iron bars, was left open, and, under the influence of air and damp, the lead began to give way.

From tine to time Dr. Richardson visited the place and reported on the changes which were in progress. In the lower part of the lid of the leaden chest the sinking became so inereased that a kind of oblong basin was formed, in which rain water, beating in from the window, accumulated. Then an opening, taking the shape and size of one of the sound openings in a violoncello, was formed, and water was admittel into the shell itself. Twice it scemed filled with thick pitchy-looking fluid, and although the opening was temporarily filled up with solder, the repair did not last very long.

In 1878 Dr. Richardson made another visit to Hempstead, and on November 30 of that year published in the Lancet a full report on the condition of the remains, together with six illustrations. The report created considerable attention, and led the way to the alteration that has been recently effected. In January, 188I, the beautiful tower of the old church at Hempstead suddenly fell, dragging a portion of the church with it. It was found that the Harvey vault and chapel were not injured, but that the leaden shell in which Harvey was laid was again filled with water, and that the preservation of the case could not be much longer insured. In February, 1882, the Royal College of Physicians, formed a committee to undertake the duty of placing the remains in a position in which they would be permanently retained. The result was that the College obtained permission of the representatives of the Harvey family to remove the remains from the vault and to place them in a solid marble sarcophagus in the Harvey chapel above. Such is a succinct history of the proceedings previous to the removal and re-entombment on October 18 of this year.
The ceremony of the 18 th was extremely simple. As was befitting, a number of the Fellows of the Collegeeight in all-bore the remains from the vault along the northern side of the church to the western entrance, and so through the aisle to the entrance of the Harvey chapel, on the left of the chancel. The viear of Hempstead, the Rev. R. H. Eustace, and the curate, the Rev. J. Escreet, led the procession; then came the bearers with their charge on a bier; after them, four of the representatives of the Harvey family; and, next in order, the President, all the office-bearers, and the Fellows of the Royal College of Physicians who had come to take part in the ceremonial.

After a short service the leaden case was placed in the sarcophagus. On the breastplate of the case the original inscription-

Doctor
William. Harvey
Decesed. The. 3 .
Of Jvne 1657.
Aged 79 years

was still quite perfect, as was also a rough metal cast of a face with a small imperial from the lower lip to the chin. After the remains had been laid in the marble, the President of the College, Sir William Jenner, placed on them a leaden case containing the College edition of the complete works of Harvey. The volume was the Latin edition of 1765 , edited for the College by Mark Akenside, including in the first pages a life
of the illustrious anatomist and discoverer. Together with this volume there was also put into the sarcophagus a memorial bottle cased in lead and containing various details relating to the removal. The bottle included views of the church, before and after the fall of the tower, executed on wood; a description of the church and the vault, and the time the remains had been in the vault; scveral photographic views of the church; a beautiful photograph of the bust of Harvey; a scroll of vellum on which was engraved a description of the reasons why the remains had been put into the marble, with the names of all who had taken part in the ceremony; and a printed account of the proceedings that were carried out at the second interment on October 18 th, 1883. The sarcophagus was then finally closed by rolling on and cementing down the massive cover or lid. On the western side of the sarcophagus is engraved the following:-

The remains of William Harvey, discoverer of the circulation of the blood, were reverentialiy placed in this sarcophagus by tie Royal College of Physicians of London in the year 1883.
At the foot are inscribed the words,

> WILLIAM HARVEY. BORN 1578. DIED 1657.

NOTES

We are glad to learn that M. Dumas is much better, though it is probable he will have to spend the winter in the south of France.
The arrangements for beginning work at Ben Nevis Observatory will be completed this week, and Mr. Omond will take up his post on the summit in the middle of next week, when observations will be at once begun. The telegraph cable has now been eompletely laid.

The Fisheries Exhibition was closed yesterday with much ceremony; its success as a popular exhibition is almost unprecedented, and, as we have pointed out in several articles, some of the exhibits have been of real scientific value.
WE regret to announce the death, last Saturday, of M. Breguet, the well known electrician, member of the French Institute and of the Burean des Longitujes. M. Breguet's second son, a promising eleetrieian, died about twelve months ago, and was deeply regretted. The death of M. Breguet has been all the more noticed that a few days ago the death of M. Niaudet-Breguet, his nephew, was announced. M. Niaudet-Breguet was also devoted to electricity. The well-known Breguet firm will not be extinguished by these multifarious losses, having been made lately a joint stock company. It is one of the oldest in Paris, having been established in $1_{7} 88_{3}$.
The arrangements for the International Forestry Exhibition which is to be held in Edinburgh next year have been settled. The classification of the exhibits ranges over a wide and interesting field. Practical forestry will be illustrated by implements, models of huts, appliances for floating and transporting timber, and wood-working machinery of every description. The department of forest produce will include a collection of the chief ases to which the raw and the manufactired material of the woods may be applied. The class of scientifie forestry will deal with the botany of the forests, forest entomology, preservative processes applied to timber, fossil plants, parasites, and numerous other subjects. Growing specimens of rare and omamental trees and shrubs, rustic work in arbours, bridges, gates, and seats, and dried specimens of ornamental objects will exemplify the
division of ornamental forestry. The remaining departments will include pictorial illustrations of the trees, foliage, and scenery of all countries, and the effects of bight, accident, paras.tic growth, and abnormal conditions, together will the literatare of forestry, working plans of plantations, and examples of the cconomic condition of foresters and woodmen. The entries for the Exhibition will close on October 4, 1884.

Last Thursday, October 28, the three elasses of the French Institute beld their annual meeting. The addresses were delivered this year by the members of other classes than the Academy of Sciences. In the evening the members of the Inslitute held a great banquet by subscription among themselves. This is the first time that the annual meeting has been so solemnised.

The seventh International Geodetie Conference terminated its labours on October 24, when the acting president, Col. Ferrero, proclaimed the result of the new election of the permanent committee, as follows :-Lieut.-General Ibanez, Director-General of the Geographical and Statistical Institute, Madrid, President ; Col. Ferrero, President of the Italian Geodetic Commission, Vise-President ; and Dr. Hirsch, Direetor of the Observatory at Neachátel, and Dr. von Oppolzer, Professor of Astronomy at the University of Vienna, Secretaries. Prof. Bauernfeind read bis report on refraction, which was followed by a proposal, made by Major Hartl, and approved, to the effect that the Conference expresed a hope that all the European States represented in the Association would institute thorough investigations into terrestrial refraction, in order to ascertain the infuences which the different characteristics of the ground and of the climate exercise ufon refraction. Prof, Schiaparelli, Director of the Observatory at Milan, read the report of the special committee named to consider the proposal made by Prof. Fergola regarding systematic observations of latitude, with the intent of verifying the stability of the terrestrial axis of rotation, and ascertaining the movements of the poles; which report, after some discussion regarding the manner in which the observations should be carried out, was approved.

Baron Nordenskjöld has, in consequence of the attacks which have been made in foreign journals in connection with the unfortunate Dijmphan expedition, on his theory as to the mavigability of the Kara Sea, telegraphed to Lieut. Hovgaard inquiring whether he considered it would bave been possible to resch the Yenisei this summer. Lieut. Hovgaard replied that he was fully convinced that had be been prepared to proceed he could easily have reached Siberia this autumn, and further points out that he could have done so last year also had be not, by signals of distress from the Varna, been compelled to leave the lead along the shore of the Waigatz Island, which was open as far as the eye could reach, and enter the pack ice where he was frozen in.

In No. 3, vol. vi. of the Deusche Grograshische Btäfter is an article by Prof. Börgen, in which he discusses the objects proposed and the theories entertained by Nordenskjold in connection with his expedition to Greenland. The paper was written before the expedition left. Dr. Börgen adduces some particulars which make him incline to the supposition that the watershed of Greenland lies rather towards the east than the west. In any case, i_{n} consideration of the comparatively short distance of any part of Greenland from the sen, and of its low average temperature, Dr. Börgen argues that winds both from the east and the west must deposit snow everywhere on the weather side of the mountains against which they strike, and so maintain the conditions for the formation of glaciers. These glaciers, again, must in the eourse of time dift down into the valleys and the lowest levele, $t^{\text {the }}$ temperature of Greenland even down to the level of the sea
being everywhere below the freezing-point. This view is further supported by ascertained facts and by conclusions drawn from the direction of the wiuds, as given in Coffin's wark, "The Winds of the Globe." The article in other respects communicates important details and argume .ts regarding the geography of Greenland.

The Association Interaationale Africaine has been so satisfied with the services of the Swedish officers who assist Mr. Stanley in his exploits on the Congo, that four more, who have volunteered their services, have been engaged, and will leave Enrope on November 15. We announced some time back that the Royal Geographical Society of Sweden had conferred the Vgy medal, the greatest honour at the disposal of the Society, on Mr. Stanley. At the list meeting of the Society the President, Dr. Montelius, read a letter received f om the explorer, dated Stanley Pool, in which be thanked the Society for the great h nour conferred on him.

Tue last number of the Ievestia of the East Siberian Geographical Society contains a valuable paper by MM. Agapitoff and Khalganoff, on the Shamanism of the Balagansk Bariats of the province of Irkutsk; several letters from the Lena Meteoro. logical Station (already noticed \ln Nature), with a plan of the station ; meteorological observations made at Markha in August and September, 1882, and at Magan (ten miles to the north-west of Yakutsk), from July, 1882 , to March, 1883 ; and a paper on the settlements of the 14,000 Chinese, Mantchous, and Dahoars, who have remained nnder Chinese rule, although settled on the left bank of the Amur, at and below its conflaence with the Zeya. We notice in this paper that during the three great summer inundations of 1881 , the level of water in the Amur, oae mile wide at this place, and the Zeya i 3 mile wide, rose as much as 19 feet in a few days, and that the whole change of level of the A mur was, during the summer, as much as 28 feet. This figure, although mach below those which are found for the Amur below its confluence with the Sungari, and exceeded during the inundations of 1872 , gives some idea of the mass of water poured on the Pacific slope of the great Siberian plateau during the season of the summer rains.

AN interesting relic of the past has just been unearthed in the parish of Pulborough, Sussex, in the shape of a canoe, which was partly embedded under the River Arun, and partly in land on the south side of that river. The boat is of solid oak, and hewn from a single massive trunk. That it was made before the knowledge of metal is evident, as there is not a trace of building or planking. It must have been hollowed by means of the stone axe and of fire. Further evidence in favour of the antiquity of this boat appears to be afforded by the varions accumulations which had formed over that portion of it which was embedded in the earth. These strata, to the depth of nine feet, have been ascertained to be loam, yellow clay, a thin layer of leaves, followed by a stratum of blae mud, beneath which lay the boat embedded in drift sand. The prow portion of the boat lay in the river, and this is by far the most dilapidated. The stern is comparatively intact. The present dimensions of the boat are fifteen feet by four feet; but origiaally it was probably eighteen feet long.

ON Monday, September 24 , about 9 p.m., a remarkable phenomenon occurred at Käringön, in the province of Bohus, Sweden. During a perfect calm a violent whirlwind suddenly arose from the south-east, carrying with it a quantity of sand, earth, and straw, when suddenly a bright light lit up every object and made the night as elear as day. This was caused by a magnificent meteor, egg-shaped in form, which appeared in the zenith, and which at first seemed to consist of myriads of large sparks, gradually changing into a star shining with a blinding
lustre, and which burst, with all the col zurs of the rainbow, in the north-west, four to five metres above the horizon. When the meteor had disappeared the wiad saddeuly fell, and it was again perfectly ealm. The phenomenon lasted abont sixty seconds. The wind had throughout the day been south and very slight.

Dr. Meyer asks us to state that in our note on his paper on jadeite the name Montevidio should be Montrviso, and he thinks it better, to avoid misunderstanding, to ue jascile instead of jade. Moreover, the material from Monteviso is only doubtfully jadeite. At Suckow, Uckermark, only one piece was found, but this is the fourth " in North Germany." "At the same time," Dr. Meyer writes, "I take the liberty of drawing the attention of your readers to Prof. Arzruni's recently-published paper on the jade question in the Berlin Zeilschrifl fü Ethnologie, pp. 163.190 . The mineralogist of Breslau comes to the same conclusion as myself, i.e. that the raw materials were not imported from Asia; and the chief reason apon which he relies is that be found the nephrite and jadeite varieties from the different localities to possess typical microscopical differences. This alone would suffice to put aside the importation hypothesis. I discovered last September in Graz, Styria, a boulder of nephrite from the allavinas of the river Mur, and shall soon send you a separate copy of the paper which I am about to pabli h on the same."

A Paleolithte implement of large size was found a week or two ago by Mr. G. F. Lawrence, of 49, Beech Street, in gravel excavated in the Clerkenwell Road, near the Sessions House. The implement weighs $1 \mathrm{lb}, 3 \mathrm{oz}$, and is slightly larger than the historical implement found near Gray's Inn Iane at the close of the seventeenth century, and now in the British Museum.

A Sharp shock of earthquake was felt at Bermuda on October 20, but no damage was done. A shock was felt at Tashkend at twenty minutes past two on the morning of the 27 th , accompanied by loud subterranean rumblings. A despateh from Smyrma dated October 28 reports that the wall surrounding the town, the Aqueduct, and the Halji Hassein Mosque have been damaged by an earthquake. The minaret and dome of the Hadji Ali Mosque at Capan Vonrla have also been injured. At the last-named town one bundred and sixty-nine persons have been seriously, and sixty-one slightly, hurt. Seventy-nine wounded people are in the hospitals.
A Roman city has been discovered in Tunis by Lleut. Massenat, who lately aecomplished a scientific mission in the vicinity of Bograra (Gulf of Gabes). This city is said to be located in the southern part of Djerba. The circuit of the ruins is about three kilometres.
An extraorlinary case of subsidence has been observed in the vicinity of Bonc. The Naiba, an isolated mountain of Sos metres altitude, is gradually descending into the bosom of the earth. A deep excavation has been made all round, encircling the whole ingulfed mass.
Witt reference to our notice of "The Fishes of Great Britain and Ireland," last week (p, 6it), Mr. Day wishes us to state that the work will be in two volumes, and that the parts published reach to p. 176 of the second volume.
THE additions to the Zoological Society's Gardens during the past week include a Striped Hyxna (Hyena striata) from Moroceo, presented by Mr. Ernest H. Margnis; a Common Squirrel (Sciurus zwlgaris), British, presented by Mrs, M. J. Mitchison ; a Black Rat (S/us nathus), British, presented by Mr. Camp; a Langhing Kingfisher (Dacelo gigintax) from Australia, presented by Mr. S. J. W. Colman ; a Kestrel (Tinnmaculus alan-
darius), British, presented hy Mr. T. E. Gunn ; two Pintails (Dafila acula), two Wigeons (Mareca penelope), European, presented hy Mr. Charles E. Boultbee ; a Margined Tortoise (Tcstudo marginata) from the Ionian Isles, presented hy Miss Mansell ; a Purple-faced Monkey (Somnopithecus leucoprymnas 8) from Ceylon, a Pinche Monkey (Midas adipus) from Brazil, two Common Marmosets (Hapale jacchus) from South-East Brazil, deposited; a Chimpanzee (Anthropopithecus tmglodytes 8), a Chimpanzee (Amthropopitherus calvws? 8) from West Africa, a Chipping Squirrel (Tamias striata) from North Americs, two Bramhlings (Fringilla montifringilla), European, purchased; two Simon's Dwarf Jerboas (Dipodillus simoni) from Arabia, received in exchange; six Long-nosed Vipers (Vipera ammodytes), born in the Gardens.

BIOLOGICAL NOTES

Observations on the Embryology of the Teleosts, by J. S. Kingsley and II. W. Conn. The observations were made during the summers of 1881 and 1882 at the Summer Laboratory of the Boston Society of Natural Historyat Annisquam, Mass, on the egg development of Ctenolabrus carwicus. 'the eggs were ohtained hy surface skimming, and were usually equally ahundant during the day and in the evening, and as a rule were more so on the flow than on the ebh of the tide. Half an hour's skim. ming would produce on an average 150 eggs. These eggs all floated at or near the surface of the water, and presented a marked contrast to those of either an Elasmohranch, Batrachian, Reptile, or Bird, In that the germinative portion is invariably downward or on the lower surface of the egg, while the deutoplasm is uppermost. The stages obselved were: the maturation of the ovom, the phenomena of segmentation until the formation of the germ layers, the formation of the three primary layers, the segmentation cavity, the invagination of the hypohlast, and the appearance of nuclel in the intermediary layer of Van Bambeke, the formation of the notochord and neural cords, the former arising from the hypoblast at first as a longitudinal median thickening of that layer, and subsequently becoming segmented off and taking its place among the mesoblastic tissues, the development of the optic balbs and protovertehre.
Embryolggical Monographs.-Under this title Prof. Alexander Agassiz proposes to issue a series of selections from embryological monographs, so as to give the student in an easily aecessible form a more or less complete iconography of the embryology of each important group of the animal kingdom. It is not intended that these monographs should be handbooks to the subject, bat rather act as atlases to accompany any general work on the subject. The plates will be issued in parts, each part covering a some w hat limited field, and occasional appendices may be publiched to prevent the plates from becoming antiquated. The illustrations will be accompanied hy carefully prepared explanations, and by a bibliography of the subject in octavo. This, work, planned out in 1873, has only now been matured. The first part is on the embryology of Crustacea, with fourteen plates, edited by Walter Faxon. The figures on these plates are taken from all the most reliable sources, and an important volume of hihliography accompanies the atlas. The parts devoted to Echinoderms, Acalephs, and Polyps are well advanced, and it is intended to figure the phenomena connected with fecundation and maturation and the history of the formation of the embryonic layers in a separate part, without regard to the systematic zoological connection of the observations.

Crratodus forsteri.-Mr. Morton got twelve specimens of this fish in the Mary River, Queensland, one only in a net ; all the others were trapped hy the hlacks by being forced through a narrow passage in the river formed by a kind of hrushwood. He noticed a curious circumstance as regards their babits. At the time of his visit a number of Eucalyptus trees were in full flower by the banks of the river, and as the blossoms dropped into the water they were eagerly scized and swallowed by these fish. The stomachs of each of the specimens captured were literally crammed with these flowers. An old resident told Mr. Morton that during June to August these fish go in pairs, that they make slight indentations in the muddy bottom in from six to ten feel of water, in which the spawn is deposited, that the male and female fish
remain near the spawn, and are not then easily disturbed, that they frequent the same place every year, and that the spawa is frog.like. IIe had taken it and hatched it in a tub of water keeping the joung alive for some weeks. (W. Macleay in PracLin. Soc. New South Walcs, vol. viii. part 2, July 17, 1883).

Glycogen was lately found by M. Errera in fungi of the order Ascomycetes (before, it had only teen observed in the animal kingdom and in Myxomycetes, organisms which naturalists have placed, sometimes among animals, sometimes among plants). Continuing his researches, he now finds the substaoce (Bull. Bdy. Acad., No. 11, 1882), not only in Ascomycetes, but in many Mucorinex, such as Phycomyecs mitens, Mucer maced., and stolonifer, Rlobolus crystallinus, Chatocladium Fonsii, Piprocephalis Frescmiana, Synecephalis nodosa. He has specially studied Phycomyces nitens, the large size of which is an advan. tage. In it the glycogen does not occur in localised masses, as in the Asci of Ascomycetes. When the mycelium filaments are young it is distributed throughout the protoplasm ; later it is carried to the top of the cell which is destined to give rise to the sporangium. Its quantity does not diminish notably during formation of the sporangium, so it does not seem to have a preponderant role in growth of the membrane. It is found in the spores, and probably another portion serves for respiratory combustion ; the rest may be utilised for growth of membranes of the sporangium-filament and the spores. Having got 40 grammes of dried Phycomyces, M. Errera extracted glycogen with all its reactions, confirming the results of micro-chemical analysis.

MARINE ZOOLOGICAL LABORATORIES ${ }^{2}$

T
11 E following communication has been forwarded to us by an eminent biologist, with the request that it be reproduced is our pages] :-
Nearly all the European States except England have oa their sea-coast marine zoological laboratories; it may therefore, especially in view of the recent proposals of Frof. Lankester, and the manifesto of biologists which has followed it, perhaps be interesting to your readers to peruse the following description of these laboratories; they will then be able to appreciate their utility, indeed absolute necessity, in order to tudy or pursue investigations in certain branches of science.
These seaside laboratories, or stations soologiques maritisea, have nearly all been founded by zoologists for the purpose of advancing zoological science. Fortunately they also help both students and scientists in other branches of science than that of zoology, the one to arrive at a proficiency of knowledge, the other to carry out interesting and valuable researches which, but for this brotherly help, would be impossible. The countless species of marine animals attract physiologists, histologists, and comparative anatomists to work in a field which may reveal facts hitherto undiscovered in that more limited area which is included in the stady of terrestrial and fresh-water animals.
The success of these laboratories is douhtless increased by the fact that they are always in a healthy locality on a bracing seashore, so as to allow a realisation of the apparently anomalons combination of work and rest. The scientist, worn out by fatiguing researches made in town laboratories, finds fresh elements of health and a fresh field for research by passing threc or four months at a seaside laboratory.
The first of this class of laboratory is the one founded at Naples hy Herr Dohrn, a private enterprise almost exclusively German, which nevertheless has received substantial aid from the ciry of Naples, and some years hence will become the town property.

In order to work in the Naples laboratory a heavy fee is exacted. Nearly all the tables are retained yearly by differea: universities or scientific societies ; the British Association hy two tables. The revenue is greatly increased by the fees of admission to an aquarium of marine animals.

This laboratory is admirahly organised ; there is an agreement between the authorities and the fishermen that the latter shall take to the laboratory all rare animals that they may chance to find; likewise there is every necessary arrangement for dredging excursions and for diving into the depths of the sea to find such animals as are required for study. There are several sailiag boats and a steamboat helonging to the laboratory, which is also
"From the Britith Medical Jownenal, October 13, "Special Correspoedence, Paris."
well provided with diving dresses. The animals are kept in a large tank, which is large enough for specimens of considerable dimensions.

Franee, apart from the laboratory of the Science Faculty at Marseilles, which has an aqnarium and a boat, possesses five seaside laboratories. They are distributed as follows: one at Villefranche, superintended by M. Barrois; one at Banyuls, near Port Vendres, superintended by M. Lacaze Duthiers; another at Concarnean, on the south coast of Brittany, superintended by MM. Robin and Pouchet; another at Roseoff, on the north coast of Brittany, superintended by M. Lacaze Duthiers; and one at Havre, superintended by M. Paul Bert. Besides these principal establishments, there are two or three others, sueh as those of Areachon and Lucques, which have been founded either by provincial scientific societies, or by professors who have received some , light aid from the corporations of the towns where these laboratories are established; but these laboratories posess neither special tenants, boats, nor sailors, therefore they are only of use to their founders and a limited number of pupils.

The laboratories of Villefranche, Roscoff, Concarnean, Banyn's, and Havre are founded and kept up by the French Government; in some cases the corporations have given money or granted land. The laboratories of Conearneau and Roscoff present two varieties widely different.

The laboratory at Conearneau is situated at the entrance to the port; it was founded by Coste, the welli-known embryologist, who wished to study the different conditions attending the reproduction of marine animals. The building consists of two stories: the ground floor is used for the aquariums, three in number; on the first floor are the workrooms. The rocks facing the laboratory have been utilised, and are transformed into eight basins or reservoirs of water, each from 300 to 1200 feet square, and from 15 to 20 feet deep. The aquariums are filled with water by means of a pump set in motion by the wind. There is only one boat belonging to this laboratory, but the French Government always place a war sloop at the disposal of its director ; this summer some of the laboratory workers wanted to dredge a long way out at sea, and the Government lent them a despatch boat. The coast abounds in marine animals, but is poorer in invertebrates than that of Koseoff; it is more eipecially a coast for sardine fishing. The surrounding scenery is lovely.

Roscoff perhaps offers greater advantages, though fewer at. tractions. Cabbage-fields and tracts of land devoted to the cultivation of artichokes, though a proof of the mild and delightful elimate of this little seaport, are by no means an acceptable substitute for the beautiful scenery of Concarneau, but the treasures of the sea here, more abundant than on the coast of Concarneau, or indeed on any other part of the whole French coast, are ample consolation to the crowd of workers who annually avail themselves of the facilities for stadying and earrying ont researches which the Roscoff laboratory, founded by M. Lacaze Duthiers, affords them free of cost.
The coast of Roscoff offers peculiar advantages for a seaside laboratory, or, in French terminology, station soologique maritime. The numerous boulders of granite serve as places of shelter for the neighbouring marine animals. It also presents a vast expanse of sand sea-shore and a large bay of slime, thus all the different kinds of marine animals are within reach.
Notwithstanding these remarkable qualifications which M. I acaze Duthiers quiekly detected, he had considerable difficnlty to get a footing for his laboratory. It now consists of a large house bought by Government, to which has been recently added the village schoolhouse (Ecole Communale), abandoned, since education has become compulsory, for another affording increased accommodation. A third house, opposite to the one bought by Government, is hired for the convenience of the laboratory workers. It must be remembered that Koscoff is only a little fishing village, and it is often difficult to find a room during the summer seazon, therefore M. Lacaze_Duthiers offers a bedroom to all who work in his laboratory.

There are two sailors belonging to the laboratory ; and one of the attendants from the Sorbonne laboratory is on duty at Ros. coff during the summer months. The garden of the laboratory reaches down to the sea. A large reservoir, measuring 4200 feet, has been constructed, where are kept marine animals, either at liberty or in cases. On a small isiand opposite the laboratory there is a "bed" where animals of sedentary habits are kept almost at liberty.

The laboratory has three sailing boats adapted for taking excursions among the rocks and on the neighbouring shores, also for dredging either with the usual drag, oyster-drag, or with a coral-fishing apparatus. The fishermen also take a considerable quantity of marine animals to the laboratory.
This Roscoff station zoologique maritime, which M. Lacaze Duthiers had so much trouble to fonnd, is now in its fifteenth year. The French Government by degrees added to its local habitation, which, if even at the present time not perfect, is nevertheless of immeasurable atility to scientific wurkers, and therefore contribates to the progress of science.

The Roscoff laboratory is perhaps more frequented than any other, and is an enduring testimony to the patience and laudable determination of its founder and director. The expenses are defrayed from the fund annually voted by the French Parliament for publie instruction. Here, as in all establishments in France for higher education, no fees are paid; but this success was hardiy won ; the necessary sum was with difficulty wrung from the Government, and the local authorities, notwithstanding the evident advantages such an establishment brings to the village, were equaliy tardy to grant the concessions eventually obtained, unlike those of Banyuls, who conceded a building site, also a yearly revenne, and subsequently presented the laboratory with a boat.

The most recently organised seaside laboratory is at Havre; the building it occupies was formerly a publie aquarium, which the eorporation handed over to M. Paul Bert. It is supported from Government and corporation funds, and is more especially destined to facilitate phystological research. Doubtiess, when the arrangements now in course of completion are perfected, they will offer ali the requirements for studying this branch cf science, a qualification evidentiy all but absent in laboratories founded by zoologists.

It must be admitted that all these seaside laborataries, or stations soologiques maritimes, taken toth separately and in the aggregate, render important service to blologists of all nations. Every year there is a large percentage of foreigners among the workers, the English element bearing always the larges: proportion, a proof that our eountrymen fail to appreciate their good fortune in possessing a more extensive sea-coast than that of any other country, or they would be able to offer this useful form of hospitality as well as seek it. Nevertheiess, eonsidering the scanty encouragement given by the publie and the Engli-h Government to biological science, it is to be feared that many years will pass by before stations soologiques maritimes exist on the English coast.

The only similar laboratory in Hoiland belongs to the Univer. sities of Utrecht and Leyden. The Dutch coast is not rich enough in marine animals to suggest the advisability of establishing many zoological laboratories, therefore a movable or migratory laboratory has been organised, which eonsists of a wooden house, easily taken down and put up again; there are three rooms in it, a large workroom, and two smalier ones used for the aquarium and fishing apparatus. At the beginning of every snmmer it is set up on the coast on a piece of land hired for the purpose, or more frequently lent by the nearest village ; thus the Dutch scientists visit the entire coast, study its marine animals, and even that of their neighbours. Kussin has a laboratory on the Black Sea, and Anstria possesses one at Trieste.

In connection with the above communication, we may state that Mr. Romanes writes to Tuesday's Times forcibly pointing cut the need of a thoroughiy equipped zoological station on the British coast, and its value both to scienee and to our fisheries, Referiing to the recent manifesto, so influentially signed, printed in our columns, Mr. Romanes hopes the executive committe will see their way to adopting its suggestions.

THE ASSOCIATION OF GERMAN NATURALISTS AND PHYSICIANS'

「HE fifty-sixth snnual meeting of this flourishing association was held this year in the eity of Freiburg, Baden, under the presidency of Dr. A. Claus. The proceedings opened with an informal gathering in the Concert Hall on Monday, Septem: ber 17, and concladed on the following Saturday with an excursion to the romantie watering-place of Badenweiler. During the four intervening days the several Mathematical, Physical, Biological, and Medical Sections met regularly in the old University,
the High School, Gymnasinm, Chemical Laboratory, and other local institutes. All were fairly well attended, and amongst the distinguished savants present mention may be made of Professors Stickelberger, Fischer, Hildebrand, Weismann, Maier, Drs. Hack, Nicolai, Lehmann, and Thiry. As many as 120 papers and monorraphs in nearly all branches of science were either read or submitted to the Association, and summaries of most of them inserted in the official journal (Tagiblatt) of the proceedings, Of this journal four numbers altogether were issued, and their varied contents convey a tolerably accurate idea of the immense amount of work got through during the four days devoted to the special objects of the Association.

In his inaugural address the President dwelt mainly on the vast changes that had taken place in the social and political relations of Germany, and on the great progress made in all departments of human knowledge since 1838, the last year that the Association had met in the city of Freiburg. The five sections, which at that time were fonnd sufficient for its purposes, had developed into twenty-four distinct divisions corresponding to the present conditions of sciznce, and many of these already formed special branches of themselves, with their cwn independent gatherings and separate organisations. With the progress of discovery in the natural scienees this tendency to constant subdivision of labour became inevitable, and the great encyclopedic minds of former times would henceforth be replaced by specialists compelled to devote all their energies to the cultivation of one or two minor sections of particular physical or biological categories.

A discussion followed on the selection of next year's place of meeting, which was ultimately decided in favonr of Magdeburg.

In the Chemical Section, Dr. Frank of Charlottenburg read a paper on siliceous sinter and on its application to chemical and medical parposes. This substance, compored of the remains of microscopical organisms, and entering into the composition of extremely porous siliceons maszes, combines the properties of asbestos with those of lightness in the highest degree. It is thus capable of absorbing moisture to the extent of 94 per cent. of its own volume, and may he used without any risk as a disinfectant and for draining damp places.

In the Zoological Departmen', Dr. Gräff of Aschaffenburg described the results of his investigations of some new species of Myzostoma, completely confirming his former views regarding the relationship of the Myzostomidx to the Tartigrade family. He explained the reproductive processes of the Myzostomax, and the form of their cysts, and reported the discovery of these cysts on fossil crinoids. He also gave an account of the germs of Volvox viridis in filtered water exceptionally developed from colourless individuals. Dr. Döderlein described some fossil sponges from Japan of bighly intricate strueture, but all developed originally from simple Radiate types. They were related to Tetractinellidae, and more particularly with l'achastrella.

The journal for Friday, September 21, is largely occupied with an extremely interesting monograph by Prof. Hertwig of Jena on "Symbiosis in the Animal Kingdom." This term symbiosis, first suggested by De Barry in connection with certain phenomena of the vegetable world, is here extended to the whole organic syitem. As distinguished from ordinary parasitism, it is explained to mean the normal fellowship or association of dissimilar organisms, which dwell together in a common abode for their mutual welfare. In the case of parasites the connection is altogether one-sided, ons of the two organisms attaching itself to the other, and flourishing at its expense, as, for instance, the mistletoe on the apple-tree. But in this newly revealed phenomenon of symbiosic, which appears to pervade the whole biological world, both associates are mutually beneficial, and in some instances even indispensable to each other. They act, so to say, like two partners in a well-regulated busine-s concern, cooperating in the work of life, taking part in all its toils and tronbles, and honourably sharing the common profits. Anillustration is drawn from the familiar hermit erab, one species of which, after taking possession of the first available empty shell, goes into partnership with a sea-anemone (Adamsia palliata). This lovely creature, bright orange spotted with red, attaches itself to the roof of the common abode in such a position that its mouth and prehensile apparatus are always turned towards the head of its associate. It is thus enabled to join in all the expeditions of the restless hermit crab, and conveniently share in the common plunder. In return for this service the anemone protects its companion from his many enemies by means of the numerous long threads which it shoots ont at the
least alarm, and which are provided with millions of capsules charged with a stinging acid like that of the common nettle. So elose is the compact entered into by the two partners, that both have become indispensable to each other, as appears from a series of experiments made at the Neapolitan Aquarium. If the crab be removed from his house, and this be stopped up, so as to prevent his reentering it, he will cast about for another shell, and never stop until his old associate is also transferred to their new abode. A still more remarkable illustration is drawn from the imbauba, or candle-nut tree, of South America, which strikes up an alliance with a species of smal! black ant to their mutual benefit. The whole subject of symbiosis, which naturalists are only beginning to study, is calculated to throw great light on the Darwinan theory of biological evolution. The various cases of fellowship between animals and plants of different orders, and even between members of the animal and vegetable kingdoms show how, in the perpetual struggle for existence, the individual organism avails itself of the smallest advantage to secure a place in the household of nature. It often thus acquires marvellons habits of life, which it is afterwards unable to lay aside, and in consequence of which it becomes gradually modified in its bodily form and orgazisation. Thus abyssus abyssums invocat, one change superinduees another, altered conditions require fresh combinations, and the organic worhl resolves itself into an everlasting ebb and flow of life, in which the individual counts for nothing, the species-itself transitory-for but little, and the suin of existence alone is considered in the self-adjusting scheme of the universe. Symbiosis thus leads at once to a broader and more searching study of various branehes of haman knowledge. To prosecute the subject successfully vegetable and animal organisms mnst be exanined, normal and morbid conditions attended to, anatomical and physiological questions investigated. For this boundless theme belong; to a border land, in which zoology, botany, anstomy, physiology, and pathology meet as on common ground.

In the Physical Section the subject of the pyroelectricity of crystals was discussed by Prof. A. Kundt of Strasburg, who explained his recently-published method for the observation and investigation of this phenomenon.

In the Mineralogical Depariment papers were submitted by Dr. Petzholdt of Freiburg, on the formation of coal; by Dr . Dölter of Graz, on his attempts to produce artificial gems, in which he pointed out that the mineralogical composition does not depend directly on the chemical alone; by Dr. Kloos of Karlsruhe, on the change of labrador to an albite and a zeolitic mineral. Dr. Fischer of Freiburg dealt with the question of the natural presence of nephrite, jade, and chloromelanite in various parts of the Old and New Worlds, and the great importance of these minerals in connection with prehistoric remains and early migrations. Special reference was made to the work recently published by Dr. A. B. Meyer, of Dresden, "On Jade and Nephrite Objects," and in the discussion that ensued none of the members present sabseribed to the views advocated in that work.

In a paper "On the Higher Cryptogams" Prof. Michaelis bases an objection to Darwinism as a scientific hypothesis on the grounds first that the accepted theory of the fertilising process, especially in the case of the heterospores, rhizocarps, and dichotoms, rests on pure analozy, without any actual demonstration, and secondly, that in the mosses the sexual origin of the sporogonium from the mother plant shows a fresh formation of a totally distinct organism out of that previously existing. Nature thus yields an nnanswerable argument against the Darwinian assumption, inasmuch as here the second individual is dependent, and under no circumstances capable of a separate existence.
Prof. Nüsslin of Karlsruhe described a new protozoon from Lake Herrenwies, Baden, the Zmomyxa triolacea, holding a middle place between the Pelounyxa and Amphizonella of Greeff.
In the Geographical and Ethnological Sections, which were on the whole rather poorly represented, Dr. Passevant-Basel gave an account of his re idence in the Cameroons, West Coast of Africa, during the months of February to June, 1883. A paper was read by the same naturalist on the African races, with special reference to the nnity or diversity of the negro type. The author agrees with those anthropologists who subdivide the Negroes into several stock races, basing his conclusions on a eomparative study of the hand and skull.
Prof, Doelter, of Graz, discussed the hypothesis of a vanished Atlantis, and the former possible connection of Africa and

America. From a careful study of the geological conformation of the north-west coast of Africa, of the Cape Verde, Canary, and Azore Archipelagos, he considers that a union of the two continents in remote epochs is scarcely conceivable. On the other hand, the former existence of a large island, comprising the Canaries, Arores, and Cape Verde group, may be regarded as not improbable. But whether this island was at any time itself connected with the African mainland is a question which cannot be decided without further investigation of the local conditions.

LOCAL SCIENCE SOCIETIES AND THE

 MINOR PREHISTORIC REMAINS OF BRITAIN ${ }^{1}$rN the annual address which I had the pleasure of delivering to the Fssex Field Club at the beginning of this year I ventured to put forward a suggestion which I will take the present opportunity of enlarging upon in the presence of this gathering of the representatives of so many of the local societies of this country.

Of the various branches of natural science cultivated by our respective societies perhaps no subject possesses so widespread an interest as the early h'story of man. It is only in recent times that materials have been gathered with anything like scientifie method from the Iragmentary records of the past. By the methods of modern research these materials have been coordinated into that imperfect sketch of the physical characters and mode of life of the early inhabitants of this and other countrics which constitutes our present knowledge of prehistoric archeology. But vast as have been the strides in this department of knowledge within the last quarter-century, it is certain that even now we are only on the threshold of a dim region into which advance is becoming more and more difficult with the increasing scantiness of the evidence the further we penetrate backwards into the history of our race. The labours of cave-hunters and searchers into our ancient river gravels-the excavators of our earthworks and tumuli have garnered a rich barvest of facts upon which is based the existing knowledge of ancient man. The old method of solving problems in prehistoric archsology by attaching a tradition to any ancient monument of which the history was unknown has been weighed in the balance and found wanting. The erudite verbiage of the old-school antiquarian has been displaced by the shovel and pick of the modern investigator.

While the spirit of scientific inquiry is thus gradually enabling us to reconstruct sonie few chapters of the past history of man from such remains as have been preserved to us, the extreme im. portance of the relics theoselves is as a natural consequence becoming more and more recognised. It must have been with the greatest satisfaction that anthropologists heard that the ancient monuments of this country, thanks to the foresight of Sir John Lubbock, were to receive Government frotection, For years past the destruction of the most venerable relics has been going on, partly through local ignorance of their value, partly through wiffulness, and partly through the unavoidable clearance of ground for bailding and agricultural purposes. But although the larger and better-known remains are now secured from demolition, there are numerons smaller and less-known relics scattered over the country, which in the course of time are doomed to destruction by the advancing tide of civilisation. As may be seen on reference to good topographical works, the irreparable losses which anthropological science has already incurred in this way are enormous. The most deplorable feature in these cases of destruction is that they have occurred without adequate scientific supervision, and any evidence that might have been gathered by competent watchers has been for ever lost.

The systematic exploration of earthworks, barrows, tumuli, \&c.s, by the method of excavation is necessarily expensive work, and it is to me a matter of some surprise that the munificent example set by men like General Pitt-Rivers and Canon Greenwell has not been more widely followed by those who, with the knowledge of this difficulty, have it within their means to promote this branch of research. As in the case of one of the societies which I have the honour of representing (the Essex Field
${ }^{2}$ A paper read as the Conference of Delegates from Local Societies and before the Anthropological Section of the British A ssociation at Southport, by Raphaet Metdola, F. R.A.S., Re., Delegate of the Easex Field Ctub and the Braintree and Bocking Nalurat History Society. Communicaled by ihe Author.

Club), which at the instigation of General Pitt-Rivers undertook the investigation of the ancient earthworks in Epping Forest, good work can sometimes be done by a local society by raising a fund for the purpose of exploring such remains in its own district, and this leads me to the immediate object of the present paper.

In attempting to draw up any suggestions for the guidance of local societies, the great difficulty appears to be the impossibility of finding any subjects for reaeareh of a sufficiently general scope to be open to all societies. The subjects already proposed by the committee appointed last year by the conference of delegates are, as you are aware : (1) underground waters, (2) erratic blocks, (3) underground temperature, (4) rainfall, (5) periodical natural phenomena, (6) injurious insects. To these I am now about to suggest the addition of another subject, viz (7) prehistoric remalns. Here, as it seems to me, there is a useful field for cooperation among the societies of all connties. Thanhs to the increasing interest in scientific matters now making itsclf felt throughout the country, there is perhaps no corner of Britain which does not or could not be made to fall into the province of some local society or field club. In view of the imminent destruction of many of the minor remains on the one hand, and the scheduling of the larger remains for State protection on the other hand, I believe that occupation of the greate: scientific importance exists for all local zocieties.

The tlme has perhaps not yet arrived for laying down any rigid system for dealing with the proposed subject, and I therefore think it advisable at present to confine myself to a few general observations respecting the nature of the work which it is desirable that local societies should take in hand. It must be understood that these remarks are limited to prehistoric archoology, as the remains belonging to the historical period are generally dealt with by archxological societies, and do not come within the range of science subjects admitted by the British Associstion.

Assuming then that all societies have prehistoric remains of some kind within their districts, the first and most essential thing to be done is to draw up catalogues of these relics, giving their position, external form and structure, and bibliographieal references. If the societies of each county would undertake this task, arranging matters so that no relic, however apparently insignificant, escaped their vigilance, we should thus in time come to possess a complete catalogue of all the ancient remains of Britain, and at the same time we should graduslly get together a most valuable collection of literary references. The bibliography is essential, because so many of our ancient remains have from time to time been investigated and the results buried in some obscure archoeological paper, the disinterment of which is in itself a piece of antiquarian research. A catalogue such as the one now proposed would thus serve many useful parposes. We should have an index-guide indicating precisely where prehistoric remains exist at the present time, and further whether they had ever been systematically explored, and if so with what results. At the same time, attention would be directed to many relics which the local society and the Government inspector might deem worthy of being scheduled for State protection. By this means I am disposed to believe that the operation of the Ancient Monuments Bill would be considerably accelerated, and its effectiveness thereby increased.

It will be as yet premature to suggest any genersl form in which the proposed catalogue should be cast. Each sucicty would no doubt at first work upon a plan of its own. But whatever form be adopted it is advisable that publicity should be given to the results in the Transactions or Proceedings of the respective societies, as the purely local interest in the work would be thus greatly enhanced, and the working up of the whole into one compendious catalogue might possibly be done later by a committec of the British A.sociation composed partly of delegates from local corresponding societies, and partly of other eminent authorities in prehistoric archavology whose assistance and advice it would be most desirable to secure.

If the scheme now broached should be deemed worthy of consideration by your respective societies, it would be essential, in order to carry out the work effectively, to appoint from your councils and members ancient monuwent committees, whose function it would be to draw up the proposed catalogue, visiting the remains to be entered in all cases where possible, and exhausting the topographical literature in order to avoid including any fictitious remains. Where no literary references are to be found, and in caves where doubtful structures exist, it would be
all the more advisable to enter these in the catalogae, with appropriate remarks, so that systematic explorations might be made when the opportunity presented itself for raising a fund for the purpose. Even when local histories or traditions are decided respecting the age of any earthwork or other ancient structure, but little credence can be attached to such traditions until actual investigations have been made. As far as my own experience goes, and from information derived from other sources, it would appear that local tradition is the bane of the scientific archeolofist. There is, for instance, hardly any prehistoric monument in this conntry that has not been pronounced Roman by some antiquarian authority, an opinion which not only has often been proved by excavation to be erroneous, but which has also bad the pernicious effect of checking further inquiry.
In recommending to your societies the actual inveatigation of the minor prehistoric remains of your districts as a task well worthy of the attention of any scientific body, it is perhaps not wholly necessary to urge that any excavations attempted should be carried out with the most scrupulous care, and the materials removed restored if possible on the completion of the work, so as to a void any permanent disfigurement. The so-called "exploration " of many ancient structures whose venerable antiquity should have rendered them sacred has often been conducted in a manner which ean only be called an act of hesesration. How frequently do we read in local histories such statements as the following :"On - Common there formerly stood a large mound of earth supposed to be a tumulus, which was opened by Mr. - in the year but nothing of any interest was found excepf a fow fragwents of pottery and some decayed bones": Such passages as this, which is not a verbatim extract bot simply an ideal specimen illastrating the kind of destruction that has been going on, lead to the supposition that the prevailing idea in opening a tumulus is the discovery of hidden treasure. Any other find is considered devoid of interest, and the scientific value of the structure is for ever lost by the scattering of its contents.
The ancient monuments committees of local societies, in addition to the preparation of catalogues and the conduction of explorations, would have another important fuaction to fulfil: they might take upon themselves the duties of vigilance committees, keeping a watchful eye apon the ancient remains in their neighbourhood, and preventing as far as possible their destruction. In the case of minor remains which were not considered worth scheduling for State protection, opportunities would often occur for investigating without incurring the expense of systematic excavation. In the course of building or agricultural operations old ramparts are frequently cleared away in perfect ignorance of their value to the archaeologist ; or again, a new road has to be made, which in its course passes through the remains of some ancient earthwork now almost obliterated by the hand of time. In such cases the vigilance committee, having previously catalogued the remains threatened, would endeavour to come to some arrangement with the owner of the property, and obtain permission to appoint watchers for the purpose of recording the nature and position of any relies that might be found. The fact that local societies have not in past times been sufficiently alive to the important work which might thus bave been done by taking advantage of any unavoidalide demolition of prehistoric remains has led to the destruction of a vast aunount of material which, nnder proper supervision, might have furnished facts of lasting importance to anthropological science. It remains with your respective societies to determine whether such ruthless waste of evidence is to be allowed in the future.

OBSERVATIONS ON HEREDITY IN CATS

 WITH AN ABNORMAL NUMBER OF TOESDURING the last few years I have had occasional opportunities of studying heredity in various families of cats with an abnormal number of toes, and whose ancestors for some few generations at least, have possessed the same peculiarity. The observations have now been continned over a period long enough to render their publication a matter of interest. I first became aequainted with these cats in the winter of 1878 , when staying near Haverfordwest. I made inquiries on seeing one of them for the first time, and ascertained that it had been obtained from Mr. Edward Vaughan, of Fern Hill, Haverfordwest, a relation of the friend with whom I was staying. Shortly afterwards I saw Mr. Vaughan, and had a long talk with him about
the peculiarity. At the time I took notes of his experience, and he has since kindly written to give farther information. He first became acquainted with two generations of tortoiseshell cats with the normal number of toes (living respectively to the ages of eleven and twenty). Then in the third generation the extra toes appeared (this cat died aged nineteen, and was also a tortoiseshell). This eat or the mother was brought from Bristol to Haverfordwest. The peculiarity was inherited by "Punch" -a cat now living, and fifteen years old last May, also a tortoise-shell-making four generations. "Ponch" has six toes on each fore foot, and six on each hind foot, but two of her kittens have had seven on hind and fore feet, and all varieties between the extreme and normal form have occurred commonly. It is a very corious and interesting fact that now in her old age all her kittens have the normal number of toes. Mr. Vaughan is of opinion that the peculiarity is also dying out among "Punch's" de-cendants, but this is by no means my experience with the branch of the family I have observed. He also gained the impression that the female kittens were more affected with the peculiarity than the males. Mr. Vaughan also made the interesting observation that the peculiarity reappeared in the kittens of a normal female cat (a daughter of "Punch's"), although in smaller proportions.

Frg. 1.-Right fore paw from , above, with extra toes.

Ftc. 3.- Right^{2} fore paw from above, normal.

Fig. a.-Right fore paw from below, with extre toes.

Fic. 4--Right fore paw from below, normal.

In the spring of 1879 Mr . Vaughan very kindly sent a female tabby kitten to my home at Reading. This was a daughter of "Punch's," and it possessed six toes on each fore foot and six on each hind, thas rendering the feet very broad and giving them a most remarkable appearance. This eat, although rather wild, was very clever, being easily taught to "shake hands," and catching birds and even fish with surprising ease. When a little over a year old the first family (of four) was born, in the middle of June, $\mathbf{5 8 0}$.

All the four kittens were tabbies, and I made the following notes of them :-(1) male : fore paws, five toes, but the insignificant innermost toe being absent, the foot appeared broad like the mother's; hind paws, five toes (2) female: fore paws, five toes, same as (1) ; hind paws, six toes. (3) and (4) females: normal ; five toes on fore paws, four on hind. No. (2) in this list was given to a friend, and will be again referred to. One normal female was also given away, but was soon lost without offspring ; the other female was killed. There is nothing in the above list to support the view that the females are more affected than the males with the mother's peculiarity.

The next family of which I have notes was born May 13, 1881. The three kittens were tabbies as before :-(1) male : normal. (2) female : normal. (3) female: six toes on each fore and hind foot, as the mother. Here the only affected kitten is a female.

The next and last 'family of whieh I have notes' was born August 26, 188r. 1 received notes of three kittens, but there may have been more :-(1) and (2) females: six toes on each fore and hind foot, as the mother. (3) sex not observed : six toes on all feet, as the mother.

After this I was unable to obtain notes, although many families were born, and a large proportion always possessed the peculiarity. Few people are aware of the immense diffieulty in obtaining accurate notes of a simple observation such as this.

The mother was subsequently killed.
I now return to No. (2) of the first family, which was given to a friend on the condition that I received accurate notes of all families. I received one sach account. This was of a family of four born in June, $1881:-(1)$ male : normal. (2) female: normal. (3) female : with five toes on the fore paws, six on the hind, same as mother. (4) female: the same as mother, but five toes on the hind feet. Here again the females possess the peculiarity. The mother was also a small, very clever cat, catching birds with the most wonderful ease. There were many families, in each of which quite half possessed the peculiarity, and many of the kittens had the same number of toes as the mother.

At last, about a year ago, a female tabby kitten appeared with seven toes on each fore paw, and six on each hind. This was given to me, and is now a small tabby cat, with a tendency

Fig. 5-Right hind paw from above, with exura toes.

Fic. 7.- Right hiad paw from

Fig. 6.-Right hiad paw from below, with extra toes

Fic. 2.-Right hind paw from below, normal. towards tortoiseshell coloration on the back. A rough drawing of the right fore foot, as seen from above and below, is seen in Figs. I and 2. Drawings of a normal right fore foot are given in Figs. 3 and 4, for comparison. It is seen that the extra toes are those labelled A and B , and they confer the extraordinary breadth upon the foot. The most recently added is s, which is still partially coalesced with A, and has but one pad in common with it (Fig. 2). This last toe, B, was absent in the eat which I received from Mr. Vaughan. In the first family described, Nos. (1) and (2) possessed the largely developed extra toe, A, while the insignificant pollex (Fig. i, I) was absent, and thus the foot appeared extremely broad, although with only the normal number of toes. In walking the poliex does not touch the ground, bat the claws A and B come down a little later than the rest of the foot, making a yery distinct cliek when the cat is walking on floorcloth. This sound is particularly audible when the cat is coming down stairs. Comparing the pads on the under. side of the foot with those of a normal animal (Figs, 2 and 4), there is seen to be an extra pad behind the additional toes, of which there is no trace in the normal foot. The left foot is siunilar to that drawn, except that there are traces of more complete fusion between the toes A and B in the slighter tendency towards division shown by their common pad. The right hind foot from above and below is given in Figs. 5 and 6, and a
normal hind foot for comparison in Figs, 7 and 8. The correlation of the toes is more difficalt bere, but there is little doubt that the innermost toe (Figs. 5 and 6, 1) is the hallux, lost in the normal foot.

Comparison with the fore feet renders it likely that the second extra toe is that labelled A in Figs 5 and 6. On the underside (Fig. 6) all the toes have separate pads, and there is an additional pad behind the extra toes. This, in the left bind foot of the same animal is fused with the pad behind the other tocs.
On July 10 last the cat I have just described produced a family of four tabby kittens. Strangely enough, they are all males, but they possess the mother's peculiarity to a remarkable extent.
(1) Forepaws: exactly similar to the mother's, but toes A and B are more distinct, in that they have feparate pads in both feet. Hind paws : precisely the same as the mother's, even to the fact that the left hind pads are continuous and the right hind pads slightly discontinuous (as in Fig. 6). Thus this kitten exhibits on the whole an intersification of the characters.
(2) Fore paws : the pads of the toes 1 and B are fused as with the mother. The claw of 8 is broken off, but its base is reen almost springing from the outer side of the base of elaw A. Both feet the same. Thus the charaeter is rather less developed than in the mother. Hind paws : the large hind pads are continuous on both feet. All the six toes are distinct on both feet, as with the mother, but A and 2 on the left foot are united by skin, although considerable freedom of movement is possible. Here again the character is rather less than in the mother.
(3) Fore paws : pads of A and a are distinet on the right side. The claw of B is accidentally broken off. On the left side the pads are also distinct, although the toes a and a are joined by skin. Hind paws : all six toes distinct on both feet; the large hind pads continuous on both. Thus this kitten is beyond the mother in the separation of the pads of A and B on the fore paws. A and B were more distinct on the right side, where also in the mother the pad showed a greater tendency towards division.
(4) Fore paws : the greater tendency towards separation on the right side was very strongly marked bere, inasmuch as the toe B is entirely absent on the left side, and the pad of A simple. On the right B is present, and its pad is joined to that of A, but a little more distinct than with the mother. Hind paws : all six toes distinct and large ; hind pads continuous in both feet. Thus the character is, on the whole, less than in the mother.
This is the last observation made up to the present time, and it is a very remarkable one, in the entire absence of anything approaching the normal form, and in the fact that two of the kittens go beyond the mother, while the other two are but little behind. When the two sides differ, the difference is invariably as with the mother. At the same time the immense strength of heredity in all these cases is seen when we remember that it is practically certain that the fathers of the families have always been normal. It is quite certain with this last family, for the mother was brought as a kitten from Reading to Oxford, where there is a normal male cat living in the house with ber. I have never heard of cats with the abnormal number of toes in either Reading or Oxford apart from these. Mr. Vaughan says exactly the same for his eats in South Wales, Thus we must conclude that the heredity is entirely through the females, and yet the character has gone on increasing in my branch of the stock in spite of the normal element which we should expect to be introduced and to make it-elf felt at each stage. I have known of the family through eight generations, and three of these have started from entirely new localities (i,e. Haverfordwest from Bristol, Reading from Haverfordwest, Oxford from Reading) to which they were sent as kittens. This is, of course, very important, as it has prevented the possibility of interbreeding between the abnormal cats derived from the same stock.

I hope to contribute a paper to a future sumber upon further observations, and upon the skeletal peculiarities that accompany the abnormality.

Edward B. Poulton

ON THE ELECTRICAL RESISTANCE OF THE HUMAN BODY ${ }^{1}$
THE writer, after premising that hitherto electricity in its application to the human body had not come up to expectations reasonable in the case of so powerful a force, and
${ }^{2}{ }^{2}$ Absiract of a paper read before the British Association at Southport, by W. H. Stone, M.A., F.R.C.P.
that it was evidently still in an embryonic state, mentioned some examples of the conflicting and contradictory statements made by different authorities as to its electrical resistance. These varied from 13,000 to $28 ; 7$ ohms and less. He believed it was enormously overstated, and had for this reason applied himself to make some more accurate determinations, He was at once met by three obstacles:-(1) The difficulty of making good contact through the skin of a living man. (2) The limitation of the amonnt of current by pain, and by the fact that the rapid opening and closing of strong circuits produced a tetanic state of muscle. (3) The fact that the human body is an easy electrolyte, almost immediately furnishiug currents of polarisation.

As regards (1), the axiomatle statement seemed to be that the poles mast be infinitely large compared with the carrent they had to condact. This condition he had attempted to fulfil in five different ways, two at least of which were saccessful : either by immersing the feet and hands in baths of brine in contact with an electrode of amalgamated lead or zinc of from fifty to a handred square inches surface, or by soaking these extremities in brine, and then wrapping a strip of flexible lead two feet long by two inches wide about them, after the fashion of a surgical spiral bandage. The fact that the skin resistance was thus reduced to zero was proved to demonstration by an observation already recorded in Nature (September 13, p. 463), from which it appeared that the resistance of a corpse, treated with the spiral leaden bandages from foot to foot was 1150 ohms, and with solid silver condactors thrust three inches deep into the plantar muscles was actually 50 ohms more.

Under the heading of contacts it was essential to determine definite anatomical points from which the measurements should start, and which readily admitted of linear verification. Snch points existed in the prominence of the ulna at the inner side of the wrist, and the lower edge of the external malleolus at the ankle. The shortest course traversed by the current between these two points had been measured to a quarter of an inch.

There were three principal directions in which determinations had been made :-

1. From hand to hand.
2. From foxt to foot.
3. From hand to foot.

No. 1 was much the same as the height of the subject, and was not liable to great variation.

No. 2 varied more, since the difference between very tall and shorter men lies chiefly in the lege.

No. 3 was perhaps the best test of the average conductivity of the body, since Cooped currents were sure to traverse the whole trank, and even caused motor distarbanc: in the extremities not included in the circnit.

Three such observations were given, including one on a man of the exceptional height of nearly 8 feet.

As regards pain, it was noted that the E.M.F. used varied from three to ten bichromate cells of $1 \cdot 8$ volts each. Even the first was occasionally complained of, thus incidentally showing the goodness of the contact obtained. In morbid conditions, such as that termed myxeedema, the E.M.F. of 10 cells or 18 volts through a resistance of only 1260 ohms was easily borne, and indeed hardly felt. The third difficulty, that namely of electrolysis, was the most serious: incleed the particular metal of which the electrodes were made sank into insignificance evmpared with the rapid and vigorous polarisation of the moist tissues of the body itself. A rotating commutator on Wheatstone's plan, and afterwards a metronomic instrument, by which the periods of alternation could be varied, were first used, but with only partial success. A more delicate mode of discharging was found in the use of an ordinary commutator key worked like a piano with the index and middle fingers of the left hand; a double contact key, putting battery and galvanometer successively in circuit, being beneath the right index finger. The left keys being first depressed alternately, the right key prolnced a double deflection, while the bridge resistance was too low, which was replaced by an opposite double deflection when it was intentionally made too high. By watching the galvanometer a point was easily found where it ceased to "throw," and then three successive contacts in either direction were taken to determine resistance. In spite of all precautions, the second measurement was sometimes a little in excess of the first, owing to a polarisation-current assisting the battery. This, however, never amounted to more than about five ohms, and was easily allowed for. Between each set of observations a short-cireuit key, inserted outslde the bridge,
was elosed for at least a mimnte, 53 as to discharge patient, bath, and electrodes.

The measurement was then repeated with inverted current, and the mean taken.

One set of examples out of many was read to the meeting. Three men of very different heights were tested according to the following table :-

Two of these were students at St. Thomas's Hospital ; the third an Austrian now exbibiting at the Aquarium, and kindly lent to the writer for examination. All the three were singularly strong, licalthy, well-proportioned men, of active athletic habits. An interesting illustration of physiological laws here incidentally cropped out, showing that, ln the normal human body consideret as a machine, as is the length of the osseous levers so is the sectional area of the motor muscles. This in the present instance results in an almost complete identity of the electrical resistance, increased length being very fairly balanced by increaced sectional area in the conductor. A good test of morbid leanness or fatners might prohably be founded on this identity.

A few words only were given to the variations of human resistance in disease and with alteration of temperature. The latter have already appeared in the columns of Nature (on June 14 and September 13).

As regards the former, six eases of hemiplegia were cited: three on the right and three on the left side of the body, in all of which the paralysed was found less resistant than the healthy side, in amounts varying from 120 to 730 ohms. The only case which differed from this rule was that of a worker in eopper, from whose secretions three milligrammes of metallic copper had been extracted, where the cupreous impreguation obviously modified the general resistance of the body, as the writer had found it to do in the case of lead and mercury also.

A confirmation of the view already expressed by the writer of the paper, that the human body follows the law of solid rather than that of fluid conductors nnder changes of temperature, hed occurred in the instance first quoted (June 14, p. 151), where the occurrence of dropsical effusion in the lower extremities permanently reduced the resistance from the values originally given, the lowest of which was 2300 , to 750 ohms .

UNIVERSITY AND EDUCATIONAL INTELLIGENCE

TEN lectures on the diseases of field and garden crops will be delivered by Mr. Worthington G. Smith, F.L.S., before the Institute of Agriculture, British Mnseum, South Kensington, during the week November $12 \cdot 17$. The lectures will be illntrated with actual examples, and new drawings of all the disease from nature, uniformly enlarged to 1000 and 5000 diameters.

University College, Abervswyth.-Mr. J. Brill, IB. A. St. John's College, Cambridge, has been appointed lecturer t? assist the Professor of Mathematics at this college. Mr. Brill was fourth wrangler in January $1 \$ 82$, and, we understand, hod the hononr of being one of the selected candidates for the Professorship of Mathematies at the University College, Cardiff

SCIENTIFIC SERIALS

Revuc d'Anthropologic (deuxième et troisième faccicules), Paris, 1883. - In the earlier of these two nombers M. Topinart continues the "Elementary Description of the Cerebral Convilations in Man, in accordance with the Schematic Brain designed by Paul Broca." This is the second of the series of explanatory instructions begun in the January number. It ends with a description of the occipital fissures, peculiar to man, the simix, and lemurs, which Broca termed "scissure oceipitale interue" and "scissure occipitale externe." In the simize the former of these is generally perpendicular, while in man it is ofte oblique in direction and irregular in position, rendering its de termination difficult.-Under the title " 7ransformisme," a term used by French anthropologists for Darwinism, M. Mathia Duval gives the substance of his introductory lecture at tha Anthropological School at Paris at the opening of the session o 1881-82. The lecturer, after giving a general idea of "tran formism," passes in review the services rendered to the moder science of evolution by Darwin's precursors, Lamarek an Etienne Geoffroy Saint-Hilaire. Next he considers the re
searches and theories of Iarwin, the objections whieh have been made to some of his deluctions, and the evidence and faets which can be brought to support his theory, with reference specially to the importance of the labours of Haeckel and other contemporary naturalists, who have contributed to the development of the Darwinian doctrines, while he lastly draws attention to the varions applications of these views beyond the sphere of natural science, strictly so called.-In a paper on the Iroquois Indians Dr. Ten Kate has emboodied the most important resalts of his observations on the physical and social condition of the pure redskins and half.breeds whum he has lately visited in the Indian reservation lands to the west of New York State. He found vcry few among them of pure Indian descent, but some exhibited a eertain degree of prognathism, recalling the same characteristic as seen among the Malayan Liplaps. The average height of the men is 175 m ., with a greater corresponding length of limb than is u sual in whites or mulattoes. They are dolichoeephalie. The colour of the eyes is reddishbrown, unlike that of any other race, while the complexlon of the children is sometimes as light as that of an Italian. The half-breeds only have beards. Their principal illnesses are of a scrofulous character. The Iroquois dialects, which are gradually dying out, bave not hitherto been reduced to writing, owing to the numerous anomalous guttural sounds which belong to them.-M. Bérenger-Féraud contributes an interesting paper on marriage among the neyroes of Senagambia. As elsewhere among Afficans, the parental tie is slight, divorce is common, women are virtual slaves, and marriages are attended with elaborate ceremonials simply as pretexts for amusements and intemperance.-M. Mondiere in a review of the different races of Indo-China, supplies us with many interesting details in regard to the ethnological and anthropometrical ebaracteristics of the Tonquins, Cambodians, and Laos, as well as of the less unfamiliar populations of Siam and Burmab.-In the third number of this year's Raves, we have the concluding part of Broca's description of the eerebral convoiations and fissures, which deals specially with the frontal lobes.-M. M. Duval continues his lectures on "Transformisme," carrying down his analys is of the most impurtant works on the Darwinian theory of evolntion to the sociological and psychological views of Herbert Spencer, and the biological researches of Huxley. - Investigations into the nature of several supernumerary mu cles in the antero-internal scapulary region, by Dr. L. Testut. After Cruvilhier, who first drew attention to some of these muscles, Knott and Macalister in Ireland, and Gruber in Germany, among others, have pointed out the not infrequent occurrence of these anomalous structures in man, while in the elephant and bear, and in some of the lower quadrumana, a supernumary caraco humeral and brachial are almost always, present. - The so-called "S/aye," or May Queen of Provence, is desce ibed by Dr. Bérenger-Férand, who traces back the festival, by which the return of the month of May is celebrated in Southern France to the ancient cult of Maia, the mother of Mercury, among the founders and Greek colonists of Marseilles. In modern times the worship of the Pagan Maia h-s been transferred to the Virgin Mary, in whose name alms are solicited for the little girl-child, who, veiled, and nearly buried in flowers, is supposed to represent the much venerated "Notre Dame du Mai of Provence. These Provençal May festivals are thus elosely allied to the so-called "floral games," which still survive in Cornwall, and repent on ench Sth day of May some part of the ancient Roman worship of the goddess Flora.- M. Deniker passes in review the results of the travels of M. Miklouho Maelay on the east coasts of New Guinea, and summarises the information derived from his careful study of the Papuan races of the island, giving at the same time a numper of important anthropometric measurements, together with numerous interesting ethnological and social data,

Zrieschriff für wissenschafliche Zoologic, Band xxxvili. Heft 3. July, 188 3, entains: On the embryology of Planaria Adyck roa, by Dr. E. Metschnikoff (plates 15 to 17). -On the Coelenterata of the Southern Ocean, part 3. On the Nematophores of Plumularide, and on urticating cells in the mesoderm (Schirmgallerte) of Crambersa mosaika, by Dr. R. von Lendenfeld (plate 18)-On Karyokinesis in some Protozoa, by Dr. A. Gruber (plate 19) (Actinospharium richhornii and Amaba prinerpss). - Contribations to a knowledge of the development of the Gastropods, by Dr. F. Blochmann (plates 20, 21).-On the glands of the mantle-edge in Aplysia and kindred forms, by Dr. F. Blochmann (plate 22).- Contributions to a knowledge of the Medusse, by Dr. Otto Hamann (plate 23).-On the cerebrum of
birds, by Dr. A. Bumm (plates 24, 25).-On Girardinus caudimaculafus, by Dr. Hermann von ihering (plate 26). An interesting study of this little limuphagus Cyprinoid found in Kio Grande do Sul.-Contribution to technical histology, by Prof. H. Fol.
Heft 4, August, 1583^{3}, contains : On the Cocenterata of the Southern Ocean, part 4. On Encopolli cam Aanularia, a new genus belonging to the Campannlaridx, by Dr. R. von Lendenfeld (plates 27 to 32). This memotr consistis of a very elaborate and detailed description of both the hydrosome, gonophore, and ova of this new species.-On the egsshell (Eihaut) of P ython bivithatus, with remarks on some other reptile eggs, and on the genesis of their outer layers, by W. von Nathusiuckönigsborm (plates 33, 34).Researches on some new Medusx from the Red Sea, by Dr. C. Keller (plates 35 to 37).-On the manner of propagation in Protus anguincus, by Marie von Chauvin (plate 38).
Archires Italicnnes de Biologic, tome iii. fasc. ii. May 20, 1883, contains:-On medical instruetion in Italy, by Prof. J. Bizzozero.-On the sanitation of the Roman Campagna, by C. Tommasi-Crudeli.-On the therapectic effect of prolonged tepid baths in pneumonia and typboid fever, by C. B Bzzolo.-On the structure and affinities of the olfactory lobes in the higher Arthropods and the vertebrata, and on a contribution to the histogenesis of the internal molecular layer of the retina, by G . Bellonci,-On organic particles in the air of high regions, by P. Giaczasa. - On the action of cotoine and paracotinne, by P. Albertoni.-On lung epithelium and its transformations in disease of that organ, by C. Bozzolo and B. Graziadei-On the comparative anatomy of the skull of the Terramare pig, by Prof. P. Strobel.-On ptomaines, by J. Guareschi and A. Mosso.

Fasc. iii. Jnly 3t, 1883 . contains :-On the partial regeneration of the liver, by G. Tizzoni and V . Colucci.- On the presence of cystoliths in some Cucurbitacea, by 0 . Penzig (plate). -On the histology of the nervous centres, by C. Golgi (4 plates). -On the action of iodoform in saccharine diabetes, by C. Bozzolo.-On the normal structure and on alteration caused by experiment in the pacinian corpuscles of birde, by Josephine Cattani,-On negro anatomy, by Prof. C. Giaeomini: (1) on the cartilage of the semi Innar fold in the eye ; (2) Graation follicles.-On the development in Salpa, hy Prof.' F. Todaro.-On some experimental researches as toa new automatic centre in the bulbo-spinal tract, by Dr. J. Fano.-Anthropometric studies of criminals, by Prof. H. Ferri,-On the anatomical merits of Jerome Fabrizi d'Aequapedente, by Prof, G. Romiti-On the secretion of bile, by Dr. B. Baldi.-On inoculation of leprosy, by R. Campana.

Procendings of the lsis Natural Ifistory Socicty, Dresden, January to June, 1883.-Obituary notice of Karl Ch. G. Nagel, by 11. Engelhardt. - Perceptive laculty of insects and other lower animals, by Prof. B. Vetter.- Fauna of the Suez Canal, by Dr. C. Keller. Up to the present time eleven Mediterranean species have penetrated for the most part as far as Suez, while the Red Sea yields twenty-five species, whicb, however, have as a rule scarcely yet reaehed half way towards the northern entrance.On a case of albinism observed in the Heidelbeer district, by H. Engelhardt.-A comparative study of the flora of the Errgebirge and Riesengebirge, by Dr. R. Kell.-On the theory of shifting contivental and insular climates, with special reference to the vegetable relations of Norway, by Cl. König.-On the so-called "compass plants," by E., Stahl,-On the exploration of the fora of Lapland made by Linne in 1732, by Dr. O. Drude.On the presence of Anodonta and Planorbis in the Tertiary lignite beds of Scheilenken, by Dr. Deichmüller.-On the source of the nephrite found in North Germany, by 11. Credner.-On the river valley formations in the Western Erzgebirge, by J. Jacobi.-On the geological formations of Mitt weida, with special reference to its flora, by R. Beek. - On a fossil bird from the Bohemian chalk beds, by II. B. Geinitz,-On the presence of copper in the syenite of the Planenscher Grund, Saxony, by F. Zschau.-On the limits of the Dyas and Trias systems, by A. Dittmarsch. - On the relation of the protoarseniate of iron to the iron oxide in the magnetic iron ore of Berggiesshubbel, by H. Vater.-On G. Laube's "Traces of Man in the Quaternary Formations of the Prague District," by Dr. Deichmuiller.-On the bronze and iron objects found in the clay beds of the Wendish Circle, Lievland, by A. Engelmann.-On H. Schliemann'e " llios, City and Land of the Troiane," by H. B. Geinitz,-On a prehistoric find on the Mradi-cht near Stradonitz by W. Osborne.-On an ancient barial place at Kunzowo, by F. Raspe. -Find of stone axes at Dippoldiswald, by H. Wiechel.-Or
some new views respecting the mutual relations of biological and chemical research, by D. W. Hentschel.-On Prof. Lindemann's proof that π is not an aligebraic quantity, by Dr. Harnack. - On the preparation and application of perspective models in relief, by Dr. Burmester.-On the general theory of the so called P.E system, by Prof. Voss.-On the supposed coprolite deposits of Helmstadt, Buiddenstedt, and Schleweke, near Harzburg, by Dr. H. B. Geinitz,-Memoir on the diluvial glaciers of North Europe, with special reference to Saxony, by Dr. H. B. Geinitz. -A Gaalish double grave at La George-Maillet, Marne, by D. von Biedermann.-Monograph on the climate of the Glacial epoch, by Heinrich Vater.-The diamond fields of the Cape, by Thaddeus Schrader.

SOCIETIES AND ACADEMIES London

Mineralogical Society, October 22.-Anniversary Meeting. -W. H. Hudieston, F.G.S., president, in the chair.-The following were elected officers and Council for the coming session :President, Rev. Prof. Bonney, F.R.S. Vice-Presidents: Rev. S. Haughton, M.D., F.R.S. ; W. H. Hudlestone, M. A., F.G.S. Council: G. S. Boulger, F.G.S. ; C. O. Trechmann, Ph.D., F.G.S. ; Mr. J. Stuart Thomson, Rev. Prof. Wiltshire, F.G.S. (in place of Messrs. Church, Danby, Merry, and Walker). Treasurer, R. P. Greg, F.G.S. General Secretary, R. H. Scott, M.A., F.R.S. Foreign Secretary, C. Le Neve Foster, D.Sc., F.G.S. The Secretary read the Report, which was adopted. The outgoing President delivered a short address, and the chair was taken by Prof. Bonney, when the following papers were read:-J. Stuart Thomson, on crys'als of calamine from Wanlockhead.-A. S. Woodward, on the occurrence of Evansite in East Cheshire.-Mr. S. IIenson exhibited a magnificent group of erystals of stibnite from Japan.-A vote of thanks to the outgoing president, Mr. Hudieston, concluded the proceedings.

Sydney

Royal Society of New South Wales, September 5.C, Moore, F.L.S., vice-president, in the chair.-Five new members were elected, and eighty-nine donations received. The following papers were read:-Notes on the genus Macrozamia, with descriptions of some new species, by C. Moore, F.I_S.-A list of double stars, by II. C. Russell, B.A., F.R.A.S. -Some facts connected with irrigation, by H. C. Russell, B.A., F.M.S., \&c.-On models for showing crystallographic axes, by Prof, Liversidge, F.R.S. - On the discolouration of white brieks made from certain clays in the neighbourhood of Sydney, by E. II. Rennie, M.A., D.Sc.-Mr. J. K. Hume exhibited a collection of Carboniferous fossils from Cataract Creek near Mount Wellington, Hobart, Tasmania, which were described by C. S. Wilkinson, F.G.S.-Prof. Liversidge exhibited a fossil specimen of an extinct Chelonian reptile (Wovochelys costata, Owen) from the Flinders River, Queensland, being the first Chelonian found in Australia.

Paris

Academy of Sciences, October 22.-M. Blanchard, president, in the chair,-River navigation ; endless chain towing, by M. Dupuy de Lome. The author deseribes the recent experiment made on the Rhone of a new system of towage, which appears satisfactorily to solve the problem of the econmmic transport of goods on this most difficult of navigable rivers, and, a fortiori, on all streams with a moderate current. The success of the experiments is due to the employment of two endless lateral chains, worked with independent machinery by a single hand, and serving at the same time to steer the vessel. - Note on a formula of Hansen applicable to the celestial meehanism (continued), by M, F. Tisserand.-Disinfection of ornamental plants intended for exportation, by M. Laugier. The successful experiments made in concert with Dr. Konig of Asti at the Agronomic Station of Nice in December, 1882, were renewed during the month of September last with most satisfactory results. -Note on some arithmetical theorems, by M. Stieltjes.On surfaces whose curve is constant, by M. G. Darboux.-On the law regulating the distribution of tension in an elastic plate of arbitrary primitive form encircling a cylinder of any right section, in cases where the friction is uniform, by M. H. Leaute.On the movement of a rolling weight along an elastic horizontal rod fixed at both ends in cases where the mass of the rod is much smaller than that of the weight, by M. J. Boussinesq. A wider application is here shown of the problem of rolling masses
solved by Willis and Stokes, as described in the paper inserted by Stokes in the Cambridse Phil. Trans., vol. vili. 1849.-Observations on a reply of M. Faye touching diverse phenomena of solar spectroscopy (Comptes K'endus, October 8, p. 779), by M. L. Tbollon.- On the inductive force dus to the variation of intensity in the electric current of a flat spiral multiplication, and on the comparison of this force with that exercised at great distances by a spherical solenoid or a solenvidal fictitious sun, by M. Quet.-Note on the determination of the equivalents of copper and zinc by means of their sulphntes, by M. H. Baubigny. - On the transformation of hydrocarburets into corresponding aldehydes by means of chlorochromic acid, by M. A. Etard. -Note on the state of the sensitive nerves daring the excitemen! produced by strychnine, by M. Couty.-On two cases of peripheric nervo tabes (ataxy of the lower members, combined with absolute integrity of the posterior roots, of the spinal ganglia and spinal marrow), by M. J. Dejerine. -On the secreting epithelium of the kidney of Batrachians (triton and axolotl), by M. J. Bouillot.-On the extent and age of the dioritic formations of Corsica, by M. Dieulafait. Instend of occupying a deep continuous vertical range, as hitherto supposed, the author shows that the Corsican diorites belong to three distinct systems-granites at San Luccia di Tollano and Ajaccio, ophiolithic or serpentine rocks of the Triassic and Permian formations at Bastia and elsewhere. With these last are exclusively associated the numerous sulphuretted metaliferous ores occurring in the island.-A diseussion of the causes to which is due the movement of glaciers, by Mr. Walter R. Browne. This movement is here attributed rather to atmospheric causes (pressure and temperature) than to gravitation.Observations on an earthquake felt at Ghadames (Algeria) towards the end of last August, by M. Duveyrier.

CONTENTS

Page
Zoological Reports of the Voyage of H.M.S.
"Challenger"
Our Book Shelf:-
Köiti's "Elementi di Fisica"
"Dr. H. G. Bronn's Klassen und Ordnungen des Thier-Reichs, wissenschaftlich dargestellt in Wort und Bild"
Letters to the Editor :-
"Elevation and Subsidence."-Searles V. Wood; J. Starkie Gardner

Snake Bite,-J. S. Gardner
The Observation of Meteors.- \dot{W}. \dot{F}. Denning
"Partials."-W. C. Jones (With Diagram)
The Green Sun.-W.; G. H. Hopkins
Pons' Comet.-T. W. Backhouse
Earthquake.-H. Howard Crawley:
Studies made on the Summit of the Pic du Midi with a View to the Establishment of a Permanent Astronomical Station, By MM. Thollon and Trépied
The Wheat Harvest of 1883°. By Prof. John ${ }^{\circ}$ Wrightson
On a New Method of Sinking Shafts in Watery, Running Ground. By William Galloway
Nordenskjöld's Greenland Expedition. By Baron A. E. Nordenskjold (With, Kaf)

The Reent . Io
Notes entombment of WiMiam Harvey.
Biological Notes :-
Observations on the Embryology of the Teleosts Embryological Monographs
"Ceratodus forsteri"
Glyengen
13
.. . . . 16
The Association of German Naturalists and Physicians
Local Science Societies and the Minor Prehistoric Remains of Britain. By Raphael Meldola
Observations on Heredity in Cats with an Abnormal Number of Toes. By Edward B. Poulton (Writ Diagramps)
On the Electrical Resistance of the Human Body. By Dr. W, H. Stone, M.A., F.R.C.P.
University and Educational Intelligence
Scientific Serials
22
Societies and Academlea

THURSDAY, NOVEMBER 8, 1883

A BUSHEL OF CORN
A Bushel of Corn. By A. Stephen Wilson. (Edinburgh : David Douglas, 1883.)

THIS little book is full of originality and force. It appeals it is true to a class, but a large class. The title is happy and suggestive, and is a sufficient text for every paragraph between the covers. It is true the subject is not exhausted, for much more might doubtless be said concerning "a bushel of corn."

But it is with a bushel of corn that Mr. Wilson deals. He introduces us to the bushel as an absolute measure of volume, traces its origin, mentions its varieties, discusses its merits, weighs it in the balances of justice, and dismisses it as inadequate, misleading, and impossible as a corn measure. The interest of the reader is at first excited with regard to the evolution of the bushel from terms of Roman sexfars. Whether statistician, antiquary, historian, miller, or farmer, he must feel his interest awakened and kept alive. The bushel is seen altogether from a new aspect. Light beams out beneath and around it, and it becomes an object of respect and veneration. It is with regret that we find the fact gradually forcing itself upon us that this archetypal standard of volume, this absolute multiple of the typical wheat grain, this original bond of union between volume and weight in "merrie England," is after all as a gauge of value, and an indication of variations in price with regard to corn, an impostor. This is, however, the conclusion to which we are irresistibly driven, and Mr. Wilson, while he fondles and beams upon his bushel, is in reality dealing it its death wound. Never before has such a blow been levelled against the quarter as a measure of value in wheat.

Let any member of Parliament or of a constituency read this volume and he will rise convinced that the bushel is really doomed, and that the cental is the only alternative. Or let any one who is imbued with an idea in favour of the French metric system read it, and he will find that we have in England a much sounder system of quantifying than he imagined, and he will think twice before he gives up his English grain for the French gramme, or the English pint for the French litre.

The work naturally divides itself into two parts. First, an interesting inquiry into the historical origin of the bushel. Secondly, an attack upon the bushel as a means of quantifying corn. We propose to look at both these aspects. First, then, in the language of the author, "What is a bushel of corn ?" The chief interest in the answer to this question lies in the fact that the bushel is based upon a unit-namely, an increment of wheat. The French have taken distilled water at $4^{\circ} \mathrm{C}$. as the medium for connecting weight and volume. The Romans appear to have taken wheat for a similar purpose. The supposed base of the corn measures was not the money sterling of 24 grains used in weighing gold and silver, but the commercial or tron sterling of 32 grains used for heavy goods. In the book known as "Flefa" we are told that "in the English kingdoms the king's measure was made from the penny called the sterling, which is made round; that this sterling should weigh 32 grains of average
wheat : that twenty pennies make an ounce, and that twelve ounces make a pound of twenty shillings weight and number; that the weight of eight pounds of wheat makes the measure of one gallon; that eight gallons of wheat make the bushel, eight of which constitute the common quarter." The sextar pint of the Romans held one London pound of twenty shillings or 7680 grains of wheat of the quality giving 64 lbs. to the bushel. A bushel was 64 sextars, and hence a London pound of really good wheat and a sextar pint united the ideas of weight and measure. According to this view a bushel of good wheat ought to weigh 64 lbs , and to hold 64 pints. The latter statement is true at the present day, and in certain cases the weight may be 64 lbs . also. Mr. Wilson, however, considers that the typical bushel of wheat was not considered to be 64 lbs ., which is unusual, but 60 lbs . And, still further, that the ideal bushel of 60 lbs . was probably 60 lbs . avoirdupois and not London. In working out this very interesting point, Mr. Wilson shows that, according to "Flefa," a sack of wool was always considered to be of equal weight with a quarter of wheat. Now wool was quantified by tron weight, and if the assumption is correct that wheat was quantified by avoirdupois we can readily see if we can bring the two into accord. " Fleta' tells us that $12 \frac{1}{2}$ merchants' pounds of 15 ounces made a stone of wool, and that 28 stones made a sack of wool equal in weight to a quarter of wheat." The weight of the sack of wool would therefore stand thus :-

$$
\begin{aligned}
& \text { Tron oz. }=\frac{640 \mathrm{grs}}{15} \\
& \text { Tron lb. }=\frac{9600}{} \mathrm{grs} \\
& \text { Wool st. }=\frac{12 \frac{1}{2}}{120,000} \mathrm{grs} \\
& 28
\end{aligned}
$$

Sack of wool $3,360,000 \mathrm{grs}$. $=48 \mathrm{l}$ lbs. avairdupois. The comparison with the weight of a quarter of wheat would stand thus :-One bushel of 60 lbs. avoirdupois $=$ 420,000 grs., and 8 bushels or 1 quarter $=3,360,000$ grs. $=48 \mathrm{olbs}$. avoirdupois. The true solution of this difficulty therefore seems to be arrived at, namely, that the bushel of 2218.192 cub . in. is equal to 64 Roman sextars and to 64 English pints. It holds 8 gallons or 64 pints of wine, and 8 gallons or 64 pounds of really good wheat. It is equal in size to the old Scots or Linlithgow firlot, and holds 80 avoirdupois or Roman pounds of water.

The idea of a system of weights and measures based on a sound unit like a sextar pint of twenty shillings, invests our system with a halo of antiquarian interest derived from the standards of Imperial Rome. "I can see," says Mr. Wilson, with well-timed enthusiasm, "the spirit of the old Scot 3 measures standing in an empty Linlithgow wheat firlot, with a wreath of golden ears around his brows, and looking ineffable scorn upon the statutes which affect to abolish his reign and his dynasty."

Those who want to know more must read the book. We next proceed to take a rapid glance at the objections to the bushel as a corn measure, or as a means of quantifying corn. These objections may be summarised as follows. First, the bushel lends itself easily to misrepresentation. It can be "shaken together, pressed down, running over." However exact as a measure of fluids it
is not suitable for a compressible substance. The height from which a bushel is filled affects its amount ; a blow upon its side during filling causes evident settlement, and finally we are not certain as to whether a heaped bushel or a struck bushel is always meant. Such is one class of objections. Another arises from the fact that, contrary to general opinion, Mr. Wilson holds, and we think proves, that weight per bushel is not an indication of quality. Samples may be readily "sweated," rubbed, beaten, or dressed, until the weight per bushel is not a fair indication of quality. Again, corn which has been swollen with exposure to rain does not return to its former bulk but remains permanently enlarged. Lacunæ or hollows filled with air remain, and the bushel is rendered lighter, although we cannot hold in such cases that the quality of the flour has been injured. Again, the shape of the grain has its effect in allowing some to pack closer together in the bushel while others lie looser. Lastly, in oats the proportion of kernel to husk varies immensely, and yet this is not indicated at all by weight per bushel. A very strong point is made with reference to moisture. We have generally considered, and with some truth, that the drier a sample of wheat is the heavier will it weigh in the bushel. This it appears is not to be relied upon, and in numerous experiments it was found that after moisture had been artificially driven off the "measure weight" or weight per bushel was less than before! Thus in one case "the measure weight with no moisture in the grain was nearly 4 lbs. less than at first, with $9 * 35$ per cent. of moisture" 1 This is not by any means contrary to what might be expected. As long as wheat contracts in volume as it dries, so long will it increase in specific gravity. When, however, it reaches a stage at which the moisture evaporated is replaced by air occupying the spaces previously occupied with waterthen will the weight per bushel suffer. Hence a very strong case is made out against the bushel and the quarter as standards for quantifying corn.

The question has a retrospective as well as a prospective interest. The bushel weighs differently every year. Thus, according to evidence laid before the Fiers Court in Aberdeenshire, the weight of a bushel of wheat was, in $1856,57.02 \mathrm{lbs}$; in $1857,60 \cdot 3 \mathrm{lbs}$; in $1858,61.32 \mathrm{lbs}$; in 1860, $55^{\circ} 95$ lbs. ; and in 1868, $62^{\circ} 29$ lbs. A bushel of wheat then between 1856 and 1868 was found to vary in weight by 6.34 lbs , or 50.72 lbs . per quarter of 8 bushels.

If wheat weighs 50.72 lbs. per quarter less one year than another, it will be found that as a standard of value the quarter is misleading. A quarter of 430 lbs . is 10 per cent. in weight less than one of 493 lbs . Now if in a bad year the lighter wheat is quoted at 48 s . per quarter, while in a succeeding good year the heavier wheat is quoted at 52 s ., wheat is said to have gone up 45 ., whereas according to weight the prices are the same in both years.

Wheat may be dearer per quarter and yet be really selling at less money per cental. Hence the calculations made by statisticians as to the fluctuations in the wheat market have up to now all been made on a false basis. It would take us to undue length if we were next to show from this little volume why the cental is a better means of quantifying wheat than the bushel or quarter. That it is so we have no doubt whatever, and therefore consider
that the book before us has done much to inaugurate the use of the cental and the abolition of the quarter in our corn markets.

John Wrightson

ZOOLOGY OF THE NORTH ATLANTIC EXPEDITION

The Norwegian North Atlantic Expedition, 1876-1878. Zoology: Holothurioidea. By D. C. Danielssen and Johan Koren. With Thirteen Plates and One Map. Annelida. By G. Armauer Hansen. With Seven Plates and One Map. (Christiania : Printed by Grondahl and Son, 1882.)

THESE two volumes comprise Nos. VI. and VII. of the results of the Norwegian North Atlantic Expedition. The first, which deals with the Holothurians, contains an interesting account of several new genera (5) and species (6). Of the new forms Kolga hyalina is perhaps the most interesting; it has been placed in the family Elpididæ, of the order Elasmopoda, instituted by Dr. Théel for some of the Holothurians collected during the Challenger Expedition. Kolga is a small Holothurian (the largest specimen dredged measuring 50 mm . in length, $15-20 \mathrm{~mm}$. in height, and $12-15 \mathrm{~mm}$. in width) with the oral disk facing the ventral, and the anal orifice the dorsal, surface, and having a dorsal collar bearing sucker-like contractile papillse at the anterior extremity. These papillx, unlike ordinary pedicels, were found to communicate with the perivisceral cavity by means of spaces formed within the collar.

After referring to lateral and terminal conical suckers, the translucency of the skin, and cutaneous cellular glands, the authors give a careful description of the water vascular system, dwelling especially on the sand canal, which is especially interesting, for instead of hanging free in the perivisceral cavity, as in the ordinary Holothurian, it opens directly to the exterior in front of the collar. The larval condition thus persists, the circular vessel retaining its communication with the exterior through a simple membranous tube. In two other Holothurians from this Expedition, constituting the new geners of Trochostoma and Irpa, the sand canal has the outer end attached to the skin but not in communication with the exterior, and in each case there is a madreporic plate developed on the canal within the point of attachment. In Elpidia there is a similar arrangement, but the madreporic plate is rudimentary or wanting, hence the authors think that Elpidia approximates more closely than Trochostoma and Irpa to the larval stage so perfectly maintained by Kolga. With respect to the blood-circulating system, Kolga differs from the general plan in which the dorsal and ventral vessels originate between the stomach and the intestine, for in Kolga they open from a ring encircling the cesophagus, and as this ring has thicker and more muscular walls than the vessels proceeding from it, it is suggested that it may function as a heart.

Of the five nerve trunks which emanate from the oral nerve ring, the two dorsal furnish an offshoot to each of a pair of large vesicles containing otoliths, and the two lateral ventral cords send branches to numerous successive auditory vesicles. Each vesicle contains from 20 to 130 otoliths. Kolga, which is diœecious and in which there is no respiratory tree, may thus be considered to be
a very primitive member of the Holothurian group, near which comes Elpidia, the authors disagreeing in this respect with Dr. Théel, who, taking into cousideration the bilateral form of Elpidia, gave it a high place amongst Holothurians.

Prof. Steenstrup's and Dr. Lutken's account of Myriotrockus Rinkiii, St ., has been supplemented in the above report from numerous specimens found at Spitzbergen ; and Myriotrochus brevis, Huxley, is considered to be identical with Oligotrockus vitreus, described by Sars in 1865 .

In describing the new genus Trochostoma (instituted for Molpadia boreale, Sars, Molpadia oolitica, Pourtales, Haploalactyla arcticum, and a new form, T. Thomsonit) the authors discuss at considerable length the function of the respiratory trees, and conclude that they are in all probability secretory organs belonging to the intestines. After dealing with another new genus (Ankyroderma) this very valuable and interesting memoir concludes with a list of the Holothurians collected by the Expedition, and a table showing the depth, temperature, bottom, \&c., where each was procured.

The descriptive text is illustrated by thirteen excellent lithographed plates, and a map showing the position of the zoological stations where the various specimens were obtained.

In the memoir on the Annelids collected by the Expedition, Hansen commences by entering a protest against the number of genera instituted in this class by Malmgren, and he especially considers that the distinction on which Malmgren lays so much stress, viz. the difference between the bristles of different members of the class, is not in reality present. The scales, on the other hand, are considered by the author to be much more distinctive specific features, and from the character of the scales accordingly he opposes the wholesale heaping together by Möbius, and after him by Tauber, of proposed genera and species into a single specific group. Of a large number of Annelids procured a description is given only of new species-about 28 -and of a few others which are little known. The description of these forms is almost limited to their external characters, especially to the form and structure of the scales.

The Annelids collected are divided into two groups, first, those found in the warm, and next, those from the cold, area. The list containing those from the warm area gives the depth, temperature, \&c., at the various stations, but in addition a useful column is added containing their geographical distribution as far as known. A further list appears of the Annelids collected in the cold area arranged under their respective families, from which it appears that most of them are represented in the frigid area, and most of the species occurring there are also found in the fjords and temperate ocean tracts. The author states that there are few indications that the deep bottom-current off the coast of Norway in which the temperature is below zero (C.) should be characterised by a fauna of its own. "Of one Annelid only, Polynoe globifera, G. O. Sars, can we infer with comparative certainty that its favourite, if not its sole, habitat is confined to the cold bottom-strata."

From a specimen of Serpula, Profula arctica, procured from a depth of 1163 fathoms, temperaturc $-I^{0_{*}} \mathrm{I} C$., bottorn biloculina clay, it is inferred that the Serpulidxe
do not absolutely require solid matter on which to construct their shells. From a specimen of Hydroides Norvegica met with on a muddy bottom with the tube not, as is usually the case, twisted but straight, it is inferred that in such cases the tubes penetrate the mud like those of many other tube-forming Annelids.

In referring to colour and sense organs, the author says that an Omuphis hyperborea brought up from 299 and 412 fathoms, "a greater depth than that to which light and vegetable life are supposed to penctrate," was nevertheless vividly coloured and provided with eyes.

This volume also is illustrated by several plates and a map. The letterpress of both volumes is printed in English and Norwegian in parallel columns. They together form a solid contribution to our knowledge of two groups which are becoming more and more interesting to the zoologist.

OUR BOOK SHELF

Catalogue ana Handbook of the Archaological Collections in the Indian Museum. Part I. Asoka and Indo-Scythian Galleries, By John Anderson. (Calcutta, 1883.)
THiS is a model of what a guidebook to a museum should be. The antiquities described by Prof. Anderson are of the highest interest, and the fullness and clearness of his description is worthy of them. The Indian Museum, though only founded in 1866 , now contains a mine of wealth for the Indian archacologist. The collections of the Asiatic Society deposited in it have been - nriched by the sculptures from Bharhut, the Gândhara bas-reliefs, the Buddha GayA discoveries of the Archacological Survey, and the casts from the early temples of Orissa. A flood of light has been thrown on the history of ancient Buddhist art and belief, as well as upon the relations of Buddhist India with Greece and the west. The domeshaped Stupa of Bharhut belongs to the second century $\mathrm{B} . \mathrm{C}$., and is adorned with sculptures representing scenes from the legendary life of Buddha; the ruins of Buddha Gayâ have been excavated near the site of the famous Bodhi tree under which Buddha sat, and which was visited by the Chinese pilgrim Hiouen Thsang in 637 A.D., while the rock-cut temples of Orissa carry us back to a period still earlier in the life of Buddhism than that of Bharhut. In the Indo-Scythian Gallery the most interesting remains are those from Mathura (or Matra) and Gândhara. Here, too, the sculptures are partly Buddhist, though also partly Jain-Jainism itself being but an older form of Buddhism, if we are to believe Mr. Thomas. The chief interest attaching to them is due to the fact that many of them owe their inspiration to Graeco-Roman-if not even Byzantine-art. The dress of several of the figures represented in them is also interesting as pointing to a northern climate. The same may be said of a group of figures at Sanchi, which have bandages round the legs like those still worn in Afghanistan.

In looking through this catalogue we cannot fail to be struck by the contrast between the care now taken by the Indian Government of the antiquities of the country, and the official neglect to which the ancient monuments of our own islands are exposed. To say nothing of the Archzeological Survey, which has already done so much to bring to light the hidden treasures of early Indian art, no pains seem to be spared to protect the memorials of the past which are scattered over the surface of the soil. It is a pity that some little of the intelligent interest taken by the Indian Government in the historical monuments of India cannot be reflected on our rulers here. It is true that, fortunately for archreology, India is still governed by a small body of educated men, while an extended franchise
implies a majority which cares nothing for science and much "for the rights of property" and the prospect of increased dividends; nevertheless even the majority is willing to follow the leaders it has chosen, and the leaders will lose nothing if they remember that we have duties to perform towards the past as well as towards the present.

LETTERS TO THE EDITOR

[The Editor does not hold himself responsible for opinions expressed by his correspondents. Neither can he undertake to return, or to correspond with the zuriters of, rejected manuscripts. No notice is taken of anowymous communications.
[The Editor argently requests conespondents to kexp their Letters as short as possible. The pressure on his space is so great that it is impossible otherwise to insure the appnarance ceven of communications containing interesting and novel facts.]

The Green Sun

THE appearance of a bright green sun for several days in suceession seems to be a phenomenon sufficiently rare to deserve notice in your columns, so I send you the following notes on the subject :-
On Sunday evening, September 9, the sun for some time before setting appeared perfectly rayless and of a bright silverywhite colour, quite different from anything that I have ever seen before. On the following morning I did not observe it particularly, but in the evening I watched it carefully from about five o'elock till sunset. At first it had the same silvery-white appearance as on the previous day, and this eontinued till 5.30 , when it was lost behind a bank of cloud; on its partial reappearance, however, at 5.43 , the part visible between the clouds was of a bright pea.green colour. On Tuesday morning it was rather cloudy, but the appearance, when seen at all, was the same as on the preceding night. In the evening, however, it was a magnificent spectacle, and attracted the notice of every one. The silvery sheen was visible early in the afternoon, and the brightness of the sun rapidly faded, till by abont five o'clock one could look at it directly without any difficnlty. At this time there was a distinet tinge of green in the light when received on a sheet of white paper, while shadows were very prettily tinted with the complewentary pink. As the san sank towards the horizon the green became more and more strongly marked, and by 5.30 it appeared as a bright green disk, with a sharply-defined outline. In fact the definition was so good that a large spot (about I^{\prime} long) was a conspicuous object to the naked eye. On this occasion the sun was lost in a bank of clouds near the horizon, bnt on another oceasion, when I was able to see it actually set, the colour got yellow rather than green close to the horizon. Similar, but less marked, were the appearances both at sunset and sunrise for several days, and before sunrise and after sunset the cloud effects were such as I have never before witnessed here. These cloud effects were chiefly remarkable for the brilliancy of the eolouring and for the length of time that they were visible, being seen for nearly an hour after sunset. The moon and stars, when near the horizon, showed the same green colours as the sun.

On the 22nd the green sunrises and sunsets began again and continued for three days. I carefully examined the spectrum on every possible occasion with my zodiacal light spectroscope, as well as with a small direct-vision one. The spectrum showed clearly that aqueous vapour played a lange part in the phenomena, for all the atmospheric lines usually ascribed to that substance were very strongly developed. Bnt in addition to this there was a very marked general absorption in the red. Even an hour before snnset, and often longer, the absorption was complete as far as B, and the dark shade gradually crept up till it reached C, and at times even that line was invisible, while the absorption was clearly marked up to W.L. 621. At the blue end nothing conld be seen beyond W.L. 428, and even that only with a very wide slit, but a photograph showed the lines elearly nearly as far into the ultra violet as on ordinary occasions. The phenomenon was visible over a large area of country, from Ceylon to Vizagapatam, and as far west as Aden. It was not, however, observed at all at the Bombay Olservatory.
I am at present eollecting information from various sources, and so do not care to enter into many details at present.
Most people ascribe the phenomena to the recent great eruption in Java, but there are difficulties in the way of accepting this
view, which I have not yet been able to get over, and the similar appearance of a blae sun over Europe and America in 1831 seems to make this explanation nnnecessary, besides it is well known that the sun ap pears green under certain circumstances when seen through steam or even in a mist (Lockyer). On the other hand, observations referred to in Nature, vol, xviii. P. ${ }^{155}$, tend to show that very fine dust might produce the observed effects.
Can any of your readers refer me to Dr. Schuster's original papers?

It may not be without interest to add that on both occasions the green appearance was preceded by abnormal electrical conditions of the atmosphere. The potential of the air was strongly negative for a number of days in succession from abont 9.3° a.m. to $2.30 \mathrm{p} . \mathrm{m}$., with a clear sky and no rain within 100 miles.
C. Michie Smiti

Madrac, October 10
I inclose a letter giving an account of the green sun, which may be of interest to your readers. My correspondent is the wife of General Tremenheere, formerly in the Indian arny.

Warren de La Rue
73. Portland Place, W., November 3

Spring Grove, Isleworth, November 2
Ir may interest you to hear that my daughter, writing from Bellary, tells me that a gentleman who was at Ootacamund, in the Neilgherries, was on one of the higher peaks when the phenomenon of the sun took place in September, and he first distinctly saw a green, clowd-like mist pass across the sun, and then one of a raddisk colower, and the sun took the colour of each of these clouds or mists. People at Ceylon were terribly alarmed at the unusual appearance of the sun.
S. S. T.

Mr. Greaves has the pleasure to forward to the Editor an extract from a letter just received from Mr. Beardmore at Madras, referring to the phenomenon of the green sun now being discussed in Nature.
Sunhill, Clevedon, November 2
Harlowr Works, Madras, October 10
We have had the sun here for some weeks past in the mornings and evenings a most curious greenish blne colour, and generally casting a blnish beam of a most pretty tint. Mr. Pogson thinks it due to voleanic dust and sulphurous gases from the great eraption in Java. Another astronomer, Mr. H. Smith, thinks it due to a great amount of aqueous vapour.

Nathl. Brenard Beardmore

The Division of the Circle

Allow me to point out an oversight in NatUre (vol. xxviii. p. 598), where, in explaining the divisions of a circle the following passage occurs: "In quite recent times it has been suggestel that 400 parts should be taken in place of 360 , but that is a suggestion which up to the present time has not been acted upon."

We probably owe our degrees either to the earlier supposed year of 360 days, or to the fact that this number has many divisors, although such divisors afford no practical advantage. When trigonometrical functions were subsequently discovered, it was found that the natural unit is not the eircle, but the quadrant or right angle. Our system of numeration being decimal, it was then most convenient to divide the quadrant decimally, and the eircle is thus considered as composed of $4,40,400,8 \mathrm{c}$., parts according to the degree of exactness required. This was proposed by Briggs when preparing tris logarithms, which are based on decimals, but nnfortunately it was then set aside. Revived a long time after by Lagrange, it was acted upon by Laplace in his "Mécanique Celeste," being thus much more than a mere suggestion. Nowadays decimal divisions of the quadrant are the only ones used by French geodesists.

Facts are the grand supporters of argument. Will you kindly quote the following? After grumbling on the nece-sity of using the only circle at his disposal because it was divided decimally, a French civil engineer would afterwards employ no other: he found the decimal eircle much more convenient. A special experiment had been already made in Italy, where two geodesists, carefully interchanged and inspected, had been instructed to
observe and calculate in both systems the same large lot of angles. It was then found that the use of decimals gave a saving of two-sevenths of time either in observation or in calculation. This result was unknown to Sir George Airy, the ablest astronomer of our time, but he judged rightly that the conversion of all sexagesimal angles into decimal ones would materially lighten his labours, and he actually did so when calculating all the lunar observations previously made at Greenwich. This was the largest quantity of reductions ever made hy one astronomer, and they were abridged by the use of decimals. The real supporter of sexagesimal divisions is routine, that sly enemy of progress.
Abbadia, November 2
Antotne d'abradte

Christian Conrad Sprengel

It has now become a standing topic that C. C. Sprengel's treatise on the structure and fertilisation of flowers "after well nigh a century of oblivion has come to be recognised as one of tbe most interesting books, and his theory of the adaptation of flowers to fertilisation by insects is one that will ever be associated with his name" (Nature, vol. xxviii. p. 513). Some writers go so far as to speak of a rediscovery of Sprengel's treatise by Darwin. But it should be acknowledged that Darwin himself says only ("Cross Fertilisation," p. 5): "His discoveries were for a long time neglected." So it seems to be true that Sprengel's and Koelreuter's works were unknown to English naturatists, though Kirby and Spence, at the end of Letter IX., published 1815, and in all subsequent editions till 1867, have given a very fair report in their masterly manner. Not only the facts, but also the importance of these discoveries, are fairly expounded.
In Germany these discoveries were well known to every naturalist during the whole century. In 1829, when a mere boy, my father began to instruct me in entomology. Many times he took Sprengel's work from the shelves in his study, and explained to me the discovery of fertilisation of plants by insects with the help of the plates in Sprengel's book. I have never forgoten the interest and the scientific enthusiasm of hiv exposition. I was told that we are indebted to a mere chance for this discovery. A rather dangerous irritation of Sprengel's eyes had the result that he was entirely forbidden indoor study by his physician, and was therefore obiged to spend his days in the field, where he was gradually led to the observation of plants, followed by his remarkable discoveries. Certainly between 1830 to 1840 at every university in Prussia the same facts were taught as well known facts of the highest importance, and of course known by every stadent. Prof. C. F. Burdach has related them in his large "Physiology," vol. i. P. 322, 1826, and given his conclusions. H. Burmeister, "Handb.d. Entomologie," vol. i. p. 303, 1832, speaks about them at some length also as well known and of the highest importance. Not only scientific publications, but merely popalar works have the same statements. Pierer's "Universal Lexicon" (first edit. 1836, fourth, 1851, vol. ix. P. 942) gives a fair report.
H. A. Hagen

Cambridge, Mass., October 23

"Challenger" Zoological Reports

IT seems to me that the reviewer of my Report on the Pelagic Hemiptera collected during the voyage of the Challonger (NATURE, vol. xxix. p. 3) is too hypercritical.
1 refer, of course, to the paragraph in which he blames me for alluding to species under their trivial names only; and as the paragraph in question is calculated to convey a wrong impression, I should be obliged if you will kiodly allow me to say a word on the subject.
It is true that some writers apon insects (or rather upon Lepidoptera only) have the very bad babit of alluding to species (of different genera) by their specific names only, and the law that forbids the practice is a good one ; but it may be applied too stringently, and not altogether in the sense that its framers intended.
In my Report I bad to deal with two genera, and a reader of the review who had not seen the Report itself would be justified in concluding from the words of the reviewer that I have used the specific names indiccriminately, without indicating the genus to which the species belonged. In point of fact this is not the case. The two genera are treated of separately, and where I have mentioned the trivial without the generic name, it has only been when the generic name governed the paragraph, and, when,
consequently, no doubt could possibly exist as to the genus. In doing so 1 may have broken the letter of the law, but not, I think, the spirit; and were the work to be done over again, I think I would be inclined to follow the same course.
F. Buchanan White
[The idea of a generic term governing a paragraph did not strike me. I had no wish to be over-critical, and I am glad to find that in all essenials Dr. Buchanan White agrees with the views expressed.-The Writer of the Notice.]

Barytes from Chirbury

A NUMAER of crystals of barytes have lately been acquired by Mr. Henson from Chirbury, Salop, which seem to deserve some description. The crystals vary from one to four inches in length and from one-half to two inches in breadth; they are very bright and clear, and are elongated in the direction of the brachydiagonal, resembling in appearance the barytes from Dufton; they are mosily doubly terminated, and some contain included crystals of copper pyrites. They were at once detected by Mr. T. Davies as being peculiar in form; and the reflecting goniometer revealed the existence upon them of four very well-defined forms which have not been hitberto found upon barytes, besides two more doubtful planes to which it is difficult to assign definite symbols.

The crystals are almost all a combination of the forms-

$$
\begin{aligned}
& \text { - }\{101\} \\
& \text { d }\left\{\begin{array}{ll}
12\}
\end{array} P_{\infty}\right. \\
& m \begin{cases}\text { sto } & \infty \\
\infty\end{cases} \\
& 1 \text { \{014\} }\}^{1} \mathrm{P}_{\infty} \\
& \text { " \{o1t }\} P_{\infty} \\
& \text { a }\{1 \infty\}, P_{\infty} \\
& \text { b }: 010\} \infty P_{\infty} \\
& c\{\infty 0 t\} \text { oP }
\end{aligned}
$$

On some crystals were also observed-
$\mu(214)$) P_{2} between d and 0
r (112) iP between d and y
$Z(034) \$ \bar{q} \infty$ between u and d.
The general appearance of the crystals is shown in th: annexed figure.

Of the above faces ξ, ω, E, and Z are new. \ddagger lies with parallel

edges between the faces $d m$ and $x b$, and is very dull: \propto lies between $y m$ and $a d^{\prime} ; \mathrm{E}$ between $y a$ and $o z^{\prime}$.
Several of these crystals have also a small dull face Q lying with parallel edges between o and y, and on one this is accompanied by another small dull face Y between o and m. By oiling these faces it was possible to determine approximately their inclination to 0 . The measurements lead to the complicated symbols (15.1 .15) for Q and (19.1 . 18) for Y .

The new facec, and especially E , are very characteristic of these specimens, and it is somewhat curious that faces with the simple symbols of ξ, ∞, E, Z, have not hitherto been noticed among the sixty-six recorded forms of barytes.
H. A. Miers

Mineral Department, British Museum, October 25

"Anatomy for Artists"

I think perbaps if it were known to Dr. Marshall that his "Anatomy for Artists" is not used in cases where it otherwise would be, because of his decision to omit letters of reference in the illustrations of the bones, he might think it better to alter this in a new edition.
Dr. Marshall admits that his plan may be a strain, but perhaps he does not know how great a strain it is when students are not studying leisurely but in the limited time given in schools of art to an anatomy course. Even if he dicapprove of any haste in study, he would surely be sorry to hinder rather than help those who have to be quick.

I heard recently a lecturer on anatomy refer his pupils to books inferior to Dr. Marshall's, regretting, he said, to set aside the best book they could have, but adding that, from the want of reference letters, many of the students would simply be puzzled, discouraged, and confused.

I have only Dr. Marshall's book, and although the illustrations are too good to allow of any great difficulty arising, still I bave fornd the use of it a strain. I doubt, too, if the plan secures a " more acearate knowledge of the forms," as Dr, Marshall hopes it may. Perhaps so, after a little knowledge has been gained, but in the first struggle the student has an uncomfortable haziness as to whether he has found the right groove or prosinence upon a bone, which prevents his forming a definite piclure of it in his mind.

Certainly letters apoil the illustrations, but might there not be small key drawings beside the larger more finished ones.

An Art Student

Meteor

I was just now startled by what appeared to be a vivid flash of lightning out of a perfectly cloudiess sky, a fluttering flash that lit up everything brilliantly. On turning to the wouth-east I was just in time to see the broad path of fire that a solendid meteor had left behind it ; the meteor was falling behind some trees, and I saw it very imperfectly, but it seemed very large, and indeed mast have been from its light. I had been lowking out from time to time for shooting stars all the evening, and had seen three fine ones and four or five small onts, all in the eave, and appearing to come from the neighbourbood of the Bull. The sky is covered with the lovely light that always appears with shooting stars, and which I think is sometimes called homogeneous aurora,

Sidmouth, November 4

THE JAVA ERUPTION AND EARTHQUAKE WAVES

FOR the following facts the writer is indebted to the kindness of Herr Einil Metzger, formerly Director of Surveys in the Dutch Government service in Java. His original account, written before September 12, has just appeared in the Globus. The present paper is based upon that, but it contains several small additions and corrections which have been received directly from the author. Most of the geographical details here given are based on the Trigonometrical Survey of the coast of Java, which was earried out under Herr Metzger's immediate direction in 1868-69.

A line drawn eastwards from Flat Point (Vlakke Hoek, Tandjong Blimbing, or Rata), the south-western extremity of Sumatra, would touch the south coast of that island only in two points, - Tandjong Tikūs and Tandjong Tūwa, or Varkens Hoek. Between these promontories are the bays of Semangka and Lampong. ${ }^{1}$ The opposite coast of Java follows generally a north-easterly direction almost to Anjer. Along this stretch it deflects, however, more than once towards the south and the east, and forms Scagull, Welcome, and Pepper Bays. Midway in the channel of the Straits, and on a straight line drawn from Tandjong Tikūs (the western side of Lampong Bay), to the western head of Pepper Bay, lies the Island of Krakatoa
${ }^{2}$ See the map of the Sunda Straits in this jnurnal, September $6,188_{3}$, p. 444. With this compare the map given in Glabus (vol. xiv. No. 13 , be given here.
(called also Krakatau, Rakata), with several smaller islands near it. Sebuku and Sebisi are two islands situated between Krakatoa and the south-eastern extremity of Sumatra. About half way between Anjer and Point St. Nicholas, and only separated from the mainland by a narrow belt of water, is the Island of Merak (Pulu Merak). On the opposite mainland were the extensive quarries of Merak, which have now totally disappeared. Further, in the narrowest part of the navigable channel, lay a group of islands, of which the largest, Thwart-Way or Sunghian (Dwars in den Weg), has been rent into five pieces, ${ }^{1}$
From the manner in which Sebisi (the peak 2818 feet high) and Krakatoa (peak 2700 feet) rose immediately from the waves, and from the great depth of the sea around them, Junghuhn was led to conclude that Sumatra and Java, in spite of the corresponding configuration of their approximating coast-lines, and the fact that they are both volcanic, do not belong to one continuous formation. The Island of Krakatoa, considered by Junghuhn to be a continuation of the mountain system on the adjoining coast of Java, was about five miles long by about three broad; and close at its foot were the two small islands Verlaten and Long, on the west and east respectively. The Trigonometrical Survey of 1868-69 fixed the position of the cone of Krakatoa as $105^{\circ} 26^{\prime} \mathrm{E}$. long, and $6^{\circ} 8^{\prime} \mathrm{S}$. lat. Like most of the islands in the Sunda Straits, Krakatoa was clothed from base to summit with a luxuriant growth of forest and of tropical vegetation. When in the course of the survey the northern face of the mountain was visited in the latter year, several warm springs were found-a common enough thing, however, in these islands. Moreover, Krakatoa, as well as Sebisi, was at that time totally uninhabited, being only visited occasionally by the inhabitants of the neigbbouring coasts for the sake of the products yielded by the woods.

On May 20 in the present year several shocks, accompanied by loud explosions and hollow, reverberating sounds, were observed at Batavia and Buitenzorg, each about 100 miles distant from Krakatoa. That these phenomena were not seismical was recognise 1 at once; the magnetic needle of the magneto-meteorological observatory showed no deviation, only a trembling motion in a perpendicular direction. A few days later came the news that a volcanic eruption had taken place on the Island of Krakatoa, where nobody had once thought of looking for the seat of the phenomena. The captain of a mail steamer, however, which passed the island at about $6 \mathrm{p} . \mathrm{m}$, has since reported that the needle on his ship was violently agitated, being spun round repeatedly. ${ }^{2}$

From the deck of another vessel which was passing about eight o'clock on the evening of the 22nd, a domeshaped mass of vapour, mingled with smoke of a dark gray colour, was seen to rise from the lower part of the island. The first thing noticed was from ten to fifteen dark red "sheaves" of fire flashing up in rapid succession from the base of the column. These were followed by explosions, more or less loud, resembling discharges from artillery, so that the ship, which was sailing at no great distance, distinctly felt their influence. In the upper part of the volume of smoke appeared an uninterrupted series of flashes, differing in no respect from ordinary lightning flashes, except that they were discharged concentrically upon the column from the atmospheric clouds surrounding it. The heat emanating from the locality of the eruption was sensibly felt on the hands and face at a distance of nearly two miles away; the presence of a powerful marsh-gas was also easily detected. Several nautical miles past Krakatoa a thick shower of fine darkgray sand continued to fall upon the ship for the space of

[^1]half an hour. An apparently illimitable cloud of drifting pumice was encountered at a distance of ten miles from the island, and twenty miles farther a second cloud of pumice, which was so thick that a bucket let down into the sea was filled with it before it reached the surface of the water, while the ship, although going at the rate of tof knots an hour, cut through the pumice with a noise like that made by a vessel breaking way through thin ice.

A short time afterwards a visit was made to the scene of the eruption by a party from Batavia, and as the account of this visit contains perhaps the latest description of the condition of Krakatoa before the great convulsion of August 26, a few words from it may be perhaps not devoid of interest.

The spectacle as seen from the north of Krakatoa was one calculated to have inspired the pencil of a Doré. From the devastated island a huge, broad pillar of smoke towered upwards as high as the clouds; and while Verlaten Island gladdened the eye with its profuse display of the glories of tropical vegetation, Long Island was completely withered up,-the leafless trees, bent, twisted, and torn, but not scorched, were left standing like naked spectres, as colourless as the soil, or rather enveloped in the same neutral tint of gray, from the pumice dust, as all the rest of the island. Between these two, and only separated from each by a narrow channel, rose, somewhat in the background, the lofty cone of Krakatoa, still covered with green foliage, and without any signs of activity. But in front of the volcano all was wrecked, covered, nay, completely buried, under pumice dust, which, when the sun shone upon it, became of a yel-lowish-gray colour, while thick masses of condensed vapour, accompanied by incessant fulminations, boiled up from behind the bare and gently sloping dunes. These masses of vapour were for the most part snowy white, others gray, and were closely intertwined, afterwards spreading out in continually widening circles. It was as if a gigantic spectral caulifower were with incredible rapidity evolving its successive stages of growth before the spectator's eyes. The volumes of vapour were shot out with terrific force in a strictly vertical direction; the atmospheric pressure in the middle of them must have been something fearful. And from time to time immense funnels became visible, leading outwards, and into these many of the incessantly changing ravelled wreaths of smoke were sucked. The rest maintained their original form to a height of several thousand feet; then they slowly drifted eastwards, and, spreading out into mist, discharged their ashes downwards in black streaks like the dark fringes of rain-clouds seen on the horizon. Occasionally the bellowings became louder, and a thicker and larger volume of smoke was vomited fortb. Soon afterwards it was noticed that the sky in the west, which was there as bright and clear as it was dark and heavy in the opposite quarter, was being thronged with small, dark bodies,- they were pieces of pumice, of no great gravity, hovering in the air as if upheld by the power of the fiery breath that was streaming upwards. On landing, the party found that they sank up to the ankles in ashes, and accordingly it was necessary to proceed with great caution. As they slowly ascended, the ground and the air both became warmer, the evidences of destruction amongst the trees more conspicuous, and pieces of pumice lay scattered more thickly on the ground. Arrived at a height of about 200 feet above sea level, they found themselves on the edge of a "caldron" of about 700 yards in diameter, probably a former crater. Thence they saw to the north-cast the seat of the recent outbreak of May 20, the maximum length of which was about 100 to 110 yards. Here, besides the volumes of vapour and smoke and pumice dust, they also observed sulphur troughs, out of which the mud boiled up in enormous bubbles, which at length burst ; and sulphur springs and new but smaller columns of smoke showed themselves in other places. The noise
was terrible ; the sound made by the discharge of a rifle was like the snapping of a bonbon in the midst of the hilarity of a banqueting hall. Some of the party ventured to descend a little way into the crater, a few even to step tentatively upon its hot and burning floor. They brought back with them pieces of pumice and lava '-a kind of black glass-or a piece of sulphur as a memento of the visit. By the time they reached the steamer again darkness had come on, and the spectacle was then one of extraordinary beauty and grandeur. The great column of smoke was still tolerably visible, but the lower part had become a mass of glowing red, from which tongues of yellow flame continued to dart incessantly. At intervals a shower of fine sparks broke out from the cloud, and red-hot stones clove fiery furrows in the air, and fell back at an acute angle to the earth, where they were shattered into a thousand pieces.
That the activity of the mountain was continued during the months of June and July is certain from the report of the Comptroller of Katimbang (on the casternmost promontory of Sumatra), who observed several violent detonations. Also from other places in Sumatra, and particularly from Mexapi ($100^{\circ} 28^{\prime}$ E. long, $0^{\circ} 20^{\prime} \mathrm{S}$. lat.), came tidings of volcanic movements ; and similar reports arrived from Java.
Then cam the outbreak of August 26, surprising, inconceivable, in its terrible effects. Although full and detailed reports are not yet to hand, as indeed from the nature of the circumstances they cannot well be expected to be, for communications are in great measure interrupted, destroyed, and rendered impossible, or those who should have made the reports have either fallen victims to the catastrophe, or have fled-who knows where ?-yet sufficient intelligence has reached us to justify an estimate of the number of the victims who have perished at tens of thousands; and as for the amount and extent of the material damage done, it is so great that an approximate calculation even cannot be attempted.
The plain simple facts to which all this is due were the eruption of August 26, and particularly the ocean wave which succeeded it on the following day. ${ }^{2}$ This destructive wave appears to have started from Krakatoa, or its neighbourhood, as a centre, to have dashed with terrific force upon the eontiguous coasts of Java and Sumatra, to have proceeded down the Sunda Straits eastwards with a height that reached from 40 to 100 fect in the narrow throat of the pass opposite Anjer, and 17 feet at Batavia, and even to have extended to the western and eastern shores of America, where it was observed on the 27 th and 29th respectively. Not to repeat what has been already stated in this journal (vol. xxviii. p. 443), it will be suff. cient to add that a few days after the occurrence we learnt in Europe from official telegrams that Tjiringin, Anjer, and the quarries of Merak, as well as the cone of Krakat ua, had disappeared from sight. But further intelligence from Java, of August 28, states that Krakatoa has not entirely disappeared.
Although information respecting the extent of damage and destruction caused on the south coast of Sumatra is still very meagre, it appears that the two bays of Lampong and Semangka have been rendered totally unfit for navigation owing to the immense masses of floating pumice with which they are covered. In Lainpong Bay, notwithstanding that it was protected by certain islands, the momentum was so great that at Telok Betong a Government steamer was carried three miles inland. Telok Betong itself, the chief town of the Royal Lampong District, is, with the exception of the resident's house, the fort, and the prison, completcly destrojed.

[^2]Fortunately the district as a whole was not very populous. According to the Royal Almanac for 1883 there was on an area of nearly 10,100 English square miles a population of 70 Europeans (excluding the military force), 128,939 natives, 255 Cbinese, and 154 Arabian and other foreign races. No exact estimate of the loss amongst these has yet reached Europe; all we know is that it has been very great, and the destruction to property not less so. Except the three parallel chains of volcanic origin which stretch from north-west to south-east in the three promontories already mentioned, the country is flat and monotonous, and covered with thick woods. In these are the scattered villages and fields of the native population.

On the opposite coast of Java it is the Residency of Bantam which has borne the full brunt of the wave. We learn that at Tjiringin and Anjer it reached a height of nearly 100 feet. Accordingly all along the coast from Java's First Point to Anjer everything must have perished. And although no accurate or detailed returns of the number of lives lost in this district have yet come in, it may perhaps help us to form some conception of what it will probably amount to if we state that Bantam, on an area of about 3200 square miles, had a population of 350 Europeans, 565,438 natives, 1479 Chinese, and 21 Arabs and others. Between Java's First Point and the country to the south of Tjiringin a range of low hills, by alternately advancing and receding from the coast, formed several small bays and coves, the shores of which were more or less thickly studded with native villages and flourishing tracts of cultivated soil. But these were less frequent in the western part on account of the tigers. On the eastern margin of Pepper Bay, south of Tjiringin, the country was more flat and level, and, preserving this character, extended farther inland. But from Tjiringin to Anjer the mountains approached close to the sea. Along their base ran the chief highway to Anjer, thickly set with prosperous villages, while several others hung on the slopes. Here the full force of the great wave was expended; being broken against the rocky walls, it seems to bave swept round them on the north and south and to have completely covered the lower-lying districts about Anjer and Tjiringin. South of Anjer was a bay and small valley running eastwards into the land and bordered by ranges of hills called Kramat Watu, which form the connecting link between the mountain systems to the north and south of this point. The sea is now said to wash the foot of these hills, the invasion having come from the west. It has been already stated that Tjiringin, Anjer, and Merak have disappeared; and all the ground which the inundations have not swept away is now covered with ashes. Tjiringin had six European households, while in Anjer and Merak together there were twentytwo.

Further reports, necessarily imperfect, have come in of the ruin caused by the inundations along the whole extent of the north coast of Java right away to Batavia, and even still farther. Bridges have been swept away, dams broken down, villages swamped, and the cultivated land washed bare by the floods, causing, as everywhere else where they appeared, great losses of life and still greater losses in property. In Tanara alone 700 corpses have been already found. Notwithstanding the facts that the ocean wave, when once it had emerged into the Indian Ocean southwards and into the Java Sea northwards, had more room for expansion, that the Javan coast then formed a kind of angle running back into the land, and that several small islands to the north of Batavia acted as a sort of breakwater, the great wave still possessed such strength that it drove a man-of-war ashore on one of these islands and tore away its floating deck. At Tandjong Priok the sea was observed (unfortunately the time is not given) to rise to a height of more than seven fect above the normal level, and then immediately afterwards to sink ten feet
below that point, thus giving a difference of seventeen feet, while the average difference between ebb and flow is not quite three feet. The water poured in through the narrow opening (410 feet wide) between the inner and outer harbours like a waterfall, and, having filled the basins, flowed out again in the same manner.

According to the accounts received up to the present time, everything to beyond Pandeglang (south of Serang) is covered with ashes, and everything that was in the fields has perished. Very considerable damage has also been done to the lightly constructed bamboo houses by the shower of ashes, so that more than half the population (the north-east portion of the district is by far the most populous) are without means of sustenance, and, what is of far graver consequence, without fodder for their cattle. Appalled by the eruption, and dreading the famine that would soon stare them in the face, they have, it is said, taken to fight, carrying off with them what they could, and leaving their territorial possessions in the lurch. It is probable, however, that this has only been in the first moments of terror, for the native is wont to cling tenaciously to his hereditary soil. It is to be boped that the Government Commissioner will succeed in furnishing assistance, and that speedily and in no stinted measure, to these especially unfortunate people. For years they have been visited by epidemics, and have suffered great losses from murrains amongst their cattle. Indeed, during the last year alone, the population has fallen off 10 per cent, in numbers; and what makes the case so much the worse is that the Government itself has experienced from this disaster losses in public works and in its extensive coffee plantations which may safcly be reckoned in millions.
What, however, was the immediate cause of this ocean wave, whether occasioned by the rising of sixteen new islands (active volcanoes?) between Krakatoa and Sebisi, or by the falling in of the cone of the former island (or whatever be the part of it which has disappeared), or whether both causes have co-operated togetber, must remain more or less matter for conjecture until we have more authoritative details, based on scientific examination of the scene of the disaster.
J. T. Bealby

Mr. Meldrum contributes to the Mauritius Mercantile Record fresh information on the tidal phenomenon of August 27 last, a condensed statement of which may be given here in connection with the above :-
At Cassis, during the whole day, the water was coming and going, but the movement was not taken much notice of till about 1.30 p.m. The tide on that day did not rise as usual. The water came with a swirl round the point of the sea wall, and in about a couple of minutes returned with the same speed. This took place several times. Similar phenomena occurred on the 28 th, but to a mucb smaller extent.

At the St. Brandon Islands on August 27, Capt. Rault's vessel was anchored on the west-north-west side of Avocaire Island in $3 \frac{1}{3}$ fathoms, a cable's length off shore, when at 3 p.m. the water began to rise 20 feet above the highest point attained by high water. It was then ebb tide. Quickly the water receded with a very rapid motion, leaving everything dry, showing out the shoal patches quite dry, to a very long distance from the island. Before fifteen minutes had elapsed the water rose again with the same velocity for the second time, coming up to the first mark. It was not a wave, nor a billow, nor a high sea; the water was smooth, except where there were heads of coral, and there a few wavelets only were produced. This motion of the water backwards and forwards lasted up to 70° clock p.m., the intervals between low water and high water being greater towards the evening; at first the intcrvals were about ten minutes, and towards six o'clock twenty minutes. The current was setting towards east-north-east of the com-
pass, and the velocity was ten miles an hour. At sunset the sky in the western horizon had a peculiar smoky appearance, which extended nearly to the zenith in an east-south-east direction. On the 28 th, at $4 \mathrm{a} . \mathrm{m}$., the same tidal phenomenon took place and lasted up to 7 a.m., but it was less intense, the alternate motions of the sea having only been observed four times. When day dawned on the 28 th there was a peculiar crimson colouration from east by north to south-east by east, and the sun after rising showed as if seen through the red shade of a sextant.
At the Seychelles, at 4 p.m. on August 27, the tide came rushing in at the rate of about four miles an hour, and rose two feet. In about half an hour it receded; it returned and receded.
This continued all night and all next day, but the action was quicker and the rise lower. The observations were taken in a channel about twenty-three feet wide, and walled in on both sides. The action continued all day and part of the next day (29th), but not so frequently. At 5 p.m. on the 28 th the sun was clear and bright. At sunset there was a lurid glare all over the sky; at 6.30 it was much brighter, and at 6.45 it disappeared. On the 27 th the sky was slightly hazy all day. On the morning of the 29th the sun at $7 \mathrm{a} . \mathrm{m}$. was more like a full moon than anything else, and appeared about 70° above the horizon, instead of as usual about 30°. At sunset on the 28 th the sun looked as it does through a fog on a frosty day in England.

At Rodrigues, about $1.30 \mathrm{p} . \mathrm{m}$. on the 27 th, the sea was all disturbed, resembling water boiling heavily in a pot, swinging the boats which were floating about in all directions. It was then low tide, and most of the boats were aground. This disturbance in the water made its appearance quite suddenly, lasted for about half an hour, and ceased as suddenly as it had commenced. At 2.30 p.m. a similar disturbance commenced again in the inner harbour, and the tide all of a sudden rose to a height of 5 feet il inches, with a current of about ten knots an hour to the westward, floating all the boats which were aground, and tearing them from their moorings. All this happened in a very few minutes, and then the tide turned with equal force to the eastward, leaving the boats which were close inshore suddenly dry on the beach, and dragging the Government boat (a large decked pinnace) from heavy moorings, and leaving her dry on the reef. At noon on the 29th the tide was about its usual height and appeared to be settled. The water was very muddy, and not nearly so salt as sea water usually is; it was little more than brackish. Since this singular occurrence took place the sky at north-west has had in the evenings, to as late as $7.15 \mathrm{p} . \mathrm{m}$., a very threatening and strange appearance of a decp purplish red colour.

Tidal disturbances were also observed on the west coast of Reunion, and especially at St. Pierre, on the southwest coast. The maximum amplitude (in height) of this tide was about a metre and a half. The flow took scarcely five minutes to rise, after which the water remained about a minute at rest, and then receded with the same rapidit, to rise again a minute after.

At East London (South Africa) it was not low water on August 27 till 6.29 p.m. At $5.30 \mathrm{p} . \mathrm{m}$. on that day the tide-gauge showed 2 feet 3 inches, and the tide was running in fast. The gauge showed 3 feet 3 inches at 5.38 ; 1 foot 8 inches at 5.45 ; 1 foot 3 inches at 5.49 ; and 2 feet 3 inches at 6.10 . Thus, although it was a falling tide, the water suddenly rose if foot in 8 minutes, then fell 8 foot 7 inches in 7 minutes, and 5 inches in the next 4 minutes, and then rose 1 fort in 21 minutes. The wind was moderate from east-south-east, and the barometer was $30^{\circ} 40$, with dull cloudy weather to south-east. It had been observed during the early part of the afternoon that the tide was oscillating very considerably, and ebbing very fast for neap tides.

On Sunday, August 26, while coming through the Straits of Banca, Capt Strachan, of the s.s. Anerley, thought he heard in the forenoon a noise like that of distant cannonading ; about noon the noise was more distinct, and it soon attracted the attention of all on board; flashes of light were seen to the south-westward. In the evening an arch of light rose in a short time from the horizon to the zenith. Three aneroid barometers on board rose and fell to the extent of nearly an inch at short intervals. During a part of Monday, the 27 th, there was total darkness. Showers of pumice-stone lasted till midnight. The Anerley ran back and anchored under the North Watcher Island. While afterwards passing Anjer Point, it was seen that the lighthouse had disappeared, and that great damage had been done.
Capt. Perrot, of the French brig Brani, reports that on August 26 to 27 , in $1^{\circ} 39^{\prime}$ to $2^{\circ} 59^{\circ}$ S. and $89^{\circ} 56^{\prime \prime}$ to $89^{\circ} 50^{\circ}$ E. of P., constant peals of thunder were heard in the direction of Sumatra, but without any appearance of lightning in that direction. From midnight of the 27th to $11 \mathrm{a} . \mathrm{m}$. of the 28 th showers of "very white and very fine sand fell all over the vessel." More sand fell later on in the day and on the 29th. This sand obscured the atmosphere. On August 28, in $8^{\circ} 20^{\prime} \mathrm{S}$., and $92^{\circ} 04^{\prime} \mathrm{E}$. "a great quantity of dust, supposed to be coral dust," fell on board of the County of Flint, and a specimen of the dust has been kindly presented by Capt. Rowland, the master of that vessel. On September 9 , in $4^{\circ} 57^{\circ} \mathrm{S}$. and $79^{\circ} \mathbf{4 6}^{\prime}$ E. of P., the French bark Gipsy, Capt. Martin "encountered during the whole day a great bank of floating pumice-stone." On Sunday, August 26, in $0^{\circ} 32^{\circ} \mathrm{S}$., and $105^{\circ} 57^{\circ} \mathrm{E}$., Capt. Knight, of the brig Airlic heard, about 3 p.m., explosions, like the sound of heavy artillery, which continued at intervals till about to p.m., the last report making the ship tremble all over. Next morning the rigging and deck were covered with fine gray sand like dust.

Mr. Meldrum remarks that there is no doubt that the tidal disturbances observed at Mauritius and elsewhere in the Indian Ocean were due to earthquakes. The origin of the seismic waves was apparently in the Straits of Sunda, and at a very considerable depth below the surface. There were earth-waves, forced sea-waves, and aërial waves. The destruction in Java was caused, apparently, by an immense wave of translation. The extraordinary sunrises and sunsets observed at Mauritius, Rodrigues, and the Seychelles, were probably due to the sun's light passing obliquely through fine volcanic dust floating in the air. It is not improbable that the disturbances of the magnets on August 27 were due to electric currents produced by the action of subterranean forces.

THE LITERATURE OF THE FISHERIES EXHIBITION

FROM the moment of its inauguration, the present Exhibition has been the centre of a ceaseless activity, and we doubt if its streaming thousands of visitors have realised the amount of real work which has gone on in their presence. The results of this, embodied in an extensive literature, are now before the public, and add another testimony to the faultless management of the governing body. The enormity of the fishing interest and the need of reform in certain of its branches, are obvious; and now that the press is speculating upon the "outcome" of this great enterprise, all eyes are turned upon the executive. The extent to which the Exhibition is under State control is in itself a guarantee of success, and we hail with pleasure that same system of descriptive labelling of the exhibits, and the publication of authentic treatises upon or cognate to them, so long characteristic of the adjacent National Museum. By this system the public nets a tangible result-a knowledge of that which
is at stake-becoming thus prepared to form a rational estimate of the final issue.

Of these treatises or "Handbooks"-also introductory to the more important "Conference Papers" to be spoken of hereafter-twelve have been already published, and it is to be regretted that they were not ready upon the opening day. Foremost among them is a powerful treatise on "The British Fish Trade," by His Excellency Spencer Walpole, whose authority in these matters no one will venture to doubt. Here at the outset, we encounter, in the deplored absence of reliable statistics, one of the most formidable difficulties of the whole question, and the labour under which the author has collected those upon which he so ably generalises, speaks for itself. It is shown that the East Coaster, Manxman, and Cornishman are-for obvious reasons-gradually monopolising the "take," and in the discussion upon and ultimate denunciation of the "brand" question, every thoughtful reader will agree. That a legal reform is pending no one will doubt, and such statements as those on p. 3 regarding the registration of boats, and on pp. 17 and 19 concerning the regulation of lights, suffice to show how the follies of this world can confound its administrative wisdom. This admirable work is a masterly analysis of the "catch and distribution," and should be read by all who would grasp the question in hand.

Dealing with the purely legal aspect, Mr. F. Pollock produces an authoritative work on "Tbe Fishery Laws." The fresliwater fisheries are seen to be, of necessity, more protected by law than those of the sea, territorial waters excepted ; and it is important to note the extent to which conservators and other local authorities are empowered. The present aspect of the question is ably sumnied up in the author's "conclusion" to this a concise and wellarranged work.
The educational side of the matter has not been overlooked. In the production of a valuable little work on the zoology of food-fishes, Mr. G. B. Howes has successfully solved the very difficult problem of so diluting a large store of special knowledge, as to present it in a form well adapted to the assimilation of the class of readers for which it was avowedly written; and at the same time has contrived to invest it with an earnestness of tone and a dignity of conception which cannot fail to be productive of good to the most casual student. We cannot expect a composition of this kind to assume the accurate character of a text-book, and hence a few omissions, which more mature reflection would have remedied, constitute faults which should readily be overlooked Altogether the author may fairly be congratulated on having scored a genuine success. Mr. W. S. Kent has done good service by bringing into one volume a synopsis of the distinctive characters of every species of British fish. His work, welcome for this reason alone, also embodies observations upon fishes in captivity, made during his carecr as naturali, to various existing aquaria. Many of them are interesting, but those upon the fceding of fishes must not be taken as necessarily indicative of their natural habits. The strange, guarded mode of progression of the Boar-fish, John Dory, and others described, can also be seen in the Pike in his native run. Much of the controversial matter in this book, befitting a conference paper, would, so treated, have entailed a desirable curtailing of this, a popular work of reference.

Man's all-prevailing imagination is wisely checked in "Sea Monsters Unmasked," in which Mr. H. Lee collects the scattered literature of this subject, and puts in a strong plea for the "cuttle theory," of which he is a well-known champion. An able defence of Pontoppidan is maintained, and one novel record set forth in this work is the dissipation of superstition-the kraken of our child-hood-by a bishop-a Norwegian however, and in the eighteenth century. The two last-named manuals are illustrated, and all concerned merit congratulation upon
the production of such examples of xylographic art as cover pp .18 and 21 of the latter work.
The four following volunes are devoted to the more practical side of the industry. Mr. E. W. Holdsworth gives an exceedingly clear and systematic account of "The Apparatus for Fishing," and by the use of wellchosen similes succeeds in making plain his descriptions of the most intricate apparatus. The advances dependent upon the introduction of the "ketch-rigged" boats must, as here set forth, impress the reader with the need and value of improved apparatus. From the manner in which the various topics are treated by so competent an author, the reader can form some definite notion of the real practical difficulties which our fishermen encounter. These and other like matters are also fully dealt with in the two following works, by Messrs. J. G. Bertram and W. M. Adams respectively. The former is a plea for "The Unappreciated Fisherfolk," and the later deals with the "Fisheries and Fishermen of all Countries." Much fresh testimony to the antiquity of the industry and the remarkable community of its followers-wherever they are found -is brought forward in these two volumes. Their hardworked lives are shown, as generally acknowledged, to bring in but a scanty remuneration, accompanied by ceaseless anxiety and danger : how far the former is not at times due to their inherited conservatism-especially as regards the bait question-remains uncertain. The moral attributes of their lives, often untainted by "civilisation," are fully attested, and any one who has witnessed the operations incident upon, say, a Scotch herring take, will know that reform in this respect is more needed among the "gutters" and others accessory to the work than among the fishermen proper. The evidence adduced here and elsewhere points to a need of immediate reform in the apprenticeship question, much that is bad in it being due to existing regulations. The sketch given of the decay of the Irish fisheries is to be deplored, but of their restoration a hope still lingers. It is certain that if our fisherfolk "know nothing whatever about fish, except the way to catch them," they know this at least thoroughly. Mr. Adams claims for Oppian the dignity of an ichthyologist, and gives Ælian perhaps more than his due on p. 16 of his book. An incident, bearing upon the foundation of "Holland's Maritime Ascendancy" (p. 37), will not fail to interest our readers at the present time, and we note that neither Mr. Adams' researches nor those of any one else, have yet satisfactorily cleared up the origin of trawling.

It is not reassuring to compare the state of affairs in India, as detailed in Dr. Day's Manual, according to which, matters in that land stand as much in need of reform as at home. The author attributes the existing deplorable condition of the Indian fishermen largely to misrule, but more especially to the weight of the salt-tax imposed by the British; indeed, this topic is the refrain of the whole book, and the author's own investigations go far to support the belief. As might be expected, there are some curious customs and forms of apparatus described, in use among men so interesting as these from an etlinological point of view. Some speculations on p. 37 as to the behaviour of ova in mud are at least suggestive as our knowledge stands, and it is sincerely to be regretted that we have no British representative of the air-breathing Ophiocephalidxe described on p. 31, for if so, we venture to say that reform in the matter of our freshwater-fisheries would be less slow. Dr. Day also furnishes a work on "Fish Culture," in which he gives a historical review of the different aspects of this subject, not altogether favourable to our own possessions. Bewailing the need of Governmental action, and deploring the lack of statistical evidence upon which to generalise, the writer has either collected or furnished a mass of information which will both enlighten the public and prove of service to the practical man. The style of this book is somewhat heavy,
and might be improved by a little judicious thinning. Both Dr. Day's books are illustrated-in the case of the former somewhat unintelligibly. No one interested in fishing will regret the failure of an attempt (made, we believe, by the late F. Buckland) to acclimatise the Sheatfish (Silurus).

Mr. C. E. Fryer, in his work on "Salmon Fisheries," throws some doubts upon the necessity of elaborate artificial breeding, in a weighty argument, having for its keystone the restoration of our waters by the removal of pollution. The intricacies of the vexed question in hand are admirably put before the reader, and the author shows that, in some cases, existing obstacles could be removed, or that at least considerate action could, if exercised at the right time, beneficially modify the present state of affairs. In a comparison of the "pass" and "dam" systems, the success of Cooper's pass, on the Ballisodare River, Ireland, is adduced as a strong argument for the salmon-ladder. The reported death, after spawning, of the kelts of British Columbia opens up a new field for inquiry; and those interested in animal intelligence, so much discussed in these pages, will find here some interesting additional testimony to the capacity of the salmon. The author's description of the dawn of life on pp. 13 and 14 might be advantageously improved.

The only remaining volune, one by Mr. J. P. Wheeldon, treats of "Angling Clubs and Preservation Societies" ; and in tracing the growth of many of these it is shown that they have done good work, as, for example, the abolition of "snatching" and "night-lining." The opening remarks, however, are not favourable to the majority of those in London, whose members unfortunately constitute more than ninety per cent. of our Thames angling-community. In tracing the changes wrought in our local waters, the village poacher of old is compared with the modern steam launch as a destroyer, and one more protest against the latter is lodged by the writer, a champion in the eause. It is important to note that the best regulated waters are those in which the management is vested in the hands of resident local bodies.

Such are these "Handbooks," the main portion of a series which will doubtless form a complete, but none too hopeful, epitome of the subject-matter. We now turn to the "Conference Papers."

The meetings at which these were read and discussed were all thrown open to the public, and, what is of greater importance, there were to be found present influentials of all grades and nationalities from royalty down to the very fishermen and dealers whose immediate interests were under discussion. The chair was invariably occupied by some one of authority-in one case by a sole living " Minister of Fisheries."
Of the masterly inaugural address delivered by Prof. Huxley, and of the paper by H.R.H. the Duke of Edinburgh, which formed the subject of the first sitting, the public have already bcen fully informed, and no one who was present at either of those meetings could fail to observe that the surroundings augured at least an active future. Concerning the address, suffice it to say that the truth of the only statement upon which dissension has been raised -by a carping minority who have entirely misunderstood the real meaning implied-has been more fully verified at each subsequent sitting (we refer to the inexhaustibility of the herring fisheries). The very fact that in the latter admirable paper an attempt has been made to estimate for the first time our national take of fish- 615,000 tons per annum-to say nothing of other statistics, gathered with immense labour, is in itself sufficient to justify immediate action, striking as it does at the very root of the evil at present existing-at the same time forming a good starting point for future investigation.
Beyond the formal passing of a vote of thanks, these were both dismissed without discussion, that upon the
latter being adjourned sine dic; but the subject-matters of the twenty-six papers which follow on were all freely discussed, both the length of the paper itself and of each speaker's remarks being under control, such as favoured a thorough sifting and all-round investigation of the topic under consideration-the object being to get at facts rather than to frame schemes. The Exhibition itself shows the far-reaching interests of the fishing industry, but in the account which follows we have attempted to roughly classify the work done in conference.
The gravity of the inportant question of "supply " will be seriously increased should the ingenious argument advanced by Sir H . Thompson on Pp . 14 and 15 of his "Fish as Food" be substantiated. This paper is of great value, embodying as it does the most recent analyses in the question, of which it must be admitted that very little is known, and dissipating certain cherished but fallacious notions, in matters dietetic. Deploring our national indifference to these, the author formulates them for all conditions ofmen, on the supposition that fish shall be eaten, giving some valuable hints for practical treatment. It is well known that the West Highlander would probably rather starye than eat the eel which abounds in his waters, and which, the experienced author of this paper shows, supplies the very requisites of which he most stands in need.
Of first importance among a series of papers dealing with our home sea-fisheries is that on "The Herring Fisheries of Scotland," by Mr. Duff, M.P. Certain aspects of this question have been before the public for some time past, but the conclusions drawn by the writer all point to the introduction of improved apparatus and harbour accommodation, and to the repeal of any restrictive legislation which may exist in this-a matter in which the current official report shows that we do not know sufficient of the habits of the fish themselves to even account for their movements, still less to legislate upon their capture. This paper will be of great value to the practical fisherman, and furnishes a good survey of all sides of the industry. No greater argument for improved tackle can be adduced than that of the change wrought in our herring-fisheries by the substitution of cotton for hemp netting. The closely allied "Mackerel and Pilchard Fisheries " form the subject of a thoroughly practical paper by Mr. T. Cornish, himself a worker. In the absence of statistics to prove otherwise, reform points in the same direction as for the herring-fisheries. Fuller information on the question and probable cause of the fluctuations in the "boat-side" price of mackerel (p. 10) would be acceptable. Although the habits of the pilchard baffle us, the author shows that where these fishes do occur they are most productive, and giving some interesting statistics concerning them, he advocates the establishment of a chesp market for their sale. In the discussion which follows, Prof. Brown Goode gives a short but interesting account of the American mackerel-fisheries. Two short papers on "Trawling" and "Line Fishing," respectively by Messrs. A. W. Ansell and C. M. Mundahl, embrace all the information upon our seafisheries other than that given above. Our readers are doubtless aware that a Commission is now inquiring into the disputes between the advocates of these two great systems, and much of the matter contained in these papers is naturally devoted to them. An amount of useful statistical information is collected, and certain subsidiary questions are discussed in their bearing upon the industry, notably those connected with transport. The old belief that the beam-trawl displaced and destroyed the ova of our deep-sea fishes has been but recently shattered by Sars, but Mr. Ansell adduces evidence to show that the question of shore-trawling demands investigation. There can be no reasonable doubt but that trawling will be the fishing of the future; it gives constant employment for the whole year, all objections raisei against it are dissi-
pated, and its advance must be sought in the application of steam power. It will be generally admitted that our existing home-difficulties are in no way due to defective apparatus.

Capt. Temple, in writing on "Seal Fisheries," adopts the wise course of holding himself responsible only for those of which he has had actual experience, leaving a hiatus, filled in during discussion by Mr. Martin and others. Devoting but little attention to the legal aspect of the industry, which we venture to say stands, with us, sorely in need of reform, the author seems more hopeful than the world at large of the chances of the chase. The body of the paper sets forth the modus operandi of the unenviable life of the sealer, whose lot entails great hardship, often rendered none the less buoyant for an excess of oil, nor the less happy under a "truck system." More might have been said with regard to this industry.
Turning now to other countries, we have most prominent a highly important paper on "The Fishery Industries of the United States," by Prof. Brown Goode. Some idea of its contents will be formed when we say that it fully bears out the impression made by the magnificent exhibits of that country, to study which delegates have even been sent over from other lands. The paper is a mine of useful information, and the refreshing speeches which have fallen from its author during the Conference meetings have shown how much remains untapped. The accounts given of refrigerator-cars, special oyster-trains, of the utilisation of waste, and the wellknown potting system on the economic side; of floating hatcheries, of the artificial propagation of fish (twentyseven species), and other practical topics ; and on the administrative side, of the amount of liberty allowed in matters where a more jealous State might interfere, surely point to a common moral. The history of the Menhaden fishery cannot fail to strike all readers as an example of what can be done by persevering in a "new departure," and it is important to note that the system of management and insurance of the boats composing the American fishing feets is such as to give every impetus to the work by arousing the best interests of the nien, at the same time insuring those of the capitalist. The statements advanced in both this and a paper on the Canadian fisheries, by Mr. L. Z. Joneas, are based upon deductions from a most perfect system of registration. The status of the latter country-jealous of its reputation-in fishing matters is everywhere recognised, but even it has to re-
cord the failure of attempts to artificially cure the codcord the failure of attempts to artificially cure the codthe staple fish of its trade-and the writer deplores, for good reasons, the want of export traders in this the leading enterprise of its fishing population. The herring and mackerel fisheries are also dealt with, and it is reassuring to us to read that for the regulation of its lobster fisheries, of ten years' standing, Government measures are still being taken. The written account of the seal fishery conveys a good notion of its importance and a far better one of its technique than do certain sanguinary models exhibited in the Newfoundland section. The method of working a steam service on a wage system (in connection with their Great Lake fisheries) is worthy of attention.

Coming nearer home, Prof. Hubrecht, on behalf of the Dutch Government, tenders some very valuable observations upon the "Oyster Culture and Fisheries in the Netherlands." Upon the present state of our oysterbeds no comment is needed, any more than upon the fruitless efforts on the part of private individuals to establish new fisheries in our own waters. The experimental evidence-the result of observations still going onbrought forward by the author is of the highest importance; statistics favourable to artificial culture are given, the period of sexual maturation has been determined, and these and other similar facts ascertained all point to the conclusion drawn, viz. that "a close time may be of service, but that the great thing appears to be to leave a
fair portion of the oysters on or around a natural bed wholly undisturbed for a series of consecutive jears." This fact, discovered by chance in the Netherlands, embodies the sense of a statement made by Prof. Huxley in the matter in his opening address. It is noteworthy that the purely scientific biological and physico-chemical aspects of this question have received their full share of attention.
The main question bearing upon Mr. C. Harding's paper on "Mollusks" is that of bait. As the matter stands, action would be premature, until it can be shown that other forms of bait than those now in use are of no avail. It is well known that, on the one hand, fishermen are often compelled to stay on shore for want of bait, and on the other, it must be remembered that they are as conservative in this matter as in any which concerns them; but the fact that under like circumstances the Lofoden Islanders carry on a brisk catch by aid of the "gill-net," must not be overlooked.
(To be confinued.)

THE PARIS OBSERVATORY EQUATORIAL"

THE accompanying illustration represents the remarkable apparatus recently set up in the Observatory of Paris, to which we have before called attention, the ingenious construction of which is due to M. Loewy, sub-director of that establishment. Begun under the administration of M. Delaunay, interrupted during the war, thanks to a new act of munificence on the part of M. Bischoffsheim, it has now been tinished.
To answer the requirements of modern astronomy equatorials are necessarily gigantic. Like the guns of modern warfare, each new apparatus is constructed on a larger scale than that of its predecessors, though it is not for purposes of destruction that they are aimed at the celestial bodies.
The advantages of the new equatorial are (1) that it measures great angular distances; (2) that it enables observations to be made with comparative ease and rapidity. Seated on a fixed chair apart from the support of the instrument, the astronomer is as if placed before his writing-table. The instrument obeys him, not he the instrument.
The new telescope is bent at right angles, one part directed in a line with the axis of the earth, and capable of turning round itself ; the other perpendicular to it, and therefore moving in the plane of the equator. At the extremity of the latter is a mirror, and at the elbow of the telescope, in the interior, another mirror, both forming with the axis an angle of 45°. These mirrors are intended to reflect to each other, and finally to the observer seated with his eye at the eyepiece, the image of the star which is the object of observation.
The loss of light from successive reflections is har.11y perceptible. The deformation which the images might suffer from the use of mirrors of insufficient thickness has been guarded against. In its optical qualities, too, the new equatorial is not surpassed by any telescope in the Observatory. Two advantages have thus been securedthe power of measuring great angular distances, and that of exploring the entire heavens, the observer regulating the apparatus himself, and not needing to shift bis position.

Another benefit resulting from these happy arrangements must also be mentioned-the abolition of the Observatory with a heavy, urgainly, and expensive dome, and the substitution of one of much smaller compass and of much simpler construction. It consists of a movable part covering the object-glass end, and of a fixed part appropriated to the observer. When prozeeding to make observations the

[^3]
observer draws away the movable part, which readily rolls on a railway. The extremity of the teleseope bearing the mirror of the objective is thus left uncovered, while the astronomer, ensconced in his fixed part as in his own room, and sheltered from all inclemencies of weather, studies the infinitely great in conditions as comfortable as those of the naturalist who examines under his microscope the infinitely little.

Seeing it is but just that those who bear the burden should also enjoy the honour, we again state that the optical part of this instrument has been executed by the Brothers Henry, and the mechanical part by MM. Eichens and Gauthier.

THE INSTITUTION OF MECHANICAL ENGINEERS

THE Institution of Mechanical Engineers have held their autumn meeting this year in Birmingham-a town which for many years was the headquarters of the Society. The returning to their former seat was specially opportune, because the first paper on the list related to one of the greatest of Birmingham worthies, viz. James Watt. The title of the paper was "On the Inventions of James Watt, and his Models preserved at South Kensingand Handsworth." The author is Mr. Edward A. Cowper, who, from his long connection with engineering both personally and through his father and uncle, is perhaps as well fitted as any man in England to trace out the course of Watt's inventions. This he has endeavoured to do, using as his main guide the numerous models preserved partly at the South Kensington Museum, partly at the Patent Office Museum, and partly at James Watt's house at Handsworth in Birmingham. Some of the models at South Kensington were in danger of falling altogether to pieces from dry rot and decay, but owing to the exertions of Mr. Sandham, the curator of this department, they have, as far as possible, been repaired; whilst, in addition, a complete set of photographs has been taken, which, even if the models themselves should cease to exist, would preserve their appearance and construction to future ages.

The sequence of James Watt's inventions with regard to the steam engine is stated at the end of Mr. Cowper's paper as follows:-

Firstly, in 1769 he made an invention (the separate condenser) which was practically an improvement on the Newcomen engine, the effect of which was to work pumping engines more economically and quickly.

Secondly, in 1781 he produced rotative power for driving factories, obtaining it in a manner by having a heavy balance weight to act one way whilst the steam acted the other way; however, the obtaining rotative motion by steam was an enormous advantage, far greater in its effect, in the author's opinion, than the improvement in the pumping engine.
Thirdly, the crowning invention of 1782 made the steam engine the one useful motive power, by making it double-acting and fit to drive cotton mills, flour mills, and all other machinery requiring regular rotative motion.

These various stages are illustrated by the models above mentioned. It is indeed doubtful whether there exists at present any model embodying the first idea of the separate condenser; but there is a most interesting model at South Kensington showing the condensation of steam in a separate surface condenser, composed of a large number of vertical tubes and provided with an air pump. This form of condenser, which in many cases, such as marine engines, has superseded all others, is thus proved to have been invented by James Watt, and not only invented, but brought to a high degree of perfection. The arrangements in this model, according to Mr. Cowper (than whom there can be no better authority), are in
points equal to the best modern examples of surface condensation.
The only model actually exhibited was an engine of the character of Watt's patent of 1771 . It is single acting. and has an open-topped cylinder, air pump, and condenser. There is a heavy bob on the connecting rod, which is used to help the piston up, while the vacuum formed below it causes it to descend on the return stroke, thus obtaining rotative motion. This engine, however, has a crank, and it is known that for many years Watt was afraid to use the crank in his engines, as it was supposed to be barred by another patent : it is true that his patent of 1771 shows a crank composed of a pin in a disk, but this is carefully termed "the point of attachment of the connecting rod." In practice, however, he used other methods, chiefly the well known sun and planct motion. Of this there are several different forms, which are illustrated by models at South Kensing. ton. There is also a device consisting of a long rack or ladder fixed to the end of the connecting rod and digging into the teeth of a spur wheel on the engine shaft; the rod being guided by means of rollers running in a guide plate, so as to keep it in gear throughout the revolution.
Turning now to the 1782 patent, we find what Watt describes as "the new improved engine, the piston of which is pressed forcibly both upwards and downwards by the power of steam," that is to say, the engine is no longer single-acting, but double-acting. Here the chain hitherto used between the piston-rod and beam is replaced by a parallel motion, and the engine takes very much the form which was still common for shop engines within recent years. A good model of such an engine exists in the South Kensington Museum.
Some variations of this engine, probably made subsequently, are also illustrated by models, such as the Bull engine, in which the piston-rod passes out through the bottom of the cylinder, and takes hold of a beam placed lower down.
Still more interesting are Watt's proposals to make use of the expansion of steam for the saving of fuel; a diagram in one of his specifications shows that he fully understood this action, and he gives several methods by which the load upon the piston may be varied so that when the pressure is least it shall have least work to do. One of these is to mount a weight high up above the beam, which would be lifted when starting from either end of the stroke, and fall after passing the centre; this has been used even in recent times with good results. Several miscellaneous inventions of high interest are also described; one of these is the well-known invention of the steam indicator in probably its earliest and rudest form. Another is a counter for telling the revolutions of an engine, of which an actual specimen in good preservation remains in the Patent Office Muscum.
There is also an arangement for obtaining rotary motion in opposite directions out of the same engine by means of two connecting rods starting from a cross-head at one end of the beam, but working opposite ways. Another model shows two hammers worked by a single engine, the one lifted from the belly like an ordinary forge hammer, and the other by depressing the tail like a tilt hammer. A yet more curious device is a semi-rotary engine, of which an unfinished model remains in the Watt Room at Heathfield Hall. Here there is a piston fixed in a radial line to the shaft, within a large disk or cylinder. Inside this cylinder, at one part, is a fixed support, against which the steam presses each way as it acts against the pist m, in either one direction or the other. The reciprocating shaft was made to act by a spur wheel on two racks attached to the pump rods. Watt also invented a very simple form of rotary engine, which, as Mr. Cowper states, has probably been reinvented at least fifty times since 1782 , the year of his patent.

This leads us to notice the Watt Rcom, or attic workshop of James Watt, which still remains at Heathfield Hall precisely as he left it-his lathe and bench standing at the window, his tools lying about, and his old leather apron hung on the vice. There are numerous shelves with drugs and parcels on them, chiefly relating to his invention of copying-ink, and nests of small drawers full of tools; but the principal objects which strike the attention are two large machines for copying sculpture, whether in marble, alabaster, or wood. One of them eopies to the exact size of the original, but the other is a reducing machine, taking a copy on a very reduced scale. The construction of both machines is described in the paper, and bears testimony to the inventive and mechanical genius of James Watt. The principle in each case consists in using a bar or slide, having at one end a blunt point to feel over the surface of the model, and at the other end a quick-running drill to cut away the surface of the material operated on. This drill is worked by a light cord attached to an ordinary foot lathe, whilst the bar, by means of a skilful arrangement of trussed frames, is made movable in any direction as the feeler passes over the model. The model and work can also be rotated, so as to be set at an angle for handcutting, \&c. The drills and cutters, of which a large number are preserved, are excellent in their design and workmanship. These machines were apparently the amusement of Watt's late years, and are frequently referred to in his correspondence. They were never protected in any way, and partly perhaps for that reason have never been followed up and brought to perfection.

The second paper read was a report by the Research Committee on friction. The Institution experiments on friction, which have been long delayed, have at length been carried so far as to admit of the publication of an interim report, prepared by Mr. Beauchamp Tower, which proves to be of great interest. They are, properly speaking, experiments on lubrication, being conducted on a 6 -inch steel shaft or journal, which could be run at any given velocity, and on which rested a brass bearing carrying a loaded frame. By altering the load on this frame the pressure per square inch on the brass could be altered ; and the temperature could also be altered by means of gas jets under the journal. As a standard of comparison experiments were first tried with the underside of the journal running in a bath of oil, so as to give the maximum of lubrication. The results of these experiments were to show that the friction of bearings under such circumstances follows the laws of liquid rather than (as usually assumed) of solid friction. These laws are very different. Solid friction varies directly as the pressure per unit of area, is independent of velocity at low speeds (Morin), but decreases with increasing velocity at high speeds (Galton, \&c.). Liquid friction, on the other hand, is independent of the pressure per unit of surface, is directly dependent on the extent of surface, and increases as the square of the velocity. In fact it is not friction at all, but the shearing of one part of a more or less viscous fluid across another, as the above law plainly indicate. Now the Institution experiments show that, in the case of oil-bath lubrication, there is really a film of liquid oil surrounding the journal and keeping it away from the brass; and that what is called journal friction is really the shearing of one part of this film over the other. In such cases the friction may be exceedingly small : in some of these experiments it actually was as low as $t / 1000 t h$, and $t / 500 t h$ is easily attained. This is much below what is generally supposed to obtain. The limit of pressure appeared to be about 600 lbs . per square inch. Beyond this the oil is squeezed out, and the metal "seizes." This is of course with high speed and constant pressure ; with low speeds and intermittent pressure (as was pointed out in the discussion) very much higher pressures are admissible.

So far the experiments were satisfactory ; but when the oil-bath was replaced by ordinary modes of lubrication, great difficulties were experienced. When the oil was introduced from above through grooves in the brass, it was found that, however these were cut, and at whatever part of the brass then opened, the bearing seized at a comparatively low pressure. The fact that such methods do as a matter of fact answer with ordinary railway vehicles is accounted for, it is supposed, by the end play of such bearings, and probably also by the general vibration. When, however, a pad fed with oil by eapillary attraction from a bath below, was placed below the journal, so as to press lightly against it, satisfactory results were obtained, although the lubrication was so slight as only to appear to the touch as a slight greasiness. The laws here, however, approximated to those of solid friction, and probably the oil merely acts to fill up the little inequalities of the metal, and so practically render it smoother.

A curious subsidiary result should be noticed. When the oil-bath experiments were in progress, advantage was taken of the brass being removed to drill a hole in it for the subsequent tests with ordinary lubrication. On resuming the running, however, the oil was found in the hole, and on a pressure-gauge being attached, the finger rose to above 200 lbs . per square inch, which was the limit of its indications. This pressure was above the average pressure on the brass, and shows clearly that the surfaces are separated by a continuous film of oil, having at each point an actual hydrostatic pressure due to the external pressure which obtains at that point.

On the whole, these experiments, while to a great extent confirming the well-known researches of Prof. Thurston in America, throw a gooddeal more light on the curious phenomena and laws of journal friction. Their results (including some on temperature, which was found to have a marked influence in diminishing friction) are contained in a series of tables, which our space forbids us to publish, but which can no doubt be obtained, by any one interested, from the offices of the Institution, at 16, Victoria Chambers, Westminster.

NORDENSK/ÖLD'S GREENLAND EXPEDITION ${ }^{1}$
 II.

IN my report of the expedition of 1870 I drew attention to a clayey mud which is found in circular cavities, from one to three feet in depth, on the surface of the inland ice, not only near the shore, but even as far inland as we reached on that occasion. My companion on that occasion, Prof. Berggren, discovered that this substance formed the substratum of a peculiar ${ }^{2}$ ice-flora, consisting of a quantity of different microscopical plants (alga), of which some are even distributed beyond the clay on the ice itself, and which, in spite of their insignificance, play beyond doubt a very important part in nature's economy, from the fact that their dark colour far more readily absorbs the sun's heat than the bluish-white ice, and thereby they contribute to the destruction of the icesheet, and prevent its extension. Undoubtedly we have, in no small degree, to thank these organisms for the melting away of the layer of ice which once covered the Scandinavian peninsula. I examined the appearance of this substance in its relation to geology, and de-monstrated:-

1. That it cannot have been washed down from the mountain ridges at the sides of the glaciers, as it was found evenly distributed at a far higher elevation than

[^4]that of the ridges on the border of the glaciers, as well as in equal quantity on the top of the ice-knolls as on their sides or in the hollows between them.
2. That neither had it been distributed over the surface of the ice by running water, nor been pressed up from the hypothetical bottom "ground " moraine.
3. That the clay must therefore be a sediment from the air, the chief constituent of which is probably terrestrial dust spread by the wind over the surface of the ice.
4. That cosmic elements exist in this substance, as it contained molecules of metallic iron which could be drawn out by the magnet, and which under the blowpipe gave a reaction of cobalt and nickel.

Under these circumstances the remarkable dust which I have named " kryokonite," i.e. ice dust, obtained a great scientific interest, particularly as the cosmic element, viz. the matter deposited from space, was very considerable. Even later students who have visited the inland ice have observed this dust, but in places surrounded by mountains from which it might with more probability have been washed down. They have, therefore, and without having examined Prof. Berggren's and my own researches of 18%, paid little attention to the same, while the samples brought home by Dr. N. O. Holst from South Greenland in 1880 were not very extensive.

But now Dr. Berlin brings home from a great variety of places ice algx, which, I feel convinced, will contribute fresh materials to our knowledge of the flora of the ice and snow. For my own part I have re-examined my first researches of the kryokonite, and they are fully corroborated. Everywhere where the snow from last winter has melted away, a fine dust, gray in colour, and, when wet, black or dark brown, is distributed over the inland ice in a layer which I should estimate at from ois to 1 mm . in thickness if it was evenly distributed over the entire surface of the ice. It appears in the same quantity in the vicinity of the ice border surrounded by mountains as a hundred kilometres inland, but in the former locality it is mixed with a very fine sand, gray in colour, which may be separated from the kryokonite. Further inland this disappears, however, completely. Gravel or real sand I have never, in spite of searching for them, discovered in the kryokonite. The kryokonite always contains very fine granular atoms, which are attracted by the magnet, and which, as may be demonstrated by grating in an agate mortar and by analysis under the blowpipe, consist of a gray, metallic element, viz. nickel iron In general the dust is spread equally over the entire surface of the ice; thus it was found everywhere where the snow from the previous year had melted away, while, to judge by appearances, there seemed to be little difference between the quantity found near the coast and in the interior. The dust does not, however, form a continuous layer of clay, but has, by the melting of the ice, collected in cavities filled with water, which are found all over the surface. These are round, sometimes semicircular, one to three feet in depth, with a diameter of from a couple of millimetres to one metre or more. At the bottom a layer of kryokonite one to four millimetres in thickncss is deposited, which has often, by organisms and by the wind, been formed into little balls, and everywhere where the original surface of the ice has not been changed by water-currents the cavities are found so close to each other that it would be very difficult to find a spot on the ice as large as the crown of a hat free from them. In the night, at a few degrees below freezing point, new ice forms on these hollows, but they do not freeze to the bottom even under the severest frost, and the sheet which covers them is never strong enough to support a man, more particularly if the hole is, as was the case during half our journey, covered with a few inches of newly fallen snow.

The kryokonite cavities were perhaps more dangerous to our expedition than anything else we were exposed to. We passed, of course, a number of crevasses without
bottom as far as the eye could penetrate, and wide enough to swallow up a man, but they were "open," i.e. free from a cover of snow, and could with proper caution be avoided, and the danger of these could further be minimised by the sending of the two-men sledges in front, and if one of the men fell into the crevasse he was supported by the runners and the alpenstozk, which always enabled him to get up on the ice again. But this was far from being the case with the kryokonite hollows. These lie, with a diameter just large enough to hold the foot, as close to one another as the stumps of the trees in a felled forest, and it was therefore impossible not to stumble into them at every moment, which was the more annoying as it happened just when the foot was stretched for a step forward, and the traveller was precipitated to the ground, with his foot fastened in a hole three feet in depth. The worst part of our journey was four days outward and three days of the return, and it is not too much to say that each one of us during these seven days fell a hundred times into these cavities, viz. for all of us 7000 times. I am only surprised that no bones were broken, an accident which would not only have brought my exploration to an abrupt close, but might have had the most disastrous consequences, as it would have been utterly impossible to have carried a man in that state back to the coast. One advantage the kryokonite cavities had, however, viz. of offering us the purest drinking-water imaginable, of which we fully availed ourselves without the least bad consequences, in spite of our perspiring state.

On July 16 we covered thirteen, on the 17 th eighteen and a half, and on the 18 th seventeen and a half kilometres. The country, or more correctly the ice, now gradually rose from 965 to 1213 metres. The distances enumerated show that the ice became more smooth; but the road was still impeded by the kryokonite cavities, whereas the rivers, which even here were rich in water, became shallower, but stronger, thus easier of crossing. Our road was, besides, often cut off by immense snow-covered crevasses, which, however, did not cause much trouble.

On the night of the 18 th, when arrived at camp No. 14, the Lapp Anders came to me and asked if he might be permitted to "have a run," viz. to make a reconnaissance on "skidor," to see if there was no "land" to the east. This granted, he started off without awaiting supper. He came back after six hours' absence, and reported that he had reached 27 kilometres further east, that the ice became smoother, but was still rising, but there was no sign of "land." If his statement was true, he had, after a laborious day's journey, in six hours covered about sixty kilometres!. At first I considered his estimate exaggerated, but it proved to be perfectly correct. It took us thus two whole days to reach as far as he had got, as shown by the track in the snow. I particularly mention this occurrence in order to show that the Lapps really did cover the estimated distance of their journey eastward, of which more below.

During these days we passed several lakes, some of which had the appearance of not flowing away in the winter, as we found here large ice blocks several feet in diameter, screwed up on the shore, which circumstance 1 could only explain by assuming that a large quantity of water still remained here when the pools about became covered with new ice. The lakes are mostly circular, and their shores formed a snow "bog " which was almost impassable with the heavy sledges.

On July 19 we covered seventeen and a half, on the 20th sixteen and a half, on the 21 st, seven, and on the 22nd seven and a half kilometres (15th to 18th camp). The ice rose between them from 1213 to 1492

[^5]metres. The distances enumerated fully show the nature of the ice. It was at first excellent, particularly in the morning, when the new snow was covered with a layer of hard ice; but on the latter days we had great difficulty in proceeding, as a sleet fell with a south-east wind in the night between the 20 th and the 215 st . The new snow, as well as that lying from the previous year, became a perfect snow bog in which the sledges constantly stuck so that it required at times four men to get them out. We all got wet, and had great difficulty in finding a spot on the ice dry enough to pitch the tent. On the $22 n d$ we had to pitch it in the wet snow, where the feet immediately became saturated on putting them outside the indiarubber mattresses. A little later on in the year, when the surface of the snow is again covered with ice, or earlier, before the thaw sets in, the surface would no doubt be excellent to journey on.

When we, therefore, on July 21, were compelled to pitch the tent in wet snow, as no dry spot could be discovered, and it was impossible to drag the sledges further, I sent the Lapp Lars Tuorda forward on "skidor" to find a dry road. He came back and stated that the ice everywhere was covered with water and snow. For the first time in his life he was at a loss what to suggest. It being utterly impossible to get the sledges further, I had no choice. I decided to turn back.

I wished, however, to let the Lapps go forward some distance to the east to see the country as far as possible. At first I considered it advisable to let their journey only last twenty-four hours, but as both Anders and Lars insisted that they were most eager to find the "Promised Land,' and said they could do nothing towards discovering it in that short period, I granted them leave to run eastwards for four days and nights, and then return.

On leaving I gave them the following written orders:-
"Instructions for Lars and Anders's 'skid' run on the inland ice of Greenland, viz. :-
"Lars and Anders have orders to proceed on skidor eastwards, but are allowed to alter the course, if they may deem it advisable, to north or south.
"At the end of every third mile the barometer shall be read and the direction run noted.
"The absence is to be four days, but we will wait for six days. After that, viz. on the morning of July 28 , we return. If not returned, we leave behind in a sledge provisions, brandy, mattresses, \&c.
"Lars is warned not to be too bold. Should land be reached, you are to collect as much as you may gather of blossoms and grass, if possible several kinds (specimens) of each.
"Given on the inland ice in Greenland, July 21, 1883, "A. E. NordenskJöld"
They were allowed to select what provisions, \&e., they desired, and were furnished with two co npasses, aneroid barometers, and a watch.

At $2.30 \mathrm{a} . \mathrm{m}$. on July 22 they started. The days we waited for them were generally spent in the tent, as water surrounded us everywhere. The sky was covered with a thin veil of clouds, through which the sun shone warnnly, at times even scorchingly. From time to time this veil of clouds, or haze, descended to the surface of the ice and hid the view over the expanse, but it was, remarkably enough, not wet but $d r y$, yes, so dry that our wet clothes absolutely dried in it. We have therefore, I consider, witnessed a phenomenon on the inland ice of Greenland which is related to the "sun-smoke" phenomenon of Scandinavia, viz, what Arago has described under the name " brouillard sec."

On the 24th, after an absence of fifty-seven hours, the Lapps returned. It was the want of drinkingwater and fuel which compelled them to return. The surface had been excellent for their journey, and they had covered a distance out and back of 230 kilometres, an
estimate which I consider perfectly reliable. During the march forward the barometer was read every third hour. It gave the point of return a height of 2000 metres. ${ }^{1}$

As to the run, Lars rendered the following report: When they had reached thirty miles from the camp no more water could be found. Further on the ice became perfectly smooth. The thermometer registered $-5^{\circ} \mathrm{C}$. It was very easy to proceed on the "skidor." At the point of return the snow was level and packed by the wind. There was no trace of land. They only saw before them a smooth ice covered by fine and hard snow. The composition of the surface was this-first four feet of loose snow, then granular ice, and at last an open space large enough to hold an outstretched hand. It was surrounded by angular bits of ice (crystals). The inland ice was formed in terraces-thus, first a hill, then a level, again another hill, and so on. The Lapps had slept for four hours, from twelve midnight on July 23, in a hollow dug in the snow while a terrific storm blew. They had till then been awake for fifty-three hours. On the first day there was no wind, but next day it came from the south, and lasted thus until twenty-four miles on the return journey, when it changed to west. On the return journey, when forty miles from our camp, two ravens were seen. They came from the north and returned in the same direction. The Lapps had for a moment lost the track of the "skidor" in the snow. The ravens flew at first, they found, parallel with the track, and then turned to the north.
On July 25 we began the return journey. It was high time, as the weather now became very bad, and it was with great difficulty we proceeded in the hazy air between the number of crevasses. The cold, after the sun sunk below the horizon at night, also became very great ; and on the morning of July 27 the glass fell to $-11^{\circ} \mathrm{C}$.
As to the return journey I may be very brief. The rivers now impeded us but little, as they were to a great extent dried up. The ice-knolls had decreased considerably in size too, and lay more apart, but the glacial crevasses had greatly expanded, and were more dangerous, being covered with snow. Even the cavities and the glacial wells, of which many undoubtedly leave a veritable testimony of their existence behind them in the shape of corresponding hollows in the rock beneath, had expanded and increased in number. On a few occasions, on the return journey, we saw flocks of birds, most probably water-fowl, which were returning from the north.

On July 31 we again sighted land, which was reached on the afternoon of August 4, and proceeded to "Sophia Harbour," where Esquimaux were, as arranged, waiting for us. For convenience sake I now divided our party into two, one of which sailed in the lifeboat of the Sophia to Egedesminde, where the steamer was to take us on board, and the other, in which was myself, marched to that place across the low but broad promontory which separates Tessiusarsoak and South-East Bay, and then in two Esquimaux "Kone" boats to Ikamiut and Egedesminde.

On August 16 the Sophia arrived from the north, embarked us, and made for Ivigtut, where we arrived on the 19th.

Of the expedition carried out under Dr. Nathorst during my absence he will himself make a report, ${ }^{2}$ and I have no doubt that the results of the same will prove very important. Particularly will the very rich collections of fossil plants, which he has made with the greatest regard to the geological condition of the strata, be of great value to science, as they will furnish us with many new materials and detailed illustrations of the flora of the Far North during the epoch when forests of fig-trees, cycadi, ginko, magnolia, and tulip-trees covered these regions. Dr. Forsstrand and Herr

[^6]Kolthoff's collections and studies of the fauna of Greenland will also contribute to extend our knowledge of the naturalistic conditions of the Arctic regions, while the careful researches made by Herr Hamberg of the saltness, composition, and temperature of the sea will, I am sure, greatly benefit hydrography. His researches have been effected in Davis Strait and Baffin's Bay 100, the hydrographical conditions of which are but little known.

With regard to the results of my exploration of the inland ice, I may be permitted to say a few words. That we found no ice free land in the interior, or, that it does not exist between 68° and 69° lat. in Greenland, is due directly to the orographical conditions which exist in this part of the country, as referred to in my progranme of the expedition. ${ }^{1}$ The land has here the form of a round loaf of bread, with sides which grafually and symmetrically slope down to the sea, i.c. exactly the shape which I then pointe I out was a nece isary condition if the entire country should be covered with a continuous sheet of ice.

But, thanks to the Lapps, my expedition is the first which has penetrated into the very heart of the enormous Greenland continent, and which has thus solved a problem of the greatest geographical and scientific importance. It is the first exploration of the hitherto unknown interior of Greenland, the only continent in the world into which man had not penetrated.

A new means of locomotion, the "skidor," seems also to have been acquired for the Arctic explorer of the future, which may greatly assist him in his work, and enable him to reach places hitherto deemed impossible of approach, but of the use of which the Lapp seems to possess, so to speak, the monopoly.

> A. E. Nordenskjöld

We are enabled to supplement Baron Nordenskjöld's report by the following account, furnished to us by another meinber of the expedition, of the visit paid to the remarkable Igaliko ruins:-

On August 24 the Sophia steamed to Igaliko, at the bottom of the fjord of the same name. The object of this visit was to examine the ancient Norse ruins which are found here. Those who thus believe that the "Osterbygd" of Greenland was situated in this part assert that the ruins of Igaliko are nothing more nor less than those of Erik Röde's own mansion "Brattelid." However that may be, the Norseman who selected this spot for his residence acted very wisely. The ruins are situated at the very bottom of the fjord, where the absence or presence of the ocean ice on the coast affects the climate but little. The vegetation in this spot is, in consequence, quite luxuriant. Thus a vaginal plant, Lathyrus maritimus, grows here in such abundance that it reminds one of a field of peas, while Ranunculus acris attains a height of two feet, and Campanula rotundifolia, the bluebell, along with various grasses, flourish in great profusion. In the pools Menyanthes and Potamogeton thrive, while copses of birch-trees and willows offer excellent fuel. There are also plenty of wild berries. The ruins, the walls of which were formed of enormous blocks of sandstone, lie just below a table-shaped ridge of sandstone by the side of a crystal brook, copiously encircled by Alchemilla vulgaris and watercress. The spot is, in fact, one which would fully justify the name given to the country. At the time of our visit about a dozen cows were fed here, whose excellent milk we tasted, while in the beds around the huts of the natives swedes and potatoes grew luxuriantly, the former having attained the size of large apples. It certainly was strange to view this spot, and we naturally asked each other, what has become of the old Norsemen who once peopled it? It is impossible to believe that they were extirpated or conquered by the Esquimaux. It seems far more probable that both

[^7]races have commingled, an assuniption further corroborated by the strange circumstance that Esquimaux are found in this tract who have never been in contact with the Danes, but who nevertheless possess features of pure Norse character.

THE VIENNA INTERNATIONAL ELECTRIC
EXHIBITION

(From our Vienna Correspondent.)

THE Scientific Commission having for its purpose the taking of electrical measurements and conducting scientific researches at the Exhibition commenced its work on September 17. By the assemble1 Austrian and foreign delegates Prof. Stefan (Vienna) was elected president, while as vice-presidents were elected Prof. Galilei Ferraris (Turin), Col. J. Florensoff (St. Petersburg), Prof. Hauffe (Vienna), Prof. Kittler (Darmstadt), Major A. Obermayer (Vienna), Sir William Siemens (London), Prof. Mascart (Paris), Emil Effendi Lacoine (Constantinople), Prof. E. Gerard (Liége). The Commission is subdivided into the following eight sections according to the matters to be dealt with:-1, Scientific instruments. 2. Motors and general mechanics. 3. Dynamo-electric machines, electric lighting, and transmission of power. 4. Electro-chemistry. 5. Telegraphy, telephony, electric bells and clocks. 6. Signalling for railways and military purposes. 7. Electro-therapeutics. 8. Application of electricity relating to arts, industry, and technology. At the third section the measurements are carried out according to the plans devised for electric measurements by the president of the section, Prof. Kittler, and for photometric measurements by Prof. Voit (Munich). A control calibration of the instruments used in this section showed their accuracy and precision, as well as the correctness of the hypothesis that the variations of the earth's magnetism during the daily periods of measuring could not exert any important influence on the results of the measurements. When the first trials were made, some disturbances of the delicate instruments arose, the cause being that the iron building of the Rotunda was charged with electricity by the return currents of the dynamo-electric machines. But this difficulty was soon overcome by modifying the arrangements of the conducting wires, and the Commission is now hard at work trying the various electric lamps and machines. The results of these trials when finished will be published by the Commission. The series of lectures delivered at the theatre of the Exhibition is still continued, and we had occasion to hear, among others, Mr. Preece (who spoke in English), on the recent progress of telegraphy in England, and the Austrian professors Mach, Zenger, Pfaundler, Waltenhofen. The attendance on the part of the public is as large as it was at the Universal Exhibition in the year 1873, the average number of visitors being $:=, 000$ daily.

While in the Bernstein lamps described in our last letter a relatively thick carbon is used, in the Cruto lamps brought to the Exhibition a few days ago a very fine but hollow carbon loop is employed; it is prepared by a process similar to that already devised by Mr. Sawyer in the year 1878 for flashing carbon filaments. A thin platinum wire ($\mathrm{t} / 20 \mathrm{~mm}$. to $1 / 60 \mathrm{~mm}$. in diameter) is heated, by an electric current passing through it, in a vessel containing the vapour of a hydrocarbon. The hydrocarbon being decomposed in a short time, the platinum wire is covered by a homogeneous layer of deposited pure carbon. The platinum is then removed by volatilising it. The remaining hollow carbon filaments thus obtained are very fine and elastic, and show a metallic polish. The Cruto lamps, as well as a series of Lodiguine incandescent lamps, are fed by Gravier's distributers of electricity, the installation of which has been completed during the past week. The
process of preparing the illuminating portions of the new incandescent lamps with high resistance exhibited by Siemens and Halske, and lighting beautifully Witzmann's restaurant and the exhibits of this firm, is, still kept secret. The stall of the Société Anonyme d Electricite is lighted by several Gerard incandescent lamps of high candle-power (300 candles). These lamps bave large ovoid glass bulbs pierced at their broad part by a narrow glass tube containing the two terminals of the conducting wires. The five straight and comparatively thick carbon rods forming the illuminating part of the lamp are cemented together at their ends by means of a carbonaceous paste in such a manner that, by the two pairs of longer rods being connected by a short intermediate carbon rod, two long-sided, acute-angled triangles crossing one another are formed, which, if brought to incandescence, make the appearance of a single flame, giving an agreeable and bright light. This chain of carbon rods is fastened to the supporting terminals by two short cylindrical pieces of carbon. An interesting bistorical collection of incandescent lamps is exhibited in the Prussian Section, showing the lamps made by Florensoff, Buliguine, and Khotinsky in the years 1872 and 1873. The latter had already used exhausted glass bulbs, but the carbon rod used having a diameter of 1.5 mm . to a length of if cm . could not give a good result.

Most of the incandescent lamps exhibited have transparent bulbs, and very disagreeable after images of the glowing carbon filaments are caused if they are looked at only for a moment or two.

An interesting and practical regulator for single incandescent lamps has been exhibited by the International Electric Company. By turning a handle the intensity of incandescence can be raised or lowered. This regulating apparatus consists of a hollow perforated brass bulb mounted below the lamp, containing a number of carbon disks, which, when the handle is right over in one direction, are highly compressed, a metallic circuit being established at the same time. By turning the handle, the metallic circuit is broken, and the current passes through the carbon disks, while the pressure on them being gradually relaxed causes a steady increase of resistance to the current, thus diminishing its intensity, and in the final position the circuit is broken, and the carbon filament of the lamp ceases to glow.

Vienna, October 16

NOTES

WE have received the following announcement from the Royal Society :-On the last day of the present month the Fellows of the Koyal Society will hold their a nniversary meeting, and elect Council and officers for the ensuing year. The following list has been nominated:-President : Prof. Thomas Henry Huxley, LL.D.; Treasurer: Jobn Evans, D.C.I., LL.D. ; Secretaries: Prof. George Gabriel Stokes, M.A., D.C.L., LL.D., Prof. Michael Foster, M.A., M.D.; Foreign Secretary: Prof. Alexander William Williamion, LL.D.; other Members of the Council: Capt. W. de Wiveleslie Abney, R.E., Prof. W. Grylls Adams, M.A., F.C.P.S., the Duke of Argyll, K.T., D.C.L., John Gilbert Baker, F.L.S., Thomas Lauder Brunton, M.D., Sc.D., William Henry M. Christie, Astronomer-Royal, William De la Rue, M.A., D.C.L., Sir Frederick J. O. Evans, K.C.B., Prof. George Carey Foster, B.A., Francis Galton, M.A., F.G.S., James Whitbread Lee Glaisher, M.A., Sir William Withey Gull, Bart., M.D., Hugo Muller, Ph.D., Prof. Joseph Prestwich, M.A., F.G.S., Prof. Osborne Reynolds, M.A., Osbert Salvin, M.A., F.L.S. It will be a subject of congratulation to the scientific world at large to learn from the above announcement that Prof. Huxley has consented to allow himself to le nominated for President.

A notics of some importance has just been issued by St. John's College, Cambridge. Inasmuch as it indicates an advance on the old examination in mathernatics and classics only, which has hitherto obtained at this college, we are glad to welcome the change. It will tend to place science candidates still more on an equality with those who pursue the older studies, and it will directly encourage them to undertake "independent" work (the word is better than "original" where Bachelors of Arts are concerned) at the stage when they have most leisure and most plasticity. The notice is as follows :- "Candidates for Fellowships at the next annual election are inviled to submit to the electors dissertations or other writings as evidence of their independent work, in accordance with the following directions:-(a) The matter and form of the writings to be left to the discretion of the candidates; (b) the writings may be prepared especially with a view to the election, or may consist wholly or partly of work already published ; (c) the candidates to state clearly what parts of their writings they claim to be original ; (d) the candidates to inform the Master not later than June I of the subjects of the writings they propose to submit; (e) the writings to be sent to the Master not later than Septeraber 1. The electors wish it to be understood that at the next election their decision will be influenced by consideration of the following points:-(t) The performance of the candidates in the University and other public examinations. (2) The quality and promise of the writings submitted by the candidates. Candidates may be examined by papers or vivê vore on questions arising out of their writings, and on other matters also if the electors desire it. (3) The proficiency in some special subject of candidates who do not submit any writings. Such candidates may at their own request be examined in their special subject, provided they give full and precise information in regard to it by letter addressed to the Master not later than June I. (4) The eandidates' power of expression as shown in the composition of an extempore English essay. Candidates will be offered a certain number of subjects to choose from; and in judging of the essays account will be taken of method aad style. (5) Such other evidence as may be forthcoming to attest the candidates' qualifications. The next annual election will take place on Monday, November 3, 1884. Candidates will be required to present themselves for examination on Tuesday, Octuber 21, at $9 \mathrm{a}, \mathrm{m} . "$

THE success which attended the cour e of lectures delivered this year has induced the Council of the Institution of Civil Engineers to make arrangements for a similar series next session. Electricity was then dealt with. Another most important subject will now be treated, namely, "Heat in its Mechanical Applicntions," The lectures will be delivered on Thursday evenings at 8 p.m., in the months from November to April, as under :1883: November 15, "The General Theory of Thermodynamics," by Prof. Osborne Reynolds, F.R.S. ; December 6, "The Generation of Steam, and the Thermodynamic Problems Involved," by Mr. W. Anderson, M.Inst.C.E. ; 1884 : January 17, "The Steam-Engine," by Mr. E. A. Cowper, M. Inst.C.E. ; February 21, "Gas- and Caloric-Engines," by Prof. Fleeming Jenkin, F.R.SS.L. and E., M.Inst.C.E.; March 20, "Com. pressed-Air and other Refrigerating Machinery," by Mr. A. C. Kirk, M. Inst.C.E. ; April 3, "Heat-Aetion of Explosives," by Capt. Andrew Noble, F.R.S., M.Inst.C.E.

Ther I 3oth Session of the Society of Arts will commence on the 21 st inst., with an opening address from Sir William Siemens, the chairman of the Society's Council. Previons to Christmas there will be four ordinary meetings, in addition to the opening meeting, and for these the following arrangements have been made :-November 28 , A. J. R. Trendell, "The International Fisheries Exbibition of 1883;" December 5v

Thomas T. P. Bruce Warren, "The Manufacture of Mineral Waters;" December 12, Thomas Fletcher, F.C.S., "Coal Gas as a Labour-saving Agent in Mechanical Trades;" December 19, W. H. Preece, F.R.S., "The Progress of Electric Lighting." There will be six courses of lectures delivered during the session, under the bequest of Dr. Cantor. These will be: (1) "The Scientifie Basis of Cookery," by W. Mattieu Williams, F.C.S. ; (2) "Recent Improvements in Photo-mechanical Printing Methods," by Thomas Bolas, F.C.S.; (3) "London Houses," by Robert W. Edis, F.S.A. ; (4) "'The Alloys used for Coinage," by Prof. W. Chandler Roberts, F.R.S., Chemist of the Royal Mint ; (5) "Some New Optical Instruments and Arrangements," by J. Norman Lockyer, F.R.S., F.R.A.S. ; and (6) "Fermentation and Distillation," by Prof. W. Noel Hartley, F.C.S. The usual short course of Juvenile Lectures will be delivered during the Christmas holidays. The subject will be "Crystals and Crystallisation," and the lecturer Mr. J. M. Thomson, of King's College, London.

The death is announced of Prof. Peter T. Riess, whose treatise on frictional electrieity-"Die Lehre von Reibungselek tricität "-has long been a standard work. Riess was a eareful and accurate observer of phenomena. His researches on ringfigures produced by discharges, on the electric air thermometer, and on the phenomena of the return stroke, are well known, His memoirs on electricity were published in a collected form some years ago.
Thy sum of 100 , has been placed at the disposal of the Council of the Statistical Society by Mr. II. D. Pochin for an essay in memory of the late Mr. Wm. Newmareh, F.R.S. " On the Extent to which Recent Legislation is in accordauce with, or Deviates from, the True Principles of Economie Science; and showing the Permanent Effects which may be expected to arise from such Legislation." The Council accordingly invite public competition for the prize above mentioned. Essays must be sent in on or before May 1, 1884.

Dr. Sophus Tromholt has just left for Iceland, where he intends to establish his auroral station during the coming winter.

In connection with the vote given by the delegates to the eongress at Rome for establi, hing a meridian common to all civilised nations, it may be stated that the first Freneh meridian was not originally that of Paris and special to the French geographers, but Ferro, according to an ordinance of Louis XIII., published in 1632 in compliance with a report drawn up by Cardinal de Richelien, then superintendent of commerce and navigation. It was transferred to Paris only fifty years afterwards by Dominique Cassini, who obtained the authorisation of Louis XIV. and the Freneh Academy of Sciences, because it was too difficult to ascertain the exact distance of the Ferro meridian.
THI date of admission of foundation members to the Inter. national Society of Electrieians has been postponed to Nov. 15, when a general meeting to constitute the Society will be held, which at present numbers 900 members, belonging to twenty nationalities. Requests for admission should be addressed to M. Georges Berger, 99, rue de Grenelie, Paris.
M. Raphagl Peruita writing to La Nafure under date Manilla, September 14, states that the detonations of the Java eruption of August 27 were distinetly heard throughout the Philippine Islands; so distinctly were the sounds heard that gnnboats were sent out under the imoression that a fight was going on at Java, or that a ship in distress was firing for help.

Or the expeditions despatehed in May last from Denmark to Greenland, the one to North Greenland, under Lieut. Hammers, has jnst returned, after having sneceeded in accomplishing its object, viz. to map out and examine the coast from Ritenbank
to Kongatsiok in the Egedesminde district, vid Jacobshavn and Kristiansbank, between 70° and $68^{\circ} 20^{\prime}$ N. lat. During the journey the finest weather prevalled, which was a necessary condition, as this part of the coast is greatly obstruct ed by islands and holmes, while there are but few heights along it. By Lieut. Hammers and his companions' labours the exploration of the coast of North Greenland has been completed, Lieuts, Steenstrup and Hammers having-between 1878 and 1880 -explored the district between Pröven (Upernivik) and Godhavn, and Lieut. Jensen, in 1879, the coast between Holstens. borg and Egedesminde. These expeditions have succeeded in collecting all the materials necessary for a map of the whole coast between Pröven and Hohtenborg. Lieut. Hammers has, besides geographical researehes, also made collections in natural history, and brought home valuable botanical and mineralogical collections. From the second expedition, under Lieut. Holm, despatched this summer to the district of Julianshaab in order to carry out a two nnd-a-half years' exploration of the south coast of Greenland, a short report has been received, stating that it had arrived at Huilek, a small settlement on the east coast, in lat. 61°. Lieut. Holm had established a depot of provisions here, to be brought north next summer to his place of wintering. He intended to return to Nanortalik, on the west coast, between Julianshaab and Cape Farewell, this autumn, where the expedition will carry out meteorological and auroral observations during the winter, which would be a continuation on a small scale of those effected at Godthaab for a year under the international scheme. These obvervations will be carried on in the buildings erected there by Capt. Hoffmeyer in 1882, and with the instruments of the previons expedition. On returning to the west coast in the autumn, Lient. Holm's expedition will effect detailed explorations of the coast, fjords, and the ice and sea. He has arranged with several Esqnimana to meet and a-sist him on his journey northwards next year, when he hopes to reach the sixty-seventh degree of latitude.

Mr. Carl Bock's new book is now nearly ready for publication. Its title will be "Temples and Elephants," a narrative of a journey of exploration through Upper Siam and Lao. Messrs. Sampson Low and Co, are the publishers.

During the last few years the Swedish Government have, as an experiment, retained an entomologist to assist farmers in the destruction of incects, \&e., dangerous to the crops. The scrvices of this funetionary have, however, been in such request that the appointment is to be made a permanent one.
On October 26 at about 7 p.m. a splendid meteor was seen in the district of Hernö and, Sweden. A traveller on the road to Ragunda states that he suddenly saw the night lit up as in broad daylight, which was caused by a large meteor appearing with a blinding white lustre in the zenith and travelling very rapidly down to the horizon. When half way, as it appeared to the observer, between zenith and the earth it suddenly burst, throwing a quantity of sparks in every direction.

A Universal Exhibition on a tolerably large scale will be opened at Nice on December 1 next, and will continue open the whole of the winter. The Algerian Akhbar suggests that in 1885 a Pan-Mediterranean exhibition should be opened in Algiers, and in 1887 a Pan-African one.

We have to announce three new numbers of the "Encyelopaedia of Natural Sciences" from the publishing house of Eduard Trewendt, Breslau-No. 35 of Part 1, and Nos. 17 and 18 of Part 2, making up altogether a substantial addition to what had been previously accomplished in the progress of this comprehensive work. No. 35, Part 1, gives a continuation of "Schenk's Manual of Botany," more particularly a paper by Göbel, well and copiously illustrated, on the "Comparative

History of the Development of Vegetable Organs." No. 17 of the second part of the total work concludes the first volume of the "Alphabetical Manual of Chemi try," edited by Ladenbarg, and begins the second volume with a series of valuable articles; one by Biedermann, on the "Atmosphere," taking up by itself as much as two and a half printed sheets. No. 18 brings the "Alphabetical Manual of Mineralogy, Geology, and Palzontology" as far as the letter " I," and supplies treatises by Kenngott, Lasaulx, and Rolle. Lasaulx's work on "Glaciers" should, especially, be of interest.
"Universal Geographirs" are sppearing on all hands. There is M. Reclus' magnum opus and Stanford's Compendium ; a new edition of Balbi is appearing in Vienna, and we believe of Malte Brun in Paris. Now the first parts of an Italian "Universal Geography "have been sent us, "La Terra," by Signor G. Marinelli, and published by Dr. F. Vallardi of Milan. It begins at the beginning, with the earth as a member of the solar system, and enters into considerable astronomical detail, and into the composition of the sun and the results of recent solar research. It is abundantly illustrated, and seems to us to deserve a large circulation, which we hope it will have in Italy. We have also the first part of a new German work of this elass, "Unser Wissen von der Erde, Allgemeine Erdkunde," edited by Drs. Hann, Baron von Hochstetter, and A. Pokorny. These names are a guarantee that this work will be up to a high scientific standard, and it is evident that scientific geography will occupy - a large space. The illustrations are good. The publisher is Freytag of Leipzig.

Mr. G. K. Gilbert has recently, according to Science, given some rather disturbing suggestions to the people of Salt Lake City (Salt Lake Wekkly Tribune, September 20) concerning the probability of destructive earthquakes there. He describes the slow and still continuing growth of the ranges in the Great Basin by repeated dislocation along great fractures, the earth's crust on one side being elevated and tilted into mountain attitude by an upthrust that produces compression and distortion in the rocky mass, until the strain can no longer be borne, and something must give way. Suddenly and violently there is a slipping of one wall of the fissure on the other, far enough to relieve the strain, and this is felt as an earthquake; then follows a long period of quiet, during which the strain is gradually reimposed. Such a shock occurred in Owen's Valley, along the eastern base of the Sierra Nevada, in 1872, when a fault-scarp five to twenly feet high and forty miles long was produced. A scarp thirty or forty feet high is known along the western foot of the Wahsatch Range, south of Salt Lake, and otber scarps of similar origin have been found at the bases of many of the Basin ranges. The date of their formation is not known ; but it must be comparatively recent, because they are still so little worn away. Wherever they are fresh, and consequently of modern uplift, there is probable safety from earthquakes for ages to come, because a long time is needed for the accumulation of another strain sufficient to cause a slipping of one wall of the fissure on the other. Conversely, when they are old and worn down, the breaking strain may even now be almost reached, and an earthquake may be expected at any time. This is the case at Salt Lake ; for, continuous as are the fanlt-scarps along the base of the Wahsatch, they are absent near this city. From the Warm Springs to Emigration Cañon they have not been found, and the rational explanation of their absence is that a very long time has elapsed since their last renewal. In this period the earth-strain has been slowly increasing. Some day it will overcome the frietion, lift the mountains a few feet, and re-enact on a fearful scale the catastrophe of Owen's Valley.

The Aristotelian Society is exerting itself, we hear, to widen its sphere of action, so that it may be to philosophy what the
scientifie societies are to science. Very encouraging support has already been obtained from those interested in philosophy and the relations between philosophy and science.

We have received the first number of The Science Monthly (Bogue), neatly got up and well printed.
The additions to the Zoological Society's Gardens during the past week include a Sykes's Monkey (Cercopitherns albigularis) from East Africa, presented by Mr. Thomas L. M. Rose; a Black-eared Marmoset (Hapale pewicillata) from South-Eatt Brazil, presented by Mr. S. Sandbach Parker ; a Globose Curassow (Crax gloSicera 8) from Central America, presented by Miss Beale; a Red-throated Diver (Colymbus seplentrionalis), British, presented by Mr. T. E. Gunn ; a Dwarf Chameleon (Chamalion pumilus) from South Africa, presented by Capt. J. C. Robinson ; a Common Heron (Andes cincraa), European, a Common Cormorant (Phalacrocorax carbo), a Gannet (Swla bassana), British, deposited; a Common Otter (Lutra vulgaris), British, two Crested Screamers (Chawna shavaria) from Buenos Ayres, purchased.

OUR ASTRONOMICAL COLUMN

Pons' Comet.-We continue our ephemeris of this comet from the provisionally-corrected orbit of MM. Schulhof and Bossert :-

At Greenvich Midnight			
${ }^{1888} 3$	R.A	Decl.	Lox. distance from
Nov, 21	... 175716	+4849.	0.1079 ... $0 \cdot 1445$
23	... 18 4 12 ...	48236	
25	$\ldots{ }^{1} 881130 \ldots$	4756	... 0'0339 ... 0'1276
27	-. 181819	$47{ }^{28}$	
29	.. 182718	$4657{ }^{\circ}$... $0 \cdot 0583$... 011102
Dec.	... 183551 ...	4625°	
3	$\ldots .184451$...	$4549{ }^{\circ}$... 0\%0311 ... 0*0923
5	... $185420 . .$.	45 9 ${ }^{\circ}$	
7	$\ldots{ }^{19} 419 .$.	4425°	023 ... 00073 ${ }^{8}$
	... $1914{ }^{18}$...	4336	
11	... 192547 ...	42415	$721 . . .00549$
13	... 193717 ...	4139	
15	... 194917 ...	4029	56
17	... 20147 ...	39	
19	... 201445 ...	3739	... 9'9093 ... 00161
21	... 20289 ...	35578	
23	... $204154 \ldots$	34 34 18	965
25	... 205557 ...	3153.	
	... $21101313 \ldots$		$9.8500 . . .99772$
29	.. 212437 ...	2649.5	

On the evening of November 4 the comet as viewed in one of the larger-sized comet-seekers of Martins of Berlin, was conspicuons enough, with traces of a tail. On Oetober 29 Mr . Talmage, observing with Mr. Barclay's ro-inch refractor at Leyton, considered it made about the same impression upon the eye as the annular nebula in Lyra.
Tempel's Comet, 1873 II.-According to the calculations of M. L. Schulhof, of Paris, this comet will arrive at perihelion on the 20th of the present month. Its position on the evening of the previous day will be approximately in R.A. 18 b .33 m , N.P.D. $114^{\circ} 0^{\prime}$, distant from the earth $1^{\prime} 93$, and from the sun 1'34, so that the theoretical intensity of light expressed in the usual way will be 0.15 , under which condition it will be of the last degree of faintness, judging from the experience of 187 , Still as the comet sets more than 2 h .20 m . after the sun, it would be well worth while to search for it where there is a clear sky near the horizon, especially in the South of Europe.

A New Star Catalogue.-Prof, van de Sande Bakhuyzen states that the catalogue of positions of stars contained in the first sixty-six volumes of the Astronomische Nachrichten, commenced by the late Prof. Hoek and continued by Dr. Kam, formerly of the Observatory at Leyden, has been completed and is ready for the press. It contains the places of nearly 5000 stars reduced to 1855°, with their annual precessions, and the secular variations, the epoch of observation, \&c. It is not mentioned in what way the publication of the catalague is to be effected.

THE OBAN PENNATULIDA

THIS report is a very thoroagh piece of work. It consists of a detailed and finished description of specimens dredged daring an excursion of the Birmingham Natural History Society in July, 188ı. The specimens all belonged to the three species Fsumicwina quadrangularis, Pennatula phosphorea, and Virgularia minabilis. The langange in which they are described is very distinct and lueid, though perhaps some criticism may be allowed as to the scale of measurement used and as to a certain point in the nomenclature. Measurements are given in the decimal divisions of an inch, instead of the metrical system, which is so much more satisfactory. The axial portion of a Pennatulid is described as consisting of two parts-the stalk and the rachis, the latter being the polyp-bearing portion; and the word "sten" "is used for the calcareous rod ruaning through the axis of both rachis and stalk. "Stem" would naturally mean both the stalk and rachis together as opposed to the polypleaves. "Core" might be suggested as a better term for the axial skeleton. The example of Kölliker has been followed in the use of the terms "polyps" and "zooids" for the two kinds of individuals. In describing the "stomacb," its inner lining membrane is called ectoderm, but no reference is made to he fact that the evidence for its being ectodermic is embryolozical.

The deseription and figures given of Furniculina are the first published in English which deal with the internal structure ; and they are in some respects more complete and perfect than thoce of Kolliker in his monograph on the Pennatulida. The examination of the largest of the specimens, which war thirtynine inches long, has finally disproved the validity of the distinction maintained hy Verrill and Gray to exist between the Scotch Funiculina, and that of the Mediterranean and Scandinavia. The supposed species, F. Forberii, is simply the younger form the largest of the Oban specimens being in all respects a typical F. quadrangularis.

A very interesting part of the work is that which refers to the reproductive organs of Pennatula phovphoras; the male and female elements are here fully described and figured for the first time. The fact of the sexes being distinet was ascertained by Lacaze Duthiers, but neither he nor Kölliker give figures or satisfactory descriptions of the sexual organs. The male ele ments are shown here to be produced in spherical capsules, which at first sight resemble ovz
In the nccount of Virgularia the process of the origin of new polyps is deseribed. The stomachs arise as invaginations of the sariace of the rachis into the cavity of large canals lined by endoderm.
An ingenions discuasion of the reascn why specimens of V irgularia when dredged are almost always truncated at the upper end leads to the conclacion that the loss is due to the attaeks of fish.

The descriptions are followed by a eomplete critical list of the literatare, and an account of the geographical distribution both in the sea and in museums. The figures are very clear, and at the same time artistic. It is much to be regretted that the condition of the specimens did not allow the histology to be completely made out. No doubt the Birmingham Society will pay greater attention to the preservation of materinal for this purpose on future occasions.
J. T. Cunningham

NOTES FROM THE OTAGO UNIVERSITY MUSEUM

III.-On some Embryos of "Callorhynchus antarcticus"

SOME weeks sinee 1 obtained from a fisherman a number of eggs of Callorhynchus antarcticus from. Wiekliffe Bay, Otago Peninsula. As I believe this is the first time any observations have been made on the development of the Holocepthali, the following report of remarks made at a meeting of the Otago Institute on May 7 may be of some interest to morphologists:-
"The eggs were found buried in the sand a little below lowwater mark, a position which would scem to cast some doubt on the generally accepted theory which accounts for the peculiar form of the egg-shell by supposing it to have acquired a protective resemblance to kelp. The cavity for the embryo has an elongated pyriform shape, the broad end being anterior, and the narrower or posterior end produeed into a long canal. On what
${ }^{1}$ Report by Prof A. Milioes Marthall, M.D., D.SC, and William P. Marbaill. Hirmingham, eBBz.
may be described as the 'hairy' in contradistinction to the smooth side of the egg-shell, there is on each side of the middle line at the anterior end a longitudinal slit in the wall of the cavity, which serves to allow of currents to and from the latter for respiratory purposes. The anterior ends of these slits are united by a weak place in the wall of the egg.shell ; very slight pressure from within causes rupture along this line and produces a valve, the lateral boundaries of which are formed by the respiratory slits, its anterior boundary by the line of rupture. This valve reedily opens outwards by pressure on its inner face, and serves for the exit of the fottis ; pressure upon its outer face only forces it again't the opposite wall of the cavity.
"The advanced embryo lies in the cavity in such a position that its head lies at about the level of the base or hinge of the valve, and therefore some distance from the anterior end of the cavity, its tail lies in the narrow posterior prolongation of the cavity, which fits it accurately ; its right side lies almost invariably against the smooth, its left against the hairy side of the egg-shell.
"Unfortunately the embryos in all the four dozen eggs examined were in a tolerably advanced stage of development, so that there will be little chance of getting younger stages antil next autumn. The youngest obtained are about four inches long; they have large yolk-sacs ($1^{*} 75$ inch in length), and very long external gills projecting from the opercular aperture ; the snout has acquired the characteristic form, but the tail sbows as yet no trace of heterocercality, nor the skin of the silvery character it has in the adult, being in the fresh state translusent and highly vascular. The yolk-sac is remarkable ; it is longitudinally elongated, and produced into numerous blunt paired projections, which are tolerably constant in position ; one pair of these always lies to the anterior end of the dorsal surface of the yolk-sac, and between them the snout of the embryo is invariably situated. The ambilical or somatic stalk is practically obsolete, the fortus being sessile apon the yolk-sac.
"As in Elasmobranchs the yolk-sac is gradually drawn into the coclome, and so consists in advanced stages of an internal and an external portion, the former continually incressing at the expense of the latter. As the external portion diminishes in sire, it loses its blood-vessels, and its projections gradually disappear. In the latest stage obtained, the extermal portion is not more than 0.5 inch long, the internal portion being fully $\mathbf{I}^{*} 25$ inch in length, and causing a great distension of the abdominal walls. In this stage also, the external gills are absorbed, and the adult characters of the integument attained."

The foregoing description appeared in the Nrw Zsaland Fournal of Sricnce for this month. T. Jeprery Parker Dunedin, N.Z., July 13

UNIVERSITY AND EDUCATIONAL INTELLIGENCE

Oxpord, - The delegates of the Common University Fund have agreed to appoint a Reader in Anthropology, so as to utilise the presence of Dr. Tylor for University instruction. In a Convocation to be held on November 15, a decree will be submitted to the House, fixing the Reader's stipend at 200 /, a year, on condition that he lectare at least once a week in each of the three terms, and receive students for informal instruction and assistance.

A Scholarship in Natural Science is offered this term by Wadham College. Candidates may offer cither Animal Mor* phology, Botanical Morphology, or Physiology. They will also be examined in Elementary Chemistry and Physics. Weight will also be given to a knowledge of French or German. Candidates must send in their names to the Warden on or before November 15 .

Cambrivge.-Dr. H. Sidgwick has been elected Knightbridge Professor of Moral Philosophy. Prof. Bonney, F.R.S., has been approved for the degree of Sc.D. Dr. Routh has been elected Hon. Fellow of Peterhouse ; and Professors Dewar and M. J. M. Hill have been elected Ordinary Fellows. Messrs, A. G, Greenhill and R. R. Webb will be the Examiners in the Mathematical Tripos of 1874 . The honorary degree of M.A. has been confcrred on Prof. Macalister, F.R.S. Messrs. J. A. Fleming and S. L. Hart, both distinguished Natural Science graduates, have been elected Fellows of St. John's.
Dr. Gaskell, F.R.S., is to be approved as a Teacher of Physiology, Dr. F. Darwin as a Teacher of Biology, and Mr. G. B.

Atkinson as a Teacher of Physics, for the purposes of medical education,

The honorary degree of M.A. is proposed to be conferred on Mr. A. Graham, First Assistant at the Observatory, in recog. nition of his astronomical services.

Mr. M. C. Potter of Peterhouse has been appointed Assistant Curator of the Herbarium.

Mr. W. H. Caldwell, Fellow of Caius College, has been appointed the first Balfour student.

At St. John's College, in December, there will be open for competition among students who have not commenced residence in the University-The Foundation Scholarships then vacant, two of which may, after residence is commenced, be increased in value to 100%, a year on condition of regular residence, satisfactory progress, and good conduct ; four Minor Scholarships, two being of the value of 75l. a year and twu of $50 /$, a year ; three Exhibitions of $50 /$. a year for two years; one Exhibition of 4 O . a year for four years ; one Exhi. I ition of 321. a year for four years; together with two Exhibilions of 30 l. a year for four years; one Exbibition of $33 / .6 \mathrm{~s}, 8 \mathrm{~d}$. a year for three years. The number of Exhibitions may be in. creased if candidates of sufficient merit present themselves. The Foundation Scholarships and Minor Scholarships are open tocandidates under nineteen years of age. The Minor Scholarships are tenable for two year, or until the Minor Scholar is elected to a Foundation Scholarship. The Exhibitions are open to all candidates irrespective of age, and are not vacated by the election of the Exhihitioner to a Foundation Scholarship. The number of Foundation Scholarships is sixty. Candidates may present themselves for examination in any of the following subjects, namely, Classics, Mathematies, Natural Science, Hebrew, and Sanskrit. A candidate may be elected on the ground of proficiency in any one of these taken singly. The Examination in Natural Science will include papers and practical work in Physics, Chemistry, General Biology, Botany, Zoology and Comparative Anatomy, Human Anatomy, Physiology, and Geology. Every candidate must show a competent knowledge of two at least of the following subjects, namely: (1) Elementary Physics, (2) Elementary Chemistry, (3) Elementary Biology [the range of the examination in Elementary Biolony may be taken as defined by the contents of Huxley and Martin's "Course of Practical Instruction in Elementary Biology " (Macmillan)]. A candidate may be elected on the ground of special proficiency in any one of the foregoing sciences. Each candidate's name should be sent not later than November 27, 1883, to the tutor under whom it is proposed to place him.

SCIENTIFIC SERIALS

THE Fournal of Physiology, vol. iv. Nos, 2 and 3, August, 1883 , contains: W. H. Gaskell, on the innervation of the heart, with special reference to the heart of the tortoise (plates 2 to 5), -T. Th. Cash, description of a donble cardiograph for the frog's heart. - Wesley T. Mills, an examination of some controverted points of the physiology of the voice, especially the registers of the singing voice and the falsetto.-F. Warner, a method and apparatus for obtaining graphic records of various kinds of movements of the hand and its parts, and of enumerating such movements and their combinations (plate 6),-H. H. Donaldson and L. T. Stevens, the inflaence of digitaline on the work of the heart and on the flow through the blood-vessels.-G. F. Yeo and Th. Cash, on the relation between the active phases of contraction and the latent period of skeletal muscle.-S. Ringer, a third contribution regarding the influence of the inorganic constituents of the blood on the ventricular contraction.-L. C. Wooldridge, further observations on the coagulation of the blood.-Also Supplement Part to vol. iv. Physiological papers of 1882.

The Journal of the Royal Micrascopical Society, October, 1883 , contains : On Asplanckna cboesbornii, nov. spe, by E. T. Hudson, L.L.D. (plates 9 and 10), with the usual bimonthly summary of current researches relating to zoology and botany (principally IL vertebrata and Cryptogamia), microscopy, \&c.

The American Naturalist for October, 1883 , contains: Man's place in matore, by W. N. Lockington.-The Naturallst Brazilian Expedition (No. 2, continued), the Lower Jacuhy and Sao Jeronymo, by H. H. Smith.-On the shells of the Colorado
desert and the region further east, by R. E. Stearns (woodeuts); -Review of Report C_{4} second geological survey of Pennsylvania, by Dr. P. Frazer.-Means of plant dispersion, by E. J. Hill,-Is the group Arthropoda a valid one? by J. S. Kingsley. -On the Serpentine of Staten Island, New York, and on a classification of the natural sciences, by T. Sterry Hunt.

Proceedings of the Linmean Soxicty of Nowv South Wales, vol, vii. part 4,1883 , contains :-E. P. Ramsay, on new species of Solea; contributions to Australian Oology, part 2 ; notes on birds from Solomon Islands,-E. Meyrick, Australian Microlepidoptera, Oecophoridse.-Prof. Stephens, geology of the Western coalfields, paris 1 and 2,-Dr. J. C. Cox, edible Australian oysters,-C. W. de Vi4, new birds of Queensland; description of a new Belideus from Northern Queensland ; on two new Queensland fishes, - Kev. C. Kalchbrenner, Fungi aliquor Australia Oricutalis, and on new species of Agaricus,-Rev. J. E. Tenison-Woods, botanical notes on Queensland; on a species of Brachyphyllum from mesozoic coal beds, Ipswich, Qaeensland.-Wm. Macleay, new fishes of New Guinea, No. 3. -Wm. A. Haswell, on Phoronis australis, n.sp. ; an instance of symbiosis (an Actinia lodging in the pits of a species of Cellepora) ; segmental organs of Aphroditea. - On some new species of Australian tubicolous annelids (plate).-E. Haviland, plants indigenous to Sydney.-Rev. Dr. Woolls, Eucalypts first known in Europe.-J. J. Fletcher, comparative anatomy of the female urogenital system in kangaroos, part 1.-Dr. H. B. Guppy, habits of the Birgus of the Solomon Islands,

Vol. viii. part 1, June 19, 1883 , contains :-William Macleay, a new form of mullet from New Guinea, J. J. Fletcher, anatomy of the urogenital system of the kangaroos, part 2.C. W. de Vis, extinct marsupial remains-C. P. Ramsay, contributions to the zoology of New Guinea (plate, Hapalotes papwanus),-Some new Australian fishes.-H. R. Whittell, habits of Peloparns Lerfus, and Larrada assfralis; on the voracity of a species of Heterostema.-Rev. J. E. Tenison-Woods, on the coal flora of Australia (eleven plates, heliotypes) ; gives a history of the subject and descriptive list of fossils (pp. 36-167). Kev. B. Scortechini, contributions to the flora of Queensland.Kev. C. Kalchbrenner, two new fungi.-Jas. Norton, fructification of the Bunya (Araucaria biduodliti) in Queensland.

Vol. viii. part 2, July 17, 1883, contains :-E. IIaviland, plants indigenous to Sydney, Nos. 3 and 4.-C. W. de Vis, tooth. marked bones of extinct marsupials ; on Brachalleles palmeri, an extinct marsupial ; on a lower jaw of Palorchestes asad; on some new genera and species of Australian fishes,-H. K. Bennett, habits of Leipoa arellata; on water from Eucalypti roots, -Wm. Macleay, fishes from the Burdekin and Mary Rivers ; New Guinea fishes, No. 4.-J. J. Fletcher, on a viviparous lizard (Hinulia elcgans). John Brazier, synonymy of Australian and Polynesian land and marine mollusca; localities of some species of recent Polynesian mollusca.-Rev. J. E., Tenison-Woods, mesozoic fossils from Central Australia (two plates).-Rev. B, Scortechini, second balf century of plants new to South Queensland.

Reve Internationale des Sciences Biologiques for July, 1883 , contains :-Elie Reclus, studies on indigenous people: the Khonds. - Prof. Huxley, living organisms and the way to study them (translated).—Proceedings of the Academy of Sciences, Paris.

August.-Leon Metchnikov, essay on the Christian commu. nion : the God of Nyssa and the God of Nazareth. - Prof. Huxley, living organisms and the way to study them (translated). -Proceedings of the Academy of Sciences, Amsterdam, and of the Acaderny of Sciences, Paris.

September. - Prof. Huxley, living organisms and the way to study them (translated). -Prof. Williamson, the primitive ancestors of living plants and their relation to the doctrine of evolution. - Proceedings of the Academy of Sciences, Paris.
Atti of the Royal Acadewy dei Lincei, June 17.-Remarks on Schiff's memoir on changes of volume during fusion, by Sig. Camizzaro.-On De Stefani's upper crest of the Apennines, by S. Capellini and Taramelli.-On the temperature corresponding with the glacial period, by S. Pietro Blaserna. -On the measurement of altitudes by means of the barometer, by S. Paolo Busin.- On the isobarometric types of Italy, by the same author.-On the first phenomena in the development of the embryo of the Böops (Salpa maxima), by S . Francesco Todaro.-On the caloric developed in liquids by the
discharge of electric condensers, by S. Emilio Villari.-Report on the antiquities recently discovered in Val della Torre, Adria, Forli, Orvieto, and other jarts of Italy, by S. Fiorelli.

SOCIETIES AND ACADEMIES Paris

Academy of Sclences, October 29.-M. Blanchard, president, in the chair.-Allusion was made by the President to the loss sustained by the Academy in the person of M. I.onis Breguet, the mechanician, who died suddenly on the night of October 26.-Observations on the geometrical deformations produced by pressure on a rectangular parallelopipedon with prolongation in a single direction (two illustrations), by M. Tresca. Fossil and savage man; anthropological stndies, by M. de Quatrefages. In presenting this important work to the Academy, the autbor remarked that since the discoveries of Boucher de Perthes and the jawbone of Moulin-Quignon some twenty years ago, not only bas the existence of Quaternary man been universally recognised, but a certain number of distinct Quaternary races has already been determined. The existence of Tertiary man also, without being yet fully demonstrated, has been rendered highly probable, especially by the researches of M. Capellini. A detailed account is given of all the known Quaternary races of Western Europe, based mainly on the fossil remains collected by M. de Baye in the artificial caves explored by him in the department of La Marne.- Note on the freczing point of alcoholic solutions, by M. F. M. Raoult. In accordance with the general law established by the anthor, the soluble bases are shown to belong to two distinct groups, one presenting a molecular lowering of the freezing point comprised between 33° and 4°, with a mean of 39°; the other lying between 16° and 20°, with a mean of 19°.- Report on the results of the treatment of the vines attacked by phylloxera in the Maritime Alps, by M. Laugier. The report speaks favourably of the experiments made dnring the years 188 I .83 with sulphnret of carbon and sulphocarbonate of potassium.-On certain equations connected with surfaces of constant carvature, by M. G. Darboux. - Determination of the equivalent of nickel by means of its sulphate, by M. H. Daubigny. - On a process for detecting by chemical analysis the traces of blood in clothes that have been washed, by M. C. Husson.-A comparative study of the excitability of the surface and deeper parts of the brain, by M. Couty.-On the spermatogenesis of podophthalmous crustaceans, and especially of the decapods, by M. G. Herrmann. - Note on the anatomy and physiology of the Sacculine and the allied genera Peltogaster and Lernacodiscus, by M. Yves Delage. ;

Berlin

Physical Society, October 19.-Dr. Frölich made a report on measurements of solar heat executed by him in continuation of observations he had made at an earlier date, according to the method he was still pursuing, on the temperature of celestial space. Observations on the temperature of the earth's surface had led him to the conviction that solar heat, the principal source of the temperature of the earth, must pass through very rapid oscillations, which were in all probatility connected with the guick movements on the solar surface that had been brought to light by the new methods of investigation. To establish these variations beyond all doubt required long-continued observations of the sun's heat by means of trustworthy instruments remainirg invariable for years. Thermoelectric piles provided with due protective apparatus could alone be deemed instruments of this description. Mr. Langley's bolometer was not adequate for any length of time, the electric resistance of thin metal plates being liable to very rapid variations. The thermoelectrie pile he had made use of was inclosed in a wide, double-walled pipe, opening in front in the shape of a funnel, in which circulated a constant stream of water of atmospheric temperature. The exposed front end of the thermopile was closed by a plate of rock salt, and the whole was set up in such a manner that it could turn in a frame, which itself might be turned in all directions and closed by means of a Venetian hutter. The whole apparatns was capable of revolving in all directions. The tbermopile and the galvanometer of Siemens and Halske's recent construction were perfectly trustworthy instruments, as Dr. Frölich had repeatedly convinced himself. There now remained the task of finding a standard for the solar heat. For this purpose preparatory experiments were instituted with luminous heal generators-a glowing platina sheet and an electrical glow-lamp of older con-
struction. These experiments, however, came to nothing. At last recourse was had to dark beat, such as was produced from a hollow screen filled with steam, one side of which is blackened with smoke, and the other whitened with chalk. With these apparatus measurements of solar beat were taken on perfectly clear days under a bright sun at very different points of the sun's altitude, and were represented by curves, the abscissce of which showed the thickness of the transmitted atmosphere; the ordinates the observed warmith of the sun. Under favourable conditions the curve formed a straight line, which, when extended to zero of the abscissa, furnished the measurement of the solar heat without atmospheric absorption. The measurements were at first attempted to be taken at the Berlin Observatory, but were found to present so many irregularities and oscillations in consequence of the situation of the Ubservatory in the midst of the city and the constantly vaporous and dusty state of the atmosphere surrounding it that they had to be discontirued there. Better and mure regular results were obtained from observations made at a louse in the western suburbs, The best and most conclusive measurements, however, in which the errors of observation were reduced to 1 per cent., were obtained from a tower in the West End near Berlin, where, throughout six days of the past summer, curves were registered approximating very closely to a straight line. One single measurement executed on the Faulhorn at a height of 9000 feet yielded a perfectly straight curve. The six measurements distributed over the pooths of June, July, August, September, and October, showed considerably different results in the different months. Dr. Fröblich caused Dr. Lohse, who bad been taking daily photographs of the sun at the Potsdam Observatory, to supply him with data regarding the presence of sunspots in the last months. From these data Dr. Fröhlich found that the lower degrees of solar heat corresponded with numerous formations of spots, while the bigher gradations of heat were attended with fewer sunspots, In this coincidence Dr. Frolich was disposed to see a sequence of cause and effect. It woald be necessary, however, to accumulate a large number of observations, and in particular to take them at elevated stations before any definitive judgment could be passed respecting the influence of sunspots on solar heat.

CONTENTS

Page
A Bushel of Corn. By Prof. John Wrightson . . . 25 Zoology of the North Atlantic Expedition . . : 26 Our Book Shelf:-

Anderson's "Catalogue and Handbook of the Archasological Collections in the Indian Museum"

The Green Sun.-C. Michie Smith; Dr. Warren De La Rue, F.R.S.; S. S. T.; Nathl. Bernard Beardmore
The Division of the Circle.-Antoine d'Abbadie. . 28
Christian Conrad Sprengel.-Dr, H. A. Hagen . 29
"Challenger" Zoological Reports.-F. Buchanan White
Barytes from Chirbury,-H. A. Miers (Wivin * Dia ${ }^{*}$ gram)
"Anatomy for Artists."-An Art Student 30
Meteor.-J. M. Hayward
The Java Eruption and Earthquake Waves, By J. Tr. ${ }^{\circ}$
The Literature of the Fisheries Exhibition:
The Paris Obselvatory Equatorial (With Illustra.
The Paris Obselvatory Equatorial (With Illustrafion)

Nordenskjöld's Greenland Expedition, 11. By Baron

 A. E. NordenskjbldThe Vienna International Électric Exhibitton. : : 4^{2}

Notes

 43Our Astronomical Column:-
Pons' Comet
45
Tempel's Comet, $18{ }^{\circ} 73$ II.
A New Star Catalogue 45
The Oban Pennatulida. By J. T. Cunningham 4
Notes from the Otago University Museum. By Prof.
T. Jeffery Parker

46
University and Educational Inteligence. : . . 46
Scientific Serials
Scientific Serials
Societies and Academies

THURSDIY, NOVEMBER 15, 1883

THE "AUSTRAL" /UDGMENT

THF inquiry into the sinking of the mail-steamer Austral in Sydncy Harhour has probably attracted more attention than any other case which has come before the Wreck Commissioner's Court since it was estahlished. Not merely those specially interested in or connected with shipping but the public generally were desirous of knowing how it happened that a magnificent steamship of the most recent construction should have foundered at anchor in smooth water and in a dead calm. It is satisfactory, therefore, to find that the causes of the accident have been discovered, and that they do not affect the reputation of the ship, nor the credit of her designers. The circumstances of the accident are briefly these :-The Ausiral had completed her sccond outward voyage, had discharged nearly all her cargo, and had partially refilled her coal-bunkers. A collier came alongside to continue the coaling, an the work was proceeded with during the night. In order to facilitate coaling, and to keep the interior of the ship clean, coal-ports had been formed in the sides, the height of these ports above water when the ship was upright being about five feet. The coaling was rapidly done, and no proper supervision was exercised by any of the officers of the ship; consequently a considerable weight of coal was introduced on the starboard side without any corresponding weight being placed on the port side, and the ship was gradually heeled over. At length such an inclination was reached that the sills of the after coaling-ports were brought to the sea-level; water began to enter the ports and to pass freely into the interior of the ship, and in fifteen to twenty minutes from the time the alarm was given she sank. No one appears to have observed the dangerous proximity of the coalports to the water until it was too late to save the vessel. Had there been ordinary care and watchfulness the accident would not have occurred.
This last statement can be made with certainty in view of the scientific evidence respecting the stability of the Austral given in the course of the inquiry. After the vessel had been raised and brought home the owners commissioned a competent naval architect, Mr. Elgar, to thoroughly investigate her conditions of stability at the time of the accident, and under various circumstances. As a basis for this investigation an inclining experiment was made on the vessel, and the vertical position of her centre of gravity was ascertained. Simple calculations enabled the investigator to pass from the experimental condition of the ship to all other conditions brought under review, and to place before the Court ainple materials for answering the question-Was she a stable vessel? This answer was distinctly in the affirmative ; indeed there is no room for doubting that with proper management, and the occasional use of the water-ballast with which she was provided, the Austral possessed sufficient stability. It is unnecessary to enter into details as to her "stiffness" and range of stability in various conditions of lading ; but it may be worth stating that, according to the evidence, had the coal-ports been closed and all weight; on board

VoL XXIX.-No. 733
secured, she would have been practically uncapsizable at the time of the accident.

It would be out of place here to discuss the finding of the Court as regards the responsibility or blameworthiness of the owners, officers, and other persons connected with the management of the ship. One broad general principle laid down by the Commissioner in his judgment may be considered with propricty, since it affects not merely the owners of the Austral, but shipowners as a body. Mr. Rothery is strongly of opinion that shipowners should cause inve-tigations to he made of the stability of their ships, and should furnish captains with the results of these investigations for information and guidance. In the case of the Austral no such investigations were made until after the accident, and what happened with her is the common case with ships of the mercantile marine. There has been a remarkable advance in the applications of scientific methods to merchant-ship construction of late years, and the consideration of problems of stability has heen forced upon the attention of shiphuilders and shipowners in many cases. But the adoption of the Commissioner's opinion would involve a much greater extension of scientific method and exact calculation than has yet taken place.

Shipbuilders necessarily have no control over the loading of the ships they build; and in most merchant ships the stability is practically determined by the nature and distribution of the cargoes carried. Up to the present time exceedingly little information is on record as to the actuil stability of laden merchant ships; and their loading usually has to be done under very hurried and difficult conditions hy men possessed of great practical experience, but having little or no acquaintance with the principles of stahility. Owners have hitherto been content to depend almost exclusively on experience with previous vessels in determining the dimensions of new ships, and have not set much store on the result of scientific calculation. Builders, on the other hand, recognising their want of control over the working of the vessels, have refrained, for the most part, from making detailed calculations of stability. Even the leading firms have chiefly confined attention to experimental and other investigations which would be useful in preparing subsequent designs; and in most cases the owners have not had communicated to them any facts which may have been ascertained respecting the stability of ships. Mr. Rothery maintains that all this should be changed: that fuller investigations should he universally made, and the results furnished by the owners to the captains.
The great, if not paramount, importance of due consideration being given to the stahility of merchant ships, and particularly of cargo-carrying steamers, is recognised by the most eminent authorities. Mr. Rothery in his recommendation indorses what has been said and written repeatedly of late years. But while there is a very general assent to the proposition that something should be done to secure a due amount of stability and to prevent improper or excessive loading, there is not a similar agreement respecting the means to be employed. For example some of the professional witnesses at the Austral inquiry expressed doubts as to the wisdom of placing in the hands of merchant-ship captains the results of calculations for stability expressed in the forms of "metacentric
diagrams" or "curves of stability." These gentlemen feared that to the average ship-captain such curves and diagrams would be unintelligible, and therefore of no practical value. It must be admitted that there is some force in this contention; but on the other hand it is obvious that a very moderate amount of instruction ought to suffice to make information of the kind intelligible and useful to an educated seaman.
It may be worth while to mention what is the established practice in the Royal Navy in this matter. Each of Her Majesty's ships is provided with a "Statement of Stability," in which appears a record of the "metacentric heights," crrresponding respectively to the "fully laden" and the "extreme light" conditions of the vessel. There is also a record of the calculations of stability at various angles of heel ; the angle at which the stability attains its maximum and that at which it vanishes being noted. In cases where special precautions are nseded special standing orders are given. For instance, in some low freeboard ships it is stringently ordered that a certain maximum load draught shall not be exceeded, because any diminution of the corresponding freeboard would cause an objectionable decrease in the range and area of the curve of stability. Again, in some vessels, as coals and stores are consumed, the stability is considerably diminished, and then orders are given that the ship shall not be lightened beyond a certain minimum draught, that draught being maintained if necessary by the admission of water-ballast. All these regulations are based upon careful experiment and detailed calculations. In the original design of the ships close attention is bestowed upon the question of their sufficient stability; and when the vessels are completed, an experimental check is put upon the intentions of the design, any necessary corrections being made in the original calculations. But it is right to remark that war ships are much more easily deale with than merchant ships, because definite positions are assigned in them by the designer for all the weights carried-whether they be armour, or guns, or coals, or ammunition, or outfit. Hence it is possible to state distinctly what is the stability in the fully laden condition, and what are the extremes of possible variations in stability as coals, stores, \&c., are consumed. In merchant ships, as was remarked above, the designer and builder have no corresponding control over stowage, and in practice very considerable variatiors in stowage necessarily occur. Leaving this difference aside for an instant, it may be stated that in the Royal Navy the information given on "Statements of Stability" is highly valued and well understood by naval officers. This result is, no doubt, attributable in a large degree to the fact that at the Royal Naval College for many years past classes have been arranged wherein naval officers receive instruction in the elements of naval architecture, and especially in the methods of interpreting the various statements and drawings issued by the Ad:niralty to the ships of the fleet. Similar instruction could not fail to be of service to officers of the mercantile marine, and te Admiralty have made provision in the Regulat ons for the admission of a certain number of such officers annually; but as yet no advantige ha, been taken of the permission. Either in this way or in some other, instruction nust be obtained by merchant captains if they are to exercise an intelligent control over the loading of
their vessels, and to insure the provision of sufficient stability.

It seems very probable that one result of recent occurrences and discussions will be the grant of greater freedom to shipbuilders in choosing the dimensions for new ships than has been customary hitherto. And it may be anticipated that increasing attention will be bestowed upon investigations of stability in connection with new designs. But whatever improvements may be made in the general practice of shipbuilders, the responsibility for management and loading must always remain with the owners and commanding officers of merchant ships. 111-advised action on their part might render futile all the precautions of the designer. He may have secured what seems a good margin of stability, on the basis of some hypothetical arrangement of a certain dead weight which was supposed to be the maximum a ship would carry; and yet in practice some more critical condition of loading may arise which must be dealt with by those in charge of the vessel.

Having regard to the very considerable variations in the character of the cargoes carried by the great majority of merchant ships on their several voyages, it appears to be highly important that owners and captains should have placed in their possession full information respecting the stability of their ships; and that they should be able to make intelligent use of this information. One of the most valuable pieces of information which a captain could obtain for a laden ship would be her " metacentric height," and there seems no reason why an intelligent officer who had been furnished with a "metacentric diagram," and understood its use, should not experimentally determine for himself before leaving port what measure of "stiffness" his ship possessed, and at what vertical position the centre of gravity was placed (if the conditions of loading were of an unusual character). He would then have a more certain assurance of the sufficiency or otherwise of the stability of the ship than he could otherwise possess; and this assurance might easily be made to extend not merely to the initial stability but to the stability at large angles of inclination. It may be urged that it is too much to hope for any such experiments, or for such an advance in knowledge ; and that in the stress of business time cannot be found for such elaborate inquiries. Possibly one may be too sanguine to indulge this hope; but inclining experiments of the kind indicated are neither lengthy nor costly operations, and their value as indications of the probable safety or danger of laden ships cannot well be over-estimated.

The necessity for carefully considering the stability of merchant ships is not a matter of dispute. All concerned may be assumed to desire some practical solution of the problems involved in securing sufficient stability. And on a review of the whole subject it will probably be admitted that all three classes interested-the shipowner, shipbuilder, and ship-captain-must accept their several responsibilities while working towards a common end. The shipowner may be presumed to know best the special requirements to be fulfilied in any new design. It is the duty of the designer to make sure that appropriate dimensions and proportions are secured in association with the fulfilment of these requirements, or to point out the impossibilty of such an association. And, finally,
upon the skilful and intelligent conduct of the captain must necessarily depend in a great degree the safety and success of the vessel during her career. In order that the best results may be obtained in face of the difficulties incidental to the design and management of many modern types of ships, the standard of knowledge must be raised in all three classes.
W. H. White

THE "ENCYCLOP.EDIA BRITANNICA"

Encyclopardia Brifannica. Ninth Edition. Vol xv. LooMem. Vol. xvi. Men-Mos. (Edinburgh : A. and C. Black, 1883.)

AMONG the most important scientific articles in vol. xv, of the new edition of the "Britannica" are those on Medicine, Mechanics, and Mammalia.
The concise but comprehensive epitome of the history of medicine which Dr. Payne has contributed is the only history of the kind in the language. In Germany there are in this subject, as in almost every other branch of learning, excellent text-books; and the author acknowlerges his obligations to Häser's "Lehrbuch der Geschichte der Medicin und der epidemischen Krankbeiten." In France, Daremberg's "Histoire des Sciences Médicales" is also well known. But in England there has been no serious attempt to write a history of medicine since the publication of Freind's letters to Mead (1725); even these only dealt with a portion of the subject, and were written or at least begun under the disadvantage of confinement in the Tower. There have been a few valuable contributions to the subject, such as Dr. Greenhill's articles in Smith's "Dictionary of Classical Biography," and Dr, Munk's Roll of the College of Physicians, but nothing more. ${ }^{1}$
Is this neglect justifiable ? In other branches of natural bistory and natural philosophy an acquaintance with the successive steps by which molern knowledge has been won is almost necessary for clearly comprehending the result. A history of astronomy, of electricity, or of physiology would be not only of interest but of practical value to the student of each of these subjects. But a history of medicine, however important as a chapter in the development of human intellect and the progress of civilisation, is scarcely any help towards understanding either the principles or the practice of the art of healing. A modern physician finds some knowledge of chemistry and of physics indispensable; botany and zoology are not without important bearing on his professional studies; a knowledge of German is of great practical use; but he may be ignorant of all medical literature above fifty years old without any loss, except the loss of the intellectual pleasure which every educated man should take in the past history of his profession.
That this is the case seems evident from the utter poglect of the older medical classics in medical education, potwithstanding occasional murmurs from the few who ave earned the right to murmur by having read them, nd from others-a neglect which exists not only in practi"Dr Edward Meryon's "Hist ry of Medicine" was mever finished. Dr. Monsis editsons of Hppocrates and of Paulus Agineta, (ruke's of the Kegien Sanitaris, Salcraitanum"" and Payne"s of Linacre"s tranalation: De I- inperamentis"" are seholsrly works "Lives of tititish Phy icicias" Wd "The G. .ld theaded Lane" are not un_racefally written. "The History ©d Her eer of the Art of Medicine "t is a very poor comptlation. A brithant Toy on the subject will be fuund at the end of "Poems " and other remans the late Dr. Frank Smalh (Sululh and Elder, 1879).
cal England and America, but no less in the learned German and the conservative French schools. This neglect is only confirmed by occasional glimpses of the said classics, and it is illustrated by the fact that we owe even the sketch of the labours of two thousand years which forms the subject of this review to the demands of an encyclopredia.

Nor is the reason far to seek. Molern medicine has scarcely anything but its aim in common with the art of the ancients. The attempt of the older physicians was to find some comprehensive explanation which would account for all the diseases of mankind, and their practical method was the application of certain remedies, recommended by the crudest experience, or more often by some such dogmatic criterion as that of "signatures." The authority of the ancients was regarded as independent of proof. In like manner naturalists used to study the worthless gossip of Pliny, and Milton recommended Columella as a school-book because of the practical importance of husbandry ; indeed in England we still teach geometry from an ancient Greek text-book, and Euclid will be the last to follow Aristotle and Galen, Dioscorides and Celsus, into learned oblivion. But the object of modern medicine is not to explain but to investigate, to ascertain what is amiss, and to deal with it as directly as possible, on the principles of physics and of chemistry, guided by experiment an 1 checkel by skilled statistics. Homceopathy is only the last of the "systems" of medicine ; not more arbitrary than many others, and, like the rest, not so much a wrong solution of a scientific problem as an answer to a question which cannot reasonably be put.

The art of rational medicine must therefore depend upon a knowledge of the body and its functions, on the power of discovering its physical conditions, and on acquaintance with the physico-chemical laws to which it is subject ; just as the art of navigation depends on a knowledge of astronomy and of meteorology. But even the rough outlines of anstomy wereonly made out during the sixteenth and seventeenth centuries, and the discovery of its minuter details, so well begun between 1650 and 1700 , was only resumed and carried to its present degree of completion by the achromatic microscopes of the last fifty years. Morbid anatomy dates from Morgagni. Physiology had no true existence before Harvey's discovery of the muscular contraction of the heart and the circulation of the bloot in 1628 . It was retarded rather than helped by premature application of mechanical laws, and did not make important progress again until the birth of chemistry in the last thirty years of the eighteenth century. If anatomy may be dated from the dissections of Vesalius, physiology from the vivisections of Harvey, and chemistry from the laboratory of Lavoisier, we cannot fix the beginning of modern medicine earlier than the introduction of mediate auscultation by Laennec in 1819.

Interest, however, will always belong to the history of medicine, apart from the practical value of the older medical literature. The study of the dreary succession of the Greek "sects," of the Galenical and Arabian "schools," and of the subsequent iatro-chemical, iatromechanical, Brunonian, and other "systems," is of service to warn too eager speculation from the errors of
past ages. Here and there, "appurent rari, nantes in gurgite vasto," records of real observation: the aphorisms of Hippocrate3, or the clinical pictures of Sydenham. Oceasionally a gool style commenis an almost valueless treatise, as in the case of Celsus an 1 Fracastori. More often we are attracted by some amusing goisip, so ne shrexd remark, or some interesting historical allusion, to epidemics or to wars, to the deaths of kings and conquerors, or to the daily accidents of contemporary life. Such are Caius's account of the sweating sickness, Ambrose Pare' s description of his treatment of gunshot wounds in Savoy and at Rouen, and the "cases" recorded by Dutch surgeons of the seventeenth century. Nay, apart from utility and from such chance rewards as these, there will always be those who take the genuine delight of a book-worm in old anthors because they are old, those who have the respectable appetite for information which is omnivorous, and stu fents of the human mind for whom acquaintance with its dullest wanderings is fruitful.

It is therefore well that English readers should have at least an outline of medicine in the past, and this want has been admirably supplied by Dr. Payne. Wisely abandoning all endeavours to include the biographical part of his subject, tempting as the excursion must often have seemed, and leaving on one side the curipus history of medicine as a profession, its connection with the Church, the differentiation of its several branches, its varied social position, and the growth and decay of the great colleges and schools of medicine, he has aimed only at presenting within the narrow limits allowed (about thirty-seven columns quarto) a view of the changes of medical theories, and of the slow progress and frequent retrogression of the medical art. Beginning with an appreciative sketch of Hippocratic medicine, the important work of the Alexandrine physicians is next indicated, the scientific scope and character of Galen is described, and the obscure line of tradition of classical medicine is traced down to the medixval school of Salerno. The vast, but thankless and little explored, field of Arabian medicine is then rapidly surveyed, and its dominion in Western Europe explained as being really little more than that of a corrupt Galenism. The revival of learning at the beginning of the sixteenth century was probably a misfortune to medicine, for when the Italian scholars, and our own Linacre and Caius translated the works of Galen into good Latin, these medical "classics" shared in the glory which surrounded the language of the New Testament and of Plato. The first steps of anatomy were in contradiction of statements by Galen, the first discovery of physiology was a refutation of his whole system. Yet the baneful influence of his great name, like that of the still greater name of Aristote, laste 1 long after his claim to implicit credence had been disproved. As the ancient syster was worn away, its place was eagerly striven for by the feebler systems of Paracelsus, Van Helmont, Borelli, Sylvius, Stahl, Hoffmann, John Brown, and Hahnemann in a long succes sion of three hundred years.

With the in rrbid anatomy of Morgagni, Baillie, and Laennec, and the physical diagnosis introduced by the latter great physician, the modern era of rational medicine began, in which sects and systems are mere survivals -superstitions-of an unduly prolonged middle age. At
this point Dr. Payne's heart and 'paper seem to fail together. He ends, much as Gray's bard ended his prophetic outline of English history, in a fine confused view of a period of light and splendour, illustrated by the names of Rokitansky and Virchow, Czermak and Helmholtz, Bright, Graves, Addison, Stokes, and Trousseau. It was no doubt wise not to attempt an account of the triumphs of the new era, but we hope that the learned author of this article may make it the foundation of a complete history of medicine, fuller and more exact than Daremberg's, lighter and brighter than those of Sprengel and Haiser. We also venture to suggest to the editor of the "Encyclopredia Britannica" that an article dealing with the curious and interesting history of medicine as a profession should be obtained from the same pen, under the heading, say, of "Physic, .History" of the Practitioners of."
We have scarcely left room for finding fault, and little room is needed. But to redeem our encomiun from the charge of blindness, we may ask why the history of the school of Salerno is given after that of Arabian medicine : what evidence there is apart from his name that Bernard Gordon of Montpellier (1307) was a Scot; and what possible aptitude there is in a comparison between two such different persons as the impudent, drunken vagabond who called himself Paracelsus and the great German reformer who lived at the same time.

Lastly, while we fully admit the justice of connecting the introduction of auscultation and of chemical and microscopical examination of morbid fluids with the introduction of a knowledge of morbid anatomy-for this connection was, in fact, the novum organum of medicine from 1820 onwards-yet we think that there should als? have been indicated, however briefly, the still newer method which has characterised the history of yet more recent medicine, namely, the method of number and measurement, by which to the stethoscope and the test tube have been added the clinical thermometer, the compte-globule and the sphygmograph. Perhap; future historians of medicine (particularly if they should write "primers" or "outlines" "for examination purposes") will divide the nineteenth century into four periods: the first (1800.1820) introductory, the second ($1820-1850$) the period of morbid anatomy and of physical diagnosis, the third (1850.1880) the period of morbid histology and of quantitative investigation; while the last, we may hope, will be called the period of experimental medicine, in which laboratories shall do the same service for pathology and therapeutics which they have already done for physiology.

There appears, under the head of " Mechanics," another of those mathematical dissertations which, each complete in itself, are to be found at such frequent intervals in the volumes of the new efition of the "Britannica." The author of the part of this article which treats of theoretical mechanics is Prof. Tait, and those who are familiar with his writings will be able to form an estimate of the way in which the treatment of the subject is conceived and carried out.
The science of mechanics in its widest range rests on Newton's Three Laws of Motion, and on that other passage in the "Principia" dealing with the activity of an
agent, the full significance of which, when interpreted by the light of modern discoveries, was first made clear by Professors Thomson and Tait. An examination of Newton's original statement shows that in his view "equilibrium is not a balancing of forces, but a balancing of the effects of forces. When a mass rests on a table, gravity produces in it a vertically downward velocity which is continually neutralised by the equal upward velocity produced by the reaction of the table, and these forces . . . are equal because they produce in equal times equal and opposite quantities of motion."

As regards our knowledge of force as distinguished from its mechanical measure as change of momentum, we are reminded that our idea of force, originally derived from the muscular sense, "may be a mere suggestion of sense corresponding (no doubt) to some process going on outside us, but quite as different from the sensation which suggests it, as is a periodic shearing of the ether from brightness, or a periodic change of density of air from noise."

In discussing still further the nature of force, Prof. Tait points out that our belief in matter, the most certain of all objective realities, is largely based on the property of the unchangeability of its aggregate amount. "The only other thing in the universe which is conserved as matter is conserved is energy. Hence we conclude that energy is the true physical reality, and force, which is merely the space-rate at which energy is transformed, must be regarded like other expressions, such as rate of interest, death-rate, gradient of heat, as an expression introduced for convenience, and not necessarily because of an objective reality attached to it."

Remembering the dual nature of all force as being exerted between two bodies, we bave, as another reading of the Third Law, "Every action between two bodies is a stress."

With regard to potential energy, which must depend in some hitherto unexplained way, like kinetic energy, on motion, Prof. Tait says: "The conclusion which appears inevitable is that, whatever matter may be, the other physical reality in the universe which is never found unassociated with matter, depends, in all its widely varied forms, upon motion of matter."

After explaining Newton's Laws, the author deals with the principles of kinematics, and then with statics and kinematics of various material systems, with different degrees of freedom, inserting amongst the analytical proofs several of those elegant geometrical constructions for which he is so well known. Whilst the nature of the article precludes a thorough exposition of the higher and more involved parts of the subject, he has succeeded in presenting illustrative problems of all the great divisions in mechanics, which afford some insight into the nature of the special parts of the subject to which they refer.

This most useful article, which exhibits the state of knowledge in theoretical mechanics at the present time, concludes with a list of the principal works on mechanics.

Following Prof. Tait's article, and under the heading of "Applied Mechanics," we have the reprint of an article by the late Prof. Rankine, contributed by him to the volume of the "Encyclopadia Britannica" which was published in 1857.

In this article Prof. Rankine has dealt with the principles of the subject very much on the same lines as in his larger published work on "Applied Mechanics." It is needless to say that nothing that Rankine wrote on the theory of mechanics can ever become antiquated or obsolete. He possessed such a firm grasp of the foundations of the subject, that it seems impossible to believe that on these points he could commit an error. But since that time many new discoveries have been made in mechanics, as in other sciences, to which we find no reference in the present articles. Of these perhaps the most important are the later developments of graphical staties, and the kinematical annlysis of Prof. Reuleaux. The former subject, which really dates its origin from the time of the discoveries by Rankine of the Theory of the Extension of the Fuaicular Polygon, and by Clerk Maxwell of the Theory of Reciprocal Figures, has received at the hands of Culmann and others developments which are now proving themselves of the greatest importance in engineering design. Of the higher parts of these more modern methods no information is given, either in the article before us, or in the extremely clear and simple theory of Frames, which appears in Prof. Jenkin's article on "Bridges," in the fourth volume of this "Encyclopedia," or in any other place in the work, and having regard to the importance of the subject, we cannot but regret its absence.
We believe that had the work of Reuleaux been published earlier, Rankine would have been one of the first to recognise its beauty and value.
The whole article displays the power of logical arrangement and method, as well as the condensed style which is so characteristic of all Rankine's writings, and makes them such difficult reading for beginners. These will probably prefer his "Applied Mechanics," for purposes of study, to the article before us. But as an exposition, in small compass, of the leading principles of that science, it is altogether admirable as far as it goes, whilst its value is increased by the numerous articles in this "Encyelopadia" on special, more technical parts of the subject, such as that of Prof. Jenkin, already quoted, and that of Prof. Unwin on "Hydraulics," and others which are promised in forthcoming volumes.

The article on "Manmalia," by Prof. Flower, is an extremely well condensed and intelligibly written essay on the highest class of vertebrate beings, for which, as the author notes, there has never been a generally accepted vernacular designation. Still the class known to zoologists as Mammals is one rigidly defined, and one that obeys the strictest rules of logic in its definition, despite Kant's remarks on the impossibility of defining strictly natural objects. It is easy to imagine the mammary glands reduced to a state of extrome simplicity, but among living mammals this never occurs, nor is there any gland to be confounded with them in any other vertebrate form. The article opens with a chapter on the general anatomical characters of the class, in which an immense amount of accurate information is compressed into a small space. Many of the figures illustrating the details of the osteology are taken from Prof. Flower's well-known work on this subject. In the chapter on classification, the recent arguments of Prof. Huxley in favour of passing over all known
forms of birds and reptiles and going straight to the amphibia for the progenitors of the mammalia are quoted with approval ; and that author's subdivision of the class into three sub-branches-Prototheria, Metatheria, and Futheria-is adopted. The history of the distribution of the mammals in time and space follows; and then we have the characters of the different orders and families, and of the principal forms of the class. In this section of the memoir the illustrations, taken from the best sources, are especially to be praised, and in many instances the information as to rare or new species is brought well up to date. This seems to us especially so in the interesting group of the bats and insectivora, for which Prof. Flower acknowledges his indebtedness to Dr. G. E. Dobson, but in the portion devoted to the order Primates, an order which Prof. Flower makes to include the lemurs, the monkeys, and man, we read the little that is written under the impression that it was but introductory to a good deal that was to follow, and when we turned over to p. 446 we found the essay was finished and that we had arrived at the index; even this bears marks of a forced compression, for while the earlier letters are fairly done, the last in the index have evidently had a lot "squeezed" out.

One other article relating to zoology in this volume is also by Prof. W. H. Flower, on the "Mammoth." He alludes to the derivation of this name as being by some ascribed to a Tartar origin, by others that it is a corruption of the Arabic word Behemoth, or great beast, but on the authority of Prof. Sayce it is a corruption of the Biblical Behemoth, Arabic bebimat.

The scientific articles in vol. xvi. are so numerous and important that it is impossible for us to give them satisfactory notice in the space at our disposal; we can do no more than name the more important. From Prof. Dittmar we have Metallurgy and Metals; Prof. Chandler Roberts and Mr. R. A. Hill contribute the article on Mint, in which all aspects of the subject are fully as well as interestingly treated; while Mining, by Dr. Le Neve Foster, is both practical and scientific. Meteorology, of course, has been undertaken by Mr. Buchan and Prof. Balfour Stewart, and forms an admirable exposition of the present condition of a science of great and growing complexity; Mr. Buchan treating of instruments and phenomena, while Prof. Stewart deals with the science that underlies the subject. The article on Micrometer is by Dr. David Gill; while it is natural to find Dr. W. B. Carpenter's name attached to that on Microscope. Prof. Heddle contributes an elaborate and protusely illustrated article on Mineralogy. Molecule has a triple authorship, Rev. H. W. Watson, Mr. S. H. Burbury, and Prof. Crum Brown, both its physical and chemical aspects being thus fully treated. The article on Mollusca in this volume, by Prof. Ray Lankester, is as complete and masterly and richly illustrated as that on Mammalia in the previous volume. Under Moon we have a short article on the lunar theory, by Prof. Simon Newcomb; other aspects of the subject have been dealt with under Astronomy. Mr. P. Geddes has a careful and wonderfully exbaustive article on Morphology: and Mr. R. M'Lachlan finishes off the volume with a somewhat tiny article on Mozquito. There are many other smaller articles in all
departments of science,-Prof. A. Newton, for example, doing all birds,-and several important ethnologico-geographical articles, as Mexico, by Mr. E. B. Tylor and Prof. Keane, and Mongols, by Prof. Douglas and Prof. Jülg. We hope in a future number to be able to refer in detail to some of the articles mentioned.

LETTERS TO THE EDITOR

[The Editor does not hald himself responsible for opinions expressed by his correspondents. Neither can be undertake to redurn, or to correspond wish the wrilers of, rejected manuscrapts. No notice is taken of anowymous communcations.
[The Editor urgently reyuests comespondents to keep their letters as short as possible. The pressure on his spacs is so graat that it is inppassible otherveise to insure the appharance etew of communications containing interesting and novel facts.]

Living Scorpions, Mygale, and Protopterus

Will you allow me to use your columns in order to ask any of your readers residing in tropical localities, who may be generous enough to wish to help a naturalist in his researches, to send to me living specimens of large Scorpions (not le-s than three inches in length), and /iving specimens of large Mygale (birdsnesting spider) ; alvo I would beg for living Earthworms of lange size frum African, Indian, American, and Australian localities. Any of these animals can be sent in a small tin box in which a few holes are perforated; the tin box reing packed in a much larger wooden box with hay or loose paper. Damp moss should be placed with the Scorpion or Mygale. Each specimen shuuld be inclosed in a separate tin box, sonce these animals are cannihals. The holes in the tin box containing an Earthworm should be very few, and the amount of damp moss very great. Earthworms would travel best in a Wardian cave, should the opportunity offer-aot loose, but in the alove-mentioned tin box.

I would further take this opportunity to ask for information concerning the best way of keeping the African l.epidoviren, or mudfish (P,otopverus annecfens), in eonfinement. I require to ascertain (1) its natural foot, (2) the temperature of the waters in which it naturally lives, (3) whether these are staguant or rapidly running, (4) whether anything is known as to babits in the breeding season, and ir this season immediately precedes or succeeds the dry season.
Some of your readers in this country or in Africa may have gained experience on these points, and would greatly help me in an attempt to breed the mud-fish by communicating with me.
E. Ray Lankester
ti, Wellington Mansions, North Bank, N.W.

Electricity in India.-The Green Sun

[The following letter has been sent us for publication by Sir William Thouson, to whom it is addressed:-]
For nearly a month the air has been in a state of electrifics. tion, which seems to me so interesting that I thought you would probably like 10 hear of it at once without my waining to com. plete my ob ervations. Unfortunately I cannot tell the exact date at which it began, but August 31 showed positive electricity all day apparently. On September 1 and 2, 1 was not able to get any measurements, but on the 3 rd at 1.10 p.m., 1 got negative readings from -28 to -17 div., wind light, S. by W. By 2.45 it had changed to +6 . Next morning at $10.5 \mathrm{a} . \mathrm{m}$. it varied from -136 to -44 ; this was on the roof. I then took it to the ground, to a place quite open, and found readings from -460 in guats of wind to -162 when the wind was light. The wind was fresh, westerly. Up to ith. 14rin. it conlinued negalive, but at my next reading, $3 \mathrm{p} . \mathrm{m}$., it was +35 . and remained stendily positive, the wind having now gone road to the east (sea breeze).
$5^{\text {th, }} 6$ a. us., positive, from 9 a.m. to 2.5 negative, and there after positive.

This continued with the exception of the 9th, when it was positive all day till the $13^{\text {th }}$.

On the zoth the reading at 955 was -34 , but at 11.55 it was +44 , the wind in the meanwhile having changed from wrst (land wind) to east (sea breeze). A sivilar state of affairs still continues.
During all this time the weather in Madras has been fine, and
for some days at first, when I made very special inquiries, I foun' that no rain had fallen within 100 miles of Madras. It may perhaps lee worth mentioning that from the 8th to the $14^{\text {th }}$ we have had the strange phenomenon of a bright green sun at sunrise and sua-et, the sun appearing as a rayle-s globe, at which you could easily look, and yet so sharply defined that nunspots could be well veen with the naked eye. On the 22nd again, two days after the electricity had gone to positive, the green sun reappeared, and has now ehanged to a sort of golden green. I do not say that there is any connection between the two, but they seem worth mentioning together. I have got a large number of ob-ervations which I will reduce as soon as possible, and send to the Royal Society of Edinburgh, but there is no use doing this till things return to their normal state. It is worth pointing out that observations made at intervals of six hours might have entirely failed to find the negative electricity. I usually, for convenience, take observations at 9 a m., befure leaving for college, and the next would be at three, and both these are always positive. I have not got the exact scale of my electrometer, but I find that 100 Daniell's cells give only 24 div. of a deflection. 1 am very much disappointed that I have not got my new instrument yet. Had I had it I would have been able to get simultaneous observations carried on at Madras and at a place forty miles to the west, which might have given valuable results. My present instrument, though working better thau before, needs constant recharging. For example, at noon yesterday the earth reading was $\mathbf{1 7 5 0}$, and at six this morning it was only 1440 .
C. Michie Smith

Christian College, Madras, September 26

Unusual Cloud-Glow after Sunset

Yesterday evening a most extraordinary sunset effect was seen here, which made a deep impression on all who observed it. The sky was nearly clear when the sun set at 4.18 , and the air transparent. A few cirrocumnlus fleeces became lighted np with a pink and then with a deep red colour immediately after sunset. A very peculiar greeni h and white opalescent haze now appeared about the p int of the sun's depariare, and shone as if with a light of its own, near the horizon. The upper part of this pearly mist soon assnned a pink colour, while the lower part was white, green, and greenish-yellow. About 4.35 the sky from near the horizon towards the zenith had begun to turn to a brilliant but delicate pink, and some pink cirrus-like streaks stretched apparently hurizontally towards the south-ea-t. The coloured portion of the sky spread out like a sheaf from the borizon, and appurently consisted of a very high, thin filmy cirrus disposed in transverse bands or ripples, close together, and very delicate in form, outline, and tint. Below the pink, and between it and the point where the sun lad set, remained the very curious, opalescent, shining, green and white vapour, hanging, as it were, vertically, and changing very litele during many minutes. The borders of the pink sbeaf were definite, and finely contrasted with the deep blue sky. As darkness came on, the pink ghow seemed to increase in brightness, and at five o'clock eavt a fine weird light over the hills. The moon was now bright in the south-eavt, and began to cast dark shadows. About five the colour slowly receded from the part nearest the zenith towards the horizon, and as it retired left a clearly visible filmy ripple of eirrus of a faint gray tint. At 5.25 the greater part of the colour was gone, and the cloud remained bright only near the horizon. At 5.32, however, it began to grow again, and in a short time (5.40) the whole extent of the film was again glowing bright pink, producing a most striking effect in contrast with the silvery moon, dark sky, and bright stars in the north and east. The pink light then slowly withdrew towards the horizon, remaining bright and deep coloured low down till 5.50 . At 5.58 the last pink disappeared. The whole phenomenon from first to last was in the highest degree peculiar and striting. It was remarkable, first, for the interval which elapsed between the time of sumet and the time at which the elond became bright, next for the light, filmy character of the cloud, tbirdly for the bright green glow near the place of sunset, fourthly for the small transverse ripple form of the cloud, fifthly for the permanence of shape and immobility of the cloud, sixthly for the very long endurarice of the coloured reflected sunlight after sunset, one hour and forty minutes, and seventhly for the second illumination, which began more than an hour after sunset. It was certainly due to cirrus or a higher kind of cloud, because (1) parts of the illuminated
shy stretched in long streais southwards, and the glow rewained loig in these streaks, resembling very high cirrus; (2) when the light left the sky the first time, the part which had been illu minated remained visible as silvery gray cloud ripples, before the second after-glow rekindled it, and (3) because the colour becaure very gradually darker as time went on, and because the reces. sions of light both times were towards the place of sunset. A similar very high cirrus had also been specially marked long after vunset on November 8 , and about the time of sunrise on November 9. The night following this rare display was exceed ingly clear and fine. This evening (November 10) the light, high eirrus, all but invivible in full daylight, with its delicate ripples, assumed the pink tint about fifteen minutes after sunset, thowing the upper air to be in the same abnormal condition as yesterday, and the phenomenon was feebly repeated. It would be interesting to accertain the approximate height of cirrus on which sumshine remains one hour and forty minutes after sunset at this time of year.
F. A. R. Kussell

Dunrozel, Haslemere, Surrey, November so

Shadow-Beams in the East at Sunset

THe phenomenon of beams of shadow mecting in the east at sunset. treated of in the pages of NaTure some months since (at which time you did me the honour of inserting a letter of mine), was beautifully witnessed here to-day and yesterday. Both days were unusually elear; there was, nevertheles, a "body" in the air, without which the propagation of the beams could not take place. Yesterday the sky was striped with cirrus cloud like the swaths of a hayfield; only in the east there was a bay or reach of clear blue sky, and in this the shadowbeams appeared, slender, coloarless, and radiating every way like a fan wide open. This lasted from 3.30 to about 4.30 To-day the sky was cloudless, except for a low bank in the west in the east was a "cast" of blue mist, from which sprang alternate broad bands of rose colour and blue, slightly fringed. I was not able to look for them till about 4.30 , when the sun wa down, and they soon faded. I have not belore seen this appearance so far north, but on the south coast, where I first saw it, I think it might often be witnessed. It is merely an effect of per spective, bnt a strange and beautiful one.

Stonyhurst College, November 12 Gerard Hopkins

The Java Eruption

The accompanying paragraph may be of interest in connce tion with the Java cata trophe. may mention that from the 28 th of last month, when I first noticed it, there has been an exceptional red glow after sundown, and a strange green tint in the sky, while till the last few days the moon has bad a distinctly green tint; this green tint has been noticed in many parts of Inclia.
F. C. Constable

Karachi, October 16

A Floating Lava Bed.-Sir,-It may be interesting to some of your scientific readers to know that the steamship Siam, on her voyage from King George's Sound to Colombo, on Angust 1, when in lat. 6° S., 89° E., passed, for upwards of four hours, through large quantities of lava, which extended as far as could be seen (the ship was going eleven knots at the time). The lava was floating in a succession of lanes from five to ten yards wide, and trending in a direction north-west to sonth-east. The nearest land was the coast of Sumatra (distant 700 miles), but as there was a current of fifteen to thirty miles a day, setting to the east ward, the lava could not have come from there, and 1 ean only imagine it must have been an upheaval from somewhere near the spot. I may mention the soundings on the chart show over 2,000 fathoms. Thcre was n submarine volcano near the sput in 1879.-Edward Ashdown, Commander, P. and O. steamship Siam. (Sind Gaselte Bulletin, October 12.)

Towering of Birds

When shootirg in Fifeshire last Octoler I fired at a partridge at a distance of about forty yards; the bird flew on for a short distance, and then began to ri-e, not in the manner in which a towering bird generally ascend-, but soaring as if it did so voluntarily. After rising to the height of 100 er 150 yards very much after the fashion in which sume hanks soar, its flight was suddenly deflected dow nwards olliquely for a considerable distance,
when it swerved, and came towards the ground in a different direcion, alighting as though it were in possession of its natural powers, some hundreds of yards from the place whence it rose. Ong ging to the spot where it had settled, it was found to be alive and erouebing in the long grass. The keeper ran in and placed his hand on it, when the bird struggled and tried to get axay; he killed it seeing that it was wounded. On examiniug the bird immediately afier I found that it had been strack by two pellet of No. 6 shot, one of which bad penetrated the pectoral musele e, but had not injured the eavity ; the lungs and other viscera were uninjured. The other pellet had entered behind and helow the left eyeball, and, passing forwand, had emerged ou the other side, passing above the upper mandible. The brain was uninjured, but the lower part of the left eyeball was cut and distended with blond. There was no other injury. No doubl the shock had confused the bird, and eaused its strange flight, which, though upward, was very different in its character from that of ordnary towering where the fungs are perforated, and unconsciousness is the result of the circulation of non-aërated blood.
J. Fayrer

Meteors

Permit nee to point out to Mr. J. M. Hayward (Nature, Nov. 8, p. 30) that his observation of the large meteor of November 4 possesses no scientifie valne, inasmueh as he has omitted to mention the important features of its appearance. The time is given as "just now" (or November 4), and the broad path of fire which this fine meteor divelarged upon its course must have beeas situated somewhere in the south-east, for yoar correspondent states he saw it " on turning t) the south-east."

I had endeavoured to show in NATURE of the preeeding week (Nov. 1, p. 6) that these delightfully vague forms of expression as applied to meteors are wholly inadequate, and, as such, cannot receive any attention at the hands of those who investigate these phenomena.

Had Mr. Hayward given us the essential details of his observation, it might have proved very valuable, for a large meteor (perhaps identical with the one he refers t,) was observed at many places on the night of November 4 . As recorded at Chelmsford, Bath, and Bristol the paths were :-
 Bristol.
The several estimates of brilliancy are very discordant, but the time and paths agree so elosely that there is little doubt the observations refer to the same meteor.

Another fine meteor was seen here on October 26 at 9 h .17 m . It gave a succersion of four lightning. like flashes. Path from a $288856^{\circ}+$ to a $333^{\circ} 859^{\circ}+$. This was not the only fireball visible that night, for I see by Nature (November $8, \mathrm{p} .44$) that "On October 26 at about $7 \mathrm{p} . \mathrm{m}$. a splendid meteor was seen in the distriet of Hernö and, Sweden." It appeared " with a blinding white lastre in the zeaith and travelling very rapidly down to the horizon." In this case again we have to deplore the extremely vague manner of the descrip. tion. Had the precise direction of flight been given, it would have been in'eresting to determine whether this fireluall belonged to the same stream as the equally fine one recorded at Bristol on the same night.
W. F. DENNING

Bristol, November 10
Tite meteors during October have been numerous, and the most of them proceeded from some point in Auriga. With the exception of about nine days of unfavourable weather, I have seen several meteors night and morning throughout Oetober, but they were generally small and transient. I have cuunted fifty-two from $10 \mathrm{p} . \mathrm{m}$. of October 3 to $4^{\prime 3} 30 \mathrm{a} . \mathrm{m}$. of the $4^{\text {th }}$, many of them large and of several econds' duration. The largest of these passed slowly from the first bright star on the left of Capella, in Auriga, to a point about I° below a Cygni. The smallest of them blinked rapidly before the eye in the zenith over the Milky Way, which, this night, was the principal theatre of tbeir display. From 3.30 to $4.30 \mathrm{a} . \mathrm{m}$. I counted forty of the fifty-
two meteors. From I a.m. to 4 of October 8 I observed very brilliant meteors. One at $2.25 \mathrm{a} . \mathrm{m}$. darted from about I° above Capella and disappeared at a point $\frac{1}{2}$ " from Phad in the Plougb, without exploding and without leaving any trace of light behind. It was as large as Venus. At $2.40 \mathrm{a} . \mathrm{m}$. a very large and brile liant meteor dashed out from a point midway between Capella and the first bright star toits right in Auriga, and sped along above the Pleiades and Aries through the Square of Pegasus, and exploded 3° beyond it, leaving no fire in its wake. October 15 , 11.38 P m., a very unusual meteor sailed slowly from \boldsymbol{B} Ceti to within $t^{\prime \prime}$ of Betelguenx, in the right shoulder of Orion. After tsavelling two-thirds of its journey, it exploded into four, three of which formed the head of an arrow, and the fourth adorned its tail, all the four sending out bright nebulous light behind them. At $2.50 \mathrm{a} . \mathrm{m}$. , October 26, a large ball of fire (bolide), apparently seven inehes in diameter, illumined the heavens with great brilliancy as it descended from abont midway betwcen the third and fourth bright stars on the left of Capella, exploding twice during the last half of its journey, and disappearing just as it reached the moon. It had no tall. It was seen by some of the Paisley night police, and one of them was frightened that it would dash the moon out of the heavens. This bolide had no detona.ion in either of its two explosions, and the last of it was only about the size of Jupiter. One policeman describes it as a large fiery ball of the size of the full moon, but this is an exaggeration. The extraordinary meteor of October 15, after ite cxplosion, was described by an ob erver as a wellformed arrow of flaming fire, followed by a ball of fire with a tail. To me it appeared to resemble the head and body of a fish, as well as the forul of an arrow.

Donald Cameron
Mossvale, Paisley, November 6

On the evening of Saturday last, at 10.12 p.m., a remarkable meteorite was observed elose to Trinity College, Glenalmond, in Perth-hire. It presented the appearance of a bright spherical ball, which moved horizontally from east-north-east to west-south-west at a height roughly estimated at 300 feet. When it began to curve downwards it dissppeared from view, bet it left behind it a luminous trail of great brilliancy, which was seen for fully forty seconds, its brilluancy gradually diminishing till it entirely faded away.
W. Besant Lowe

Trinity College, Glenalmond, Pertb, November 12

"Anatomy for Artists"

I AM quite unable to do as your correspondent "An Art Student " suggests, for the sccond edition of the above-named book has been just issued. I may add, however, that the reasons which led me deliberately to adopt the plan alluded t, in regard to the illastrations of the bones still remain, in my opinion, sound, snd I trust that the majority of my readers of the past, present, and future editions have not been and will not be "discouraged" by the effort which I desire them, for their owu sakes as students, to make.

John Marshall.
10, Savile Kow, W., November 12
P.S.-It seems that $/$ ought to have two "letters of refer. ence" attached to myself, for I am not "Dr." but "Mr." Marshall.

Earthquake

Nature on October 25 contained notices of shocks of earthquake which were felt at a quarter to one o'clock on the night of Octuber 89 (8 sh .20 m . Greenwich M.T.) at Cadiz and other places on the coast of Andalusia. I bave information that about 17 h .45 m . later these shocks, which were travelling from east to weit, had apparently ieached Bermudas. In a letter just received from ex-Chief Justice Darrell, dated October 22, he remarks :-"A very unn-ual event occurred here on the 20th of this month, tis a shock of an earthquake, which however was slight; no life nas lost, nor serious damage done to buildings; but the shock, which lasted less than a minute, at about a quarter past one p.m. was universally and unmistahably felt tbroughoat the colony. It is aid to be only the third time that any earth. quake has been experienced in Hermuda in the last forty yeara" A quarter past one in Bermuda would be about four and a half minutes past five at Greenwich, requiring, if the shocks originated in the same wave, a rate of transmission of abont 158 geographi-
cal miles an hour, or 26 miles per minute; less than half the rate at which the great shocks of 1755 and 1761 crossed the Atlantic from Lisbon to Barbados, which is given by Mallet as $7 \cdot 3$ miles, or 6.3 geographical miles per minute. ${ }^{1}$
J. H. Lefroy

"Partials"

In your number of Nov. 1, p. 6, I noticed an article the object of which was t, account for the existence of "parials." Were the theory therein set forth correct, we should have a constant number of "partials" for any given "fundamental" tone of constant force regardless of its source ; whereas it is a well-hncwn fact that, while the tones of some instruments are rich in "partials," those of other instruments have but few.

Cromwell O. Varley
Cromwell House, Bexley Heath, Kent

SCIENCE AND ENGINEERING

IN\mathbf{N} the address delivered by Mr. Westmacott, President of the Institution of Mechanical Engineers, to the English and Belgian engıneers assembled at Liége last August, there occurred the following passage:"Engineering brings all other sciences into play : chemical or physical discoveries, such as those of Faraday, would be of little practical use if engineers were not ready with mechanical appliances to carry them out, and make them commercially successful in the way best suited to each."

We have no objection to make to these words, spoken at such a time and before such an assembly. It would of course be easy to take the converse view, and observe that engincering would have made little progress in modern times, but for the splendid resources which the discoveries of pure science have placed at her disposal, and which she has only had to adopt and utilise for her own purposes. But there is no need to quarrel over two opposite modes of stating the same fact. There is need on the other hand that the fact itself should be fairly recognised and accepted, namely, that science may be looked upon as at once the hand:naid and the g-ide of art, art as at once the pupil and the supporter of science. In the present article we propose to give a few iliustrations which will bring out and emphasise this truth.

We could scarcely find a better instance than is furnished to our hand in the sentence we have chosen for a text. No man ever worked with a more single-hearted devotion to pure science-with a more absolute disregard of money or fame, as compared with knowledge-than Michael Faraday. Yet future ages will perhaps judge that no stronger impulse was ever given to the progress of industrial art, or to the advancement of the material interests of mankind, than the impulse which sprang from his discoveries in electricity and magnetism. Of these discoveries we are only now beginning to reap the bencfi. But we have merely to consider the position which the dynamo-electric machine already occupies in the industrial world, and the far higher position which, as almost all admit, it is destined to occupy in the future, in order to see how much we owe to Faraday's establishment of the connection between magnetism and electricity. That is one side of the question-she debt which art owes to science. But let us look at the other side also. Does science owe nothing to art Will any one say that we should know as much as we do concerning the theory of the dynamo-electric motor, and the laws of electro-magnetic action generally, if that motor had never risen (or fallen, as you choose to put it) to be something beside; the instrument of a laboratory, or the toy of a lectureroom. Only a short time since the illustrious French physicist, M. Tresca, was enumerating the various sources of loss in the transmission of power by electricity along a fixed wire, as elucidated in the careful and elaborate ex-

- Malle:'s Fourth Report, British Aswociation, 1858.
periments inaugurated by M. Marcel Deprez, and subsequently continued by himself. These losses-the electrical no less than the mechanical losses-are being thoroughly and minutely examined in the hope of reducing them to the lowest limit ; and this examination cannot fail to throw much light on the exact distribution of the energy imparted to a dynamo machine, and the laws by which this distribution is governed. But would this examination ever have taken place-would the costly experiments which render it feasible ever have been performed-if the dynamo machine was still under the undisputed control of pure science, and had not become subject to the sway of the capitalist and the engineer?

Of course the electric telegraph affords an earlier and perhaps as good an illustration of the same fact. The discovery that electricity would pass along a wire and actuate a needle at the other end was at first a purely scientific one; and it was only gradually that its importance, from an industrial point of view, came to be recognised. Here again art owes to pure science the creation of a complete and important branch of engineering, whose works are spread like a net over the whole face of the globe. On the other hand, our knowledge of electricity, and specially of the electro-chemical processes which go on in the working of batteries, has been enormously improved in consequence of the use of such batteries for the purposes of telegraphy.

Lct us turn to another example in a different branch of science. Whichever of our modern discoveries we may consider to be the most startling and important, there can I think be no doubt that the most beautiful is that of the spectroscope. It has enabled us to do that which but a few years before its introduction was taken for the very type of the impossible, viz. to study the chemical compositton of the stars ; and it is giving us clearer and clearer insight every day into the condition of the great luminary which forms the centre of our system. Still, however beautiful and interesting such results may be, it might well be thought that they could never have any practical application, and that the spectroscope at least would remain an instrument of science, but of science alone. This however is not the case. Some thirty years since Mr. Bessemer conceived the idea that the injurious constituents of raw iron-such as silicon, sulphur, \&c.-might be got rid of by simple oxidation. The mass of crude metal was heated to a very high temperature ; atmospheric air was forced through it at a considerable pressure ; and the oxygen uniting with these metalloids carried them off in the form of a id gases. The very act of union generated a vast quantity of heat, which itself assisted the continuance of the process; and the gas therefore passed off in a bighly luminous condition. But the inportant point was to know where to stop; to seize the exact moment when all or practically all hurtful ingredients had been removed, and before the oxygen had turned from them to attack the iron itself. How was this point to be ascertained? It was soon suggested that each of these gases in its incandescent state wo ld show its own peculiar spectrum ; and that, if the flame rushing out of the throat of the converter were viewed through a spectroscope, the moment when any substance such as sulphur had disappeared would be known by the disappearance of the corresponding lines in the spectrum. The anticipation, it is needless to say, was verified; and the spectroscope, though now superseded, had for a time its place among the regular appliances necessary for the carrying on of the Bessemer process.

This process itself, with all the momentous consequences, mechanical, commercial, and economical, which it has entailed, might be brought forward as a witness on our side ; for it was almost completely worked out in the laboratory before being submitcd to actual practice. In this respect it stands in marked contrast to the earlier processes for the making of iron and steel, which
were developed, it is difficult to say how, in the forge or furnace itself, and amid the smoke and din of practical work. At the same time the experiments of Bessemer were for the most part carried out with a distinct eye to their future application in practice, and their value for our present purpose is therefore not so great. The same we believe may be said with regard to the great rival of the Bessemer converter, viz. the Siemens open hearth; although this forms in itself a beautiful application of the scientific doctrine that steel stands midway, as regards its proportion of carbon, between wrought iron and pig iron, and ought therefore to be obtainable by a judicious mixture of the two. The basic process is the latest development, in this direction, of science as applied to metallurgy. Here, by simply giving a different chemical constitution to the clay lining of the converter, it is found possible to eliminate phosphorus-an element which has successfully withstood the attack of the Bessemer system. Now, to quote the words of a German eulogiser of the new method, phosphorus has been turned from an enemy into a friend; and the richer a given ore is in that substance, the more readily and cheaply does it seem likely to be converted into steel.

These latter examples have been taken from the art of metallurgy ; and it may of course be said that, considering the intimate relations between that art and the science of chemistry, there can be no wonder if the former is largely dependent for its progress on the latter. I will therefore turn to what may appear the most concrete, practical, and unsciemific of all arts-that, namely, of the mechanical engineer; and we shall find that even here examples will not fail us of the boons which pure science has conferred upon the art of construction, nor even perhaps of the reciprocal advantages which she has derived from the connection.
The address of Mr. Westmacott, from which I have already taken my text, supplies in itself more than one instance of the kind we seek-instances emphasised by papers read at the meeting where the address was spoken. Let us take, first, the manufacture of sugar from beetroot. This manufacture was forced into prominence in the early years of this century, when the Continental blockade maintained by England against Napoleon prevented all importation of sugar from America; and it has now attained very large dimensions, as all frequenters of the Continent must be aware. The process, as exhaustively described by a Belgian engineer, M. Mélin, offers several instances of the application of chemical and physical science to practical purposes. Thus, the first operation in making sugar from beetroot is to separate the juice from the flesh, the former being as much 3595 per cent. of the whole weight. Formerly this was accomplished by rasping the roots into a pulp, and then pressing the pulp in powerful hydraulic presses; in other words, by purely mechanical means. This process is now to a large extent superseded by what is called the diffusion process, depending on the well known physical phenomena of endosmosis and exosmosis. The beetroot is cut up into small slices called "cossettes," and these are placed in vessels filled with water. The result is that a current of endosmosis takes place from the water towards the juice in the cells, and a current of exosmosis from the juice towards the water. These currents go on cell by cell, and continue until a state of equilibrium is attained. The richer the water and the poorer the juice, the sooner does this equilibrium take place. Consequently the vessels are arranged in a series, forming what is called a diffusion battery; the pure water is admitted to the first vessel, in which the slices have already been nearly exhausted, and subtracts from them what juice there is left. It then passes as a thin juice to the next vessel, in which the slices are richer, and the process begins again. In the last vessel the water which has already done its work in all the previous vessels comes into contact with
fresh slices, and begins the operation upon them. The same process has been applied at the other end of the manufacture of sugar. After the juice has been purified, and all the crystallisable sugar has been scparated from it by boiling, there is left a mass of molasses, containing so much of the salts of potassium and sodium that ne further crystallisation of the yet remaining sugar is possible. The object of the process called osmosis is to carry off these salts. The apparatus used, or osmogene, consists of a series of trays filled alternately with molasses and water, the bottoms being formed of parchment paper. A current passes through this paper in each direction, part of the water entering the molasses, and part of the salts, together with a ceriain quantity of sugar, entering the water. The result of thus freeing the molasses from the salts is that a large part of the remaining sugar can now be extracted by crystallisation.
Another instance in point comes from a paper dealing with the question of the construction of long tunnels. In England this has been chiefly discussed of late in connection with the Channel Tunnel, where, however, the conditions are comparatively simple. It is of still greater importance abroad. Two tunnels have already been pierced through the Alps; a third is nearly completed ; and a fourth, the Simplon Tunnel, which will be the longest of any, is at this moment the subject of a most active study on the part of French engineers. In America, especially in connection with the deep mines of the western States, the problem is also of the highest importance. But the driving of such tunnels would be financially if not physically impossible, but for the resources which science has placed in our hands, first, by the preparation of new explosives, and, secondly, by methods of dealing with the very high temperatures which have to be encountered. As regards the first, the hi tory of explosives is scarcely anything else than a record of the application of chemical principles to practical purposes-a record which in great part has yet to be written, and on which we cannot here dwell. It is certain, however, that but for the invention of nitroglycerine, a purely chemical compound, and its development in various forms, more or less safe and convenient, these long tunnels would never have been constructed. As regards the second point, the question of temperature is really the most formidable with which the tunnel engineer has to contend. In the St. Gothard Tunnel, just before the meeting of the two headings in February, 1880, the temperature rose as high as $93^{\circ} \mathrm{Fahr}$. This, combined with the foulness of the air, produced an immense diminution in the work done per person and per horse employed, whilst several men were actually killed by the dynamite gases, and others suffered from a disease which was traced to a hitherto unknown species of internal worm. If the Simplon Tunnel should be constructed, yet higher temperatures may probably bave to be dealt with. Although science can hardly be said to have completely mastered these difficulties, much has been done in that direction. A great deal of mechanical work has of course to be carried on at the face or far end of such a heading, and there are various means by which it might be done. But by far the most sattsfactory solution, in most cases at least, is obtained by taking advantage of the properties of compressed air. Air can be compressed at the end of the tunnel either by steamengines, or, still better, by turbines where water power is available. This compressed air may easily be led in pipes to the face of the heading, and used there to drive the small engines which work the rock-drilling machines, \&c. The efficiency of such machines is doubtless low, chiefly owing to the physical fact that the air is heated by compression, and that much of this heat is lost whilst it traverses the long line of pipes leading to the scene of action. But here we have a great advantage from the point of view of ventilation; for as the air gained beat while being compressed, so it loses heat while expand-
ing; and the result is that a current of cold and fresh air is continually issuing from the machines at the face of the heading, just where it is most wanted. In consequence, in the St. Gothard, as just alluded to, the hottest parts were always some little distance behind the face of the heading. Although in this case as much as 120,020 cubic metres of air (taken at atmospheric pressure) were daily poured into the healing, yet the ventilation was very insufficient. Moreover, the high pressure which is used for working the machines is not the best adapted for ventilation ; and in the Arlberg tunnel separate ventilating pipes are employed, containing air compressed to about one atmosphere, which is delivered in much larger quantities, although not at so low a te:nperature. In connection with this question of ventilation a long series of observations have bsen taken at the St. Gothard, both during and since the construction : these have revealed the important physical fact (itself of high practical importance) that the barometer never stands at the same level on the two sides of a great mountain chain ; and so have made valuable contributions to the science of meteorology.

Another most important use of the same scientific fact, namely, the properties of compressed air, is found in the sinking of foundations below water. When the piers of a bridge, or other structure, had to be placed in a deep stream, the old method was to drive a double row of piles round the place and fill them in with clay, forming what is called a cofferdam. The water was pumped out from the interior, and the foundation laid in the open. This is always a very expensive process, and in rapid streams is scarcely practicable. In recent times large bottonless cases, called caissons, have been used, with tubes attached to the roof, by which air can be forced into or out of the interior. These caissons are brought to the site of the proposed pier, and are there sunk. Where the bottom is loose sandy earth, the Vacuum process, as it is termed, is often employed; that is, the air is pumped out from the interior, and the superincumbent pressure then cauies the caisson to sink and the earth to rise within it. But it is more usual to employ what is called the Plenum process, in which air under high pressure is pumped into the caisson and expels the water, as in a diving bell. Work nen then descend, entering through an air lock, and excavate the ground at the bottom of the caisson, which sinks gradually as the excavation continues. Under this system a length of some two miles of quay wall is being constructed at Antwerp, far out in the channel of the River Scheldt. Here the caissons are laid end to end with each other, along the whole curve of the wall, and the inasonry is built on the top of them within a floating cofferdam of very ingenious construction.

There are few mechanical principles more widely known than that of so-called centrifugal force ; an action which, though still a puzzle to students, has long been thoroughly underst ood. It is, however, comparatively recently that it has been applied in practice. One of the earliest examples was, perhaps, the ordinary governor, due to the genius of Watt. Every boy knows that if he takes a weight hanging from a string and twirls it round, the weight will rise higher and revolve in a larger circle as he increases the speed. Watt saw that if he attached suth an apparatus to his steam engine, the balls or weights would tend to rise higher whenever the engine began to run faster, that this action might be made partly to draw over the valve which admitted the steam, and that in this way the supply of steam would be lessened, an 1 the speed would fall. Few ideas in science have received so wide and so successful an application as this. But of late $y=a r s$ another property of centrifugal force has been brought into play. The effect of this so-called force is that any body revolving in a circle has a continual tendency to fly off at a tangent ; the amount of this tendency depending jointly on the mass of the body and on the velocity of the
rotation. It is the former of these conditions which is now taken advantage of. For if we have a number of particles all revolving with the same velocity, but of different specific gravities, and if we allow them to follow their tendency of moving off at a tangent, it is evident that the heaviest particles having the greatest mass will move with the greatest energy. The result is that, if we take a mass of such particles and confine them within a circular casing, we shall find that, having rotated this casing with a high velocity and for a sufficient time, the heaviest particles will have settled at the outside and the lightest at the inside, whilst between the two there will be a gradation from the one to the other. Here, then, we have the means of separating two substances, solid or liquid, which are intimately mixed up together, but which are of different specific gravities. This physical principle has been taken advantage of in a sonewhat homely but very important process, viz, the separation of crearn from milk. In this arrangement the milk is charged into a veisel something of the shape and size of a Gloucester cheese, which stands on a vertical spindle and is made to rotate with a velocity as high as 7000 revolutions per minute. At this enormous speed the milk, which is the heavier, flies to the outside, while the cream remains behind and stands up as a thin layer on the inside of the rotating cylinder of fluid. So completely does this immense speed produce in the liquid the characteristics of a solid, that if the rotating shell of cream be touched by a knife it emits a harsh grating sound, and gives the sensation experienced in attempting to cut a stone. The separation is almost immediately complete, but the difficult point was to draw off the two liquids separately and continuously without stopping the machine. This has been simply accomplished by taking advantage of another principle of hydromechanics. A small pipe opening just inside the shell of the cylinder is brought back to near the centre, where it rises through a sort of neck and opens into an exterior casing. The pressure due to the velocity causes the skim-milk to rise in this pipe and flow continuously out at the inner end. The cream is at the same time drawn off by a similar orifice made in the same neck and leading into a different chamber.

Centrifugal action is not the only way in which particles of different specific gravity can be separated from each other by motion only. If a rapid "jigging" or up-and-down m tion be given to a mixture of such particles, the tendency of the lighter to fly further under the action of the impulse causes them gradually to rise to the upper surface; this surface being free in the present case, and the result being therefore the reverse of what happens in the rotating chamber. If such a mixture be examined after this up-and-down motion has gone on for a considerable period, it will be found that the particles are arranged pretty accurately in layers, the lightest being at the top and the heaviest at the bottom. This principle has long been taken advantage of in such cases as the separation of lead ores from the matrix in which they are embedfed. The rock in these cases is crushed into small fragments, and placed on a frame having a rapid up-and-down motion, when the heavy lead ore gradually collects at the bottom and the lighter stone on the top. To separate the two the machine must be stopped and cleared by hand. In the case of coalwashing, where the object is to separate fine coal from the particles of stone mixed with it, this process would be very costly, and indeed impossible, because a current of water is sweeping through the whole mass. In the case of the Coppée coal-washer, the desired end is achieved in a different and very simple manner. The well known mineral felspar has a specific gravity intermediate between that of the coal and the shale, or stone, with which it is found intermixed. 1f, then, a quantity of felspar in small fragments is thrown into the mixture, and the whole then submitted to the jigging process, the result will be that the stone will collect on the top, and the coal at the
bottom, with a layer of felspar separating the two. A current of water sweeps through the whole, and is drawn off partly at the top, carrying with it the stone, and partly at the bottom, carrying with it the fine coal.
The above are instances where science has come to the aid of engineering. Here is one in which the obligation is reversed. The rapid stopping of railway trains, when necessary, by means of brakes, is a problem which has long occupied the attention of many engineers; and the mechanical solutions offered have been correspondingly numerous. Some of these depend on the action of steam, some of a vacuum, some of compressed air, some of pressure-water; others again ingeniously utilise the momentum of the wheels themselves. But for a long time no effort was made by any of these inventors thoroughly to master the theoretical conditions of the problem before them. At last, one of the most ingenious and successful among them, Mr. George Westinghouse, resolved to make experiments on the subject, and was fortunate enough to associate with himself Capt. Douglas Galton. Their experiments, carried on with rare energy and perseverance, and at great expense, not only brought into the clearest light the physical conditions of the ques. tion (conditions which were shown to be in strict accordance with theory), but also disclosed the interesting scientific fact that the friction between solid bodies at high velocities is not constant, as the experiments of Morin had been supposed to imply, but diminishes rapidly as the speed increases-a fact which other observations serve to confirm.
The old scientific principle knoxn as the hydrostatic paradox, according to which a pressure applied at any point of an inclosed mass of liquid is transmitted unaltered to every other point, has been singularly fruitful in practical applications. Mr. Bramah was perhaps the first to recognise its value and importance. He applied it to the well known Bramah press, and in various other directions, some of which were less successful. One of these was a hydraulic lift, which Mr. Bramah proposed to construct by meins of several cylinders sliding within each other after the manner of the tubes of a telescope. His specification of this invention sufficiently expresses his opinion of its value, for it concludes as follows :"This patent does not only differ in its uature and in its boundless extent of claims to novelty, but also in its claims to merit and superior utility compared with any other patent ever brought before or sanctioned by the legislative authority of any nation." The telescope litt has not come into practical use; but lifts worked on the hydraulic principle are becoming more and more common every day. The same principle has been applied by the genius of Sir William Armstrong and o:hers to the working of cranes and other machines for the lifting of weights, \&c.; and under the form of the accumulator, with its distributing pipes and hydraulic engines, it provides a store of power always ready for application at any required point in a large system, yet costing practically nothing when not actually at work. This system of high-pressure mains worked from a central accumulator has been for some years in existence at Hull, as a means of supplying power commercially for all the purposes needed in a large town, and it is at this moment bein2 carried out on a wider scale in the East End of London.
Taking advantage of this system, and combining with it another scientific principle of wide applicability, Mr. J. H. Greathead has brought out an instrument called the "injector hydrant," which seems likely to play an important part in the extinguishing of fires. This second principle is that of the la'eral induction of fuids, and may be thus expressed in the words of the late William Froude :"Any surface which in passing through a fluid experiences resistance must in so doing impress on the particles which resist it a force in the line of motion equal to the resistance." If then these particles are themselves part
of a fluid, it 'will result that they will follow the direction of the moving fluid and be partly carried along with it. As applied in the inje tor hydrant, a small quantity of water derived from the hish-pressure mains is made to pass from one pipe into another, coming in contact at the same tirne with a reservoir of water at ordinary pressure. The result is that the water from the reservoir is drawn into the second pipe through a trumpet-shaped nozzle, and may be made to issue as a stream to a considerable height. Thus the small quantity of pressurewater, which, if used by itself, wouid perhaps rise to a heigbt of 500 feet, is made to carry with it a much larger quantity to a much smaller beight, say that of an ordinary house.
The above are only a few of the many instances which might be given to prove the general truth of the fact with which we started, namely, the close and reciprocal connection between physical science and mechanical engineering, taking both in their widest sense. It may possibly be worth while to return again to the subject, as other illustrations arise. Two such have appeared even at the moment of writing, and though their practical success is not yet assured, it may be worth while to cite them. The first is an application of the old principle of the siphon to the purifying of sewage. Into a tank containing the sewage dips a siphon pipe some thirty feet high, of which the shorter leg is many times larger than the longer. When this is started, the water rises slowly and steadily in the shorter column, and before it reaches the top has left behind it all or almost all of the solid particles which it previously held in suspension. These fall slowly back through the column and collect at the bottom of the tank, to be cleared out when needful. The effluent water is not of course chemically pure, but sufficiently so to be turned into any ordinary stream. The second invention rests on a curious fact in chemistry, namely, that caustic soda or potash will absorb steam, forming a compound which has a much higher temperature than the steam absorbed. If, therefore, exhaust steam be discharged into the bottom of a vessel containing caustic alkali, not only will it become condensed, but this condensation will raise the temperature of the mass so high that it may be employed in the generation of fresh steam. It is needless to observe how important will be the bearing of this invention upon the working of steamengines for many purposes, if only it can be established as a practical success. And if it is so established there can be no doubt that the experience thus acquired will reveal new and valuable facts with regard to the conditions of chemical combination and absorption, in the elements thus brought together.

Walter R. Browne

THE LItERATURE OF THE FISHERIES EXHIBITION ${ }^{2}$

II.

THE depopulation of our littoral fisheries is the text of a paper on "Crustacea," by Mr. T. Cornish, who proposes to meet the difficulty by establishing a market for "middle-sized" Crustacea (and even fishes), other than those which we now eat, either as "luxuries or dainties." There is an amusing but authoritative air of originality about this paper. Mr. W. S. Kent, on the other hand, proposes the "Artificial Culture of Lobsters" as a remedy for the same evil, and recounts some interesting experiments made by himself-on a small scalein which he succeeded in rearing the young lobsters taken captive. The leading developmental phases are set down for the guidance of others, but the account given is deficient in record of the earlier stages of the process. This is important, as the writer (presupposing
${ }^{3}$ Concluded from F. 36 .
success such as has attended the artificial cultivation of the Salmonidx) states, without apparent proof, that the cultivation might gn on after the removal of the eggs from the parent. Should this be so, choice must then lie between the methods of Messrs. Cornish and Kent. The latter has overlooked the fact that our lrish lobster fisheries appear to be capable of much greater development, and we doubt how far an accusation brought against the "West-end chefs" is a logical one. Weare at a loss to see the drift of Mr. K. Cornish's remarks, which form part of the discussion upon these two papers.

Early in the career of these meetings, our freshwater fisheries received attention at the hands of Sir Jas. Maitland, whose liberality in the matter of salmon-culture is well known in all fishing circles. The author, who regards the artificial propagation of the Salmonide as in its infancy, records the technique and results of a long practical experience, and indicates lines for future investigation, both as regards the migratory and non-migratory forms. He shows that by skifful attention he can rely upon hatching out 99 per cent. of Loch Levan trout ova, and, while discussing all sides of the question, he wisely points out that the object to be aimed at is "not to incubate the largest number of eggs in a given space," but so to manipulate them that "the largest number of healthy fish may result"-a statement involving difficulties for the study of which we must refer the reader to the paper itself. Intimately connected with this department is the question of the salmon-disease fungus, which forms the topic of a paper on "Fish Diseases," by Prof. Huxley. The author's investigations in the matter are well known to readers of Nature, but all connected with freshwater fishing owe a debt of gratitude to the learned Professor for having thus sifted a voluminous literature upon the subject, and diagnosed in faultess style this pest. Its geographical limits are-for the first time mapped out; the fuugus is shown to cause, and not merely accompany, the disease, and its propagation is conclusively shown to be favoured by causes which though unknown must necessarily be limited. Every inducement is given to the daily worker among these fishes to cooperate in the furtber study of the disease, in even the purely scientific aspects of which much yet remains to be done. The remarkable fact that the disease is in no way correlated with the "productiveness" of a river is fully demonstrated, and must carry its own lesson.
A somewhat analogous topic forms subject-matter for a paper on "The Destruction of Fish by Internal Parasites," by Dr. S. Cobbold. There is, however, the most marked contrast between it and that of Prof. Huxley, and we venture to say that the statements made on the first two pages and elsewhere, are calculated to frighten rather than encourage (by appealing to the experimental side) possible workers in a feld for which the author claims so much. We are compelled to put this work down with a feeling of disappointment, the more so seeing that much of the space which might have been turned to better account is devoted either to a mere reiteration of statements made again and again by the author during the earlier sittings of the Conference, or to needlessly lengthy and verbose discussions upon minor points, to the exclusion of more important ones.
The all-important topic of "Food of Fishes" is attacked by Dr. Day. There is much in his paper that is of value, he having incorporated the observations of others with his own to the best advantage. The extreme importance of this subject is obvious to all concerned, but when-to say nothing of the question of inter-preyingwe consider the extent to which it is known that the food of fishes may vary under conditions of most of which we know absolutely nothing, it is obvious that there opens up a field of labour, involving all sorts of side issues, work in which must necessarily be both prolonged and tedious.

The paper, however, suggests certain lines along which a fruitful advance might be made. In the discussion which followed, the chairman (Prof. Huxley), taking a philosophic grasp of the question, resolves it into a balance in favour of "the ultimate store of food" furnished by "the Diatomacex which occur on the surface."
Mr. R. B. Marston, in an exceedingly practical paper on "Coarse Fish Culture," adduces reasons for which it is obvious that repopulation of our fresh waters must go on as matters stand, and can be very beneficially maintained. The question is one of growing importance, especially as it affects those who, although living far inland, still have the power of rearing good fish-food. We doubt, however, how far it is not possible to obviate certain of the difficulties mentioned, by more careful "nursing" alone. In advocating the introduction of the prolific Black Bass, the writer makes a statement, partly borne out by the experience of the Marquis of Exeter who first introduced the fish into Britain, but diametrically opposed by that of Sir Jas. Maitland-and which, if correct, is of great importance-viz, that it "thrives best in just those waters which are not suited to trout and salmon."

It is well known that the natural salmon stock of five of our largest rivers is practically exterminated, and that the fish present themselves annually at their unsavoury mouths, but to be baffled by causes, chief among which is that of pollution; in other cases, less markedly offensive, the fish are known to be slowly but certainly receding The Hon. W. F. B. Massey Mainwaring, in a paper upon "The Preservation of Fish Life in Rivers by the Exclusion of Town Sewage," first points out the main causes of actual death, and then proceeds to advocate the claims of the well-known A.B.C. process, exhibited by the Native Guano Company. For this he claims success, greater than that which has attended any such known chemical method, all at present pointing to irrigation and inter-mittent-downward filtration, as the be,t solution of the difficulty. All the artificial breeding in the world cannot be of avail in waters thus becoming more deadly, and to the chemist the utilisation of waste offers a good field for work. There are other doubtful points about this paper, beyond the limits of a short notice, but it is sincerely to be boped that when the present inquiry into the London sewage question terminates, the adoption of some treatment beneficial to our waters may perpetuate its action.
Closely allied are the interests of "Forest Protection," advocated by Mr. D. Howitz, the more especially as there is evidence to show that the disappearance of salmon has been at times associated with the clearing of forests. The author points out that, while the question has naturally more interest for other countries than our own, it is possible to maintain throughout the year, by the interaction of natural forces, a better equilibrium of life in shallow water. Although much yet remains to be done in this work, the arguments adduced are practical and weighty. The author advises the use of certain trees as being, from his own experience, preferable, the question of growth of timber not being overlooked.
All the aforementioned papers point indirectly to the "outcome" of the present movement, in so far as they suggest methods of improvement. Those which remain are either directly addressed to that subject itself, or to others demanding immediate attention.
Prof. Leone Levi brings forward a mass of statistical knowledge upon "The Economic Condition of Fishermen," stated to be "generally unsatisfactory". The paper abounds in useful information, not the least important being that which deals with the relationships existing between boat-owners and fishermen; the author also states that at present the workers are in proportion excessive "to the amount of production," and wisely recommends a "weeding" of those parasites-neither fishermen nor fools-said to exist. The "fortunes of the fisheries and agriculture in the last twenty years " are significantly
compared; but this and other matters dealt with are beyond the limits of our present notice.
In "The Principles of Fishery Legislation" the Right Hon. G. Shaw Lefevre, proceeding to deal with the sea fisheries, exclusive of Crustacea and littoral forms, recalls the circumstances which led up to the passing of the Sea Fisheries Act of 1868 -the result of an inquiry before a Commission of which he was himself a member. This Act, essentially one repealing restrictive legislation and giving increased liberty, has lately, as our readers doubtless know, been much under discussion, and the statistics here brought forward speak for themselves as to the wisdom and successful working of the laws then laid down. When we consider the state of the question, as reviewed by the author, we must admit that to alter would be to mar such statutes as these, unless prompted by fresh acquisitions to our knowledge. Speaking of the littoral species, the author shows that restrictive action has exercised no beneficial influence whatever upon our oyster fisheries, and in connection with this subject good evidence has been brought before the Conference to show that actual harm has often been done by premature legislation. These considerations all point to a conclusion, reiterated again and again in the papers before us, and affording consolation to all save a small faction, which pleads injury, but for what reason we know not. This valuable paper is supplemented by one upon "The Basis for Legislation on Fishery Questions," by Lieut.-Col. F. G. Solá, Secretary to the Spanish Commission. Much of this paper is necessarily taken up in discussing Spanish fisheries, but the moral points in the direction indicated above. Speaking of "an absolutely restrictive system," the writer ably remarks that, "under the shade of those abuses established, recognised, or tolerated by former laws, there will have grown up a crowd of well to-do interests, which it is not possible to disregard." These words and those which follow, will bear all the consideration we can give them.
Setting asite the popular sensational aspect of the "Fish Markets" question, of which those in authority have lately heard enough, that of "Fish Transports and Fish Markets" demands early consideration and prompt action. His Excellency Spencer Walpole, in dealing with it, confines himself to that "internal traffic" in which lie many sources of evil. Speaking of the necessity for rallway reform, the author does not, as might be inagined, advocate State management, but seeks solution of the "suicidal policy" now existing, by insuring-between land and water carriage-a "healthy competition." All we can hope is that the matter may be thus easily rectified, meanwhile the fact remains that the future of great and important fisheries must depend upon the issue. The author enters into a discussion of the market question, but as so much concerning this rests with the City Corporation we await their views. Despite the protest lodged by Mr. Sayer on p. 20, we cannot but regard the silence of, and want of concerted action among, the Billingsgate men, as an unhealthy sign.
The perils of a fishing life are patent to all, and when we hear a cry raised on all hands for increased harbour accommodation, and read that the failure of our fisheries is often due to want of weather forecasts, it is obvious that an important claim is established. Mr. Scott, in a paper on "Storm Warnings," brings a well-known experience to bear upon this matter, and compares our own condition and apparatus with those of other countries, notably the United States, Germany, and Holland. Our greatest need at present is shown to be want of observatories on the west coasts of Ireland and Scotland, and the author points out the significant fact that "storm signals are hoisted at 111 stations only over the whole United States, while we in these islands have nearly 140 for a much smaller area." Speaking of the famed American storm-warnings, the need of mid-ocean observatories is
discussed, as the storms almost invariably "change their character en routc." Much other valuable information is embodied in this paper.

Prof. Lankester, writing on "The Scientific Results of the Exhibition," after making some admirable remarks about the "so-called practical man" and other topics, sets up a plea for a zoological observatory or "station." While no one will fail to enter into the spirit of his paper, we are of opinion that the plan-as concerning fisheries alone-need not be so elaborate as that suggested by him. No subject has created a greater revolution in the minds and actions of fishermen of late, than the discovery of Profs. Sars and Malm that the eggs of certain of our deep-sea fishes develop at the surface, and even were this not so no one would gainsay Prof. Lankester's cry of "more zoology." When we read that "the herring fishery is a lottery," and that simply because we know nothing of the real nature and causes of the movements of those fishes, it is quite obvious in what direction our earliest observations must be pursued. For this purpose a transportable zoological laboratory, with proper boats and appliances, such as that used in the recent successful experiments in the Netherlands, would amply suffice, and we conceive of such as best embodied in "A National Fishery Society," for which Mr. Fryer urges a strong, and it seems to us an exceedingly just, claim. All modern advance in the fishing industry points to the conclusion that Governmental action must be slight but firm; this being so, both common sense and precedent show it to be absolutely necessary that some such mediating body as that which the author would have established, should exist. Such a society would, of necessity, acquire in time all necessaries for work and progress, but, until this stage at least is reached, Britain-whose waters are second to nonecannot hope to hold her own in the matter of International Fisheries. We heartily recommend our readers to reflect upon a speech, made by Mr. Birkbeck, M.P., Chairman of the Executive Committe, which follows the aforementioned paper.
Such are the aims and scope of the Literature of the Great International Fisheries Exhibition, and when the remaining publications are forthcoming it will form a collection upon which both the fishermen and alt concerned must be congratulated. It has been impossible to do more than indicate the general line of work in this brief notice, no note having been taken of the extent to which certain papers overlap; it will be obvious, however, where abuse lies, where reform is needed, and along what lines the expected "outcome" must proceed.
The style of these books, protuced by Messrs. W. Clowes and Sons, leaves nothing to be desired ; the few typographical errors which occur being unavoidable in dealing with the technicalities of such an extensive subject.

NOTES

THE adjudication of medals for the pre ent year by the Council of the Royal Suciety is as follows :- The Copley Medal to Prof. Sir William Thomion, F.R.S., for (1) his discovery of the law of the nniversal dissipation of enerby ; (2) his researches and exinent services in physics, bxh experimental and mathematical, especially in the theory of electricity and thermodsnamies; a Royal Medal to Prof. T. A. Hirst, F.R.S., for his researches in pure mathematics ; a Royal Medal to Prof. J. S. Burdoa-Sanderson, M.D., F.R.S., for the eminent services which he has rendered to physiology and pathology, especially for his investigation of the relations of microorganisms to disease, and for his researches on the electrie phenomena of plants; the Davy Medal to Marcellin Berthelot, For. Mem. R.S., and Prof. Julius Thomsen for their researches in thermo-chemistry.

Prof. Huxley and Sir Joseph Hooker having been elected members of the Salters' Company, were present at a dinner given hy the Company on Tuesday evening, and both took praiseworthy advantage of the opportunity to remind our "City men" of some wholesome truths. Prof. Huxley said he had no doubt that an immense field of usefulness lay open for the Guilds and the Corporation of London. Happily it was a field which was not altogether unplonghed, and one in which the road had been practically shown towards doing an immense amount of good. He wished to express an opinion which he had formed with great care, and which he uttered with a full sense of responsibility, that the work which had been nndertaken in the name of the City and Guilds of London, and which had at present resulted in the foundation of an institate for technical education, was one of the greatest works, if properly comprehended, which bad ever been taken in hand, whether they viewed it with reference to the commercial prosperity of the country, to its social organisation, or to the preservation of the condition of political equilibrium; for at the present time the wealth and prosperity of the country were a cloud generated out of the application of physical science, and taking that science away the doud wonld vanish like any other baseless fabric of a visionThe future predominance of the commercial power of England depended upon whether its merchants had the wisdom to appreciate the gifts which science gave them. If, however, these elements were disregarded, London would perish as surely as Carthage. The social state and the preservation of the condition of political equilibrinm depended, he argued, apon a proper knowledge of science. The institation to which he had referred provided for all those requirements, and it was one of the greatest privileges of the office which he at present held that he should be associated with those engaged in the organisation of this system, and who, he trusted, would carry on the enterprise to a saccessful conclusion.

THE death is announced of the well-known American minera1 gg ist, Mr. Lawrence Smith, at Louisville, Kentucky. Mr. Smith devoted himself mainly to the investigation of meteorites, and did much to increase our knowledge of these bodies, He was a corresponding member of the Paris Academy of Sciences.
Capt. Dawson and party of the British Circumpolar Expedition, which wintered at Fort Rae, Great Salt Lake, arrived safe and well at Winnipeg on November 2, having succeeded in crossing the beight of land at Portage la Loche before the closing of the navigation by ice, which some of the resident authorities of the Hudson's Bay Company in the north-west thought they would be unable to do if detained on Slave Lake until the end of August.
M. Charcot, the chief surgecn of La Salpetrière, in Paris, has been nominated member of the Academy of Sciences.

It has beeen arranged that the tereentenary of Edinburgh University shall be celebrated on April 16, 17, and 18 nest.
Ther resalts of the late Cambridge higher local examination were very discouraging as regards Groap E (Natural Science). Only two out of sixty-six candidates gained a first clase, and thirty-one failed. The following are extracts from the Examiners' reports 1 -Elementary Paper: The answers indicated an imperfect comprehension of principles, and an inadequate practical acquaintance with the snbject-matter of the various sciences. In Chemistry the papers as a whole were markedly inferior to those of last year, showing want of knowledge of any practical arrangements for the simplest experiments. In Physies the work of all the candidates was very poor. The general want of clearness and definiteness of expression was very noteworthy. No marks were gained for answers to the numerical questions, and in but few cases were they attempted. In Physical Geography and Geology the answers were on the whole unsatisfac-
tory. The candidates seemed to bave studied the subject chiefly in books, for though one or two showed proofs of baving acquired some practical knowledge in the Museum, nearly all, when describing the physiography and stratigraphical geology of an English district, gave indications that their knowledge was gained by reading, and not by actual observation in the field. In Physiology the answers of different candidates were very unequal. Some were extremely good, while a considerable number showed ignorance of the most rudimentary facts. There was very little evidence of a personal acquaintance with minute anatomy. In Zoology most of the answers were characterised hy vagueness, want of precision, and a marked, often grotesque, ignorance of the meaning of the most ordinary technical terms. The reading of most of the candidates seems to have been very diffuse and unintelligent, while not one of the candidates had any real grasp of the principles of the subject. In Botany the answers were very weak. They indicated a tendency to neglect the external morphology and anatomy, and to pass on to special morphology and life-histories of the lower forms before the above-named branches of the subject had been properly mastered.

Among the lectures to be given at the London Institation during the coming season are the following:-December $3, \mathrm{Mr}$. G. J. Romanes, F.R.S., Instinct ; 6, Rev. W. Green, the High Alps of New Zealand; 13, Prof. G. W. Heaslow, the Glaciers of the Alps ; 20, Prof. W. H. Flower, F.R.S., Whales ; 27, Prof. H. Armstrong, F.R.S., Water (juvenile lecture) ; 31, Dr. Rae, F.R.S., the Eiskimos and Life among them. January 3, Dr. Donald MacAlister, How a Bone is built ; 7, Mr. H. Seebohm, Aretic Siberia; 10, Mr. Alfred Tylor, Celtic and Roman Britain ; 17, Mr. H. Dixon, Explosives. February 7, Mr. Norman Lockyer, F.R.S., the last two Ecliqses of the Sun; 18, Mr. J. Bryce, M.P., D.C.L., an Ideal University ; 21, Prof. R. S. Ball, F.R.S., the Doctrine of Evolation applied to the Solar System ; 25, Dr. E. B. Tylor, F.R.S., the Three Sources of History-Records, Monuments, and Social Laws. March 6, Prof. Schuster, F.R.S., the Aurora Borealis,
Hzrr Carl Rohrbach of Leiprig has lately described a method of procuring a fluid having extraordinarily high refractive and dispersive powers. 100 parts of iodide of barium are mixed with 130 parts of scarlet biniodide of mercury. About 20 c.c. of distilled water are added to the powders, and they are thea stirred up with a glass rod while heated in a test tube plunged into an oil bath previously warmed to 150° or $200^{\circ} \mathrm{C}$. A fluid doable iodide of mercury and barium is formed, which is then poured into a sballow porcelain dish and evaporated down until it acquires a density so great that a crystal of epidote no longer sinks in it. When cold, even topaz will float in it. It is then filtered through glass-woul. The fluid so prepared has a density of $3.575-3.588$, boils at about 145°, and is of a yellow colour. Its refractive index is $I^{\prime} 7755$ for the C line, and 1.8265 for the E line of the spectrum. Fur the two D lines of sodium the refractive indices are 1 '7931 and 1 '7933 respectively. So great is the disperson that, using a single hollow prism with a refracting power of 60°, the dispersion between the two D lines is almost exactly 2^{\prime} of angle.
Tire latest official report of the Imperial German Post Office states that at the end of October the telephone was fully in operation in the following thirty-six cities and towns, within the Imperial postal territory (which does not include Bavaria or Würtemberg) :-Aix-la-Chapelle, Altona, Barmen, Berlin, Beuthen, Brunswick, Bremen, Bremerhaven, Breslau, Burstcheid, Charlottenburg, Chemnitz, Cologne, Crefeld, Deutz, Dresden, Düsseldorf, Elberfeld, Frankfort-on-Main, Gebweiler, Geestemuinde, Hamburg, Hanover, Harburg, Kiel, Königsberg, Leipzig, Magdebarg, Mayence, Mannheim, Mülhausen (in Alsace), Potdam, Stettin, Strasburg, Sulmatt, and Wandsbeck. In
four otber towns-Halle, Karlsruhe, M. Gladbach, and Rheydt -the arrangements for its introduction have progresed so far that it will most probably be in operation in them before the end of this year. It is therefore likely that by the end of 1883 forty towns within the Imperial German postal territory will possess the advantages of the telephone, against twenty-one last year, and seven in October, 1881.
THE programme of the Yorkshire College Students' Association for the present session is a varied and interesting one. A "Yorkshire College Photographic Clab" has recently been formed, and has already a good roll of members, including several members of the College staff. A prize eompetition has been arranged, and the Society has every prospect of success. The secretary of the Photographie Club is Mr. W. O. Senior.

Only six months ago a Soeiety of Natural Science was formed at Boarnemoutb, and already it has 103 membery, the president being Prof, Allman, F.R.S. The Society being established upon the most comprehensive basis, recognises every department of physical science as coming within the scope of its investigations. It is open to all, without limitation of cla:s or sex. During the past session various papers have been read, and during the summer months bi-weekly morning and evening walks were taken under the leadership of the appointed heads of sections for botany, entomology, marine and terrestrial zoology and geology. The Committee contemplate devoting part of its funds to be awarded annually as prizes for the beit and most systematically arranged collections of natural history specimens, made solely by each exbibitor, as an inducement to the younger members to cultivate habits of careful observation and systematic study of nature. The Society held a very successful conversasione on the 7 th inst. at Bournemouth, and so attractive was the exhibition connected therewith, that it was kept open the following day. Captain Hartley, chairman of the Bournemouth Improvement Commission, opened the conversasione by giving some account of the origin and objects of the Society. The exhibition was of a very varied and instruetive character, and at intervals during the day sbort popular lectures were given on such subjects as air, sound, the moon, natural magic, while
e Rev. G. HI. West exhibited and explained from time to time various apparatus illustrating physical phenomena. Altogether the Society gives promise of a successful career.

Mr. George Murray will deliver a lecture on the potato disea e at the Parkes Museum of IIygiene, $7 \$ \wedge_{\text {, Margaret Strect, }}$, Regent Street, on Thursday, the 22nd instant, at 8 p.m.

Several members of the Frencb Chamber of Deputies having contended that the transmissim of telegrams was not so eavy with underground wires as with aërial lines, M. Cochery has invited a number of opponents and electrical engineers to demonstrate on the lines now in existence, that the difference, if there is any, is quite immaterial.

At a recent meeting of manufacturers and artisans convened by the Mayor at Coventry, resolutions were enthusiastically carried in favour of the adoption of a rystem of technical edueation in the city. It is proposed to provide a building for the consolidation and extension of the scieuce elasses, a lecturehall, and reading-room, with a reference library of works appertaining to trade and manufactures, and to establish in connection with these three workshops for the practical teaebing of mechanies (toolmaking, weaving, and watchmaking). It is estimated that about 4000 , will be needed for the building, and 3000 . for the fixtures and equipment of the building and workshops, in ad. dition to which it will be necessary to provide an annual income of at least $300 /$. Subscriptions and donations exceeding $1000 /$. were promised at the meeting.

THz piercing of the Arlberg Tuanel, which will be $\mathbf{1 0 , 2 7 0}$ metres long, thus ranking third in the world, was expected to be comple:ed to-iay. The work began oa November 13, $\mathbf{1 8 8 0}$, oa the westera and eastern sides simultaneously, and has therefore lasted just three years, instead of four, as was calcalated. Special trains will bring over two hundred invited gaests from Austria, Italy, and Switzerland, to witoest the final boring and the connection of the two galleries.

Mr. G. J. Symons writes to the Times to say that Miss Eleanor Nunes, who had been keeping an extremely accurate record of the fall of rain at Langtree Wick, Torrington, Devon, died last spring, having left the sum of 100 . to him "to be applied to meteorological purposes." Mr. Symons announces that he is prepared to consider applications from all parts of the kingdon for rain-gauges to be sent gratuitously on loan subject to very easy conditions, and to send them to all accepted applicants who reside five miles from any rain-gauge now at work, and the same distance from any other applicant.

The Romando has arrived at Cherbourg after a journey of two months, from Cape Horn. The results of the wintering have been important, and the crew is in good health.

The diminution of credit rendered inevitable by the state of French finances will bear very little on the Budget of Public Instruetion; the work of building the Meudon Observatory will not be stopped, and is proceeding favourably.

We learn from a trustworthy source that there is again talk of transporting the Paris Observatory to some distance from the city, to a site in the vicinity of the new Flammarion Ob ervatory.

The Portuguese Government has appointed the explorers Capello and Ivens to proceed again on an expedition to West Africa, for the purpose of completing their map of the province of Angola, and of exploring the Congo. The explorers will leave by the packet on Deeember 6 .

News has reached Eurupe of the assassination of M. De Brazza, but it is conjectured that this is the French explorer's brother, and not the explorer him elf.

In onr note on the Royal Society last week, Dr. Warren De La Rue's name was given incorrectly.

THE additions to the Zoological Suciety's Gardens during the past week include a Bonnet Monkey (Macacus sinirus 8) from India, presented by Mr. C. R. Browne ; two Red tailed Guans (Ortalida ruficauda) from Tobago, West Indies, presented by Mr. Alfred C. Priestly; two Gold Pheasants (Thaumaloa picta 8 8) from China, presented by Mr. I1. W. Tyler; two Barbreasted Finches (Munia nisoria) from Java, presented by Mr. J. Abrahams; a Kestrel (Tinnuncu/us alaudarinu), Britisb, presented by Mr. John Colebrook, F.Z.S. ; two Long-eard Owls (Asio otus), European, presented by Mr. C. Purnchard ; a Masked Parrakeet (Pyrrhulopsis personata) from tbe Fiji Islands, presented by Miss J. D. Smith; two Alligators (Alligator misrissipficnsis) from the Mississippi, presented respectively by Mr. Roland Bridgett and Mrs. M. E. Symons ; a Peregrine Falcon (Falco prrggrinus), European, a Goffin's Cockatoo (Cacahua goffini) from Queensland, deposited ; a Bennett's Wallaby (Hal. maturus bennetti 8) from Tasmania, two Black Wallabys (Halmaturu: walabatus 8 8) from New South Wales, a Yellowfooted Rock Kangaroo (Petrogale xanthopus 8) from Soath Australia, a Mexican Eared Onl (Asio mexicanus) from Mexico, a Downy Owl (Pwlsatrix torgwatus) from South America, zn Annulated Worm Snake (Vermecilla annulata) from Western Australia, purchased.

MOVEMENTS OF THE EARTH ${ }^{1}$

II.

M/caswrement of Time

T has been shown how, by the application of geometrical and optical principles, the measurememt of angular space has been carried down to the $t /$ tocth of a second of are, such a quantity being $1 / \mathbf{1 2 9 , 6 0 0 , 0 c o : h}$ part of an entire circumference, and when such an accuracy as this has been attained, and the altitude or the azimuth of the san, or moon, or any other heavenly body can be correctly slated with this exactitude, it will be seen how much better off in the way of defining positions is the modern astronomer than was Hipparchus with his $1 / 3$ rd, and Tycho Brahé with his $1 / 4^{\text {th }}$ of a degree. To do this, however, is not enough. It is not only necessary accurately to define the position of a heavenly body, it is necessary al o to know at what particular time it occupied that position. The next thing to be dine, then, is to tee how far we moderns bave got in another kind of measurement, no longer the measurement of are-the measurement of angular distance-but the measurement of time.
The measurement of time, however, is not quite so simple a matter as was the mea-arement of space. A certain angular weasurement of space, or the angular distance between two bodies, whether shat distance be a degree, or a minute, or a second, is a very definite thing, having a beginning and an end; but time, 8 , far as we can conceive, has neither beginning nor end ; so that the problem of the neasurement of time has to be altacked rather in a different way. Here again it will be as well that the matter shuuld be stadied historically.

Fig. 18-Ancient Click Escapement.
What more natural than that man having got the idea of the flow of time, should have begun to measure it by the flow of water, of the flow of sand? The earliest time mensurers were really made in this way; water or sand being allowed to drop from one receptacle to another. There were difficulties, however, in thus determiaing the flow of tine. In the first place the thing was always wanting to be wound up, so to s;cak, something was wanted to cominue the action, and to prolong it ; and the first appeal to mechanical principles was made with that view.
The firsit real clock put up in England wav put up in Oid Palace Yard, in the year 1288 , by the Lond Chief Ju-tice of that time, who had t.) pay the expense of it as a fine for some fault he had committed. Its construction was somewhat after tbis wise. One method of dealing with the flow of time vas to call in the aid of wheelwork; but, as is well known, if a weight acts upon a train of wheels the velocity increases as the rotation goes on. Therefore the seiecce of mechanics was called in 10 supply some principle which could be applied to prevent this unequal velocity of a train of wheels. Consider the arrangement show n in Fig. 18.
The wheelwork train is capable of being driven by a falling weight. On the same axis as the smallest wheel, and therefore the one which turns most rapidly, will be seen another wheel provided with saw-like teeth. Then at the top is a weighted cross-bar, from the centre of which a perpendicular rod, provided with pallets, comes down to engage the teeth of the pallet-wheel. Now sup: pose the clock to be started. The weight is allowed to fall, and

[^8]the wherk, including the pallet wheel, begin to revolve; then begins a reciprocating action between the swinging bar and the wheel with which it actr, because the pallets which act on the bar as they are on either side of the centre of motion really drive the bar first in one direction and then in the other. The teeth of the pallet wheel are continually coming into contact with the pallets of the swinging bar. First suppose that one of the teeth has encountered the upper pallet; it pashes this aside, and swings the bar in one direction. No sooner, however, has this been dore than another tnoth in the wheel at the bottom of the bar encounters the pallet and swings it in the opposite direction. In this way it is obvious that the bar is continually meeting and being met by the teeth of the rotating wheel, swinging first in one airection, and then in the other, the result of this reciprocal action being to \mid revent the increase in the velocity of the wheels uhich would otherwi.e take place.

It is in ttis way, then, by the performance at constant definite intervals of an equally constant definite amount of work, that the regularity of action of the clock is produced. The greater the distance of the weights on the cross-bar from its centre of motion, the longer will the bar take in swinging, the slower will be the action of the clock; so that the clock may be regulated by altering the position of these weight ${ }^{\text {, }}$, bringing them nearer to, or removing the m farther from the centre of motion of the bar, according as it is desired to haten or retard the action of the clock's mechanism. Yet at whatever distance from the centre of motion the two weights be placed, assuming aluays that they are both at the saue dotance from ir, there is still this con tantly-recurring performance, at eqnal intervals, of an equal amount of work which prodaces the regular action of the clock. 7 his was the kind of clock then which was put up in Old Palace Yard. But that did not go well enough, giving such inaccurate results that Tycho Brahe had to discontinue its use. Fortunately some few years later two most eminent men, Galleo and Hughliens, had their at:ention drawn to this very problem. The fint of these, Galileo, was at that time s:udying medicine. He hafpened one day to be in the Cathedral at Pisa, where, it will be remembered, they have a most beautiful lamp which swings from a great height in the cathedral. Galiteo was at this time worhing at that hranch of his medical studies which deals with the pule, and he looked at this lamp and found that its swinging was perfectly regular. To day perhaps it may seem very natural that this should ve ss, but Gailieo had the advantage of being before u, and that is why it did not seem quite so natural to him. There was at that time no hnown reason why it should swing in perfect regular rhythm. He found that the lamp when swinging, no matter with what amplitude, took practically the same time for each suing, timing it ly his pulse. His idea was that this would be an admirable inethod of determining the rate of a man's pulse, and the first clock on this principle was constructed fron that medical pint of view, being called a Pulsilogium. Some years afterwards, however, the extrexe importance of such an arrangement from an astronomical standpoint becime obviou, and very wuch attention was given to i'. It is unnecessary to add that this swinging body is nowadays called a pendulum. The mont perfect pendulum made in those early days is represented in Fig. 19.
The fundamental difference between that and the modern pendulum is that 1 art of the pendulum leetween s and A was elastic. It was made elastic for the rea on that although Galileo could nut find any difference between the times of the oscillations of the lamp in Jisa Cathedral, according as its amplitude of swing was large or mall, yet such a difference did exist, altbough it was only a slight ; ue; and the only method of getting a perfect pendulum which should make its swing in exactly equal timex, inderendent of its are of ocilla. tion, was to construct this o called cycloidal pendulum. It was so named because in its swing its elastic portion was held by the curved guides seen in the figure, and natade to bend in that particular curve. Jy this means the pendulum in tead of swinging through the are, $\mathrm{K} \in \mathbb{R}$, was made to o cillate through DUL. But when the pendulum was at the points D and L , it was practically a shoter pendulum than when at rest. In other worde, whilst the pendulum was swinging from U to D and from U to L, its curvature, and con equently its vibrating length was continually changing. In that way, by continnally varying the length of the swinging part, it was found porsible to make a pendninm which, independent of the length of its arc of oscillation, would make its swing in times which for all practical purposes were absolutely equal in length. That was the most
perfect pendulum of that time. Nowadays, the cycloidal pendulum has been replaced by one which swings through a very small arc, and the continual shortening during the oscillation in the cycloidal pendulum is by this means dispensed with, whilst the friction also being much reduced, there is less interference from that source. With this very small swing the difference between the are of the circle described and the cycloid in which the cycloidal pendulum swung is practically indistinguishable.

The great difference between the modern clock and the ancient one is that in the former the pendulum is interfered with as little as possible whilst swinging, and makes each swing under precisely similar conditions. To attain this is to have done much. In the first place, if the clock has a heavy weight, that weight will probably interfere a good deal with the swinging of the pendulum. The clockweight, therefore, must be as light as possible. Secondly, if the wheelwork is always in contact with the pendulum, this also will interfere with its free and natural movement. There must be, then, such an arrangement that the wheelwork shall be brought into contact with the pendulum only for the shortest possible time. Thirdly, it must be remembered that the different substances which it is most convenient to use in the construction of pendulums, vary their dimensions with the variations of the temperature and mosture of the air in which they are placed, and great care must be taken to eliminate any errors which might arise from such a

Fig. 19.-Cycloidal Pendulum.
source. How are these various conditions complied with ? The first, that the clockweight must be small, is not difficult to adhere to ; but it will be well to eonsider the way in which the second condition, that the action between wheelwork and pendulum shall be the least possible, is met. This is done by employing what is called an escapement. It is so named because the pendulum in its swing is allowed to escape from the wheelwork, and thus retain a perfect freedom. The particular form of escapement about to be described is that which, for a renson that will appear immediately, is called the dead-beat escapement (see Fig. 20).
The escape wheel is the modern representative of the toothed wheel of the old clock, whilst the projections w and D are modifications of the pallets on the swinging bar in that instrument. Let the pendulum move in the direction of the arrow. The tooth \mathbf{T} has just been released, thus permitting the tooth \mathbf{v} to engage the other pallet D . Now whilst the tooth remains on the pallet, the escape wheel remains locked, while the pendulum is quite free to swing, there being nothing to retard it save the very slight friction letween the tooth and the surface of the pallet. The rotation of the escape wheels, however, brings the tooth un to the oblique edge of the pallet, and with it in this position the pendulum is aided in its forward swing. Then the pallet
escapes, recciving an impulse, but since this is received almost as much before the pendulum has reached its vertical position as after it has passed that point, no increase or diminution in the time of its oscillation takes place. It is in this way that the second of our conditions is complied with, the wheelwork being effectually prevented from interfering with the regularity of the pendulum's swing. It is called the dead-beat escapement, because when the tooth falls on the circular portion of the pallet and locks the escape whecl, the seconds-hand fitted to it stops dead without recoil, because the arc of the surface of the pallet is struck from the centre of motion. In an astronomical clock a still more modern form of escapement, called the gravity escapement, is sometimes employed.

It will perhaps be convenient at this stage to compare the fineness of the division of time given by a clock of this description with the fineness of the division of the second of are we have already discussed. There is, however, a little difficulty about this, because at present there seems to be no special reason why any particular unit of time should be selected. Ordinarily a day is divided into twenty-four hours, each of these twenty-

Fig. zo.-Dcad-beat Escapement.
four bours is subdivided into sixty minuter, these again being each divided into as many seconds. The origin of this division of time will be seen later on; for the present let the fact remaia that it is so.

Now a modern clock beats practically true seconds, and astronomers after a little practice gain the power of mentally breaking that second up into ten divisions, each of which is of course one-tenth of a second, so that we can say that a day may be divided into 864,000 parts, and in this way institute a comparison of the fineness of the division of time with those minute measurements of angular space with which we so recently dealt.
It is a familiar fact that the length of a pendulum which vibrates seconds is some thirty-nine inches, and it is easy to understand that there are many conditions in which a clock of this kind, with its pendulum of more than a yard long, cannot be used. Not only indeed is there this inconvenient length of the pendulum, but it is necessary that the clock to which it belongs
should be rigidly fixed in an upright position. The question therefore arises, is this clock which deals out seconds of such aceuracy the only piece of mechanism that can record and divide our time, or is any other time-measuring instrument available? Fig. 21 shows part of such an instrument, known as the Chronometer, in which, whilst the principles necessary to be followed in the construction of the clock have been adhered to, the pendulum has been dispensed with, and the perfect stability and verticality of position so important to the clock, are here unnecessary.

In this instrument the pallets of the dead-beat escapement have been replaced by a detent, D . Let us consider the action. The escape-wheel, s, is advancing in the direction of the hands of a clock. One of its teeth meets the detent, and the wheel is locked. Then what happens is this: when the balance-wheel, E_{1}, swings, the circle, R_{s}, centred on it shares its motion. This, it will be seen, is armed with a little projection.

We left the escape-wheel locked. Now assume that the balance-wheel is swinging in the direction of the arrow. It carries the small circle with it, and the piece, P_{p} in its motion, comning into contact with the end of the spring, seen projecting beyond the arm of the detent, raises it and the detent, so releasing the tooth of the cscape-wheel. The slight retardation which the balance receives in consequence of this action is immediately compensated. The moment the escape-wheel moves on again, one of its teeth meets the projection, P_{1}, and the balance-wheel receiving this fresh impulse goes on to complete its swing. Then it returns and swings in the opposite direction, this time without acting in any way on the detent. When the balance-wheel made its first swing and the point P_{8} met the projecting end of the spring, the

Ftg. ar.-Chronometer Escapement.
latter could then only bend from the end of the arm with which the detent is provided and against which the point P_{2} foreed it. But on the return swing the spring is found capable of hending from the more distant point of its attachment to the shank of the locking piece. It is therefore eavily pushed aside; there is no change in the position of the detent, nor is any resistance offered to the motion of the balance-wheel, which goes on to complete its swing. Then another tooth is canght, the escape-wheel is again locked, and again released by the lifting of the detent. So the action goes on, the teeth of the escape-wheel being constantly detained and as constantly released by the action of the point P_{q}. The balance-wheel, it will be noted, receives its impule only at every alternate swing, whereas in the clock the pendulum receives its impulse at each vibration.

Time then ean be divided down to the $1 /$ soth of a second, or as we expressed i, down to the $864,000 t h$ part of a day, $n>t$ only by a elock, but also by this chronometer. Having obtained this $1 / 10$ th of a second by these instruments, the question arises as to whether it be possible to get a still finer division. It will be seen that a very much finer division than this can be obtained, the $1 / 100 \mathrm{~h}$ part of a second being a measurable quantity; not that such a small fraction of time as this is ever necessary in astronomy, nor will it be until the present astronomical methods have ceased to exist. If it were possible to get all observations made by photography, then it would be worth while recording with such minateness, because
photography would always behave in the same way, whereas iwo observers never have the same idea as to the time of occurrence of any phenomena which they observe. ل'et, alihough so great an accuracy as this is not attempted, it will be quite worth while to consider the means by which this exquisite fineness of the division of a second of time has been arrived at. We shall see that just in the same way as an appeal to mechanical principles resulied in an improvement in the construction of our clock, so this fineness in the division of time has been obtained by an appeal to the principles of electricity. Let it be assumed that the seconds pendulum of our clock swings with perfect aceuracy and with absolute uniformity from second to second, in spite of changes of temperature and other perturbing infuences ; and having assumed this, let us see how electricity can be made to aid in the measurement of time. The instrument used is called a chronograph. It consists of a metal cylinder revolving by clockwork and covered with cloth, over which a piece of paper can be stretched. Below the cylinder and parallel with it is a track along which a frame carrying two electromagnetic markers or prichers is made to travel uniformly by the same clock that drives the cylider. Wires connected with a battery lead from one of these magnets to a clock and from the other to a key, which can be depressed whenever an observation is made, and a current so sent to the magnet. The effect of this is to cause it instantaneously to attract its iron armature and cause the pricker with which it is connected to make a mark on the paper ahove.
The connection of the chronngraph with the clock in as follows: -The bearing shown in the middle of the diagram (Fig. 22) is a continuation of the bearing on which the seconds hand of the clock is supported, and there is a little wheel which does its work quietly at the back of the clock in exactly the same way that the seconds hand dors its work quietly in front of it. What

Fic. 29,-Electrical contact apparatus at back of clock.
that wheel does is this. Every time that each of its teeth-and there are sixty of them-comes to the top of the wheel it touches a little spring. That little spring then makes electrical contact, and a current is sent flowing throngh parts of the apparatusalready described. Now the teeth in that wheel, being regularly digposed around its circumference, always sueceed one another after exactly the same interval of time, and there is no difference or distinction from second to second, or from minute to minute. But snppose that before the clock is started one of these teeth is filed off, and so filed off that when the seconds hand poinss to o seconds, and the minute band to a completed minute, this part of the wheel shall be at the top, and there shall be no electrical contact established, for the reason that the tooth of the wheel is not there to act on the spring. In that way it is easy to manage matters so that the beginning of each minute shall be distinguished from all the other fifty-uine seconds which make up the minute. Let the cylinder, covered with paper, revolve once in a minnte. In that case, the electrical current will make a hole or a mark on that paper every second, and as matters are so arranged that the pricken's shall be travelling alung at the time that the dots are made apon the revolving paper they are thus made along a continuous spiral, and since we have supposed the cylinder to revolve once in a minute, the beginning of each minute will be in the same line along the spiral. Then, according to the length of the cylinder, a second of time will be obtained written in dots, sixty of them round the cylinder representing sixiy seconds. Suppose now that a man with a perfect eye makes an observation, recording it by sending a current through the apparatus and making a dot on the paper. He will then have an opportunity of observing on the paper the
preci e relation of the dot which re, resents the time at which the observation was made to the other dits which represent the various seconds dotted out by the clock, and not only the exact distance of the observation prick from the nearest second, whether it be $\frac{1}{1}$, or t/toth, or $t / 100 t h$ of the distance between that second and the next, but the omission of the record of the first second in the minute will give the relation that observation has to the nearest minule.

For the sake of simplicity the eave of one observer making one ob,ervation has al ine been considered; but if the work be properly arranged, then not only one electromagnet, but two, or three, or four, may be at work upon the same cylinder at the same time, each making its record, and that is how such work is being done at the Greenwich Observatory.

Observing' Conditions

This power of measuring and dividing time then having been obtained, we seem to have reached our subject, "The Movements of the Earth." Yet even now there are one or two other matters which require to be discussed before we consider the movements themselves. The first of these is the important fact that the earth is spherical in is form. There have been many views held at different times as to the real shape of the earth, bu: the only view we need convider is that stated. In going down a river in a steamboat, or, better still, in standing upon the sea-shore at some place, such as Ramsgate, 'where there are cliffs, and where, consequently, one may get from the sealevel to some height ahove 1t, it is observed that when any ship disappears from our view by reason of its distance it seems to disappear as if it were passing over a gentle hill.

It does this in whatever direction it goes. This familiar fact is a clear proof that the earth i, a sphere, and is so obvious that it may seem unnecessary to mention it, but it was as well to do so for a reason which will appear shortly. Besides this argument in favour of the spherical shape of the earth there is the argument from analogy: the m oon is round, the sun is round, all the known planets are round. The stars are so infinitely removed from us that it cannot be determined whether they also

are spherical, but doubtless they are as round as the eartb. This point of the tremendons distance of the stars is an important one to bear in mind. Their distance cannot be conveniently stated by thousands, nor even by millions of miles, it is something far greater than that. It may be asked why it is that such a statement can be thns positively made. For this rearon : the stars have been observed now for many ages, and the historical records of aneient times show that the chief constellations, the chief clusters of stars visible in the heavens now, were seen then. In the Book of Job, for instance, there is a reference to the well known constellation of Orion, and there is very little doubt that for thousands and thousands of years that constellation has preserved the familiar appearance of its main features. The constellation called Charless Wain, or the Great Bear, was also known to the ancients. If the stars were very near to the earth this could not be. If they were close to us the smallest motion either of earth or star would at once change their apparent position, and would prevent this fixity of appearance, and the skies would be filled, not with the
constellations with which we are so familiar, bat with new and ever-changing clusters of stars. This constancy of the con tellations, no: only from eentury to century, but from era to era, clearly proves then that the stars of which they are made up must be at an infinite di tance from the carth.

Let us convider the question of distance a little further. If two pieces of word (see Fig. 23) joined together by a cross-piece be taken, a moment's thought will make it obvious that the angles which $A B$ and $C B$ make with the cross-piece $A C$, will vary with the dis'ance of the bojy, which can be seen first by looking along AB and then by looking alo.ng CB. If these pointers be directed to a very near object in the room, they must be greatly inclined (as in 1). If something more cistant be taken, there is less inclination, and if it were possible to sight St. Paul's by looking first along A B and then along \mathbf{c} B, there would be still less. And if something at a still greater distance were sighted, say St. Giles's at Edinburgh, the inclination of a s and CB would be still smaller thanit was in the case of St. Paul's, because St. Giles's is at a much greater distance. It follows then that in sighting an object so infinitely rem ved from us as a star, the light from it will be in a condition of parallelism, and As and CB consequently be placed quite paralle! in viewing it (see 2). That is another reason for saying that the stars are at this infinite distance from the earth. Why it is so important to insist on this point will appear very clearly by and bye.

Now supp ise that in the eentre of this lecture-theatre a little gl-sbe were hung to represent the earth, the walls of the theatre and the people in it representing the beavens surrounding the earth. Now in such a case it is clear that the appearances presented would be the same whether the beavens moved round the earth or the earth itself were endowed with motion. l.et us, without making the assertion, a sume that the earth does move. It is perfectly obvious, since the apparent mo ions of the beavens are so regular, that if that be so she must move with woaderful constancy and regularity; she does not first move in one direction and at one inclination, and then at another ; that would be very serious.

If she rotates she must rotate round some imaginary line called an axis. This intreduces an important consideration because, whether the earth itself rotate i on an axis or the heavens move ruu id the earth-and in th: latter case the heavens must also move round an axis-in either case the motion must be an equable one ; so that if the matter is thus limited to a constant axial rotation or a constant revolution, as it would be called in the case of the stars, several things will happen. Let us take the former case, in which the earth itself moves. Then the motion of the surface of the earth will be least at those points which are nearest the ends of the axis on which it turns. Take the case of an observer at such a point, he will be carriel a very little distance round during each rotation; similarly, if the stars move, a star near the ends of the axis on which the stars move will be carried a very little distance round during each revolution of the celestial sphere.

Change the position of the man on the earth from the pole to the equator. Then he will be carried a very considerable distance round in each rotation of the earth : similarly with the stars ; if they move, a star in the celestial equator will be carried round a very great distance daring a revolution. That is the first point. Another point is that if we assume the earth to rotare we must carefully consider the varying conditions which are brought about by th=different positions of an inhabitant of the earth under those circumvtances. For instance take the case of a man at the equator, he looks at things from an equatorial point of view, and in the rotation of the earth he plunges straight up and straight down. Simllarly, if the stars' daily revolution belongs not to the earth but to the stars, to an observer at the equator of the earth they would appear to move straight up and straight down; and now in dealing with this question and endeavouring to ascertain whether it be the earth or the stars which move it is most necessary to consider the relation of the movements or apparent movements of the star to the place from which they are observed, and in so doing it is found that there is an immence difference between the conditions which obtain at the poles and at the equitor with reference to the phenomena which are observable in each case.

Let us take a globe to represent the earth, and let London be considered the central point for our observations. Now at all places on the earth, in whatever direction we look, we see an apparent meeting of earth and sky ; and supposing our observation to be made on an extended plain or at sea, the surface of
the earth or sea may for simplicity's sake be considered as a plane bounded by the cirele where the earth and sky seem to meet. This is known as the eircle of the horizon. To repre-

Fig. 24 -Diagram to show how the inclination of the horixon of London will change with the rotation of he earth.
sent this a piece of paper may be put over London on our globe (see Fig. 24), and London may be brought to the top. When that has been done, remembering that the stars are placed at so, infnite a distance, the horizon which cat; the rentre of the

Fig. 35.-Diagram to show how the inclination of the horizon of a place on the equator changes in one direction only.
earth, and whieh is called the true horizon, may be considered as being practically the same thing as the small sensible horizon of London, repreiented by our piece of paper, when at the
top of the globe, because the tho planes will be parallel. For, whether a star be seen from the equator or from London, owing to its tremendous distance it will appear to occupy the same position in sface. Now let the globe be made to rotate, then the inclination of the plane of the horizon of any place, of our horizon of London for iastance, is continually changing during the rotation(Fig. 24). An exception, however, must be made with regard to the poles of the earth. At these two points the inclination will be constant during the whole of the rotation.

If now a point on the equator be brough to the top of the globe, it will be seen, as the globe is rotated, that the observer's horizon rapidly comes at right angles to its first position (sec Fig. 25). This will show that the conditions of observation at different parts of the earth's surface are very different, and this whether it be the earth or the stars whieh move.

Let us now consider with a little greater detail the conditions which prevail in the latitude of London. Let London be again brought to the top of the globe. Let o (Fig. 26) represent an observer in the middle of the horizon, S W NE. Let z be the zenith, which, of course, would be reached by a line starting from the eentre of the earth, and passing straight up through the middle of the place of observation. s^{\prime} is a star, and we want to define its position. How can this be done? Imagine first a line drawn from the observer to the zenith. Imagine next another line going from the observer to the star, or, what is the same thing, from the centre of the earth to the slar. Then the angle inelosed by these two lines will give us the angular distance of that star

Fig. 26.-Observing condition at I.ondon.
from the zenith, or similarly we may take the angle included between imaginary lines joining observer with horizon and star, and thus obtain the star's altitude.
Again, its position may be stated not only with regard to the zenith and to the horizon, but to some other foint, say the north point. In that case a line or plane, zEW, is imagined passing from the zenith through the observer, and the distance between E and N will give the star's angular distance from the north point of the horizon. Again, suppose it be desired to define the sar's position with refcrence, not to the zenith, but with reference to the pole of the heavens, that point where the earth's axis it prolonged into space would eut the skies. In that ease since P in our diagram marks the position of the pole, a line PS' will give what is called the polar distanee of the star ; and lastly, if the angolar distance of the star from the equator of the l eavens be required, since the prolongation of rs ' would eut the equator, the distance from s^{\prime} to the foint of intersection will give the angular distanee of the star from the equator; in other wurds its declination.
We have taken London, but of course each place on the errb has its sphere of observation with its zenith and the north, east, south, and west points. With regard to the axes of the earth and the heavens, they bcth possess north and south points, and in the heavens as in the earth, the equator lies midway between them.
J. Norman Lockyer
(Tobe continued.)

OUR ASTRONOMICAL COLUMN

The Observatory, Chicago.-Prof. G. W. Hough has issued his annual Report to the Board of Directors of the Chicago Astronomical Society, detailing the proceedings in the

Dearborn Observatory for $\mathbf{1 8 8 3}$. The 18 -inch Alvan Clark equatorial has again been employed in close observation of the great red spot and other phenomena of the planet Jupiter. Since the first observations at Chicago in September, 1879, it is stated that the red spot had not changed very materially in length, breadsh, outline, or latitude. There had been a slow, retrograde drift in longitude, causing an apparent increase in the time of axial rotation. At the last opposition the deduced
 in 1879.

Prof. Hongh gives the following mean results of micrometrical measures of the red spot :-

		${ }^{1879}$		2880		1882		82
Length		$12^{\prime \prime} 25$..	11*55	...	$11{ }^{\prime \prime} 30$...	$1: \% 8$
Breadth	...	3.46	...	3.54	...	3.66	...	3.65
Latitude	.	-6.95	...	-7.14	...	-7'40	...	$-7 \cdot 52$

The Chicago observer considers that while the spot has remained nearly stationary in latitude, the south edge of the great equatorial belt ha* gradually drifted south during the late oppo-ition, untol it is nearly colneident with the middle of the spot, and further, that "the two do not blend together, but are entirely distinct and separate." A depression formed in the edge of the belt (as shown in two drawings of the planet's disk, on December 29, 1882, and February 20, 1883), which corresponded in shape with the oval outline of the spot, the distance between the two being about a second of arc. The spot was extremely faint at the last observation for longitude on May 5. The equatorial white spot, first observed in 1879, was again visible during the last opposition; the rntation period 9 h .50 m . 9.8 s . dedaced in the previous year, sarisfying the observations.

The great comet of 1882 was micrometrically measured from Oetober 4 to November 20, and sketches of the nucleus and envelope made. Subsequently to October 6 three centres of condensation wrere usually visible. As the onmet receded from the sun, the head increased in length from $25^{\prime \prime}$ on October 4 to $139^{\prime \prime}$ on Novemter 20. As late as Mareh 6 there appeared to be three centres of condensation connected by matter of less density.

Diffieult double-stars have been measured by Prof. Hough and Mr. S. W. Burnbam, amongst them the interesting binaries, 40 Eridani ($\mathbf{\Sigma}$ 518), 8 Delphini, ${ }^{\delta}$ Equalei, and 85 Pegasi. Measures of the companion of Sirius gave for the epoch $\mathbf{1 8 8 3 . 1 2}$ position $39^{\circ} 9$, distance $9^{\circ} 04$; the distance is diminishing a bout $0^{\prime \prime \prime} \cdot 3$ annually, so that in a few years it will be beyond reach of any except the largest telescopes. With the excellent measures obtained at Chicago more must soon be known as to the period of $\bar{\delta}$ Equulei, reputed the most rapid of all binaries.

Temphl's Comet, 1873 II.-The following are places for Greenwich midnight, deduced from M. Schulbof's elements:-

This eomet approaches pretty near to the orbit of the planet Mars; in heliocentrie longitude 312° (equinox of 1878), corresponding to true anomaly $6^{\circ} \cdot 1$, the distance is 0.050 .

D'Arrest's Comet.-M. Leveau's ephemeris of this comet termiuates on November 25. The following places are reduced from it to 6 h . Greenwich M.T. :-

M. Ieveau mentions that when Prof. Julius Schmidt last observel the comet at Athens in $\mathbf{1 8 7 0}$ with a refractor of 0.17 m . aperture the intensity of light was 0.150 .

On November 16 the comet sets at Greenwich 2h. 10m. after the sun.
The planetary perturbations during the next revolution are not likely to be large, so that in 1890 the comet may be observed under similar conditions to those of 1870 .

STANDARD RAILROAD THME

T^{1}HE following letter, addressed to our American contemporary Science, is of interest :-
Though the subject of standard and uniform railway time has for some years been under consideration by various scientific and practical bodies, it does not appear in any way to have been exhausted, even in its main features. Beides, a certain bias has shown itself in favour of the adoption of a series of certain hourly meridians, and thus keeping Greenuich minutes and seconds, when contrasted with the practicability of a more simple proposi'ion. There is also a feature in the diccussion of the subject which bears to have more light thrown upon it : namely, what necessary connection there is between the railway companies' uniform time and the mean local time of the people, or the time necessarily used in all transactions of common life. Directly or by implication, certain time-reformers evidently aim at a standard time, which shall be alike binding on railuay traffic as well as on the business community; and to this great error much of the complexity of the sulject is to be attributed, and it has directly retarded the much-needed reform in the time-management of our roads.

We say all ordinary business everywhere must for ever be conducted on local mean solar time, the slight difference between apparent and mean time having produced no inconvenience ; and we may rightly ask the railway companies to give in their time-tables for pablic use, everywhere and always, the mean local time of the departure and of the arrival of trains. It is the departure from this almost self-evident statement, and the substitution and mixing-up in the time-tables of times referred to various local standard", which has in no small measure contributed to the confusion and perplexity of the present system. The people at large do not care to know by what time-system any railroad manages its trains, any more than they care what the steam-pressure is, or what is the number of the locomotive. All the traveller is interessed in is regularity and safety of travel ; hence it was to be desired that, whatever the standard or standards of time adopted, the companies would refrain from troubling him with a matter which only concerns their internal organisation, or which is entirely administrative. We look upon the publication of the railway time tables, by local time everywhere, as a sine gud non for the satisfactory settlement of the time question, so fur as the pablic at large is concerned; and it would seem equally plain that the hest system for the administration of railroads would be the adoption of a uniform time, this time to be known only to the managers and comployts of the roads.
We are informed in Science of October 12 that the solution of the problem of standard railway time is near at hand, and probably has already been consummated by the adoption of four or more regions, each having uniform minutes and seconds of Greenwich time, but the local hour of the middle meridian. To have come down from several dozen of distinct time-sytems to a very few and uniform ones, except as to the hour, is certainly a step forward, and, so far, gratifying ; but why not adopt Greenwich time, pure and siuuple, and have abolute uniformity ? Probably this will be felt before long. The counting of twentyfour hours to the day in the place of twice twelve, and the obliteration from time tables of the obnoxious a.m. and p.m. numbers, would seem to be generally acknowledged as an improvement and simplification, and perhaps can best be dealt with by adopting it at once, aecompanied by a simple explanatory statement.
С. А. Sснотт

Washington, October 18

UNIVERSITY AND EDUCATIUNAL INTELLIGENCE

Oxpord.-No election has yet taken place either for the Professorship of Botany or that of Rural Economy, which are now separated from each other. The Delegates of the Common University Fund have agreed to attach a Readership to the Chair of Botany, which will raise the income to 500%, a year. The

Professorship of Rural Economy will not be a resident one. The Profesor will have to deliver twelve lectures. His stipend is 200%, a year.

societies and academies London

Mathematical Society, November 8.-Prof. Henrici, F.K.S., president, in the chair.-The following resolution, proposed by the President and seconded by Dr. Hirst, F.R.S., was carried unanimously, viz :- "That the secrelaries be requested to communieate to Mrs. Spottiswoode the expression of our sincere sympatity and the assurance of our deep sense of the loss whieh science, has sustained by the untimely death of Mr. Spottiswosde."-The new Council was elected for the session 1883-84, viz. : Prof. Henrici, president ; Sir J. Cockle, F.R.S., and Mr. S. Roberts, F.R.S., vice.presidents ; Mr. A. B. Kempe, F.R.S., treasurer ; Messrs. M. Jenkins and R. Tncker, honorary secretaries; other members, Prof. Cayley, F.R.S., Messss. E. B. Elliott, J. W. Lo Glai her, F. R.S., J. Hammond, H. Hart, Dr. Hird, F.R.S., W. D. Niven, F.R.S., Prof. Rowe, and Messrs. R. F. Scott and J. J. Walker, F.R.S. The Kev. J. J. Mylne and Mr. F. W. Watkin were elected members. -The following papers were commonicated:-Symuetrie functions, and in particular on certain iuverse operators in connection therewith, Capt. P. A. Macmahoon. - On a certain envelope, Prof. Wolstenholme.-On eertain results obtained by means of the arguments of point on a plane curve, R. A. Roberts.-Third paper on multiple Frullanian iotegrals, E. B. Elliot.-Note on Jacobi's transformation of elliptic functions, J. Griffiths.-Symmedians and the triplicate-ratio eircle, R. Tucker.

Linnean Society, November 1.-Frank Crisp, treasurer and vice-president, in the chair.-Messr3. T. E. Gunn and A. Hutton were elected Fellows.-A donation to the Society of several interesting letters of Lionaws (1736-1769) to G. D. Ehret, F.K.S., an eminent botanical artist of the last eentury, was announced by the Chairman, and a unanimous rote of tbanks thereupon accorded to the Misses Grover and Mr. Chas. Ehret Grover for their valnable donation.-Mr. Crisp drew attention to speciznens in fluid medium of Limnocodium sowerbii, as illustrative of Mr. P. Squires' method of preserving delicate and other mednse.-Mr. H. Groves showed examples of Chara braunii from Ashtou-under-Lyne, and Mr. Arthar Bennett of Najas marima and N.alagnensis from Hickling Broad, Norfolk, all being new to the British flora.-Mr. W. Fawcett exhibited Testacella mangei alive, the same being obtained by J. C. Mansel Pleydell in Dorset, and supposed to be indigenous to that county. - A paper was read on the changes of the flora aud fauna of New Zealand, by Dr. S. M. Curl. He referred more particularly to the district of Rangitikei and to the alterations of the aspect of the vegetation withiu the last forty years. He likewise records his own experiments in the cultivation of trees, shrubs, and flowering plants introluced from widely different climes, remarking that while a few fail to grow with vigonr, the inajority by degrees adapt themselves to the altered conditione, and many valuable economie plants thrive accordingly.-Mr. J. Starkie Gardner read a paper on Ainus rickardson, a fossil fruit from the London Clay of Herne Bay. The species has been described by Bowerbank and commented on by Carruthers, Ettinghausen, and many other authors who have written upon the plants of the Tertiary formation. Originally considered as allied to Caswarima, Dr. R. Brown suggested its affinities to the Proteacex, a view afterwards upheld by Carruthers and others Ettinghausen thereafter regarded it as a product of a Conifer (Sequoia), and Saporta compared the fruit to that of Dammara. Mr. Gardner enters fully into the structural peeuliarities of the fossil fruit in question, and sati-factorily demonstrates that it belongs to the Betulacex under the genus A/nus. -Another paper by Miss G. Lister was read, viz, on the origin of the Placentas in the tribe Alsinese of the order Caryophyllees. This communication is based on a series of observations on the development of a number of genera and -pecies. She concludes that the capsule in the Alsinere is developed on essentially the same plan as that of Lychnis, the difference in the vari us genera being merely dependent upon the relative height attained by the carpels on the one hand, and by the central axis on the other. This being so, we are bound to admit that if we accept, as we do, the carpellary origin of the placentas in Lychnis, the placentas in the Alsinex, from Sogina afedala, which noost resemble

Lrehnis, to Cerastiusm triviale, which most widely differs from it, are also carpellary.
Chemical Society, November 1.-Dr. Perkin, F.R.S., president, in the chair. - The f tlowing papers were read :-Ou the production of hydroxylamine from nitrie acid, by E. Divers. Free nitrie acid yields hydroxylamine when treated with tin, rine, cad nium, magnesium, and aluminium. In the presenee of hydrochlorie or sul, huric acid the quantity with tin or zinc may be con-iderable. Witbout a second acid only traces can be detected. The author also divcusses the action of nitrie acid apon metals and the constitution of nitrites, in which he considers the metal to he directly united with nitrogen.-On the chemistry of lacquer (Urusht) (part i.), by H. Yoshida. Iacquer contains a peculiar acid, Urushic acid, extracted by alcohol, s, me gum resembling gum arabie, water, and a peculiar diastatie body contalning nitrogen. The laequer when exposed to moitt air at $20^{\circ} \mathrm{C}$. dries up into a hard lustrous varnish. This hardening is brought about by the action of the diastase upon Urushie acid, the latter heing converted int? oxy-urushie acid.-On some compounds of phenols with amidohases, by G. Dyson. The author has prepared and investigated anilin phenate, toluidin phenate, naphthylamin phenate, auilin 8 naphthate, tolaidiu naphtnate, rosandin phenate, xylidin naphthate, rosanilin aurinate, anilin aurinate.-On the alleged decomposition of phosphorous anhy. dride by sunlight, by R. Cowper and V. B. Lewes. In a paper at the British Association, Southport, the Rev. A. Irving stated that phosphorous anhydride prepared by passing air over beated phosphorus is dec mposed by sunlight into phosphorus and phosphoric anhydride. The authors find that phosphorous anhydride thus prepared eonsists of a mixture of phosploric anhydride, phosphorous anhydride, and phosphorus.

Physical Society, November 10.-Prof. Clifton in the ehair.-l)r. J. Blaikley read a paper on the velocity of sound in air, in which he described a modification of Dulong's method of measuring it by the wave-length in a pipe lengthened. Dulong did not allow for the partial tones, which are an important factor, wherens Mr. Blaikley does By means of organ pipes of different diameters, the author has found the velocity to be about 320 metres per second. Mean re-ult with four tubes: one of $54^{\prime} 1 \mathrm{~mm}$. diameter, velocity $=329^{\circ} 73$ metres per second; one of 32.5 mm . diameter, velocity $=328.78$ metres; one of 19.5 mm . dameter, velocity $=326.9$ metres ; one of 11.7 mm , velocity $=324.56$ metres. The velocity diminishes as the tube is smaller in bore.-Mr. Bosanquet made a compunication on the moment of a compound magnet, which he showed how to measure by the method alrealy published by him. A compound magnet made np of eighteen small cylinders of magnetised steel placed end to end is hung in a cradle carried by a delicate bifilar suspension, and placed at right angles to the magnetic meridian. The deviation from zero produced by the magnet is noted; then the magnet is divided into two parallel rows of nine cylinders along the cradle, and the deviation again noted. The tangent of the angle of deviation from the east and west line, multiplied by a constant, is the mowent of the magnet. The author also pointed out that to define the condition of a permanent magnet it was necescary to know the difference of magnetie potential, the "resintance" of the metal, and the resistance of the external space. -Mr. W. Lant Carpenter read a paper on measurements relating to the electrie resitance of the skin, and eertain medical ap: pliances. The anthor's experiments, made upon himself, showed that the re-istance of the body amounts to thousands of ohms, but is mainly due to the condition of the epidermis. If this is dry, the resistance is high By soaking the skin in salt and water, he reduced the re-istance of parts of his body from $\mathbf{1 0}, 300$ ohms to 935 ohms after 100 minutes' soaking. He infers that a large electrode should be used in applying electricity to the body, and that the skin should be soaked for twenty-five minntes previously. Mr. Carpenter also exhibited a "chainband" of Mr. Pulvermacher, and a small voltameter by the same inventor, in which the liberated gases force some of the water up a graduated tube as a gange of the current. The author drew atteution to the wecesity of secing that the skiu should be dry in handling rome electrie light machines, else disagreeabie shicks might result. Prof. Ayrton believed that the danger of electrie lighting currents lay rather in their discontinvity than their electromotive force. The Bruth currents, which have proved fatal, are more discontinu us than those of the Gramue machine, \&c. Adverting to the preseace of electricity in the air as influencing health, he suggested that the
influence might be studiel by electrifying the air, say in a hoipital ward. Mr. W. Coffin stated that statically, electrifying patients had been tried at Bellevue II spital, New York, without definite results.

Parts

Academy of Sciences, Novemher 5.-M. Blauchard, president, in the chair.-Funeral orati>ns on the lite M. Breguet, by M. Janssen and Admiral Cloue - Notice by M. Daubree of the death of Mr. La:wrence Smith, Corresponding Member for the Section of Mineralogy, who diel at Loaisville, Kentucky, on October 12.-On lighting by electricity, by M. Th. Du Moncel. -On one of the metbods pruposed by M. L.cewy for determining the ri,ht ascensions of the circumpolar stars, by M. F. Gonnes $\cdot \mathbf{i a}$ ", -Remarks on M. Boussines q 's c mmunication respecting the equilibriam of a ring vabjected to normal pres ure uniformly distributed, by M. Maurice leivy.-Note on the decomposition of a number int, five squares, by M. Stieltjes.-On the probability that a given permutation of n quantities is an alternating permutation, by M. Desiré André.-On the algeloraic integration of linear equati uns, by M. H. Poincaré-On a family of developable surfaces generated thy the intersection of a given left curve at an angle depending exclusively on the coordinates of the point of inter-ection, by M. Iucien Lévy. - On the potential of the inductive force due to a closed solenoid with current of varying intensity; analogy with Felici's theorem of electromag. netism, by M. Quet.-On a new non-periodical galvanometer, by M. G. Le Goarant de Tromelin.-On the electric resistsnce of sulphur, phosphoru', and some other more or less insulating substances, by M. G. Foussereau. - On the inflaence of nitrate of soda and of nitrate of potassa on the cultivation of potatoes, by M. P. P. Dehérain.-Re earches on the physiological properties of malt. oue, by M. Em. Bourquelot.-Outhe external application of metallic copper as a preserva'ive against cholera, by M. Axel Lamm. -On the comprative toxic aetion of metals on microber, by M. Ch. Richet. - Note on rooglceic tuberculosic, by MM. L. Malaskez and W. Vignal, -On spermatogenesis amongst the edriophthalmous Crastaceans (genera Lig'a, Idotea, Spheroms, Gammarus, Talitrum), by M. G. Hermann.-On internal sacculine, a fresh stage in the development of Sacculina carcini, by M. Yves 1)elage.-On the anatomical strueture of the Phallasiadra, a family of Acidians on the coast of Provence, by M. L. Roule. -On the intestinal cavity and sexual apparatus of Spadella marioni, by M. P. Gourret.-A second coutribution to the history of the formation of coal, by M. B. Rensult.-On a ferriferous meteorite which fell at Saint Caprais de Quinsac, Gironte, on Jannary 28, 1883, by MM. G. Lespiault and L. Forquignon.-On the diurnal variation of the barmmeter at different altitudes, and on the existence of a third barometric maximum, by M. Ch. André.-Note on the periodicity of earthquakes, by M. Ch. V. Zenger.-On the employment of sulphoric acid in the treatment of animal matter infected by contagious elements, by M. Darreau.

Berlin

Physiological Society, October 26.-In the course of his investigations into the functinns of the cortex of the cerebrum, Prof. Munk had ofteu had ocersion to collect experiences on the subject of the appearance of geveral epileptic spasms resuling from irritation of the cortex of the cerebrum. By this means he had been enabled to confirm not only the older c^{\prime} 'nical conclusion of Mr. Jackson, that epileptic epasms always proceeded from one group of muscles, and then overtook in a perfectly definite series more distant groups, and at latt the whole bxdy, but likewise the accuracy of Herr Hitrig's observation, that in the case of more powerful or longer continued irritations of the motory parts of the cortex of the cerebrum, the contractions of the group of museles belonging to the irritated spot ended in general epileptic spasms. An experimental epilepsy of this Lind Prof. Munk could produce from any spot of the motory part (the sphere of feeling), and the groups of muscles therefore followed each other exactly in the series in which the centra were stratified beside each other in the sphere of feeling, so that first the parts situated nearest the irritated spot, and then more distant parts became affected, till at last the whole b riy was subjected to epileptic contractions. Sometimes the wh le of the groups of muscles on one side was attacked befure the other side began to be affected; frequently, however, the irritation and the epileptic attack passed over at an earlier stage from one side to the other. That the experimental epilepsy originated in the motory section of the cortex of the
cerebrum see:ned to Poof. Munk indubitably establi,hed by the two following facts:-Let a small piece, say the centre for the movements of the uppler extremity of the light side, be excided, and let the centre of the eye-mascles be irritated till epilepsy set in, then would the spasmodic contractions propagate them elver successively to all groups of muscles with the erception of the right upper extremity, which would remain at reat throughout the epileptic attack. Let, again, the centre of the eye-muccles (a part specially suitable for such experimenta) of an animal be irritated s) that an epileptic attack supervened, and after a correspmnding pauce let the irritations be repeated in the same part with equals rength and duration, then, in the event of the sramse reaching the muscles, say of the head or neek, by suddenly removing the irritated part of the membrane the epilepsy would also be terminated. Both phenomena were explainable only on the assumption that the irritation of the motory cortex of the brain was the cause of the experimental epilepsy. The assertion was advanced by anotber observer, that e ilepsy could be generated not only from the front section of the cerehral cortex, but likewise from the sphere of vision. This position Prof. Munk induced Hers Danilo to put to the proof, but in spite of numerous experiments no confirmation of fit could be gained. Electric streams, of a force and duration such as, applied to any part of the spbere of feeling, would undoubtedly have given rise to epilepsy, were quite powerlesw in this respect when applied to the sphere of sight. Not till streams of much intenser force and very considerably longer duration were applied to the sphere of sight was an epileptic attack produced. In this case, too, it was ohvious that ihe result was due to the neighbouring parts of the sphere of feeling becoming irritated through propagation of the - ffect rr by communication. If now at the beginning of the epileplic attack the irritated part of the sphere of sight were removed, the attack would not thereby be stopped. Nor was it of any greater consequence in the way of producing an attack that by a cross cut the irritated sphere of sight was freed from its substratum, if only it retained connection with the front part of the cortex. Let, however, the sphere of sight, by means of a perpendicular sagittal cut, be separated from the sphere of feeling, then could no epileptic altack be any longer produced by irritating the former. The e facts seemed to Prof. Munk to conclusively demon trate that experimental epilepsy could be produced only by irritation of the motory parts of the cortex of the cerebrum. IIe laid strese, however, on the fact that his experiences and experiments referred only to "experimental" epilepsy.

CONTENTS

Page
The "Austral" Judgment. By W. H. White . . 49
The "Encyclopadia Britannica"51

Letters to the Editor :-

Livin! Scorpions, Mygale, and Protopterus,-Prof. E. Ray Lankester, F.R.S
Electricity in India,-The Green Sun,-C. Michle
Smith

Russell
Shadow-Beams in the East at Sunset.--Rev. Gerard Hopkins, S.J. 55
The Java Eruption,-F. C. Constable
55
55
Towering of Birds,-Sir J. Fayrer, F.R.S.
Towering of Birds,-Sir J. Fayrer, F.R.S. 55
Meteors.-W. F. Denning ; Donald Cameron; Rev. W. Besant Lowe 56
"Anatomy for Artists." John Marshall 56
Earthquake.-Sir J. H. Lefroy 56
56
5
"Partials."-Cromwell O. Varley 57
Science and Engineering. By Walter R. Browne 57
The Literature of the Fisheries Exhibition, II. 60
The Movements of the Earth, II. By J. NormanLockyer, F.R.S. (With Diagrams).65
Our Astronomical Column :-
The Observatory, Chicago 69
Tempel's Comet, 1873 II. 70
D'Arrest's Comet
70
70
Standard Railroad Time. Hy C. A. Schott 70
University and Educational intelligence. 70
71

THURSDAY, NOVEMBER 22, 1883

THE GERMAN FISHERIES COMMISSION

Vierter Bericht der Commission sur wissenschafllichen Untersuckning der dewfschen Meere für Jahre 1877. 1881. II. Abtheilung. (Berlin: Paul Parez, 1883)

THIS portion of the Fourth Report of what might perhaps be called the German Fisheries Commission is a folio volume of considerable thickness, consisting exclusively of three elaborate scientific memoirs, each of which is stamped with the thoroughness so characteristic of German work. The first, by Dr. Adolf Engler, deals with the marine fungi of Kiel Bay, the second, by Dr. R. Möbius and Fr. Heincke, with the fish fauna of the Baltic, and the last contains an account of the properties and history of the eggs of certain fishes, by Dr. von Hensen.
The second, which we shall first consider, is the most important and the largest-extending to nearly 100 pages-and consists of an elegant and concise description of all the species of fish hitherto found in the Baltic. As the work is founded on observations extending over twenty years, made with the advantages of constant residence on the Baltic shore and of control over the collections in the Kiel Museum, the list is as valuable as it is complete. This makes the absence of some forms we should naturally have expected all the more remarkable : we have especially noticed the absence of Myxine, but perhaps to those better acquainted with the distribution of this interesting form its absence will not be a matter of surprise.
The descriptions are preceded by an introduction which explains in a very lucid manner the principal points of fish organisation and their relative importance in identifcation. This is followed by a simple classificatory catalogue of the fishes described. In this catalogue all Teleostei are divided into Physostomi and Physoclisti. It is satisfactory to find the great fundamental characters which divide the Teleostei insisted upon, but there seems no objection to retaining the criterion of the fin rays for the Physoclisti, especially as this criterion brings out the affinity between Gadidx and Pleuronectida.

The concise and elegant descriptions are supplemented by a useful fin formula which makes comparison easy. The food and habits of the fish are mentioned, the spawning habits being especially described, and each account is accompanied by a simple but extremely well executed woodcut, in which all the characteristic features are definitely indicated in outline. The object stated in the preface, to make identification practicable to laymen, has been certainly attained.

In the account of the herring considerable space is given to the discussion of the differences between the two races which the labours of the Commission have shown to exist in the Baltic. Perhaps before long it will be ascertained whether the same differences exist between the spring and autumn herring of the North Sea.

The last portion of this memoir consists of general considerations on the fish fauna of the Baltic. The authors find that this sea may be divided into three regions, each
characterise 1 by a distinct fish fauna, of which the Western receives the greatest number of occasional visitors from the North Sea. They conclude that the Baltic was once in open communication with the Arctic Ocean, and that some of the species of fish which entered at that time remain now as inhabitants of the Gulfs of Bothnia and Finland. This portion of the work is illustrated by an interesting map. Appended to the whole is a table of the spawning periods of the fishes constantly inhabiting the Bay of Kiel, and also an index of the Latin names of the fishes described, and another of their German, Danish, and Swedish synomyms.
Dr. von Hensen reports at length on the researches made by him during four years on the eggs of the plaice, flounder, and cod.
Agassiz described the eggs of the plaice as floating at the surface, while the Swedish naturalist, Malm, affirmed that they slowly and gradually sink. The first eggs that Dr. Hensen obtained from a ripe female plaice gradually sank. This being a question of the relation between the specific gravity of the eggs and of the salt water, Hensen carried out a series of investigations into the specific gravity of the different eggs and their natural condition when deposited by the fish. By an elaborate process of measurement and calculation he arrived at the specific gravity of the ripe eggs before extrusion, and ascertained the limit of specific gravity and the salt percentage in the water which determines whether the eggs of the cod and plaice shall float or sink. He found that cod's eggs floated in water which contained more than $\mathrm{t}-85$ per cent. of salt ; and plaice eggs, when the percentage was above 178 . These correspond to a specific gravity of 10145 and 10136 respectively, at $17^{\circ} \cdot 5 \mathrm{C}$. He found from the observations of the Commission that the water in the Bay of Kiel has very often a spesific gravity less than these. Thus there is an exception even to the statemen that cod's eggs float. As will be seen, they always float in the open ocean. It was found that the specific gravity of the eggs before extrusion was some what greater, and their volume somewhat less than in the fertilised eggs which had been in sea water, and further that the eggs swell somewhat by the absorption of water without salt.
The author next calculated, from the number of female fish taken on a given fishing-ground and the average number of eggs contained in each, the average number of eggs in the sea corresponding to a square metre of surface, and then made careful continuous nettings of the eggs to find if the actual number coincided. He fished the bottom, and the surface, and vertically. Eggs of the plaice and flounder were frequently taken at the bottom. He found the eggs pretty evenly scattered, and often obtained them in the proportion of $30-80$ per square metre of surface. He then discusses what proportion of eggs are likely to be destroyed by their various enemies. This is the first attempt which has been made to estimate the actual number of eggs of fishes hatched in a particular area. The whole paper bears evidence of the most profound and careful work.

The memoir which stands first in the book gives an interesting account of the areas of sea-bottom in the Bay of Kiel known as "weisser" or "todter Grund." They are called "dead" by the fishermen because no fish are found on them, a fact probably due to the presence of
sulphuretted hydrogen. The white felting which gives the name "white" is formed by threads of different species of Beggiatoa, a thread-like fungus classed with the Schizomycetes by Zopf and others who have stated that bacteria forms constitute a stage of their life-cycle. Thus Monas Okenii, Bacterium sulphuratum, Clathrocystis rosea persicina, and Beggiatoa rosea-persicina have all been described as stages of a single life-history. Dr. Engler is extremely cautious on this point, and limits himself to what he has seen. He does not agree with Warming that Monas Mïlleri, which occurs with the Beggiatox, is the young stage of one of them; although he has observed one species sending off motile spherical spores. Two new genera of thread-shaped fungi are described which were found on a Gammarus locusta living on the white bottom. The paper is illustrated by a number of admirably executed drawings.

Thus the volume forms a very considerable contribution to the accurate scientific knowledge of the Baltic, for the attainment of which the Commission was instituted. Like all the other work published by the Commission, it exemplifies in the most convincing manner the truth that, to obtain light on marine problems, what is required is not a mass of evidence from people all equally without knowledge on the subject, but continued and elaborate research.

MASCART AND JOUBERT'S "ELECTRICITY AND MAGNETISM"

Electricity and Magnetism. By E. Mascart and J. Joubert. Translated by E. Atkinson. Vol. I. (London : Thos. de la Rue and Co., 1883.)

WE took occasion some time ago to draw the attentention of the readers of Nature to the "Leçons sur l'Électricité et le Magnétisme," by Professors Mascart and Joubert ; we have now to thank Prof. Atkinson for an English translation of this valuable work. This is not the place to inquire into the necessity for an English translation of any French scientific work, not to speak of one which makes such demands on the culture of its readers as this does. It is enough for us to know that the publishers and translator consider the number of semi-educated Englishmen sufficiently great to justify their venture ; it is our part to speak to the merits of the work and the manner of the translation.
The alterations in the matter of the book are so slight as to call for no remark. Our first duty therefore reduces itself to a simple iteration of our high opinion of its value as a scientific manual. At the present time the public is well supplied with scientific instructors. The good intentions of all of them need not be doubted; but the inactivity or modesty of some and the incompetency of others have brought it about that there are large gaps in our repertory of science text-books either not filled at all or filled very unworthily. It would not be accurate to say that vol. i. of the treatise of MM. Mascart and Joubert fills the greatest of these gaps in the department of elec. tricity and magnetism; nevertheless it fills a place not at present wholly occupied by any English text-book of merit. It has the misfortune, no doubt, of overlapping to a large extent the great work of Maxwell; but we believe that the tyro in the mathematical theories of electricity
and magnetism will find it of the greatest advantage to use Mascart and Joubert as companion and commentary to Maxwell's volumes. In all that relates to fundamental points and general theory Maxwell should be studied, even where he is hardest to follow, because his work was written, not to evade, but to meet, difficulties. On the other hand, Mascart and Joubert will be found invaluable in matters of detail. We know of no text-book in any language that contains such an abundance of elementary illustrations of electrical and magnetic theory, all arranged with an elegance peculiarly French.
The English version now before us is neatly printed and solidly got up. The translation on the whole is very well done. It would be easy to pick out small inaccuracies here and there, particularly in the early chapter. For some of these the translator is not altogether to blame; for the introductory part of the work seems to us to be less clear and carefully written than the following chapters, where the authors enter more into detail ; and in that part of the book the translation leaves little to be desired. We noticed very few misprints, but one calls for correction : the name of van Troostwyk's collaborateur in the decomposition of water by the voltaic current was Deimann and not Diemann. No doubt this mistake occurs in the original ; but the individual in question, though perbaps not widely known, yet deserved better than to be made quite unrecognisable. This brings to mind the only complaint of any gravity we have to bring against the editor of the English translation. Why did he not do something to remedy the one serious defect of MM. Mascart and Joubert's text-book, viz the want of sufficient references to original sources of information? It must be remembered that the scientific student who goes the length of MM. Mascart and Joubert's leading strings is expected one day to walk alone; and some indication should be given him of the paths that lead to farther knowledge. A defect of the kind might be overlooked in a school primer, written to enable the oppressed schoolmaster to screw a Government grant on the minimum qualification from some reluctant inspector, but is to be deplored in a work of the present pretensions.

Instead however of complaining farther of what MM. Mascart, Joubert, and Atkinson have not done (perhaps had not the leisure to do) for us, it will be more fitting to conclude by thanking them heartily for what they have done, and done so well.
G. C.

OUR BOOK SHELF

Enerey in Nature. By William Lant Carpenter, B.A. B.Sc. (London, Paris, and New York: Cassell and Co.)
THis book is, with some additions, the substance of a course of six lectures on the Forces of Nature, and their mutual relations, delivered under the auspices of the Gilchrist Educational Trust.

It is of the greatest importance that the general body of the people, and more especially the intelligent artisan class, should become acquainted with the leading principles of the science of energy. The series of lectures delivered with this object represents one of the best sustained efforts to bring this great subject before the minds of this class of the people, and in collecting together and publishing these lectures the author has done a work which must be regarded as a scientific boon to the artisan.

In one respect this task has presented difficulties of a peculiar nature, due to the fact that our country has taken a leading part in developing the principles of energy this science has in fact grown here, and the terminology bas grown with it. At the present moment there is no man of science who speaks of the forces when he means the energies of nature, but there is a lagging behind in this respect amongst the body of the pcople, to whom the word force is a familiar one, and the word energy, in a scientific sense, very much the reverse. Accordingly one of the first duties of the author has been to define the exact relations between force and energy in a way suitable to his audience-a task which he has successfully achieved.
While in respect of importance the science of energy bolds a paramount place, it is also a subject which lends itself admirably to the mode of treatment adopted by the author of this volume. Probably no subject is more difficult of conception on general principles merely, and without reference to the actualities of life. The philosopher in his study may have but a vague conception of these general laws, and his assent to the definition of work may be purely intellectual. Perhaps he may never have sitnessed a well marked case of the transmutation of energy, nor may he have the consciousness that he himself is frequently the subject of such transmutations. The artisan is, however, in a totally different position. After a day's hard toil he is well able to realise in a very vivid manner the meaning of the word work. To spend bis personal physical energy, and to recruit it by food, are operations in which he is constantly and consciously engaged. Hence it follows that a theory which borrows all these facts as illustrations of its truth appeals to the artisan in a much more emphatic way than it does to the mere student of science. To use the scientific terminology, the latter may have more kinetic intellectuality than the former, but the artisan is in a position of advantage which enables him to grasp the truths of the science. A book, therefore, which, like the present, abounds in good illustrations and in clear and simple statements, carrying practical applications, is one peculiarly fitted to a class better qualified by education and experience to perceive the concrete than to appreciate abstract general principles.
B. S.

Iournal of the Royal Agricultural Society. Second Series, Part II. Vol. XIX. Uctober, 1883. Price 6s. (London: John Murray.)
The current number of the Journal of the Royal Agricultural Socicty has just reached us. It fully maintains the reputation so justly earned by previous numbers, and contains papers on many topics of present interest to agriculturists. Among the principal of these may be mentioned "The Progress of Fruit-Farming", by Mr. Whitehead, of Barming House, Kent, himself largely interested in this business. The continued reports upon Prize Farms are worthy of attention as showing what is being done on the best farms in various districts. A report on sheep-feeding experiments conducted at Woburn by Dr. Voelcker in his capacity of chemist to the Society, and a report on wheat mildew, by Mr. W. C. Little, of Stig's Holl, form the chief attractions to practical farmers. Among the more purely scientific or speculative contents may be mentioned a contribution from Rothamsted, by Sir John Lawes and his able coadjutor, Dr. Gilbert, upon the composition of drainage water collected at Rothamsted, and a valuable paper upon nitrogen as nitric acid in the soils and subsoils of certain fields on the same estate. The remainder of the volume is chiefly occupied with useful official matter, such as the Weather Report; the Botanical Report, by Mr. Carruthers; and Reports on Live Stock, Implements, \& \& ., exhibited at York. A touching tribute is paid to the memory of a late president of the Society, the late Lord Vernon, by Mr. Wells, him-
self an ex-president. Perbaps the most striking and instructive paper is that by Mr. Thomas Bell upon the Yorkshire Piize Competition, containing a full report of the Tuyers Wood and East Park Farms, occupied by Mr. Turnbull. In these days, when dairying is justly attracting very special attention, it is highly interesting to receive sound information as to the methods used on thoroughly well-managed farms. A daily record of the milk yielded by each cow in a dairy containing 100 animals in milk is in itself highly useful, and worthy of imitation. It is impossible in a short notice like the present to open up the various topics dealt with. It has ever been the wise policy of the "Royal Agriculturist" to fill its pages with contributions from specialists upon their own specialities. There is no padding or superfluous discursiveness, and sometimes to the uninitiated there may appear to be a want of that introductory and explanatory matter which entices on the general reader. As a record of agricultural research and progress, the journal holds a high position, which the number just issued fully maintains.
J. W.

LETTERS TO THE EDITOR

[77e Editor does not hold himsely responsible for opinions expresued by his correspondents. Neither can he andertake to return, or to correspond with the writers of, rejected manuscripts. No notice is taken of anonymous commnnications.
[The Editor wrgently requests correspondents to keep their lefters as short as possible. The pressure on his space is so great that it is impossible otherwise to insure the afpearance men of communications containing interesting and noved farts.]

On Chepstow Railway Bridge, with General Remarks suggested by that Structure

In a letter to Nature of some months past, suggested by a special subject of engineering, I pointed out the necessity of clearly understanding the effects of endwise pressure on metallic columns, in respect of its tendency to cause springing or buckling of the columns. I remarked that there is a total want of experiments on the subject (Mr. Hodgkinson's observations, made on a very small scale, being excepted), and I gave some details of a theory by which the effective arrangement of such experiments might perhaps be facilitated. I have lately observed in an engineering work a failure of a different class arising from endwise pressure, of a kind which I had not anticipated, and which appears to be perhaps more dangerous than even the buckling to which I bad called attention.
In the neighbourhood of Cbepstow, the River Wye is crossed by a railway bridge of a single span. The four corners of the bridge are supported by iron tubular vertical, columns of considerable length. One of these colamns (on the Monmoutbshire side of the river, and on the lower side of the bridge as regards the course of the river) is split, with several inportant longitudinal fissures. To avert the present destruction of the bridge, strong iron hoops have been placed surrounding this tube, drawn tight by screws and nuts, exhibiting a somewhat unvighty appearance.

For clear understanding of this state, the reader may figure to himself a cask or barrel, set on its end, and loaded on the top till its staves barst outwards; then be must conceive a hoop to be placed round the bxdy of the cask, and drawn till the eiges of the staves are wholly or nearly in contact.

I do not doubt that this column is now safe. But there are other columns sapporting the bridge which are exposed to the same dangers : the bridge is heavy, the loads from the Taff and the Tawe are not light, and the jar of ponderous loc motives may try every original weak point or may create new ones; and I think it would be well provisionally to eacircle the other sup porting columns in the same way as the one which has failed

A symmetrical system of ringr, with some attention to simple elegance, would remove the offensive effect produced by the bent bars of mere blacksmith's work which now surround a single column.

But it is no specially to the state of the Chepstow Bridge that I wish to call the attention of the public, It is to the total want of practical knowle'ge as to the enduring power of metals, with which this bridge was built, and with which other such bridges must at prenent be built. We are totally without experiment on the danger of springing or buckling, and on the danger of bursting (now, I believe, for the first time brought furward). And we might perhaps consider such experiments as well falling within the province of those organised bodies whose union is based on the promotion of the most important determinations in civil engineering.
The Institution of Civil Engineers (with which body I have a much-valued honorary connection) has lately departed in some measure from the strict sulject of engincering to w hich its attention had been successfully given for so many years. I venture to suggest that this body might well take up the conduct of experiments bearing on engineering. The examination of the effects of force in mere crushing of external surfaces has been admirably prosecuted by Awerican engineers. But the examination of bending and bursting, as the effects of end-pressure, is still open to the engineers of Britain. The funds of the Institution appear to be amply sufficient for snch purposer, and the undertaking of them would undoubtedly be considered as honourable to the body.
G. B. Airy

The Whlte House, Greenwich, November 17

Physiology in Oxford

A paragrapis appeared in the Spectator of Saturday, the toth inst., on the Oxford memorial concerning the University Physiological 1 aboratory. That part of it which affects Magdalen College appears to me to revt upon erroneous information, and is certainly calculated to spread an entirely false and misleading impression of the attitude of this College in the matter, and of the University in general.
If you will all ow me to quote the paragraph, and at the same time give you the actual facts, I think yon will easily form an opinion on the real state of the case.
The para raplh states that the signatures were received "from members in Oxford and its suburbs, and the rest from a circle of abont fifteen miles round."
The fact is that the simnatures are not drawn exclusively from either the sinaller or even the larger area, one of the socalled Ma dalen signatures being that of a member of the Hereford Cathedral choir.
The paragraph goes on to say:- "We are told that Magdalen men have signed it more nnmerously than any other College but one, and, in proportion to the size of the College, more numerously than any. Now, as Prof. Burdon Sanderson is ex officio a Fellow of Mardalen, and as Magdalen has for years past had a phy-iological laboratory of its own, this popularity of the memorial among Magdalen men is highly significant."

On this I have to remark that the signatnres are representative neither of the governing body of the College, nor of its resident members.
The governing borly of the College consists of the President and twenty-four Fellows; of these twenty-five three alone have signet the nemorial. The reident members, as shown by the list of congregation, number twenty-two ; of these twenty-two only six have sugned.

Finally, as regards the last paragraph, it is true that Magdalen Cullese has for years past had a pliyxiological laboratory of its own, and it is further true that the University teaching of physiology has been carried on there, previous to the advent of Dr. Burdon Sanders in, for years past under a Government licence with the full and express consent of the whole governing body of the College, a fact which is indeed significant, but hardly in the way in which the Spectator appears to bave been informed.

Magdalen College, Oxford, November 15

Green Sunlight

Mr. G. 11. Hopkens' observation that the parting ray at suncet is sometimes brilliant emerald-green brings to mr menuory a somewhat similar experience. On September 13. 1865, watching on the summit of the Rigi for sunrise, I caught the very first fossible glimpse of the sun's disk as, on a very clear morning, he emerged from behind the sharply-defined outline of a distant mountain. The very first rays, although necessarily proceeding from the comparatively obscure limb of the sun, were dazzlingly brilliant, and of a superb emerald green eslour. Bus almost instantly, as more of the sun appeared and his light grew sensibly more intense, the green passed away or was merged in the yellowish white of ordinary sunlight.

In my case I do not doubt the phenomenon was purely subjective, for before sunrise the sky was all lit up of a magnificent criuson hae. Every one must have noted how the moon when surrounded with bright crim-on clouds looks more or less decidedly green.
A very striking effect of this sort, like the others an example of the well-known visual phenomenon of "accidental colour," may be artifcially obtained, any time the moon shines, by burning an ordinary "blue" signal light. After my eye had been intensely excited by such a light close at hand, I have seen the moon, near or at its full, of a deep plum coluur, by which I mean the colonr of the bloom on a black plum or on a well colonred Hamburg grape. Or, in place of these, the ziol 6 of my friend Prof. Piazzi Smyth's exquisite chart of colours in his "Madeira Spectroscopic," or the Dlcm viold of Chevreul's chromatic circle. I recommend the experiment as ensy of performance and exccedingly beautiful in its effects. Possibly a small blue light would suffice. But, on the occasion to which I have referred, certainly not less than thirty ounces of nitre, ten of sulphur, and five of black antimony sulphide were employed. The:e, mixed in fine powder, may be burned in a case about six inches high and four in diameter; of cour e in the open air, and where no micchlef may accrue from an intensely hot and volaminous flame.
In a communication made to the Royal Society of Edinburgb in 1852 (Traws, vol. xx. pp. 445-471), I adduced evidence to prove that a continuous thin layer surrounds the sun's photosphere, of which upturned portions form the 'red protnberances seen at total solar eclipses ; and I then showed that if the weil known darkening of the sun's limb be dne to absorption in his atmosphere, it can only be caused by, such a thim envelope. The existence of this envelope, the sun's chromosphere, is now fully established. 1f, from the red colour of its upper portions, we may infer the resultant tint emitted by the whole to be red, then, by a well known law, the discolouration of the sun's limb due to its absorption should be of a greenish hue. But such an effect would necessarily be but slight, and could not explain the brilliant green witnessed on the Kigi. Nor do I recollect any instance where the first emerging rays of the photosphere at the end of a total eclipse have been observed to be green.

William Swan

Ardchapel, Dumbartonshire, November 8

A letter from Barinas, Venezuela, states that on September 2, frow daylight until noon, and from 3 p.m. to sundown, the sun appeared like a globe of burnished silver. Between noon and three o'clock it was of a bluish-green colour. This appearance in the western hemisphere seems to dispore of the sug. gection of the Java eruptions as the cause of green suns in India.

Hyde Cluake

Mangrove as a Destructive Agent

As I have never seen the mangrove mentioned bnt as a conservative or productive agent as regards geological change, it may be interesting to readers of Nature to bear of its acting in a contrary direction.
In several parts of eastern tropical Africa, where the shores are mostly of upraised coral limestone, I have noticed the effect of mangrove in eating away this rock, but nowhere have I seen it so well marked as in the Island of Aldabra, some two hundred miles to the north-west of Madagascar, and which I surveyed in 1878.

Aldabra is an upraised atoll about twenty-two miles long, and presents low cliffs of about fifteen to twenty feet of solid coral rock to the sea and also to the lagoon, which is, at low water, nearlydry

The mangrove has established itself on the edges of the lagoon, doubtless from seed transported by the currents, and, in all places where it has done so, tortuous ereeks or little gorges run back into the coral, filled with mangrove trees (standing in deep mud of the adhesive and feetid nature so characteristic of mangrove swamps), which stretch out their roots to the coral walls around them, and, as it seemed indubitably to me, in some way decompose the softer parts and eat their way in. The island is riddled with these creeks, always filled with mangrove, and opening into the lagoon.
The outer face of the island is of cour e being slowly undermined by the sea at high water, presenting overhanging cliffs impossible to scale, and the island is wearing away from that cause also, but the destruction from the mangrove is mueb more important, and at no very distant period, as it seemed to me, the upraised island will be again reduced to its original level as an ordinary atoll.
It would be interesting to know how long the mangrove has been there, for as Aldabra is one of the two oceanic groups in which the giant tortoises still exist indigenous, it must have been in its present condition of upraised atoll, I imagine, fir a long period. It could never have been much larger in diameter, from the soundings round it, but the mangrove may have greatly inceased the size of the lagoon by stealy working at the inner rin of the islands, the actual area of wbich is now but small, from their narrowness.
I may mention that the island is cover ed with low, tangled scrub, which has managed to find foothold and sustenance on the rock, for there is but little or no soil, and the top of the rock is everywhere cut up by sub-acirial aetion into the sharp, honeycombed, and jagged surface which upraised coral in the tropies, uncovered by grasses, siil, \&c., always wears into, and which, by the way, makes it extremely difficult to walk over, a difficulty much increased in this instance by these mangrove channels, as well as the tough nature of the matted, thorny bushes. A walk in Aldabra is the most aggravating and slowest piece of locomotion I have ever engaged in: and nothing short of the patience, perseverance, and general disregard of time of the tortoise tribe can make it an agreenble residence. Some of my negro sailors were sent into the bush to hunt for tortoises, and after three days' search brought back one, which is now In the Gardens of the Zoologica! Society; but they returned nearly as guiltess of artificial clothing as their captive.
w. J. I. Wharton
H.M.S. Sylvia, Monte Video, Oetober 10

The "Cloud-Glow" of November 9

The beautiful after glow of Friday, the $9^{\boldsymbol{h} h}$ inslant, was most striking as reen from the west side of Hampstead Hill, where it. fist development was made more effective by a frame of dark tumulus, with a fringe of dusky green tint, carried up from the suaset quarter by a westerly breeze, raiher rolled up like a curtaio, exhibiting the richly-coloured scene behind as it was withdrawn. I estimated the altitude of the upper edge of the glow at about 30°; but at Freshwater, 1Ne of Wight, it has been described as extending nearly to the zenith. There would be no dificulty in calculating apprsximately the height of the cirrusas desired by Mr. Kussell-if it could be assumed that the reflection was from the same matter in both cases, which is improbable.
J. J. Waiker

Waking Impressions

A curtous case 1 have just read in a recent number of Nature recalls a somewhat similar experience of my own, rather earlier in date. I aw ske in the middle of a story told by an internal voice-a voice felt, not heard. I listened with curiosity and interest, as totally unprepared for what was coming as if the narrator had been Gladstone or Kuskin. I believe when I awoke 1 bad a dim recollection of what had gone before, but I strove afterwards in vain to recall it. All I know of the history of the mysterious lady is the following fragment: "She bad many ad. mirers, but she gave the preference to Tom, because he promised to marry her in the Weit Indian fashion. He drew her three times throuzh a hoop, once standing, once sitting, once lying, which signified that he would never desert her in youth, malurity, of old age."
I have not the least idea who "she "was. I hnow no une I call Tom except an old schoolfellow long married, and, to
the best of my belief, I never heard of such a custom in the West Indies or elsewhere. Once since 1 have waked in the middle of a dream which went on, but it was a dream of a very eommonplace character.

William Radford
Sidmouth

Barytes from Chirbury

I Am indebted to Mr. Yelland of Wotherton for sending me some fine examples of the crystals deacribed by Mr. Miers in Natuke, vol xxix. p. 29, and am collecting several particulars respecting their occurrence. Some time ago 1 commenced a determina'ion of the faces, bu' my work has been interrupted.

The characteristic plane E is mentioned by Carl Urba (Groth, Zaitschrift fur Crys'allographic, v. 433, 1881) as occurring on burytes crystals from Swoszawice in Galizien. In a measurement I made last year to determine this plane on one of the Wotherton specimens I obtained E E'as $39^{\circ} 59^{\prime}$, and, using Miller's dis'ance for $b d$ leads to the symbol 412 , and by calculation the dis'ance $a \mathrm{E}$ as $26^{\circ} 2^{\prime}$. Carl Urba gives its calculated distance as $26^{\circ} 4^{4}$, and measared distance as $25^{\circ} 5^{\prime \prime}$.
C. J. Woodward

Birmingham and Midland Institute, Birmingham, Nov. 10

"Salt Rain and Dew"

Looking over the "Sehool Geography" of Dr. Clyde (Edinburgh, 1870), 1 find, on page 32 , in the paragraph headed "Russian Lakes," the following remarhable statement :- "In the south-east region, not only the laker, but the zury rain and drav likavise are sall, a phenomenon common to all the shores of the Caspian and Sea of Aral" (the italics are mine). Will some one of your readers kindly reier me to the traveller's tale in which this myth originated.

Harry N . Draper
Esterel, Temple Road, Dublin, November 17

AN INDIAN WEATHER FORECAST

THE period of drought in Upper India, which happily came to an end in the latter part of August, was not entirely unforeseen, as will be shown by the following extracts from the Government Gazelle; and the facts will probably be not without interest to meteorologists in Europe and elsewhere.
Extract from the "Gazetle of India" of June 2, 1883
"That the unusually dry weather now prevailing over the North-Western Ilimalaya, and that which, though less abnormal, characterises the whole of North-Western India at the present time, is an effect of the unusual accumulation of snow, is a conclusion justified by the experience of the last few years; and were it not that the snow is rapidly decreasing under the unobstructed radiation of the sun, there might be some reason, judging from the present limited experience, to anticipate some retardation of the rains of the Upper Provinces, and possibly even in Western India generally. But, on the other hand, the fact that, during the months of April and May, the atmospheric pressure over the greater part of the country has been below the norinal average of the season, is one which, arguing from the same experience, portends favourably for the timely influx of the monsoon. In liengal it may be said that the present prospects are wholly favourable.

> "Henry Figned) Blanford, Meteorological Reporter to the Government of India
"Simla, May 18, 1583 "
"Since the above was written, there has been heavy rain for many days on the outer hills, and more or less on the plains of the Punjab, and apparently a very heavy fall of snow on the higher ranges. At the present time, as seen from Simla; the latter are white with snow, down to a level of about 11,000 or 12,000 fect. And some 500 feet of the top of the Chor ($11,9^{92}$ feet) is also covered with a snowcap. If, therefore, the mountains of Lalwul, Spiti, and
other more distant ranges have shared this fall, if it is as extensive as it is apparently heavy on the visible ranges, and if the views which the experience of recent years seems to justify, viz, that an unusual extent and thichness of snow on the Himalaya is productive of dry north west and west winds in North-Western India, are valid, we must be prepared for a long spell of dry weather and a retarded rainfall in the Upper Provinces. The present season will serve as a test of the validity of the above view.

(Signed) "Henry F. Blanford, Metcorological Reporter to the Government of India

"Simla, May 31, 1883 "
Information was subsequently received to the effect that the heavy snow of the winter months as well as that which fell at the end of May was restricted to the outer range. In the interior of Lalwul and Spiti and in the Pangi valley the snowfall was very deficient. Nevertheless the May fall on the outer range seems to have sufficed to produce the effect predicted.
Extracts from a Memorandum on the Chicf Wiather Characteristics of the Month of June, 1883, in In.iia, in the "Gazette of India"
"In Bengal, after some weeks of close cloudy weather, with occasional showers, the monsoon rains were ushered in on June 13, with a lintle cyclonic storm, formed apparently on the coast of the Sunderbuns. From the coast on the three following days this storm passed inland, on a north-west course, bringing heavy rain in its track, as far west as Behar, and a moderate fall up to Allahabad ; beyond which, for a time, the rains did not advance. . . At Bombay it blew strongly on the 13 th, 12 th, and 13 th, but not from the monsoon quarter; and afterwards the wind fell light, and so continued till the 24 th, when the monsoon set in steadily. But the rainfall has been light throughout the month, and, at its close, was six inches short of the normal average. On the 26th or 27th a second cyclone was formed at the head of the Bay of Bengal, causing heavy rain around the coasts, and especially those of Orissa and Ganjam; then, travelling westward, the centre reached Cuttack on June 30 ; Seoni on July 1 ; Indore on the 2nd; and lay between Kurrachee and Rajkot on the 3rd. It caused very heavy rain in Gujerat, flooding the rivers, and interrupting railway communication between Bombay and Baroda.
"In the North-Western l'rovinces, with the exception already mentioned, the rains did not set in before the 260 h , but throughout the month the wind was, in general, easterly, and occasional thunderstorms occurred. In the Funjab also, the first rain fell between the 26 th and $29 t h$, but in the eastern half of the province the prevailing high temperature was mitigated by an occasional duststorm.
"In Lower Bengal rain of importance fell on twentytwo days. The total fall of the month was five inches in excess. . .
"In Rajputana, Sind, \&c., the number of days on which rain fell was only four, and the average total was less by three-quarters of an inch than even the small amount which generally falls in this region in the month of Junc. . . .
"From the above it appears that, over a large tract of country, the monsoon so far has been weak. Un May 28 it was reported to have burst at Cochin; and between that date and June 5 it appears to have spread along that coast as far north as Goa. In Bombay itself the weather has been showery, but there have been no very heavy falls of rain. On the Bengal side, on the contrary, the south and south-west winds have brought up even more than the normal amount of rain, and the weather at the head of the Bay has been somewhat exceptionally rough

In Northern India the monsoon current has been much delayed, and in parts of the North-IVestern Provinces and the Punjab continuous rain has hardly yet set in.

> (Signed) "W. L. Dallas, Assistant Meteorological Reporter to the Government of India"

Extracts from a Memorandum on the Chief Weather Characteristics of July, 1883, in India, in the "Gasette of India"
"Except in the North-Western and at a few Central stations, the rainfall of the month shows on the whole comparatively little departure from the average.
"After the disappearance of the storm noticed in the June summary, which passed from the Bay of Bengal across India, \&c., . . . there occurred a general rise of the barometer, a corresponding decrease in the humidity of the atmosphere, and a cessation of the rainfall, over a large tract of country for two or three days. On the 5th or 6th, however, rain recommenced generally and continued for some time. In the eastern half of the NorthWestern Provinces, Assam, Bengal, Burmah, and the south of the peninsula, it fell more or less on every day, till the close of the month, but over Western and North-Western India the fall ceased about the $19 t h$, and from that date till the end of the month a decided break in the rains occurred, and fine weather set in.
"Un the plains of the Punjab there were only eleven wet days; the break in the rains, which commenced on the 19th, being very decided in this province. In consequence the amount of rain for the month, and, except in the Indus valley, the total since June I, was several inches below the average. . . .
"The weather in the western half of the North-W estern Provinces was similar to that experienced in the Punjab, but in the eastern half it was wetter, the number of rainy days being nineteen. In the Meerut division five inches less than the average amount fell during the month : while at Lucknow eight inches and at Allahabad one and a half inches more than the average was registered.
"In Lower Bengal and parts of Behar the rainfall was several inches above the July average; while in Purneab, Patna, and Orissa it was deficient. The average number of wet days was twenty-six, and no break in the rains of any consequence occurred within these provinces.
"In Rajputana the rainfall was about the average amount, and occurred on thirteen days; scarcely any fell after the 17 th . . .

> (Signed) "W. L. Dallas, Assistant Meteorological Reporter to the Government of India"

Exiract from a M/emorandum of the Chief Weather Charncteristics of August, 1883, in the "Gazetle of India"
"The month just elapsed was one of very deficieat rainfall throughout India, except in the provinces of Madras, Berar, and Assam. The break in the rains. which during the latter halt of July was very general ia North-Western and parts of Central India, became even more pronounced throughout that region during the first three weeks of the month under review; and extended, though in a modified degree, to Behar and a large part of Bombay. The drought was apparently at its herght, beth as regards extent and intensity, during the second week in August. . . . On the 19th, however, a change commenced. The air became slowly damper over the Central and North-Western Provinces, and the sky more cloudy; and very gradually these changes spread, till at the close of the month rain had extended to the Punjab, Rajputara, and Gujcrat ; in Rajputana and a large part of the Punjab and the North-Western Provinces it was only on the lase
two days of the month that rain began to fall, and even then in small amounts. . .

> (Signed) "W. L. DALLAS, Assistant Meteorological Reporter to the Government of India"
-The above extracts speak for themselves. The results do not accord precisely with the terms of the prediction, inasmuch as the rains, instead of being simply retarded, penetrated for about a fortnight to the Upper Provinces, and then gave place to the dry north-west winds, which are characteristic of periods of drought. But there is no reason to regard the snows as inactive during this rainy interval. At Simla this rainy period was one of frequent thunderstorms and on more than one occasion of hail, ${ }^{1}$ and in fine intervals the existence overhead of the ominous north-west wind was established by the steady drift of the higher clouds (cirro-cumulus, \&. .). The outtlow of dense air from the snow-fields was therefore active, although it was only at a later period that it descended to the leve! of the lower hills; and then, chiefly as the result of diurnal convection, to the plains of North-Western India.
The full discussion of the evidence for the dependence of dry winds on the snowfall will be undertaken elsewhere. It must not, however, be supposed that the Himalayan snows are to be regarded as the sole cause of drought. Causes of wider incidence are sometimes in operation. Thus, in 1876 and 1877, an unusually high atmospheric pressure prevailed over nearly the whole of Asia and Australia. Whether there was any unusual accumulation of snow on the vast mountain tracts of Central Asia or over the northern plains in those years would be an interesting subject of inquiry were the means of information forthcoming.
H. F. B.

NORDENSKÖ̈LD'S GREENLAND EXPEDITION ${ }^{2}$

111.

WE give a few extracts from Baron Nordenskjöld's concluding letters on his journey down the west coast of Greenland and his visit to the east coast :-

At Ivigtut a visit was made to a valley which, on account of its copious flora, has been named Grönnedal (Green valley), and another to the spot where the inland ice falls into the Arsuktjord. In the former place Dr. Nathorst found, in a kind of syenite, a blue mineral which seems to be sodalite. This discovery is chiefly remarkable from the circumstance that this mineral is also found in the vicinity of the small kryolite depusit at the llmen mountain in the Ural, which seems to indicate that a kind of relation exists between these two minerals, both strong in satron, which circumstance may be of service to the geologist in search of kryolite. From the excursion to Grơnnedal Herr Kolthoff brought with him some rare butterflies and other insects, while of the botanical finds there were splendid specimens in bloom of Linnaa borcalis, which is quite plentiful about Ivigtut. It has not before been known to exist in Greenland. The zoologists found only three kinds of land mollusks, viz, a physa, a vitrina, and a helix, which were all few in number. The entomological harvest consisted of a few beetles, butterflies, and insects of other kinds.

Un their way to Julianehaab, as they steamed down the narrow fjord in pitch darkness and a perfect calm, "we saw suddenly behind the vessel on the surface of the sea a broad but clearly defined band of light. It shone with a steady, ycllowish light, somewhat like that of phosphorescent elements, while, in spite of the speed maintained, viz four to six knots, the band came nearer and nearer. When it reached the ship it seemed as if we

[^9]were steaming through a sea of fire or molten metal. After a while the light travelled beyond the vessel, and we saw it at last disappear on the horizon. U'nfortunately I had not an opportunity of examining it with the spectroscope. It was beyond doubt of a different nature to the bluish-white phosphorescent light, which throughout its appearance was seen distinctly in our wake, and as the light was perfectly steady it cannot have been caused by the phosphorescence from a passing shoal of fish. A shoal of fish would have occasioned some stir in the sea, but in this case the surface was calm throughout, while phosphorescence from the same would have been bluish in character, not jellow as this was. The Esquimaux stated that a glacier river in the vicinity shed a thin layer of brackish clay-water over the surface of the fjord, and fancied that this eircumstance was in some way or another connected with this grand phenomenon, which they themselves had never before witnessed. There was at the time no aurora visible, the sky being covered with clouds. The cause of this remarkable phenomenon, which made the Sophia seem to steam through a sea of fire for fully fifteen minutes, 1 have been unable to ascertain; maybe it was a phenomenon such as this which made LigLodin, of the Greenland Saga, relate to King Harild Sigurdson that he had once sailed over a spot where the sea was on fire."
At Fredriksdal Nordenskjold engaged two Esquimaux to act as pilots in the sounds on the east coast, north of Cape Farewell. One of them stated that remains of buildings, which were not built by the Esquimaux, are to be found in nearly every great fjord on the east coast, particularly in the large ones of Umanak, Ekaleumiut, and Igdiuluarsiut. Entire walls do not remain standing, but though low they are extensive. The largest ruin is said to exist at Igdluluarsiut. A fine kind of soft stone is to be found on an island south of Umanak, from which pots were made to three feet in diameter. This mineral deposit is of special interest in reference to the ethnography of Greenland, as the Umanak fjord is situated in lat. 63°. This name is, however, a common one for places among the natives. Ivar Baardsen, in his famous description of Greenland, states that a soft stone was found on Renö, outside the Einafjord, from which the largest vessels were made. Cannot the mineral deposit at Umanak be identical with this ? These statements, as well as others received from the "Eastlanders," and the remarkab'e Norse characteristics possessed by the same, which the missionary Hans Egede pointed out long ago, seem to Baron Nordenskjold to refute the theory now mostly advaneed as to the Norse colonies, viz. that they were situated on the south-west coast of Greenland.

In spite of predictions of failure and even disaster before he left Europe, Nordenskjold decided to attempt to land on the east coast, south of the Arctic circle. After some difficulty they succeeded in anchoring in the Kangerlutsiok Bay, but on account of the state of the ice they had to stand to sca again, and steamed along the ice-belt lining the coast, in order to find an opening by which the shore might be reached. The fauna of the sea bere was very poor, and they only saw in two days one whale, a few seals, and a very small number of sea birds. The abundant fauna of the coasts of Spitzbergen and Novaya Zemlya is thus entirely wanting on the east coast of Greenland. The cause of this may be the great depth of the sea right up to the shore, which prevents the animals from fetching their food from the bottom ; perhaps also the war of extirpation which the natives seem to have carried on for years has also contributed thereto. The auk and the Uria gry/le are, however, said to breed in large numbers on the rocks off Cape Farewell. The Esquimaux pilot stated that he had been told by old people that they couid remember the Alka impennis having been found here. The natives called it lsaro-
kitsok. Only a little distance out to sea they found a warm current-rising to 6° C.-coming from the south. The drift-ice was what Arctic skippers call "knatteris," i.e. little bits, viz remains of large floes after the influence of the summer heat and the Gulf Stream. Very few icebergs were seen, and they appear to be far more numerous on the west coast. As it was now late in the season, and the coals were nearly done, Nordenskjold had reluctantly to renounce the plan of reaching the fjords where the greatest ruins are said to exist, and, instead, attempt to reach the south shore by Cape Dan, a promontory which, if the Einafjord was situated at Umanak or Ekaleumiut, should be the Herjolf's Naze of the Sagas. "On the 4 th, when off the Cape, we met the ice twenty miles from the coast, which was, however, passable, as it consisted mostly of large, loose floes only a few feet above water, while nearer the shore it again became heavier. Beyond this we saw an ice-free cbannel three to four miles wide. The sea was as smooth as a pond, and a boat could easily reach the shore. The mountains ran mostly into the sea with almost perpendicular declivities, without any grass-covered underland. Opposite us we saw a small bay, into which I steamed, in order to take the sun; but finding both the depth and the bottom unsuitable for anchoring, we only landed for a few hours, while some of the crew went on the hills above to look for a better harbour. The staff returned on board with a rich haryest from the steep slopes, the flora of which was copious beyond expectation. The sailors reporting a harbour near, 1 steamed thereto and cast anchor. It was a beautiful fjord, with several arms, which was only connected with the sea through a small opening, and was well sheltered. It was the first harbour on the east coast south of the Polar circle, in which a vessel had anchored for several centuries. ${ }^{1}$ It was named 'King Oscar's Harbour.' If Cape Dan is the old Herjolf's Naze, this harbour is the "Sand" described by Ivar Baardsen, 'much frequented by the Norwegians and traders.' That the Norwegians had once been here was demonstrated by walls of loose stones erected on the mountains above the harbour, which had, no doubt, served as landmarks for finding the almost hidden opening of the fjord. We found, besides, some stone ruins of a smaller house, identical with those found on the west coast. Thesc ruins are, of course, not extensive enough to demonstrate that here was situated one of the 'Bygder' (parishes) of Greenland, but they may certainly serve as sign posts for future explorers of the east coast. As soon as at anchor we went on shore, and spread in all directions in order to examine the neighbourhood. King Oscar's Harbour is surrounded by soft, close, grass slopes and flourishing shrubs. The fauna appeared to ine more copious and the grass less mixed with moss than on the west coast ' in the same latitude. In one of the valleys a river flowed, the shores of which censisted of loose sand without any covering of grass. Here were found traces of the Esquimaux. Sone of the footprints were days old, but others were so fresh that the moist sand had rot had time to dry. Most probably they had taken flight on seeing the stcamer forcing the barrier which bad hithcrto formed their shelier. We found plenty of remains of then in the shape of huts, graves, foxpits, \&c. The naturalists gathered here a quantity of fresh materials of the fauna and Hora of East Greenland, among which I may specially mention the well-known Potentilla anserina, which is found so often near the Norse ruins in West Greenland, and which may, for that reason, be a sign of the Norse colonisation of East Greenland. We found traces of reindeer, but none of the musk-ox ; neither did we see any bears or walruses, and only a few seals. Our whole bag was two ptarmigans.
${ }^{2}$ North of the Polar circle the cast"const of ${ }^{2}$ Greenland is in many places easily accessuble.

That the Esquimaux had decamped was very annoying, as they could no doubt have given some valuable information relating to this part of Greenland and the tribes which inhabit it."
After reconnoitring the coast still further, Baron Nordenskjold decided that his best course was to return at once to Reikjavik. Before doing so, however, some hours were spent in dredging and in hydrographical research, as well as in photographing some of the coast scenery.
"Having thus given an account of the work of my ex. pedition, I have to point out that we have been the first to penetrate into the heart of Greenland, and that our journey has resulted in learning something about this continent, the natural conditions of which may probably give us a clue to the true condition of Scandinavia during the Glacial period, the study of which is therefore of such great importance to the geology of North Europe. Besides this, valuable scientific data have been collected during my voyage along the east coast of the composition of the ice-belt which bars the way from the east to the southern part of Greenland, while many errors as to the state of the east coast of Greenland have been corrected. In addition to these objects one more has been attained, viz. the anchoring of a vessel by the shore of East Greenland, an achievement attempted in vain for centuries. If thus the work of the numerous expeditions despatched since the sixteenth contury by sea to the part of Greenland lying opposite or south of Iceland to the part where the Norse Österbygd was or was not situated, it will be found that not one of them succeeded in reaching the coast.
"A few words more in conclusion as to the purely scientific results of the expedition. During the voyage of the Sophia along the coast of Greenland from Cape Dan past Cape Farewell to Cape York, and further from Cape York around Cape Farewell to Ingolfs Mountain, hydrographical researches and dredgings were effected whenever time and weather would permit. These labours were conducted by Herr Hamberg and Dr. Forsstrand. In addition, Herr Hamberg effected a number of analyses of sea water, and the gases contained therein, from various depths, while he brings bone a series of the most carefully effected measurements of the temperature of the sea, which demonstrate that the cold current running along the east coast is, both in width and depth, very insignifcant, and rests even near the shore upon one of warm water produced by the Gulf Stream. Davis Sound and Baffin's Bay, on the other hand, are filled with cold or very slightly warmed water to the bottom. Contrary; therefore, to the general belief, the west coast of Greenland is zuashed by cold water, while a greatly heated current coming from the south runs along the east coast a distan:e of 40^{\prime} to 50^{\prime} only from the shore. This current must exercise a great influence on the climate of the east coast, which may be more moist, but, I believe, not colder than that of the west coast.
"The dredgings have yielded Dr. Forsstrand a fine harvest of marine animals, \&c., of which 1 may mention gigantic sponges from great depths in Denmark Sound (between Iceland and Greenland). The dredgings on the east coast were, howevcr, greatly impeded through causes detailed above, and by the circumstance that the bottom consists mainly of huge boulders, which tore the net. Of the animal species cxisting on land or in fresh water, Herr Kolthoff has collected rich fresh materials of the Greenland fauna. Especially will the variety of insects collected be of great instructive value to science. On account of the limited accommodation on board, and from the circumstance that the flora of Greenland is well known through Danish and Swedish specialists, I took no botanist with me. But even in this field new materials have been gathered through the zeal given to such researches by Dr. Nathorst and Dr. Berlin whenever time permitted. The collections of microscopical plants
which have been made, the true place of existence of which is the ice and the snow, must particularly be of great value. They are besides of additional interest to the expedition, as they belong to a new branch of science which bas in the first instance been created by Swedish savants. The collections, perhaps, of most value to science have, however, been made by Dr. Nathorst from the North-West Greenland so-called basalt formation, which is remarkable for the quantity of fossil plants contained in the clay, sand, and tuff strata there. Of course some very fine palzontological collections have been brought from these parts before, especially by the Swedish expedition of 1870 , and by some Danish ones under Dr. K. Steenstrup; but it is the first time that a palwontologist has visited this spot, and $I \mathrm{am}$, in consequence, convinced that the objects gathered by Dr. Nathorst, when scientifically treated, will yield many new data on the copious flora which orice covered the ice-laden regions round the Pole.
"Finally, the expedition has brought home some splendid specimens of the remarkable minerals found at the well known deposits at Kangerdluarsuk and Ivigtut, while 1 have on the inland ice coliected, as previously stated, a great many samples of the dust found on the ice, and which I have named kryokonite. I hope, when this has been exhaustively analysed, to be able to furnish fresh proofs in support of the theory that this deposit is, at all events partly, of cosmic origin, and thereby contribute further materials to the theory of the formation of the earth. Dr. Nathorst was, as previously stated, prevented by the ice from reaching Cape York and examining the blocks of ironstone lying there, but their existence has been corroborated beyond doubt by the Esquimaux in the neighbourhood. Here the expedition obtained some valuable ethnographical objects, and it learnt a fact from the natives which may be of considerable importance as to the question of the wanderings of the tribes around the Pole, viz. that four 'Russian Esquimaux 'had come to Wolstenholme Sound. They said they were the last survivors of a tribe which had Jeft their place of habitation by the Behring Strait (or the northern shore of Asia?) in search of a new place of settement, and who had at last reached Smith's Sound. These are the resulis of my expedution to Greenland in the Sophia. The scientific collections made will be distributed among the museums of my couniry."
A. E. Nordenskjöld

THE ROTHAMSTED GRASS ENPERIVENTS ${ }^{1}$

THERE is at Rothamsted nothing which will more impress the visinor than the seven acres of meadow land in the Park, the many years' experiments upon which with different manures constitute the subject of the abovenamed memoir. The twenty parallel plots into which the ares is divided appeal at once and forcibly to the eye by the obvious differences in their herbage. A plot here with rich green grasses waving luxuriantly upon it; another, on which the yellow meadow vetchling apparently constitutes the leading feature; a third, irre; ;ular, patchy, and much afflicted with the sorrel-dock; and yet another, on which, at the time of our visit (August), the whiteflowered umbels of the earth-nut put everything else in the shade,-these and the like appeatances convince with an eloquence which the pen is powerless to imitate.

The land in Rothamsted Park has probably been laid down with grass for some centuries. No fresh seed has been artificially sown within the last fifty years certainly, nor is there record of any having been sown since the grass was first laid down. The experiments commenced

[^10]in 1856 , at which time the herbage appeared to be of uniform character. With few exceptions the same description of manure has been applied year after year to the same plot ; and two plots, the third and $t w e l f t h$, have been continuously unmanured. For the first nineteen years the first crop only was cut and carried away, and the second crop was usually fed off by sheep who were recciving at the time no other food. Of recent years it has been more and more the practice to make the second crop also into hay, and it is intended to adhere to this plan in future, weather permitting.

The profuce of every plot is weighed as hay, and the result calculated per acre. Taking the average of the first twenty years, the unmanured plots, 3 and 12, gave the lowest yields of all, $21 \frac{1}{4}$ and 24 cwt. respectively. Next above these is plot 5, manured with amnionia salts ${ }^{2}$ as the rate of 400 lbs. per acre per annum, the yield giving an annual average of $26 \$$ cwt. per acre. The highest average recorded, $6 \geqslant \frac{\mathrm{cwt}}{}$. per acre, resulted from a mixed manure, containing 500 lbs . sulphate of potash, 100 lbs. sulphate of soda, 100 lbs . sulphate of magnesia, 31 cwt . superphosphate of lime, 600 lbs. ammonia salis, and 400 lbs . silicate of soda,-a tremendous dressing, by the way. The average yields on the other plots, each one of which received different manurial treatment from that of the others, range themselves between these extremes.

But the mere quantitative estimation of the resulis was a comparatively simple task to that of making a qualitative examination of each crop. The proximate analysis was into the three classes of gramincous herbage, leguminous herbage, and miscellaneous herbage, the lastnamed containing all plants not referable to the Graminex or the Leguminosix; and even this task would not be a very difficult one. But when it is stated that in certain seasons a complete botanical analysis was made, whereby each species of plant was separated from all the others, then the irksomeness of the work will be appreciated. For the details of these analyses we must refer to the memoir itself, but the following is worth reproducing. "To quote an extreme case in illustration of the difference in the characier of the herbage, and of the difference in the degree of difficulty of separation accordingly, it may be mentioned that whilst a sample of zo lbs. from one plot in 1872 only occupied from four to five days in botanical analysis, a sample of equal weight from another plot in the same year occupied thirty days."

The total number of difierent species of plants that have been detected on the plois is 89 ; of these, 20 are grasses, 10 are leguminous, and the remaining 59 belong to miscellaneuss orders. The 89 species comprise 59 dicotyledons, 26 monocotyledons, and 4 cryptogams, 3 of which are mosses (Hypnum) ; they are arranged under 63 genera and 22 orders. (f the miscellaneous plants there are 13 species of Coinfositæ, 6 of Rosacea, 5 each of Ranunculacex and Umbellifere, 3 each of Labiata, Polygonaceæ, Liliacere, Caryophylleæ, Scrophulariaceæ, and Musci, 2 each of Rubiacea and Plantaginex, and I each of Cruciferx, Hypericinez, Dipsacex, Primulacex, Orchidacex, Juncaceæ, Cyperacex, and Filices. Six genera only were represented by more than one species; these were Ranunculus, 5 species, Rumex 3, and Potentilla, Galium, Leontodon, and Veronica, 2 each. The 20 species of grass comprise 14 genera; Festuca is represerted by 4 species, Avena by 3, Po.s by 2, and Anthoxanthum, Alopecurus, Phleum, Agrostis, Aira, Holcus, Briza, Dactylis, Cynosurus, Bromus, and Lolium by 1 each. The fact that the four genera whose names we have italicised were only represented by one species each serves to indicate somewhat the nature of the land. Had it been wet or marshy in parts, Alopecurus geniculatus might have been looked for as well as A. pratensis. Had not the plots
" "Ammonia salts" -in all cases equal parts sulphate and muriate of ammonia of comanerce.
been quite away from hedgerows, several species of Bromus might have aceompanied B. mollis, while Arrhenatherum avenaceum and Brachypodium sylvaticum might also have been looked for. The total absence of Glyceria further shows the fairly dry character of the soil. Lastly, the 10 species of Leguminose fall under 5 genera-of Trifolium 4 species, Lotus and Vicia 2 each, Lathyrus and Ononis 1 each.

Ten species of grasses occur on all the plots: Anthoxantham odoratum, Alopecurus pratensis, Agrostis vwlgaris, Holcus lanalus, Avena flavescens, Poa pratensis, Poa trivialis, Dactylis glomerata, Festuca ovina, and Lolium perenne. Festuca eliator was only found in one plot, and F. loliacea in two. Phleum pratense occurred in about one-fourth the number of plots, Aira caspitosa in about one-half, Brisa media, Cynosurus crisfatus, Festuca pratensis, and Bromus mollis in sixteen or seventeen. No leguminous plant occurred in all the plots, but Lathyrus pratensis was found in ninetcen plots, Trifolium repens and T. pratense in seventeen, Lolus corniculatus in sixteen, and T. minus, T. procumbens, L. major, Ononis arvensis, Vicia sepium, and V. Cracca only in one each.

These details will serve to indicate the nature of the flora of the plots. Certain miscellaneous plants common on many old pastures in this country are conspicuous by their absence. The dry and level character of the meadow will account for the absence of Caltha and Juncus. No species of Geranium is recorded. But the most noteworthy faet appears to be the absence of certain scrophulariaceous genera, which are by no means uncommon on old grass lands, namely, Bartsia, Euphrasia, and Rhinanthus. The quality of the land is probably too good for the first two, and the application of manure would certainly be against Euphrasia, but Rhinanthus Crista-galli is very common on old meadows, as, for example, in Derbyshire and Worcestershire.
The object which the authors kept in view in writing this section of their report was, in their own words, "to show both the normal botanical composition of the herbage, and the changes induced by the application of the different manuring agents, and by variation in the climatal conditions of the different seasons; and, as far as may be, to asccrtain what are the special characters of growth above ground or under ground, normal or induced, by virtue of which the various species have dominated, or have been dominated over, in the struggle which has ensued." At the outset it was noticed that those manures whicb are most effective with cereals grown on arable land were also most active in increasing the quantity of grass amongst the herbage, and that the manures which are most beneficial to beans or clover produced the greatest proportion of leguminous herbage. Thus, the highest gramineous produce resulted from a highly nitrogenous manure, such as ammonia salts or nitrate of soda, with alkaline salts, particularly potasb; but side by side with the increase in the total gramineous herbage there was a decrease in the actual number of species of grass. On the otber hand, the highest percentage of leguminous produce was the result of a mixed mineral manure with potash. The percentage results on the following plots illustrate these points :-

Graminea	Plut 7	Plots 3 and 12.			$\begin{aligned} & \text { Plot } 11 . \\ & 94^{\circ} 96 \end{aligned}$
	6178	...	$67 \% 43$...	
Leguminosx ...	22'71	...	8.20	...	0 OL
Other Orders...	15'31	...	24*37	**	5.03
	100'00		$100 \% 0$		100:00

Plot 7 was the most favourably manured for leguminous produce, it received mixed mineral manure alone, including potash; plots 3 and 12 were the two unmanured ones ; plot 11 was the most favourably manured for gramineous produce, it received 800 lbs. ammonia salts with mixed mineral manure, including potash.

Special observations and complete botanical separations made at intervals of five years to determine the influence of seasonal variations show that "a given quantity of the produce grown under the same conditions as to manuring might be composed very differently in two different seasons."

The influence due to the special medium through which a particular plant-food, such as nitrogen, is presented to the plant, is aptly illustrated in the following extract:"Because a particular grass, or other plant, is little benefited by ammonia salts for instanee, it does not follow that it will not be favoured by nitrates; nor, because if while growing in association with other species it may not be specially benefited by a particular manure, does it follow that it would not derive advantage from the same substance when growing separately."
Nearly all the plants on the plots are perennials, very few are annuals, Bromis mollis being the only case amongst the grasses. The advantage possessed by deeprooting over surface-rooting plants was well brought out in the drougbty season of 1870 , when the latter suffered considerably from lack of moisture. Tbe locomotive power of underground stems is of great use to some plants: "the stock eontinues to grow at one end, year after year, the opposite end gradually dying away. In the course of a few years the plant therefore occupies quite a different position from that whicb it at first had." Notwithstanding the general rule that the chief effect of nitrogenous manures is to favour the extension of foliage and give it depth of colour, while that of mineral manures is to encourage stem formation and the production of seed, and notwithstanding that excessive nitrogenous manuring prolongs the development of the vegetative organs till perhaps the resources of the plant are exhausted or the season is over, while excess of mineral manures may induce premature ripening, yet so far as the experiments have gone no absolute change in the distinctive form of any plant has been effected by the prolonged use of the difficrent manures, though changes of degree are sometimes very maried, as in the tufts of Dactylis glomerata.

The battle for life between the various species of plants growing in the meadow is dependent much less on the chemical composition of the soil than on its physical character, its capacity for holding water and its permeability to roots. The immediate source of victory lies very generally in the powerful root-growth of the survivors, the term" root" here covering all kinds of underground stem. The various influences affecting the struggle for existence amongst meadow plants are discussed by the authors in a fasciuating manner, and this part of the memoir is of special value to the botanical student.

Every plant cccurring on the plots is dealt with individually, and in the case of each grass and leguminous plant and of the more commonly occurring weeds, a table showing the relative predominance is given. The fact that plants closely allied morphologically may yet differ widely in their physiological endowments is strikingly illustrated by the two species of Poa, P. trivialis and P. pratensis. These two plants, sprung at no very distant period from a common ancestor-for this, we presume, is the morphological significance of their being placed in the same genus-differ only in the most trivial points: P. pratensis is smooth, stoloniferous, and has a blunt ligule ; P. trivialis is rough, has no stolons, and possesses a long pointed ligule. We read that "the stolon-bearing Poa pratensis is speeially bencfited by nitrogenous manure in the form of ammonia salts (in combination with mineral manure), but not at all by nitrate of soda, whereas the more finely-rooted and non-stoloniferous Poa trivialis has declined markedly on the ammonia plots, but has remained very prominent on the nitrate plots, especially where the larger amount of nitrate was used with the mixed mineral manure." Thus in 1872, on plot 9 (mineral
manure and ammonia salts) P. pratensis gave 22.67 per cent. of the total produce, and P. trivialis only 0.64 : on plot 14 (mineral manure and nitrate of soda) P. trizialis gave $24^{\circ} 76$, and P. pratensis only 2.57 per cent. It is suggested that the relatively shallow-rooting P. trizialis predominates on the nitrate plots by reason of its fine surface-roots arresting and taking up the nitrate before it has had time to penetrate too deeply; this plant invariably makes rapid growth upon the application of the nitrate of soda in the spring.

The remaining portion of the memoir is devoted to a discussion of the botany of each separate plot in each season of complete botanical separation, and is carried out with the same elaborate detail as the earlier portion. No one can read this memoir without being impressed with the great power, too frequently overlooked, possessed by the subterranean members of the plant body in deciding the struggle for existence ; much of the internecine warfare is carried on in the dark.

It is quite possible, and indeed probable, that, had a similar series of experiments been simultaneously carried out in another part of England with a slightly different climate, and on a different kind of soil, the results might have differed, but only in slight details. Such a splendid series of experiments on grass land has never before been consummated, and the memoir embodying the results will well repay the nost careful study and perusal not only of the agriculturist, but of the botanist, the chemist, and the evolutionist. It may perhaps be long before the great lessons learnt in Rothamsted Park have filtered down to those to whom they should be of most practical value, but we do not despair of a time coming when the intelligent manuring of grass lands for very specific objects will form a part of ordinary agricultural practice. Those who will put their hands to the plough in the field of agricultural research must be content to trudge along, laboriously and unnoticed, in the furrow. Their discoveries cannot be made in a week, or a month, as are many in electricity or in chemistry, but, like those at Rothamsted, which are now in their twenty-eighth year, and are still going on, they ean only be looked for, even after the expenditure of much thought and of unflagging industry and perseverance, as "the long result of time."
W. Fream

PALEOLITHIC MAN-HIS BEAD ORNAMENTS

EVERY one who has noticed the objects found in caves of Palaoolithic date knows the evidence wbich supports the idea that cave men wore bracelets and necklaces, but the evidence that the older river-drift men wore similar ornaments is more obscure. Still, when one notices the extreme beauty and precision of make of some Paleolithic implements, one cannot help surmising that the more ancient savages of our old river sides also had sufficient personal pride and ideas of ornament to sometimes decorate their bodies with beads in a similar fashion with the cave dwellers.
Dr. Rigollot (" Mémoire sur des Instruments en Silex," p. 16) refers to the well-known foraminiferous fossil from the chalk-Coscinopora globularis, D'Orb. (sometimes found in river gravels with Palrolithic implements), as beads probably used by Palxolithic men ; and Sir Charles Lyell ("Antiquity of Man," p. 119) says: "Dr. Rigollot's argument in favour of their having bcen used as necklaces and bracelets, appears to me a sound one. He says (Dr. Rigollot) he often found small groups of them in one place-just as if, when swept into the river's bed by a flood, the bond which united them together remained unbroken." Mr. James Wyatt of Bedford, in descrihing these bead-like fossils (Geologist, 1862, p. 234), says he had examined more than two bundred specimens, and on
making sections of some of them he saw markings which appeared to indicate "drilling with a tool after the object was fossilised." In specimens from the chalk the hole through the fossil, though commonly straight, exhibits of course no artificial drilling but shows the structure of the foraminifer.

I an not aware of any confirmation hitherto made of the two curious observations noted above, but so little is at present known of the habits of river-drift men that the following notes may prove of some interest. Where there is so much darkness the slightest glimmer of new light is welcome.
After long searching for the Coscinopora at Bedford without result, I lighted on many examples at Kempston in 1880. In this year I found in a few days over two hundred examples; they occurred with unabraded implements and flakes and carbonised vegetable remains. After this date the Coscinopora again ceased, and from then till now I have met with but few examples. The finding of the above-mentioned large number of specimens all congregated tegether appeared to lend some confirmation to Dr. Rigollot's view, for it seems unreasonable to believe that so large a number could by any natural possibility find a position in one place in any river gravel.

As my examples were found at Bedford, at a place where Mr. Wyatt must at one time also have found a considerable number, I naturally examined the specimens carefully to see if I could trace any artificial drilling or enlargement of the natural hole. I speedily noticed that the surface round each orifice in many of the beads was abraded as if by the constant contact of the bead next on a string. A few of the beads also had the hole artificially enlarged, sometimes at both ends, as at section A, sometimes in the middle, as at the section B, and sometimes at one end only, as at the section C. The dotted lines in thesc illustrations show the original natural orifice, the solid lines near the dotted ones show the enlargement by artificial drilling. The illustrations are all actual size. In most of the instances the drilling appears comparatively fresb, in others less so, but it must be remembered that the implements found with them were mostly unabraded, and vegetable remains were found. These specimens were found by myself. They were not touched or manipulated by the workmen. Other examples of these beads had one end near the orifice broken away as if in an attempt to enlarge the opening by breaking the substance of the fossil away as at $\mathbf{D}, \mathbf{E}, \mathbf{F}$.

Whilst looking through the fallen material in the pit the piece of naturally perforated fossil shell, illustrated actual size at G, attracted my attention. The hole is probably due to a shell-boring mollusk, but when I saw the object in the drift I distinctly noticed that a black substance entered at one side of the hole and emerged at the other; at the moment of picking the object up, this material fell to dust with part of the very friable surface of the fossil shell.
Some of the beads (as seen in section at H, J, K, L.) also bore very distinct traces of a similar black substance within the orifice, although not seen till the sand and part of the black substance itself had fallen out. This black material I took to be the remains of part of the ligament on which the beads were originally strung by their Palarolithic owner, and with this idea in mind I sent some to an analytical chemist, who examined the material for me with the following result :-
"The testing for nitrogenous organic matters, of which animal tissues are composed, was tested in the same manner as testing water for such matter, that is, by converting it into ammonia; precautions were of course taken to eliminate from the results any ammonia already existing. The amount of ammonia was strikingly evident and showed with each bead examined separately. The blackening of the organic matter in the holes of the beads
may have taken place in a manner similar to that of the formation of coal."

On testing the beads, which consist chiefly of carbonate of lime or chalk, without the black material in the orifice, the chemist reported that, "when treated in the same manner as those originally sent, they show the presence of a considerable amount of heterogeneous or animal organic matter, as was to be expected from their origin-but not, 1 think, so much as those with the black deposit."

Pale olithic Bead Ornaments (Cossingpora glebularis, D'Orb), showing traces of the original ligament and artificial enlargement.
Mr. A. Clarke, analytical chemist of Huddersfield, who also made an analysis for me, reported as follows :-
"I divided the bead into three portions. No. I. The thin dark crust forming the internal portion of the ring ; this is most certainly organic matter. No. 2. A powdery part between No. I and the main body of the ring, consisting of small quantities of carbonates of iron and lime. No. 3. The outer main body of the ring, mostly carbonate of lime, and a small_quantity of silica ; here there is only a trace of organic matter, but it is most distinctly present."

Worthington G. Smith

IS IKTIS IN CORNWALL, AND DID IRON AND COPPER PRECEDE TIN'

AT Penzance on October 19, 1883, 1 asserted that the invention of tin-smelting was Cornish, but disputed the claim of St. Michael's Mount to be the sole claimant to the title of Iktis, the tin-shipping port described by Diodorus Siculus 1800 years ago, and I thought the inyentions of metals were in this order: (1) iron, (2) copper, (3) tin. We may consider the Romans invaded Britain purposely to obtain its metals, which were then worked extensively by the British inhabitants. I believe the Romans either adopted Celtic names of places or things, or translated their meaning. I find the Cornish district, or Land's End, described by Ptolemy the geographer in the second century as "Belerium," that is the land of mines, "bal" being Cornish for a mine. The word is also met with in Irish. In the same manner the skin boats
used by the Cornishmen, which so much astonished the Greek travellers, were described by the Greeks under the name of "coracles," evidently a Celtic word from the Celtic root "cren" or "croen," skin. So tin, I think, is derived from the Irish word "teine," Welsh "tan," teine probably also expressing brightness. Even in the Malay Peninsula, in the East Indies, a word of similar sound, "timah," still stands for "tin," and not the Greek term for that metal "kassiteros."
Then the Cornish term "iarnn," for iron is similar to English "iron," German "Eisen," Welsh "haiarn," Greek "seiderion," in which $c i$ is the important syllable. The Latin word "ferrum" is probably a form of "ierrum," and the Sanskrit "ayas" is for iron, metal. Nearly the same word for iron is therefore used in all the Aryan languages, while "æs" or "kalkos" stands for bronze or copper, and has only a comparatively local extension. The wide spread of the name for iron, or $a i$, is important, as it points to iron being the metal made before the division of the Aryan race, and therefore before copper or tin.
There is another and I believe new argument. The most easy process of copper-smelting, which even now is largely used, may have been the only plan known in prehistoric times. To use this process it was necessary to provide iron to precipitate copper from solution. At the present time 6000 tons of iron are sent annually to the Rio Tinto mines in Spain from Great Britain in order to precipitate the copper from solution.

It is possible that the discovery of the art of producing crude iron, which would be useful for precipitating copper, may have preceded the invention of bronze, and yet the art of forging difficult pieces may have been a later invention than that of casting bronze celts in metal moulds.
Iron, if not steel, appears to have been made in Egypt both in hearths and in crucibles certainly before 3124 B.C., but bronze was more used in Greece up to 650 B.c. than iron.
The smith in the sagas and folklore is the important person, not the caster or founder of bronze weapons. Why was the smith so important? Because he melted the small particles of gold found in the streams into small lumps, and with his hammer drew them out into wire and thin plates. Gold was made in such small quantities that it did not require large crucibles such as would be necessary for bronze. As iron was made by a simple welding or forging process, its production appears to be a more ancient art than bronze casting, which required large crucibles and mixing in exact proportions with tin, a process more difficult than in the infancy of metallurgy was likely to be invented. Then one ore of iron, ochre was the first metallic ore collected, long before the discovery of any of the metal. Ochre is found collected for use as a paint to ornament the cave men in the Palrolithic period, and is associated with limestone and charcoal. Accident in the fire might have thus led to the discovery of metallic iron in very early times. Such particles of iron placed in a certain stream in the Island of Anglesea (an early peopled district) would precipitate the copper in solution in that stream in a state of pure copper ready to mix with tin to make bronze.
Another point of great interest in this question is the position of Roman roads, proving a prior metallurgical trade, and therefore some considerable civilisation. The Romans erected their Roman villas and camps always near Roman roads, and these roads appear always arranged for military or metallurgical purposes, never for protecting agriculture, or levying imposts on the Britons. There is historical evidence that the Romans did not introduce metallurgy into Britain.
We may observe there is a great concentration of Roman roads at Winchester (Venta Belgarum). Roads meet at the point of junction from Exeter with this town, for bringing Cornish or Dartmoor tin, or lead and iron from the Mendips, to the Hampshire coast; iron from

South Wales, and lead from North Wales. There were, near Winchester, several great ports for Continental trade, viz. Magnus Portus (Portsmouth), Trisantonis and Clausentum (Southampton). Winchester is near Beaulieu. Below Beaulieu, six miles, is Stansoar (stone) Point, from "stannum," tin. This is nearly opposite Gurnard's Bay (Gubernators, across the Solent two miles), where there are remains of Roman villas. Thence to Newport and Brading, where the great Roman discoveries have been recently made. Among the "Islands of Britain" Ptolemy gives one as "Vectis," in Celtic Wyth.

Now Vectis has been bitherto treated as if it were only the name of an island, the Isle of Wight ; but vectis is really the Latin term for a bolt, or security, and was
probably applied to harbours, and is a translation of "Gwyth." A lock means also a canal lock.

If Prof. Rhys is right, ${ }^{1}$ that "Ictis" and "Itius" are the same word, we may go further and say that the Portus Itius, from which Casar started from Britain, containing his 800 ships, was merely a technical term for a vectis or secure harbour attached to a town, such as that at the mouth of the Liane (Boulogne). It is only a century and a half since the natural basin of Boulogne has been partly filled up by the sea sand, and there was an estuary supplied by the Liane stream at the time of Cassar, not unlike those drawn by me in shape, but without a through passage.

In fact, not only along the English coast, where

THE "NEAR"ISLES OF DIODORUS SICULUS.

Dungeness Beach has blocked up the Roman Port Lymne, and the points where four islands have been joined to the mainland, as shown in the drawings, Figs. 1, 2, 3, and 4, but on the French coast great changes have been made by the same causes. At Sangatte and Calais, Wissant, Ambleteuse, Boulogne, St. Michael's Mount, and in fact at many places along the coast of the Pays Bas, the same filling up can be observed.

Cossar's port of embarkation, Portus Itius, may have been named in the same sense as, according to Prof. Rhys, the old Irish wrote of the English Channel, viz. as Muir an Icbt, which he renders the Sea of Icht, and which, according to the view I suggested, would be the sea of the passage, evidently a different meaning, although from the same roots, to the name, which, with the addition
of Portus, we find in Casar. The term Portus Itius evidently was applied by the Roman writers to the harbour of Boulogne, although the city itself was called Gessoriacum. I think this philological explanation and the fact of the distance from Portus Itius (given by Strabo) thirty miles to Britain, removes every difficulty in the way of settling the position of the port from which Cassar started. Of course the term Portus Itius might also apply to St. Valery-sur-Somme, where a passage has been partly closed, as at Marazion, in the historical period, but the distance given by Strabo is against it. Species of mollusks are found at both places, Marazion and St. Valery, not now living on the coast, and probably

[^11]these estuaries or passages were only entirely open in the Crag period.

I have said Vectis is equivalent with the Celtic word "gwyth," a passage. Now there is a closed passage or haven (a gwyth, or vectis, or iktis) from Sandown to Bembridge in the Isle of Wight (Fig. 1). From this passage the whole island gets its name "Gwyth" in Celtic, Latin " Vectis," Saxon "Wiht," English "Wight," never spelt " White," although it has white chalk cliffs.

The safety of any of the harbours called Vectis or Iktis arose from the fact of these islands (or parts of them) near the coast of Britain being peninsulas at low water and islands at high water. These were, therefore, typical natural harbours. The Greek writers, Diodorus Siculus and others, insist particularly upon this property of change with the tide. The remarkable tide contrasted strongly with the different circumstances in the Mediterranean. Now the prevailing winds on the south coast of England have caused modern beaches to form, particularly at all of these four passages on the south coast of England, and many of the passages have been closed, as we know, in the historical epoch. Their ancient form is clearly shown in my woodcut. Now the sea is entirely shut out hy modern beaches and works.

The drawings show the changes which have occurred in Fig. 1, the Isle of Wight. Fig. 2 is the passage between the Isle of Thanet and Kent, closed in the historical period between Ritupx and Regulhium. In Fig. 3, the Chesil Bank, has filled up the old waterway between the Isle of Portland and the mainland. Fig. 4, passage from St. Michael's Mount to Hayle. Gravel and stream tin-drift, closing up the ancient passage from near St. Michael's Mount at Marazion to Hayle.

The type of all that has happened is well seen, Fig. I, Vectis, the Isle of Wight. Even in 1670 there was only a groyne and a small alluvial deposit near Sandown. Nearly all the passage to Bembridge was an estuary ; now it is nearly all dry land.

The term "vectis" in Latin, or "iktis" in Greek, was no doubt applied to all the passages in these four islands.
The Cornish tin no doubt came in coracles, and hy land on horses, to Magnus Portus or to Stansoar Point for shipment to Brading, and was shipped from these Hampshire ports and Isle of Wight ports to the banks of the Seine, to be carried on horseback in thirty days to Marseilles. Thus both the Bembridge peninsula and St. Michael's Mount were shipping places for tin, and both were properly called Iktis and Vectis, and as usual we find there was no error in the Greek observations.

Then as to the period when the contour lines of the south coast began to change. The Crag period was that in which the great estuaries round the British coast began to be filled up. Then pebbles and sand were driven along the coast. I believe all the four channels in the drawing, were open in the Crag period, and gradually closed up in the long period which intervened hetween the Crag and the present time. The continuous filling up has also occurred in the estuaries and passages on the opposite coast of the English Channel. It is probable that Portus Itius, at Gessoriacum? (Boulogne) obtained its name in a similar manner to Vectis and Iktis as I have already stated.

We find pure iron B.C. 3124 in Egypt. If iron was a necessity for the production of copper, and the metal tin was of no use without copper, we may place the inventions of the metals in the following order: (1) iron, (2) copper, (3) tin.
A. Tylor

THE BEN NEVIS OBSERVATORY

SINCE the formal opening of the Observatory on October 17, workmen have been engaged in fitting up and finishing the interior, and pushing forward the provisioning of the estahlishment with tinned meats,
biscuits, tea, coffee, \&c., capable of lasting for six months, with fuel for a like period. Nothing that could be thought of has been left undone to render the observers as comfortahle as possible during the winter. The telegraph cable is now in working order from the Observatory to Fort William, so that comınunication is always possible with the outer world. Mr. Omond, the superintendent, and his two assistants took up their residence on the top of the Ben about a fortnight ago; and it is extremely gratifying to learn that the building, every part of which during erection, and for some time after being roofed over, was soaked with water, is now thoroughly dry; the walls, roof, and windows have been officially inspected, and found to be perfectly tight in every respect; and in corroboration of this, during the storm of Thursday, the 8th inst., none of the finer snow particles of that elevated region entered the dwelling. As an additional protection against the severe weather which may happen, a large roll of tarpaulin, thirty-five feet long, was carried on the shoulders of twelve men to the top on Monday last week, and securely fixed over the roof of the building.

In a letter dated the 14 th inst., Mr. Omond states that the Sunday previous was one of the finest days he ever saw ; that Monday and Tuesday were nearly as good; and that on the Wednesday only the distant view was shut out hy haze. Up to that date the top of the Ben had been all but free from stormy weather; indeed, while tempestuous weather raged below, the wind rose to a gale only on Thursday the 8th. A telegram was received direct from the Observatory on Thursday last week, which stated that the temperature for the day had been minimum 17° and maximum 28°, while inside the Ob servatory the temperature was 55°, which happened to be exactly the temperature of the Scottish Meteorological Society's office in George Street at the time.

A meeting of the directors was held at Edinburgh on the 151 h inst., Sir William Thomson in the chair, at which Dr. Sanderson, the Treasurer, reported that the suhscriptions now intimated amounted to a little over 5000 ., nearly three-fourths of which sum had been subscribed since the middle of May last.

A scheme of work for the coming winter, consisting of hourly observations by night as well as by day, was agreed upon. The observations include the barometer; dry, wet, maximum, and minimum thermometers ; direction and force of the wind; rain, sleet, snow, and hail ; evaporation from snow ; species, direction, and velocity of upper and lower cloud strata; and sunshine, together with thunder, lightning, halos, auroras, meteors, \&c. In addition to the regular ohservations, Mr. Omond is to conduct physical inquiries into the hygrometry of this horeal climate by an instrument specially designed by Prof. Chrystal ; inquiries as to the direction and speed of the wind and optical phenomena hy instruments specially designed by Prof. Tait; and inquiries as to the best modes of conducting the ohservations under the special difficulties presented by the climate of Ben Nevis.

All the hourly ohservations will be extended on a daily sheet, three copies of which will be made, one for the Observatory, and two for the Scottish Meteorological Society, one of which will be sent to the Scottish Meteorological Council, London. Forms have also been supplied for monthly summaries of the observations. It has further been arranged that a series of similar observations at 8 and 9 a.m. and $2,6,9$, and 10 p.m. be made at Fort William hy Mr. Colin Livingstone, one of the Scottish Meteorological Society's observers.

A Redier's continuously-recording barograph and a Richard's continuously recording thermograph have been supplied to the Ohservatory, and also to Mr. Livingstone, to be used as interpellation instruments. By the douhle set of hourly observations thus obtained, comparisons may be made between the atmospheric conditions on the top of the Ben and those at sea-level, which are of such
vital importance in the larger questions of meteorology. It may be noted here that it was found necessary to take the barometer, which had been for upwards of two years exposed in the cairn to the severe weather of the Ben, to Edinburgh to be thoroughly overhauled. It has since been conveyed to its permanent place in the Observatory, and is in excelient order. The full equipment of the Observatory is delayed till next summer, when the directors will have before them Mr. Buchan's report on the instruments in use at the different European meteorological observatories he visited in the autumn, the work of the Observatory during the next eight months, and the results of Mr. Omond's investigations into different methods of observing on Ben Nevis.

NOTES

WE deeply regret to annonace the death of Sir William Siemens on Monday night, at the age of sixty years. His death is attribated to rupture of the heart, the result of a fall which he sustained a fortnight since. We must defer to next week a detailed notice of Sir William's career and work.
Ir is proposed to acquire for the Cambridge Museum of Comparative Anatony the beantiful collection illustrating the fauma of the Bay of Naples, which Dr. Dolurn exhibited at the International Fisheries Exhibition. The cost will be oaly 8 ol ., lietle over that of the glass jars and the alcohol in which the animals are preserved.
ligut. Wissmann, the African traveller, has just left Hambarg again on another three years' exploration in the Congo region. He has undertaken to furnish the Royal Museum at Berlin with all the natural history specimens which he may colleet during his travels, and has even been prevailed upon by some anthropologists to take plaster casts of all the races be may come in eontact with.
The widow of the late Mr. John Elder, of Glasgow, bas given the munificent sum of 12,500 , to the University of Glagow for the purpose of endowing a chair of naval architeeture.
WE regret to learn of the death of Mr. James Stewart, C.E., who has done so much for the exploration of the region around Lake Nyassa. At the time of his death he was engaged in the formation of a road between Lakes Nyassa and Tanganyika.
Dr. Hector, F.R.S., stated at a recent meeting of the Wellington (N.Z.) Philosophical Society, that his two self-registering barometers had shown a remarkable up and down vibration on the revolving drum upon which the record is marked on dates corresponding with those of the Sunda earthquake, and a severe earthquake twenty-kix hours afterwards, which was felt all along the northern coast of Australia. This agitation was quite distinct from those caused by ordinary atmospheric influences. He autributed the curious tidal disturbances which occurred on the New Zealand coast in August to those earthquakes.

Is a letter from Maranhao, Brazil, the writer states that from August 31 up to September 6, the sun, until $7 \mathrm{a} . \mathrm{m}$., could be looked at without the least difficulty, its light being as soft and pale as the moon's.

AT its meeting, October 27, Science states, the Philosophical Society of Washington listened to a commanication by 1r. T. N. Gill on the icbthyological results of the voyage of the Albatross, and to one by Prof. A. Graham Bell on fallacies concerning the deaf. Dr. Gill described two anomalous fisbes, one of which required the institution of a new order.
Heker Jacosson, who has spent fuur years on the north-went coast of America in making ethnological collections for the Berlin

Museum, has recently returned, and will sail for Europe. Dr. Leonhard Stejneger has arrived in San Francisco, en route for Washington. He has spent a year in Behring Island in the stady of its fauna, and in collecting remains of the extinct Arctie sea-cow.
At the recent meeting of the American Association, Mr. C. V. Riley read a paper on "Some recent diseoveries in reference to Phylloxera." Every new fact, he said, in the life-history of the insects of this genus has an exceptional interest, because of its bearing on the destructive grape-vine Phylloxera. The genus is most largely represented in this country by a number of gallmaking species on our different hickories, and the full annual life-cycle of none of them has hitherto been traced. The galls are produced, for the most part, in early spring; the winged females issue therefrom in early summer; and thence forth, for the remainder of the year, the whereabouts of the insect has been a mystery. The author has for several years eadeavoured to solve this mystery, and at last the stem-mother (the founder of the gall), the winged agamic females (issue of the stem-mother), the eggs (of two sizes) from these winged females, the sexed individuals from these eggs, and the single impregnated egg from the true female, have been traced in several species. There is some evidence, though not yet absolutely conclusive, that this impregnated egg batches exceptionally the same season; al-o, of a summer root-inhabiting life. In Phylloxrmas sinesa, which forms a large roweate somewhat spinous gall on Carya alba, and which has been most closely studied, the impregnated egg is laid in all sorts of crevices upon the twigs and bark and in the old galls, in which last ease they fall to the ground. Up to this time they have remained unhatched, and will in all probabulity not hatch till next spring, thu; corresponding to the "winter egg" of the grape Phylloxera.
The Times Calcutia Correspondent, in speaking of the possibility of opening up Thibet to Indian trade by way of Darjeeling, states that the Prime Minister of the Lama at Shigatze, said to be a most intelligent man, ient recently to Darjeeling for a supply of English books, photographic and other scientific apparatus.

The piercing of the Ariberg Tunnel was unexpectedly completed on Tuesday afternoon last week. In length the new tunnel ranks third among the great tunnels of the world, its length being 10,270 metrex, while the Mont Cenis Tunnel is $\mathbf{1 2 , 3 2 3}$, and the St. Gothard 14,900 metres. But while the excavation of the first lasted no less than foarteen years and a half, and that of the second about eight, the Arlberg Tunnel will have taken, when vaulted and ready to receive the first locomotive, not more than four years, thanks to the experience acquired during the construction of the first two Alpine tannels, and to some innovations which constitute another important step in the art of engineering required for the construction of large tumnels. The engineers of the St. Gothard Tunnel introduced dynamite for blowing up the ruck, already piereed through by the boring machine, which useful tool was naturally not disregarded in the construction of the new tunnel. It was also only natural that the Ferronx percussion boring machine, first introduced at the Mont Cenis works, should be again employed, under the supervision of the inventor himself, who in the meantime had considerably improved his powerfal boring instrument; but this time the Brandt tarning borer, first employed at the works of the St. Gothard, was allowed to compete with the Ferroux percussion borer, the former being used in boring on the tunnel's western side, and the latter on the eastern. To this end, several streams from the heights of the snow-covered Arlberg were gathered on the eastern side into reservoirs, from which two turbines and three water columns were directed to the machines, which compressed the air to five atmospheres, with
which the Ferroux borer was worked; while on the western side pumped water was pressed through pipes to the tension of over a hundred atmospheres, to work the Brandt turning borer, which cuts eylindrical blocks of rock from the mountain. The eastern entrance to the Arlberg Tunnel-namely, St. Anton-is 1300 metres above the level of the sea, while the western entrance is only 1215 metres, by which difference a good ventilation of the future railway tunnel seems secured. The vaulting and all other necessary works will be finished at the latest on August 1, 1884.

A meeting has been held at Chester, presided over by the Duke of Westminster, to take steps to provide the city with a museum, which is intended to be a centre of scientific information for Cheshire and North Wales. North Wales was represented at the meeting by the Dachess of Westminster, Earl Grosvenor, and Sir Robert Cunliffe, Bart. ; the Chester Natural Science Society by its president, Prof. T. McKenny IIughes; and the Chester Arcbrological Society by Dean Howson and Mr. H. Tollemache, M.P. It was decided that the building should accommodate both these societies and the School of Art. The Duke of Westminster announeed his intention of giving the greater part of the proposed site, and $4000 /$. towards the building fund.

The Council of the New University College of South Wales, at Cardiff, have resolved to try to raise 3000 . for mechanical Laboratories.

The inaugural meeting of the International Electrical Association took place in Paris on the 15 th in the large hall of the Société d'Encouragement. M. Cuchery was voted by acclamation Honorary President, and M. Berger Acting President. The number of adhesions execeds 1000.

THE following is an illustration of what private enterprise may effect for the benefit of science. When the Swedinh ship Monark was leaving Sweden last year for Australia the second officer on board applied to the Zoological Museum at Upsala for the loan of a trawl and some vessels for preserving natural history objects. The results have been a collection of some 120 species of fish, 50 of inseets, some birds, and about 100 varieties of the lower sea fauna of the Pacific, which have now arrived at Upsala.

On November 2 the Imperial Russian Aeademy of Science eclebrated its handredth year with great ceremony. Count Tolstoy, the President and Minister of the Interior, acted as chairman.

Mr. Gamex of Copenhagen has placed the Dijmphina at the disposal of Lieut. Hovgaard for an Arctie expedition next year.

At the Royal Institution Prof. Dewar will give six lectures at Christmas (adapted to a juvenile auditory) on "Alchemy in Relation to Modern Science." Before Faster, 1884, eourses of lectures will be given by Mr. R. Stuart Poole, Professors McKendrick, Pauer, Tyndall, and Henry Morley, Capt. Aliney, and others. The programme of the Friday evening arrangements will be issued shortly.
A slight shock of earthquake was felt on Friday at Malaga. A shock was also felt at Chios on the 16th. An earthquake occurred on the 19th at Vallo della Lucernia in the province of Salerno, Italy.
The additions to the Zoological Society's Gardens during the past week include an Ourang-outang (Simia satyra 8) from Burneo, presented by Mr. William Cross; a Grey Ichneumon (Horpestes griscus) from India, presented by Mrs. F. R. Flindell; a Hobby (Falco subbufeo), captnred at sea, presented by Mr. C. Heat ; six American Box Tortoises (Tirrapene carinata), a Stink-
pot Terrapin (Aromochdys adorata), seven Spotted Lizards (Holbroakia maculata), a Long-nosed Snake (Hiteroion nasicus), two Striped Snakes (Tropidonotus sirtalis) from North America, presented by Mr. Samuel Garman, C.M.Z.S. ; a Common Viper (Vipera berus), British, presented by Mr. W.H. B. Pain; a Greater Sulphur-crested Cock stoo (Cacafua galerita) from Australia, a Cerastes Viper (1 Tipera cerastes) from Egypt, deposited ; a Sykes's Monkey (Cercopitherus albigularis) from East Africa, a Negro Tamarin (Midas wrsuius) from Guiana, an Indian Badger (Arctonyx collaris) from Assam, two Père David's Deer (Cerews davidaanus) from Northern China, a Downy Owl (Pwlsatrix toro quata) from South America, purchased ; a Sambur Deer (Corws aristotelis), born in the Gardens.

OUR ASTRONOMICAL COLUMN

Brorsen's Comet. - Of the known comets of short period, two will arrive at perihelion in 1884, viz. D'Arrest's on January 13, and Brorsen's about September. The former has been sought after for several months, but hitherto, so far as we are aware, without success, and there now seems a probability that (as indeed was rather to have been anticipated) it will pa-s unobserved at this retarn. The second comet was diseovered by Brorser, an amateur at Kiel, on February 26, 1846, and ten days observations sufficed to show that its period of revolution was abont five and a half years : it afforded one of the most striking instances of a close approximation to the period being deduced from a short course of observation, Mr, Hind having inferred a revolution of 5.519 jears from observations betw cen February 28 and March 10 (Astron. Nach., No. 557), while the exact period at the time is now known to have been $5^{\prime} 568$ years. The comet has been since observed at its returns in $1857,1868,1873$, and 1879, though missed in 1851 (perhaps through some confusion as to the date of periliclion passage), and again in 1863 . The ephemeris for the lavt appearance in 1879 was prepared by Prof. L. R. Schulze of Dobeln, after the calculation of planetary perturbations since the return in 1873, the perihelion pa-sage being fixed to March 30'0771 Greenwich M. T. The computed positions differed considerably from those observed, as was shown in M. Otto Struve's comparison with his own observations (Bulletin de l'Acadl'mie des Sciences de St. Pdersbourg, t. v.), and these differences led him to remark:-"Eine Auderung in cer angenommenen l'erihelzeit würde für sich allein wahrscheinlich nicht genuigen." It will be found, how ever, at the end of April or beginning of May. The errors may be removed by the assumption of a later time of perihelion passage; or by taking it March $30^{\circ} 5418$ Greenwich M.T., a difference of $+0^{\prime} 4674 \mathrm{~d}$. From the computed epoch. Thas for the observation on April 30 , we find, taking the differences in the order ($\mathrm{c}-\mathrm{o}$) :-

$$
\begin{aligned}
& \text { With corrected peribelion - om. 6s.... }+0^{\prime \prime} 2
\end{aligned}
$$

The mean sidere 11 motion determined by Dr. Schulee for $1^{8} 79$ would, without perturbation, bring the comet to perihelion a sain about 1884 , Sept. 14.5 , at which time it uould be situate in abont right ascension 154° with $14^{\circ} \mathrm{n}$ rth declination, distant from the earth 1.41, consequently rising more than two hours before the sun. The conditions are therefore likely to appriach those under which the comet waw observed in 1873 .

Some six months after the di-covery of this comet $\ln 1846$ attention was directed by Mr. Hind (Asfron. Nack., No. 582, and in a note to the Koyal Astronomical Society) to the near approach which it must have made to the plauet Jupiter in May, 1842, a first calculation indicating that on May 20 the distance between the two bodies was less than oos of the earth's mem distance from the inn. This point was more closely examined by D'Arrest from improved elements in 1857 (Astron. Nash., No. 1087) ; he found that the closest proximity occurred May 20.6924 Berlin M.T., when the comet was distant from the planet only o.05112, and, carrying his computation back wards to the time when the comet entered the sphere of activity of Jupiter, he assigned approximately its elements previous to that time. A more elaborate investigation of the circumstances attending this near approach has been lately made by Dr. Harzer, in an inaugural dissertation published at Leiptig in 1848 ; he finds for the time of perijove passage, 1842, May 27.2849 Berlin M.T., and for the distance 005471; the ele-
ments prior to the great perturbation in this year are determined and have been already transcribed in Nature; they present a resemblance to those of the first comet which appeared in 1798, about which year Brorsen's comet might have been in perihelion; Dr. Harzer nevertheless expresses the opinion that, althuugh Messier's observations of the comet of 1798 might be open to some degree of uncertainty, it is doubtful whether they wou'd admit of being represented by an elliptical orbit with a sbort period. He had found the revolution prior to 1842 to be 5170 years.

The Nautical Almanac.-The volume of this ephemeris for 1887 has been published during the past week, the contents being generally the same as in previous years. The track of the total solar eclipse of August 19 is given in detail for the greater part of the course, and the maximum duration of totality is found to be 3 m . 50s., the central eclipse with the sun on the meridian falling in longitude $102^{\circ} 0^{\prime}$ E. and latitude $53^{\circ} 47^{\circ} \mathrm{N}$. The Greenwich list includes four occultations of Aldebaran during the year and one of Rigulus.

The average annual sale of the Nantical Almanac during the last five years has exceeded 15,500 , though many maritiue nations have now their nautical ephemeris.

THE PHILOSOPHICAL SOCIETY OF GLASGOW

THE Procredingy for 1882-83, pp. 592, 23 plates, and 3 maps, have just been issued, and contain the following papers:On insensibility arising from a deficiency of oxvgen in the air, by Dr. Wallace, president; on technical education, by David Sandeman and E. M. Dixon, B.Sc. ; on the decay of building stones, by Dr. Wallace; on some new infusoria, by William Milne, M.A. ; note on Lippmann's capillary electrometer, by Dr. McKendrick ; on milk and milk pollution, by Dr. John Dougall; on Struther's process for pulverising diamondiferouore, by Wallace Fairweather, C.E. ; on the use of litmus, methyl orange, phenacetolin, and phenolphthalein as indicators, by R. S. Thomson; on approximative photometric mea urements of sun, moon, cloudy sky, and electric and other artificial lights, by Sir William Thomson; on the preservation of food by cold, by I. J. Coleman ; on the clauses in the Glasgow Police Bill having reference to the prevention and mitigation of divease, by Dr. Ebenezer Duncan ; on the ships and shipping trade of Great Britain, by N. Dunlop; on the iron ore industry of the north of Spain, by J. J. Jenkins ; on the ase of rosolic acid as an indicator, with additional notes on phenolphthalein and methy! orange, by K. S. Thomson ; on architecture in Glasgow, by J. Sellars, jun., I. A.; on the water highways of the interior of Africa, with notes on slave hunting and the means of its suppression, by James Stevenson, F.R.G.S.; on a new seismograph, by Thomas Gray, B. Sc. ; on the fertilication of flowers, by Rev. A. S. Wilson, M.A. ; on algin, a substance obtained frum zome of the commoner species of marine alge, by E. C. C. Stanford ; on chemical industriez, by R. R. Tatlock ; on nitroslycerine, dynamite, and blaxting gelatine, by George McRoberts, manager of the Works of Nobel's Explosives Company; on the action of heat and the chloides of phosphorus upon the water salts of hypophosphorus, phosphorus, and phosphoric acids, by Dr. Otto Richter; on a volumetric process for the estimation of cobalt and nickel, by Dr. John Clark ; and, on the development and generic relations of the corals of the carboniferous system of Scotland, by James Thomson, F.G.S.
The society has at present 19 honorary, 10 corresponding, and nearly 700 ordinary members, and is about to enter on its eightyfirst sessibn. In addition to the ordinary meetings of the society, held fortnightly, there are sections for architecture, biology, chemistry, sanitary science and soctal economics, and geography and ethnology.

RESEARCHES ON SPARK SPECTRA

The Disappearance of Short Lines

I^{T}Twas shown in a former Report of this Committee (Southampton meeting) that the spectra of metallic solutions were the same as thote from metallic clectrodes line for line, even short and weak lines teing reproduced. The principal difference oberv-

- Report of the Commitiee on the Comparion of the Spark Spec.ra of the Elements with Specira of Sclutions of iheir Compouncs, draw a up by Prof. W. N. Harley.
able in the two spectra was a lengthening of the short lines when spectra were taken from solutions, so that discontinuous lines became long or continuous lines. A few instances of short lincs disappearing have also been noticed, but such disappearances occur only when the lines are so short, mere dots, in fact, that no solution can contain a quantity of the metal sufficient to yield an image of them. Certain very short lines in the spectrum of metallic zinc are an example of this. Very short lines in the spectrum of aluminium were not reproduced by solutions of the chlorides except when the solutions were very string, and then they always appeared. It may thus be seen that the quantity of metal present in the compound determines the presence of these lines.
The Lengthening of Short Lines.-It was remarked that in certain cases metallic electrodes showed a different spectrum according to whetber the spark was pasned between dry or wet electrodes. Thus it was pointed out that when irioium electrodes are moistened with ealeic chloride, discontinuous lines which are very numeruus in this spectrum become continuous; and on further examination into this matter it has been found that even moistening with water has the same effect. Hence the supposition, of which there seemed some possibility but no proof, that a chloride of the metal was formed is found to be untenable. The very short lines in the spectum of zine were lengthened by the action of water upon the electrodes. It has tow been proved beyond doubt that this peculiar variation in the spectra is caused by the cooling action of the water upon the negative electrode, which in effect is the same as a strengthening of the spark, since by heating the electrodes a reverse action is the result.
Alterations in the Spoctrum of Carbon.-As already stated in the previous Keports, graphite electrodes have been generally employed for the producion of spark spectra from sclutions. A portion of the work in connection with this subject included an investigation of the effect of water and of saline solutions in varying the spectrum of carbon. It will of cousse be readily understood that as carbon is capable of co bining with oxygen and nitrugen, that different spectra might be o tained thy making one or other of these gases the atmophere sur.ounding the electrodes, but it is not so eavy to explain why graphite points should give two different pectra in air when dry, and a third spectrum, again different, when moist, the same sjark conditions being maintained.

Three such spectra have been photographea, bat without the aid of maps their peculiarities are not capable of exact deecription. The maps which were drawn were presented io the Koyal Society, together with a communication on this subject, three months since, so that they are not at prenent available. It may be said, however, that the difference between the two spectra taken from dry electrodes in air consits of the omission of a eertain number of the less refrangible line?, which lines have undoubtedly been identified with carbon.

Spartra of the Non Metallic Constiluents of Salts.-A long series of experiments has been made with the object of determining the non-metall c elements which are capable of yielding spark spectra when in com' ination with the metals. Fluorides, cblorides, bromides, iodides, sulphides, nitrates, sulphater, selenates, phosphates, carbunate-, and cyanides yield nothing. Ou the other hand, hydrochloric acid s.lutions of arienites and antimoniates yield the spectra of arsenic and antimony. Borates and silicates in solution yield very characteri-tic spectra of the non-metallic constituents, but if the solutions be prepared from sodium salts the lines of the metal do not appear in the case of borates, and only the strongert sodium line ($\lambda=3301$) can be observed in the spectra of silicates, even when concentrated solutions are u-ed.

Line Sprrira	
Lonov	Sulicon
Wave-lengths	Wave lenjiths
$3450{ }^{\prime 2}$	2881.0
$2497{ }^{\circ} \mathrm{O}$	2631.4
2496.2	$2541{ }^{\circ} \mathrm{O}$
	2528.1
	2523.5
	25.8 .5
	2515.5
	25137
	2506.3
	2435 '

These are the f.rst spectra of bren and silicon obtained from metallic salts.

In Messrs. Liveing and Dewar's map of the carbon spectrum (Froc. N'oy. Soc, vol, xxxiii. p. 403), and in the list of the carbon lines and in the map of the iron spectrum (thil. Trans. part 1, 1883), a number of lines are given which are abent from the phots graphs of the spectrum of grap hite rublished in the Trawsartions of the Rojal Lublin Sociely and in the 耳ournal of the Chomical Saciety (vol. xli. p. 90). Many hundreds of spectra taken between graphite poles have failed to show a trace of these lines, and as the spectra bave been photographed under very various corditions, it is scarcely likely that the lines in question are really carbon lizes. They have now been identified in the spectrum of silicon.

Liveing and Diewar's
carbon lines

Spark Are"

From this it appears that, in the spectrum of the arc, carbon yieids but one line in the ultra-violet, wave-length $2478 \cdot 3$. It is perhaps a litte douhtful whether the line with wave-length 2434 '8 is due to silicon or not.

The Spertrum of Beryllium. - The researches made for the purpose of this report have been useful in furnishing evidence leading to a determination of the probable position of beryllium among the elements. It has been proved that the spectra of metallic solutions are identical with those of the metals themselves, and it is therefore obvious that characteristic ssectra may be obtained from concentrated solutions of nitrates or ehlorides when metallic electrodes are not procurable.

It was resolved to photograph the spectrum of beryllium, as obtained from its chloride, in order to otserve the claaracter of its lines and the manner of their grouping. The following were the lines observed :-

Wave-length	Sthetave or Beavzliun				
3320 '	\ldots	Stron	shar
3129.9	Very	ong,
$2649{ }^{\circ} 4$	Stron	shar
2493.2	\cdots	...	**	",	"
2477 7	\cdots	\cdots	...	"	

The firt two numbers differ slightly from those given in the Jownal of the Chomical Sociely (June, 1883), but they are be lieved to be the more accurate. The previous measurements of the lines of beryllium were two given by Thalen (Watts's $"$ Index of Spectra ${ }^{h}$), with wave-lengths 4487 and 4575 , and two lines very close together given in Cornn's "Map of the Solar Spectrum," wave lengihs 3130 and $3130^{\circ} 4$. It wilt he observed that in the spark spectrum only one line corresponding to the first of thes. is observed, viz. $3129^{\circ} 9$. There is probably a difference in this case leetween the arc and the spark spectra, because there i - no difficuliy in distinguishing between two linediffering by $0^{\prime} 4$ of a tenth-metie, aud under various conditions tuo lines have never been olserved at this point in the spark ${ }^{s}$ ectrum. On the other hand, such differences are by no means una:ual.

Keqarding the views held by Emerson Reynolds, Nilson and Pettersson, and Brauner on the subject of lerylliam, however wanting in harmony they may be in detail, they at least agree in assigning a value not greater than 13.8 and not less than $9^{\circ 2}$ to its atomic weight. The former number implies that the metal is a triad, the latter that it is a dyad. In the former case it must belong either to the series of elements of which aluminium, gallium, and indium are memhers, or to a suh group of rare earth-metals, to which yttrium and scandium belong. In attempting to accommodate the element with a position in eitber serien we are met by a scrious difficulty, namely, that not only is the atomic weight out of keeping with the ferindic law (a point which cannot be did cussed bere), but its spectium is altogether different from the spectra typical of either cla-s.
There is a periodic variation in the spectra of the elements as well as in their atomic weights and chemical properties, and we
' Pror. Key. Soc.

- Phil. Trans.

Cannot put the periodic law out of mind in considering the potition of beryllium.

Now the spectra typical of the triad group, of which aluminium and indium are the first and third terms, consist of three psirs of lines harmonically related, the intervals between the -andividuals of each pair increasing with increased refrangibility of the rays in each spectrum, while the intervals between the individuals in each pair in different spectra increase with the increase of atomic weight. The interval between each pair of lines contains an isolated ray. As the atomic weight of beryllium is less than that of aluminium, it should have a spectrum in which the same grouping appears, but the intervals between the pairs of lines should be shorter, and the individuals of each pair should be claser together.
The lines of beryllium are nct characteristically grouped like those of aluminiam and indium ; it cannot therefore belong to this series of elements. If ne attempt to classify beryllium in a manuer which accords with Nilson and Pettersson's views (Proc. Noy. Sor., i8So, vol, xxxi. p. 37), the elements scandium and yttrium, with atomie weights 44 and 89 respectively, must yield spectra typical of the series, atd the similarity between the spectra of the two metals, beryllium and scandium, must be exceedingly close. Now Thalén's spectra of scandium and ytrium, though both totally unlike the speetra of any other element, have many characters in common (Kiongl. Svonska Akademicus Handlingar, vol. xii. P. 4, and Compes Kendus, vol. xci. p. 45) ; bxth sjectra contain highly characteristic groups of lines in the orange and jellow, the lines or bands degrading towards the red, and the number of lines which have been measured are no fower thsn 103 and 90 respectively.

Frem thece two spectra that of beryllium is entirely different, as well in the character and grouping as in the number of the lines. Of the remaining iare earth-metals at present hown, cerium is a letrad, didymium is a pentad, and lanthanum a triad; their spectra are quire ci-sinular from that of beryllium. In consideration of these facts it is impossible to elassify the spectrum of beryllium along with the spectra of the rare earthmetals of the triad group.

Let us now consider the questi,n of the dyad groups. On the atsumption that beryllum has an atomic veight of $9^{\circ} 2$, there is no difficulty in placing it at the head of the econd series, in which position it stands in the same relation to the sub-groups $\mathrm{Mg}, \mathrm{Zn}, \mathrm{Cd}$, and $\mathrm{Ca}, \mathrm{Sr}, \mathrm{Ba}$, that Li occupies with regard to $\mathrm{Na}, \mathrm{K}, \mathrm{Rb}, \mathrm{Cs}$ and $\mathrm{Cu}, \mathrm{Ar}, \mathrm{Hg}$. Its position will al-o be similar to that of K and of C in their relation to the triad and setrad metals. The spectra belonging to $\mathrm{Mg}, \mathrm{Zn}, \mathrm{Cd}$, have a very definite constitution; they consist of (t) a single line, (2) a 1 air of lines, (3) three to four groups of triplets, (4) a quadruple group, and (5) a quintuple group of lines. The intervals berneen the individual lines in their different groupings increase with the increase in the atomic weights of the elements. In fact these spectra present a consilerable addition to the body of evidence in support of the view that elements whose atomie weights differ by an approximiately constant quantity, and whose chemical character is similar, are truly homo'ogous bodies, or, in other words, are the same kind of matter in different ,tates of condensation (7ourmal of the Chemical Sictifly, September, 1883, p. 390, Transs). Their particles are vibrating in the same manner, but with different velocities. In the spectra of the metals $\mathrm{Ca}, \mathrm{Sr}, \mathrm{Ba}$, successive pairs of lines are a strong feature, in addition to which there are some other groups in the spectrum of barium. The individnals of each pair are se parated by smaller intervals the more refrangible the lines, and by langer intervals the higher the atomic weighto. It cannot be :aid that the spectrum of beryllium is precisely similar in constitution to either of these groups of elements.

There is some slight resemblance in character to the spectrum typical of the calciuu grou ;, beryllium having two pairs of lines, the individuals of the first or less refrangible pair being separated by a greater interval than thove of the second pair. It is a spectrum analugous to that of lithium, hence it was concluded that beryllium is the first member of a dyad series of elements to which prohably calcium, strontium, and harium are morestrictly homulogous than magnesium, \&e. It is to be understood that this is a conclusion drawn from one point of view only, and is of en to correction or modification when fresh facts shall have lieen d-covered, lut so far the classification of beryllium among the dyads is confirmed and maintained by its position leing in haruony with these spectram olservations. The metal is shown to he quite, ut of place among the triad elements.

SPLENIC FEVER /N THE ARGENTINE REPUBLIC ${ }^{1}$

THE author stated that he did not think any one who bad worked much on the sulject of splenic fever could donlt that the bacilli which caused that disease were capable of considerable variation in their effects on animals and man. Whether this disease, which is without doubt the one which has been most thoroughly investigated of all zymotic affections, gave any support to the views of Dr. Carpenter was another matter, but there could be no doubt that the Bacillus anthracis can be so modified by artificial means that the disease which it produces when introduced into animals, such as sheep and cattle, varies considerably as to duration, amount of fever produced, as well as to its mortality.

That, on the other hand, this bacillns has at least a very strong tendency to retain the characters which it at present precents in Europe is shown by the fact that in the Argentine Republic,-into which the affection was introdnced at least thirty years ago, and where the conditions are very different from those which exist in Europe, -we find that the minute organism retains its characteristic form and the properties with which we are so well acquainted in Europe, and that the disease w bich it produces is practically identical with the European disease. That it should vary in some particulars is perbaps only to be expected, but Dr . Roy preferred leaving that point to be treated of elsewhere and vecupying the time at his disposal with an account of the observations which he had made as to the means of protecting from the disease by means of inoculation.

Sore six months ago he had been requested by a City company who possess a large tract of land in the Argentive Republic, to pay a visit to their property in order to investigate a disease which was cansing much mortality among't the cattle, sheep, and horses, and which was affecting the emplogds as well to a very serious extent. This diseave, be found on arriving at the Kiver Plate, was splenic fever, of which the absence of efficient veterinary surgeons and the general apathy of the owners of stock had prevented the recoguition. IIaving spent some time in studying the characters of the disease, he proceeded to make observations on the be.t meaus of protecting the stock by means of inoculation, which work was much facilitated by the liberality of the company (the "Ias Caberas Estancia Company") who gave him "carte blanche" as to the number of animals which he might employ for his experiments. Ilaving previously found, in a small reries of observations made in this country in conjunction with Dr. E., Klein, that splenic fever virus from white mice was of the proper strength to protect sheep from the disease, he proceeded in the same lines, employing such animals as were available to prodnce the inoculating fluid. After a number of animals hard been tried, he found that the blood of Biscachas (prairie dog) which had died of the disease gave satisfactory re-ults when aved to inoculate cattle and horses. It was, however, a listle two powerful, as 1 or 2 per cent. of the cattle so inoculated died. The pecuniary loss entailed by this wac, however, more than counterbalanced by the arrest of the motality from the natural affection. With regard to sheep, greater difficulties were encountered, and no animals were found giving a vires sufficiently mitigated to cause only a slight form of the disease with subsequent protection. Unfortunately it was imp ssaible to repeat on a large scale the successful experiments which Dr. Roy and Dr. Klein had made with virus from white mice, these animals not being obtainable. Virus from field-mice and rats did not prove satisfactory.

Under these circumstances the speaker then proceeded to investigate the results obtained by artificial mitigation of the bacilli in the laboratory. He first employed the method of Toussaint, which consists in warming the fluid containing the pathogenic organisms to a temperature of $55^{\circ} \mathrm{C}$. for a period varying from a half hour to one hour and a half. It was fonnd possible by this means to diminish the strength of the virus so that it took longer to kill, and by graduating the duration of the beating it is not difficult to obtain a virus which will only hill a sunall percentage of the animals inocolated. But unfortunately, in weakening the virulence of the organised puison, this process weakens also its power of protecting from a secoad attack, and it was easy to kill the animals so inoculated by sulsequently introducing into their system strong virus which had not been subjected to heat. This method having failed, Dr. Roy proceeded to Buenos Ayres, where, in the laboratory of the "Collegia

Nacional," which was kindly placed at his disposal, he manipulated the virus by the method of Y'asteur, which consists in cultivating the virus in sterilised chicken broth at a temperature of $42^{\circ}-43^{\circ} \mathrm{C}$. At this temperature the bacilli grow much les readily than at one more nearly approaching blood heat. The lacill so cultivated diminish in vurulence day by day, and after being cultivated for six or eight days no longer caused the death of full-grown sheep, although they still killed lambs and prairie dog.

Careful experiments with inoculating fluid prepared in this manner showed that with it a slight fever could be lnduced which suffices to protect, at least for some time, from a second attack of the disease. The same objection, however, which characterises the inoculating fluid prepared by Toussaint's method exists, though to a less extent, with regard to Pasteur's fluid; in the case of the latter as well as the first named, the protecting power is seriously diminished at the same time that the virulence of the bacilli (as indicated ly the mortality) is le-sened. With care it is possinde, however, to prepare a liquid which, while its virulence bas been brought sufficiently below the lethal limit to insure that none of the inoculated anmals succumb to the inoculation, still retains enough protecting power to enable the sheep to resist the effects of strong virus cmployed some ten to fifteen days after the first inoculation. Dr. Ruy was, therefore, able to confirm the assertions of M. Pasteur regarding the attributes of his inoculating fluid in so far that it is possible effectually to protect sbeep from anthrax by its nse. Still, it was impossible to overlook the fact that its employment necessitated very careful graduation of the strenyth of the mitigated virus to the revisting power of the animals inoculated. The speaker did not think that the method was one which was likely to he adopted universally, and be rather looked forward to the general acceptation of some inoculating fluid which had been mitugated by culivation in the bodies of some animal distiact in specie from that which it was desired to protect. In the case of cattle the virus taken from Biscachas seemed to protect in all cases, whether the illness produced by the inoculation was mild or severe. It was to be hoped that more extended inquiries would confirm the favourable results obtained by employing the virus from white mice to protect sheep. The speaker stated that he proposed communicating the resalts of his olservations on this subject to the Royal Society at an early date.

SUGGESTIONS FOR FACILITATING THE USE OF A DELICATE BALANCE

I N some experiments with which I have lately been occupied, a cuil of in-ulated wire, traversed by an electric current, was suspended in the balance, and it was a matter of necessity to be able quickly to check the oseillations of the beam, so as to bring the coil into a standard position corresponding to the zero of the pointer. A very simple addition to the apparatus allowed this to be done. The current from a Leelanche cell is led into an auxiliary coil of wire cosxial with the other, and is controlled by a key. When the contact is made, a vertical force acts upon the suspended coil, but ceases as soon as the contact is broken. After a little practice, the beam may be hrought to rest at zero at the first or second application of the retarding force.

This control over the orcillations has been found so convenient that I have applied a similar contrivance in the case of ordinary weighings, and wy object in the pre-ent note is to induce chemists and otherx experienced in such operation s to give it a trial. Two tnagnets of steel wire, three or four inches long, are attached vertically to the scale pans, and underneath one of them is fixed a coil of insulated wire of perhaps fifty or one handred turns, and of four or five inches in diameter. The best place for the coil is immediately underneath the bottom of the balance case. It is then pretty near the lower pole of the magnet, and is yet out of the way. The circnit is completed through a Leclanché cell and a common spring contact key, placed In any convenient pasition. The only precantion required is not to bring other magnets into the neighbourhood of the balance, or, at any rate, not to move them during a set of weighinga.

The other point as to which I wish to make a suggestion relater to the time of vibration of the beam. I think that with the view of obtaining a high degree of sensitiveners the vibrations are often made too slow. Now the limit of accuracy depenis more upon the smallness of the force which can be relied upon

[^12]to displace the beam in a definite manner, than npon the magnitude of the displacement so p-odnced. As in other instruments whose operation depends upon similar principles, e.f. galvanometers, it is useless to endeavonr to inerease the sensitiveness by too near an approaeh to instability, becauce the effect of easual disturbances is augmented in the same proportion as that of the forces to be estimated. If the time of vibration be halved, the displaeement due to a small excess of weight is indeed redueed in the ratio of four to one, but it is not necessarily rendered any more nncertain. The mere diminution in the amount of displaeement may be compensated by lengthening the pointer, or by optical magnification of its motions. By the method of mirror reading such magnification may be pashed to almost any extent, but 1 am dealing at present only with arrangements adapted for ordinary nse.
In the balance (by Oertling) that I nm now nsing, the scale divisions are finer than nsual, and the motion of the pointer is magnified four or five times without the slightest ineonventence by a lens fixed in the proper position. The pointer being in the same plane as the scale divisions, there is no sensible parallax. In this way the advantage of quiek vibrations is comb ned with easy visibility of the motion due to the smallest weights appreciable by the balance.
To illuminate the seale, the image of a small and distant gas flame is thrown npon it by means of a large plate-glass lens. This artificial illomination is found to be very convenient, as the instrument stands at some distance from a window, bat it is not at all called for in consequence of the use of the magnifying lens.

ON THE DEVELOPMENT OF PERIPATUS ${ }^{1}$

A MONG the acquisitions I made during my jonrney to the West India I land of Trinidad, a rieh eollection of Peripatus stands in the first rank. This has put me in a position to enrrect many mistakes, and to contribute a good deal to the knowledge of the bitological anatomy of this interesting animal form, as well as especially to follow the process of development from beginning to end. Postponing for the present the anstomy of the adult animal, inasmnch as we have on this subject a good many studies, some of which are very good (for instance, that of Gaffron in Zood. Bci(räge, editell by Dr. A. Schneider), I shall eonfine myself to a preliminary notice of the earliest stages of the development of Peripatus, although my investigations have not as yet been brought to a eonclusion, nor have I been able to devote any attention to the development of the organs. I do this ebiefly because the treatise publi-hed by Moseley and Selg. wiek from the posthumons notes of Balfour contains some representations of embryos and cros-sections of the same, npon whose accuracy in details I, with my rich and well preserved collection of specimens, and observations on fresh objects, must cast some doubt, and the interpretation of which does not bear investigation. And yet these already serve as evidenee for some theoretical explanations of embryonic processes in other groups of animals, which it would be well to avoid in sueh a case.

I collected in Trinidad over a bundred specimens of Peripotus E/zuardsii, and a small number of a new species which is distingnished by its size from all those hitherto known, and which may briefly be thus ebaraeterised: The females, which are considerably larger than the malec, attain a length of 15 em . and a dinmeter of 8 mm ; the males gro w to a size of about 10 cm . Their colour is a plain reddish brown above, darkening a little towards the middle line of the back, and growing pale a little towards the sides. The bead, or, more correctly, the forehead, as well as the antennec, is black, and marked off on the dorsal side by a light yellow neek lace, which is often slightly interrupted in the middle, from the rest of the body. The under side is of a dark flesh colour. This species is especially characterived by possessing forty-one to forty-two pairs of feet, which is the highest reeorded number, and a number which differs greatly from that of all other species. I call this new specie: Paripalus torywatus.

The ovaries are two small, elongated bodies, whish are generally united along their whole len'th, ar.d so appear as a narrow; spindle-shaped hody, which is eonnected by one or often by two delicate muscular threads to the body wall. The ovaries are prolonged into the two horns of the uterus, which, each forming a bow with several curves, unite immediately hefore reaching the genital pore to form a very short vagina. At the point where

[^13]the ovaries pass cver into the aterus is situated a small, nippleshaped gland and a spherical receptaculum seminis, the orifice of which every egg has to pass before it can enter the nterus. Now as a large number of embryos, from the "just furrowed" egg to the matared young, are always fonnd in the nterus, it is very probable that each female Peripatus is only fertilived once.

The eggs of Peripatus contain no yolk, and seeing that in spite of this an animal of half the length thet it attains when adnle develops itself in the uterus out of a small egg whose diameter is aloont $\mathrm{c}^{\circ} 04 \mathrm{~mm}$, there mnst be some quite peculiar means for its nntrition, and this is the case to the most astonishing extent and in the most surprising manner.

As soon as the fertili ed egg enters the thin portion of the nterus, a small enlargement takes plaee in its lnmen, whieh is very narrow and is surrounded with very deep cylinder epithelia. Simultaneously with this the epithelium cells mass themselves a little togetber; the furrowed egg settles upon the epithelinm, and imnediately the lumen widens a good deal by the epithelial eells of the uterus becoming very depressed at that spot; so flattened do they become that they form a very thin pavement epithelium, whereas before and behind the "breeding-nidus" (Bruthole) an embankment is formed by the thickening of the connective tissue of the uterine walls, so as nearly to fill np the uterine canal.

In this stage we find a hemispherical mass of bomologons cells attached by a broad basis to the extraordinarily thin lining of the utetine cavity, a lining which has been formed out of the two eells that originally surrounded the egg. Presently a small deprescion develo:'s ia this hemispherical mass, and now the embryo forms sonnething like the half of a hollow sphere, still consisting of but a few cells. Through the multiplication of these the hemisphere and the cavity in it become a little larger, and now a difference is perceptible between the cells of the embryo which are situated immediately upon the aterine epitnelium and the rest. The former, which I shall for brevity's sake here call basal cells, bave a long, narrow, and very compact nncleus, whereas the others have a large, circular, granular nneleus. The basal cells multiply, and in doing so close the opening of the hemisphere, and form a layer which, lying between the embryo and the uterine epithelium, fastens the furmer to the latter. In the meantime the cells of the hemispherical mass have also multiplied to such a degree that the side looking towards the lumen of the uterus appears thickened by the cells mutually displacing each other.

In this stage the w hole eondition of the embryo resembles that of a flattened hollow sphere whose free wall bas been thiekened; the longer diameter is 009 mm ., and the lesser 0.07 mm . The basal cells of the embryo now spread themselves ont a little, a few isolated ones come out from under the embryo, and thus enlarge the basis of attachonent-they form an embryonic placenta. From them is also developed a very delicate membrane, which becomes closely applied to the uterine epithelinm, and envelops the embryo-it may be shortly designated as ammion.

In the meanuhile ehanges are also going on in the nteras ; the epithelinm of the "breeding-nidus" has lecome a little thicker, the nuclei have increased in number, and a number of small dark hrown pigment grannles have developed and eollected in the protoplasm of the flat eells, whieb for a long time mark off sharply the uterine epithelinm from the embryonic portions.

The basal cells now multiply to a remarkable extent, partly in as to Increase the size of the placenta, and partly in a direction perpendicular to it, forming a solid stalk upon which the embryo is pushed out free int , the lumen of the "breeding-niduc." The whole now forms a pyriform mass; the little bead of the pear, the actual embryo, is, however, now no longes hollow ; cells have been thrust in from the side furthest away from the stalk, which have filled up the whole "furrow cavity"; a sharp limit, however, is vi-ible hetween them and the ectoderm at every point except the place where tbey have been invaginated; this point, which is comparable to the blactopore of other embryos, persists for a long time as the spot where material for the imer germinal layers is being continually provided by invagination, and is still demonstrable in embryos in which the form of Peripatus bas long sinee been recognisable.

As soon as the "furrow cavity" has been filled np in the manner that has been deceribed, a new eavity develops by fission in the central mass of cells. This is the definite visceral cavity. It develops by the embryo becoming eomposed of two layers (ectoderm and entoderm) in the balf that is nearest to the
stalk, whereas a thick prominence in which no differentiation can be made out, lies on the side furthest from the stalk. One must, however, regard its innermust cell layer as belonging to the entoderm, which also is continued into it.
While these changes bave been taking place in the embryo, the "breeding nidus" has increased ecnsiderably in size, the aterine epithelium has become thicker, and consists of a finely granular mass of protoplasm in which large round nnclei are found, and often lie in several layers oue on top of another cell boundaries are no longer recognisatile, and the pigment granules, which are disappearing, still form a narrow border towards the lumen of the uterus. Before and behind the breed. ing nidus is almost altogether clo ed by great thickenings of the nterine walls. In the region of the breeding-nidus, however, there is a fissure in the connective tissue wall of the uterus which is probably a blood space.

The next stage in the development of the embryo may be shortly characterised as the mushroom form ; the embryo becomes more clearly marked off from its stalk, and expands in all directions, but most of all in the direction of the longitudinal axis of the uterus, and now for the first time a bilateral symwetry can with certainty be made out; the whole embryo resembles a mushroom with a thick stalk; the pileus is oval, as seen from above, and is a little broader at one end than at the other, and on the surface, towards the narrower end, is to be seen a shallow depression, which is limited towards the broader end by a slight prominence. This depression corresponds to the spot where the meso- and entoderms have been invaginated. There is as yet no opening to connect the visceral cavity with the outer world. The broader end of the embryo is the head end, the stalk, ide the bach, the surface that projects into the lumen of the uterus the future ventral sarface. In this stage a multiple layer of cells has already freed itself from the ectoderm, in front of the place where the invagination took place, and it lies, passing over behinal into the undifferentiated cell-mas, between the ecto- and entoderm, but is marked off from both of them by a distinct boundary.
Now while the embryo increases in length, more and more cells press in from the ectoderm at the spot that has been indicated, and rpecialise themelves towards the front into a real mesoderm, which, however, at first, and fir a long time afterwards, occupies only the ventral aspect and also the lateral regions between ectoderm and entcderm, where it of courie multiplies independently.
In the meanwhile the thickening of the uterine epithelium has gone on ; it now forms a ring, which surrounds three-quarters of the circumference of the breeding-nidus, and which as a broad zone divides the breeding-nidus into two halves, where, by the way, the epithelium has been thickened to a considerable though a less degree ; the pigment granules have now disappeared, the placenta has become very large, and the amnion, which has attained a bigh degree of development, and which consists of uumerous large cells with large nuclei, lies closely applied to the aterine epitheliam.
It is only when the embryo has still further increased in length, the part posterior to the stalk increasing very quickly in ize, that the anus and month are formed, but not from a common opening, the blastopore of Balfour. The anns develops as a small fissure in the median line upon the prominence in front of the spot where the invagination has taken place; but the mouth develops far further forwards as an invagination of the ectoderm, consisting of only very few cells. This invagination has an inclination obliquely from behind forwards as it ${ }^{\text {I }}$ roceeds, and reaches the intestine, dividing its epithelinm at the point of junction. This mouth invagination has as yet no lumen ; this makes its appearance later, when the embryo already shows its segmentation plainly.
The first trace of this segmentation is the appearance of a cavity on each side in the oldest portions of the mesoderm, i.e. in the anterior extremity of the embryo, which splits the mesoderm plates intoan inner membrane adjoining the intestine, and an outer one adjoining the ectoderm. These, however, are still connected to each other dorsally and ventrally. Soon afterwards a second pair of similar cavities develops behind, and so on from before backwards. These cavities that appear in segments, and which in their appearance clo ely resemble the original segmental formation of a vertebrate apimal, are the first rudiments of the body cavity. The different structares that develop out of its walls cannot be made out till later. Wihh the exception of the further growth of the posterior end of the embryo, which
soon curves itself, rolls itself up spirally, and finally forms manifuld loope, and of the progress of the segmentation, and of the corresponding formation of cavities in the mesoderm, no changes take place in the interior of the embryo. Embryos of P. Edquardsii of $1-1^{\circ} 5 \mathrm{~mm}$, length always preent the same appearance on cross-section : an ectoderm slightly thickened on the ventral aspect, an extraordinarily thin entoderm, and between them on each side a pocket of mesoderm, who e walls tonch each other in the ventral median line, and which in well-preserved embryos always are closely applied to the ectoderm, as well as to the entoderm, but which always present a sharply. defined boundary line. The anus is still nothing more than a narrow longitudinal fissure; the mouth has at last opened. Behind the anus is situated the depression, with the place where invagination has taken place.

Externally, on the other hand, a distinct seguentation of the body has taken place corresponding to the cavities in the mesoderm; the anterior segment (head eegment) exceeds all the others in size; it consists of two symmetrical, spherical halves, to which the other iegments are connected posteriorly; the ventral aspect of the head segment contains the mouth opening. I remark here that the mouth and anal opening that have been mentioned must be regarded as primary in Peripatns; the latter closes at a later stage to make room for a later developing structure, and the former is thrast in further by a new invagination of the ectoderm, and becomes converted into the aesophageal opening of the intestine. (These two observations require to be checked, and I shall have to do so by examining other embryos.) Each segment carries on each side a prominence which is the rudiment of the limbs that are developed later. The first pair of limbs is surrounded by a number of secondary papille, and is drawn iuto a wide mouth cavity to be utilised as a jaw ; the second pair gives the papille on whose apices the large slime glands afterwards have their orifices. The tentacles are simply dorsal comtinuations or prolongations of both head cavities. Now at last, after the embryo has attained its full eomplement of seg. ments, the first appearance of the nervons system can be made out as a paired ventral thickening of the ectoderm, which, soon separating itself from the ectoderm, extends in two separate threads from one end of the body to the other, only nnited by the brain, which has been developed in a similar manner in the head. The embryo it elf, until it develops a definite gullet, is intimately connected by it. ectoderm, by means of the placenta with the maternal organism, and receives its nutriment through its dorsal stalk, which can be quite properly characterised as a navel-string, and uhich belongs to the first body segment. As soon, however, as it can swalkw by help of its gullet, this connection is loosened, and the embryo now eats the food that is provided by the extronrdiaarily thickened uterine epithelium, which is rich in protoplasmic materials. At any rate, from that time forward coagulated protoplasm is always to be found in the intestine of the embryo, which was previously always empty.
This is, in a few words, an abstract of the most important roults of my investigations up to date, which have been made upon something like a hundred young embryos. I here abstain for the sake of brevity from all di-cussion, but must, however, call attention to the fact how little Balfour's illustrations and the descriptions of the editors agree with the facts as they are here given. I hope it will not be long befure I shall be able to lay before my fellow-workers my inve rigations, which I hope soon to complete, of there interesting and exceedingly anomalous phenomena of embryunic development, accompanied by numerous illustrations.

UNIVERSITY AND EDUCATIONAL INTELLIGENCE

Oxford.-By a mistake last week the stipend of the Professorship of Botany was given as sool. instead of 700 . with a residence rent free. An election will take place in the course of Hilary term. The duty of the professor is to lecture and give instruction in botany. He will also have charge and supervision of the Botanical Garden and of the botanical collections belonging to the University; and it will be part of his duty to make such gardens and collections accessible to and available fir the insuraction of students attending his lectures. Candidates are requested to send to the

Registrar of the University their application, and also any documents which they may wish to submit to the electors, on or before Saturday, January 26, 188.

The Professorship of Rural Economy-now separated from that of Botany-will be filled up in December. Candidates are requested to send to the Registrar of the University their applications, and any documents they may wish to submit to the electors, on or before Monday, Necember 10, 1883. According to the regulations sanctioned by the Court of Chancery, the Sibthorpian Professor of Rural Economy shall lecture and give instruction on the scientific principles of agriculture and forestry. He shall be entitled to the emoloment of 2001 . derived from the benefaction of Dr. John Sibthorp, Doctor of Medicine, and assigned to the professorship. The professor holds his office for a period of three years from election, and no longer. He may be re-elected for a second period of three years, and no longer ; but no professor shall hold the professorship for more than six years consecutively. The professor will have the ase of the garden appropriated for making experiments on the subjects of his professorship. The professor shall give not less than twelve lectures in the course of the academical year, in full term, and not more than two in any one week.

Cambridge.-The following are the speeches made to the Senate of the University by the Public Orator (Mr. J. E. Sandys) in presenting Professors, Foster and Macalister for the complete degree of M.A. honoris causa, on November 8 :-
" Dignissime domine, domine procancellarie et tota Academia : In hoc ipso loco, duodecim abhinc annos, nnum e Collegii maximi Praclectoribus auspiciis optimis titulo vestro honorifico exornastis. Hodie eundem, tot annorum usu et experientia spectatam probatumque, et Academixe totius Professoribus merito adscriptum, senatus nostri in ordinem honoris causa adsciscimus. Quantum interim, hujus prosertim laboribus, inter alumnos nostros creverit vigueritque physiologixe studium, vosmet ipsi omnes animo grato recordamini. Ut animantium in corporibus ex ipso corde, velut e fonte quodam, salutares illi sanguinis rivi per membra omnia fluunt refluuntque; non aliter corporis Academici in partes quam plurimas ex hoc fonte scientix flumina effluxisse atque inde rursus redundasse dixerim. Tali e fonte quot alumnis vires novze redditie sunt: quotiens ex alumnis nivuli fontem ipsum denuo auxerunt! \mathbf{E} discipulis vero tam multis cum magistro tanto felieiter consociatis, plurimos adhuc superesse, nonnullos etiam adesse hodie gaudemus ; unum illum mon sine lacrimis desideramus qui nascentis vite primordiis hujus auxilio sagacissime investigatis, nuper inter Alpium culmine, in ipso xtatis flore, morte immatura e nobis est abreptus. Talium filiorum progenies Matri Alme indies nova sucerescat: magistrorum talium accesionibas et Professorem et Senatorum ordo identidem nobis augeatar 1
"Vobis prosento Collegii sacrosancte Trinitatis soeium, Physiologix Professorem illustrem, Michaelem Fostrr."
" In Professoribus novis vestro omnium nomine salutandis, fato quodams iniquo succe-soris laudes decessor is desideria nonnunquam aliquatenus iaminui videntur. Hodie ver, ornat adhuc Professorum ordinem eloquenti-simus ille Anatomix Professor quem diu sumus admirati. Integro igitur sinceroque gaudio Prolessorem illum salvere julemus, quem Caledonia Iliberniee quondam donavit, Hibernia Britannize nuper reddidit. Salutamus virum qui corporis humani scientiam interiorem, antiquissimum illud atque regium (uti nuper audivimus) scribendi argumentam, quasi propriam provineiam penitus exploravit; qui ne his quidem finibu* conteutus, sed ctiam in alias rerum naturx regiones egresus, non modo de zoologia et de comparativa quxe dicitur anatomia egregie meritus est, sed geologix quoque operam singularem impendit, petrographix praenerim recentiones, progressu* curiositate minuta perserutatus, Idem et litterarum amore et linguarum peritia insignis, inter rerum antiquarum monumenta ne hicroglyphica neglexit, neque historiam ecclesiasticam intactam reliquit. Ergo non uni tantum Collegio sed toti Academix gratum est, virum tot tantisque animi dotibus instructum, societati flli tam cito esse adscriptum, cui medicina studia commendavit olim vir et de litteris antiquis et de scientiis recentioribus preclare meritus, Thomas Linacre.
" Vobis prasento Collegii Divi Johannis socium, Anatomise Profesorem insignem, Alexandrum Macalister."
The allusions to the growth of the physiological school, to the loss of Prof. F. M. Balfour, to Prof. Macalister's inaugural lecture with its happy antiquarian illustrations, and his speedy
ennulment as a Fellow of St. John's, were heartily taken up by the members of the Senate and the undergraduates present.
The Special Board for Medicine publish for the guidance ol students proceeding to medical and surgical drgrees the following schedule defining the range of the examination in elementary biology under the regulations which come into effect on the firs: day of January, 1884 (Grace, November 15,1883). The examination in elementary biclogy will have reference to (t) the fundamental facts and laws of the morphology, histology. physiology, and life-history of plants as illustrated by the following types: Saccharomyres, Prowococus, A/wcor, Spiregyra, Chara or Nitclla, a fern, Pimus, and an angiospermons flowering plant ; (2) the fundamental facts and laws of animal morphology, as illustrated by the following types: Amada, Panamacium or Vorticella, Hydra, Lusmbricus, Asfacus, Anodon, Amphioxws, Scyllium, Rana, Lepus. Under the head of vegetable physiology the student nill not be expected to deal with special questions relating to the more highly differentiated fowering plants. He will be expected to show a practical knowledge of the general structure of each of the animal types above specified, and an elementary knowledge of the chief biological laws which the structural phenomena illustrate. He will also be expected to show an elementary knowledge of the general developmental history of Amphioxns and of Rama. He will not be expected to deal with purely physiological details.
The subject announced for the next Adams Prize to be adjudged in 1885 , is as follows: Investigate the laws governing the interaction of cyclones and anticyclones on the earth's surface. In order to give precision to this, the following suggestions are given to the examiners :-An infinite plane has surface density $\frac{g}{2 \pi}$ (where g is gravity) ; on one side of it is air in equilibrium, the density of which must diminish according to the barometric law as we recede from the planc. The system revolves as 'a rigid body, about an axis perpendicular to the plane, with a constant angular velocity ω. If one or more vortices, with a revolution either consentaneous with e (cyclones), or adverse thereto (anticyclones), be established in the air, investigate their motions. It may be well to consider the axes of the vortices as either straight or curved, and perpendicular or inclined to the plane. If possible, pass to the case in which the vortices exist in the atmosphere surrounding a rotating globe.
The Rev. H. W. Watson has been approved for the degree of Sc.D.-Prof. Darwin is arranging to give a course of practical teaching in astronomy with the instruments under his charge. Next term Mr. H. H. Turner of Trinity College will undertake this course.-The General Board of Studies, in reissuing its recommendations as to Readers, Demonstrators, \&c., has asked that power be given to the Museums and Lecture Rooms Syndicate to obtain plans for a foundry for the Department of Mechanism, for buildings for Botany, and for adiditional buildings for Comparative Anatomy and Phyniology.-It is recommended that a Curator of the Mu-eum of General and Local Archaology be appointed, at a salary of 100 . per annum.

SCIENTIFIC SERIALS

Tournal of the Frandlin Instifule, vol, cxvi. No. 694, October, 1883.-The commercial and dynamic efficiencies of steamengines, by Prof. R. H. Thurston. In this paper there are calculated the ratio of expansion to furnish puwer wost economically, the m.ximum efficiency of a given plant, and maximum efficiency of fluid, when such data are taken into account, as total amnual cost of steam, and total annual cost of all items variable with size of steam-cylinder.-Mr. K. Grimshaw, in a pa er on the steam-engine indicator as a detector of lo-t motion, describes the use of the indicator to pick out defective setting of cranks, crossheads, \&\&. - The next three articles are on the uater supply of citics in ancient times, on oil-dressed belting, and a report on the pressure-governed gaw-meter and burner. - The address by Prof. Rowland, entitled "A Plea for Pure Science," lately reprinted in Nature, is also reproduced in extenso.
Annalen der Physie und Chenvic, xxii. No. 10, contains a long memoir by Professors Solncke and Wangerin on interference onenomena obtained with thiu and especially with wedgeshaped laminse. The article will be continued in the next number.-On the changes of volume of netals and alloys on melting, by Prof. Eilhard Wiedemann. The metals were cast in thin rods, then'dropped into a nearly-fitting glass tube,
ending into a capillary. The wide end was sealed, and a dilatometric fluid such as oil introdnced. The conclusions arrived at are that tin, soft solder, and probably also lead, expand on melting ; but bismnth contracts. Many observations were made on alloys of bismuth and lead,-On the liquefaction of oxygen, nitrogen, and carbonic oxide, by S. von Wrublewski and C, Olvzewski. Intense cold was obtained by evaporation, under rednced pressure, of liqnefied ethylene in an apparatns modified from that of Cailletet. Temperatures were measured by a bydrogen pressure-thermometer. Oxygen proved to be liquefiable at temperatures varying from $-129^{\circ} .6$ to $-135^{\circ} .8 \mathrm{C}$., under pressures varying from $27^{\circ} 02$ to $22^{\circ} 2$ atmospheres. The liquefaction of nitrogen and of carbonic oxide proved more difficult, and was not accomplished at a temperature of $-136^{\circ} \mathrm{C}$., even under a pressure of 150 atmospheres, though a sudden release of pressure produced a temporary mist of condensed spherules, and a slower release of pressure yielded a deposit of liquid with a distinct meniscus. Liqnefied nitrogen and liquefied carbonic oxide are both colourless and transparent. - On the internal friction of certain solntions, and on the viscosity of water at different temperatnres, by K. F. Slotte. The resnlts confirm those previously obtained by Rosencrantz and Poiseulle. -On a lecture apparatus for demonstrating Poiseulle's law, by W. C. Röntgen.-On the dednction of the crystal systems from the theory of elasticity, by H. Aron ; a mathematical discussion of the possible cases arising from the position of planes of symmetry, proving that no others than the recognised six systems of cryatals can exist.-On the properties of benzine as an insnlator and as a substance exhibiting electric reaction, by H. Hertz. Pure benzine appears to be remarkably good as an insulator and remarkably free from reaction effects.-On the inflaence of galvanic polarisation on frietion, by \mathbf{K}. Waitz. Treats of the phenomenon discovered by Edison, and recently examined by K. R. Koch.-On the properties of calc-spar in the homogeneous magnetic field, by Fr. Stenger.-Notes on a photometric apparatus, by Leonhard Weber.-On "the Exhibition of the Treatise on Light " of Ibn al Haitam, by E. Wiedemann,-On the Cologne air-pump of the year 164 I , a bistorical notice by Dr. G. Berthold.-Kemarks on the memoir of Herr Christiansen, "Researches on Heat-Condnctivity," by A. Winkelmann.

Atti of the Royal Academy dei Lincei, July 12-15, 1883.Obituary notice of William Spottiswoode.-Two communications from Signor Tacchini on the observations made by him at Caroline Island during the solar eclipse of May 6, 1883.-On the average variation in tension of the atmospheric aqueous vapour according to latitude and elevation in Italy, by A. Lugli. -Meteorological observations at the Royal Observatory of the Campidoglio for the months of June and July. - Most of the present nnmber is occupied with the new reforms and statutes of the Academy, whose constltution has recently been remodelled. There are also long inventories of the works of art, furniture, and fixtures of the Palazzo Corsini, which has been purchased as the future home of the Academy.

Rivista Scientifico Industriale, Florence, September 15-30.The total eclipse of May 6. Results of the observations of Tacchini, Janssen, and others, in Caroline Island.-Eclipses and terrestrial magnetism, by P. Denza. All connection is denied between eclipses and magnetic phenomena, - On the compressibility of water, by S. Pagliani and G. Vicentini. - A new electrodynamometer, by Prof. Bellati. - On the deformation detected by Goay in polarised electrodes, by A. Volta.-An improved reversible magnetico-electric machine, by M. Delaurier.-Anatomical description of two extremely rare birds (Somateria mollisrima and Phalaropios fulicariws) preserved in the Civic Museum of Venice, by H. A. Ninai. - On the fossil vertebrates of the Miocene formations in the Venetian Alps, by Baron Achille de Zigno,-On the fossil gastropods, cephalopods, and corals of the lower titonic formations of Sicily, by Dr. G. de Stefano.

SOCIETIES AND ACADEMIES
 London

Chemical Society, November 15-Dr, Perkin, F. R.S., president, in the chair. - It was annonneed that a ballot would take place at the next meeting (Dec. 6). -The following papers were read :-On the estimation of starch, by C. O'Sullivan. The method may be briefly described as follows:-About five grms. of the finely ground grain are successively extracted with ether,
alcohol (sp. gr. $0^{\circ} 90$), and water at 35° to $3^{8^{\circ}}$. Fat, sugar, albuminoids, amylams, \&c., are thus got rid of. The stareh in the washed residue is gelatinised by boiling with water, cooled to 62°, about 0.03 grm . diatase (prepared by precipitating a cold, aqneors extract of malt with alcohol) added ; the starch is thus converted entirely into maltose and dextrin, and by a quantitative determination of these two products the starch originally present can be calculated. The author states, as the result of his experience with the method, that the difference in results obtained by any two observers need not exceed 0.5 per ceat. of the total starch. - On the illuminating power of ethylene when burnt with non-luminous combustible gases, by P. F. Frankland. The anthor summarises his results as follows:Pure ethylene burnt at the rate of five cubic feet per hour from a Referces Argand burner, emits a light of 68.5 standard candles; the illuminating power of equal volumes of mixtures of ethylene with either hydrogen, carbon monoxide, or marsh gas is less than that of pare ethylene; when such mixtures contain 60 per cent. of ethylene or more, the illuminating power of the mixture is but slightly affected by the nature of the dilnent ; in mixtnres containing less than 60 per cent. of ethylene, the illuminating power is the bighest when marsh gas, and lowest when carbon monoxide, is the dilnent.-On the products of decomposition of aqneous solutions of ammonium nitrite, by G . S. Johnson. The nitrogen evolved from alkaline solutions of ammonium nitrite contains no oxides of nitrogen; nitrogen is evolved from aqueous solutions below 100°; by adding crystallised cupric chloride, a continuous evolution of pure nitrogen takes place in the cold. When solutions are acid, the nitrogen may contain 4 per eent. of nitric oxide. About 2 per cent. of the nitrogen evolved by the cupric chloride is stated by the author to porsess peculiarly aetive properties, and forms ammonia when passed with hydrogen over spongy platinum. - On the estimation of iron by standard potassium bichromate, by E. B. Schmidt. The anthor recommends the above process, but states that zinc should not be used to reduce the iron, as it interferes with the end reaction with potassium ferricyanide. He prefers Kessler's method of reduction with stannous chloride.

Western Microscopical Club, November 5-Mr. W. Crookes gave a lecture on "Recent Discoveries in High Vacua." He illustrated his theme with a series of brilliant and interesting experiments. The effects were prodaced by a large electric coil, having sixty miles of secondary wire, and worked by two cells of a storage-battery. The coil, when attached to its full complement of thirty cells, would give a spark in air of twenty-four inches. "High vacua" were defined as those ranging from above the $1 / 1000$ to the $1 / 100,000,000$ of an atmosphere. Air and all gases are conceived to consist of myriads of excessively minute molecules, which in the ordinary state vibrate with enormous velocity; but being crowded together in that condition their extent of vibration is impeded by each other, and is, in fact, limited to a path of only $1 / 10,000$ of a millimetre. When, as in a partial vacuum, there are fewer of these molecules, they have more room in which to vibrate, and hence their "mean length of path" is increased. Under the influence of electricity these molecules are driven in straight lines from the negative pole. In a comparatively low vacuum, on the passage of an electric current, the residual air assumes a stratified condition, showing alternate light and dark bands. The width of the dark bands marks the length of the excursions of the molecules. Fnrther exhaustion increases the width of these bands, so that in a vacunm of $1 / 1,000,000$ of an atmosphere the free path of the molecales was seen to extend to about four inches. By means of an exbausted V-shaped tube it was shown that these molecules are driven from the negative pole in straight lines, and hence cannot turn a corner, First one limb of the V, then the other, was connected with the negative pole of the coil, with the result that each in turn was in darkness, In another vacunm-tnbe a concave negative pole was fixed; the molecules were driven normally from this concave surface, and, meeting the cylindrical surface of the glass inclosure, were thrown into beantiful canstic curves. That these molecules, under the inflaence of electricity, possessed mechanical force was shown by cansing them to impinge on the vanes of a radiometer, when a rapid rotation took place. On reversing the current, the direction of rotation was also reversed. That this was not due merely to the passage of an electric current was shown by a vacuum-tube containing a small, horizontal "water-wheel." Its npper and lower floats being struck equally by the radiant matter, no motion took place; bnt
on diverting the flow of radiant molecules by means of the ex. ternal application of a magnet, the molecules were caused to strike the upper floats only, when revolution took place. By reversing the magnet, the path of the molecules was diverted so as to strike the lower floats, and thus to reverse the rotation. Radiant molecules are not attracted by one pole of a magnet and repelled by the otber, but tend to rotate round the noth pole in one direction and round the soutb pole in the opposite direction. Hence, with a borsseshoe mugnet, they are deflected in a line at right angles to the line that joins the two poles. The mechanical effect of the impact of these radiant molecnles was furtber shown by converging them by means of a concave negative pole to a focus in which was a small bundle of platinum wires. These wires were rapidly raised to a white heat by the vigorous though inaudible bomburdment. Further, the impact of radiant molecules on certain bodies produces phosphorescent light; thus they give to potash-glass a green and to lead-glass a blue tinge. If in an exbasted tube an obstacle, such as a piece of mica in the shape of a cross, be set up, a dark shadow of it is thrown on the positive end of the tube, the part surrounding the shadow being rendered phosphorescent by the impact of the molecules. On suddenly removing the obstacle, the part that was in shadow glows brighter than in surrounding lumminous space. This effect is due to the molecules acting suddenly on a new and, as it were, untired surface.

cambridgr

Philosophical Society, October 29-The following officers for the ensuing year were elected:-President, Mr. Glaisher ; Vice-Presidents: Prof. Caylcy, Prof. Stokes, Lord Rayleigh; Treasurer, Mr. J. W. Clark; Secretaries : Mr. Trotter, Mr. Glazebrook, Mr. Vines; New Members of Council: Prof Humphry, Prof. Babington, Prof. Adams, Prof. Newton, Mr. F. Darwin, Mr. Shaw, Mr. Sedgwick.-The following papers were communicated to the Society:-On the effect of viscosity upon the tides, by Rev. Osmond Fisher. - Note on Mr. Larmor's communication on "Critical Equilibrium," by Mr. Green'iillOn some general equations which inclade the equations of hydrodynamics, by Mr. M. J. M. Hill.

Edinburgh

Mathematical Society, November 9.-Mr. J. S. Mackay, F.R.S.1., in the chair. -The opening address of the session was delivered by Prof. Tait, who chose for his subject "Listing's Topologie." -The office bearers elected were :-Preident, Thomas Muir, F.R.S.E. ; Vice-President, A. J. G. Rarclay ; Secretary and Treasurer, A. Y. Fraser; Committee: R. E' Allardice, William Peddie, Robert Robertson, David Traill, B.Sc.

Paris

Academy of Sciences, November 12.-M. Blanchard, president, in the chair.-On the velocities acquired in the interior of a vessel by the diverse elements of a fluid during its discharge throngh a lower orifice, and on the simple means possible to be employed in determining very approximately the numerical residuums of slightly converging double series, by MM. de Saint-Venant and Flamant.- Extract from a letter addressed to M. Daubríe by M. Nordenskjold on the results of his recent expedition to Greenland.-On a tribasic oxalatc of alumina, by M. Mathieu-Plessy. - Note on the letter communicated to the Academy by M. Martial, Captain of the Romancke, on his return from Tierra del Fuego and neighbouring, waters, by M. Alph. Milne-Edwards. Soundings and dredgings were taken at depths of 600 metres; a careful study was made of the fauna and flora on the mainland, as well as of the Fuegian abrigines, and 167 cases of collections were brought back, inclading two skeletons of whales, and several living specimens of animals and plants, On bis return M. Martial determined the presence of a deep trough abont the twentieth meridtin south of the equator, 7370 metres deep, near the ridge of submarine banks discovered by the Challenger and Gazelle.Observations on the Pons- Brooks comet made at the Observatory of Nice (Gautier-Eichens equatorial), and comparison with MM. Schulhof and Rossert's ephemerides, by M. Perrotin.-On certain astronomical formulas of Hansen and Tisserand, by M. P. Appell. - On the asymptotic lines of wave surfaces, by M. G. Darboux. - On the functions of two independent variables rendered invariable by the substitutions of a discontinued group, by M. E. Picard.-Note on the nature of an algebraic relation between two uniform functions of an analytical point (x, y), by M. E. Goursat.-On an algebraie problem in the theory of
elimination, by M. Cyparisoss Stéphanos.-A description of the differential pymmeter patented in February, 1882, by M. E. II. Amagat.-On an optical photometer, by M. L. Simonoff. -On the measurement of electromotor forces (two illastrations), by M. E. Reynier.-Oa an electric sounding apparatus for great depths (four illustrations), by M. E. de la Croix. On a rapid method for determining the work absorbed or produced by a dynamo-electric machine, by M. Pierre Picard-On a new series of combinations of titanium, by M. A. Piccini.Qualitative research and quantitative analysis of zinc and lead in iron ores, by M. A. Deros.-On the formation of considerable quantinies of alcohol in the fermentation of bread stuffs, by M. V. Marcano.- Determination of the causes tending to diminish the susceptibility of certain regions of the organism to the virus of bacterian or symptomatic charbon, transforming a fatal into a prophylactic inoculation, by MM. Arloing, Cornevin, and Thomas:-On the source of the imperfectly-oxydised salphur present in urine, by MM. R. Lépine and G. Guérin.-On the development of the branchia of cephalopods, by M. L. Joubin. -On the functions of the remal sac in beteropods, by M. L. Joliet. - Remarks on the Crocodilus robustus, Vaill, and Grand., of Madagascar, by M. L. Vaillant. - On the osmotic force of diluted solutions, by M. Hugo de Vries.-On the interpretation of an experiment by Hales touching the function of yegetable vessels, by M. J. Vesque. - Note on the direct observation of the movement of water in plants, by M. G. Capus.-Remarks on the saccharoid and serpentine limestones of the northern slopes of the Pyrenees, by M. Dieulafait.-On the causes of abnormal winters (five illustrations), by M. L. Teisserenc de Bort-The election was reported of M. Charcot in place of M. Cloquet in the Section of Medicine and Surgery.
CONTENTS Page
The German Fisheries Commission 73
74
Mascart and Joubert's "Electricity
Our Book Shelf:-
Carpenter's "Energy in Nature" 74
"Journal of the Royal Agricultural Society" 75
Letters to the Editor:-
On Chepstow Railway Bridge, with Gener 1 Remarks suggested by that Structure.-Sir G. B. Airy, F.R.S. 75
Physiology in Oxford.-Edward Chapman, M.A., Fellow and Senior Tutor in Natural Science of Magdalen College, Oxford 76
Green Sunlight.-Prof. William Swan ; Dr. Hyde
Clarke
Clarke 76 76
 Wharton, R.N.
The "Cloud Glow" of November 9.-J. J. Walker 76 77Waking Impressions. - William Radford 77
77
Barytes from Clirbury.-C. J. Woodward
Barytes from Clirbury.-C. J. Woodward
"Salt Rain and Dew." - Harry N. Draper
An Indian Weather Forecast 77
Nordenakjold's Greenland Expedition, iii. By Baron 77A. E. Nordenskjold
The Rothamsted Grass Experiments. By Prof. W. 79
Fream Palzeolithic Man-His Bead Ornaments. By Worth ${ }^{\circ}$ 8
ington G. Smith (With Iluusfation) 83
cede Tin? By A Tylor (With Maf) 84
The Ben Nevis Observatory 86
Notes 87
Our Astronomical Column :-
Brorsen's Comet 88
The Nautical Almanac : 89
The Philosophical Society of Glasgow 89
Researches on Spark Spectra. By Prof. W. N.
Researches on Spark Spectra. By Prof. W. N. Hartley 89
Splenic Fever in the Argentine Repubilc. By Dr. C. S. Roy
91
91
Suggestions for Facilitating the Use of a Delicate Balance. By Lord Rayleigh, F.R.S. 91
On the Development of Peripatua. By Dr. J. von Kennel
92
92
University and Educational Intelligence .
93
93
Scientific Serials 94
95

Digleoriby Google

THURSD.AY, NOVEMBER 29, 1883

SCIENTIFIC WORTHIES

XXifi.-Sir Charles William Siemens, ${ }^{1}$ born April 4, 1823 ; Died November 19, 1883

THE death of Sir William Siemens, coming as it did so suddenly and unexpectedly, has been felt as a severe blow and grief through a far wider circle than that of his personal friends. His work for the last five or six years has interested the general public to a degree that has perhaps never before been the lot of any man devoted to science as he has been. Not only the people of his adopted country, England, but the larger public of the whole civilised world, have been deeply interested in the electric lighting, the electric transmission of power, the electric railways, the regenerative gas furnaces, and the conversion of fuel into gas to feed them, and the prospect of smoke abatement by this mode of dealing with coal, and the improvements it has helped to make in the manufacture of steel, in all of which they have recognised Sir William Siemens as an originator, a devoted worker, and a friend. The Portrush and Bushmills electric tramway in the north of Ireland, one of the most splendid and interesting of his achievements, now carries passengers on a six and a half miles line of steep gradients and sharp curves, at a good ten miles an hour, solely by water power of the River Bush, driving, through turbines, a 250 volt Siemens dynamo at a distance of seven and a half miles from the Portrush end of the line. Just two months before his death he was present, and the writer of this article had the great pleasure of being present with him, at the formal opening to the public by the LordLieutenant of Ireland, Earl Spencer, of this transcendent gift of science to mankind. His death is mourned as an irreparable loss, and the thought that advances in so many lines of beneficent progress, carried on by his untiring activity and his splendid zeal, are so suddenly stopped has caused most grievous disappointment.
William Siemens had the great characteristic common to all men who have left their mark on the world, the perferviaum ingenium, in which thought leads to instant action. When he was only twenty years old he came to England with his brother Werner, to realise an invention for electro-gilding; and, persevering through the complication of difficulties naturally met with by young men in a strange land, with litle knowledge of its language, they succeeded in proving the usefulness of their invention, and getting it carried into practical effect through the wise and kindly appreciation of Mr. Elkington. Encouraged by this success, William Siemens returned a year later with his chronometric governor, an invention of remarkable beauty and ingenuity, in which, by the motion of a pivoted framework carrying an idle wheel geared to bevel wheels on two shafts in line, or geared to the outer and inner circumferences of concentric wheels, rotating in opposite directions on coaxial shafts, the movement of one wheel is caused to keep time with that of the other. We believe that although the invention was not

[^14]a commercial success, and is not generally known in this country as practically realised except in its application to regulate the motions of chronoscopic instruments in the Royal Observatory of Greenwich, it may yet be destined to have large practical applications in engincering.

One of William Siemens's carly inventions was his watermeter, which exactly met an important practical requirement, and has had a splendid thirty years' success. It realised curiously subtle hydraulic principles, which, even irrespectively of the practical value of the instrument, may interest readers of NATURE. Imagine a Barker's mill running absolutely unresisted. The discharged water must have approximately zero absolute velocity on leaving the nozzles ; in other words, its velocity relatively to the nozzles must be approximately equal to the contrary absolute velocity of the nozzles. Hence the machine will rotate in simple proportion to the quantity of water passing through it. By an extension of similar considerations it is easy to prove that if the wheel, instead of being unresisted, is resisted by a force exactly proportional to the square of its angular velocity, its velocity must still be proportional to the quantity of water passing through it per unit of time. Thus, provided this law of resistance is maintained, the whole angle turned through by the wheel measures the whole quantity of water that has passed. Now think of the difficulties which Siemens had to overcome to realise this principle. What we have roughly called a Barker's mill must be completely inclosed in the supply water-pipes, its nozzles discharging intowater, not into air. It must be of very small dimensions to be convenient for practice, and its bearings must be kept oiled to secure, not only that it may not be injured by the wear of running for years, but also that the constant frictional force of solid rubbing on solid may be as nothing compared to the resistance, proportional to the square of the velocity, exerted by the circumambient liquid upon a wheel with sharp edged vanes rotating in it. After a few years of trials, difficulty after difficulty was overcome, and the instrument did its work with the accuracy and convenience which met practical requirements. It was we believe the protection offered by the British Patent Law, which, in the case of this very instrument, allowed Siemens 10 work it out in England, and so helped him eventually to find his home among us, and to give us primarily the benefit of his great inventiveness in all directions; while the want of similar protection under German law at that time rendered it practically impossible for him to work out so difficult an inventio.s in his own country.

In electric invention William Siemens has been associated with his brother Werner, and the world has profited largely by this brotherly cooperation of genius. More than a quarter of a century ago, they brought out what is now known as the Siemens armature. The writer well remembers admiring it greatly when he first saw it (he believes at the London Exhibition of 1862), mounted between the poles of a multiple steel horseshoe magnet and serving for the transmitter in an electric telegraph. That was what we may now call the one-coil Siemens armature. It suggested inevitably the mounting of two or more coils on the same iron core, in meridional planes at equal angies round the axis, and as nearly equal and similar in all respects as is allowed by the exigencies of
completing the circuits with the different portions of wire laid over one another, and bent to one side or the other, to avoid passing through the space occupied by the bearing shaft. The principle of electro-magnetic augmentation and maintenance of a current without the aid of steel or other permanent magnets, invented by Werner Siemens, and also independently by Wheatstone and S. A. Varley, was communicated to the Royal Society by William Siemens on February 14, 1867, in his celebrated paper "On the conversion of dynamical into electric force without the aid of permanent magnets." This paper is peculiarly interesting, as being the first scientific enunciation of that wonderful electro-magnetic principle, on which are founded the dynamo-electric machines of the present day. Soon after came the Paccinotti-Gramme ring, from which followed naturally the suggestion of the mode of connection between the coils of a multiple-coil Siemens armature, described in the Siemens-Alteneck patent of 1873 , and made the foundation of the Siemens dynamo as we now have it, whether as given from the Siemens firm, or with the modifications of details and proportions, valuable for many practical purposes, which have been contributed by Edison and Hopkinson. The evolution of the Siemens armature, as we now have it, in this splendid machine, from the rudimentary type which the writer saw a quarter of a century ago, is one of the most beautiful products of inventive genius, and is more like to the growth of a flower than to almost anything else in the way of mechanism made by man.
Space prevents us from more than mentioning the works of William Siemens and his brothers, Werner and Carl, in land and sea telegraphic engineering, and their great achievements in Atlantic cable-laying. The Faraday bore particularly the impres of William Siemens's practical genius. It is remarkable that a ship capable of doing what no other ship afloat can do in the way of manceuvre, as has been proved by her success in the difficult and delieate operations of laying and liffing cables in depths of 2500 fathoms, and of cable repairing in all seasons and all weathers, should have been the work of a landsman, born in the middle of Europe, who early made himself a sailor in cable-laying expeditions in the Mediterranean and the Black Sea, but whose life has been chiefly devoted to land engineering and science.

On the 19th of this November the writer of the present article was accosted in a manner of which most persons occupied with science have not infrequent experience :"Can you scientific people not save us from those black and yellow city fogs?" The instant answer was-"Sir William Siemens is going to do it ; and I hope if we live a few years longer we shall have seen almost the last of them." How little we thought that we were that very evening to lose the valuable life from which we were promising ourselves such great bencfits. May we not hope that, after all, the promise was not vain, and that, although Sir William Siemens is gone from among us, the great movement for smoke abatement, in which he has so earnestly laboured during the last three years of his life, may have full effect.

Just nine days previously, the writer had received a letter from Sir William Siemens, saying nothing of illness, but full of plans for the immediate future : chiefly an address to the Society of Arts, and the realisation at

Sherwood of his method for the smokele ss supply of heat to a steam boiler, by the combustion of hydrogen, carburetted hydrogen, and carbonic oxide, obtained from the conversion into these gases of the who.e combustible material of the coal, together with some hydrogen and oxygen from water, and oxygen from air, in his gas-producing kiln. "The producer will be in full opcration at Sherwood by that time " were almost the last words received by the writer from his friend, kindly inviting him to come and see the new method in operation at the end of the present month. A short time before, in travelling home from Vienna, where they had been associated in the British Commission for the Electrical Exhibition, Sir William Siemens had told the writer that without waiting for a perfected gas-engine to use the products of conbustion as direct motive agent, and so give the very highest attainable economy, he expected by using the gas from his producer as fucl for the fire of a steam. boiler, even on a comparatively small scale, like that of his appliances at Sherwood for electric lighting and the electric transmission of power, to be able to obtain better economy of coal for motive power than by burning the coal directly in the usual manner in a furnace under the boiler. And further, what is specially interesting to persons planning isolated installations for electric light, he believed that the labour of tending the producer and boiler and steam-engine would be on the whole considerably less than that which is required on the ordinary plan, with its incessant stoking of coal into the furnace under the boiler, as long as steam is to be kept up. There is something inexpressibly sad, even in respect to a comparatively small matter like this, to sce the active prosecution of an experiment so full of interest and so near to a pratical solution, suddenly cut short by dcath. But the great things done by Sicmens with gas protuced in the manner referred to above, first in the gas glass furnace, described with glowing admiration by Faraday on Friday evening, June 20, 186: in his last Royal Institution Iccture, and more recently in connection with another great and exceedingly valuable invention, the Siemens process for making steel, by using the oxygen of iron ore to burn out part of the carbon from cast iron, and still more recently in the heating of the retorts for the production of ordinary lighting gas, by which a large increase has been obtained in the yield of gas per ton of coal used, are achieved results which live after the inventor has gone, and which, it is to be hoped, will give encouragement to push farther and farther on in practical realisation of the benefits to the wosld from the legacy of his great inventions.
A most interesting article on the life and work of Sir William Siemens in the Times of November 21 concludes with the following words, in which we fully sympathise :"Those who knew him may mourn the kindly heart, the generous noble nature, so tolerant of imperfect knowledge, so impatient only at charlatanism and dishonesty; the nation at large has lost a faithful servart, chief among those who live only to better the life of their fellow-men by subduing the forces of nature to their use. Looking back along the line of England's scientific worthies, there are few who have served the people better than this her adopted son, few, if any, whose life's record will show so long a list of useful labours."

In private life Sir William Siemens, with his lively bright intelligence always present and eager to give pleasure and benefit to those around him, was a most lovable man, singularly unselfish and full of kind thought and care for others. The writer of the present article has for nearly a quarter of a century had the happiness of personal friendship with him. The occasions of meeting him, more frequent of late years, and more and more frequent to the very end, are among the happiest of recollections. The thought that they can now live only in mernory is too full of grief to find expression in words.

William Thomson

In addition to the above notice by a master-hand we give the following details of Sir William Siemens's life and of the sad and solemn closing scene.

Charles William Siemens was born at Lenthe, in Hanover, on April 4. 1823; he was educated at Lübeck, the Polytechnic School of Magdeburg, and had the advantage of sitting for a couple of sessions under Professors Wöhler and Himly at the Univerity of Göttingen, finishing his academical career at the age of nineteen. He stajed one year at the engine works of Count Stolberg, and when twenty years of age landed in England to introduce a new process of electro deposition, and, as stated above, was so successful that he made England his home. Another early invention of the two brothers was one which Faraday lectured upon at the Royal Institution one Friday evening under the title of the "Anastatic Printing Process of the Brothers Siemens."

Between his twentieth and thirtieth years he was mainly engaged in problems connected with mechanical engineering, improving the chronometric governor, bringing out a double-cylinder air-pump and a simple watermeter which has been extensively used both in this country and on the Continent. When twenty-four years of age he constructed a four horse-power steam-engine, with regenerative condensers, in the factory of Mr. John Hicks, of Bolton, and the Society of Arts acknowledged the value of the principle by giving him their gold medal in 1850. At this time also he made a modification of Grove's secondary battery, to which he referred two years ago at the Jubilee Meeting of the British Association. When just over thirty years of age he received the Telford prize and premium of the Institution of Mechanical Engineers for his paper "On the Conversion of Heat into Mechanical Effect," in which he defined a perfect engine as one in which all the heat applied to the elastic medium was consumed in its expansion behind a working piston, leaving no portion to be tbrown into a condenser or into the atmosphere, and advised that expansion should be carried to the utmost possible limit. In taking up the question of heat he a dopted the dynamical theory as the result of a sttidy of the works of Joule, Mayer, and others, and we find him when thirty-two years of age exhibiting two steam-engines with regenerative condensers, the one of twenty and the other of seven horse-power at the Paris Exhibition of 1855.

Between his thirtieth and fortieth years he read several papers before the Institution of Civil Engineers on electrical subjects, and before the Institution of Mechanical Engineers upon the various inventions which he had already brought ont. During this period also was established the firm of Siemens Brothers, which has become so famous for their machines, and submarine and land lines, four Transatlentic cables, the Indo-European line, the North China cable, the Platino-Braziliera cable, and others. In 1860, when engaged in superintending the electrical examination of the Malta and Alexandria telegraph cable, be thought of using the increased resistance of metallic conductors due to rise of temperature as a means for measuring temperature, and brought out next year a pyrometer based upon this principle.

He was now also engaged with his brother, Mr. Frederick Siemens, upon that invention with which his name has since been mainly connected-the regenerative gas furnace. By means of this furnace, which is now used all over the world, two evils which formerly appertained to heat furnaces are cured, viz. the discharge of the products of combustion at a very high temperature and in an incompletely combined state. Another advantage of this furnace is the very high temperature that could be attained by its use, and from the very first its author looked upon it as capable of accomplishing what Reaumur, and after him Heath, had proposed, namely, to produce steel on the open hearth. It was in 1862 that Mr. Charles Atwood made the first attempt to produce steel in this manner at Tow Law under a license from Mr. Siemens; but, though partially successful, it was afterwards abandoned; after one or two other disappointments, Mr. Siemens had to take the matter into his own hands, and having matured the process at his experimental works at Birmingham, he laid the foundation of an industry which now employs thousands of workmen at the works of the Landore Company, Vickers and Co. of Sheffield, the Steel Company of Scotland, and others, a bout half a million tons of mild steel having been produced last year in Cireat Britain alone. This steel is now used almost exclusively in Her Majesty's dockyards in the construction of the boilers and hulls of ships, and its use in private yards is extending rapidly.
On February 14, 1867, he brought before the Royal Society the paper on the conversion of dynamical into electrical force referred to by Sir William Thomson.

Not only to these large applications of electricily did Sir William Siemens direct his attention but to electrometallurgy and horticulture. Those who were present at his lecture to the Royal Institution on March 12, 1880, will remember the stream of light which poured forth from his electric furnace when the lid was taken off the crucible to pour the fused steel into the mould, and the result of his experiments on the influence of electric light upon plant growth in the exhibition of peas, roses, lilies, and strawberries at this early season with the fruit partially developed. But the space at our disposal will only allow us to remind our readers of others of his inventions, his bathometer for measuring the depth of the sea, and his attraction meter (Phil. Trans., 1876) ; the selenium eye, which was sensitive to variation of colour ; the regenera-
careous organisms in the surface waters and of the comparative rapidity with which these remains might be accumulated on the sea-bottom.
Reef-builders starting on a submarine bank, whether prepared for them by erosion, by subsidence, or by the upward growth of organic deposits, would form reefs that must necessarily tend to assume the atoll form The central portions of the colony or clump of coral will gradually be placed at a disadvantage as compared with the peripheral parts of the mass in being further removed from the food supply, and will consequently dwindle and die. In proportion as the reef approaches the sea-level these central parts are brought into increasingly uncongenial conditions, until at last an outer ring of vigorous, growing coral-reef encircles an inside lagoon overlying the central stunted and dead portions. The possibility of such a sequence of events was likewise recognised by Darwin. "If a bank, either of rock or of hardened sediment," he says, "lay a fow fathoms submerged, the simple growth of the coral, without the aid of subsidence, would produce a structure scariely to be distinguished from a true atoll." ${ }^{1}$

As the atoll increases in size the lagoon becomes proportionatcly larger, partly from its waters being less supplied with pelagic food and therefore less favourable to the growth of the more massive kinds of coral, partly from the injurious effects of calcareous sediment upon coral-growth there, and partly also from the solvent action of the carbonic acid of the sea-water upon the dead coral. The solution of dead calcareous organisms by sea-water is undoubtedly one of the most interesting facts brought to light by the naturalists of the Challenger Expedition.

Moreover, a connected chain of atolls might be formed on a long, submarine bank, and similar conditions of growth would then be displayed as in the case of a single atoll. The marginal atolls having a better supply of food would grow more vigorously than those towards the centre, and would tend to aisume elongated forms, according to the shape of the bank beneath them. Many of them might coalesce, and might even ultimately give rise to one large atoll. Such a chain of atolls as that of the great Maldive group may be thus explained without the necessity for any disseverment by oceanic currents as Darwin supposed. On the other hand, the submerged coral-banks of the Lakadivh, Caroline, and Chagos archipelagos may be regarded as representing various stages in the growth of coral-reefs, some of them being still too deep for reef-builders, others with coral-reefs which have not yet quite growa up to the surface. But scattered among these banks are some of the most complet ly formed atolls. Mr. Murray contends that it is difficult to conceive how such banks can have been due to subsidence, when their situation with respect to each other and to the perfect atolls is considered. He reverses the order of growth as given by Darwin, who cited the great Chagos bank as probably an example of an atoll which had been carried down by a subsidence more ranid than the rate at which the eorals could build upwards.

From a careful study of barrier-recfs Mr. Murray concludes that, in their case also, all the phenomena can be explained without having recourse to subsidence. He found from personal observation and a comparison of the Admiralty charts that most exaggerated notions prevail regarding the depth of water immediately outside the reef, which is usually supposed to be very great. After minutely exploring the barrier-reef of Tahiti, and sounding the water both inside and outside the reefs, he found that the slopes are just such as might be looked for on the supposition that the corals have grown up without any sinking of the bottom. The accompanying section (Fig. 1), drawn to a true scale will show that there is nothing abnormal in the declivities, Beginning near the

+ Op. cif. p. 234 .
shore or wherever the bottom whether of rock or sediment comes within the range of the reef-builders, a barrier-reff grows vigorously along its outer face, while its inner parts, as in the case of an atoll and for the same reason, are enfeebled and die. The force of the breakers tears off huge masses, sometimes 20 or 30 feet long, from the face of the reef, especially where from the borings of mollusks, sponges, \&c., the coral-rock has been weakened. These blocks tumble down the seaward face of the reef,forming a remarkably steep talus. It is this precipitous part of the reef which has probably given rise to the notion that the water outside suddenly descends to a profound depth. The steep front of fallen blocks is succceded by a declivity covered with coral sand, beyond which the bottom slopes away at an angle of no more than 6°, and is covered chiefly with volcanic detritus. Mr. Murray insists that any seaward extension of the reef must be on the summit of the talus of broken coral. The reef will gradually recede from the shore of the island or continent, and will leave behind here and there a remnant to form an island in the slowly broadening lagoon-channel.
The very general occurrence of proofs of elevation among the regions of barrier-reefs and atolls is in harmony with the volcanic origin of the ground on which these coral-formations have grown, but is, as Mr. Murray contends, most difficult of explanation on the theory of widespread subsidence. He affirms that all the chieffeatures of coral reefs and islands not only do not necessarily demand the hypothesis of subsidence, but may be satisfactorily accounted for, even in areas where the movement is an upward one, by the vigorous outward gro⿻th of the corals on the external faces of the reef in presence of abundant food, by their death, disintegration, and removal by the mechanical and chemical action of the sea in the inner parts, and by the influence of subaërial agencies and breaker-action in lowering the level of the upraised areas of coral-rock.

Arch. Geikie
(To be continued.)

NOTES

It will be seen from our Diary that the meeting of the Linnean Sociely on December 6 is to be exclusively devoted to the reading of a posihumons essiy on Instinct by the late Mr. Darwin. We are informed that this essay is full of important and hitherto unpublished matter with regard to the facts of animal instinct considered in the light of the theory of nataral selection; and as the exi-tence of the essay has ouly now been divulged, we doubt not that the next meeting of the Linneas Society will be of an unusually interesting character.

Turdeath is announced, at the age of seventy-six, of Mr . John Eliot Howard, F.R.S., welt knoun as a chemist and quinologist. He was the son of Mr. Luke Howard, F.R.S., a well-known meleorologist in his day.

We announced some time ago that the Finnish Seaste had vuted a sum of 37,000 marks to l'rof. Lems'rön for the con* tinuation of his experi nents with the aurora borealis at Solankylä in the Finnish Lappmark daring $\mathbf{1 8 S}_{2-83}$, uf which he gave an account in Nature (vol. $x \times v i i$. p. 3^{89}). The plan to be followed during the preient winter at this station is to make ob-ervations three tines in every twenty-four hours, with the exception ouly of the first and fifteenth of every m mih, when they are made every five minutes throughout the twenty-four hours, and three days of she month when they will be effeeted every half minute during two hoars. In order partly to obtaid the necessary data for the control of the variation of the current from the almosphere with the latitude, and partly to reduce the eff. ct of probable influences, a branch station will be temporarily e tablished during the months of November, December, January, ' Febraary, and part of March at the buildings of the Kulala gold
vorks, some distance from the principal station at Sodankyli.. At Kultala exhanstive experiments will be made as to the effect which the increase of the area of the "utströmnings " apparatus, invented by Prof. Lemström for producing the anrora borealis, has on the intensity of the current. The observations will in other respects be the same at both stations. At Sodankylä they will be continued until September 1 , 1884 .

The Report by the Board of Trade on their Proceedings and Business noder the Weights and Measures Act, 1878, for the past sear bas been issued. The fullowing are some of the leading roints in the Report : During the past year the Standards Department has had the opportunity of assisting the United States Government in a comparis n of their standard of length (Yard No. 57), with the standards at this office. Prof. C. S. Peirce, of the Utited States Coast and Geodetic Survey, came to Lendon for this furpoe e in June last, on bebalf of Prof. J. E. Hilgard, who has charge of the Bureau of Weights and Measnres at Washington. A large numter of comparisons of these meacures was made with all possible care, and it was found that at 62° F., Jard No. 57 was 0,000022 inch longer than the Yard No. I deposited at this cffice. The results of these comparisons, as calculated by Prof. Peirce, will be referred to in a printed memorandum which will be separately drawn up. It was found necessary to test the accuracy of the standard kilogram, and the only reccurce was to apply to the Comite International des Poids et Me ures for permis-ion to compare the British standard kilogram with that deprited at their bureau near Paris. By the report of this comparison, it is seen that our tandard hilogram is now 20178 milligrams too light. The Report rather naively points out that, tut for the courtesy of the Comitc, the Standards Deparment would have been anable to re-verify onr unit of metric weight, as this country is not represented on the Comité, and consequently does not contribate towards its expenses. In a previous Report it is also pointed out that the Board of Trace had been then able to avail itself of the results of the scientific researches which had been carried out under the directions of the Bureau. A note on the instrumental equipment of the Burean of the Comité International is attached to the Report ; of the equipment of this Bureau we recently gave a detailed description. The tables of denvities and expansions hitherto in nse at the Standards Office act having been found entirely in accord with the mo-t recent scientific researeb, new tables have been drawn up for future use in the accurate comparisons of standards of measure and weight, aud these are given in the Appendiv. At the last annual trial of the pyx, the Keport stater, the differences in weight and fineness of the new coins then submitted fir testing were again found to he far within the legal amounts allowed, particularly on those allowod in the fincness of the gwd cain. Wi'h reference to the Electric Lighting Act, the Report remarks that with the advance of science there arise from time to time measures and weights of new forms and denominations which, in their application to comwercial parposes, subsequently receive the sanc'ion and force of legislative enactment. Among the most important of such new measures are those for the measurement of mechanical and of electrical energy, as applied to the measurement of electricity under the Electric liglating Act of last year. A preseut unit of measurement has been taken in Provisional Orders under this Aet, which is equivalent to "the energy contained in a current of 1000 amperes flowing under an electromotive furce of one volt during one hour." No practical meter of electricity capable of use in commerce and daily life has yet received official sanction. The Report and Appendices show that Mr. Chaney contiaues the work of his office as efficienlly as his means will permit.
AT the last sitting of the Academy of Sciences M. Pa-teur read and commented on a posthumous paper by Dr. Thuilier
his pupil, who died in Alexandria, where he was sent in August, in order to make observations on cholera. The late Dr. Thuilier takes an intermediate position between M. Pasteur and M. Bouchardal. M. Pasteur seems not to be quite opposed to the views of his pupil.

The German Cholera Commission are going, not, as they orizinally intended, to Bombay, but to Calcutta, as they consider the latter place more suitable for their investigations.

Is an official pemphlet pablished at Washington there is an interesting sketch of the work and history of the United States Bureau of Education. Not only does the Bureau publish reports on education in the United States, but at frequent intervals issues "Circulars of Inf,rmation" containing data of great value, and in many cases not otherwise accessible. Among other things these circulars contain information on the rystems of education in nearly every civilised country, including China; the pamphlet referred to contains a useful list of all the circulars issued, with their contents.

In the report by Dr. Daniel Draper on the New York Meteorological Ol servatory for 1882, it is shown that the actual hours of sunshine at Greenwich Observatory were 1245 in 1878 and 977 in 1879, when the pos.ible hours were 4447 ; whereas at New York in the former year the actual hours were 2936, and in the latter 3101, when the possible hours were 4449.

The " Howard" Medal of the Statistical Society for 1883 , with a ! rize of 20 !, has been awarded to Dr. R, D. R. Sweeting, S.Sc. Cert. Camb., Medical Superintendent of the Western Di-trict Fever Hospital, Fulham, for the best essay on "The experiences and opinions of John Howard on the preservation and improvement of the health of the inmates of schoole, prisone, workhouee, hospital., and other pub'ic institutione, as far as health is affected by structural arrangements relating to supplies of air and water, drainage," \&c.
Tue cultivation of Sorghum (S. sacciarafum) and the manufacture of sugar from its stems has of late occupie I a large share of attention by the Government in America, reports on which have heen issued at different times. The most recent of these is an "Investigation of the Scientific and Economic Relations of the Sorghum Sugar Industry." This is in the form of a report drawn up by the committee of the National Acarlemy of Sciencer, in whith the subject of the caltivation, production, and manufacture of the sugar is treated in considerable detail. The report is one of considerable value, especially to tho e interested in the progress of this industry.

From Dr. King's Annual Report of the Royal Botanic Garden, Calcutta, for the year $1882-83$, and Mr. J. F. Duthie's Report of the Governuent Botanical Gardens at Saharumpur and Musscorie for the year ending March 31, 1883, both of which have recently reached u;, we learn tomething of the progress of botany at these botanical centres in Indir. It is satisfactury to note that atCalcutta con-iderable improvements have been effected during the ycar, not only in the general arrangements of the garden it elf but also in the scientific department, for Dr. King informs us that " the bauboo and mat erections which ueed to do duty as conservatories have been replaced by three large, handsome, and efficient structures of iron, on which a thin thatch of grass is spread, and under shelter of which trojical plants thrive admirably." As usual at Calcutta considerable attention has been given to various economic plants, notably those which produce the valuable article indiarubber, and which have occupied so much attention of late. Dr. King says the cultivation of the soy bean of Japan (GIycine soja) has of late been pressed on the people of India, al.d " more in obedience to the loudness o: this clamour than from a belief in its soundness " he has arranged
that is, the practice of setting fire to the trees in order to clear the ground, is still carried on extensively. The clearing away of the woods is to prepare the ground for agriculture, but as much or more by the preparation of the soil as by obtaining space for the cultivation contemplated, and this is the peculiarity of the usage. The trees growing on the spot selected are burned, and the seed is sown on the soil thus manured with the ashes of the trees. The effects of sartage in other European countries, in India, and in North America, are brought under notice and discussed at some length. In France it is a prastice recognised both in forest science and in forest management, but whereas it was formerly resorted to largely it is now adopted only in special circumstances. It is there found that the oak, particularly a hardy variety known as the rouvre, of all forest trees sustains best the treatment of sartage. In the Ardennes the coppice woods of rowzre, which are so treated, yield excellent firewood and charcoal. The burning is carried out in August and September, and, at the proper time for sowing cereals, rye or buckwheat is scattered over the ground and covered with a light hoe. After the crop is reaped the young treeshoots begin to grow rapidly, but it is often necessary in order to insure perpetuity of good growths to plant out seedlings, and this is especially the case with the oak.

At the present time there are in Finland districts in which sarlage is now prohibited, others in which it is carried on under restrictions, and others in which it is tolerated and apparently freely practised. Should the cleared ground not be retained permanently under agriculture, it is likely to become covered again with a crop of self-sown trees, of the same kind as those destroyed, or of a kind of higher pecuniary value. On the banks of the Saima See, for example, fir trees have been replaced either by firs or by birch. The fir or pine may be of more value for building purposes, but the birch supplies a better firewood, and for this there is and probably will long continue an ever-increasing demand in St. Petersburg, to which it can be sent from most places in Finland by water.

When a crop of trees after destruction is not replaced by another crop, the proximate effect upon the climate is generally considered to be beneficial to agriculture. But in Sweden in many districts in which the forests have been cleared away it is remarked that spring now begins a fortnight later than it did in the last century, and this is attributed to protracted frost due to diminished humidity of the atmosphere.

The improved forest economy of France dates from the issue of the celebrated Forest Ordinance of 1669 , if not from a much earlier period. But in Finland all improvements in forest economy have been effected since 1809 , and particularly during the last twenty-five years. Though formerly an independent country, Finland was for a long time a province of Sweden, and in 1809 it was annexed to the dominions of Russia as a Grand Duchy, with the enjoyment of pre-existing privileges and of government under its own laws issued in accordance with its Constitution. In 1848 were sent out Imperial Instructions relative to the management of the Crown forests, along with regulations respecting projected surveys, and in 1858 new arrangements for the management of these forests were made.

The forest administration of Finland is now in the hands of well-trained officers, and much of the lavish waste of former days has ceased. By giving more attention to considerate thinning, by more skilful conservation and more scientific exploitation, it was felt that the "produce and the products of the forests might be equalised approximately, if not perfectly," and one object aimed at in the inspection of forests is to prevent the removal of trees being effected more rapidly than the re-growth. As has been remarked, Finland has a constant market for firewood and timber in St. Petersburg, where firewood is now more expensive than coal brought from Britain.

It is to its School of Forestry at Evois that Finland looks for its supply of trained forest conservators. This school was opened in 1859 , and intending students were required to produce before admission a university diploma, or a first class certificate of the completion of the course of study at a gymnasium. Closed after a time from lack of students, it was reorganised and reopened in 1874 . The course of study occupies two years, and the subjects are forest science, surveying, engineering, rural economy, legal economy, and drawing. In July and August the pupils are required, for the sake of practice, to measure fields and woods, and to estimate the quantities of standing timber. We observe that under forest science is included "the science of hunting," whereat many an English youth would no doubt be inclined to say " Happy Finlanders!" Officered by men trained in this scbool, the Finnish forest administration is now in a position to attain objects identical with those of the advanced forest economy of Europe : first, to secure a sustained production from the forests; secondly, to secure along with this an amelioration of their condition; and thirdly, a reproduction of them by self-sown seed when felled.

Readers who are interested in forest conservancy will find much valuable information in the middle section of Dr. Brown's work. The subject is one which must ere long force itself on the attention of political economists. The reckless clearances that have been effected in our Canadian territories are approaching a limit ; the most cautious estimates do not allow a longer period then fifteen years for the exbaustion of our Canadian timber lands at the present rate of consumption, and one very truitworthy and experienced authority limits it to seven years.
W. Fream

LETTERS TO THE EDITOR

[The Editor does now hold himsel/ responsible for opinnions expressed by his correspondents. Ncither can he undertake to refuen, or to correspond weith the zuriters of, rejacted mannacrigit. No notice is taken of anonymous commun cations.
[The Editor argently requests cornespondents to kmp thair lethers as short as possible. The pressure on his spacs is so grant that it is impossible otherwise to insure the appuseance ave of communications containing inferesting and novel facts.]

Optical Phenomena

Tue phenomenon described as "Cluud Glow" by your cor respondent, Mr. F. A. R. Rusvell, in Nature of the i5th inst. (p. 55), and by Mr. J. J. Walker in your last issue (p. 77), was observed here by me ; as, bowever, the time my observatimn commenced (5 p.m.) was three-quarters of an hour later than the time given by Mr. Ru-rell (418 pm .) it is probable that many of the features described by him had faded before the phenomenon came under my notice. As seen by me, the appearance consisted of an are-like mass of glowing vapour of a rudjy bee,
in the case of London, and less but perceptibly so in that of Brighton, the light has become of a more silvery hue, due doubtless to the extensive use of the electric light. The distance between this place (lat. 51°, long. o) and London is about thirtyfive miles in a direct line, and there is no place of any ire between these pointe, so there can be no mistake about it; and that the reflection of light at such a distance should be visible seems worthy of notice. It would be interesting to know how far, under favourable atmospheric conditions, the reflection of the London lights can really be scen.
W. J. Trentler

Fletching, Sussex, November 22

A Lunar Rainbow

ANY of your readers who happened to observe the heavens on Saturday night, the 17 th inst., at about 11.15 to 11.30 , could not fail to notice the beautiful lunar rainbow which was then visible. Though the moon had slightly passed its perivee, it was shining with such dazzling brilliance that the marbled shadows on its surface were almost effaced, and it hung in the heavens like a spotless crystal sun. The very stars seened farther away, as though they had shrunk back, ashamed and frighted by the silver glory. Jupiter and Sirius alone stood fearless and undaunted-the former, below her to the left, as if in attendance, the latter far away in the starless south. A few featherlike clouds which the moon illumined with a sple ndour of ber own, now and again sailed in stately silence ncross her path. but that portion which spread directly over her face, seemed to molt and become invisible like a snow flake on a warm hand, so that the cloud floated around ber as a veil, fringing but not covering her face. It was when surrounded by one of thece clouds that the rainbow became vi-ible. I had never seen one before, so cannot say whether it was more di-tinct and brizht than is usually the case, but 1 could see most vividly the red, yellow, green, and violet bands with their intermediate shades. The bow scemed formed on the cloud that shaded the moon at the time, and lay round her in a perfect, though comparatively small circle. It remsined so for some nine or ten minutes, and then faded gradually away into a luminous ha'o of golden brown. Those of your readers who were fortunate enough to behold this beautiful phenomenon will, I am sure, agree with me that it was a sight not to be forgotten.
J. C. Kernahan

The London Institation, Nomemher 24

Sudden Stoppage of Clocks

I have four clocks in my house; one is on a wall that bears north-east and south-west, while the other three ranged nearly at right angles about north-west and south-eav. The times of these clocks were not exactly together, there being from five to fifteen minates tet neen the tiwes; but all of them stopped on the morning of November 18 at times as recorded by each between 3.25 a.m. and $3-40 \mathrm{a} . \mathrm{m}$. Have any other clocks stopped on the same night? This place-lurgybrack, Le:terkenny, Co . Donegal, is in lat. $54^{\circ} 56^{\circ}$ and W. long. $7^{\circ} 41^{\prime} 52^{\circ}$.

Letterkenny, November 19
G. Henry Kinalian

Fog Bows

On November 14, when driving about half way between Convoy and Letterkenny, Co. Donegal, 1 observed a very complete bow at about I p.m., due solely to a fog. For the most part it was quite white, but at the springing there were slight traces of prismatic colours. On November 15 at $7 \mathrm{a} . \mathrm{m}$. at Letterkenny there was also a fog bow; this, however, had all through well developed prismatic colours. The 15th afterwards came on a heavy wet day; the 16th was fine; but since then there have been severe winds accompanied with slect, snow, and rain.
G. 11. Kinahan

Letterkenny, November 19

THE EARLY HISTORY OF THE HERRING ${ }^{1}$

THE Admiralty having intimated on July 31 that they were prepared to grant the use of a gunboat to enable the Board to undertake some investigations into the early

[^15]history of the herring, the convener of the Committee appointed to carry on these inquiries made as complete arrangements as was possible in the limited time, and, along with Sir James R. Gibson-Maitland, proceeded to join Her Majesty's gunboat Jackal at Invergordon on August 6. Besides making preparations to collect mate rial to illustrate the growth of the herring during the early stages of its development, it was thought desirable to make arrangements for the examination of the spawning grounds, in order to ascertain under what conditions the spawn was deposited. To assist in the work Mr. J. Gibson, D.Sc., of the Edinburgh University Chemical Laboratory, and Mr. J. T. Cunningham, B.A., of the Zoological Laboratory, were invited to join the expedition.

The trawls, dredges, and other appliances were taken on board on August 6, and on the following day the Jackal left Invergordon for the Moray Firth, and began the work of investigating the inshore spawning grounds lying between Wick and Fraserburgh. - Each place examined was indicated by a number on the chart, and will be spoken of in the Report as a "station." During the month the Jackal was at our disposal sixty stations were made, and nearly as many by the Vigilant from the time she relieved the Jackal to her return to Granton on Oct ber 6. The plan generally adopted at the various stations consisted in (1) taking the depth and the surface and bottom temperatures; (2) collecting samples of water from the bottom, and of the mud, sand, \&c., brought up by the sounding apparatus; (3) noting the nature of the surface fauna taken in the tow-net ; and (4) examining and, when necessary, preserving the animal and vegetable forms brought up by the trawl, dredges, and tangles. In this way there has been collected a considerable amount of raw material, from which important results will in due time be obtained.

Not the least interesting part of the work consisted in experimenting with herring ova which were successfully artificially impregnated and developed. At first experiments were made with spawn obtained at Helmsdale on August 7, from herring which had been several hours out of the water; but the results being unsatisfactory, it was determined to obtain, if possible, the roe and milt from living fish. We, therefore, frequently remained during the night on the fishing ground, and boarded the herring boats when the nets were being hauled. The fishermen, always pleased to see us, rendered every assistance in their power. Selecting ripe fish, we expressed the roe and milt on squares of glass, which were then placed in carrying boxes specially designed for the purpose. The boxes were conveyed by the Jackal to a small laborators near Geanies, which had been kindly placed at the disposal of the Committee. Once at the laboratory, the glass plates, with the developing eggs firmly adhering to them, were transferred to hatching boxes, through which a constant current of water flowed from a large tank. In from three to five days well formed active embryos were visible through the thin transparent egg membrane, and in ten days we successfully hatched fry from the artificially impregnated ova. We soon discovered that success depended on having an abundant supply of pure sea-water at an equable temperature. Unfortunately, just as our arrangements for experimenting on a large scale were completed, the herring fishing in the Moray Firth came suddenly to an end, and it was impossible to obtain further supplies of eggs.

We next directed our attention to the nature of the surface forms, which are believed to supply the principal food for the herring fry, and when this, on account of the weather, was no longer possible, we proceeded to examine the mussel scalps in the Dornoch, Cromarty, and Inverness Firths.

As a full account of the autumn's work will be presented to the Board in time for the Annual Report, only a short statement is now given, indicating rather the
lines of further investigations than the results already obtained.

During our stay in the Moray Firth our attention was constantly directed to the change in the position of the spawning grounds. It was stated that, some fifteen years ago, immense shoals of herring visited the inshore ground, in order to deposit their spawn in comparatively shallow water, but that now they had deserted their former favourite haunts for banks from thirty to eighty miles at sea, lying at a depth of from thirty to fifty fathoms. This has caused great distress, as from the absence of suitable harbour accommodation, the large boats fish from distant stations, and the inshore "takes" of the smaller boats (all of which can be beached) is not now sufficient to give employment to the local population in curing. The Report of the Commissioners for British Fisherics for 1862 gives the total take at the ports especially devoted to the inshore fishing, viz. Lybstcr, Helmsdale, Cromarty, Findhorn, and Buckie, as 158,314 barrels, whereas in 1882 it was only 31,574 . On the other hand, at Fraserburgh, a great centre for the deep-sea fishing, the take has increased from 77,124 in 1862 to 233,297 in 1882. Though these figures, and our experience during the autumn, show conclusively that herring are no longer so abundant on the inshore grounds, they do not prove that the shoals are every year spawning farther and farther from our shores, as is often alicged, or that, if we continue to disturb the offshore spawning grounds as we have the inshore, they will disappear from our waters altogether. Some who have had considerable experience believe that spawn deposited in forty fathoms water never develops, and that even if it did the herring fry would perish for want of the proper nourishment.

The disappearance of herring from inshore grounds is accounted for in many ways by the fishermen. Some believe that the offshore fishermen prevent the shoals from reaching the coast by the many miles of nets which they throw across their path; others that the inshore fishing has been destroycd by the winter sprat fishing, most of the so-called sprats being young herring. The fcrmer explanation seems to imply that the inshore and deep-sea herring are identical, whereas the latter seems to indicate that they are different. The Report of the German Commission bears that there is a difference between the autumn and spring herring of the Baltic ; there nay also be a difference between the deep-sea and inshore forms. When this problem is solved we may be able to account for the disappearance of the inshore herring. Should some herring have been so modified that they prefer to spawn on rocky ground in shallow brackith water rather than on deep gravel banks in the open sea, or if herring return to their birthplace to spawn, it will be possible by skilful management to restore the inshore fishing to its original productiveness.

Having examined the inshore spawning grounds, we next proceeded to investigate the banks where the deepsea herring were believed to spawn. At the outset we felt there was no evidence that these banks had not always been used by herrings as spawning beds. We do know, however, that as the herring boats increased in size enterprising fishermen were enabled to proceed farther to sea, and as a reward they discovered great shoals of herring, the comparative density and condition of which form an interesting subject for immediate investigation. It may have been a mere coincidence that this took place about the same time as the inshore shoals began to diminish. We have no reason for supposing that what we now speak of as deep-sea herring bave not been as abundant for centuries as they are at the present day. Man, it seems to your Committee, is not lilely much to reduce the number of herring some fifty miles at sea, however much influence he may exert over those which frequent our territorial waters. The time at our disposal did not permit our making a thorough examination of the
offshore grounds; in fact, we were only able to begin this part of the work. But there can be no doubt, from the observations already made, that spawn is deposited on these banks, and that the slight difference of the bottom temperature (some $3^{\circ} \mathrm{C}$.) would only slightly retard development. Further, the fry once hatched would find an ample supply of food in the rich surface fauna.
The Committee feel that, in order to obtain satisfactory information as to the food of the herring, it will be necessary to make continuous observations for a year or more at all the principal fishing stations around our coast. This could easily be undertaken tbrough the fi:hery officers.

As to the so-called migrations of the herring, the Committce has not had sufficien time to make a careful investigation, but from the observations made it seems evident that, as the spawning season approaches, the isolated herring and the small groups congregate together, and thus form dense s oals. The shoals once formed instinctively select banks free from mud and shifting sand, and provided with numerous rocks and stones, or with an abundant coating of seaweeds. Having found a convenient bank covered with water at a suitable temperature, and with the requisite specific gravity, they hover over it, if left undisturbed, apparentiy not paying much heed to the claims of hunger, but feeding on whatcver crustacea, sand cels, or other small forms come in their way. The spawn once ripe, they congregate at the bottom, the females depositing the roz on the rocks and seaweeds, to which it at once firmly adheres, and the males fertilising it with their milt. How long a period is required for the whole of the roe to escape, has yet to be ascertained. Soon after the "shotten" condition is reached, both malcs and fernales begin to leave the spawning ground,-hunger being probably the chief factor in the dispersal of the spent fish, - and this goes on until the whole shoal is dispersed, the hungry disbanded members, either singly or in small companies, hurrying hither and thither in anxious search of food. When they have partly recovered from their exhausted condition they may collect into larger groups; but their further movements are probably largely influenced by the shoals of crustacea on which they chiefly subsist. In all probability their principal feeding ground lies somewhere between the Shetland Islands and the Scandinavian coast. This region is probably the great reserve feeding ground for the tish of the North Sea, and it should at an early date be carcfully cxplored.
The cxamination of the three firths-Dornoch, Cromarty, and Inverness-has shown that they are all extremely well adapicd for producing mussels. Part of the Dornoch Firth already is a considerable source of wcalth to the authorities of Tain, but cven there the cultivation might be greatly extended. The demand for mussels is great, and the want of them, when herring are unattainable, is often a great hardship to the fishermen ; with a little care, the three firths mentioned would supply bait for the whole east coast of Scotland.
The Committee recommend the Board to remit the considcration of the Scottish mussel and oyster banks to a special committee, with the view of taking steps to have their complete control transferred from the Board of Trade to the Scottish Fishery Board.

As the work of the Committce proreeded they have been impressed with the fact that almost everything has still to be learned regarding the habits and life-history of all our food fishes, and they concur in the truth of the following extract from a recent repert of the International Fisheries Exhibition:-" It is a very striking fact that the one poirt on which all speakers at the conferences hell during the past summer at the Exhibition were agreed was this-that our knowledge of the habits, time and place of spawning, food peculiarities of the young, migrations, \&c., of the fish which form the basis of British
fisheries is lamentably deficient, and that without further knowledge any legislation or attempts to improve our fisheries by better modes of fishing, or by protection or culture, must be dangerous, and, indee 1 , unreasonable."

Further, your Committee feel that in order to make any progress the work must be undertaken in a systematic manner; the investigations must not be carried on by fits and starts, but continuously from month to month and from sear to jear, until all the facts have been collected and all the experiments made that are likely to throw any light on the difficult problems.

It having been alleged that the food fishes were disappearing from the eastern coasts of the United States, the Central Government in 1871 appointed a commissioner of fish and fisheries to inquire into the matter. The commissioner, instead of contenting himself with collecting evidence from people who knew little or nothing about the subject, proceeded to make careful and elabora'e investigations. As the result of these inquiries the United States fisheries have been greatly improved, to the benefit of both the general public and the fishermen, and our knowledge of fish has been materially increased.

In the same way, and about the same time, a German Commission et to work, and although their results are not so striking, they are extremely interesting, a fourth section of their report, only published the other day, containing a careful des-ription, with an outline drawing, of all the fish found in the Baltic.

The example set by America, Germany, and other Continental States we must follow. We have as a nation at last made a liberal acknowledgment of our ignorance, and at the conferences of the International F isheries Exhibition expressed regret.

It is satisfactory that, while we are taking steps to increase our knowledge, we shall at one and the same time be improving our inshore fisheries. The measures necessary, e.g. for enabling us to discover for the first time when herring fry become maties, and when maties reach the stage of full herrings, are exactly the measures required for the artiticial cultivation of the herring. From experience gained during the autumn we are now able to hatch immense numbers of herring; each herring produces from 30,000 to $50,000 \mathrm{eggs}$, but so small are they that 20,000 one layer thick can be placed on a square foot of glass, and from 1000 herrings it would be possible to obtain about $30,000,000$ fry, and this in from ten to fifteen diys. It is well known that where there is an abundance of herring th:re is also an abundance of cod and other food fish, bence the annual introduction of some millions of young herring into our territorial waters might serve to attract numerous large food fishes to our shores. And What is true of the herring holds for many other useful fishes, and some of them, such as the sole and turbot, which are less migratory than the herring, might be manipulated in much the same way as trout and salmon, if we only knew more of their habits.

In order to be able to carry on the work of investigation, the importance of which is now universally recognised, the Committee recommend that an application be made for sufficient funds to enable the Board to establish a marine station, and further that a steam vessel take the place of the Vigilant at present at the service of the Board.

The Vigilant is in every respect inadequate for the ordinary work of the Board, and if there is added to that work the acquiring of new knowledge as to the habits of our food fishes, the nature of their food, their time and place of spawning, and the way in which these may be influenced by the various modes of fishing, a steam vessel will be absolutely necessary.

The Committee have much pleasure in stating that they are deeply indebted to Lieut. Prickett, in command of H.M.S. Jackal, for the ready assistance rendered by him
and his officers, and for their unfailing courtesy and kindness during the expedition.

They bave also to state that it was a source of great satisfaction to them to find that the commander of the Vigilant was not only greatly interested in the work of the Corrmittee, but that, having a strong instinct for scientific work, he will be able to render much assistance in any further investigations that may be undertaken.

To Mr. Romanes, F.R.S., the Committee are greatly indebted for many valuable suggestions, and they are also indebted for the use of the Marine Laboratory instituted some years ago by Mr. Romanes and Prof. Ewart. Without this laboratory much of the work which will form the substance of the forthcoming Report could not have been undertaken.

> J. Cossar Ewart, Convener
> J. R. Gibson-Maitland
> A. Forbes Irvine.
> J. Maxtone Graham

Edinburgh, November 5

THE ORIGIN OF CORAL-REEFS

S^{0}O much additional information has in recent years been obtained regarding the physical and biological conditions of the sea that such a problem as that presented by the coral-islands of mid-ocean may well be reconsidered. Several able naturalists have lately called attention to this problem, and have insisted that the generally received solution of it is not satisfactory. Ainong geologists there may not unreasonably be a good deal of unwillingness to admit that this contention can be wellfounded. They have long been accustomed to regard Darwin's theory of coral-formation with justifiable pride as a masterpiece of exhaustive observation and brilliant generalisation. It has played an important part in their speculations regarding the larger movements of the earth's crust, and they have been so deeply impressed with its simplicity, and the grandeur of the conclusions to which it leads, that they will naturally and rightly refuse to surrender any portion of it save under the strongest compulsion of evidence. Some, indeed, may be inclined even to resent, almost with the warnith inspired by a personal injury, any attempt to show that it can no longer claim the general applicability which has been regarded as one of the strongest arguments in its favour. But the example of Darwin's own candour and overmastering love of truth remains to as ure us that no one would have welcomed fresh discoveries more heartily than he, even should they lead to the setting aside of some of his own work. 1 propose to give here somewhat in detail the more important data accumulated in recent years on this subject, and to state the conclusions to which a careful consideration of the evidence scems to me inevitably to lead.

Before the memorable voyage of the Beagle, the generally received opinion regarding the origin of the circular coral reefs or atolls of mid-ocean was that they had grown up on the rims of submerged volcanic craters. The enormous size of some of the atolls-thirty miles in diameter-might have been thought a sufficiently formidable objection to this explanation. But it did not appear insuperable even to so cautious a philosopher as Lyell, who only noticed it to refer his readers to the great dimensions reached by truncated volcanic cones, which he thought might retain their forms more easily under a deep sea than on land. ${ }^{1}$
An earlier and better theory, as Darwin admitted, had been started by Chamisso, who supposed that the circular form of an atoll was due to the fact that, as the more massive kinds of coral thrive most vigorously in the play of the surf, they naturally keep to the outside of the reef, and raise that portion to the surface " "Principles of Geology." 4th edit. (18_{35}), vol. iii. if 3 ra.
first. But when Darwin's own views were published, first in abstract before the Geological Society in 1837, and subsequently more fully in his separate volume on the Structure and Distribution of Coral-reefs in 1842, they were soon generally accepted, and were regarded not only as affording a satisfactory explanation of the whole phenomena, but as comprising one of the most impressive generalisations with which geology, fertile in such achievements, had yet astonished the world.

The theory proposed by Darwin, now so familiar, connected all the types of reef together as stages of one long process, every step in which could be illustrated by actual examples. At the one end stood the fringing-reefs, some of which might only lately have been started upon a racently upraised sea-bottom. Out of this stage, by continuous or intermittent subsidence, came barrier-reefs. Then as depression went on and the islands encircled by the barrier-reefs disappeared, their sites were taken by atolls. Lastly, where the rate of subsidence was too rapid for the upward growth of the corals, an atoll might become a submerged bank. Not only was this explanation self-consistent, but it harmonised well with the conclusion, derived from totally different evidence, that there
may have been widespread and long-continued subsidence over the ocean basins. It was moreover supported by the independent testimony of competent observers, who, with at least equal opportunities of studying the subject, had espoused Darwin's views. Of these witnesses the most important was undoubtedly Prof. Dana, who accompanied the Wilkes Exploring Expedition of 1838-42.' Another powerful ally was found in Mr. Couthouy, who had studied coral-growth in the Pacific and in the West Indian seas. ${ }^{2}$ But even without the concurrent testimony of eye-witnesses the theory proposed by Darwin fitted so admirably into the geological theory of the day that it came itself to be used as one of the most cogent proofs of vast oceanic depression. And such is still the position which it holds.

By a gradually widening circle of observation, however, a series of facts has been established, which were either not known or only partially known to Darwin. It should be borne in mind that, compared with more recent explorers, he did not enjoy a large opportunity of investigating coral-reefs. So far as can be judged from his published works, he appears to have examined only one atoll-the Keeling reef; and one barrier reef-that of

Fig. 1.-Secti in of the Darrier Reef, t'ahiti, on a truc scal-, vertical and horiront ih. By Mr. Murray and Lient. Swire, K. N., of the Chaflagry Expedition.

Tahiti. The Admiralty charts, the work of previous voyagers, and unpublished information communicated to him, enabled him to extend his generalisation over the whole of the rest of the coral-regions which he had not personally explored. The deep-sca expeditions of recent years have now brought so much new light to bear on the whole question that we are in a much better position to discuss it than he was, nearly half a century ago. Of a tew of the more important investigations a brief r/sum? may here be given, and their bearing upon Darwin's theory of coral-reefs will then be discussed.

As far back as the year 1851 the late I.. Agassiz stated that, in his opinion, the theory of subsidence could not be applied in explanation of the Florida reefs; that on the contrary the southern end of Florida is built up on successive concentric barrier-rcefs which have been gradually coanected and cemented into continuous dry land by the a:cumulation of mud flats between them, and that this process is still going on and must eventually convert the present keys and reefs from Cape Florida to the Tortugas into similar land. ${ }^{1}$

In 1863 Prof. Carl Semper published the results of his
${ }^{\text {' Bull. Mus. Comp. Zaol., vol. I. See also J Le Conte, Sthiman's }}$ Towrwal, xxili. (1857), p. 46, and E. B. Hunt, of cit. $x x x v$. (1863), p. 3^{88}.
researches among the Pelew Islands. He found himself unable, by the theory of subsidence, to account for the phenomena there presented, and threw doubts on the general applicability of that theory. He pointed out that while the southern islands, probably once atolls, consist of eoral-rock, upraised to from 400 to 500 feet above the sea, and are flanked by living coast-reefs, true living atolls exist at the northern end of the group. He contended that there is absolutely no evidence of subsidence, that the association of all the different kinds of reefs within so circumscribed an area seems entirely to disprove the notion of subsidence, and that, at least in this group of islands, Darwin's theory cannot be applied. In some suggestive observations on their probable origin, he remarks that the reefs depend mainly for their form upon the nature of the bottom on which they begin. Atolls are formed on submarine banks. A species of Porites takes root in little colonies varying from the size of the fist to masses six or eight feet in diameter. In time the central portions of these growing colonies die, while the outer

[^16]parts flourish and gradually build up a ring of coral. This ring, which may be circular or elongated in form, is sometimes continuous, but more commonly is traversed by one or more channels. The interior portions are scoured out and deepened by the tidal currents. Or if the form of the bottom and other conditions be suitable, a great many individual masses of coral gradually grow into a more or less continuous reef, through which the strong ebb and flow of the tides serve to keep open some channels. Thus fringing-reefs, through the scour of the sea, become barrier-reefs, which retreat from the adjacent coast in proportion to the gentleness of the slope on which they are built. On a steeply shelving sea-bottom the reefs must obviously remain fringing-reefs.

Dr. Semper admitted that possibly many atolls and barrier-reefs were formed during subsidence, and even that the downward movement may in many cases have furnished the conditions for starting them into existence. The solution of the problem ought in each case, he thought, to be determined by actual detailed observation. But that the alternate currents of the tides are the main agents in the building of coral-reefs could be proved, he maintained, by many cases which, on the theory of subsidence, must be regarded as exceptional of inexplicable, such as the occurrence of true atolls in the midst of areas of elevation. ${ }^{1}$

In the second edition of his "Coral Islands," published in 1874, Darwin briefly referred to these observations. He thought it not improbable that the Pelew Islands originally subsided, were afterwards upraised, and again subsided, but admitted that the proximity of fringing-reefs was opposed to his views. He suggested that if the submarine slope were steep reefs which began as fringingreefs would continue to be of that form, even during subsidence. There is, however, no admission that any valid objection had been made to his theory, or that true atolls and barrier-rcefs might be formed in many places without subsidence.

In 1868 Prof. Semper reiterated his dissent from the prevailing theory of coral-reefso ${ }^{2}$. Next year he reprinted his original paper (which seemed to him to have remained unknown to most naturalists) in a general account of the Philippine Islands, wherein he appended some additional notes. ${ }^{3}$ In one of these he refers to the observations of Pourtales and others on a submarine calcareous deposit which in some regions is slowly being upraised to serve as a foundation for coral-reefs. To the objection that if atolls and barrier-reefs could be formed during a period of elevation, they ought to be found not merely at, or only slightly above sea-level, he replies that they are not in fact confined to that limited zone, but that even if they were, this would not invalidate his conclusion that the reefs are due to a complex cooperation of coral-growth with the waves and currents of the sea, and not to the one cause-the subsidence of entire regions-invoked by Darwin.

In the following year another contribution to the antisubsidence literature was made by Dr. J. J. Rein, who, in an interesting me noir on the physical geography of Bermuda, offered some observations on the coral-reefs of those islands. ${ }^{\text {a }}$ He suggested that the Bermuda group tnight originally have been a submarine mountain or bank on which colonies of deep-water corals took root, and where other organisms flourished in such abundance as gradually to raise the top of the submerged ground to the zone in which reef-building corals could flourish. He adduced no evidence in support of this suggestion further than that there is no proof in Bermuda of subsidence,

[^17]which, however, as Darwin had so cogently shown, from the very fact of the movement being downward, is in most cases not to be looked for.

An important memoir, marking a totally new departure in coral-reef literature, appeared in 1880 containing an abstract of observations made by Mr. Murray during the great voyage of the Challenger. ${ }^{1}$ The chief features of this contribution may be thus briefly summarised :-With hardly an exception the oceanic islands are of volcanie origin, and it is therefore to be presumed that the submarine ridges and peaks, which rise to within various distances from the surface, are likewise due to the protrusion of volcanie materials. There is thus no actual evidence of the still unsubmerged portions of any extensive continent or mass of land such as Darwin's theory requires. Whether built up above the sea-level into islands, or brought up to varying heights below that level, the volcanic eminences of the ocean may conceivably be brought into the condition of platforms for reef-builders by two causes. In the first place the erosive force of waves and tidal scour must tend to reduce all prominent oceanic summits to the lower limit of breaker-action, and thereby to produce truncated cones or flattened domes and ridges on which coral-reefs, if not already established, might spring up. In the second place, submarine eminences may have been brought up to within the zone of the reef-builders by the deposit of organic detritus upon them. One of the most remarkable results; of recent deep-sea exploration has been the accumulated evidence of the extraordinary profusion of pelagic life in the tropical surface waters. From experiments made during the cruise of the Challenger, Mr. Murray estimated that, if the organisms are as numerous down to a depth of 100 fathoms as they were found to be in the track of the townet, there must be more than sixteen tons of carbonate of lime in the form of calcareous shells in the uppermost hundred fathoms of every square mile of ocean. The shells and skeletons of these organisms fall in a constant rain to the bottom, where they supply some of the food needed by the fauna which there subsists upon the mud. By the accumulation partly of these superficial exuviæ, partly of the remains of the creatures living at the bottom, an organic deposit is growing over the seafloor in the tropical regions wherein coral-recfs flourish. Owing probably to the greater solvent action of the increased proportion of carbonic acid in sea-water at great depths, or to the greater mass of water through which they must sink, the shells of the upper waters seem never to reach the bottom or at least soon disappear from it, for they are seldom met with in deep dredgings. But in shallower portions of the ocean they abound. Consequently it may be legitimately inferred that the rate of growth of the calcareous organic deposit on the seabottom must be more rapid in the sballower waters. The tops of submarine peaks and banks, being constantly heightened from this cause, will in course of time be brought up to a depth at which sponges, hydroids, deepsea corals, annelids, alcyonarians, mollusks, polyzoa, echinoderms, and other organisms can flourish abundantly. When this has taken place, the upward growth of the calcareous formation will beaccelerated by the accumulation of the remains of this abundant fauna as it lives and dies on the bottom. At last the zone of recf-building corals will be reached, and thereafter a growth of coralrock will bring the sea-floor up to the level of low water. That coral-reefs undistinguishable from barrier-reefs and even atolls might be formed upon banks of sediment in a deep sea was admitted by Darwin. ${ }^{2}$ But the assumption of so many submerged banks as this explanation would require, seemed to him so improbable that he dismissed it from further consideration. He was not aware, however, of the enormous abundance of minute cal-

[^18]careous organisms in the surface waters and of the comparative rapidity with which these remains might be accumulated on the sea-bottom.

Reef-builders starting on a submarine bank, whether prepared for them by erosion, by subsidence, or by the upward growth of organic deposits, would form reefs that must necessarily tend to assume the atoll form The central portions of the colony or clump of coral will gradually be placed at a disadvantage as compared with the peripheral parts of the mass in being further removed from the food-supply, and will consequently dwindle and die. In proportion as the reef approaches the sea-level these central parts are brought into increasingly uncongenial conditions, until at last an outer ring of vigorous, growing coral-reef encircles an inside lagoon overlying the central stunted and dead portions. The possibility of such a sequence of events was likewise recognised by Darwin. "lf a bank, either of rock or of bardened sediment," he says, "lay a few fathoms submerged, the simple growth of the coral, without the aid of subsidence, would produce a structure scarsely to be distinguished from a true atoll." ${ }^{1}$

As the atoll increases in size the lagoon becomes proportionately larger, partly from its waters being less supplied with pelagic food and therefore less favourable to the growth of the more massive kinds of coral, partly from the injurious effects of calcareous sediment upon coral-growth there, and partly also from the solvent action of the carbonic acid of the sea-water upon the dead coral. The solution of dead calcareous organisms by sea-water is undoubtedly one of the most interesting facts brought to light by the naturalists of the Challenger Expedition.

Moreover, a connected chain of atolls might be formed on a long, submarine bank, and similar conditions of growth would then be displayed as in the case of a single atoll. The marginal atolls having a better supply of food would grow more vigorously than those towards the centre, and would tend to aisume elongated forms, according to the shape of the bank beneath them. Many of them might coalcsice, and might even ultimately give rise to one large atoll. Such a chain of atolls as that of the great Maldive group may be thus explained without the necessity for any disseverment by oceanic currents as Darwin supposed. On the other hand, the submerged coral-banks of the Lakadivh, Caroline, and Chagos archipelago 3 may be regarded as representing various stages in the growth of coral-reefs, some of them being still too deep for recf-builders, others with coral-reefs which have not yet quite growa up to the surface. Bat scattered among these banks are some of the most complet-ly formed atolls. Mr. Murray contends that it is difficult to conceive how such banks can have been due to subsidence, when their situation with respect to each other and to the perfect atolls is considered. He reverses the order of growth as given by Darwin, who cited the great Chagos bank as probably an example of an atoll which had been carried down by a subsidence more rapid than the rate at which the corals could build upwards.

From a careful study of barrier-reefs Mr. Murray concludes that, in their case also, all the phenomena can be explained without having recourse to subsidence. He found from personal observation and a comparison of the Admiralty charts that most exaggerated notions prevail regarding the depth of water immediately outside the reef, which is usually supposcd to be very great. After minutely exploring the barrier-reef of Tahiti, and sounding the water both inside and outside the reefs, he found that the slopes are just such as might be looked for on the supposition that the corals have grown up without any sinking of the bottom. The accompanying section (Fig. 1), drawn to a true scale will show that there is nothing abnormal in the declivities. Beginning near the
shore or wherever the bottom whether of rock or sediment comes within the range of the reef-builders, a barrier-reef grows vigorously along its outer face, while its inner parts, as in the case of an atoll and for the same reason, are enfeebled and die. The force of the breakers tears off huge masses, sometimes 20 or 30 feet long, from the face of the reef, especially where from the borings of mollusks, sponges, \&c., the coral-rock has been weakened. These blocks tumble down the seaward face of the reef, forming a remarkably steep talus. It is this precipitous part of the reef which has probably given rise to the notion that the water outside suddenly descends to a profound depth. The steep front of fallen blocks is succeeded by a declivity covered with coral sand, beyond which the bottom slopes away at an angle of no more than 6°, and is covered chiefly with volcanic detritus. Mr. Murray insists that any seaward extension of the reef must be on the summit of the talus of broken coral. The reef will gradually recede from the shore of the island or continent, and will leave behind here and there a remnant to form an island in the slowly broadening lagoon-channel.

The very general occurrence of proofs of elevation among the regions of barrier-reefs and atolls is in harmony with the volcanic origin of the ground on which these coral-formations have grown, but is, as Mr. Murray contends, most difficult of explanation on the theory of widespread subsidence. He affirms that all the chief features of coral reefs and islands not only do not necessarily demand the hypothesis of subsidence, but may be satisfactorily accounted for, even in areas where the movement is an upward one, by the vigorous outward growth of the corals on the external faces of the reef in presence of abundant food, by their death, disintegration, and removal by the mechanical and chemical action of the sea in the inner parts, and by the influence of subaerrial agencies and breaker-action in lowering the level of the upraised areas of coral-rock.

Arch. Geirie
(To be continued.)

NOTES

It will be seen from our Diary that the meeting of the Linnean Society on December 6 is to be exclusively devoted to the reading of a p ssibumous essiy on Instinet by the late Mr. Darwin. We are informed that this essay is full of important and litherto unpublished matter with regard to the faets of animal instinct eonsidered in the light of the theory of natural selection; and as the exi-tenee of the essay has only now been divulged, we doubt not that the next meeting of the Linnean Society will be of an unusually interestiag character.

Tue death is announced, at the age of serenty-six, of Mr. John Eliot Howard, F.R.S., well known as a chemitt and quinologist. He was the son of Mr. Luke Howard, F.R.S., a well-known meteorologist in his day.

We announced some time ago that the Finnish Senate had vuted a sum of 37,000 marks to l'rof. Lems'rön for the continuation of his experi nents with the aurora borealisat Solankyla in the Finnish Lappmark during 1882-83, of which be gave an account in Nature (vol. xxvii. p. 389). The plan to be followed during the present winter at this station is t) make ob ervations three tines in every twenty-fuur hours, with the exception only of the first and fifteenth of every m)nth, when they are made every five minule; throughout the twenty-four bours, and three days of the month when they will be effected every half minute during two hours. In order partly to obtaia the necessary data for the eontrol of the variation of the current from the almosphere with the latitude, and partly to reduce the eff.ct of probable influences, a branch station will be temporarily e tablished during the months of Novenber, December, January, Febraary, aud part of Mareh at the buildings of the Kultala gold
works, some distance from the principal station at Sodankyli. At Kultala exhaustive experiments will be made as to the effect which the increase of the area of the "utströmnings" apparatus, invented by Prof. I.emström for prodncing the anrora borealis, has on the intensity of the current. The observations will in other respects be the same at both :tations. At Sodankylai they will be continued until September 1, 1884 .

The Report by the Board of Trade on their Proceedings and Business under the Weights and Measures Act, 1878, for the pant jear bas been issned. The following are some of the leading roints in the Report: During the past year the Standards Department has had the opporiunity of assisting the United States Government in a comparis n of their standard of length (Yard No. 57), with the standards at this office. Prof. C. S. Peirce, of the United States Coast and Geodetic Survey, came to Lendon for thls $\}$ urpose in June last, on bebalf of Prof. J. E. Hilgard, who has eharge of the Bureau of Weights and Measnres at Washington. A large number of comparisons of these mea-ures was made with all possible care, and it was fonnd that at $62^{\circ} \mathrm{F}$., Yard No. 57 was 0.000022 inch longer than the Yand No. 1 deposited at this office. The results of these comparisors, as calculated by Prof. Peirce, will be referred to in a printed memorandum which will be separately drawn up. It was fonod necessary to test the accuracy of the standard kllogram, and the only resurce was to apply to the Comité International des Poids et Me ures for permis-ion to compare the Briti.h standard kilogram with that deprited at their bureau near Paris. By the report of this comparion, it is seen that our :tandard hilogram is now 200178 milligrams too llght. The Report rather naively points out that, but for the courtesy of the Comité, the Standards Deparıment would have been unable to re-verify our unit of metric weight, as this conntry is not represented on the Comité, and consequently does not contribute towards its expenses. In a previous Report it is also pointed out that the Board of Trace bad been then able to avail itself of the results of the scientific researches which had been carried out under the directions of the Bareau. A note on the instrumental eqnipment of the Barean of the Comité International is attached to the Report ; of the eqnipment of this Bureau we recently gave a detalled description. The tables of densities and expansions hitherto in use at the Standards Office nct having been found entirely in accord with the mo-t recent scientific researeh, new tables have been drawn np for futnre use in the accurate comparisons of standards of measure and weight, and these are given in the Appendix. At the last annual trial of the pyx, the Report states, the differences in weight and fineness of the new coins then snbmitted f.r testing were again found to be far within the legal amounts nllowed, particularly on those allowod in the finencss of the gold sinh. With reference to the Electric Lighting Act, the Report remarha that with the advance of science there arise from time to time measures and weights of new forms and denominations which, in sheir application to comasercial purposes, subsequently receive the sanction and force of legislative enacturent. Among the most important of such new mealures are those for the measurement of mechanical and of electrical energy, as applied to the measurement of electricity under the Elecaric Lighoing Act of last year. A present unit of measurement has been taken in Provisional Orders under this Act, which is equivalent to "the energy contained in a current of 1000 amperes flowing nader an electromotive furce of one volt during one hour." No praciical meter of electricity capable of use in commerce and daily life has yet reccived official sanetion. The Report ond Appendices show that Mr. Chancy contirues the work of his office as tfficiently as his means will permit.
AT the last siting of the Academy of Sciences M. Pa-teur read and commented on a posthumous paper by Dr. Thuilier
his pupil, who died in Alexandria, where he was sent in August, in order to make observations on cholera. The late Dr. Thuilier takes an intermediate position between M. Pastenr and M: Bouchardat. M. Pasteur seems not to be quite opposed to the views of his pupil.
Tue German Cholera Commission are going, not, as they orijinally intended, to Bombay, but to Calcutta, as they consider the latter place more suitable for their investigations.

In an official pamphlet published at Washington there is an interesting sketch of the work and history of the United States Bureau of Education. Not only does the Bureau publish reports on education in the United States, but at frequent intervals is ues "Circulars of Infurmation" containing data of great vilue, and in many cases not otherwise accessible. Among other things these circulars contain information on the systems of education in nearly every civilised eonntry, including China; the pamphlet referred to contains a useful list of all the circulars issued, with their contents.

In the report by Dr. Daniel Draper on the New York Meteorological Ot servatory for 1882 , it is shown that the actnal hours of sunshine at Greenwich Observatory were 1245 in 1878 and 977 in 1879, when the pos ible honrs were 4447 ; whereas at New York in the former year the actual hours were 2936, and in the latter 3 tor, when the possible hours were 4449.

The " Howard "Medal of the Statintical Society for $\mathrm{IS8}_{3}$, with a !rize of 201 ., has been awarded to Dr. R. D. R. Sweeting, S.Sc. Cert. Camb., Medical Superintendent of the Western Di-trict Fever Hospital, Fnlham, for the best essay on "The experiences and opinions of John Howard on the greservation and improvement of the health of the inmates of schoole, prisone, workhou-es, horpitals, and other pub'ic institntione, as far as health is affected by structural arrangements relating to supplies of air and water, drainage," \&c.

Tue cultivation of Sorghum (S, saccharatum) and the manufacture of sugar from its stems has of late occupie I a large share of attention by the Government in America, reports on which have been issued at different times. The most recent of these is an " Investigation of the Scientific and Economic Relations of the Sorghum Sugar Industry." This is in the form of a report drawn up by the committee of the National Academy of Science, in wbich the subject of the cultivation, production, and manufacture of the sugar is treated in considerable detail. The report is one of considerable value, especially to tho einterested in the progress of this industry.

From Dr. King's Annuil Report of the Royal Botanic Garten, Calcutta, for the year 1882-83, and Mr. J. F. Duhie's Report of the Government Botanical Gardens at Saharunpur and Mussoorie for the year ending March 31, 1883, buth of which have recently reached u ', we learn something of the progress of botany at these botanical centres in Indi2, It is satisfactury to note that atCalcutta con-iderable iruprovements have been effected during the year, not only in the general arrangements of the garden itelf but also in the scientific department, for Dr. King informs us that "the bamboo and mat erections which weed to do duty as conservatories have been replaced by three large, handsome, and efficient structures of iron, on which a thin thatch of grass is spread, and under shelter of which tropical plants thrive admirably." As usual at Calcntta considerable attention has been given to various economic plants, notably those which produce the valuable article indiarubber, and which have occufied so mnch attention of late. Dr. King says the cultivation of the soy bean of Japan (Glycine soja) has of late been pressed on the people of India, ar.d "more in obedience to the loudness ot this clamour than from a belief in its sonndness " he has arranged
for a supply of the beans from Japsis, which he pro, osen to distribute extensively for trial. Much consideration has also been given to the utilisation of the various fibrons plants. In the Lloyd Botanic Garden, Darjeeling, mueh damage continued to be done by the cockehafer grubs until pretty nearly every plant in the garden was killed. "The wh le of the grass in the garden and all herbaceons plants rapidly succumbed to its ravages, as did many of the flowering shrubs, only the deeper rooting shrubs and trees being spared. Even the plants in the conservatories did not altogether escape; eggs of the insect having got in considerable numbers into the soil of the pots." In response to vigorous efforts to exterminate this plague about six millions of the grabs were collected and destroyed by the garden labourers, so that at the time of writing the Report it was showing signs of disappearing. In Mr. Duthie's Report it is satisfactory to find that economic plants, as at Calcutta, are largely cared for, and that the coltivation of medicinal plants and the preparation of drngs from them is being proceeded with. Amongst these may be mentioned Alexandrian senna (Cassia acwifolia), henbane (Hyoscyamus miger), belladonna (Atropa belladonna), \&c. Additions are also being constantly made to the maseum.

Part VI. of the "Herefordshire Pomma" has been issued, and Part vii. and last will be published in the autuon of next year, after the Congress and Exlibition of the Pomological Society of France, to be held at Rouen in Oetober.
In the Gafon Mail of August 23 and September 24, Mr, E. Knipping describes the coune of two storms which occurred, one on August 17 to 20, and the other September 11 to 14. These descriptions show how very ompletely the Japan meteorological service is organised, and that good work is being done in the Far East in collecting data for scientific meteorology.
Messrs. Macaillan and Co, have published as one of their "Nature Series" volames, Drs. Gladstone and Tribe's "Chemistry of the Secondary Batteries of Planté and Faure." "About Photography and Photographers" is the title of an interesting gossipy little volume by Mr. II. Baden Pritchard, published by Messrs. Piper and Carter.
Mrss J. M. Hayward wishes to state with reference to Mr. Denuing's letter ($p .56$) that she did give the hour (10.30) at whieh her letter was written, with the date, at the end. She adds that a clock struck ten shortly before she saw the meteor; but she thinks the elock was probably slow, as it generally is. She has no doubt it was the same meteor as that seen at Bath, Bristol, and Chelmsford about the same time.
The additions to the Zoological Society's Gardens during the past week include two Bonnet Monkeys (Macacus sinicus) from India, presented repectively by Mr. H. G. Rose and Miss Morant; a Common Fox (Canis vulfes), British, presented by Mr. H. Vaughan ; two Bullinches (Pyrrhula europaa), European, presented by Mr. Archibald Aitchison; four Moorish Toads (Bufo mawritanicus) from Tunis, presented by Mr. Frederick Brilges ; twelve Ruffe, or Pope (Acerina cernua) from British waters, presented by Mr. T. F., Gunn ; two Michie's Tnfted Deer (Elaphodus michianus \& 8), a Chinese Water Dees (Hydropotes incrmis), two Elliot's Pheasants (Phasianus Allioti) from China, deposited; six Coal Titmice (Parus ater), British, purchased; a Spotted Ichneumon (Herpestes nepalensis) from Nepal, five Blue-crowned Hanging Parrakects (Loriculus gul$g^{u / u s)}$ from Malacea, received in exchange.

OUR ASTRONOMICAL COIUMN

Pons' Comet.-Mr. S. C. Chandler has communicated to the Astronomische Nachrichten his own experiences at the Observatory of Harvard College with reference to the remark.
able increase in the brightness of this comet on September 22, which has been already mentioned in Nature (voL xxviii. p. 624). He observed with an aperture of 6 k inches. On September 21, between 8 h .55 m , and $1 \mathrm{Ih} . \mathrm{M}$. T. he found the comet very faint and diffuse; the central condensation or nucleus about equal to a star of 11 m . On September 22, about 7 h. M.T. he was astonished to find exactly in its place a bright, clearly-defined 8 or $8 \$$ mag. star without sensible trace of nebulosity, exsept with a power of only 50 , giving a field of if degrees, and even with that not noticeable except with attention. It was so distinctly stellar an object that an experienced observer might have failed to distinguish it from stars of similar brightness in the neighbourhood. On September 23 , at 7 h . 30 m ., he found the physical appearance again greatly changed. The nncleus seemed spread out into a confused bright disk about a half minute (arc) in diameter, ontside of which was a nebulous envelope much brighter than on the preceding night, and about one minute and a half in diameter. The comet was judged to be a half magaitude brighter than on September 22. On September 25 it appeared spread ont into a confused disk two minutes in diameter, a faint nueleus or coacentration of light not brighter than if m . So rapid an increase and diminution of light is a very unusnal phenomenon; Mr. Chandler thinks that phases of this kind may be eharacteristic of the comet's m de of light development, as the same variation was repeated on a smaller scale on October 15, when a nucleus of about 9.3 m . appeared, which gradually dissipated on the following eveningx, through expan-ion into the general nebulosity. Tne comet's distance from the sun when Mr. Chandler remarked the great increase of brightnens was 2.18 , the earth's mean distance being taken as unity, not the least surprising condition in the case.
In the same number of the Astronomische Nachrichten Prof. Schiaparelli gives some account of his observations on the physical appearance of the comet at Milan, which are of much interest in connection with thove of Mr. Chandler. On September 22 he found the comet about 3^{\prime} in diameter, faint and diffuse, the nueleus about 13 m ., but the sky was not perfectly clear ; the observations for ponition were made at $8 \mathrm{~h} .30 \mathrm{~m} . \mathrm{M}$. T. On September 23, about 8 h .13 m ., the comet had increased in brightness since the previous evening in an extraordinary manner ; it now appeared as a star of 8 m ., with a very faint surrounding nebulosity of from I' to $1 \mathrm{l}^{\prime}$ diameter. The central part was not exactly a luminous point, but had a sensible diameter and indistinct ontline. On the 25 th it was still bright, but the nucleus of the 23 rd had spread out so as to form a circular nebnlosity 3^{\prime} in diameter, without notable central condensation.

Comparing the Milan and Harvard observations, it would appear that the rapid increase in the light of the comet took place between September 22, at 7 h .45 m . and 11 h .45 m . Greenwich mean time; it remains to be seen how observations elsewhere will accord with this inference. Mr. Chandler suspected, from a comparison of his own notes with those made by the observers at Kiel and Vienna, that the increase would le found to have taken place between the Enropean and Americon observations on September 22.
M. Bigourdan, of Paris, says on November 19, "The comet is a nebnlosity of from sixth to seventh magniude, with nucleus: the brightest part of the coma, that which borders on the nocleus, is rot symmetrical about it ; it is less extended in the angle $110^{\circ}-140^{\circ}$, and is brightest in the angle $280^{\circ}-290^{\circ "} . "$ Taking the comel's theoretical intensity of light on November 19 as unity, the intensity on December 31 will be 9.5 , and on Jannary 14 (when it is at its maximum), $13^{\circ} \%$. In the absence of moonlight the comet must be, for some time, a naked eye object.

THE GENERAL THEORY OF THERMODYNAMICS

THE first of the six lectures on "Heat in its Mechanical Applications" at the Institution of Civil Engineers was delivered on November 15 by Prof. Osborne Reynolds, M.A., F.R.S., the subject being as given in the title. The following is an abstract of the lecture :-
Thermodynamics, Prof. Reynolds said, was a very difficult subject. The reasoning involved was such as could only be expressed in mathematical language ; but this alone would not prevent the Ieading facts and features of the subject being expressed
in popular language. The physical the ries of astronomy, light, and sound involved even more mathe natical complexities than thermodynamics, but these subjects hat been rendered popular, and this to the great improvement of the theories.

What rendered the subject of thermodynamics so obscure was that it dealt with a thing or entity (hea!) which, although its effects could be recognised and measured, was yet of such a nature that its mode of operation could not be pereeived by any of our senses. Had clocks been a work of nature, and had the mechanism been so small that it was absolutely imperceptible, Galileo, instead of having to invent a machine to perform a definite function, would have had, from the observed motion of the hands, to discover the mechanical principles and actions involvel. Such an effort would have been strictly parallel to that required for the discovery of the mechanical principles of which the phenomena of heat were the result.
In the imagined cace of the clock, the discovery might have been made in two ways. By the scientific method: from the observed motion of the hand, the fact that the clock depended on a uniform intermittent motion would have led to the discovery of the principle of the uniformity of the period of vibrating bodies; and on this principle the whole the ry of dynamies might have been founded. Such a theory of mechanics would have been as obscure but not more obscure than the theory of thermodynamics based on its two laws. But there was another method; and it was by this that the theory of dynamies was brought to light-to invent an artificial clock, the action of which could be ween. It was from the actual penduluin that the principles of ise constancy of the periods of oscillating and revolving bodies were discovered, whenee followed the dynamical theories of astronomy, of light, and of sound.
As regarded the action of heat, no visible mechanical contrivance was discoverei which would afford an example of the mechanical principles and motions involved, so that the only apparent method was to di-cover hy experiment the laws of the action of heat, and to accept these as axi matic laws without forming any mental image of their dynamical origin. This was what the present theory of thermodynamies purported to be.
In this form the theory was purely mathermatical and not fit for the suhject of a lecture. But as no one who had studied the suhject doubted for one moment the mechanical origin of these law", Prof. Reynolds would be folloning the spirit if not the letter of his subject, if he introluced a conception of the mechanical actions from which these laws sprang. This he should do, although he douhted if he should have so ventured, had it not been that while considering this lecture he hit upon eertain mechanical contrivances, which he would call kinetic eagines, which afforded visihle examples of the mechanical action of heat, in the same sense as the pendulum was a visihle example of the same principles as thase involved in the phenomena of light and sound. Such machines, thanks to the ready help of Mr. Foster his assi-tant in constructing the apparatas, he shoul-1 show, and he sould not but hope that these kinetic engines might remove the source of the obscuity of thermodynamics on which he had dwelt.
The general action of heat to cause matter to expand was sufficiently ohvious and popularly known; also that the exparding matter could do work was sufficiently obvious, But the part which the heat played in doing this work was very obscure.

It was known that heat played two, or it might be said three, distinct mechanical pasts in doing this work.

These parts were :--

1. To supply the energy necessary to the performance of work.
2. To give to the matter the elasticity which enabled it to expand-to convert the inert matter into an acting wachine.
3. To convey itself, i.e. heat, in and out of the matter.

This third function was generally taken for granted in the theory of thermodynamics, although it had an important place in all applications of this theory.

The idea of making a kinetie engine which should be an example of action sueh as heat, had no sooner occurred to him than various very simple means presented themselve. Heat was transformed by the expansion of the matter caused by heat.

At fint he tried to invent some mechanical arrangement which would expard when promiscuous agitation was imparted to its parts, but contraetion seemed easier-this was as grod. All that was wanted was a mechanism whieh wou'd change its
shape, doing work when its parts were thrown into a state of agitation.

In order to raise a bucket from a well either the rope was pulled or the windlass wound-such a machine did not act hy promiscuous agitation; hut if the rope was a heavy one (a chain was better) and it was made fast at the top of the well so that it just suspended the bucket, then if it was shaken from the top waves or wriggles would run down the rope until the whole chain had assumed a continually changing sinuous form, And since the rope could not stretch, it could not reach so far down the well with its sinu ssities as when straight, so that the bucket would be somewhat raised and work done hy promiscuous agitation. The chain would have changed its mechanical cha. racter, and from being a rigid tie in a vertical direction would possess kinetic elasticity, i.e, elasticity in virtue of the motion of its parts, cauving it to contract its vertical length against the weight of the bucket. Now it was easy to see in this case that to perforin this operation the work spent in shaking the rope performed the two parts of imparting energy of motion to the chain and raising the bucket. A certain amount of energy of
 backet of a certain weight through a certain distance, and the relation which the energy of agitation bore to the work done in raising the bucket followed a law which if expressed would coincide exaetly with the see.nd law of thermodynamics. The energy of agitation imparted to the ehain was virtually as much spent as the actual work in raising the hucket, that was to say, neither of these energies could be used over again. If it was wanted to do further work the raised bucket was taken off, and then to get the chain down again it must be allowed to cool, i.e. the agitation must be allowed to die out ; then attaching another bucket, it would be necessary to supply the same energy over again.
He had other methods besides the simple chain which served better to illustrate the lecture, hut the principle was the same.
In one there was a complete engine with a working pump. By mere agitation the bucket of the puipp rose, lifting 5 lbs . of water one foor high ; before it would make another stroke the agitated medium must be cooled, i,e. the energy which caused the elasticity must be taken out, then the bucket de cended, and, being agitated again, made another stroke.

He felt that there was a childish simplicity about these kinetic engines, which might at first raise the feeling of "A bana and Pharpar " in the minds of some of his hearers. But this would be only till they realised that it was not now attempted to make the bent machine to raise the bucket, but a machine that would raise the bucket by shaking. These kinetic engines were no mere illutrations or analogy of the action of heat, but were instances of the action of the same principles. The sensihle energy in the shaking rope only differed in scale from the energy of heat in a metal bar. The temperature of the bar, ascertained from absolute zero, measured the mean squire of the velocity of its parts multiplied by some constant depending on the mass of these parts. So the mean square of the velocity of the links of the chain multiplied hy the weight per fuot of the chain really repre-ented the energy of visible agitation in the chain.

The waves of the sea cunstituted a source of energy in the furm of sensible agitation; but this energy could not be used to work continuousily one of these kinetic machines, for exaetly the same reason as the heat in the bodies at the mean temperature of the earth's surface could not be used to work heatengines.
A chain attached to a ship's mast in a rough sea would become elastic with agitation, hut this elasticity could not be used to raise cargo out of the hold, because it would be a constant quantity as long as the roughness of the sea lasted.

Hesides the waves of the sea there was no other source of sensihle agitation, so there had been no demand for kinetie engines. Had it been otherwise, they would not have been left for him to discover-or, had they been, he might have been tempted to patent the inventions. But there had been a demand for what might he called sensihle kinetic elasticity to perform for sensible motion the part which heat elasticity performed in the thermometer.

And it had not heen left for him to invent kinetic mechanism for this purpo-e, although it might be that its remblance to the thermometer had not been recognised. The principle was long ago applied by Watt. The common form of governors of a steam-engine acted by kinetic elasticity, which elasticity, depending on the speed at which the governors were driven, cauled
them to contract as the speed increased. The governor measured ly contraction the velocity of the engine, while the thermometer measured by expansion the velocity in the particles of matter which surrounded it ; so that it could now be seen that having to ferform two oferation, the one on a vi-ible scale, the other on a molecular scale, the same class of mechanism had been unconrciously adopted in perforring loth operation*:

The furpose for which these kinetic engines was put forward was not that they might be expected to simplify the theory of thermodynamics, but that they might show what was being done. The theory of the rmodyranics could te deduced by the laws of motion from any one of these kinetic engines, just as Rankine deduced it from the hy; otheses of molecular vortices.

Notbing had yet been a aid of the third part which heat played in performing work, narely, c nveying heat in and out of matter. It was an innovation to intreduce such com iderations into the subject of thernoodynamics, but it prof erly had a place in the theory of heat-enginer. It was on this part that the s, eed at which an er gine weuld perform work depended.

Tte hinetic a achines showed this, If one end of a cbain washaken, the wriggle ran along with a definite speed, to that a definite interval muct elapse before sufficient agitation was established to raise the bucket; further, an interval wutt elapee before the agitation could be witbdrawn, so that the bucket might be lowered for another strole. The kinetic machine, with the pump, could only work at a given rate. He could increase this rate I y shahing harcer, t ut then he expended more energy in yroporticn to the work done. This exactly corresponded with what went on in the steam-engine, only owing to the use of separate ve-sele, the boiler, cylinder, ard cordensers, the connection was mneh confused. But it waa clear that for every h.p: ($2,000,00 \mathrm{ft}$. 1 lbs , per hour) $15,000, c 00 \mathrm{ft}$. lbs, hed to be passed frum the furnace into the boiler, a* out of the $15,000,600$ no more than $2,000,0 c o$ could be used for werk; the remaining 13,c00,000 were availalle for forcing the heat into the biler and out of the stcam in the cordenter, and they were uefully emplosed for this purpore.

The boilers were made as small as sufficed to produee steam, and this size was deternined by the difference of the internal temperatares of the gases in the furnaces, and the water in the boiler; and whatever diminished this difference wculd neces'arily increase the size of the beating surface required, i.e. The weight of the engine. The power which this difference of temperature represented oculd not be used in the steam engine, so it was usefully employed in diminishing the sire of the engine.

Most of this power, which in the steam-engine was at lea-t eight tirres the power u.ed, was spent in getting the heat frum the gases into the nictal plates, for gas acted the part of conveyance far less readily than boiling water or condensing steam. If air had to be heated inside the boiler and cooled in the conden:er with the same difference of temperature, there would be required i hirty or furty in es the heating surf ce-a conelusion which sufficiently explained why atlempts to ubstitute tot air for steam had failed. In one respect the hot-air engines had an advantage over the steam-engine. During the operation in the cylinder the heat was wanted to be hept in the acting substance; this was easy with air, for it was such a bad conductor of heat, that unless it was in a violent state of internal agitation it would lore heat but slowly, although at a temperature of toco degrees and the cylinder cokl.

Steam, on the other hand, condensed so readily that the temperature of the cylinder must to kept above that of the steam. It was this fact which limited the temperature at which steam could be used. Thus, while hot air failed on account of time coonomy, the practical limit of the economy of steam was fixed by the temperature which a cylinder would bear. These facts were mentioned because at the present time there appeared to be the dawn of substituting ecmitustion-engines in ; lace of steam engines.

Combuation-engines, in the shape of guns, were the oldest for an of steam-engine. In these, the tire required for heating the exjomive agent was zero, while they bad the advantage of Ircondensit le gas in the cylinder, 10 that if the cylinder was kept cool it eoo!ed the gas but slightly, although this was some 3^{c} coo degrees in temperature.
The disadvantage of these ergines was that the hot gas was not sufficiently cooled by expansion, but a con-ideral le amount of the heat carried away might be used again could it be extracted and pot into the fre-h charge; to do this, however, wculd introduce the difficelty of heating-surface in an aggravated
form. However, zupposing the cannon to bave been tamed and eral ard oxygen from the pir to le ued intead of gunpowder. Thermodynamic showed that such engines should still have a wide margin of economy over sleam-ergines, besides the advantage of working with a cold cylinder and at an unlimited speed. The present achievement of the gas-envine, stated to be some 2,cco,coo ft. 1 lbs . Fer Ib, of coke, looked very promising, and it was thus not unimportant to notice that whatever the art diffculties might le, themodynamica showed no barrier to further ecoromy in this direction, weh as that which appeared not far ahead of what was already accomplished with steamengires.

But however this might be, he protested againct the view which seerred somewhat largely held that the steam-engine was onily a seml-f arbarous machine, which wasted ten times as much heat as is used-very well for those who kniew no, cience, but only waining until tho e better educated had time to turn their attention to practical matters, as d then to give place to something better. Thermodynamics showed the perfections not the faults of the steam-engine, in which all the heat was used, and could only enhance the admiration in which the work of those must be held who gave, not only the steam-eneine, bot the embodiment of the siience of heat.

PKOFESSOR AUGUST WEISMANV ON THE SEXUAL CELLS OF THE HYDROMEDUSA'

PROF. WEISMANN of Freiburg is mo:t highly skilled and

 mot indefatigable in rescarch, and all the memoirs which he publishes are or extreme scientific importance, and abcund in cricinsl views and suggetions which render them of peculiar and widely spread interest. $11 \mathrm{is}{ }^{64}$ Studien zur Descendenz Theoric," his revearches on the Daphnoids and on the fauna of Iake Corstance, which are known to all naturalists, riay be ment:ored as esamples of his uonk. Since the spring of 1878 till the prosent year be bas been engaged in investigating the mole of origin of th:e g' nad elements of the llydromelusse, and the result. are embodied in the present splendid work, which consists of a volume of text of about 300 pages quarto and then'y-four mest I eautifolly executed coloured plates, the whole representing a va tameunt of laborious research. Some portions of the revults have already apt eared in short preliminary papers, but they form a very small in talment of what is here put forth. In the course of the investigation, which has extended to thirtyiight species of Hydromedusac, important new ubservations on the labits and composition of Hydroid colonies generally and on their histology vere made, and the results of theec are fully deferibed here, since most of them have a direct beaing on the elucidation of the nain subject of the monograph. The work thus forms sec nedarily, as stated in the tile-page, "a contrita. tion to the knowledje of the structure and vital phenomena of the IIydiomedusx kenerally."The principal value of the wotk, however, lies in the import. ance of the brarings of the results of the investigations detailed in it upon the gencral que:tion of the origin of gonad celts. The llydromedu-x were velected as the subject of research becau e they appeared to be of all groups of the ayimal lingdom be-t adapted fur the purpose both becau'e of the transparent nature of the r 's ues and becau.e they presert in clocely allied fo ms so many remarkable differences in the development of the gonad elemerts.

The work commences with an historical introduction, which can be lout bricfly referred to here. Theque-tion of the origin of the sexual eletrents in the Hydroida has undergone several important transformation. Prof. Iluxley, when he first defined the body of the Medusa as consisting of two laycrs of tistueectederm and indoderm, rai ed the que:tion in which of the two laycrs do the gonad elements originate, and at first concluded that they were formed between the two, and subsequently in t \$59, from physiological considerations mainly, that they must originate in the ectoderm. As soon as the advance of bistological necibed permilted accurate direct obecrvation to be made on the matter, Kefertein and Ehlers showt that in the Siphonophora with well developed medusoid sexual individuals, the CalycoFhoride and male Physophoridx, the germinal cells are developed in what is now recognised as the ectoderm of the manubrium;
". Die Entstehung dor Sexuataellen bei den Hydroncel'uren."* Zugleich eia Bettog rur Kinninish des Eaues und der letennerscheinungen dieser Gruppe, von Dr. Augu: Weismann, Prifescor in Freiturg-i Er. (Jena: G. Ficher, 1883.)
whilst in the female Physophoridxe the origin of the single ovum is different (in the endocodon). As syon as the homogeny of the two layers of the Coelenterata with the two primitive layers of the higher Metazoa became evident, the question arose whether the germinal cells of the Metazoa generally were of ectodermal or endodermal origin, and a large number of observers attempted to settle the question off band by investigating the process of development of the germinal cells in some one Ccelenterate. Each assumed that his particular results must hold good for the entire gronp, and as the results were conflicting - the place of firs' appearance of the germinal cella lying as is well known in sonse Colenterates in the ectoderm and in others in the endoderm-mach confusion arose. At this period, E. van lieneden's memoir appeared which, on the strength of the conditions oecurring in a Hydractinia, a Campanularia, and a Clava, started the theory that the germ layers were themselves sexually differentiated, the female eiements arising from the endoderm and the male from the ectoderm, and that in the union of a derivative of each layer lay the essence of impregnation, the neces ary precursor of reproduction. This brilliant conception was soon shown by further observation to be erroneous, and as Prof. Weismann points ont it was from the first not in accordance with the phenomena of parthenogenesis. As the next important phace in the question came the attempt of the brothers Hertwig to prove that the Coelenterata belong to two distinct stocks, the one consisting of the Anthozoa and Scyphomed sa, in which the germinal cells are derived from the endoderm (Endocarpx), and the other of the Hydromeduse and Ctenophora, in which they originate from the ectoderm (Ectocarpxa). If this position bs correct, and, as will be seen in the sequel, one of the mo t startling of the conclasions arrived at in the present work is that, notwithetanding all the apparent evidence to the contrary, it probably is so in reality, then the important principle of inheritance and continuity in development in the germ layers receives a strong support, of which with regard to the gonad elements it seemed in great need. Prof. Weismann was led to undertake the present prolonged researches by his observing that in certain of the Hydromednce the germinal cells originate, not in the sexual individuals themselves nor even in the blastoityles that support them, bnt in the coenotare of the colony, in the common parenchym of the stem and its branches, and that this occurs not only in the case of the female but als) in some instances in that of the male germinal cells. The existence of ovicells of conosarcal origin hud been previously observed by Quatrefages, F. E. Schultze, Fraipont, and others, but these elements had $n x$ been reco nin-ed as the sole sonrce of supply of the female gonoph ores with ova. E. van Beneden further hat observed the origin of the egg-cells in Hydractinia, in that part of the blastostyle which sub equently becomes evaginated to form the gonophore. Kleinenberg published his aceount of bis disc svery of the migration of the egreells of Eudendrium from the ectoderm into the endoterm and in the opposite direction just before Weismann had arrived at a similar conclusion and had found in his preparations egg.cell. in the act of boring through the basement mesbrane with one half lying in the ectoderm and the other in the endoderm. The establisbme it of the fact that migration of the sexual cells of a m ost remurkable character in the many forms in which he has proved it to ocear is a constant phenomeno?, the history of its details, and the disenssion of the plylogenetic origin and general biological bearings of the curioss phen smena prevented by it, form the m ost important features of the present work.

The anthor as more c menenient adopts-instead of Allman's teras, phaverocod Jnic gonoph ore and adeloe ndonic gonophore"medusa" and "medu soid gonophore" re spectively. He applies the latter term to all gonophores, $a x$ becoming free medusa, in the walls of which any traces, however rudimentary, can be detected of the three layers, viz. the inner and outer ectoderm layers and the intervening end derm lamella-of which the wall of the bell of the medusa is composed. He uses the term sporophore for those gonophore sacs in which no indication of anything beyond a single layer of ectoderm and endoderm can be disc wered.

A structure which as cumes great importance in the hi tory of the wanderings of the ovicells is the duplicature of ectolerm, which grows inwards at the su nmit of the sinple sac-like bud out of which a melusa is formed, depres ing the endotern la nella and forming the hollow of the bell. It is necessary th it this embryonic organ or mess of cells, observed by so many investigators, should receive a special nume, and it is termed "endocodon."

It is pointed out that each hydranth of a colony does not consist alone of that part containing the stomach and bearing the tentacles and bypostome, but also of a stem-shaped portion, which is developed at the same time with it out of the same bud. This region is termed the "hydrocope," and is included in the hydranth, the remaining region of which is the "hydro-

Fuc. $:$ - Dingram of a bud "f a medusa or medusoid fonophore-ClF, endocodon: GIII, sub-umbrella space: Ewh, primitive endoderm tamella: wha, primulive gerra cells; rnh, endoderm; eht, ectoderm.
cephalis." The hydruc pe corre-ponds to the region in Tubularia which Allman terms hydrucaulus, but not to the whole system of stems and branches in an arborescent colony. In such colonies the produetion of buds is entirely confined to the bydrocope and its counterpart in the blastostyle, the "gonocope,"
In the Tubularinx it is necessary to distinguish amongst the

Fig. 2.-Diagram of a primary. Hhy, and lateral. Shy, hydranth of Euden-
 of gemmation: Hep, hydroove; Sa, laterat branch; Bist, blastostyle ; Grf, gonscope; SAh, spor uphore.
hydranths of a stock the "principal" from the "lateral" hydranths. The principal bydranths are those which remain permanently at the extremities of the stems or branches thronghont the growth of the stock by lateral buddin g. In the arborescent stocks of the Tubularidxe the first hydranth sprung from the egg remains permanently at the extremity of the
principal stem, the lateral buds of which never sarpass it in growth. In the same way the first formed hydranth of each lateral branch retains its position at the tip of that branch, and must be distinguished as a principal hydranth of secondary order, becoming snch so soon as it prodnces a hydranth bud above its distal gonophore. This distinction is necessary not only because the primary and lateral hydranths often differ in size, but mainly from the most important fact that the principal hydranths are sexnally sterile; only the lateral hydranths produce gonophores. No such distinction of principal hydranths occurs amongst the Campanularida and the Sertularidx.

The above brief historical sketch and preliminary explanation is extracted from the introductory part ot the work. The special part, which forms by far the greater portion of the whole, treats separately of the details of the series of species investigated.

Fig 3.-Tip of a stem of Enden irinm racenosmm (aciual, not d egrammatic). with the principal hydranths, Hhy, and ten laveral hydranthe, Shy x -10; Blat, blastostyle, with female gonophores or ova; K so, germioal asme in wider sense, f.r. extent of the main stem and hydrocope containing eggcells. The letters σ oft and ect indicate whether in the lateral hydro* copes of the specimen ovicells were present in the ectoderm or endoderm, or in both.

The results with regard to two of these forme, Cordylophora lacustris and Eudendrium, will be followed here, the former being cho en mainly because the account of it is illustrated by a woodcut, which it is advantageoun to reproduce. 'The structnre of Cordylophora lacustris is well known from F. E. Schulze's most excellent most excellent monograph. Weismann finds that the regular branching of the stock in this species depends on its following the law that "a principal or terminal hydranth of a principal stem or lateral branch produces no buds but those of hydranths, never those of gonophores, and that only the hydranths, and not the gonophores, can produce buds." The zone of gemmation of the hydranths lies in the hydrocope, just below the neck. In the female stocks the germinal cells do not take their origin in the gonophores, but arise in the coenosare in
the ectoderm of the zone of gemmation of a principal hydranth and in this well defined and restricted region only.

The ovicells are certainly not preformed in the embryo or larva, but are formed in the zone before the lateral hydranth bud begins to appear out of ectoderm cells which differ in no respect from other young ectoderm cells. The ovicells migrate in the ectoderm from their place of origin to that where the bud of the lateral hydranth has begun to form, and, passing into the lateral hydrocope as it grows out, enter the gonophore as soon as it is developed, their entire course of travel lying in the ectoderm. Every ovicell becomes an ovum, and enough ovicells migrate in a group into the lateral hydranth to fill several gonophores; those not destined for the first formed gonophore move onwards past iv, and a part of them pass later into the second gonophore when this becomes formed between the first and the neck of the lateral hydranth. This change of position of the ovicells must be partly dne to active moverment, since the simple shifting due to growth could not push the cells past the first gonophore, and long before the first gonophore is ripe these cells are found lying beyond it, whereas beforehand they lay below it (see Fig. 4, ws).

Fice 4-A principal hydranth, Hhy, ans a lateral hydranth, Shy, of Cordy. lophora: $K 2$, accual germinal zone, also sone of gememation: $\mathcal{N} 2$, former position of the germinal zone, SPh, female sporophure; tws, migrating ovicells.

The migration must take place very slowly and in a particular direction, for the cells are never found scattered irregularly along the whole stem, but always together in a small tronp, and they never make their way by accident into a hydrucephalis. The same process is repeated in the formation of the second, and, if ovice'ls enouzh be present, of the third gonophore. A fresh swarm of ovicells is never introduced from the main stem into a lateral branch, and no new ovicells are developed in any lateral hydranth until it ceases to become such by developing a hydranth bud above its distal gonophore. It then becomes a principal hydranth of secondary order, and acquires at onee a germinal zone beneath its neek, which snpplies the gonophores developed on its lateral hydranth buds with ova by migration, just as in the case of the primary principal hydranth. It produces no further gonophores itself, and differs in no re-pect from the primary principal hydranth excepting in that it was once a lateral hydranth, and produced a set of gonophores, whilst the primary prineipal hydranth never was lateral and never prodnced gonophores. The ova ripen in the ectoderm of the sporophores.

The primitive male germinal cells in Cordylophora are formed jike the femvle fr m young ectoderm cells, but their place of origin

Lies in the zone of gemmation of the lateral hydranth at the spot where the gonophore bud is formed.
In the genus Eudendrium most remarkably there is a difference in the formation of the gonad elements in the case of different species. In Eudendrium racemosum the gonophores are not borne by the hydranths but on blastostyles, which bud out only from the lateral hydranths. Both male and feunale germinal cells have their place of origia not in the gonophores or blastostyles, but in the coenosare ; the gonophores are only the ripening places of the cells. The blastostyles are not regarded by the author as hydranths which in an ontogenetical sense becoue atrophied in the history of each colony, in consequence of the exhaustive effect of the development of gonophores on them, bnt as special structures probably derived originally from hydranths, but which have undergone a permanent phylogenetic modification (at all events in E. racrmosum and E. capillare) to adapt them for their peculiar function. The developing buds from which blastostyles are formed are very early to be distinguished from those forming hydranths, and do not vary in colonies of the same sex, though they show a constant difference in form in the two sexes. The male blastostyles have no hypostome, mouth, or trace of tentacles, The female have also no hypostome but have a double crown of tentacles, and appear at the time when the gonophores are ripe to have a small temporary mouth, which it is suggested may possibly swallow the spermatozoa to effect fertilisation.
In the female stocks of Eudendrium racemosum when in full sexual matnrity the cornosarcal tubes at all the free ends of the branches contain large quantities of ovicells. The fine twigs are often full of hundreds of them. They occur in both ectoderm and endoderm, but far more abundantly in the former, where they are found in all stages of development, whereas in the endoderin scarcely any but large egg-cells are found. The primitive germinal cells are derived from ordinary young ectoderm cells, with which in rapid process of multiplication the whole germinal zone is filled. This zone lies only in the prineipal hydranths, conmencing a little below their necks and extending a shorter or further distance down the stem, bat as a rule not fnrther than the second lateral hydranth (Kzo, Fig. 3). Within this zone the prodaction of new ovicels is almost entirely restricted to its nppermost region. As the principal hydranth grows, the germinal zone, which maintains a constant length, rises with it, and as soon as it rises above the point of junction of any lateral hydranth, this hydranth is cut of from any further supply of ovicells. The ovicells never occur in the endoderm within the germinal zone, but are ooly fonnd in that layer within the hydranth and gonocope. This is because of the remarkable migrations which the cells perform, which take place in perfectly definite directions at definite times. The cells remain in their place of origin, the ectoderm of the germinal zone, nntil a new lateral hydranth bud begins to be formed, and into this they migrate through the ectoderm, not at onee, bnt as soon as the hydranth has attained a well defined stem. They wait here in the ectoderm, growing considerably, until they have attained a certain size, and then bore their way into the endoderm, nearly all the cells in each lateral hydrocope effecting the penetration of the basement membrane simnitaneously, just at the time when a blastostyle bud commences to form. The cells hold on to the basement membrane on its inner face by one end, and stretch forwards the other in the direction of the position of the future blastostyle, and become remarkably elongate, their free ends being drawn out into long slender filaments among, the endoderm cells. As soon as a hollow is formed in the blastostyle bud they creep in, still clinging to the basement membrane and always to its endodermal face. As the hollow eniarges, more and more creep in, and the bad takes on a pear shape. As the gonophores are budded out from the blastostyle the cells pass into the endoderm of these, then almost simultaneonsly bore through the basement membrane again, and reach the ectoderm layer of the sporophores, their final ripening place. The ovicells never reach maturity on the hydranths in which they originate, bat always in the blastostyle of a lateral hydranth.

In the male stocks of Eudendrium racemosum the place of origin of the germinal cells is the ectoderm of the region of gemmation of the lateral hydranths. Thence they migrate by the endoderm into the sporophores, and then like the ovicells bore their way out into their ripening place, the ectoderm of the sporophores.

In the other species of Eudendrium examined, E. capillare, the place of first appearance of both male and female germinal cells is in the endoderm.

The results obtained as to the history of the generative elements in the varions species examined are given in a concise tabalar form nader a series of headings, the importance and distinctness of which will now be recognived. The case of Podocoryne is taken as an example. The German terms are not easy to find English equivalents for.

Podocoryne carmea

K'imstätte. Germinal place.) Male germinal cells: the ecto(Layer in which the earliest derm. appearance of the germinal \} Female germinal cells: the endocells can be detected.)

Keimzone Germinal zone. In male stocks: the manubrium (Kegion of the colony where of the Medusa buds. these cells are earliest de. tected.)

In female stocks : the endoderm sac of the gonophore bud.

Abkunft. Actual origin of the mo.t primitivegerminal cells, (in very many eases a matter of inference only).

Male germinal cells: young ectoderm cells.
Female germinal cells: probably ectoderm cells which have migrated into the endoderm.

Ripening place.

Migrations.
\{ The ectoderm of the manubrium of free-swimming Meduste.

The male cells none.

The female cells out of the primary endoderm sac of the gonophore bud into the spadix and thence into the ectoderm of the manubrium,

The facts with regard to all the investigated species, when thus placed in a tabular form, appear at first sight so varied and complicated as to defy all reduction to uniform law. The germinal cells appear to be developed sometimes here, sometimes there, withont rule of any kind and without definite relation to the germ layers. A most remarkable fact lies in the circumstance that the greatest differences in these matters occur in closely allied genera and even species. But, since this can occar without affecting the general evidences of these relationships, "the variations must depend on such differences as can occur amongst nearly related forms." And in this circumstance really lies in Prof. Weismann's opinion the key to the whole matter. By carefal nse of the comparative method, he has arrived at the conclusion that the differences in the position of the place of first appearance of the germs depend on a "phylogenetic shifting" of this position, and have ensued pari passw with the degeneration of the primitive free meduse unto sessile brood sac=. The advantage gained by the animal in the shifting which has brought this about, has lain in the earlier ripening of the gonad elements.
In accordance with a widely accepted view, the sessile gonophores of all the attached hydromedusse except hydra, are probably to be regarded as degenerated niedasa. In the ancestral meduse the gonad elements of both kinds originated in the ectoderm of the manubrium, and ripened there as they do now in six out of seven Tubularine genera bearing meduse examined by the anthor, viz, Dendroclava, Bougalnvillia, Perigonimus, Cladonema, Corymorpha, Syneoryne. Both the nrigination and ripening of the germinal cells occurred daring the free life of the meduse. Certain causes rendered the free mednsa stage disadvantageous, and in many instances the gonophores in conseqnence became sessile, whilst the sexual elements originated and ripened in them at an earlier stage. At first the elements retained the same place of origin as in the free medu:x, a condition which survives in the medusoid gonophores of the existing Cladocoryne. But it became advantageous that the elements should not wait for their formation by cell division and for their gradual maturation until the process of construction of the gono. phores by budding had been completed, and thus the formation of the ovicells became shifted, and appeared in an earlier stage. What may be regarded as a first stage in this process is represented in Pennaria and Tabularia, in which the germinal cells of both sexes first appear in the endocodon (see Fig. I) of the gonophore bud, being carried afterwards, as development proceeds, to the original ripening place, the manubrium. As a further stage
in the process, the primitively ectodermal germinal cells migrated into the endoderm, and here we find them making their first appearance in all the Tuhularina bearing meduse or medusoid gonophores, in which they do not oripinale in the ectoderm of the manuhrium or in the endocodon. Most important is the fact that in Podocoryne and Clava, and other forms, the male elements have a different place of first appearance from the female. In Podccoryne the male germinal cells arise in the ancestral place, the ectoderm of the manuhrium ; the female, however, first appear in the endoderm of the medusa hud. In Clava the male elements originate in the endocodon; in the female they are first detected in the endoderm of the gonophore stem.

IIere the phylogenetic shifting of the place of first differentiation of the germinal cells has operated cnly in ope sex or in one m re than the other. In all nench cases it is the place of first differentiation of the female elements which has undergone further shifting than that of the riale, apparently because, nnder similar circumstances, ouing to tbeir more minute sutdivision, spermaries becon e more easily and rapicly ripened than cvaries. In the case of Eudiondrium nacemosum, already descrited, three furber stages of the shining back of the place of origin of the germital cells appear to have teen undergone by the female stocks beyond those evidenced in Podocoryne.
In some forms, as in Cordylophora already described, the entire long migration tahes place entirely in the ectoderm, and it is plain that the shifting of the place of origin of the germinal cells tachwards from the gonophores has taken in different forms two different lines of progresp, one into the endoderm, the other through the ectoderm only. It is a remarkable fact that in no real medusa is the place of first appearance of the germinal cells shifted further back than at most to the endederm of the gonophore. The difference of position of the generative elements in the medu:z of the Campannlarina is regarded by the author as secondary, derived from a primitive disposition, as in the Anthomedu: x, by phyletic shifting from the mannbrium to the radial canals, evidence in proof of which is adduced.
A most intensely interesting section is that devoted to the :nbject of the migration of the germinal cells. These cells seem to te guided in their movements hy an extraordinary instinct. Every ovicell on setting out for its travels appears to have hefore it a definite route to a rarticular gonof hore, and to follow it with certainty ; and, fartber, to be able to distinguish a young hydranih Ind from a young blastostyle bud, never entering the one in error for the other. The migrations may be comyared to those of certain birds the young of which are telieved ly rcme ornithok gists to find their way to their distant home without the aid of any old birc's who have already made the journey to guide ibem. The author suggests ihat it must te the outcome of an excessively fine sense of minute differences of pressure which enat les the cvicells of Podocoryne, after they have bored their way into the ectoderm, to arrange themselves in foor longitudinsl rows in the interredii of the matuhrinm, instead of forming an even zone rcund it. No doubt, as he poists out, the same laws are at work here uhich detirmine the size, shape, number, and eeqnet ce of the cells in every organism; but this free mobility of these germinal cells in the Hydroida, with their defivite line of march and goal, is a rew factor, to which there seems to be no parallel known in oiker groups, although migrating cells pursuing comperatively indefinite courses are known in most Metaroa. As having a nearer resemblance to there movements are cited those of the mescblast cells which are set free from the blasto hore of the gastrula larva of Echinoderms, and which arrange themselves in regular order on the inner surfaces of its cavity. That there is no absolnte difference between these curious tissue-building migrations and ordinary growth follows frcm the evident fact that they have arisen phylogenetically out of the formation of organs by ordinary process of growih.

The question of the immediate origin of the primitive germinal cells of the IIydroids is discussed in a most able summary chapter of the utmost interet, but which it is impossihle to do justice to here. With regard to the relations of the elements to the two layers, the conclusion is that in all the Hydromedusc, incleding the Siphonopbora, the actual origin of the primitive germinal cells is from ectoderm cells. In all cases in which the first traces of the germinal cells can only be detected in the endoderm, the parent primitive germinal cells have migrated ont of the ectoderm. This position is supported by two lines of argument, the one drawn from the comparison of the various stages in the shifting of the place of origin of the germinal cells exhibited in the various species of Hydromeduse, and expecially
in the two sexes of the same species, which points clearly to the original and essential : ource of both sexual elements having lain in the ectoderm, as is still the care in the prinitive, hermaphrodite, freshwater Hydra; whilst the other dwells on the circumstance that in all Hydroids in which the first appearance of the germinal cells takes place in the endoderw, a satisfactory proof of the endodermal origin of these cannot be brought forward. Where they originate in the ectoderm their identity with young ectoderm eells is ohvions. When found in the endoderm, at the bases of the peculiar flagellate cells composing this layer, they have a similar appearance to the primitive germinal cells found in the ectoderm, but no connection of gradation between them and the endoderm cells can be detected, nor any subdivision ot the endoderm cells tending to their prodnction.
Having arrived at the above conclusion, the anthor is led to telieve, as already mentioned, that the division of the Ccelenterata in'o Endocarpoe and Ectocarpre introduced by the brothers Hertwig may very probably still bold good, the Hydromednsse, with the Siphonophora and Ctenophora, being sprung from a separate phylum of the primitive Coclenterates from that comprising the Anthoroa and Scyphomedure.
The work closes with a reference to the question of the alternation of generations in the Hydromedusx. Now that the ccenosarcal origin of the germinal cells is proved in so many instancer, can the gonophores or mednsx, the sexual cells of wt.ich are formed in the coenosare of the hydranth or stem before they therselves are begon to be developed, be regarded as sexual individuals? It is ohvious that it wonld lead only to confnsion if the old way of regarding the matter was apset. The past history of the gonophores mu:t be taken into account, and the fact that the sexual elements, though now developed at a greater or less distance in many species, forme rly undoubtedly originated within the gono, hores. If an opposite view were adopted, the absurd difficulty would arise that the male gonophores in some species wonld have to be taken as sexval individuals and the females in the same species as not.
The anthor's discovery of the gradual phylogenitic shifting of the place of origin of the sexual elements in I ydromednsse seems, as he points cut, to throw most happy light on the vexed controversy between Brooks and Salensky as to the alternation of generations in the Sal x. The ovarium in the stolon of the solitary Salpa discovered by Brooks donbtless belonged originally to the sexual chain Salpre and bas become shifted in order to basten its maturation into the ftolon of the nurse, which is no more to be regarded as sexual because of its preparing an ovary for the bads than are the jrincifal bydranths of Fudiondrinm racemosum to be rigarded as such because they snpply the ovicells to the gonophores borne by the bla tostyles As in so many of the Hydromedasx, the male elements of the rexual individuals have undergone no corresponding shifting. The discrepancles betw een the resulte of the two observers probably depend on the circumstance that the process of phylr genetic shifting has attained, as in Hydromedusw, differ nt stages of development in the various species. The mode of reprodaction of the Salpee is still to be regarded as a case of alternation of generation, even shonld Salenshy's well fo anded suspicion that the chain Salpee are themselves able to produce a second ovary after the first has been used up prove invalid.
The remarkable differences in the development of the germinal cells in nearly allied Hydromedure seem to be paralleled to some extent by the extraordinary condition in the eaty embryology of the Salra discovered by Salensky, ${ }^{1}$ where the differences occurring in the different species are so great and important that, as he writes, "they hardly bear comparivon with one another." In all Salpa the carly segmentation of the ovum takes place as tu ual, hut then "goroblasts, cells derived from the epithelinm of the egg-follicle, not rexnally fertilised elements, suppress the hlastomeres, which atrol hy whil-t the entire embryo is formed from the gonoblasts with or without other unfertilised matter. Salenshy calls this extraordinary process, which is withous parallel in the rest of the animal hingdom, "follicular bedding."

Possitly some of the curious differences as to the extent to which the gonoblasts and rarts of the cvary and oviduct enter into the formation of the embryo in Salpue (Gymnogonx and Thecogonax) may te bereafter explained on some , uch principle as that of Prof. Wcismann of "phylogenetie shifting."
H. N. Moseley
"Prof. W. Salensky, "Neue Untersucl ungen aber die embryonale Entwickttng der Salpen." 1I. Th. Schluss, " Mitheilungen aus der Zool. : tation ru Neapl.," Ed, iv. Heft 30

UNIVERSITY AND EDUCATIONAL INTELLIGENCE

Cambridge. - The Public Orator (Mr. J. E. Sandys) made the following address to the Senate in pre enting Mr. Andrew Graham, First As i-tant to Prof. Adams at the Os-ervatory, fir the complete degree of M.A. honoris causa. Mr. Graham discovered the ninth minor planet Metis, a fact clevecly turned to account by the Orator:-
"Dignissime dumine, Domine Procancellaric et tota Academia:
'Quam invidenda nobis illorum vita est, qui a rerum terres. trium strepitu remoti, templum quoddam observando ceelo dedicatum incoluat, ubi noctibus serenis tot lueidorum orbiu n ortus obitusque coutemplantur, tot stcllarum immotarum stationes perpetuas accuratisime definiunt, tot siderum errautium cursus prius ignotos admirabili quadam divinatioue augurantur. Consentaneam nimirum et eum, cai primo quandam Oceani filia, Metis, inter sidera affulserat, tot annos in rure illo subarbano cum Neptuni inventore nostro celeberrimo feliciter eise consociatun. Iuvat eerte tanti viri adiutorem fidelis simum bodie civitate nostra donare, virum et liuguarum recentiorum et studiorum mathematicorum perquam peritum, neque in rumeris tintum c.mputandis sollertissimum, sed in sideribut quoque obiervandis perspicacissimum. Ipse rerum omnium Fabricator, cetera quidem animalit terram prona spectare pasus,

$$
\begin{aligned}
& \text { os homial sublime dedit calumque iueri, } \\
& \text { iussil e: erecins ad sidera tollere v tus; }
\end{aligned}
$$

quauto igitur honore illi digni sunt qui, qua in re ceteris animantibus bomines prestant, in ea ho ninitus iptis tam praclare antecellunt.
"Vobis presento virum et de scientia astronomica et de Academia nostra optime meritum, Andream Graham."

SOCIETIES AND ACADEMIES

 LondonGeological Society, November 7.-J. W. Hulke, F.R.S., president, in the chair.-James Diggle. Charle Anderson Ferrier, and Prof. W. Stephens were elected Fellows of the Society. -The following communications were read:-On the geology of the South Devon coast from Tor Cross to Hope Cove, by Prof. T. G. Bonney, F.R.S., Sec.G.S. The author, after a brief reference to the literature of the subject, stated that the chief petrographical problem presented by this district was whether it afforded an example of a gradual transition from slaty t, foliated rocks, or whether the two groups were perfectly distinct. He described the coast from Tor Croes round by the Start Point to Prawle Point, and thence for some distance up the estuary leading to King lirilge. Commencing again to the north of Salcombe, on the other shore of this inlet, he described the coast round by the Bolt Head and Bolt Tail to Hope Cove. These rocks, admittedly metamorphic, consist of a rather thick mass of a dark mica-schist and of a somewhat variable chloritic schist, which also contains a good deal of epidote. In the lower part of this are some lands of a mies-schist not materially different from the upper mass. It is possible that there are two thiek masses of mica-schist, one above and one below the chloritie schist ; but, for reasons given, he inclined to the view that there was only oue important mass, repeated by very sharp folding\%. The junction between the admittedly metamorphic group and the -laty ser,es at Hope Cove, as well as that north of Salcombe, is clearly a fault, and the rocks on either side of it differ materially. Between the Start and Tor Cross the author believes there is also a fault, running down a valley, and so concealed. On the uorth side of this the rocks, though greatly contorted and exhibiting such alterations as are urual in greatly compressed rocks, cannot properly lee called folisted, while on the south side all are foliated. This division he places near Hallsands, about half a mile to the south of where it is laid down on the geslogical map. As a further proof of the distinctness of the two series, the author pointed out thit there were clear iudications that the foliated series had undergone great crumpling and folding after the process of foliation had been completed. Hence that it was long anterior to the great earth-movements which had affecte1 the Palezzoic rocks of South Devon. He stated that the nature of these disturbances suggested that this district of South Devon had formed the flauk of a moun-tain-range of some elevation, which had lain to the south. Of the foundations of this we may see traces in the crystalline
gneisses of the Eddystone an I of the Channel I-Lands, besides posibly the older rocks of Suuth Cornwall and of Brittany. He also called attention to some very remarkable structures in the slaty series near Tor Cross, which appeared to him to throw light upou sme of the structures ob erved at times in gneisses and other fulated rocks.-Notes on Brocechi's collection of Subapennine shells, by !. Gwyn Jeffreys, F.R.S. In this paper the suthor gave the resuits of an examination of the collection of fossil shells from the Subapennine Plioveae described by Brocchi in his "Conchiologia fossile Su'apennina," and now preserved in the Muso Civic, at Milan. The author cited filty-five of Brocchi's specie's, upon mo tof which the estlection furnished more or less interesting infomation. In conclu ion he remarked upon the importance of identifying Broechi's specie ; with forms still liviug in the neighbouring seas, and also upon the difficulty of distinguishing between the Upper, Middie, and Lower Plioeene in Italy. From his examination of Italian Pliocene shells be concluded that the deposits containing them were for the most part formed in cumparatively shall ww water, probably not more than fifty fathoms in depth, a remark which al o applies to the Italan Miocene; and that in the case of species still existiug no difference cau be recognised between Pliweue and recent specimens.-British Cretace)us Nuculidx, by Jobu Starkie Gardncr, F.G.S. The author commence 1 by discussing the que.tion whether the Nuculidx should be separated as a family from the Arcidx, and stated that species of Lnds and Nucula exist and sometimes abound in the mariue Cretaceous deposits, with the exception of the White and the Red Chalk, from which, however, he thou ght that the shells may have been dissolved out. He also referred to the probable derivation of the species from preexistiug forms, and discussed the question of how far the relationships thus established could be expres ed in the nomeaclature of the species, bis researches upon the Nuculide liading him in some cases to sugge t a trinomial nomenclature. The probable lines of descent of the shells described in the present paper were also discussed at some leugth.

Anthropological Institute, November 13.-Prof. Flower, F.R.S., presilent, in the chair.-The election of the follosing new members was aunounced:-Dr. G. B. Barron, Prof, D. J. Cunniagham, H. O. Forbes, J. S. Hant, Capt. E. C. Johnson, R. Mortou Middleton, jun., Capt. C. A. Mol suey, S. B. J. Skertcbley Jo-eph Smith, jun., and Dr. Johnson Symiagton. Mr. J. E. Prise exhibited a selection of objects from ancient grave mounds in Peru-Dr. Garsin exhibited two irou lamps that be had procured from the Orkney Islands for the Oxford University Museum. They were very similar to the 1 mps of the Esqui naax described by Dr. E. B. Tylor in hi: paper read before the Institute at the end of latt session, anl each consists of two flat reseptacles prol inged int, a sp put-like depres iou on the anterior portion.-Prof. Flower exhibited the skull of a young chimpanzee (7 roglodyles niger) which had been sent to him from Lad, in the Sou lan, by Dr. Emin Bey. It was the su'ject of acrocephalic deformity, as socited with complete synostosis of the coronal suture, and partil obli-eration of the sagittal suture, both of which are normally open ling after the age to which this individual had attained. - The lirector rea 1 a paper by Mr. Edward Palmer on some Australitu tribes.

Zoological Society, November 23.-Prof. W. H. Flower, F. K.S., president, in the chair.-A letter was read from Mr. G. B. Sowerby, jun., in which be proposed to change the name of Tharacia jacksonensis, given in bis paper "On New Shells," read in January, 1883, to Thacia brasieri. - A letter was read from Mr. W. H. Kavenseroft, of Colo nbo, Ceylon, describing the effectual mode in which a female Axis Deer in coufinement concealed it; young one from observation. - The Secretary exhibited, on the part of Major C. H. T. Marshall, F.Z.S., a specimeu of a uew Impeyan Pbeasant from Chumba, N.W. India, which Major Marshall proposed to name Lophophorus chmmbianus, and some other birds from the same district.-Mr. H. Seebohm, F.Z.S., exhibited and made remarks on a uew Owl from Japan, which he proposed to call Bub, blakistomi, after Capt. Blakiston, its discoverer.-Mr. H. E. Dresser, F.Z.S., exhibite1 and made remarks on some Ringed Pheasants from Corea-Prof. Bell, F.Z.S., exhibited and made remarks upou some Australian Crinoids infested by a large number of Myzostomata, - Prof. Flower read a paper on the characters and divisions of the family Delphinidx, in which the following generic divisions were admitted and defined:-Monodom, Ddphinapterus, Phocarna, Neomeris, Cephalorkynchus, Orca, Ore
cella, Pisudorca, Globicephalus, Grampus, Fercsia, Lagenorhynckus, Dolphimus, Tursiops, Clymenia, Steno, and Sotalia. Critical remarks were added upon the ebaracters and kynonymy of the best-known species of each.-Prof. Flower also gave an account of a specimen of Rudolphi's Rorqual, Balurnoptera boralis, Lesson ($=$ Sibaldiws laticefs, Gray), lately captured in the River Crouch, Essex, being the first well-authenticated example of this species met with in British waters.-A communication was read from Dr. M. Watson, F.Z.S., containing additinnal observations on the structure of the femsle organs of the Indian Elephant (Elçhas indicus).-A communication was read from Mr. F. Moore, F.Z.S., containing the descriptions of some new Asiatic Diurnal Lepidoptera.-A communication was read from Mr. R. Trimen, F.R.S., in which he gave a description of a remarkable semi-melancid varicty of the Leopard (Felis pordws) in the Albany Museum, Grahamstown, which had been obtained in the east of the Care Colony.-A communication was read from the Ccunt H. von Berlepsch and Mr. L. Taczanowski, in which an account was given of an extensive collection of birds made by MM. Stolzmann and Siemiradzki in Western Ecuador.

Edinaurgh

Royal Physical Society, November 21,-The first meeting of the $113^{\text {th }}$ session was held in the Institurion Rooms, St. Andrew Square, Dr. Ramsay 11. Traquair, F.R.SS, London and Edinburgh, president, in the chair.-A nest of the reed-warbler, found near Combe Abbey, Warwickshire, was exhibited to the Society by Dr, Herbert.-The opening address of the session was then delivered by Dr. Archibald Geikie, F.R.SS. London and Edinburgh, Director-General of the Geological Survey of Great Britain and Ireland on "The Relation betụeen Geology and Palzontology.'

Sydney

Linnean Society of New South Wales, September 26.Dr. James C. Cox, F.L.S., in the chair. - The following papers were read :-On a very dolichocephalic skull of an Australian aboriginal, by Baron N. de Miklouho Maclay. The cephalic index of this skull, which was found in the interior of Queensland, was only $5^{\circ} 9$, calculated on the ophrio-occipital length, and $58^{\circ} 3$, calculated by the glabello-occipital length, an index lower probably than that of any skull hitherto described. The skull was not a deformed one in the ordinary sensc, but was a fair example of the so-called roof-shaped type of cranium.-On a fossil humerus, by Mr. C. W. De Vis.-Notices of some undescribed species of Coleoptera from the Brisbane Muveum, by William Macleay, F.L.S. The species described are a few unnamed Coleoptera occurring in a large collection sent by Mr. De Vis to the author for identification. Their names are:Pamberus viridiaurcus, Catascopus laticollis, Eutoma ponctipenne, Carcham terre-regina, C. ianthinum, C. De Visii, C. fusillum, Tibarisus robustws, Pacilus levis, Diphuccphala hirtiponnis, D. carwha, D. latipensis, and Lipardrus conveximiculus.

Paris
Academy of Sciences, November 19.-M. Blanchard, president, in the chair.-Kemarks on the recent volcanic dis. turbances in Sunda Strait ; mineralogical analysis of the ashes collected, by M. Daubrée. From the examination of these ashes, which fell at Batavia on August 27, the author considers it highly probable that the surface waters penetrating deeply into the underground cavities, and there becoming superheated, form the chief agency in sach volcanic eruptions as those of Krakatoa and Ischia.-On the velocities acquired in the interior of a vessel by the various elcments of a fluid during its discharge through a lower orifice (continued), by MM. de Saint. Venant and Flamant.-Ou the process of purple dyeing amongst the ancients according to a fragment attributed to Democritus of Abdera, by M. Berthelot.-On the production of extremcly low temperatures by means of continuous apparatus, by M. Cailletet.-Report on the French expedition to Cape Horn, by M. Martial. The expedition, undertaken mainly to observe the transit of Venus, embarked on board La Romanche at Cherboung on July 17, and reached its destination on September 6. Three contacts were observed under favourable conditions by M. Courcelle-Seneuil. A great part of Tierra del Fuego was visited, numerous dredgings were made at various points, and rich collections, especially botanical and ethnological, were brought back These included living
specimens of most of the Furgian flora, two native canoes with their full equipment, a completc hat with all the utensils, arms, and other objects in use amongst the aborigines. A cairn twenty feet high was erected in Orange Bay tocommemorate the French expedition to Cape Horn.-On the transformations of which certain equations of the second order are suseeptible, by M. K. Liouville.-On the electrochemical energy of light, by M. F. Griveaux.-Observations of the Pons-Brooks comet made at the Paris Observatory (equatorial of the west tower), by M. (i). Bigourdan.-Observations of the same comet and of the planet 234 made at the Marseilles Observatory, by M. Coggia. - Photometric observation of an eclipee of the fir-t satcllite of Jupiter, by M. A. Obrecht. - Remarks on a formula of Tisserand connected with eclestial mechanice, by M. R. Radau. - On the resisting power of a ring, by M. J. Boussines q.-On the curve-lines of wave surfaces, by M. G. Darboux.-Application of a proposition in mechanics to a problem connected with the figure of the earth, by M. E. Brassinne. - Note on the action of carbonic acid on saccharine dissolutions more or less charged with lime, by M. D. Loiseau. -On a new kind of ureometer (one illustration), by M. W. H. Greene.-Experiments on the passage of charbon bacteridx into the inilk of animals affected by charbon, by MM. J. Chambrelent and A. Moussous.-On the embryogeny of Sacculina carcini, an endoparasitic crustacean of the order of Kentrogonides, third note, by M. Y'ves Delage. In this highly important contribution to the study of parasitic entomology the author proposes to constitute a new order of Kentrogonides, distinct from, but allied to, that of the Cirrhipedes.-Development of the Stylorhynchuc, by M. A. Schncider.-On the genus Ptychogaster, Pomel, a fossil Chelonian found associated with the remains of crocodiles in the Saint-Gérand-le-P'uy formations, by M. L. Vaillant.-On "vaugnerite," a phosphatiferous rock occurring in the Irigny district on the banks of the Rhone, by M. F. Gonnard.-Note on a prehistoric flint mine worked during the Stone age at Mur-de-Barrez, Aveyron, by M. E. Cartailhac. -Concluding remarks on the waterspouts observed at Ville-franche-sur-Mcr, Maritime Alpe, during the month of October, 1883, by M. J. Jeanuel.-Note on the effects produced by lightning during a thunderstorm at Rambouillet on November 10, by M. A. Laugier.

CONTENTS

Page
Scientific Worthies, XXIII.-Sir Charles William Siemens. By Sir William Thomson, F.R.S.
The Forest Lands of Finland. By Prof. W. Fream
101

Letters to the Editor:-

Optical Phenomena.-J. Ll. Bozward; Dr. Hubert Airy; A. Tarn; Miss Annic Ley Mrs. M. Carey-Hobson

102
Pons' Comet and Meteors.-The Quadrantids.Thos. Wm. Backhouse

104
Meteor.-F. T. Mott
Some Habits of Bees sad Humble Lees.-Miss Isabella Herschel
Rudolphi's Rorqual.-Prof ${ }^{\mathbf{W}} \dot{\text { W. H. }} \dot{\text { Flower, }} \dot{\text { F. }} \dot{\text { R. }} \mathbf{s}$
Reflection of Light.-W. J. Trentler
104
A Lunar Rainbow.-I. C. Kernahan . . .
Sudden Stoppage of Clocks,-G. Henry Kinahan . Fog Bows.-G. H. Kinahan.
The Early History of the Herring. By Prof. J.
Cossar Ewart
105
The Origin of Coral-Reefs. By Arch. Geikic, F. R.S.,
Director-General of the Geological Survey (With Diagram)

107
Notes 110
Our Astronomical Column:Pons' Comet
The General Theory of Thermodynamics. By Prof, Osborne Reynolds, F.R.S.
Professor August Weismann on the Sexual Cells of the Hydromeduase. By Prof. H. N. Moseley, F.R.S. (With Diagrams)".

THURSDAY, DECEMBER 6, 1883

THE GEOLOGY OF THE LIBYAN DESERT
Beiträge zur Geologie und Palaontologie der Libyschen Wiüste und der angrensenden Gebiete von Agypten, unter Mitwirking mehrerer Fachgenossen, herausgegeben znn Karl A. Zittel I Theil und 11 Abtheilung, I Heft. (Contributions to the Geology and Palaontology of the Libyan Desert and of the Neighbouring Districts of Egypt. By Karl A. Zittel, with the assistance of several scientific men. Part I. and Part I1., Section 1.) (Cassel : Fischer, 1883.)

IN Nature, vol. xxii. p. 587, there appeared a notice of the anniversary address for that year to the Academy of Natural Sciences in Munich delivered by Prof. Karl A. Zittel, the well.known Professor of Geology and Palæontology at the Munich University. The address contained a preliminary sketch of the work, the complete account of which occupies the quarto volume and portion of a second volune now before us.

In the winter of $1873-74$ a scientific expedition under the leadership of Gerhard Rohlfs was despatched with aid from the late Khedive of Egypt, Ismail Pacha, to explore the Libyan desert or north-eastern portion of the Sahara. The scientific results of this expedition are now being published in a series of separate volumes, of which the Geology and Palzontology will form two. The first of these lies before us, the second is as yet incomplete, and only one section containing a description of the Eocene Echinoidea, by P. de Loriol, has hitherto appeared. The first volume comprises the geological description of the country by Prof. Zittel himself, an account of the fossil wood from the Nubian sandstone and from the wellknown "fossil forest" near Cairo (Cretaceous), by Dr. A. Schenk; of the Miocene fauna of Egypt and the Libyan desert, by Dr. Th. Fuchs; of the Tertiary (Upper Eocene or Oligocene) fossils from the western island in the lake of Birket-el-Qurûn (about fifty miles south-west of Cairo), by Prof. Karl Meyer-Eymar; of the Foraminifera (the Nummulites excluded) from the Eocene beds of the Libyan desert and Egypt, by Conrad Schwager ; a monograph of the Nummulites from the same areas, by the late Dr. Phil. de la Harpe; and a description of the Eocene corals, by Magister E. Pratz. These palæozoic descriptions are illustrated by thirty-six plates.

The remaining portions of the second volume will include an account of the Eocene Mollusca, by Prof. McyerEymar; of the Cretaceous fauna, chiefly by Prof. Zittel himself; and of a few other subjects. Amongst the contributors, besides those already enumerated, the names of Prof. Beyrich, the Marquis de Saporta, Prof. Haushofer, and Prof. Zirkel are mentioned in the preface to the first volume.

An array of scientific names like the above, chosen from amongst the most eminent specialists of Germany, Switzerland, and France, proves that this is a work of more than ordinary geological importance. The principal author and editor, Prof. Zittel, is both a good geologist and a good palxontologist, a much rarer combination than is usually supposed.

VoL. XXIX.-NO. 736

On the geological map in the first volume an area occupying rather more than 5° of latitude (25° to $30^{\circ} \mathrm{N}$.) and above 8^{\prime} of longitude (about $25^{\circ} 30^{\prime}$ to $33^{\circ} 40^{\prime}$ E.) is coloured. This country includes the Nile valley from Cairo to Edfu (the geology of the valley itself is shown as far south as Assuan), and extends east wards to the shores of the Red Sea, and westward far into the great desert tract of Northern Africa. The whole area coloured geologically may be roughly estimated at between 150,000 and 160,000 English square miles.
It will easily be understood that the mapping is of a very rough description, a geological sketch in fact, but in desert countries, owing to the want of vegetation to conceal the rocks, and to the clearness of the atmosphere, it is remarkable with what accuracy geological formations can be traced by the eye to great distances. A considerable proportion of the area is coloured from the observations of other travellers, and especially of Schweinfurth. The routes of the expedition under Rohlfs and of other travellers are marked on the map, and show how much of the area has actually been examined.

Among the numerous points of interest presented by the volume it is difficult to select any one as superior to the others. In the former notice in Nature the general characters of the geological systems observed (Cretaceous, Eocene, Miocene, and the so-called Quaternary and recent) were briefly described. To enter at any length into a notice of the palæontology would take too long. At the present time when the writings of F, von Richthofen and others have called especial attention to the subaërial or Eolian formations of the latest geological times and the present day, the description of the surface phenomena presented by the desert tracts of the Sahara, coming from so keen an observer as Prof. Zittel, are well worthy of attention, and a few remarks upon them may prove interesting.
The geological portion of the work is divided into two chapters : the first, containing forty-two pages, being devoted to the Sahara as a whole; the second to the geology of the Libyan desert and Egypt. In both of these chapters considerable space is devoted to the superficial characters of the desert. The surface of the Sahara is divided by Prof. Zittel, according to its chasacters, into four kinds :-(1) Plateau-desert or Hammada, occupying the largest portion of the area, a level, hard, stony surface in general, without noteworthy elevations or depressions, but passing locally into (2) mountainous, desert. The so-called (3) erosion-desert consists of depressions more or less occupied by salt-marsh. The last form of surface, the most remarkable and interesting of all, is the (4) sandy desert or Areg, composed of drift sand forming hills or downs (dunes).

Prof. Zittel shows, on what appears to be an overwhelming amount of evidence, that the popular idea of the Sahara having been the basin of a sea in Pleistocene times is without foundation. The greater part of the area has apparently been above water ever since the Cretaceous epoch; a comparatively small tract in the north-eastern portion was submerged beneath a Tertiary sea, whilst the only part that can have been under water in post-Tertiary times consists of a tract extending from the Nile delta to the oasis of Ammon, and to the so-called "Chotts" of Tunis, and even in this tract marine conditions in late
geological times are doubtful. But Prof. Zittel considers that the climate muit have been damper, the rainfall heavier, and freshwater denudation more active in Pleistocene days than now, to account for the erosion that has taken place, the abundance of fulgurites, and the present distribution of the fauna and flora, especially in such cases as the occurrence of Central African crocodiles in the marshes and streams of the completely isolated Ahaggar Mountains. Reasons are also given for believing that the Nile was formerly a larger river than it now is. It is probable that Prof. Zittel's views on some of these points will be contested, but it is impossible to deny that his arguments are admirably expressed and clearly reasoned out.

Some very interesting details are given about the desert sand, and a careful description of its arrangement in the form of sandhills. The sand of the Sahara is considered to have been largely derived from the decomposition of the so-called Nubian sandstone, the original matrix of the well-known silicified wood. In the Libyan desert there are some remarkable anomalies in the arrangement of the sandhills, and it is clear that they cannot have been entirely formed by accumulation through the agency of the prevailing wind as it exists at the present day. It may here be remarked that very similar observations were made, a few years since, upon the sand ridges of the Indian desert east of the Indus. Some of the sand ridges, both in Africa and India, attain an elevation of about 500 feet, and in both areas the largest appear to have undergone no change within the memory of man, although in places, in both continents, moving tracts of sand occasionally overwheltn cultivated land and buildings.

One mistake in the book deserves notice. In the comparative table of Upper Cretaceous and Eocene beds in Europe, Asia, North Africa, and North America the position assigned to some of the Tertiary stages of the Indian rocks requires correction. The lower Nari beds in especial were never supposed to be so old as Middle Eocene (Parisian), and they are now known to be in all probability true Oligocene. But trifling mistakes of this kind are to be expected : it is surprising that more should not have been observed.

> w. T. B.

APPLIED MECHAN/CS

Applied Mechanics. By H. T. Bovey, M.A., Professor of Civil Engineering and Applied Mechanics, McGill University, Montreal, Fellow of Queen's College, Cambridge. Part I., pp. 190. Part II , pp. 150. (Montreal : J. Lovell and Son, 1883.)

TH1S work appears to be designed as a college textbook for somewhat advanced stulents, who have already received good training in mathematics (as far as the elementary parts of the integral calculus) and theoretical mechanics.

Part I. treats of the strength of materials, dealing with longitudinal stress, the strength of beams and pillars, torsion, and the strength of hollow cylinders and spheres.

In Part II. we have chapters on frames, roofs, bridge-
trusses, suspension bridges, arched ribs, and in conclusion one on "details of construction," which includes a discussion of the strength of rivets and other fastenings.

In his exposition of these subjects the author manifests a power of clear and precise statement ; and the treatment of the more difficult problems of the first part is perhaps as profound as could be attained without a knowledge of the general theory of elasticity. The numerous illustrations serve sufficiently well in Part I., where they consist chiefly of diagrams; but in Part II. they are on too small a scale for the complicated structures illustrated: and in clearness of detail are far below the standard reached in recent English books on the same subjects. Analytical methods are preferred throughout ; and generally speaking geometry is used merely to illustrate results previously obtained in a symbolical form. Thus graphical statics is quite subordinate in Part II.; stress diagrams are intro fuced, but there are not sufficient instructions in the text to enable a student, who has not studied the subject independently, to construct them for himself.
In the extended treatment of a parabolic rib of uniform stiffness (pp. 101-120) the author follows very closely the lines in Rankine's "Civil Engineering," with some further consideration of the additional terms depending on change of temperature.
There is no acknowle igment in regard to this and other parts of the work where Rankine's influence is clearly apparent. But as no preface is given to the present volume, perhaps other portions of the great subject of applied mechanics are in course of preparation by our author; and till the completion of his work he is postponing the statement of his obligations to those who have gone over the ground before.

We have referred to the apparent excess of symbolical reasoning: but none of this is due to the introduction of investigations better left to treatises on pure mathematics and theoretical mechanics.

Difficulties special to the subject of the work, such as the equations of the "neutral axis" (so-called) for all the different modes of loading and supporting a beam, the theorem of three moments, the moments of inertia of complicated forms of section, the deflection of struts, are however treated with the fullness of detail required by ordinary students.

Such investigations constitute the best feature of the book. The detailed application to problems such as occur in actual practice is but slightly touched on; perhaps for this we are to look to the "Examples," of which some few are worked out in the text; appended to the several chapters, moreover, are close upon 400 proposed for the exercise of the student.

These form a very important collection. A great number involve numerical results, and unfortunately the answers are not given; this greatly lessens their value for private students at any rate. Several examples are taken from existing structures, and are liberally furnished with diagrams in illustration of the data.

Many are new to text-books, and the author has evidently taken great pains in collecting and arranging them.
A. R. Willis

LETTERS TO THE EDITOR

[The Editor does mol hold himself responsible for opinions expressed by his correspondents. Neither can he undertahe to return, or to correspond wwilh the twiters of, rejected manmscripts. No notice is takew of a monymour comnumications.
[The Editor wrgently reguests cornespondents to keep their letters as shert as passible. The pressure on his space is 30 great that it is impossidle obherwise to inswre the appearance cven of communications containing interesting and movel facts.]

Meteors

Hekg, November has generally been unpropitious for astronomical ob-ervations. However, during favourable interval 1 have seen many brilliant meteors; from twenty to thirty on an average every night. They were principally seen with the face to the north, and klancing from shoulder to shoulder; but not a ringle Andromede did I cee. I had the pleasnre of seeing altoge her about a score of Leonids before the 12th and after the 19th November. Leo Minorids and Arietids were plentiful, and a goodly number of Geminids were seen; but the richest field for metcors during the month was in the neigbbourhood of the Ploagh. November 6, at $4.30 \mathrm{a} . \mathrm{m}$. , a large meteor passed from y Urse Majoriv right down to the horizon. From 4.35 to 5.15 three veritable Leonids proceeded from the Sickle; one da.hed down to the right-hani, and another from the top of the Sichle to the left over the Lion's back. They were very large. November 10 , at 8 p.m., a brilliant meteor started from a point nearly half way between Aldebaran and Saturn, and di-arpeared at a point down more than half way to the horizon. At 9.30 a very bright one appeared at a point about $\mathbf{1}^{\circ}$ above Castor and alove Japiter to the north. At 11.25 an exceedingly large and brilliant meteor burst out from $\frac{1}{2}^{\circ}$ below Menkar (in the Whale), and went down at right angles to the very horizon, leaving a long, bright streak behind. November 11, a large one, at $0.15 \mathrm{a} . \mathrm{w}$. , droppod down to the horizon from θ Unse Majoris, At $0.55 \mathrm{a} . \mathrm{m}$. a very large one priceeded from $\frac{1}{2}{ }^{\circ}$ to the right of a Lacerix and disappeared at $\boldsymbol{\gamma}$ Cygni. November 18, at $1.40 \mathrm{a} . \mathrm{m}_{\text {., }}$ a very large reddish meteor burst out from the top of Ursa Majur's head, and parsed right above Vega, and disappeared about 4° beyond it in a strange sparkling explosion. At $1.55 \mathrm{a}, \mathrm{m}$, a very brillant meteor dashed out about 2° above a Arietis, went through the square of Pegasus, leaving a beantiful stream of blue fire behind, and lasting a few seconds. Ahont 5.30 another large blue meteor passed from the centre of Leo's back throunh a point 4° abo ve lienebola, and ended in a beautiful explosion 15° beyond. On the night of November 22 there was a fine display of (generally) large meteors from Taurus to Ursa Major; many of them proceeded from the Lion's Head. During the month a great number of meteors passed from some point in Scorpio, nader Jupiter and Mars, right into the Lion's Ilead. They were all large and bright. During the last half of the month some fine displays of morning meteors were seen. At 4 a.m., November 29, 1 observed a very large and swift meteor. It blazed out from a point about 8° above Denebola, and dashed with great velocity $n \rho$ the heavens, passing 4° above ${ }^{8}$ I.eonis and over the 1 Lion's Head, and exploded about 5° beyord, leaving a stream of the most beautiful blue light in its wahe that I ever withe wed.

Donald Casaeron
Mossvale, Paisley, December 3

As your columns frequently contain notices of meteors, I may mention that 1 observed one of unusual brilliancy lait night (November 28) at 10.50 . It apteared in the constellation Tanrue, and, foll wwing the line of the ecliptic, disap, eared about five to ten degrees above the eastern horizon. The \mathbf{m}-teor was visithe for not less than fifteen seconds, had a brilliant train or cone of light of from two to three degrees in length, and outshone Jupter, near which it possed. From the stow, angular movement of the meteor I feel certain that the train was not an optical impression, but a real luminous object.
F.R.S.E.

Ediaburgh, November 29

A Fine meteor was observed here ly me at toh, 38 m , last night, Werlnesday, November 28. Bursting into sight near AUrse Majori-, it passed itt a conrse almont parallel to, hut about 2° north of, a line joining a, δ, f, δ, and η Urve Maj., its light expiring near a Hoötis. Length of path $=40^{\circ}$. No train was observed ; the only variation of uniformity of light being at
about half way of its passuge, whero it slikhty faled for an instant and then as quickly recovered. Duration about four seconds. Brilliancy three or four times Venus at its brightest. Colour resemhled that of magnesium light.
W. W'tскнам

Radcliffe Observatory, Oxford, November 29

LAst night, about $t 0,30$, I saw a magnificent bolide shoot across the sky in a northerly direction. It came from the middle star in Orion's belt, and disappeared at a point almost in a line with "the Pointers" in the Great Bear, and at a distance below the lower of the two stars almost equal to the distance between them. Its path wav perceptibly arched, bat not to any great extent, and, as far as I cuuld judge, it was not parabolic. When the bolide first appearert, it seemed a mere luminous point moving with great rapidity, and without a tail. But abrut balf way it suddenly grew la ge and brilliant, a tail shot out, and the path bebind it remained luminous and distinct. I could compare the bolide at tbis puint to nothing so much as to a red-hot cannon ball emitting sparks of fire. It was aceompanied by no sound, and va* gone in half a dozen seconds. During its passage the streets secis ed 10 be lit up with the electric light. It was apparently so close that I shoald think a few miles wonld have made a very : ensible difference in its apparent position in the heavens.
J. B. Oldtiam

Stockport, November 29
Last night at the 2 n . I saw in the north-west, near the horizon, one of those slow-moving balls of fire, not so bright an an ordinary meteor, and leaving no train. This, reemed the size of a cricket ball; I ut 1 have seen one the size of a chee-e-plate. A few flashes of lighining occurred soon after. From the slowness of the motion the phenomenon seemed to be wholly atmospheric, It was in sight for about three or four seconds. It instantly suggested an incandescent vortex whorl ; but I cannot say whether the appearance confirmed the idea or not, for I do not know how such a meteor would look. Its red light might be dne to its proximily to the horizon, perhays $8^{\prime \prime}$. Hence there is no dependence to be placed upon my impres-ion thet the light was the recult of friction rather than of electricity. I have seen probably a dizen in the course of my life, alway in the west or north-west, and aluays about the same height from the horizon, but never annalar.

Henry H. Higgins
Rainhill, December 4

"Anatomy for Artists"

May I add a few more words on the subject of Mr. Marshall's book, and in answer to his letter in Nature? Mr. Marshall says the reasons that led him to adopt the plan of omitting reference letters to his illu-trations of the bones "still remain sonnd." Turning ${ }^{\text {to }}$ P. 30 of the book to learn those reasons, I find he says that "The numercus minute points which demand the attention of the anatomist and the surgeon necessitate sach aids; but the art-student's mind shoald be left unincumbered by such unnecersary details."

I cannot see that this is a reason; I wanted references to what is described in the text-to the necessary, not the nnnecessary details.

Secondly, Mr. Marshall tays, "The pure form of the bones, repre ented on so small a scale, in black and white, would have been seriously marred by such references." If this be "sound," may there not be more and equally sound reasors for opposing it? I think there are; and if Mr. Marshall will turn to p .136 of the trock, I will try to show him how his plan works. The student reads there that "All the bones of the hand are visible in the skeleton, on its palmar aspect (Fig. 58), carpal, metacarpal, and phalangeal;" he turns to Fig. 58 , but where is it? It is mentioned in a list of fagures nnder threr illustrations. Ite hav to mahe up his mind which of the three is 58 , recalls that it is the palaar aspect, and goes on, He has no clue, let Mr. Marshall ohserve, by wbich to know which are the carpal, metacarpal, and phalangeal portions of the hand for which he originaliv I moked at the polmar aspect of it. He hopes he may come to that; and, reading nn, find that the eight carpal bones are "in the carpu-;" lut then, which is the carpus? He does not know, and is not t Id. Never mind, he thonks, he will find that out by the de-cription of the single hones, and, begin. ning with the first nentsoned, he reads that the semi-lunar bone ". . . . occupie the centre of the first row, and is creccentic
in shape." I.ooking again at the illustration, for "rows" be finds that the bones which seen to be arranged in risws are those which he may afterwards learn to be the metacarpals and phalinges. Supposing, however, that be guesses the carpus rightlv, which of its bones is semi-lunar or crescentic in shape? I think if the picture were put before any ordinary observer, told to point out a crescentic bone, he would select the scaphoid. There is, thinl.s the student, still a clue left, for the semi-lunar "occupies the centre of the first row." But the first row contains fowr bones; al least he has read that "tbe eight bones are clustered together so as to form two groups," and he is not told that these groups are not the "rows" afterwards mentioned. He gives it up, and reads the other bones to learn them and find the semi-lunar lyy the exhaustive process. The guide he finds to the cuneiform bone is that it is "on the ulnar side of the semilunar," which he has perhazs failed to guess rightly, and articulates with certain other bones, which are to be afterwards described, and are unknown to him ; and so on.

The mode of progression is like that I made once in Ireland, when on asking a peasant my way I was tuld to take the last turning before coming to the next milestone. There were a good many steps to retrace after finding the next milestone.

I have no doubt at all of the moral influence of Mr. Marshall's plan if the student perseveres in using his book; he will have exercised patience, attention, command of temper, and careful criticism of words, but I do not think his anatomical will equal his moral gain.

The process described above simply distracts the student's attention from the form of what he is studying. Would Mr, Marxhall wish the Map of England taught in the same mannerno names or references given to the cuanties, and Hampshire to be recognised because it is in the last row and adjoins certain other counties, which in their tura adjoin it?

Art Student

Barytes from Chirbury

I have to thank Mr. Woodward for polnting ont that the plane (412) has been establi-hed for barytes. It was fint given by Helmhacker (Denksch. der K. Ahad. der Wiss. Wien. vol. xxxii. 1872) as occurring on crystals from Svárov and Kražná hora in Bobemia, but is rejected by Schrauf as insufficiently determined. The distinguishing peculiarities of the Chirbury erystals are (1) the predominance of the plane E which does not truncate an edge as is the case in Carl Urba's crystals; (2) the frequent occurrence of ω and ξ; (3) the tendency of the face o to develop small faces on its edges which are inclined to o at angles near 3°. Such faces are Q and Y, and I have since determined a face A on the edge og wish indices near (25.1.27).

British Museum, November 26
H. A. Miers

THE ORIGIN OF CORAL REEFS

11.

THE most detailed investigation of coral-reefs which has yet appeared has just been published by Prof. A. Agassiz. ${ }^{2}$. This able naturalist is engaged in prosecuting a series of researches into the biological phenomena of the seas on the eastern side of the United States, under the auspices of the United States Coast Survey, and in the course of these explorations he has had occasion to devote himself to the detailed study of the coral-reefs of the Florida seas. For purposes of comparison he has likewise visited the reefs among the West Indian Islands, as well as those on the coast of Central America. His observations are thus the most exhaustive and methodical which have yet been published, and the deliberate conclusions to which he has come deserve the most attentive consideration. He traces the history of a coral-reef from its latest stages as dry land to its earliest beginnings, and even beyond these to the gradual evolution of the conditions requisite for the first starting of the reef. His familiarity with the nature of the bottom all over the area in question, and with the life so abundant in the tropical waters, gives him

[^19]a peculiar advantage in this inquiry. The upheaval of recent coral-formations to considerable heights above the sea in various parts of the region enabled him to examine the inner structure and foundations of the reefs, and to obtain therefrom altogether new data for the solution of the problem. Following him in his induction we are led back to a comparatively recent geological period, when the site of the peninsula of Florida was gradually upraised into a long swell or ridge, having its axis in a general north and south direction, sinking gently towards the south, but prolonged under the sea as a submarine ridge. The date of this elevation is approximately fixed by the fact that the Vicksburg limestone was uptaised by it, and this limestone is assigned to the Upper Eocene series. As a consequence of the elevation, a portion of the seabottom was brought well up into the waters of the Gulf Stream, which were probably shifted a little east ward.

No inarine fauna yet explored equals in variety of forms or number of individuals that which peoples the waters of the Caribbean Sea and the Gulf of Mexico from the depth of 250 to about 1000 fathoms. This prolific life is traced by Prof. Agassiz to the copious food-supply carried by the warm tropical currents, combined with the food borne outwards from the sea-board of the continent. The corresponding abundant fauna found by the Challenger in the Japanese current may be regarded as its counterpart in the Pacific Ocean. Prof. Agassiz points also to the diminished richness of the fauna on the western side of the continents as being probably connected with the absence of those warm equatorial currents which bring such an abundant supply of food to the eastern shores. "No one," he remarks, "who has not dredged near the hundred-fathom line on the west coast of the great Florida Plateau can form any idea of the amount of animal life which can be sustained upon a small area, under suitable conditions of existence. It was no uncommon thing for us to bring up in the trawl or dredge large fragments of the modern limestone, now in process of formation, consisting of the dead carcasses of the very species now living on the top of this recent limestone." Mollusks, echinoderms, corals, alcyonids, annelids, crustacea, and the like, flourish in incredible abundance on the great submarine banks and plateaux, and cover them with a growing sheet of limestone, which spreads over many thousands of square miles and may be hundreds of feet in thickness. In these comparatively shallow waters, and with such a prodigiously prolific fauna which supplies constant additions to the calcareous deposit, the solvent action of the carbonic acid upon the dead calcareous organisms is no doubt reduced to a ninimum, so that the growth of the limestone is probably more rapid than on almost any other portion of the seabottom.

From the charts we learn how extensively submarine banks are developed in the West Indian region in the track of the warm currents. East of the Mosquito Coast, in Central America, one of these banks may be said to stretch completely across to Jamaica. Similar banks rise off the Yucatan coast ; likewise on the windward side of the islands, where the ocean currents first reach them.

That these banks lie upon volcanic ridges and peaks can hardly be doubted, though we have no means of telling what depth of recent limestone may have accumulated upon them. Among the islands, recent volcanic masses rise high above sea-level, in Martinique reaching a height of more than 4000 feet. And as usual in volcanic regions there are numerous proofs of recent upheaval, such as the Basse Terre of Guadaloupe, the successive terraces of recent limestone in Barbadoes, and the upraised coralreefs of Cuba, which lie at a height of 1100 feet above sea-level.

The West Indian seas have long been famous for their coral-reefs. Prof. Agassiz insists that the distribution of these recfs is determined by the direction of the food-
bearing ocean currents. They flourish on the windward side of the islands and along the whole eastern coast of Honduras, Venezuela, and Yucatan. But on the leeward shores they do not exist at all. Cuba is fringed both on the north and south side with reefs, but the southern reefs, directly bathed by the Gulf Stream and exposed to the prevailing winds, are more flourishing than the northern reefs, which are to some extent cut off from the equatorial current by banks and islands.
The depth at which corals will flourish in these seas has been found to he rather less than that which has been ascertained to be in general their downward limit elsewhere. Prof. Agassiz concludes that they do not thrive below a depth of six or seven fathoms in the Florida seas, though on the outer reef, directly exposed to the open currents and prevalent winds, they descend in scattered heads to about ten fathoms.

Each successive stage in the growth of an atoll seems to be laid open for study in the prolongation of the Florida reefs. The map of that region (Fig. 2) shows a remarkable broken line of islets and strips of land running parallel with the coast, first in a southerly direction, but
gradually eurving round until it takes a due westerly trend. This westward curve is attributed mainly to the influence of the strong counter-current which, with a width of ten to twenty miles, sweeps westward into the Gulf of Mexico along the left side of the Gulf Stream, and heaps up organic debris in its track. Florida is growing westward in the line of this current. Reef after recf is added to the land at the east end, while towards the west, new reefs successively begin on the bank, as its surface is gradually built up by the accumulation of organic debris.
The last and youngest of the reefs marked on the maps and charts is the group known as the Tortugas. But immediately to the west of this group Prof. Agassiz has found a prominence on the submarine bank, on which corals have begun to grow. I.arge heads of Astreans and Madrepores have fixed themselves at a depth of from six to seven fathoms, and Gorgonixe are found a little lower. This is the beginning of an atoll. The Tortugas, which present a further stage of development, consist of an elliptical, atoll-shaped reef, in three chief parts, whereof the largest forms a crescent, fronting to the east

Fig. 2.-Map of the Florida Reel and Kess.
round the edge of the submarine bank, while the two other portions have grown soush-westwards along the bank. Three channels between these portions allow powerful tidal currents to rush across the central chiefly submerged parts of the atoll. Seven islands have been formed at the higher parts of the reef by the accumulation and induration of calcareous debris tossed up on the reef by the waves. To the breakers and currents combined with the distribution and habits of growth of the reef-builders Prof. Agassiz entirely attributes the form and growth of the reef. The most important corals are the Madrepores, which flourish in extensive patches, two common species of Porites occurring in clusters over the shallow tracts of coarse sand, and Mcandrina areolata, growing between the marine lawns of Thalassia, with occasional patches of Anadyomene. Immense masses of nullipores and corallines grow on the tops of the dead branches of Madrepores which have been killed by exposure to the air during extreme low tides or when strong winds have hlown the water off the flats. Large heads of Astraxans and Maandrina occur here and there towards the edge of the reef, which is occupied mainly by clusters of Gorgonia. The destruction of the reefs by the waves
is very great, the sea being occasionally discoloured with the chalky sediment to a distance of from six to ten miles after a storm. Broken coral-heads, and branches, dead corallines, shells of mollusks, old serpula tubes, stalks of Gorgonia, and other organisms are thrown up in lines that consolidate intoa low dyke, which in turn is younded up and removed by the breakers. A prodigious quantity of calcareous sediment is thus produced, much of which is swept into the interior of the recfs, where it accumulates in flats of sand and silt. It is only on the outer edges of the reef, where the scour of the sea is greatest, that the corals can flourish; elsewhere they are choked and buried under the deposit of calcareous sediment. Some of this sediment accumulates in steep submarine banks, like sand-dunes, which shift to and fro as winds and currents vary; though by the action of the carbonic acid of the sea-water they are apt to be cemented into solid slopes, some of which have an angle of as much as 33°. So great is the destructive and transporting influence of the sea under the combined or antagonistic working of tides, currents, and wind-waves, that the whole mass of the reef as well as the flats and shoals inside may be said to be in more or less active movement. Hence none of the
landmarks furnished by the islands can be relied upon for the location of buoys.

A still more perfect example of atoll formed under similar conditions is that of Nlacran on the opposite coast of Yucatan. Its eastern face is a great arc of about 20 miles, where, exposed to the open sea an 1 easterly winds, the corals flourish vigorously. On the eastern or interior face of the western chord of the recf, however, the sile derived from the pounding of the breakers to the castward has already killed the corals. The lagoon is occu. pied by detached eoral-heads with lanes of deep water between them '

To the east of the Tortugas, nerrer the mainland of Florida, odder stages of development among coral-reefs may be traced. By the westward drift of the calcareous sand and silt the lagoons have beer: converted into flats, and these in succession have been turned into more or less continuous dry land. There is no evidence of subsidence. The area seems to have remained stationary for a long period, or if there has been movement at all, it has been in an upward direction. Should the present condition of things be prolonged, there will be a further extension of the Florida coast-line. By the heaping up of the shells of dead organisms in the track of the counter current, the submarine bank will continue to be brought up within the depth at which reef-building corals can flourish. Successive clumps of reef-builders, springing up and growing outward, will build up atoll-shaped reefs. The abrading action of the waves upon these reefs will furnish detritus to be drifted into the lagoons and channels, which will eventually be silted up into dry land.

An interesting indication of the progress of these changes is furnished by the terrestrial flora and fauna of the reefs. The plants of the mainland are found likewise on the reefs, but become fewer in number as they are followed southward, until on the Tortugas,-the last adtition to the dry land,- the flora consists of a few Baycedars, a hop-vine with a thick white fiswer, Bernucla grass, and a solitary mangrove tree. One of the species of land-shells common at Key West has found its way to the Tortugas. No terrestrial reptiles have yet reached that furthest atoll, though at Key West, less than 100 statute miles to the east, many of the frogs, toads, lizards, and snakes common to the southern mainland have already established themselves.

It will be ob served that the conclusions arrived at by Prof. Agassiz from his own independent researches entirely confirm tho:e previoutly announced by Mr. Murray. That two ob servers, who have enjoyed exceptional advantages in the investigation of this subject, should come to practical agreement must be admittcd to be a strong argument-in favour of the views which they have adopted.
l'utting together all the data which have here been summarised, I think we are driven to admit that barrier reefs and atolls may be formed without subsidence of the seafloor. Whether this has been the usual or only an exceptional manner of their origin is a question that will depend for its solution upon whether or not it can be shown that there are general phenomena which can only be explained by subsidence. Three such phenomena may be adduced: 1 am not aware of any others that deserve serious consideration.

1. One of the early difficulties which Darwin's explanation satisfactorily solved was the necessity for the existence of so many peaks, coming up froan the depths of ocean just to the zone in which recf-building corals live. No cause was conceivable which should have so generally arrested the upward growth or upheaval of these submarine heights at the limit where coral-reefs might begin. And this difficulty has always been looked upon as furnishing one of the strongest arguments in favour of the theory of subsidence, for that theory completely renioves it, by showing how, in a general subinergence, peak after

[^20]peak woull sink, and come within the sphere of the operations of the reef-builders.

The difficulty is met in a totally different way by those who believe it to be more formidable in appearance than in reality. They contend that, while it must not be forgotten that many peaks dorise above the sea-level, and many submarine banks still fall far short of the coral-zone, two powerful causes conspire to bring submarine banks to a common uniformity of level at a short distance below the surface of the ocean. On the one hand, those portions of volcanic mountains that rise above the sea-level are worn down by the atmosphere and the waves, and unless otherwise preserved, must inevitably be reduced to the lower limit of wave-3ction, which is probably nearly coincident with the loser limit of reef-builders. On the other hand, submarine banks in tropical seas are built up towards the surface by the accumulation of the aggregated remains of plants and animals which live on the bottom or fall down to it from upper waters, and the magnitude of this upward growth is hardly yet adequately realised.

In balancing these opposite views, we must, I think, admit that subsidence is adequate to provide platforms for coral-reefs, but that these platforms could likewise be furnished by the two other processes just referred to. Subsidence has been invoked because no other solution of the problem seemed admissible. But as another solution has been found the argument in favour of subsidence has no longer the same force. The new solution, being based upon facts which are everywhere observable in the coral regions, appears to me to be more probable than the older one, which is only an inference resting on no positive proofs.
2. The precipitous descent of the outer face of the reefs to depths far below those at which corals can live is another difficulty which finds a ready explanation on the theory of subsidence. If it were true, as is popularly assumed, that a coral reef presents towards the ocean a vast perpendicular wall of limestone, entirely composed of solid coral, there could be no escape from the conclusion that subsidence must have occurred, to permit of such an aggregation of coral-rock. We learn, however, that much misconception exists on this subject. Some of the earlier accounts of coral-islands spea' of "unfathomable" depths at a short distance seawards from the reefs; but more recent soundings afford no confirmation of these statements. Instead of being the summits of vast submarine pillars of limestone, atolls, as well as barrier-reefs, appear to be really planted on the tops of submarine peaks and ridges. The outer face of the reef is undoubtedly steep, in some places vertical. At Tahiti, for example, as shown in Fig. 2, the living face of coral may extend to a depth of 30 to 35 fathoms, beneath which huge detached blocks of coral are piled up and cemented together, forming a steep face, which descends to about 150 fathoms at a distance of 180 fathoms from the upper edge of the reef. The sea-bottom beyond that point is covered with coral sand and slopes at 25° to 30°, after which the angle lessens to 6°. By the abrading action of the breakers in tearing off blocks of coral, and strewing them down in steep talus-slopes, a platform is prepared on which the actually growing part of the reef can build outwards.

In Darwin's section of the Gambier Islands the thick ness of the encircling reef is made to be about 2000 feet. ${ }^{1}$ Prof. Dana by one estimate puts it at 1150 , and by another at 1750 feet. He assumes that in general the thickness of solid coral must be considerable, though he admits that calculations based on the seaward continuation of the slope of the land are liable to error from many causes. ${ }^{2}$ Even if we admit (what cannot be proved) that the calcarcous mass of any coral-reef does attain a thickness of many hundred feet, it would not necessarily con-

sist wholly of solid coral. ${ }^{1}$ Prof. Agassiz has followed the growth of a reef upon a platform of calcareous organic debris, and he has found elevated coral-reefs which rest on such a platform. Mr. Murray's observations explain how a reef may grow outward on a talus of its own debris. There appears to be no reason, indeed, why a calcareous mass of almost indefinite thickness might not be formed without the aid of subsidence. Its upper zone might be directly due to coral growth, while the larger part of the mass might be composed of an aggregate of coral debris mixed with the remains of mollusks, echinoderms, and other calcareous organisms. So rapid is the destruction of organic structure through the solution and redeposit of carbonate of lime by infiltrating water, that a special and careful search might be required to determine the actual limits of the true reef and of its calcareous platform, and even such a search might not be successful.

After a full consideration of this second difficulty I feel compelled to admit that no valid argument in favour of subsidence can be based on the steepness of the seaward face of a reef and the thickness of the calcareous mass of the reef itself.
3. The depth of some lagoons and lagoon-channels furnishes probably the strongest argument in favour of Darwin's views. Occasionally a depth of forty fathoms is reached, and as this is beyond the depth at which reefbuilders ordinarily live, it has been regarded as a proof that subsidence has taken place.

This third difficulty is thus met by the opponents of subsidence. We must remember, they say, that from the very conditions of their growth, patches of coral tend to assume an annular or atoll-like form, because the outer parts grow vigorously, while the central portions eventually die. Where the coral-patches coalesce and extend along a bank or shore, it is their outer or sea ward faces that flourish. The inner parts, as they are more and more cut off from the food-supply, gradually die. While the outer face of the reef grows seaward, the inner margin is attacked partly by the solvent action of the carbonic acid of seawater, partly by wind-waves, and the tidal scour sweeps away much fine detritus through gaps in this reef. In this way the lagoon-channel is widened and deepened. In a perfect atoll, that is, an unbroken annular reef of coral, the lagoon could not be deepened by any mere abrasion of the dead coral and removal of the detritus in suspension, but solution by carbonic acid would still come into play. It is further to be borne in mind that small lagoons are shallow and are being filled up, and that it is only the large ones, eneircled by nearly continuous reefs, where the corals in the lagoon and along the margin are dead, and where the effects of solution may be conceived to have been longest in operation, that the depth of the lagoon descends below the limits at which reef-builders live.

I do not regard this solution of the difficulty as wholly satisfactory. Of the fact that dead calcareous organisms are attacked and earried away in solution by the carbonic acid of sea-water there cannot be any question, and this process must be of great geological importance. Whether the solvent action is sufficient to account for the exceptional depth of some lagoons, is still, I think, open to inquiry. It seems to me not improbable that these comparatively few deep lagoons may owe their depth partly to subsidence. But if this be the case it wculd lend, I am afraid, but slender support to a theory of wide oceanic depression. That there must be some areas of subsidence over the coral regions is almost certain, and the few scattered deep lagoons may possibly indicate some of these areas.

Having thus fully examined the arguments on both sides of this interesting and important question, I feel
${ }^{1}$ Prof. Dana (ep.cit.) cites examplen of raised comel-reefa ago to 300 foet above sea-level ; but we do not yet know how much of the rock is solid coral above sea-level; but we do not yet know how much of the r
myself reluctantly compelled to admit that Darwin's theory can no longer be accepted as a complete solution of the problem of coral-reefs. No one could be more impressed than myself with the simplicity of this theory, the brilliancy of its generalisation, its remarkable fitness in geological theory, and the grandeur of the conceptions. of geographical revolution to which it leads. I am fully alive to the serious changes which its abandonment will make in some departments of geological speculation. But in the face of the evidence which has now been accumulated, I can no longer regard the accepted theory as generally applicable. That it may possibly be true in some instances may be readily granted. There may be areas of subsidence, as there certainly are areas of elevation, over the vast regions where coral-reefs occur. It may be conceded that subsidence may sometimes have provided the platform whereon coral-recfs have sprung up, and may have contributed to heighten some reefs and to deepen some lagoons and Iagoon-channels. But I do not believe that we are now justified in assuming subsidence to have taken place, from the mere existence of atolls and barrier-reefs. Its occurrence at any locality must be proved by evidence of special local movement. It may have gone on at many localities where atolls and barrier-reefs are found, but the existence of such reefs is no more necessarily dependent upon subsidence than upon elevation. These subterranean movements must be lnoked upon as inere accidents in a general process of coral growth which is wholly independent of them.

1 may in conclusion refer to one or two difficulties which bave long been felt to be serious drawbacks to the theory of subsidence, but which disappear when the newer views of the origin of coral-reefs are accepted. If, as Darwin supposed, the coral-islands of the Pacific and Indian Oceans represent the last peaks. of submerged continents, it is incredible that continental rocks should not be found among them. The oceanic islands (except of course those composed of coral-rock) are of volcanic origin and show none of the granites, schists, and other rocks which might have been looked for on such elevated summits. They have been piled up by the accumulation of lavas and tuffs discharged from the earth's interior, and, where they occur, point to upheaval rather than sub sidence. Again, as Mr. Murray has shown, the inorganic deposits of the ocean-floor are composed of volcanic debris with a singular absence of the minerals that constitute the usual crystalline rocks of our continents.

No satisfactory proofs of a general subsidence have been obtained from the region of coral-reefs, except from the structure of the reefs themselves, and this is an inference only, which is now disputed. From the nature of the case, indeed, traces of subsidence can hardly be expected. A few examples have been cited, such as the occurrence of trunks of cedar-trees in a layer of red scit at Bermuda, lying between the calcareous deposits and at a depth of 42 feet below low-water mark. This indicates a recent subsidence of that tract; but it may be merely local, and may be due to the sinking down of the roof of one of the caverns into which the limestone is so abundantly honeycombed. Occasionally along the margins of lagoons trees are found at the water edge, in a position suggestive of subsidence. But the removal of the calcareous rock by solution or wave-action might equally account for their condition.

Of elevation in the region of atolls and barrier reefs, there is almost everywbere more or lees distinct evidence. Prof. Dana has collected the faets which prove that recent elevatory movements of unequal and local extent have occurred in all parts of the ocean. ${ }^{1}$ Upheaval has taken place even in areas where barrierreefs and atolls are in vigorous growth. Such an association of upheaval with an assumed general subsidence requires, on the subsidence theory, a cumbrous and

[^21]entirely hypothetical series of upward and downward movements. These are unnecessary if we can be convinced that coral-reefs grow up independent of terrestrial movements, which may in one area be in an upward, in another in a downward direction. From this point of view the reefs stand up as the result of a complex series of agencies, among which the more important are on the one hand, the temperature, solvent power, currents, tides, and waves of the sea, and on the other hand, the amount and direction of the supply of pelagic food, the upbuilding of calcareous deposits to the zone of reef-builders, the outward vigorous gronth of the coral-masses and their decay and death, and the solution of their skeletons in the inner parts of the reefs. All these causes are known and visibly active. Without the cooperation of any other supposed or latent force they appear to be entirely adequate to the task of building up the present coral-reefs or the oceans.

Arch, Geikie.

DR. JOHN LAWRENCE L.ECONTE

INFORMATION has just been received in this country announcing the death of Dr. LeConte. He was born in New York on May 13, 1825, and was the son of a distinguished officer in the United States army, himself an entomologist. He adopted the medical profession, and during the secessionist war he entered as medical officer of volunteers. The foregoing necessarily brief, specially biographic account is chiefly derived fro.n information furnished in Dimmock's "Special Bibliography of American Entomologists, No. 1."

LeConte could have been only nineteen years old when he published his first entomological paper on certain new species of North American Coleoplera (l'roceedings of the Academy of Natural Sciences of Philadelphia, vol. ii.). From that time forward a continuous series of works and papers on North American Coleoplera was produced by hitn until his death. He mide a speciality of Coleoptera, and, with few cxceptions, all his writings were devoted to that order of insects, and through his exertions the beetles of the United States are now almost as well known as are those of Europe. At the tine of his death his published papers must have been nearly 200. Moreover he was the acknowledged authority in the United States on all matters coleopterological, a position which must naturally have caused him vast trouble and correspondence, sometimes with inadequate results. Latterly he worked greatly in company with Dr. G. H. Horn, of Philadelphia, a worthy follower of his tutor and a worthy successor. Their joint labours culminated this year, when was published ("Smithsonian Miscellaneous Collections," No. 507) a "Clissification of the Coleoptera of North America," a volume extending to nearly 600 pages. It is needless here to refer to the revolution this work and other memoirs (chiefly by Dr. Horn) created in the minds of coleopterists as to the sequence of main divisions, \&c. All working entomologists are sufficiently alive to the importance of the new ideas put forth. In fact this volume might have been considered a model of a special monograph were it not for a somewhat crude " Introduction" on insects in general that precedes the systematic portion.

In the present condition of entomological science in the United States the loss of Dr. LcConte seems almost irreparable. He and his coadjutor, Dr. Horn, and one or two others, stood almost alone amongst the prominent American entomologists in holding no special official position in connection with their subject.

LeConte once made a lengthy stay in Europe, and was well known personally in this country to all the prominent Coleopterists. Moreover he was honorary member of several of the European entomological societies, including the Entomological Society of London; his personal friends in this country were numerous. Since the death of

Say (whose scattered works were carefully collated and reedited by the subject of this notice) entomological science in America has not had to deplore so severe a loss, and Say's death was not fraught with the same significance.
R. Mclachla:

THE LATE MR. DARWIN ON INSTINCT

A^{T}the meeting of the Linnean Society this evening (December 6) a highly interesting posthumous paper on Instinct, by Charles Darwin, will be read and discussed. We have been favoured with an early abstract of the same, which we here present to our readers.
After detailing sundry facts with reference to the migratory instincts of different animals, Mr. Darwin proceeds to suggest a theory to account for them. 'I his theory is precisely the same as that which was subsequently and independently enunciated by Mr. Wallace in Nature, vol. x. p. 459. Thus, to quote from the essay: "During the long course of ages, let valleys become converted into estuaries, and then into wider and wider arms of the sea; and still I can well believe that the impulse foriginally due to seeking food] which leads the pinioned goose to scramble northwara, would lead our bird over the trackless waters; and that, by the aid of the unknown power by which many animals (and savage men) can retain a true course, it would safely cross the sea now covering the submerged path of its ancient journey. ${ }^{n}$

The next topic considered is that of instinctive fear. Many facts are given, shosing the gradual acquisition of such instinctive fear, or hereditary dread, of man, during the period of human observation. These facts led Mr. Darwin to consider the instinct of feigning death as shown by sundry species of animals when in the presence of danger. Seeing that "death is an unknown state to each living creature," this seemed to him "a remarkable instinct," and accordingly he tried a number of experiments upon the subject with insects, which proved that in no one case did the attitude in which the animal "feigned death" resemble that in which the animal really died; so that the instinct really amounts to nothing else, in the case of insects at all events, than an instinct to remain motionless, and therefore inconspicuous, in the presence of danger. From the facts given with regard to certain vertebrated ani.nals, however, it is doubtful how far this explanation can be applied to them.

A large part of the essay is devoted to "Nidification and Habitation," with the object of showing, by an accumulation of facts, that the complex instincts of nestbuilding in birds and of constructing various kinds of habitations by mammals, all probably arose by gradual stages under the directing influence of natural selection.

The essay concludes with a number of "miscellaneous remarks" on instincts in general. First the variability of instunct is proved by sundry examples; next the fact of double instincts occurring in the same species; after which, "as there is often much difficulty in imagining how an instinct could first have arisen," it is thought "worth while to give a few, out of many cases, of occasional and curious habits, which cannot be considered as regular instincts, but which might, according to our views, give rise to such." Finally, cases of special difficulty are dealt with; these may be classified under the following heads:-(1) Similar instincts in unallied animals; (2) dissimilar instincts in allied animals; (3) instincts apparently detrimental to the species whith exhibit them; (4) instincts performed only once during the lifetime of an animal ; (5) instincts of a triflinz or useless character; (6) special difficulties connected with the instinct of migration; (7) sundry other instincts presenting more or less difficulty to the theory of natural selection.
The "Conclusion" gives a summary of the general
principles which have been set forth by the whole essay. This, therefore, we shall quote in extenso:-
"We have in this chapter chiefly considered the instincts of animals under the point of view whether it is possible that they could have been acquired through the means indicated on our theory, or whether, even if the simpler ones could have been thus acquired, others are so complex and wonderful that they must have been specially endowed, and thus overthrow the theory. Bearing in mind the facts given on the acquirement, through the selection of self-originating tricks or modification of instinct, or through training and habit, aided in some slight degree by imitation, of hereditary actions and dispositions in our domesticated animals; and their paralfelism (subject to having less time) to the instincts of animals in a state of nature: bearing in mind that in a state of nature instincts do certainly vary in some slight degree: bearing in mind how very generally we find in allied but distinct animals a gradation in the more complex instincts, which shows that it is at least possible that a complex instinct might have been acquired by successive steps; and which moreover generally indicate, according to our theory, the actual steps by which the instinct has been acquired, in as much as we suppose allied instincts to have branched off at different stages of descent from a common anicestor, and therefore to have retained, more or less unaltered, the instincts of the several lineal ancestral forms of any one species : bearing all this in mind, together with the certainty that instincts are as important to an animal as their generally correlated structures, and that in the struggle for life under changing conditions, slight modifications of instinct could hardly fail occasionally to be profitable to individuals, I can see no overwhelming difficulty on our theory. Even in the most marvellous instinct known, that of the cells of the hive-bee, we have seen how a simple instinctive action may lead to results which fill the mind with astonishment.
"Moreover, it seems to me that the very general fact of the gradation of complexity of instincts within the limits of the same group of animals; and likewise the fact of two allied species, placed in two distant parts of the world and surrounded by wholly differert conditions of life, still having very much in common in their instincts, supports our theory of descent ; for they are explained by it: whereas if we look at each instinct as specially endowed, we can only say that it is so. The imperfections and mistakes of instinct on our theory cease to be surprising : indeed it would be wonderful that far more numerous and flagrant cases could not be detected, if it were not that a species which has falled to become modified and so far perfected in its instincis that it could continue struggling wih the co-inhabitants of the same region, would simply add one more to the myriads which have become extinct.
"It may not be logical, but to my imagination it is far more satisfactory, to look at the young cuckoo ejecting its foster-brothers, ants making slaves, the larva of the Ichneunonidx feeding within the live bodies of their prey, cats playing with mice, otters and cormorants with living fisb, not as instincts specially given by the Creator, but as very small parts of one general law leading to the advancement of all organic bodies-Multiply, Vary, let the strongest Live and the weakest Dic."

PORTO RICO

THROUGH the courtesy of Sir Joseph Hooker, we are able to publish the following interesting communication from Baron Eggers on the island of Porto Rico:-

$$
\text { St. Thomas, October 22, } 1883
$$

Dear Sir joseph Hooker,-It is a long time since I wrote you last. I have meanwhile at last accomplished
my long-cherished design, partly at least, of exploring the Luguillo Mountains in Porto Rico, which island I visited during April and May this jear.

I spent about five weeks there, living for some time in the hut of a "fibaro" or native labourer on the Sierra, at an altitude of about 2200^{\prime}, on the edge of the primeval forests that still cover all the higher part of the mountain range.
Since my return I have been busy arranging my collections, the greater part of which appears in the ninth and tenth century of my "Flora Indiz Occidentalis Exsicceata."
As for the general character of the Sicrra forests, they of course resemble in their main outlines those of the other West India 1slands. There is, however, especially one feature that strikes me as being peculiar to this mountain ridge compared with the woods of other islands, for example, of Dominica. Whilst the climate is just as moist in the Sierra of Porto Rico as in that of Dominica, the forests of Porto Rico seem nearly entirely destitute of epiphytes with the exception of some few Bromeliads and a very rarely occurring stray orchid. But orchids in general and epiphytical ferns, such as Trichomancs and Hymenophyllum, \&c, are conspicuous by their absence. Of palms 1 found but one species, which I have distributed in my "Flora," I believe it is a Euterpe, grows gregariously at an alitude from I 500^{\prime} to 3000^{\prime}. No Cycads were seen at all.
On the other hand, I found several interesting trees, especially a beautiful Talauma, with immense, white, odorous flowers and silvery leaves, which would be very ornamental. The wood is used for timber, and called Sabino. A Hirtella with crimson flowers I also found rather common; it is not described in any of Grisebach's publications. An unknown tree with beautiful, orange-like foliage, and large, purple flowers very similar in shape to those of Scavola Plumieri, split along one side, a tall Lobeliacea, a large Heliconia, nearly allied, it seems, to H. caribbaa, Lam., and several other as yet undetermined trees and shrubs, are among the most remarkable things found.
On the whole I was somewhat disappointed with regard to the result of the voyage, as I had expected a greater number of noveltics, as well as a richer vegetation in general, at least something like the Caribbean Islands. But these partly negative results may no doubt be of some value also in forming an idea of the West Indian flora in general. Of tree-ferns, Cyathea Serra and an Alsophila were not uncommon.
One of the most conspicuous trees in some parts is the Coccoloba macrophylla, which I found on my first visit to Porto Rico. This tree is found up to an altinude of 2000, but chiefly near the coast, where it forms extensive woods in some places, whieh at the time of flowering, with immense, purple spikes more than a vard long, are very striking. The tree is named Ortegon by the inhabilants; it does not seem to occur on any of the British i,lands, but to be confined to Porto Rico and Hayti ; at least I do not see it mentioned in Grisebach's "Cat. Plant. cubensium."
The people cultivate sugarcane in the plains, which are very fertile, yielding three hog sheads on an average per acre without any kind of manure. Besides this staple produce, a very good coffee is produced; it does not appear that any blight has as jet perceptibly aflected the shrubs here. Rice is very commonly cultivated on the hills in the Sierra. 1 suppose it must be a kind of mountain variety, as no inundation or other kind of watering is used. Rice is in fact the staple food of the labourers, together with plantain and yaüdia, ic. Caladium esculenthm. Immense pastures of Hymenachne striatum (Malahojiila) occupy a part of the lowland, and fced large herds of cattle of an excellent quality. St. Thomas and the French islands all oblain their butcher's meat fiom

Porto Rico; I believe even Barbados comes to Porto Rico for cattle.
The island is very richly endowed by nature, but miserably governed, and the people themselves not worth a much better government, being given to gambling in the extreme throughout, thus squandering away every dollar, from the rich planter and priest down to the lowest labourer and beggar. Yet they are hospitable and very polite to strangers, with that remarkable, unchanging, inbred Spanish politeness.

It may finally interest you to hear, from the fact that you take a prominent part in the advancement of the material progress of the English West India Islands, how we are working in that respect here in St. Thomas.

I have on my estate now about 4000 Divi-Divi trees growing and doing well, except for the deer, which do much damage. On the coasts I have over 2000 cocoanut trees planted; cultivation of the Sanseviera guineensis is going on for making fibres; a large tract of land stocked with Hamatoxylon 1 have now preserved, and try to make it a regular forest, to be cut down gradually.

In company with an enginecr here I have now ordered a machine from England, Smith's fibre machine, which is being used in the Mauritius, in order to work up our immense quantity of Agave and Fourcroya, the raw material being close at hand in unlimited quantity near the sea.
I have published a couple of articles on the material resources of these islands in one of the largest Danish newspapers, of which I beg to send you a copy, in order to make private persons and Government move. Among the former a good many have started on, but, as you may perhaps have heard, governments are sometimes slow in moving, representing, as they do eminently, that great law of nature, vis inertic.

However, so far, and considering the short space of time, I am very well satisfied. I think there is a fair chance now of the West Indies in general entering upon a new prosperous career.

I am also going to try experiments with the manufacture of tannin extracts from bark of Coccoloba, Rhisophora, and the pods of the various Acacias, which are a great nuisance here on account of their rapid growth.

The Aloe sempervirens will also be made useful in a similar manner as in Barbados and Curaçoa, it growing here spontaneously on barren rocks.
H. Eggers

THE REMARKABLE SUNSETS

UNDEK the beadings of "Cloud-Giow" and "Optical Phenomena" we have published several letters already on the recent remarkable sunsets; we have received many others, the most important of which we bring together here :-

Permaps it will interest you and your readers to hear that the phenomenon called "cloud-glow" in your last numbers, was seen also at Berlin on the three evenings of November 28,29 , and 30 . As far as I could overlook the sky, the details were almost the same as your correspondents describe them: 1 greenish sunset at 3.50 , an unusually bright red sky with flashes of light starting from south-west. An interesting physiological phenomenon which we call "Contrast-Farben," was there beautifully illustrated by some clouds, no longer reached by direct sunlight ; they looked intensely green on the red sky. At 4.30 the streets were lighted by a peculiarly pale glare, as if seen through a yellow glass. Then darkness followed, and the stars became visible. But half an hour afterwards, at 5 o'clock, the western sky was again coloured by a pink or crimson glow. Persons who were not quite sure about its direction mistook it for a Polar aurora ; others spoke of a great fire in the neighbourhood. f atmospheric refraction could be neglected, the matter
(whatever it may be) thus illuminated by the sun one hour after sunset and 45° above the horizon, would be found to be at a height of about forty miles 1 At 6 o'clock all was over. The first day (November 28) this glow was still stranger, because the lower western sky was covered by a large, dark cumulus-cloud; but besides this the three remarkable evening skies were quite like each other. Robert von Helmholtz
N.W. Berlin, Neue Wilhelmstrasse 16, December I
P.S.-To-day it rains; nevertheless an unusual brightness was to be seen in the west till 7 o'clock, which perhaps may be attributed to the same "glow."-R. v. H.

ThE red glow described by your correspondents continued to be visible here every evening until yesterday (2nd inst.), and there was another fine display of myons due crépuscule. Is not "cloud-glow" a misnomer as applied to what is seen in perfection only when there are no clouds, and is invistble when the clouds are thick? "After-glow" is too comprehensive an expression, as it embraces the usual effects of a brilliant sunset, and too limited, as it could not be applied to the phenomenon as recently seen before sunrise. In the absence of a scientific title for something which has been but little investigated, might not the name "upper-glow" be adopted, in contrast to the under-glow which is the predominant feature of ordinary effective sunsets. The red colour of the reflected light is in both cases I suppose equally due to diffraction, particles suspended in the air obstructing the rays of least wave-length. But in the "upper-glow" the reflecting matter is at a great height above the cloud-level, in the "under-giow" it consists of the lower surface of the clouds themselves.

Annie Ley
December 3
Erratum.-In the first paragraph of my letter of the 27 th ult. (p. 103) 2600 should be 26,000 .

The following extracts from my observations at York may assist in determining the cause of the extraordinary series of sunrise and sunset effects during the past month:-November 24 : Unusual cloud tinge in morning. November 25 : Similar effect in morning. From 2.45 to 3 p.m., blue sky from 10° to 25° or 30° from the sun, of a delicate rose pink. This noticed by several, when asked to say if they saw ans thing peculiar. It gave a greenishgray cast to cirro-cumuli through which it was seen. Round the sun the sky looked yellowish. $5: 30 \mathrm{p} . \mathrm{m}$. " the west ruddy as from glare of fire ; " not entirely gone till 6. Time of local sunset 3.38 , calculated from almanac and observed sunrise on 28 th.
A letter from my father, Street, Somerset, 26th, evening, speaks of " a wide arc above the sunset lit up with the most glorious pink shade. The clouds low in the horizon a stone-gray; but the most remarkable of all was a longish cloud to the north of sunset and above and beyond the circle of pink; that was a bright sage green. I never before saw such a colour in any cloud. . . . Later, rays shot up from the sun like the rays of aurora."

28th: Same pink halo at noon. Cloud-glare on morning of 26 th and 27 th ; to-day, about $6 \mathrm{a} . \mathrm{m}$. (sun rose at York 8.0, set 3.35). Sunset most striking; pink above, orange lower at 4.20 ; grass appeared of brownish sage green. At 5 p.m. lit up all over like red aurora. 29th: Same red glare, like that of a fire, at $6.20 \mathrm{a} . \mathrm{m}$. Glare gone by 6.35 ; cirri in east-south-east lit up by 6.45. True sunrise glow 7.10; orange at base turned to yellow.green at 7.25 , and cirri again black; relit at 7.35 , with rosy tinge. Sun seen to rise clear of horizon at 8.2 ; Jupiter visible among faint haze until 8.13 . $9.45 \mathrm{a} . \mathrm{m}$., rosy glow round sun; 430 p.m., a fading ordinary sunset ; 4.45, glare reappearing; 5 p.m., "finer than ever," as observed by Mrs. Clark. December 3: Remarkable lurid effects, 4.30 to 5.0 p.m. Letters from Street and Birmingham mention similar effects on the 28 th and 29th. A para-
graph in the Daily News reports them from Bideford, Devon, on Monday, 26th, soon after 5 p.m.; 27th, a.m. ; and from 9.45 , a "dusky orange and rosy band round the sun," till hidden by clouds at noon; 28th, p.m., 29th, a.m., and coloured "bands" again round the sun at i1 a.m. To me the glare never seemed as if reflected from cirrus clouds ; it was much more like that from the smoxe-originated clouds of manufacturing districts. The day effect was evidently from the same cause as the after-glow. May it not help us to connect it with the "green sun" phenomenon of India? In that case the possible connection of the latter with the volcanic eruptions of Java assumes special interest, and may give us a new insight into the upper currents of wind. We have already heard how ashes fell at great distances to windward, reckoning by the surface currents. The same upper winds, in the time that elapsed, seem to have carried lighter ashes, projected still higher, over India. May not the lightest and highestprojected, almost impalpable dust have been spread over the greater part of our hemisphere, or at any rate as far as England, whose distance from Calcutta is not double the distance from Calcutta to Java? The recent Greenlan 1 expedition has enforced the lesson of ocean soundings on the wide prevalence of such material. If this suggestion has any foundation, then the comparison to the lurid glare over cities may be a true analogy. Just as frozen fog particles form around solid nuclei of smoke, so the impalpable dust may have formed centres for cloudformation in air strata above the normal range of clouds. York, December 3
J. Edmund Clark
P.S.- December 4: My observations on last night's sunset were from hurried glances indoors. 1 find from Mrs. Clark that the appearances differed from the general character, being like those of Sunday evening, the 25 th. She noticed, as did also another lady, the curious green colour of the moon. This fact was recalled to my mind to-night, when yesterday's sunset effects were repeated, the moon, to my surprise, having a most striking green tint. This was about 425 , and it was still noticetble at 4.45.-J. E. C.

THis singular atmospheric aspect prevails here daily at sunri.e and sunset, though there seem to be indications that its splendour is on the wane. It has been visible for nearly a month, prolonging daylight upwards of an hour. At suarise, on the 28 th , the rich colours of the phenomenon again suffused the sky, and at sunset and for upwards of an hour afterwards the sky was effulgent with all the prismatic colours. The sunrise of the 2gth surpassed all previous ones in magnificence, spread, and duration of colour. The day being favourable for observation, it was possible to detect a masi of attenuated, white, nebulous vapour surrounding the sun for a distance of some 30° or 40°. The sunset was less remarkable for tone and brillancy of colour. Pearlywhites and steel-grays mostly prevailing at $4.15 \mathrm{p} . \mathrm{m}$. , a faint rosy colour suffused the whole sky. At $4.30 \mathrm{p} . \mathrm{m}$. a band of glowing orange-coloured light, about 23° in altitude, stretched from north-west to a point near the south, and at 5.15 p.m. a remarkable body of rosy light formed in the west above the orange-coloured mass, and separated from it by a dark slate-coloured space, about 2° wide, small and pillar-shaped at first, with the apex pointing north, but soon spreading north and south. This nebulous body deepened in colour ns it grew in mass till it became a remarkable volume of vivid crimson light some 5° or 6° in height, and 25° or 30° in length. At 6 p.m. the colour of the western s'cy had changed to orange; afterwards the colour slo aly died out, and night prevailed. On the morning of the $30 t h$ ult. the glow was indistinctly apparent. In the afternoon there was a dense cloud canopy and considerable rainfall, but an orange coloured glare at sunset was discernible through the clouds. On the Ist inst. the radiance of the glow was conspicuous,
and the sky richly coloured just before sunri,e. At 4 p.m. the glare in the west was brilliant, with golden carmine and green colours. At 4.15 the carmine colour disappeared, the greater part of the sky became of a delicate blue, and long streaks of cirri of changeful colour lay across the sky. After many changes of tints and the appearance of the usual glow like that of a second daylight, at 5.15 p.m. the usual fiery glow rose in the west to an altitude of 25°, and cuntinued till 6 p.m. On the 2nd, the sky was cloudy befure sunrise, but the radiance was visible all the same, showing carmine and golden hues. On that morning a pale yellow coloured the sky till It a. in. At sunset the iridescent display was less briliant than usu 1 , and commenced later. But there were fiery reds, glowin's yellows, an I olive-greens in a sky with a detached cloud canopy. The usual fiery glow appeared at about 5.50 and prevailed till $6 \mathrm{p} . \mathrm{m}$. On the morning of the 3rd, before sunrise, the coloured radiance reappeared in great beauty, and a yellow tint pervaded the sky throughout the day. The wind on this day was rough fro:n the north-west. The thermometer at midday was 51°. At sunset the glow was less splendid than heretofore, and the fiery reds were dilute and diffuse. The sky was cloudy. The glow lighted up the heavens till 6 p.m. as usual. This morning (+ th) the sky before sunset was resplendent with rich masses of prismatic colour. Suddenly, at $8.30 \mathrm{a} . \mathrm{m}$., when the brilliant colours had vanished, a halo of iridescent colours encircled the sun for a short time, as though a body of vapour was swiftly traversing the sidy. In a moment afterwards the colour of the sun changed to an exquisite emerall bue, staining the landscape and investing houses, buildings, glazed windows, and greenhouses with a remarkably weird aspect. Before there was well time to notice how things appeared in a bright green light, the rays of the sun changed to a deep yellow, and in a moment afterwards, as though some obscuring mediun had been withdrawn, the ordinary daylight reappeared. At sunset to-day the display was magnificent in variety and tint of colour. At 4.15 the usual orange-colour bank of glowing, luminous vapour appeared in the west, extending to north-west and south-west, having above it a system of rays of a dull, fiery red. The sky was clear, flecked here and there with cirro-cumulus. At 4.45 the crescent of the moon, being just above the fringe of red light, assumed a lively green hue, and continued to exhibit the novelty of an emerald crescent till 5 p.m., when, the colour passing away, the satellite resumed its silvery hue and shone in the blue sky, while the fiery glow still lighted up the west and north-west. It seemed to me that the moon's rays neutralised in the neighbourhood she fiery tints which chmacterise this peculiar glow, as in the vicinity of the creseent blue sky prevailed. It may be inenṭioned that foreign particles are traversing the atmosphere. On July 14 black rain fell at places round this city, and sone was colletted at Crowle. A good observer, Mr. J. S. Haywood, the hon. secretary of the Naturalist Field Club, noticed the black sediment which the rain had deposited on the leaves of the plants and shrubs in his nursery. At the time I drew attention to the rainfall, and ventured to ascribe the discoloration to the presence of volcanic dust. It has since transpired that Krakatoa was in violent eruption from May 20 down to the fatal 26 th of Auguit, throwing up vast masses of dust. Discoloured rain again fell in the vicinity of this city on the 17 th ult.
J. Ll. Bozward

Worcester, December 4

THE ruddy glow near the sun, so well described b J. Ll. Bozward in your last number (p. 102), was most conspicuous here on the 30 th ult. both at sunrise and sunset. It should be examined with a spectros:ope. Here there were neither clouds nor cirri visible. Yesterdsy it rained the whole day; towards evening the sky
became clear ne.rr the zenith, heavy cluud, clustering all round the horizon; above them the unexplained giow was very remarkable at sunset. If it hav been observed in England on the same days, at a distance of 10° in latitude, its cause must be high in the atmosphere. Would it not be interesting to ascertain how far it bas been seen, at least throughout Europe?

> ANTOINE D'AbBadie

Abbadia, near Hendaye, December 2
DURing the latter half of November we have had here also a constant succession of remarkable sunsets, and at least one sunrise of the same character. But here the effects have been accurately described by the expression "cloud-glow." Masses and streamers of cirro-cumulus vapour have hurried up from the west, evening after evening, as sunset approached, at a rate greatly in excess of the wind below, and then as the sun sank the whole sky has shone with a lurid coppery light which I have only very occasionally and partially seen before. Even when the dusk was early and thick, the same lurid glare has shone as it were behind the clouds.

Henry Cecil
Bregner, Bournemouth, December :
I SHOULD not have troubled you with a letter respecting the wonderful after-glows which have presented such magnificent displays during all the past week, especially on the $26 t \mathrm{tb}$, and which have attracted such universal attention, had I not observed that no one has alluded to their appearaice in the spectroscope. I marde some observations on the 26 th and 27 th about $4.30 \mathrm{p} . \mathrm{m}$., when the colour was at its greatest brilliancy, and was struck with the following particulars :-(1) The ordinary delicate tints of the spectrum were merged into two, a deep red and a peculiar blue-green; (2) in the middle of the red was a strong dark band; (3) on the green side of the D line, and separated from it by the light band so often conspicuous, was another band of deep citrine. The only line clearly distinguishable was one at the extreme end of the red.
E. Brow's

Further Barton, Cirencester, November 30
The following note of observations of the western sky made with a pocket spectroscope on the evenings of Wednesday, November 28, and of the $4^{\text {th }}$ and 5 th inst., may be of interest. At about 40^{\prime} 'clock-just after sunset -the band which Mr. Piazzi Smyth has termed the "low sun band," was abnormally strong, so was the line he calls a. The lines constantly seen in the "rain band" were not visible, and C_{1} was very slight. In place of the ordinary "r rain band "- a band of absorption shading off from 1) towards the less refrangible end of the spectrum -thcre was a broad band of absorption which extended nearly three-fourths of the way from D towards a, or nearly half way to C , its darkest fart being at rather less than one-third of its width from D. From this darkest part it shaded off in both directions. In a short time this band gradually nearly disappeared, the low sun band also diminishing in intensity, while a became extraordinarily prominent-very dense in the middle, and slightly shaded off at both edges. At this time the yellow and orange of the spectrum seemed nearly to have disappeared, the green apparently extending to a considerable distance on the less refran ible side of D. This evening (the 5 th), as Mr. Lockyer pointed out, there was also a strong band of absorption between δ and F. I had not remarked this on the 28th or the 4 th, and believe it is unusual or unusually strong.

December 5
J. F. D. Donnelly

An optical phenomenon has appeared at Hunstanton cach afternoon commencing Sunday, the 25 th ult., at
about $+30 \mathrm{p} . \mathrm{m}$., up to and including to-day. The first appearance was a brilliant yellow light in the west, which, after a few minutes lit up the whole western horizon, the upper sky being a beautitul azure blue, showing up in contrast a few fleecy dark stratus clouds; after a few minutes the yellow light gradually turned to pink, and the horizon all round was tinged with this colour, eventually a crimson arch formed in the west, and gradually the whole thing disappeared. From the position of Hunstanton, facing west and north, remarkable and beautiful sunsets are of frequent occurrence. This morning as the sun was rising a thin layer of clouds pervaded the whole of the heavens, which were tinged with pink in every direction.

Charles W. Harding

The Chase, King's Lynn, December 1

There has been much correspondence in the daily papers on the subject, and it may be useful to give here the leading points in these communications.

The phenomenon has not been confined to this country. The Times Rome correspondent telegraphs under date November 30:-"Yesterday evening the population of Rome was struck with admiration, mingled with awe, at the sight of a splendid phenomenon. From fifteen minutes after sunset until more than an hour later the north-western hemispbere was tinged with crimson, gradually increasing in intensity until it had the appearance of the reflection of an extensive conflagration, in front of which the tower of the Castle of Saint Angelo, the cupola of St. Peter's, and the outline of Monte Mario, as seen from the Pincio, stood out in prominent relief. Immediately above the horizon there was a broad belt of orange red, and above that another of green, surmounted by the crimson glare of the aurora. The sky of the eastern hemisphere presented a uniform sea.green tint. The phenomenon was repeated again this morning, and again this evening. A strong north wind blew all day yesterday ; the sky was exceptionally clear, and the temperature was gratefully warm and balmy."
Again, an observer at Viareggio, Italy, near the Carrara Mountains, writes :-"At sunset the whole horizon, from Corsica to the Bay of Spezia, is literally bathed in a fluod of red light, which, during the last few evenings, has been intensified in a remarkable degree, and prolonged till about 6 p.m., when the glow spread over the whole cloudless firmament, and was reflected on the Carrara Moun-tains-a truly glorious phenomenon, produced by the more than usually rarcfied condition of the atmosphere under the influence of the low temperature which has prevailed for some days, the wind being north-northwest."

At the Cape also they have attracted attention. "A. D. S.,'" writing to the Times of December 4, says :-"The phenomenon in question seems to have been first noticed in this country on the evening of the 9 th ult., and it recurred on several evenings during last week. A lady, who has lately been an early riser, informs me that the sky has had the same unusual light at sunrise. We have just received a letter from the Cape of Good Hope, dated November 2, in which the following passage occurs:'We have bad such extraordinary lights nearly every evening for the last five weeks. Shortly after sunset a red or yellow glow appears in the west, and it gets quite light again, and remains so for some time, and then it dies away. During the time it lasts all the flowers seem of such very brilliant colours, the pink roses especially. They look as bright as they are painted on Christmas cards, and the green of the oak trees is something wonderful. The lights appear sometines in the morning also, an hour before sunrise, when it is generally pitch dark here.' "'

So Mr. C. J. Thornton writes to the Slandard, under date November 28, as follows:-"This afternoon I received a letter from Monghyr, Bengal, dated November 5 ,
in which was the following passage : 'Have you seen any unusual appearances in the sky lately? For some time past in this country an extraordinary red glow has been seen in the sky just before sunrise and just after sunset. It seems to have been noticed all over India and in Egypt also, but I do not know if it has been seen in Europe. The natives are full of superstitious fears on account of it. No one, so far as I know, has been able to account for it, but several theories, more or less absurd, have been started, one trying to connect it with the eruption in Java, another with the spots on the sun, and so on. I do not know what it can be, but it is certainly very remarkable, and I never saw anything like it before.' "

A correspondent of the Times sends the following extract from the Gold Coast Times of September 14. The phenomena alluded to were seen at Cape Coast Castle :" Cn the 1st or 2nd of this month the sun was described as being blue in the morning. It seems it rose as usual, and that the clouds which passed over it, from their greater rarity or density, gave it different apparent shades of rose colour, pink, and so on. After the passage of the clouds its appearance through the haze was white like the moon. In fact, an Englishman is said to have taken it for the moon."

In Paris also, and elsewhere in France, the phenomenon has been very striking.

A correspondent writing from Croydon to the Standard, under date November 26, says:-"At half-past three this afternoon the sky in the west quickly assumed a deep red colour, which, after some minutes, spread over the sky to a considerable distance, tinging it with a pale pink colour. This, again, in a few minutes, disappeared, and the sky assumed its normal condition."
Another correspondent on the same date, from Derby, states:-"This evening we have witnessed a most remarkable sunset, the sky being lit up with a pale bluishyellow light, changing to orange and red."

Again, a correspondent to the same paper writing on November 28 from Skegness, Lincolnshire, says :-"Here, in the fens of Lincolnshire, where gorgeous sunsets are the rule, the phenomenon has been most remarkable, and each evening since Sunday last the heavens have presented an appearance both interesting and awe inspiring. On Monday evening last, when the sun set at 3.57 , the western heavens were all aglow until 6.30, and the rich, lurid glare of the 'after-glow' had all the appearance of an immense illumination, the rays of which, starting from the direction of the setting sun as a centre, extended well towards the zenith. The most remarkable thing wis the fact that whilst the western sky was thus all aglow the stars in the northern heavens were shining as brilliantly as at midnight. The 'blood-red' appearance has been repeated during the rest of this week. The effect was altogether different from the 'Aurora Borealis,' there being an utter absence of the peculiar scintillation common to that phenomenon."

From Eastbourne, according to a correspondent there, " a considerable space above the hills where the sun had disappeared was a clear sky with no tinge of red in it, but a pale greenish-blue transparency, to describe which I can find no preci:e words. Across this there fluated three or four opaline cloudlets, while a great mass of violet-coloured vapour lay piled up in the south-west. Above the pale and clear transparency was a broad zone of rose-colour, which seemed denser here and there, and also appeared to shoot upwards in tongue-shaped undulations. As the evening advanced, and the true sunset, at 357 , took place, the clear sky disappeared, as if drawn down behind the hills, which the rosy zone now touched, and was gradually drawn down in its turn, but remained unfaded to the last."

Mr. Sydney llooper, writing to the Standard from Ealing, says:- "In none of the correspondence on the subject of the reinarkable sunsets we have had lately have

I seen any reference to what strikes me as the most curious fact in connection with them, and which in my experience is quite unique. I have observed sunsets carefully for the last thirty years, and I have invariably found that the crimson glow is the last ; coming usually a considerable time after the yellow glow has faded. The crimson light is always followed by the cold gray which precedes the night, as many must have observed when the rosy light dies out from an Alpine peak. For the last tew evenings, however, notably on Wednesday night, there has been a reversal of this rule. A yellow glow has first overspread the sky, extending almost to the zenith. This has gradually deepened to orange, then to crimson. The crimson has then gathered in intensity towards the horizon until it has become a deep, rich, horizontal bar, lingering long after sunset. Then came the effect which I refer to as unique. After the crimson had died away, the west was again lit up by a deep orange glow extending over half the sky, so intense in colour that the lamps showed as white light against it. This second glow is to me unaccountable, and indicates a very peculiar condition of the atmosphere. Another fact, equally remarkable, was that the whole effect was reproduced the following (Thursday) morning, but the order of the tints was, of course, reversed. At a quarter to six an exact reproduction of the orange tint of the previous evening was seen in the south-eastern sky. This was followed by the deep crimson bar low down in the horizon. Then the crimson gradually passed upwards, giving place finally to the greenish yellow with which the phenomena commenced in the evening.'

NOTES

It is proposed to hold, during the year 1884, an International Exhibition, which shalt also illustrate certain branshes of health and education, and which will occupy the buildings at South Kensington erected for the International Fisberies Exhibinion. The object of the Exbibition will be to illustrate, as vividly and in as practical a manner as possible, food, dres, the duelling, the school, and the workshop, as affecting the conditions of healhhful life, and also to bring into public notice the moot recent appliances for elementary school teaching and instruction in applied science, art, and haudicrafts. The influence of modern sanitary knowledge and intellectual progress upon the nelfare of the people of all classes and all nations will thus be practucally demonstrated, and an attempt will be made to display the most valuable and recent advances which have been attained in these important subjects. The Exhibition will be divided intu two main sections, Division I. Health, Division II. Education, and will be further subdivided into six principal grou, s. In the first group it is intended specially to illustrate the food resources of the world, and the best and most economical methods of utilising them, For the sake of comparison, not only will sjecimens of food from all countries be exhibited, but the various methods of preparing, couking, and serving food will be practically shown. The numerous processes of manufacture connected with the preparation of articles of food and drinh will thas be exemplified; and, so far as the perisbable nature of the articles will admit, full illustrations will, be given of the vatiuus descriptions of foods themselves. In the second group, dress, chiefly in its relation to beatth, will be displayed. Illustration ${ }^{8}$ of the clothing of the principal peoples of the world may be expected; and a part of this Exhibition, which, it is anticipated, will be held in the galleries of the Royal Alberi Hall, will be devoted to the histury of costume. In the third, fourth, and fifth groaps will be comprised all that periains to the heathful construction and fitting of the dwelling, the school, and the workshop; not only as respects the needful arrangements for
sanitation, but also the fittings and furniture gencrally in their effect on the health of the inmates. The most improved methods of school construction will be shown, and the modes of combating and preventing the evils of unhealthy trades, occupations, and processes of manufacture will form portions of the Exhibition. The sixih groap will comprise all that relates to primary, technical, and art education, and will include de:igns and models for school buildings; apparatus and appliances for teaching ; diagrams, text-books, \&c. Special attention will be directed to technical and art education, to the results of industrial teaching, and to the introduction of manual and handicraft work into schools.

On the 22nd ult, the remainder of the furniture and stores for Ben Nevis Observatory were carried to the top under great diffi. culties. The party had intended to make the ascent at the beginning of the week, but, owing to the state of the weather, they could not think of ft . On Thursday morning, however, althongh the weather was not very favourable, it was decided to make the ascent, and at 9 a.m. Mr. James M'Lean, contractor, and Alex. Turban, who is in charge of the stores, along with two assistants, started with some chairs and other stores. The first part of the journey was easily accomplished. The snow lay pretty heavy down to wi hin a mile of Achintee farmhouse, and several deep wreaths were enconntered before reaching the lake. On reaching the Ked Burn they came npon a long wreath of about fourteen feet deep. The snow being somewhat soft, the party had to cut a passage through, which was a rather difficult task. Determined if possible to reach the top, they proceeded slowly, and, as they ascended, the snow was fonnd to be deeper, in which they sometimes sank to their shonlders. Parts where the wind had driven off the snow were covered with ice, rendering the path difficult ard dangerous. Their efforts were, however, ultimately crowned with success, for at $2.30 \mathrm{p} . \mathrm{m}_{\mathrm{o}}$. five and a half hours after starting, the party reached the Observatory. The average depth of snow on the level parts on the summit was about six feet, and round about the Observatory it was eight feet. Mr. Omond and his assistants were in excellent spirits, are very comfortable, and now feel quite at home. The party started on the return journey at 3.30, and Fort William was reached at $6.30 \mathrm{p} . \mathrm{m}_{\text {. }}$, the whole journey, including a stay of an hour at the Olservatory, ocenpying nine hours,
We regret to learn of the death, on the 3oth ult., of the celebrated Swedish zoologist, Prof. Sven Nilsson, of the Lund University, at the age of ninety-seven.
M. Renard has communicated recently (November 3) to the Royal Academy of Brussels the results of a chemical and microscopic examination of the ashes from the great eraption of Krakatoa, which fell at Batavia on Angust 27 last. He finds that the volcanic dust consists mainly of glassy particles, among which may be distinguished erystals of plagioclase, often in rhomboidal lamellex, augite, rhombic pyroxene, and magnetite. The rock which has been blown into this finely divided state presents the general mineralogical composition of the augiteandesites, but with a rather higher proportion of silica, whicb, on a nalysis, was found to amount to 65 per cent. of the whole.
A meeting will be held on Friday at the rooms of the Royal Society, Burlington House, Plceadilly, when it will be proposed to appoint a Committee, and to make such other arrangements as may be considered neceseary for the successful promotion of the William Spottiswoode Memorial Fund. The chair will be taken by Prof. Huxley, President of the Royal Society, at four o'clock precisely.

The members of the Polar meteorological station which Denmark maintained at Godthaab in Greenland under the international scheme, have just retnmed to Copenhagen. The chief
of the expedition, Lieut. A. Paulsen, reports that, having left Copenhagen on May 18, 1883, in the sailing ship Ceres, they arrived at Godthaab on June 14. On the voyage ont observations of the temperature of the sea and air were made every hourOn the arrival out the expedition had to select the most suitable spot for the erection of the four wooden buildings brought with them, in which the magnetic and astronomical observations were to be made. A small mountain ridge near the church in the colony was chosen for this, as the preliminary researches in its neighbourhood showed that the infinence of iron strata on the maguetic current was here very small. The baildiugs were then erected and the pillars raised on which the transit instrument, the great a-tronomical clock, and the eight different wagnetical instruments were mounted, and simultancously the instruments for the meteorological observations were also placed so that the weathercock and the anemometers, as well as the thermometer hut, were situated as free as possible. On August t the meteorological observations euuld be commenced, but the maguetic ones were through an accident delayed until the 7th. From that date complete observations were made in exact accordance with the international programme without interruption every hour until August 31 this year, and the expedition has thereby fully accomplished its object, viz. of obtsining a full year's magnetical and meteorological observations in this locality. A number of other scientific researches have alio been parsued, of which those on the aurora borealis should particularly be mentioned. This phenomenon was frequently observed and studied during the winter, while some exceedingly valuable statistics were obtaired as to the altitude of the aurora borealis above the earth's surface by measurenients effected simultancou ly in various places by light signals. The measurements of atmospheric electricity bave also led to valuable results. It is stated to have been the best equipped Polar expedition ever despatched from Denmark. We hope soon to give further details.

The following communication from Mr. Charles Ford, of the Botanic Garden, Hong Kong, dated October 3, 1883, has been forwarded to us from Kew for publication :-"By the s.s. Laertes which left this place for London last week I have sent two Wardian cases of live plants, one case of living orchids, and a case of herbarium specimens, which I brought back from the Lo-Fan Monntains up the East River, and distant about sixty miles from Canton, where I spent about three weeks in August. On this excursion 1 travelled over about eighty miles of country after leaving the river, and consequently had a considerable amount of trouble when the natives knew I had no boat to fall back upon, and was therefore very much in their hands. I intended to make another trip up the North River during this month, but that is now imposiible, as Dr. Hance, who is Acting Consul at Canton, will not apply to the Viceroy for passports for any one, and he says he is afraid it will be a long time before he will feel at liberty to do so. You have no doubt heard of the very serious tronble at Canton, in which a rixt ocearred and nearly twenty European residences were attacked and burnt down by the Chinese and the valuable contents of the houses carried off by the mob. There is a very hostile feeling to foreigners prevailing now amongst the Chinese, and it is considered quite unsafe to travel in the country. I was in the LoFin Mountains when the trouble at Canton commenced, but no one attempted to molest me, and I returned to Canton in a passage junk with 150 Chinese on board, and no foreigner besides pryself ; since then, however, matters have become much worse. Mr. Sampson's herbarium and house were burnt when his house was set fire to, and Dr. Hance's, which whs not more than fifty yards off, might easily have shared the same fate, but very fortunately it was spared. Dr. Hance is extremely busy with official matters, and he thinks it will be a long time before he can resume botanical work. There is an encampment of icoo

Chinese troops in the foreign settlement at Canton, and five foreign and about a dozen Chinese guaboats in the river opposite to it: all these for the protection of the foreign residents and their property. The missionaries have left the country distriets, and do not expect to be able to return for many months. These things will prevent any bstanical work being done in China for some time. I hope something may be done in Formosa in the beginning of next year."

Large use is made at the Forth Bridge Works of electricity for lighting purposes. At South Qneensferry the workshops are it up by sixteen are lights, supplemented by a certain number of movable small ineandescent lights. Outside twelve large are lights serve to illuminate the various lines of rails and the approaches to the workshops. The offices, canteen, and other baildings are lighted throughout with Swan incandescent lights of 20 -candle power, over 200 being there alone required for the purpose. The staging, which, beginning near the Hawe's Pier, extends for nearly half a mile into the Firth, has, with its approaches, twelve lange lights devoted to its illumination. On the island of Inch Garvie in mid channel, four large arc lights are in use outside, and small incandescent lights in the offices and workshops, in the old castle, and in the neighbouring buildings. At North Queensferry six large arc lights serve for the outside illumination, and a number of incandescent lights for that of the interior of the offices and workshops. Nowhere is a dangerous degree of electric pressure allowed; and in all interiors, worksho; ${ }^{1 /}$, or operations under water the limit is but little more than one-half of that permitted by the Board of Trade In their pro* visional orders for dwellings in towns.
THE mathematical magazine conducted under the name of the Analyst for the past ten jears, by Mr. J. E. Hendricks, will, we learn from Scicuce, be continued under the editorial charge of Ormond Stone, Professor of Astronomy, and William M. Thornton, Professor of Enginecring, with the title, Annals of Mathematics, Pure and Afplicd. The numbers will be issued at intervals of two months, beginning February 1,1884 . In scope the journal will embrace the development of new and important theories of mathematicr, fure and applied; the solution of useful and interesting problems ; the history and bibliography of various branches of mathematics ; and critical examinations and reviews of important treatises and text-books on mathematical subjects. The office of publication will be at the University of Virginia,

Dr. Holve has left England on his expedition to the interior of Africa. He leaves for this journey of a year accompanied by his wife and eleven good servants, inclading a carpenter, a waggonmaker, a blacksmith, a gunmaker, a tailor, and a butcher, besides bis black servant-girl and a dog. In South Africa he will increase his staff by nineteen, and afterwards in Central Africa by forty more black servants.

It is reported from the Storelvidal, a valley in Centrai Norway, between 61° and $62^{\circ} \mathrm{N}$. lat., that the snow during the night of November 17 became covered with a gray and black layer of dust. No scientifie investigation of the phenomenon has as yet been effected.

The report of the death of Julius Payer, the discoverer with Weyprecht of Franz Josef Land, is, we are glad to say, without any foundation.

The Annual Report for $1882-83$ of the Liverpool Geological Asrociation reports favourably, we are glad to see, on the position and work of that society.

Tue Report of the Smithsonian Institution for 1881 shows how admirably that many-sided organisation continues to earry on its invaluable work. The musenm in lts various departments is constantly increasing; the library will soon be almost withou ${ }_{t}$
a rival ; while a successful chemical laboratory has been added to the other resources of the institute. The appendix, containing as it does a record of progress in all departments of science by specialists, is of great utility; while the special papers on anthropology continue to be a well-known feature of the Report. The Report, like the Institution, reflects the greatest credit on its secretary, Prof. Spencer Baird.

The additions to the Zoological Society's Gardens during the past week include a Moorhen (Gallinule ckloropus), British, presented by Mr. T. E. Gnnn; two Common Wolves (Canis lupas \& 8), European, a Dufresne's Amazon (Chrysotis dis. fresmiana) from South-East Brazil; a Bell's Cinixys (Cimixys belliana) from West Africa, two Carp (Cyprinws carpio) from British fresh water:, purchased; an Indian Gazelle (Gazdla bennetti), born in the Gardens.

OUR ASTRONOMICAL COLUMN

Variable Stars.-The following are Greenwich times of geocentric minima of Algol, during the first quarter of 1884: the later observations of Prof. Julnus Schmidt have been bronght to bear upon the predietions.

Jan, 10	**	13.	35	Feb.			h.		March		-		538
13	*.	10	24		5			58		16	...	12	28
16	...		13		8	...		47		19	...		
30	...	15	19		22	...	13						
					25 28		10 7	43 32					

According to Mr. Knott's observations of U Cephei, 188I1883, a minimum is indicated on January 5 at $15 \mathrm{~h}, 21 \mathrm{~m}$. G.M.T., the period being 2d. 2oh. $4^{8.9 \mathrm{~m}}$. The ephemeris published in the Vuerteljahrssehrift gives it 1 h .10 m . earlier; but it is not stated npon what elements this re-ts.

Minima of S Cancri oceur on December 31 at 8 h .41 m ., January 19 at 7 h .57 m ., February 7 at 7 h .12 m ., and February 26 at 6 h .28 m . G.M.T.
The fine variable R Leonis will be due at maximum on February 23, and Mira Ceti on March 11.
The First Comet of 1798.-A recalculation of the elements of the orbit of this comet, made by Mr. Hind from Messier's observations on April 12, 13, 14, May 1, 2, 3, and May 20, 21, 22, as they are given in Zach's Allgrmeime Geograpkirche Ephentriden, vols, 1. and ii., does not lead to any suspicion of ellipticity, which is rather confirmatory of the view taken by Dr. Harzer as to its non-identity with the greatly perturbed comet of Brorsen (1846 1II) to which reference was lately made in Nature. The new orbit is as follows:-

Perihelion passage 1798, April $\mathbf{4} 5148_{2}$ Paris M.T.
Longitude of perihelion $\ldots \ldots$
ascending node ...

The error in longitude for the second normal is $-19^{\prime \prime}$; the latitudes agree.

The Great Comet of 1882. - We do not hear that this comet has been recognised sinee its conjunction with the sun. As was pointed out in this column, it was just possible that it might have been re-observed as the earth somewhat overtook it in its orbit, between the begianing of September and the end of last month. On November 30 the distance was at a minimum of 5.708 , and is once more on the increase.

The comet was seen at the Observatory of Cordoba until Jnne 1; the last complete observaion for position was made there on May 26, when the distance from the earth was 5 .048. There is no parallel to this in the whole history of cometary astronomy, except in the case of the very exceptional comet whieh was observed in 1729 and 1730 ; at the time of Cassini's last observation this body was distant from the earth $5^{\prime} 135$.

Between the first accurate observation at the Royal Observatory, Cape of Good Hope, on September 7, 1882, and the Cordoba observation above referred to on May 26, 1883, the
comet described an orbital arc of more than 340°. The ellipse deduced by Krentz from observations to November 14 assigna a period of 843 years; that by Fabritius, from observations to March 3, one of 823 years; but we may soon hope to see the result of a definitive discussion of the whole series of observations.

THE ANNIVERSARY MEETING OF THE ROYAL SOCIETY

T^{-1}HE Anniversary Meeting of the Royal Society took place as usual on St. Andres's Day, November 30, when the President, Prof. Huxley, delivered his address ; after which the Fellows eleeted the officers of the Scciety for the year, whose names we have already given in Nature, Nov. 8, p. 43. The following is Prof. Huxley's address :-

It will be as much in con-onance with yonr feelings as it is with my own that the first sentences of this address should give utterance to our sense of the calamity which befell us during the recess.
On June 27 our honoured and loved President, William Spottiswoode, fell a victim to that cruel malady, typhoid fever, which is at once the scourge and the reproach of modern civilisa. tion ; and we were bereaved of a chief of whom all those who had the highest interests of this Society at heart hoped that he would continue for many a year to di-charge the responsible and laborioas duties of his office with that broad iutelligence, that faithful diligence, that inexhaustible patience and courte.y, which were so characteristic of the man.
Every one of the Fellows of the Society in whose hearing 1 speak knows that these are no words of conventional eulogy, as of a customary epitaph. But it is only those of us who worked with our late President in the Council, or as officers of the Society, who are in a position fully to appreciate his singular capacity for the tran action of bu-iness with clear judgment and rapid decision, and yet with the nost conscientious consideration of the views of those with whom he was associated.

And I may add that it is only those whe enjoyed Mr. Spottiswoode's intimate friendship, as it was my privilege to do for some quarter of a century, who can know how much was lost when there vanished from among us that rare personality, so commingled of delicate sensitivenens with marvellous self-control, of rigid principle with genial tolerance, of energetic practical activity with untiring benevolence, that it always seemed to me the embodiuent of that exquisite ideal of a true sentleman which Geoffry Chaucer drew five hundred years ago:-

> Tin ulhe and honour, fredom and curtesie.
> And though that he was wromhy he wain wys,
> And of his pokt as mieke as is a mayde.
> He never yit no visaye ne sayde
> In al his ly unto no mauer wight.
> He was a verray perfight gentil knight."

It is not for me to pass any judgment upon Mr. Spotiswoode's scientific labours; hut I have the best authority for saying that having occupied himself with many lranchrs of mathematics, more especially with the higher algebra, including the theory of determinants, with the general calculus of symbols, and with the application of analysis to geometry and mechanics, be did excellent and durable work in all; and that, in virtue of his suund and wide culiure, his deep penetration, and the singular elegance with which he habitually treated all his subjects, he occupied a place in the front rank of English mathematicians.

The interment in Westminster Abbey of one who, thoukh compelled to devote a large share of bis time to business, was a born man of science, and had won himself so ligh a place among mathematicians, was doubtless grateful to us as men of ecience ; it could not but be satisfactory to us as Felions of the Royal Society that, on the rare occasion of the death of our Preident in office, the general public should show its sympathy with our bereavement; yet as men 1 think it is good to regard those solemn and pathetic obsequics as the tribute which even our busy, careless, cynical, modern world spontaneously pays to such worth and wisdom, to such large humanty and unspotted purity as were manifested in the "very perfect gentle kuight" who so well represented the chivalry of science.
The total namber of Fellows deceased during the past year amounts to twenty; a large inroad upon cur ranks in mere
numbers, an exceptiotally severe mortality if we consider the scieutific rank of wany names in the death-roll. Almost at the same time with Mr. Spothswoode's untimely death we lost, at the ripe old age of ninety, a very distinguished Fellow and former President of this Society, Sir Edward Sabine. It is said that the average age of Fellows of the Royal Society is greater than that of any body of men in Europe ; and it is certainly a remarhable fact that one who so long presided over us in this generation should, as a man of thirty years, have been the contemporary of Sir Joseph Banks, who became our Prevident more than a century ago. And nothing can give a more striking exemplification of the gigantic progress of physical science in modern times than the fact that the discovery of oxygen by Priestley, and that of the composition of water by Cavendish, fall within the period of Sir Joseph Banks's presidency, while Black's work was but a score years earlier. We are as it were but two Presidents off the budding of modern chemistry, as of many another stately growth of the tree of natnral knowledge.

Sir Edward Sabine's long services to this Society, first as Treasurer and then as President, deserve more than a passing allusion; but for a due appreciation of them, no less than of bis great labours in terrestrial magnetism, I must refer you to cur obiluary notices.

By the unexpected death of Prof. Henry John Stephen Smith the University of Oxford lost one of the most distinguished, as be was one of the movt iafluential, among those who have guided its destinies during this generation, and a capacity of the first order, not yet weakened by the toueh of time, has disappeared from the ranks of the foremost mathematicians of Earope.

As Chairman of the Meteorological Committee, Prof. Smith rendered invaluable services to that body; and we have all a grateful recollection of the readiness with which his knowledge and sagacity were brought to our aid in Council and in Committec.

For the rest, I dare add nothing to that which has been aid of him by our late Presideat in that just and loving aporeciation of his friend, which is now touched with a sadder gravity and a deeper paibos.

It is difficult to say of Prof. Smith whether he was more remarkable as a man of aftairs, of society, of letters, or of science; but it is certain that the scientific facet of his brilliant intelligence was altogether directed towards those intelligible forms which peosple the most ethereal regions of abstract knowledge. In Sir William Siemens, who bat the other day was suddenly suatched from among us, we had a no less marked exa aple of vast energy, large scientific acquirements, and intellectnsl pow ers of a hish order, no less enmpletely devoted, in the main, to the application of science to industry.
I believe I am expreswing the opinion of those most competent to judge, when I say that Sir William Siemens had no superior in fertility and ingenuity of invention; that hardly any living man so thoroughly combined an extensive knowledge of scientufic principles with the power of applying them in a commercially succesful manner; and that the value of his numeruus inventi ins must be measured, not merely by the extent to which they have increased the wealth and convenience of mankind, but by the favourable reaction on the progress of pure seicnce which they, like all such inventions, have exerted, and will continually exert.
Time permits me to be but brief in alluding to the remainder of our long list of deaths. But I may not omit to mention that we have lost a distinguibed mathematician in Prof. Challis ; in Mr. James Young, a chemist whose skilful application of theory to practice founded a new inductry ; in Mr. Cromwell Varley, an ingenious inventor; in Lord Talbot de Malahide, a warm friend of science and a zealous promoter of archzological research; in Mr. Walker, an eminent engineer; in Mr. Howard, an eminent quinologist ; an lin the Rev. Dr. Stebbing, an accomplished and amiable man of letters, who for very many years filled the honourable, but not very onerous, office of Chaplaia to the Society.
And it would ill become us, intimately connected as this Society always has been, and I hope always will be, with the sciences upon which medicine bases itself, to leave unnoticed the deceave of the very type of a philosophical physician, the venerable Sir Thomas Watson,

Two well-known names have disappeared from among thove of the eninent men who are earolled upon our foreign list ; the eminent phy-icist, Platean, and the no less distinguishel anatomist and embry logi-t, Bischoff.

I now beg leave to bring under your notice a brief general review of the work of the Society during the past year.

The papers printed in the Transactums for 1882 and 1883 will occupy two volu nes, of which three parts, containing 1038 quarto pages and fifty-two plates, have already been published. Two paris more, to complese 1583 , will shortly be pablished.

The Proceedings, which steadily increase in size from year to year, amount during the past year to 780 octavo pages, with four plates and nu cerous engravings.

You are aware that nothing is printed in the Procendings or in the Transactions except by the authority of the Cuuncil, which, in the latter case, calls in the assistance of at least two carefully. selected and independent referees, by whose advice it is in practike, though not necessarily, guided. I aun inclined to think that Fellows of this Society who do not happen to have served oa the Council, are little aware of the ameunt, or of the value of the conscientious labuur which is thns performed for the Society by gentlemen whose names do not appear in our records. And I trust I may be forgiven for stepping beyond precedent so far as to offer our thanks for work which is always troublesome and often ungrateful; but, without which, the contributions to our pages would not maintain the high average of excellence whish they possess.

Among the points of importance, by reason of their nuvelty or general significance, which have been laid before us, much interest attaches to the result brought out in Prof. Ostorne Reynolds's "Experimental Investigation of the circuinstances which deternine whether the mution of water shall be direct or simuoue, and of the law of resistance in parallel channels ;" which shows that when the conditions of dynamical similarity are satisfied, two systems, involving fluids treated as viscous, may be compared (as regards their eff_ct-) even when the motions are un tuble; and that if any one of the two systems is in the eritical state separating stability from insiability, so will be the other.
Last December, Dr. Huggins presented a note on "A Methad of Photographiag the Solar Corona without an Eclipse," which had so Car proved successful, under the uufavourable circumstances in which he had put it in practice, as to lead to the hope that, under better conditions of atmophere and elevatisn, the corona might be photographed, from day to day, with so much aceuracy as to preserve a clear record of the cbanges which it andergoe in And, as the photographs taken during the eclipse at Caroline Island sh sw a condition of the corona, iuterınediate between those exhibited by Dr. Huggins's photographs at periods antecedent and subsequent to the Caroline I-Land observations, there is reason to believe that this hope is well ba-ed, and that a new and powerful method of investigation has been placed in the hands of students of solar physics.
Lord Rayleigh and his sister-in-law, Mrs. Sidgwick, have made a very ela worate determination of the relation between the ohm and the British Association standard of electrical resistance.
With respect to those branches of knowledge on which 1 may venture to offer an opiaiun of my own, I may say that, though our records show much useful and praiveworthy work in biological science, the only event which appears to me to call for special remark is the opening of an attack upon a problem of very great interest, one which, in fact, goes to the root of the question of the fundamental unity of the two great embodiments of life-plants and animals.
The well-hnown phenomena presented by many plants, such as the sensitive plant and the sun-dew, our knowledge of which was so vastly extended by Darwin, abundantly prove that the property of irritability, that is, the reaction of a living part, by change of form, upon the application of a stimulus to that part, or to some other part in living continuity with it, is not confined to animals.
Bnt, in animals, the connection of the part irritated with that which changes its form is always effected by a continuity of more or less modified protoplasmic substance, and reaction takes place only so long as that continuity i, unimpaired; while, hitherto, the protoplasmic cell-bodies of plants have appreared to be ios. lated from one another by the non-protoplasmic cell-walls in which they are inclosed.
It is as if, in the one case, there was a continuous boud of conducting substance between the poiat of irritation and the point of contraction; while, in the other, there was a chain of pellets of protuplasmic substance, each inclused in a coat of a different nature.
Now, Mr. Gardiner, in his paper "On the continuity of the

Protoplasm through the Walls of Vegetable Cel's," brings forward evidence, based chiefly upon the careful une of special reagents, that, in the sensitive cushions of certain plants and in other situations, the vegetable cell-wall is pierced by minnte apertures, and that these are traversed thy threads of protoplasm, which connect the cell-body of each cell with those of its neighbour, and thus establish, as in animals, a continuity of protoplasmic sub-tance between different parts. Other ohservers are working at the same subject, and we may hope that, before long, great light will be thrown upon many hitherto puzzling questions in vegetable physiology.

The Committee of the Royal Society, in the hands of which the l.ords of the Treasury have placed the admini-tration of the funds devoted to the publication of the work of the Challenger expedition, report that, under the careful and vigorous direction of Mr. Murray, thas great undertahing is making rapid progress.
Mr. Murray iaforms me that thirty eight reports have, up to this time, been pullished, forming eight large quarto volumes, with 4195 pages of leterpress, 488 lithographic plates and other illustrations. Thirty-four of these menoirs are on zoological, fuur on physical subjects. Nine reports are now nearly all in type, and souse of them partly printed off. The-e will be published within three months, and will form three zoological volumes, with 230 plates and many woodcuts, and one physical volume, with many diagrams and maps; this latter volume will contain the report on the composition of ocean water, the specific gravity and temperature observations.

A considerable part of the general narrative of the cruise is now in type, and nearly all the illustrations are prepared. The narrative will extend to two volumes, and it is expected they will be ready for issue in May or June, 1884.
The work connected with the remaining furty-two special reports i , in mo-t instances, progressing satisfactorily. Portions of the manuscript for three of the larger memoirs have been received and put in type, and the manuscript of many othere is in a f.rward state. For these wemoirs, 386 lithographic F have been printed off and delivered to the biuders ; 404% are now on stone, and the drawings for many more are being prepared. It is estimated that the whole woric connecied with the Keport will be comileted in the summer of 1887.

In his Address, last year, the President gave the Society a fulf account of the changes which had taken place in the administra. tion of the Government Fund-technically termed a grant in aid of this Society-though, as you are aware, the Royal Society, while willingly accepting the burden and the responsibilty of administrator of the aid granted hy the State to science, is in no sense pecumiarily benefited by the grant.

A somewhat novel and extremely useful employment has been given to part of the fund by deciding to defray the expenses of adequately skilled persons who have undertaheu to visit distant countries for the purpose of inve-tigating certain interesting biological questions on the spot, aud of procuring and transmitting to observers at home specimens prepared and preserved by those refined modern methods which can be satisfactorily carried out only by persons who are well versed in the practice of such methods.
Mr. Adam Sedgwick has thus been enabled to proceed to the Cape of Good Hope for the purpore of completing our knowledge of the singular genus Pripatus, so well stadied by Prof. Moseley, and afterwards by our lamented Fellow, Balfour ; and Mr. Caldwell, similarly aided, is now in Australia, devoting himself to the elacidation of the embryology of the marsupial quadrupeds of that region, a subject of which at preent we know little more than wav made known in the Transactions of this Society half a century ags by Prof. Owen.
It certainly was high time ihat British science should deal with a problem of the profoundest zoological interest, the materials fur the solution of which abound in, and are at the same time almost confiued to, thone territorles of the Greater Britain which lie on the other side of the globe.
Many years ago the late Mr. Leonard Horner communicated to the Society the results of a series of borings which be had caused to be made in the upper part of the delta of the Nile, wi.h a view of accertaining the antiquity of the civilisation of Egypt. Since that time Figai Bey, an Italian geologist in the service of the Egyptian Government, made and published the results of a large series of borings effected in different parts of the delta, but bis work is hardly ou a level with the requirements of modern science.
It has been thought advisable therefore to take advantage o.
the presence of our troops in Fgypt in order to carry out a series of borings across the middle of the delta, in the full expectation that such borings, if made with proper care and carried down to the solid rock, will afford information of the most important character, and will shrow a new light upon the natural and civil history of this unique country. I am glad to say that the representations which the Pres dent and Council made to the War Office on this snbjeet were most favourably received, and that instructions were at once sent to the officer commanding the Engineens to undertake the operations which they recommended. I trust that, before long, information will reach us which will be of no less interest to the archreologist than to the geologist.

While I am speaking of Egypt, I may perhaps be permitted to express a regret that the admirable energy of the Government in taking men-ures to make the recent advances of medical science available during the late outbreak of cholora in that courtry, was not extended beyond the purely practical side of the matter, or, perhaps, not so far as the practical side in the proper sense ; for until we know something about the causes of that ferrible diseace, our measures for prevention and for cure will be alike leaps in the dark.

Those who have looked into the literature of cholera may, perhaps, be disposed to tbink that a new search after its cause will aid but another to the innumerable wild hypotheses which have been set afloat on that topic ; and yet deva<tating epidemics, like the pebrine of the silkworm, so similar in their fatality and their apparently capricious spread, that careful investigators have not hesilated to institute a detailed comparison of the phenomena of this disea'e with those of cholera, have been proved by Pasteur to be the work of microscopic organisms ; and hardly less fatal epidemies, such as splenic fever, have been traced to similar agencies. In both these cases, knowledge of the causes and of the conditions which limit the operation of the causex, have led to the invention of effectual methods of cure. And it is assuredly, in the present state of science, something more than a permissible hypothesis, that the cause of cholera may be an organie living ma'criss morbi, and that the discovery of the proper curative and prophylactie measures will follow upon the determination of the nature and conditions of existence of the e organismx,

If this reavoning is just, it is certainly to be regretted that the opportunity of the outbreak of cholera in Fggpt was not atilised for the purposes of scientific investigation into the cause of the epidemic. There are able, realous, and courageons young pathologists in this conntry who would have heen willing enough to undertake the labour and the risk ; and it seems a pity that Enghand should lenve to Germany nnd to France an enterprise which requires no less daring than Arctic or African exploration, but which, if successful, would be of a thousand times more value to mankind than the most complete knowledge of the barren ice wastes of the Pole or of the sweltering barbarism of the equator.

It may be said that inquiries into the causation of cholera have been for some years conducted in india by the Government with. out yielding any very definite result. But this is perhaps rather an argument in favour of, than against, setting fresh minds to work apon the problem.

In December last year the President received from the Lords of the Treasury a letter, addressed to their Lordships by the Lords of the Committee of the Privy Coancil on Education, recommending to the favourable consideration of the Treasury a memorial from the Solar Physics Committee, suggesting the organisation of an expelition for the purpore of making observations during the solar eclipse of May 5, 1883; and the President was requested to communicate his views upon the subject to the Treasury.

After careful consideration, the President and Council reported in favour of the projected expedition; but they added that they did so on condition of its being possible to find some one, whose position in the scientific world would command the confidence of the public, to take charge of the expedition. Unfortunately, for cone reason or another, none of the men of science who fulfilled this condition were able to go ; and, at the meeting of Council of January 18, the projected expedition was abandoned. The Ireident was, however, requested to place him. self in communication with the American authorities, and to ascertain from them whether a photographer and assistant could be allowed to accompany their expedition to Caroline Irland. On doing so, he at once received an invitation for two observers;
who were accordingly sent out, their expenses being defrayed, part'y by a contribution frum the Government grant, and partly by a special sum of $500 /$. provided by the Treasury.

I am indebted to Mr. Lockyer for the following list of photo. graphs taken by the observers :-

1. Six good photographs of the corona, exposures varying from two to sixty seconds, giving coronal detail from near the limb to end of streamers. That the limit of the corona has been photographed is shown by the manner in which the light of the sky has impressed itself ou the plate.
2. Three lange photographs showing the details of the corona close to the limb,
3. Good photographs of the spectrum of the corona, showitg a great number of coronal lines and very faint lirau hoferie lines.
4. Photographs taken on a moving plate in integrating spectroscope, from one minute before to one and a half minute after totality, showing the most prominent lines of the reversion spectrum. These lines lelong mainly to hydrogen.
5. Photographs taken with first-order grating, before, during, and after totality. These show II and K, near the limb, throughout the whole of totality.
6. Thotographs taken with a dense prism spectroscope befure, during, and after totality. These pholographs also give some of the prominent lines of the reversion spectrum.
7. Two photographs taken in the prismatic camera on plates sensitive to ultra-red rays. Results comparatively indifferent on account of the absence of prominences.

The arrangements made for obvaining a series of circumpolar observations in meteorology and magnetism were fully described in the Presidential addre-s of lavt year. I am glad to be able to report that the English party, under Cajt. Dawson, has successfully achieved its mission and has returned to this country. Capt. Daw on speaks very gratefully of the efficient assistance which he received from the Canadian authorities and from the Hudson Bay Company.

The recponsibility for the transaction of the ordinary work of the Society rents with the Council and the officers, of whom the President is only one, and I may be allowed to say by no means the most important, the heaviest part of the burden of the ex ecutive re-ting upon the Secretarie. But your President is, in virtue of his nffice, a member of two public bodies whose functions in relatiou to science are of great importance; and I follow the excellent precedent set by my predecessor in considering it my duty to acquaint the Fellows of the Society with any occurrence, bearing on the interests of science, which has come under my cognisance, ns a Trustee of the British Museum and as a member of the Council and Executive Committee of the City and Guilds Institute.

In the first-named capacity, I am glad to be able to announce that the transference of the vast zoological, botanical, geological, and mineralogical collections from Bloomsbury to the New Natural History Museum is now accomplished; and that it has been effected to the great credit of all concerned, with no greater mishap than the fracture of a bottle or two.

The advantages which will accrue to zoologists, botanists, and mineralogists from the re-arrangement of this vast asvemblage of the objects of their studies, in such a manner as to be accessible to every investigator, caunot be over-estimated. The Natural History Museum at South Kensington is, in fact, a library of the works of nature which corresponds in value, in extent, and in the purposes to which it should be applied, to the vast library of the works of men which remains at Bloomsbury.

In making this collection of use to the world of science by the problication of complete catalogues of its contents, and of systematic monographs upon particular groups; and to the nation at large, by the comporition of guide books calculated to afford the ordinary visitor an insight into the plan of the mighty maze of nature, the officers in charge of the Natural History collections have before them a task, the due performance of which, whatever their abilities, or their number, or their industry, will tax their energies to the utaost. It is in this way that, in the discharge of their proper duties, they may render services of the highest value alike to pure science and to the diffusion of knowledge among the penple, out of whose resources the great in-titution to which they belong is supported. And I trust that no mistaken view of the functions of the officers of the Museum, which no more embrace oral instruction in science than those ofthe officers of the Library comprehend oral instruction in literature, may lead to the imposition of duties, foreign to their
proper business, apon the already overhurdened staff of keepers and their assistants.
In Francis Bacon's apocalypse of science, the "New Atlantis," the Father of Solomon's House-he, whose countenanie was "as if he pitied men,"-declares that the end of that foundation is "the knowledge of causes and secret motions of things, and the enlarging of the bounds of haman empire to the effecting of all things possible."
I think that the Chancellor would have acknowledged the New Natural History Muxeam to be a goodl/ wing of sueh a House, devoted to the former of the objects whieh he mentions ; but, it may be, that his practical mind, looking always to fruit, and caring for light ehiefly as something essential to fruitbearing, would have been even better sati-fied with another building bard hy, which has been devoted to the encouragement of those applications of science through which huasan empire is directly extended, by the well-directed manificence of the City and Guilds of London.

This building, destined for a central Institution in which ample provision shall be made for thorough and practical training in so much of the principles and the method, of the physical sciences as is needful for those who aspire to take part in the development of arts and manufactares, has been completed at a cost of more than 70,000 ., while 20,000 !. has yet to be spent upon fittings and appliances, and the working expenses, if the scheme is to be fully developed, cannot be estionated at less than 10,000 /. a year.

Having aheady been called upon to take an active part in the deliberations of the committees charged with the carrying out of this great work, 1 think 1 am justified in expre sing the hope, and iudeed the confident expectation, that, before long, this new Technical College will be in full activity ; and that, for the firsl time in our history, there will be called into existence an institution in which, without leaving this country, masters, managers, and foremen of works will be enabled to obtain thorough instruction not only in scieotific theory, but in the essential prineiples of practice; and a machinery will be created, by which the poorest working lad in a manufacturing town, if he bave ability and perseverance, may be brought within reach of the best technical education that is to be had.

There can be no donbt that the founders of the Royal Society had prominently before their minds the intention of promoting the useful arts and sciences "that so (in the language of the draft of the preamble to the first charter, which is said to have been drawn up by Sir Christopher Wren) by laying in a stock, as it were, of several arts and methods of industry, the whole hudy [of the nation] may be supplied by a mutual commerce of each other's peculjar faculties, and, concequently, that the various miseries and rrials of this frail life may he, by as many variuu, expedients ready at hand, remedied or alleviated, and wealth and plenty diffused in just proportion to every one's industry, that is, to every one's deserts." It was the with of King Charles the Second that all patents for inventions should be examined hy the Royal Society; and, so late as the reign of George the second, the Society ae ually performed this duty. The steamengine itself may be said to have made its debnt before the Royal Society, when Savery exhibited his working model to the Fellow : in 1699.

But the subsequent history of natural knowledge has shown that, as in the moral world, those who seek happiness through well-doing are less likely to obtain that reward than those who try to do well without thinking what may come of it; 5 , in the world of science, those whose vision is fixed on useful ends are often left poor and bare, while those who strive only after the advancement of knowledze, scatter riches along their path, for the whole world to piek up. The R yyal Society has ehosen the latter course, and I trust it may never swerve from it. But I think that our warmest sympathy is due to the efforts of thoce who translate the language of the philosopher into that of the workshop; and by thus ameliorating "the miseries and toils of this frail life," and "diffusing wealth and plenty," are executing that part of the fint design of this Society, with which we, as a body, have long cea ed to occupy ourselves.

It was not as your President, but as one of the Special Commistoners appointed by the Government, that I had some slight share in another considerable undertaking direeted towards the improvement of indastry. But the future of the fisheries is so cl sely connected with the advancement of certain branehes of zological science, that I may be permitted to advert to the great success of the International Fisheries Exhitition; and
to express my belief that, in accordance with the intimation contained in the speech of H.R.H. the Prince of Wales at the elosing of the Exhibition, there will grow out of it an organkation which will provide for the application of science to the iuprovement of the fisheries.
In conclusion, gen'lemen, I think that it is proper on my own behalf, as it is eertainly dae to you, that I should advert to the exceptional eircumstances uhich have brought about my present occupation of the Presidential office.
The eleventh section of the sixth chapter of the statutes provides for the occurrence of a vacancy in the Chair, whether by death or by rexignation, as follows:-
" Upon any vacaney in the President's place occurring in the intervals of the anniverary elections, the Treasurer, or in his abence one of the Secretaries, shall cause the Couneil to be summoned for the election of a new President, and the Council meeting thereupon in the usual place, or any eleven or more of them, shall proceed to the said election, and not separate until the maj ir part of them shall have agreed npon a new President."
This statute is substantilly, and, to a great extent, verbally, identical with the twelfih section of the seventh ehapter of the original statutes of 1663 .
liefore the present year, five occasions had arisen on which It became necessary to put the provisions of the statate into effect.

Sir Isaac Newton died while Prevident in 1727; the Earl of Morton in 1768; Mr. Went in 1772; and Sir Joseph Banks in 1820; while Sir Hiumphry Davy resigned in 1827. On each of these occasions a new President was at once a!pointed hy the Council, endowed with all the privileges and powers of the office; and, like every other officer, however appointed, he vacated his office on November 30 following, when the Fellows sometimes elected him for the succeeding year, and sometimes did not.
These precedents were strictly followed on the pre ent occasion. A Council had been summoned, in ordinary course of business, for Jutre 28 ; bnt, as the President died on the 27 th, it was deferred until the f.llowing Thunday, when it was supp v ed the interment would have taken place. In eonsequence of the delay inseparable from a public ceremony, however, it so happened that the funeral did not take plaee antil noon of July 5 ; and 1 have hnown few sadder scenes than the kathering of the Council, fresh from the unelosed grave of their President, for the performance of the duty, imposed upon them by the statutes, of ehoosin' h:s successor fion their own number, before they should separate.
The C raneil did me the great hon sur of selecting me for the office ; and now, on this next following St. Andrew's Day, my tenure, like thit of the Treasurer and Secretaries, lapses, and it is for the Fellows of the Society to xay who shall be their officers until the next Anniversary Meeting.

Hlaving served several years, in another capacity, with three out of fur of my present colleague-, and having every reason to believe that the Fellows of the Society, at large, see good reason to set the same high value upon the services of all of them as 1 do, 1 do not find myself able to imagine that you will fail to desire that thove services shall be continued; but I have not the least difficulty in conceiving that the Fellows of the Society may think many of their number better fitted for the eminent place of the President than myself.

1 should be extremely ungrateful to my colleagues of the Couneil, wh 3 have again honoured me hy presenting me for election by the Fellows, if I were to let fall even a hint of the extent to which I share that opinion; but I think it may be permitted me to say that, should you think fit to give effect to it, there is no one who will more cheerfully acquiesce in your decision than I shall.
To a man like myself, who neither possesses, nor seeks, any other distinction than that of having done his best to advance knowledge and to uphold the dizoity and the authority of science against all comers, the Presidency of this Society is the highest dignity which he can attain, whatever else may befall him.
But, gentlemen, as men of science, yoa know better than I ean tell yon, that there are things of more worth than distinetion. I am within measurable distance oi the end of my eareer; and I have long looked forward to the time when I should be able to escape from the distractions and perturbations of the maltitudinou* affairs in which I have been so long entangled, to that student life from which the Fates have driven me, but to which I trust they may, for a litile space, permit me to return.

So that I am sure you will neither misunderstand me, nor mislike my directness of speech, when I say that, if it please you to believe that the interests of scienee and of the Royal Society will be advanced by maintaining me in the very distinguished position which I at present occupy, I will do my best to justify your confidence; but if, as may well be, yout think that some other Fellow of the Society will serve these interests better, I shall, with a light heart, transfer to him the honourable burden, which I have already borne long enough to know its weight.

I now proceed to the presentation of the medals which have this year been awarded by the Council.

The uumber, the variety, ard the importance of Sir William Thomson's contributions to mathematical and experimental physics are matters of common knowledge, and the Fellows of the Society will be more gratified than surprised to hear that the Council have this year awarded him the Copley Medal, the highest honour which it is in their power to bestow.

Sir William Thomson has taken a foremost place among those to whom the remarkable development of the theory of thermodynamies and of electricity in the last forty years is dne ; his share in the experimental treatment of these subjects has been no less eonsiderable; while his eonstructive ability in applying science to practice is manifested by the number of instruments, bearing his name, which are at peesent in nse in the physical laboratory and in the telegraph office.

Morcover, in prepourding his views on the universal dissipation of energy and on vortex motion and molecular vortices, Sir William Thowson has propounded conceptions which belong to the priwa philosophia of physical science, aud will assuredly lead the physicist of the future to attempt once more to grapple with those problems concerning the ultimate construction of the material world, which Descartes and Leibnitz attempted to solve, but which have been sedulously ignore it by most of their suecessors.

Oue Royal Medal has been awarded to Dr. T. Areher Hirst, F.R.S., for his investigations in pure geometry ; and, more particularly, for his reserrches into the eorrelation of two planes and into the complexes generated by them.

The other Koyal Medal has been aw arded to Dr. J. S. Burdon Sauderson, F.R.S., for the eminent services which he has rendered to physiology and pathology; and, especially, for his researches on the electrical phenomena exhibited by plants, and for his investigations into the relation of minute organiems to disease.

In making this award, the Council desire not merely to recog. nise the merit of Dr. Burdon Sanderson's researches, especially those on the analogy between the electrical changes which take place in the contractile tissues of plants and those which occur in the like tis ues of animals; but to mark their sense of the important influence which Dr. Sandenson has exerted upon the study of phyriol gy and pathology in this country.

The Davy Medal has this year beeu ayain awarded in dupli. cate, the recipient being M. Marcellin Berthelot, Member of the Institute of France, and Foreign Member of the Royal Society, and Prof. Julius Thomsen, of Copenhagen.

The thermo-chemical researches of Berthelot and Thomsen have extended over many years, and have involved an immense amount of work, partly in the application of established methods to new cases, partly in devising new methods and applying them to cases in which the older methods were not applicable. Chemists had identified a vast variety of substauces, and had determined the exact composition of nearly all of the w, but of the forces which held together the elements of each compound they knew but little. It was known that certain elemenis combine with one another with grent evolution of heat-forming produets in which they are firmly united; while other elements combine but feebly, and with little evolution of heat. But the materials for forming any general theory of the forces of chemical combination were but scanty and imperfect.

The labours of Mesws, Rerthelct and Thomsen have done much towards supplying that want, and they will be of the utmost value for the advancement of chemical science.

THE JAVA DISASTER

THE following letter from the Liverpool Daily Post, received from Capt. W. J. Watson, of the British ship Charles Bal, contains a graphic and interesting account of the recent terrible volcanie outburst in Sunda Stralls. Capt. W. J. Watson was himself an cye-witness of what he describes. His vessel was
actually withiu the Straits, and not far from Krakatoa when that island had become an active volcano:-
${ }^{44}$ August 22, $15^{\circ} 30^{\prime} \mathrm{S}_{.}, 105^{\circ} \mathrm{E}_{\text {s }}-\mathrm{A}$ bout 7 , p. m. the se i suddenly assumed a milky-white appearance, beginning to the east of us, bot soon spreading all round, and lasting till $8 \mathrm{p} . \mathrm{m}$. There were some clouds (cumulus) in the sky, but many atars shone, and in the east to north-east a strong, white haze or silvery glare. This occurred again between 9 and 10 p.m, the clonds also appearing to be edged with a pinkish coloured light, the whole sky al-o seeming to have extra light it it, similar to when the aurora is showing faintly. On the $244^{\text {th }}$, in $9{ }^{\circ} 30^{\circ} \mathrm{S}$. $105^{\circ} \mathrm{E}$, we had a repetition of the above. On the night of the 25 th, standing in for Java Head, the land was covered with thick, dark clouds and heavy lightning. On the 26th, about 9 a.m., pa-sed Priuce's 1-land, wind south-west, and wime heavy raiu; at noon, wind west-south-west, weather fine, the Island of Krakatoa to the north-east of us, but only a rmall portion of the north-east point, close to the water, showing ; rest of the island covered with a dense black clond. At 2.30 P.m. noticed some agitation about the Point of Krahatoa; clouds or something being propelled from the north-east point with great velucity. At 3.30 we heard above us and about the island a strange sound as of a mighty, eraekling fire, or the discharge of heavy artillery at second intervals of time. At $4: 15$ p.m., Krakatoa north half east, ten miles distaut, observed a repetition of that noted at 2.30 , only much more furious and alarning, the matter, whatever it was, being propelled with amazing velocity to the north-east. To us it looked like blinding rain, and had the appearance of a furious squall of ashen hue. At once shortened sail to topsails and foresail. At five the roaring noive continued and increased; wind moderate from south south-west ; darkness spread over the sky, and a hail of pumice-stone fell on $\mathbf{u s}$, many pieces being of considerable size and quite warm. Had to cover np the skylights to save the glass, while feet aud head had to be protected with boots and southwesters. About six o'clock the fall of larger stoues ceased, hut there continued a steady fall of a smaller kiud, most blinding ts the eyes, and covering the decks to three or four inches very speedily, while an intense blackness covered the sky and land and sea. Sailed on our course until we got what we thought was a sight of Fourth Point Light ; then brought ship to the wind, south-west, as we could not se, any divtance, and we knew not what might be in the Straits, the night being a fearful one. The blinding fall of sand ard stones, the iutense blackness above and around us, broken only by the incessant glare of varied kiuds of lightning aud the continued explosive roars of Krakatea, made our situation a truly awful one. At it P.m., having stood of from the Java shore, wind strong from the south-west, the island, west-north-west, eleven miles distant, became more visible, chains of fire appearing to ascend and descend hetween the sky and it, while on the south west end there seemed to be a continued roll of balls of white fire ; the wind, though strong, was hot and choking, kulphureous, with a smell as of burning cinders, some of the pieces falling on us being like iron cinders, and the lead from a botrom of thirty fathoms came up quite warm. From midnicht to $4 \mathrm{a} . \mathrm{m}$. (27th) wind strong, but very unsteady, between sou'h-south-west and west-sonth-west, the same impenetrable darkness continuing, the roaring of Krakatoa less continuous, but more explosive in sound, the sky one second inteuse blackness and the next a blaze of fire, mastheads and yardarms studded with corporants and a peculiar pinky flame coming from clouds which seemed to touch the mastheads and yardarms. At 6 a.m., being able to make out the Java shore, set sail, pasing: Fourth Point Lighthoure at 8 ; hoisted our signal letters, but got no answer. Passed Anjer at 8. 30, name still hoisted, close enough in to make out the houses, but could see no movement of any kiad; in fact, through the whole Straits we have not seen a single moving thing of any kind on sea or land. At 10.15 a m . passed the Button Island oneha'f to three-quarters of a mile off; sea like glass round it, weather much fiser looking, and no ach or cinders falling ; wind at south-east, light. At 11.15 there was a fearful explosion in the direction of Krakatoa, now over thirty miles distant. We saw a wave rush right on to the Button Island, apparently sweeping right over the south part, and risiug half way up the north and east sides. This we saw repeated twice, bat the helmsman says he saw it once before we looked. The same wave seemed also to run right on to the java shore. At the same time the sky rapidly covered in; the wiud came strong
from south-west by south; by 11.30 we were inclosed in a darkness that might almost be felt, and at the same time conmenced a downpour of mud, sand, and I know not what ; ship going north-east by north, seven knots per honr under three lower top:xils; put out the side-lights, placed two men on the look-out forward, while mate and second mate looked out on either quarter, and one man employel washing the mad off binnacle glans. We had seen two vessels to the n reth and nortb-wext of us before the sky clowed in, adding nuach to the anxiety of our position. At noon the darkness was so intense that we had to grope sur way about the deeks, and although speaking to each other on the poop, yet could not see each other. This horrible sta'c and downpour of mad, \&e., continned until 1.30, the roarings of the volcano and lightnings being something fearful. By $2 \mathrm{p} . \mathrm{m}$. we conld see some of the yards aloft, and the fall of mud ceased. By 5 p.m. the horizon showed out in the norib and north-east, and we saw West Island bearing east and north, jnst visible. Up to midnight the sky hung dark and heavy, a little sand falling at times, the ruaring of the volcan very distinct, although in sight of the North Watcher, and fully sixtyfive or seventy miles off it. Such darkness and time of it in general few would conceive, and many, 1 dare say, would disbelieve. The ship, from truck to water-line, is as if cemented; spars, saik, blocks, and ropes in a terrible mess; bat, thank God, nobody hurt or ship damaged. On the other hand, how fares it with Anjer, Merak, and other little villages on the Java coast ?"

UNIVERSITY AND EDUCATIUNAL INTELLIGENCE

Oxford.-The Natural Seience Scholarships at Christ Church have been awarded after examination to Mr. R. E. Sch-lefield, of Leed, Grammar Scbonl, and Mr. H. Bankes Price, of Christ's College, Brecon. The Brakenbury Natural Science Scholarship at Balliol College has been awarded to Mr. R. P. Baker, of Clifton College. The following gentlemen were distinguished in the examination:-Mr. W. H. Littleton, Royal School of Mines, Mr. T. H. J. Watts, of Llandovery School, and Mr. C. E. Rice, of Derby Grammar Schuol.

An examination will be, held on Janu iry 29 at Queen's College for the election of a scholar in Natural Science.

Cambrtdge.-The Special Board for Mathematies, in pubs lishing, after the lapse of two thirds of the present term, a list of professorial lectures on Mathematics, with a list of College lectures open to all members of the University, states that six associated Colleges, Peterhous:, Pembroke, Corpus, Queens', St. Catharine's, and Downing, provide no lectures on higher Mathematics this term, while none will be given during the year at Jerus, Trinity IIall, Magdalen, Sidney, Cavendish, and Selwyn. St. John's does not as yet open any of its advanced lectures to other than its own students. Trinity, on the contrary, has five advanced courses this term open to the University, viz, Mr. Thomson on Electrostatics and on Statics and Attractione, Mr. Ball on Higher Differential and Integral Calculus, Mr. Glazebrook on Geometrical Optics, and Mr. Glaisher on Elliptic Functions. At King's Mr. Stearn is lecturing on Electrostatics, at Christ's, Mr. Hobson on Magnetism, at Clare Mr. Mollison on Fourier's Theory and Heat. Several subjects in higher Mathematics are unrepresented by lectures this year, such as Differential Equations, Calculus of Finite Differences, Calculus of Variations, Theory of Probability, Lagrange's and Bessel's Fnnctions, Higher Dynamics, Newton's "Principia," Planetary Theory, and Precesion. The Board regret that no conference of mathematical lecturers has been held, and that there is no uniformity of procedure between the different Colleges. In all the other ehief departments of study, programmes of advanced lectures for the whole year were pablished last June. It is somewhat of a reproach to Cambridge mathematicians that no such list is published in regard to what was once so distinctively the characteristic stady of Cambridge.
The following are the examiners for the Natural Sciences Tripos of 1884 :-Prof. A. M. Marshall (zoology), Dr. F. Darwin (botany), Mr. Langley (physiology), Dr. R. D. Roberts (geology), Mr. L. Fletcher (mineralogy), Mr. W. N. Shaw (physics), Mr. A. Ifill (human anatomy), Mr. Pattison Muir (chemistry).

The recommendations of the General Board of Studies as to the Professor of Pathology, new reaters, University lecturers,
demonstrators, grants for apparatus, \&c., will be voted on December 6 at noon.
Prof, Foster has been appointed on the University Library Syodicate; Prof. Foater and Dr. Vines, the Butanie Garden Syndicate ; Revs. Coutts Trotter and E. Hill, the Museums and Lecture Rooms Syndicate ; Messrs. H. Darw in and J. J. Thomson, the Observatory Syndicate; Prof. Cayley, the University Press Syndicate; Dr. Gaskell and Mr. A. S. Lea, the Oxford and Cambridge Exawinations Syndicate ; Prof. Foster, the State Medicine Syndicate; Prof. Stuart and Mr. J. Ward, the Teachers' Traioinz Syndicate.

The following appointments on Special Boards have been made :-Mr. A. S. Lea (medicine), Dr. Ferrers (mathematics), Prof. Stokes (physics and chemistry), Mr. J. E. Marr (biology and geology).

Prof. Macalister has been appointed Examiner in the 2nd M. B, in place of the late Mr. James Shater.

Mr. W. Gardiner of Clare College has been approved as a Teacher of Botany for the purposes of medical study.

SCIENTIFIC SERIALS

The Journal of Anatomy and Physiology, vol. xviii. part 1, October, 1883, contains:-On the development of the suspensory ligament of the fetlock in the foetal horse, ox, roe deer, and sambar deer, by Prof. Dr. J. Cunningham, M.D. (plate I). -On the action of infused beverages on peptic digestion, by Dr. J. W. Frazer (plate 2).-On a method of promoting maceration for anatomical museums by artificial temperature, by Prof. Struthers, M.D.-On the wax-like di, ease of the heart, by Prof, D. J. Hamilton, M.D. (plate 3).-On the relations of the dorsal artery of the foot to the cuneiform bones, by A. Hensman. Researches into the histology of the central gray substance of the spinal cord and medalla oblongata, by Dr. W. Ainslie Hollis, part 2 (plate 4).-On some points in the anatomy of the chimpanzee, by J. B. Sutton.-Observations npon the osteology of Podarocys montanus, by Dr. R. W. Shufeldt (plate 5).-Short notes on the myology of the American black bear, by Prof. F. J. Shepherd, M.D.-Total absence of the left lobe of the thyroid body, by Dr. W. J. Gow.-Note respecting the course of the flexor longos digitorum pedis, by Dr. Slnclair White.-On the os centrale in the human carpus, by Prof. W. Gruber.

Tue Qwarterly fournal of Microscopical Science for October, 1883, contains:-Observations on the genus Pythium, by H. Marshall Ward, M.A. (plates 34 to 36). -On budding in Polyzon, by Prof. A. C. Haddon, M.A. (plates 37, 38)-On the structure and relations of Tubip,ra, by Sydney J. Helison, B.A., B.Sc. (plates 39,40). -On the malleus of the Lacertilia and the malar and quadrate bones of the mammalia, by M. L. Dollo (plate 4t).-Notes on Echinoderm morphology, No. 6; on the anatomical relations of the water-vascular system, by P. Herbert Carpenter, M.A.- Recent researches upon the origin of the sexual cells in hydroids, review by A. G. Bourne, B.sc.On the osteology and development of Syngrathus peckiamus (Storer), by J. Playfair McMurrich, M.A. (plates 42, 43).
Tite American, Yournal of Sricnce, November, $\mathbf{8 8 3} 3$ - Results of some months' examination of 'he spectra of sunspots with an instrument of high dispersion, by Prof. C. A. Yonng.-On tife meteoric iron mass found by F. M. Anderson near Dalton, Whitfield County, Georgia, in 1879 (two illustrations), by Charles Upham Shepard, sen. The analysis gave iron 94.66 , nickel 4.80 , cobalt $0^{\prime} 34$, with traces of phosphorus, chromium, and manganese. -Notice of sone varieties of corundum recently found at Sungchang, Zanskar district, Western Himalayas, by the same author.-Phenomena of the Glacial and Champlain periods about the mouth of the Connecticnt Vall w, that is, in the New Haven region (two maps), by James D. Dana. The author concludes that two simultaneous movements existed in the glacier ice-a lower along the valley, an upper crossing it obliquely ; that both transported drift material, and that on reaching Long Island Sound the lower changed its own direction of flow for that of the general glacier mass across the Sound and long Island.-On a variety of descloizite from Zacatecas, Mexico, by Samuel L. Penfield.-On Hybocrinus, Hoplocrinus, and Barocrinus (two illustrations), by Charles Wachsmuth and Frank Springer. - Note on Mr. Nipher's papers on the evolution of the American troting borse (one illustra. tion), by W. H. Pickering. The author holds that we may foretell the speed attained for a few years in advance, but not the
ultimate s, eed, nor when it will be reaehed. - O.t the discovery of Utica slate sraptolites on the nest side of the Huds) N River, a few wiles north of Pouzhkeepsic, by Henry Booth.-On Becraft's Mountain, i.ear Hadoon, Columbia County, New York (one illustration), by William Morris Davie. After describiug the district formations, and their relative and absolute positions, the author deals with the question of nonconformity between the Lower and Upper Silurian systems of the locality and the relations of these system* elsewhere. In another communication he discusses the question of nonconformity at Rondint:, New York.-Notice of agricultural, botanical, and chemical results of experiments on the mixed herbage of permanent meadows, condn:ted for more than twenty years in succession on the same land, by D. P. Penhallow. The results are tabulated, and are valuable as stowing the influence of differen* fertilisers upon the character of vegetation and the total produce. - Note on Mr. Backhouse's observatio is on phy-inlogical optics, by W. Le Conte Stevens.
Bulldin of the Bdyrian Acadlmic Royale des. Sciences, des Lettres, a des Beanx Arts, August 5, 1883 .-Keport on M. Gravis' anat-mnical researches on the vegetative organs and structure of the Urtica dioica, by MM. Ed. Morren and Gilhinet.-Keport on M. Paul Albrecht's work on the pelvi-ternum of the Edentates, by MM. P. J. Van Beneden and Van Baubeke.-Note on a thunderbole which fell near Gougnies on July 11, 1868, ly M. D. Van Bastelaer.-Report on M. Delacy's steam engine of universal application, hy M. Maus.-Remarks on some new fos. sils firund in the Belgian Tertiary formati ins, by M. P. J. Van Beneden.-Note read to the Acadeuny on presenting the two fins parts of has work on the theory of the diurnal, annual, and secular movements of the axis of the globe, by M. F. Folie.Ohervations on a reeent ncte by M. P. J. Van Beneden, touching the discovery of the Berniscart fos il iguan dons, by M. E. Dupont. - Note on the influence of respiration on blood-pressure, by MM. Em. Legros and M. Griffé.-Report on M. G. Tiber,hien's philooophic dissertation on time, by M. A. Le Roy. - Note on M. de Sonnaz's historical studies on the county of Savoy, by M. Rivier. - Commnnication on some autographs of Gretry, by M. Stanislas Bormans.
Archives /haliennes de Biologie, tome iv. fasc. $\mathbf{1}$, October 31, 1883 , contains.-On the zoological station at Naples, by C. Emery.-On le eharbon in birds, by E.Perroncito.-On a true diffured kidney in certain mollusca, by S . Trinchese.-On the optie lobes of birds, by J. Bellonci.-On the oscillations of the typhoid fever epidemic at Paris in connection with the raiufall and sewage of that city, by L. Pagliani,-On paraldehyde as antag nitic 1 strychnine, by V. Cervello.--On the active propertiss of Nigella sativa, by P. Pellacani.-On the gene is of Ptomaines, by F. Coppola.-Researches as to the poivon of Triton cristatus, by A. Capparelli.-Embryological researches as to the mammalian kidney, by C. Emery.-Histological researches as to the nervous centres, by C. Golgi.-Obituary notiees of P. Pacini, N. A. Pedicino, and Victor Colomiatti.

Zeitschrift für wissenschaffliche Zoologie, Bd. xxxix., Heft 1, September 28, 1883 , contains:- Researches on the iuterstitial connective tissne in mollusea, by Dr. J. Brock (plates t to 4). -On the germinal layers of the tail ead of Lambriculus varigafas, with a contributiou to the anatomy and history of this worm, by Dr. C. Bulow (plate 5). -On the histogenesis of the bones in Teleostei, by Carl tichmid-Monnard (plates 6 to 9).-Kemarks concerning the blood lacunse and the connective tissue in Najadre and Mytilidx, by W. Flemming.-Contributions to the bistology of the Echinoderms, No. 1, the Holothuria (Pedata) and the nervous aystem of the Azterida, by Dr, Otto Hamahn (plates 10 to 12).

SOCIETIES AND ACADEMIES
 London

Linnean Society, November 15.-Sir John Lubbsek, Bart., F.K.S., president, in the chair.-Mcsars. Philip Crowley and J. Murray were elected Fellows of the Socicty.-Mr. Charles B. I'lowright exhibited a young pear tree showing Rasteliaz cancellata, Jacq., I rodueed from Podisoma sabina, therefore supporting the observations of A. S. (F.r:ted in Bovaniska Natiser for 1865 ; also examples of Pucrinia graminis on wheat produced from CYeidinus on Mahonia aquifolia; the Geidiosporis were sown June 2, 1883, the Üredospores were snwn June 10, and the ripe P.graminis was gathered September 10 ,
1883. He likewise called ateati nt to examples of (Ecidiamm rumicis on R'amex abusifolius, R. Aydrolapathum, R. cowglo. merratus, and Rheum officinale, the same being priduced from Puccinia phragmitis.-l'r.s. P. Martin Duncan showed a specimen of coral (Desmophyl/sw cris/a-galli) which had grown npon an electrie telegraph cable of the shores of Spain; it possesved radicles, apparently due to the presence of a worm close beneath the base of the coral,-Mr. E. P. Ramsay exhibited a series of rare New Guinea binds, and Mr. K, B. Sharpe made remarks thereon. - Mr. T. Christy exhibited a fine living and heallity specimen of Trovesia sumdaica, Miq. (the so-called Gastomia palmata), or probably a new species. This peculiar and hundome plant has rarely been seen in this country, and of late years almost been lost sight of.-Dr. J. Marie showed and made remarks on specimensof Ascaris bicolor from the living walrus at the We-tminster Aquarium.-Mr. F. I. Warner drew attention to a series of specimens of Orchis incarnata fron Hampshire. - A paper was read by Mr. A. W. Bennett, on the reproduction of the Zygnemaceax, as a solution of the que-tisa, Is it a sexual eharacter? De Bary twenty-five yearx ago, and since then Wittrock, have instanced what they have deemed sexual differ. encer between the coajugating cells, though most later writers rather ignore essential physiological distinetions. Mr. Rennett has directed his inventigations eliefly to the genera Spirggyna and $Z_{y g n} \cdot m o$, and from these he supports the inference of the abovementioned authors. He finds there is an appreciable difference of leugth and diameter in the conjugating cell *, that deemed the female being the larger. The protoplanmic eontents be also fauds pass only in one direction, and change fint commences in the chlorophyll bands of the supposed male cells, with aecompanying contraction of the protoplaswic material. The genera Alesecarpus, Slampospermum, and the doubtful form Crutcospermum have likewise been examined, and, though showing differences, yet on the whole substantiate the view above enunciated of cell sexuality. - There followed the reading of notes on the antenne of the honey hee, by Mr. T. J. Briant, in which he describes the minute structure of the segments, the joints and certain rod and cone like organs, previously referred to by Dr. Braxton Hicks, of hidhly sensitive function,-A paper wav read on the Japanese Languriidx, their hatbits and external sexual characteristics, by Mr. G. Lewis. He remarks that a represenrative of the family bas been found in Siberia, lat. 46° (L. mewctriesi) ; there are none in Earope, and one is known from Fgypt. Others inhabit the Malay Archipelago, Ceylon, and the American continent. The author infers from the geographical distribation of these beetles that they have emanated from a tropical area. Some in the imago state cling to the stems of brushwood; others sit on the leaves of the moist shade-loving plants in the forests, whlle still others frequent debris on hill sides. Their colours are all dull, their bodies elongate and not structurally adapted for boring. The sexes show peculiar differences in size, and monstrous enlargement and obliquity of the head, volume of tibia, \&c.A paper was read by Prof. P. Martin Duncan on the replacement of a true wall or theca by epitheca in some Serial Coralla, and on the importance of the structure in the growth of incrusting corals. After alluding to the discueions whicb have taken place regarding the value of epinheca in classification, the author states that one form of this struc'ure is simply protective, and that another form is of high physiological value, for it replaces entirely the usual theca or wall. The anatomy of the hard structures of a Cocloria illustrates the second propocition, for the bruad base is covered by an epitheca, within which is no wall or "plateau commnn," the septa, remarkable nodular walls (dereribed in detail), and the columellex arise from the epitheca directly, and it limits the interseptal loculi inferiorly. In a Leptoria the the same replacement of a wall by epitheca is seen. In incrusting Porites and such Astreidax as Leptastraxa the majority of the corallites of the colony arise from this baval epithecate structure, and grow upwards, budding subsequently from their side.
Royal Meteorological Society, November 21.-Mr. J. K. Laughton, F.R.A.S., president, in the cbair. - The Earl of Dalhousic, K. T., T. H. I avis, D. C. Embletod, J. Ilargreaves and J. L. Lewington were elected Fellows of the suciety.The following papers were read:-Report on temperatures in two different patterns of Stevenson screens, by E. Mawley, F. R.Met.Soc. The screens employed were an ordinary Stevenson screen obtained from Casella, and a new Stevenson sereen made in aecordance with the recommendations of a committee appointed by the Council of the Society. The new screen is two
inches wider and deeper than the old screen. It has also an upper sloping roof, and, at a little distance below, a flat, inner roof pierced with holes for ventilation ; while the old screen has a single flat roof with only a narrow slit beneath on each side for ventilation. Observations were made during the three months July to September, and the resulss are given in the paper. From these it appears that the new screen is, of the two, slightly cooler and better ventilated, and retains the heat of the sun for a less time than the old screen; also, having a double roof and overlapping boards below, it is better suited for extreme cli-mates.-On the storm which crossed the British lales between September 1 and 3, 1883, and its track over the North Atlantic, by C. Harding, F. R. Met.Soc, of the Meteorological Office. This storm canved considerable bavoc in the sounh-west and south of England, owing not only to its exceptional violence, bat also to its occurrence before the completion of the harvest. The storm is traceable, in the first instance, to two centres of disturbance, one being first shown at about 450 miles to the south of Bermudn on August 26, and the other to the east of the Rocky Mountains on the 27th ; these twodisturbances afterwards merged on the 29th, at about 300 miles to the north of Bermuda, and formed one great and destructive gale, which continued to grow in violence as it crossed the Atlantic until it reached the coasts of the British lslands. The average speed at which this storm crossed the Atlantic was fully forty males an hour, which is more than double the usual speed of storms which traverse that ocean. - On the influence of the moon on the herght of the barometer within the Iropics, by Robert Lawson, Inspec-tor-General of Hospitals,-The great ice-storm of July 3, $1 \mathrm{S8}_{3}$, in North Lincolnshire, by J. Cordeaux. The direction of the storm was mearly south-east to north-west, and travelled from Caistor along the higher ridges of the hills to Barton-on Humber. The storm commenced at about $9.20 \mathrm{p} . \mathrm{m}$. wihh heavy drops of rain, and increased to a downpoar, speedily followed, amidst the blaze of lightning and the constant roll of thunder, by the rush of hail, or rather lumps of ice. An eye witness remarked that they were not like hailstones, but "salt-cellars"; another that they resembled "ducks' eggs"; in fact they were solid lumps of ice of every shape and size, weighing from two to six ounces, and some were mensured six inches in circumference. The injury done to the growing crops cannot be estimated at less than 20,000/.

Physical Society, November 24-Prof. R. B. Culton in the chair. - Prof. Keinold read a paper by Mr. J. W. Clark, on the purification of mercury by distillation in vacuo. The advantages of Mr. Clark's apparatus are-the small quantity of mercury in use at a time, and the fact that no auxiliary Sprengel pump is required. This is avoided by having a movable reeervoir of mercury, on raising which the distiller is filled with mereury. The apparatus was described in detail, and illustrated by a figure. It is probable that zinc, cadmium, magnesium, \&c., may be distilled and thus parified by the same apparatus -Mr. A. P. Chattock then read a paper on a method of determining experimentally the constant of an electrodyuamometer. In existing methods it is necessary to measure the areas of the coils, which is a difficult matter to do with a finished instrument ; by the new method this is unnecessary. It depends on the accurate determination of the speed of the movable coil. Mr. Chattock exhibited an instrument whose constant had been determined by him in the laboratory of Prof. Foster, Univerity College, with the assistance of Mr. Grant.-Prof. G. C. Foster then took the chair, and Prof. K. B. Clifton, president, read a paper on the measurement of the curvature of lenses. With very small lenses the spherometer cannot be used, and the author's method is based on the Newton's rings formed between the lens and a plane surface, or a curved surface of known radius. From the wave-length of the light employed in observing, and the diameter of a ring, the radius of curvalure can be determined. He places the lens on a plane or curved surface under a microscope, and lights it by the sodium flanue (wave-length 5892×10^{-7}); he measures the approximase diameters of two rings a distance apart (in practice the tenth and twentieth rings are found convenient), takes the difference of their squares, and divides it by the wave-length, and the number of rings in the gap between to find the radius of the lens. The formula is-

$$
\rho^{\prime} m \lambda=\left(x_{m+n}^{v}-x_{v}^{v}\right)
$$

where x_{m+n} and x_{n} are the diameters of the w th and $(m+n)$ th
rings ; λ is the wave-length of the light, and ρ^{2} the radius of curvature of the lens, The method with proper care gives accurate results. Prof. Clifton has also used it to determine the refractive index of liquids in small quantities; Mr. Richardson having found it for water $=1 \cdot 3335$ by this method, which is usually correct to two places of decimals. It can also be used to determine if the lens is uniformly curved and spherical. Prof. Perry suggested that it might be also used to measure a surface without tuuching it, say the surface of a water drop, or a strip of glass when bent. In this way it might throw light on the laws of capillarity or bending.

Manchester

Literary and Philosophical Society, October 2.-H. E. Koscoe, F.R.S., president, in the chair.-On the change produced in the motion of an oscillating rod by a heavy ring surrounding it, and attached to it by elastie cords, by James Bottomley, F.C.S.

October 16.-1I. E. Roscoe, F.R.S., president, in the chair. -On the leaves of Catha adwlis, by C. Schorlemmer, F.R.S.Dr. Schuster, F.R.S., gave an account of meteoric dust, and exhibited some specimens found in Himalayan snow.-On the duality of physical forces, by James Rhodes, M.R.C.S.

October $30 .-$ J. P. Joule, F.R.S., vice-president, in the chair. -Oa the action of water upon beds of rock salt, by Thomas Ward.

Cambridge

Philosophical Society, October 29.- On the structure of the cells of secretory glands, by Mr. J. W. Langley.-Note on the fibrin-ferment, by Messrs A. S. Lea and J. K. Green.-On the structure of the epidermis of the ice-plant (Mescmbryanths. wum (rystallimum), by Mr. M. C. Potter.-On the physiological significance of water-glands, by Mr. Walter Gardiner.

Paris

Academy of Sciences, November 26.-M. Hlanchard, president, in the chair.-On the treatment of plague-stricken swine by vaccination with the fatal virus itself in an attenuated form, by M. Pasteur and the late M Thuillier.-On the hydratation of crolonic aldehyde, by M. Ad. Wurtz,-Propagation across the Indian and Ailantic Oceans of the great earthquake wave caused by the recent di-turbances at Java, by M. de Lexseps. From the observations taken at Colon by the engineers engaged on the Panama Interoceanic Canal, the wave would appear to have made lts way in about thirty hours from Java, ruund the Cape of Good 11 oje to the east coast of Central America. - Theoretical considerations on the action of floats kept in tow at divergent angles, by M. F. de Jonquières, - On the secular variation in the direction of the terrestrial magnetic force at Paris, by M. L. Iescroix.-On the successive parthenogenetic reproduction of phylloxera for nine generations, and on the results obtained by various methods of treatment of vines attacked by phyllozera made by M. P. Boiteau.-Obervations of the planet: 233 and 234 at the Paris Observatory (equatorial of the west tower), by M. G. Bigourdan. - On a formula of M. Tisserand connected by the celestial mechani \sim, by M. O. Callandreau.-On the algebraic integration of linear equations, by M. H. Poincaré,-On an induction magnetie needle, by M. Mascart.-On the electric synchronism of two relative movements, and its application to the construction of a new electrie compass, by M. Marcel Deprez. A study of earth current-, by M. F. E. Blavier.-Meacurement of the differences of potential of electric layens on the surface of two liquils in contact (four illustrati ins), by MM. E. Bichat and K lilondlot.-Wave-lengths of the optical rays \mathbf{A} and a, by M. W. de W. Abney.-Description of a micro hermometer for gauging very slight voriations of temperature, by M. F. I arroque.-Siudies on the chemical action of light ; decomposition of oxalic acid by the perchloride of tron (ihree illustrations), by M. G. Lemoine.-I issociation of the anhydrous carbonate of ammonia caused hy excess in one or other of its elements, by M. Isambert.-On the fusibility of salts ; nitrates, by M. E. Maumenc.- On hydronicutine and oxytrinicotine, by M. A. fiard. - On the relative velocity of the sensations of sight, heariny, and touch, by M. A. Bloch. This paper consists of three di-tinct parts, each dealing with the comparison of two sensations-(t) hearing and touch; (2) hearing and sight ; (3) sight and tonch. The author concludes that of the three sensations sight i - the most rapid; then hearing, the transmission of which senxation lasts $1 / 7^{2}$ of a second longer than that of
sight ; lastly, touch. the transmis-ion of which takes $1 / 21$ of a second more than sight.-O1 the nervoas system and the elasstfication of the Phyllotocese, a hitharto little-studied family of Annelidxe, by M. G. Pruvot.-On the axis of Evanethur crocata and fistulosa, and on aboormal ve zetable productions in general, by M. א. Gérard, -On the propagation of the earth. quake waves caused by the late volcanic enuption at Java, hy M. Bouquet de la Grye.-A contribution to the voleanic the ory, by M. Stan. Meunier.

Berlin

Physiological Society, Novemher 9.-Dr. Friedlinder two years ago had comounicated to the Society how in eigbt different cases of genuine croupous pneumonia, which ended fatally on the diseave reaching its height, he had constantly fonnd in the longs a micrococcus, mostly in the form of diplococcus, which seemed to be a characteristic of genvine preumonia, Since then the cases of croupous pneumonia he had examined amounted in over fifty, and with bat very few exceptions the same description of cocci had been found in all the lungs affected. The few sases in which pneumonic cocci failed to show themselves were regularly such in which death had set in after the eighth day of the disease, that is after the disease had finished its eourse. In all other kinds of pneumonia, such, for example, as follow in the train of typhus, or attack old persons, \&c., diplococci did not appear. It was beyond doubt, therefore, that they were a characteristic of genuine croupous pneumonia alone. That micrococei had not been perceived by many observers in the case of genuine preumonia was owing to the fact that it was difficult to make them visible in the tis-nes; for only when they were highly coloured while the surronnding tissue remained colourless did they become distinctly visible. To render them apparent it was of advantage to colour thin sections of the langs with methylic-violet or gentian-blue, and then to apply a diluted solution of iodine by means of which the tissaes which were at first also coloured would become clear and so bring out the strongly. coloured cocci. Quite recently two cases had been published in which pnentnonic cocci had been fonnd intra vitam-one case by Prof. Leyden, the other by Dr. Günther. The latter observer invariably found the cocci inclosed in a pale and sharply-defined envelope, which, on the application of colouring-matter, likewise bacame highly coloured. Cocci having in both the cases referred to been obtained by means of panction, and thus their presence in the fluid of the lungs demonstrated, Dr. I riedlander set himself also to examine the fluid of the lungs in the bodies of persons who had died from pneumonia, and found there large quantities of pneumonic coeci, which were particularly well adlapted for examination, being in a free state. He was now in a position to prove that they all possessed enveloper, whieh, hy their reactions (they came out most distinctly on being subjected to acids, and disappeared under distilled water or an alkali), appeared to consist of mucin, and to be very essential to the life and activity of the cocci. Acccording to the experience acquired down to the present date, the pneumonic coccl were the only ones which possessed this kind of slimy capsule. The problem now presented was, by means of experiments in the way of cultivation and inoculation, to determine the distinguishing characteristics and the pathogenic nature of these cocel. This task Dr. Friedlander, in conjunction with Dr. Frobenius, had undertaken with positive results. According to the methods of Prof. Koch, the cocci taken from the lungs of persons who had died from genuine preumonia were disseminated on stiffened gelatine (consisting of gelatine, an infusion of flesh and common salt). From these proceeded invariably and in all genera. tions perfectly characteristic organisms distinguished from all other fungous products of cultivation by their peculiar nail-like shape. No other kind of micro-organism showed the same nail-like form uuder cultivation as did that taken from persons pneumonically affected who had died on the disease reaching its acme, and whose longs were afterwards examined; nor did any other species of pneumonia ever yield this form of cnltivated organism. Erperiments in the way of inoculation had been made on mice, guinea-pigs, rabbits, and dogs. The mice were subjected to injections etther of cultivated cocci which had been obtained by dissemination of fresh lang-fluid containing cocci. Almost all these mice died after twenty to twenty eight hours, under symptoms of violent dyapnora; and on a section being made, extensive pleurisy and pneumonia were observed in each case; in the blood, likewise, diplococci were found to be very abundant, as also in the pleural exudations and in the licsues of the lungs. Were the cocel thus found disseminated
on gelatine, they then yielded the nail-like cultivated organisms already referred to, exactly in the same way as did the cocei of genuine pneumonia in the case of man. Were again these cultivated cocei injected into other mice, there mice died of preumonia on the second day after the inoculation. If, however, the fluid containing eocci were heated to about $70^{\circ} \mathrm{C}$. before being injected into the mice, it was thereby rendered inefficacious, and the mice received no harm from it. On the pleural cavity of the mice being examined, many cocci were indeed still found in the fluid, but when these were strewn on gelatine they either remained sterile or developed other than the nail - like cultivated organisms. Not only, however, by injection of pneumonic cocei through Pravaz's syringe conld pneumonia be produced in mice, but likewise also by means of inhalation. If mice, shut up in a chest, were compelled to hreathe an atmosphere saturated by means of a spray with pneumonic coeci, then did a number of the mice die under the sawe symptoms as followed injection, though in this case not till the fourth or fifth day after the operation: the blood in the lungs of those mice who had died from experi mental genuine pneumonia also contained characteristic pueumonic cocci. The results obtained from analogous experiments in inoculation with guinea-pigs were less decisive. About a half of the guinea-pigs inoculated ly means of injection of pneumonic cocci remained in a perfectly healthy state, showing that they were proof against cocci. The other half, however, perished of dyspncea, and their blood, lungs, and pleural exudations were found to contain double micrococci, which being sown on gelatine produced the charaeteristic nail-like organisms, and on being injected gave rise to preumonia in the creatures so inoculated. The same experiments were next tried on five dogs. Fonr of them remained unscathed, but one sickened and died of dyspocea. Un a postmortem being made, this last dog showed symptoms of pneumonia and the presence of the characteristic diplococei in its blood and lungs. In the four healthy doge, on the other hand, the injected cocei had all suffered destruction. In the ca e of the rabbits the experiments in inoculation were wholly without effect. They showed themselves completely proof against pneumonie cocei, and the cocci injected into their langs were, after a few days, no longer traceable. From the invariable discovery of diplococci in the longs of bodies that had died of gennine pneumonia before the disease had run its full course, and from the experiments with cultivated cocci, as also by inoculation of mice, Dr. Friedländer drew the conclusion that the cocci found by bim were the cause of the genuine croupous pneumonia which had also before been recogni-ed as infectious. On a future oceasion Dr. Friedlander will again take up this subject, so important boih from a scientific and a practical point of view.

CONTENTS

Page
The Geology of the Libyan Desert. 121 Applied Mechanics. By A. R. Willis. . . . 122 Letters to the Editor :-

Meteors,-Donald Cameron; F.R.S.E.; W. Wickham ; J. B. Oldham ; Henry.H. Higgins
"Anatomy for Artists."-Art Student 123
Anatomy for Artists. -Art Student 123
Barytes from Chirbury,-H. A. Miers . . 124
The Origin of Coral-Reefs, II. By Arch. Geikie, F.R.S., Director-General of the Geological Survey (With Map)
Dr. John Lawrence LeeConte. By R. Mćachlan, F.R.S.

The Late Mr. Darwin on Instinct
The Remarkable Sunaets. By Prof. von Helmholtz
F.R.S.; Mias Annie Ley ; J. Edmund Clark; J.

Ll. Bozward ; Antoine d'Abbadie; Henry Cecil ;
E. Brown; Col. Donnelly, R.E.; Charies W. Harding
Notes
Notes 133
ur Astronomical Column :-
Variable Stars 135
The First Comet of 1798 135
The Great Comet of 1882 . 135
The Anniversary Meeting of the Royal Society - 136 The Java Disaster 140
University and Educational Intelligence
Scientific Serials 141
Societies and Academies

THURSDAY, DECEMBER 13, 1883

PROFESSOK STOKES' WORK'S

Mathematical and Physical Papers. By G. G. Stokes. (Cambridge University Press. Vol. I., 1880; Vol. II., 1883.)

THIS is the age of Reprints of the works of great living men, even in an hourly growing subject like Science. The pseudo-scientists have long been accustomed to galvanize into life again, for a few brief moments, their defunct prelections by collecting them in a volume with some catching title. But the real men of science are now building, during their life-time, each his monumentum are perennius, regalique situ Pyramidum allius. Von Helmholtz and Kirchboff have collected and rcissued their scattered masterpieces. Clausius has joine 1 one large series of his works into a connected treatise. At home Sir W. Thomson has given us a grand collection, Electrostatics and Magnetism, and the rest of his papers are to appear in a series of volumes, of which one is already before the public. But, heartily as we welcome all these splendid volumes, here is something at least as good as the best of them, and much more imperatively required.

There can be but one opinion as to the value of the collection before us, and (sad to say) also as to the absolute necessity for it. The Author, by common consent of all entitled to judge, takes front rank among living scientific men as experimenter as well as mathematician. But the greater part of his best work has hitherto been bur.ed in the almost inaccessible volumes of the Cambridge Philosophical Transactions, in company with many other papers which deserve a much wider circulation than they have yet obtained. Stokcs' well-deserved fame was thus practically secured by means of a mere frartion of his best work. And another inconvenience, which will now have some chance of being repaired, has arisen from the same cause. Science demands, at every instant, the solution of certain definite problems each suggested by the last-preceding advances :-and hosts of eager votaries are at work upon them. What is done as it were in a corner is thus sure to be done again:-done, even if not so well done; and this at the expense of unnecessary labour on the part of the second worker, who thus obtains the (temporary) award of the whole credit; while the entire process tends to the retardation of scientific progress.
The present publication will effect a very remarkable amount of transference of credit to the real author, from those who (without the possibility of suspicion of mala fides) are at present all but universally regarded as having won it. Two or three years ago, only, the subject for a Prize Essay in a Continental scientific society was The nature of unpolarized, as distinguished from polarized, $t_{5} ; h t$. But, all that science is even set in a position to say, on this extremely curious subject, had been said by Stokes thirty years ago in the Cambridge Philosophical Transactions.
The malady, though grave, is simple, the cure easy. Every Society, whose Memoirs are worthy of appearing in
print, ought to consider itself bound to disseminate them as widely as possible. Every University, every public library of any importance, alike in Europe and in America, should be regarded as a centre for such a purpose. The cost of the necessary additional copies should be regarded by a Society as a trifle compared with the priceless advantage of placing its own publications where they will be freely accessible to all who care to consult them.

And this altogether independent of the question of exchange, which can hardly be expected from a University, but which, in our own experience, is gladly (even eagerly) granted by almost every scientific Society worthy of the name.

Physical and Mathematical researches are the best record of the living intellectual progress of the day, and ought not to be made artificially scarce or dear. It is mere pandering to wealth and vanity which is displayed in advertisements such as " Impression strictly limited to 65 (numbered) copies. After these are printed, the type will be broken up (in presence of witnesses) and the plates destroyed."
Such advertisements are possible only in a world in which Sir Gorgius Midas, and others who bave " struck ile," are the willing victims of those who prey on their selfishness, luxury, and ignorance. Education will, it is to be hoped, in time do away with such things.
To give anything like an adequate account of even one of the longer papers in these two volumes would require an entire article. And, when written, the account would in most cases be practically unintelligible to the general reader; while quite unnecessary for the student, who will of course prefer to repair to the fountain-head itself, now at last rendered easy of access.
Prof. Stokes has wisely chosen the chronological order, in arranging the contents of the volumes. Such a course involves, now and then, a little inconvenience to the reader; but this is much more than compensated for by the insight gained into the working of an original mind, which seems all along to have preferred a bold attack upon each more pressing scientific difficulty of the present, to attempts at smoothing the beginner's road into regions already well explored. When, however, Prof. Stokes does write an elementary article, he does it admirably. Witness his Notes on Hydrodynamics, especially that entitled On Waves.

Before that article appeared, an article as comprehensive as it is lucid, the subject was almost a forbidden one even to the best student, unless he were qualified to attack the formidable works of Laplace and Airy, or the still more formidable memoirs of Cauchy and Poisson. Here he finds at least the main points of this beautiful theory, disencumbered of all unnecessary complications, and put in a form intelligible to all who have acquired any right to meddle with it. It is quite impossible to tell how much real good may be done by even one article like this. Would there were more such! There are few, even of the most gifted men, who do not occasionally require extraneous assistance after the earlier stages of their progress :-all are the better for it, even in their maturer years.

The contents of these two volumes consist mainly, almost exclusively, of papers connected with the Undulatory Theory of Light or with Hydrodynamics. On the
former subject at least, Stokes stands, without a living rival, the great authority. From the Aberration of Light, the Constitution of the Luminiferous Ether, the full explanation of the singular difficulties presented by Newton's Rings, to the grand theoretical and experimental treatise on the Dynamical Theory of Diffraction, we have a series of contributions to this branch of optics which, even allowing for improved modern surroundings, will bear comparison with the very best work of Newton, Huyghens, Young, or Fresnel in the same department.

Specially remarkable among the Hydrodynamical papers is that on Oscillatory Waves, to which a very important addition has been made in the reprint. The investigation of the "profile" of such a wave is here carried to a degree of approximation never before attempted.

Besides these classes of papers we have the very valuable treatise on Frittion of Fluids in Motion, and on the Equilibrium and Motion of Elastic Solids. This was Stokes' early masterpiece, and it may truly be said to have revolutionized our knowledge on the subjects it treats. To mention only one point, though an exceedingly important one, it was here that for the first time was clearly shown the error of assuming any necessary relation between the rigidity and the compressibility of an elastic solid, such as had been arrived at from various points of view by the great Continental mathematicians of the earlier part of the present century.

Of the few purely mathematical papers in the present volumes the most important is the well-known examination of the Critical V'alues of the Sums of Periodic Series, a subject constantly forced on the physicist whenever he has to treat a case of discontinuity.

We need not say that the printing of these volumes is all that could be desired; the name of the Pitt Press is a sufficient guarantee. But the introduction, for the first time, of a solidus to save "spacing" and space in the printing of mathematical formulx, was a bold step on the part of Prof. Stokes :-since amply justified by the testimony of the readers of the first of these volumes, and still more by its almost immediate adoption by thoroughly scientific as well as practical men, such as the Editors of what we still feel inclined to call by the well-known name of Poggendorf's Annalen.
P. G. TaIt

ROYAL ENGINEER PROFESSIONAL PAPERS
Professional Papers of the Corps of Royal Engineers. Edited by Major R. H. Vetch, R.E. Vol. VIII. 1882, 214 Pp., 39 pl. (London: Stanford, 1883.)

S^{0}O many essays were contributed to these papers in 1882 that it was found necessary to publish two volumes for that year. This is a healthy sign of the in. terest taken by the Corps as a whole in their profession. Vol. VII. was devoted entircly to permanent fortification, a purely professional subject ; whilst Vol. VIII. contains eleven papers, several of which are of general interest. This volume must have been an expensive one to get up, as it contains thirty-nine plates, some of them pretty large : the size and expense of the volume might have been considerably reduced if the contributors had pre$p^{\text {ared their plates in a more convenient shape ; eg. one }}$
plate, a mere genealogical table, and not really a large one (Appendix I.), has eight cross folds and one longitudinal one ; this could easily have been much compressed.

Paper 3 is a careful and well got up study of the "Campaigns of Lord Lake against the Marattas," 1804.6 (92 pp., with nine plates), which will be read with interest by all students of military campaigns. A good illustration of the difficulty of ascertaining the truth abcut events of eighty years bacic occurs in the verification of the site of the " battle of Delhi" (1803) ; the supposed site is actually marked by a pillar with inscription; but, after careful collation of contemporary surveys and reports of marches, the author decides against the sile marked by the pillar.

Paper 8 is an interesting account of the "Triangulation of Northern Afghanistan" carrie 1 out during the late war. It is worth notice here that the introduction of the heliograph into army signalling has thrown a difficulty in the way of the use of the heliotrope for survey (in the field), from the liability of confusing the signals; but there seems little doubt that in the future the army heliograph stations could be used for the survey, and be an assistance instead of a hindrance to the survey. The general result of the altitude observations has been to throw doubt on the efficiency of the aneroid, a result much to be regretted. The refraction, which in India is about o67 of the contained arc, was found to amount to o8 of the same in the Afghan hills; an unusual result, as refraction commonly decreases with altitude.

An interesting paper (No.9), on "Organic Compounds in the Sun," by Capt. Abney (read in 1881), gives a popular resumd of the subject (up to 1881), ending with the author's spectroscopic researches showing the presence of hydrocarbons in the sun and probably in space itself; this last raises curious questions as to the constitution of the ether; can space be really full of hydrocarbons? This paper has suffered rather by the delay in publication.

Perhaps the most important (military) paper is No. 10, on "Railways for Military Communications in the Field." The author shows that the early attempts at introducing railways on field service all failed to be of much practical use from their unsuitability to the conditions, the first of which is lightness and portability of both rails and rolling-stock, and it is just herein that the English railways fail most, being amongst the heaviest in the world. A light railway largely used in the United States, which has been laid at the rate of four miles a day, is favourably mentioned. After recapitulating the various schemes which have been tried or proposed, the author gives his conclusions as to the conditions for a military railway; among the most important of these are that the gauge should be $2 \frac{1}{2}$ feet, the rails tolbs. per foot, and the line double. It is clearly impossible for any country to keep a large stock of railway plant specially for service : now it so happens that this $2 \frac{1}{2}$-foot gauge is already in use to some extent in Europe, so that the requisite plant could probably be obtained at short notice in Europe. In India, however, the metre-gauge is so largely in use that field railways in or near India will probably for many years perforce be of metre-gauge. The field railway laid for the use of the British army in South Afgahnistan (187980) is not mentioned; this railway was laid for a great
length through a desert in hot weather at the rate of a mile a day.

The other papers in this volume are: No. I, on "Provisional Fortification," a study of defensive works erected in a moderate time, and capable of extension and improvement, with examples from Adrianople and Tschataldscha. Paper 2, on "Graduated Ares for Heavy Guns," contains an investigation of the errors in such arcs, and the mode of laying guns correctly, in spite of such errors. Papers 4 and 5 describe some blasting operations in Bermuda. Paper 6 describes bridges laid over the Cabul River during the war in 1879.80 . Paper 7 is on "Railway Curves" : and Paper 11 contains "Tables of Ordnance Equipment."

Allan Cunntngham

OUR BOOK SHELF

Report on the Dyes and Tans of Bengal. By Hugh W. M'Cann. (Calcutta, 1883.)
This Report, which is issued under the direction of the Committee of the Bengal Economic Museum, originated in the efforts made by Mr. Thomas Wardle to collect information on the modes of dyeing the silks of India. This information was asked for so far back as 1875 , and although the Indian Government were fully conscious of the importance of instituting an exhaustive inquiry upon the subject, it was not until 1880 that an instalment of the General Report was issued, and from this, for reasons which it is here unnecessary to enter into, the dyes of Bengal were omitted. Dr. M'Cann bas doubtless done the best he could with the materials at his command, although there is a probability that the Report would have been fuller and more free from errors had it been possible to put together the information, which was mainly collected in 1875-77, at a time when the officers of the local governments and administrations through whom the information was obtained were still resident in their respective districts. As it is, the Report is avowedly incomplete, and in many points already out of date. The classification adopted is, in the main, the same as that already employed by Mr. Liotard in the Report on "Dyes of Indian Growth and Production" above referred to, but with the difference that Dr. M'Cann has preferred to give the methods of dyeing in connection with the accounts of the dye-stuffs themselves, instead of referring them to the fabrics which are dyed by them. The dyes are classed according to the colour they afford when used singly. One disadvantage of this arrangement is that some dye-stuffs which are used both alone and also in the preparation of compound colours are mentioned several times. Many of the dye-stuffs are called simply by their vernacular names, as they have not yet been botanically identified, and in many of the cases in which the scientific name of the specimen has been given there is nothing to show how it has been arrived at. In spite, however, of these imperfections, the Report adds considerably to our knowledge of the tinctorial resources of India, although it must be stated that owing to the delay in its compilation the original object of the inquiry has been in a great measure lost sight of. The primary object of the inquiry was, in fact, to obtain data upon which to base experiments with regard to the possibility of developing and improving methods of dyeing with native Indian dyes. Dr. M'Cann expresses the hope that this project may be revived. He is of opinion that among the vast number of Indian dyes there are many that might be developed into flourishing industries; but he is equally of opinion that this development will never take place through the native dyers themselves, who are content to follow the primitive methods handed down to them by their predecessors. Dr. M'Cann
suggests tha: great results might follow if the Government would send out to India one or two trained chemists or scientific experts in dyeing to conduct experiments with the special object of developing native dyeing industries. The number of properly trained technical chemistsalready there is too sinall to hope for anything from them, nor is it likely that improvements will result from the private enterprise of Euro, ean firms. As it seems nowadays the fashion to commend all such projects to the notice of the City Companies, it may not be out of place to draw the attention of the Worshipful Company of Dyers to the suggestion.
T.

Lekrbuch der Vergleichenden Anatomic der Wirbelthiere.

Von Prof. Dr. Robert Wiedersheim. Zweiter Theil. (Jena, 1883.)
We bave on a previous occasion (Nature, vol. $x \times v i . p$. 385) directed attention to the first part of Prof. Wieders. heim's text-book on the "Comparative Anatomy of the Vertebrata," which was published early in 1882 . He has now, by the publication of the second part, completed the work, which forms a clearly printed and profusely illustrated volume of 906 pages, with 607 well executed woodcuts. The second part comprises a description of the alimentary, respiratory, circulatory, urinary, and generative organs of the Vertebrata, and the author tells us in his preface that the entire work represents the labour of six years. In his method of treating the anatomy of the viscera, described in this part, he has followed the same lines as in Part 1. The description of the modifications of each system of organs observed in the different classes of vertebrates is prefaced by a short chapter on the method of development of that system, and the subsequent description is then based on their developmental history. We can recommend the book as giving an excellent résumé of the subject written in a thoroughly scientific spirit.

LETTERS TO THE EDITOR

[The Editor does mot hold himsedf responsible for opinions expressed by this correspondents. Neither can he undertake to return, or to correspond with the writers of, rejected mawnscripts. No notice is taken of anowywous communications.
[The Editor wrgently requests comespondents to kemp their letters as short as possible. The pressure on his space is so great that it is impossible otherwise to inswre the atpoarance rovn of communtcations containing interesting and novel facts.]

Evolution of the Cetacea

In the lecture by Prof. Flower "On Whales, Past and Present, and their Probable Orizin," which appear d in your columns in Ju e and July la-t, he contends for the evolution of these animals from the Ungulata, and points to the Zouglodons of the older Tertiaries as predecessors of the Balanoflera, and as representing an intermediate stage in such evolution; and be insist on the alisence of cetacean remains from any Mesozoic formations as slrong evidence in surport of this view.

1 wish therefore to inquire whelher Prof. tlower has considered the evidence aff.rded by Palaocefus sedgziskic, so named by Prof. 11.G. Sceley from a eet of anchylosed cervical vertebrac (one of uhich he figures), deseribed by him in the Goplogical Magasine for February, 1865, p. 54.

Prof. Serley states that the specimens were obtained from the boulder (chalky) clay near Fly, and that they were regarded boih by the late Prof. Sedgwick and by bimself as derived from either the Kimmeridge or the Oxford clay ; and he quotes the of inion of Prof. Onen in the Britich Aswaciation rejorts, in his "British Forsil Mammals," and in his "Paleontology," that they belonged to an animal of the Dolphin group. Prot. Seeley hiniself regards this animal, for the reanoris he ansigns, as "not a cetacean of the Dolphin family, bul a Irue whale, its affinity with the Balanoptera being, he says, singularly $\mathrm{cl} \cdot \mathrm{e}$ "; and he concludes his decription with a letter from a veteran student of the Ceracea, the late John Edward Gray, Keeper of the Zoological Department of the British Museum, who, after pointing
out the character: in which the fossils agreed with, and those in which they differed from, Balcma, asserted that in those particular respects the animal to which the remains belonged agreed with a genus of whales which he had just described nnder the name of Maclayius, from a specimen in the Australian Maseum in Sydney. Perhaps Prof. Flower regards these vertebrze as not those of a cetacean at all ; but if he agrees with the authorities just named on that point, the case seems to resolve itself into this, viz, either this whale lived in Mesozoic times, or its remains have come from some Tertiary formation. If the former, and particularly if its age is, as regarded by Prof. Sedgwick and Prof. Seeley, Juras-ic, Prof. Flower's hypothesis of the evolution of the Cetacea from the Ungulates is hardly probable, when we concider the known facts as to the development of that group during the Tertiary period, even if we allow for whatever weight Sterognathus may afford of an approach to an Ungulate type in Jurassie times. If the latter, and these remains came originally from some older Tertiary formation, it follows that snch a formation has, though no traces of it are now to be found, once existed in the area between Ely and the eastern watershed of the Pennine, because the whole of the material of the clay in which the remains were found is made up of the wreck of formations from that area alone.

Martlesham, near Woodbridge, December 6

"Cosmic Dust "

The report on Baron Nordenskjöld's expedition to Greenland this year, recently given in NatURe, undoubtedly contains im . portant results as to the physical geography of that country. Its statements, of course, will require a more detailed explanation than this preliminsry report can give; one statement especially, on account of its significance, induces me to call the reader's attention to a fact which it will be necessary to take into consideration in discussing the question.

The statement is contained in the following words at the end of the article :- "I bope when this (viz. the dust found on the inland ice) has been exhaustively analysed, to be able to furnish fresh proofs in support of the theory that this deposit is, at all events partly, of cosmic origin, and thereby contribute further materials for the theory of the formation of the earth."
The fact to which I have alluded is this: Next to the observations furnished by travelling over the inland ice, it appears to me that an examination of the fresh and pure fragments of it from the very interior of the country, which are pusbed out in the shape of icebergs, must give the best key to the solution of the problem. We know that the mass of which these bergs are fragments is formed of snow accumulated during hundreds of years, and it has taken hundreds of years for the ice thus formed in the central regions to travel to the seashore. Consequently the dust which dnring the lapse of centuries has fallen upon the surface of the glacier must have been mixed up with the snow, and thereby spread over or embedded in the chief mass that constitutes the bergs.

As to my own observations, I have always found the chief mass that constitutes the large bergs to exhibit the appearance of perfectly pare ice, only permeated with thin air-bubbles, and the earthy matters of the bergs distinctly confined to isolated dykee, layers, conglonterates, or even to entire smaller bergs issuing from certain fjords. But I confess that my attention never was directed to a more minute investigation of the chief berg ice, and still less to the problem here mentioned. do not remember to have seen anything mentioned by my friends Steenstrup, Helland, and Hammer that could throw sufficient light upon this question. I therefore bere present it to your readens who arc experienced in Arctic researches and may feel inclined to communicate their obinions apon it.

Christiania, Norway, December 5
Henry Rine

On the Incubation Period of Scientific Links

THE length of the dormant period dnring which a certain class of scientific discoveries has to remain nnrecognised before they are made available is a subject that may form an interesting chapter in the history of science. I will cite one or two examples, in one of which I am personally interested, as illustrating my meaning, particularly as I think they will enable me to point out the cause of this strange anomaly at a time when so mach attention is being given to original research, and yet which will leave the results of original research to lie dormant for
years after they have been realised. As illustrating the fact that most important laws may remain for many years dormant, I have hut to cite the law of Avogadro, which remained unnoticed for fifty yeary, until the investigations of Dumas proved it to be a most important aid in chemical research. The law of Dulong and l'etit on the connection between the specific heat and the atomie weight of the elements had to pass through a dormant period of more than twenty years before it was resuscitated by the experiments of Regnault. More than forty years ago I announced a new law connecting the phyviological reactions of inorganic substances with their isomorphous relations. This law, although founded on an extensive series of experiments, and , ince verified by the investigation of the action of the compounds of more than forty of the elements, has up to the present lime remained entirely dormant, not having been noticed, as far as I ain aware, by any writer on physivlogy. A French chemist, M. Rabutean, has recently very cavalierly consigned it aux baggages du passf, apparently under the idea that it is a revival of the hypothesis that connected the action of poisons with the more or less acute angles of their crystals. Now, however, the important part played by these inorganic substances as physiological reayents is beginning to be recognised (see Ringer. Fournal of Physiology, January and August, 1883 ; Brunton and Cash, Proc. Roy. Soc., vol, xxxv.).

The question presents itself as to what there is peculiar in these laws which distinguishes them from those which find an immediate recognition by men of science. I think the distinction will be found in the fact that these hibernating laws generally form connecting links between two branches of science which had not, up to the time of the discovery of these laws, been of much mutual assistance. The law of Avogadro, for example, established a new link between chemistry and physice, and for its application the chemist had to be familiar with the manipulations required for the determination of the density of vapours and gases, a subject searcely alluded to in treatises on chemistry at the beginning of the century. The law of Dalong and Petit forms another link between chemistry and physies, requiring for its verification methods which, at the time of its discovery, were almost exclusively in the hands of phy. sicists. As for the law connecting the physiological action of a snbstance with its isomorphous relations, when it was first published the distance between chemistry and physiology was greater than that between physics and chemistry at the time of the di-covery of Avogadro, and should the subject be already attracting the attention of physiologists, after a latent period of but forty-four years, this fact affords evidence that science is now advancing at a more rapid rate than formerly. The question is an interesting one as to the possibility of something being done to shorten the period during which these linking laws remain unr scognised. Offering, as they generally do, important aids for the advancement of science, it certainly is desirable that some means might be taken to prevent their being shelved amongst les baggages dis passé, so that at some future period the whole subject has to be gone over de novo. In the case of phy-iological discoveries, it certainly would seem to be the duty of the Antivivisection Society to see that the many experiments which had been performed to verify them were made available, so that a great deal of vivisection might thus be avoided withont the progress of science being retarded.

James Blake
San Francisco, November 13

Meteor

This afternoon, at 5.27 p.m., I observed here a meteor of great brilliancy, a note of which may be worth pablishing. The moon, within three days of being full, was shining unclouded, and the western sky was still glowing with the fading tints of another gorgeous cloud-glow, when a bright light caused me to look up. It was due to a bright meteor a few degrees south of and below the moon. Its path was about 20° in length between south-east and south, inclined at an angle, roughly speaking, of 10° to the horizon, its mean altitude being probably 20. Three minutes later, at $5.30 \mathrm{p} . \mathrm{m}$. . I heard a low, distant, rumbling soand, which was not improbably the report of its explosion.
G. M. WHIPPLE

Kew Observatory, Richmond, Surrey, December is

Physical Society, November 10

Under the ahove heading in Nature of Nov. 15, p. 71, I notice it is stated that I have found the velocity of sound in air
to be about 320 metres per second. This is manifestly a misprint for 330 metres, but I should like to state that as far as my experiments have gone the value for free air is not determined, although $330 \cdot 6$, Regnault's value, is probably very nearly what my method would make it.
D. J. Blaikley
103. Iverson Road, West Hampstead, N. W., December 10

The Ophidian Genus "Simotes"

My attention has just been drawn to a note by Mr. H. O. Forbes, published under the heading "The Genus Simotes of Snakes, "in Nature, vol. xxviii. p. 539 , in which he states that, when describing a new species of Simotes discovered by him in Timor-Laut (P.Z.S. 1883) and which I observed was the first of the genus hnown to occur eastward of Java, I overlooked Krefit's Simoles australis from Port Curtis, described in P.Z.S. 1864. It is a well known fact, pointed out by Dr. Guinther in 1865 (Zeol. Rec. i.) and since admitted by Krefft himself ("The Snakes of Australia"), that Simoles anstralis is not a species of that innocuous genus, but belongs to a widely different lamily of Nisomons snakes and to the genus Brachyorophis.
London, December 5
G. A. Boulenger

THE REMARKABLE SUNSETS

WE have received the following further communica tions on this subject :-
Having been rather too persistently of late requested to explain both the why, and whence, and even the future influences, of the recent very red and brilliant sunsets, I gladly take the opportunity of addressing to Nature the few remarks I have to make on the actual facts and their proximate causes.

In all truth the sunsets through the last week of November and first four or five days of December have been remarkably fine, and consecutively so numerous. But each one, in so far as I have observed, was but an intensification, and sometimes not much of that, of whatever goes to make up an ordinarily fine sunset, as customary to that season of the year and that direction of wind with its concomitant kind of clouds.

The season of the year not only causes the fiery show to last longer than at many other times but enables it to take place while pedestrians are still engaged in their constitutional afternoon walks in pleasant autumn temperature, and before they shut themselves up for the evening in their comforiable ho:nes with artificial lights around them.

Some thirty years ago I used to spend every evening month after month, at the ordinary dinner hour of others, in the open air, watching for, and when seen making quick coloured drawings of, any exceptionally fine sunset ; taking in this way three or four completely separate pictures on the same evening between the time of the sun vulgarly going down beneath the horizon, and at the last the stars coming out in the darkness after the last vestige of twilight or high illuminated cirrus-cloud had disappeared.

In this manner I came to know practically that the so-called after-glow, which has been alarming so many persons within the last few days, whenever the temporary disposition and arrangement of the clouds and vapour in the air allow it to appear, is always more richly coloured in reds of various kinds than any of the earlier glows and more luminous splendours; and that the number of modifications which any one sunset may go through, or the number of different pictures it may make up, according to changes in the clouds both above and below the hotizon, is bewildering. But the grandest effects, the nearest approaches to the sublime, were always those when the general light in the air was either so faint, or so monochromatic, that the pigments in the colour box could not be distinguished one from another without the aid of artificial light.

On December 3 and 4 of this week, on setting myself
to watch and note with iny former apparatus, I found all these bizarre effects of colour and form in their old intensity and their old kaleidoscopic quickness of change. On the 3rd especially the reds were so powerful at certain times, and the air so clear between me and them, that the young crescent moon, though low down in the sky, shone by contrast to the scarlet cloudlets around it with a sort of supernatural lustre of blue silver ; while the gaslights under the same contrast, though in reality a gross beery brown in colour, appeared of a delicate sulohur, almost greenish, yellow. Those clouds, therefore, were so red in consequence of something that had happened to the sunlight illumining them which had not happened to that illumining the moon. What was it then ? Simply that the lower atmosphere of the earth was so particularly clear of dust, haze, vapour, fogs, and positive obstructions of lower clouds that the sun, though at the time a long wa) below the horizon, was enabled to send its rays through an unusual length of atmospheric path without experiencing any other diminution than merely the specific elimination of those particular rays in its spec-trum-quiver to which the atmosphere, in that particular condition, is antagonistic, leaving the field of glory to others alone.

Had the wind been south-west, the stoppage would have been chiefly amongst and of the red rays of light, where the black water-vapour lines are so numerous, chiefly below D , near C , and especially about the region of little " a," which then becomes of giant size. But the wind having been really north-west, the air was dry, water-vapour lines practically absent, and, as Col. Donnelly most correctly remarked in this week's Nature (p. ${ }^{132}$), the dry air band above D in the citron, and usually called the low sun band in meteorological spectroscopy, was at an immense maximum. Red light was therefore practically unimpeded, green and blue much interfered with, and more and more with every successive instant of further descent of the sun below the horizon. So thus it was that the spectroscope told at any instant through all the varied displays that that coloured light so much admired was simply sunlight tbat had passed through an extra length of extra-dry air, and was being reflected at the last from thin clouds at an extra height in the atmosphere, where water-vapour is always at a minimum.

But the sunset of December 5 was very different. In the course of the evening there were two or three distinct attempts, as it were, for the clouds to assume red hues, but they lasted for only a few seconds each; and though some aspects of the scene were very fine pictorially, it had to be classed as a "yellow sunset." Next day showed the cause of that in the wind below, as well as above, turning round to east of north. December 6 and 7 had poorer and poorer sunsets of both a yellow and sickly type, and December 8 with a south-west wind has brought in rain.

Thus seems to bave snded for the time this fine series of Nature's evening pyrotechnic displays in the west (a similar set having also been witnessed during the mornings in the east); but demands are still made for an explanation of why, and 10 what end? If we should reply that, given a clear air, not too many clouds, and thisse high up in the atmosphere and with surfaces well constituted for reflection, the sunsets will always be fine; and that they will be varied exceedingly in their beauty even from moment to moment, according to the exquisite manner in which clouds and cloudlets of cirrus streamers form and dissolve and form again in all varieties of shape and size and density, according to mere temperature changes and other ordinary meteorological conditions of the air; that is not enough to satisfy the present temper of the public, who seem screwed up to a pitch of nervous alarm that what they have been seeing, t ough to them it has been like "music which gives delight and hurts not," may yet have something to do with the green and
blue suns seen in India last September, and they with the great volcanic explosions in Java last August, so destructive of human life!
The said green and blue suns were, however, quite a different phenomenon to our red sunsets. For, instead of appearing extra bright and contrasted in colour with clouds near them, like the crescent moon of December 3 just mentioned, they were abnormally faint, and uniformly tinged with both clouds and fog, and moon and stars at night. Moreover, the spectroscope, in the able hands of Prof. Michie Smith of Madras College, showed that the intervening medium, through which the sun's light was struggling towards these Indian observers, was extra damp instead of extra dry. And in the west of India since then, as we have just heard from private source ${ }^{2}$, no less than 140 inches of rain have fallen, and the country was in a temporarily impassable condition from sloppy softness of soil.

Prof. Michie Smith has indeed entertained the idea that the particular state of the watery vapour which cut off so largely the red, but passed on the green light of the sun's spectrnm in a weakened condition, may have been owing in some degree to particles of pumice dust from the Javan volcanoes. And such dust, once up in the air, may circulate around the earth, after the manner which Conmander Maury, U.S.N., was so earnest in teaching with respect to the trade winds and their spiral paths through either hemisphere.

But how long such dust would remain suspended, how high it would rise, and when and where it would fall, are questions that can hardly be answered positively and with exactitude a priori. It did not fall, so far as we have heard, in India, where, if present at all, it must have bsen comparatively lo N and dense. And it was not falling here during the recent red sunsets, for the lower air was particularly clear, while the supposed criminating redness was too manifestly due to the extraordinary beight, as well set forth by I'rof. Helmholtz, of the uppermost clou-1 stratum, a thin kind of cirrus haze, according to my observation, combined with the discriminating action of the atmosphere on the compound col ured solar light.

Why that cloudhaze was so high, and whether dust, and if so what dust, had any part in its constitution, are questions which may worthily be discussed, but no very certain answers expected for years to come. But having been myself much struck during a rather long residence on the Peak of Tencriffe in 1856, with the general and apparently normal existence of dust strata in the atmosphere, higher or lower, but often far above the level of ordinary water-vapour clouds,-and as the ineteoric researches of Prof. Newton, corroborated by Prof. C. A. Young, in America, show that not less than 100 tons of meteoric stones (of which the earth encounters nearly $3,000,000,000$ in the course of a year) must be dissipated in our upper atmosphere on the averaze every day, as impalpable dust,-it seems more probable that Prof. Helmholtz's very high clouds, if they were assisted in putting in an appearance as clouds by dust of any kind, must have derived it from such disintegrated and sublimed meteor-masses coming down day by day in the regular way of nature from above, or outside, rather than from a supposed continued ascent of one particular charge of volcanic dust from Java, full three months after the cessation of all violent disturbance there.

In fact while it is to be earnestly hoped, as an outcome of the late remarkable sunsets, and the great numbers of the public by whom they have been witnessed,-that our painters will no longer be content to give us so generally mere afternoon pictures slightly yellow ochred and "light red "-ed near the horizon before the sun goes down, as sun-sets,-but will more frequently paint the deep red afterglows at their richest;-it is equally desirable that our scientists should gauge the ordinary constitution of the
atmosphere at much greater heights than those to which observatories are usually confined.
C. Piazzi Smyth,

Astronomer Royal for Scotland
15, Royal Terrace, Edinburgh, h December 8
THE following summary of atmospheric effects seen before sunrise and after sunset between November 25 and December 11 may be useful for comparison with phenomena observed in other parts of the world :-

November 24.-After sunset, yellowish-green strix in west.

November 25 .-Sunset in amorphous apparent cirrostratus or cirrus haze. Green light above it, and bright greenish-white are growing fro n about ten minutes after sunset ; above the greenish-white, pale red. Lasted about forty-five minutes after sunset. The sky shone with a strange light somewhat as on November 9, but much feebler, and there was no sharply marked aggregation of cloudy reflecting material as then.

November 26.-Fine clear sunset, followe 1 by phenomena lise yesterday, but much stronger, and lasting nearly an hour bright red. No high clouls seen as light receded from the sky. A few rounded morsels of cumulus fringed with green against the red sky. Very strange effect, the greenish-white light in the west, and pink above.

November 27.-Sunset effect like yesterday, beginning to glow about fifteen minutes after sunset, and growing slowly in apparent brightness. Lasted till about 5.20 . Slight, thin cirrus.
November 28.-Slight cirrus. Clear suncet. About twenty-five minutes after sunset green and pink glow began and grew bright and finely-coloured till about 4.40. Then slowly receded till about 5.10 , when it disappeared, and was succeeded by a funt brass-coloured after-glow reaching high above the horizon. Time of sunset, 3.55 .

November 29.-Extraordinary red glow, said to be seen in London from 5.30 to 7.30 a m . Cloudy evening. At 455 a dull faint red glow observed through a small break in the clouds. Time of sunrise, 743 .
November $30 .-$ At $6.5 \mathrm{a} . \mathrm{m}$. (and probably a few minutes before) a fine deep red glow in the east and overhead, where small quantities of cirro cumuli seemed to be touchef by the reflected light. At 6.15 a faint, deep red glow had spread from north-north-east to southeast, and up to about 40° above the horizon in the northeast, covering a vast portion of the sky. Then gradually became whiter and less striking. The blood-red band in darkness at 6.10 most remarkable. The glow continued (slowly changing in colour and growing in extent), and was evidently independent of ordinary clouds. The bright stars appeared through it. At 6.24 a faint red light extended to the zenith. At 6.40 the red had gone, and was replaced by a primrose colour, the flocks of cirro-cumuli, however, still remaining tipped with bright red, and retaining that colour till sunrise (7.44). There was no cirrus visible, and the reflecting haze was invisible both by night and in full daylight. The cirro-cumulus was noving moderately fast from west-north-west. The red bank in the east was not crowned with shafts of rays or prominences as in the sunsets of November 26, 27, and 28, but the intensity of the light diminished continuously upwards from near the horizon. The afternoon being cloudy, the only thing observed was a dull greenish light about half an hour after sunset.

December 1.-Sunrise cloudy. Sunset (3.53) in cloudy sky, except near horizon. At 4.25 slight tinge appeared on fringes of clouds overhead. Then densely clouded. At 5 the sky had cleared largely, and a fine amber light could now be seen from near the west horizon to about 40°. This gradually sank, following the sun, and grew less bright, finally disappearing about 5.35 . Sky clear and starlight, except low strips of cloud near the horizon.

Centre of maximum brightness followed the sun, as usual. The light as it sank near the horizon was quite without definite outline or the ray shafts which appeared on previous evenings with a clear sky.
Deccmber 2.-Sunrise cloudy. Cloudy at sunset, but clouds partially clearing off. Thin fog on low ground. Bank of clouds in west. Sunset 3.53. At 4.20 faint amber glow above cloud-bank, growing in strength as darkness came on. At 4 the sky towards the zenith from the west was crossed by spokes of light as from the thinnest possible cirrus streaks, diverging froon the sun's place as centre, and some of these nearly overhead became somewhat bent after a fow minutes. The thin clouds scattered about evidently caught some light from a hidden source. At $5 \mathrm{p} . \mathrm{m}$. the light was pale yellow, and had moved northwards. At 5.10 disappeared behind cloud-bank.
December 3.-Cloudy.
December 4--Very fine and clear morning at $5 \mathrm{a} . \mathrm{m}$. At $6.5 \mathrm{a} . \mathrm{m}$. the first blush of red appeared over the plantation (about 400 yards off) due east, and by 6.10 was quite bright, like the refection of a fire. It grew quickly upwards, and by 6.15 must have been 15° above the horizon. It appeared uniform and amorphous. By 6.30 the red bad changed slowly to saffron, and bsing seen less in perspective, the colour scemed less concentrated. The reflecting material, or a part of it, was now seen to consist of ill-defined streaks and patches of very thin misty cloud of some sort, in which afier long watching from suitable positions no motion could be detected, though distinct streaks nearly overhead were chosen. At 6.45 some of these streaks were illuminated nearly overhead southwards of a pale straw colour and bluish white, and their outlines were distinct. Most of the streaks stretched about west-south-rest to east-north-east, and towards the north-east the appearance was like a fretwork of the lightest wavy mist. From 6.30 to 6.50 the coloured arc was of a sickly yellowish green, with a pale pink towards the zenith and a rather ghastly steel-whire glare below. At 6.53 a second glow much brighter than the first appeared in the east-south-east by south, of a deep. red colour, quickly turning to orange. This glow was in a bank or arc much better defined than the first. At 7.10 it had turned quite yellow and had grown up many degrees. At 7.16 the last star disappearcd in the bright light now cast on all objects towards the west, the clear sky as the light touched the thin high mist appearing progressively veiled with opaque cloud. Just before the advent of the second glow the thin cloudy streaks had nearly vanished into pure blue sky. At 7.12 the upper part of arc No. 2 was pinkish yellow, with a greenish-white centre below. At 7.20 the part below the arc and along the horizon south and north for some distance was a peculiar steely-bluish white, the lower part of the arc yellow, and the upper pink (at an altitude of about 50°). These effects slowly diminished, but the steely hue remained till sunrise. At 7.23 the sky overhead and towards the west was faint pink, with large billowy streaks and patches, without fibrous structure. In full daylight only faint traces of this cloudiness could be seen, but the rising sun, like the first and second glow, made it manifest. The sun rose (7.50) of a red colour, but after about half an hour was pale bluish white, and surrounded by a silver-white glare. As the sun was setting (3.53), the high haze again appeared by reflection to cloud over the sky. Nothing otherwise very remarkable appeared till about 4.12 , when it was evident the phenomenon would recur, the central spot above the sun's place being bright steel or lead colour, and the parts round it a metallic pink. This bas been the usual preliminary. The sky in the east was rosy. The rose colour quickly passed over towards the west, and about 4.20 the whole sky between the west horizon and the xenith was flushed with red. At 425 or there-
abouts the crescent moon appeared blue in this pink haze, but in a few minutes was left behind by it, and looked much as usual. The small, greasy scud from north was lighted up pirk in the east against a deep blue and greenish sky. As the glow sank westwards, the sky above secmed perfectly clear. At 4.35 the light was very bright, and at 4.45 was lost to view behind low clouds. As soon as it approached the horizon, the sky again became streaked with the reflecting haze, which assumed a straw-coloured tint. This pale light sank westwards and disappeared soon after 5. The moon and stars gave no indication of a haze canopy.

December 5.-Exactly at 6.5 a.m. the first faint red blush grew up quickly from east-south-east, and in seven or eight minutes had increased largely in brightness and extent. The night was very fine and clear, and the soft, crimson glow hanging above the horizon in the darkness produced an interesting effect. It grew rapidly up towards the zenith, and at 6.18 formed an arc of which the highest point was about 40° above the horizon. After this it quickly changed to orange and yellow, and the colours went off. The are was more southerly than yesterday, and the peculiar light reached from south-south-west to east-north-east. At 6.55 the second glow began, and rising up quickly, produced a fine red arc, less bright than yesterday's. At 7.6 the arc was olive-green below, yellow in the central, and pink in the outer parts, and hardly any cloudy structure could be discerned. What there was, however, resembled the film of yesterday. The upper edge of the glow was pretty well marked as it advanced, and at 7.12 it crossed the zenith and passed north-westwards, coveling a bright star with a thin pink veil. This star remained visible till 7.21. After this the sky was pale yellow, and soon little remarkable remained, except the greenish light in the south-east. Sunrise 7.51 ; red sun, turning silvery white later. Sunset 3.50 in hazy strix. Clear sky, except slight cirrus. At 4.15 yellow glow, which went through changes as usual. The light was pink overhead, and the margin passed the zenih about 4.26. At this moment it may be supposed the sun was sinking below the horizon at the alitude of the reflecting matcrial at 430 the moon looked blue in a pink haze. Spokes of rays from the glowing bank at 4.45 . Some threatening cirro-stratus passed over at 4.45 . Horizon misty. Crescent moon greenish all the evening.
December 6.-Sky very clear 6 a.m. First rose colour 6.10. Much fainter than previously. Second glow 6.58. Detached scud from 6.45 tinged with red on blue sky. Sunset clear, except small detached scud. The light in the west was fine, and went through changes, but was red from 4.20 to 5.5 p.m. The glow seemed to be reflected from some strips of apparent cirrus about 15° above the horizon. During all this time the small clouds scattered in all parts of he sky were of a pink colour against a greenish and later a deep blue sky.

December 7.-Cirrus streaks in west turned black against pinkish yellow glow, 4.24. Sun looked quite green through telescopic dark glass fifteen minutes before sunset.
December 11.-Fine sunrise and sunset phenomena, the secondary glow after sunset lasting till 5.33. Steel and pink halo from 12.45 p.m. Sky clear blue, at first glance, by night and full daylight, but, examined with light from below at a certain angle, seen to be quite covered with hazy billows or strix, stretching away from north-north-east to sounh-south-west, very inueh higher than the cirrus present, and after long watching showing extremely slow tranverse motion from about wast-northwest. Unlike cirrus fibres, whichever way looked at they appeared nearly parallel, without radiant point, even the lines just above the horizon showing their true direction almost exactly. Sun green through dark glass.

It seems pretty clear that the secondary light which has always succeeded the primary after sunset, and preceded
it before sunrise, is due to reflection from the first when this is at a proper angle near the horizon. The interval between the same stages of the secondary and the primary before sunrise, when conditions are most favourable for accurate observation, is about fifty-on minutes, and the interval between the more conspicuous primary and the actual sunrise about fifty-six minutes. The first red colour of the primary glow may be caused by the incidence of the sun's first rays upon the material. It seems that the reflecting material directly overhead receives the sun's rays about thirty-nine minutes earlier at sunrise, and loses them as much later at sunset, than the surface of the earth. I have not found the colour effects in many cases to be subjective. A green cloud remains green when cut off from surrounding light. May not atmospheric sifting produse the surviving colour?
F. A. R. Russell

The Hon. A. P. Hensman, Attorney General of West Australia, writes to me as follows, under date of Perth, West Australia, October 27 :-"The captain of a ship lately engaged in a survey of our north-western coast at the time of the eruption in the Straits of Sunda told me that the deck was covered to a depth of an inch or more with a fine dust. We are having, and have had for many weeks, very remarkable sunsets. After the sun has set, a glow commences somewhat high up above the horizon, a brilliant rose-colour; this continues for nearly an hour, gradually descending to the horizon, and becoming decper in colour. It has never been seen here before, and has given rise to much speculation amongst learned and unlearned, both here and in the other colonies; some suggesting that it is caused by the presence of volcanic dust in the atmosphere." This extract may be of interest to your readers, as showing that all over Australia similar phenomena have been observed to those discussed in your pages.

As 1 am engaged in making a comparative study of the dust which fell at different points during the Krakatoa cruption, I shall feel greatly obliged to any of your readers who can supply me with samples of such dust, accompanied by a note of the time and place of the ftll.

JOHN W. JUDD
Science Schools, South Kensington, S.W., Dec. 8
THE uncommon phenomenon witnessed in various parts of India, Ceylon, and the Cape of Good Hope, has made its appearance here. The sun, immediately it sets behind the ridge of Possilipo, throws upwards a group of red rays somewhat irregular in arrangement ; the sky begins then to assume a greenish tint. These rays soon disappear, and then the whole horizon for 180° is lit up by a bright orange-red light, which gradually deepens in tint. The height of this light does not usually extend above 25° or 30° at its centre, and gradually descends to the level of the horizon at its two extremities. So far as I can make out, the centic or most brilliant point of this is quite 20° inore to the south than the setting sun. All the southwest sides of the houses are suddenly lit up by this peculiar lurid glare, which is best compared to the colvur of incandescent iron, and reflected from the surface of the sea makes the gulf look like a veritable lake of molten lava. The effects last at the maximum only an hour after the setting of the sun. On Sunday last the moon, shining through this red glare, had a bluish tinge of the arc electric light colour. The same phenomena precede sunrise. These effects are quite independent of clouds, which, when present, have a deep lead colour, and their edges are not illuminated. The weather is cold, the wind variable, chiefly north or north-east. The magnetic instruments at the observatory show no disturbances, which excludes the possibility of an aurora, as also its presence only when the sun is just below the horizon. I send these notes, hoping they may be an addition to the other observations alreaty published in Naturf, to aid
in an explanation of this remarkable and widespread phenomenon.
H. J. Johnston-Lavis

Naples, December 6
Sir Adam Bittleston presents his compliments to the Editor of Nature and ventures to send him an extract from a letter written by Sir Adam's son at Umballa (lat. $30^{\circ} \mathrm{N}$.) on October 30. There seems a long interval of time between the appearances at Ongole (September 10) and those noticed at Umballa.

87, Linden Gardens, Bayswater Road, W., December 10

Extract from a Letter from Liewt. G. H. Bittleston, R.H.A., dated Umballa, October 30, 1883

"There has been for some time a remarkable appearance in the sky every night. The sun goes down as usual and it gets nearly dark, and then a bright red and yellow and green and purple blaze comes in the sky and makes it lighter again. It is most uncanny, and makes one feel as if something out of the common was going to happen."

The inclosed from the Hawaiian Gazette, October 3 may interest students of meteorology.
F. J. S.
"Maui--With regard to the extraordinary sunsets, a correspondent in Wailuku writes:-1 1 do not know what kind of sunsets you are having in Honolulu, but here for some time past they have been most extraordinary. Fiery red, spreading a lurid glare over all the heavens, and producing a most weird effect.'
"Kawai.-The peculiar sunsets have been noticed and commented on by the Kauai people. No one has ventured on a theory here."

The line of green suns is carried further west to Panama, where, accorting to the Star and Herald, the phenomenon was observed on September 2 and 3, and it is suggested to be in connection with Krakatoa.

Hyde Clarke

32, St. George's Square, S. W., December 8

I SEND you a bottle of volcanic dust which Capt. Robert Williams of the bark Arabella obtained under the following circumstances. He says:-"On Tuesday morning, August 28, 1883, it commenced to rain something Jike sand (some of which I collected from off the decks), which kept on all this day and the next day. Lat. at noon of the 28 th, $5^{\circ} 37^{\circ}$ S., long. $88^{\circ} 58^{\prime} \mathrm{E}$., wind light from the west- south-west, and calm at times. Java Head bearing east half south, distant about 970 miles." Can this shower be connected with the Java eruption?

Falmouth, December 6
Howard Fox
As accuracy of observation is before all things desirable in the elucidation of natural phenomena, I hope you will allow me to point out an error into which some of our physicists appear to have fallen in connection with the green moon which was visible in the evenings of Tuesday and Wednesday of last week. Mr. Norman Lockyer, in his admirable article in the Times of Saturday last, refers to "the subjective colouring which cast a gieen glamour over moon and cloud if one did not take the precaution of preventing the eye being flooded by the rosy pink visible in the zenith long after sunset;" and a writer on recent solar phenomena in the Daily News says, "This latest phenomenon bas caused a greater amount of astonishment than the earlier ones, but, unlike them, admits of very easy explanation, for a moment's reflection will show that on a pink background a white moon could scarcely appear anything but green," thus, like Mr. Lockyer, attributing the phenomenon to the presence of a complementary colour. What I wish to point out is that there is no foundation for this theory. I observed the effect most carefully on both evenings. On the second evening especially I looked
with the object of ascertaining whether the effect was due to a complementary tint, and am thoroughly convinced it was not. At four o'clock, or a little after, the moon was distinctly green on a blue-gray sky-ground, with very thin gray cloud-drift floating over it. At the same time the whole of the western sky was lit up with a very pale whitish-yellow, to whieh neither blue nor green would be complementary. There was not a vestige of crimson or rose colour at that time in any part of the sky. Later, When the crimson supervened, the green tint of the moon was only very slightly intensified, so slightly indeed as to leave me still in doubt whether there was any change at all. It stands to reason, moreover, that if the result were due to the presence of crimson in the sky we should frequently see a green moon. Some other cause must therefore be sought in explanation of this new phenomenon. If we may accept Mr. Loekyer's conclusions with regard to volcanic action-and he certainly establishes a very strong case-the cause is not far to seek. It would be especially interesting to ascertain over how wide an area the effect was visible. Some records from observers at a distance would be very valuable.

Ealing, December to
Sydney Hodges
P.S.-In quoting my letter to the Standard last week you gave a wrong name-Hooper instead of Hodges.

There is one point in connection with this subject to which much attention has not been given, namely, the increase of light, especially in the morning. Having slept out of town lately, 1 have been able to watch the sunrises, and to be exact I will describe in few words what occurred on Wednesday last, December 5. The eastern horizon is bounded by a hill some 50 feet high as seen from my house. At 6 a.m. I saw, rising in a semicircular form above the horizon, and tolerably defined in outline, a beautiful red coloration of the sky. The colour spread along the horizon in a westerly direction, and at 6.30 the entire vault of heaven was suffused with this red colour. When it was first noticed, namely at 6 o'clock, the light was sufficient to illumine the garden, as in the early morning in summer. At 6.15 the light was sufficiently strong to enable me to read the figures on my pocket-watch at the head of my bed, namely eighteen feet away from the window. The sun rose above the horizon at 8 h .5 m ., and at 10° farther west than the first burst of colour which I noticed. As the sun rose, the red colour disappeared, and it was entirely lost before the sun was fully in view. I am told by friends who were in Düsseldorf on November 30 that at 6 o'clock on that moming their rooms were lighted up so that everything was plainly visible. They at first supposed that the light was produced by a large fire opposite ; but they soon discovered that it arose from this red light which you have now so well explained.

December 10
B. E. Brodhurst

Not having noticef any letter in NatUre stating that the remarkable red glow scen in so many places after sunset was also observed in Ireland, perhaps you will permit me to mention that during the past fortnight, and especially since the $24^{\text {th }}$ ult., it Eas attracted much attention here. This day week my steward insisted that the heather was on fire on the hills and that we were only watching its reflection. Since then the phenomenon has been even more remarkable, and the farm labourers have been enabled to remain at work in the fields ten to fifteen minutes later than usual. A bank of cloud generally separates the red glow from the horizon. Before sunrise the sky has sometimes a strange reddish look, and at $4 \mathrm{a} . \mathrm{m}$. on the 29 th ult. the brilliant roseate hue (referred to in the Times as having been seen in London at $5 \mathrm{a} . \mathrm{m}$.) was witnessed here. Richard M. Barrington
Fassaroe, Bray, Co. Wicklow, December 2
According to a letter from my brother, dated Yokohama, September 22 last, the sun was completely obscured there two days after the earthquake took place in the

Straits of Sunda. He writes:-"W hat a terrible earthquake that must have been in the Straits of Sunda. Incredible as it may appear, two days afterwards the sun here was completely obscured, and, on its reappearance, was quite blood red, while every now and then jets that looked like smoke passed across its disk. This lasted for two days," and he adds that "it is conjectured that this is caused by the volcanic smoke and ashes having been driven up here by the south-west monsoon."

32, Fenchurch Street, E.C., Dec. 8 W. Hamilton
A few days since I was mentioning to my family that 1 remembered how splendid the colouring of the sky was at Malta after sunset in the year that "Graham" 1sland' appeared. In this morning's Times that island is alluded to, and I think you may be interested in the perusal of the accompanying pamphlet (printed for private circu'ation only). My father (Capt. Sir le Fleming Senhouse, K.C.H.), you will see, landed on the island, and named it after the then First Lord of the Admiralty. The great beauty of the sunsets we have been having have forcibly reminded me of the colouring 1 saw so many years since at Malta.

Hillside, Guildford, Dec. 8 Elizabeth M. Pitman

A correspondent sends the following :-

IT may interest your readers to know that in reference to the splendid sunsets we have seen in England lately 1 received in a letter from Lieut. C. K. Hope, R.N. (en roufc by inshore passage to the Cafe of Good Hope) the following account of an extraordinary phenomenon witnessed by him on October 26 soon after crossing the equator:"H.M.S. Orontes, October 26.-Last evening shortly after sunset the sky bearing from us between north-wesi and south-west suddenly burst into a red glowing light ; the highest point attained an altitude of probably 35° or 40°, and from there tapered gradually away on both sides to the horizon. It showed brightest about 7.15 , it being nearly dark at the time, and lasted till 7.30 , gradually dying away till about 8 o'clock, when very little of it was left. I could have understood the phenomenon if we had been 40° further north or 20° further south, but on the edge of the tropics such a thing is very strange."

December 5

THE JAVA ERUPTIONS AND EARTHQUAKF. WAVES

THE following communications have been sent us for publication by the Hydrographer of the Admiralty :-
Extract from a letter of Commander the Hon. Foley C. P. Vereker, of H.M.S, Magpie, dated Labuan Island, October 1, 1883 :-
". . . The noise of the detonations caused by Mount Krakatoa, resembling distant, heavy cannonading, was distinctly heard by us and the inhabitants of this coast as far as Bangney Island on August 27. The weather at that time was also much unsettled, with thick hazy weather, and peculiar elouds to the southward, and the sun while at a low altitude assumed a greenish hue for several days. . . ."
Extract from a letter of Staff-Commander Coghlan, R.N.:-
"Western Australia, Perth, September 14,1883.-This coast has been visited by waves and volcanic disturbances (sounds as of the firing of guns inland, \&c.). apparently associated with the Sunda Strait outbreak.
" News is anxiously looked for from our north-west coast, as a wave 15 feet high, coming at high water, would lay Cossack, the mouth of De Grey River, Carnarvon (north of Gascoyne), and other places under water. In Champion Bay a wave rose 8 feet above the usual high-water mark. At Fremantle, King George's Sound,
and along the south coast, a wave of less height was experienced
"The M cda, on our passage down from Ashburton River (when distant from 50 to 100 miles off the west coast of Australia, and about 1000 miles south-south-east of Sunda Strait), was visited by a shower of volcanic dust (in appearance like prepared "fullcr's earth"), which fell some time between sunset of August 30 and sunrise of August 31, the wind being on-shore at the time.

If the dust were associated with the disturbances in Sunda Strait of August 27 and 28, it must have travelled 1050 miles in three days." ${ }^{n}$

BICENTEN:ARY OF BACTERIA

[WE have received the two following communications on this subject :-ED.]
AT the present time, when so many anniversaries of great men and great events are celebrated, it seems opportune to remeinber that exactly two centuries have passed since a discovery of the greatest consequence was made in the Netherlands. In a letter dated September 14, 1683 , from Delfe, to Francis Aston, F.R.S., of London, Antony van Leeuwenhoek gives notice to the Royal Society that with the aid of his microscope he has discovered in the white substance adhering to his teeth very little animals moving in a very lively fashion (" animalcula admodum exigua jucundissimo modo sese moventia." "Arcana naturx detecta," Delit, $169 ;$: "Experimenta ct Contemplationes," p. 42). They were the first Bacteria the human sye cter sazv. Among them Leeuwenhoek distinguishes several species, the descriptions and drawings of which are so correct that we may easily recognise them. The rods, with rapid movement penctrating the water like fishes, are Bacilli; the smaller ones rotating on the tup are Bacterium; one undulating species is Vibrio ruczula; the parallel threads of unequal length but of equal breadth are Leptothrix buccalis: though motionless, they belong to the moving Bacilli. Leeuwenhoe': wonders how, notwithstanding the scrupulous care with which he cleans his tecih, there could live more animalcula in his mouth than men in all the provinces of the States-General. Some year; later, not perceiving again the movements of the Bacteria between his teeth, he supposes he had killed them by taking hot coffee at breakfast ; but very soon he discovers anew the old species, and the new drawings of Bacillus and Leptothrix which he sends to the Royal Socicty in the middle of September, 1692 (lc., p. 336) are still nore accurate than those of 1683 . They have not been surpassed till within the last ten years. It deserves our highest admiration that the first discoverer of the invisible world cuuld already reach a limit which has never been overstepped, though the members of the Royal Society, when considering two hundred years ago the curious communications of the philusopher of Delfi, may have scarcely foreseen that his astonishing discovery had opened to science a new path which only in our own days has led to the most important revelations about fermentation and disease.

Ferdinand Cohn
Breslau, November 27
It cannot be a matter of indifference to English men of science, and especially to the Fellows of the Royal Society, that the bicentenary of the discovery of those immensely important agents of putrefaction, fermentation, and dise se, the Bacteria, is at hand.

It was to the Royal So siety of London that Antony van Leeuwenhoek communicated his diszovery, and we may be sure that neither be nor the Royal Sozietv of that day anticipated the exirdordinary interest which would attach itself in tro centuries' time to the organisms dis. covered by the patient and accurate student of minute life.

Leeuwenhoek's "discovery" is a remarkable example of that unexpected giving of rich gifts to future generations of men which marks the progress of scientific research in all its branches. It is for the Royal Society to devise some means of celebrating this bicentenary in such a fashion as to use the great interest and even fascination which Bacteria have at this moment for the English public, so as to excite sympathy with pure and unremunerative scientific rescarch. Antony van Leeuwenhoek is the type of the single-minded student of living structures. The investigation of the properties and life-history of Bacteria, although commenced by him two hundred years ago, is still in its infancy. Scbwann, Pasteur, Lister, Cobn, Nageli, and Koch have brought us within the last fifty years far beyond Leeuwenhoek's first discovery, but a hundred such men are needed to carry on the work of discovery. Who will employ them? Are we to wait two centuries more for knowiedge about Bacteria which lies, as it were, ready to our hands, waiting to be picked up? knowledge which will probably save many thousands of lives annually-if we may judge by the resulis already attained by the discovery of the relation of Bacteria to the suppuration of wounds and to the production of diseases.
The Royal Society could not better celebrate the bicentenary of its Dutch correspondent's discovery than by taking steps to urge on the Engliih Government the expenditure of ample funds upon a new and vigorous prosecution of the study of the relations of Bacteria to disease, in fact upon the foundation of a national laboratory of hygiene.

THE UPPER CURRENTS OF THE ATMOSPHERE

ALL winds are caused directly by differences of atmospheric pressurc, just in the same way that the flow of rivers is caused by differences of level: the motion of the air and that of the water being equally referable to gravitation. The wind blows from a reg on of higher towards a region of lower pressure, or from where there is a surplus to where there is a dencicncy of air. Every isobaric map, slowing the distribution of the mass of the atmosphcre over any portion of the earth's surface, indicates a disturbance more or less considerable of atmospheric equilibrium, wgether with general movements of the atmosphere from regions of liigh pressure towards and in upon low-pressure areas. All observation shows, further, that the prevailing winds of any region at any season are merely the expression of the atmospheric movements which result from the disturbance of the equilibrium of the atmosphcre shown by the isobaric maps as prevailing at that scason and over that region. All obscrvation shows, in a manner equally clear and uniform, that the wind docs not blow directly from the region of high towards that of low pressure, but that, in the northern hemisphere, the region of lowest pressure is to the left hand of the direction towards which the wind blows, and in the southern liemisphere to the right of it. This direction of the wind in respect of the distribution of the pressure is known as Buys Ballot's Law of the Winds, according to which the angle furmed by a line drawn to the centre of lowest pressure from the observer's position, and a line drawn in the direction of the wind is not a right angle, but an angle of from 60° to 80°. This law absolutely holds good for all heights up to the greatest height in the atinosphere at which there are a sufficient number of stations for drawing the isobarics for that height ; and the proof from the whole field of observation is so uniform and complete that it cannot admit of any reasonable doubt that the same law holds good for all heights of the atmosphere.
In low la itudes, at great elevations, atmospheric pressure is greater than it is in higher latitudes at the same height, for the obvious reason that owing to the lower temperature
of higher latitudes the air is more condensed in the lower strata, thus leaving a less pressure of air at great heights. It follows that the steepest barometric gradients for the upper currents of the atmosphere will be formed during the coldest months of the year. At Bogota, 8727 feet in height, where the temperature is nearly uniform throughout the year, the mean pressure for January and July are $22^{\circ} 0.48$ and $222^{\circ} 08^{8}$ inches. On the other hand, at Mount Washington, 6285 feet high, where the January and July mean temperatures are 6.4 and $48^{\circ} \cdot 2$, the mean pressures for the same months are $23^{\circ} 392$ and $23^{\circ} 875$ inches. Similarly at Pike's Peak, 14,151 feet high, the mean temperatures are $3^{\circ} \cdot 1$, and $39^{\circ} \cdot 7$, and the mean pressures 17.493 and 18.069 inches; and since the sea-level pressures in the region of Pike's Peak are nearly o' 500 inch higher in January than in July, it follows that the lowering of the pressure on the top of Pike's Peak due to the lower temperature of January is upwards of $1^{\circ} 000$ inch. From the greatly steeper barometric gradients thus formed for upper currents during the cold months of the year from equatorial to polar regions, these currents attain their maximum strength in winter and converge upon those regions of the earth where the mean temperature is lowest.

As is now well known, atmospheric pressure in summer is lowest in the central regions of the continents of Asia, Africa, and America; and highest in the Atlantic between Africa and the United States, and in the Pacific between the United States and Japan, the absolutely lowest being in Asia, where temperature is relatively highest with respect to the regions immediately surrounding, and absolutely lowest in the Atlantic, which is most completely surrounded with highly-heated continental lands. Again, in winter the lowest atmospheric pressures are found in the north of the Atlantic and Pacific Oceans, where temperature is relatively highest, latitude for latitude ; and the highest pressures towards the centres of the continents, some distance to southward of the regions where at this season abnormally low temperatures are lowest.

The causes which bring about an uncqual distribution of the mass of the atmospliere are the temperature and the moisture considered with respect to the geographical distribution of land and water. Owing to the different relations of land and water to temperature, the summer temperature of continents much exceeds that of the ocean in the same latitudes; and hence results the abnormally high temperature of the interior of Asia, Africa, America, and Australia during their respective summers, in consequence of which the air becoming specifically lighter ascends in enormous columns thousands of miles in diameter. Winds from the ocean set in all round to take the place of the air thus removed, raising the rainfall to the annual maximum, and still further diminishing the atmospheric pressure. On the other hand, since in winter the temperature of the continents and their atmosphere falls abnormally low, the air becomes more condensed in the lower strata, and pressure is thereby diminished in the upper regions over the continents. Upper currents set in all round upon the continents, and thus the sea-level pressures become still further increased. Hence the absolutely highest mean pressure occurring anywhere on the globe at any season, about 30.500 inches, occurs in Africa in the depth of winter.

Now observation conclusively proves that from the region of high pressure in the interior of Asia in winter, from the region of high pressure in the Atlantic in summer, and from all other regions of high pressure, the winds blow outwards in all directions; and that towards the region of low pressure in Asia in summer, towards the region of low pressure in the north of the Atlantic in winter, and towards all other regions of low pressure, whenever and wherever they occur, the winds blow in an in-moving spiral course.
Since enorm ous masses of air are in this way poured into the region where pressure is low without increasing
that pressure, and enorinous masses of air flow out of the region where pressure is high without diminishing that pressure, it is simply a neces sary inference to conclude that the masses of air poured all round into the region of low normal pressure do not accumulate over that region, but must somehow escape away into other regions ; and that the masses of air which flow outwards on all sides from the region of high normal pre,sure must have their place taken by fresh accessions of air poured in from above. Keeping in view the law of the barometric gradient as applicable to all heights of the atmosphere, it is evident that the ascending current from a low-pressure area, the air composing which is relatively warm and moist, will continue its ascent till a height is reached at which the pressure of the air of the current equals or just falls short of the pressure over the surrounding regions at that high level. On reaching this height, the air, being no longer buoyed up by a greater specific levity than that of the surrounding air, ceases to ascend, and thereafter spreads itself horizontally as upper currents towards tho ie regions which offer the least resistance to it. The overflow of the upper currents is thus in the direction of those regions where pressure at the time is least, and this again we have seen to be towards and over that region or those regions the air of which in the lower strata of the atmosphere is colder and drier than that of surrounding regions.

The broad conclusion is this: the winds on the surface of the globe are indicated by the isobaric lines showing the distribution of the mass of the earth's atmosphere near the surface, the direction of the wind being from regions where pressure is high towards regions where pressure is low, in accordance with Buys Ballot's law. On the other hand, the low-pressure regions, such as the belt of calms in equatorial regions, the interior of Asia in summer, and the north of the Atlantic and Pacific in winter, with their ascending currents, and relatively higher pressure at great heights as compared with surrounding regions, point out the sources or fountains whence the upper currents flow. Fron these sources the upper currents spread themselves and flow towards and over those parts of the earth where pressure is relatively low. These directions are, speaking generally, from equatorial to polar regions; but more particularly towards and over those more restricted regions where in the lower strata of the atmosphere the air is colder and drier than in neighbouring regions, such as the Atlantic between the United States and Africa in summer, and Central Asia in winter.
This view of the general movements of the upper currents of the atmosphere is in accordance with the observations which have been made in different parts of the globe on the motions of the cirrus cloud, and with observations of the directions in which ashes from volcanoes have been carried by these upper currents. In further corroboration of the same views, reference may be made to the researches made in recent years, particularly by Prof. Hildebrandsson and Clement Ley, into the upper currents of the atmosphere, based on observations of the movements of the cirrus cloud in their relation to the cyclones and anticyclones of north-western Europe.
An important bearing of cyclonic and anticyclonic areas on the distribution of temperature may be here referred to. The temperature is abnormally raised on the east side of cyclonic areas and abnormally depressed on their west sides; but, on the other hand, temperature is abnormally raised on the west sides of anticyclonic areas, and depressed on their east sides-the directions being reversed in the southern hemisphere. ${ }^{1}$ Since the temperature is lower in the rear than in the front of a cyclone, it follows that, relatively to the sea-level pressures, pressure will be lower in the upper regions in the rear of a cyclone than in front of it, a result which the Ben Nevis observa-
"See "Reviews of Weather Maps of the United States," Natarr, ${ }^{\text {dvols }}$ kxi., xxii., and wiii.
tions strongly confirm. Hence relatively warmer and moister upper currents will flow backward over the colder and drier air immediately in the rear of the centres of cyclones ; and upper currents also presenting contrasts of temperature and vapour will overlap the outskirts of anticyclones. These considerations suggest how very diverse interpretations of the movements of the cirrus cloud in their relation to cyclones and anticylones have originated, and may also indicate lines of research into some of the more striking optical scenic displays of the atmosphere.

ELECTRIC SHADOWS

THE brilliant researches of Crookes upon the electric discharges in bighly attenuated vacua, which some four years ago culminated in the discovery of the phenomena of "radiant matter," revealed, amongst other singular and curious effects, the existence of electric shadows. In the tubes employed by Crookes, wherein the rarefaction had been carried to millionths of the normal air pressure, objects cut out in sheets of metal or other good conductors of electricity were found to cast shadows against the glimmering surfaces of the glass

when interposed in the path of the discharge. The deflection of these shadows by the magnet was also observed by Crookes. About eighteen months afterwards some analogous phenomena were observed and described by Prof. W. Holtz of Berlin ; the main difference between the phenomena observed by Crookes and by Holtz being that in the experiments of the latter the shadows were obtained at the ordinary pressure of the air by means of the discharge from a Holtz's influence machine. Of these researches some account was given at the time in NATURE (vol. xxiv, p. 130) by the writer of this article. It will be sufficient here to recall the more salient points. In the place of the usual discharging knobs of the Holtz machine were fixed a wooden disk covered with silk on the one side, and a metallic point on the other. The discharge from the latter causes the surface of the former to assume a faint, phosphorescent glow, visible only in complete darkness; and on this faintly illuminated surface shadows were cast when conducting bodies-such, for example, as crosses or rings cut from thin brass or foil, strips of damp cardboard, wires, and other similar objects. It was also noticed by Holtz that these shadowfigures could be temporarily fixed by dusting upon them some fine powder, such as lycopodium. In preparing
the notice of these researches for Nature in 1881, I made the following remark:-"These dust-figures have an obvious relation with those obtained by Wiedemann from the discharge of Leyden jars through a pointed conductor against the surfaces of various bodies. It would be interesting to ascertain whether by this process also shadow-figures can be produced." The suggestion then thrown out has not been lost, for during the current year a memoir has appeared on the subject of electric shadows from the pen of Prof. Augusto Righi, of Padua, giving

Fig. 1.
the results of an investigation of shadows produced by this very method. 1 propose to give here a refsumé of the phenomena observed by Righi.

Righi discusses in an introductory way the suggestion of Crookes as to the relation between the length of the mean free path of the molecules and the distance to which the "radiant" discharge can be traced from the electrode. He observes that even in cases where the mean free path (as determined by the temperature of the

Fig. ?.
gas) be very short, as in air at ordinary pressure, the motion of the gaseous molecules as a whole may yet be in nearly straight lines of considerable length, owing to the fact that the electric force in the space where discharge is taking place will necessarily tend to urge an electrified molecule along the lines of electric force, and will act in the same direction whetber the charge on any single molecule remain upon it or whether it be shared with other molecules ngainst which it may impinge in its
flight. The only question was whether the velocity impressed by the electric action could be made relatively sufficiently great. This depended upon the magnitude of the electric density at the surface of the electrified body, and for this reason Righi used a very sharp point for the discharge. Fig. 1 shows the arrangements for obtaining the electric shadows by Righi's process. A B is an ordinary retort-stand of iron, and upon it are clamped three adjustable arms of ebonite. The uppermost of these carries a short metal rod, pointed below and terminated above in a metal ball. The intermediate support carries the object, c , which is to cast the shadow. The lowermost arm is fashioned as a clip in which can be held a disk, D, to receive the shadows. This disk is preferably of ebonite backed on its under side with brass or tinfoil. In certain cases a metal disk varnished on the upper surface is u,ed. Fig. 2 shows a favourite form of object for casting a shadow-a floral or cruciform design cut from thin metal and mounted on a stem of ebonite or glass. To produce the shadow-figures a Leyden jar is charged to such a potential as to be able to yield a spark of 1 to 2 centimetres' length. The outer coating is put in communication with the lower surface of the disk D , and the knob of the jar communicating with its inner coating is then brought into contact with the top of the pointed rod. The jar discharges itself rapidly and almost noiselessly. Then there is immediately sifted over the disk, from a box covered with muslin, some mixed powders of minium and flowers of sulphur, in the usual manner of

Fiz. 4
procuring Lichtenberg's figures. A shatow of the interposed object is at once revealed by the powders. If the discharge has been a poritive one, the sbadow of the cross will appear in red surrounded by a neutral region, outside which there will be a region tinted yellow with sulphur. The colours will be reversed with a negative discharge. The shadow is depicted in Fig. 3. The size of the shadow varies with the distance of the object. Righi recommends that the object should be three centimetres above the disk, and the point twelve centimetres, or less, above the object. The lines of discharge appear to be hyperbolic in form. If a disk of ebonite only be placed at D , and the brass disk below it be lowered down, the effects are less distinct. If a narrow strip of forl or thin brass be placed below the ebonite disk, the shadow becomes compressed laterally and shows itself only on the region over the strip, and takes the form shown in Fig. 4. Similar shadows can be obtained according to Righi, on metallic disks covered with non-conducting varnish, but in this case by the use, not of the Leyden jar, but of an influence machine. This method is identical with one of Holtz's suggestion. Righi also finds that if the metal disk be previously coated with a conducting powder, such as finest zinc filings, minium, or even powdered glass, a shadow can be obtained. This method affords indeed very sharp shadows, so that thin wires and even wire gauze can be projected in shadow on the disk. Righi has gone still further, and by substituting a sensitive gelatinobromide plate, has photographed the shadows produced during a five or ten minutes' discharge. In this experi-
ment two figures showed themselves: one, the genuine electric shadow; the other, the genuine photographic shadow cast by the opaque object under the faint star of light emanating from the electrified point above.

If the object whose shadow is to be thus obtained is itself electrified, a curious effect is observed. If it be electrified with a charge of the same sign as that of the point above it, the shadow swells out. If electrified with a charge of opposite sign, the shadow becomes attenuated. Connecting the object to earth has the same effect as in the latter case. The presence of an electrified body on the right or left of the region in which the discharge is taking place has the effect of causing the shadow to be displaced. In fact the presence of such a body alters the equipotential surfaces, and therefore alters the lines of electric force in the field. If the discharge takes place through two points placed side by side at a short distance apart over two objects respectively beneath them, the two electric shadows are mutually repelled from the positions where their geometrical shadows lie. Similar observations of electrostatic influence were made two years ago by Messrs. Fine and Magie of Princetown, New Jersey.

Much as has been done of late years, especially by the late Mr. Spottiswoode in conjunction with Mr. J. F. Moulton, by Drs. De La Rue and Hugo Müller, by Crookes, by Goldstein, and others, to elucidate the phenomena of electric discharges, there probably still remains much to be discovered, and to be explained. The phenomena of electric shadows are amongst the matters best worthy of study in this rapidly progressing department of science.

Silvanus P. Thompson

NOTES

We give this week a further instalment of notiees of the strange coloured effects recently observed in the skies, and our readers in all parts of the world will render a service if they will communicate any similar facts they may have observed, giving, as far as possible, aecurate dates. In an artiele in Saturday's Times, Mr. Norman Lockyer shows that the body of evidence already to hand connects them with the eruption of Krakatoa but, to place the matter beyond doubt, further information is required. The study of direction and of dates, and the facts touching the variation in the phenomena from August to December, all point in the same direction.
No one will be surprised, though all must regret, that his state of health and advanced years have eompelled Prof. Owen to resign his appontment as Superintendent of the Natural History Department of the British Maveum. Prof. Owen's preeuinent servies to science, pure and applied, are too well known to require recapitulation in these columns, especially as very recently we referrel to them in detail in connection with his portrait as one of our "Scientific Worthies." Advanced in years as he is, the venerable naturalist's interest in science seems as strong as ever ; to each of the last two meetings of the Royal Society he contributed an Important paper : we hope they will be by no means the last of sueh contributions.
We learn with the greatert pleasure that Prof. Sylvester has been appointed to succeed the late Prof. Henry Smith in the Savilian Chair of Geometry at Oxford. No more worthy succes -or to the late Savilian Professor eould have been found, and it is satisfactory to know hat at last the services of one of our greatest living mathematicians have been permanently secured for his native country.
Tire ceremony of distributing the prizes to the successful students of the Finsbary Technical College and the South London Technical Art School took place on Monday evening in the Hall of the Clothworkers' Company, Mincing Lane. The Lord Mayor presided, supported by the President of the Royal Society, the Sheriffs, Sir
F. Bramwell, Sir F. Abel, the newly-elected chairmanof the Society of Arts, and a large number of gentlemen intereste in promoting teclinical education, the hall being filled with students. The prizes were delivered by Prof. Haxley, wh, afterwaris gave an address. After speaking of the progress in te:thical elucati in which had been made since 1877, and speaking in high terms of the sy-tem pursued at the Fiusbary Technical College, Pr if. Huxley said that all his life he had been trying to, persuade people that if they wanted to teach physical science it wav no use to attempt to proceed by filling the mind, of the stalents with general propoitions which they did not ander vand, from which they? ${ }^{\circ}$ were to deduce details which they comprebended still less. If they went to the Exhibition Road, South Kensingt an, they would see a very splendid pile of building, which had already cost 75,000 ., and which he sincerely trused would cost a very great deal more. That building wai the mere bricksand stones of the Central Institute, and the business upon which Sir Frederick Brauwell, the Chairman of the Committee, he (Prof. Huxley), and his colleagues had lately been so largely occupied was making a soul for this body. It was an immense! difficult operation, as they were always in danger, like Franhewtein in th: story, of making something which would eventually devour then instead of being useful to them. Their great anxiety had been to make it good and u-eful, so that the great schame of techuical education might be thoroughly carried int. effect. He was perfectly sure that they had in the sy.tem of technologieal examinatoon, and in such institutions as Fiasbury College, the Kenain;ton School, and the Central Institation, so nething which would most indubitably be the nucleus of a vast growth of similar organisations. II had not thesmal lest d nbt that, before thisgeneration had passed away, instead of 150 centres at which such examinations were csaducted, they wsald be e suated by hunlreds, an 1 instead of the two or three high-class places of technical instruction whith had been enu perated they would be cousted in aifferen parta of this island by the score, and that they woald have in the Ce itr al Institate the great uniting point for the whole of this network tirough which the information and the discipline which were needful for carrying the industries of the country iuto operation would be distri suted into every leality in which such industrics were carried on. He regarded it as even a more important function of sach organisations that they would be places to which every young artisan of industry and ability conald look to gratify his legitimate amtition. His study of hist, rry hall led him to the conclusion that there never had been, and there never was likely to be, any great cause of widespreal social disentent exc-pt hunger of some kind or other. There was physical hunger of the b.dy, and there was intellectual hunger arising in the minds of eapable and energetic men wh, were preveated by the accidents of life, or the organisation of society, froun taking the places for which they were fitted. Everything which spreads a knowledge of technical processes among our industrial clases tended to fit them to fight better that great battle of comeretition in which they had hitherto maintained themselves victoriou-ly in virtue of the inward natural powers and capacity of the race, but in which the struggle becime more difficult, not only because on the continent of Europe training and discipline were supplementing whatever might be lacking of energy and capacity, but because on the other side of the Atlantic there was a people as uumerons as ourselves, of the same stock, bool, race, and power, who would run us harder than any competitors had hitherto done. If we were to hold our own in this great world competition, it must be because the native force and intelligence were supplemented by careful training and discipline, such as were proposed to be given by the system of technical education.
AT the meeting last week in connection with the memorial to the late Mr. Spottiswoode, a committee was formed for the pur* pose of procuring a portrait or bast for presentation to the Royal

S ciety, and also to c onsid r the question of establithing a further memorial of his connection with the Society. Prof. Huxley, Mr. W. De La Kue, Mr. Bowmau, Dr, Evans, the Astronomer-Royal, and Mr. F. Galton, were appointed as members of the committee.

We have received from the publishers, Messrs. De la Rue and Co., a sample of their posket-b sok", da:e cards, and pretty Cbritmas cards, which each year seem ts becone more and inore attractive. The pochet-l.ook, a sNifialits which Messrs. De la Rue have brought to great perfection, is in ieed a multump in paroo. Not only does it contain the usual almanac, but also much ueeful inf rmation. The mean tine of high water is all parts of the world, she length of a degree of latitude and longiude, a table of magnetic elenents, which, as inferred for next year, are declination $18^{\circ} 12^{\prime} \mathrm{W}$., inclination $67^{\circ} 32^{\prime}$, horizontal force 3.92, vertical force 9.50 , total force 10.27 , a table of specific gravities, the vari us tables of weights and measures together with the Fiench measures, the dates of eclijser, and the mean time of the sun's southing, \&c., all given with the usual exactness which has cauced this pocket-bosk to be looked to by many seientific men as a help in their dily work. The date cards are in all shapes and sizes, for hanging on an office wall or to stand on the writing table in the s:ady. The Christmas cards are now produced with such care in drawing and colour as to have besome veritable works of art, and it is truly a difficult tavk to select from amongst the different selies before us tho e which may bs consi lered to carry off the prize. Mention mu ι, however, be made of the beautiful etchings on satin and the col ured drawings of child and bird-life, the latter particularly showing both artissic and scientific knowledge, and it was a happy thought t.0 produce these on such a material as satin, which gives a wonderful softness and finish to the picture, and makes them suttable for adorning screens, panels, sachets, and the varioas dainty trifles which will be eagerly sought for this Christmav. The hunting series is drawn with great spirit, and many a child, both old and yoang, will be charmed with the nivel idea of the introduction of the persistence of vi-ion by building up a hacting scene by the hunters and hare on one side and the hores and dogs on the other of a rapidly spuncard. Other cards tro are arranged to in'roduce Wheatstone's principle of the wheel of life. The flower series, which is drawn with the same delicacy that we noticed in the colouring of the birds' plumage, is this year enrichel by some Alpine favourites, which will carry many of us back to our sunmer haunts, and cause us to thank Messrs. De la Rue for enabling us to recall at this inclement seasoa one of the many enjoyments of our yearly holiday.
The Times of Friday last contains an aecount of the resalts obtained in the Dacea and International, which were ,ent out to take soundings in the Atlantic for the purpose of laying a cable between Spain and the Canaried, Mr. Buchanan accompanied the expedition, and his observations on the corals, which seem to be creating a "coming Atlantis," are of much interest. The precise information obtained about some of the banks which stud this part of the Atlantic is a valuable addition to existing knowledge on the sabject.

The naturalist Petit has returned to France from the Congo region, where he has spent several years, especially between the Gaboon and the Congo. He brings home largc collections, especially in ornithology.

One necessary result of the scattered population of the United States of America has been the co-education of the sexes. Other countries have inquired as to the effect of the mixing together of boys and girls not only in schools but also in classee, and this has led the Bureau of Elucation to take the opinions of the
school officers of 144 towns of less than 7000 inhabitants, and 196 larger cities, as to the good or evil resnlt therefrom. There is an almost uniform reply in its favour. Only 19 out of the whole number separate the sexes, and only 12 out of these speak decidedly against it. The general morality and tone of society in America prevent its having any mischievous effect, while their innumerable small schools necessitate a large supply of female teachers wh, are the better qualified by their early competition and parallel education with boys. The Bureau, however, calls attention to the fact that both advantages may be absent in an older and more thichly populated country where concentration and divisi n of labour is more practicable.

The Report of the Manche ter Public Free Libraries is a very saisfactory one, showing that since 1876-77, when the issues of books had been decrea-ing for several years, a stealy revival has set in and their circulation hasincreased more rapidly than the population. Nothing aloo speaks so well for the successful work, present as well as prospective, of both central and district libraries as the new catalogues of first one and then another which have followed each other at aver ige intervals of six months only.

ON November 22, at al.out 9 a.m., a remarkable phenomenon was observed at Alfia in the province of Helsingland. The weather was mild and calm, and the sky clear, when from the north the rays of an aurora bejan to develop, and soon bathed the northern heaveis. Down by the eastern horizon a heavy dark cloud rested, from which a magnificent meteor suddenly darted forth. It traversed almost the entire heaveas, spreading a deep lurid light over every object, before u hich even the aurora paled. The simultaneous observation of a starlight sky, a flaming aurora, and a splendid meteor in the depth of winter is described as very striking.

The Revue Positive, which has been edited by the late M. Littré, and latterly by M. Wirouboff, has published its last number. The reason alleged is the want of intereat now felt in France for merely theoretical que-tions, and the suecessobtained in a number of special directions by the principles of positive philosophy. It has lived fifteen years.

Part itt. Vol t. of the Memorie della Soxied Geggrafica Italiana is entirely occupied with the w rking out of the zoologieal collections made during the Ital'an Expedition to Equatorial Africa. Signor Vinciguerra treats on the freshwater fishes, M. A. de Bormans on the Orthoptera, M. C. Oterthiir on the Lepidoptera, and M. Lethierry on the Hemiptera; in all ceses there were new forms to decribe, and the woot interesting Lepidoptera are illustrated on a large folded plate. These memoirs appeared originally in the Annaii ded Nuseo Civico di Storia Naturale di Cenova, but will be uceful in their collected form.

Earthquakes are reported (i) from Steinbruck (Styria), where a severe shock wav felt on November 7 at 3 p.m., and a second one six minutes later, both in a vertical direction; (2) from Kaltenbach, near Mullheim, where a loud subterranean noise was heard, accompanied lyy a shock on November 11 at 9 p.m. The phenomenon was als, observed in the sarrounding villages, and was preceded in the daytime by a severe thnnderstorm ; (3) from the neighbourhool of Trawnik (Bosnia), where, on November 15 at 9.45 p.m., a violent undulatory earthquake was felt, accompanied by subterranean noise. The phenomenon lasted five seconds, and its direction was from north-west to south-east. An earthquake is also reported from Patra (Greece), where a violent shock occurred on November 14 at $3-40 \mathrm{a}$.m.

In eonnection with the Quekett Microscopical Club, six demonstrations upon elementary subjects connected with micro.
seopy will be given at University College, in Class Room No. 8, at 7.30 , on the following evenings:-December 14, 1883, Cutting Sections of Hard Tissnes, by T. Charters White, M.R.C.S. ; January 11, 1884 , Microscopical Drawing, by J. D. Hardy ; February 8, the Sponge Skeleton as a means of recognising Genera and Species, by J. G. Waller ; March 14, How to Work with the Microscope, by E. M. Nelson; May 9 , Pola ised Light, by Charles Stewart, F.L.S. ; June 13, Staining Vegetable Tissnes, by W. H. Gilburt.

On the Zuiderzee interesting experiments were recently made with fog'horns of a novel construction. They are sounded by steam, and are worked after the fashion of Morse telegraphs with long and sb irt sounds. Two ships were provided with the foghorns; on each there were telegraphists worhing the horn, and the signals were distinctly beard and underatood even if the distance tetween the ships was such that they lost sight of each other.

A German Meteorol gical Society was founded at Hamburg on November 18 last, whea many eninent wen of science were present. Dr. Neumayer was elected president; the object of the Society was defined as -" The cultivation of meteorology as a science and in its relations to practical life." The Society will support meteorological research and publish a meteorological serial. At the first meeting Ir. Hellmann spoke on twilight phenomena, Dr. van Bebber on barometrical minima with erratic movement, and Dr. Köppeil on his methol of teating the results of weather forecasts.

The addition : to the Zoological Society's Gardens during the past week include two L.esser White nosed Monkeys (Cercopithocus polaurista) from West Africa, presented respectively by the Rev. W. C. Willoughby and Mr. S. E. Sims ; twenty Barhary Turtle Doves (Turfur risorius) from India, presented thy Mr. A. T. Hinch, F.Z.S.; two Meanded Titmice (Pamarus biarmicws), European, preseuted by Mr. H. D. Astey, F.Z.S.; a Water Kail (Rallius aquaticus), Briti-h, preented by Mr. E. G. B. Mearle Waldo ; an Indian Crocodile (Crecodilus Aalustris) from India, presented by Sir Joseph Fayrer, K.C.S.I., F.Z.S. ; two Scaly-breasted Lorikeets (Trichogtossus chlorolpidotus), from New South Wales, a St. Th onas's Conure (Conurus xanthoLemus) from St. Thomap, West Indiee, four West African Love Birds (Agafurnis pullaria) from West Africa, two Undulated Grass Parrakeets (Mdopriftacus undulatus), a Cockateel (Colopsitta nowe-hollanditiz) from Australia, two Indian Crocodiles (Crocodilus palustris) from India, deposited; a Hairy Porcupine (Sphingurus villosus) ir m Brazil, oa approval ; two Cirl Bantings (Emberiea cirlus), British, parchased.

OUR ASTRONOMICAL COIUMN

Enck e's Comet. - On Oet,ber 16 M . Otto Struve presented to the Imperial Academy of Sciences of St. Petersburg a new nemoir on the motion of Encke's comet, by Dr. Backlund, of the Observatory at Pulkowa, who has continued the researches commenced by the late Dr. von Asten. Shortly before the decease of the latter, in August, 1878, he had completed a memoir upon this conet, in which it was proved that the appearances between 1819 and 1858 might be comprised, so to say, under a single formula, adopting one value for the effect of a resisting nued.um; or an acceleration of $0^{\prime \prime *} 104$ in the mean motion in each revolution. Nevertheless the observations at the different returns were not repre-ented with such a degree of precision as to exclude a probable error of $9^{\prime \prime}$ o for each co-ordinate of a normal position, and for certain appearances the agreement with the formula was so little satisfactory that a suspicion arose of the existence, besides gravitation and a resistiag medium, of other agents which had nffected the motion of the comet. The su-picion was fu-ther increased when it was found by Asten that
the appearance in 1871 could in no way be included under the general formula, without admitting that the resisting medium had ceased to operate, or that the comet daring the revolution immediately preceding had undergone a sudden retardation through the intervention of some unknown force. Following up at first the latter bypothesis, he was able to assign approximately the time when such perturbation must have taken effect, and found that at this time the comet was travening the region of the small planets between Mars and Jupiter. This eircumstance led Asten to conjecture that the attraction of one of these bodies, which the comet had encountered, might have occasioned the retardation.

A similar retardation was indicated again by the last appearance of the comet in 1881, and, following a similar method, Dr. Backlund was able to fix the time and the approximate place, which was again found to be in the midst of the zone of small planets. Thus, as M. Otto Struve remarks in his report upon Dr. Backlund's memoir, there was reason to think that we were upon the traces of a very interesting discovery, which added much to the interest attaching to his new researches on the last four appearances of the comet, as a complement to the investigations of Asten for the period 1819-1868. This additiunal work has not, however, led to a confirmation of the above-named hypothesis, but has replaced it by results of a more positive eharacter and of greater scientific importance.

Dr. Backlund had found, on following rigorously the rules of caleulation adopted by his predecessor, that the last four appearances, and particularly those of $\mathbf{1 8 7 1}$ and 188i, could not be represented without admitting that the acceleration had diminished considerably, and had even disappeared for the last two returns, But on a closer examination it was discovered that a strange error had entered into the combination of the appearance of 1868 with the two preceding ones; in one of these revolutions where the observations made after perihelion were combined with those made before the succeeding one, Asten, though he sapposed he had taken into account the resistance, had in fact not done so. This being rectified, the errors of 1871 and 1881 , which amounted to many minutes, were destroyed in great measure, and the discordances rednced to tolerable though still nosatisfactorily large quantities. After a revision of the formula employed, Dr. Backlnnd succeeded in reducing the probable crror remaining in each co-ordinate of a normal position to $4^{* / 1}$. The introdaction of the mass of Jupiter, according to the determination of Bessel-Schur, further redneed this probable error to $2^{\prime \prime} .8$, assigning for the acceleration during the period in qnestion $\mathrm{o}^{\prime \prime \prime} \cdot 54$ for each entire revolntion, and M. Struve considers that Ir. Bach lund's researches have thus put us in possession of a theory of the comet for its later returns which leaves little or nothing to be desired.
It has been mentioned that for the period 1819-1868 the probable error in the normal positions given by Asten amounted to $9^{\prime \prime}{ }^{\circ}$. Partly, perhaps, the larger error is attributable to the inferiority of the instrumen'al means available in the first Lalf of the centnry, but probably in a greater degree to imperfections detected in the theory adopted for this earlier period, npon which M. Struve's report enters into some detail. For this reason Dr. Backlund bas charged himself with the construction of a new theory for the interval 1819-1868, in which be will be mueh assisted by the earlier work of Asten, described as having been left in admirable order, and thns admitting of being followed and verified at every step.
While awaiting the resulis of these further investigations, M. Struve draws attention to a very singular fact, which will not be affected by them. He remarks there is no reason to doubt that the acceleration bas mueh dimini-hed in the interval between the mean epochs of the two periods referred to above. He asks: Is it that the volume of the comet has diminished in the interval? The observations afford no trace of such diminution. Or again, -has the matter of which the comet is composed been inereased? On this we can say nothing. There io, further, the supposition that the so ealled reisting medium has altered in density, or again, that the acceleration attributed to the effect of a resisting medium is prodnced by forces of a totally different nature.

All this for the moment mnst remain enigmatical, but the fact is established that the acceleration bas diminisked; we cannot say whether this diminntion has been produced instantaneously or gradually; it is a point upon which the new researches undertaken by Dr. Backlund may enlighten ns.
Encke's comet returns to perihelion in March, 1885.

GEOGRAPHICAL NOTES

The eleventh number, 1883 , of Petermann's Grographische Mittheilungon opens with a minute account of the archipelago of Chiloe, by Dr. C. Martin, who in former numbers of the Mittheiiungen, in the Revisfa cientifica de Chile, and in other publications, bas already communicated important information on this part of the earth's surface. The present contribution has special reference to vol, viii., recently published at Santiago, of the Anuario de la Marina de Chile. The next article gives an interesting sketch of the progress of the knowledge of Kafiristan by Europeans from 1829, when it first became known to Elphinstone, down to the present year, when Mr. MeNair, the Indian Government surveyor, penetrated as far as the Dorah Pass; and an account of the present state of the inhabitant ethnographically, ethologically, socially, morally, and religiously, according to the reports of the Rev. Mr. Hughes and other recent visitors. The third artiele traces the ronte of the Russian Embassy of 1878.79 through Afghanistan and the Khanate of Bukhara, following the descriptions of Dr. J. Jaworski, member of the Russian Geograן,hical Society, who as physician accompanied the Embassy, and has recently pablished an account of the expedition in two thick octavo volumes in Russian. In a long paper illustrated by a map by Bruno Hassenstein, which also embraces Dr. Junker's expedition through those parts, Dr. Emin-Bey prosecutes his travels to the west of the Bahr-el-Jebel in October and November of last year. Starting from Bedden, on the White Nile, on October 9, be penetrated south-westwards a- far as Janda, the extreme soutbern post in the Kakuaik country, whence he proceeded north-westwards through the Fadjelu Land, the station Kabajendi, the region of the Makraka and of the Abuka, as far as the station of Gosa. From this point Dr. Emin-Rey tarned south-eastwards through the Abukaja country, and the Makraka-Ssgaire stations, and on Noverber 26 arrived at the station of Wandi. The Makraka are deseribed as a people dowered, both men snd women, with a remarkable profusion of hair, which by means of fat, the sap of trees, \&c., they studi ussly arrange in plaits, pigtails, \&c., prodncing very surpriving effects. The name Makraka, though now universally applied to the people of that region, was, it appears, not the original name, but, signifying cannibals, was at first ured by the natives to designate a body ol invaders of the Iddo race from the sonth. Dr. K. Zöppritr, in the next following article, discusses Dr. Emin-Bey's measurements of beights and atmospherical pressure at Lado.

We have also received the Mittheilungen of the Geographical Society in Hamburg for $1880-81$. It contains a very copious account of the Island of (hios (or Scio) geographically, geologically, ethnologically, and commercially; a lecture on the cola-nut, delivered before the Geogra;hical Society of Hamburg on January 5 of last year, and an instruetive deccription of thr "sacred" Japanese town of Kioto. Next follows a very care ful and comprebensive account in 250 pages, by Dr. II. Sieglerschmidt, of the results of the North Polar expeditions of this century. Afier summing up our knowledge of the North Polar regions in the year 1818, the review traces the bistory of North Polar investigation since that date, taking stock, in particular, of our knowledge of East Greenland, Spitzbergen, the Siberian glacial sea, and other hyperborean tracts. Lastly, it draws up the total results down to the present date in respect of bydrography, meteorology, magnetism, astronomy, \&c. In the next artiele Herr E. R. Flegel gives the first of a series of sketehes intended to comprise (1) the mangrove swamps of the delta of the Niger ; (2) the mountains of Cameroon; and (3) the banks of the lower Niger. In this first shetch we are introduced to the long and narrow sandy strip of land rising but little above the level of the sea, and running parallel with the coast of the Bight of Benin.

Tue Verkandlungen of the Berlin Geographical Society, Band x., No. 7, contains a very eppious article on Wisconsin ; and the Zetschrift of the same society, No. 105, gives the conclusion of Dr. Richthofen's account of his travels in China, as also, among other valuable papers, a contribation to the ethnography of the extreme north-ea-t of Asia, 1 y Herr G. Gerland.

We have further received the Bullctin de la Socithe de Geog maphic for the second and third quarters of this year. An artiele by M. Grandidier briefly describes the province of Imerina, the central, as also the most populous and imporiant, province of Madagascar. The province is mountainous, traversed by numerous watercourses, entirely bare of tree or thrub, or of ten even of cultivated plant, scarcely inhabited in the hilly grour.ds, but thickly peopled
in the valleys. The hills covering most of the country, of hard and compact red clay, throngh which blocks of granite crop largely up, are not fertile. To the west of the capital, in the very centre of the province, is a large plain, about 30 km . long by as many broad, formerly a like or marsh, now an immense field of rice, where emerge hamlets and houses like so many islets. There is also an interesting account of the Fuegians. The fluctuations of the Indian population in the United States are discu-sed by M. de Semalle in an article to which M. Simonin shorly replies. The kingdom of Perak, the Peninsula of Malacca, is described by M. De La Croix. Commandant Gallieni, of the French Naval Infantry, furnishes ${ }^{3}$. mass of information on the races and populations of the Upper Niger, while Dr. Audray relates at considerable length his personal impressions and reminiscences of Hue during the eighteen months he passed there at the French Legation. M. Fernandex also communicates a paper on the Argentine Republic.

The Bulletin of the American Geographical Society has a paper on the Philippine Islands by Dr. Kneeland, and another on the currents of the Pacific Ocean, by Dr. Antiell.

In an article in the last number of the Bremen Geographical Fournal on the inhabitants of the Chukche Peninsula, in the north-east extremity of Asia, Dr. Aurel Krause, after a brief sketch of voyages of discovery and scientific expeditions to that region, sums up the views of the different authorities with reference to the population of the penin ula, and endeavours to reconcile and supplement them with immediate observations of his own. As the resalt of his studies he distinguishes two different races on the peninsula-the Chukches and the Eskimo. The Chukches, again, are either nomadie or settled. The nomadic Chukches, whoo are also distingnished by the pos ession of reindeer, are seattered over the country to the west of Behring Strait, as far as Chaun Bay and the sources of the Great and Little Anjui, and south to the Anadyr River, some $50 c 0$ (German) square miles of land, with a population hardly numbering over 2000. The settled Chukches dwell on the shores of the Arctic Ocean from Chaun Bay to Behring Straits, and in some spots en the east coast in villagex counting up to forty huts. There is also a third class of Chuhches, intermediary between the aristocratie reindeer proprietors and the fi-hers, a elass of merchants. A different race, looked down upon by the Chukches, occupy the south coast from Point Chaplin (or Indian Point) to Anadyr, as alio parts of the eact coast. That bese are of the same race as the Eskimo of the opposite American eoast their mode of living, their language, and bodily structure testify beyond all doubt, according to Herr Krause, his opinion on this point differing from that of the $\mathrm{Veg}_{\mathrm{g}}$ staff. According to Dall the e Eskimo are slowly drifting southwards towards Kamtschatha. The Eskimo on the Asiatic side of Behring Straiis, including those of St. Lawrence Island and of the Di muedes Islands, should hardly exceed 2000. An ethnographical map and a list of Chukche and Eskimo words in eonnection with the Chakehe Peninsula are appended to this valuable paper.

Dr. Emil. Riebzck of Halle, the well-known traveller, is preparing for a second African journey, which will be directed to the Nijer. He will be accompaniea by the naturalist Herr G. A. Kraase, well known as an excellent linguist and mathematieian.

THE NOVEMBER MEETING OF THE NATIONAL ACADEM Y OF SCIENCES ${ }^{1}$

 OR the first time in nineteen years, and the second time in its history, the National Academy held its mid-year meeting in New Haven, November 13-16. Thirty-three of the ninety; three members were in attendance, and during its four days' session twenty papers were presented.The meeting was conspicuous for the discussion which most of the papers called forth, and for the general participation of the members in these discussions, It was interesting also, for the report of the committee on the solar eclipse of last May, which included the detailed reports of the expedition to Caroline Island, undertaken under the auspices of the Academy, by the principal participants, Profs, Holden and Hastings. It will urther be remembered by the members from other cities for the marked hospitalities they received at the hands of their confrires
${ }^{1}$ Science. From advance sheets : favourred by the Editor.
of New Haven, and for its many social pleasures, culminating in the brilliant public reception given them by the president, Prof. Marsh, at his residence. The new baildings recently tinished, or in process of erection, for the furtherance of scientifie research and instruction in Yale College, were also examined with interest, together with the treasures of the Peabody Museum, where the finely-mounted colleetions of Profs. Verrill and E, S. Dana, and the fossil vertebrates of Prof. Marsh, called forth much admiration.
The generous discnssion to which the papers gave rise was provoked at the very start by the paper of Dr. Graham Bell upon the formation of a deaf variety of the human race, which had a broad, practical interest, and which consumed the entire morning session of the first day. Mr. Bell claimed that, from purely philanthropic motives, we were pursning a method in the education of "deaf-mutes" distinctly tending to such a result, supporting his assertions by statisties drawn from the published reports of the different institutions in this eountry devoted to the care of these unfortunates. They are separated in childhood from association with hearing-children, and taught what is practically a foreign language-a practice which isolates them from the rest of the community throughout their lives, and encourages their intermarriage. Such marriages were increasing at an alarming ratio, and with calamitous resalis. As a remedy for this danger, Dr. Bell would have the children educated in the publie schoole, thus bringing them into contact with hearingehildren in their play, and in instruction wherever they would not be placed at a disadvantage, as in drawing and blackboard exercises. He would also entirely discard the sign-language, and cultivate the use of the vocal organs, and the reading of the li, s.
The report on the solar eclipse covered a variety of topics, and will fill some bundred and fifty printed pages. In presenting it, Prof. E. S. Holden merely touched upon the principal points, and gave the leading results, in much the same form as they have already been given in this journal. The objects of the expedition were successfully carried out; and Prof. Holden regarded his *pecial work-the search fur a possible planet interior to Mer-cury-as proving the non-existence of the small planets reported by Profs. Watson and Swift.

Dr, C. S. Hastings read in full the greater portion of his report upon the spectroscopic work, which concluded with a critical review of the generally-received theories of the solar atmosphere, and suggested, instead, that the corona was a suljective phenomenon, largely dne to the diffraction of light.
The preseotation of these reports occupied the entire morning sestion of Wednesday, and their discussion the greater part of the afternoon re sion.
In criticising the current uce of the word "light" in physics, Prof. Newo mb opened a long and interesting discussion. He arged that photometric measurements were comparatively valueless, because they estimate a part only of the radiant energy of the sun; whereas the quantity which should be determined was the number of ergs received per square centimetre. Prof. langley, however, a aserted that it would be impossible to estimate the radiant energy received from the stars with our present appliances ; not all the stars combined would produce deflection, even in so sensitive an apparatus as the bolometer.
Another feature of marked interest was Prof. Kowland's exhibition of photographs of the solar spectrum, obtained by his new concave grating', by which he had prepared a map of the spectrum much more detailed than heretofore secured, and free from the defects of scale found in previous photographs.
Prof. Asaph Hall commonicated the results of his researches upon the mass of Saturn, based upon new measurements of the distances of the outer satellites. He determines the mass of the sun to that of Saturn to be as I to $1 / 3482$.
Prof. Brewer took the occasion of the Academy's meeting in the ci:y of his residence to exhibit samples of his experiments of many years' duration upon the subsidence of particles in liquids. They showed the action of saline and organic matter, of acids and of freexing, upon the precipitation of sediments. Most of the samples had been undisturbed for five or six years, and showed varying degrees of opalescence, resulting from the suspension of matter in the fluid.
We have mentioned only the more important parees, or those which provoked a fuller discussion than usual. The following complete list will show how largely the physical side of science predominated at the meeting. In astronomy, besides the reports on the eclipse of May 6, papers were read by A. Hall, on the mass of Saturn ; by S. P. Langley, on atmospheric absorption ;
and by O. T. Sherman (pree ent by inviation), on personality in the measures of the diameter of Venus: in mathematics, by S. Newcomb, on the theory of errors of observation, and probable results : in physics, by S. Newcomb, on the use of the word "light" ; by W. 11. Brewer, on the sulssidence of partieles in liquids; and by H. A. Rowland, on a new photograph of the solar spectrum: in meteorology, by E. Loomis, on the reduction of barometric observations to sea-level : in geul rgy, by T. S. Hunt, on the Animikie rocks of Lake Superior; by J. D. Dana, on the stratified drift of the New Haven region ; by B. Silliman, on the mineralngy and lithology of the Bodie mining district; and by J. S . Newberry, on the ancient glaciation of North Anerica: in chemi-try, by W, Gibbs, on phospho-vanadates, arcenio-vanadates, and antimonio-vanidatec, and on the existence of new acids of 1 hosphorus: in physiological chemistry, by R. H. Chittenden (present by invitation), on new primary cleavage forms of albuminous matter : in palxontology, by J . Hall, on the Pectinidx and Aviculidx of the Devonian system; and by O. C. Marsh, on the affinities of the dinosaurian reptiles : and in anthropology, by A. G. Bell, on the formation of a deaf variety of the human race; and by J. W. Poaell, on marriage institutions in tribal soeiety.

The report of the Committee on Gluease, appointed by the President in conformity with a request from the Governmen, was aecepted by the Academy, and will be trassmitted to Congress with tue President's report. This will also embody the proceedings of recent meetings of the Acidemy, the report of the Committee on Aleohol, and that on the eclipse of the sun, together u ith the thanks of the Academy to the Seeretary of the Navy and the officers of the /lartford for their cooperation in the expedition to Caroline Island. It will also inelude an expression of the npproval of the Acadeny of the efforts now making to secure a system of uniform time.

The next stated session of the Aeademy will be held in Washington in April next, and it is prubable that the following mid-year session will be held in Cembridge.

FIPPLE-MARK'S

I N the first series of experiments a eylindrical ve-sel, lihe a flat bath, with upright sides, was placed on a talle, which was free to turn abont a vertical axis. Some fine sand was strewn over the bottom to a depth of alout an inch, and water was poured in antil it strod three inches deep over the sand. It was found tbat rotational nscillation with a jerking motion of small amplitude gave rice almost immediately to beautiful radial ripples all ronnd the bath. If the jerks were of small a mplitude the ripples were small, and if larger they were larger. The radiating ripples began first to appear at the outer margin of the bath and grew inwards; but the growth stopped after they had extended to a certain di tance. If the jerking motion was violent, ripples were not formed near the eircumference, and they only legan at some distance inwards.

An analysis of the observations was made on the hypothesis that the water remained still, when the bath oseillated with a simple harmonic motion. The problem was to find whether λ, the wave-length of ripple (in inches) was directly proportional to v, the maximum velocity of the water relatively to the botton during the oscillatory motion ; also to find the values of v_{1} and v_{s}, the least and greatest velocities of the water compatible with the formation of ripple mark.

It appears that, for the particular sand uscd, T^{\prime}, is half a foot per second, and v_{3} a foot per second; and that the wave-length of ripple, λ, is "00245v when v is measured in inches per minute. T he several results were as fairly consistent with one another as could be expected. The hypothesis that the water as a whole executes a simple harmonic oscillation relatively to the bottom is net, however, exact, and does not give the maximum veloeity of the water in contact with the sand relatively thereto. The quantity called v ia not in reality the maximum velocty of the water in contact with the hotiom relatively thereto, but it is 6.283 times the amplitude multiplied by the frequency. Thus we cannot conelude that a current of half a foot per second is just sufficient to stir the and. In the state of oscillation corresponding to $\%$, it is probable that part of the water at the bottom is moving with a velocity much greater than half a fout per second relatively to the sand.
"On the Formatin of Ripple-mark in Sand." Abstract of a paper by G. H. Darwin. F.K.S.. Plnman Professor aud Fellow of Trinity College, Camhridge, read before the Roynt Sociery on November 32, 1283.

It was after making these experiments that what appears to be the key-note of the whole phenomenon was discovered.

A series of ripples extending inwards for some distance having been made by oscillation, and the water having come to rest, the bath was turned slowly and nearly uniformly round. The uniform current flattened the tops of the tipples, but made the lee-side steejer.

It was conjecturel that there would be eddies or vortices on the lee-side, and in fact minute particles lying on the surface of the sand were observed to climb up the lee-slope of the ripples apparently against stream. This proved conelusively the existence of the suspected vortices.

If when the hath was at rest a sudden motion was given in one ditection, the sand on the lee-side of eseh ripple was observed to be churned up by a vortex. By giving a short and sudden motion the direct stream might be een to pile np the sand on the weather-side and the voitex to pile it op on the leeside. The sand so displaced formed two little parallel ridges, that on the lee-side being a little below the crest of the ripplemirk.

For the purpose of examining the vortices a glass tube was drawn ont to a fine point and fitted at the other end with a short piece of india-rubber tube. With this a drop of ink eould be squirted out at the bottom of the water. This method was adopted in all subequent observations, and it proved very valuible. It may be worth mentioning that common ink, which is heavier than water, was better than aniline dye.

A drop of ink was placed in the furrow between two ripples : as suon as the continuous stream passed, the ink was parted int." tw 3 portions, one being sneked back apparently against stream ap the lee-side of the ripple-mark, and the other being carried by the direet stream towards the crest. These points being settled, it remained to discover how the vortices were arranged which undoubtedly must exist in the oscillatory formation of regular ripples.

The ob-ervations were made in two ways, first with a glass trough so arranged that it eould be gently roeked by hand, and secondly with an o-cillaring sheet of glass.

When the trough is balf fillel with water, and sand is sprinkled on the bottom, it is ea.y to obtain admirable ripplemarks by gently rocking the trongh.

When a very small quantity of sand is sprinkled in and the rocking begins, the sand dances baekwards and forwards on the bottom, the grains rolling as they go.

Very shortly the sand besins 10 aggregate into irregular little flocculent masse, the appearance being something like that of curdling milk. The povition of the masses seems to he solely determined by the friction of the sand on the bottom, and as som av a grain stieks, it thereby increases the frietion at that place.

The aggregations gradually lecome elongated and rearrange themselves. As soon as the formation is definite enough to make the measurement of the wave-length posible, it is found that the wave-length is alout one-half of what it becomes in the ultiwate formation.

Some of the elongated patehes di-appear, and others fuse together and form sidges, the ridge- then become straighter, and finally a regular ripple-mark is furmed, with the wave-length double that in the initial stage.

If, after the formation of regular ripples, and the deposition of a drop of ink at the bottom, a very gentle oscillation be started, the layer of ink on the crest of a ripple b-comes thicker and thinner alternately, swaying hackuarls and forwards; then a little tail of ink ries from the crect, and the point of growth aieillates on each side of the erest ; the end of the tail flips backwards and forwards, Next the end of the tail spreads out laterally on eaeh side, so that a sort of mushroom of ink is formed, the stalk of the mushronm dancing to and fro. The height of the mushroom is generally less than a millimetre.

The elongated hollows under the mu-hroom are the centres of vortices, and the stem is the upward eurrent. If the ink be thiek, these spaces are clouded, and the appearance is simply that of an alternate thickening and thinning of the ink on the crest. The oscillations being still gentle, but not so gentle as at first, streams of ink from the two mushrooms on adjacent crests creep down the two slopes into the fnrrow between the adjacent ridges, and where they meet a column of ink begins to rise from the part of the water w hose mean position is in the centre of the furrow.

The column is wavy, and the appearance is strikingly like that of smoke rising from a fire in still air.
The column ascends to a height of oome five, ten, or perhaps twenty times the height of the ripple-marks, according to the violence of the agitation. It broxdens out at the top on each side, and spreads out into a cloud, until the appearance is exactly like pietures of a voleano in violent eruption; but the broad flat cloud dances to and fro relatively to the ascending column. The iak continnes to spread out laterally and begins to fall on each side. In this stage if the ink is not thiek it is often very like a palm-tree, and for the sake of a name this appearance is called an ink tree. The branches (as it were) then fall on each side, and the appearance liecomes like that of a beech tree, or sometimes of an umbrella. The branches reach the ground, and then creep inwards towards the stem, and the ink, which formed the branches, is sometimes seen a cending again in a wavy stream parallel to the stem.

Perhaps a dozen or twenty oscillations are reqni-ite for making the ink go through the changes I rom the first growth of the tree.

The descending conlumn of a pair of trees cones down on to the top of the mushroom, but the successful manufacture of the tree necessiates an oscillation of sufficient violence to render the simultaneous observation of the mushroom very difficult.

With violent ossillation, when the stem of the tree is much eonvolated, it cannot be as erted that the mushroom vortices exist, and the author is inclined to believe them to be then evane-cent.

Each side of the ink tree is clearly a vortex, and the stem is the dividing line between a pair, along which eaeh vortex contributes its share to the ascending column of fluid. The vortex in half the tree is elearly to the firt place generated by the friction of the vortex in its correlated mashroom, and it of cour e endued with the oppocite roation. The ascending stem of the tree is a swift current, but over the musbroom the des iending current is slow until cloce t.3 the mushroom, when the current is seen to be impelled by pulses,
If the adjoining cresis are of nnequal height, the sten of the tree is thrown over sideway - away from the higher crest; and indeed it reqnires care to make the growth quite straight. The ink in the stem ascends with a series of pulses, and it is clear that there is a pumping aetion going on which readers the motion of each vurter intermitent, and the two halves of the tree are pumped alternately.

The awount of curvature in the stem of the tree depends on the amplitude of the o cillation of the water.
The ink is propagated along the convolutions of the stem of the ink tree, but the convolutions are themselves propagated upwards, and each convolution corresponds to one oscillation. The motion of the ink along the envolutions soon becomes slow, bnt the convolutions become broader and elocer. Thus the upper part of the tree is often seen to be most delicately shaded by a series of nearly equidi,t ant blaek lines
In the transition from the mushroom stage to the tree stage it appeared that it was very frequent that only half the ink tree was formed.
If the agitation is very gentle, the sand on the cre ts of the ripple-marks is just moved to and fro; with slightly more amplitude, the dance is larger, and particles or visible objects, such as minute air-bubbles in the furrow al-o dance, but with less amplitude than those on the crests. The dance is not a simple harmonic motion like that of the main body of the water relatively to the bottom, but the partieles dash from one elongation to the other, pouse there, and then dash back again.

As the amplitude further increases, the furrows are completely ssoured out, and the sand on the crests is da-hed to and fro, forming a spray of sand dancing between two limits. With violent agitation, this dance must have an amplitude of more than half a wave-length. If the agitation be allowed to subside, the dance sub-ides, and when the water is still the ripple-mark is left symmetrical on both sides. With extremely violent oscillation, all the water becomes filled with flying dust, and it is no longer possible to see what is happening. Tbis seems to be the condition when the agitation is too s'rong for the formation of ripple-mark. It is probable that the rush of water sweeps away the existing ripple-mark, and there is then no longer anything to produce a systematic arrangement of vortices.
The author illustrates the dance of the vortices by a succession of figures.

It is hardly possible to explain the series of changes in words, but we may here state that the mechanism by which the ripples
are made and maintained depends on the fact that the upward current of a pair of vortiees lingers over the ripple cre:t, and then darts across with extreme rapidity to the adjoining crest. Thns eaeh pair of vortices is associated with two crests, spending nearly half the time over one, and half the time over the other.

As above stated, it has seemed that only one of each pair of tree vortices is set np at first, and the author is disposed to regard this as the tran-itional state from the mode of orcillation, which produces the half wave-length with small height of ripple-crest, to the fundamental wave-length with conviderable height.

The renults of the obscrvations may be sammarised as follows:-
The formation of irregular ripple-marks or dunes by a current is due to the vortex whieb exists on the lee of any snperfieial inequality of the bottom; the direct current carries the sand np the weather slope and the vortex up the lee slope. Thus any existing inequalities are inereased, and the surface of sand becomes mit led over with irre;ular dnnes. The velocity of the water must be greater than one limit and less than another, the limiting velocilies being dependent on the average size and density of the parlieles. Existing regular ripple-mark is maintained by a current passing over it perpendienlar to the ridges. A slight ehange in form ensuce, the weather slope becoming less steep, and the lee slope steeper. The ridges are also lowly displaced to leeward. The regular tipple-ma, k may also thus be somewhat prolonged, so that a'though a uniforin eurrent probably cannot form regular ripple-mark, yet it may increase the area over which it is to be found.
Regular ripple-mark is formed by water which oscillates relatively to the bottom. A pair of vortiees, or in s me cases four vorlices, are e tablistied in the water; eaeh set of vortices corresponds to a single ripple erest and the vortices oscillate about a mean position, changing their hapes and intensities periodically, but not with a simple harmonic motion.
The successive changes in the vortex molion, whilst ripplemark is being establi hed, and when the amplitude of oscillation over existing ripple-mark varies, are couples, and we must refer the reader to the original paper for an account of the phenomeua.

It is important to note that when once a fairly regular ripple. mark is e.tallished, a wi e variability of amplitnde in the oseillation is consi-tent with its mainteuance or increase. No explanation of ipple-making can be deemed satisfactory which does not satisfy this condition.
The last section gives some account of the valuable papers of MM. Ilunt, ${ }^{1}$ Casimir de Candolle, ${ }^{2}$ and Forel ${ }^{3}$ in this field. The author agrees in the main with these observers, but considers that some of their eonclusions are open to eriticism.
He next remarks that it is not easy to undentand precisely the mode in whieh the oscillation of the water over the undulating lottom gives rise to vortice:, but that there ale faniliar instances in which nearly the same kind of fluid motion must occur.
In the mode of hoat propulsion called sculling, the sailor places an oar with a flat blade through a rowloek in the stern of the boat, and, keeping the handle high above the roulcek, waves the oar baekwards and forwards with an alternate incliaation of the blade in one direction and the other. This action generates a stream of water sternwards. The manner in which the blade meets the water is elosely similar to that in which the slopes of two ri;ple-marks alternately meet the oscillating water; the sternward current in one ca-e, and the upuard current in the other are due to similar eauses. We may feel confident that in sculling, a pair of vortices are formod with axes vertical, anil that the dividing line hetween them is sinuous. The motion of a fivh's tail give، rive to a similar rearward eurrent in almost the same way. These instances may help us to realise the ripplemaking vortiees.

Lord Rayleigh hat con sidered the problem involved in the oscillations of a layer of vortically moving fluid keparatinz two uniform streams. At the mecting of the British Association at Swansea in $\mathbf{1 8 8 0}$ Sir William Thomson read a paper discussing
: "On the Formation of Kipple-mark." Proc. Roy. Soc., April so, is8a vol. xxxiv. p. 8 .
Merhivet des Sciences Physigues at Nafurvllet Gendtr, Na. 3. vol. ix., March 15.1883. "Rides formén," \&c.
3^{3} "1.es Rudes de Fond." Archives des Sciences PAysiques af Natwolles Gruire, July $35,188_{3}$.
On the Stabitity or Instability of certain Fluid Motions " Prac. Lowd Math. Sec. (February ta, 1850), vol. xi. P. 57.

Lord Rayleigh's problem. ${ }^{1}$ He showed that, in a certain case in which the analytical solution leads to an infinite value, there are waves in the continuous streams in diametrically opposite phases, and that the vortical stratnm e nsists of a series of oval vortices. The uniform eurrent flowing over existing ripple-mark exhibits almost a realisation of this mode of motion, one of the streams of flaid being replaced by the sandy undulations. The same kind of motion must exist in air when a gust of wind blows a shallow poddle into standing ripples.

It seems probable that what is called a mackerel sky is an evidence of a mode of motion also closely similar to that described by Sir William Thomson. M. de Candolle's snggestion that cirrus is aërial ripple-mark may then be regarded as substantially correct.

If two horizontal currents of fluid exist one above the other, the layer of transition from one to the other is dynamically unstable, bat it is probable that if a series of vortices be interpolated, so as to form friction rollers as it were, it becomes stable. It is likely that in air a mode of motion would be set up by friction, which in frictionless fluid would be stable.

The formation of clouds is probably due to the saturation with moisture of one current and the coldness of the other.

The direction of striation and , velocity of translation of mackerel clouds require consideration according to this theory.

It appers that if a mackerel sky be formed beween two aërial eurrents, the striations are parallel to that direction in which the two currents have equal component velocities, and the component velocity of the elouds parallel to the striations is equal to the component velocity of either current in the same direction.

The resultant velocity of the clouds is equal to a half of the resultant velocity of the two current , and the eomponent velocity of the striations perpendicular to themselves is the mean of the eomponents of velocity of the two currents in the same direction.

The acconnt which is given in this paper of the formation of ripple-marks shows it to be due to a conplex arrangement of vortices. The difficulty of o'servation is eonsiderable, and perhaps some of the enclusions arrived at may require modifseation. It is to be hoped that other experimenters may be induced to examine the question.

The reader is referred ts the origital for the figures, which are necessary to an adequate explanti in of the phenomena and conclusions.

NOTE ON DEAFNESS IN WIITE CATS²

THIS curious nccurrence has lon; been a matter of interest to me, originally becauce ca's have always been very favourite pets in my household, and still more hecau-e the oc:urreace am in $; \mathrm{st}$ them of deafness was used by Mr. Darwin in his first cdition "A "Amals and Plants under Domestication" as an illustration of correlated variability. He was under the impression that white cats with blue eye , were iuvariably deaf.

I had collected a number of observations which 1 had personally made, and I found that some white cats were deaf which had the ordinary yellow eyes, and that some white cats with blue eyes could hear perfectly well. I have never heard of deafness in any but a white cat, and all the deaf white eata I had personally examined were males. Therefore, in Naturv, 1873, 1 peblished a brief note pointing out Mr. Darwin's error. In his second edition Mr. Darwin established two caves of deafise-s in female white cats, so that the eonclusions of b)th of us were upse', and this wholesale destruction of theories has been completed by the birth in one of my feline families of a white kitten, female, wish perfectly yell wweyes, and absolately deaf. She lived with us for two years, and ber midortune was quite permanent. My conclusions from the facts observed by myself now may te formulated in this way, that congenital deafness is not known to occur in any animal but the cat, though I am not quite sure but that one white mouse I had some yeari ago was deaf, and that no cats but those entirely white are ever deaf. As female cats are far more common than males (and this seems to be true of white cats as well as thove of other eslour-), and as I have known only oue deaf female eat for some twenty deaf males, I think I may arsume that deafness is more common among males than among females. The colour of the

[^22]eyes has evidently nothing to do with the deafness, though it has with the colour of the fur, and reems to be dependent on the same process-an arrest of development. The eyes of nearly all kittens are blue for some weeks after birth, and the same cause which arrests the pigmentation of the fur arrests in a very much smaller number the pigmentary growth in the eye. I have been told of two cases of complete absence of pigment in the cyes of two cats (albinism) as is seen so commonly in rabbits, guinea-pigs, rats, and miee, bnt I have not been able properly to authenticate them. These cats were said to be not deaf.

In 1872 I obtained a cat from Hertfordshire as an example of the polydactilism which is very common there, and when he arrived I found that he was white, that he had one eye a bright blue and the other a bright yellow, and that he was profonadly deaf. He was by far the most interesting cat I have ever possessed, and most be well remembered by many members of this Society who have favoured my hou'e with their presence as "Old Pudge," po sessed of all the feline virtues, and many of a more human type-and free from vice of every kind. He lived with us for eleven years, and died last winter of peritonitis Whilst living with n s we made many observations concerning his deafness, and I easily determined that it was parely tympanic -that is, be was deaf to impressi ms conveyed through the air, but bis inte lizence cauld be reached by impressious conveyed through solid media. When I wanted him to come to me I gave a peculiar sharp stamp on the florr, and he immediately responded to the signal, even if be was on a chair or table. It is very remarkable that this congenital deafness is in no way associated in the cat with mntism. Human deaf-mutes generally are those in whom deafness is eochlear as well as tympanic, and the result of such disease as scarlet fever in very early life. One other peculiarity he had is that for about four yers he suffered from occasional fits of epilepsy of a very severe kind. They came on always during his sleep, and for their first indication had the painfol peculiarity that the cat seized the tip of his tail and bit it off, and in this way his tail was shortened considerably. Every kind of white animal I have kept as a pet has been the subject of epilepay, and the association is suggestive when we are told, as I have been frequently, that the disease is unknown amongst negroes.

I sent the body of $m y$ old eat to Prof. Flower for the puepose of having an invertigation made into the cause of his deafness. Prof. Flower had a most careful investigation of the condition of his ears made by two moit competent investigators-Dr. Cnmberbateh and Dr. Heneage Gibbs. The result, bricfly stated, is that all the structures in the ears were normal save the tympanie membranes, in which there were triangular gaps extending from the roof to just below the centre, the bases of the gaps being directed npwards, and their anterior side being formed by the handles of the mallei. The gaps appeared to be congenital, aud were quite symmetrical ; all the other apparatus of the ears was normal, and the auditory nerves were of normal size and structure.

The only congenital defect known in the human tympanum is a very minute aperture, of rare occurrence, and due to the patency of the fissure of Kivinus. The tympanie deficiency in the white cat seems to be in no way ass ciated with this form of arrest.

The results of the cbiervation are interesting, though the subject may perhaps be regarded as trivial, as by it the point raised by Mr. Darwin is finally established. It really is a ease, and a very well marked one, of correlated variahility, and its great interest is that the three structures affected-the fur, the iris, and the tympanie membrane-have a common origin from the epiblast. Had the defects observed in this cat been eochlear, the difficulty of anderstanding them would have theen very great, as the structures of the internal ear arise from the mesoblast, according to Balfour.

Lawson Tait

UNIIERSITY AND EDUCATIUNAL INTELLIGENCE

Cambridge.- The recent recommendations of the General Bnard of Studies have all been passel. These include the appointment of a Professor of Pathology next term, of Readers in several subjects, including Comparative Philology and Botany, of University Lecturers in connection with Special Boards, ineluding Medicine (four), Mathematics (five), Biology and Geology (six), History and Archrology (five), Moral Science (one),
and of a number of Demonstrators and Assistants. Plans for new buildings for Comparative Anatomy, Botany, and Mechanism are to be obtained.
Dr. Besant will lecture on Analysis (Schedules 1I. and III.) during two terins; Mr. Pendlebury on Analytical Optics, next term, and on Laplace's and Bessel's Functions in the Easter Term; Mr. Webb on Elementary Rigid Dynamics in the Easter Term, and on Higher Dynamics in the Long Vacation.
Inasmuch as the Univer-ity Table at the Naples Zoological Sation has been constantly occupied by students of animal morpholozy, and there are students in physiology and botany for whom stady at Naples is very desirable, it is proposed to extend the advantages of s udy to students of biology generally. Dr. Dohrn has nuofficially expressed his willingness 10 receive, when desired, two members of the University at a time for a payment of 100 . instead of 75 . a year.
It is hoped that the new Biological and Physical Laboratory, connected with Newnham College, which is being fitted np in Downing Place, may be ready for use by the beginning of next term. The nearness of the site to the new museums will enable stodents of Newnham to attend professors' lectures there and carry out practical study at the laboratory with the least possible loss of time.
With regard to the statement made last week that "St. John's does not as yet open any of its advanced lectures to other than its own students," we are informed that the advanced lectures have for a long time been open to members of the Univerity, and lectures are provided in some subjects not lectured on elsewhere. The sentence in the report was to the effect that the list for next year was not yet issued. It has now appeared, and no less than six courses of open lectures are announced for the remainder of the academical year.

New Zealand. - The Queen has been pleased to direct Supplementary Letters Patent to be passed under the Greal Seal grantin z and declaring that the Degrees of Bachelor and Doctor in Science granted or conferred by the University of New Zealand shall be recugnised as Academic distinctions and rewards of merlt, and be entitled to rank, precedence, and consideration in the United Kingdom and in the Colonies and Possessions of the Crown throughout the world, as freely as if the said Degrees had been conferred by any University of the United Kingdom.

SCIENTIFIC SERIALS

THE American Naturalisf for November, 1883 , contains:The Pre-cambrian rocks of the Alpr, by T. Sterry Hunt.-The achenial hairs of Townsendia, by G. Macloskic.-The hibernacula of herbs, hy Aug. J. Foerste.-The hair-sac mite of the pig, by Prof. R. Ramsay Wright.-The geology of Central Australia, by Edward B. Sanger.-The nnmber of segments in the head of winged insects, by A. S. Packard, jun.

Grgenbaur's Morphologisches Fahrowch, Bd. ix., Heft 1, contains :-Researches on marine Rhipidoglossa, hy Dr. Béla Haller, No. 1 (plates t to 7).-On developmental relationships between the spinal marrow and the spinal canal, hy Dr. W. Pfitzner,-Contribution to the comparative anatomy of the posterior limhs in fishes, part 3, Ceratodue, hy Dr. M. Davidoff (plates 8, 9). -On some anatomical marks of distinction between the house dog and the wolf, by Prof. H. Landois.

Rivista Scientifico-Industriale, October 23, 1883.-On the influence of static electricity on the needle, by Prof. Michele Cagnassi.-Experiments with the radiometer (continued), by Prof. Constantino Rovelli.-On the conditions which determine the least and greatest deviation of a ray passing through a prism, by Prof. G. Buzzolini.-On the employment of copperas in testing iodides blended with alcoholic bromides and chlorides, by Dr. Alfredo Cavazzi. - On the advantages that may be derived by medical jurisprudence from entomological studies, especially in determining the approximate date and cause of death, by P. Megnin.-Note on the Titanophasma fayoli, a new fossil insect found in the carboniferous formations of Commentry, Allier, by the Editor.

SOCIETIES AND ACADEMIES London

Royal Society, November 15.-"On Sceparnodon ramsayi," a fossil mammal from Australian Pleistocene deposits, by Prof.

Owen. The first indieation of this species was transmitted to the author, in 1881, in the form of casts of detached teeth, all representing an anterior incior, the most entire specimen being $5 \frac{1}{2}$ inches in length, 35 mm . in breadth, with uniform thickness of 8 mm ., the tooth, slightly curved, with persistent pulp-cavity at he base, and a sharp chisel-shaped cutting margin at the opposite end. The author deferred notice of this indication in hope of receiving a specimen of the tooth itself. This was needed in order to make the requisite microscopical researches as to structure, the wombat and some small rodents alone possessing, in Australia, ever-growing scalpriform incisors, but markedly differing in shape as well as size from the fossil. Prof. Onen was favoured by receiving, in the present year, from the bed of King's Creek, Queensland, a tooth, identical in character with the cast, and the present paper records the results of his scrutiny of structure. They led to the conclusion of the former existence in Australia of a mammal with rodent upper incisors, as in the wombat, but of distinct shape, and indicative of a species as large as a tapir. The microscopic characters of both dentine and enamel weighed in favour of the marsupial affioities of Scepurnodon. The author referred to the fact that the first indication of the genus Thylacoleo was a single carnassial tooth suhmitted to him in 1833 by Sir Thomas Mitchell, and a similar evidence of Diprotodon was an incisor brought by the same explorer from the caves he had discovered in the district named, after the Colonel's old commander, "Wellington Valley."

At the tame meeting Prof. Onen gave a minute description of a fos il humerus which had been transmitted to him by Mr. Ramsay, F.L.S., who had discovered it in the breccia cave in "Wellington Valley." The bone was partially mutilated, but gave sufficient evidence of its having come from a Monotreme, with so close a conformity, save in size, with that of the existing Echidna hyotrix, as to lead to its reference to an extinct species of that genns. It, however, far surpassed it in size, exceeding, as it did, the corresponding bone in the larger Monotrematoves ant-eaters which have been found living in New Guinea, Drawings of the sabjects of both pafer, accompanied the text.

Geological Soclety, November 21.-J. W. Hulke, F.R.S., president, in the chair.- The following communications were read :-On the skull and dentition of a Triassic manmal (TrityLodon longervus, Ow.) from Sonth Africa, ly Prof. Owen, C.B., F.R.S. The specimen described in this paper formed part of a eollection containing remains of some of the known SouthAfrican Triassic reptilian genera, and agreed with them in its mode of fossilisation. It was submitted to the author by Dr. Exton, of Bloemfontein. The specimen is a nearly entire shull, wanting only the hinder part, atd it measures about 38 inches in length, from the broken end of the parietal crest to the point of the united premaxillaries. The upper surface shows the anchylosed calvarial portions of the parietals, and the frontal bones divided by a suture; the contiguous angles of these four bones are cut off, so as to leave an aperture, occupied hy matrix, which may be a fontanelle, or a pineal or parietal loramen. The frontals form the upper borders of the orbits, which are bounded in front by the lacrymal and malar bones, and were not completed behind by bone. Eich frontal is narrowed to a point at the snture between the nasal and maxillary. The nasals are narrow, hat widen in front to form the upper border of the exterior nostril, which is terminal; and is completed by the premaxillaries. The maxillaries are widened posteriorly, then constricted, and again wideaed before their junction with the intermaxillaries. The teeth include a pair of large ronnd incisors, hroken off close to the sockets and showing a large pulpcavity, surrounded by a complete ring of dentine, which is covered by a thin coat of enamel on the front and sides. At 2 mm . behind each of these teeth is the socket of a maller premaxillary tooth; this tooth apparently had a thin wall and a pulp-cavity relatively larger than in the anterior tooth. It is separated by a ridged diastema from the series of six molar teeth on each side, the first of which has a sub-triangular crown with the base applied to the second tooth. The latter and the four following teeth are nearly similar, subquadrate in form, with the crowns "impressed by a pair of antero-posterior grooves, dividing the grinding surface into three similarly disposed ridges, and each ridge is sntdivided hy cross notches into tubercles. Of these there are, in the second to the fourth molar inclusive, four tubercles on the mid-ridge, three on the inner ridge, and two on the oater ridge." The author discursed the relations of this new form of mammal, especially as indicated by the structure of the teeth, which he showed to resemble those of Microlstes, from
the Keuper of Würtemberg and the Rhattic of Somersetshire, and those of the Oolitic genus Storrognathus, the former having on each tooth two multituherculate ridges, and the latter three ridges, hut with only two tubereles on each. The fossil presents no characters to show definitely whether the animal it represents was a placental or a non-placental mammal.-Cranial and vertebral eharacters of the crocodilian genus Plisiosuchus, Owen, hy Prof. R. Owen, C.B., F.R.S. In this paper the author, with the view of showing that the Kimmeridgian Stenessaurus mansfiii, Hulke, really forms the type of a distinct genu*, discussed the characters by which Cuvier divided the fossils referred by him to the Crocodiles into three principal groupe, to which Geoffroy St.-Hilaire gave generic names, and those hy which the latter author afterwards distinguished his genus Stencosaurus, ineluding Oolitic forme, from the Liassic genus Telcosaurws. From his exposition of these characters the author conclnded that the above-named species does not belong to Steneosanrus, Geoff., and he proposed to make it the type of a new genus, Plesiosuchus, characterised hy the convergence of the frontal bones to a point nearer the apex of the skull than in Stencosaurus, by the extension of the gradually attennated nasal bones lnto a point penetrating the bind border of the nostril, and hy other peculiarities of the skull, teeth, and vertebra. The author pointed out that this form, like Stemeosaurws, helped to hridge over the space between the Liassic Teleosanrs and the Tertiary and recent Crocodiles, even approaching nearer to the latter than the older Oolitie type.-On some tracks of terrestrial and freshwater animals, by l'rof. T. McKenny Hughes, M.A., F.G.S. The author's observations have been made on certain pits in the district about Cambridge which are filled with the fine mud produced in washing out the phosphatic nodules from the "Cambridge greensand "-a seam at the base of the chalk marl. As the water gradually dries up, a surface of extremely fine calcareous mud is exposed. This deposit is ofien very finely laminated, and occasionally among the lamina old surfaees can be di-covered, which, after having been exposed for some time to the air, had been eovered up hy a fresh inflow of watery mud into the pit. The author described the character of the cracks made in the process of drying, and the results produced when these were filled up. He also described the tracks made hy various insects, indicating how these were modified by the degree of softness of the mad, and pointed out the differences in the tracks prodace 1 by insects with legs and elytra, and hy Annelids, sueh as earthworms. The marks made by various worms and larree which hurrow in the mud were also described. Marks resembling those called Nercies and M/yrianites are produeed by a variety of animals. The groups of iee-spicules which are formed during a frosty night also leave their impress on the mud. The author concluded by expressing the opinion that Cruziana, Nereites, Crossopodia, and Pulipochorda were mere tracks, not marine vegetation, as has been snggested in the case of the first, or, in the second, the impression of the actual body of ciliated worms.

Anthropological Institute, November 27.-Prof. Flower, F.R.S., president, in the chair.-Dr. J. G. Garson read a paper on the cranial characters of the natives of Timor-Laut. The ostenlogical remains described in this paper were obtained hy Mr. H. O. Forbes from the district of Larat, and consist of a serias of eleven skulls and crania. The four male skulls are all of a round form, and resemble one another in general appearance; of the females, five correspond in form to the male sknlls in being short and broad, but the sixth differs markedly from the others in being narrow in proportion to its length.-Mr. H. O. Forbes read a pajer on the ethnology of Eastern Timor, referring especially to the great intermixture of race that has taken place, and to the occurrence of a red-haired, blue eyed race in the interior ; to the numerous dialects, many of them unintellizible at a short distance from the district in which they are spoken; to the religious rites of the people of eertain regions, conducted by a priest in what is called the Uma Lulik (ir Taboo House) with an intricate and imposing ceremonial ; to their marriage ceremonies and customs, which in ome districts remind one of the Australian totem system in the occurrence of husband elans and uife clans ; to their death and burial rites ; to their system of law and justice, under whlch, though the chief was king and judge, each freeman had the right-or took it-of private war, retaliating on the wrong-doer with his own hands for loss in his property or person. "Eye for an eye" ran their code, like our own Old English one, "and life for life, or for each fair damages." Mr. Forbes had directed special inquiries into
the alleged hahit of the Timorese in intentionally artificially distorting their infants' heads. No such custoun was found to prevail in the districts traversed by him.

The Victoria Institute, December 3.-A paper on recent Egyptological res areh in its Biblical relations was read. In it the author, the Rev. H. G. Tomkins, described the results ap to the present of those re earches which are now being wade in Egypt, alluding in warm terms to the assistance rendered him in the preparation of his summary of these results liy M. Naville and Prof. Maspero.
The Institution of Civil Engineers, November 27.-Mr. Brunlees, president, in the ehair. -The paper read was on the new Eddystone lighthouse, hy Mr. William Tregarthen Douglase, Assoc. M. Inst.C.E.

Camirtidgr

Philosophical Society, Nov. 26.-The following communications were made to the Society :-On the mear urement of eleetric currents, by L.ord Rayleigh. The author referred to the method of meauring currents hy the silver voltameter as suitable for currents from '05 ampere to 4 amperes, and stated that the electrochemical equivalent of silver is determined at the Cavendi h Laboratory was 1.119×10^{-2}. A second method was described, snited for larger currents; it consists in lalancing the difference of potential between two foints in the circuit through which the current is running against the effects of a standard cell working through a large resistance such as $10.0 c 0$ ohms. The author suggested as a third methed the use of the rotation of the plane of polarisation of light passing through a piece of heavy glass, round which the current circulates in a coil of thick wire. A current of 40 amperes vill produce a rotation of 15° if the coil have one hundred turns.-On the measurement of temperature hy water-vapour pressure, hy Mr. W. N. Shaw.-On some mensurements of the well-known dark rings of quartz, hy Mr. I. C. McConnel. - On the origin of segmentation in animals, by Mr. A. Sedgwick.

Edinburgu

Royal Soclety, December 3.-The Right Hon. Lord Moncreiff, president, in the chair.-This being the opening meecting of the iorst session, it had been the intention of the Preident to give a Review of the Hundred Year's History of the Society; but, on account of his indisposition, the meeting permitted its portponement. Mr. Robert Gray, one of the vice-pre-idents, occupied the chair during the remainder of the evening,-Prof. 'Tnrner communicated a paper by Prof. Haycraft on the limitations in time of cunscious sensation. The paper contained the result of experiments on the limitations in tirre of tactile and thermal sensation", and dealt also with the limitations in the case of the different senses --Prof. Tait read a laper hy Mr. W. F. Petrie on the old English mile. The old mile was longer than the present, and consisted of 5000 feet of 13 inehes. It seemed to be identical with the old French mile. The furlngg had no connection originally with the mile, which was modified to suit the former.-Mr. Patriek Geldes read a communication on the re-formation of the cell theory. In a second paper, in order to explain muscular contraction, he advanced an hypothesis based on the existence of surface tension in fluids.

Dublin

Royal Society, November 19.-Section of Physical and Experumental Seience: G. Johnstone Stoney, F.R.S., vicepresident, in the chair.-Prof. W. F. Barrett read a paper on hearing-trumpets and an attempt to determine their relative efficiency hy physical means, With the view of obtaining a steady and comparable source of sound of a piteb and quality resembling the hnman voice, a reed pipe was inclored in a padded box with an opening on one side, and hlown by a steady current of air from a hilder, a manometer showing the pressure, which was kept con-tavt. The distance at which sound from this source cea-el to be audible was noted, and in cases of slight deafness a sliding shnuer was added. In other arrangements devised by the author, the principle of interference of sonorous waves was utilised, the degree of deafness being estimated hy the departure from complete interference. An induction balance, in which the interrupter was a C tuningfork, was also tried; as also a siren driven by a f-lling weight and hlown hy a current of air at constant pressure; but none of these arrangements were so simple and uniform as the reed. An attempt was made to test the value of ear-trumpets by means of a senstive flame. The flame was, however, les-sensitive than the ear to sounds of the pitch of the human voice. The anthor
contended that the main object of a hearing-trumpet shonld he cleamess, not loudness, and for this purpose the portable whicpering tube was undoubtedly the best for conversation. For other purposes the principles laid dowa by Lord Kayleigh sbould be more generally adopted, the telescopie jointed instrument of Kradual slope being the nearest approach to theory. - Prof. G. F. Fitugerald, F.R.S., read a paper on the quantity of energy communicated to the ether by a variable current. The auth ir shows that an alternating electric enrrent, if it produces radiations of the nature of light, as it would do npon the most probable interpretations of Maxwell's electromagnetic theory of light, wonld radiate energy equal to $m^{2} \times \mathrm{N}^{4} \times 10^{-29} \mathrm{ergs}$ per second, where m is the magnetic moment of the current and N is the number of its alternations per second.-W. F. Wilson exhibited a simple form of reflecting spectroscope with a diffraction grating, whieh was described by Howard Grabh, F.R.S. By employing a pair of mirrors, by which the light is twice reflected, the necessity for having an instrument of inconvenient length is avoided.-K. J. Moss, F.C.S., exhibited a remarkable specimen of erystallised stibnite from Japan. The crystallographic characters of similar specimens have recently been described by E. S. Dana. Mr. Moss found that this stibnite may he regarded as practically pure antimony tersulphide ; a very minute trace of iron is the only impurity present in appreciable quantity.
Sectinn of Natural Seience : 1rof. V. Ball, F.R.S., in the chair.-H, St. John Brooks, M. B., read a paper on the osteology and arthrolngy of the haddock (Gadus aglf/inus). The chief feature of this paper was a description of the articulations of all the bones and the attachments of the variou: ligaments. The author drew attention to the beautiful arrangement of the articulations of the upper jaw of fishes which is seen to great advantage in this form. I.igaments passing from the palate bones to the premaxillie of the opposite side are crosied by others passing from the ethmoid to the maxills, the whole forming a lattice like arrangement. By these ligaments the componeat parts of the apper jaw are kept in eontact with a nodule of cartilage, which lies between them and the ethmoid.-Prof. V. Ball, F.R.S., exhibited and drew attention to a conglomerate of quartz pebbles which is found at the base of the chalk in certain parts of the county of Antrim, and which appeared to hiun to be inconsistent with a deep-sea origin. He also exhibited bones of red deer, ox, pig, fragments of pottery and flint flaker, \&c., from a kitcben midden at White Park, Bray, Co. Antrim. Among : pecimens recently eontributed to the Geological Museum, samples of spherical phosphorite from Southern Kussia were exbibited. One of them, which had been sliced, shows a beautifully radiated internal structure ; this, it is hoped, will be figured and pablished with details shortly.-Dr. W. Frazer read a note on bones and shells obtained from drainage cuttings at Sandymount.-G. Johnstone Stoney, F.R.S., ex hibited cores of limestone found in the drift overlying Camhrian slates near Greystones, Co. Wicklow. Water perculates through the drift, and, on reaching the Cambrian slates, makes its way horizontally through the lowest layer of the drift, corroding the limestone boulders, which form one of its constituents; cores of solid limestone are frequently found of some fantastic form in the heart of a friable mass which remains in the part of a boulder that has been acted on by water charged with carbonic acid. This shows that the corrosion is still actively progressing, and that the drift is here undergoing a change which is rapid from a geological point of view. The water allo washes away the fine particles of clay, and the result of the change is to alter a elay drift containing a great number of lime, tones with some stones of other kinds into a gravel containing chiefly these other stones. A. G. More, F.Z.S., exhibited as a specimen recently acquired by the Natural History Museum the inountain Goat (Masama americana) from the Rocky Mountains. This animal is remarkable for the abundance of its soft white hair ; it has the general appearance of the goat, and its - horns somewhat resemble those of the chamois.

Paris

Acaderny of Seiences, December 3--M. Blanchard, president, in the chair.-Note on the universal hour proposed by the Conference in Rome, by M. Faye. The author urges several objections against the adoption of Greenwieh astronomical time and meridian, calculating the longitudes from 0 to 24 h . east, which might be convenient for navigation and astronomical purposes, but unsuitable for railways, telegraphs, government offices, and the publie generally. For the formula, uni-
versal time $=$ local time $-(L+t 2 h$.$) , where L$ indicates the longitude calculated east from Greenwich, he propases to substituie, universal time $=$ loeal time -L . The formula would thus be simplified by the suppression of the last term, and, instead of Greenwich astronomien tine, the civil honr would be adopted as the universal hour. Thus would be avoided the inconvenience of disagreement between loeal and univeral time, which would otherwise be felt precisely in the most densely peopled regions of the globe.-Remarks on M. Piarron de Mondévir's so-called mechanical problem of the two chains, by M. H. Resal On preventive inoculation with artificially developed charbon germs attenuated by the method of rapid heating, by M. A. Chauvean. Of a large number of sheep inoculated with germs heatei to $+80^{\circ}$ C., not one succumbed, although further tests showed that the germs themselves had lost noue of their prolific vitality.-Summary reports on the re-ults of the French mission to Cape Horn : actronomial observations by M. H. Courcelle.Seneul ; terrestrial ma gnet ism, magnetie registers, and photographie work, by Lieut. E. Payen; magnetic observations made at Orange Bay by M. Le Cannellier ; risumw ${ }^{\prime}$ of the meteorological observations niade at Orange Bay bet ween Septem. ber 26,1882 , and September 1, 1853 , by lieut. J. lephay.-On the absorption liue produced by diluted blood in the violet and ultra-vijlet region of the spectrum; photographie reproduction of this line in solar light, by M. J. L. Soret.-On the secular variation in the direction of terrestrial magnetie force at Paris (continued), by M. L. Descroix.-Description of an "aeroplane" eonstructed for the purpose of furthering aersal navigation, by M, de Sanderval,-Supplement to a previous note on M. Tisserand's formula eonnected with the celestial mechanism, by M. Radau.-Determination of the mutual distances of the three masse. in the mechanical problem of the three bodies, by M. A. Lindstedt. -Theory of the ricocheting action of spherical projectiles on the surface of the water, by M. E. de Jonqnieres. - On the theory of Abelian integrals, by M. E. Goursat.-On a theorem of Riemann connected with the functions of independent n variables admitting $2 n$ systems of periods, by MM. H. Poincaré and E. Picard.- On the geometrical curve of the fourth degree with two double points, by M. Huabert. -On the integration of a homogeneous rational function, by M. C. Stéphanos.-Measurement of the difference of potential of electrie layers on the surface of two liquids in conta t, one illuvtration (continued), by MM. E. Hichat and R. Blondlot.-On M. De ains' optical experiment : determination of the optical constants of a birefractive crystal of one axis, by M. Lucien Lévy.-Researches on the stability of solidified superfused sulphur, by M. D. Gernez. On the artificial prodaction of spesartine (manganesiferous garnet), by M. Alex. Gorgeu-Experimental researches on the development and accumulation of saccharine (the phenomenon of "saccharogénie") in beetroot, by M. Aimé Girard.-On the acetate of biprimary bichloretted ethyl $\left(\begin{array}{l}\mathrm{ClClI}^{2}-\mathrm{ClH}^{2} \\ \mathrm{ClCl}^{2}-\mathrm{CO}\end{array}>0\right.$), obtained by the reaction of the monochloretted chloride of acetyl on monochlorhydric glycol, by M. Louis Henry.-On the eonditions suitable for accelerating the oxidation of siccative oils, by M. Aeh. Livache.-On copper as a preservative against infectious diseases, and on the absolutely harmless character of the piwders of this metal employed by workers is copper, by M. V. Burq. From his further researches the author maintains, against recent statements to the contrary, that eopper undonbtedly possesses certain prophylactie properties against several infectious maladies, and especially against eholera.- Construction of the scapulo clavicular cincture in the series of Vertebrates, by M. A. Lavocat.-On the sexnal and larval polymorphism of the plamicole Sarcopidx, by MM. E. L. Trouessart and P. Megnin.-Researches on the physiological properties of maltose (continued), by M. Em. Bonrquelot.-On the Adapisorex, a new genus of mammals occurring amongat the Lower Eocene formations of the neighbourhood of Keims, by M. V. Lemoine. - On the discovery of the genus Equivetum in the Kimmeridge clays of Bellême, department of Orne, by M. L. Crié.-On the quaternary lignites of Bois l'Abbe, near Epinal, by M. P. Fliehe. On the remarkable sunsets observed at Paris and elsewhere in France on November 26 and 27, by M. L. Renou. The author considers that this phenomenon may be counected with a condition of the atmosphere which recurs on the same day every year. Electrie disturbances have been regularly observed between November 26 and 28 ever sinee the shower of meteors, which. occurred on November 27, 1872.

Berlin

Physical Society, November 16.-The experiments with a view to determining the neutral point in the spectrum in the case of the colour-blind, which Dr. König commnnicated to the Society in March last, bave since been further prosecuted by him. With the help of the apparatus, formerly described, consisting of a prism, a movable collimator, and a telescope directed towards ihe prism's edge, Dr. König hud now succeeded in determining in thirteen different cases of colour-bliudness the place of the spectrum at which these colour-blind persons felt the impression of white- of the place, namely, which appeared to tbem exactly of the same hue as would a surface covered with magnesia and shone upon by the light of white clouds. Fach measurement was carried out eight times, and then the average taken, by which it appesred that the error In the single measurement was confined probably between ± 0.09 and ± 0.5 millionths of a millimetre. Measurements carried out with an individual for the second time after an interval of fourteen day, showed likewise the same exactness. In the case of the thirteen colour-blind persons who were examined, among them being both red- and greenblind, the neutral point lay between $\angle 91^{\prime} 7$ and $504^{\circ} 7$ millionths of a millimetre, wave-length. If the persons so examined were ranged in accordance with the wave-lengths of their neutral point, it was found that within the limits above specified they formed a fairly continuous series in which red- and greenblind persons took their places indiccrinuinately, a result in perfeet agreement with former conclusions. In his first investigations into the subject, Dr. König had further fonnd that the intensity of light exercised an influence on the situation of the neutral point, and had now further prosecuted this question by experiments on three individuals. For the graduation of the intensity of light he made use of two Nicol prisms in front of the c llimator tube, and found, in the case of all three individuals, that with increasing intensity of light the neutral point approached closer to the violet end of the spectrum. Let the wave-length be taken as abscissa, and the intensity of light as ordinate, then would the curve of the neutral points form no straight line, and would, under great increase of intensity, mount upwards almost perpen-dicularly.-Prof. Schwalbe had in the summer of this year, as in former years, visited several glacial cavities, a branch of inquiry in which he particularly interests himself. In these investigations he took special note of the cold winds issuing from fissures and clefts of the places in question. At Questenberg, for example, in the Southern Harz, he found a place where from a fissure in a steep gypsum wall of about 100 feet high, and having a sonthern situation, a wind issued with a temperature of $3^{\circ} \mathrm{C}$., while the temperature of the air immediately surrounding it was $20^{\circ} \mathrm{C}$. warmer. The temperature in the stone fis-ures was found hy him to be still lower, the thermometer often showing zero there, while in the cavities themselves the temperature he had generally observed (in July) was $5^{\circ} \mathrm{C}$. Prof. Schwalte brought out the fact of the great diffur ion of such glacial cavities. Besides two in the Harz, he had this summer counted as many as twenty to twenty-five glacial cavities, mostly quite unknown hitherto, in the Karst Mountains on the sonthern frontiers of Carniola. With regard to the explanation of this phenomenon be still held by the view formerly set forth by him, that the cold was caused by the water which had been cooled to $4^{\circ} \mathrm{C}$. filtering through the porous stone, and he deemed a resumption of Herr Jungk's experiments on the cooling of the trickling water necessary to a definite decision on the cause of glacial cavities.

Physiological Society, November 23.-In the cortex of the vertical lobe of the brain, Prof. Munk had, as is known, demonstrated that the separate groups of volnntary muscles had each of them a definite central area whence their movements could be induced. One part of this cortical area was recognised as the central seat of the muscles of the nape and neek, and after these two groups had been topically distinguished, Prof. Munk conjectured that the volnntary muscles of the larynx and jaws would be found to have their centre in the section of the membrane appropriate to the jugular muscles, Dr. H. Kranse had put this conjecture to experimental proof, and found it confirmed. On bending back a dog's epiglottis and drawing forward its tongue, the larynx could very readily be observed by daylight, and when the jugular part of the cerebral membrane was arritated by moderate electrical currents, he invariably noticed the
rie cf the larynx, the movement of the chordx vocales to a place situated in the middle between expiration and phonation, the rise of the palate, the contraction of the constrictor pharyngia, and movements of the hindermost parts of the tongue. That the part of the membrane in question was the centre of the laryngeal movements was further confirmed by experiments of extirpation which were performed suecessfully on both sides with ten dogs. The part of the membrane was experimented on in this way first on one side and then on the other, and after all inflammatory symptoms had disappeared, and the cerebral wounds were cicatrised or in process of cicatrisation, it was found that eight dogs had entirely lost the capability of barking, and, on attempting to bark, uttered either no sound or only a hoarse whine, such as new- born puppies emitted. In the case of the two dogs which after the operation continued capable of barking, it appeared that the excision had been made too far on the outside, or not deep enough. Scme dogs which after the operation were no longer capable of barking were, after several days, killed, when Dr. Krause searched for the nerve passages, which, in consequence of the removal of the cortical part, were degenerated. In the ganglion mamillare he found a part of the nerve fibres in a collapsed, discoloured, and degenerated state, and concluded that the fibres extending from the membranous centre of the larynx to its motory nerves passed through this ganglion. At the invitation of the President, Prof. Mank gave a brief ylan of the topography of the membrane of the cerebr:m, on which were projected the different seasible and motory nerves of the separate parts of the body. On a drawing of the cerebral surface he showed the particular sites which were the centres of seeing, hearing, feeling, and motion for the muscles of the eyes and the ear, for the face, tongue, nape, neck with larynx and throat, and for the thorax. A particular locality was also pointed out for the muscles of expiration and for those of inspiration. The centres for the extremities had not yet been experimentally demonstrated, but no doubt they were Nituated on the inside in the larfe fissure of the cerebrum, where, on account of the unavoidable profuse bleeding which oceurred, operations were impracticable.

CONTENTS

Page
Professor Stokes' Works. By Prof. P. G. Tait . 145 Royal Engineer Professional Papers. Hy Allan Cunningham.146
Our Book Shelf:-

M'Cann's "Report on the Dyes and Tans of Bengal" Wiedersheim's " Lehrbuch der Vergleichenden Ana. tomie der Wirbelthiere"147 ers to the Editor :-
Evolution of the Cetacea.-Searles V. Wood "Cosmic Duit."-Dr. Henry Rink
On the Incubation Period of Scientific Links.-James

Physical Society, November 10 --D.' J. Blaikiey
The Ophidian Genus "Simotes"-G. A. Boulenger The Remarkable Sunseta. By Prof. C. Piazzi Smyth; Hon, F. A. R. Russell ; Prof. John W. Judd, F.R.S. ; Dr. H. J. Johnston-Lavis ; Dr. Hyde Clarke; Howard Fox; Sydney Hodges; B.
E. Brodhurst; Richard M. Barrington; W. Hamilton; Elizabeth M. Pitman

The Java Eruptions and Earthquake Waves :
 153

Bicentenary of Bacteria. By Ferdinand Cohn
The Upper Currents of the Atmosphere
154 Electric Shadows. By Prof. Silvanus P. Thompson ${ }^{154}$
(With Diagrams)
156

Notes
 157
 Our Astronomical Column :-

Encke's Comet .
Geographlcal Notes 160
The November Meeting of the National Academy of Sclences

1 I
Note on Deafness in White Cats. By Dr. Lawson Tait .
University and Educational Intelligence : : : 164
Sclentific Scrials
Socletles and Academies
65

THURSDAY, DECEMBER 20, 1883

MERRIFIELD'S "TREATISE ON NAVIGATION"

A Treatise on Niavigation for the Use of Students. By John Merrifield, LL. D., F.R.A.S., F.M.S. (London: Longman and Co., 1883.)

THE author of this volume having been engaged for many years in preparing candidates for the different examinations into which navigation enters, has felt the want of a text-book embracing all that the different examining boards embody under that head, and has endeavoure:t, and we think successfully, to supply that want by the present treatise.
The work, although entitled "A Treatise on Navigation," deals only with one part, viz. that particularly relating to what is gencrally known under the name of dead reckoning, and does not touch on astronomical observation, which we presume Mr. Merrifield classes under the head of nautical astronomy, but which is really the most important part of navigation. The title therefore is somewhat misleading. Neither do we agree with the author's definition of theoretical and practical navigation; what Mr. Merrifield terms practical navigation, viz. the management of the ship, making and shortening sail, steering, \&c., is usually known as seamanship. The theory of navigation is surely the proving that by the application of certain problems the particular position occupied by a vessel can be aceurately ascertained; whilst the practice is the actually finding the ship's place by means of the instruments necessary to give the data required by the theory.

But although some small points in the work may be selected which may perbaps offend the practical navigator confident in his own ability, and consequently too much inclined to look down on the instructions of schoolmen, to whom he is far more indebted than he is generally disposed to admit, to the student this work will be found most useful : the chapters are well arranged, the exercises at the end of each ehapter are pertinent to the preceding text, and require him to digest the text in order to answer them satisfactorily. We propose, however, to offer some remarks and suggest some additions which the author may perhaps consider should another edition of his work be required.

In the description of the compass one type only has been selected-that in use in the mercantile marine. No account is given of the instruments used in the navy or of Sir William Thomson's invention. This is certainly a defect in the work, as if one instrument can be considered as of more importance than another, in the navigation of a vessel, it is the compass. Without it, notwithstanding all the other improvements which have taken place in navigation, we should be in much the same position as the seamen of old, who were afraid to venture out of sight of land. In fact we have always thought that the education of naval men so far as regards the compass, and magnetism generally, has been very much neglected, and its vast importance has hitherto not received that attention, in treatises on navigation, it deserves. Mr. Vol. xxix.-No. 738

Merrifield has made a great stride in advance, as be treats, in his ninth chapter, of the coefficients and the means of correcting the compass for the local attraction of the ship. This is a subject of great importance in the present day ; all navigators should be able to adjust their own compasses, and should have the means of doing so at their disposal, as a compass might be disabled in any vessel, and in war-ships, particularly, a general action might cause the loss of the correcting magnets of every vessel in the squadron, when, unless some officer on board could replace them, and correct the compasses, the fleet might be placed in a most critical position, more especially in thick weather or when entangled amongst shoals. We doubt if the latter contingency bas yet excited any attention, yet its importance will be at once seen if we suppose that one ship only in a squadron has had her compass disabled in action and that subsequently thick weather prevails. Such a ship endeavouring to obey the signals of the admiral might either fall into the enemy's hands or by fouling vessels in her own squadron temporarily render them unfit to renew the engagement.
Whist considering this contingency, it might perhaps be as well to draw attention to the fact that, in addition to our ironclads, many large stcam-vessels are now fitted with sirens in place of the ordinary steam-whistle. It would therefore seem expedient that some definite means should be enforced to prevent their signals being mistaken for the sirens sounded in foggy weather from lighthouses and lightships.
In describing the mode of correcting the compass for the effect of local attraction no notice is taken of the method of doing so by a single magnet-often adopted in the navy. We are, however, glad to see that Mr. Merrifield refers the student to the works of Sir George Airy and Sir Frederick Evans, to both of whom sailors owe a debt of gratitude. That we are able to navigate our large iron ships and armour-plated vessels with the same facility as the old wooden ships of the past is due almost entirely to their labours, combined with those of the late Archibald Smith, F.R.S.
In the chapters on the various methods of finding the position of a ship by dead reckoning, known as the "sailings," we do not find much improvement on the works of the older writers except in one particularMercator's sailing. This, which is the most accurate method of dead reckoning, is treated of in a separate chapter, and the formula for calculating the meritional parts for the spheroid, as well as the sphere, is now for the first time published in "A Treatise on Navigation," the only work of the sort in which we remember to have seen it before being Galbraith's "Surveying." It is true that Riddle, in a note, refers the student to Gauss's paper, published in the Philosophical Magazine for 1828, and Mendoza y Rios, in his tables, gives the meridional parts for the spheroid as well as the sphere, but does not say what compression he used in the calculation: Mr. Mcrifield, however, seems to be the first to give the subject that prominence in "A Treatise on Navigation" we think it deserves, more especially now when the steamers running from England to the United States are rea hing the extraordinary rate of 450 miles a day, and it is no unusual thing to be two or three days without obtaining astronomical observations. It therefore becomes
necessary to use the most rigorous means to calculate the position by dead reckoning, so that the errors of steering, \&c., may not be augmented by errors in calculation. Such being the case, we regret that Mr. Merrifield has omitted from the chapter on traverse sailing the warning given in Raper that, especially in high latitudes, the differences of longitude should be found on each course, instead of the departures being lumped and the difference of longitude found from the result.
In the chapter on soundings and tides (No. to), Mr. Merrifield has published the system of the late Sir Francis Beaufort for ascertaining the height of the tide at any moment provided we know the range and time of high water. This is the method generally adopted by surveyors when circumstances prevent their having a tide pole on shore, and is traditionally known amongst them, though not hitherto published. It is fairly accurate when the diurnal inequality is inconsiderable, and we can recommend it as being sufficient for all practical purposes in finding the depth of water to be added to the soundings on the chart in places like the Bristol and lrish Channels, where it is necessary, owing to the large ranges, to take the state of the tide into consideration in judging the position by soundings in foggy weather, or in calculating when a bank or flat can be safely crossed. The fact that in rivers or harbours certain winds affect the height and that atmospheric pressure also has an influence over tides may be safely ignored in the open sea, as their combined influence would probably never exceed half a fathom, but a range of from three to five fathoms can never be lightly considered by the careful navigator.

OUR BOOK SHELF

Farm Insects. Being the Natural History and Economy of Insects Injurious to Field Crops, and also those which Infest Barns and Granaries, with Suggestions for their Destruction, By John Curtis, F.1.S. Pp. 540, with 16 Coloured Plates, Royal 8vo. (London: John Van Voorst, 1883.)
THIS is simply a reissue of Curtis's classical work ; it had long been "out of print" in booksellers' phraseology. It remains the best book on economic entomology that has appeared in this country, and has certainly served as a model for the Reports of various State entomologists on the other side of the Atlantie. No other author here bas gone into the question of special injurious insects with the same care and minuteness, and it may be said that (with the exception of certain Reports issued in America) there is no similar collective work faithfully illustrated by the author's own pencil. The plates and woodcuts are in Curtis's best style, and if he had been an entomological artist only, his work would have remained unsurpassed.

Opinions may be divided as to the desirability of reissuing such a work "untouched," when so many years have elapsed since the publication of the chapters in the Proceedings of the Royal Agricultural Socicty that formed Its basis. Much and valuable additional information has been obtained since the original articles were written, and very much alteration in nomenclature has resulted from the efforts of systematists to place this branch of entomological science on a sounder footing, but the facts remain practically unaltered, and there is the charm of a certain originality in the author's style that any radical reconstruction might have destroyed.

Nevertheless we do think it a pity that some one could not have been found with sufficient knowledge and courage to re edit the book and bring it down to date. On the
other hand, this process might have resulted in the work being no longer "Curtis's Farm Insects." Its value would be destroyed if rewritten, even by the most experienced, and we think the only practicable method of dealing with it in an absolutely new edition would be by means of copious annotations, not by recasting the whole.

LETTERS TO THE EDITOR

[The Editor does not hold himself responsible for opinions expressed by his correspondents. Neither can he undertake to return, or to correspond with the turiers of, rejocted manuscripts. No notice is taken of anonymous communications.
[The Editor wrgently requests correspondents to kepp their letters as short as possible. The presswre on his space is so great that it is impassible otherwise to insure the apparence even of commumications containing interesting and novel facts.]

Evolution of the Cetacea

I AM glad to be able to assure Mr. Searles Wood that I have long been familiar with the specimen called Aalwooctus sedgwicki, preserved in the Woodwardian Museam at Cambridge, and have repeatedly examined it with much interest. It is undoubtedly Cetacean, and allied to the genus Balanopicra, as Mr. Seeley demonstrated, trough differing in smaller size and some other characters from any existing species. As, however, the light it throws upon the evolution of the Cetacea is very small com pared to the time that would have been taken up in discussiny its bearings, I did not think it worth while to allude to it in a lecture of which the length was necessarily limited. It is, after all, a mort unsatisfactory fragment, as its geological age is, and probably always will remain, a matter of doube. Aflowing, however, the utmost antiquity assigned to it, my argument would rather be strengthened than weakened. Mr. Searles Wood seems to have missed the fact that my chief contention was against the prevalent view that th: Cetacea have been derived from the Carnlvora through the Seals. Any cvidence which throws back their origin in time and derives them from some more generalised type of mammals would militate against thiview. No one can suppose that the Ungulata originated at the commencement of the Tertiary period, as we know that they were then already differentiated into great and distinct sections. Their primitive ancesiry must therefore be-looked for far back in Mesozoic times. That I thought the Cetacea existed before the Tertiary period I distinctly intimated by suggesting, as an explanation of the absence of their remaim in the chalk, that they might then have been inhabitants of great inland waters, but having had so many warnings of the fallacy of negative evidence in geology, I do not yet despair of the discovery of a veritable C'retaceous whale.
W. H. Flower

The Java Eruption

I have been greatly interested in your note on M. Renard's researches as to the composition of the valcanic material ejected during the recent ernption of Krakatoa. The aches, us stated, are those of a magma that would have produced an andesite with rhombic pyroxene. Now such an avidesite occurs at so many points, and in such immense masses, round the great Pacifiz "circle of fire," that one is tempted to ask if it may not specially characterise this important volcanic region. I will, with your permission, briefly refer to some published, and one or two unpablished, facts with regard to the distribution of this andesite (called hypersthene-andesite by Whitman Cross and Iddings, and bronzite-andesite by F. Becke) round the Pacific circle.
In the Newes Fahirbuch $^{\text {for 1881 (Beilage Band 1881, 467) }}$ Dr. Ocbbeke describes, under the term augite-andesite, a rock from the Sierra de Mariveles, Luzon. Owing to the kindness of the author, I have a section of this rock before me as I write, and I bave little doubt that the strongly plecchroic mineral is mainly, if not entirely, a rhombic pyroxene. Augite, however, is also present.

Passing to the other side of the Atlantic, we have recent evidence to show that a rock of the same type occurs along the line of the Rocky Mountains and the Andes.

In Bulletin No. I of the U.S. Goological Swrvey (1883), Mr. Whitman Cross describes a hypersthene-andesite from Buffalo Peaks, Mosquito Range, Colorado.

In the American Yournal of Sience for September, $\mathbf{8 8 3}$, Messrs. Hague and Iddings prove that the four great volcanic peaks of Mount Rainvier, Mount Hood, Mount Shasta, and Lassen's Peak, riving to heights of from 10,500 to $\mathbf{1 4 , 4 4 4}$ feet above sea-level in Californta, Washington Territory, and Oregon, are mainly composed of andesitic lavas and tuffs, in which hypersthene is the pred minating bisilicate.
In the Geological Magasine for July, $1883, \mathrm{Mr}$. Waller deceribes a similar rock from Montverrat, and I have just analysed one for Prof. Bonney from Old Providence Island in the Caribbean Sea. Prof. Bonney also informs me that he has found the rhombic pyroxene in the andesites brought by Mr. Whymper from Pichincha and Antisina,
It must not, however, be supposed that the rock is limited either to the Pacific region or to the Tertiary and Recent periods,
M. Fonque has shown that hypersthene occurs in the Santorin lava of 1866.
Niedzwiedski deseribed a hypersthene-andesite from Steiermark in $\mathbf{1 8 7 2}$. Mr. Whitman Cross and myself have recognised the rhombic pyroxene in many well known llungarian rocks, in which it had previously been regarded as augite. Lastly, thanks to kind assistance rendered by Prof. Rosenbusch, I have been enabled to show that some Palseozoic lavas and taffs of the Cheviot region are of es-entially the same type (Gool. Mag., March, June, and August, 1883).
J. J. Harris Teall

12, Cumberland Road, Kew

Diffusion of Scientific Memoirs

Prof. TAst's admirable remarks on the moral obligation laid upon " "every society whose memoirs are worthy of appearing in print " to disseminate its publications must have awakened a cordial response in the minds of many whose lot is cast in some provincial city or outlying lieal college. It is only too true that the volumes of the Cambridge Phtlosophical Transactions are "almost inaccessible" to many like myself, who often find themselves tantalised by the desire of consulting some of the classical masterpieces of research or analy is therein enshrined, which, therefore, are not to be consulted without a pilgrimage to Cambridge or to London. Yet I hardly understand why Prof. Tait should-save for the oceasion of reviewing the bappily exhumed memoirs of Prof. Stokes-have chosen the Cambridge Transactions as the one instance of "inaccessibility," since it is at least equally to be regretted that a memoir published in the Transactions of the R'oyal Sacidy of Edinourgh-and there are masterpieces of re-earch and analysis by the score irrevocably buried therein-equally nesessitates a pilgrimage on the part of the provincial reader. 1, for one, shall be extremely glad if Prof. Tait will act upon his own preseription-that simple, easy cureand consider himself "bound to disseminate as widely as possible" the menoirs which he has himself consig ed to those very inaccessible Transactions. I doubt, indeed, if even Prof. Tait has realised the difficulty besetting a would-be reader of original memoirs and researches, who is compelled to journey from one shore of England to the other in order to consult the Edinhorgh Transactions, the Cambridge Transactions, the Comples Rendus, the volumes of Pogzendorft's Annalen, or those of the Annales de Chimie of de Physique, or the nuemoirs of any one of the five great Academies of the European Continent.

Silvanus P. Thompson
University College, Bristol, December 14

Deer and their Horns

The question is often asked, What becomes of the horns shed owery year in the deer forests? the number picked up or found hardly accounts for all those which have been shed. It is said that the deer themselves eat them. It is difficult to conceive how a deer, with its toothless npper jaw, can eat a hard bone-for such is a shed horn-but it seems probable, nevertheless, that they do so. 1 picked up a horn recently in the deer forest at Dunrobin which appears to show that it has heen in great part eaten away; and this, I think, was the opinion of the members of the Zoological Society to whom I exhibited it last Monday. On inquiry from the head-keeper at Dunrohin, Mr. James Inglis, 1 find that it is the general belief that the deer do eat the shed horas, whilst the appearance of the specimen here referred to, confirms the popular belief. The marks on it are such as would be made by the broad incisors of the lower jaw, and the appearance generally suggests that the horn has been
gnawed and mumbled by the catting teeth of the lower and the to thless gums of the upper jaw. It would appear, therefore, I think, that deer do eat some at least of the shed horns, and this

Gnawed
Red deer's hom, eaten (by other deer), picked up in deer forest, Suther land. $\mathrm{s}^{8} \mathrm{~F}$. A young stag's horn.
is rendered the more probable by the fact, according :o Mr. Inglis, that there are no foxes or other a nimals in thi- particular forest to account for the mischief.
J. Fayrer

December 8
" I BEG leave to inform you that I am unable to say from personal knowledge whether it is the stags or hinds that eat the shed horns in the forest. I have never seen either eating 'orns, but I have no donbt they do so, probably both stags and hinds.
"I have never known dogs to eat deer-horns, and we have no foxes in our forest, and very rarely any dogs are to be seen in it ; 'even although they should eat them,' the 1 umber of pieces we find all the year round, nearly all partially eaten, leaves no room to doubt that no other animal could have eaten them. I think they commonly eat them after they have been lying exposed to the weather for some time; the horns are then softer from exposure.
"In every ease that I have seen, they commence at the top or point of the horn, and eat down towards the root or burr ; the latter part is often left uneaten. As soon as I can coliect a few syecimens I will send them to you.
" We often find burns entire without any marks of teeth on them, bnt those are mostly not long shed. I have also got horns that had apparently lain for years without any marks on them. But of course no one would expect all the shed horns to be eaten.
" I am sorry that I cannot give you more information, and I am also sorry that as yet I have not been ahle to collect more information than 1 know myself, but when I have any fresh evidence I will let you know.
"James Inglis
" November 18 "

Sprengel on the Fertilisation of Flowers

1n Nature, vol. xxix. p. 29, is a letter from Prof. Hage.a of Cambridge, Mase, calling attention to the fact that Sprengel's treatise on the structure and fertilisation of flowers was not unappreciated in his own day. Now it so happened that only a week or two before reading this I took up by ehance the "In. troduction to Physiological and Systematical Botany," by Sir James Edward Smith, the American edition, dated 1814. On p. 208 the author says :-
"Sprengel has ingeniously demon trated, in some hundreds of in tance, how the corolla sarves as an attraction to insects, indicating by various marks, somelimes perhaps by its scent, where they may find honey, and accommodating them with a ennvenient re ting-place or shelter while they extract it. This elegant and ingenious theorv receives cunfirmation from almost every flower we examine, Proud man is disponed to think that
'Full many a 6 , wer is bim to blash uaveen.'
because he has not deigned to explore it; but we find that even the beauties of the most sequestered wilderness are not made in vain. They have myriads of admirers, attracted by their charms and rewarded with their tressures, which very treasures would be useless as the gold of the miser to the plant itself, were they not thes the means of bringing incects about it."
It seems to me that this is a pretty decided indorsement of Sprengel's views. W. Whitman Bailey

Brown University, Providence, Rhode Island, U.S.A.,
December 4

Salt Rain and Dew

I sent Mr, H. N. Draper's letter (Nature, vol. xxir. p. 77) to my father-in law, Dr. Petzholdt, of Dorpat University, who has made a special study of South Russiv, Caucasus, Kussian Turkevan, \&c., and his reply is that it is a fact long known to chemists that the aqueous vapour in the atmosphere due to the evaporation of sea and salt-lake waters invariably contains claloride of sodium, which is precipitated to the ground by rain and dew. Dr. Petzholdt is not aware, however, that the phenomenon is more striking on the coasts of the Caspian and Aral than in other localinies. In the Annalen der Chemic und Physik, vol. xxxv. P. 329, Liebig writes: "All the rain water which fell in Giessen (Hesse) during two years, in seventy-seven rainfalls, contained salt."
F. Gillman

Quintana 26 (Barrio Arguelles), Madrid, December 6

Lunar Rainbow

About 6.20 this evening I was fortunate enough to observe a fine lunar rainhow. Previous to its appearance there was a halo caused by a band of cirro-strati, which gradually developed into a crescent-shaped rainbow, which, after disappearing for a minute or two, again was observed, only circular, finally fading away as the clouns di*persed about 6.40 .

Beckenham, Kent, December iI

AT 1.30 on the morning of the 12 th inst., during the progress of the storm, I looked out of the window in a north-easterly direction and observed a beautiful lunar rainbow. The arc at first was complete, and faint traces of prismatic colours, especially on the outside, were noticeable. A portion in the midतle having for a moment disappeared, the omplete arc again again became vi ible, but with only a whitish colour.
M. F. Dunlor

Greenwich, December 15

PROFESSOR NILSSSON

THE oldest naturalist in the world, as respects both age and the priority of his writings, has now left it.
S. Nilsson of Lund, in Sweden, was born in 1787 , and therefore was nearly a centenarian at the time of his death. His earliest publication was in 1812 , being a paper on the various methods of classifying the Mammalia; and in every subsequent year he enriched the s ientific literature of his own and other countrics. The Anwals and Magazine of Nafural History and the Reports of the British Association for the Advancement of Science, for instance, contained several articles from his experienced pen. He especially devoted himself to the fauna of Scandinavia, and became the pioneer of that host of naturalists who have so ably distinguished themselves by similar researches and publications. He was a z oologist, palaontologist, anthropologist, ethnologist, and antiquary. Nihil tetigit guod non ornavil.

His works consisted chiefly of scattered papers ; but in 1822 he published his "Historia Molluscorum Suecix Terrestrium et Fluviatilium," which has still a standard
reputation. As it did not include the marine or Baltic Mollusca, the gap was twenty-four years afterwards more than filled up by the eminent Prof. Lovén ; and that department of the Scandinavian fauna has now, through the continual labours of the late Prof. Sars and his no less eminent son, Dr. Danielssen, Mr. Herman Friele, the Fraulein Esmark, Dr. Westerlund, the late Mr. Malm and his son, Prof. Steenstrup, the late Dr. Mörch, Dr. Berg, Dr. Collin, and many other conchologists, received as great a degree of attention as has been bestowed on any region of the earth's surface and its circumjacent seas.

The subject of this memoir was, at the last-mentioned date (1822), Regius Professor in the Academy of Lund, and the Director of the Museum of Natural History there. One of his former pupils, Prof. Otto Torell, is well known to all naturalists by his exploration of Spitzbergen, and his present position as the Director of the Geological Survey of India.

We ought to be thankful in recollecting that other veterans of science are still among us, viz. Professors Owen and Milne-Edwards at the age of eighty-three, and Dr. Isaac Lea, in his ninety-third year. The study of natural history is evidently conducive to longevity.
I. Gwyn Jeffreys

SEMITICO-OCEANIC LINGUISTIC A FFINITIES

TO the Transactions of the Royal Society of Victoria for May, 1883 , the Rev. D. Macdonald contributes a paper, in which he endeavours to establish the identity of the Oceanic and Semitic languages. This is announced as an important discovery both ethnologically and from the theological standpoint. It clears up, we are told, "the hitherto impenetrable mystery surrounding the origin of the Oceasians," because "the Semitic language could only have been carried into Oceania by Semites from the Semitic mainland." It also disposes of the newfangled "evolution theory," which draws support "from the existence of savages and the supposition that they are descended from 'hairy quadrupeds,' . . . for it shows, as to one of the greatest bodies of savages, that they are descended from the most renowned and civilised people of antiquity." Certainly these are weighty conclusions, which, if established, would fully justify the further inference that "this discovery is more important on the whole than that of the Assyrian or Euphratean inscriptions deciphered of late with such marvellous ingenuity."

By "Oceanic" the writer understands all the languages except the Australian current in the Indo-Pacific insular world. These he evidently regards as constituting a single linguistic family, the Malayo-Polynesian, "comprising the Malagasy, Malayan. Polynesian, and Melanesian, better called the Papuan." His philology has thus not got beyond the days of Forster and Marsden, or the earlier writings of Prof. Whitney, all of whom are appealed to in support of this now exploded theory. The readers of Nature need scarcely be reminded that from the Malayo-Polynesian must henceforth be detached all the strictly Papuan and Melanesian tongues, as constituting a fundamentally distinct order of speech, itself doubtless embracing many stock languages. Hence the same reasoning process that establishes the identity of Semitic and Oceanic would also establish the identity of Semitic with any other stock languages wherever spoken. The process thus proves too much, that is, proves nothing.

Although Semitic is here compared generally with the whole of the heterogeneous "Oceanic" group, it is remarkable that Efatese is taken as the chief point of comparison, not that this is claimed to be a typical member of the Oceanic group, but merely because it happens to be the dialect with which the writer is most farmiliar. Now in Efate, a small island about the centre of the New Hebrides, there is a good deal of linguistic confusion, strictly Polynesian (Sawaiori) dialects being
spoken at the Polynesian settlements of Mel and Fil, while Melanesian idioms prevail elsewhere. But from the examples adduced, and especially from such agglutinating forms as mifd́ngu, mitdma, mifdna $=\mathrm{my}$, your, his, eye (mdfa $=$ eye), it is obvious that the Efatese in question is not an Oceanic (Malayo-Polynesian) dialect at all, but a strictly Melanesian tongue affccted by Oceanic influences. The language on which the author mainly relies is consequently useless as a point of comparison between the Semitic and Malayo-Polynesian families.

The actual relation between these two families is again stated to be "that of an ancient to a modern language, as Latin to French, Saxon to English. This implies that we shall find the Oceanic, as compared with the Semitic, characterised by phonetic and grammatical decay, \&c." Doubtless there is in Oceanic, as in all linguistic groups, abundant evidence of decay. But, as compared with the Semitic, it must be regarded not as a modern, but as an almost infantile, form of speech. Semitic stands in some respects on a level with, if not even on a higher footing than, Aryan itself, as regards its grammatical evolution, whereas in Malayo-Polynesian the verb is not yet clearly differentiated from the noun. Thus even in Samoan most of the so-called verbs are merely nouns modified by detached relational particles, and, like the adjectives, forming reduplicate plurals. Compare nofo $=$ to sit, pl. nonofo, with tele = great, pl. tefele. This instance alone will satisfy the ordinary linguistic student of the prodigious gulf that separates the Oceanic from the Semitic with its highly complicated system of verbal conjugation.
And how does the writer propose to bridge over this gulf ? Mainly by a string of words taken without method from any given Oceanic language, and compared with any member of the Semitic group to which it may happen to bear some faint resemblance in sound if not in sense. No attempt is of course made to establish some general preliminary system of "lautverschiebung," without which all such comparisons are absolutely destitute of any scientific value. They resolve themselves mainly into onomatopceic forms, the common property of all articulate speech, or into some of those numerous etymological curiosities which can always be found by the diligent seeker, but which are such terrible pitfalls for the unwary.
Most of the Hebrew terms themselves ate moreover taken either in secondary and later forms, or else in secondary and later meanings, forms and meanings which are consequently useless for the purpose of comparison between the organic Semitic and Uceanic languages. Thus the Efate mifaku $=$ to fear, is compared with the Hebrew dag. But this dag , or rather däag (K_{N} 7, Jer. xvii. 8), is a cumparatively modern form of an older daab (2×7), which primarily means $t o m e l t$, and which neither in sense nor sound shows any further resemblance with the Melanesian mitaku. This is only one instance from among many. The further back these supposed parallelisms are traced, the more divergent becone the lines, until at last they fade away into parabolic curves, and leave the gulf between these linguistic systems more 1 m passable ithan ever.

Mr. Macdonald does not expressly mention the "lost tribes." But it is on these tlimsy grounds that, in a slightly incoherent concluding sentence, he claims to have rediscovered in the South Seas a lost Semitic people, "their language full-orbed and in all its living vigour" !
A. H. Keane.

AMERICAN WHEAT

THIS is a pamphlet issued by the Chemical Division of the Department of Agriculture, U.S., and is further specified as Bulletin No. t. It may be described

[^23]as an elaborate monograph upon the composition of American wheat, and the subject is handled with great thoroughness, although the value of the result obtained falls considerably short of being startling, it is a specinen of painstaking analytical work which may form the basis for generalis tions of value in the hands of able agriculturists and statisticians.

The variation in the composition of the wheat grain itself as affected by climate is rendered evident, and a comparison is instituted between the composition of European, American, Egyptian, and Au-tralian wheats. The author in the first place produces elaborate tables of analysis, showing the composition of numerous varieties of wheat. Secondly, he considers the composition of the typical or average wheat of each of the American States. Lastly, he compares American wheats with those produced in other quarters of the globe. Among this mass of analyses it is difficult to arrive at conclusions, and there is some danger of falling into error. Mr. Clifford Richardson finds that American wheats are drier than European wheats in the proportion of to' 27 to 14 per cent. of moisture. The percentage of dry matter is consequently much higher, and the grain is proportionately more valuable. The carbohydrates average 72 per cent. instead of 68 per cent. as in the case of English wheat for example. Theamount of fibre is also less in American wheats. The ash constituents are most abundant in wheat from newly cultivated tracts, and on old worn out lands both the ash constituents an i nitrogen are considered to have diminished.

American wheat is, however, deficient in albuminoids to a degree which appears to disconcert Mr. Richardson more than we think it need. In American wheat we evidently have a small grain, specially free from fibre (bran), peculiarly dry, very rich in carbohydrates and oil, but deficient in albuminoids. Erropean wheats sometimes contain $19^{\circ} 5$ per cent. of albuminoids, and ordinarily 13 per cent. American wheats contain upon an average 11'95 per cent. of albuminoids, but in Oregon and on the Pacific coasts only 8.6 per cent. Mr. Richardson seems 10 overrate the importance of this fact. He appears to be in doubt as to the true importance of the albuminoids when he says, "The albuminoids are regarded, and probably rightly, as the most valuable part of the grain." He might, however, have been led by his investigations to doubt how far a high percentage of albuminoids is the best indication of quality in wheat. First, Australian and Egyptian wheats are both somewhat deficient in albuminoids, and are yet known to be remarkably fine. He also notices that while Oregon and Californian wheats consain eomparatively low amounts of albuminoids, the grains are large and handsome. He further points out that the proportion of albuminoids in spring wheats is higher than in winter wheats, although he fails to notice that all wheatgrowers know that winter wheat is better than spring wheat. Having concluded that American wheat is at fault in this particular, he endeavours to explain why such is the case with a view to remedying the defect. So far from being a fault, the richness of American wheats in starch, and the comparatively smaller proportion of glutin, appears to us as indicative of its high quality. "Tail" corn contains more glutin than "head "corn, and badly matured grains are usually rich in this important constituent. A little consideration as to the constitution of a grain of wheat will show that the glutin is not the best criterion of value. The outside layers of the grain contain the glutin, and then honeycomv cells inclose the starchy interior. This outer portion of the kernel is the first to ripen while growth still continues along the axis and in the centre. The fully matured grain, in fact, becomes like a well-packed trunk, thoroughly stuffed out, and this with starch grains. If we are correct in this view of the maturing of the grain, the percentage of glutin must diminish in proportion as starch is
deposited, and increases in relative weight. We are d'sposed to think that the carbohydrates, and not the albuminoi is, must be taken as the true criterion of quality in wheats, and that, judged by this test, the Americans have no need to fear that their wheats are inferior to those of Europe.

The author finds a difficulty (p. 33) in accounting for the small proportion of water in American wheats. Any agriculturist would have been able to tell him that welldeveloped, thoroughly matured, and well-harvested wheat always contains a less proportion of moisture than wheat in an opposite condition. It is due partly to simple drying, but also to the fact that good wheat is thoroughly filled up with starch cells (carbohydrates), and that there are no fissures left for moisture or air to lurk in. Wellfed meat contains less water than badly-fed meat for the same reason, viz, the thorough filling up of the internal spaces with fat cells. A little attention to the structure of the wheat grain would have enhanced the value of Mr. Richardson's monograph.

The fact that unripened and badly matured wheat is often rich in glutin is well known to chemists, and we are disposed to think that the richness of European wheat in this constituent is partly due to the fact that it is often defectively matured.

After treating exhaustively upon the composition of American wheat, the author proceeds to treat of flour and bread, and lastly of other cereals and maize. The pamphlet certainly repays the trouble of perusal, and indicates the vast pains which is now being taken by the United States Government in order to bring scientific knowledge to bear upon its most important industry. The wheat production of each State is watched with minute care, and the quality of the produce is subjected to analysis. It is gratifying to notice that Canadian wheat is in all respects equal to that grown in the United States.

John Wrightson
College of Agriculture, Downton, Salisbury

THE REMARKABIE SUNSETS

SINCE our last number appeared the view that the recent wonderful sunrise and sunset phenomena have really been due to the terrible eruption of Krakatoa in August last has been confirmed in the most definite manner. Material brought down by rain in Holland and snow in Spain has on microscopic examination proved to be identical with actual products of the eruption brought from Krakatoa in the ordinary manner.

The following letter to the Times from Mr. Joseph McPherson, an eminent geologist now in Madrid, must be read in connection with the letter from Holland given below :- " Desirous of obtaining positive proof of the brilliant theory put forth in your columns relative to the cause of the remarkable appearances at sunrise and sunset which have for many days excited public attention, I have this day analysed some frenh-fallen snow with the following results, namely, that 1 have found crystals of hypersihene, pyroxine, magnetic iron, and volcanic glass, all of which have been found in the analysis lately made at Paris of the volcanic ashes from the eruption of Java."

This being so, every fact connected with the displays instead of losing really gains an additional interest, and now that we know we are in presence of the work of the upper currents each date becomes of great inportance.

The extraordinary fact now comes out that before even the lower currents had time to carry the volcanic products to a region so near the eruption as India an upper current from the east had taken them in a straight line via the Seychelles, Cape Coast Castle, Trinidad, and Panama to Honolulu, in fact very nearly back again to the Straits of Sunda! The 5th of September is now fixed from two sources as the datc of the first appearance of the strange phenomena at Honolulu.

Mr. Bishop thus writes to the Saturday Press ípublished at Honolulu, September 22), which has been forwarded to us by the courtesy of the Hawaiian Consul at Glasgow :-
" 1 first noticed these peculiar appearances on Wednesday the 5 th inst. at 7 p.m., so long after sunset that ordinarily no trace of colour remains on the western sky. The sky, from south-west to west, was then covered with a lurid red and dull yellow glow, much resembling that produced by a distant conflagration. This extended to an altitude of 15° or 20°. I continued to distinguish the light till 7.25."

He then proceeds:-
"1 would note three peculiarities of the phenomenon, distinguishing it from ordinary sunset reflections, and unlike anything 1 remember to have observed before: (1) It appears to be a reflection from no cloud or straturn of vapour whatever. (2) The peculiar lurid glow as of a distant conflagration, totally unlike our common sunsets. (3) The very late hour to which the light was obscrvable -long past the usual hour of total cessation of twilight. To this may be added (4) that the centre of brilliancy was more or less to the south of west."

Mr. Bishopat once ascribed the phenomena to Krakatoa dust, and suggested more vivid appearances along the line Honolulu, Ladrones, Manila, Sunda. Of course he knen nothing of the line Panama, Trinidad, Cape Coast Castle, Seychelles, Sunda.

In a subsequent communication Mr. Bishop tells us that the after-glow remained brilliant for some time, being very brilliant on September 30. The haze stratum was visible as a continuous sheet at a height far above that of the highest cirrus, a slight wavy ripple being noticeable in its structure, always perfectly transparent and invisible except under certain conditions. A conspicuous circle of 15° to 20° radius was observed during several days, "a misty, rippled surface of haze, with faint crimson hue, which at the edges of the circle gave a purplish tint against the blue sky."

He notes that Capt. Penhallow, of the Hope, observed these phenomena in lat. $24^{\circ} \mathrm{N}$., $140^{\circ} 29^{\prime} \mathrm{W}$., on September 18.

The following notes as to the eruption itself we take from the Straits Times, as dates and times are men-tioned:-
"In the afternoon of Sunday, August 26, a rumbling sound was generally heard at Batavia, coining from the west, like that of far distant thunder varied by strong detonations, the concussion from which shook and rattled doors and windows on all sides ... especially when on the night between August 26 and 27 these phenomena steadily became more violent until 1 a.m., when a detonation was experienced which brought about such a concussion that the gaslights here were all as it were extinguished at the same moment. Many persons, anxious for their wives and families and for life and limb, hence forbore to sleep and awaited the morning in great excitement. Morning broke, but the sun, instead of shining with that clear brightness which characterises the morning hours in the East, concealed itself, and the whole sky seemed overcast. At $7 \mathrm{a} . \mathrm{m}$. on that day, August 27, the first shower of ashes was noticed here, from which it was inferred that whatever might be the volcano at work in the neighbourhood, the outburst must assuredly be appalling when ashes in showers could be noticed even in distant Batavia. The ash showers fell heavier, and before the hour of midday had struck the whole of Batavia was enveloped in thick darkness. From the lack of sunlight the temperature fell several degrees. People shivcred with cold, their discomfort being heightened by anxiety, especially when lamplight had to be used at midday. Like a mountain a great sea wave came rushing on along the whole coast of West Java, forced its way into the rivers, thus causing them instantly to rise several yards and overflow their
banks. Indescribable was the confusion into which prahus, steamboats, and tambangans were thrown in the lower city, and no pen can depict the confusion in old Batavia, resulting in especially the natives and Chinese seeking safety by a general flight. To give some idea of the tidal waves which agitated the sea and rivers, we need only say that at Tanjang Priok, in particular, the water rose ten feet within a few minutes, that it not only wholly overflowed a portion of Lower Batavia quite suddenly, but also bore fully laden prahus of twenty-five lasts and even more capacity ashore like straws. This phenomenon was repeated at 2 p.m., but not so violently. However great was the force exerted by this heavy flow, there came a moment, after it had raged its utmost, when the water in masses of immense height suddenly ebbing away vanished, and left the river beds and sea bottom a while dry. Meanwhile, the thick, heavy, and oppressive atmosphere, charged with sulphurous fumes, began to clear up somewhat in spite of the cold. It became lighter, and by the increasing light people beheld a sight seldom certainly witnessed here in the course of centuries. The streets, or rather the roads, the trees, and the houses, were covered with a wholly white layer of ashes, and presented in the land of the sun a genuine Dutch winter scene. In the meantime, when, later in the day the distant detonations had ceased and rumbles had become fainter, no one had yet the least idea of the havoc wrought by this strange natural phenomenon. By that time Anjer had been flooded and devastated by tidal waves; with few exceptions its inhabitants had been drowned in a moment of time, and on its site in the course of that disastrous Monday nothing but an extensive muddy morass could be seen."

Epitor

We have received the following communications:-

Early in the morning, on December 13, between four and five o'clock, a violent tempest from the north-west arose. The temperature in the course of the morning was rather low, viz. 4° C., and, especially between six and seven, the wind was accompanied by showers of rain, intermingled with hail. This rain was of a peculiar nature, every drop, after having dried up, leaving behind a slight sediment of grayish coloured substance. This was most distinctly to be seen on the panes of windows turned towards the west or the north-west ; the spots with which these panes were dotted did not leave the least doubt about their having been caused by the fallen rain.
The streamlets of rain, having evaporated, left on the whole surface of the windows the said grayish matter behind, so that there can be no doubt but the rain itself had conveyed from the upper air the above dust.

The magnificent "cloud-glow" which, on several previous evenings, had also been observed hereabouts, and which has been attributed by meteorologists-with good right, no doubt-to the volcanic ashes due to thecatastrophe of Java, made us suppose that the substance observed by us on the windows could not but be of the same origin. We took it for granted that whirlwinds, when the storm set in, had brought the dust down to the lower regions of the atmosphere, where it mingled with the falling rain. Consequently we proceeded to examine microscopically the sediment, in order to compare it with original ash from Krakatoa, which had been sent to the Agricultural Laboratoryat Wageningen to have its value as plant-food ascertained. The result of this examination was that both the sediment and the volcanic ash contained (i) small, transparent, glassy particles, (2) brownish, half transparent, somewhat filamentous, little staves, and (3) jet black, sharp edged, small grains resembling augite. The average size of the particles observed in the sedinent was of course much smaller than that of the constituents of the ash. These observations fortify us in
our supposition, expressed above, that the ashes of Krakatoa have come down in Holland.
Wageningen, December 14

M. W. Beyerinck J. van Das

With every spare cranny in Nature filled with vol canic dust, and the whole discussion in far abler hands than mine, I should be loth to trouble you, were there not one point in connection with the recent optical phenomena which has, as far as 1 know, escaped observation, and which may possibly be worthy of consideration. I allude to the connection between the sky-glows and the phenomenon conmmonly known as "A'ayons de C'ripuscule."
To the latter phenomenon 1 have incidentally had my attention much drawn, having been for many years engaged in a set of cloud observations for a special puspose. This appearance has already been described, and to some extent discussed, in the pages of Nature and elsewhere. Several other phenomena, some of them occurring while the sun is above the horizon, seem to have been confounded under the same name. That of which I now write consists of red rays converging to a point near the horizon opposite to the sun's position, usually at between fifteen and fifty minutes afier the sun has set or before it has risen. On rare occasions 1 have seen these belts in the evening extending past the zenith so as to converge towards the position of the sun beneath the western horizon. The interspaces of these rays (which, as has long ago been explained by Mr. Lockyer, are the shadows of hills or clouds beyond the visible horizon) are often of a complementary blue-green. The colour of the rays is similar to that retiected at an earlier hour in the evening, or at a later in the morning, from the most elevated cirri. This phenomenon seems to be in itself almost entirely independent of any weather conditions, occurring under utterly diverse state; of the atmosphere. It possesses one remarkable characteristic. It is far more commonin Europe in the month of November than at any other period of the year, although the prevalent state of onv November skies is scarcely such as to favour its visibility. To this characteristic I called the attention of some scientific friends several years ago, amongst whom I may mention the name of Robert H. Scott, F.R.S. I have thought that the "N'ayons de Crifouscule" were somewhat more common in the years when the November meteors were most abundant. But if this prove to be the rule the exceptions are numerous. There are long periods during which there are no "Rayons de Cros puscule," or in which if they occur our view of them is entirely obstructed. I have always supposed that the fall of meteoric dust determines the condensation and congelation of the vapour which exists in those strata from which these red rays are reflected, just as London smoke determines the formation of spherules of fog. The solar rays are thus reflected from ice spiculae suspended in the atmosphere, rather than, as 1 understand Prof. Brucke to imply, from the atmosphere itself. Are there any reasons for doubting the possibility of the existence of much water vapour at a far greater elevation than this stratum? This would ordinarily remain in the vapour state, being above the ordinary range of the pulveriseal meteorites.

Now the same orange-red glow in the east, from ten to twenty ininutes after sunset, by which 1 have usually been able to predict the appearance of "Rayons de Cripus.ule". has been alinost constantly visible at that hour through.out the present period. Further, this has been followedl slightly on one, and vividly on two, of those evenings when the succeeding glow was most remarkable, by the "Rayons de Cripuscule" themselves. And the rays of red light emerging on several occasions from the effulgent glow in the west appear to me closely to resemble western continuations of very elevated "Rayons de Cripuscule."

Ecce itcrum. Here we come back to Krakatoa. Granting the distance to which the vapour and dust were ejected from the bowels of Krakatoa to have been so great that the more rapidly rotating surface of the earth brought Panama under this vapour and dust in the space of less than a week, we have a gigantic pepper-box capable of condensing and congealing vapour which had long remained undisturbed in its serene heights. We do not need to call in the known currents of the atmosphere to explain the dispersion Poleward and therefore eastward of the volcanic matter, gravitation alone accounting for the transmission of the particles down the inclined isobaric planes.

To my theory of ice spicula it has been objected that these ought to produce halo3. So, whenever the recent phenomena have been most strikingly developed, they have done. Yesterday was the third occasion during this period when, from 2.15 to $2.50 \mathrm{p} . \mathrm{m}$. the sun was surrounded by a remarkable halo, the sky at the time being totally devoid (in the neighbourhood of the halo) of any visible upper clouds whatsoever. Cumuli passing the halo appeared green. The halo was followed by a splendid glow in the evening, and again this morning.

December 15
W. Clement Ley

IF you are not yet suffering from a plethora of letter's on this subject, I should like to add a few remarks to those which have been already made.

On Thursday, December 6, I witnessed one of these gorgeous sunsets in company with a friend, from the top of Rusthall Common, near Tunbridge Wells. Like Mr. Rollo Russell, I noticed that the peculiar lasting glow came from a lofty stratum of pale, fibrous, nearly transparent cirriform haze, which was almost invisible as the sun set, but afterwards eame gradually into view, at first white in colour, and then gradually changing to orange, pink, and finally red, the change to pink occurring at 4.25 and to red at 4.45.

We also observe 1 a strange reactionary effet produced by this glow. viz., that long after the red tints had faded from the ordinary eirrus in the western sky and from some snow-shower cumuli in the east, they were both relighted by the glow which had meanwhile increased in the west.

On Friday, this reflection on to low clouds all over the sky from the undoubtedly lofty stratum in the west was more noticeable, and it at once stru:k me that persons who had not obscrved the entire process of the extinction of the real reflection of the sun by these clouds, and their subsequent reillumination by reflection from the upper glow (as Miss Ley terms it), might erroneously be led to attribute this secondary illumination to their reflection of direct sunlight. On this ground alone, 1 should be rather inclined to accept with a little hesitation the observation on which Prof. Helmholtz bases his calculation, viz., that the clouds which were illuminated by the sun were 45° above the horizon two hours after sunset.

Nothing that I saw on either Thursday or Fsiday at all favoured such a fact. On the contrary, there was some positive evidence in favour of the reflecting medium being situated at a much more moderate altitude. In the first place, judging by an eye often engaged of late in taking vertical angles with a theodolite, I should say that on both days (when the sky wa i very clear and the stratum which emitted the glow was unusually well defined) the maximum height of the glow-stratum was not more than from $t 0^{\circ}$ to 12° above the horizon.

Moreover the interval between when the ordinary cirrus ceased to glow and this upper stratum began to glow corresponded very much more with a height of from ten to thirteen miles than with such an enormous height as forty miles.

Miss Ley has, I believe, already calculated the height of the stratum to be thirteen miles, and 1 think this height is far more probable than one of forty miles. Besides, can we
imagine either vapour, or volcanic dust, or a mixture of both, to be capable of remaining in suspension in air of such tenuity as must exist at such an altitude? Moreover, 1 think it must be admitted that whatever be the cause, whether meteoric dust, or impalpable pumice carried over by the upper anti-trade currents from the Java eruption, the reflection arises from a definite stratum and not merely from an atmosphere filled throughout with such dust. Possibly, as Mr. Edmund Clark suggests, the dust may act as a nucleus for the condensation of any vapour that may exist at such a high level, and it is possible that just as we find eertain definite positions at which condensation occurs, and therefore clouds float, at lower altitudes, so there may be some particular height at which condensation is determined in these upper regions, thus accounting for the definiteness of the reflection and the presence of the cirrus haze to which it apparently belongs.
Thus, Dr. Vettin of Berlin has recently shown that the clouds have a marked tendency to float at certain defined levels, which can only be supposed to result from the action of certain physical causes regarding whose nature we are at present entirely ignorant.
The name of the cloud and the corresponding elevation in feet are as follows :-

Now we see that these heights increase very nearly in a geometrical ratio, with 2 as the common factor, so that we might anticipate a tendency for cloud to be formed (assuming that the empirical relation held good) at an elevation of about 46,000 feet, or a height of nearly nine miles. It would be at least interesting to find that the average height of the reflecting layer in these recent sunsets lay at about this elevation.

Another circumstance which favours the notion that the dust would be carried from the tropics, and float above, and not below, this level is that, while at all lower elevations the polar currents predominate, it is just about this same level that the equatorial or southerly air-currents begin to exceed those which have a northerly component in strength and frequency. Thus, according to Vettin, the following figures represent the relative volumes (?) ${ }^{1}$ of air carried by the equatorial and polar currents at different altitudes over Berlin :-

Equatorial	Pular	Height in feet
305	226	228
253	222	From 41,000 feet up to the extreme limits of the atmosphere.
206	212	$4 t, 000$
164	131	23,000
108	118	12,800
92	158	7,200
83	3,800	
1,600		

This table, 1 think, makes it easier to understand how the dust should have been transported over to extra-tropical regions from the neighbourhood of Java, and why it should appear only in the very high strata.
E. Douglas Archtbald

Gilbert White of Selborne, in one of his letters (lxv., to the Hon. Daines Barrington), describes the "amazing and portentous phenomena" observed in the summer of 1783 . "The sun at noon looked as blank as a clouded moon, and shed a rust-coloured ferruginous light on the ground, particularly lurid and blood-coloured at rising and setting. The country people began to look

[^24]with a superstitious awe at the red lowering aspect of the sun ; and indeed there was reason for the most enlightened person to be apprehensive, for all the while Calabria and part of Sicily were torn and convulsed with earthquakes, and about that juncture a volcano sprang out of the sea off the coast of Norway."
Those who are familiar with the letters and poems of Cowper will remember his references to the same phenomena in that year, as in "The Task," Book ii.-
"Fires from beneath, and meteors from above Purtentous, unexampled, unexplained, Have kindled beacons in the skies; and th' old And crazy earth has had her shaking fits More frequent, and foregone her usual rest."
Mrs. Somervile, in her "Physical Geography," traced the origin of these atmospheric phenomena to the great eruption of Skaptar, one of the volcanoes in Iceland, which broke out May 8, and continued till August, sending forth clouds of mingled dust and vapour, which spread over the whole of northern Europe. Mr. Henderson, in his work on Iceland, and Dr. Daubeny in his work on volcanoes, also describe this eruption, and the enormous quantities of volcanic dust sent by it into the atmosphere.

Mr. Norman Lockyer ascribes the recent abnormal sunrise and sunset phenomena to the clouds of volcanic dust from the great eruption of Krakatoa on September 2. The different effect caused by a tropical eruption and one in northern regions would be such as Gilbert White observed, and what we have lately witnessed. In the eruption of 1783 the stratum of dust and vapour must have been at a low level co:npared with that of 1883 . We know in a general way the course of the circulation of the atmosphere, as we do that of the ocean : the flow of currents from the Polcs to replaie the ascending volume of air in the equatorial zone, which gradually diffuses itself in the upper regions of the at mosphere. But of the direction and velocity of these lofty strata we know little in detail ; just as we have variations and unexplained diversions even of oceanic currents, but in the atmosphere to far greater extent. From Humboldt and Arago we have been taught to believe that the purnice and vapour clouds from volcanoes are raised to enormous altitudes, and the dispersion of these may be too irregular to admit of calculating the exact time after a tropical eruption when atmospherical phenomena would appear in particular localities. The fact remains that abnormal atmospheric effects have resulted from the presence in upper regions of the air of pumice dust in unusual quantity.

In some regions of the earth these phenomena have been frequently observed, as on the coasts of Peru, where we would expect a large amount of volcanic dust to be present. In Ellis's "Voyage to the Sandwich Islands," be describes just such appearances as we have been recently seeing. "Towards evening and in early morning I have seen clouds of every hue in different parts of the heavens, and such as 1 had never seen before: for instance, rich and perfect green, amber, carmine; while the hemisphere round the rising and setting sun has been one blaze of glory." Simular sunlight effects are described by Bishop Heber in his narrative. "Beside; tints of crimson, flamc-colour, \&c., there were large tracts of translucent green in the inmediate neighbourhood of the sinking sun, and for some time after sunset; with hues such 1 have never seen before, except in a prism. and surpassing every effect of paint or glass or gem." These effects were such as aqueous vapour alone could not have produced, and were doubtless due to foremg matter in the upper regions of the atmosphere.

In the meteorological observations of Luke Howard there are several records of similar abnormal sunlight effects when the sky was "deep blood-red after sunset,
with hues passing through crimson and a gradation of lighter reds and orange and flame colour." Whether these appearances can be connected with particular volcanic disturbances or not, they seem to have been due to the presence of foreign matter in the upper strata of the air ; and there are rarely periods when some volcanic region is not in active eruption.

On more than one evening in December the metallicgreen colour of the moon attracted general notice. This was not due to the laws of complementary colour, for it remained when not a vestige of red or crimson could affect the vision. Mr. Edward Whymper states that the peculiar hue recalled to -him the same appearance as witnessed by him in South America when the atmosphere was charged with volcanic dust.

James Macaulay
IN 1880, when travelling in Southern Algeria, I was talking with some colonists about a simoom, when a Frenchman present exclaimed "C'est la premičre fois que j'ai vu le soleil bleu." Upon interrogation 1 was assured by the whole company that the sun, seen through the fine dust of a Sahara wind, had a decidedly blue colour. I do not know whether this is always the case when a storm is blowing from the desert ; but the fact, even if not a regular one, throws some light upon the East-Indian green sun. It confirms evidently the opinion that the green colour and the remarkable weakness of the sun's light, as observed in India, were due to volcanic dust from Krakatoa. An eruption like that o^{e} August must throw up into the highest layers of the atmosphere dust not only in enormous quantities but also of extraordinary fineness. And 1 see no difficulty in assuming that this dust, transported by air currents over Africa and Europe, was the cause of the "semarkable sunsets," the more so, as the latter phenomenon is evidently a wandering one. At Constautinople the first remarkable sunset was observed on Noveniber 20 (splendid), and suosequently we saw the satite klow of the heavens in the morning and evening of the first five days of December, though partially inasked by clouds. Afterwards the observation was rendered impossible by bad weather.

Constantinople, December 12
Dr. Budde
I HAVE read with great interest the accounts of the extraordinary sunsets we have had lately. I have watched all the effects most carefully for the last fortnight, and it inay be of some interest to you to hear my account. The fir-t time I noticed anything very odd was on the evening of the 24 th. I was then calling on a frie sd who lives on this lake, and it was dark enough to have candles, when on looking up at his studio window I saw three or four masses of cumuli piled up against each othcr, and all of unusual, or rather 1 should say unnatural, colour. 1 said to my friend, "Well, I never saw such a sky or clouds, it is exactly like an old master peture, like a rich Titian sky.". . 1 said this because what owkht to bave been blue sky was quite a rich green, and some of the clouds rich amber, others red brick colour, and others a yellow green. There was a high wind ; the e clonds wcre in the norih, or nearly opposite the sunset, and very near. I was starticd, because 1 knew some of the colours to be unnatural, especially at that time of day (4-30) ; it was not a green or an amber I had ever seen, and I have watched the sky very carefully for many years. Then, about a week ago, I saw the same effect again, and on looking round towards the sunset my eye caught the crescent moon; it was of a pale blue green. Two evenings before this, I was startied on looking up from my book (and some time after candles had been brought in) to see quite a red glare bebind the "Old Man"; as it was almost night, I thought it was some large fire, but on going out I saw that it was merely a glare trom the sunset ; and more to the east near the horizon there were lurid masses of red cloud very far off
showing through bars of nearer gray cloud. I thought of running into Ruskin's study and telling him to look, and went as far as his door, but then deemed it better not, as the effect was of so lurid and awful a nature, I thought it might put him off his work ! My next scene was one morning ; finding the roomvery dark, I suddenly discovered the maid had shut the shutters; 1 got up to open them, and to my astonishment saw Coniston Old Man all red, but with no shadows! I was all the more astonished because it was still much too dark for any light on the "Old Man" at all I and I can assure you it really looked alarming. I have of course often seen the mountain red and orange, but never before sunrise. I concluded that this glare was caused by some very bright reflection from the rising sun on the sky above, and bright enough to make the mountains all red. I watched this more or less until nine o'clock, when at last the usual shadows appeared, the mountain getting I suppose some real sunlight. Then my last effects have been two extraordinary after-glows a few evenings ago. It seemed to me that about half an hour before sunset the sun began to shine through some extraordinary vapour capable of being illuminated very much more than the ordinary atmosphere, so much so that we had faint cast shadows from it on our lawn; there was no sign of the sun or even where he was, as this vapour was so equally illuminated. It lasted long; and when candles had been in some time, there was still a band of intense rose colour on the western horizon.

Arthur Severn

Brantwood, Coniston, Lancashire, December 9
THIS atmospheric phenomenon still continues morning and evening to excite admiration. Its effects, however, on the colour of the sky disappear at an earlier hour than has hitherto been the case; on the morning of Wednesday, the 5 th inst., the southern heavens were resplendent with richest and most brilliant colours, to attempt the description of which would be somewhat puzzling. It seems as if of late the grandest displays occur before sunrise. The afternoon effects were remarkable less for richness of coloration than for the lustre of the light which arose in the west after sunset and for the predominance over the whole sky of opalescent white colours. The reflection of the light on church towers and buildings brought out the architecture in strong and startling relief. There was, however, at 4.15 p.m. a colour display, and on this occasion the moon for a short time was again changed to a hue of emcrald green. On the 6th, before sunrise, the phenomenon reappeared in a mantle of lurid red colour. The display passed through the usual changes of colour and disappeared when the sun rose. In the afternoon the glow at 4 p.m. reappeared, followed by the usual brilliant radiance; the colours were, however, sea-greens, opaline whites, and bright grays till 4.30 p.m., when a blood-red colour overspread the western sky. The glow fided sooner than usual. The morning of the 7th though splendid was less grand in character than the display of the previous morning. At 4 p.m. a rosy bue suffused a few light clouds that rested on the sky. At 4.15 fearly whites and mauves and grays prevailed. Just at this time an irregularly shaped vaporous mass of an exquisite tint of lake fo: med in the west 45° above the horizon, and gradually spread to a point near the horizon. At 4.30 the usual orangecoloured arc appeared in the west, and for a few moments the light emitted was almost dazzling. The display was somewhat evanescent. On the 8th, before sunrise, the sky was enriched with various hues of red, carmine, green, and yellow. At 3 p.m. there was a detached cloud canopy coloured with a deep roce, but changing to an orange hue; 5 p.m. dense cloud canopy with red radiance visible through the clouds. On the 9th a dense cloud canopy shut out observation. At 4 p.m. a bright yellow glare coloured the horizon of the western sky. This was followed by the orange-coloured radiance, but the display
was fugitive. The morning and afternoon of the loth were unfavourable for observation owing to a dense cloud canopy, but a yellow-coloured light in the sky was perceptible. On the IIth the sky before sunrise was brilliant with colours pink, blood-red, yellow, and green. At 8 a.m. for a few moments the sun appeared of a green colour. This afternoon's effects were very beautiful. At 3 p.m. a yellow glow prevailed: this gave way to a remarkable streak of a vivid green colour extending along the horizon from north-west to south-west; above this was a vaporous mass reaching to within a few degrees of the zenith. Beyond this mass and overspreading the zenith the colour was mauve. In the eastern sky the colours were reds, mauves, and blues. This evening the moon again shone with a green light. The glowing arc of orange-coloured radiance which evening after evening shone in the western horizon seems to have ceased to be apparent here. The effects of the splendid sky coloration in causing the flame of gas lamps to appear white, or rather in fact to resemble the electric light-noticed by Mr. Sydney Hodges at Ealing-was at this place a striking feature of the displays. A destructive hurricane from the north-west set in at is p.m. on the tith inst., and was of greater violence than any that has occurred here from that point for these forty years. The night was moonlight, with flying scud. In the night, between one and two o'clock a.m., during the height of the hurricane, the phenomenon of paraselene or mock moon was visible. The false disk was well defined, equalled the moon in size, but was less brilliant, and was some 4° or 5° from the true moon; prismatic halos were visible during the night. The wind blew in terrific gusts, striking houses and buildirgs almost with the force of a battering ram. Before sunrise on the 12 th a red glare suffused the sky, and at half-past eight a.m. the sun appeared of a dark green colour, and remained of this colour for several minutes. The violence of the hurricane subsided towards four $\mathrm{a} . \mathrm{m}$. During the lulls of the storm there were on one or two occasions tremors that 1 could not connect with the vibration of the house from the effect of the wind, and which seemed to me to be earth tremors. In the afternoon the glow appeared in the west in the shape of a mass of a luminous yellow body some 25° above the horizon, which sank gradually below the horizon, and left a clear sky. Un the morning of the 13 th the only colour visible was a deep yellow, and that colour prevailed in the vicinity of the sun throughout the day. Thermometer again rose to 50°, barometer falling. In the afternoon of that day, cloud obscuration shut out observation.

December 14.-At sunrise, owing to the denseness of the prevailing cloud canopy, observation was not possible* At 10 a.m. the canopy broke up and dispersed, and, except along the eastern horizon, the sky became blue and clear. At $11 \mathrm{a} . \mathrm{m}$. a broad, colourless stream of remarkable moving vapour or cloud haze, and rayed, nebulous cirri of a very hlmy structure, issued from a point occupied by a few clouds of the stratus type on the western horizon, and travelled across the zenith eastwards. The motion of the vapour and cirri was rather fast as it swept across the sky. The quick-changing forms were most astonishing, some being of a leaf structure, some pointed rays,some curled, others horizontal bars. The forms of both haze and cirri were most fantastic. The stream continued to flow till after 2 pm . 1 have never before observed anything like it. At 3.15 p.m. there was a widespreading green sky space about 20° in altitude on the western horizon. Above it gradually in the clear sky, a rich russet glow, wish no definite outline, became developed, and continued to prevail. A 4 p.m. a pink glow coloured some clouds resting on the western sky and flushed the entire horizon. Towards 5 p.m. the russet colour gave way to a smoky yellow tint, and soon afterwards the light disappeared. Cloud-forms during the day took the most weird and fantastic forms. Imagining that the phenomenon was on the wane, 1 was surprised
to witness a display so brilliant and imposing. On this day the thermometer rose to 54°. At 8 p.m. there was a rather broad band of green light round the disk of the moon. It seemed to me that neither the sun nor the moon during the days and nights of the $12 t h, 13$ th, 14 th, and 15 th gave the usual light.

December 15.-The sunrise this morning was of a most impressive character. From just before sunrise till 8 a.m. the eastern sky was flushed with blood-red colour. At 8 am. the sun again shone with a most beautiful green light for a few minutes. The room in which the objervations were made has two windows, one facing east, the other south, and the marvellous spectacle was witnessed of a flood of crimson glare filling the east window, while through the south window poured a volume of dazzling green light. This afternoon there was a thick cloud canopy, and rain fell, but a yellow glare penetrated the clouds on the south and west. At 4 p.m. through a cloud rent could be seen the bright pink, russet green, and yellow colours of the glow. The thermometer registered $4{ }^{\circ}$.
December 16.-The glare was visible this morning, but no colour other than smoky yellow was visible. Afterooon the glare very powerful, but at 3.45 pale yellow was the only colour. This, however, prevailed in the west, but extended round the whole horizon. The spoked ray feature, however, was greatly developed.
The stecl coloured radiance which glowed in the western sky at $3.30 \mathrm{p} . \mathrm{m}$. at the time of closing my letter was followed from 4 till shortly after $5 \mathrm{p} . \mathrm{m}$. by the fiery glare which has been a marked feature of the red sky displays during their prevalence. The sky effects were much the same as on the previous afternoon, except that the nebulous matter was traversed by fan-shaped pointed rays, and its structure presented a billowy appearance.
December 17.-Glare at sunrise as on other mornings of late, the coloration less grand and brilliant. During the morning a stream of filmy cirri issuing from the point in the heavens occupied by the sun and travelling across the zenith till after midday. 3.30 p.m.-Steel coloured glare, followed at $4 \mathrm{p} . \mathrm{m}$. by the development of the usual fiery glow in the western sky, traces of which remained till 6 p.m.

In the "Notes" in Nature for the 6th inst. (p. 135) is a record of a fall, on the night of Nov. 17, at Storelvdal, Norway, of layers of gray and black dust. This was the day of the date of a fall of discoloured rain near Worcester. Recent accounts announce the visibility of the phenomenon in America, where its cause is ascribed to meteoric dust. Reports of falls of ashes on land and shipboard tend rather to strengthen the volcanic dust theory. According to the "Annals of Philosophy,"vol. ii., the sun appeared of a blue colour in April of the year 1821 in England. It seems from other sources that there were in February of that year a violent volcanic eruption in the island of Hourbon, and in June of the previous year a destructive outbreak in Gunung Api.

Worcester, December 17
J. Ll. Bozward

THE following observations of the remarkable "glow" that has lately been attracting such universal attention at sunrise and sunset may be of use for comparison with similar phenomena observed in other parts of the world. They relate to the phenomenon as observed at sunrise on those occasions when the atmospheric conditions and other circumstances have been favourable for obtaining good observations, though I may state that, even when cloudy, and no clear blue sky visible, the red glow has frequently made itself apparent through the clouds.

December 4.-6.40 a.m. The whole castern sky between the east-north-east and south-west, for an altitude of 15°, was of a pale pink; at 7.15 it had increased in altitude to 45°, and near the horizon was
of a deep crimson. At 7.30 it began to fade away, changing to a yellowish pink, and at 7.45 it had disappeared, excepting a slight crimson haze having an altitule of about 10°, and confined to that portion of the horizon at which the sun was about to make his appearance.

December 12.-6.30 a.m. A narrow belt of brilliant crimson clouds about 5° wide skirted the horizon between the north-east and south-south-east ; at 7 it had considerably decreased in brilliancy, and reached an altitude of 15°, and at 7.30 it had become of one uniform pink colour, and now reached the great altitude of 60°. It now began gradually to fade away, changing to a yellowish pink, and rapidly decreasing in altitude until by $\mathbf{7 . 4 5}$ it had entirely disappeared, leaving a clear blue sky, which at 7.50 became tinged with the ordinary sunrise tints.
December 13.-6.50 a.m. A bright yellow glow having an altitude of 15°, appeared on the horizon, extending from the east-north-east to the south-east ; at 7.20 it had increased in altitude to 60°, the upper portion being of a pink colour, giving to the blue sky immediately adjoining a sickly green tint. At 7.50 the pink glow near the zenith had disappeared, and the yellow glow near the horizon had changed to pink; it had now decreased in altitude to 10°, and extended no further than between the east and south-east points of the horizon. As the sun rose above the horizon it again changed to yellow.

December $17 .-7.15 \mathrm{a} . \mathrm{m}$. The clouds which up to this time had overcast the sky cleared away, although a very brilliant display of the "glow" was to be seen. The entire eastern sky between the east-north-east and south-southeast for an altitude of 75° was of a beautiful pink, excepting immediately on the horizon, where it was yellow. At 7.45 the glow disappeared, leaving a clear blue sky until 7.55 , when the usual sunrise tints made their appearance.

From the foregoing remarks it will be seen that the "glow" in this locality has generally made its appearance th. 20m before sunrise, and excepting in one instance (December 4) it has disappeared ten minutes before the sun has made his appearance above the horizon.

$$
\text { Dalston, E, December } 18 \text { B. J. Hopkins }
$$

I HAVE observed the " after-glow" here (Madrid) since November 30 , when it first came under my notice. The effect was particularly fine on the 2nd inst., the atmosphere being perfectly clear, and the moon (new, two and a half hours behind the sun) quite brilliant, as also the stars. At 4.24 (Madrid time) the sun went down, and we had a fine, but not unusual, golden sunset effect which lasted about fifteen minutes. At 5 the sky was gradually lit up again, say 100 miles north and south of sun point on the horizon, and some 45° of arc above, the colour varying from pink-red to crimson, less intense on high, but with a defined semicircular boundary against blue sky, which at this period assumed a greenish tint, as did also the moon without losing her brillianc y. But I did not observe any "streaks of Polar auroral light," mentioned in Mr. Bozward's letter; the crimson fan (shall I say?) was uniform, and maintained its intensity till six o'clock, though it gradually receded; the moon at the same time recovering her silvery appearance ; and at 6.15 , that is one hour and forty minutes after sunset, all was over. At 6 p.m. the barometer (4 -inch height aneroid by Ladd) marked 705.50 mm . (say 27.80 inches; Madrid is 655 metres above the sea), and the thermometer (Casella, K.O., No. 9538), sheltered, 4 metres above ground, stood at 10° Cent.

On the $3^{\text {rd }}$ inst. the effect was somewhat different, owing to slight haziness, coupled with delicate ripples of cirrus above, a few streahs of beavy cloud down on horizon, and slight breeze from south-west; but the
whole phenomenon on the 4 th inst. was the most instructive. These are my notes :-
4.34 p.m. sundown; usual sunset effect, golden; massive horizontal streaks of neutral tint cloud, from 5° to 20° above horizon, with intervals, coloured Indian red; cirrus above light crimson. 4.50 , all over, clouds no longer illuminated, sky on horizon dull yellow. 5 p.m., yellow band turned pale green; low clouds remaining quite dark (not illuminated), upper transparent cirrus pink or light purple, gradually fading off into blue atmosphere, which remained decidedly blue although the moon and haze circle round her ($=$ four moon diameters) were decidedly greenish. 5.15 , purple fan receded or contracted somewhat, and more crimon in colour ; green tint on horizon fainter. 5.25 , upper purple tint quite gone; light down on horizon bright red like conflagration (or iron heated to redness); noon greenish; heavy clowd streaks quite dark; and here 1 will say that although 1 noticed in Madrid a very slight breeze from north-west, all clouds remained to all appearance perfectly stationary from beginning to end. 5.35 , at this moment the lower clouds (say to 20° above horizon) were reilluminated as af sunsef from beneath (Indian red), after remaining forty-five minutes in total shade. At 545 his new illumination began to fade, and the red glow on the hotizon had risen somewhat, and was dusky. 5.50 ,only a few red streaks under the clouds; glow as before, apparently more intense, owing to increasing darkness. 6.o, glow dull, and low down on horizon, nearly all on the north side of the sun's setting point. 6.15 , all over. Barometer 702 mm . (say 27.65 in .); thermometer $12^{\circ} \mathrm{C}$.
Since December I the whole phenomenon, without losing intensity, has become reduced in extent, $i<$. the fan of light (so to speak) is getting smaller, especially in the direction of its length on the horizon. Yesterday (5 th) I noticed the same reillumination of cloud; to-day we had heavy clouds and rain at the time, and barometer 699 mm . and thermometer $6^{\circ} 5$ at six.
F. Gillman

Quintana 26 (Barrio Arguelles), Madrid, Dec. 6
There has been a very fine "glow" this evening, with the delicate rose tint which is so unusual. I observed the bands at C and D very strongly marked, and also a faint band at about a, and another about half way between C and D . This is the best marked evening glow that we have had here since about the end of last week.
-Dublin, December 14
J. P. O'Reilly

Signor Denza, Director of the Central Observatory at Moncalieri, writes that these sunsets were seen from November 25 to December 1, and again from December 4 to December 7 , throughout the whole of ltaly from the Alps to the extremity of Calabria, and everywhere with great intensity. A vast number of reports have been received at the Central Observatory, generally to the same effect. So vivid was the glow, that by many observers it was taken for an aurora borealis, the prevailing colours oscillating between red and deep orange, and afterwards passing through all the tints to the most delicate pink. During the evenings of November 28 and 29 nearly the whole sky was lit up, and the phenomenon was followed first by storms, fogs, and rain, and later on by snow. Observed with the spectroscope, the light presented nothing but the usual absorption lines of the vapour of water, but yery intense. Before dawn and after sunset the zodiacal light was seen very distinctly.
Numerous letters have appeared in the Times on the sunsets during the past week:-
Mr.G. J. Sysons sends the following extract from the Meteorological Report from Adelaide Observatory, South Australia, for October, 1883 :-"On every clear evening during this month, and the last fortnight of September, a peculiar phenomenon has been apparent in the western sky. Shortly after sunset a red glow
will make its appearance, at an altitude of about 50°, being very faint at first, but as the brightness of the sky near the horizon dies away with the receding sun, the red glow will expand downwards, becoming at the same time more brifliant, until at last the whole western sky will be lit up with a beautiful light, varying in colour from a delicate pink to a most intense scarlet, and the spectacle presents a most brilliant appearance. The upper part will then gradually fade away until the colour is noticeable only 7^{8} or 8° above the horizon, at which time the light is at about its brightest. Afterwards, a secondary glow will sometimes make its appearance at an altitude of about 50°, and gradually spread downwards until the sky is again lit up. In the secondary phenomenon the colours are generally more delicate. The whole thing will fade away about $8 \mathrm{p} . \mathrm{m}$. This phenomenon has been noticed all over the south eastern portion of this continent, from Port Augusta (lat. 32° S.) to Melbourne; and in India the sun has at times presented a most peculiar appearance, being green at rising, then gradually changing to a blue at noon, and inversely from noon to sunset. Various theories have been started to account for the phenomena."

COL. STUART-WORTLEY states that in 1862 he spent a year in South Italy on purpose to study the formaition of clouds by the and of photography. "During that time I spent some time at Naples while the great eruption of that year was going or, and was struck with the unusual colours of the sunsets during and after the eruptions. I still have photographs of both sunrises and sunsets indorsed with memoranda as to unusual and exceptional colours." Four years ago, while sailing in the Pacific, Col. Stuart Wortley was much struck with the fact that very frequently the whole vault of heaven was overspread with magnificent and glorious colouring, and that in the bigher regions of the air colours were found that were never seen at the horizon or below a certain height. " Now, this exceptional magnificence and peculiarity of colouring only occurs in certain latitudes and in welldefined belts, and 1 venture to suggest that, seen in the light now thrown on the subject by Mr. Norman Lockyer and others, the constant stream of volcanic matter thrown out by the great volcanoes in the mountain ranges of South America, and possibly from elsewhere, form an almost permanent stratum of floating matter, carried in certain directions and kept in certain positions by alternating currents in the higher regions of the air, and that to this stratum of volcanic matter much of the exceptional colouring found to be associated with sunrises and sunsets in portions of the Southern Pacific Ocean is due."

Mr. W. H. Preece writes :-" I think 1 can add one link to Mr. Lockyer's chain of reasoning. If we assume that the mass of volcanic matter projected with such force into the atmosphere in the Straits of Sunda was highly electrified, then it must have been electrified with the same sign as that of the earth-viz. negative. Therefore, when the force of projection had exhausted itself, the cloud of matter would be subject to two other forces be sides gravity-the repulsion of the electrified earth, and the self-repulsion of each particle of electrified dust. The first would determine the tenuity of the cloud, for the lighter the particles the furiher they would be repelled, and the heavier the particles the quicker they would descend. It is quite possible to conceive that they might be so minute and so highly electrified as to reach the utmost confines of our atmosphere, where they would remain as long as they remained electrified. The second repulsive force would cause the particles to spread out continuously in a horizontal plane until they would cover an area determined only by their quantity. When we take into consideration the movements of the atmosphere and the rotation of the earth, 1 see no reason to doubt that an immense cloud of highly electrified matter, projected into the atmosphere in Java, could spread itself in
the higher regions of the atmosphere over an area equal to that of Europe. That this is not fanciful is proved by the behaviour of smoke. I have often watched when at sea, on a still, calm day, the black smoke of some passing steamer rise to some determined height, and then gradually spread itself at an equal and constant distance from the sea like a great flat pall. I have also seen on land the smoke from some manufacturing shaft blown gently by the wind follow the curves of the land, remaining always at the same distance from the ground, but gradually spreading outwards in every direction. I have also seen two lines of smoke refuse to coalesce, but repelling each other exactly as they ought if they were similarly electrified. That smoke is, therefore, negatively electrified I firmly believe, though I have never tested it. Now, that this wonderful atmospheric disturbance was accompanied by extraordinary electrical disturbance was shown, not only by Capt. Watson's observaitons near the spot, but by Prof. Smith's records at Madras, and hence it requires no great stretch of the imagination to conceive electricity playing a great part in the recent gorgeous display of atmospheric effects."

In reference to Mr. Preece's letter, Mr. Crookes writes:-"In a paper read before the Royal Society in 1879 I showed that at a rarefaction of the millionth of an atmosphere two pieces of electrified gold leaf repelled one another at a considerable angle for thirteen months without loss of charge. Therefore at a rarefaction of a millionth (corresponding to a height above the earth's surface of about sixty-two miles) air is a perfect nonconductor of statical electricity, wahout interfering with the mutual repulsion of simiarly electrified particles. When we bear in mind that the specific gravity of gold is five or six times that of the rock whose disruption formed the dust in question, and that the size of the individual particles of dust is certainly many thousand times smaller than my gold leaves, there is every reason to believe that clectrified dust, once projected fifty or sixty miles above the earth's sur'ace, might remain there for many years."

Bishop Bromby, writing to the Times, says that in a letter from a member of his family at Hobart, Tasinania, the writer speaks admiringly of "the loveliest afier-glow which was spread over the sky on the other side of the water where the sun had set." This was written on October $t 2$ by one who was ignorant that similar phenomena had been observed in other parts of the world.

ANOTHER correspondent of the Times slates that in a letter dated " Duem, September 24,1883 ," Hicks Pasha wrote:-"By the way, have you in England noticed a large black spot on the sun? To day, when it rose, it was of a pale green colour, and we saw through our glasses an immense black spot on the lower half of it. What does this portend? I feel sure there must be some notice of it in the pafers in England."
Sheriff Rampini of Lerwick, Shetland, writes that the sunsets have been observed in these northern islands.

Mr. G. F. Burder of Clifion sends the following rxtract from a letter from a passenger travelling from San Francisco to Sydney, three days after leaving Honolulu. The writer sajs:-"On Wedresday, Scptember 5, we witnessed a most curious phenounenon. The sun set perfectly blue, and next morning it rose a flaming ball of blue The blue light was reflected in our cabins."

ON November 30, at 4 p.m., another remarkable sunset was observed in Stockholm. A correspondent states that the western sky became covered with an intense purple after-glow, having the appearance of an enormous distant conflagration, which nearly reached the zenith, and lasted for an hour, even after it was dark, and the stars were visible. On the morning of December 1 a similar intense light was observed at sunrise. The colour wai, however, then more yellow. The phenomena have also been observed in the north of Sweden, in Gothenburg, in Christiania, and in Copenhagen.

THE KRAKATOA AIR-WAVE

ON Thursday last Mr. R. H. Scott communicated a paper to the Royal Society giving a map and tabular statements concerning certain barometric disturbances observed towards the end of August last.
The obvious correspondence of the forms and times of occurrence of the barometric disturbances, described in Mr. Scott's paper, at once suggested to General Strachey that they were due to a common origin, and the great volcanic eruption at Krakatoa in the Straits of Sunda appeared to supply a probable efficient cause. General Strachey therefore took up the question from this point of view, and at the same meeting communicated a paper, of which the following is an abstract :-
"Any shock of sufficient violence might be expected to produce an atmospheric wave, advancing from the place where it was caused in a circular form round the globe, at first expanding until it had got half round the earth, and then akain contracting till it was again concentrated at the antipodes, from which again it would be thrown back, and so pass backwards and forwards till in was obliterated. It might have been expected that such a wave would ravel uith the velocity of sound, being probably of the same nature as that uhich causes sound, though the vibrations had not the peculiar character that affects our organs of hearing. It has, however, been suggested to me that the wave may rather bave had the character of a solitary wave produced in a liquid, the velocity of whica in the air woald not materially differ from that of sound, ${ }^{1}$
"A rough examination of the facts a! first made known by the observatiuns recorded in Great Britain indicated that there was priwd facic strong evidence in support of this view, and that the phenomena would be approximately explained by the passage round the earth of a series of waves travelling at the rate of abous 700 mile an hour in opposite directions from the place where the volcanic erujition occurred. The records since procured from other places, and the more careful examination of the facts, have quite confirmed this conclusion.
"Although we may expect to obtan additional data from other parts of the g'obe, which will maine the investigation of this somewhat remarkable phenomenon more complete, yet those we now have are sufficient to justify an attempt being made to bring the more imporiant facts before the Royal Society without further delay.
"The fuluowing table shows the stations from which the records have been received of which a.e has been made in ihis discussion, with certain particulars of their geographical position, and of their distances mea ured on great circles, from Krakatoa, the place of eruption :-

'The ing of a eurveying ship at the nvth of Borneo, since received, shows that the expl isi ns were heard there on the monn.ng of August a7, at a distance of 12 co miles frum the wnic inn: and it mas been also stated that these sounds were heard ia Ceslon, as a distance of about zooo miles.-R.S.

As the earlier disturbances, on August 27 and 28, exteud uver several hours, it became necessary to fix ou certain sufficiently well defined points in the curves representing the harumetric pressure, from which to measure the epochs of the passage of successive disturbances. The firsf and serond of the series are, in almost all the curves, well defined and generally similar in form, commencing with a distinct rise, which is again followed by a distinct fall, the fall being shorter than the rise. These features are followed by a less definite rise succeeded by a sballow fall, after whieh there is again a rise, whieh gradually pas es into the more regular trace.
"The third and fourth of the disturbances ean be traced in all the curves, but they no longer exhibit the same characters, and are usually n thing more than a sudden sharply defiued rise, though in front of some of these there is a more or less distinct trace of a hollow.
"The fifth and sixth of the series become less distinct and are lost at several stations, being usually rises; while a sevonth faint disturbance, as a shallow hollow, can be traced in a few of the curves, after which nothing can be distinguished.
" By a comparison of the time intervals between the first and third, the third and fifth, and the fifth and seventh disturbances, and assuming (which the facts seem to justify) that the velocity of the wave has remained nnchanged in its passage from east to west, it would appear that the first well-defiued rise in the first of the series corresponds to the rises which are promineut in those succeeding it. And the same eonelusion has been drawn from au examination of the recond and fourth compared with the fourth and sixth of the series.
"Adopting these conclusions, the times of the successive passages of the initial ri.e have been measured from the curves, suitable allowance having been made where the rise was difficult to trace, or, as sometimes happened, a hollow appeared corresponding in position with the hollows in the earlier form of the disturbances. There is, of course, some donbt attaehing to these measurementa, but their general consistency seems to indicate that they miy be accepted as fairly representing the fact under discussion.
"The following table gives the results of these estionates of the times at which the successive waves passed the several stations, reckoned from midnight of Aug. 26, in Greenwich mean time :-

Place	Times of passage of wave.						
	1.	1 I .	11.	1 V	v.	vi.	VII.
Torouto	h. m. h. m. h. m. b. m. h. m.h. m. h. m. 1655251055106130						
Valencia	1355263050506258755961012425						
Coimbra	1350265550306240,1						
Armagh	133026451504062158745962012430						
Falmouth							
Glasgow ..							
Stouyhurst							
Aberdeen							
Kew........							
Greenwich							
Paris	1315273050 ó62 50						
Bru-sels	123527455000625586459840						
St. Peiersbarg	11152840483063508440						

" From the e figures are deduced the intervals beiweeu the succe-sive passages of the waves from east to west, and from west to east, respectively, or of the times of travelling round the earth, which are shown in the next table, for all stations excepting Toronto.
"Prom the re-ults thus obtained it would follow that the wave travelled round the earth from east to west in 36 h .57 m ., being at the rate of - 1026 hour for one degree of a great eirele of the earth, and from west to east in 35 b .17 m ., being al the rate of 'og 8 h ur for one degree. From the velocities thus determined the probable time of the origin of the wave has beeu calculated from the known distance of each place from Krakatoa, the time occupied in the passage of the wave from Krakatoa to the place of observation, ar.d the observed time of the passage of the waves.
"The mean value thas obtained from the waves moving from east to weat for the time of the origin of the disturbance at

Istervals oceupied In travelling round the earth.

Plasc.	From east to west.				From west to east.		
	$\begin{gathered} 1 . \\ 10 \\ 11 . \end{gathered}$	$\begin{gathered} 111 . \\ \text { too } \\ \text { V. } \end{gathered}$	$\begin{gathered} \mathrm{V} . \\ \text { tiit. } \end{gathered}$	Mean.	$\begin{aligned} & \text { II. } \\ & \text { to } \\ & \text { iv. } \end{aligned}$	$\begin{aligned} & \text { IV. } \\ & \text { 10. } \end{aligned}$	Mean.
	h. m .	h. 20.	h. m .	h. m.	h. m.	.	
Valencia	3655	$37 \quad 5$	3650	3657	3535	345	3450
Coimbra ...	3640	...*		3640	3545	.	3345
Armagh.	3710	375	3645	37 o	3530	345	3448
Falmouth ...	37 o	37 3"	373^{*}	$37 \quad 2$	$\begin{array}{lll}35 & 15\end{array}$	3530	$35 \quad 22$
Glangow ..	375	37 0		373	$35 \quad 20$	$35 \quad 10$	$35 \quad 15$
Stonyhurst	375	3715	$36 \quad 25$	3655	3535	35	3520
Aberdeen	37 10	3650		37 o	3525	$36 \quad 0$	3543
Kew	37 0	${ }^{66} 55^{*}$	3655^{*}	$3^{6} 57$	$35 \quad 15$	3530	$35 \quad 23$
Greenwich	3645						
paris...	3645		...	3645	$35 \quad 20$		$35 \quad 20$
Brussels	3725	3645	...	375	$35 \quad 10$	3545	3528
St.Petersbrg.	3715	3610	...	3643	3510	...	3510
$\left.\begin{array}{l} \text { Mean ex- } \\ \text { eluding } \\ \text { Toronto } \end{array}\right\}$	37	3654	3648	3657	3524	$35 \quad 9$	$35 \quad 17$

Krakatoa is 2.52 h . Greenwich mean time, or 9.53 h . local time, that is $9 \mathrm{~h} .32 \mathrm{~m} . \mathrm{a} . \mathrm{mu}$. of August $27 .{ }^{1}$
"In like mauner the waves travelling from west to east gave results which were exhibited in another table.
"The mean value of the time of the origin of the disturbance obtained from the waves moving from west to east is therefore $\mathbf{2}^{\prime 2} 2 \mathrm{~h}$. Greenwich mean time, or $9^{\prime 2} \mathbf{2 h}$. local time, that $\mathrm{is}, 9 \mathrm{~h}$. 13 m . local time.
" The mean between the two values obtained from the waves travelling against the earth's motion of revolution, and those travelling with it is 2 h .24 m . Greeuwich meau time, or 9 h .24 m . local time, August 27.
"The velocity of the waves in miles will be for those which travel from east t) west 674 miles per hour, and for those passing from west to east 706 miles per hour. The velocity of sound is for a temperature of $50^{\circ} \mathrm{F} .757$ miles an hour, a ad for $80^{\circ} \mathrm{F}$. 781 miles nu hour. With a temperature as low as zero F. the vel city w. 11 only be reduced to 723 miles an bour, which is still enss:derably in excess of the greater of the ob-erved velocities. The excesa of the velocity of the waves which travelled in the same direction as the earth's motion of revolution, that is, from west to east, over that of those which pas ed in the opposite direction, is about 32 miles au hour, which might be aecounted for by the circumstance that the winds aloug the paths of the waves would, on the whole, be from the west, which would eause an incrense in the velocity of the one set, and a dimination in that of the other, so that the observed difference of 32 miles would correspond to an average westerly uind of 16 wiles an hour, which is uot improbable.
" It should be obscrved that the path of the wave which passed Toronto approached very near to the North and Sonth Poles, and that the velocity in both directions appeared to be somewhat less than in the waves whieh pa-sed over Central Europe. The wave whieh passed not thwards over Asia travelled at the rate of about 660 miles an hour, or about 15 miles an hour slower than the wave which passed over Great Britain from east to west. This reduction of velocity seems to be within the limits of what might be due to the low temperature of the regions.
"The wave travelling from east to west having been perceptible on the barometer traces at several of the stations until about 122 hours after its orizin, and its velocity having been 674 miles an hour, it hsd travelled before its extunction more than 82,200 miles, and had passed 3 1 times r, und the entire eircuit of the earth.
" It is further worthy of notiee that during Angust 30 and 31 and September 1, a very severe cyelunie storm was crossing the North Atlantic, and that the wave coming from the westward early on the 3 tst, No. VI. of the series, must have passed on in front of the cyelone, and that its next transit would have carried it into the very centre of the cyelone uear the Briti-h Isles on the afternoon of September 1. This perhaps ac-

- Al thesc stations the 6fith sransit cannot be traced.

It has not beea theught mecessary in aive in exfrmop the table showing the separate values deduced from the several observations, but they differ from the mean by in no case more than a few migutes.
counts for no trace of it being found, though the wave coming from the eastward on the morning of that day, just before the cyclone had arrived, No. VII., was discernible.
"There is no definite statement, so far as I am informed at present, of the true time of any particularly severe shock or explosion at Krakatoa excepting that whieh is contained in the letter of Mr. Watson (published in Nature, December 6, 1883), whose sbip was within a few miles of the volcano on the morning of August 27. He refers to an unusually severe explosion as having occurred at itb. $15 \mathrm{~m}, \mathrm{a} . \mathrm{m}$. local time, which is nearly 45 minutes later than the time, 9 h .32 m ., arrived at in the foregoing discussion. The point of the disturbance (as indicated by the barograms) which has been taken as the front of the wave is the bighest point of the first abrupt rise of the trace, and is perhaps, on an average, not far from one hour after the first signs of disturbance, the increase of pressure having been very rapid during the interval, but broken into two or three steps or oscillations. During the following half bour there is usually a lange decrease of pressure, succeeded by another abrupt rise lesting about half an hour. Then follow a fall of about an hour, then a rise of an hour and a half, and then a fall of an hour and a quarter. The whole length of the disturbance on the time scale is between five and six hours, corresponding to an aetual distance of between 3500 miles and 4000 miles. The length of the first main wave of the disturbance is about one humr on the time scale, or about 700 miles in length over the earth's surface.
"Is the present position of our knowledge of the facts, it can only be surmi-ed that the shock of $1 t \mathrm{~h} .15 \mathrm{~m}, \mathrm{a}, \mathrm{m}$, of August 27, otserved by Mr. Watson, corresponds to the second main feature of the disturbance. That the wave which forms the first feature would have originated at 11 h .15 m . a.m. is apparently inconsistent with the observed velocities, which it has been shown are remarkably con-istent, and indicate withont much doubt an origin at 9 h .32 m . a.m.
"t The barometric disturbance at Mauritius noted by Dr. Meldrum is said to have begun soon after it a.m. local time. The distance from the volcano to Mauritius being about 3450 miles, the wave at the rate of 674 miles per hour would have reached the island in 5 b . 7 m . Taking the great shock at 2 h .32 m . Greenwich mean time, as before reckoned, the wave would reach Mauritias at 7 h .39 m . Greenwich mean time, or adding the allowance for difference of longitude, 3h. 50m., the local time wonld be $t \mathrm{~h} .29 \mathrm{~m}$. , which agrees satisfactorily with the facts as recorded.
"In conclusion, it may be noticed that the sea-waves produced by this volcanic disturbance, assuming the time of its oceurrence to have been 2 b .32 m . Greenwich mean time on August 27, were propagated with an approximate velocity of 480 miles an hour to Mauritius, of 430 miles an hour to l'ort Elizabeth near the Cape of Good Hope, and 420 miles to Galle, and a somewhat slower rate to Aden. The details of the occurrence of these waves on the coasts of India will shortly be laid before the Society by Major Baird, who has informed me that the veloeity of the wave between Galle and Aden was 378 miles an hour, and the lengths of the great waves from 287 to 630 miles."
"P.S.-December 15. Since the above was read before the Royal Society a copy of the barometric trace from New Yurk has been received, which shows disturbances very similar to those recorded at Toronto, and at times which are quite in accordance with the general conclusions stated in the paper."

NOTES

In connection with the resignation of Prof. Sylvester of his Chair in the Johns Hopkins University, we find that it was resolved at a meeting of the trustees held October 1 , "That as this resignation is doubtless the result of mature reflection on the part of Prof. Sylvester, it is hereby accepted, but that in doing so the Board of Trustees cordially extend to him its hearty thanks for the invalaable services which he has rendered to the University, and also its profound sense of the great ahility, the conscientious fidelity, and untiring energy with which he has discharged the arduous duties of his Chair, thereby elevating the science of mathematies to its proper plane, not only In this [institution but in this country." It was also resolved
"That Prof. Sylvester be appointed Professor Emeritus in the Johns Hopkins University."

It may be remembered that at the recent Geodetic Congress the French delegates opposed the adoption of Greenwich as the univensal meridian, though M. Faye was in favour of the adoption of Greenwich time. At the meeting of the Paris Academy on December 3, M. Faye, whilst supporting the proposal that the universal time should be that of Greenwich, stipulates for the civil hour instead of the astronomical hour, and for the counting of longitudes from oh. to 12 h . positive towards the east and negative towards the west, instead of from oh, to 24 h . reckoned towards the east, but leaving it to astronomers and navigators to employ at discretion for the universal time that according to civil or astronomical reckoning, as may seem best.

A meeting was held in Sheffield last weekffor the purpose of carrying out, in connection with Firth College, a proposed technical department having reference to the trade of the district. Among thase who spoke were Mr. Mundella and Dr. Sorby, and we need not say that all agreed as to the desirability of establishIng such a department, and the necessity of educating our captains, as well as our privates, of industry, in the principles of their erafis. For that, Mr. Mundella insisted, is the true technical education. He gave the experience of a friend who has just been visiting the United States, and inspected the means for technical education existing there; the distinct conclusion was "that there is more skili and intelligence in American industrial pursuits than there is in our English industrial pursuits." It is much that we know our weakness and are taking means to remedy it. No doubt the Furth College will soon have a well equipped technical department.

The Lecture Arrangements at the Royal Institution before Easter, 1884 , are as follows :-Prof, Dewar, six lectures (adapted to a jnvesile auditory) un Alchemy (in relation to modern science), co mmencing on Thursday next (Vecember 27) ; Mr. R. S. Poole, two lectures on the Iuterest and Usefulness of the Study of Coinv and Medals ; Mr. A. Geikie, five lectures on the Origin of the Scenery of the British Isles; Prof. J. G. McKendrick, five lectures on Animal Heat : its Origin, Distribution, and Regulation; Prof. Ernst Pauer, six lectures on the History and Development of the Music for the Pianuforte, and its Predecessors the Clavecia, Marpsichord, \&c. ; Prof. Tyndall, ix lectures on the Older Electricity, its Phenomena and Iavestigators; Prof. Henry Morley, six lectures on Life and Literature under Charles I. ; and Capt. Abney, six lectures on Photographie Action, considered as the Work of Radiation. The Friday Evening Meetings begin on January 18, Prof. Tyodall on Rainbows. The discourses on the other evenings will probably be as follows:Kev. T. G. Bonney, the Building of the Alps; Prof. Ma Muiler, Rajah Kâmmohun Roy; Mr. G. J. Komanes, the Dar * winian Theory of Instinet; Prof. Thorpe, the Chemical Work of Wohler; Sir Frederiek Bramwell, London (below bridge) North and South Communication ; Prof. Hughes, Theory of Magnetism (illustrated by experiments) ; Mr. C. V. Boys, Bicycles and Tricycles in Theory and Practice; Mr. J. N. Langley, the Physiological Aspect of Mesmerisu; Mr. Walter Besant, the Art of Fiction; Prof. O. Reynolds, the Two Manners of Motion of Water (shown by experiments).

Every one must wish well to the scheme for an Institute for East London, to the meeting in connection with which last Friday at the Mansion Hoase the President of the Royal Society gave the benefit of his experience as an East End doctor forty years ago. The demand for such commodities as the Institute would furnish is strong enongh; eminent men of science who have lectured in Whitechapel on their special subjects tell us
that the largest obtainable place of meeting in the district is invariably crowded.

A megting and converiasione will be held under the auspices of the National Association of Science and Art Teachers, in the Manchester Technical School and Mechanics' Institution on Saturday, December 22. Prof. Roscoe, F.R.S., will take the chair. It is expected that a large number of science and art teachers will be present, including visitors and delegates from the Liverpool, Biraingham, and Newcastle-apon-Tyne branches of the Association. It has been arranged on this oceasion to bring together for exhibition a collection of apparatus, models, text-books, diagrams, and appliances of a new and interesting nature bearing upon the study of science and art. We have no donbt the meeting will be a successful onc. The Association is $\mathrm{c}_{\text {alculated to }}$ to be of great service to science teachers, and deserves encouragement. Prof. Huxley is president, and the secretary is Mr. W. E. Crowther, Technical Scbool, Manchester.

Ar the last meeting of Superintendents of National Education at Washington, Prof. Bickmore described the lectures on natural history which he now gives every Saturday to school teachers, and the first history of these lectures. The authorinies of the Natural History Museum wrote to the Board of Education in New York suggesting that a select few of their teachers shonld come to hear an informal address upon the objects there exhibited. Sets of these lectures were attended first by those few, then by fifty, thea by over one huedred teachers. They are now given to a full hall every Saturday. No continued systematic series of illustrations could be met with, so a photographer was employed to take transparencies of specimens and copies of various illustrations bearing upon the subject to be exhibited by the oxyhydrogen light. Another lantern is also used to throw light apon the written lists and diagrams or upon objects which are arranged in pigeon-holes, upon each one of which exactly the lecturer can throw the light as it is wanted.

AFTER some interesting reflections u_{1} on the wonderful strides in population revealed by the last United States census, Dr. Harris pointel out to the same meeting how partial would be the value of any special technical education that might be given to a whole school. He urged that mechsnical inventions were every day throwing out of work "hands" that had acquired manual dexterity. Education of the brain to directive intelligence is the great waut. The large development of invention is set down to the study of natural science and of the phenomena of physical processes. On the other hand, the relish, by many students at least, for manual instruction leads the authorities at Boston to report that "matual training is so great a ralief to the iteration of achool work that it is a positive benefit rather than a detriment to the course in the other studies."

Wg learn from Trondbjem that the starling has been seen for the last two winters in the north of the Trondhjem Awt, sitting on the roofs of houses at Christmas time, notwithstanding the cold, which was considerable for the season. In the present year some of the birds are again to be scen after their usual period of migration.

Naturen reports that Prof. Heiberg of Christiania has demonstrated the presence in the air passages and pulmonary substance of hares of a form of strongylas, both barren and charged with ova, which would appear to be the cause of an otherwise unexplained mortality among these animals in the autumn of last year in the district of Eidsvold in Norway.

Several. Russian writers have of late been drawing attention to the fact that the Japanese seas harbour vaious species of fish which are poisonous. Dr. Sawticherks even suggests that ships going to these waters ought to be provided with descripaions and
representations of these suspected fish, of which twelve varieties would appear to belong to Tetrodon, T. inermis, the Japanese "Kanatuka," being reported as especially venomous. According to Dr. Guldrew, one Japanese fish, known as Fuku, is so poisonons that death follows almost instantaneously after eating only a moderate-sized bit of the flesh. The Japanese are forbidden by law to eat this fish, but it is nevertheless not unfrequently the cause of death among the lower classes, who believe it to be possessed of certain marvellous properties, on account of which they risk the danger of being poisoned.

IT is evident that we have much yet to learn respecting insects which habitually go through their early stages in sed woater. In the current number of the Amurican Naturalist (December, 1883) is a account by A. W. Pearson of the larva of the Dipterous family Strationyiide that was found by him beneath Zastera on the beach near the mouth of the Merrimac River. With a few exceptions all marine insect s are either Coleopterous or Dipterous, and it is the latter order especially that shows itself the most diversified in point of larval adaptation to extraorJinary conditions.
M. Tillo publishes in the last number of the lavestia of the Kussian Geographical Society the results of very accurate measurements he has made of the lengths of the rivers of Russia in Europe. The measurements have been made on the ten-versts-to-an-inch map of Russia, and present great differences with those which were publisbed by General Stelbitsky in his work, "Superficie de l'Europe ;" these last have bsen made on a map of a much smaller scale (sixty versts to an inch), and contain several errort. The figares of M. Tillo are, on the average, by 36 per cent. greater than those of M. Strelbitsky, showing thus the error which may ensue from measurements made on smaller maps ; several rivery, as the Kama, Dnieper, Dniester, and Oka, are, in M. Strelbitsky's mea urements, respectively by 200, 285, 300 , and 315 versts too short ; whilst the ten versts' map has given to M. Tillo a length of the Dnieper only by one-twentieth shorter than the three versts-to an-inch map. The chief rivers of Rus ia appear now with the following lengths: Volga, ato8 miles (the verst being taken equal to 0663 miles), Ural, 1480 miles; Dnieper, 1329; Don, 1124; Kama, 1117; Petch 1 ra, 1024 ; and Oka, 915 miles.

In the same periodical, M. Woeikof points out that the tea tree and the bamboo could be advantageously cultivated in Russian Transcaucasia. The most northern point where he has seen the tea tree in Japan is Akita, cloze by the western shore of Niphon, under $39^{\circ} 45^{\prime} \mathrm{N}$. lat.; and he has been told that it is grown even at the frontier of Amovori, under the fortieth degree of latitude. The average temperature at Akita would be, according to meteorological observations at Niigata and Hakodade, about $11^{\circ} 5$ Cels. for the year, zero in January, $23^{\circ} 5$ in July, and $24^{\circ} \cdot 5$ in August. The tea tree grows very well also in the valleys at Ponevara, under $38^{\circ} \mathrm{N}$. lat., 900 feet above the sea-level, where the average yearly temperature is no more than 12°, and that of January do more than 0°, whilst every year, there falls a deep snow. As to the hamboo tree, it is cultivated under $39^{\circ} 10^{\prime}, 500$ feet above the sea-level, on the western slope ; and under $38^{\circ} 35^{\prime}, 400$ to 450 feet above the sea level, on the eastern slope. In the western parts of Transcaucasia, between Batoam and Tuap e, the average yearly temperature varies from 13° to 15°, and that of January is between $4^{\circ} \cdot 5$ to $6^{\circ} \cdot 5$. Both are thus higher than those of Japan. The summer is, perhaps, a little colder, but this difference would hardly exercise any iniluence. Even in the interior of the country, up to the Great Cancasus ridge, and east to that of Meakhi, the average temperatures at places up to 1000 feet above the sea-level would allow the culture of the tea tree. As to the rains, they are qnite
safficient in Western Transcausia, whilst in the eastern parts of the country irrigation would be necessary.

L'Astronomic states in its last number, in reference to a recent note in Nature, that Admiral Mouchez has drawn up a memorial praying for the removal of the Paris Observatory from its present position, but that he has not yet presented it to the Council of the Obeervatory, but will do so at an early period. It is not the first time that the idea has been started. The proposal was made in 1868, and a Commission appointed to report on the matter. The scheme was objected to strongly by Leverrier, and finally rejected after a very sharp discussion.

The Swedish frigate Vanadis has just started on a cruise round the world. King Oscar's second son participates in the cruise, as well as Dr. Hjslman Stolpe, who has Leen commissioned by the Government to collect materials for the nucleus of a National Ethnographical Museum in Stockholm. The frigate, whose mision is chiefly scientific, will call at many places of interest, as, for instance, the Straits of Magellan, the Marque.as and Sand wich Islands, the remarhable Malden Island, \&c. A Swedish merebant, M. Fürstenberg of Gothenburg, has cuntributed 600 . for the purehase of objects of seientific value.
M. Bourdalou, having published in 186_{4}, in his wurk, " Nivellement Geinéral de la France," that the average level of the Mediterranean is by 0.72 metres luwer than that of the Atlantic, this result was received with some distrust by geodesists. General Tillo points out now, in the last issue of the Rusian Izversia, that this conclusion is fully, upported by the results of the most accurate levelinys made in Germany, Austria, Switzerland, and Spain, which have been published this year. It appears from a careful eompari-on of the mareographs at Santander and Alicante by General Ibanez, that the difierence of levels at these two places reaches o'66 metre, and the differences of level at Marseilles and Amsterdam appear to be 0.80 metre when compared through Alsace and Switzerland; the Comptes Rendus de la Commission Permanente del' Association Gdadsigue Inter nationale arrive at 0.757 metre from the comparison wuth the Prussian levellings, whilst the fifth volume of the "Nivellements der Trigonometrischen Abtheilung der Landenaufnahme" gives 0.809 viâ Alsace, and 0.832 vid Switzerland. The difference of levels at Trieste and Amsterdam, meavured zid Silksia and Bavaria, appears to be 0.59 metre. Each of these four results ($0^{\circ} 72,0^{\circ} 66,0^{\circ} 80$, and $0^{\circ} 59$), having a probable error of $0^{\circ} 1$ metre, their accordance is quite satisfactory, and we may admit thus that the average level of the Mediterranean is in fact lower by 0.7 metre than that of the Athantic.
THE additions to the Zoological Society's Gardens daring the past week inelade a Macaque Monkey (Macacus cynomolgus 8) from India, presented by Mr. J. L. Waldon ; a Night Heron (Nycticorax grisens), European, preeented by Mr. N. H. Fenner ; two Barbary Turtle Doves (Twrtur risorius) from Norih Africa, presented by Miss Stewart; four King-hals sinakes (Seperion hamachects), a Hoary Snake (Coronella cana) from South Africa, presented by the Rev. G. H. R. F:5k, C.M.Z.S. ; a Black-faced Kangaroo (Macropus melanops ס) frum Australia, a Broad nosed Lemur (//apaknour simus \&) from Madagascar, an Exanthematic Monitor (Varanu: exanthematicws) from West Africa, purchased.

OUR ASTRONOMICAL COLUMN

The Mass ov Satukn.-Prof. Asa, h Hall has communicated to the Royal Astronomical Sociery a nute upon the mass of Saturn deduced from ubservanious of the outer satellite Yapelus, made with the 26 -inch refractor al the Naval Observatory, Washington, in 1875,1876 , and 1877. The mean distance of the satellite from it. primary, reduced to the mean distance of the latier (9.53885), was found to be $515^{\prime \prime} .522$ from 128 observations. For the periudic tine of Faptus Irof. Hall companed
his own observatiuls with one by Sir W. Herschel on Sept. 20, 1789 , and with Sir John Herschel's observations made at the Cape of Cood Hope in 1837. The resulting sidereal revolution is $79^{\circ} 3310152$ days. Hewe the mass of Saturn in units of the sun's mass is $\frac{1}{34^{82} \text { '2 }}$ Benel, from heliometr.c measures of the great satellite Tïan obtained a value of $\frac{1}{3501 \cdot 6}$, which has been sisce used in nearly all calculations where the mass of this planet eniers ; Jacob, from obervations of Twan made at Madras in $1856-58$, iaferred a mass of $\frac{1}{3487 \cdot 2}$, which it will Le seen closely approaches that given by Prof. Hall. The value deduced by Leverrier from the theory of Uranus is $\frac{1}{3529^{\circ} 56^{\prime \prime}}$ and therefore is the smallest of all.

Close Double-Staks.-M. Perrotin has pablished in the Astronomische Nachrichten further mea ures of double-stars made at the Observatory of Montgros, Niee, amongt which are some of the close binaries. In July last he thought 72 Ophiuchi (rather a problematical object) might be elongated in the directiun 110°, bat in the followiug month it appeared single under goud conditions of atmosphere. Of the closer stars we find-

ross' Comer. - The following approximate place of Pons' comst are deduced from the provisionally corrected elements of MM. Schulbof and Bossert :-

The iutensity of lizht is at a maximum in the middle of January. The comel will be nearest to the earth on January 9, dis anee 0.634, or rather less than two-thirds of the earth's mean distance from the sua. At its last appearance in 1812 it did not approach the earth within about $\mathbf{8} 35$.

Tempel's Comet, 1867 II. -M. Raoul Gautier of Geneva is engaged upon a revision of the orbit of this comet, which, it may be remembered, experienced great perturbations from a near approach to the planet Japiter during the revolution 186773. It may probably arrive at perihelion again about May, 1885. If there shonld still be unpublished observations of this comet, it would be desirable to communicate them at once to M. Gantier, that they may be brought to bear upon his investigation.

De Morgan's Five Figure Logaikithms.-There is a report that the five-figure table; of logarithms of numbers and trigonometrical functions pablished "under the superintendence of the Society for the Diffusion of Useful Knowledze," but which are usually known as De Morgan's Tables, are out of print, and that there is no present intention of a further issae. If this be the faet, it is much to he regretted : they are by far the most convenient five-figure tables that we posses-, on the score of size and legibility, and have been widely utilied in astronomical calculations. Lalande's Tables, the stereotype edition of Firmin Didot, are good, and the same may be said of Gauss"s, where it is of advantage t.) have two degrees on one opening; but we nevertheless unhesitatingly give the preference to "De Morgan."

PROBABLE NATURE OF THE INTERNAL SYMMETRY OF CRYSTALS

SOME studies pursued by the writer as to the nature of molecules have led him to believe that in the atom-groupings which modern chemistry reveals to us the several atoms occupy distinet portions of space and do not lose their individuality. The object of the present paper is to show how far this conclusion is in harmony with, and indeed to some extent explains, the symmetrical forms of crystals, and the argument may therefore in some sort be considered an extension of the argument for a condition of internal symmetry derived from the phenomena of cleavage.

If we are to suppose that erystals are built up of minute masses of different elements symmetrically disposed, it is natural t inquire in the first place what very symmetrical arrangements of points or particles in space are possible.

It would appear that there are but froc, which will now be described.

If a number of equal cubes are built into a continuous mass (Fig. 1), a system of points occupying the centres and angles of these cubes will furninh an example of one of these symmetrical arrangements. In this system each point is equidistant from the eight nearest points, and if a number of equal-sized spheres be stacked on a base layer arranged so that the sphere centres when joined form a system of equal squares, a side of which bears to the diameter of the spheres the ratio $2: \sqrt{\prime} 3$ (see plau a), the sphere centres in such a stack will also furnish an example of this first kind of symmetry (Fig. 2).

A second kind of symmetry will be presented if one-half the points in the first kind be removed so that we have only those at the cube centres, or only those at the cube angles. In this system each point is equidistant from the six nearest points, and if equal-sized spheres be stacked upon a base layer, arranged so that the sphere centres when joined form a system of equilateral triangles, a side of which bean to the diameter of the spheres the ratio $\sqrt{2}: 1($ see $p l a n ~ b)$; and if the layers be so placed that the sphere centres of the fourth layer are over those of the first, thase of the fifth over those of the second, and so on, the sphere centres in such a stack will also furnish an example of this second hind of symmetry (Fig. 3).

A third kind of symmetry will be presented if again one-half the points be removed, i.e. so that when cubes of two colours arranged in such a way that each cube is surrounded by cubes of the other colour are used (see Fig. 1), we have only the points at the centres of the cubes of one colour. In this system each point is equidistant from the twelve nearest points, and if equalsized spheres be stacked upon a bace layer in which the spheres are in contact, and whether they form a square pattern (see plan (), or a triangular one (see plan d)-provided that, if tri-angular-pattern layers be employed, the sphere centres in the fourth layer must be over those in the first, those in the fifth over those in the second, and so on-the sphere centres (the arrangement being the same in either case) will furnish a second example of the third kind of symmetry (Figs. 4 and 4a, the latter showing a stack with the angle removed to display the (riangular arrangement).

A fourth kind of symmetry, which resembles the third in that each point is equidistant from the twelve nearest points, but which is of a widely different character from the three former kinds, is depicted if layers of spheres in contact arranged in the triangular pattern (plan d) are so placed thst the sphere centres of the third layer are over those of the first, those uf the fourth over those of the second, and so on. The symmetry produced is hexagonal in structure and uniaxal (Figs. 5 and $5 a$).

A fifth kind of symmetry, and this completes the number of very symmetrical arrangements possible, resembles the second kind of symmetry in that each point is equidistant from the six nearest points, and bears the same relation to the fourth kind (Fig. 5) as the second (Fig. 3) bears to the third (Fig. 4); that is to say, it may be regarded as produced by the insertion of additional points in positions midway between points arranged in the fourth kind of symmetry. It is depicted if triangularly constituted layers identical with those depicting the second kind if symmetry (plan b) are deposited in the following way (Fig 6): -First place three layers as though to pmonce the second kind of symmetry; then place the fourth with its sphere centres over those of the second layer; then the fifth so that the third, fourth, and fifth, like the first, second, and third, are in the second kind of symmetry; then the sixth with its sphere centres over those
of the fourth and second; and then the seventh, so that the fifth, sixth, and seventh layers are also in the second kind of symmetry ; and so on. The symmetry produced is, like the last, hexagonal in structure and uniaxal.

The writer believes that every one of the various symmetrical forms presented by crystals can be shown to be consistent with the subsistence of an arrangement of the atoms of the crystallisino compound in one or other of these five kinds of symmetry at ;

Potassic iodide, KI.
Sodic chloride, NaCl.
Sodic bromide, NaBr .
Sodic iodide, NaI (anhydrous above $40^{\circ} \mathrm{C}$.).
Casi chloride, CS.Cl.
Plumbic sulphide, PbS.
Argentie chloride, $\mathrm{AgCl}^{\text {. }}$
When we have named lithic chloride, crystallising above 15°

Fic. 4 .

Pland.

Fig. 5 .

Fig. 54.

Fig. 6.

in octahedra, we have mentioned most of the compounds consisting of two elements in equal proportions known tu us in a crystalline state.

Mercuric sulphide, Hg. S, which crystallises in six-sided prisms, is an apparent exception, but if we were guided by the gascous volume of mereury in determining its atomic weight, we should have to write the compound $\mathrm{I}_{\mathrm{g}}^{2} \mathrm{C}$.

Other apparent exceptions are :-
Zincic oxide, ZnO , crystallising in six-sided prisms.
Cadmium sulphide, CdS ; and
Glucina, GO, crystallising in minute six-sided prismatic crystals.
Now three out of our five possible kinds of internal symmetry have three axes or directions at right angles to each other, in reference to which they are disposed in the same symmetrical manner, and two kinds, the first and second, admit of a very symmetrical arrangement of two kinds of particles in equal nuwders (nee Figs. 2 and 3). Surely this coincidence is very significant, and at lea t suggests the probability that when a compound consists of two kinds of chemical atoms in equal numbers, these atoms are symmetrically placed according to either the first or the second kind of internal symmetry.

We observe next that the third and fourth kinds of symmetry (Figs, 4 and 5) readily lend themselves to the symmetrical arrangement of particles of two kinds present in the proportion 1:2. For, as already pointed out, these two kinds of sym. metry may either of them be produced by piling up layers of spheres placed triangularly in contact (see plan d), and spheres of two colours present in the proportion of $2: 1$ can be arranged in a most symmetrical manner in layers of this kind (see plan e).

As to what varieties of position of bi-coloured layers of this kind with respect to one another are possible, consistent with great aymmetry, we have concluded that, apart from the ques. tion of arrangement of colour, there are but two, viz, the third and fourth kinds of symmetry (Figs. 4 and 5) ; but taking colour into account a greater variety is possible. Thus a litile consideration shows us tbat, while all the possible ways of depositing the second layer produce a practically identical resule, a choiee of six different equally symmetrical results is presented in depositing the tbird layer, in all of which the spheres of the less numerous colour form files of sphere, in contact running through the layers, and three of which lelong to the third kind of symmetry and three to the fourth.

To specify these: We may have the less numerous spheres of the third layer placed with respect to those in the second and first :-
(1) So that the three spheres of each of the files just above alluded to range in line, the lines joining their centres forming a series of parallel straight lines crossing the planes of the layers obliquely. This arrangement belongs to the third kind of symmetry.
(2 and 3) So that the centres of these three spheres, when joined, form a slightly obtuse angle; a different result being produced as the angle is made to the right or to the left. This pair of arrangements belongs also to the third kind of symmetry.
(4) So that the less numerous spheres in the third layer are vertically over those in the first. This arrangement belongs to the fourth kind of symmetry.
(5 and 6) So that, as in (2) and (3), the tri, lets of spheres form a system of equal obtute angles, but the angles now being very obtuse. There are here, as in (2) and (3), a right-handed and a left-handed arrangement. These belong to the fourth kind of symmetry.
The deposition of the third layer, by the necessities of symmetry, determines the deposition of succeeding layers, and it follows therefore from the above that six different equally symmetrical arrangements of spheres of two colours present in the proportion 2:1 are possible in the third and fourth kinds of symmetry.

As to (t) the parallel files of the less numerous spheres cross. ing the first three layers will extend through subsequent layers.

As to (2) and (3) every three continuous layens will display the less numerous sphere centres placed to form the same angles as are presented by the triplets in the first three layers, and consequently these sphere centres lie on spirals which are right-handed or left-handed as the case may be ; the less numerous spheres in the fourth layer being vertically over those in the first, those in the fifth over those in the second, and so on.

As to (4) the less numerous spheres in the fourth layer must lie vertically over those in the second, those in the fifth over those in the third, and so on; and thus the files of spheres in contact running through successive layers form a scries of similar zigzags.

As to (5) and (6) the sphere centres, as in (2) and (3), lie either on right-handed or on left-handed spirals; in this case the less nameruus spheres in the seventh layer being vertically
over those in the first, those in the eighth over those in the second, and so on (Figs, 5 and 5a).

When we inquire whether the symmetrical arrangements just traced are in harmony with the facts respecting compounds of two kind of atoms in the proportions $1: 2$, we find some very important evidence.

Thus water, $\mathrm{H}_{2} \mathrm{O}$, crystallises in six-sided prisms or in rhombohedra; furms boih of which are compatible with one or other of the abuve symmetrical arrangements.

And the following most interesting concurrence of facts indicates that the symmetical arrangements in the fourth kind of symmetry above described (see Figs. 5 and 5a) are those of the atoms of quartz.
(a) Quartz consists of oxygen two atoms, silicon one atom; just the proportions in these arrangements.
(b) It has the property of circular polarisation, from which it has been proved that its molecules must have a spiral arrangement, and, since some crystals have the property of rotating in one direction, some in the opposite, that this spiral arrangement is right-handed in some crystals, lett-handed in others,
(c) It crystallises in six-sided prisms terminated by six-sided pyramids, a form derivable, as we have seen, from the arrangements betore us.

As to this last point, just a word of explanation why we must not look for the angles exbitited by our model arrangements to be identical with the angles made by the pyramid faces in quartz.

It is a matter of common observation that the process of crystallisation is generally associated with change of bulk, and if we snppose this change to arise from expanston, or contraction, generally expansion of the different hinds of atoms, and that these different kinds have different degress of expansion, we see that a mass symmetrically arranged in the manner suppused will in crystallising expand or contıact more in some directions than in others, and while we should look for a similar change in the direction of each of the thre transverse suburdinate axes of the crystal, we should look for a different cbange in the direction of the principal axis. And thus, snppoxing the mass when liquid immediately before it began to crystallise to have had the uternal symmetry which has been depicted, it is evident that the uncqual chan e of diuension in different directions might saffice to brugg about such an inch. nation of the faces of the termisal pyramuds to the sides of the prism as is actually found to exist.

In support of this explanation we have the fact that crystals not of the regular system have been found to expand unequally in different directions when subjected to heat.

Further evidence in support of the theories here submitted is found in the fact that, with scarcely auy exception, the compounds we are now considering do not crystallise in the regular or cubic system. ${ }^{1}$

William Barlow
(To be continued.)

THE HELVETIC SOCIETY OF NATURAL SCIENCES

THE sixty-sixth session of this Society was held early in the month of August of the present year in the city of Zurich. The proceedings of the various Mathematical, Physical, Chemical, Zoulogical, Botanical, and Medical Departments are somewhat fully reported in the Archarvs des sciences Physiques ef Nufurelles, Geneva, October 15. On August 6 a pieliminary meeting was held of the delegates of the Cantonal Sectious and Special Comnittees, and next day the seseion uas formally opened in the Town Hall under the presidency of Prof. Cramer. The two eusuing days were devoted to the work of the several Sections, all of which were well attended by numerous $\$$ wiss and foreign savanty, brought together by the double attraction of the Helvetic Society and the National Exhibition, which was also held this year in Zurich.
In the Mathematical Section, over which Prof. W, Fiedler presided, the chief papers were those of Irof. Geiser (Zurich), on surfaces of the third degrte; of Dr. Kudio (Zurich), on the geodetic lines traced on surfaces of the seconal degree; of Prof. Fiedler (Zurieb), on the inter.ection of equilateral hyperboloids revolving on parallel axes.

In the Physical Section, presided over by Prof, R. Clausius,

- With regard to calcic fluoride (fluor-spar), which appeans as an exceptiot, it may be remarked that a different at mic weight for calcium which would enable us to arie the compound CaF would enible us to get over a difficulty wh regard to another compound of calcium, as we shall see presently.
M. F. A. Forel (Morges) communicated the result of his researches made to determine the limits of variation of temperature in the waters of Lake Geneva. According to his thermometrical soundings, the diurnal varianion is perceptsile down 10 a depth of from 10 to 15 usetres; the sumuer variation from 60 to 100 metres. Exceptiunal winters like that of $1879-80$ are felt as low as 334 metres. Since that year the tewperature of the water at these great depths has been rai,ed on au average about half a degree Centigrade.

Some preliminary results of his researches on the refraction a d dispersiun or crystallised alums were communicated by M. Charles Soret of Geneva. Hy means of his complecely reflecting refractometer, described in the Archives tor January, 1883 , the author has determind the indices of refractiun for the principal lines of the solar spectrum from a to G inclusively for six sulphuric alums with alumina bave.

Prof. Clausius read a pay er of practical importance on the theory and proper meihod of construction of dynamo-eleciric machiues. Some curious experiments were made by M. C. de Candolle of Geneva, shuwing how ripples are formed on sandy surfaces at the bottom of the sea. From these experiments it re ult, that the phenomenon is produced by the friction of a Inqnid mass agaust any substance more viscous than itself. Hence the sand may te regarded as forming with the water a vi-cous mixture, on the surface of which the friction of the pure liquid develops ripples in the same way that the friction of the air develops ripples on the surface of the water itself.

Amongst the vther wemulrs in the Ihywical Section the most notew orthy were those of Prof, H, F. Weber (Zurich) on liquids and gases as heat cunductors ; an experimental demonstration of the second principle of the mechanical theory of heat, by M. Ka sul Yictet ; on the determination of the ohm, by Prof. H. F. Weber ; on the results ot the observations and rescarches made in the laboratory of the Lausanne Academy on atmospheric electricity, by M. Henri Dufour of Lansanne. The anthor described several successfus attempts made by him to reprodnce artificially the elecuic phenomena ubserved in the terrestrial atmosphere.

The Chemical Section was opened, under the preidency of Prof. Wislicenus, ly Y'rof. V. Meyen's memuir on the nature of the chemical elements according to recent research. The authur leaus to the viens of Mendeleeff and Lothar Meyer, who regard the propertics of simple bodies as the periodical functions of their atomic weights. the fact that Mendeleefl was able to predict the cxistelice of galiium and scandium, and correctly determine their atomic weaghts, was adduced in support of the theory that all the elements are uerely different componnd forms ut one primitive substance. Hence, although hitherto baffled, the attempts now leing made to decompose them may result in the expermmental deterumation of one absolute primordial substance.

Prof. F. Kraff (Basle) presented some higher alcohols of the series $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 n}+2 \mathrm{O}$, accumpauying them with some reuarks on the syntheris of alcohols in geticral. A risumed was given by Prof. Louis Soret (Geneva) of his rescarches on the absorption of the ultra-violet rays by various substances of animal origin. The author dwelt on the great importance of thi- brauch of spectral analysis to chemistry, and concluded with a brief description of the method and appliances used by him in bis origual reearclues.

Uther valuable chemical papers were those of Dr. M. Cérésole (Lausanne), on aceracetic acids; of Yrut. V. Mejer on the apparatus used in determining the densities of gases at very high temperatures ; of l'rof. Schulze, describing the researches nade by bim jointly with M. J. Barbieri on phenylamidopropionic acid, which is ultained by heating albuminond substances with chlorhydric actd and chloride of tin; of Prof. Wislicenns (Wurizbury), on the relation of the optical rotatory power of carburets ol hydrogen, on the existence of an atoki of asymmetric carbon, and on the procucts of the reaction of dichloride of phatyle on the sodic combination of malonic ether; Prof, G. Lunge (Zurich), on the formation of sulphuric acid in lead chambers; Dr. Urech (Stuttgart), on a lamp fed by ether of petroleum. This lamj", con-tructed by C. C. Lilienfein, of Stuttgart, consists of a metallic receiver containing the ether of petroleum, and cunnected with a Bunsen burner slightly modifiei in consequence of the liquid nature of the combnstible,

In the Zuological zection I'rof. C. Vogt, president, the proceedings were opened by a communication from Prof. 11. Fol (Geneva), on the physiological origin of the individual in the
higher animals. M. II. Goll of Lausanne, presented a contribution to the natural hi-tory of the sedentary end misratory coregones of Lake Neuchatel. Mem virs were received on the Aracbnidx of Switzerland by Prof. Pavesi of Pavia; on the fauna of Guatemala, by Dr. Otto Stoll of Zurich; on some new epecies of Medusx from the Red Sea, by Dr. Keller of Zarich ; on the Pela gie fauna of the Swiw lakee, by Dr. OthmarEmile Imhof of Zurich; and on the influence of the physicochemical environments in the devel-pment of the tadp le of the edible frog, by M. E. Yung of Geneva. From experiments made by mixing marine salt in various proportions with the natural freshwater element, M. Yung arrived at the conclusi n that, the more saline the water, the slower is the development of the tadpole, all transformations ceasing in colntins of $9 / \mathbf{t 0 0 0}$, and death foll wing in a few hours in solutions of $10 / 1000$.
In the Botanical Section, Prof, Cremer, president, valuable memoirs were received from Prof. O. Heer of Zurich, on the Glacial flora of Switzerland, and on the fossil flora of Greenland. These were the last pager contributed to science by the d1-tinguished savant, who had scarcely finished the revisal of the proofs when he died suddenly at Lausanne, on September 27. A series of hybrids between the Primula auricula and Primula viscosa, showing an uninterrupted series of forms intermediate between these two specier, was exbibiled by Prof. Favart of Lausanne. He also showed that the Cardamine forsicola, Godet, hitherto classed with the C. pratensis, Lin., should be grouned with the C. matthioli, Moretti. \mathbf{S} me remarks were made by Prof. Schnetzler of Lausanne on a mon-trocity of the Chinese primrose, and on the relation hetween an aërial alga (Chroolepus umbrinus) and a lichen (P yromula sp.) M. C. de Candolle described the results of his attempts to determine how far any light may be thrown on the disputed origin of the Cytisus adami by the anatomical structure of its leaves. This plant, which suddenly made lis appearance in the nursery of Adam at Vitry, near Paris, early in the pre ent century, and which is remarkable for producing red and yellow blossoms mostly on separate bronches, is usually regarded as a cross obtained by grafting the Cytisus parpureus on the C. labarnum. But M. de Candolle eoncludes that it is not a hybrid, but simply a degenerate variety of the C. laburmus.

In the Medical Section, Prof, von Kölliker, president, Prof. Klebs of Znrich read a remarkable paper on the transformations of the human species, which he regards as mainly the result of pathological influences.
Valuable communications were also made on the centres of origin of the optic nerves and on their relation to the cerebral cortex, by Dr. C. von Monakow of St. Petersburg ; on the relations existing between the excitability and vulaerability of certain muscular groups, by Prof. Luchsinger of Berne ; and on the mechanism of the ruminating process, by the same author.
The report on the Geologieal Section was unavoldably post. poned to the November issue of the Archiv s.

NOTES FROM THE OTAGO UNIVERSITY MUSEUM
 IV.-On the Strueture of the Head in "Palinurus," with sprial reference to the Classification of the Genus ${ }^{1}$

THE genus Palinurus was divided bv Milne-Edwards into two groups or sub-genera-one, the "Langoustes ordinaires," containing species in which the antennulary flagella are short, the bases of the antennx approximated, and the rostrum present ; while the other, or "Langoustes longicornes" (Pamuhirus, Gray: Sewex, Pfeiffer), contains species in which the antennnlary flagella are short, the antennx widely separated at their proximal ends, and the rostrum absent.

In this classification, which is still in the main adopted by systematists, no notice is taken of the stridulating organ, first mentioned, I believe, by Leach, in P, vwlearis, and described at length by Möbius, and later by myself, in the same species. ${ }^{3}$ This unique sound-producing, apparatus is present in all the "Langoustes longicornes" which I have yet examined, as well as in P. vulgaris and P. trigonus among the "Langoustes ordinaires"; while in all the remaining members of the latter group

[^25]which have come under my notice (c.g. the common New Zealand species, P. lalandii and P. edzvardsii) there is no trace of it.
There is also great diversity among the "Langoustes ordinaires" in the development of the routruw, the true size of which can only be seen in a longitudinal vertical section of the head (see Fig. 1). In Γ, lalandij and other non-stridulating species, the rostrum (A, r) is well developed, and bears comparison with that of flomarus, while in P. vwlguris (B, r) it is a mere spiniform tubercle meriting special description only from ins position. P vwlgaris, moreover, has no thace of procephalic processes, which are present, though small, in P. Lalandii (A, Ac. p).

Fig. 1.-A, Longitudinal vertical section of the head of Palinunus edmardsii:
 articular cavity for antemnule; at t^{2} for antenna : $c x$, unanchylosed pari of inner wall of coxscerite ; $\alpha . s$, ophthalnic sternum ; r, rostrum: A. \boldsymbol{p}, procephalic process.
The woodcut shows that as regards both the rostrum and the antennulary sternum (the fixed part of the stridulating organ), P. vulgaris (B) approaches far more nearly to the "I angoustes longicornes," as represented by P. interruptius (C), than to the non-stridulating "Langoastes ordinaires," as represented by P. edtuardsii (A).
On the other hand, all the brevicorn species examined agree in the imperfect fu-ion of the eoxoceriles or proximal segments of the antenna. A transverse section taken immediately in front of the renal apertures shows that a small portion of the adjacent or inner walls of the coxocerites in P. lalandii, P. vwlgaris, \&c., are merely in apposition, whereas in the longicorn species concrescence is complete.
Assuming that the Palinuride are derived froman Astacoid or Homaroid ancestor through some such intermediate form as Palinurdlus, one cannot but conclude that the species which have no stridulating organ, a well-develofed rostrum, procephalic processes, and imperfectly fused coxocerites, come nearest to the parent stock, and that those in which the stridulating organ is developed, the rostrum and procephalic processcs absent, and the coxocerites completely united with one another, have diverged most from that stock, and present us with the extreme of modi fication of the Palinuroid type.
This view is expressed in the following phylogenetic table :-

In a natural classification of the genus the most fundamental separation appears to me that along the dotted line abdividing the non-stridulating from the stridulating species. This division once made, the stridulating species fall into two natural subdivisions, expressed in the table by the line $6 d$, which divides the brevicorn from the longicorn forms.
I think the mot convenient classification is obtained by dividing the species along the two lines $a b, c d$ into three subgenera, one identical with the "I.ang oustes longicornes" of Milne-Edwards, the others formed by splitting up the "Langonstes ordinaires" into species with and species without a stridnlating organ.
The following table embodies the proposed arrangement :Genas Palinurus, Fabr.
A. Stridulating organ absent ; rostram well developed, clasped by paired pedate processes of the antennnlary sternum ; procephatic processes present; cox cererites imperfectly fused; antennulary flagella short (sub-genus Fasus, T.J.P.).
P. calavdii, P. atiourdsii, P. hus elhi, P. tumidus.
B. Stridulating organ present ; rontrum variable, bat rarely (? never) as well developed as in (A) ; perlate clasping processes absent ; procephalic proces es ahsent.
a. Antennulary sternum narrow below, bases of antennules being hidden, in a view from above, by bases of antennx; coxocerites imperfectly fnsed; antennnlary flagella short (sub-genns Palinurus).
a. Rostrum well developed, covering ophthalmic sternnm.
P.trigomas.
B. Rostrum reduced to a small spiniform tabercle; ophthalmic sternum une svered.
b. Antennnlary sternum broad below, bases of antennules being visible from the dor-al a-pect; coxocerites perfectly fused; antennulary flayella long (sub-genus Panulirus, Gray; Semex, Pfeiffer).

$$
\text { P. interruptus, } P \text {. fasciatus, \&c., \&c. }
$$

Dunedin, N.Z., October 2
T. Jeffery Parker

SCIENTIFIC SERIALS

Bulletin of the Belgian Royal Academy of Sciences and Billes l.ettres, October 4.-Obituary notices of the late M. Joseph Plateau, by MM. Daprez, Valerius, and Liagre.-Second communication on the discovery of the fossil iguanodon at Bernissart, by P. J. Van Beneden.-Researches on the absolute force of the muscles of the Invertebrates ; Part I. Ahsolute force of the addnctor muscles in the lamellibranch mollases (four illustrations), by M. Félix Plateau. - Note on a new optical illusion, by H. Valerius.-Remarks on the action of lightning conductors constructed on the Mekens system, by H. Valerins,-Arithmetical and algebraic theorems, by E. Catalan. - Note on the pelvisternum in the Edentates (ten illustrations), by Prof. Paul Albrecht, - Fnneral oration of M. Henri Conscience in Flemish and French, by M. Pierre Willems.-Memoir on the bibliography of international law before the publication of Grotius's "Jus belli et pacis" (1625), by Alphonse Rivier.-Confession de Poete, a poem, by Charies Potvin. - Some traits of the social life of the Celestial Empire. How history is manufactured in China; civil and military decrees, by Ch . de Harlez, -Reports on the competitive papers sent in on the subject of Gretry, a critical study of his life and works. The prize, a gold medal of the intrinsic value of 321 , was awarded to M. Michel Breuet of Paris-Reports on the compctitive papers received on the subject of realism, its definition and influence on contemporary painting. The essay by M. Henry Hymans, a member of the Academy, was pronounced the best. But the prize, also a gold medal worth 32 h., was not awarded to him, owing to his failure to comply with the conditions of the competition.-Discourse on the annual exhibition of paintings, by M. Fetis. The prize of a thousand franes for the best cartion on the subject of help for the wounded on the hattie-field, as a decorative piece for a military hospital, was awarded to M. Ilenri Evrard, of Saint Gilles-lez-Bruxelles.

SOCIETIES AND ACADEMIES London

Royal Society, December 6.-"The Wave-lengths of A, a, and of some Prominent lines in the Infra-Red of the Visible Spectrum." By Capt. Abney, R.E., F.R.S.
M. Fievez has recently sent the author a map of the solar spectrom from C to A ("Annales de l'Observatoire Royal de Bruxelles," nouvelle sćrie, tome v.) inclusive, and as part of this region is one which he is measuring, he examined the new publication with great interest. Phooography and eye measurements do not coincide in the detail of the grouping of the litile a group, or from there as far as A, and A itself is shown by M. Fievez's map as wanting in some details which appear in the photographs. The wave-lengths of the different lines from above " a " to A are not tho e given by Fievez, when comparison photographs o the 1st order of the rel with the 2nd of the altra-violet weref taken on the same photographic plate, or when the and order of the rel is compared with the 3rd order of the green taken in a similar manner. I'rof. Rowland's concave gratings were employed for this compari on. Cornu's map was used as a reference for the ultra-violet wave lengths, and \AA ngström's map for those in the blue and green.

The determination of A has been made by Mascart, Smythe, and others, besides Angstrom and Langley, with discordant results. The above may be taken as accurate, as are Cornu's and Angntrom's maps.

The following are wave-lengths of some of the principal lines in the infra-red. The scale numbers refer to the author's map of the infra-red, which is pablished in the Phil. Trans., Part II., 1880 :-

Mathematical Society, December 13.-S. Roberts, F.R.S., vice-president, in the chair.-The following were elected members :-Messrs. A. B. Basset, H. Fortey, R. T. Glazebrook, F.R.S., G. Heppel, J. J. Thomson, H. H. Turner, and Prof. W. Thomson, Cape Colony.-The following papers were com. municated:-The form of standing waves on the surface of running water, by Lord Kayleigh, F.R.S.-A method of finding the plane sections of a surface and some considerations as to it: extension to space of more than three dimensions, by Mr. W. J.
C. Sharp.-On a deduction from the elliptic-integral formula $y=\sin (A+B+C \ldots)$, by Mr. J. Griffiths.

Linnean Society, December 6.-Sir John Lubbock, Bart., president, in the chair,-H.H. Maharajah of Travancore, and Messrs. C. A. Barber, E. Bostock, H. Friend, J. Hannington, J. S. Hicks, J. Richardson, R. Tate, and H. Tisdall were elected Fellows of the Society.-Mr. B. Daydon Jackson exhibited a speciaren of "Mexican whisks," known also in the London market as " chien-dent," which are now imported in considerable quantity from the vicinity of La Puebla in Mexico. It is believed to be derived from a species of Andropogion, but is in bulk coarser than the similar material from Southern Europe from Andropogon gryllws, and finer than the species of Panicum used in India for brushes,-Mr. Arthur Bennett exhibited a specimen of Carcx ligerica gathered by Mr. Cunnack on the Scilly Isles (Cornwall), and believed by him to be a sterile form of C. arenaria, but identified as C. ligerica by Prof. Eabington, and therefure new to science. Mr. Bennett also drew attention to locally so-called "vegetable hedgebogs," these being agzlomerated larch leaves (having some resemblance to a rolled hedgehog) found in the Shropshire meres.-A large number of Lepidoptera from the district of Georgetown, Colorado, and a few from Missouri were exhibited by Mr. Ernest Jacob, who bad collected them while engaged in the U,S,A. Geological Survey in tbe above districts, $1880-8 \mathrm{r}$. - A series of dried plants from Australia were shown on behalf of Mr. James Robert,on. -Mr. Charles Darwin's paper on instinct (noticed in our last week's issue) was then read by the Zoological Secretary, and an important discussion followed, in which Mr. Wallace, Profs. Huxley, Allman, Mivart, Foster, Iankester, Mr. Mclachlan, Mr. Seebohm, and others took part. -m

Zoological Society, December 4-Prof. W. H. Flower, F.R.S., president, in the chair.-Mr. Philip Crowley, F.Z.S., exhibited and made remarks on an egg of a Bower-bird from Soutbern New Guinea, supposed to be that of Chlamydodcra corviniventris.-Sir Joseph Fayrer, F.Z.S., exhibited a shed deer-born, apparently gnawed by other deer, and made remarks on this subject.-Mr. Sclater exhibited, on the part of Dr. George Bennett, F.ZS., four skins of a species of Paradise-bird of the genus Drcfanornis, obtained in the vicinity of Port Moresby in Soutbern New Guinea. Mr. Sclater considered this form to be only subspecifically different from D. albertisi of North-eastern New Guinea.-Mr. W. Burton, F.Z.S., exhibited a supposed bybrid between a male blackcock and a bea pheasant. -Mr. R. Bowdler Sharpe gave descriptions of some new species of Flower-peckers, viz,:-Diceum sulacnse, from the Sula Isl unds; D. pulchrius, from South-eastern New Guinen; and D. tristrami, from the Solomon Islands. The author added some critical notes on other species of Dicaum and Prionochilus.-Mr. J. B. Sutton read a paper on the diseases of monkeys dying in the Society's Gardens, on which he gave many interesting details. Mr. Sutton called special attention to the prevalence of the belief that monkeys in confinement generally die of tuberculosis, and showed that such is not really the case.-Mr. H. O. Forbes, F.ZS., read a paper describing the 1.eculiar habits of a spider (Thomisus decipiens) as observed by him in Sumatra.-A second paper by Mr. Forbes gave an account of sime rare birds from the Moluceas and from Timor Laut. To this the autbor added the description of a new species of Ground-Thrush from Timor Laut, whicb be proposed to call Gacichla machiki, in acknowledgment of services rendered to bim by Dr. Julius Machik in Sumatra.-A communication was read from Prof. J. von Hast, F,R.S., containing notes on Ziphiss (Epiodon) moweacalandia, in continuation of a former paper read before the Society on the same subject.-A second communication from Prof. Haast gave a description of a large Southern Rorqual (Physalus (Balianoptera) australis) wbich had been warhed ashore dead on the New Brighton beach about five miles from Christchurch, New Zealand. Prof. Haast was doubtful as to the distinctness of this animal from BalemoNera musculus 1 of the Northera Atlantic.-Mr. G. Frencb Angas, C.M.Z.S., read some notes on the terrestrial Mollusea of Dominica collected during a recent visit to that island.

Mineralogical Soclety, December 11.-The Rev. Prof. Bonney, president, in the chair.-1 he following papers were read :-On some specimens of lava from Old Providence Islind, by the President.-On the evidence of the occurrence of nickel iron with Wilmanstatten's figures in the basalt of North Green-
land, by Prof. K. T. V. Steenstrup. - Note on a new mode of occurrence of garnet, by H. Louis,-A cbemical exawination of the Greenland telluric iron (translated from "Medelel er fra Grönland," Heft 4, 1883), by Joh. Lerenzon.-At 9 p,m. (purnurnt to notice) tbe meeting was made special, and the members of tbe Crystallograpbical Society were elected members of the Society, a portion of the rules relating to election being for the time suspended.

Dublin

University Experimental Science Association, Nov. 13. -Prof. V. Ball in the chair. - On the magnetophone, by Prof. Fitzgerald. A new form of the instrument was exlibited by W. V. Dixon. In this a diaphragm removed from a telephone is placed in close proximity with one extremity of a bar magret, at the otber extremity of which small masses of soft iron fixed radially on an' axle are rotated. A note is produced at the diaphragm.-On the phenomena attending pressure on sensitive plates, by W. Hoǧ. Experiments confirmatory of those described by Capt. Abney were made, and enlarged photos of tbe developed marks sbown. Similar experiments on sensitive albuminised paper were described by P. M. Crusthwaite; the use of paper allowed of considerable pressure being applied.On compound 1 comotives, by \mathbf{F}. Trouton,- On the identification of mincrals by means of their specific beats, by J. Joly.On the deposition of metallic copper in cracks, by N. M'J. Falkiner.-Experiments gave results similar to those obtained by liecoucrel.

Manchester

Literary and Philosophical Society, November 27.II. E. Roseoe, F. R.S., president, in the chair.-On the fungus of the salmon disease-Saprolegnia ferax, by H. Marshall Ward, M.A., Fellow of Christ College, Cambridge.

Paris

Academy of Sciences, December 10.-M. Blanchard, president, in the chair.-Note on a new eompound of rbodium, by M. Ii. Debray. - On the quantities forming a group of nonions analogous to the quaternions of Hanuilton, by M. J. Sylvester.Summary report on the geological, botanical, zoological, and antbropological work accomplished by the French mission to Cape fiorn, by Dr. Ilyades. In the southern islands of the Fuesian Archipelago the prevailing rocks were found to be schists and granites great y weathered wherever unprotected by vegetation. The dwarf Antarctic beech is limited to an altitude of 400 metres, the Fagws betwloides to 300 , forming with the Drimys and Berberis a forest zone with a humid soil poor in vegetable humus, and covered with mosses, heaths, and a considerable variety of small plants. The marine flora abounds in all kinds of algre (the most common being the Marracystis pyrifera), affording a shelter to numerous zoophytes, Annelidx, mollusks, Crustaceer, and migratory fishes of eight or ten species. Of the shell-fish, which abound on most of the seaboard, all the large species are edible. Although poorer than the marine, the land fauna includes several species of Coleoptera, Lepidoptera, Arachnidx, some forty species of birds, but no reptiles or frog c. The mammals are reprenented only by one speciex of fox, two rodents, and an otter, besides the domestic dog. The natives all belong to the Tekeenika stock of Fitzroy, called Yabgans by the present English missionarics. They speak an agglutinating language current from the middle of Bengle Passage to the southernmost islands about Cape Ilorn. About 1000 words of this language were collected, ancluding some abstract terms, such as tree, fower, fish, shell. The numerals get no further than three, although the natives count alss on the fingers. Over a hundred anthropometric observations were taken on individuals of all ages and botb sexes. Good photographs were also obtained of a large number of Fucgians, beides numerous castings of all parts of the body, some skeletons, and a great variety of ethnological materials.Note on the Phylloxera gallicola, by M. F. Hennegay.-Observations on the new planet 235 made at the Observatory of Paris (equatorial of the west tower), by M. G. Bigourdan.-Observation of the spectrum of the comet Pons-Brook", 1812, at the 14 inch equatorial (0.378 m .) of the Bordeaux Observatory, by M. G. Kayet.-On the form of the expressions of the mutual distances in the problem of the three bodies, by M. A. Lind-stedt.-On the number of the permntations of n elements presenting s sequences, by M. D. André.-Note on a theorem of Liouville, by M. Stieltjes,-New demonstration of two theorems
of M. Bertrand, by M. Georges Ossian Bonnet.-Formulas giving the electric resistance of the circuit employed in the Edison system of electrical lighting, hy M. G. Guéroult.-Otservations relative to a method of studying earth currents, in connection with a communication recently made hy M. Blavier, by M. F. I.arroque. -Researches on the solidification of superfused sulphur (second part), by M. D. Gernez - Determination of the equivalent of aluminium by means of its sulphate, by M. H. Banbigny.-On the formation of acetylene at the expense of the iodoform, by M. P. Careneuve, - New researches on the susceptibility of the eye to differences of luminous intensity, by M. Aug. Charpentier. - Cholers, small-rox, typhoid fever, and charbon amongst the coppersmiths of Villedieu, by M. Bochefontaine. Alihough the whole atmosphere of the place is, so to say, saturated with copper, nine of the inhabitants of Villedieu, all engaged in the copper industry, fell victims to cholera in 1849 . Considering the difference of ropulation, this would represent a mortality of 5700 in Paris. Nearly half of the population was attacked by stnall-pox in 1870, and a fatal case of charlon occurred in 1865. -On the existence and distribution of elesoine in the bucco-oeophagian mucous membrane of mammals, by M. I., Kanvier. -On the genus Verçuia, a fossil yew f(und in the Aachen formations of Tournai, ly M, C. Eg. Bertrand.-On a luminous phenomenon observed after suncet at Amiens on several evenings about the end of November and hegir.ning of December last, hy M. Decharme. The author fecls Inclined to attrihute the-e effects to the aurora borealis, Defails of similar manifestations observed in other places were quoted from a rec nt number of NATURE.

Berlin

Physical Soclety, November 30,-Dr. Kayser placed before the meeting a concave grating sent by Prof, Rowland to the Physical Inatitute, explained the principle of this apparatus, and exhibited a photograph of the normal spectrum produced by help of the grating, as also a negative prepared by Prof. Rowland, on which Dr. Kayser was able with the naked eye to connt between the two H lines over seventy fine lines, among which some appeared to form group=, so that by means of a microscope many more lines still woald be distinguishable.-Prof. von Helmholtz next gave a minute report of the continuation of the experiments he had instituted with a view to explaining galvanic polarisation according to thermodynamic principles. Suppose that an electric current passed through a liquid completely free of gas, then would the gases generated by decomposition of the electrolyte be first absorbed by the liquid, and only after the latter was saturated to a degree corresponding with the pressure of gas resting on it would the development of gas begin. The previons solution of gas in the liqnid was the expression of an attraction or of a molecular energy between the water and the gas, which acted in the same direction as did the electromotive energy which decomposed the electrolyte at the electrode. The absorption of the gas, therefore, agreeably with the teaching of the mathematical theory, increased the electromotive energy, and all the more so the less gas the liqnid contained. This accorded with the experience derived from experiments that the convective carrent was so much the stronger by how much the less gas the fluid had absorbed. If the liquid already contained gas in solution, a part of it would escape at the surface by a hind of dissociation, and form above the liquid an atinosphere the pressure of which corresponded with that of the momentary saturation of the liquid. This dissociation of the solution represented a work which could reciprocally be applied to the conversion of gas to a liquid state; that is to say, supposing the conditions were such that the temperature of the system was maintained throughout unaltered, the whole process was a reversible one. With this consideration let one start from any normal condition what oever, from atmospheric pressure for example, then it was the teaching of the theory that the work was all the greater the less was the quantity of gas in solution, and in the cave of very small gas volumes the work would be endless, that is to say, in every finid were dissolved minute quantities of gas which could no longer be discharged. If the electrolytic fluid contained oxygen in solution, as in fact was regularly the case, the oxygen would be drawn by convection towards the oxygenous electrode, and there augmented by the oxygen which had been electrolytically separated, and after loss of its electricity become neutral. The gas would now begin to diffase itself towards the other, the hydrogenous electrode, and this diffusion would produce the polarisation current which, just as much as the diffusion stream, was opposed to the electrolytic current and
convection. The quantity of oxygen in the fluid and its diffusion might be illustrated by a curve which ascended from the hydrogenous electrode as its zero point rectilinearly to the oxygenons electrode, and so long as the electromotive force remained the same at the electrodes a state of equilibrium was maintained between elcetromotive force, convection, polarisation current, and diffusion ; a state of equilibrium which was disturbed when the current was interrupted for however short a time. The theory of these processes taught, what experience confirmed, that a much greater eleciromotive force was required after the interruption to re-establish electrolysis than was before needed to continue the process. If the fluid were saturated with gas to a degree corresponding with the pressure of gas resting on it, the gases generated by electrolysis escaped. Secing, however, that the degree of saturation was dependent on the pressure of gas, therefore, with the increase of gas pressure, the electromotive force which cauced the development of gas would likewise have to be increased. It was now sought to ascertain the least rlectromotive force that was sufficient under a definite pressure to cause a development of gas, and the experiments made with this object in view showed that the development of the firt bubbles had to overcome a ensiderable resistance, and therefore demanded intenser currents than were needed for later gas bubbles. When, by a definite current through an extended metallic wire, gas was developed in an electrolyte, hy lessening the electromotive force it was possible to produce only single gas lubbles at one point of the wire. The same amount of electromotive force which was sufficient to produce this effect was not, however, equal to the generation of bubbles from the ont-et. To effect this latter resalt, a much stronger current would have to be employed. All these processes and relations here bricfly indicated were mathematically calculated, and the results of the experiments invariably coincided with the teachings of the theory.

CONTENTS

Page
Merrifield's "Treatise on Navigation" 169 Our Book Shelf :-

Curtis's "Farm Insects" 170
Letters to the Editor:-
Evolution of the Cetacea.-Prof. W. H. Flower, F.R.S.

170
The Java Fruption.- J. J. Harris Teall : $\quad 170$
Diffusion of Scientific Memoirs, -Prof. Silvanus P. Thompson

171
Deer and their Horns.-Sir J. Fayrer, $\dot{\text { F. }}{ }^{\circ} . \mathbf{S .}^{*}$ (With Illustration)

171
Sprengel on the Fertilisation of Flowers.-Prof. W. Whitman Bailey .
Salt Rain and Dew,-F. Gillman i'172
Lunar Rainbow.-C. H. Romanes; M, F. Duniop 172
Professor Nilsson. Hy Dr. J. Gwyn Jeffreys, F.R.S.

Semitico-Oceanic Linguistic Affinlties. By Prof,
A. H. Keane .

American Wheat. By Prof. John Wrightson . 173
The Remarkable Sunsets. By the Editor; Drs. M. W. Beyerinck and J. van Dam; Rev. W. Clement Ley ; E. Douglas Archibald; Dr. James Macaulay ; Dr. Budde ; Arthur Severn; J. L1. Bozward; B, J. Hopikins; F. Gillman; Prof. J. P. O'Reilly

The Krakatoa Air-Wave. By General Strachey, F.R.S.

Notes 183
Our Astronomical Column :-
The Mass of Saturn 185
Close Double-Stars 185 Pons' Comet
Tempel's Comet, 186711. 185
De Murgan's Five-Figure Logarithms 185
Probable Nature of the Internal Symmetry of Crystols. By William Barlow (With Diagrams) . The Helvetic Society of Natural Sciences,
Notes from the Otago University Museum, IV. By Prof. T. Jeffery Parker (With Diagram) 189 Scientific Serials
Socleties and Academies 190

190

THURSDAY, DECEMBER 27, 1883

VORTEX RINGS

The Motion of Vortex Rings. By J. J. Thomson. (London: Macmillan and Co., 1883)

B
OTH as regards the interest of the subject and the treatment it has received at the hands of the author we do not doubt that the essay before us is destined to take a foremost place amongst the essajs which have been called forth, or at all events distinguished, by the Adams Prize.
The fact that these essays are upon set subjects precludes the possibility of the prize being awarded for a distinctly original conception. It is almost a necessity that the subjects chosen should involve the extension of some mathematical investigation which has already been carried a certain length.
The subject of the present essay is distinctly of this class; it involves an extension of the investigation of the theory of vortex motion in an ideal fluid, founded by Helmholtz and continued chiefly by Sir William Thomson.
At the time Helmholtz conceived the fundamental principle, ideal hydrodynamics had no other interest, besides its mathematical interest, than it derived from the somewhat casual explanations it affords of the phenomena met with in the motion of actual fluids. Helmholt's's investigation had some relation to the observed phenomena of actual vortices, particularly to the phenomena of smoke rings, of which it afforded a general explanation. But between the fundamental equations which Helmholtz gave and their application to an actual vortex ring certain integrations were necessary, and these integrations presented mathematical difficulties. If we consider the line of smoke which forms the ring as indicating the portion of air in which vortex motion exists, we may say that the difficulties of integration at which Helmholtz stopped arise from the thickness of this line of smoke, or, calling this the circular core of the ring, from the finite area of the section of this core. Helmholtz contented himself with applying his theory to an indefinitely thin core; and the fact that the results of a theory based on a frictionless fluid would only have an imperfect relation to the motions of viscous fluids, together with the fact that such rings, although they may be produced by artificial apparatus, are short-lived, and have no existence in the general motion of fluids, offered but little inducement for farther prosecution of the subject. The case however was altered when it was conceived by Sir William Thomson that the atoms of matter may be such rings moving in a perfect universal fluid. Smoke rings, although their behaviour seems to have suggested the idea, could not, owing to the viscosity of the air, by any means be made to afford an experimental verification of the capabilities of such an bypothesis. The only way was to integrate Helmholtz's equations, and thus arrive at the theoretical behaviour of such rings. Unfortunately the mathematical difficulties are such that there is little hope of obtaining a complete theory of vortex rings having cores of any finite area. Sir William

VoL xxix.-No. 739

Thomson, however, started an approximate theory as a step towards this; he succeeded in approximately integrating the equations for rings the cores of which had sections finite but small compared with the openings of the rings, and with such rings it appears that his theory can be tested as regards matter in the gaseous state.
To do this, however, it is necessary to do more than work out the theory of a single circular ring baving a core of circular section. The phenomena of gases depend on the internal vibration of the atoms and on the influence which they exert on each other by collisions or otherwise. It was necessary therefore to obtain the theory of the vibrations of these rings, also of the effect of what may be called collisions.
Sir William Thomson took many steps towards the theory of vibrations. But the theory of collisions was left for Mr. J. J. Thomson.
Mr. Thomson has not, however, confined his attention to the point set for the prize, but, starting from the foundation laid by Helmholtz, has recast the theory to his own method.
Having deduced general expressions for the momentum, moment of momentum, and energy in a mass of fluid in which there is vortex motion, which expressions are better adapted for his purpose than any previously obtained, he proceeds to the theory of a solitary vortex ring subject to the same limitation as that treated by Sir William Thomson, i.e. the diameter of the core small compared with the opening of the ring, but of more general shape, in that it may have any small deviation from the circular form. He obtains results which, where they correspond, agree very approximately with those previously obtained by Sir William Thomson.
The author then proceeds to the immediate subject of the essay - the action upon each other of two rings.
In dealing with this subject he introduces another important limitation, i.e. that the rings shall not approach each other by a distance which is large compared with the openings of the rings.
With this limitation, by means of a very powerful piece of mathematical work, the theory of the mutual action of such rings is deduced, both as regards mean motion and. vibration; and he has thus carried the theory of vortex atoms to such a stage that in certain general respects it can be applied to the theory of gases.
The essay, however, does not end here, for, although outside the set subject, the author proceeds to consider the theory of "linked rings." This term does not seem well chosen, for it conveys the idea of rings linked as in a chain, whereas what it is used to express is a ring of which the core is compounded of several separate cores wrapped in a spiral manner round each other like a ring composed of twisted wire.

In the treatment of this branch of his subject he has been no less successful than in the earlier parts.

From the general scheme of his essay it is clear that the author has had in his mind as a general object the verification of the vortex atom theory; and although be avowedly refrains from going at length into such a vortex atom theory of gases as might be built upon his work, he adds a chapter at the end in which be discusses certain results of his work, which may be applied without further calculation to the vortex atom theory of gases.

It is this chap:er which will excite the most general interest, for although the fact of this still very incomplete theory being found consistent with observed gaseous phenomena would not afford a crucial test of its fitness to explain the phenomena of solids and liquids, still its failure to explain the phenomena of gases would appear to be crucial as regards its unfitness as an atomic theory.

The fair and cautious spirit in which Mr. Thomson discusses his result; cannot be too much admired, although we may not be quite able to realise the truth of his reasoning.

The most general and important phenomenon of gases is that sometimes called Boyle's law-that the product of the volume and pressure of any fixed weight of gas varies directly as the amount of heat, i.e. kinetic energy, in a gas.

Accordingly Mr. Thomson calculates the product of the pressure and volume which would result in the case of a vortex atom gas. This he finds equal to two terms. one being the kinetic energy multiplied by a constant, the other a certain quantity which involves the squares of the velocity of the medium at the boundary surface. To fit Boyle's law this second term must vanish or nearly so. Mr. Thomson argues that it does so vanish, because the surface being at rest the velocity of the fluid at it must be small. This argument we entirely fail to follow, possibly owing to some misapprehension on our part; but it seems to us that a vortex being near a solid surface is no reason for supposing the tangential velocity of the fluid small, while if the gas consists of vortex atoms so must the solid surface, and there is nothing to show that the mean square of the velocity within the solid and at its surface will be less than in the gas.

Passing on from Boyle's law, with the explanation of which he is satisfied, the author next turns to the phenomena depending on the velocity of the gaseous molecules. As this seems to us the most interesting part of the dis. cussion, we quote the passage in full :-
"According to the vortex atom theory, as the temperature rises and the energy increase 3 the mean radius of the vortex rings will increase, but when the radius of a vortex ring is increased its velocity is diminished, and thus the mean velocity of the molecules decreases as the temperature increases; thus it differs from the ordinary kinetic theory, where the mean velocity and the temperature increase together. It ought to be remarked, however, that though in the vortex atom theory the mean velocity decreases as the temperature increases, yet the mean momentum increases with the temperature.
"The difference between the effects produced by a rise in temperature on the mean velocity of the molecules will probably furnish a crucial experiment between the vortex atom theory and the ordinary kinetic theory of gases, since all the laws connecting the phenomena of diffusion with the temperature can hardly be the same for the two theories. In fact, if we accept Maxwell's reasoning about the phenomenon called 'thermal effusion' we can see at once an experiment which would decide between the two theories.
"The phenomenon is this, if we have a porous diaphragm immersed in a gas, and the gas at the two sides of the diaphragm at different temperatures, then when things have got into a steady state the pressures on the two sides of the diaphragm will be different, and Maxwell, in his paper 'On Stresses in Rarefied Gases' (Phil. Trans. 1879, part i. p. 255), gives the following reasoning to prove that, according to the ordinary theory of gases,
the pressures on the two sides are proportional to the square root of the absolute temperatures of the sides. He says:-
" When the diameter of the hole and the thickness of the plate are both small compared with the length of the free path of the molecule, then, as Sir W. Thomson has shown, any molecule which comes up to the hole on either side will be in very little danger of encountering another molecule before it has got fairly through to the other side.
"' Hence the flow of gas in either direction through the hole will take place very nearly in the same manner as if there had been a vacuum on the other side of the hole, and this whether the gas or the other side of the hole is of the same or of a different kind.
"' If the gas on the two sides of the plate is of the same kind but at different temperatures, a phenomenon will take place which we may call thermal effusion. The velocity of the molecules is proportional to the square root of the absolute temperature, and the quantity which passes out through the hole is proportional to this velocity and to the density. Hence, on whichever side the product of the density into the square root of the temperature is greatest, more molecules will pass from that side than from the other through the hole, and this will go on till this product is equal on both sides of the hole. Hence the condition of equilibrium is that the density must be inversely as the square root of the temperature, and since the pressure is as the product of the density into the temperature, the pressure will be directly proportional to the square root of the absolute temperature.'
"If we were to apply the same reasoning to the vortex atom theory, we should no longer have the velocity proportional to the square root of the absolute temperature, but to some inversc power of it, and the above reasoning would show that if p and p^{\prime} be the pressures, t and t^{\prime} the temperatures on the two sides of the plate, $p_{i}^{\prime} p^{\prime}=\left(t / t^{\prime}\right)^{m}$, where m is a quantity greater than unity. Thus accurate investigations of the phenomenon of thermal effusion would enable us to decide between the vortex atom and the ordinary kinetic theory of gases. These experiments would, however, be difficult to make accurately, as we should have to work with such low pressures to get the mean path of the molecules long enough that the pressure of the mercury vapour in the air-pump used to rarefy the gas might be supposed sensibly to affect the results. In the theoretical investigation, too, the effects of the boun 1ing surface in modifying the motion of the gas seem to have scarcely been taken sufficiently into account to make the experiment of the crucial test of a theory ; and it is probable that the theory of the diffusion and viscosity of the gases worked out from the laws of action of two vortex rings on each other, given in Part II. of this essay, would lead to results which would decide more easily and mpre clearly between the two theories.
"The preceding reasoning holds only for a monatomic gas which can only increase its energy by increasing the mean radius of its vortex atoms; if, however, the gas be diatomic, the energy will be increased if the shortest distance between the central lines of the vortex cores of the two atoms be diminished, and if the radius of the vortex atom is unaltered the vclocity of translation of the molecule will be increased as well as the energy; thus for a diatomic molecule we cannot say that an increase in the energy or a rise in the temperature of the gas would necessarily be accompanied by a diminution in the mean velocity of its molecules."

With the argument here used we have no fault to find, but it does seem to us that the author has fallen into some confusion between the experimental phenomenon of thermal transpiration through porous plugs and the theoretical idea of "thermal effusion." It has probably escaped Mr. Thomson, but the experiment he suggests
was included in the general investigation, made by the writer of the present review, ${ }^{1}$ by which the phenomenon of thermal transpiration was discovered, and although it still appears that these are the only experiments on this sabject, yet they conclusively prove that the difference of the pressure on the two sides of the plate is proportional to the square roots of the absolute temperatures. So far then it would seem that the crucial experiment has been made and that the verdict is against the vortex atom theory ; but this is not so, for, although the experiment Mr. Thomson suggests bas been made, it is definitely and experimentally shown in the same investigation that the action of the porous plug is entirely different from that which Maxwell calls thermal effusion, being cue entirely to the tangential action of the walls of the passages, and further this tangential action is in strict accordance with the present dynamical theory of gases. This experiment with the porous plug, then, affords no test whatever in the way suggested by Mr. Thomson. Mr. Thomson has, we think, been unfortunate in his choice of tests ; and we would suggest the velocity of sound as affording a crucial test for which the experimental work is already done. It appears to be an almost obvious deduction from the vortex atom theory that the velocity of sound must be limited by the mean velocity of the vortex atoms; and since Mr. Thomson has shown that this mean velocity diminishes with the temperature, while experimentally it is found that the velocity of sound increases as the square root of the temperature, it appears that the verdict must be against the vortex atom theory. However the vortex atoms are very slippery things, and we should like to hear Mr. Thomson's opinion before adopting one of our own.

Besides discussing the theory of gases, Mr. Thomson goes somewhat fully into a vortex atom theory of chemical combinations; in this he raises many points which will doubtiess be of great interest should the hypothesis survive the crucial test by the theory of gases which this essay now for the first time renders possible.

Of the mathematical interest of the essay we can only say that to those who can appreciate it this will be found to be very great.

Osborne Reynolds

OUR BOOK SHELF

Krystallographische Untersuchungen an homologen und isomeren Reihen. Von Dr. A. Brezina. 1. Theil. Methoden. (Wien, 1884.)
This very useful volume forms an introduction to the author's cry stallographic investigations which earned the prize of the Vienna Academy. It deals exclusively with the principles and the methods employed in those investigations, and constitutes a complete storehouse of the formulæ required in the study of crystals, and of the best means of applying those formula. The following subjects are successively treated: the optical principles involved in the goniometer ; the practical use of the instrument, and the errors to which it is liable; the eriticism of probable errors of observation; stercographic projection ; all possible cases of trigonometrical calculation, including the method of least squares; and a slight sketch of the use of the polarising apparatus.

An important feature of the book is the illustration of methods by the actual measurement of seven crystals of a triclinic substance. The readings of the goniometer scale are first given, and from these the reader is led
" "Certain Dimensional Properties of Matter in the Gaseous Seate," Phil. Trant, å79, P'art 11 .
through the entire series of processes: stereographic projection, assignment of indices, calculation of elcments, and recalculation of angles, each given in its place as an example of the principles and formula employed. This practical illustration is a far more effectual means of recommending the methods to the reader than mere verbal description.

It will probably be found that these methods of calculation are the most valuable part of the book; they are so systematically arranged and tabulated that the various steps may be distinguished at a glance, and any numerical error must be detected at once, while much labour is saved by the methodical order in which the operations are conducted.

It is to be presumed that the laborious process of calculating the angle between each pair of faces from the elements by means of the general formula is given as an exercise in the method of least squares rather than as an example of the course to be actually adopted in any but rare cases.

One subject, however, of some importance is barely touched upon; namely, the criticism of images obtained from crystal faces on the goniometer, and their interpretation. Both in the descriptive paragraphs and in the above-mentioned illustration, all measurements of the same angle upon different crystals are assumed to be equally good, so that their arithmetic mean is adopted as the observed value, whereas the difficulties presented by multiple images seem to deserve treatment in a book which deals so exhaustively with the practical side of the subject. It is to be regretted also that the discussion of optical properties and measurement has been almost crowded out of the work.
H. A. M.

LETTERS TO THE EDITOR

[The Edifor does not hold himsely respunsible for opinions expressed by his correspondents. Neither ean he undertake to refurn, or to correspond with the turiters of, rejected manuscritts. No motice is taken of anowymous communications.
[The Editor wegrntly raquests corvespondents to kemp their letters as short as possible. The pressure on his space if so graat that if is impossible otherwise to inswre the appearance even of communications containing interesting and novel facte.]

The Remarkable Sunsets

SPEAKing of Virginia City, the great silver mining eentre of Nevada State, I said, in "An Engineer's Holiday," that it "lies among the foothills of the Sierra, at an elevation of 6200 feet, on the eastern face of Mount Davidson . . . surrounded hy innumerable interlocked mountains, conical in outline, red-brown in colour, and perfectly bare of all vezetation. These stretch, as far as the eye can reach, to where the snowy tops of the Humboldt peaks stand against the sky, and the terrible sterility of the scene is enhanced rather than relieved by the thin meanderings of the Carson River, whose coure e is marked by a narrow green line. This is the only sign of water visible in the arid panorama, whose bare, red cones are steeped all day in dusthaze, and lighted for a few minutes at sunset by an 'Alpenglow' which dyes the countless peaks in as countless gradations of rosy light."

It certainly did not occur to me, when I wrote the above tbree years ago, that the finer and higher particles of the drsthaze which obscures the dry air of the American desert may have been co cerned in producing the splendid sunset effects which I witnessed at Virginia City; but this, after our recent experiences, scems very probable.
D. Pidgeon

Holmwood, Putney Hill, December 22

I have received a letter, dated December 5, from Mr. Joseph Moore, of New Garden, North Carolina, U.S.A., in which he informs me that "the phenomena at both sunset and sunrise have been unusual in more than a dozen instances here during the autumn. Only the night before last we had an extraordinary sunset. The sky bore all the tints of which you speak, but I do
not remember to have noticed the cirras cloud in more than one instance. The sunsets have been subject for remark in quite a number of the papers." I inclose also a newspaper, the Olive Branck, of Hancock, Minnesota, U.S.A., which has been forwarded to me by another correspondent, containing a notice of the sunset of Novenber 10 .
Richmond, Surrey, December 22
F. A. R. Russele

Is a letter dated Tokio, October 3, describing a tour in the interior of Japan, Prof. James Main Dixon writes:- "During the two or three days at the end of August we enjoyed fine dry weather, but the sun was copper-coloured and had no brightness. It was capital weather for travelling, but rather inexplicab'e. When we got to Nikko, the people came to us to inquire if some catastrophe were impending, for the appearance of the sun foreboded evil. We luughed at their fears, and assured them all was right. However it seems that if the appearance of the sun foreboded no evil, it was a wonderful sign of the greatest earthquake and volcanic catastrophe on record. The fearful explosion of Krakatoa, in the Straits of Sunda, took place on August 26, and there seems little reason to doubt that the monsoon had carried the volcanic dust along with it, the dust obscuring the sun. The distance is nearly 3000 miles."

Lewis Campbell
St. Andrews, December 22

Peripatus

Dr, von Kennel, in a note on the "Development of Peripatus," which appeared in a recent number of the Zoolozischer Anseiger, and has been translated and printed in your columns, has thrown some doubt on the accuracy of the observations recorded in the late Prof. Balfour's memoir on the "Anatomy and Development of Paripatms capensis (Quart. Fowrn. Micro. Sci., April, 1883). We trust that you will give us, as the editors of that memoir, this opportunity of making a few brief statements in reply to the somewhat nnusually outspoken criticisms contained in his preliminary note.
Dr. von Kennel entirely omits to mention in his paper that Prof. Balfour's researches refer to a Cape species of Peripatus (P. capensis), whilst the species which he has worked at are West Indian, and differ considerably from Peripatus capensis.
Considering the fact, well known to embryologists, that there are numerous instances of great discrepancies in the embryonic history of closely-allied forms, it seems to us strange that the only explanation, suggested by Dr. von Kennel, of the differences between his results and those recorded in Prof. Balfour's memoir shonld be that the latter are absurdly erroncoas.
The remarkable attitude which Dr, von Kennel has assumed in this matter must have been obvious to all competent zoologists. We offer these remarks mainly because his statements have appeared in a journal which has a wide circulation amongst readers who are not so well able to judge of the merits of the case.

We are able to state in conclution that the results enumerated on pp. 256, 257 of Prof. Balfour's memoir have been confirmed by Mr. Sedgwick on a large number of fresh and well-preserved emhryos of Peripatus from the Cape, obtained since the publication of the memoir.
H. N. Moseley A. Sedgwick
[The translator of Dr, von Kennel's "Note on the Development of Peripatus," to whom we submitted the above letter, writes to us that, "though with a large experience in such matters, be is quite unable to see anything 'unnsnally outspoken' in Dr, von Ken"el's criticisms; had any such occurred, he would have pased them over; nor does he find any foundation for the statement that Dr, von Kennel explains the results of Prof. Balfour's memoir as 'absurdly erroneous.' Dr. von Kennel, at the beginning of his note, only asserts that his observations cast some dowbe on those of Balfour, apologetically adding that his material was immensely richer than Balfour's, and at the conclusion of his Note he simply calls attention to the discre-pancies between his observations and Balfour's illustrations," At the translator's request we quote the original of the two critical paragraphs with the translations, so that the many com petent zooloyists who are amongst our readers can judge uhether the latter adds to or takes from the spirit of the former.-ED. Nature.
"Ich thue dieses hauptsächlich deswegen, weil die durch Moseley und Sedgwick publicirte Abhandlung aus dem Nachlass Balfour's einige Abbildungen von Embryonen nad Schnitten durch solche entbält, deren Genauigkeit ich nach meinem reichlichen und ausgezeichnet conservirten Material und nach den Beobachtungen am frischen Objecte etwas anzweifeln mus", deren Deutung vollends die Probe nicht hält."
"I do this chiefly because the treatise published by Moseley and Sedgwick from the posthumous notes of Balfonr contains some representations of embryos and cross-sections of the same, upon whose accuracy in details I, with my rich and well-preserved collection of specimens, and observations on fresh objects, must cast some doubt, and the interpretation of which does not bear investigation."
"Ich enthalte mich hier, um nicht weitlaufig zu werden, jeder Discussion, muss jedoch noch einmal darauf hinweisen, wie wenig Balfour's Abbildungen nod die Schilderungen der Herausgeber mit den hier mitgetheilten Thatsachen stimmen."
"I here abstain for the sake of brevity from all discussion, bnt must, however, call attention to the fact how little Balfour's illustrations and the descriptions of the Editors agree with the facts as they are here given."]

A New Rock

During my visit last summer to Lake Sagvand, in the Ralsfjord, near the city of Tromso, I discovered a new enstatitebearing rock, which forms entire little hills. It is composed of light yellow-green enstatite, mixed with magnesite. The mag. nesite, which is entirely free from lime, is partly white, partly dirty grey in colour, in which latter state it contains a little oxidulated iron, and appears then distinctly erystalline, wilh rhomboidal planes of cleavage. The rock is greatly interspersed with little grains of chromite, which are found in the enstatite as well as the magnesite. Here and there small grains of pyrite also appear. The substance is perfectly free from olivine, at all events neither olivine nor serpentine has been discovered under mieroscopical analysis.

The rock must be considered a new petrographical species. 1 have named it "Sagvandite," from the place where it was first discovered. It appears with a strong reddish-brown colour on its uneven surface, where the magnesite is completely washed out, so that the eastatite alone remains. The rock is not slaty, and must so far be said to be of massive structure.

When I have had an opportunity of thoroughly analysing the new substance, 1 propose to give a complete description of it in Nature.
Tronso Museum, Finmarken, Norway, December

Diffusion of Scientific Memoirs

In his notice of the Reprint of Prof. Stokes' papers in Nature for Dec. 13 (p. 145), Prof. Tait, with characteristic incisiveness, speaks of the "almost inaccessible" volumes of the Cambridge Philosophical Transactions, and proceeds to offer an "easy cure" for that simple though grave malady. I think if Prof. Tait had taken the tronble to make the inquiry he would have found that very few societies are so tiberal in the free dissemination of their pnblications, and that the number of universities, prominent societies, or libraries which do not receive them gratis, or merely in exchange, is very small.

December 14
W. M. Hicks

ThE question so pointedly at "izsue between Mr. Hicks and myself is one which can be settled by statistics only. NATURE would do a real service to science by collecting statistics as to the numbers of different centres (bome, and foreign, separately) at which the Transactions of varions scientific Societies were freely aecessible in 1883 (say); and also the corresponding numbers in 1853. The Royal Society regularly publishes such information in its Transactions, so does the Royal Society of Edinburgh.

I have been a Fellow of the Cambridge Philosophical Society for abont 30 years ; and, during that time, I have received from the Society some fascicali (of Procendings only) certainly not awounting to a dozen in all :-and I am not aware that my case is an exceptional one.

Mr. Hicks writes as if he thought I was bringing an accusation. Surely the figure, of malady, which 1 was careful to employ, cannot be so construed.
P. G. Tait

THE "TALISMAN" EXPEDITION ${ }^{1}$

A^{T}T the public meeting of the five Academies on October 29, 1882, I had the honour of reporting on the explorations of the Travailleur, and I announced that this year a new scientific campaign would be underuken in the Atlantic. The Minister of Marine, responding to the desire expressed by his colleague, the Minister of Public Instruction, and by the Academy, had, in fact, issued the necessary orders to have the Talisman equipped for this parpose. The Talisman is an excellent screw steamer, provided with a good spread of canvas, sufficient to make good way without the aid of its engines. For several months it was placed in dock at the Rochefort Arsenal, where the naval engineers undertook to refit it for the service to which it had been appointed. The old hempen ropes intended for raising the dredges were replaced by a steel cable of great strength and flexibility, capable of a strain of about 4500 kilogrammes, and worked by two steam-engines. One of these set in motion the enormous bobbin on which the cable was wound. The other, a still more powerful engine, was intended for raising the dredges.

Large bag-nets, or trawls, with an opening of two or three yards, advantageously replaced the heavy drags we had formerly used. The soundings were executed by means of an apparatus perfected by M. Thibaudier, naval engincer, and so disposed as to prevent the motions of the vessel from in any way affecting the tension of the steel cable, which was arrested by an automatic break as soon as the sounder touched the bottom.
In order to gauge the temperature at great depths I had an apparatus constructed by which a mercurial thermometer (Negretti and Zambra) could be turned over at any moment. At the same time the capillary extremity of a glass tube, where a vacuum had been made, and into which the sea water then rushed, broke, supplying perfectly pure specimens, capable of being preserved for any length of time by soldering the tubes. Our friend, Colonel Perrier, had kindly lent me a Gramme machine, which generated the electricity for some Edison lamps, so disposed as to light up our apparatus, or, when needed, to penetrate to depths not exceeding 35 metres. At my request the command of the Tultisman had been intrusted to M. Parfait, frigate captain, who had held the same position the year before on board the Travailleur.? I may here be permitted to express to the officers of the Talisman the feelings of gratitude inspired in us by their devotion. They cooperated with us with unflagging zeal, and for whatever success attended our mission we are indebted to them.

On May 30, the scientific mission ${ }^{3}$ met at Rochefort, and on June 1 the Talisman set sail. The voyage of 1883 may be divided into several distinct stages. Our object was to study the coast of Africa as far as Senegal, then the watcrs of the Cape Verde, Canary, and Azores Archipelagos, volcanic lands which could not fail to supply us with interesting materials. Lastly, we hoped to be able to devote our attention to the Sargassum Sea, its fauna, and the nature of its bed.

The sea bed stretching westward of Morocco and the Sahara is extremely uniform, no longer presenting those rugged reliefs that had so impeded our operations on the coast of Spain. On the contrary, the slope is here so gentle that at greater or less distances from the land it was always possible almost infallibly to light upon the

- Preliminary Report on the Taliomam Expedition to the Atlantic Ocean By M. Alphonse Milne-Edwards, President of the Submatine Dredging Commisxion. Communic ated by the author.

The staff ecneisted of M. Antcine and M. Jacquet, Dieutenant, of MM. Gibory and Bourget, midahipmen. of M. Vincent, d ctor of the first class, of 35. Huns, aseistant doctor, and of M. de Plas, chief tuate.
${ }^{3}$ The mivelon consisted of M, A. Milne-Edwards, Member of the Institute, President, of M. de Folin. MM. Vaillant and Perrier, professorn in the M-seum, MM. Marion and Filhol, professors in the Facully. M. Fischer. accistant naturalist is the Museum, MM. Ch. Brongniart and P'oirauh, added as avistants.
needed depths. In these waters we made about 120 dredgings, and in a few days we had determined the bathymetric distribution of the local fauna with sufficient accuracy to enable us to indicate the levels explored from the contents of our nets.
At 500 or 600 metres live numerous fishes, such as Macrurus, Malacocephalus, Hoplostethus, Pleuronectes, as well as prawns of the genus Pandalus, belonging to a new species with a rostrum pointed like a sword; some Peneic, Pasiphax, a few small crabs (Oxyrhynchidx, Portunidx, Ebalidec), pink Holothurians, some rare specimens of Calveria, that soft Echinoderm discovered in our waters by the naturalists of the Porcupine, and previously known in the fossil state ; several very large sponges, such as Askonema and Farrea.
At greater depths, from 1000 to 1900 metres, fishes still abound,' and often formed the bulk of our captures. They were generally of a dull colour, with gelatinous flesh, and their skin covered with a thick mucous coating. Several had phosphorescent spots, serving to give them light in the dark regions they inhabit. Here Pandali give place to the new genus Heterocarpus, and to gigantic blood-red prawns with enormously long antennx, which were new to science and may be placed in the genus Aristeus. The Nephropsis make their appearance at this level. They are blind, coral-tinted Crustacer, who seem to be distributed over a wide geographical range, for they have been found on the other side of the Atlantic in the Caribbean Sea, and a closely allied species has been fished up at a great depth near the Andaman Islands. The blind Polycheles, which in the prescnt epoch represent the Jurassic Eryons, burrow in the mud, Jeaving nothing visible except their long hooked nippers, adapted for seizing the passing prey. Some crabs are still found, such as Maiadx (Scyramathia, Lispognathus), a new species of Homolia, and Lithodes, hitherto supposed to be peculiar to Arctic and Antarctic seas. Lastly, numerous forms were also observed of the genus Galathea, several of which have their eyes transformed to spines. Sponges are extremely common, most of them with siliceous skeletons. We brought up great numbers of Rosella, Holtenia of several species, the rock crystal-like beards white as snow were buried in the mud, the sponge mass alone emerging ;"some Aphrocallistes, with solid skeletons of the most elegant form. Calveria became more numerous; Holothurian; of the genus Loetmogone, and ol her species of the saine family, crawled on the bottom in the midst of Asteria, © phiuria, and Brisinga. The nets often returned filled with so much treasure that they could not all be classed within the day.
While rounding Cape Ghir and Cape Nun, some 120 miles from the coast, the Talisman spent several days in exploring a very regular bank at a depth of about 2000 to 2200 metres. It was on this ground that on Aug. 2, 1882, the Travaillenr had captured the curious fish described by M. Vaillant under the name of Eurypharynx pelecanoides, and two specimens of which were taken this year.
Our prizes were again of great value. Magnificent sponges, allied to those that have been described under the name of Euplectella suberca were here found mingled with large violet Holothurians of the genus Benthodyles, and with other species of the same genus, remarkable for their dorsal appendices. A Calveria, distinct from those found at lesser depths, some Brisinga, Polyps of rare beauty (Flabellum, Stephanotrochus), a Democrinus and a Bathycrinus, not yet described, very numerous Crustacea, nearly all new to us and belonging to the group of the Galathex (Galathodes, Galacantha, Elasmonotus), completed the list of invertebrates. The fishes were very varied, and their study will furnish new facts of the greatest interest to science. Amongst the most remarkable I may mention Mclanocetus johnsoni, Bathy-

[^26]trochtes, a Stomias with phosphorescent spots, and several Malacostei.
Between Senegal and the Cape Verde Islands our trawls reached depths varying from 3200 to 3699 metres, and brought up most of the preceding species besides many others (Crustaceans, Mollusks, Zoophytes, Sponges) which had never elsewhere been met.

These last takes brought to a close the first part of our programme, and on July 20 , after ninety-one days of navigation, we cast anchor in the Bay of La Praia, at Santiago in the Cape Verde Archipelago. This volcanic group detained us a few days, and while zoological, botanical, and geological excursions were being made ashore, the Tialisman was searching the irregular beds on the coasts for marine animals, and especially for the red coral, which for some years back has formed the object of an active trade in these islands. I will not dwell on these in-shore explorations, nor on those of the islet Blanco, where we were able to study on the spot the large Saurians (Macroscincus coctei) which scem limited to this isolated rock.

All these details are recorded in the report which I have addressed to the Minister and which will soon be published.

In the deep waters of the Cape Verde Archipelago life displays a surprising energy. Our nets came up overflowing with specimens after a single plunge. We captured at one take more than 1000 fishes belonging mostly 10 the genus Melanocephalus, about 1000 Pandali, 500 prawns of a new species of the genus Nematocarcinus, with disproportionately long claws, as well as many other species.

On the evening of July 30 the Talisman took a northwesterly course in the direction of the Sargassum Sca. I need not enter into details on this part of our journey, and it will suffice to say that we nowhere met those dense floating masses of vegetation mentioned by the old navigators. The Gulf weed was seen in isolated patches drifting either with the matine or atmospheric currents, and harbouring a whole pelasgic population, whose colours harmonised admirably with those of the alga that afforded them a refuge. Our naturalists made a careful study of these forms.

The soundings of the Talisman in this region show in a general way that, starting from the Cape Verde Islands, the marine bed falls regularly as far as about the 25 th parallel, where it attains a depth of 6267 metres. Then it gradually rises towards the Azores and the 35 th parallel, where it is about 3000 metres. These results are far from agreeing with the curves indicated on the most recent bathymetric charts. The bed of the Sargassum Sea seems formed of a thick layer of a very fine mud of a pumice nature, covering fragments of pumice and volcanic rocks. Here there would appear to stretch, at over three miles from the surface of the ocean, a vast volcanic chain parallel with the African seashore, and of which the Cape Verde Islands, the Canaries, Madeira, and the Azores are the only parts not submerged. The submarine fauna is poor, consisting of few fishes, some Crustaceans, such as Paguri, which lodge in colonies of Epizoanthus, prawns of the genus Nematocarcinus, Pasiphare, a few mollusks (Fusus, Pleurotoma, and Leda), which scarcely sufficed to repay the time required for such deep dredgings. Not that our captures did not again become abundant towards the northern limit of the Sargasse Sea, when the depths shrank to 3000,2000 , and 1500 metres. It was here that we took the giant of the family of the Schizopodes, a Gnathophausia of a blood-red colour measuring nearly 25 centimetres in length. ${ }^{1}$

A short delay at Fayal, and again at San Miguel in the Azores, enabled us to compare the volcanic phenomena still active at certain points with those we had studied on the summit of the Peak of Tencriffe. The analogy is very striking between the rocks, the gaseous products, and the

[^27]sulphur deposits of the two islands. From what is now taking place on the surface of the ground, an idea may be formed of the submarine convulsions which have covered the bed of the Sargassum Sea with pumice and igneous ro:ks.

The return voyage from the Azores to France was effected under the most favourable conditions, and we were able to make daily dredgings in depths of from 4000 to 5000 metres. These difficult operations, very skilfully carried out by Captain Parfait, brought us an extremely valuable harvest. Under this tremendous pressure, in perfect darkness, and without a trace of vegetation, animal life is still vigorous. Large fishes of the genus Macrurus, as well as some Scopeli and Melanoceti seem to be here far from rare. Some Pagures and Galatheae of new form, a gigantic Nymphon of the genus Colossendeis, some unknown Ethuste, besides Amphipods and Cirrhipeds represent the Crustacean group. But this abyssal fauna owes its peculiar physiognomy to the number, variety, and size of the Holothurians.

The marine bed is carpeted throughout this region with a thick white mud, composed almost exclusively of Globigerini, and covering pumice deposits and fragments of various kinds of rocks. Some of these rocks brought up in our nets bore the impress of fossils, amongst others of Trilobites. But what still more surprised us was to find at a distance of over 700 miles from the European coast pebbles polished and striated by the action of ice. The sharpness of the strix excludes the supposition of transport by the currents. The presence of these pebbles is probably due to the action of the icebergs, which in the Quaternary epoch advanced further southwards than at present, and which, by melting in the region of the Atlantic comprisel between the Azores and France, deposited on the bottom of the sea the stones carried off from the glacier beds and conveyed to this distance from Europe.

On August 30 we dredged for the last time on the steep slope by which the oceanic depths are connected with the Bay of Biscay, and our captures added to the fauna of the French waters a large number of new or interesting species.

It was high time to return to Rochefort. Our casks and cases were full, our alcohol exhausted. This voyage thas furnished us with unrivalled materials for study, materials which must now be put in order. The Minister of Public Instruction has recognised their importance, and has supplied me with the means of beginning the publication of the results. It is my intention to place before the public the collections that have been made during the explorations of the Travailleur and Talisman. These treasures will be exposed in a special exhibition, which will be held in one of the halls of the museum towards the beginning of January.

MUSIC AND SCIENCE ${ }^{1}$

I^{T}T would seem that Science, like History, may at times repeat itself: for in this bright little pamphlet we have a revival of the Old World controversy, which dates from the days of Pythagoras, Plato, Aristotie, and Euclid. The author takes, however, for its text, a somewhat declamatory and ad captandum modern passage from the Revue de Paris, which declares, with an emotional warmth totally uncalled for under the circumstances, that harmony is not a science, and that music is an art, " but a divine art." To appreciate thorougbly the question in debate it is necessary to go back to the sense of the original Greek words-ippovia and μ ovaik η. The former means "mathematical agreement" ; the second "artistic culture." It is with their "second intentions," or acquired and more limited meanings, that we now have ${ }^{\text {r }}$ "La Musica ${ }^{\text {E }}$ una Scienza" Sagrio Acustico fisiologico Del Dott. Primo Crotti. Pp. 55 . Luigi Battei Ed.tore. (Parma, 1881)
to deal. Is music, in the English sense of the word, which no wise differs from the Italian, an art or a science? It is clearly both; but the art, цоvaik η, so far predominates in public acceptance and cultivation over the science, dppovia, that the latter is, and has been for many centuries, in danger of succumbing altogether. Indeed, though excellently begun by Euclid in his "Sectio Canonis," it remained all but unadvanced until the recent researches of Helmholtz. It is to Aristotle that we owe the general test by which to distinguish an art from a science; a test so satisfactory and so neat, that it produces the effect on the mind of a mathematical demonstration; a form of proof which is too ofien only a roundabout way of restating a self-evident proposition. Aristote said that art at its best only works by "rule of thumb"; and states that rixm is governed by rules. When these rules are found to rest on recognised laws, the art becomes an imerin $\mu \eta$, or science. This observation, made two thousand years ago by the shrewdest of all shrewd observers, remains as true and as fresh as on the day when it was promulgated. To no branch of human learning does it apply with such force and directness as to music. For perfection in this art has always been, is now, and must continue to be, confined to a few sensitive, delicate, finelystrung natures, which differ from those of their fellowcreatures in possessing a peculiar technical power and organisation such that they instinctively reproduce, and as it were consonate to the musical conceptions of other minds. In all other respects they may be self indulgent, unbusinesslike, unpractical ; even, as indeed not uncommonly they are, over-sensitive and disagreeable. Types of this class are Beethoven, Cherubini, Mozart, Weber, and Berlioz. In them, in fact, the full development of artistic perfection has eaten up all other good qualities, and left no time or inclination for what Plato calls "the practice of virtue." The world at large, secretly conscious of its special inferiority, and always willing to discharge itself of an unwelcome responsibility, too commonly looks upon these exceptional natures as representing the whole, and not only the artistic and executive side of music. But the other exists notwithstanding ; and its fuller cultivation will tend much to restore the balance so disturbed. In this respect the little book of Dottore Crotti has special value. It deals with the foundation of rhythm and of music, and with the strange and hitherto unexplained emotional difference between the major and minor scales, Which in the lalian are prettily and correctly named Gaia and Triste respectively. The ratios of musical intervals and their combination are fully treated, and with some features of novelty, especially as concerns their physiological effects on the ear. The great fact, so much forgotten in this century since the brilliant jigs of the Kossinian school have become popular, that it is the bass, and not the treble or melody, which is fixed and fundamental, is stated with abundant emphasis, and distinction is made between the characters of repose and of movement in different kinds of music. The assumption that the scale is founded principally on the fractions representing the major and minor tones with only a simple semitone of $+\frac{y}{s}$ seems hardly sufficient to meet theoretical requirements; but otherwise there is much of interest comprised within the 55 pages of which the pamphlet consists. It has the merit, moreover, beyond the historical point already noted, of bearing out its title of "acoustico-physiological," and of adverting to the mental or receptive side of musical impressions more than occurs in some modern treatises.
W. H. Stone

THE REMARKABLE SUNSETS

THE following letter has been sent to Mr. Norman Lockyer:-
The remarkable sunsets which have been recently witnessed upon several occasions have brought to my
recollection the still more remarkable effects which I witnessed in 1880 in South Ainerica, during an eruption of Cotopaxi; and a perusal of your highly-interesting letter in the Times of the 8th inst. has caused me to turn to my notes, with the result of finding that in several points they appear to have some bearing upon the matter which you have brought before the public.

On July 3, 1880, I was engaged in an ascent of Chimborazo, and was encamped on its western side, at 15,800 feet above the sea. The morning was fine, and all the surrounding country was free from mist. Before sunrise, we saw to our north the great peak of Illiniza, and twenty miles to its east the greater cone of Cotopaxi, both without a cloud around them, and the latter without any smoke issuing from its crater-a most unusual circumstance ; indeed, this was the only occasion on which we noticed the crater free from smoke during the whole of our stay in Ecuador. Cotopaxi, it should be said, lies about fort y-five miles south of the equator, and was distant from us sixty-five miles.

We had left our camp, and had proceeded several hundred feet upwards, being then more than 16,000 feet above the sea, when we observed the commencement of an eruption of Cotopaxi. At $5.45 \mathrm{a} . \mathrm{m}$. a column of smoke of inky blackness began to rise from the crater. It went up straight in the air, rapidly curling, with prodigious velocity, and in less than a minute had risen 20,000 feet above the rim of the crater. I had ascended Cotopaxi some months earlier, and had found that its height was 19,600 feet. We knew that we saw from our station the upper 10,000 feet of the volcano, and I estimated the height of the column of smoke at double the height of the portion seen of the mountain. The top of the column was therefore nearly 40,000 fect above the sea. At that elevation it encountered a powerful wind blowing from the east, and was rapidly borne for twenty miles towards the Pacific, seeming to spread very slightly and remaining of inky blackness, presenting the appearance of a gigantic inverted \llcorner, drawn upon an other wise perfectly clear sky. It was then caught by a wind blowing from the north, and was borne towards us, and appeared to spread rapidly in all directions. As this cloud came nearer and nearer so of course it seemed to rise higher and higher in the sky, although it was actually descending. Several hours passed before the ash commenced to intervene between the sun and ourselves, and when it did so we witnessed effects which simply amazed us. We saw a green sun, and such a green as we have never, either before or since, seen in the heavens. We saw patches or smears of something like verdigrisgreen in the sky, and they changed to equaliy extreme blood-reds, or to coarse brick-dust reds, and they in an instant passed to the colour of tarnished copper or shining brass. Had we not known that these effects were due tothe passage of the ash, we might well lave been filled wibb. dread instead of amazement ; for no words can convey the faintest idea of the impressive appearance of these strange colours in the sky, seen one minute and gone the next, resembling nothing to which they can be properly compared, and surpassing in vivid intensity the witdest effects of the most gorgeous sunsets.

The ash commenced to pass overhead at about midday. It had travelled (including its detour to the west) eighty-five miles in a little more than six hours. At 1.30 it commenced to fall on the summit of Chimborazo, and before we began to descend it caused the snowy summit to look like a ploughed field. The ash was extraordinarily fine; as you will perceive by the sample I send you. It filled our eyes and nostrils; rendered eating and drinking impossible; and reduced us to breathing through handkerchiefs. It penetrated everywhere, got into the working parts of instruments, and into locked boxes. The barometer employed on the summit was coated with it, and so remains until this day:

That which passed beyond us must have been finer still. It travelled far to our south, and also fell heavily upon ships on the Pacific. I find that the finer particles do not weigh the $1 / 25,000$ part of a grain, and the finest atoms are lighter still. By the time we returned to our encampment the grosser particles had fallen below our level, and were settling down into the valley of the Chimbo, the bottom of which was 7,000 feet beneath us, causing it to appear as if filled with thick smoke. The finer ones were still floating in the air, like a light fog , and so continued until night closed in.
In conclusion, I would say that the terms which I have employed to designate the colours which were seen are both inadequate and inexact. The most striking features of the colours which were displayed were their extraordinary strength, their extreme coarseness, and their dissimilarity from any tints or tones ever seen in the sky, even during sunrises and sunsets of exceptional brilliancy. They were unlike colours for which there are recognised terms. They commenced to be seen when the ash began to pass between the sun and ourselves, and were not seen previously. The changes from one hue to another, to which I have alluded, had obvious connection with the varying densities of the clouds of ash that passed; which, when they approached us, spread Irregularly, and were sometimes thick and sometimes light. No colours were seen after the clouds of ash passed overhead and surrounded us on all sides.
I photographed my party on the summit of Chimborazo whilst the ash was commencing to fall, blackening the snow furrows; and, although the negative is as bad as might be expected, it forms an interesting souvenir of a remarkable occasion.

EDWARD WHYMPER
December 21

NOTES

THE announcement that Prof. Flower has accepted the appointment of superintendent at the Natural History Museum, vacated by the resignation of Prof. Owen, is premature, though we believe that steps are being taken to secure Prof. Flower's services for that important appointment.

We regret to have to record the death of M. Yvon Villarceau, one of the astronomers of the Paris Observatory and a member of the Academy of Sciences for more than twenty years. M. Yvon Villarceau had been a pupil of the École Central des Arts et Manufactures, and was regarded as one of the most eminent of French mathemalicians.
It has been arranged by H.M. Trawling Commissioners that Prof. MeIntosh, of the University of St. Andrews, will proceed systematically at intervals (probably once a fortnight) to the trawling grounds on the ea-t coast of Scotland for the next six monihs, and underiake certain investigations concerning the grounds and their inhabitauts. Each trip will probably occupy about two days. The Granton General Steam-Fishing Com. pany's steam-trawler Wallace, which is fitted with all the recent appliances for such work, and is a swift and powerful steamer, will be used for the investigations, which will be at once commenced. An experienced long-line fisherman and trawler from St. Andrews (Alex. W. Brown) will accompany the professor as assistant.
The friends of the late Mr. W. A. Forbes, the Prosector of the Zoological Society of London, have decided to collect his most important papers in a memorial volume, and the following gentlemen have been appointed to act as a committee for this parpose:-Prof. Flower, Prof, Bell, Mr. II. H. Johnston, Mr. Mivart, and Mr. Sclater. The committee find that Mr. Forbes's papers can be most suitably republisted in a form similar to that adopted in the memorial volume of the memoirs and pa fers of Mr. Forbes's predecessor in the Prosectorial office (the late Prof. Garrod). Following the precedent of the "Garrod

Memorial Committee," they propose to ask for subscriptions of one or more gaineas, and to give to subscribers a copy of the work for every gainea subscribed. Mr. Sclater will edit the Forbes Memorial Volume, Mr. Johnston will prepare a biographical notice and portrait, and Mr. F. Jeffrey Bell, 5, Radnor Place, Gloucester ${ }^{*}$ Square, W., will act as Secretary and Treasurer.
Thr appointment of a Japanese student as assistant to the Professor of Anatomy at Berlin has been approved by the Minister of Public Worship.

Mr. Francis Elgar, Consulting Naval Archinect and Engineer in London, has been unanimously elected by the Glaggow University Court to the John Elder Chuir of Naval Arcbitecture.

An expedition is at last being organived under the auspices of the British Association to proceed to Mount Kilimanjaro, the snow clad peak of Eastern Equatorial Africa. The party will be under the charge of Mr. H. H. Johnston, who bas recently re:urned from the Congo. The party will leave England at the beginning of March.

Heavy indeed is the burden of educating laid upon the Southera States! With only one half at school of a population the illiterate proportion of which, among both whites and negroe ', is increasing, and in some States this increase of illiteracy greater among the whites than among the negroes; with the negro, the non-taxpaying element, lincreasing fastest, notwithstanding white immigration; with trades destroyed, and property In consequence reduced in value 40 per cent., and in some States still falling in value; with the franchi.e, nevertheless, given to this Increasing body of ignorance; evil indeed may be the result to a republic if the whole Union does not assist to correct it. Emancipation was a national act, and the nation ought to meet the inevitable consequence. So urges Dr. Haygood, in the United States educational circulars referred to last week, with the warning that no white men will agree for long to be voted down by a majority of illiterate blacks and whites.
On Thursday, at 9.2 I p.w., a shock of earthquake was felt in Fuinfkirchen, a town in the soath of Hungary, not far from the confluence of the Danube and Drave. The shock lasted two seconds, and was accompanied by a loud underground rolling noise. At the same time a similar earthquake and noise occurred at Barcs, a place to the south-east of the former, on the banks of the River Drave. Both shocks moved northwards. An earthquake shock was also felt at Lisbon at $1.30 \mathrm{a} . \mathrm{m}$. on the 22nd inst., but did not excite much notice. A second shock, which lasted twelve seconds, occurred two hours later; being accompanied by subterranean rumblings, it awoke the entire population, and caused a panic among the inhabitants in the narrow streets. The seismic wave passed from northwest to south-east.
THE fourieenth Annual Report of the Botanic Garden Board of New Zealand (1883) contains valuable information as to the ravages of certain scale insects (Coccide) in the colony. They appear to be principally of two kinds: one is an Icerya, nearly related to the sugar-cane pest of Maaritius, \&c., the other a Mytilaspis allied to the common "apple scale" (M. pomoram). The Icerya is called the "wattle blight," but appears by no means to confine its ravages to the wattle trees. According to Mr. Maskell, it is :he M_{j} filaspis that is the more seriuus, fur it overruns in countless millions all kinds of fruit and other trees (fortunately it appesrs to be enormously infested and de:troyed by a parasite). With regard to remedies, there is a little vagueness in the Report, owing apparently to the confusion of the tw.s insects. The first portion speaks only of the lecrya, and states that Mr. Engle of Nelson bad completely destroyed it by the
application of kerosene and \mathfrak{f};h vil. Sub-equently Mr. Mashell, dealing with the two species, says that a mixture of kerosene and linseed oil (one-third cr one-fourth of the furmer) as recommended by Mr. Comstock in America, had been perfectly , uecessful so far as regands the $1 /$ ytilas isis, which he dies not regard as serious in its probable effect upon wattles (Acacia), bat very seriuus with respect to fruit and otber trees. On the other hand, he considers all remedies useless against the Icerya of the wattle other than the radical one of cutting down and destroying the affected trees. No indication is given, however, of the use of a force-pump in distributing the kerosene; if this were u.ed, the remedial agent might be distributed to a greater height than would be possible by mere hand application, and moreover it might be made to penetrate dense hedges, \&c., the interior of which it would be impossible to drench by hand labour. The improved form of application, as a "kerosene emulsion," recommended by Pr.f. Riley and Mr. Hubbard, did aut appear to be known in New Zealand at the time the Report was drawn up. Any way it is satisfactory to hear that the judicious application of kerosene will certainly destroy scale insects without necessarily damaging the plants.
THE same Report speaks very hopefully of the ultimate success of attempts to cultivate hops in the province of Wellington; in Nelson success has been already secured. The great araw back is the expenie of providing the necessary polet, and much stress is laid upon the necessity for cultivating oak, ash, bircb, and species of Eucalyptus for that purpose. Of the indigenous poles, those of Myrsine urvilli are said to be the most darable.

The additions to the Zoological Society's Gardens during the past week include a Toque Monkey (I/acacus pileatus 8) from Ceylun, presented by Mr. J. H. Barker; a Macaque Monkey (Macacus cynomolgus 8) from Iodia, presented by Mr. Douglas ; a Common Marmoset (Hafale jacchus) from Brazil, presented by Mrx. Archer; a Morhen (Gallinula chloropus), British, presented by Mr. T. E. Gunn; a Gannet (Sula bassara), British, presented by Mr. J. C. Baxter ; two St. Thomas's Conures (Comurus xantholemas) from St. Thomas, We t Indies, presented by Mr. C. Wallis Enslie ; two Fringed-lipped Lampreys (Pdromyzon branchialis), Briti-h, presented by the Rev. F. T. Wethered; a Pied Wagtail (Motarilla lugubris), British; a Slaty Egret (Ardea gularis), European, $\}$ urchased

:INTERNATIONAL POLAR OBSERVATORIES

IliEG to inclose you an extract from a letter just received from Prof. Wild, President of the International Polar Committee, and which gives information as to the several expeditions which conducted observations in the circumpolar regions during the twelve months ending August 31, 1883.

Robert H. Scott
"I take this opportunity of stating concisely what I have hitherto learnt as to the present condition or the return of the various expeditions.
" I. The United States-Point Barrow.-The Expedition was to have returned in the summer of 1883 . Definite information ns to its return has not yet been received. ${ }^{1}$
"'2. England and Canada-Fort Rae, on the Great Slave Lake.-According to a communication received from Mr . Scott, dated November 21 last, the Expedition has safely returned to England.
3. United States-Lady Franklin Bay.-The attempts to relieve the Expedition this summer by ship have, like those of last year, failed owing to the unfavcurable condition of the ice. (Extract from newspapers.)
"4. Denmark-Godhavn, in Greenland.-Acearding to a communication from Captain Hoffmeyer, dated December 8, the Expedition has safely returned to Copenhagen with a rich store of observations.
${ }^{4}$ 5. Germany-Cumberland Sound (Davis Strait). - According to a communication received from Dr. Neumayer, dated

We believe this pany arived at San Yrancisco some weeks ago -Ed.

Novemiter 1, the Expedition has safely returned to Hamburg having completed its task in a satisfactory msnner
"6. Count Wilcrek's Station (Austria)-Jan Mayen, in Marymurs Bay. - The Expedition has safely returned to Vienna, having completely carried out its programme. A short report of its operations has been published by M. von Wohlgemuth, the (hief of the Expedition.
"7. Sweden-spitabergen (Cape Thordsen, in the Ice Fjord). -Dr. Kubenson states that the Expedition has safely returned to Stockbolm.
"8. Norway-Bossehop, near Alien.-From a letter from Prof. Mohn, dated September 7, the Expedition stopped work on August 31, having completely carried out its programme, and on September 17, according to a report in Aa uren (October, 1883) it safely returned to Christian ia.
"9. Finland-Sodankyla. - The Expedition completed its task for the first year, bul, according to a communication from Prof: Leaström, dated Augut 5, the ol servations will be continued another year, as the Goverument of Finland has provided the funds for the purpose.
" 10. Kussia-Nova Zembla (Möller Bay), The Expedition returned to St. Petersburg in October with a rich store of observations.
' 11. Holland-The Kara Sea. - The Expedition could not reach its original place of dextination, Purt Dick on, but was surrounded by ice in the Kara Sea, and has, according to a letter from Prof. buys Rallot, dated October t, safely returned to Utrecht, having under the circumstances only imperfectly carried out its programme.
"'t2. Kussia-Mouth of the Lena (Sagastyr). -The Expedition, whicb suffered from storms during the passage down the Lena, was not properly establisthed until October 20, 1882 ; from that date it has been able to carry ont all the work laid down in the programme. It will continue its observations for another winter.
"I3. France-Cape Horn (Orange Bay, Terra del Fuego). According to a report from Prof. Mascart, dated November 17 the Expedition has returned safely to Paris, with a rich store of materials.
" 14. Germany-The Island of South Georgia (Molthe Harbour).-This Expedition has al o safely returned, according to a communication from Dr. Neumayer.
"Of the fourteen Expeditions, therefore, three will continue their observations fur about another year (Lady Franklin Bay, Sodankyla, and Lena delta) ; the continuance of a fourth (Point Barrow) is at present unknown, the other ten have safely retarned."

MOVEMENTS OF THE EARTH ${ }^{1}$

III.-R'otation of the Earth

THE several ideas concerning the movements of the earth which were introduced in the last lecture will in the present one have to be dealt with in greater detail.

It was then agreed that if the whole expanse of the heavens were to travel with a perfectly equable motion in one direction, such a motion for instance as would result from all the stars being fixed to a solid transparent suhstance lihe those crystal spheres that the ancients really be'ieved to exist ; or if, on the other hand, the earth herself, instead of being free to turn as she listed with varying velocity in any direction, really went with perfect constancy in the direction oppo ite to the apparent wotion of the stars, the visible effects would be the same in both caser, so that an appeal to our eyes would nit suffice to enable us to say whether the earth moved or whether she remained at re:t while the celetial sphere revulved around her.

Under these circumstances what is to be done? It has been seen how, both with regard to the mearurement of space and the measurenient of time fir astronomical purposes, those interested in the phyrics and beauties of the varioas classes of celetial br.dies cutside our own earth have picked and chosen now one bit of physical science and now another to belp them in their inquiries ; and with regard to this very important question, "Does the earth move or is the at ret?" we shall tee how very beautifully and perfectly the question has been answered by the application of certain wechanical principles.

The majoity of people, I suppose, have some acquaintance, however slight, with machinery-with steam engines for in-
${ }^{1}$ Continued from p. 69.
stance ; and it is a familiar fact how very important a part is played in the steam-engine by the flywheel. Why should that be? Why should this flywheel be so important that it is only quite recently that mechanicians have learned to do without it ? For this rea*on : if a mass of matter such as a flywbeel is once made to revolve, it will retain that motion for a long time, resisting any tendency to an increase or decrease of its velocity. It is in consequence of this property which the revolving flywheel possesses that an engineer is able to get over the dead points in bis engine, whilst

Fic. ay.-Rapidly rotating wheel sprorted at one end of its axis.
it also acts in freventing the engine making too sudden a start. In addition to this, when we have a mars of matter in the condition of the revolving flywheel it bas scme very peculiar qualities, only observed when such a urass of matter is in motion. If, then, ne have a ubeel so arranged that a very rapid rota. tion is being imparted to it, it does not behave as it would when at rest. These properies possessed liy a rotat ng tody can be well shown by an instrument known as the gyro cofe, of which we shall speak more fully later on. It consists essentially of a

Fig. a8.-Rotating disk of gyroscope. cc, knife edges: A A, a m, adiusting weights.
disk to which a very rapid rotation can be imparted by a train of wheels or by other means. If the disk be set rotating, it is found to possess those curious qualities of which I have spoken. If whilst rotating at a high velocity it be placed in the position
shown in Fig. 27, it will not fall, but will take on a movement of revolution round the stand.

From considerations suggested by this and other similar experiments, Foucault poinred out that it might be demonstrated whether the eath moved or whether she remained at rect. It struck him that the problem should be attacked somewhat in this manner :-

Suppose the earth to be at rest, and that either at the north or routh pole a pendulum, suspended so that its point of support had as little connection with the earth as possible-so that it should, in fact, like the rotating flywheel, be independent of external influences, were set vibrating. Then an observer at the north or south pole would note that the swinging peadulum (the earth being considered as at rest) always bad the same relation to the objects on his horizon. But, said Foucaul, suppose that the earth does move. Then the swing of such a pendulum would not always be the same with regard to the places on the observer's horizon. Let the earth be represented by a globe. Suppose it to rotate from west to east. Place it with the north pole uppermont, and set the pendulum, whose point of support is disconnected from the rotating eartb, vibrating. Then the pendulum will appear to travel from left to right as the earth rotates from right to left beneath it. Now suppose the pendulum to be suspended in the same way at the south pole, right and left now being changed. The earth of course rotates in the same direction as before, but the pendulum now appears to change the

Fis. a),-3/roico; e; cenmral view.
plane of its swiog from right to left. At the equator the earth simply rotates straight up and straight down beneath the su inging pendulum.

From these coniderations it became evident to Foucault that, if there were any possibility of demonstrating the movement of the earth by means of the pendulum, the demonstration would take this form. Provided it were possible to swing a pendulum so that it should be as free as pos-ible from any influence due to the rotation of the earth, and take that pendulum to the north pole, it would appear to make a complete swing round the earth in exactly the same time that it really takes the carth to make a complete rotation beneath it. At the south pole exactly the same thing would happen except that the surface of the earth would appear to move in the opposite direction to what it did at the north pole. Now it will be perfectly clear that if we thus get a pendulum appearing to swing one way on account of the true motion of the earth at the north pole and in the opposite direction on account of the true motion of the earth at the south pole ; at the equator, as we found in dealing with our model earth and model pendulum, it will not change the plane of swing either way, that is to say, the time taken by a pendulum to make a complete swing will be the smallest possible at the poles, whilst at the equator it will be infinite.

At all places, therefore, between either pole and the equator
the period of swing will bedifferent, and the time ralien to make a complete swiug will increase or decrea-e as the equator is approached or receded from. So much for theoretical considerations. Can they be put to the test of experiment, and an answer obtained from nature herself? The fact is that this idea of Foucault's is so beautifully simple that anybody can make the experiment providiug he has the means of using a very long pendulum. This pendulam must be rigidly, but at the same time very independently, supported.

Beneath the pendulum, in contact with the earth, and therefore showing any movement of rotation which the latter may possess, is a board, on the centre of which the pendulum nearly rests. From the central point of this board lines are described showing so many degrees from the central line over which the peadulum bob swings. These preliminaries being arrauged, let the pendulum be started. This is done by drawing it out of the vertical and ty.ng tt by a thread which is burnt when it is desired to start the experiment.

Then, in consequence of that quality the exisence of which was revealed to us by the rotating disk and which is possessed by this vibrating pendulum, and in consequence of the precautions which bave been taken to prevent its awing being interfered with by the mition of the earth or other perturbing influences, it should be found, if Foucault's assumption be correct, that the earth is movi g beneath the pendalam. And if all the conditions of the experiment have been complied with it is found that the pendulum moves over the scale as the earth rotates bencath it, That then is one demonstra'ion of the existence of the earth's rotation.

The question now arises whether there be any other method of determining the same thing. There is, but in answering the question in the affirmative it must be said that this second method is neither so simple nor so satisfactory as the first.

We owe it also to the genius of this same man, Foucault. It depends upon the same principles and is connected with the same series of facts as the other. But befo.e proceeding to

Fia. zo-Transit instrument and clock.
discuss this second experiment it will be well to consider these two tables, which have been takeu from Galbraith and Haughton's "Astronomy," because they show not only what the swinging pendulum should do if it behaves properly, but also what the gyroscope, the instrument used in the secoud experiment, should do if it behaves properly.

The first table is called

Hourly Motion of Pcondulum Plane.

\begin{tabular}{|c|c|c|c|c|}
\hline Place \& North Lat. \& Observed motion per hour \& Calcula. sed moticn per hour \& Observer

\hline Ceylon \& 6 \%6 \& : 870 \& $8 \cdot 685$ \& Schaw and 1.amprey.

\hline New York .-...... \& 4044 \& 9.733 \& ${ }^{-814}$ \& Laomil

\hline Providence, R.L.. \& 40.4 \& 9.955 \& 9.833 \& Canswell and Norton.

\hline New Haven, Clout \& 41888 \& 9.970 \& 9\%99 \&

\hline \& $\begin{array}{ll}46 & 12 \\ 48 \\ 50\end{array}$ \& 10.538
18.500 \& 10856
$11^{\prime} 373$ \& Dufour and Wartman.

\hline Bristol, .ensomemeter \& 5137 \& 117788 \& 12,

1263 \& Bunt.

\hline Irublin \& 5330 \& 18.915 \& 12'065 \& Galleaith and Houghton.

\hline Aberdeen \& 379 \& 12.700 \& 22'63 \& Gerard.

\hline
\end{tabular}

Place	Time of Rotation		
	h.		3.
Colombo, Ceylon	23	14	20
New York.......................................	24		9
Providence, R.I................................		38	29
New Haven, Ct.	23	50	7
Geneva	24	$4 t$	39
Paris ...	23	33	57
Bristol	23	53	2
Dublin	24	14	7
Aberaeen		48	49
Mean value...................	23	53	-

The pendulum plane is of course the plane in which the pendulum swings. The first column in Table I gives the place where the pendulum was set swinging, the second the latituic,
the third the obeerved motion per hour, and the fourth the ealculated motion. The table has been so drawn up that it begins with places nearest the earth's equator and parses gradually to others further away, going from Ceylon at $6^{\circ} \mathrm{N}$. Lat. to New York at 40° N. lat., New Haven at 41°, and ending with Aberdeen at 57°. At the first-named place it will be seen that the pendulum swings through less than 2° per hour, whilst at Aberdeen it swings through nearly 13°, which is an approximation, at least, to the statement I have made, that, since the rotation of the pendulum plane will be most rapid at either pole, the forther from the equator we swing it the greater will be the number of degrees passed over per hour.

To turn now to the gyroscope. We shall expect, if we succeed in imparting to it a rotation which is independent of and unaffected by the earth's rotation, that the angular change shown by it will be the same as that indicated by the pendulum, or, in other words, that the number of degrees passed over will be the same in both cases.

In the gyroscope, that portion which corresponds to the swinging part of the pendulam is the heavy disk seen in Fig. 28, to wbich a very rapid rotation can be imparted. This disk is mounted upon the horizontal circle shown in the figure, which cirele in its turn is mounted in a vertical one suspended by a bundle of raw silk fibres which depend from the little s crew shown at the top, by means of which the whole system can be raised, so preventing the vertical circle from resting its whole weight upon the pivot below, the ase of which is not so much to support the apparatus as to guide it in its movements.

Now is order that the rotation of the disk shall be uninfluenced by the motion of the earth a great number of precautions have to be taken. The first of these is to insare that the whole of the appaiatus shall be perfectly free to rotate, and that, however

FiG. 3t.-Wires in traasil es epiece.
much the silk fibres supportirg the vertical eirele may be screwed up in order that it may not rest its weight upon the pivot, its motion shall not he interfered with-that there shall be no twist in the thread. This is the first precaution; and, when this has been done, a condition of things is obtained in which the apparatus is perfectly free to move round a vertical axis represented by the silk fibres prolonged. Then, having fulfilled this condition, the next matter of importance is to see that the disk is perfectly free to move on the horizontal axis. For this purpose the wheel which holds the two extremities of the axis of the rotating divk is armed with counterpoise weights (see Fig. 28), two in a horizontal plane, AA, and two in a vertical plane, of which one is seen at B .

Then the knife edges, $c \mathrm{c}$, which are exactly in the plane of the centre of motion of the who!e system, are made to rest on two steel plates mounted on a separate stand, in order to ascertain if the moving parts are perfectly balanced, the perfection of balance being determined by the glowness with which it oscillates up and down. But this is not all; it must not cnly le so adjusted by there weights, A A, that the ring shall remain horizontal, but it must be so perfectly balanced by the two weights, one of which is seen at B in Fig. 28, that if a considerable inclination be made from the horizontal it will be taken up equally on both sides. Fipally, the instrument must be so adjusted that when the two delicate knife edges are placed on the two steel plates in the outer ring (see Fig. 28) the ring carrying the disk shall be perfectly free to move and have its centre of motion exactly identical with the eentre of motion of the outer ring and of the disk isself. Then, when all these precautions have been taken, and the disk is set rotating with considerable velocity by means of a multiplying wheelwork train, we have, as far as the mechanics of the thing are concerned, an experiment juit like the other, with this important difference, however, that, whereas the penduium experiment
always succeeds, much trouble is often experienced in experimenting with the gyroscope. But, when the multiplicity of the conditions necessary to the success of the experiment is considered, this is not surprising. If, however, all the conditions have been adhered $t 0$, the pointer with which the instrument is fitted (see Fig. 29) ought to move over the scale at exactly the same rate that the pendulum moves over the scale beneath it. But even supposing that the pointer of the gyroscope does move over the faper and in the right direction when the apparatus rotates one way, this is not enough. The demonstration of the validity of the result given by it is that an equivalent deviation is obtained when the apparatus is turned about in every possible direction. The first test of course is to rotate in the opposite way, then, if all the adjustments have been properly made, the deviation obtained will be the same in amount and direction as before, and it may be taken that the result obtained is then really due to the earth's rotation.

With this reference to the most important points eonnected wish the gyroscope, we may bring our inquiries under this head to a close. So many men have worked with the instrament in so many lands, and under such rigid conditions, that there can be no donbt that the rotation of the earth is demonstrable by it, alihough certainly its verdict is not anything like so sharp, or so clear, or so eavily obtained, as that given by the pendulum.

Our appeal to $1^{\text {thysics }}$ has at once put out of court the old view of the arrangement of the universe, which placed an immovable earth at its centre. How Copernicus was the first to point out that this old view was ineorrect, and that it was the earth which moved, and how Galileo was persecuted because he, in times much less fortuna e than our oun, had the courage to ray $\mathrm{so}_{\text {, }}$-these are familiar points in the history of the discovery of the earth's rotation.

Having then demonstrated the existence of this particular movement of the earth, we wust now proceed to a consideration of the rate, direction, and results of the movement, -connect in fact the pendulnm of Foncault with that of Hayghens, and regard the physical pendnlum as giving an important use to the experiments of Galileo and of Huyghens in wbich they caused it to aet as a controller of time.

Turn back to our two tables. They are not without interest at the present moment. In the first table, "Hourly Motion of Pendulum Plane," the observed motion of the pendulam plane per hour is connected with the latitude of the place at which it swings, varying as that varies; and therefore the observed motion in any latitude ought to give the same value for the earth's rotation, the closeness of which to the real value will at the same time tie a neasure of the accuracy of our pendulum observations.

Let us endeavour then to find out in what time the earth must go round in order that the pendulum plane may vary (say) ${ }^{1} \mathbf{1}^{\prime \prime}$ " per hour in Ceylon, ${ }^{1} 3_{3}{ }^{5}$ in Dublin, and so forth.
Taking our clock as being divided into twelve hours, each hour into sixty minu'es, and each of these again into sixty seconds, it is found (see Table 2) that the value for Ceylon is 23 h .14 m .20 s , and for Dublin 24 h .14 m .7 s ., the mean value of the observations at the various places mentioned in the table being 23 h. 53 m.., so that according to that table the earth rotates on its axis in a few minutes less than twenty-four hours.

Now although such an approximation to the real valne may suffice for the great masc of mankind, it is not an astronomicai way of dealing with the question. We have seen the circunference of a curcle divided first into degrees, then into 1 degrees, next into seconds, ald finally into tenths of seconds; by the application of electrical principles, time has been even more finely divided, and the question naturally arises, Are there any means of determining the exact period of the earth's rotation?

There are means of doing this. In the last lecture occasion was taken to point out that the stars are infinitely removed from the earth; the stars beiug so infinitely distant, a slight change in their position will not be perceptible to an observer on the earth, and the place of a star to-day and its place to morrow are the same so far as relates to any parallactie change of position.

This being premised, it will be clear that, in order to get out the exact period of the earth's rotation, one only has to make an observation of any star on one perticular day (such observation being of course marle with a elock), and repeat the observation when the star is in the same position on the succeeding day. The time which elapres between the observations must be the time taken by the earth to make a complete rotation. But it
will be asked, How are these observations made, and how i- it known when the star is in the same position when the second observation is made?

For this purpose a transit instrument is used (see Fig. 30). This differs from an ordinary telescope, being so mounted as to move only up and down, and is armed not with simple cross wires, but with an odd number of parallel and equidistant vertical wires crosied by a single horizontal wire. It is also usually proi ded with a circle to give declination. If from any part of the earth an observation be made on any particular star on one day, and then another observation made on the same star when it is in the same position the next day, as has been said, the interval between the two observalions must be the time taken by the earth to move round once.

By having such an arrangement as exists in the transit instru-

Fig. 72.-Showing that the true horizon of a pole is the equator.
ment, by which it can swing in the plane which eoincides with the axis on which the earth turns, any star may be ehosen for the observation. Suppose, for instance, the instrument be pointed to the north pole star, then, in consequence of the tremendous distanee of the stars, the axis of the telescope is practically coincident with the axis of the earth. But suppose another star to be observed, it will be quite clear that we may make the observation on it, or any otber star we eboose. When the instrument is upright it points to the zenith. A star in the zenith may therefore be selected for the observation.

- It is observed when crossing the central wire of the instrument one day, and noted again when it erosses that wire on the sueceeding day. But the observer does not limit his observation to the one central wire, in order to ascertain when the star is in the centre of the field. If be did so, he might miss his observa-

Fic. 33--Showing that the poles lie in the horison at the equator.
tion. That is why the simple crost wires have been replaced by a system of wires (see Fig. 31). As the star erosses the field of view, the observer, listening to the beats of the elock alongside, notes the time when it crosses each of the wires, and takes the mean of these observations, thus attaining to a much greater accuracy than if he had merely observed the transit over the central wire. With an ordinary clock it is found that a period, less by a few moments than twenty-four hours, elapses between two suceessive transits.
In order to get an absolutely perfect measure of time, the clock may be so rated that it should not be any indeterminate number of hours, minutes, and seconds, but twenty-four hours exactly between the two transits of that star. With a elock thus arranged, the time at whieh a star erossed the central wire of the
transit instrument would really give a most perfect method of determining that star's place in the heavens, because, if the earth's rotation is an equable one and takes place in a period which we choose to eall twent -four hours, then two stars 180° apart will be observed twelve hours after one another, four stars 90° apart will be observed six hours apart, and so on; and clocks like this, regulated to this star time, exist in our observatories, being called sidereal elocks, because the time they give, which is not quite familiar to everybody, is called sidereal time.

Now let us consider our position on the earth with regard to the stars. This is a very interesting part of our subject, not only in its scientific aspect, but from the point of view of its usefulness, whether we wish to study the stars or define places on the earth's surface, the latter matter, however, being so intimately connected with astronomy proper that it is impossible to talk a bout the one without talking about the other.

Since we divide all circles into 360°, the circumference of the earth may be so divided, and the method in use of defining positions on the earth is to say of a place that its latitude is so much and its longitude is so mueh. Latitude begins at the equator with ${ }^{\circ}$, and terminates at the poles with 90°, being north latitude in the one case, and south latitude in the other. In the case of longitude, there is no such simple starting point, for whilst latitude is counted from the equator by everybody all over the world, longitude may commence at any point. In England we count longitude from the meridian of Greenwich. When the transit instrument at Greenwich is swept from the north point through the zenith to the south point it describes a half circle, which is called the meridian of Greenwich.

Fia. 34--Horizon of a place in mid-latitude.
That is one point. Another point is this. Suppose the instrument to be set up not at Greenwich but at the north pole. Then the true horizon of the observer will be along the equator. Remove the instrument to the equator, and the true horizon will eut the poles. At a place in mid-latitude the true horizon would cut neither the pole nor the equator, but would be inelined to both (see Figs. 32, 33, and 34).

Then comes the important relationship between the latitude of the place and the altitude of the pole star above its horizon; that the number of degrees this star-be it north or south-is above the horizon of the observer will be the number of degrees of north or south latitude of the place where the observation is made. A place therefore in $10^{\circ} \mathrm{N}$. lat. will (roughly) have the north pole star at a height of 10° above its horizon.

So much for this part of our subject. Let us now leave it, because, interesting as it i , it refers to a branch of astronomy nith which at present we have less to do than with the m,re physical one; but it was well that we should pause for a few moments to note the tremendous importance to mankind of that particular movement of the earth which we have been considering.
(To be continued.)

PROBABLE NATURE OF THE INTERNAL SYMMETRY OF CRYSTALS ${ }^{1}$

THE theory of the modification of crystal angles, just offered in dealing with quartr, is manifestly applicable to all crystals notyof the cubic system, and it is submitted that for every suct
${ }^{2}$ Coxtinued from p. 188.
crystal there is an ideal or root form proper to one or other of the five kinds of internal symmetry which have been presented, from which root form the actual form can be derived by a proper proportionate increase of dinension in one or more directions.

It is evident that, while our path must become more and more intricate as we endeavour to establish in the cases of more complex compounds relations similar to those above traced, the reference of who'e classes of analogous forms, differing only in their angles, to one root form, removes a very important difficulty, and the wide applicability which it confers on the five kinds of internal symmetyy with which we started appears in the fact that there is no ery-tal form which cannot be thus referrid to an appropriate root form in harmony with one or other of these five kinds of internal symmetry. ${ }^{1}$

One more case may be mentioned in which a probable internal symmetry can be assigned to a componnd in harmony with its actual crystal form ; it is a more difficult one.

The molecale of Iccland or calc-spar is usually believed to consist of one atonn of calcium, one atom of carbon, and three of oxygen. We shall, however, take a liberty, and suppose that the atoms of calcium or the atoms of carbon have but half the mass attributed to them; that in the formula of this compound we shoald write either two atoms of calcium or two atoms of carbon in place of one. ${ }^{2}$

Making this supposition, we observe that if the calcium and carbon atoms were alike we should have six atoms, three of one kind, three of another; in other words, we should have equal proportions of two kinds of atoms, from which, since the form of Iceland spar is but little removed from a cube, we naturally argae that just before crystallication its atoms were arranged according to the fir-t or second kind of internal symmetry; these two kinds being, it will be remembered, those in harmony with the cubic form which admit of very symmetiical arrangement of prarticles of two kiads present in equal numbers.

Since Iceland spar is a uniaxal crystal, the arrangement of the three kinds of atoms, whatever it is, must be symmetrical abont one axis only: and we shall now endeavour to show that the atoms can be thns arranged in either the first or second kind of symmetry.

We will show first that they can be hus arranged in the second kind.

Where there are but two kinds of particles present in equal numbers, symmetry reqnires that the alternate layers of this kind of symmetry (see Fig. 3) shall consist entirely of similar kinds, and therefore in the case before us, one set of alternate layers will represent oxygen atoms; the other, atoms of culcium and carbon. Now particles present, as we suppose the calcium and carbon atoms to be, in the proportion $1: 2$ can be quite symmetrically arranged in these layers (plan /f), as the sphere centres were in the layers depicting the fourth kind of symmetry (p lan e), and therefore the only question remaining is the relative disposition of the layers of calcium and carbon atoms with respect to one another.

Now the spheres in alternate layers of the second kind of symmetry considered alone have the relative arrangement of the third kind of symmetry (Fig. 4), and in determining the relative disposition of the calcium and carbon atoms, we may therefore neglect the oxygen atoms, and treat the case as belong. ing to the third kind of symmetry. The two spiral arrangements in this kind of symmetry, in which the less numerous spheres in the fourth layer are vertically over those in the first (see anff), have the necessary symmetry about a single axif, and if the calcium and carbon atoms bave one of these arrangements, the requirements of the case are entirely met.
l. We will now show that the three kinds of atoms can also be arranged symmetrically about a single axis in the first kind of symmetry.

One half the spheres depieting this kind of symmetry will in this case represent the oxygen atoms, and the remaining half the atoms of calciam and carbon (see Fig. 2), and, as previously noticed, the arrangement of either half will be that of the second hind of symmetry. It follows that the question of the relative disposition of the atoms of calcium and carbon is simply the question of the symmetrical arrangement about a single axis of atoms of two kinds present in the proportion 2:1 in the second
${ }^{1}$ The very symmetrical form the pentagonal dodecahedron is not in harmony with either of the five kinds of symmetry, nop is in found in crystala
"It has already been remarked that the crystal form of fluor-spar favours the supposition thal calcium has half the atomic weight usually attributed to is.
kind of symmetry (Fig. 3). And since the layers of wheres depicting this kind of syminetry have a triangular arrangement (plan b), it is evident that this can be accomplished here ju-t as in the former case.

In either of the two arrangements just described we have only to suppose that when the symmetrically placed atoms change volume at the time of crystallisation the dimensions transversely tn the axis of symmetry are increa-ed relatively to those in the direction of this axis, and we have an obtuse rhombohedron where formerly we had a cube. And the significant fact that the angle of a rhombohedron of calc-spar diminishes when the crystal is heated supports this therry of its production. Perhaps the arrangement of the atoms according to the first kind of internal symmetry is the more probable of the two, as this would give the cleavage directions coincident with the directions of layers of similar atoms (oxygen).

An important fact supporting our conclusions is that certain definite relations as to their proportions which are found subsisting between the allied forms taken by cry-tals of the same substance are found inherent in one or other of the five kinds of internal symaetry.

Thus it is well known that if a particular substance is found crystallised in hexazonal pyramids of varions Linds-that is, whose sides have various different degrees of inclination to the base-the number of kinds is strictly limited, and they are strictly related to each other. If x be the side of the hexagonal base of the pyramid and y the height for the same substance, while x remains constant, y has not more than fourteen different values, seven related thus : $c, \frac{1}{} c, \frac{1}{2} c, \frac{1}{} c, \frac{1}{b} c$, it $\left.c, 1\right\} c$; and the other seven sinularly related thns i $\left.d_{1} \frac{3}{d} d_{9} \frac{1}{2} d_{5} \frac{1}{1} d_{1} \right\rvert\, d, x_{2}^{3} d_{1} I_{8} d$; and c bearing to d the ratio $2: \sqrt{3} 3$.

Now, if we turn to the fourth kind of internal symmetry (Fig. 5) to ascertain the possible varieties of inclination of the sides of hexagonal pyramids which can be depicted, we find that the greatest possible height to which we can build a hexagonal pyramid of equal spheres is exactly double the height of a tetrahedron with the same side as the hexagonal base of the pyramid. Thus, if twenty-five spheres form each side of the hexagonal base, giving twenty-four equal distances between the sphere centres in any one side, we find that the highest possible pyramid has forty-nine layers of spheres giving forty-eight eqnal spaces between concecutive layers.

If we call this height c_{3}. it is evident that pyramids corresponding with the first of the above series of actually observed forms will have respectively-
49 layers of balls, giving 48 spaces between consecutive layers.

We find, moreover, that such a series can be readily depicted, and that, upon examination, no additional terms appear admissible.

Again, a further inspection of the stack of spheres shows us that with the same heights-that is, with the respective numbers of layers just envmerated-we may, in place of the base layer which forms a hexagon whore sides have twenty-five spheres each, have a base derived from this in which each of the six spheres at the angles becomes the centre of a side, the outline of the base layer being now a larger hexagon described about the hexagon which bounded the former base layer. The sides of this new base thus bear to the sides of the old the ratio subsisting between the side and the perpendicular of an equilateral triangle, i.e. the ratio $2: \sqrt{ } 3$. And finally, since the distance between the planes containing the centres in suceessive layers bears to the distance between centres in the same layer the same ratio which the perpendicular from the angle of a tetrabedron upon its opposite face bears to its edge, that is the ratio $\sqrt{2}: \sqrt{3}$, it follows-
That the two allied series of possible altitudes of hexagomal pyramids thus formed, if we take the same longth of side a for both, will be-

First Serics
$\frac{2 \sqrt{ } 2}{\sqrt{ } 3} a ; \frac{3 \sqrt{ } 2}{2 \sqrt{ } 3} a ; \frac{\sqrt{ } 2}{\sqrt{3}} a ; \frac{\sqrt{ } 2}{2 \sqrt{ } 3} a ; \frac{\sqrt{ } 2}{4 \sqrt{ } 3} a ; \frac{2 \sqrt{ }}{6 \sqrt{3}} a ; \frac{\sqrt{2}}{8 \sqrt{3}} a$.
$\sqrt{2} . a ; \frac{1}{\sqrt{2}} a ; \frac{1}{3} \sqrt{2}, a ; \frac{1}{1} \sqrt{2} a ; 1 \sqrt{2} a ; \frac{1}{1} \sqrt{2} a ; \frac{1}{8} \sqrt{2} a$.

Surely the fact thus established, that each term of a series of relative altitudes of the hexagonal pyramids in which a particular snhstance crystallises slways has to some term of the series thu theoretically derived a particular ratio pecaliar to the substance, constrains ns to conclude that the above fourteen "root" forms are those to which all erystal forms involving regular six-sided pyramids are referable, and that the actual forms are prodnced from the "root" forms by difference in the degree of expansion in the direction of the axis of the crystal as compared with other directions at the time of crystallisation.

Other allied forms, as alied octahedra or rbombohedra, can be in the same way connected with some one of the five kinds of internal symmetry.

The peculiarities of crystal-gronfoing di-played in twin crystals can be shown to favour the supposition that we have in crystals symmetrical arrangement rather than symmetrical shape of atoms or small particlec. Thus if an octahedron be cat in half by a plane parallel to two opposite faces, and the hexagonal faces of separation, while hept in contact and their centres coinci lent, are turned one upon the other through 60°, we know that we get a familiar example of a form found in some twin crystals. And a stack can be made of layers of spheres placell triangularly in contact to depict this form as readily as to depict a regular octahedron, the only modifieation necessary being for the layers above the centre layer to be placed as though turned budily through 60° from the position necessary to depict an octahedron (compare Figs. 7 and 8). The modification, as we see,

Fig. 7.

Fic. 8.
involves $m 0^{*}$ departure from the condition that each particle is sywidistant from the tuelve nearest particles.

Before closing, a few words may be said on the bearing of the conclusions of this paper on isomorpkism and dimorphism.

First, as to isomorphism.
The conclusion that there are but five kinds of internal symmetry possible, three of which indicate a cubic form, evidently accords with the fact that not only the simplest combinationsthose in which two kinds of atoms are present in equal propor-tions-but also many very complicated componnds crystallise in cubes.

Out of the regular system we generally find that for the angles of crystals of different compounds to be the same there must be some resemblance in their atom-composition, and the explanation suggested is that the atoms which are common to two isomorphous compounds, e.g. the carbon and oxygen atoms in calcspar and spathic iron ore, have similar situations in the two different crystals, and that the-change of bulk which occurs when crystallisation takes place is due to a change in these atoms owly, the atoms not found in both remaining passire.

There are, however, some cases which do not at first seem to be met by this view-cases in which the atom composition of isomorphous componads has only a very parial similarity. Ammonia compounds may be specially mentioned. Thus, ammonic sulphate, $\left(\mathrm{NH}_{3}\right)_{3} \mathrm{H}_{3} \mathrm{SO}_{4}$, is isomorphous with potassic sulphate $\mathrm{K}_{4} \mathrm{SO}_{4}$.

The following suggestion would seem to enable us to suppose that in this, as in other cases of isomorphism, the phenomenon is referable to the passivity of stme of the atoms in the change of bulk which accompanies crystalli cation. Let us write ammonic sulphate 'hns $\left(\mathrm{NH}_{3}\right)_{2} \mathrm{H}_{2} \mathrm{SO}_{4}$, and let us suppose that the symmetrical arrangement is such that the groups, $\left(\mathrm{NH}_{3}\right)_{2}$ just occupy places which might, without altering the symmetry, be filled by additional groups $\mathrm{H}_{2} \mathrm{SO}_{4}$; that, in other words, the relative position of the gronps $\mathrm{H}_{2} \mathrm{SO}_{4}$ which are preient in the
symmetrical arrangement is precisely the same as it would be if the entire mass consisted of these group instead of consisting partly of NH_{3} groups. If now, in addition to supposing that in both compounds the active atoms in the process of crystallisation are the sulphur and oxygen atoms, and these only, we suppose that the expansion of some of the atoms of the active kind checks the expansion of others; that only a certain proportion of these atoms expands, we perceive that we may have both the same amount and kind of atom expansion in the two cases, and, as the natural result, isomorphism.

Next, as to dimorphism.
It is evident that a very small change is requisite to convert one kind of internal symmetry into another. Thus we have already had occasion to notice that the only difference in depicting the third and fourth kinds of symmetry is that for the former the centres of the spheres in the first and fourth iayers, those in the second and fifth, and so on, range vertically, while for the later the centres in the first and third, in the second and fourtb, and so on, range in this way.

In the cave of a dimorphic compound consisting of two kinds of atoms in the proportion of $2: t$, c.g. water, $\mathrm{H}_{2} \mathrm{O}$, we have only fto suppose therefore that the same layers of atoms which under one set of conditions produce hexagonal prism", are by some alteration in conditions arranged in the slightly different way necessary to prodnce rhombohedral forms. Other cases ot dimorphism are probably to be accounted for much in the satoe way.
Thus the following interpretation of the fact that calcic carbonate, which we have seen crystallises in obtuse rhombohedra as calc-spar, sometimes crystallises in six sided trimetric prisms as aragonite msy be offered.

We have already endcaroured to show that the first or second hind of internal symmetry is that proper to calc-spar. We will now endeavour to show that the fifth kind of internal symmetry (Fig, 6) is proper to aragonite.

Alternate layers of spheres (plan b) will represent the oxyy en atoms, and the other alternate layers the calcium and carbon atoms; the central layers of the triplets above alluded to, viz. the second, the fourth, the sixth, \&c., being the oxygen layers ; the calcium and carbon atoms in the remaining layers will be symmetrically arranged (plan f). From the fact of the crystals being trimetric, the layers containing the last-named atoms, which, considered apart from the oxygen layers, are in the fourth kind of symmetry, probably have the arrangement above described, in which the less numerous spheres form zigzags, the stack in this case baving a different symmetry abont three axes at right angles to each other (Fig. 6).
The fact that the dimorphic varieties of the same substance have different densitics is in harmony with the supposition that different sets of the atoms are concerned in the different cases ; that the active atoms which produce one form are not those, or those only, which produce the other.

It is not always necessary to refer two incompatible crystal forms of the same substance to two different kinds of internal symmetry: for example, from the third kind of internal symmetry we can produce square-based octahedra, and we can also produce right-rhombic prisms, and in accord with this we have the well-known fact that right-rhombic prisms of sulphate of nickel, $\mathrm{N}_{2} \mathrm{SO}_{4} 7 \mathrm{H}_{2} \mathrm{O}$, when exposed to sunlight are molecularly transformed, and, though they neither liquefy nor lose their form, when they are broken are found to be made up of square-based octahedra several lines in length.

William Barlow

UNIVERSITY AND EDUCATIONAL INTELLIGENCE

CambxtDGe,- The following awards (among others) have been made at St. John's College on the results of the examination for candidates who have not yet commenced residence :-

For Mathematics: H. F. Baker (Perse Grammar School, Cambridge), Foundation Scholarship, raised for two years to 751. a year; A. W. Flux (Portsmouth Grammar School), Minor Scholarship of 751. a year ; P. T. Fagan (Highwood School, Weston), Exhibition of 50 , a year ; H. R. Norris (University College School), Exhibition of 3ol. a year.

For Natural Science : G. S. Turpin (Nottingham High School and Owens College, Manchester), Foundation Scholarship raised for two years to 75 l. a year ; P. Lake (Neweastle College of Science), Minor Scholarship of 751. a year; W. Harris (Bradford Grammar School), Exhibition of 50l. a year; W. M. Mee
(Trinity College, Dublin), Exhibition of 32l. a year [Mathe matics and Physics].

For Hebrew: G. C. Ewing (Merebant Taylors' School, J.ondon), Exhibition of $33 / .6 s .8 d$, a year.

SOCIETIES AND ACADEMIES London

Royal Meteorological Soclety, December 19.-Mr. J. K. Laughton, M.A., F.R.A.S., president, in the chair. - The following were elected Fellows :-R. Bentley, W. Bonalln, Miss F.. Brooke, Rev. A. Conder, T. H. Cowl, I. A. W. Olivér, C. M. Powell, W. B. Tripp, and Fung Yee. The papers read were:-On the explanation of certain weather prognostics, by the Hon. Ralph Atercromly. The author explainsabout fortyf. ur well-known prognostics belonging to the following groups -(1) diurnal ; (2) sun, moon, and stars ; (3) sky ; (4) rain, snow, and hail ; and (5) wells, springs, and coal mines-hy referring them to the isobaric conditions in which they are observed. By this means he is able to indicate the circumstances ander which any prognostic fails, as well as those under which it succeeds. Preliminary inquiry into the causes of the variations in the reading of black-bulb thermometers in vacuo, by G. M. Whipple, B.sc. It has long been known that there is a want of accordance between the different instruments ured for measuring the intensity of radiation, and with a view of ascertaining the cause of the variations in the readings of the black-bulb thermometers in vacuo, the author bas made a comparison with a number of these thermometers, the results of which are given in the paper. It is shown di-tinetly that the effect of an increased coaring of lampblack on the bulb is to raise the temperature, and also that the size of the thermomoter-bulb is a most important factor in the case of this instrument - Report on the phenological ohservations for 1883 , by the Rev. T. A. Preston, M.A.-Mr. J. S. Dyason exbibited a series of coloured sketches illustrating the recent atmospheric phenomena during November and December.

Geological Society, December 5-J. W. Hulke, F.R.S., president, in the ehair.-George Jonathan Binns, Horac: T . Brown, James Dairon, Rodolph De Salis, Hugh Exton, John Forrest, Prof. Bernard J. Harrington, James Patrick Howley, John Sylvester Hughes, Prof. George T. Kennedy, Kev. Arthur Noel Malan, Robert Sydney Milles, Edwin Radford, Edward Pierson Ramsay, William Henry Rands. Thomas Roherts, Joseph Ridgway, and Harry Page Woodward wee elected Fellows of the Society.-On the Cambrian conglomerates restirg upon and in the vicinity of some pre Cambrian Rocks (the socalled intrusive marses) in Anglevey and Carnarvonshire, by Henry Hicks,' M.D., F.G.S. In a former paper the author had maintained that there was no evidence to show that the so-called intrusive granite in Anglesey had aliered the Cambrian and Silurian rocks in its immediate vicitity, or that they had been entangled in it as described, but that it seemed to be a rock of metamorphic origin, varying much in its general appearance at different points. He contended that, instead of being an intrusive granite, as supposed by the officers of the Survey, it was in all probability the oldest rock in Anglesey. The basal Cam. brian conglomerate in contact with it is in an unaltered condition, and at Llanfaelog contains an extraordinary proportion of well-rolled pebbles, identical in mineral composition with the so-called granite immediately below. Fragments of all the varieties of rock found in the granitoid axis are recognisable in the conglomerate, and in precisely the same condition as in the parent rock. Fragments of the various schists of the area were also present ; so that he thought there cannot be the shadow of a doubt that the so-called granite and the metamorphic schists are older than the conglomerate, and therefore pre-Cambrian. The view maintained by the Survey that the schists are altered Cambrian and Silurian strata, and the granitoid rock an intrusive granite of Lower Silurian age, is consequently quite untenable. In Carnarvonshire equally conclusive evidence was obtained from many areas. Fragments of the Dimetian (Twt Hill type) occurred abundantly in the basal Cambrian conglomerates at Dinas Dinorwig, Pont Rothel, Moel Tryfane, and Glyn Llifon. Quartz. felsite pebbles in every respect identical with the varieties found in the so-called intrusive ridges between Bangor and Carnarvon, and to the north and south of 1lyn Padarn, were found on the shores of the Menai Straits, in the railway-cutting at Bangor, at Liandeiniolen, Dinas Dinorwig, Llyn Padarn, and
${ }^{\text {e }}$ leewhere. This evidence, supplementary to that previously furnished by Prof. 1lughes, Prof. Bouney, and the author, is conelusive as to these areas, rince the basal Cambrian conglomerates, which are in contact with these supposed intrusive masses, are composed almost entirely of rocks identical with the latter; and this could not possibly be the case if the granitoid mases had been intruded among the conglomerates after their deposition.-On some rock-specimens eollected by Dr. Hicks in Anglesey and North.West Carnarronshire, by Prof. T. G. Bonney, F.R.S., Sec.G.S. The author stated that pebbles in the blocks of conglomerate colleeted by Dr. Hicks to the north of Llanfaelog were practically undistinguishable macroscopically and microscopically from the granitoid and gneissic rocks which occur in sitm between that place and Ty Croes, and that the matrix contained smaller fraguents, probably from the same roek, with schist bearing a general revemblance to members of the group of schists so largely develof ed in Anglesey, and with grits, argillies, \&c. Pebbles of granitoid aspect in the Cambrian conglomerate near Dinas Dinorwig, \&c., bear a very cl ne resemblance to the Twt Hill rock, and are associated with abundant rolled fragments of rhyolite resembling those already dewcribed from the Cambrian conglomerate and the underlying conglomeratic beds and rhyolices. Two pebbles of rather granitoid aspect in the Cambrian conglomerate by the shore of the Menai Straits, near Garth, prove to be spberulitic felsite, somewhat resemblinz that already described by the author from Tan-y-maes. He pointed tut that the evidence of these specimens collected by Dr. llicks, added to that already obtained, led irre-istibly to one of two conclusions-either that, when the Cambrian was formed, an area of very ancient metamorphic rock was expored near Ty Croes and in the Carnarvonshire district, or that the rhyolitic volcanoes were so much older than the Cambrian time that their granitic cores were already laid bare by denudation. Hence, in either case, the existence of Archeran rock in North Wales was proved. To one or other of these coneluxions he could see no possible alternative, and he considered the former to be (even if some of the granitoid rock were granite) far the most probable.-On some post-Glacial ravines in the Chalk Wolds of Lincolnthire, by A. J. JukesBrowne, F.G.S.

Edtnburgh

Mathematical Society, December 14.-Mr. Thomas Mair, pre-ident, in the chair.-Mr. J. S. Mackay read a paper on the medioscribed circle of a triangle with its analogous and associated circles viewed from their centres of similitude.-Prof. Chrystal stated some propositions in geometry for which be wished proofs.-Mr. Muir mare a communication on determinants with -termed elements. - The Secretary gave a new construction by the Rev. G. McArthur for Euclid ii. 9, 10; and Mr. James Taylor Dollar proposed for solution a theorem in elementary geometry.

CONTENTS

Page

Vortex Rings. By Prof. Osborne Reynolds, F.R.S. 193 Our Book Shelf :-

Brezina's "Krystallographische Untersuchungen an homologen und isomeren Reihen"

The Remarkable Sunsets.-D. Pidgeon; Hon, F. A. R. Russell; Prof. Lewis Campbell

Peripatus.-Prof. H. N. Moseley, F.R.S., and A. Sedgwlck

A New Rock.-Dr. Karl Pettersen. . . . 196
Diffusinn of Scientific Memoirs,-W. M. Hicks; Prof. P. G. Tait

The "Talisman" Expedition. By Prof. Alphonse

 Milne-EdwardsMusic and Science. By Dr. W. H. Stone.
The Remarkable Sunsets. By Edward Whymper

International Polar Observatorics. By Robert \mathbf{H}. Scott, F.R.S., and Dr. Wild

THURSDAY, JAN゙UARY 3, 1884

THERMAL CHEMISTRY

Thermochemische Untersuchungen. Von Julius Thomsen, Dr. Phil. et Med., \&c. Volumes I., II., and III. (Leipzig: Johann Ambrosius Barth, 1882-83.)

APAPER was published in this journal a short time ago calling attention to "The Backuard State of Chemistry in England" (vol. xxviii. p. 613) ; the writer regrets that so little attention is paid to the chemistry of the carbon compounds, and that so much time is spent in our chemical schools in elementary and routine instruction. In the second of these regrets I can thoroughly sympathise; our so-called students of chemistry are becoming mere machines which perform, and generally perform badly, mechanical processes knowa as qualitative and quantitative analyses. We hear complaints from physical laboratories that practical physics is taught in an unsystematic manner ; we sometimes have comparisons drawn between the desultory methods of teaching pursued in these laboratories and the orderly and systematic courses of practical chemistry conducted in the workrooms of the sister science. But I am afraid it is rather the chemist who is to be pitied: his method is too methodical; it seems to succeed because it n glects the really scientific aspects of chemistry. Chemistry is a great branch of science ; but what is the so-called practical chemistry of the schools or the examination? It is but a weary round of dull repetition; it consists of obtaining black precipitates, and yellow precipitates, and colourless precipitates, precipitates which are soluble and those which are insoluble; it occupies itself with filtering and washing, and drying, and burning, and weighing; it has little or no connestion with the problems which belong to the science of chemistry. But when the author of the article to which reference has been made attributes the backward state of chemistry in England to the comparatively small amount of attention which is given to organic chemistry, I find myself unable to agree with him. I think we are apt to be dazzled by such things as the synthesis of indigo, or the artificial manufacture of alizarin: we forget to inquire whether the study of organic chemistry has in recent years added any great general principle to chemical science. The conception of the valency of elementary atoms is certainly an outcome of the study of the carbon compounds, or rather of the application of the atomic theory to this study; but have we not of late made too much of this conception? bas it not rather stopped than aided inquiry? is it not time we had given up our "bonds," our "units of affinity," which are chiefly remarkable as being change. able almost at pleasure? Organic chemistry, as pursued in the German laboratories, it seems to me, has almost if not quite entered on the same path as that which has led qualitative and quantitative analysis to so sad a fall: it is in danger of ceasing to be a branch of science and of becoming an art of manufacture. Any student who goes through the course of preparation of organic compounds, systematised so well in the laboratories of the German universities and elsewhere, is ready to manufacture new
compourds by the score; the difficulty consists in not making such compounds. There are whispers abroad that he who is not in the trade is regarded by the German professors as "no chemist."

I think the evil lies deeper: we are so anxious to act that we have no time to think. The chemist may gain a kind of reputation by making new compounds; the process requires no thought, no scientific training, no originality. It has also something to be said in its favour. Nature is so vast that we can scarcely hope to gain any accurate knowledge save by attacking the problems in detail. In chemistry, as in other branches of science, we must be content to g tin "a series of small victories" over nature. But in fighting nature in detail we are apt to lose sight of general principles by the help of which alone car empiricism become science. I think that in chemistry, and more e specially perhaps in organic chemistry, we are specialising too much: we are trying to solve large and complex problems by a series of small attacks all delivered from the same point. What then is the remedy ? I would answer: Vary the points of attack; remember that the victory is to be gained only hy boldness, and that it is emphatically worth gaining. Do not let chemistry remain the battlefield of the Philistines, but enliven it with the true spirit of science, with that spirit which will not believe that the universe is a "rubbish-heap of confused particulars," but will rather regard it as a vast organism in which while "everything is distinct yet [is] nothing defined into absolute independent singleness."

That the points from which the problems of chemistry may be attacked are many is witnessed by the book before us. Why is there no handbook of thermal chemistry in English? Will not some one at least translate Naumann's "Handbuch"? M. Thomsen has for years been known as one of the two great workers in the field of thermal chemistry; his contributions to this branch of science have been numerous and important; we cannot be too thankful that he has gathered these contributions together, and arranged and digested them in this series of volumes, which must remain as the groundwork of the science. Three volumes have appeared, and a fourth (to treat of organic compounds) is promised. Let me try to give some account of one or two points in Thomsen's work.

The notation of thermal chemistry is simple : Let $r=$ the thermal value (stated in gram-units) of a chemical change; if the change consist in the formation of a definite quantity of a compound $\mathrm{X}_{\mathrm{a}} \mathrm{Y}_{\mathrm{b}} \mathrm{Z}_{\mathrm{c}}$-made up of a parts of X, b parts of Y , and c parts of Z -then

$$
r=\left[X^{a}, Y^{b}, Z^{c}\right]+i^{l}
$$

if the same compound is produced in presence of a large quantity of water, then

$$
r=\left[\mathrm{X}^{\mathrm{a}}, \mathrm{Y}^{\mathrm{b}}, \mathrm{Z}^{\mathrm{e}}, \mathrm{Aq}\right]+
$$

if the same substance already formed is dissolved in an unlimited quantity of water, then

$$
r=\left[\lambda^{4} \mathrm{Y}^{\mathrm{b}} \mathrm{Z}^{\mathrm{c}}, \mathrm{Aq}\right]+
$$

The general expressions for the production and decomposition of a compound $\mathrm{X}_{\mathrm{a}} \mathrm{Y}_{\mathrm{b}}$ are

$$
\text { (t) } X_{a}+Y_{b}=X_{a} Y_{b}+\left(X^{a}, Y^{b}\right) ;
$$

and

$$
\text { (2) } X_{a} Y_{b}=X_{a}+Y_{b}-\left(X^{a}, Y^{b}\right)
$$

[^28]If the compounds XY and $Z \mathrm{~V}$ react to produce $\mathrm{X} Z$ and $V^{\circ} \mathrm{V}$ then

$$
r=[\mathrm{X}, \mathrm{Z}]+[\mathrm{Y}, \mathrm{~V}]-[\mathrm{X}, \mathrm{Y}]-[\mathrm{Z}, \mathrm{~V}] .
$$

These equations illustrate the methods by which the thermal value of a chemical change can be indirectly calculated. The total loss of energy by a chemical system in passing from a definite initial to a definite final state is independent of the intermediate states; assuming, as we may do for most purposes, that the total loss of energy is measured by the quantity of heat evolved, it follows that the total thermal change accompanying a chemical change depends only on the initial and final states of the system. Hence, if we have series of reactions beginning with the same materials in the same condition, and ending with the same products in the same condition, and if all the thermal changes in one series may be measured, and all except one in the other series may be measured, it follows that we can calculate the thermal value of the unknown member of the second scries of changes. Thus, it is required to determine the thermal value of the synthesis of 4^{6} grams of formic acid $\left(\mathrm{CH}_{2} \mathrm{O}_{8}\right)$. Twelve grams of carbon, 2 of hydrogen, and 48 of oxygen combine to produce 44 grams of carbon dioxide and 18 grams of water: but the same quantitics of the same materials might theoretically be combined to produce 46 grams of formic acid, and then from this, 44 grams of carbon dioxide +18 grams of water would be produced. The following are the thermal values of the various parts of these two series of changes :-

$$
\left[\mathrm{C}, \mathrm{O}^{2}\right]=96,960 \text { gram-units }+;\left[\mathrm{H}^{2}, \mathrm{O}\right]=68,360+;
$$

$$
\left[\mathrm{CH}^{2} \mathrm{O}^{2}, \mathrm{O}\right]=65,900+
$$

but
$\left[\mathrm{C}, \mathrm{O}^{2}\right]+\left[\mathrm{H}^{2}, \mathrm{O}\right]=\left[\mathrm{C}, \mathrm{H}^{2}, \mathrm{O}^{2}\right]+\left[\mathrm{CH}^{2} \mathrm{O}^{2}, \mathrm{O}\right]=165,320+$ $\therefore\left[\mathrm{C}, \mathrm{H}^{2}, \mathrm{O}^{2}\right]=\left[\mathrm{C}, \mathrm{O}^{2}\right]+\left[\mathrm{H}^{3}, \mathrm{O}\right]-\left[\mathrm{CH}^{2} \mathrm{O}^{2}, \mathrm{O}\right]=99,430+$.

Such calculations sometimes become very complex ; corrections must frequently be introduced for quantities of heat evolved or absorbed during purely physical changes which form integral parts of the cycle of chemical change under investigation.

The thermal study and comparison of classes of chemical changes leads to the conclusion that a chemical change which is accompanied by considerable loss of energy to the changing system will generally occur, unless prevented by the action of forces external to the system. This generalisation, vague though it be, helps to explain many classes of chemical reactions, e.g. the action of concentrated and dilute solutions of hydriodic acid on sulphur, and on many hydroxyl-containing carbon compounds; and the action of sulphuretted hydrogen in precipitating certain metallic sulphides in the presence of acid, and others only form alkaline liquids.

Thomsen has devoted much time and care to the thermal investigation of the mutual actions of acids and bases: the greater part of his first volume is devoted to this inquiry. The "heat of neutralisation of an acid by a base" is defined as the number of gram-units of heat evolved on mixing equivalent quantities in grams of the acid and base in dilute aqueous solution, the products of the action being also soluble in water. Thomsen employs a solution of 2 NaOH (grams) in about $200 \mathrm{H}_{2} \mathrm{O}$ (grams) as the standard base: he measures the thermal values of the following reactions :-
$[2 \mathrm{NaOH} \mathrm{Aq}, 2 \mathrm{HX} \mathrm{Aq}]$ in the case of a monobasic acid.

The commoner acids may be broadly divided into four groups, according to the values of the "heats of neutralisation." This value is for Group I. about 20,000 gramunits; I1., about 25,000; II1., about 27,000; and IV., about 30,000 gram-unit5. The study of heats of neutralisation bas led Thomsen to the conception of the avidity of an acid, i.e, the striving of one acid to displace another from its combination with a base. Thus, when equivalent quantities of $\mathrm{NaOH}, \mathrm{HNO}_{3}$, and $\mathrm{H}_{2} \mathrm{SO}_{4}$ are mixed in dilute aqueous solutions, two-thirds of the NaOH combines with the HNO_{3}, and one third with the $\mathrm{H}_{2} \mathrm{SO}_{4}$; the aridity of HNO_{3} for NaOH is said to be twice as great as that of $\mathrm{H}_{4} \mathrm{SO}_{4}$ for the same base. HNO_{3} in aqueous solution is therefore a stronger acid than $\mathrm{H}_{2} \mathrm{SO}_{4}$.

Measurements of the heats of neutralisation of monobasic, dibasic, n-basic acids has led Thomsen to classify some of these acids in ways different from those generally adopted in the text-books. His results as regards dibasic and tıibasic acids may be thus summarised :-

Dibasic Acids

Group I. Typical formula $\mathrm{R}_{4} \mathrm{H}_{4}$ e.g. $\mathrm{SiF}_{6} . \mathrm{H}_{3}$

$$
\begin{aligned}
& \text { " II. ," } \quad \text { R } \mathrm{OH})_{2} \text { e.g. } \mathrm{SO}_{2}(\mathrm{OH})_{2} \\
& \text { " } 111 . \quad \text { ", " R } \mathrm{OH})_{\mathrm{H}} \mathrm{H}, \mathrm{C}, \mathrm{~g} \cdot \mathrm{SO}_{2}(\mathrm{OH}) \mathrm{H} .
\end{aligned}
$$

Tribasic Acids

Group 11. Typical formula $\mathrm{R}\left(\mathrm{OH}_{3}\right)_{3}$.e.g. $\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}_{4}(\mathrm{OH})_{3}$,
" $111 . \quad " \quad \mathrm{HR}(\mathrm{OH}) \mathrm{H} \cdot \operatorname{cog} \cdot \mathrm{HPO}(\mathrm{OH}) \mathrm{H}$.
These examples will serve to show the suggestiveness of the results of thermal chemistry. Thomsen's three volumes teem with suggestions: his results throw light on such questions as are connoted by the expressions allotropy, molecular compounds, classification of elements and compounds, isomerism, and affinity.

It is in examining the subject of chemical affinity from the point of view of thermal chemistry that one becomes aware of the complexity of the problems included under this expression.

From the following numbers,
$[\mathrm{H}, \mathrm{Cl}]=22,000+;[\mathrm{H}, \mathrm{Br}]=8440+;[\mathrm{H}, \mathrm{I}]=6050-;$ it might be concluded that the affinity of chlorine for hydrogen is much greater than that of bromine, and that the affinity of iodine for hydrogen is much less than that of bromine. But these thermal equations are not comparable; at ordinary temperatures chlorine is a gas, bromine a liquid, and iodine a solid; hence, on this ground alone, no precise conclusions can be drawn from the above data regarding the relative affinities for hydrogen of the three halogen elements. Again, looking at the numbers,

$$
[C, O]=28,600+;\left[C, O^{2}\right]=97,000+
$$

it might be said that when oxygen combines with carbon in quantities of 16 grams at a time, the union of the second parcel of 16 grams is attended with evolution of much more heat than accompanies the addition of the first parcel of 16 grams. But measurement of the heat of oxidation of carbon monoxide, $[\mathrm{CO}, \mathrm{O}]=68,400+$, at once negatives this conclusion, and rather points to the nu mber $68,400 \times 2136,800$ as representing the thermal value of the transaction, $\mathrm{C}+\mathrm{O}_{2}=\mathrm{CO}_{3}$, where C represents 12 grams of gaseous carbon.

In the ordinary chemical notation almost every chemical change is represented as much simpler than it really is; no Indication is given of the fact that in most cases an excess of one or other of the reacting substances must be used. Thus the reaction usually written

$$
\mathrm{AgCl}+\mathrm{HI}(\text { gas })=\mathrm{AgI}+\mathrm{HCl}
$$

would more correctly represent the distribution of the reacting bodies were it written

$$
x \mathrm{AgCl}+x^{\prime} \mathrm{HI}=x \mathrm{AgI}+x^{\prime} \mathrm{HCl}+(x-1) \mathrm{AgCl}+(x-1) \mathrm{HI}
$$

If it is assumed that in the thermal study of a chemical reaction allowance is made for all the purely physical changes which accompany the chemical change, for the influence of the masses of the reacting substances and for the possible formation and decomposition of molecular groups during the reaction, there yet remains the consideration that heat is lost or gained to the system in the decompositions and formations of elementary molecules, which decompositions and recompositions may form parts of the entire change under examination. Thus, take the comparatively simple reaction

$$
2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}_{4}=4 \mathrm{HCl}+\mathrm{O}_{3} ;
$$

expanded thermally we have

$$
r=4[\mathrm{H}, \mathrm{Cl}]+[\mathrm{O}, \mathrm{O}]-2\left[\mathrm{H}^{2}, \mathrm{O}\right]+2[\mathrm{Cl}, \mathrm{Cl}] .
$$

Even the apparently most simple case, the union of two elements, is more complex than at first sight appears. $\left[\mathrm{H}^{2}, \mathrm{Cl}^{2}\right]=44,000+$ simply tells that 2 grams of hydrogen combine with 71 grams of chlorine, and that 44,000 gram-units of heat are evolved. But if we wish to apply these data to questions concerning the affinity of chlorine for hydrogen, we must remember that affinity is the name given to the stress between atoms when regarded from the point of view of one kind of the reacting atoms. Hence, remembering that the molecules of hydrogen and chlorine are diatomic, we must amplify the equation $\left[\mathrm{H}^{3}, \mathrm{Cl}^{8}\right]=44,000+$, and write it thus-

$$
r=2[\mathrm{H}, \mathrm{Cl}]-[\mathrm{H}, \mathrm{H}]-[\mathrm{Cl}, \mathrm{Cl}]=44,000+
$$

but the value to be assigned to two of the terms in this equation are unknown. Until we arc able to assign approximate values to the thermal changes accompanying the decompositions of elementary molecules and the combinations of elementary atoms, we shall not be in a position to apply thermal data to the subject of affinity, provided, that is, we use this term in its most precise meaning.

The statement of Berthelot in the "Essai de Mecanique Chimique," that the quantity of heat evolved in a reaction measures the sum of the physical and chemical changes which occur in that reaction, and furnishes a measure of the chemical affinities, is evidently untrue if we assign any precise meaning to the term "affinity." But if we use this term in a wide sense as summing up the various actions and reactions (other than those which are purely physical) which together constitute any given chemical change, then we may perhaps say that thermal measurements of comparable reactions are also relative measurements of the affinities of the reacting substances, It is in some such sense as this that the term "affinity" is used by Thomsen in his thermal researches on the relative affinities of the non-metallic elements (vol. ii.).

It is worthy of remark that Thomsen's arrangement of the commoner acids in order of relative affinities agrees
very well with that given by Ostwald as the result of his investigations conducted on altogether different lines and by very different methods.

If thermal measurements of chemical changes really represent the sums of various partial changes, some of which have a positive and others a negative value, then it becomes doubtful whether any practical result is to be looked for from the application of Berthelot's law of maximum work, which runs thus:-
"Every chemical change, accomplished without the addition of energy from without the system, tends to the formation of that body or system of bodies the production of which is accompanied by evolution of the maximum quantity of heat."

Thomsen puts this "law" in a somewhat different form: he says, "Every simple or complex reaction of a purely chemical kind is accompanied by evolution of heat." Thomsen explains that by a purely chemical process he means one which is accomplished without addition of energy from sources external to the system, and consists in the "striving of atoms towards more stable equilibrium." But there are, I think, two principal objections to this statement. Actions " of a purely chemical kind," as thus defined, do not actually occur except as parts of cycles of reactions wherein are included changes not of a "purely chemical kind." And, secondly, we have at present no means of measuring the thermal values of those purely chemical actions-i.e. on.Thomsen's view, atomic actions-but are obliged to include their values in the total value assigned to the complete cycle of operations which we term a chemical reaction.

Thomsen has it is true attempted to assign thermal values to the decomposition of the molecule of carbon into atoms and the recombination of atoms of carbon to form molecules. The pages of NatURE are scarcely suitable for a detailed discussion of Thomsen's methods : it seems to me, and I think to some others who have tried to follow Thomsen's arguments, both in the second volume of his "Untersuchungen " and also in the original papers in the Berichte and elsewhere, that these arguments really bristle with assumptions, and that a comparison of the results deduced by Thomsen with the actual calorimetric measurements obtained by himself and others is sufficient to throw grave doubt on the validity of those assumptions on which his arguments are based. One general result which appears to me to follow from Thomsen's investigation is that the time has come when we may with great advantage give up such expressions as "the carbon atom has four bonds," "such or such atoms are held by double links," and indeed the whole of that unscientific pseudo-dynamical nomenclature whith bas grown up around the vague and indefinable conception of atomic bonds.

There are many other points of interest in Thomsen's "Untersuchungen"; but I have said enough I trust to show the importance and the remarkable suggestiveness of these volumes; and also to establish the statement that the great advances of the future in chemistry are to be looked for, not so much in the domain of organie chemistry as in the application of the methods and generalisations of the science of matter and motion to the problems which we call chemical.
M. M. Pattison Muir

A SCIENTIFIC CATALOGUE

Bernard Quarilch's General Cafalogue. Part II. Natural History and Science. Part 1II. Periodicals, Journals, and Transactions. (London: 1881-83-)

IN few instances that a political economist could hold up as an example is the function of the merchant in the processes of supply and demand so clearly and simply displayed as in that of Mr. Beınard Quaritch, the wealthy merchant in the book trade. He is especially a mercbantman seeking goodly pearls, whose great qualification must be that he knows the exact demand for, and the exact scarcity of, what is to be bought and sold. His catalogue does not aim at completeness as did the one which we noticed lately. Scarcely more than one-tenth of the titles carefully entered in Mr. Friedlander's lists are to be found here ; but these make a collection, and a very large one, of books brought together by "natural" selection with the same good results in this case of intelligent working, as in the more automatic world around. us. Many eminent men in various branches of science have first selected books bearing upon their own subjectr, and then, on the dispersion of such libraries, Mr. Quaritch selects those works which have a higher value through their own superior merit, or the often doubtful though highly-prized recommendation of rarity. Accordingly Mr. Quaritch's catalogue is considerably like the sum total of British legislation. Each item of it was the supply of an existing want according to the best light of the time of its production. While circumstances, however, have changed and fresh laws have been devised to meet the changed circumstances, old laws bave remained upon the statute book, and the existing code contains at the same time both inconsistent repetitions and grave deficiencies, and lacks both symmetry and completeness. While the catalogue of Mr. Friedlander shows the German love of both these good qualities and the scientific tastes of the compiler, that of Mr. Quaritch does not profess to be complete in any sense ; it is a list of an immense stock of books brought wogether, as their former possessors ceased to require them, by a shrewd man of business who knew their market value. Hence in examining these bound up volumes which contain the many rich prizes of scientific literature constituting Part 11. and Part 111. of a new "General Catalogue," one is not surprised to find that a book like Agassiz's "Nomenclator Zoologicus" is to be found in four different places in one of them; that five copies of Owen's "Odontography" are offered, and a variety of copies of many others.

In Friedländer's catalogue we had to complain of too much classifying; not because classification is not of extreme value as a ready guide to the contents of a catalogue or library, but because many books refuse to fall under one head only, however discreet may be the arrangement. Mr. Bernard Quaritch's catalogue is just the reverse. In these volumes there is no attempt at either alphabetical or subject-divisions of the whole collection; different divisions are lists of books purchased at particular sales. A concise index makes up perhaps in the best way for this utter confusion of subjects. The table of contents, to which one would look first in trying to understand such a catalogue, is not printed in a way to clearly express the arrangement of those titles which
are classified in subjects. A list of thirteen natural history headings follows "Egypt and North Africa" in exactly the same way as a nearly similar list of fourteen follows "The British Isles," but the former has nothing to do with Egypt as the latter had to do with the British Isles.

But Mr. Quaritch is the great connoisseur in a different class of books from the works which draw our attention in his catalogue. This class it would hardly come within our province to notice, were it not for the evidence given here, on the one hand, that costly books are purchased now as much as of old by the "patron" of literature, and on the other, that scientific works of original value and present scarcity are bought "up by mere book collectors or bibliolaters, who would in many cases fret while one of their precious volumes was being turned over for consultation, lest it should end in a crack in its beautiful binding! Mr. Quaritch labours abundantly, and not without love, we think, for these purchasers. Here are a fcw of the feminine pomps and vanities with which be tickles the ears of bibliomaniacs :-" Grolier binding," "variegated leathers," "gold scroll tooling," "purple morocco super extra," "veau fauve," "veau marbré," "arms and cypher of -- ," "vellum fly-leaves," "large paper," "tall copy," "magnificent specimen of bibliopegistic skill." Here is a titbit:-"First Aldine edition, very large, fine copy, in blue morocco, gold tooling, silk lining, vellum fly-leaves, gilt gaufré edges, by Bozerian."

A distinguishing feature in Mr. Quaritch's catalogues are the valuable notes appended to nearly all the most important of the works he offers. These notes as to the scarcity, completeness, market value, and often the history of the book testify to both the extent of his business and the minute accuracy of his knowledge of it. They are a mine of valuable information to any one whose business is in books, eitber commercially or as a librarian intrusted with the care and also the completion of important collections. In few cases will a book only professing to be a stock-list itself command a price in the market. Mr. Quaritch's catalogues command a high price, and the new edition of his general one, of which seven parts are now out, and which will probably not be completed for another year, if it should be the last which our veteran publishes, will doubtless remain for some time to come a standard work upon literature.

LETTERS TO THE EDITOR
[The Editor does now hold himself responsible for opinions expressed by his correspondents. Neither can he undertake to retwre, or to correspond with the swriters of, rejected mamascrigts. No noticr is laken of anonymows communications.
[The Editor wigently requests con espondents to kerp their letters as short as possible. The pressure on his space is so greas that it is impossible otherwise to insure the appearanse even of communications containing intcresting and noved facts.]

Elevation and Subsidence

For several months past articles and letters have appeared in Nature on the subject of subsidence and elevation of the earth's crust by addition and removal of weight. In this connection also much has been said in regard to the history of the idea. I nish therefore to draw attention to the fact that in 1859 I read a paper before the American Association for the Advancement of Science on the subject of the "Formation of Continents
and Ocean Basins," in which, after giving the views of Herschell and Airy, I bring ont this idea very prominently, and illustrate it by many diagrams. An abstract of this paper, by Sterry Hant, was publi-hed in the Canadian Niaturalist, vol. iv., 1859, p. 293, and reference to it will be found in the "Royal Society Catalogue," vol, iii. p. 9 t9.

A very brief outline of the raper is as follows:-1 make two assumptions: (8) an internal liqnid with floating crust ; (2) the crust of continental areas more conductive and therefore cooling and thichening more rapidly than that of oceanic areas,
It is evident that noder these assumptions inequalities would commence first on the under surface of the crust by additions there, making convexities beueath the continental and concavities beneath the oceanic areas. But by fotation these inequalities on the under side next the liquid would be reprodnced on the npper side next the atmosphere, and by this means alone continents wonld grow continually higher, and ocean beds deeper. Now add to these erosion. By cutting down continents and filling up the seas erosion wongd tend constantly to destroy these inequalities, while fotation would tend as constantly to reproduce them. Thns according to this view the continents rise partly by additions beneath and partly i.y removal above, and similarly the ocean beds sink partly by increased concavity beneath and partly by additions above. Bat evidently if unequal thickeuing shonld stop, fotatiou could only fartly restore the iuequalities destroyed by eroslon.
Except the abstrac: above referred to, the paper was never published, and in February, 1865, it was destroyed, along with mnch else, by Sherman's army. My reason for not publishing more fully nas that I soon became dissativfied nith it; for about that time the views of Hopkins and Pratt on the solidity of the earth began to attract attention, and I became convinced that dynamical geology must be reconstructed on a basis of a solid earth. But now that the idea of a sub-crust liquid or semiliquid layer is becoming prominent (a condition which would not probably interfere with the substantial solidity of the earth in its astronomical relations), it seemed to me important that this long furgotten paper should be brought forward merely as a part of the history of the subject.

Now a few words on the subject of the communications referred to in the teginning of this letter. It seems to me that some of your correspondents have gone too far in regarding anloading by erosion as a cause of elevation. Evidently there mast be some other and more fundamental cause, or erosion could not act. Evidently erosion can only partly restore an elevation produced by some other cauce. Erosion is primarily an effect of elevation, only in this a in so many other cases the effect may react as a cause, to maintain the elevation. Fur example, the Colorado plateau region has been raised since Cretaceons times about 20,000 feet, bnt the maximnm general erosiou has leen only about $12,000 \mathrm{feet}$. The erosion has been, therefore, the consequeuce, not the cause, of elevation, for it is impossible that she cause shoak lie so far behind the effect. I give this one example because it is on so large a scale, but every mountain range furnishes an example of great ero-ion as an effect of eleration produced by other causes. That loading and unloading the cru-t is a cause of subsidence at d elevation there is little doubt, but that there are other and far more important causes is certain.

Berkeley, Cal., December 3
Josepat LeConte

Red-deer Horns

In continuation of my remarks on the eating of shed deerhorns by other deer, I have to add that six shed horns in various stages of erosion have been sent to me from Sutherlandshire. They each bear well defined teeth-marks on the gnawed portions, and this leaves little if any doubt that the popular belief that the horns are eaten by deer is foanded on fact. The accompanying inter. sting letter from Mr. James Inglis, which gives the evidence of two experienced stalkers, both nost intel. ligent and reliable men, is further confirmation of a curious though no doubt very natural habtt of the deer, which finds in the lime-salts of the horn a necessary element of nutrition. You will observe that Inglis believes the deer use the molars in eating the bone, and this seems probable enough, as they apparently always begin at the points and eat towards the beam and burr, a method of proceeding by which they can bring portions of the horn within the action of the molars.

December 27, 1883
". . I send a few red dee: homs that have been partially gnawed by deer in the forest. I asked the stalhers to heep a look out and see if they could find any deer eating horns, and am glad to say that they have been able to put the matter beyond all donbt.
"Donald McRae saw with his glass a stag, in Dunrobin Glen, eating a horn; be went to the place where he saw him eating it, and found it partially eaten. I send it with the others. You will find a ticket on it to distingui-h it from the rest.
"Duncan McPherson saw with his glass a hind, last week, eating a horn also; he did not find the horn, but he saw her (the hind), quite plainly, with it in her mouth, gnawing away at it near the point.
" Deer have no incisors in the upper jaw, but they bave grinders or molars in both upper and lower jaws, formidable enough to eat any horn, and have no doubt that it is w ith their molars that the horns are eaten.
"A shepherd in the parish of Lairg has a cow that eats all the bones she can find, and goes miles for them, and eats them up, shank bones and all ; ribs are eaten earily, and seem to give no trouble whatever.
"James Inglis
" December 24, 1883 "

On the Absence of Earthworms from the Prairies of the Canadian North.West

Not by any means the least remarkable of the very notable series of works which Mr. Darwin has given to the world is that which came last from his pen but a short time previous to bilamented death. Dealing, as it does, with effeets which, when looked at in the detail, are exceedingly small and insignificant, but, when viewed in the sggregate, are shown to be of surpris. ing importance, the "Vegetable Mould and Farthworms " must certaioly rank as a most stribingly intere ting work.

It is not my desire to call in question the conclusions at which Mr. Darwin has arrived with regard to the action of earthworms in cultivating the soil, but I wish to p int out that in one extenvive portion of the earth's surface, to which much attention bas of late beeu directed on accuunt of its agricultural capabilities, earthworms do not exist. I refer to the vast region commonly known as Manitoba and North-West Territories. My friend, Mr. E. E. T. Seton, of Carberry, Manitoha, was the first to point out to me that this euormons country mut be regarded as forming an exception to Mr. Darwin's generalisations, on account of the total absence from it of every kind of eurihworm, and, having lately returned from a visit to thise regions, I can add my te-timony to his in this particular, as well as in the matter of the amazing, innate fertility of the sil, which has been the wonder and remark of all travellers for years past, but which, In this case, obvi: uly cannot be attributed to the action of worms, sitce thee do not exit there. In addition to my own ob-ervations, I have the testimony of numbers of intelligent settlers, most of whon had been several years in the country, but all of whom unhesitatingly arsured me that such a thing as an earthworm was unknowu. Further, Mr. Leo Rogers, in of Mr. Thos, Rogers of Manchester, who has spent sevi ral years u ith the engineers of the Canadian Pacific Railway, has informed me that earthworms are unknown between Winnipeg and the Rockies. This being the case, it does not seem reas nable to suppose that they exist anywhere in the huge teritorystill further to the north, and comprising upu ards of $3,0=0,000$ square miles of land, or something like one third of the eutire North American continent, and which may therefore be regarded as forming au exception to Mr. Darwin's statement (p . 120), that " Worms are found in all parts of the world, and some of the genera have an enormous range. They inhabit the mo t isolated islands; they abound in Iceland, and are known to exist in the We.t Indies, St. Helena, Madagascar, New Caledonia, and Tahiti. In the Autarctic regions worms from Kerguelen I and bave been dec cribed by Ray Lankester, and I bave found them in the Falk land Islands. How they reach such isolated spots is at pretent quite unknown." In connection with the statement (p .121) that "Worms throw up plenty of castings in the United States," it may be pointed out that the boundary line (the 49th parallel) is to some extent a natural one, from which the rivers run both uorth and south. Further, I have been assured by frieuds, aud have also seen with my own eyes, that earthworms abound at Torouto and in other parts of Ontario. This being the case, an interesting inquiry arises as to the cause of the abseuce of worms from the North-West, and I can only suggest two probable reasons-the great cold of winter and the
prevalence of prairie fires in spring and autumn. Personally I favour the latter, though both causes may in part be ansuerable. If worms abound in Iceland ($65^{\circ} \mathrm{N}$. lat.), in Kerguelen Land ($50^{\circ} \mathrm{S}$. lat.), and in Toronto $\left(43^{\circ} 4^{\circ} \mathrm{N}\right.$. lat., mean winter temperature $27!^{\circ}$ F.), why should they not also occur at Winnipeg ($50^{\circ} \mathrm{N}$. lat.)? Certairly the mean winter temperature is very low, being about 8° F., and the mean minimum for eleven years $-40^{\circ} \mathrm{F}$. I made special inquiries as to the depth to which the soil in Manitoba becomes frozen in winter. This is often as mach as five or six feel, but only, 1 believe, in the more exposed places, and certainly as a rule it is thawed again in the spring. I do not think this would render the ground uninhabitable by worms when they are able to exist in Ieeland. Mr. Darwinsays nothing as to the effect of frost on worms except (p. 26) that "worms are sensitive to a low temperature, as may be inferred from their not coming out of their burrows during a frot " ; but he states (p. 110) that they are easily able to descend three or four or even seven or eight feet below the surface. It would be interesting to ascertain whether worms inhabit equally cold portions of the Old World.
But the agency which I believe has caused the absence of earihworms from the North-West is, as already stated, the prairie fires which annually sweep over enormous portions of the country, totally consuming the grass, and converting it into a black ash. This, it might well be imagined, would for months together completely deprive any worms that formerly existed of that variety of decaying vegetable matter that eomposes their food; and assuming that fires have annually passed over large portions of the prairies for scores of generations (as seems in every way probable), it appears to me only reasonable to suppose that this cause would effectually have exterminated the worms from the country or have prevented them occupying it. It is my belief (as I shail elsewhere state more fully) that the very fertile, fine, black, powdery, and almost soot-like soil from one to three feet thiek, even the open, treeless nature of the prairies themselves, and the absence from their surface, so far as my observation goes, of every single species of mollusk, while many species abound in all the ponds, lakes, and streame, are all in a large degree, if not entirely, due to the action of the fire. If this view ulhimately turns out to be correct, it will be further seen that the very means which has deprived the soil of the North-West of that natural cultivation which the soils of most other countries enjoy has, at the same time, liberally supplied it with a manure resulting from the charred a-hes of the grass which is annually burned. My friend, Mr. T. Rogers, who has taken much interest in the absence of worms from the North West, and is inclined to attribute it rather to frost than to fire, though he suggests that the "alkali" may possibly have bad something to do with il, has already brought the subject before the I_iterary and Scientifie Society of Manehester, where he seems to have met with a good deal of incredulity.

As another evidence of the absence of worms, the numerous, large, Glacial boulders that strew the prairies around Brandon and elsewhere may be cited. These, had worms exi-ted, would doubtless have long ago been lowered beneath the surface, as also the skulls and other bones of buffaloes, which so abound on the prairies, and most of which have evidently lain there a long while. Nevertheless some of these have been baried in the course of time, as one gentleman told me that he had sometimes turned them up from a depth of two or three inches beneath the surface when ploughing. Their burinl may have been accomplished by the wind drifting soil over them, or by the working of gophers. Of these pecular little animals two species are very abundant on the prairies, where they make extensive burrows, which it seems possible may to some extent aecomplish the natural cal:ivation of the soil in the way worms are aceustomed to do it elsewhere. Some more suggestive remarks on this point may be found in a paper by Mr. Seton, published in the Report of the Manitoba Department of Agriculture for 1852, and which may be studied with advantage. Robt. Miller Chkisty
Chignal St. James, near Chelmsford, December 20, 1883

Magnetic Dip in South China and Formosa

While engaged on a meteorological mission in China I availed my-elf of the opportunity to make the following determinations of the magnetic dip. The observations in Hong Kong were made at the publie gardens, the Ob-ervatory being not yet
ready. On October to I observed at the British Consulate; on November 3 at the English Pre-byterian Missions Compound, Swatow. In Amoy I observed at the reidence of the Commismissioner 1.M. Customs, in Takow (Formosa) at the Custom IIouse, and at the South Cape (Formosa), near the magnifieent fortified lighthouse. It is to be feared that the observations on the coast of China are slightly vitisted from local attraction, the rocks consivting of ferruginous granite. Sonthern For osa is built up of coral, raised in places to a great height, no doubt through volcanic action. Slight earthquakes are of common occurrence in Formosa, whereas along the coast of China they are rare and of no importance except to the seismologist.

THE ORIGIN OF CORAL REEFS

REGARDING this interesting geological problem, which has recently been discussed in Nature, we are enabled through the kindness of Mr. Murray, of the Challenger Commission, to publish a letter which has been addressed to him by Dr. Guppy from the Pacific. The importance of this communication will be recognised in the confirmation it supplies of the inference that coral reefs start upon a platform of limestone composed of the remains of foraminifera, \&c., and are themselves of no great thickness. Dr. Guppy will no doubt continue his researches, and we may hope to obtain from him precise data regarding the average thickness of the coral rock, the lithological difference between it and the underlying limestone, the structure of the limestone, whether any succession of organisms can be detected in it, and whether at any point the underlying volcanic rock can be seen which would afford a measurement of the thickness of the calcareous deposits. The effects of denudation and their relation to height above the sea will no doubt also receive his attention.

"Shorllands Islands, Solomon Group, "August 7, 1883

" During the twelve months 1 have spent in this group of islands-serving as surgeon on board H.M. surveying-ship Lark-1 have been much interested in and have devoted considerable attention to the raised coral formations in various islands; and as my observations may be of service towards confirming the views which you have advanced with reference to coral islands and reefs, I will state briefly the results of my observations.
"Excluding the large continental islands, I will refer for the sake of brevity to the numerous small islands of this archipelago, those of volcanic, and those of calcareous formations. Confining myself to the islands of calcareous formation, I will pass over the numerous small islands which are entirely composed of coral detritus, sand, and shells, and have been formed by the materials thrown up by the waves at the present sea-level; and will restrict my remarks to a very common type of islands in this group, with gently sloping and rounded profile, having an elevation varying perhaps between 100 and 1100 or 1200 feet, and composed in bulk of an impure earthy or argillaceous limestone, usually bedded, and almost always foraminifcrous, now and then rich in other pelagic organisms, such as Pleropods. On this rock rests the
coral limestone, which forms but a comparatively thin crust, and has been altogether removed from most of the higher regions by sub-aërial agencies. However, I have ubserved the raised coral rock still preserved at considerable heights above the sea, and in two localities at elevat.ons of 900 feet.
"Amongst the sub-group known as the Shortland Islands, I came upon beds of this impure culcarcous rock (beneath the raiscd coral rock) abounding in Pteropods, mostly Hyalaa, and large foraminiferous tests, mingled with shells, some of them of shallow water habit.
"I am, \&c., " H. 13. Guppy "

A FORGOTTEN EV'OLLCTIONHST

ABOOK has lately come into my hands a few words about which may possibly interest some of the readers of Nature., Its title is "Histoire Naturelle des Fraisiers"' ; the author was A. N. Duchesne, and it was published at Paris in 1766. It must be, I suspect, an uncommon book, for there is no copy in the library of the Royal Gardens at Kew. And this library, comprising as it does the contributions of many collectors who allowed little to escape them, is remarkably complete; Mr. Daydon Jackson has in fact found in it more than a thousand publications the titles of which are not to be met with in the last edition of Pritzel's well-known "Thesaurus."

The scarceness of a botanical boo's is not perlaps in itself a matter of any great moment, and I bought the book out of a provincial sale catalogue without expecting it to be particularly interesting, though I kncw Duchesne's name as an authority on the cultivated forms of the strawberry. I very soon, however, came to the conclusion on looking over it that it was a very remarkable production indeed, and in a scientific sense at least a century in advance of its time.

Duchesne's book is in fact the record of a purely biological study of a small group of plants. The significance of work of this sort has only been thoroughly recognised since the publication of the "Origin of Species." Just as with C. K. Sprengel, whose book was also written in the last century (1793), the world hias had to roll on far into another hundred years before it was ready to do justice to this kind of research. There is a curious incongruousness betwcen the frestness and modernness of the ideas and the faded type and musty paper in which they are embalmed.

Duchesne plunges at once into the business of his book in the first line of the preface with a straightforward simplicity not unworthy of Mr. Darwin. I will attempt a translation of the first paragraph :-
"The wish to see if it were possible to raise from seed a plant which scarccly ever produces any has led me by a happy chance to the profuction of a new race: which made its appearance at Versailles in 1761 . This circumstance induced me to more closely devote myself to the study of strawberries, and led me to another discovery. I found that they are not all truly hermaphrodite; forms exist, in fact, which are sexually differentiated. ${ }^{1}$ And I have succeeded in the past year, 1765 , in fertilising, by means of onc sct of plants, individuals of another sort, which are cultivated as a matter of curiosity, and are constantly sterile. One, amongst others, has produced fruits of great beauty; M. le Marquis de Marigny has obtained for me the honour of having this subnitted to the king, and it is to be raised in the Versailles Gardens by my method. This unexpected success has still more redoubled my ardour to make further observations."

The race so produced, which Ducliesne called t.e Fratsier de Versailles, or Fragariz monophylla, is un-
, This must be one of the fir st obvervations of the tendescy of plante well established. (Sice Darwin's "Forms of Flowens," Pp, a7e-3og.)
doubtedly a very curious plant. All its leaves are permanently unifolate ; i.c. instead of bearing three leaffets, as is ordinarily the case with strawberries, the petioles bear but one. Duchesne observes that this is also the case with the first leaves of all seedling strawberries. Fragaria monophyl/a may be therefore regarded as a form which always retains the juvenile, and never arrives at the adult, foliage, and this pecularity remains constant in subsequent generations. The effect of crossing, as a potent stimulus to variation, could not but have powerfully impressed Ducbesne in so striking a case as this, and further observations seemed to have led him to account for the common characters which otherwise diverging forms exhibited as best accounted for by a common ancestral origin. The study of geographically separated species, however, necessarily led him to see that something more than crossing was needed to account for variation in every case. In discussing Fragaraz virginiant, a native of North America, which is the origin of the race of Scarlets, Duchesne speculates as to its derivation from the wild F. vesca of Europe, and attributes the divergences from this type to t :e effect of North American soil and climate.

His work on Strawberries, where he was dealing mainly with races, led him tospeculate with regard to the higher groups of species, genera, and orders. His results seem to me, for the time, so extraordinarily bold, and therefore historically so interesting, that I quote the first portion of the Recapitulation, pp. 219-221, entire, in the original French :-
"J'ai déjà dit, à l'occasion du Fraisier-ananas, qu"il étoit très-difficile de ranger en ligne droite les diverses Races d'une mème Especce, de manière qu'on pût passer de l'une a l'autre par gradations de nuance. Cela est peut-étre aussi impossible, que de ranger en ligne droite les Espèces, les Genres, et les Familles; par la raison que chaque Race, comme chaque Espèce, chaque Genre, ou chaque Famille, a des rapports de ressemblance avec plusieurs autres.
"L'ordre Généalogique est donc le seul que la naturo indique, le seul qui satisfasse pleinement l'esprit; tout autre est arbitraire et vide d'idées. J'ai eu soin, à chacune des Races de Fraisiers, d'indiquer ce qui m'a paru vraisemblable à cet égard; mais je n'ose me flatter d'avoir toujours rencontré juste. Il faudroit, pour le bien faire, avoir des connaissances certaines et précises du pays natal de chaque Fraisier, ou bien, du tems où il a été élevé de graine, et de quel autre Fraisier provenoit cette graine ; j 'ai fatt voir combicn on manquoit encore de lumieres sur tout cela.
"C'est par cette raison que je me suis permis de donner mes conjectures; en voici les résultats; la forme d'Arbre généalogique les rendra encore plus sensibles, et en fera mieux saisir l'ensemble."

It is certainly startling to come upon a phylogeny of the most modern type in a book more than a century old.
It was not till after I had gratified myself with a study of Duchesnc's remarkable speculations that it flashed across my mind that attention had already recently been called to them ; and 1 found, in fact, that Prof. Alphonse de Candolle, in a short paper put together with the felicitous erudition of which he seems to possess so inexhaustible a store, had alreedy, in May of last year, ${ }^{1}$ stated most of the points on which I have dwelt above. And he mentions that, on the occasion of a visit to Mr. Darwin in 1880 he told him of the existence of the book, which he describes, justly enough, as "a very curious work, older than that of Lamarck, but to which no one had ever referred except for points of secondary interest."

1 know little about Duchesne himsclf. De Candolle says that he was a horticulturist and Professor of Natural History, and that his knowledge was as varied as it was
". Darwin coteridéte au pnir.t ce vue der causes de son ruccès,"* \&c. Anctives des Sicirncel, May, offz.
sound. No one, nevertheless, ever seems to have paid the smallest attention to his evolutionary theories. Even Silvestre, who pronounced his eloge at a public meeting of the Société Royale d'Agriculture in 1827, abstains from the slightest reference to them.

While in his experiments and his mode of drawing conclusions from them Duchesne strongly recalls the method of Mr. Darwin, the parallel cannot be carried further. In so far as he obtained a glimpse at the modern doctrine of evolution it was in the form afterwards formulated by Lamarck. Of the part played by the struggle for existence in the matter I find no trace in his writings.
W. T. Thiselton Dyer

TEACHING A.N/MALS TO CONVERSE

MR. DARWIN'S notes on Instinct, recently published by my friend Mr. Romanes, have again called our attention to ihe interesting subject of instinct in animals.
Miss Martineau once remarked that, considering how long we have lived in close association with animals, it is astonishing how little we know about them, and especially about their mental condition. This applies with especial force to our domestic animals, and above all of course to dobs.

I believe that it arises very much from the fact that hitherto we have trief to teach animals rather than to learn from them,-to convey our ideas to them, rather than to devise any language, or code of signals, by means of which they might communicate theirs to us. No doubt the former process is interesting and instructive, but it does not carry us very far.

Under these circumstances it has occurred to me whether some such system as that followed with deafmutes, especially by Dr. Howe with Laura Bridgman. might not prove very instructive if adapted to the case of dogs.
Accordingly 1 prepared some pieces of stout cardboard, and printed on each in legible letters a word such as "Food," "Bone," "Out," \&c. The head master of one of the deaf and dumb schools kindly agreed to assist me. We each began with a terrier puppy, but neither of us obtained any satisfactory results. My dog indeed was lost before I had had him long. 1 then began training a black poodle, "Van" by name, kindly given me by my friend Mr. Nickalls. I commenced by giving the dog food in a saucer, over which 1 laid the card on which was the word "Food," placing also by the side an empty saucer, covered by a plain card.
"Van" soon learnt to distinguish between the two, and the next stage was to teach him to bring me the card; this he now does, and hands it to me quite prettily, and I then give him a bone, or a littie food, or take him out, according to the card brought. He still brings sometumes a plain card, in which case 1 pcint out his error, and he then takes it back and changes it. This however does not often happen. Yesterday morning, for instance, "Van" brought me the card with "Food" on it, nine times in succession, selecting it from among other plain cards, though I changed the relative position every time.

No one who sees him can doubt that he understands the act of bringing the card with the word "Food" on it as a request for something to eat, and that he distinguishes between it and a plain card. 1 also believe that he distinguishes for instance between the card with the word "Food" on it and the card with "Out" on it.

This then seems to open up a method, which may be carried much further, for it is obvious that the cards may be multiplied, and the dog thus enabled to communicate freely with us. I have as jet, I know, made only a very small beginning, and hope to carry the experiment much further, but my object in sending this conmunication is tnofold. In the first place 1 trust that some of the
readers of Nature may be able and willing to suggest extensions and improvements of the idea.
Secondly, my spare time is small and liable to many interruptions ; animals also we know differ greaily from one another. Now many of your readers have favourite dogs, and I would express a hope that some of them may be disposed to study them in the manner indicated.
The observations, even though negative, would be interesting; but I confess I hope that some positive results might follow, which would enable us to obtain a more correct insight into the minds of animals than we have yet acquired.

John Lubbock
High Elms, Down, Kent, December 20, 1883

THE FRENCH DEEP.SEA EXPEDITION OF 1883

IHAVE just returned from a very short visit to Paris, made for the purpose of inspecting the Mollusca which were procured during last summer's deep-sea expedition in the French Government steamer Talisman. The expedition was under the scientific charge of Prof. Alphonse Milne-Edwards. For the opportunity of this inspection I was indebted to the kindness of my friend Dr. Paul Fischer, whose reputation as a conchologist is so well known.
The course of the expedition was along the Atlantic coasts of Spain, Marocco, Sahara, Senegal, Cape Verde 1sles, the Canaries, and Azores; and the time occupied was three months. More full and accurate particulars will very shortly be given by Prof. A. Milne-Edwards to the Academy of Sciences, and be published in their Comptes Rendus. The collection will be exhibited next month to public view. The greatest depth explored was about 2200 fathoms. The trawl was mostly used. Life was plentiful everywhere. As was the case in the Porcupine, Challenger, and other expeditions of the same kind, many animals (especially Crustacea) at the greatest depths were highly and brightly coloured, some of theni having large eyes, and others being blind or eyeless. There was an abundance of hitherio unknown forms (genera and species) in every department of zoologyfishes, Mollusca, Polyzoa, Crustacea, Annelids, Ecbinoderms, Polyps, Corals, Foraminifera, and Sponges Among the Mollusca were some remarkable cases of the wide distribution of species in respect of space as well as of depth. For instance, boreal shells, such as Fusus islandicus and F.berniciensis, which inhabit northern seas at moderate depths, viz. 50 to 80 fathoms, were found living off the coast of Marocco, and the latter species even below the tropic of Capricorn, at depths of from 450 to 2200 fathoms. Lima excavita, considered a peculiarly Norwegian species, was likewise obtained off the Moorish coast, of a very large size ; it was recorded by Prof. Seguenza as a Pliocene fossil of Sicily and Calabria, under the name of Lima gigantca. In the Porcupine Expedition of 1870 fragments were dredged off Cape St. Vincent; and in the Challenger Expedition this fine species was obtained from :o to 175 fathoms off Western Patagonia and Japan. A bivalve (Scrobicularia longicallus), which in northern seas inhabits moderate depths, was procured in many places by the Talisman, at depths varying from 350 to 1429 fathoms. It occurred living in the deepest dredgings of the Por upine Expedtion of 1869 , off the coast of Brittany, at a depth of 2435 fathoms. Many Mollusca (e.g. Pecten vitreus, Limopsis minuta, Dentalium agile, Trochus ottoi, Columbella haliacti, and Scaphander punctostriatus) seem to inhabit the depths of the North Atlantic in every part, from one side to the other. The smaller shells in the Talisman collection have not yet been picked out. The Marquis de Folin will, with his usual care and industry, undertake that part of the work, which will occupy some time ; he has requested me to examine and name those species which
are known to me. I understand that another deep-sea expedition will be made by our enterprising neighbours next summer, being the fourth in consecutive years. ${ }^{1}$

December 21, 1853
J. Gwyn Jeffreys

THE SUN MOTOR AND THE SUN'S TEMPERATURE

THE annexed illustration (Fig. 1) represents a perspective view of a sun motor constructed by the writer, and put in operation last summer. This mechanical device for utilising the sun's radiant heat
is the result of experiments conducted during a series of twenty years; a succession of experimental machines of similar general design, but varying in detail, having been built during that period. The leading feature of the sun motor is that of concentrating the radiant heat by means of a rectangular trough having a curved bottom lined on the inside with polished plates so arranged that they reflect the sun's rays towards a cylindrical heater placed longitudinally above the trough. This heater, it is scarcely necessary to state, contains the acting medium, steam or air, employed to transfer the solar energy to the motor; the transfer being effected by

Ericsson's Sun Motor, erected at New York, 1883.
means of cylinders provided with pistons and valves resembling those of motive engines of the ordinary type. Practical engineers as well as scientists have demonstrated that solar energy cannot be rendered available for producing motive power, in consequence of the feeblene: s of solar radiation. The great cost of large reflectors and the difficulty of producing accurate curvature on a large scale, besides the great amount of labour called for in
${ }^{1}$ PS. - In Nature of December ao (p. 172), I overlooked the misprint of India fir Sweden.-J. G. J.:
preventing the pulished surface from becoming tarnished, are objections which have been supposed to render direct solar energy practically useless for producing mechanical power.

The device under consideration overcomes the stated objections by very simple means, as will be seen by the folloring description:- The bottom of the rectangular trough consists of straight wooden staves, supported by iron ribs of parabolic curvature secured to the sides of the trough. On these staves the reflecting plates, consistirg
of flat window glass silvered on the under side, are fastened. It will be readily understood that the method thus adopted for concentrating the radiant heat does not call for a structure of great accuracy, provided the wooden staves are secured to the iron ribs in such a position that the silvered plates attached to the same reflect the solar rays towards the heater. Fig. 2 represents a transverse section of the latter, part of the bottom of the trough, and sections of the reflecting plates; the direct and reflected solar rays being indicated by vertical and diagonal lines.

Referring to the illustration, it will be seen that the trough, 11 feet long, and 16 feet broad, including a parallel opening in the bottom, 12 inches wide, is sustained by a light truss attached to each end ; the heater being supported by vertical plates secured to the truss. The heater is $6 \frac{1}{4}$ inches in diameter, it feet long, exposing $130 \times 9^{-8}=1274$ superficial inches to the action of the reflected solar rays. The reflecting plates, each 3 inches wide and 26 inches long, intercept a sunbeam of $130 \times$

$\mathbf{1 8 0}=\mathbf{2 3 , 4 0 0}$ square inches section. The trough is supported by a central pivot, round which it revolves. The change of inclination is effected by means of a horizontal axle-concealed by the trough-the entire mass being so accurately balanced that a pull of five pounds applied at the extremity enables a person to change the inclination or cause the whole to revolve. A single revolution of the motive engine develops more power than needed to turn the trough, and regulate its inclination so as to face the sun, during a day's operation.

The motor shown by the illustration is a steam-engine, the working cylinder being 6 inches in diameter, with 8 inches stroke. The piston rod, passing through the bottom of the cylinder, operates a force-pump of 5 inches diameter. By means of an ordinary cross-head secured to the piston-rod below the steam cylinder, and by ordin iry connecting rods, motion is imparted to a crank shalt and fly-wheel, applied at the top of the engine
frame ; the object of this arrangement being that of showing the capability of the engine to work either pump; or mills. It should be noticed that the flexible steainpipe employed to convey the steam to the engine, as well as the steam chamber attached to the upper end of the heater, have been excluded in the illustration. The average speed of the engine during the trials last summer was 120 turns per minute, the absolute pressure on the working piston being 35 lbs . per square inch. The steam was worked expansively in the ratio of t to 3 , with a nearly perfect vacuum kept up in the condenser inclosed in the pedestal which supports the engine frame.

In view of the foregoing, experts need not be told that the sun motor can be carried out on a sufficient scale to benefit very materially the sun-burnt regions of our planet.

With reference to solar temperature, the power developed by the sun motor establishes relations between diffusion and energy of solar radiation which show that Newton's estimate of solar temperature must be accepted. The following demonstration, based on the foregoing particulars, will be readily comprehended.

The area of a sphere whose radius is equal to the earth's mean distance from the sun being to the area of the latter as $214^{\circ} 5^{2}: 1$, while the reflector of tre solar motor intercepts a sunbeant of 23,400 square inches section, it follows that the reflector will receive the he it developet by $\frac{23400}{21+5^{2}}=0.508$ square inch of the solar surface. Hence, as the heater of the motor contains 1274 square inches, we establish the fact that the reflected solar rays acting on the same are diffused in the ratio of $1274: 0 ; 508=2507: 1$. Practice has now shown that, notwithstanding this extreme diffusion, the radiant energy transmitted to the reflector by the sun is capable of imparting a temperature to the heater of 520° Fahr. above that of the atmosphere. The practical demonstration thus furnished by the sun motor enables us to determine with sufficient exactness the minimum temperature of the solar surface. It also enables us to prove that the calculations made by certain French scientists indicating that solar temperature does not exceed the temperatures produced in the laboratory are wholly erroneous. Had Pouillet known that solar radiation, after suffering a two-thowsand-five-hundred-and sczen-fold diffusion, retains a radiant energy of 520° Fahr., he would not have asserted that the temperature of the solar surface is $1760^{\circ} \mathrm{C}$. Accepting Newton's law that "the temperature is as the density of the rays," the temferature imparted to the heater of the sun motor proves that the temperature of the solar surface cannot be less than $520^{\circ} \times 2507=$ $1,303,640^{\circ}$ Fahr. Let us bear in mind that, while attempts have been made to establish a much lower temperature than Neuton's estimate, no demonstration whatever has yet been produced tending to prove that the said law is unsound. On the conirary, the most careful investigations show that the temperature produced by radiant heat emanating from incandescent spherical bodies diminishes inversely as the diffusion of the heat rays. Again, the writer has proved by his vacuum-actinometer, inclosed in a vessel maintained at a constant temperature during the observations, that for equal zenith distance the intensity of solar radiation at midsummer is $5^{\circ} \cdot 88 \mathrm{Fahr}$. less than during the winter solstice. This diminution of the sun's radiant heat in aphelion, it will be found, corresponds within 0.40 of the temperature which Newton's law demands. It is proposed to discuss this branch of the subject more fully on a future occasion.

The operation of the sun motor, it will be well to acid, furnishes another proof in support of Newton's assumption that the energy increases as the density of the rays. The foregoing explanation concerning the reflection of the rays (see Fig. 2), shows that no augmentation of temperature takes place during their transmission frem
the reflector to the heater. Yet we find that an increase of the number of reflecting plates increases proportionably the power of the motor. Considering that the parallelism of the rays absolutely prevents augmentation of temperature during the transmission, it will be asked: What causes the observed increase of mechanical power? Obviously, the energy produced by the increased density of the rays acting on the heater. The truth of the Newtonian doctrine, that the energy increases as the density of the rays, has thus been verified by a practical test which cannot be questioned. It is scarcely necessary to observe that our computation of temperature- $1,303,640^{\circ}$ Fahr. does not show maximum solar intensity, the following points, besides atmospheric absorption, not having been considered :-(I) The diminution of energy attending the passage of the heat rays through the substance of the reflecting plates: (2) the diminution consequent on the great amount of beat radiated by the blackened surface of the heater; (3) the diminution of temperature in the heater caused by convection.
J. Ericsson

A CHRISTM.4S VISIT TO BEN NEVIS OBSERVATORY

ALTHOUGH 1 have no tale of perilous adventure or hair-breadth escape to tell the readers of NatUre, yet I think that they will be interested to hear of the progress that is being made in the first British attempt at the cultivation of high-level meteorology. This interest will be all the greater that the hearty encouragement and support that the Ben Nevis experiment has received from all parts of the United Kingdom has given it the character of a national undertaking.

As most of the readers of Nature doubtless know, the observatory is at present in the experimental stage A good road to the top with bridges and waterways has been made, and a part of the building erected sufficient to shelter the observers. It was judged wise to build as little as possible, until experience should have taught us the peculiar difficulties to be contended with in the somewhat novel circumstances presented by the summit of Ben Nevis in winter time. For, although several high level meteorological observatories, and indeed many other human habitations, already exist at much greater heights above the sea, yet there is probably no spot at present inhabited all the year round that presents climatic vicissitudes so remarkable. When winter is over, the directors will have a full report, with practical suggestions from the superintendent, Mr Omond, to guide them in their further operations. Still it was thought well that some of the governing body should see with their own eyes the state of the observatory, and the work of the observers during the cold season. Accordingly two of them (Mr. John Murray and myself) made a visit of inspection on December $26 t h$, of which 1 propose to give a few particulars.

Accompanied by Mr. Maclean, the contractor for the road and observatory buildings, we started from Fort William about 9.30 on Wednesday morning. At first the sky was dark and gloomy, and it was thought that Ben Nevis was to give a specimen of his worst weather. It was not cold however ; in fact it was oppressively warm during the first thousand feet of the ascent from the farm of Achantie where the new road begins. This, coupled with the fact that the pony which one of the party rode up the first 2500 feet of the hill somewhat forced the pace, made it a little uncomfortable for the two pedestrians. The newly made road, loosened by the frost, and sodden by the rain and melting snow, was in places very heavy. Up as far as the little lake (I.och an Meall aut Suidhe), however, the roadway had suffered no substantial damage, except that the fall of a large stone had carried away a small piece of the margin : and all the bridges and waterways were found in excellent condition. This is very satisfactory, for the snow has already been down to Fort

William ; and recently a very rapid thaw has carried it so completely away, that on the 26 th very little was met with under 3000 feet. The test has thus been tolerably severe and yet up to 2600 feet or so the road on the 26th was in far better condition than it was on the day of the opening ceremony. About the altitude just mentioned, a part of the road had been badly ploughed up by a spate of water from the melting snow ; higher up still, the damage seemed to be less, but it was not so easy to judge, as the roadway was there gradually lost in the overlying snow.

As the party rose in height, the temperature of the air and the ardour of the pony alike fell, and then the walkers were left to the full enjovment of their climb. During the latter part of the first 3000 feet, the mist had been so thick that the pony and its rider could scarcely be discerned a few yards off; but several hundred feet higher, after the road had been finally lost sight of in the snow, and all the party were on foot, we suddenly emerged about noon from the gloom of the mist into the brightest of daylight. Overhead the sky was blue, a fresh light breeze was blowing, and the reffected sunlight was shining in silvery masses on the undulating surface of the frozen snow. We soon reached Buchan's Well, the position of which had been marked by a wooden pole; but the well itself was completely hidden by a deep snow-drift, which filled the hollow in which it lies. From this spot to the top, the ascent was made almost straight over the snow. At times it was steep and slippery, but the surface was sn hard that we rarely sank over the ankles. Two of is were rough shod, one having a few cricketer's spiked screwed to the soles of his boots, the other a pair of steigeisen (climbing irons), the use of which he had learned several years ago during some excursions in the Tyrolese Alps. Mr. Maclean, whohad not taken these precautions, fell once or twice, but fortunately without being hurt in any way. When near the last slope we descried Mr. Omond hacking away most assiduously with an iceaxe to prepare a way for us, a needless precaution as far as the rough-shod members of the party were concerned.

The view from the plateau on the summit was magnificent. All round there floated a billowy ocean of white mist, from which rose masses of the same, piled up in places like mountain ranges, and through which rose here and there black mountain peaks (prominent among these Schichallion). Away towards Fort William was stretched a black curtain of mist in striking contrast with the snow. whiteness of the upper layer. Down in Glen Nevis a similar mass was seen, rolled and twisted by the aircurrents into the most fantastic shapes. So grand was the spectacle that one of our party insisted that we had before us the model from which Dante had drawn his vision of the entrance to hell.

The summit reached, the directors naturally looked around for the building, whose site they had chosen some five months before, and upon whose construction they had expended so much anxious thought. There was, however, nothing to be seen but two small dark-looking stumps rising a little over the surrounding snow-flat, and alongside of these a little mound of snow. The stumps turnef out to be the chimney and ventilator on the ro if of the observatory, and the mound was a portico built ty the observers with blocks of frozen snow to protect : snow staircase which had been carried down the side ot the house to the doorway. Afier descending under the translucent canopy and stumbling for a little in the unfainiliar darkness of the passage, we entered the main room of the observatory, which for the present serves as sittingroom. kitchen, and oftice combined. Here we found the table laid for our lunch : and very soon we were comforting ourselves with hot coffee, cabin biscuits, and excellent Danish butter from the stores of the establishment. The whole ascent had occupied a little over three hours and a half.

The little room in which we sat contained the American
stove which heats the whole observatory, and on which the snow melting and all the cooking is done by John Duncan, the second assistant observer and housemaid. On one of the walls is the combined sideboard and crockery and instrument cuphoard; against another stands a small bench with a vice; and on a third is the telegraph iistrument, Mr. Omond's desk and book-case, and the drawers in which are kept the records of the observatory. (Yut of the sitting-room open the three bedrooms for the observers, which resemble very closely the cabins on board a ship; indeed the whole establishment has an intensely nautical air about it , and the visitor steadies himself instinctively now and then, and wonders that the roll never comes.

The rest of the building is occupied with a coal and oil store, and a storeroom in which are kept the cabin biscuits, dried potatoes, tinned soups, meat, and vegetables, lime juice, and medicine chest ; which Mr. Omond calculates will support the three observers till June.

The afternoon and evening we spent in watching the observers at work, in dining (which we did very comfortably off the Christmas cheer, viz roast turkey and plum pudding. provided for the inhabitants of Ben Nevis by a thoughtful friend), and in eager discussion of plans for the present and future work of the Observatory. The routine of the observatory at present consists in hourly observations of the barometer, protected thermometers, dry and wet bulb and maximum and minimum, winddirection and pressure, rain, snow, slect or hail, mist, fog or haze, clouds lower and upper, amount, species, and direction, sunshine recorder, miscellaneous, thunder, lightning, haloes, aurore, meteors, \&c., nature and precise time of occurrence of. The self-registering barograph and thermograph now added to the collection of instruments are working very well, and will be invaluable for the record of sudden changes. The protected thermometers and the thermograph are attached to a ladder fixed in the snow. As the level of the snow rises and falls, they are moved from step to step, so as to keep them as nearly as possible to the regulation distance of four feet from the surfa e. A measurement from the top of the ladder to the surface gives the depth of the snow, which at present varies from six to ten feet at different parts of the summit of the mountain.
Any detailed account of the winter climate of Ben Nevis would be premature and out of place in this notice; but Mr. Buchan has kindly furnished me with an analysis of the meteorological phenomena on Christmas and the following day which were in several respects remarkable.
At 1 A.M. of Christmas day, temperature was 37° o from which it steadily fell to $31^{\circ} 5$ at it A. M., the air all the time being quite saturated and londed with dark. gloomy mist, with a barometer steadily rising. The wind was moderate from north-west till 3 A.M., when it changed to west-south-west. About noon the mist pall cleared away and the sun shone out with great splendour. From this hour to milnight, the following most remarkable ob-ervations were made (see table).
Except a few cirrus clouds which appeared about one, three, four, and ten o'clock, the sky was cloudless throughout, and during the evening the stars sparkled with unwonted brightness in the dark blue sky.

These remarkable atmospheric conditions were strictly confined to the higher region of Ben Nevis. Fog or cloud covered the lower hills and filled the valleys all the afternoon ; it rose sometimes as high as the "plateau of storms," but was mostly below 3000 feet on Ben Nevis, and during the time no other hill showed itself through the sea of cloud. The sunset of the 25 th, as well as the sunrise of the 26 th, was very beautiful. On the 26 th pressure renained high and steady, wind south-westerly, sky generally clear, and temperature and humidity equally

	Banos.	Thers.			Humidery.	
	Inches	Dry.		Wet.	Calculated.	$\begin{array}{\|l\|} \text { Hygrometer. } \end{array}$
Noon	$25 \cdot 822$	$33^{\circ} \mathrm{O}$		$31^{\circ 0} 9$	85	-
I P.M.	.834	$36^{\circ} \cdot 9$		$33^{\circ}{ }^{\circ} 4$	70	86
2 \%	.824	$37^{\circ} 6$		$33^{\circ}-1$	66	76
3 ,	.823	$40^{\circ} 9$		$31^{\circ} 8$	45	64
4 "	.819	$37^{\circ \prime 2}$		$30^{\circ} \cdot 8$	50	71
$5 \cdots$.818	$39^{\circ} \cdot 8$		$31^{\text {e. }} 8$	47	60
6 ,	.817	$40^{\circ} \mathrm{O}$		$32^{\circ} \cdot 8$	50	56
	.811	$39^{\circ} \cdot 3$		$32^{\circ} \cdot 2$	51	57
8 "	+813	$38^{* *} 4$		$32^{2}{ }^{-1}$	53	64
9 "	.812	$32 \cdot 8$		$31 \cdot 7$	87	77
10 "	.813	$3 S^{7}+8$		$34^{\circ+7}$	69	63
	.804	$37^{\circ} 0$		$36^{\circ} \cdot 1$	92	65
Midnight	-809	$38^{\circ} 9$		$3 \mathrm{~S}^{\circ}=5$	97	62

remarkable as on the preceding day. Indeed at 2 P.M. the relative humidity, which was lower than could be calculated from Glaisher's Tables, was only 34. At 3 P.M. temperature had fallen $6^{\circ} 9$, humidity risen to 46°, and a light fog prevailed for the next four hours, the wind having shifted from south-west to west-north-west. About 7 P.M. the sky again cleared, temperature steady, rose from $28^{\circ} \circ$ to $36^{\circ} \circ$ at midnight, and a humidity as low as 67 was observed. The great significance of these observations on Ben Nevis will be more apparent when com_{t} ared with the anticyclone which overspread so large a part of northwestern Europe at the time, to which, bein' situated on its west side, we owed the mild weather of Christinas, 1883.

In addition to the hourly observations, the observers have had for some tine back to cunduct a constant warfare with the rapidly-accumulating snow. Every now and then all hands hid to be turned out to clear the doors and windows of the observatory ; and it sometimes happened that, when they went out for this purpose, the snow drifted in so rapidly that it was almost impossible to shut the door again. The device of the snow staircase got over the difficuity to a large exient as regards the door, and it is proposed to buidd tubes with short lengths of rectangular wooden framework, passing from the windows up to the surface of the snow. At the upper end of these will be placed, at night or during heavy snowfalls, light canvas doors, which can be afierwards removed and additional lengths of framework added according to necessity. The chimney will be lengthened in a similar way by means of iron tubes, which have been sent up for the purpose In this way the difficulties of the present winter will be met. For the future it is proposed to get over the difficulty of the accumulating snow by building an observing tower at some linle distance from the living rooms. In this tower there will be several stories with doors to the four cardinal 1 oints of the compass, so that the observers may use for exit and entrance that story which is nearest the snow level, and that door which happens to be on the lee-side of the tower. In the ground-floor of this tomer it is proposed to place a seismometer and self-registering magnetic instruments. On the roof will be placed an anemometer for measuring the direction and sirength of the wind. It is proposed so to arrange this instrument that its indications can be read inside the tower. This appears to be essential, for during the storm on the 12 th ult, it was found impossible to go outside the observatory, so that wind observations are wanting in the daily sheet on that very interesting occasion. The observingtower will be connected with the rest of the buildings by a covered way of some length fitted with doors to cut off the hot air ; and in all probability the accommodation of the observatory will be increased by the addition of an office, or experimenting room, and one or more small
bedrooms for the use of inspectors or others on temporary business, and for the convenience of scientific men who may wish to make a visit to the observatory for the purposes of scientific research.

For reasons sufficiently explained, the staff has scarcely had time as yet to go beyond the mere routine of observations above mentioned; but none of the valuable suggestions which Mr. Omond and the directors bave received have been lost sight of. A beginning has already been made in the eollection of meteoric dust; in fact Mr. Murray carried down with him a portion of the residue obtained by melting considerable quantities of surface snow. This is now being examined, and we shall doubtless hear by and by whether it is all of purely local, or partly of volcanic or cosmic origin.

It is intended, as soon as proper arrangements can be made, and the concurrence of the Post Office authorities ubtained, to commence a series of simultaneous observations on earth currents along the cable from the summit of Ben Nevis to Fort Wiiliam, and along a telegraph line from Fort William to some other station not far above sealevel. By means of this horizontal and vertical exploration we hope to obtain some interesting data (either positive or negative) regarding the origin of the variations of terrestrial magnetism, aurore, \&c. The cable will also be turned to account for observations on atmospheric electricity. These plans are mentioned partly to show that the directors are fully alive to the manifoli uses to be made of their stronghold upon Ben Nevis, partly to incite scientific men generally to favour us with their suggestions for the full utilisation of the observatory, not only for meteorology, but for physical science in general.

It would take too long to dwell at length on all the inte resting casual observations recorded in Mr. Omond's \log, a detailed account of which will probably be given hereafter by Mr. Omond himself. It may be interesting, however, to allude to the frequently occurring phenomenon which be calls "Glories." The shadow of the head or hands of the observer is frequently seen on the clouds in the valley to the north east surrounded by a halo of colour. The phenomenon appears to be akin to, or identical with, the mist phantom so well known under the name of the "Brocken Spectre." The occurrence of this phenomenon is by no means so rare in this country as many suppose. The writer of this notice saw it to perfection three years ago in Skye. A party of four or five of us were standing on Sgur-na-Panachtich, or e of the Cuchullin peaks; we werc louking down on the dark rock basin of Corui: k, in which was floating a cloud of mist. The sun was low behind us; and, projected on the mist, we saw what appeared to be gigantic datk shadows of ourselves completely outlined with a glory of rainbow colours. Each could see his own spectre best, but also those of his neighbours more or less distinctly. The figures imitated every motion we made, and, when we whirled our alpenstocks over our heads, the antics of the phantoms were most weird and awe-inspiring.

We spent the night of the 26 th at the Observatory. During the first watch, that is, up to about one o'clock in the morning, we sat up, and went out with the observer when he made his hourly observations. The air felt quite mild, although the temperature was about the freezing point ; the sky was perfectly clear, and the stars shone brilliantly. Mr. Omond brought out his telescope, and we lay down on the snow and examined Jupiter and his satellites, filled our eyes with the beauties of the Pleiades, and exhausted our little stocks of astronomical knowledge by naming such constellations as we happened to know.
The staff had insisted on providing each of us with a bed; we thus liad good opportunity of testing their sleeping accommodation, which turned out to be excellent. Next morning we rose to see the sun rise, and were richly rewarded. About eight o'ciozk a ribbon of
bright crimson appeared behind Schichallion, which deloped a gorgeous succession of tints ending in copper colour and brick red, under the gradually rising sun ; to right and left appeared the peculiar green colours so marked in the recent remarkable sunsets, to which the Ben Nevis sunrise showed a great resemblance. The greater part of the horizon was clear, and we had a view of the surrounding mountains seldom, if ever, equalled in summer time for beauty of colour. Ben More, the range of Glencoe, the Perthshire Hills, the whole length of the Caledonian Canal, the Cuchullin Hills, could all be seen with perfect distinctness. The white snow on the blackblue hilltops, and the bright red of the withered heather and bracken lower down, affordel contrasts of colour to be seen at no other season. Some of the hillsides shone in the sunlight like bronze. Others glowed like the richest velvet, and the valleys were filled with the subtle blue haze that gives such a charm to the scenery of the we.t of Scotland.
We naturally congratulated Mr. Omond on the weather he enjoyed on Ben Nevis; but it appeared that the treat was as great for him as for us. Since he began his seclusion on November 11, there had been just three fine days -the day on which he went up, Christmas day, and the day following, all the rest of the time the most he had seen was an occasional glimpse of a snow-covered mountain-peak through a bole in the mist. Our good fortune had been great ; and, although it might have suited the main purpose of our visit better to have been detained by mist and sleet, or to have scen the observatory in the process of being buried in a snow-drift, we resigned ourselves with a very good grace to what the Fates had sent us.
After sharing the regulation breakfast of tinned mutton and coffee, we went out once more to sce the observers at work. We then had an opportunity of secing the precautions which they find it necessary to take in tempestuous weather when they have occasion to go near the cdge of the narrow plateau on which they live. For sanitary reasons it is necessary to carry all the refuse of the observatory to a considerable distance, where it is thrown over a cliff. In winter, when this cliff is covered with a treacherous cornice of slippery snow, and the wind blows so hard that the head of a meat tin thrown to windward is often carried right back to leeward of the mountain, the footing at the edge is anything but secure. On such occasions two of the observers go abreast with the pail of rubbish between them, and each is roped to one who goes behind with an ice-axe to steady him in case of accident.
By 11 v'clock the barometer had begun to fall, and the humidity of the air hid greatly increased. Mr. Omond therefore warned us that, unless we were prepared to incur the risk of detention, we had better depart. Accordingly we packed up our trophies, consisting of the residue above mentioned, pregnant with the potentiality of cosmic and volcanic dust, a bundle of Mr. Omond's daily sheets, and a little shrew that had been killed on the previous evening, the first of a colony of these animals who, with several weasels, had taken up their abode in the outer dry stone wall of the observatory. As might be expected, animal life is very scarce in winter on the top of Ben Nevis. No deer or ptarmigan had been seen, only the tracks of foxes, which abound in certain parts of the hill. The only living things we had seen in the snow-covered part of the hill were large numbers of a dipterous fly, which we found every now and then crawling on the surface of the snow.

Having bidden farewell to Mr . Omond and his companions, and wished them good luck and a continuance of their present good healih and spirits during the rest of the winter, we commenced our descent at if.30. The bottom was reached, after several halts to enjoy the magnificent view, in about the same time as it had taken us to ascend.

In such weather as we had the ascent of Ben Nevis is decidedly more pleasant and less fatiguing than in summer. It is well, however, to warn the readers of Nature that our case was exceptional, and that under adverse circumstances such an enterprise is likely to be both unpleasant and dangerous.
G. Chrystal

THE REMARLABLE SUNSETS

INFORMATION with regard to these beautiful phenomena and their cause is rapidly being collected, and at the same time the opinions of those who have given most attention to them are being stated, both here and on the Continent. Among the latter we may refer to a memoir presented by Prof. Forel to the Société Vaudoise des Sciences Naturelle 4 , on the 19th of December. At the beginning of the displays in Switzerland, M. Forel ascribed them to those causes which produce the ordinary after-glow so beautifully visible in mountainous countries, and at first he considered that the meteorological conditions were such as to favour this view. Further inquiry, however, he now states has made this hypothesis absolutely untenable. One of his arguments is that the glows which first appeared in November and then decreased to 3rd December, regained a maximum on the 24 th and 25 th. Now from the 22nd to 26th December, Switzerland was the centre of a maximum of atmospheric pressure, the barometer being higher there than in any of the surrounding countries, Exactly the opposite held in November, and this confirms him in the idea that meteorological factors alone do not suffice to explain the glows. He also describes the dates and tracts of the chromatic phenomena observed, and considers that their origination in Krakatoa is a simple and sufficient explanation. La Nature for the 29 th ult. contains an interesting communication from M. Van Sandick, an Engineer des Ponts et Chausiées, at Pedang, who was an eye witness of the later stage of the eruption. He was on board the Governor-General Lowdin, and was close to Krakatoa on August 26th. His communication is accompanied by a very detailed map, showing the changes which have supervened not only in the Straits themselves, but also on the neighbouring coasts of Java and Sumatra, but we shall return to this important letter.

The new observatory on the summit of Ben Nevis has been utilised for the collection of snow, with a view of determining whether or not it contains any dust particles. This has been forwarded to Mr. John Murray of the Challenger Commission by Mr. Onond the superintendent of the observatory. We may hope to hear soon whether the results are positive or negative on this special point of inquiry. We have to call attention to the important letter of Mr. Macpherson published below. We learn from the Meekly Brilish Colonist, published at Victoria, British Coluinbia, that the sunsets made their appearance there on November 27 th. Long after sunset the light in the sky became more fervent in colour, till at last the waters in the harbour and straits borrowed the splendid crimson. Darting and rapidly moving blood-red rays of light were seen shooting far into the sky, suggesting an aurora. A letter from St. Raphael, on the shores of the bay of San Francisco, dated December 4th, refers to the magnificent sunrises and sunsets. The date of their commencement is not stated. From Kiakhta, on the Mongolian frontier, we learn that the glows there began on December 11th, and terminated on the 25 th.

The glows were seen some time before November 6th at Kalim Pong, twenty miles north-west of Darjeeling.

We have received the following further communications on this subject :-

THE body of evidence now brought in from all parts of the world must, I think, by this time have convinced Mr. Piazzi Smyth that the late sunrises and sunsets do need
some explanation, more particular than he was willing to give them. With your leave 1 should like to point out from my own observations and those of others that, "given a clear sky" and the other conditions put by Mr. Sinyth, the sunrises and sunsets of other days, however bright and beautiful, have not given any such effects as were witnessed, to take an instance, here on Sunday night, December 16th. I shall speak chiefly of the sunsets.
(1.) These sunsets differ from others, first in their time and their place or quarter. Sunset proper is, 1 suppose, the few minutes between the first dipping and the last disappearance of the sun's disk below the true horizen; the pageant or phenomena we call sunset, however, includes a great deal that goes on before and after this. The remarkable and specific features of the late sunsets have not been before or at sunset proper; they have been after-glows, and have lasted long, very long, after. To take instances from your number of the 13 th ult., Mr. F. A. R. Kussell notices that on November 28th, the sun having set at 3.55 , one after-glow lasted till 5.10 , and was then succeeded by another "reaching high above the horizon." The day before he mentions the after-glow as lasting to 5.20. On the 2gth a "foreglow" is reported as seen in London from 5.30 to 7.30 , that is more than two hours before sunrise, which was at 7.43 . On December 1st, sunset being at 3.53 , Mr. Russell observed an after-glow till 5.35 ; on December th the first dawn at 6.5 , the sun rising at 7.50 ; the next day dawn at the same time, sunrise 7.51 ; that evening, sunset being at 3.50 , he observed not a glow only but " spokes of rays from the glowing bank" at +45 , thatis to say, sunbeams, visible in the shape of sunbeams, 55 minutes after sunset. Mr. JohnstonLavis speaks of the after-glow at Naples as at a maximum an hour after sunset Here at Stonyhurst on December 16th, the sun having set at 3-49, the glow was observed till 5.50 . Now winter dawns and after-glows do not last from an hour to two hours, and still less so day after day, as these have done. The recent sunrises and sunsets then differ from others in duration.

They differ also in the quarter of the heavens where they are seen. The after-glows are not low lingering slips of light skirting the horizon, but high up in the sky, sometimes in the renith.
I have further remarked that the deepest of the afterglow is in the south, whereas the sun below the horizon is then northing. I see that other observers take notice of the same.
(2) They differ in their periodic action or behaviour. The flushes of crimson and other colours after ordinary sunsets are irregular, not the same nor at the same time for two days together; for they depend upon the accidental shapes and sizes and densities of the cloud-banks or vapour-banks the sun is entering or freeing himself from, which vary and can never be alike from day to day. But these glows or flushes are noticed to be periodic before sunrise and after sunset. Mr. Russell furnisbes exact estimates of the intervals of time, which he finds to be the same day after day.
(3) They differ in the mature of the glow, which is both intense and lustreless, and that both in the sky and on the earth. The glow is intense, this is what strikes every one ; it bas prolonged the daylight, and optically changed the season ; it bathes the whole sky; it is mistaken for the reflection of a great fire; at the sundown itself and southwards from that on December 4, I took a note of it as more like inflamed flesh than the lucid reds of ordinary sunsets. On the same evening the fields facing west glowed as if overlaid with yellow wax.

But it is also lustreless. A bright sunset lines the clouds so that their brims look like gold, brass, bronze, or steel. It fetches out those dazzling flecks and spangles which people call fish-scales. It gives to a mackerel or dappled cloudrack the appearance of quilted crimson
silk, or a ploughed field glazed with crimson ice. These eifects may have been seen in the late sunsets, but they are not the specific after-glow ; that is, without gloss or lustre.

The two things together, that is intensity of light and want of lustre, give to objects on the earth the peculiar illumination which may be seen in studios and other welllike rooms, and which itself affects the practice of painters and may be seen in their works, notably Rembrandt's, disguising or feebly showing the outlines and distinctions of things, but fetching out white surfaces and coloured stuffis with a rich and inward and seemingly self-luminous glow.
(4) They differ in the regularity of their colouring. Four colours in particular have been noticeable in these after-glows, and in a tixed order of time and placeorange, lowest and nearest the sundown ; above this, and broader, green ; above this, broader still, a variable red, ending in being crimson; above this a faint lilac. The lilac disappears; the green decpens, spreads, and encroaches on the orange ; and the red dcepens, spreads, and encroaches on the green, till at last one red, varying downwards from crimson to scarlet or orange fills the west and south. The four colours I have named are mentioned in Lieut. G. N. Bittleston's letter from Umballa : "The sun goes down as usual and it gets nearly dark, and then a bright red and yellow and green and purple blaze comes in the sky and makes it lighter again." I suppose the yellow here spoken of to be an orange yellow, and the purple to be what I have above called lilac.

Ordinary sunsets have not this order; this, so to say, fixed and limited palette. The green in particular, is low down when it appears. There is often a trace of olive between the sundown and the higher blue sky, but it ncver develops, that 1 remember, into a fresh green.
(5) They diffor in the colours themselies, which are impure and not of the spectrum. The first orange and the last crimson flush are perhaps pure, or ncarly so, but the two most remarkable glows, the green and the red, are not. The green is between an apple-green or pea-green (which are pure greens) and an olive (which is a tertiary colour) : it is vivid and beautiful, but not pure. The red is very impure, and not evenly laid on. On the 4 th it appeared brown, like a strong light behind tortoiseshell, or Derbyshire alabaster. It has been well compared to the colour of incandescent iron. Sometimes it appears like a mixture of chalk with sand and muddy earths. The pigments for it would be ochre and Indian red.
Now the ycllows, oranges, crimisons, purples, and greens of bright sunsets are beautifully pure. Tertiary colours may of course also be found in certain cases and places.
(6) They diffor in the texture of the colourad surffaces, which are neither distinct cloud of recognised make nor yet translucent mediums. Mr. Russell's observations should here be read. I have further noticed streamers, fine ribbing or mackcrelling, and other more curious textures, the colour varying with the texture.
In ordinary sunsets the yellows and greens and the lower reds look like glass, or coloured liquids, as pure as the bluc. Other colours, or these in other parts, are distinct flushes or illuminations of cloud or landscape.
1 subjoin an account of the sunset of the 16th, which was here very remarkable, from my own observations and those of one of the obscrvatory staff.
A bright glow had been round the sun all day and became more remarkable towards sunset. It then had a silvery or steely look, with soft radiating strcamers and little colour; its shape was mainly elliptical, the slightly longer axis being vertical; the size about 20° from the sun each way. Thcre was a pale gold colour, brightening and fading by turns for ten minutes as the sun went down. After the sunset the horizon was, by 4.10 , lined a long way by a glowing tawny light, not very pure in colour and distinctly textured in hummocks, bodies like a shoal of
dolphins, or in what are called gadroons, or as the Japanese conventionally represent waves. The glowing vapour above this was as yct colourless ; then this took a beautiful olive or celadon green, not so vivid as the previous day's, and delicately futed : the green belt was broader than the orange, and pressed down on and contracted it. Above the green in turn appeared a red glow, broader =nd burlicr in make ; it was softly brindled, and in the ribs or bars the colour was rosier, in the channels where the blue of the siy shone through it was a mallow colour. Above this was a vague hilac. The red was first noticed 45° above the horizon, and spokes or beams could be seen in it, compared by one beholder to a man's open hand. By 4.43 the red had driven out the green, and, fusing with the remains of the orange, reached the horizon. By that time the east, which had a rose tinge, became of a duller red, compared to sand: according to my observation, the ground of the sky in the east was green or clse tawny, and the crimson only in the clouds. A great sheet of heavy dark cloud, with a reefed or puckered make, drew off the west in the course of the pageant : the edge of this and the smaller pellets of clond that filed acro-s the bright field of the sundown caught a livid green. At $;$ the red in the west was fainter, at 5.20 it became notably rosier and livelier ; but it was never of a pure rose. A faint dusky blush was left as late as $\mathbf{5 . 3 0}$, or later. While these changes were going on in the sky, the landscape of Ribblesdale glowed with a frowning brown.
The two following observations seem to have to do with the same phenomena and their causes. For some weeks past on fine bright days, when the sun has been behind a big cloud and has sent up (perspectively speaking) the dark crown or paling of beams of shadow in such cases cominonly to be seen, I bave remarked, upon the ground of the sky, sometimes an amber, sometimes a soft rose colour, instead of the usual darkening of the blue. Also on moonlight nights, and particuiarly on December 14, a sort of brown or muddy cast, never before witnessed, has been seen by more than one observer, in the sky.

Gerard Hopkins

Stonyhurst College, December 2t, 1883

THE remarkable phenomena after sunset which, according to Nature, were seen in the second half of November in England, Italy, at the Cape, and a little earlier in many parts of Asia, could be observed almost all over Austria and Germany. 1 saw them myself in an especially distinct appearance here on November 22 and 29. Soon after sunset on November 22 (at $4.30 \mathrm{p} . \mathrm{m}$.), a crimson glow was seen in the direction of south-west, and while everyboty was supposing that some large printworks lying in that direction were on fire, the glow was getting more intense, and at 5 p.m. the whole of the western sky assumed a bluish purple hue which rose up to the zenith while the sun was sinking lower, so that the glow could be attributed only to an atmospheric phenomenon. About an hour after sunset the colour of the sky was almost violet, with which the phenomenon dis?ppeared.
According to German papers, a phenomenon of this kind and intensity was never before observed in Central Europe. Dr. Assmann, director of the Meteorological Observatory, Madgeburg, attempts to explain these phenomena by the reflection of sunlight from the upper strata of our atmosphere, highly saturated with aqueous vapour, owing to its comparatively high temperature. The phenomenon could not be attributed to electrical causes, as at that time not the slightest magnetic disturbance could be observed at the Prague Observatory. In the spectrum of this light uncommonly strong "rain bands" were seen. As the sun was about 189° below the horizon when the phenomena began (before sunrise) or ceased (after sunset), the reflection was calculated to
have taken place at a height of about fifty English miles.

Does it not strike you that the glow was observed at earlier periods the more we advance towards the eastthe source of the late Java eruptions? B. BRAUNER Bohemian University, Prague, December 18, 1883
The late splendid sunsets which have so vividly attracted the attention of men of science and of the general public were so remarkable and of so long a duration in the clear atmosphere of the Castilian tableland, where sunsets are usually dull, that they have not failed to impress observers with the notion that they were due to other causes than those of common atmospheric refraction and reflection.
When the phenomena had already lasted four or five days, I read Mr. Symons' letter, published in the Times of the Ist inst., and I thought that possibly evidence might be obtained towards the confirmation of this theory if the sediment of fresh fallen snow was thoroughly investigated ; for if the dust of Krakatoa was really reflecting in the higher regions of the atmosphere the sun's rays, some of it must necessarily be descending towards the earth.

Luckily on the 7th of this month, and when the phenomenon was at its height, and had already lasted for about eight days, there was a fall of snow at Madrid, of which I naturally profited, submitting it to a thorough investigation, the results of which, I think, will throw some light on so remarkable a phenomenon.
The snow analysed was obtained from what had fallen on some zinc plates before the exposed windows to the north of my house, which is situated at the extreme north end of the town, where there are no buildings facing it, and also from what my friend Dr. Francisco Quisoga gathered from the windows of his house, situated about a mile to the south-east of mine ; and in both the same substances were found.
The snow yielded about a litre of water, which, when the sediment had collected, was decanted, and the solid part dried at a temperature below that of boiling water. The dry powder was then tested for magnetism and it was found to be extremely magnetic. It was then incinerated on platinum foil to a bright red heat so as to destroy organic substances, and the remaining dust was then submitted to microscopical investigation. The greater part of it is made up of what probably is the natural dust of the atmosphere of Madrid ; of particles of mica, generally brown, and similar to that of the Guadarrama range, and in various states of decomposition, splinters of quartz and felspar, the greater part of it orthoclase, some small fragments of tourmaline, magnetic iron, and fragments of diatoms. Besides these mineral substances, which may probably be traced to the rocks forming the vicinity of the capital, some others were found for the presence of which it is difficult to account. The most remarkable are small particles of a foliated mineral of a yellowish colour, perceptibly dichroic, and which between crossed Nichols is extinguished when the cleavage traces are parallel to the principal section of the polarising Nichol; the interference colours being of bright blue, and red, and yellow colours. Treated by boiling hydrochloric acid for twenty minutes, not a trace of action was perceived. These characters are all referable to a rhombic pyroxene, and judging from its dichroism this substance may be taken for a hypersthene, which has besides a most striking resemblance to volcanic hypersthene. In addition to this mineral, small particles are found which appear to be referable to common pyroxene of a yellowish colour, of active action in polarised light, and the extinction not taking place parallel to what seem to be the edges of the prism. Besides these minerals some corpuscles are found of hardly any action on polarised light, and sometimes full
of globular concretions and other kinds of microliths, which, if seen in products of a volcanic region, 1 would not hesitate in considering of volcanic origin.
These are the principal substances which an investigation of the sediment of the snow which fell in Madrid on the 7 th inst. have revealed, and though I am far from asserting that what appears to be foreign to the atmosphere of this part of the world is referable to the dust of Krakatoa, if further analyses in other parts of the world should show these same substances floating in the atmosphere, there would be powerful reasons for inferring that the gorgeous sunsets of the past months have been brought about in consequence of that stupendous display of the volcanic forces of our globe.

It is already a remarkable coincidence that hypersthene should have been found both by MM. Daubree and Renard in their respective analyses of the ashes collected in the vicinity of Krakatoa. Joseph Macpherson
Madrid, December 22, 1883
Complying with the request contained in your "Notes" of December 13 (p .157), 1 would say that the appearances, already fully described by so many of your correspondents, commenced here on December 1. On that day 1 made an entry in my note-book as follows :-" Perfectly calm at sunset, with a light haze of a rose tint rolling away from overhead towards the west-south-west horizon. The colours of the sky were a very pale green, red, gold, and pink; and, as the light faded away, the southwest was one mass of deep rich red. The crescent moon (a little over eighteen days old) in the refractor was of a pale green colour, and the bright limb seemed to extend to an extraordinary distance round the dark body. Barometer falling."
Again: "December 2.-Sky clouded over by 1 p.m. Sunset, as scen between breaks in the clouds, was again of a deep rich red. Barometer steady."
" December 3.-Rainy" and very dull. Barometer steady."
"December 4-Sunset, as seen through the clouds along the horizon, was again of a deep red colour, gradually shading off into a pale rose tint towards the zenith. The moon, Fomalhaut, and Vega seemed to float in a pale rose sea; whilst thin fleecy clouds as they drifted across the moon's face were of a beautiful pale green. This appearance-as did that on the 1st-lasted for about an hour and a quarter after sunset ; the rest of the sky being covered with clouds, some faintly reflecting the various tints. Barometer falling."

1 should not omit to mention that the sunrises were also, more or less, of similar character. Since the 4th we have had very bad weather; gales from both north and south, heavy rains, and snow. Yet the sky, when o casionally glimpsed at sunset, seems to bear traces of the same appearances.
W. E. J.

Constantinople, December 21, 1883
In addition to the remarkable sunsets which have led to such a large amount of correspondence in Nature and elsewhere, there is another and possibly a related phenomenon to which my attention bas been directed during the last few weeks. From country friends I learn that the nights, in the absence of the moon, and even when cloudy, have been remarkably light for the time of year. 1 cannot profess to have witnessed this phenomenon myself, living as 1 do in the midst of London, where the perpetual glare of gas renders any satisfactory estimate of the atmospheric luminosity quite hopeless. It would be interesting, however, to learn whether other obscrvers more favourably located have noticed this effect. It occurred to me that the phenomenon might perhaps be connected with the volcanic dust theory of the sunsets, being, in fact, a result of the slight phosphorescence of this dust. Whether the latter exhibits any degree of phosphorescence could be readily deter-
mined by those who are fortunate enough to possess a specimen, by means of Becquerei's phosphoroscope.
R. Meldola

21, John Street, Bedford Row, W.C., Des. 31, 1883
In corroboration of what Messrs. Beyerinck and Van Dam noticed at Wageningen in connection with the late storm, I write to tell you that on the morning of December 12, after the heavy rain which accompanied the gale had ceaved, the windows of my house, which is isolated and exposed, were covercd with a grayish sediment, just as your correspondents describe it. It will be interesting, now that attention has been drawn to the fact, to know if the phenomenon, the result no doubt of dust brought down by the rain, has been observed elsewhere.
F. M. Burton

Highfield, Gainsborough, December 24, 1883
I submit to you two slides of dust from windows, deposited during the storm of December 12. When the cuntained salt crystals are dissolved by adding distilled water, the appearance much resembles that recorded in Nature of December 20 . The material, scraped from windows cleaned just before the storm, where the original drop-marks are still unaltered, was put on the cleaned slides, and a drop of distilled water added. Should my surmise be confirmed, and any of your readers desire to bave specimen slides, I would forward a limited number on receipt of sixpence each to cover postage and trouble. Descriptions I have received from America, either in letters or newspaper cuttings, show an identical sequence of appearances. At Poughicepsie, on the Hudson, the fire engines were called out on the morning of November 27 , and "this spectacle has been witnessed every clear evening for several days past, generally between a quarter past five and six o'clock." A letter from Dorset, Vermont, November 29, describes "a very unusual exhibition in the skies for the past three or four evenings. It has been clear, and the colouring intense, from flame to a delicate pink, and the clouds off at a distance would look light green. .. It gave an impression of an intense fire the other side of the West Mountains, and colouring the entire sky."
J. Edmind Clark

York, December 22, 1883

THE accompanying extract may be of service to you. Sapporo is in the northernmost island of Japan (Yeso), in $1 \mathrm{lat} .43^{\circ} \mathrm{N}$., ant long. (circa) $141^{\circ} \mathrm{E}$. As the telegraph ramifies through all parts of Japan, it is improbable that any considerabie local eruption would have taken place to account for the phenomenon without news of it having also reached the Offi ial Gazelfe. Robert Beadon

11, Lee Park, Lee, Kent, December 14,1883
Extract from Japan Weckly Mail (published in Yokohama) of October 20, 1883. (The Official Gazette is the Government gazette published in Japanese.)-" The Official Gazelte states that, since the 13 th inst., a constant haze has pervaded the atmosphere of Sapporo, and that the sun and moon are of a blood red colour. Clouds of ashes fall continuously. "The phenomenon is ascribed to some volcanic eruption."

NOTES

Proy. Owen has received the honour of K.C.B. as an acknow ledgment of his ea.inent services for sixty years to science and the public interests.
Pror. W. H. Mackiniosh has been elected to the Professorship of Comparative Anatomy in Trinity College, Dublin, vice Prof. Macalister, F.R.S., who resigned on his appointment to the Anatomy Chair at Cambridge.
by the death of the well-known mathemátician, the Rev. W. Kol erts, M.A., the Rev. Richard Townsend, M.A., F.R.S.,
becomes a Senior Fellow of Trinity College, Dublin, thereby vacating the Professorship of Natural Philosof hy held by him since $\mathbf{1 8}^{8} \%$.

Tife vacancy in the Professorship of Geology and Mineralogy in the University of rublin has Leen filled hy the election of Prof. Sollas, of University Collene, Bristol. This appointment nill give great said-faction, ald will afford Mr. Sollas large opportunities for palaentological reearch ; the large collections If fossil plants and vertelrates in the museum in Dablin remaining to this day almost unknown.

The Swedish Government intend to establish a botanico. physiological station in the north of Sweden for the study of the flura and the diseases of the crops in that part of the country.

The Finnish Government have ordered a steamer to be siecially built in Sweden for the scientific researches about to be prosecuted in the Ealtic.
M. Hotzeav, who was only recently appointed director of the Brussels Oliservatory, has resigned his post, and it is reported that M. de Kon.k.lly of Gzalla Observatory, Hungary, will succeed him.
Prof. Maurice Levy has been numitated member of the Poris Academy of Sciences in the Section of Mechanics.

The Pince of Wales, as President of the Society of Arts, has transmitted to Lady Sietrens the resolution parsed after the death of Sir William S:emens, by the Council of that Society, and in coing so lias expressed bis own appreclation of Sir William Sic mens's labours.

Sclence had quite a field-cay in Perth on December 20, when the Natural History Society of the Fair City formally opened its museum. Prof. J. Geikie of Edinburgh, who was for some time president of the Society, opened the proceeding with an address in which he pointed out what such a local muveum, hould be. Other speakers followed, and from the zoth to she 2 ard was an almost continuous conerrasione, in which exhibition", demonstrations, and lectures were given. The tlectric light played a prominent pari, and the objects brought together for the ins ruction and enjoyment of the many vilitors represented all departments of science. The enterprise of the Perihshire Society is exceptional, and they have reason to be proud of their museum, reading, lecture, and other rooms, all of which, we have no doubt, will be put to excellent practical uses.
The meteorological observations taken during October, 1883 , at St. Ignatius' College, Malıa, by the Rev, James Scoles, S.J., have been receivel. For the month the means were-pressure, $30.2 \mathrm{~S}_{3}$ inches; temperature, $67^{\circ} \cdot 98$; daily range, $10^{\circ} \%$; elastic force of vapour, 0.498 inch, and humidity, 76 ; raiofall, 267 inches, and days of rain, 12 ; velocity of wind per hour, \$\& miles ; sky, a third covered with cloud ; temperature of sea, $72^{\circ} 0$, with a monthly range of $4^{\circ} \circ$; and thunderstorms and other electrical phenomena on the 4 th, 10th, 1 thh, 12 th , $13 \mathrm{~h}, 15 \mathrm{th}, 26 \mathrm{th}$, and 30 h . Almospheric pressure was thus fully a fourth of an inch below the mean, temperature $3^{6} 4$ lower than usual, and rainfall about balf an inch less. This Scciety has peculiar facilities for prosecating meterrol-gical and other researches through its widely scattered seminaries and colleger, and we have the greatest pleasure in noting the increasing readiness with which its services are given to science.

Mr. H. H. Johnston will give a discourse on "Kilimanjaro, the snow-clad Mountain of Equatorial Africa," at the Royal Institation, on Friday evening, January 25. Prof. Bonney's discourse cn "The Huilding of the Alps," announced f r that evening will be given on April 4.

Herr Steingger has been no fortunate as to secure eleven crania and namerous bones of the extinct sea-cow, Rhytina stclleri, which have leen forwarded to the Smithsonian Institution at Washington.

A splendid meteor was seen at Frankfurt-on-the-Maine on December 8 at $6.45 \mathrm{a}, \mathrm{m}$. It moved from west to east, and illaminated the whole neighbourhond.

A Times correspondent writes from Iceland that reports of a voleanic eruption in the interior were current last year, and were foanded on peculiar appearances of the sky, and especially on the observation from some of the remote inland farms of columns of smoke or vapour rising in the far distance. Nothing definite has, however, been ascertained as to these phenomena. An un-u-ually large number of scientific men, geolngists, botanists, and philologist*, chiefly German and Swedish, have this year visited Iceland and investigated ins stracture, flora, and language ; and at present Prof. Sophus Tromholt, well known in scientific circles by his researches as to the aurora borealis, is pnrsuing the-e investigations here, and in'ends to remain all the winter, ns, from the clearnest of the atmosphere and the frequency and brilliancy of the aurora, lceland is exceelingly well snited for his observations.

The extensive collections of Americin Coleoptera made by the late Dr. J. L. LeConte, containing an immense number of original types, become the properiy of the Maseum of Comparative Zoology of Cambridge, Mass,

Tus French Socićté des Electriciens has completed its arrangements, and has been divided into ix secti ns:-Theoretical electricity, M. Marie Davy pre ident; Dyna no-electrical machinery, transmission of force to a distance, distribution of energy, M. Tresca president : Electric lighting. M. Iha Moncel president; Telcgraphy and telephony, M. Havier president; Electro-chemistry and electrotherapy, M. Jamin president.

When Arago was director of the Observatory of Paris, the dotation of this establishment was less than 4000 , a year. This sunn was greatly increased when Leverrier was appointed by Napoleon III., and before his death it had reachell 10,000 . Now the sum allotted is about 16,002 ., although the meteorological department hai been set apart as a special service.

The Italian Geographical Society awards its great gold medal to Count Pietro Antonelli, in c m-ideration of the important results of his last journey to Shea.

Fros advanced sheets of the Procedings of the Anthropo logical Society of Washington, Col. F. A. Seely of the United Stater Patent Office, we learn from Srismce, publishes a pampblet entitled "An Iuquiry into the Origin of Invention." The anthor is accustomed, day by day, as new claims for patent * erme before him, to eliminate the succesxive steps in the classes of machinery until he reaches the fundamental idea. This is the plan pursued in tracing backward the whole subject of invention to its 8 yurces in the mind of primitive man. The sulject is illustrated, fir-t, by the story of the steam-engine, and then by the examination of the bow and arrow and other implements of the lower races. The author rejects Prof Gaulry's Dryopithecus, and affirios, "Obvi indy, archreolory can find no trace of a remoter age than that of stone ; bat I mistrust that the thoughtfil anthropologist will accept the evidence of earlier ages, one of which, taking one of its perishable materials as the type of all, we may call the age of wood. Still farther back mu-t lie an age, as indefinite in duration as any, when man existed in his rudest condition, without arts of any kind, except such as be employed in comunn with 1 wer animals; and this is the true primitive period."

We have received the report for the years 1880 and 1881 of the administration of the artistic and scientific collections in the Royal Museums of Dresden. The Zoological and Anthropological Museum was visited by $61, t 29$ persons in 1880 , and by 65.455 in 1881. An index to Reichenbach's ornithological woris has been prepared by the director, Dr. A. B. Meyer, who has als, issued an impurtant work on the picture-writings of the Fastern Archipelng and Pacific lslands. The staff of this museum now consists of the Director, Th. Kirsch, curator, L. Romer anl J. C. G. Wilhelm, first and second con-ervators, C. A. Kippe, pre, arer of sjecimells, a scientific assissant, and two attendants. The zoological and authropological collections were euriched in the years 1880 and $\mathbf{1 8 8}$ by 2242 specimens of the higher animal., and $\mathbf{t} 7,753$ of insects, by 237 anthropological and 1351 ethnographic objects, including 61 crania and 56 photographs anal drawing of human types from varimus quarters. The library attached to this depart nent was increased by $\mathbf{3 3 2}$ works, incluciing donations from the British Museum, Smithsonian, and other nource. The $\approx y$ stematic catalogue of the fishes was completel in three volumes, with alphabetical index of the 294 genera, 726 specie-, and 2901 specimens contained in the collection. The m stc, to the number of 800 , were also rearranged and catalognell, and progress was made with the catalogues of the birds (fro Nr. 1688 to 2948) and insec:s (11 ymenoptera concluded, Diptera thorougbly revised, of Coleoptera three fawilies arranged and catalogued).

Messrs. Bailliere and Co, of Paris have issued the first number of a new scientific weekly, Science of Nature, profavely illustrated.
M. Ein. Maltely has brought out, in two volumes, a " Histoitr de l'Académic Impérial et Royal de Bruxelles," from which \& much good work has emanated. The history abounds in interes: F. Hayez of Brussels is the publisher.

Spals does seem to be progressing in the right direction. We have the second volume of Mr. F. Gillman's very useful and carefully compiled "Enciclopedia-l'opular Illustrada" (Madrid), with a large atlas of plates. Also the first number of La Indortria Ibtrica, a weekly paper devoted to the industry and science of the whole peninsula, wsll printed, and, to judge from the first number, judiciously edited.
Messrs, Cuarles Griffin and Co. annoance the following scientific publications as forthcoming:-"A Manual of Geo logy," by Kobert Etheridge, F.R.S., and Prof. H. G. Seeley. F.K.S. ; "A Manual of Chemistry," by Prof. Dupré, F.R.S.. and Dr. HI. Wils on Hake ; "A Manual of Botany : the Morphology, Physiology, and Classification of Plants, for the Use of Students," by Prof. W. R. M'Nab; "A Pocket-book of Electrical Kules and Tables, for the Use of Electricians an-i Engineers," by John Munro, C.E., and Andrew Jamieson, C. F.. F.R.S.E.

THE additions to the Zoological Society's Gardens during the past week toclude a Khesus Monkey (d/acarws rhesws) from India, presented by Miss P. Crabtrce ; a Campbell's Monkey (Cercopithecus campbelhi) from West Africn, presented by Mr. Walter van Weede; an Alligator (Alligator mississifpionsu) from the Mississippi, presented by Mr. Thick; a Ring-tailed Coati (Naswa $r m / a)$ from South America, deposited.

PHYSICAL NOTES

M. E. Reynier has de,cribed, in l'Electricion, a re-earch made by him on the maxima and minima of electromotive force of certain betteries in which polarisation tales place. There h , calls "single-electrolyte" batterie, instead of "single-fluid batterie', following a suggestio 1 of the late M. Niandet. The
difference consists in the rel tive size of the electrndes. For example, in the case of a zinc-copper cell containing a single electrolytie fluid, the maximum cell is made with a hathode of heet copper folded and curved, presenting 300 times as much surface as the thin copper rod which serves as anode, whilst in the minimum cell the pr portion is reversed, oo that the polarisation at the surface of the copper attains at once its maximum value. The value of the E.M.F. of the cells when filled with dilute sulphuric acid, and having the zinc amalgamated, was $1^{\prime} 072$ volts maximam, and 0.272 volts minimnw. Many other electrolytes were examined by M. Reynier. The electromotive force was measured apon a galvanometur of bigh resistance.
M. Reynier has suggested a modification of his maximum cell to serve as a standard of electromotive force-namely, a cell having a very large copper electrode, and a very tmall amalgan ated zinc electrode, immersed in a solution of sea salt. According to M. Reynier, this battery has an E.M.F. of 0.82 volts, and maintains this value within I per cent. even when the circuit was hosed for two hours through a resistance of 820 ohms. M. Reynier prefers this combination to one containing salphate of zinc in solution, because of the liability of the latter salt to contain free acid.
M. Henri Becquerel has been pursuing his rescarches upon the infra-red rays of the spectrum. For the investigation of this region there are four methods, the first of them involving the use of a line-thermopile and a rock-salt prism; the second, Abney's photographic method; the third, langley's method, w ith bolometer and a reflecting diffraction grating ; the fourth, that of Becquerel, depending upon the discovery that the infrared rays have the effect of extinguishing the glow of a phosphorecent body exposed previously to ultra-violet rays. M. Becquerel finds that water, for example, gives in the region to which this methed is applicable three well marked absorption-band-, having wave-lengths respectively of 930,1080 , and 1230 .

The newest result of Becquerel's researches is worth more than passing mention. He finds that there exist in this wholly invisible region of the spectrum bright-line spectra-equally invinble, of course-just as in the visible parts of the spectrum, ob ervable in the radiations of hot vapours. Thus, incandescent surdium vapour prints npon the previously "insolated" phorphorescent spbstance two well-marked lines (wave-lengths 819 and t093), corresponding to two bright lines hitherto ank nown. The extent of the region which is capable of being explored by this Duvel process is from wave-length 760 to 1300 , or exceeding in exient that of the whole of the visible and ultra violet rays.

AN interesting experiment is described in the Zeilschrift des Nektrofechnischem Vercins, in Vienna, by Prof, von Waltenhofen, made by means of Noe's thermo electric generators. If a current from a voltaic battery has been sent for a few moments through one of these generators, it is capable of yielding a discharge like a secondary battery. This effect is so far a mere repetition of a well-known experiment of Peltier, and is due to the change of temperature at the junction, called the Peltier effect. But von Waltenhofen observes that the effects are different according to the sense of the charging current. In one case, with increasing charging currents the discharge currents also increased, and were alnays in the opposite sense to that of the charging current. But when the charging current was reversed, it was found that with increasing charging currents the discharge currents at first increase, then attain a maximum, then decrease to zero, then actually recommence in the converse sense, namely, in the same sence as that of the charging current. Prof. von Waltenhofen is disposed to attribute this anamalous result to the lack of symmetry in the disposition of the alternate solderings of the generators, and to their alternately unequal resistance cansing alternately unequal developments of heat doe to resistance.

In proof of the law of proportion between the thickness of a rquare vibrating plate and its pitch, Dr. Elsas gives the following neat experiment. Let three plates be cut from the same sheet of material, of the same size and form. Cement (wo of these together so as to produce a plate of double thickners Then, on exciting the single plate and the double plate by communicating to them respectively the vibrations of two tuning forks whose pitches are as $1: 2$, the plates will be excited in identical manners, as will be seen by dusting sand upon them, the clang-figures being identical.

Lord Rayletgit has reprinted for private circulation in pamphlet form several of his most valuable optical papers,
including those on the manufacture, reproduction by photography, and theory, of diffraction-gratings, and those on colonrmixtures.

Lord Rayletgh has also reprinted some of his papers on electricity and on absolute pitch, from Nature and from the Reports of the British Association, in a convenient pamphlet form,

The quection whether conden ration of steam is a canse of electrification has been examined afresh by S. Kalischer in the Physical I aboratory at Berlin. According to the vieus of Faraday, this is a cause of electrification, and upon the alleged phennmenon Prof. Spring has founded a theory of the origin of thunderstorms. Landerer thought he had heard sounds in the telephone due to condensation of moisture on the line wired. Kalischer has in vain repeated the experiment. He has also examined, by means of the quadrant electrometer, whether any such electrification could be observed from the deposit of moisture upon the sarface of a vessel containing ice or some artificial cooling mixture. The whole of the results were negative.
AmoNGst the many recent suggestions for primary batteries is one due to MM. Lalande and Cbaperon, in which oxide of copper is nsed a a depolarising agent. The oxide, in powder, is placed in or on a sheet of copper or iron. The positive elevent is zinc, and the exciting liquid caustic potash. A zincate of potash is formed by the solution of the zinc. The cell is absolutely inactive when the circuit is open. When closed, the current is remarkably constant. According to Hospitalier, the electromotive force is 0.98 volt. It must of course be closed from the air, to prevent absorption of carbonic acid by the potash. The reduced copper is reoxidised by simple exposure to the air.

In a series of studies on the copper voltameter, published in the Repertorium der Physik by Dr. H. Hammerl, the following conclusions are formulated:-1. The material condition of the surface of the electrode, that is to say, whether it is covered with a bright copper film or not, has no influence on the amount of the deporit. 2. The changes of concentration of the copper solution, bronght ahout in the voltameter by the current itself, cannot be sufficiently prevented by stirring. 3. Heating the fluid to boiling cause the deposit to cone down almost \mathbf{c} ampletely in the state of cuprous oxide: it is partially oxidised even at temperatures b-tween 40° and $60^{\circ} \mathrm{C}$. 4. The greatest permissible strengih of current, for which the deposit may be safely assumed to be a measure of the current, is abont 7 amperes per square decimetre of the cathode surface.

THE EVIDENCE FOR EVOLUTION IN THE HISTORY OF THE EXTINCT MAMMALIA ${ }^{1}$

THE subject to which I with to call your attention this morning requires neither preface nor apology, as it is one with the discussion of which you are perfectly familiar. My object in bringing it before the general session of the Association was in view of the fact that you were all familiar with it in a general way, and that it probably interests the members of sections which do not pursue the special branch to which it refers, as well as those which do ; also, since it has been brought before us in various public addresses for many years daring the meetings of this Association, I thought it might be well to be introduced at this meeting of this Association, in order that we might not omit to have all the sides of this interesting question presented.
The interests which are involved in it are large : they are chiefly, however, of a mental and metaphysical character ; they do not refer so much to industrial and practical interests, nor do they involve questions of applied science. They involve, how:ver, questions of opinion, questions of belief, questions which affect human happiness, I venture to say, even more than questions of applied science; certainly, which affect the happiness of the bigher grades of men and women more than food or clothing, because they relate to the states of our mind, explaining as they do the reasons of our relations to our fellow-beings and to all things by which we are surrounded, and the general system of the forces by which we are surrounded. So it has always appeared to me : hence I have selected the department of biology, and have taken a great interest in this aspect of i t.

[^29]The doctrine of evolution, as taught by the biologists of today, has several stages as grounds or parts of its presentation. First, the foundation prineiple is this : That the species of animals and of plants, the species of organie beings, as well as the various natural divisions into which these organic beings fall, bave not always been as we see them to-day, but they have been produced by a process of change which has progressed from age to age through the influence of natural laws; that, therefore, the species which now exist are the descendants of other species which have existed heretofore, by the ordinary processes of reproduction ; and that all the varions structures of organic beings which make them what they are, and which compel them to act as they now act, are the result of gradual or sudden modifications and cbanges during the periods of geologic time. That is the first phase or aspeet which meets the naturalist or biol -gist.

Anther phase of the question relates to the origin itself of that life which is supposed to inhabit or possess organic beings. There is an hypothesis of evolution which derives this life from no-life, which derives vitality from non-vitality. That is another branch of the subject, to which I cannot devote mueh attention to-day. There is still another department of the subject, which relates to the origin of mind, and whieh derives the mental organisation of the higher animals, especially of man, from preexistent types of mental organisation. This gives us a genealogy of mind, a history of the production or creation of mind, as it is now presented in its more complex aspects as a function of the human brain. This aspeet of the subject is, of course, interesting, and upon that I can touch with more eonfidence than upon the question of the origin of life.

Coming now to the question of the origin of structures, we have by this time accumulated a vast number of facts which have been eollated by laborious and faithful workers, in mauy countries and during many years; so that we can speak with a good deal of confidence on this snbject also. As to the phenomena which meet the student of zoolugy and botany at every turn, I would merely repeat what every one knows-and I beg pardon of my biological friends for telling them a few wellknown truth ', for there may be those preeent who are not in the Biological Section-thit the phenomena which meet the student of biology come under two leading elasses: the one is the remarkable fidelity of species in reprodueing their like. "Like produces like," is the old theorem, and is true in a great many cases ; just as eoins are struck from the die, just as castings are turned out from a common mould. It in one of the most wonderful phenomena of nature, thit such complex organisms, eorsisting of so many parts, should be repeated from age to age, and from generation to generation, with such surprising fidelity and precision. This fact is the firt that strikes the student of these sciences. The general impresion of the ordinary person wou'd be that these things must continue unchanged. When I began to study zoology and botany, I was remarkably surprissd to find there was a science of which 1 had no conception, and that was this remarhable reproduction of types one after another in succession. After a man has had this idea thoroughly assimilated by his honest and conscientious suudies, he will be again struek with another elass of facts. He will find, not uufrequently, that this doctrine does not apply. He will find a series of facts which show that many individuals fail to coincide with their fellows precisely, the most remarkable variations and the most remarkable half-way attitndes and double sided aspeets occurring ; and he will come to the eonclu-ion, sooner or later, that like does not produce like with the same precision and fidelity with which he had supposed it dil. So that we have thee two classer of faets, -the one relating t ', and expressing. the law of heredity; the other, which expresses the law of metamorphosis. I should not like to say which elass of facts is the most numerously presented to the stadent. In the present fauna we find many groups of species and varieties before ns; but how many species we have, how many genera we bave, and families, we cannot definitely state. Th : more precise and exact a person is in his definition and in his analysis, the more definite his scienee becomes, and the more precise and scientifie his work. It is a case of analysis and borms. What the seales are to the ehemist and the physieist, the rule and measare are to the biologist. It is a question of dimension, it is a qnestion of length and breadth and thickness, a question of eurves, a question of crooked shapes or simple shapes,-rarely simple shapes, mostly ervoked, generally bilateral. It require that one should have a mechanical eye, and shonld have also so nething of an arti-tic eye to appreciate these
forms, to measure them, and to be able to compare and weigh them,

Now, when we come to arrange our shapes and our measurements, we find, as I said before, a certain nnmber of identities, and a eertain number of variations. This question of variation is so common and so remarkahi-, that it becomes perfectly evident to the specialist in each department that like does not at all times produce like. It is perfectly clear, and 1 will venture the assertion that nearly all the biologists in this room will bear me witness, that variability is practically unlimited in its range, unlimited in the number of its examples, unlimited in t'e degree to whieh it extends. That is to say, the species vary by failing to retain certain characteristics, and generic and other charactegs are found to be absent or present in aecordance with some law to be discussed farther on.

I believe that this is the simplest mode of stating and explaining the law of variation: that some forms aequire something which their parents do not po sess; and that those which acquire something additional have to pass through more numerous stages than those which have not acquired so much bad themselves passed through.

Of course we are met with the opposite side of the case,-this law of heredity. We are told tbat the facts there are not accounted for in that way; that we cannct pass from one class of faets to the other elass of facts; what we find in one class is not applicable to the other. Here is a question of rational processes, of ordinary reason, If the rules of chemistry are true in America, 1 imagine they are true in Australia and Africa, altt ongh I have not been there to see. If the law of gravitation is effective here, I do not need to go to Australia or New Zealand to ascertain whether it is true there. So, if we find in a group of animals a law sufficient to account for their creation, it is not necessary to know that others of their relatives lave gone through a similar process. I am willing to allow the ordinary practical law of induction, the practical law of inference, to carry me over these gapr, over these interruptions. And I state the case in that way, because this is just where some people differ from me, and that is just where I say the simple quettion of rationaliyy comes in. I cannot believe that natpre's lans are so dissimilar, so irregular, so inexact, that those which we ean see and understand in one place are not true in another ; and that the quextion of geological likelihoed is similar to the question of geegraphical likelibood. If a given process is true in one of the geological reriods it is true in another ; if it is true in one part of the world it is true in another ; because 1 find interruptions in the series berc, it does not follow that there need be interruptions clear throngh from age to age. The assumption is on the side of that man who asserts that transitions have not taken place letween forms whieh are now distinct.

We are told that we find no sort of evidenee of that transitiou in past geological periods; we are assured that ite'1 cbanges have not tahen place; we are even assured that no such sign of such transition from one species to another has ever been observed, - a most as onishing a sertion to make to a biologist, or by a biologist; and such persons have even the temerity to eite special caser, as between the wolf and the dog. Many of our domestic doys are nothing but wolves, which have been modified by the hand of man to a very slight extent indeed. Many dogx, in fact rearly all dogs, are descendants of wild species of van ious countries, and are but slightly modificd.

To take the question of the definitisn of species. Supponigg we have several species well defined, ray fur or five. In the process of investigation we obtain a larger number of individual, many of which betray characters which invalidate the definitions. It becomes necessary to naite the four or five species into one. And so then, because our sys:em requires that ne shall bave accurate definitions the whele taxis of the system is definitionsyou know the very comprehension of the sulject requires definitions), we throw them ell together, because we cannot define all the various special forms os we did before, until we have but one species. And the critic of the view of evolution tells us, "I tild you so! There is but one speciea, after all. There is no such thing as connection between sf esies; you never will find it." Now, how many discoveries of this kind will be neces-ary to convince the world that there are cornections between species? How long are we to go on finding connecting linke, and patting them together, as we have t, do for the sake of the definition, and then be told that we bave nevertheless no intermediate forns between species? The matter is too plain for further comnent. We throw them tegether simply because our
definitions requireit．If we knew all the knownindividuals which have lived，we should have nospecies，we should have no genera． That is all there is of it．It is simply a question of a universal accretion of material and the eollection of information．I do not believe that the well defined groups will be found to run together，as we call it，in any one geological period，cer－ tainly in no one recent period．We recognise，however，that they diverge to a wonderful extent ；one group bas diverged at one period，and another one has become diversified in a different period；and so each one bas its history，some beginning farther back than others，some reaching far back beyond the very begic－ ning of the time when fossils could be preserved．I call attention to this view because it is a very easy matter for ns to use words for the purpose of confusing the mind；for，next to the power of language to express clear ideas，is its power of expressing no ideas at all．As we all know，we can say nany things which we cannot think．It is a very easy thing to say twice two is equal to six，but it is impossible to think it．

I would cite what I mean by variations of species in one of i＇s phases：I would just mention a genus of snakes，Ophibolus， which is found in the United States．If we take the species of this snake genus as found in the Northern States，we have a gcod many species well defined．If we go to the Gulf States and examine our material，we sce we have certain other species well defined，and they are very nicely defined and di－tinguished．If now we go to the Pacific coast，to Arizona and New Mexico，we sball find another set of species well defined indeed．If we take all these different types of our specimens of different localities together，our species，as the Germans say，all tumble together； definitions disappear，and we have to recognise，out of the pre－ liminary list of thirteen or fourteen，only four or five．That is simply a case of the kind of fact with which every biologist is perfectly familiar．

When we come to the history of the extinct forms of life，it is perfectly true then that we cannot observe the process of descent in actual operation，because，forsooth，fossils are neces－ sarily dead．We cannot perceive any activities because fossils have ceased to act．But if this doctrine be true we should get the series，if there be such a thing；and we do，as a matter of fact，find longer or shorter series of structures，series of organisms proceeding from one thing into another form，which are exactly as they ought to be，if this process of development by descent had taken place．

I am careful to say this，because it is literally true，as we all must admit，that the system must fall into some kind of order or other．Yon could not collect bottles，you could not collect old shoes，but you could make some kind of a serial order of them． There are no doubt characters，by which such and such shoes could be distinguished from other shoes，these bottles from other bottles；but it is also true that we bave，in recent forms of life in zoology and botany，irrefragable proofs of the meta－ morphoses，and transformations，and changes of the species，in accordance with the doctrine which we commenced with．

We now come to the second chapter of our subject．With the assumption，as I take it，already satisfactorily proven，of species baving changed over into others－in considering this matter of geological succession or biological succession，I bring you face to face with the nature and mode of the change，and hence we may get a glance，perhaps，at its laws．

I have on the board a sketch or table which represents the changes which took place in certain of the mammalia．I give you a summary of the kind of thing wbich we 6 d in one of the branches of palacontology．I have here two figures，one re－ presenting a restoration，and the other an actual picture，of two extinct species that belong to the early Eocene period．One represents the ancestor of the horse line，Hyracotherium， which has four toes on his anterior feet，and three behind；and the otber，a type of animal，Phenacodus，which antedated all the borse series，the elephant series，the hog，the rhinoceros，and all of the other series of hoofed animals．Each presents us with the primitive position in which they first come to our knowledge in the history of geological time．

I have also arranged bere a series of some leading forms of the three principal epochs of the Mesozoic times，and six of the leading ones of the Tertiary time．I bave added some dates to show you the time when the fannx which are entombed in those beds were discovered in the conrse of our studies；and you will easily sec how unsafe it is to say that any given type of life has never existed，and assert that such and such a form is unknown； and it is still more unsafe，I think，to assert that any given form
of life properly defined，or that a specific intermediate form of life，will not be found．I think it is mach safer to assert that such and such intermediate forms will be found．I have fre－ guently had the pleasure of realising anticipations of this kind． I have asserted that certain types would be found，and they have been found．You will see that I attend to the matter of time closely，because there have been a great many things discovered in the last ten or fifteen years in this department．In these forms I give the date of the discovery of the fanna in which they are embraced．

$\stackrel{c}{e}$				总	
$\frac{4}{2}$					
$\begin{aligned} & \frac{5}{4} \\ & \frac{6}{6} \\ & \frac{5}{6} \\ & \frac{1}{6} \end{aligned}$					
景娄	$\begin{aligned} & \text { B } \\ & \text { U } \\ & \text { U } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 를 } \\ & \text { 흥 } \\ & \text { H. } \end{aligned}$	$\begin{aligned} & \text { ㄹ } \\ & 8 \text { 号 } \\ & \text { 品 } \\ & \text { 以H } \end{aligned}$	$\begin{aligned} & \text { II } \\ & \text { g } \\ & \text { a } \end{aligned}$	
		Interlocking			
$\frac{\frac{\pi}{3}}{4}$		$\begin{aligned} & 7 \\ & 8 \\ & 8 \\ & 5 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & 8 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 曷 } \\ & 8 \\ & 0 \\ & 0 \end{aligned}$	
$\underline{\#}$		$\begin{aligned} & \frac{4}{5} \\ & \frac{1}{0} \\ & \frac{0}{6} \\ & \frac{5}{2} \end{aligned}$			
$\frac{6}{4} \% \frac{8}{8}$	$\begin{array}{cc} =1 & \text { ल } \\ m & \text { ले } \end{array}$		$m+m$	$\begin{aligned} & m \times x \\ & m+\frac{1}{m}+ \end{aligned}$	nmunum $\frac{1}{4}+\boldsymbol{1}$ in
$\begin{aligned} & \text { 营 } \\ & \text { 筑 } \\ & \text { 品 } \end{aligned}$					

Here we bave the White River fauna discovered in 1856 ；then we skip a considerable period of time，and the next one was in t869，when the Cretaceous series was found．Six or seven Cre－ taceous faunx have been found．Thus we bave the Bridger fauna in 1870，the Wasatch fauna in 1874 ．Next we have，in 1877，the Equus beds and the fauna which they embrace，which also was found in 1878．The Permian fauna，which is one of the last，is 1879 ；and the last，the Puerco，wbich gives the oldest and ancestral types of the modern forms of mammalia， was only found in $\mathbf{1 8 8 1}$ ．When I first commenced the study of this subject，about $\mathbf{1} 860$ ，there were perhaps 250 species known．

There are now something near 2000, and we are augmenting them all the time. I have found many myself: if they were distributed through the days of the year 1 think in some years I should have had several every day. But the accessions to knowedge which are constantly being made make it unsafe to indulge in any proplecies that, because such and such things have not been found, therefore such and such things cannot be; for we find anch and such things really have been and really are discovered.

The successive changes that we have in the mammalia have taken place in the feet, teeth, and brain, and the vertebral column. The parts which present us the greatest numbers of variations are those in which many parts are concerned, as in the limbs and feet. In the Lower Eocene (Puereo) the toes were 5-5. In the Lonp Fork fauna some possess toes but 1-1. Prior to this period no such reduction was known, though in the Loup Fork fauna a very few species were 5-5. Through this entire series we have transitions steady and constant, from 5-5, to 4-5, to 4-4, to $4 \mathbf{- 3}$, to $3-3$, to $\mathbf{2 - 2}$, to $\mathbf{1 - 1}$. In the Puerco period there was not a single mammal of any kind which had a gord ankle.joint, which had an ankle-joint constructed as ankle-joints oaght to be, with tongue and groove. The model ankle joint is a tongue-and-groove arrangement. In this period they were all perfectly flat. Astime passes on, we get them more and more grooved, antil in the Loup Fork fauna and the White River fauna they are all grooved. In the sole of the foot, in the Puerco fauna, they are all flat; but in the l.oup Fork fauna the sole of the foot is in the air, and the toes only are applied to the ground, with the exception of the line of monkeys, in which the feet have not become erect on the toes, and the elephant, in which the feet are nearly flat also, and the line of bears, where they are also flat. As regards the ungulation between the small bones of the palm and of the sole there is not a single instance in which the bones of the toes are locked in the Lower Eocene, as they are in the later and latest Tertiary.

When we come to the limbs, the species of the Puerco fauna have short legs. They have gradually lengthened out, and in the late periods they are nearly all relatively long.
(To be continued.)

SOCIETIES AND ACADEMIES
 London

Royal Society, Dec. 13. 1883.-"On the Figure of Equilibrium of a Plavet of Heterogeneous Density," by G. H. Darwin, F.R.S., Plumian Profestor of Astronomy in the University of Cambridge.
If a rotating planet be formed of compressible fluid, the -trata of equal pressure are of equal density, and the ellipticity of the strata increases from the centre outwards. Since it is supposed that the earth consolidated into its present form from a fluid or semi-fluid condition, the determination of the arrangement of internal density and of the law of ellipticity in such a planet is often called the problem of the figure of the earth. When the law of compressibility of the fluid is known, the laws of density and ellipticity are determinate, but the differential equations involved are of such complexity that only one solution of the problem is well known, viz. that associated with the names of Legendre and Laplace. ${ }^{1}$
In this solution the modulas of compressibility varies as the square of the density, but the assumption of this law appears to have been dictated more by the necessity of solving a certain aifferential equation than by physical considerations.

The comparison of the solution of the problem with the observed facts with regard to the earth may be made in several ways. The constant which determines the rate of the earth's precessional motion gives us information with regard to the arrangement of density in the interior, and the ellipticity of the surface is determined by geodesy and by the amount of a certain inequality in the moon's motion. Now, in order that the solution of the problem of the earth's figure may be satisfactory, the same arrangement of internal density must give the observed amounts both to the precessional constant and to the ellipticity of the surface.
Laplace's solutiop is highly satisfactory in this respect ; and at the same time it makes the mean density of the whole earth about
"The lave M. Roche seems to have also solved the problem in 2848 , and his paper is published in the Memoirs of the Acadowy of Montfoliter.
twiee as great as the density of the surface stratam. The denwity of rock is about 2.8 , and that of the whole earth is about 5.6.

In this state of our knowledge another solution of this celebrated problem possesses some interest, even if its results are not quite so satisfactory as those of Laplace's theory.

In the present paper such a solntion is offered. The law of compressibility of the fluid is such, that the modulus varies as a power of the density, which power may range from negative infinity to $\frac{4}{2}$. When the power is zero, we have constant compressibility; and when the power is unity, we have the same law of cmpressibility as in a gas.

The colution is expressible in a far simpler algebraic form than that of Laplace, and it differs from his solation in placing a far larger proportion of the mass of the planet in the central regions.

It is remarkable thit this solution affords for the case of the earth a correspondence between the precessional constant and the sarface ellipticity equally good with that of Laplace. To obtain this corresp sndenee we have to assume the compressibility of the fluid to he nearly constant.
The density of the surface layer appears however to be 3.7 . and this is conviderally greater than that of ordinary rocks. This recult tells adversely to the acceptability of the proposed solution, but the discrepancy is not so serious as might appear at first sight. It appears from pendnlum experiments on the Himalayan plateau and on the Andes, that there is a consider. able deficiency of density underneath those great ranges. This wonld favour the view that our continents are a mere intumescence of the surface layers. In this case there must be a somewhat abrupt change in the law of density at only a few miles below the surface. The theory of the eartb's figure can take no account of a sudden change of denvity on passing into a swollen superficial layer, and the value of the surface density to be used is that which is to be found immediately below the swollen part.

The author therefore points ont that whilt the solution now offered cannot be held to be quite as satisfactory as that of Laplace, yet its inferiority is not of a kind to render altogether nacceptable the contention that it may be somewhere near the truth.

Linnean Society, December 20, 1853.-Alfred W. Bennett, M.A., in the chair.-Messrs. N. Cantley, W. Dobson, F. (iSmart, and Rev. R. Thom were elected Fellows of the Society -Mr. S. O. Ridley exhibited and made remarks on a serier of 177 vertical section: of sponges collected in the neighbourhood of Point de Galle, Ceylon, by Dr. W. C. Ondaatie, F.L.S., and transmitted to England by him in letters. They are in most instances sufficient for the identification of the genera and some species.-Mr. F. Manle Campbell showed the web of a spider (Terenaria guyonii) which had been spun in the centre of a parteboard cylinder, the peculiarity being the manner in which the solid part of the web was medially swung, whereas in this species of spider it is more usually on the sides of objecte - A paper was read by Mr. F. O. Bower on the structure of the stem of Rhynchoprtalum montanum. The plant is a native of Abyssinia, growing in districts 11,000 to 13,000 feet above the level of the sea. It differs from its ally Lobeliax in being pereonial. Internally it is succulent when young, but afterwards the surface becomes scarred as the leaves drop off, and exteriorly is hardened by a thick corky deposit. Rhymchopalalum, the anthor show in detail, has certain peculiarities in the arrangement of the tissue of its leaf bundles, since the cortical system does not consist of branches of bundles of the deaf trace, but are cauline bundles, in this respect differing-widely from such forms as Lathyrus caswarina, many Begonias, \&c. Nhynchopetalum, moreover, has the cortical bundles running obliquely, and forming a regular four-sided meshed network related to the leaf bases and bundles of leaf trace. In these respects it approaches Cyons, in which latter the bundles of the accessory cortical system are not so regular and are almost vertically arranged. Some Cycads and Rhyncheptahum also agree in the exterior appearance of their stem, so that palaoontologists might be deceived in their judgment if two well-preserved specimen were examined by them. - A communication was read on the auditory ossicles of Rhytina stclleri by Alban Doran. This was based on skeletons obtained by the Vegu expedition, and shown at the late International Fisheries Exhibition by the Swedish Government. The author arrives at the conclu-
inn that the malleus of Rhytina is larger than in Manatus, and $p^{\text {therefore }}$ it is the largest and bulkiest mallets' to be found in the whole section of the animal kingdom where such a bone exists, that in the characters of its body it resembles Manatus rather than /lalicore, and that in the manubrlum it differs from the other virenia, and is far more generalised. The inens is of the Whanafus type, and so is the stapes, which is also the lurgest and "alkiest stapes to be found in any anional.-A paper on the urgans of secretion in the Hypericacex, by Mr. J. R. Green, wriv read. He concludes (t) that the view advocater by Link, Martinet, and De Mary, of the lysigenms origin of the reserwirs of ethereal oil in these plants is the correct one; (2) that tiere exists in many parts of the plants a series of ducts or issages differing only slightly from these reiervoirs, the differences being that they are not globular and i-olated, but are generally connected more or less intimately with each other, and tha: their secretion is not a clear ethereal oil, but a viccid or resinnas ijuid, the points of agreement being thouc connected with their development and fanction: (3) that at least in some species there is also a series of schizogenous ducts confined to certain portions of the phloem; (4) that the dark glands which have 'een described are in intimate relationship with the filrovas. cular system ; (5) that the formation of resin and kindred secretions in these plants is confined to the parts where metaholism Δ active, and where there is a primary meristem. That all such arts give evidence of such formation with the exception of the roots, - A paper on the glands of Coprosma baweriana, 'y Mr. Walter Gardiner, was read. There glands are externally well developed and very typical. The no-called -ipular bxdy is placed immediately behind each leaf, and in I'e young condition the stipule arches over the leaf, and the giands with which it is provided secrete copiously a mucila. rinous fluid, which bathes and surrounds the young leaf stracture. Ay to the development of the glands, they arise as protrusions of the stipule parenchyma, which are covered by an epidermis. t ach epidermal cell then rapidly grows out at right angles to the protuherance. In Coprosma the glands are situated on the s des of the stipules, but it more nsually occurs in other genera that they are distributel over the inner face of the base of the sipular organ, -The lavt paper taken was on the development of starch grains in the laticiferous cells of the liuphorbiacex, by M. C. Potter. It is pointed out that while the discovery of the existence of starch.forming corpuscles had lieen made by Kruger, yet he had failed to interpret their funetion, which Mr. Polter's re-earches now fully prove in the case of the Fuphorliaces, where the development of rod or spindle-shaped grains of starch lying within cell protoplasm has been clearly demonstrated.

Chemical Society, Dec. 6, 1883.-Dr. Perkin, president, in the chair.-The following gentlemen were elected Fellows:F. A. Blair, 'C. J. Barr, C. J. Baker, L. Briant, R. G. Durrant, Kamchundra Datta, L. L. Garbutt, A. E. Harric, T. Ilart, W, Iruin, S. Johnson, R. Jackson, H. C. I.ee, W. H. Martin, C. E. Potter, B. M. K. Kozers, C. W. Stephens, P. H. Wright, 11. A. Wetzel, and W. G. Whittam,-The following papers were read :-On the constitution of the fulminates, by E. Divers und M. Kawakita, When moist mercury fulminate is treated with nuch strong hydrochloric acid, hydroxyammonium chloride and aylrocyanic acid are formed; if the fulminate bedry, no pru-sic acid s formed. The carbon is completely converted into formic acid. So oxalic acid is produced. - Theory of the constitution of the fulninates, by E. Divers, - On Liebig's production of fulminating alver wishout the use of nitric acid, by E. Divers and M. Kawatira. When nitrous acid is passed into an alcoholic solution of ritrate of silver, crystals separate; theve are not, as I.ieligg tated, fulminating silver, but nitrate of silver.-Note on the onstitution of the fuloninates, by H, E. Armstrong. - Fxperiaental investigation on the value of iron sulphate as a manure or certain crops, by A. B. Griffiths. The author obtained from in experimental plot of land manured with ferrous sulphate fiftyix bushels of beans ; a similar plot in its normal state gave hirty-five bushels. The ash of the plants also contained wore on and phosphoric acid in the first case.

Physical Society, December 8.-Prof. (3. Carey Foster, in ie chair.-New members :-Major McGregor, R.E., Mr. Jamed ialker, M. A., Mr. W. B. Gregory, B.A.-Prof, Silvanus P. hompson, D.Sc., read a paper on the static induction telephone an instrument of research. The author had employed Dol.
bear's telephone in investigating the action of influence machines such as those of Holtz and Wimshorst or Toepler. This was done by holding the end of a wire (connected to one terminal of the telephome) near the electrified parts of the machine, for example the "carriers" in the Toepler apparatus. "The carriers induced a change in the telephone, whose other terminal was to earth, as they passed, and the pitch of the note heard in the telephone increased with the speed at which the machine was driven. Useful results were obtained leading to modifications of some machines. The same telephone was also applied to the measurement of capacities of condensers arranged like the resistances of a Wheatstone balance, and the telephone taking the place of a galvanometer. For the "divided coil" of the balance Prof. Thompson: substituted a double condenser, or rather two condnners, so joined that the earth-plater were separate, while the other plates were in one. This device was made from two glass tubes with tinfoil round their outsides and a brass tube sliding into both interiors in such a way that the reletive capacities of the two cundeusers thus combined could he altered by sliding the tube between them. A modification of this plan was suggented by Mr. Starling, the author's assistant, which was analogous to Prof. Foster's arrangement of the Wheatstone balance, that is to say, six condensers were used, the two.extra ones being incinded hetween the battery connections and the sliding tube. The battery was in this case an induction coil having no condenser, as a discontinnous current is necessary to give sounds. The author alvo showed that the Dolbear telephone eould be used instead of the quadrant electro. meter in such experiments as those of Mr. J. E. H. Gordon on specific inductive eapacity. The author als) showed how he had applied it to explore the equipotential surfaces round con ductors charged statically by an induction curr. nt. With two wires from the terminals of a telephone vilence is produced when both ends are on the same equipotential surfices; and sounds when they are not.-Prof. Thompcon then read a note on a new insulating stem. This consisted of a glass tube with one end blowu into a flat foot, which was planted on the bottom of a glass bottle and cemented there by a little wax varaffin. The upper and open end of the tube served to hold the stems of brass plater, or other electrified bodies, Paraffin oil or strong alphurie acid could be used in the bottom of the bottle. A cap of rubber or percha made to slide up the stem served as a dust cover.-Prof. Thompson next made a communication on the first law of electrostatics, and illustrated his remarks with experiments shoning how a series of floating magnet poles of like name repelling one another tend to produce equal distribution of the poles. Prof. Thompson, anguing from the second law of electrostatics (inverie squares), sought to explain the first law in a rational manner, on the hypothesis of selfrepelling molecules, which tend to nniform distribution. When there is a surplas in one part and a deficit in another, the molecules are arged towards each other, i.e. attract. This was shown by putting a surplus of floating magnets at one part of the basin. By the movements of these magnets when confined by barriers, and with surplus and deficit purposely made, the author imitated the effects of a Leyden jar, induction, a battery current, \&c., the motions and arrangement of the poles illustrating the hypothetical behavionr of electricity. The anthor was led by the hypothesis to infer that either the ether is clectricity, or that the ether is electrified, and the former seemed the simpler conclusion. -Dr. Monkman showed some experiments illustrating the attraction and repulion of bodies in motion. The attraction of a light balanced body 10 a vibrating tuning-fork was shown; alvo the attraction bet ween two di-ks of paper revolving parallel and in the same direction. The author showed that two smoke. rings travelling abre:st in the same direction attracted each other, and that two pajer riug, revolving in the same direction close together attract, while if revolving in opposite directions they repel.-Mr. Walter Baily exhibited his new integrating anemoncter in action by means of a small electric motor, which took the place of the Robinson cups. The apparatus sums up, or integrates, the wind velocities on the lines of the four cardinal points. An electric counter is attached.

Paris

Academy of Sciences, December 17, 883 .-M. Blanchard, president, in the chair.- Preliminary report on the expedition of the Talisman to the Atlantic Ocean, by M. Alph. MilneEdwards, -On the preparation and manner of employing arti-
ficially developed virus attennated by heat, intended to be used in prophylactic inoculations against charbon, by M. A. Chanveau. - On the remarkable sunsets observed during the months of November and December, 1883 , by M. P. do Gasparin. The author considers that these luminoas effects cannot be due to falling stars, and must be referred to the solar light acting on an atmo-phere charged with particles of matter whose nature has not yet been determined. - On the determination of elastie forces, by M. Fontaneau. - On the procesces adopted by M. Mandon and M. Aman-Vigié in the treatment of vines affected by phyl. loxera, by M. F. Henneguy. The process of Dr. Mandon, whieh consists in saturating the sap with a solntion of phenie acid, appears to have little or no effect on the parasite. That by M. Aman-Vigié, an injection of a mixture of vapours of snlphar and sulphuric acid into the gronnd, has been tried on too limited a scale to warrant any definite judgment as to its efficacy. bat the experiments already made do not appear to have proved very beneficial, becanse the vapours of sulphuric acid do not penetrate to a sufficient depth into the ground, and evaporate too rapidly.-Observations of the Pons-Brooks comet made at the Paris Observatory with the bent eqnatorial, by M. Périgaud. -Observations of the planet 235 Carolina and of the PonsBrooks comet made at the Paris Observatory (west equatoreal in the garden), by MM. Henry.-On the mutipliers of linear differential equations, by M. Halphen,-On a point in the theory of elliptical functions, by M. Lipschitz-On a theorem of M. Liouville in mathematical analysis, by M. Stieltjes. In continuation of his previous paper, the author here shows how the theory of elliptical functions leads to the theorem of M. Liou-ville.-On algebraic equations, by M. H. Poincaré,-Demonstration of the fandamental properties of the system of geodesie polar coordinates, by M. G. Ossian-Bonnet.-On a method of generating the ovals of Descartes proposed by Chasles in his "Aperçu Historique," by M. Maurice d'Ocagne-On the measurement of the specific heats and variations of temperature of two bodies in contact, by M. Morisot. -On a practicable method available for the photemetric comparison of the usual sources diversely coloured, by M. J. Mace de Lépinay.-On the influence of colonr on the sencitiveness of the eye to different degrees of luminosity, by M. Aug. Charpentier.-Researches on the permanence of the solidification of superfused sulphur (continued), by M. D. Gernez-Second note on chromic selenite; preparation of biselenite, by M. Ch. Taquet. The author has obtained a biselenite of chromium by the action of nitric acid on neutral selenite. It is almost insoluble in water, but soluble in acids, and decomposnble by heat. - Note on the action of bromium on pilocarpine ($\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{Az}_{3} \mathrm{O}_{4}$), by M. Chaasting. - On emetics of mneic and saccharie acids, by M. D. Klein,-Third note to serve as a contribution to the history of the formation of coal; genus Arthropi/us, Gocppert, by M. B. Renault.-On the artificial reproduction of schistosity and slate layers, by M. Ed. Jannettar. - Experiment relative to the mode of formation of bauxite and gypsum, by M. Stan. Meunier,-On the glaucous amphibolic schists of the island of Groix, by M. Barrois.-On an anorthite rock di covered at Saint Clément, Canton of SaintAnthéne (Puy-de-Dóme), by M. F. Gonnard.-On the fall of cosmic dust, by M. E. Yonng.-On the coincidence of the recent phenomenal after-glows with the passage of the cosmic meteors, by M. Chapel.

December 24, 1883.-M. Blanchard, president, in the chair. -The President announced the painful loss sustained by the Academy in the person of M. Yvon Villarceau, member of the Section for Geography and Navigation, who died after a short illness on December 23. Funeral orations on the deceased savant were pronounced by Col. Perrier in the name of the Academy, by M. Faye in the name of the Burean of Longituder, and by M. Tisverand in the name of the Paris Observatory. Separation of gallium (continued) : separation from terbium, ytterbium, and the earth provisionally called $y_{\text {a }}$ by M. de Marignac, from reandium and fluor, by M. Lecoq de Bois-baudran.-Obervations of the comet Puns-Brooks, made at the Obvervatory of Algiers by MM. Trépied and Rambaud,-Observations of the same comet made at the Lyons Observatory (lirunner equatorial of $0^{\circ} 160$ metre), by M. Gonnessiat,-On a special development of the perturbing function

$$
\frac{1}{\Delta^{x}}=\frac{1}{\left(r^{2}-2 r^{\prime} \cos v+r^{\prime} 2\right)^{\frac{1}{z}}}
$$

loy M. O. Backlund. -On the purely trigonometrical series
sonnected with M. Linstedt's new solution of the problem of three bodies, by M. M. Poincaré.-On the generation of geometrical surfaces, by MM. J. S. and M. N. Vanecek,-On the gauging of galvanometers, by M. E. Ducretet.-Researches on the permanency of the solidification of superfused sulphur (continued) ; production of a new crystallised variety of sulphur, by M. D. Gernez. - On the decomposition undergone in the presence of water by the acid phosphates of the alkaline earthy bases, by M. A. Joly.-Determination of the neutralising heat for the fluorhydrie acid of the alkaline and alkaline-earthy bases, by M. Guntz. - On the kreatines and kreatininer, fourth note, by M. E. Duvillier.-Action of ammoniacal gas on the nitrate of meihyl, by MM. E. Davillier and If. Malbot.-Researches on the compound oxygenised ammonias, by M. Keboul. - On some haloid derivatives of ethane, by M. L. Menry.-On the pathologic anatomy of the phlegmon, and especially on the seat of the bacteria in this affection, by M. Corail.-On the species of Arctic mollusks found by the Talisman Expedition at great depths in the intertropical waters of the Atlantic Ocean, by M. P. Fischer.--On the morphology of the plumicole Sarcoptides, by MM. E. L. Trouessart and P. Megnin. - On a rapid and economical method of treating vines affected by Peronospora, by M. Senderens. On a parasitic Nematode of the common onion, by M. Joanne4 Chatin. - On the cultivation of beetroot and some other plants in solutions of organic substances in decomposition, by M. V. Jodin.-On the relations of the Serpentine rocks to saline substances, especially in the Pyrenees, by M. Dieulafait.-On a chlorosilicate of lime, by M. Le Chatelier.-Experimental researches on the velocity of aqueous or atmospheric currents capable of holding in suspense mineral particles, by M. J. Thoulet.-Note on the sunset glows recently reported to the Academy, by M. E. Marchand.-Observation of the after-glows witnessed at Valence on the evening of December 2, by M. P. du Boys, - Remarks on the sunsets observed at Rambouillet on the evenings of December 15 and 18 , by M. A. Iaugier.Letter on the sunsets observed at Cbristiania towards the end of November, by M. Fearaley, director of the Christiania Observatory.

CONTENTS

Page
Thermal Chemistry. By M. M. Pattison Muir . . 209

A Scientific Catalogue.
 212

Letters to the Editor:-

Elevation and Subsidence.-Prof. Joseph LeConte 212
Red-deer Hurns.-Sir J. Fayrer, F.R.S.; James Inglis .

213
On the Absence of Earthworms from the Prairies of
the Canadian North-West.-Robt. Miller Christy 213
Magnetic Dip in South China and Formosa, -Dr, W. Doberck
The Origin of Coral Reefs. By Surgeon H. B. Guppy
A)Forgotten Evolutionist. By W.T. Thiselton Dyer, C. M.G., F.R.S.

Teaching Animals to Converse. By Sir John Lubbock, Bart., M.P., F.R.S.

216
The French Deep Sea Expedition of 1883 . By Dr. J. Gwyn Jeffreys, F.R.S.

The Sun Motor and the Sun's Temperature. By Capt. J. Ericsson (With Illustrations)
A Christmas Visit to Ben Nevis Observatory, By Prof, G. Chrystal
he Remarkable Sunseta. By Rev. Gerard Hopkins; B. Brauner; Joseph Macpherson; W. E. J.; R. Meldola; F. M. Burton; J. Edmund Clark; Robert Beadon
Notes 225
Physical Notea 22
The Evidence for Evolution in the History of the
Extinct Mammalia. By Prof. E. D. Cope . . . 22
Societiea and Academies 230

THURSDAY, JANUARY 10, 1884

AMERICAN GEOLOGY
Twelfth Annual Report of the United States Geological ant Geographical Survey of the Territories. In Two Parts, with Atlas of Maps, \&c. By F. V. Hayden, U.S. Geologist. 8vo (Washington: 1883.)

THERE is a singular fascination in American geology. Its features are as a whole so massive and colossal, their infinite detail so subordinated to breadth of effect, their presentation of the great elements of geological structure so grand, yet so simple and so clearly legible, that they may serve as types for elucidating the rest of the world. The progress of sound geology would assuredly have been more rapid had the science made its start in the Far West of America, rather than among the crumpled and broken rocks of Western Europe. Truths that have been gained on this side of the Atlantic by the laborious gathering together of a broken chain of evidence would have proclaimed themselves from thousands of plateaux, cañons, and mountain ranges, in language too plain to be mistaken. No doubt much has been gained by the mere toilsomeness of the search after the truth. A possession is more valued when it has been hard to obtain, and the qualities which its capture has called forth and strengthened could probably be educated in no other way. Nevertheless, no European geologist can visit these western regions without realizing more or less distinctly what an amount of time has been wasted here over questions about which there should never have been any discussion at all. This impression is renewed by every new geological memoir which brings to us fresh revelations of the scenery and structure of the Western Territories. It is especially deepened by a perusal of the volumes of which a brief notice will here be given.

It may be in the recollection of readers of Nature that after some inquiry and discussion it was discovered by the Congress of the United States that various independent Surveys, under different Government departments, had been engaged among the Western Territories, and, having no connexion with each other, had, to some extent, duplicated the mapping of the same ground; and that at last in the summer of 1879 a law was passed whereby these various geological and topographical Surveys were abolished, and a new single organization was created under the name of the "Geological Survey of the United States." One of the Surveys thus abolished was known as "the U.S. Geological and Geographical Survey of the Territories," under Dr. F. V. Hayden as Geologist in charge. The publications of this Survey comprised a voluminous series of annual Reports and Bulletins, quarto volumes of elaborate and well illustrated Memoirs, and Geological Maps and Sections. Many thousands of square miles of country had been examined by the staff, and had been mapped and described in such a way as to lay out the broal features of wild regions for the first time, not only for the assistance of the geologist or geological surveyor who might afterwards care to fill in the details and improve the mapping, but for the guidance of future settlers in the far west, and of the Central authorities who have charge of the public

Vol xxix.-No. 741
lands. When, at the bidding!of Congress, Dr. Hayden's Survey organization ceased to exist and his staff dispersed in search of other occupations, the work done in the year 1878 had not been published, while several important works were in progress. A small appropriation was granted to enable him to bring out his last Report and to complete other office-work of the Survey. This grant was exh uusted in the summer of 1882 , leaving five quarto volumes still unpublished though far advanced towards completion. These have been handed over to the Director of the Geological Survey, to be finished and published under his auspices. The final Annual Report, however, being the twelfth of the series, has at last been issued, the delay in its appearance having arisen from the scattering of the staff and their employment in other avocations, but partly perhaps (though he makes no mention of it) to the prolonged indisposition under which Dr. Hayden has been labouring ever since his retirentent from official life.
Dr. Hayden's Report for 1878 is a most fitting termination to the series which it closes. It consists of two massive octavo volumes with an atlas of Maps and Panoramas, and is profusely illustrated with plates. It is of course impossible to give any adequate notice of this elaborate work within the limits permissible in these pages. But a mere outline of its contents may afford some idea of the nature and importance of this latest contribution to American Geology.
The first volume opens with a Prefatory Letter from Dr. Hayden himself, stating briefly the arrangement of the work under his supervision during the last year of its progress. One of his parties was charged with the primary triangulation of the entire area to be surveyed, and made satisfactory progress, among the Wind River and adjacent ranges westwards to Henry's Lake, where its operations were unfortunately cut short by Indians who, crossing its trail, carried off all its animals and a portion of its outfit. Not far to the north lay the Yellowstone Parkan area perpetually exempted from settlement by special Act of Congress. That wild tract, surrounded by rugged mountains, formed a natural retreat for bands of hostile Indians when pursued by troops. Only the year before, the Nez Perces, retreating from General Howard, broke into the region, killing and plundering as they went. No wonder the surveyors should excuse any shortcomings in their work by pleading "that peculiar mental condition consequent on the uncertain and exaggerated rumours relative to the movements of the hostile Bannacks by whom the country was said to be overrun, but of whose presence we saw no more than the traces of some days' old trails." Next year, the writer of these lines, having previously heard similar wild rumours, passed over some of the same ground, but actually encountered an armed party, and will always remember the " peculiar mental condition," which the dust-cloud of the approaching red-skins awakened.
A second division of the staff made a detailed survey of the Yellowstone Park, obtaining materials for a Map of it on the scale of one inch to a mile. Mr. W. H. Holmes, attached to this party, had excellent opportunity for wielding that facile pencil to which geological science is so much indebted. Dr. A. C. Peale and Mr. Musbach made a detailed study of the thermal springs for which the region is now so famous.
A third division surveyed the previously little known but
\mathbf{M}
magnificent snowy range of the Wind River Mountains, in which three true glaciers were observed-the first known so occur east of the Coast Range of the Pacific border.

The Report of these various surveys and of palaeontological and natural history researches connected with previous explorations is divided into two parts. Taking the second part first, we have a stout volume of some 500 pages with 80 plates, besides figures, maps, and sections entirely devoted to the V'ellowstone Park. A good deal has been written on the wonders of this region, chiefly in previous Reports of Dr. Hayden's Surveys, and sometimes in considerable detail, as, in Professor Comstock's Report, accompanying Captain Jones' Reconnaissance published in $\mathbf{1 8 7 5}$. But no such minutely circumstantial narrative has ever appeared as that now issued.

An exceedingly erroneous general impression is conveyed by the word "Park" which has been applied to this region and which has received the sanction of an Act of Congress. The tract comprises an area of upwards of 3500 square miles, most of it being forest covered and of a rugged mountainous character. Some of the peaks rise to between 10,000 and 11,000 feet above the sea. Between the lower ridges, open glades of parklike woodlands make one half forget for a while the great altiterde and remoteness of the region, till the true character of the place is recalled by some pine-trunk deeply scored by a passing bear or by a herd of "antelopes" or an occasional "elk" scampering across the sunshine into the gloom and silence of the surrounding forest. Through this region, the Yellowstone River and its tributaries, draining a series of lakes, flows northward till it enters a profound cañon in which, at times unseen and unheard, it chafes the feet of volcanic precipices until, emerging amid a scries of glacier moraines, it passes out of the "Park" into the Territory of Montana.
The Monograph of this deeply interesting region now published by Dr. Hayden is composed of three unequal sections. The first of these, by Mr. W. H. Holmes, treats of the general geology. It is no disparagement to the author to say that the most valuable part of his Report is to be found in his admirable sketches. He adds some interesting particulars, indeed, to what was already known of the geology of the district. For example he las worked out in greater detail the structure of Cinnabar Mountain which forms so striking a feature in the ascent of the Yellowstone above the second cañon, likewise the geology of the remarkable volcanic plateau of which one sees a section from the camping ground at the Mammoth Hot Springs. The beautiful unconformability under the sheet of rhyolite which forms so impressive a feature in that landscape stands out with admirable clearness in Mr. Holmes' drawings. Evidence is supplied of the diminution of the Yellowstone Lake. A reference, tantalizingly brief, to the interesting glacial problems of the district concludes this short Report. The author was too well and busily employed with his pencil to find time for much independent geological observation. But it is matter for hearty congratulation that before he was moved away into the vaster domain of the Grand Cañons of the Colorado, where he has since done such service to the United States Geological Survey, he was enabled to spend long enough time in the Yellowstone region to
produce the serics of pictoral illustrations which enrich Dr. Hayden's final Report. His trained eye and power of rapid and accurate sketching greatly contributed to the perfection of the map of the Park.

The second and by much the longest section of the book is devoted to the Hot Springs of the Yellowstone Park, and is from the pen of Dr. A. C. Peale, who spent about two months in the district making detailed observations of the geysers and other thermal waters. He describes more than 2000 springs and seventy-one geysers, and illustrates his descriptions with so numerous a series of plates that every minute detail and variety of form in the geysers and sinter accumulations is vividly brought under the eye. Dr. Hayden justly remarks that this preliminary work ought never again to be necessary. Short of an actual inspection of the geysers and basins themselves, nothing could give a clearer idea than these plates do of the extraordinary forms assumed by the deposits from the thermal waters. The strange coralloid and sponge-like aggregations are excellently depicted in lithographs which have obviously been reproduced from photographs. Dr. Peale's Monograph consists of three parts, the first devoted to a description of the geysers and thermal springs; the second to an account of the principal geyser regions of the world for purposes of comparison ; the third to thermohydrology, in which he discusses the general characters of thermal waters, their chemistry and deposits, and the theories of geyser action. The premature disbanding of the Survey prevented the completion of this essay on the scale originally intended. But Dr. Peale may be congratulated on having made a most useful addition to the literature of the subject. Not the least of its merits is the copious bibliography which is given in an Appendix.

The third section of the volume, by that able cartographer Mr. H. Gannet, deals with the topography, and gives an interesting r /sumf of the various reconnaissances and surveys which have resulted in the present detailed map of the Yellowstone Park.
The other volume, forming Part I. of the Report for 1878 is divided into two sections. One of these, relating to geology and paleentology, contains a series of Reports by Dr. C. A. White on the invertebrate palxeontology of the Western States and Territories from the Carboniferous to the Tertiary rocks, and is accompanied by forty-two Plates of Fossils. Some sections have a special interest, in particular that in which the author discusses the fossils of the much disputed Laramie group, and sustains his previously expressed opinion that this group should be regarded as transitional between the Cretaceous and Eocene formations of the West. The abrupt cessation of the Survey, by depriving Dr. White of an opportunity of completing some of his work by further collection, has materially crippled him in the preparation of these further contributions to a subject which he has already done so much to elucidate.
Mr. Orestes St. John supplies a report on the Wind River District Basin, and Mr. Scudder reprints with additions and alterations the report on the Tertiary Lakebasin of Florissant, Colorado, which has already appeared in the Bulletin of the Survey, and which made known the extraordinary abundance of insect remains preserved in the lacustrine deposits of that locality.

The second section of the volume is devoted to Zoology, and consists of two Reports-one of them an invaluable monograph by Mr. A. S. Packard, jun., on Phyllopod Crustacea, recent and fossil, illustrated with thirty-nine plates and a coloured map showing the zoological provinces of North America. This memoir will be welcomed by all who take interest in the investigation of genealogies and of the history of distribution in the animal kingdom. Dr. R. W. Shufeldt concludes the volume with an essay on the osterlogy of various American Birds, likewise copiously illustrated with woodcuts and with lithograph plates.

From this outline it will be seen how well Dr. Hayden has sustained to the last the character of the Survey under his charge. During his tenure of office he proved himself to be endowed with rare powers of organization and administration and to possess wide views of the scope of a survey which, like his, was to break ground for the first time in new and unknown territories. He might have been simply an explorer, anxious to find out the sources of rivers, the positions of passes, the heights of peaks, and the trend of mountain-ranges. He might have been a mere geologist, desirous of adding some thousand miles of new area to formations already known or of discovering formations such as have no precise parallel elsewhere. He might have been only a topographer, caring chiefly for the accuracy of his triangulations and levellings. He might have been a botanist or zoologist, eager to add new species to the known flora and fauna of the earth's surface. In one sense Dr. Hayden was none of these; in another sense he combined the fun tions of them all. In later years his executive duties appear to have left him little opportunity for carrying on original research himself. But he had sympathy with all the pursuits just named, and had the faculty of chonsing good men for prosecuting them. He had force of character enough to succeed in battling his way and getting his appropriations from Congress, and he had the perseverance to press forward his operations, keeping his fellow-labourers together and publishing with their aid a series of volumes of which the United States may well be proud.

The consolidation of the various Surveys under one organization was an inevitable and entirely justifiable step on the part of Congress, and the United States Geological Survey could not be under more energetic and skilful direction than that of its present estimable chief, Major Powell, with the cooperation of such leaders in seological enterprise as Mr. Gilbert, Captain Dutton, and their colleagues. Nevertheless, it may be permitted to a geologist on this side of the Atlantic, who looks disinterestedly but not unsympathetically upon the progress of events on the other side, to express his regret that it should not have been possible to find a place where scope might have been afforded for the talents of one who had done such good service to geology as Dr. F. V. Hayden.

Arch. Geikie

OUR BOOK SHELF

Attraction ef Gravitation d'aprés Newton. Par Mme. Clénence Royer. Extracted from the Review "Philosophie positive." Pp. 23. (Par1s, 1883.)
IT is very surprising to find what is, in most other respects, a really well-written and able dissertation on
the question of action at a distance marred at the very outset by an almost inexplicable blunder.

Madame Royer has evidently read much, and lays down with great clearness the distinction between Newton's Theory of Gravilation as a mode of grouping together under one simple law the whole phenomena of physical astronomy, and the assumption handed down from old Greece, of a mulual atlraction exerted upon one another by any two portions of matter. She shows that Newton everywhere expresses himself in the most explieit terms against the notion of distance-action. But she also points out the curious distinction between. Newton in the Principia, the pure mathematician and physicist, who constructs no hypotheses and declares that the mode in which gravitation is produced is one which he has not been able to discover from the phenomena themselves; and Newton in his Oplics, the bold speculator, who discusses the possible characteristics and properties of the medium by which gravitation may be produced.

This is, on the whole, so well done that we are positively amazed to find the all-important property of matter, Inerfia, absolutely and entirely ignored. From a psychological point of view, the following remarks, by such a writer as Madame Royer shows herself to be, are of the very highest interest and curiosity :-
"Qu'est ce en effet que la notion de marse, si ce n'est eelle d'un corps तéjà considéré comme pesant? Un eorps sans pesanteur serait-il une masse? en aurait-il les propriétés mécaniques? Une masee, supposée absolument isolece dan-l'espace, aurait-elle un poids? Evidemment non, puisque le poids ne nalt que des rapports de grandeur et de di-tance des masses. Dire que le poids ou la maske ext prop urtionnela la quantité de matière ou de sabstance, c'est uffirmer une chose que nous ne sivons pas, que nous ne pouvons absolument savoir d'aucune maniere. Tout ce que nous savons c'est que, considérant des corps déja pesants, en vertu de leurs relations de quantité et de distance, leur pesanteur croft en raivon de ces quanité et en raison inverse de ces distances, sans que lears quantités, comme matière, soient altérées, de façon que des mases doubles ont une tendance deux fois plus forte à tomber l'une vers l'autre, ce qui fait qu'elles s'approchent en réalité avec la même viterse (sic), et que si leur distance devient moitié moindre, elles s'approchent quatre fois plus vite l'une de l'autre.
"Mais comme l'unique moyen que nous ayons de mesurer la grandeur de ces masses est de les peser, nows restons dans l'impossibilité absolue de dire si des ma ses de même poids, en méme relation de distance avee d'autres masses pessantes, contiennent, ouil ou non, la même quantité de matière.,

Evidently Madame Royer, in reading the Primcipia, has failed to notice, not only the definition of Vis imsifa but also, those important pendulum experiments by which Newton satisfied himself of the exact proportionality of weights to masses, in any one place. Here we see, in no doubiful manner, the evil effects of an education in which athletics have no part. No one, man or woman, who has had experience of Indian clubs or of dumb-bells, could for a moment doubt that we have another mode of distinguishing mass, besides weighing.
Electrotechnisches Gahrbuch von der Electrotechnischen Gesellschaft in Frankfurf am Main. (1883.)
All over Germany are springing up electrotechnical societies, in emulation of those in Berlin and Vienna, fulfilling a kindred part to that played in Great Britain by the much older Society of Telegraph Engineers and Electricians. The volume published by the Frankfort Society-the first of its Proccedings-contains several papers of interest. Amongst these may be noticed two by Dr. Th. Stein of Frankfort, on the measurement of small intervals of time by the photographic electric method; and on certain modern electro-chirurgical apparatus, especially modifications of the influence machine of Holtz. In the first of these papers Dr. Stein describes an apparatus for photographing the pulsations of the heart, \&c., as conveyed by a Marey's tambour to an apparatus which at
the same time causes a record from an automatic tuning. fork interrupter to be imprinted side by side on the photographic plate. In Dr. Stein's second paper, he describes the use of a small Deprez electromotor to drive a small fan, by which warm, dry air is caused to circulate round a Holtz machine, which by this means is always ready for action. In some historical notes by Herr Holthof, dealing with the early stages of telegraphy, there comes out the interesting point that, so early as 1854 , an important improvement had been made in the suggestion of Bourseul for an elestric telephone. An anonymous writer, signing himself "L." in the pages of "Didaskalia," gave in that year, under the title of "Elektrische Telephonic," an account of Bourseul's crude notion, and added something not to be found in Bourseul's suggestion, namely, the use of an eleciromannet in the receiver to actuate the disk of thin metal to which the listener was to apply his ear; the description of the instrument-which, it seems, never reached anything beyond an anonymous suggestion -reads like a description of a Bell telephone, of which it is a remarkable foreshadowing. It is remarkable that Reis, who was at that time resident in Frankfort, should, when using an electromagnet in his subsequently invented telephone, have stopped short of the use of a disk in his receiver in place of the bar armature he employed. It is pretty clear he did not know of "L.'s" suggestion. The remainder of the papers in the "Year-book" deal chiefly with telegraphic and fire-alarm apparatus. The Frankfort Society is to be congratulated on the value of the papers communicated to it during its short existence.

LETTERS TO THE EDITOR

[The Edilor does not hold hinuself responsible for opinions expressed by his correspondents. Neither can he undertake to return, or to correspond wish the writers of, rejected manuscripts. No notice is laken of anonymous commennications.
[The Editor urgently requests con espondents to keep their latlers as short as possible. The pressure on his space is 50 great that it is impossible otherwise to inswre the appearance evew of communications containing infercsting and novel factr.]

What are the Saccopharyngold Fishes?

1n December of latt year M. Vaillant c smmunicated to the French Academy of Sciences a notice of a remarkable deep sea fish, to which he gave the name Eiurypharynx pelecanoides. IIe was in great doubt as to the relations of this form, but concluded that "of all fishes it is to Malarostows niger," placed in the family Scopelidx by zoologists, that he was most inclined to approximate the new type. Five specimens of a nearly related form, to which Mr. J. A. Ryder and myself have given the name Gastrostomus bairdii, were obtained by the United States Fish Commission stearrer Allatross, in the summer and autumn of the present year. The largest of these specimens is nearly two feet long, and an anatomical inve tigation reveals some very remarkable pecaliarities of structure, which have caused Mr. Ryder and myself to differentiate tbe two forms, Gavtrostomus and Eurypharnyx, in a distinct order of fishes to which we have given the name Lyomeri.

The Lyomeri are fishes with five branchial arches (none modified as branchiostegal or pharyngeal) far behind the skull ; an imperfectly ossified cranium, deficient especially in nasal and vomerine elementr, articulating with the first vertelira by a basioccipital condyle alone; with only two cephalie arches, both freely movable, (1) an anterior dentigerous one, the palatine, and (2) the zuspentorial, consisting of the hyomandibular and quadrate bones ; without opercuiar elements ; without maxillary bones, or di-tinct posterior bony elements to the mandible, with the scapular arch imperfect (limited to a single cartilaginous plate) and remote from the skull ; and with separately ossified but im perfect vertebre. Whether other than the two genera mentioned, Eurypharynx and Gastrostomus, belong to this order is not entirely certain, but: there is little doubt, in the opinion of Mr . Kyder and myself, that the family Saccopharyngide also belongs to the order, and it is for the purpose of calling attention to this doubtful and still little known type, that in behalf of Mr. Ryder and myseif I address the present communication. No satisfac
tory information has been given as to the Saccopharyagidx, except by Dr. Mitchill in 1824, and bv Dr. Harwood in the Philonphical Transactions for 1827. The plate published in the volume cited represents the head of Ophiognathus with the mouth closed as well as open, and the differences in the relation of the po-terior angles of the mounh to the axis indicate that Ophiognathus (as well as Saccopharynx) has a movable suspen sorium, and would therefore exhibit the Lyomerous peculiarity of structure. It appears from Dr. Guinther's "Catalogue of the Fishes in the British Museum "(vol, viii. p. 22), that in 1870 there were two specimens of a Saccopharyngoid fish-probably the Ophiognathus ampullacrus-in the British collection. (It is possible that the so-called young mentioned in the Catalogue may be a Eurypharyngoid.) The question whether that species belongs to the Lyomeri can therefore be readily settled negatively or affirmatively. A-suming that the family Saccopharyngidxe belongs to the order, the two families would apparentiy be distinguishable as follows :-

The Eurypharyngidxe are Lyomeri with the branchio-anal portion much shorter than the rostro-branchial ; with the tail very elongated and moderately attenuated backwards; the head flat above and with a transverse ro-tral margin, at the outer angles of which the eyes are exposed; with the palatine jaws excersively elongated backwards and the upper parallel, and closing against each other as far as the articulation of the two suspensurial bones ; with minute teeth on both jaws; the dorsal and anal fins well developed, and continued nearly to the end of the tail, a d ith minute narrow pectoral fins.

The Saccopharyngidx appear to be I.yomeri with the branchioanal portion much longer than the ro:tro-branchial; the tail exces-ively elongated and attenuated ; the cranium unknown; the eyes anten)-lateral ; with the palatine bones moderately extended backuards (in comparison with the Eurypharyngidx), and apparently not closable against each other ; with enlarged teeth in one or buth jaws; with the dorsal and anal fins feebly developed, and with pectorals small but bread. Saccopharynx is considered by Dr. Günther to con ist of "deep-sea conger"," but evidently it is not at all related to the congers or any other allied fishes.

I can assure English naturalists that no type of fi-hes will more fully reward investigation than the Saccopharyngidxe, and it is to be hoped that some master of applied anatomy, like Profs. Huxley or Lankester, may deem an examination of the specimens in the British Museum worthy of their attention. A few of the many remarkable peculiarities of organisation of the type have been described in an article "On the Anatomy and Kelations of the Eurypbaryngidx," by Theodore Giil and John A. Ryder, in the Procidings of the United States National Museum for 1883 (pp. 262-273), and a full monograph will appear later. May we hope for information respecting Saccopharynx in time to correlate it with that on Gastrostomus ?

Tifeo. Gile
Cosmos Club, Wasbi gton, December 18, 1883

The Mildness of the Season

As the flowering of plants at this time of the year is perhaps the best indicalion of the mildness of the season, I send you a list of the plants from which I and a friend gathered one or more flowers on the 24 th and 26 :h Inst. 1 have given the list of each day's gathering separately. Those on the 24 th were gavhered between this cily and Minton Charterhcuse, once noted for its Carthusian monastery. Those of the 26 th were gathered between Bath and Bradford-on-Avon, a very old town which contains the remains of a Saxon church and one of the finest tithe barns in England.

Viator
Bath, December 27, 1883
List of Plamfs from which Floteurs worre gatheral on Decewber 24 Draba terna (Spring Whitlow Grass)
Primula acaulis (Primrose)
Verontica officinalis (Com. Speedwell)
Belles perennis (Daisy)
Centaurra scabiesa (Greater Knapweed)
Ulex awroparus (Com. Furze)
Achilles millefotium (Com, Yarrow)
Crepis virens (Smooth Hawk's Beard)
Lawium album (White Deadnettle)
Fragaria v sca (Wood Strawberry)
Gathernd on December 26
Ramunculus ripew: (Creeping Crowfoot)
Chriranthus chieri (Com. Walllower)

Cerastinm semiderandrum (Little Mouse-Ear Cbickweed) triviale (Lesser do.)
 Arenaria kennifolia (Fine leaved Sandwort)
 Pimpinella saxifraga (Com. Burnet Saxifrage)
 Pastinaca sativa (Wild Parsnip)
 Torillis anthriscus (Upright Hedge Parsley)
 Senerio vulgaris (Con, Groundsel) syinaticus (Monntain do.)
 Crepis virens (Smooth Hawk's Beard)
 Hyporheris nudicata (Long-rooted Cat's Ear)
 Taraxacum dens-loonis (Dandelion)
 Veronica hederifolia (Ivy-leaved Speedwell)
 " Aovita (Gray Procunibent do.)
 ", agrestis (Green do. do.)
 Lamium furpurewm (Red Deadnettle) albwom (White do.)
 Rumex crispus (Curled Dock)

River Thames-Abnormal High Tidea

In a letter in Nature of November 2, 1882 (p. 6), 1 gave a review of exceptional tides from 1860, and attempted to trace the causes thereof ; it appeared that from $\mathbf{3 8 6 0}$ to $\mathbf{t} 868$ inclusive the computed maximnm rise above "Trinity Standard " of high water for spring tidex was 6 incher, and the actual range excess was 3 feet 6 inches above thit standard.

From 1869 to 1882 the greatest computed elevation at high water was 2 feet 1 inch, and the maximum rise 5 feet above "Trinity" at Westminster, viz. on Jannary 18, 1881, and again on October 28, 1882, the same height was attained-in each case resultant on a great north-cast gale. On November 14, 1882, the afternoon tide marked 2 feet 5 inches above "Trinity," or 2 feet 4 inches abjve computed height-resultant again on a north-worth east gale. Since then, during the last thirteen months, there have been no very exceptional tides until last springs.

The following abstract table gives the more salient results for the present year:-

It will Le observed that in the majority of cases northerly winds accompany or have preceded the exceptionally high tides ; also how a great westerly gale blowing down the river depresses the range of tide. The most remarkable result is that attendant on the great gale of the 12 th inst. during last springs, for although high water level was less by 18 inches than in January, 1881, and October, 1882, it was exceptional for its great rise over the computed elevation, being no less than 3 feet 11 inches above the height denoted in the Admiralty tide tables with the reservation before named in my former letter, that the computed heights are for London Bridge. The high water of October 28, 1882, was 3 feet 4 inches above computed height ; but the very remarkable tide of January 18, 1881, was actually 5 feet above the estimated range, which was only level with "Trinity Standard." The afternoon tide of Sunday, the 16th inst,, was also, it will be seen, very mueh increased by the northerly gale then prevailing.
J. B. Redman

6, Queen Anne's Gate, S.W., December 19, 1883

Deafness in White Cats

Referring to the note in your issue of December 13 (p. 164), by Mr. Lawson Tait, on "Leafness in White Cats," I should like to state, if ny remarks may not be out of date, that my fatber kept a breed of deaf white cats over several years; and on making an inquiry regarding these cats of my brother, who now lives in Reading, but who at that time was resident with my father on a farm in North Hampshire, he informs me that the deaf cats weie all white with blue eyer, with one single exception, and that one refers to an aged mother who was named "Deaf," on account of her infirmity, and who had eyes of different colours, the one being "red," or pink, as seen in white rabbits, and the other blue. So remarkable was the appearance of this cat that the eyes often attracted the attention of vivitors, and my brother has more than once related to me a circumstance which 1 should not mention here, save that it so thoroughly bears on this question as one of fact. On one oceasion a neighbour, remarking on the ocular peculiarities of this cat, elicited from my father the jocular reply that "she had one eye for the rats, and anotber for the mice. ${ }^{\text {® }}$ My brother further tates that these deaf cats were all females, and that the breed was pressrved on account of its furnishing "good mousers," I apprehend that this characteristie may in s me measure be attribated to the character of the eyes enabling the animals to see better in obscure light. Males were not preserved, because they became rovers and destroyed the game. When any of the offspring were pied, or otherwise coloured, they were not deaf. Bearing on this, and evidently referable to my brother's early associations, he once observed, in his walks round Reading, a wh.te cat with blne eyes sitting at a cottage door, and on inquiring he found that the animal was deaf; but he made no observation as to whether it was male or female.

Joseph Stevens
Oxford Road, Reading, December 24, 1883

Teaching Animals to Converse

I Have read with interest Sir John Labbock's commnnication (p. 216), bnt I would like to know whether any precations were taken to fild nut whether "Van" selected the right eard by his sense of sight or by scent? This could have been easily dotie by changing the card for a facsimile which had not been previously scented. A more thorough test would be to employ a set of cards with "Food" written on one side of each and some other word on the other, then puting the cards in cases with an opening exposing one word only. The cards could then be pnt in a row and be kept in the same relative position, the changes for the experiments being made by turning the cards in their cases. Wonld it not be simpler to commence with drawings on the cards instead of words. For instance, a saucer or biscuit for " Food," a bone for "Bone," a hat for "Out," \&c. ?
Hanover, January 5
J. S. B.

On the Absence of Earthworma from the Prairies of the Canadian North.West

An incidental allusion is made by Mr. Christy in Nature of the 3rd inst. ($\mathrm{p}, 213$) to Darwin's statement that earthworms "abound in Iceland." In 1881 I spent several weeks in that island, and had occasion many times to search for worms as a bait for tront and char around Thingvalla, Ori, the Niog Kiver, \&c., and could not obtain them except near the farmhouseswhich are at great distances from each other-and absent altogether from the interior of Iceland, which is uninhabited and a desert.
richard M. Barrington
Fassaroc, Bray, Co. Wicklow, January 4

Merrifield's "Treatise on Navigation"

I BEG to thank your reviewer of my book for the suggestions he has made in Nature of December 20 ($\mathrm{p}, 169$), and should like to point out to him that he mnst have overlooked some remarks contained therein, when he says :-
"We regret that Mr. Merrifield has omitted from the chapter on Traverse Sailing the warning given by Raper, that, especially in high latitudes, the difference of longitade shuuld be found on each course," \&c., by Mercator's sailing.

Will you kindly allow me to remark that I mention this twice in my book? First, on pp. 88, 89 I say, "Middle-latitude railing should not be used in (a) high latitudes ; (b) when the difference
of latitude is great ; and (c) when the two places under consideration are on dififerent sides of the Equator. In these cases Mercator's sailing should be used." And again, on P. 104, when speaking of a ship's juurasl (which I considered the right place to introduce it), I give this caution :-
"As longitude by inspection depends on the middle latitude, the cases in which it should not be used as explained under middle-latitude sailing should be attended to: and if the latitude be bigh, or the distance made good be great on a small course, then correct longitude can only be oblained by finding the position of the ship by Mercator's sailing on every change of cuurse."

John Merrifield
Navigation Scbool, Plymoutb, December 22, 1883
II was, of course, aware of the existence of the paragraphs mentioned by Mr. Merrifield, but they do not seem to meet the point raised, viz. that no notice was taken in the chap'er on Traverse-Sailing of the necessity of finding the difference of longitude on each course in high latitudes, alihough the subject is incidentally referred to at p. 104. There will sloubiless always be differences of opinion between the writer and reviewer of a book, but it seems to me that, in teaching, the theory hould be unassailable. Whether in practice it is necessary to apply all the corrections required should be left to the judgment of the practitioner. Mr. Merrifield has reversed this order, having omitted certain rules from the instructions on Traverse Sailing, but mentioned them casually in a paragraph preceding the copy of the log.-The Reviewer.]

AN AMERICAN ROTHAMSTED

HALF a century has elapsed since Sir John Lawes commenced at Rothamsted Park, in Hertfordshire, the unique series of experiments the results of which have produced so salutary an effect on agricultural practice. The inquiries were at the outset restricted to determining the influences of various kinds of manures, and these led to the institution, in the year 1843, of systematic field experiments which are still in progress. Wheat and barley have been grown on the same land for forty-one consecutive years, oats for twelve years, turnips for thirty years, potatoes for nine years, meadow herbage for twenty-eight years, while beans, clover, sugar-beets, and mangel-wurzel have likewise been grown more or less continuously, and all under the varied influences of the different manurial agents. The influence of soils and manures on the composition of crops, the relations of botanical characteristics to the soil and to manures, the physical and chemical propertics of the soils themselves, the transpiration of water by plants, the question as to whether plants assimilate free nitrogen, the composition of rain and drainage waters,-these are some of the chief prohlems which have been the subjects of research. Not less noteworthy are the experiments which have been made with animals, such as the determination of the relation of quantity and kind of food consumed to increase in live weight, the proportion and relative development of the different organs of farm animals, the composition of the animals in different conditions as to age and fatness, the composition of the solid and liquid excreta in relation to that of the food consumed, and the comp sition of the ash of animals in different conditions and variously fed.

Valuable and highly appreciated as are the many published resulis of the Rothamsted researches, yet their significance could not fail to be greatly enhanced were it possible to compare them with similar experiments carried on elsewhere. But the efficient equipment of an agricultural experiment station like that at Rothamsted is a very costly affair, and, unless State aid can be relied upon, it can hardly be undertaken save through the munificence of private individuals. The splendid example set by the founder of the Rothamsted station in this country has stimulated an American gentleman to establish in the State of New York an experimental farm which is already well on the way towards becoming another Rotbamsted.

The credit of this enterprise is due to Mr. Lawson Valentine, who thereby realises "a long-cherished plan for doing something towards the progress of American agriculture," and at the same time providing a pleasant country home conveniently near his place of business in New York City.

Houghton Farm, Orange County, is within two hours' railway journey of New lork City, and occupies an area of 600 acres. In the summer of 1879 the proprictor secured the services of Dr. Manly Miles as director of the projectef exferiments, and after a period of eighteen months, during which the fields were laid out and drained, the experiments were begun. Since the summer of 1881 the experimental work has been carried on as a distinct department, quite separate from that of the farm proper on the one hand, and from that of the residential portion of the estate on the other. Thus the present plans as to Houghton Farm are, in the words of the proprietor, the following :- I. That the farming operations be carried on in accordance with the best known methods, and under the best possible organisation and management, with a view to educating and enlightening others by furnishing valuable examples and result 3 in practical agriculture. 2. That there be a scientific department devoted to agricultural investigation and experiment, and that such department be of the highest order, so as to command the respect, interest, and co operation of the leading scientific minds of this and o:her countries. 3. That Hougliton Farm be a confortable, healthful, and attractive home for the family of its proprictor, and atford large hospitality for friends and guests.

Two distinct though closely related and parallel lines of investigation are recognised. Firstly, the purely scientific work of the laboratory to gain a knowledge of the elements of animal and vegetable nutrition, and of their relations under known definite cond tions. Secondly, accurate and well planned experiments in the fceding of animals and in the growth of crops to answer the various practical questions that arise in the manazement of the farm, and to determine the agricultural value of the facts and theories that are presented as the result of purely scientific investigations. Experiments under this second head deniand, on the part of tbose who conduct them, an extended knowledge of practical farming, as well as the trained skill and ability for original investigations that are required in rescarches in pure science.

As the system of growing the same kind of crop on the same land for a continuous series of years, in the manner followed at Rothamsted, appears to be the only one that can be relief upon to give consistent and trustworthy results, this method has been adopted at Houghton Farm. But be-ides wheat, barley, and oats, the staple American cereal, Indian corn, forms the subject of a special series of experiments. Indian corn is successfully cultivated over a very wide area; it much exceeds in aggregate value any other crop grown in the United States ; it is of great importance as a cleaning erop; and the large amount of cattle food of good quality it is capable of yielding, together with the value of the manure produced per acre when it is fed on the farm, all point to this crop as the one a series of systematic experiments upon the cultivation of which will yield results of greater practical interest to American farmers than will experiments with any other field crop.

The first report on the experiments with Indian corn has already been published, with considerable elaboration of detail. Some interesting results have been established, particularly those on the influence of drainage, on the employment of barnyard manure, and on the character and quality of the grain.

Prof. D. P. Penhallow, the botanist and chemist at the station, has issued no less than four reports last year and this. These deal respectively with the meteorology of the district in which the farm is situated, based
on observations extending over a perio 1 of six consecutive months; with soil temperatures, a series of observations embracing a similar period ; with the normal condition of vegetable structure with reference to cell contents ; and with "peach yellows," a disease attacking peach trees. To do justice to any one of these memoirs would really require a separate notice, but the mere mention of them will serve to indicate some of the channels into which the energies of this new centre of research are being directed. In connection with the meteorological work, however, it is worth noting that daily bulletins were issued, the predictions being made for twenty-four hours from noon to noon. The whole number of predictions made was 210 , of which only 1'9 per cent. proved incorrect, so that the bulletins came to be depended upon and served a most important purpose for the time during which they were issued. All the reports are printed in an attractive form, and special pains appear to have been bestowed upon the diagrams and coloured plates.

To the names that have already been mentioned it is necessary to add that of Mr. Henry E. Alvord, who has undertaken the duties of general manager. Mr. Alvord's name is already familiar to agriculturists on this side of the Atlantic, particularly in connection with American dairy farming, and his association with Houghton Farm is another guarantee, if one were needed, of the thoroughly business-llike manner in which the new experiment station is to be conducted.

From this brief sketch it will be seen that there exist at Houghton Farm potentialities whose development can hardly fail to exercise considerable influence on the agricultural practice of the future. Those who have studied the Rothamsted results will be glad to compare with them the results deduced from the Houghton Farm experiments, and each station will be benefited by comparing notes with its friendly rival, while the valuable work which English agriculturists associate with the names of Lawes, Giibert, Pugh, Masters, and Warington will, it is to be hoped, find a parallel in the discoveries we shall confidently look for from the transatlantic station. Intentionally planned, in many details, upon the same lines as Kothamsted, there is one point in whicb the new station specially resembles its English prototype, and it is conthined in the words, "Visitors are always welcome at Houghton Farm."
w. Fream

EDELMANN'S ELECTROMETER

AMONGST the many forms of electrometer that derive their origin from the quadrant electrometer of Sir William Thomson is that of Edelmann, which is very extensively used in the physical laboratories of the Continent. Dr. Edelmann, whose name it bears, is not only proprietor of workshops in Munich, which are rapidly winning renown for the excellence of the instruments which they turn out, but also holds the post of privat-docent in the Polytechnicum of Munich.
In the parent instrument of Sir W . Thomson, and in most of the modifications of that instrument which go by the names of Branly, Kirchoff, Mascart, \&e, the quadrants are literally four quadrants cut from one plane circle; and in most of these instruments the needle is of the flat dumb-bell or lemniscate form which Sir W. Thomson hi nself gave to it. Dr. Edelmann has, however, taken a departure in quite another line, his instrument being very appropriately named the "cylinder-quadrant" electrometer. The three accompanying figures show the essential parts of the instrument. The quadrants, marked G in Fig. 1, and a, b, c, d in Fig. 2, are formed by taking a metal tube, furnished with flanges above and below, and slitting it into four parts by four equidistant cuts parallel to the axis of the tube; the four pieces being then set in their proper places by being screwed to two rings, R and S , of ebonite. This arrangement has some
advantages over those of the ordinary quadrant electrometers. In these, when the quadrants consist of four pieces of flat brass borne each on an insulating pillar, it is difficult to set them so that they shall be all exactly in one plane; and when, as in some of the more delicate instruments, the quadrants are made of a hollow box slit into four parts, there is found the further difficulty of arranging the quadrants so that the needle can be taken out and replaced. These difficulties are, to a large extent, obviated in Dr. Edelinann's form of instrument ; for the inner surface of the cylinder, which constitutes the four quadrants, can be turned perfectly true after the quadrants have been screwed to the ebonite rings; and there is no difficulty at all in lowering the needle into the cylindrical cavity within the quadrants, or in lifting it out. The needie itself is of the form shown in Figs. 2 and 3, and

Fig. 1.
consists of two portions of metal (w w) cut from a cylinder, united above and below, and hung by a single fibre of small torsion from an adjustable head, \mathbf{F}, above. A mirror, s, is attached above the needle, and a platinum vane, p , below it dips into a vessel, T , containing sulphuric acid. To give directive force to the "needle" a small magnetic needle, $n s$, is attached to it. This device was indeed used in some of Sir W. Thomson's early instruments, though subsequently abandoned in favour of the bifilar suspension usually adopted. It is of course understood that the opposite pairs of quadrants are, as usual, connected together. Electrodes, A, B, pass through the metal plate, m , which covers the instrument, and are connected with the quadrants as shown in Fig. 1. An outer jar of glass surrounds the instrument and is fixed to the under side of the plate m by a bayonet point. The plate M itself is very substantial, and is provided with three levelling screws which rest in V-grooves in a strong ring-
shaped support of cast zinc, L L, which is screwed to the laboratory wall like a bracket.

It will be seen that Dr. Edelmann has discarded the Leyden jar, replenisher, an 1 gauge, which play so important a part in Sir W. Thomson's electrometers. Instead of these a Zamboni pile, or a battery of 200 small well insulated voltaic elements, is used. These are made of test-tubes filled with common water, and having small zinc-copper pairs placed from cell to cell. It is difficult to believe that either of these dispositions is an improvement on the replenisher-jar-gauge arrangement, though either may be somewhat cheaper. Nor is it likely that the presence of the ebonite rings R and s will add, in the

long run, to the satisfactory working of the instrument ; for, as is well known, this substance when exposed to light decomposes at the surface, and becomes covere1 with a conducting-film of acid. The insulation of the quadrants ought not to be risked by such a doubtful device. It ought to be mentioned that a cylindrical arrangement of quadrants had been previously employed by Silow in an instrument for investigating the dielectric capacity of liquids: but to Dr. Edelmann is due the credit of having applied this arrangement for the construction of these electrometers, which in consequence of their many good points are becoming so popular for laboratory work both in Germany and elsewhere.

GLEANINGS FROM THE REPORTS CONCERNING THE ERUPTION OF KRAKATOA

IDO not profose to give here an abstract of all the reports which I have gathered, but I only wish to state some important data which might be uceful to those who wish to become acquainted with the full particulars concerning the eruption. Therefore I have mentioned the authorities fron which I have taken the following statements, in order that the reader who wishes for more circumstantial reports may find them easily.

I regret to say that I have not been able to find any reports from Tjiringin and the lighthouse-keepers of Java's First Point and Vlakke Hoek. In the beginning of I'ctober an engineer of the mine-service was sent to Krakatoa to examine the island, and be is expected now to bring in a scientific report about the eruption; it is to be hoped he has insisted that everything referring to the c.itastrophe should be circumstantially recorded.

1. Data referring to the time anterior to the Eiruption.In a report which was published in the /ava Courant (the plaper of the Dutch Government), which was brought from Batavia hy the mail of August 25 , it was said: "There are now tuo craters on Krikatoa, 3 km . distant from each other, which are continually woraing. The western crater is at the foot of Mount Perbuatan (working since May 20) ; the eastern crater working since a more recent
date (which is unknown to me) at the foot of Mount Dannan. The outlines of the top of Mount Perbuatan are changed; the outlines of the beach are also altered by some increase of land along the shore. The trees which covered the island are burnt for the greater part."

As to what occurred before and during the eruption of August 26 and 27 I particularly took the data :-
(1) From the report of the Berbice, Capt. Logan, from New York (Nicuws van den Dag, Cctober 11): August 26 at 2 p.m. she was off Vlakke'Hoek, 20 miles to the south; she got sight of the light of Java's First Point August 28 at 12 p.m. Since August 26 at 4 p.m. she had only little sail ; 28, at 4 a.m., maintopsail was set; afterwards at noon she set full sail and made for First Point. Therefore she was during the eruption near a line which joins Java Head and the point where she was August 26 at 2 p.m.
(2) From the report of the Charles Bal (Nature, Dec. 6, p. 140) : She passed Prince's Island August 26, at 9 a.m. ; Krakatoa seen at 4.15 p.m., north half east, to miles distant. At 11 p.m. the island became more visible, west-north-west, 11 miles distant ; August 27 at $6 \mathrm{a} . \mathrm{m}$. she set sail, passed lighthouse Fourth Point at 8 o'clock, Anjer at 830 ; passed Button Island at 10.15 .
(3) From the report of eye-witnesses, who were at Anjer during the catastrophe (Nicures van den Dag, October 11 and 14).
(4) From a report written by a passenger (an engineer) of the Gouverneur Loudon (Dutch Indian steamer, 761 reg. tons, 190 h.p.) (Nieurw. Rolterdam. Cowrt., Cctober 23, by Mr. van Sandick): She was off Anjer August 26 at 3 p.m.; went to Telok Betong, where she arrived at 7 p.m. ; remained there till next morning at 7 o'clock. After a wave had destroyed Telok Betong she made for Anjer, but before she had left the bay darkness came on, and she was compelled to lie there till August 28 in tbe morning.
(5) From the report of eye-witnesses at Telok Betong (Nieuws van den Dag, November 3 and 13).

Moreover, 1 took a few particulars from the reports of Katimbang (Nieuws van den Dar, October 16) (Lampongs, at the foot of the Radjah Bassa), Binuangan (Nieuv. Rolterdam. Court., October 23) (at the bottom of the Semangka Bay), and Pulu Merak (Nieuws van den Dag, October 10).
Though e.g. on the Island Bali strong detonations were heard in the morning of August 26, the reports of Telok Betong and Anjer say : Fine weather, no extraordinary detonations in the afiernoon. Berbice reports : Shy dark at 2 o'clock, threatening at 4 o'clock; at 6 p.m. thunder and lightning. En board the Charles Bal at 415 an eruption at the east of Krakatoa was observed; the masses which were driven forth to the east had the aptearance of a furious squall. Anjer reported: At 60° clock quite dark; at Telok Betong at 6 p.m. slight rain of ashes ; at the sa.ne time Berbice experienced ashes pouring down at once ; it was quite dark. Fall of ashes and daikness continued the whole evening. About this time the commotion of the sea began also. At Anjer, between 6 and 7 p.m. several vessels were carried by the wave to and fro in the harbour (canal), but the sea did not flow o.er. From Merak is reported, August 26, at 7 p.m. or 7.30 p.m. : Heavy detonations, violent shocks (but no earthquake). Waves swept away the Chinese camp; caused much damage. In the night (I could not find out at what o'clock) fiery phenomena were seen in the direction of Krakatoa, shocks of earthquake, waves. The Controleur, who was at Katimbang, related: "August 26, 7 p.m., several prows thrown on the beach, waves, but the sea did not flow over, Lor did the waves grow higber."
The Loudon came to anchor off Telok Betong at 7 p.m. Rough sea, boats could not communicate. They observed that there was something n rong, but could not nake out what it was. The Dutch bark Marie, which was there
also (there are two vessels of the same name, Maric and Maria, in the list, the one, Marie, of 570 , the other, Maria, of 790 tons) reported : At 7.30 currents observed in different directions, some small vessels lost their anchors, ten persons saved from being drowned. From Telok Betong is reported: By 6.30 sea quite calm, level of the sea i metre lower than pier, a moment afterwards : metre above it ; people who were at the end of the pier, about 1000 metres distant from the shore, had to walk back through the water, which was done without accidents. Meanwhile the Charles Bal was in a fearful situation since $5 o^{\prime}$ clock. She reports :-"At 5 p.m. sky darkening, detonations stronger, pumice stones pouring down, rather big pieces, had to cover skylights. At 6 p.m. big pieces ceased, small pieces, ashes, \&c., continued. Terrible night. After 7 p.m., at Anjer, heavy detonations were heard, the ground was groaning, thunderstorm; by 9.30 calm , slight rain of ashes. After this the sea was very calm. After midnight some waves were observed, which were not violent. Lloyd's agent at Batavia wrote under date of October 16 (Scotsman, November 24):-"But we know now that the village of Sirah, six miles below Anjer, was partially submerged at 1 o'clock on Sunday night, August 26. This 1 had from the head man himself, who at the time reported it at once. . . At Anjer, however, nothing was felt and no alarm was experienced." At Katimbang a noise was heard of a far-off wave at to o'clock, and the Europeans and natives went to a higher place. During the night the waves were beard causing an awful devastation. At Telok Betong. by 100^{\prime} clock, several vessels were thrown on the beach (among which the steamer Berouzu, draft $1 \cdot 75 \mathrm{~m} ., 4$ guns, $30 \mathrm{~h} . \mathrm{p} ., 4$ Europeans, 24 natives), houses swept away, people drowned, \&c. ; towards midnight calm.

From this it seems to me that no extraordinary detonations were heard nor any phenomena seen which could have startled the inhabitants, who, however, had been accustomed for three months to the noise of Krakatoa.

Meanwhile the outburst continued. The Berbice re-ported:-At midnight ashes increased, pieces of pumicestones, thunder and lightning increased, fireballs fell on deck and were scattered about, fearful roaring, copper at the helm got hot ; heimsman, captain, and several sailors were struck by electric di-charges; sail over the hatches to prevent fire, helm tied, crew sent below, captain and master kept guard; 27th, at 2 a.m, all hands to shovel ashes into the sea (were about 3 feet thick lying on deck). In a still worse situation was the Charles Bal. Lightning continued ; saw a light at 11 p.m., supposed it to be the light of the Fourth Point (Anjer lighthouse) ; lay by ; Krakatoa visible in west-north-west, 11 miles distant ; wind strong south-west, chains of fire appearing to descend and ascend between the sky and the island, while on the south-west end there seemed to be a continued roll of balls of white fire; the wind, though trong, was hot and choking, sulphurous, with a smell as of burning cinders, some of the pieces falling on us being like iron cinders, and the lead from a bottom of 30 fathoms came up quite warm. From midnight to 4 a.m. (27 th) wind strong, but very unsteady between south-south-west and west-south-west, impenetrab.e darkness continuing, the roaring of Krakatoa less continuous, but more explosive in sound, the sky one second intense blackness, and the next a blaze of fire; masthead and yardarms studded with corposants, and a peculiarly pinkish flame coming from the clouds, which seemed to touch the mastheads and yardarms."'
On the morning of August 27, by 6 o'clock, as is reported from Binuangan (Semangka Bay), the sunken cliffs were visible; a little while afterwards a wave came and returned, but another followed, which did much damage ; soon (?) after this it became quite dark, mud and ashes poured down; several waves followed till late in the evening : darkness continued till next morning.

From Anjer is reported that it was about 6 o'clock when the first wave came. One of the persons who were saved said: "I went out about 5.15 . After having talked with several persons, I saw the wave, still far off, rapidly making way towards us. I ran away, was followed by the wave, fell down quite exhausted, but happily on a hill, where the water could not reach me. Before my eyes all the houses along the beach were destroyed." Another person reported:- "I was early at the beach (early, after Indian habit, might be at 5 o'clock). When I returned home I heard a cry, 'The flood comes.' Cn looking round I saw a high wave which I could not escape ; I was lifted from the ground, but caught hold of a trec. Then I perceived several waves, which followed the first ; the place where Anjer had been before was covered by a turbulent sea, from which some trees and roofs of houses were still peeping out. After the wave bad flowed off, I left the tree, and found myself in the midst of the devastation. The Chinese camp was not yet destroyed." A third person, who was still in bed at 6 oclock, was lifted up by the wave and carried to a hill. All agree that after 9 a.m. it became dark, and a pouring down of mud and ashes commenced (darkness till next morning), \&e. From Merak it is reported that in the morning all European officers were in their houses ; when the first wave came they were not afraid, and would not yet go to the hills. The Berbice reported: "Till 8 o'clock it was, as before, quite dark, afterwards worse." The Charles Bal: "August 27, $6 \mathrm{a} . \mathrm{m}$, being able to make out the Java shore, set sail. Passing Fourth Point Lighthouse at 8, hoisted our signal letters, but got no answer. Passed Anjer at 8. 30, name still hoisted, close enough in to make out the houses, but could see no movement of any kind ; in fact through the whole straits we have not seen a single moving thing of any kind on sea or land."

1 must confess 1 am here at a loss. It is possible that the Charles Bal passed Anjer after the first wave had annihilated most of the living beings and before the following waves had finished the destruction of buildings, though it would be strange if at the lighthouse all the people had been killed before the building was destroyed. Moreover, it seems strange to me that the captain should not have seen the devastation nor remaried the tidal waves When they came on, the ship was very near them, and even if we suppose that the waves had been shot like a projectile from Krakatoa on to Anjer, it would be astonishing that such a considerable mass of water should not at all have been perceived, or not described if it had been. We learn from Anjer (and from Telok Betong) that it was seen from the beach like a black wall, and it must have had a considerable height, for it covered all the houses and trees which were near the beach; now an ordinary house might at least be ten or twelve metres high, and the shaft of a cocoanut tree has also a considerable length. Loudon reports: August 27, in the morning fine weather, at $7 \mathrm{a} . \mathrm{m}$. an immense wave came on ; the Loudon, under steam, turned her head to it, was lifted up, but kept well ; now the wave rusbed on to the beach, and before the eyes of the passengers and crew of the Loudon, houses disappeared ; the Berouw (which had been thrown on the beach on the evening of the 26th) was lifted up and carried a few kilometres into the land. The place where Telok Betong had been before was changed into a violent sea (except the buildings on the hills). Three other waves followed at short intervals. Since it was supposed that the cable had been destroyed, the steamer intended to go to Anjer to report the catastrophe. Before she could get out of the Lampong Bay it darkened. The mate of the Maric reports: August 27, in the morning the sea was calmer, but queer weather, sky threatening, prepared the third anchor. At once we saw an immense wave at the horizon making rapidly its way on to us; we spiked up the hatches, and after having done it the first wave struck
the vessel, and threw it on the beach; after the wave had flowed off, the Maric was literally on dry sand; one could have walked around the vessel. Part of the crew left the ship. Froan the barracks at Telok Betong, on the Talang Hill, about twenty-five metres above the level of the sea, an eye-witness wrote : At 6.20 I went to Kampong (village) Kankong, about 1400 metres distant from the barracks, to see the destruction which the wave had caused the night before. After I was there I saw a wave rushing on to us; we hastened to the hills, the villagers following us. When 1 had reached the barracks, 1 saw Kampong Kankong had disappeared, and so bad the other villages near the beach. Before the darkness began the water rose. At Katinbang they perceived in the morning what damage had been done-by little and little it became dark.
At 10 o'clock it was so dark aboard the Loudon that not even outlines of the ship or person; were visible; she stopped for eighteen hours. Rain of mud covered the deck o 50 metre thick. Needle of the compass violently agitated ; barometer extremely high; breathing difficult through damp; some people got unwell and sleepy. After the darknes; began the sea became violent, the wind increased; at last it was a hurricanc. Then several heavy seas came, some of which came across and almost capsized the vessel. The flash of lightning struck the Loudon seven times, went along the conductor, but, when still above the deck, sprang over into the sea. This was accompanied by a dreadful crackling. At such moments the vessel and the surroundings were brightly lighted; it was a fearful sight, everything being covered with a grayish mud. During all this time the Loudon was under steam, steaming slowly at two anchors. St. Elmo's fires at the masts and yards. August 28, at 4 a.m., feeble inoonlight (moon's rise at Batavia, August 28, at $2.15 \mathrm{a} . \mathrm{m}$) at the horizon. After the sun had come up she tried to leave the biy. It seems worth attention that during all these fearful hours no detonations were heard aboard the Loudon (this is exprcssly mentioned in the report).

At Merak an immense wave came by 90° clock from the west and rushed to the east. The European who alone escaped went to the hills, while darkness surrounded him. The mate of the Marie writes:-By $10 \mathrm{a.m}$. (August 27) three heavy seas came after each other; quite dark; at once a fearful detonation. Sky in fire, damp. By 3 p.m. three seas again, after this the sea quite calm. Dark till next morning, then (28th) Marie was found afloat again. From the barracks (Telok Betong) it is reported:--By $9.30 \mathrm{a} . \mathrm{m}$. a downpour of ashes, later stones and mud; about half an hour afterwards the level of the water was only 1 or 2 metres below the top of the hill. Now it was taken into consideration to give up the barracks and retire to a higher point. In the night the rain of mud ceased by little and litule, the sky cleared up, stars appeared. When, at Katimbang, it had become yuite dark, fearful detonations, like thunder and reports of guns, were heard. By ir.30 pouring down of stones began (the biggest as large as a fist). Half an hour after, 12 o'clock, it became quite dark; heavy rain of ashes soon afterwards, hot ashes (during a quarter of an hour), then cold ashes; darkness continued (it is not shid when it dawned). From the Charles Bal is repotted: "At 11.15 there was a dreadful explosion in the direction of Krakatoa, now over thirty miles distant. We saw a wave rush right on to the Button 1sland, apparently sweeping right over the south part, and rising half way up to the north and east sides. This we saw repeated twice, but the helmsman says he saw it once before. The same wave seemed also to run right on to the Java shore. At the same time the sky rapidy covered in, the wind strong from south-west by south; by 11.30 we were inclosed in a darkness that might almost be felt, and at the same time commenced a downpour of mud and sand,
\&c., whicb put out the side lights. At noon the darkness was so intense that we had to grope our way about the decks, and although speaking to each other on the poop, yet could not see each other. This horrible state and downpour continued till 1.30 , the roarings of the volcano and lightnings being something fearful. By 2 p.m. we could see some of the yards aloft, and the fall of mud ceased. (Here the explosion and the beginning of the darkness are reported about two hours later than from Lampong Bay or from Anjer, and still more astonishing is it that nothing is said about the wave which annihilated Merak). At 5 p.m. the sky cleared up in the north-east, but till midnight sky dark, now and then ashes falling. Though the vessel was sixty-five to seventy miles distant from Krakatoa, the roaring of the volcano was still audible." From the Berbice is reported: At 11 a.m. (27 th) strong wind south-east; at $3 \mathrm{p} . \mathrm{m}$. high wave (about 20 feet high) struck the vessel so hard that the chronometers were arrested. Thunder, \&c., continued, and the hands of the barometers were violently agitated between 28 and 30 inches. At 6 p.m. no change, sea relatively calm, lightning allowed us to see the vessel surrounded by a sea of pumice stone ; at midnight, weather calm, lightning more remote. August 88 , at $4 \mathrm{a} . \mathrm{m}$., calm, maintopsail set. Darkness coutinued. At $8 \mathrm{a} . \mathrm{m}$. they saw daylight again. Weatber calm and bright. Ship covered with ashes about 8 inches thick. During the eruption about 40 tons of ashes were thrown overboard; more sail set; had full sail at 12 o'clock, and went straight on to Java Head. Floating pumicestone diminished the speed of the vessel. At midnight light of First Point was seen; when they passed Prince's Island they saw banks of pumice-stone 18 to 24 inches thick. In the afiernoon they passed between Krakatoa and the Java shore. As far as they could see the island was by two gaps divided into three parts. The sea was covered with pumice-stones and floating corpses.

I continue the report of the Loudon:-Ashes and pumice-stone were still falling, but only slightly; the vessel was near the shore; it was a dreadful sight, tree, buried under ashes and mud, the sea covered with pumice-stone and driftwood. Near Pulutiga the entrance of the bay was obstructed by islands of pumice-stotie, like cliffs; they formed a bridge between Pulutiga, Sebuku, and the mainland. Since the channel of Lagundi Strait, seemed comparatively open, the Loudon made for it, but she met there with as island of pumice-stone, about 3 ml . thick ; she went ahesd against it, the pumice-stone gave way, and though there were some difficulties at the pumps, the Lowdon got free; now it was resolved to go to Anjer, the vessel came to the Sunda Straits, west (in the report is said east, which seems a slip to me), then south of Krakatoa; when this island was at larboard (I think it means when the Loudon went to the nortb, passing between Krakatoa and the Java shore, for after having left the Lagundi Straits, she continually had Krakatoa on the larboard) it was seen that the greater part of the island had disappeared ; there was a steep cratelwall, the peak as it were cut into two. In the wall large cracks filled with smoke were remarked. In the sea between Krakatoa and Sibessie several volcanic reefs were seen, there, as it seemed, volcanic powers were still at work. At eight different place; columns arose, which, after having originated in a dark point, grew larger, got as it were a white bordering, arose to a considerable height, and gave way to another column. It could nut be made out whether these phenomena were waterspouts or voleanic eruptions.

It is known that the detonations were heard all over the Dutch colonies and further; I only beg to record that at Acheen, $5 \frac{1}{}^{\circ}$ N. lat., they were so distinctly heard that military forces were sent out, since it was supposed that a fort had been attacked. It may be interesting to see a report from Padang Panjang, whicb runs as follows: August 27, $8.30 \mathrm{a.m}$., at once a heavy explosion, a single
thick cloud of smoke arose (from Mount Merapi $0^{\circ} 20^{\prime} \mathrm{S}$. lat., $100^{\circ} 28^{\prime} \mathrm{E}$. long. Greenwich) drove directly away; now smoke arose from a point at some distance from the crater, uncertain whether it originated in ejectel matiers, or whether there were fumaroles. After five minutes the same phenomena were observed; afierwards it was perfectly quiet. At $10.50 \mathrm{a} . \mathrm{m}$. hollow groaning; another column of smoxe aroie; ashes falling eastward; two columns of smoke During all this time a fearful noise was heard from afar, which became stronger after it a m.

Dr. B. Hagen wrote to the editor of the Ausland (Ausland, No. 46) from Tandjong Morawa (Deli, Sumatra, almost 1000 km . distant from Krakatoa): In the afternoon (27th) thick white clouds were seen coming from the volcano Sipaiak (or Guming Balerang), more than 30 km . distant to south-west.

From Menggala (130 km . from Telo's Betong to the north-west) is reported: Slight concus sion of the air, rain of ashes, darkness. From Sukadanz ($10 ; \mathrm{km}$. from Telok Betong to the north-east) is reported: Much damage done by falling ashes and stones.

During the eruption there were still two vessels near the Sunda Straits the reports of which are to be mentioned. The Annesley (Times, weekly edition, Oct. 12), Capt. Strachan, from Singapore, August 27, for Mauritius: At $10 \mathrm{a} . \mathrm{m}$. it was so dark that they had to light all the lights. Barometer rising and falling inch to 1 inch in the minute. Ashes and pumice stones falling. Towards the night ashes stopped, but it was as black as night. August 28, they passed the Sunda Straits, and heard from the lighthouse keeper (Java's First Point) that he had had fearful weather. Had some of the ashes as far as 100 miles clear of Java Head.

The hopper barge Texal made from Batavia for Merak, August 27, early in the morning. On the way they met with ashes and stones pouring down; it became quite dark, sea rough ; came to anchor by 120^{\prime} clock; dreadful weather; she dragged her anchor. Towards 3 -o'clock the sky cleared up, then went on till 5 pm . In the night they saw a bright light in the south and west, many flashes of lightning, and balls of fire ; several sea-quakes; at once sea like glass. In the morning (August 28), when it dawned, the Tegal was off St. Nicholas Point; now she entered the straits; they saw the devastation. At Dwars-in-den-Weg the sea had still deepened the deep places which were there before; Saleier and Tempora had disappeared; the beight of the waves at Merak was estimated from 30 m . to 40 m . by the chief of the works at Merak (Nieuws van den Dag, October to).

The Prins Hendrik, a Dutch man-of-war (2000 tons, $400 \mathrm{~h} . \mathrm{p}, 55 \% \mathrm{~m}$. draft, 8 guns, 229 Europeans, 53 natives) was sent to the Sunda Straits for the safety of the vessels arriving there (Nieuws van den Dag, November 17). She first went to Vlakke Hoek, but could not communicate on account of the pumice-stone; another vessel succeeded in communicating (September 3), and found of the men of the lighthouse (5 Europeans, 14 coolies) to natives dead, 3 Europeans and 4 natives wounded. The base of the lighthouse is 2.5 m . above the level of the sea; the first (iron) floor was broken, the lodgings near the lighthouse swept away. The Hendrik observed that the north part of Krakatoa had disappeared; from the part which remained, from Verlaten and Lang Island, and the new ones (Calmeyer and Seers), smoke continually arose ; now and then, by night, a flame was scen. September 16, the Hendrik tried to enter Semungka Bay. They found a place where the sea was not covered with pumice-stone, but landing was impossible, the breakers being too strong ; next day a boat was sent again, which was beset in the floating masses. The pumice-stone around the Hendrik was now $;$ feet thick, and one could stand on it. The boat had at last to be given up, the crew (being one lieutenant, Dutch Navy, two boatswains, fourteen sailors) went on shore. The Hendrik tried to leave the bay, but
could hardly turn round ; a condenser exploded, and they had to come to anchor. As far as they could see, the sea was covered with pumice-stone. After thirty hours t' e engine bad been repaired and cleared, and after mu h trouble the steamer got out of the bay.

Though the reports which I have mentioned are fir from being complete (I shall try to complete them), I think they are sufficient to draw some conclusions:-
t. As to the height of the wave, we have seen that the first waves at Anjer were more than 10 metres high (August 27, 6 am .). At Merak the height of the most destructive wave (by 9 o'clock) is estimated at 30-40 metres by the engineer himself, and Mr. McColl (the Scolsman, November 24) estimated it to be 135 fect (about 41 metres). At Telok Betong (Talang hills) it was about 23 or 24 metres, but here it was not properly speaking a wave, but it seems that the water in Lampong Biy was dammed up as it were I suppose that the bay by the first waves was filled, and the mass of water broke here the force of the explosion, and the wave by whi h the latter was followed was turned to the east (fron Merak the wave came from west). In general I do not

suppose that we may speak about "waves" in the ordinary sense. Besides the previous commotions, which were of course very strong, 1 suppose that by the explosion (let us say August 27,9.30) an immense mass of water was driven to the north, and escaped as far as it could into the Java Sea; probably other concussions followed, and afterwards the mass flew back (this was the wave the Berbice met with at 3 o'clock), and went intu the Indian Ocean. If this supposition be true, I think Vlakke Hoek lighthouse was also struck by the wave in the afternoon (which, of course, I do not know). That the water was really dammed up, we learn also-thougle the effect was not so strong-from the report from Telok Betong about August 26. The men, being on the pier, had to make their way home through the water, which at the time was ratber high, and they could never have done it if there had at that moment been a flowing off of the wave. From different reports it results that the waves produced their effect in a certain direction, and not around (e.g. destruction in the night 26th to 27 th, Sirah, south of Anjer; 26th, in the evening, destruction at Merak, only slight commotion at Anjer).
2. The barometer. From the Berbice it is reported : 28 to 30 inches, violently agitated. Annesley: rising
and falling $\frac{1}{\frac{1}{2}}$ to 1 inch in half an hour. Prinses Withelmina at Tandjong Priok: $789-763 \mathrm{~mm}$. (Nicurw. Rotterd. Nov. 26) (789 seems a misprint, Niewzus van den Dag has 750 , perhaps it should be 759). Loudon : extremely bigh.
3. Compasses. Spun round (Loudon).
4. Degree of darkness. From all reports results that there was a moment when "no outlines of ship or men were seen." From the report of the Annesley results that the darkness continued after the downpour of ashes had ce ised, therefore the darkness is not depending on the pouring down of ashes; it is sufficient that the sunlight be intercepted by a thick cloud of ashes. From the Merhice is reported :-Darkness from 26th, p m., to 28th, a. in. From all other places is reported :-Bright, August 27 , from 6 to $9 \mathrm{a} . \mathrm{m}$., and 28 th, from $6 \mathrm{a} . \mathrm{m}$.
5. After having read the reports, the question arose to me, Was the mut ejected from the crater, or were the ashes, \&c., mixed with rain or sea water? I think the latter; I remember, at least, that in 1863 (an eruption of the Merapi, Java, took place) I came into a slight downpour of ashes. I was travelling on horseback, and after some time a thundersiorin came on. All around me, which had been ashes before, was changed very soon into mud. In the report of the Berbice the "rain of mud" is not mentioned, but it is said that the yards were covered with a "crust," because a slight rain had met the ashes, which, however, on deck were still "ashes," because, I suppose, the rain was not hard enough to change su:h a thick layer into a "crust."
6. Detonations, though they were heard in Saigon, Sing pore, Acheen, Ceylon, \&c., were not heard on board the Lowdon. I think this might be explained by the thunderstorm, the pouring down of mud into the sea, and the turricane (which in Lampong Bay did more damage than the wave itself).
7. The part of Krakatoa which has disappeared sank probably August 27; at least in the report from the Loudon the island is described as it is now. From the Berbice, however, it is reported :-Saw it divided in three parts (29th) ; but probably they saw the remains of Krakatoa, Verlaten Island, and Lang Island, which before, when seen from the east, appeared as one island.
8. Sibessie was from the sea to the top buried under ashes (all people killed).
9. The fioating pumice-stone was, in the Lampong Bay, in September, 14 teet thick; in the Semungka Bay it was very strong too. Probably, if circumstances are favourable, new islands are to be formed; though at the end of October steamers came to Telok Betong, in November a hopper-barge was, during eleven days in the Lampong Bay, beset by pumice-stone.
Hesides this I beg to record :-
10. After the eruption of Krakatoa in the Indies many volcanic phenomena were observed, and they prophesied an eruption of Mount Merapi (Java) for February next. Whether they had heard of Mr. Delaunay's prophecies I am unacquainted with.
11. Up to November I they counted 32,635 persons killed by the eruption, \&c. For the burial of the corpses the Government had spent 6000 l.

When the Survey under my direction (1868-69) was busy connecting the triangles of Java with the Sumatra coast, the peak of Krakatoa was also chosen for a point.

Whether there were several hills on the island I cannot say, for when 1 saw Krakatoa it was covered with a splendid vegetation, and in such a case it is not so easy to judge of the configuration as it is when the trees are burnt, but I dare say there was only one peak.

Of the results of the Survey I keep only a map, of which 1 inclose a rough copy. From this it results that the signal was a little to the north of $6^{\circ} 8 \frac{1}{2}$; Kuyper puts it in $6^{\circ} 9^{\prime}$, which is certainly wrong; he inserts also a peak in the centre of the island (622 metres), and says it had disappeared; this is, 1 am sure, a mistake. If the
military survey (which was at work row) had not yet finished its work so far as to give a map of Krakatoa (tbough perbaps they have not undertaken a survey of the island, since administratively it belongs to the Lampongs, and not to Bantam), it might perhaps be useful to consult the notes of the Geographische Diensf, which are deposited in the Archives, and a sketch of the Sunda Straits, which I offered in 1875 to the Minister of the Dutch colonies.
E. Metzger

St itigart, January

NOTES

We regret to learn that Mr. C. W. Merrifield died at Brighton on New Year's Day at the nge of fifty-six.

Many of the friends of the late Dr. Hermann Müller in this country will be glad of the opportunity of testifying to their respect for his memory and their sense of the value of his work by contributing to the fund which is being raised to establish a " Müller Foundation." In the first instance the proceeds will be used to assist the widow of Dr. Müller during her lifetime, and afterwards as an endowment to some poor and deserving student at the Public School of Lippstadt desirons of devoting himself to natural science. An influential Committee has already been appointed on the Con'inent, including the name of Prof. Haeckel. The movement, we are rure, will commend itself to many of onr readers, who may send their subscriptions either to Herr Stadikaemmerer Wilhelm Thurmann, Lippstadt, or to the eare of the Editor of Nature.
Five hundred pounds in prizes are offered by Mr. Francis Galion for extracts from the family records of competitors. They are to be sent him befure May 15, drawn up according to the conditions and ander the restrictions published in his recent book, "Record of Family Faculties" (Macmillan and Co., 25.64.), which contains full explanations, together with sufficient blank forms for the records of a single family.
M. Bouley has almost unanimously been appointed VicePresident of the Paris Academy of Sciences for 1884, and President for ${ }^{1885} 5$.

Earth tremors seem to bave been of almost daily oceurrence in Tasmania recenily. Mr. J. R. Hurst of Longwood, near Moorina in the north east of the colony, sends to the Launcistom Examiner of November 12 a record extending from August 31 to October 20, 188_{3}, noting the occurrence of several daily, some of them so serious as to be alarming. In a note in its issue of November 19 the Examiner says :-"The vibratory motions of the earth's surface which have been so frequent for several months past still continue with a periodicity which is at least remarkable. Ordinary tremors now scarcely arrest attention, but occasionally a quivering of unusual severity startles those who happen to notice it, and reminds them that there are forces in operation in nature which are mysterions and appalling. One of these occurred yesteriay afternoon about six minutes to three o'clock, which was felt in every part of the town, and set uindows and furniture ratting. Some persons fancied that they could detect a distinct undulatory motion. The shock lasted for twelve or fifteen seconds. It may be mentioned that the whole of yesterday was very stormy-frequent and heavy showes of rain, with thnnder and bail, and a very low barometer. Last evening the mercury began to rise."
Prof. J. P. Licherdopol writes from Bucharest, Ruumania, that on January 1, at $6.13 \mathrm{n} . \mathrm{m}$. . two horizontal shocks of earthquake, from north to south and vice versa, were felt there, and were preceded by a loud noise, as of a distant train coming from the north. The fa.niture was sligbtly shaken and crackings were heard. The atmosphere was calm, but charged with a very
thick and persistent fog.-Earthquake shocks were also felt curing Sunday week in various parts of France. At Argeles (Hantes Pyrénces) there was one in the early morning, a second at aine o'clock, and a third about mid-day. At Dorignies, an industrial hamlet near Douai (Nord), the shock was sufficiently strong to cause real alarm. It occurred between six and seven in the evening. Houses shook, their timbers cracked, and glass and earthenware in cupboards were shattered.

The Hungarian astronomer, Herr von Konkoly, who is mentioned as the finture director of the Brussels Observatory, is exexpected to arrive there in about a week, for the parpose of explaining to the Seience Department of the Belgian Academy his recent discovery relative to the cometary spectrum.

We understand that Messrs. McLachlan and Fitch, having been appointed by the Entomological Society of London a committee for the purpose of examining, and reporting upon, certain vine-roots forwarded by the Government of Victoria, through Kew, find as the result of their examination that the Phyllaxera is present in considerable numbers on the roots, which were those remaining in the ground after the vines themselves had been destroyed.

A telegram has been received from Prof. Hull, F.r.S., the chief of the Geological Expedition to the Holy Land, announcing the safe arrival of himself and his party at Gaza, where they are at present detained in quarantine. A letter, dated December 2, was also received from him a few days ago, which has been brought by eamel post vid Naklhl from Akabah, where the party arrived on November 27. In this letter Prof. Hull writes:-" We had every reason to be satisfied with the conduct of our Towárah Arabs. We spent three days in the neighbourhood of Jebel Musa, and made the a cent of the mountain, from the top of which Major Kitchener took angles to several prominent points; while on the same day Mr. Hart ascended Mount Catharina, a feat hitherto unperformed in one day, and was rewarded by finding several plants-representatives of colder climates. From Jebel Musa to Akabah we took the npper ronte, partially explored by Palmer. This has enabled us to add considerably to the accuracy of the geology and topography of the district ; we have also taken a considerable number of photographs. On Saturday week we traversed a magnificent gorge eut through granite cliffs and extending for several miles, which, we believe, has not hitherto been described. It commences at the head of the Wady el Ain, We found the escarpment of the Tih much more broken and indeterminate than is represented in the maps, owing to the existence of several large fanlts or dislocations of the strata which traverse that distriet in a generally northerly and southerly direction, and we have finally determined the position of the leading line of fractnre to which, at least, this potion of the Wady el Arabah owes its existence. Our course through to the Dead Sea by the valley is barred, owing to a blood fead between two tribes. We have, however, contracted with one of the tribes to be escorted as far as the Wady Musa and Petra, after which we shall strike off west across Tih Platenu to Gaza. This will enable us to do the greater part of the work in the Wady Arabah which we proposed. We are all in good bealth, and have made excellent collections to illustrate the botany, geology, and zoology of the district."

The budget of the Ministry of Public Instruction in France reaches the nnprecedented sum of six millions sterling. Half of this sum is absorbed by the primary snd infant schools. The dotation for astronomy and meteorology is 40,000 ., exclusive of municipal credits voted by Marseilles, Toulouse, Bordeanx, Lyons, for their astronomical observatories ; Besançon, Clermont, Paris, and Toulouse, for Besançon, Puy de Dôme, Montsouris, and Pic du Midi meteorological establishments. The

National Library of Paris receives 30,000l., and other public libraries in Paris, $11,000 /$; National Archives, 8000 . The pecuniary grants given to learned men amount to 8000/; voyages and missions, $11,000 /$; College de France, 20,000/, ; Superior Normal School, 20,000\%. ; National Institute, 28,802. ; Academy of Medicine, 3000 . ; School of Hautes Etudes, 19,000 ; ; Faculté d'Etat (Univerities), 400,000l.; Grammar Schools (Lyctes), 329,0001. ; Museum (Jardin des Plante-), about 40,000/.

ThE following arrangements have been made for the meetings of the Society of Arts. The papers to be read at the ordinary meetings will be:-Electric Launches, by A. Reckenzaun; Science Teaching in Elementary Schools, by William Lant Carpenter; Coal Gas as a Labour-Saving Agent in Mechanical Trades, by Thomas Fletcher; Sanitary Progress, by B. W. Richardson, F.R.S. ; The Progrens of Electric Lighting, by W. H. Preece, F.R.S.; Forest Administration in India, by Dr. Brandis, F.R.S. ; Reclamation of Land on the Nortb-Western Coast of England, by Hyde Clarke; Water Regulation in England, by General Rundall; Telpherage, by Prof. Fleeming Jenkin, F.R.S.; New Procers of Permanent Mural Painting (invented by Adolph Keim, Munich), by Rev. J. A. Rivington; Slate Quarrying, by W. A. Darbichire. At the meetings of the Sections the following papers will be read :-Foreign and Colonial Section-Canada as it will appear to the Briti-h Association in $\mathbf{1 8 8 4}$, by Joseph G. Colmer, Seeretary to the IIigh Commissioner for Canada; The Portuguese Colonies of West Africa, by H. H. Jobnston; Reflections on Chinese History, with reference to the present situation of affairs, by Demetrius G. Bonlger ; Borneo and its Prodncts, by B. Francis Cobb; The Rivers Congo and Niger as Entrances to Mid-Africa, by R. Capper. Applied Chemistry and Physics Section-Manufacture of Gas from Limed Coal, by Prof. Wanklyn and W. J. Cooper ; The Upper Thames as a Source of Water Supply, by Dr. Percy F. Frankland; Cupro-Ammonium Solution and its Use in Waterprosing Paper and Vegetable Tissues, by C. R. Alder Wright, F.K.S.; Economic Applications of Seaweed, by Edward C. Stanford. Indian Section-State Monopsly of Railways in India, by J. M. Maclean ; The New Bengal Rent Bill, by W. Seton-Karr; Trade Routes in Afghanistan, by Griffin W. Vyse; The Existing Law of Landlord and Tenant in India, by W. G. Pedder. The courses of Cantor lectures will be on Recent Improvements in Photo-Mechanical Printing Methods, by Thomas Bolas ; The Building of London Housess by Robert W. Edic, F.S.A. ; The Alloys used for Coinage, by Prof. W. Chandier Roberts, F.R.S., Chemist of the Royal Mint ; Some New Optical Instruments and Arrangements, by J. Norman Lockyer, F.R.S.; Fermentation and Distillation, by Prof. W. Noel Hartley.
The Portuguese explorers, Senhores Capello and Ivens, have just sailed for West Africa. They proceed first to Loanda, thence northward to Zaire. It is expected that they will be absent for about two years.
M. Achard's continuous electric brake has been worked successfully in competition with the Westinghouse and other systems. The electricity is obtained by a dynamo worked by the train itself, and can give light for signals and other purposes, when worked by the engine. The sliding valve of locomotives for admitting stean has been replaced by a piston, which renders similar service. A large diminution of friction and wear results from this improvement. The economy in coals is stated to have been 5 per cent.

Dr. Nachtigal, the well-known African traveller, who is now German Consul-General at Tnnis, has received the gold medal for Art and Sciences from the Grand Duke of Mecklen-burg-Schwerin.

The members of the International Polar Commission will meet in Vienna early in May next, where preparations for this meeting are already being made.

Tus death is announced of Dr. Wilhelm Gintl, an eminent telegraph engineer, and formerly director of all Austrian telegraphs. He died at Prague on December 22, 1883, aged eighty years.

Lievt. Wohlgemuth, the leader of the Austrian Polar Expedition, has read a paper on the results of the Expedition at the last meeting of the Viennna Geographical Society; 124 aurore were observed, amongst which about ten were crownshaped. Amongst the old lava streans and in the erevices of the numerous craters of the island of Jan Mayen, I.ieut. Wohlgemuth found traces of a still progressing volcanie activity, and three times observed well-marked subterranean shocks.

A sekies of orninhological observatories has been established throughout Anstria-Hungary at the instance of Crown Prince Rudolf, with a view of paying special attention to the migrations of birds, as well as to their breeding habits. The work done Ly these stations is satisfactory enough ; yet it has been found that a eomplete insight into the periodical movements of birds cannot be obtained so long as similar stations are uot spread over the whole globe. The subject is to form one of the principal topies for discassion at the approaching Ornithological Congress, which will be held under the anspices of the Crown Prince at Vienna o.s April 6 next and the following days.

At Cobern, near Coblenz, a Franconian burial-ground has been discovered, containing many objects of interest, such as ornameuts, reapon, glass and clay vases, stones with iwseriptious, \&c.

The Turin Acaleny of Sciences bas given a prize (4 SO .) to Mr. Hormuzd Kassam for his di coverier in the domain of A syrian and Babylonian antiquities.

THE additions to the Zoological Society's Gardens during the past week include a Bonnet Monkey (Macacus sinicus $\%$) from 1.dia, presented by Madame Ketner; two Khesus Monkeys (Macacus thesus 8 8) from India, presented by Mr. G. Glyn Petre, F.Z.S. ; a White-throated Capuchin (Cebus albifrons 9), a Crab-eating Opussum (Didelphys cancrinsma) from the West Indie, presented by Lady Brassey, F.Z.S. ; a Common Genet (Grontla volgaris) from West Africs, presented by Capt. A. North Daniel ; a Canadian Poreupine (Evithizm dorsatus) from North America, presented by Mr. A. Glidden; a Kinkajou (Cercolefes caudiowivnims) from Brazil, prosented by Dr. Byres Moir: a Ring-hals Snake (Sepedon hrewachates), a Robben 1sland Snake (Coronella phocarwm), an Egyptian Cobra (Naia haje), a Rhomb-marked Snake (Pammophylax rhombeatus), a Many-spotted Snake (Coronella mwltimacwlata), a Hissing Sand Snake (Psammophis sibilans), a Smooth-hellied Snake (Homatosoma lutrix), a Spotted Slow-worm (Acontias meloagris) from South Africa, presented by the Rev. G. H. R. Fisk, C.M.Z.S. ; two Gold Pheasants (Thaumalen picta \& 8) from China, two Commou Peafowls (Pazo cristalus \& \&) from India, deposited ; five Knots (Tringat canm/uu), a Common Guillemot (Lomrias (roile), Britisb, purchased.

OUR ASTRONOMICAL COLUMN

The Solar Motion in Space.-The recently published volume of the Mfemoirs of the Royal Astronomical Saciety contains a paper by Mr. W. E. Plummer, of the Oxford University Obvervatory, on the Motion of the Solar System. The data on which the author has founded his discussion are the proper motions of the stars in the southern hemisphere, as determined by Mr. Stone in the Cape Catal rgue. The work is therefore a repetition and extension of the inquiry conducted by the late

Mr. Galloway, and it would lappear that the necessity of a rediscussion was suggested to Mr. Plammer by the discodances between the values of the proper motions there employed and those given by Mr. Stone. To illustrate the uncertaiuty in the result, particularly when baced upon an in-uffieient number of stars, the position of the apex of the solar system is first derived from the same list of stars as that used by Mr. Galloway, but with improved values of the proper motion. The more tru-tworthy result from these restrieted data places the apex in the constellation Ophiuchns some thirty degrees south of the generally received position.

Incorporating, however, all the southern stars whose known proper motions exceed one-tenth of a second (which raises the number of stars employed to 274), a more accordant re-ult is obtained. If the apparent magnitude be adopted as a criteri in of distance, and the irregularities of proper mition be snpposed due to the peculiar motions of the stars themselves, the coordinates of the apex are $a=270^{\circ} 8^{\prime}, \delta=+20^{\circ} 20^{\prime}$, and the annnal motion of the sun, viewed from the mean distance of the first magnitude stars, subtends an arc of $\mathrm{t}^{\prime \prime} .690$. Unfortunately, if the eorrections computed on this sapposition be applied to the individual proper motions, the sum of the squares of the residuals is slightly larger than the sum of the squares of the original motions.

Selecting as a second hypothesis the suggestion that the distances of the itars vary inversely as their proper motions, the position of the spex is given in $a=276^{\circ} 8^{\prime}$ and $8=+26^{\circ} 31^{\prime}$, and the annual motion of the sun seen from the distance of stars whose annual proper motion is about $t^{\prime \prime} 5$ seconds of arc, is -"926. Introdacing the necessary corrections, the sum of the squares of the proper motion in R.A. is redueed from 124"9 to $70^{\circ} \cdot 4$, and in dechination from $54^{\prime \prime} 6$ to $39^{\prime \prime} 3$, a result that tends to support the reality of the second hypothesis.

Tue Late M. Ivon Villarceav. - Antoine- François-Joseph-I'von Villarceau was born at VendOme on January 15, 1813. He first studied in the local eollege, and sabsequently went throngh the conrse of instruetion at the Conservatoire in Paric, where, in $\mathbf{t 8 3 3}$, be gained a first prize. In the same year be proceeded 10 Egypt with elcien David, and joined the misii in under Enfa,tin: in this way his attenti-n was directed to engineering. Returning to France in 1837 he was admitted to the E.cole Centrale, which he left in 1840 , being then first in the Merhauical Section. Already possessed of an independent fortune, in the years immediately following be was chieelly occupied with mathematical studies, with the view to qualify himself for the bigher branches of mechanics and astronomy. In 1845 his fir t memoir apon comete, which was judged, worthy of invertion in the "Recueit des Savants Etrangers," brought him under the notice of Arag?, who, impresed with the originality of his idea", offered him, in 1846, a place at the Olservatory of Paris, to which establishment he was attached until the elose of his life, at first as assistant, a a d since 1854 as titular astronomer. Villarceas was the author of a large number of memoirs upon mechanical and geodetical subjects, amongst others, on the stability of locomotives in motion, and on the theory of arches, accompanied by extensive tables and nnmerous practical applications, on the theory of the gyroscope of Foucaolt, and the compensation of ehronometers ; be made geodetical determinations in France between 1861 and 1865, which led to several important deductions. Amongst his earlier astronomical work was the development and application of a new method of investigating the orbits of the revolving double stars, whieb he api lied to η Coronse Borealis and other binaries ; this was followed by a memoir on the determination of the orbit of a planet, founded on the method of Laplace. In 1851, on the discovery by D'Arrest of the short-period eomet which bears his name, Villarceau determined the orbit rigorously, and by meanof his predicted places the comet was again observed, in 1857, by Maclear at the Cape of Good Hope. It was upoa his plans that, while Leverrier was in direction of the Observatory of Paris, the great equatorial in the west tower, which constitnted a notable advance in the construction of sucb astronomical instruments, was erected. Villareeau died on December 23. At the funeral discourses were delivered by Col. Perrier in the name of the Academy of Sciences (of which Villarceau had been a member, in the Section of Hydrography and Navigation, since 1867); by M. Faye in the name of the Bureau des Longitudes; and by M. Tisserand in that of the Paris Observatory.

THE ENGLISH CIRCUMPOLAR EXPEDITION ${ }^{1}$

O^{N}April 14, 1882, I was informed that I was appointed to the command of the Circumpolar Expedition. I at once proceeded to London, and was occupied natil the day of sailing in practiee with the magnetic instruments at the Kew Observatory, and the purchase of stores, \&c., for the expedition.

On May I Sergeant F. W. Co oksley, Royal Horse Artillery, and Gunner C. S. Wedenby, Koyal Artillery, and on May 6 Sergeant Instrac or of Gunnery J. English, R.H.A., reported themselves to me , and commensed attendance at kew for instruction.

Fourney to Fort K'ac.-We sailed from Liverpool on May it, and arrived at Quebec on the 23 rd. Here I spent some days, finding that the steamer for the north did not leave Winnipeg till June 10 , and my party was very kindly afforded quarters in the eitadel by Lieut.-Col. Colton, conmanding the Canadian Artillery at that p'ace.

Having obtained a free rass for our baggage on the Grand Trunk Railway, I started at onee for Winnipeg, proceeding by the lakes, that being the cbeaper ronte, and the one which, on the whole, exposed the instruments to the least knocking about.

We reached Winnipeg on June 9, and left on the following day by the Saskalchezaan steamer. On June 26 we reached Carlion, where it was necessary to enga, earts to take our baggage to Green Lake, a distance of 140 miles.

On the 29th th - carts were taken across the river, and on the 3oth we started for Green Lake, which we reached on July 9, having teen delayed by the extreme badness of the road. The heat of the weather also rendered a long halt necessary in the middle of the day, and the flies ; revented our animals from feeding properly, incapacitating them for long marehes or fast work, and on one oce ssion forcing us to halt for a whole day, the oxen being so worried by them as to be unable to march.

At Green Lahe we entered upon the system of water commnnication that forms the only roadway in the north, and by way of Portage la Loche, and the Clearwater and Athabasca Kivers, we reached Fort Chipewyan on July 30. Here ne hal to await the Mackenzie River boats, there being no other means of reaching Fort Rae, and it was not until Angust 17 that we were able to start on this last stage of our journey. We reache i Great Slave Lake on the 22nd, on the evening of which day a gale arose which stove in and sunk onr boat, damazing most of our provisims. Fortunately we were able to repair the boat, bnt it was not until the 25 th that the weather allowed us to proceed, and on the 27th we were again detained by a fresh storm, so that it was not until 10 p.m., on August 30, that we arrived at Fort Rae.

Fort R'as.-Fort Rae is situated in lat. $62^{\circ} 38^{\prime} 52^{\prime \prime} \mathrm{N}$., and long. $1155^{\circ} 43^{\prime} 50^{\prime \prime} \mathrm{W}$., at the south-west extremily of a penin ula that juts out from the north-east shore of a long gulf running in a north-westerly direction for more than 100 viles from the northern shore of the Great Slave Lake. It is alunost entirely surrounded by water, as shown in the annexed plan. The firmatiou is limestone. The land rises to a height of some 200 feet, and it is covered in part with moss, in part with pines and scanty tra-hwood. A few vegetables are grown in the summer in the garden attached t, the Roman Catholie Mission, bat for food the inhabitants chiefly depend upon the produce of the nets, and on deer, which are brought in by the Indian hunters attached to the post.

On arrival it was found that the magnetic instruments required a good deal of selting to rights, their boxes being filled with water and the fittings loosened, so that not a single instrument was quite in working order. There was, moreover, no building ready for their reception, so that it was not possible to keep August 31-September 1, as a term day, but we succeed 2 d in getting the meteorological instruments in position so as to commence observations with them at midnight ou the 3 tst.

We were fortunate in finding a building that admitted of conversion into a magnetic observatory, it only requiring a floor, fireplace, door, and windows to be babitable. This work was at once commenced, and on September 3 the declinometer, on the $4^{\text {th }}$ the bifilar, and on the 6 th the vertical force magnetometer were mounted in their places. This observatory was finished on September to, and ano her one commenced for antronomical and absolnte magnetic observations, the continnal wind rendering out-door observations nnsatisfactory.

- "Repirt on the Circumpolar Expedion to Fort Rae," by Capt. H. P. Dawnon, R.A. Commumicated to the Royal Society by Prof. G. G. Stokes, Sec.R.S.

The men of my party were accommodated in the honse of one of the sub-officers of the fort, and I had a room in the house of the Hudson's Bay Company's officer in charge.

The in-trumen's, on the whole, suffered bat little from the journey. One haroneter and one thermometer were broken, and the object glasses of the telescopes of inost of the inagnetic instruments were nearly opaque, the cement joining the two lenser having, from some cuuse or oher, melted on the jonrney. Our provisions were more damaged, 190 lb . of sugar, 30 lbs , of tea, all our rice, and most of our baking powder having been destroyed.

The ob-ervations were then carried on with out interruption until Augut 31, 1883.

Mognefic Observations, - The balance magneto neter was the only magnetic instrument whose performance was $n \boldsymbol{x}$ satisfactory, as not only did it frequently get out of adjustment, but in times of magnetic dustnrbance it often vihrated through so large an arc that exact reading was impossible. The other instruments were remarkably free from vibration, and there was never any diffculty in reading them, but it was found necessary to extend the scale of the bifilar on the side of decreasing force, owing to the great movements of this instrument.

The greatest magnetic disturbance was on November 17, 18, and 19, 1882, when all the instroments moved at times beyond the limits of their ca'es. On the first of these days the difference between the extreme easterly and westerly positions of the declinometer magnet exceeded 10°.

Aurona.-A arora was observed on almost every clear night, and was usually attended by more or less magnetic disturbance. It did not appear to me, however, that the two phenomena stood in the relation of cause and effect, but rather that they were both due to a common canse. The most marked instanee of connect.on between the two phenomena consisted in a rapid decrease in hoth verical and horizontal magnetie forces which attended a sudden outburst of aurora in the zenith. This was observed on several occavions. The bifilar almost always showed a reduction of horizontal force during a display of anrora. I al-o think that the declinometer magnet tended to point towads the brigbtest part of the anrora, bot that (sic) I have not yet had time to make that careful comparison of the auroral and magnetic observations which will be required to decide this point. It was found inpossible to obtain photographs either of the anrora or of its spectrum-the latter invariably presented the characteristic yellowish green line, and occasionally, but rarely, several other bright lines were visible for a few moments towards the violet end of the spectrum, and once a bright band was seen in the red.
I was also unsucces.ful in my attempts to measnre the height of the aurora, chiefly from the want of a well defined point to measure to, al-o from the fact that some hoors were required to prepare for this observation, whereas the appearance of a suitable aurora could not be predicted, and was, in fact, not of frequent occurrence, and then often only lating a few seconds. For this observation two stations some miles apart should be connected by telegraph and occupied for many days, or even weekr, in succession.

Although I 1 aid attention to the point, I never heard any sound from the aurora save on the ocen ion mentioned in a former memorandum, but I made many inquiries on the subject from reidents in the country, both English and French, and their statements agree so well, buth with one another and with what 1 mysel heard, that 1 am forced to conelnde that the anrora is at times andible, and that on these occasions it appears to b, and probably is, very near the earth.

Metaorological Obrerrations.- With regard to the meteorological ohservations, the station was somewhat unfavourably placed for observations of wind, on account of the hill to the north-east, but as u inds from this quarter were rare, the effect on the results will not be great, especially as one of the anemometers was on an island in the lake, in an entirely open situation.

The anemometers did not work quite satisfactorily, being at times choked by ice; but I hope by the comparison of the two satisfactory results may be attained.

The wind was nsually either south-east or north-west ; and when it blew from the former quarter, the motion of the upper clouds often showed the existence of a north-westerly curreni.

The hair hygrometers were found to be uselens ont of doors in cold weather, on account of the formation of ise on the hair.

The earth thermometers were read every alternate day: the observations were interrupted by a carcajon, or other animal,
which extracted the thermometers from their tube for the sake of the fur in which It has been found necessary to envelop them, and broke them all ; other thermometers were, however, substituted, and the observations continned. It was found impossible to obtain the temperature of the soil at a greater depth than four feet, on account of the rocky nature of the grouud.
A series of observations of terrestrial radiation was made by means of a thermometer placed on the surface of the snow, but the almost continual wind detracts much from the value of these readings.

I was told by the residents of the country that the year was an unusually dry one, and certainly the rainfall is remarkably small; they also said that the winter was particularly mild and free from storms, which, from all account ${ }^{2}$, and from the journals kept at the fort, seem to be both frequent and severe; as it was, we only experienced une, in February.

Astronomical Observations. -My first determination of the longitude was made by means of lunar distances, and time was found by the meth d of equal altitudes, but after the observatory was finished both these points were determined by transits, and the first value of the longitude found to be more thau a minute in error. The latitude was determined by transit observations in the prime vertical, ard is probably within a few seconds of the truth. The longitude may be teu seconds in error. The time was generally correct to within three or four seconds

A more solidly constructed transit instrament would have been devirable, as it was found that in the cold weather it required so much force to move the telescope of the tran it thecdolite on its axis that there was great ri.k of disturbing the adjustments of this instrument, composed as it is of ro many parts.

Foad, ox.-Our supply of provi-ions proved quite sufficient. I had brou sht enough flour to admit of my issuing the usual ratiou of $\$ \mathrm{lb}$, per diem, aud tobacco I lb, per mouth to each man. We also had a supply of Chollet's preserved vegetables, and a reserve stock of bicon, besides tea and sugar. Of the latter we were somewhat short, owing to the loss suatained on the journey up We usually had fresh meat throughout the winter; in the summer we were occasionally reduced to dried meat. During the journey there and back ne chiefly lived on pemmican. The Rev. Père Roure, of the Roman Catholic Mission, most kindly furnisbed us with fresh vegetables and potatoes throughont the sunimer.

The ennduct of the men ander my command was everything that could be desired. They took great intere t in the observations, and did their best to carry them out with accuracy and punctuality, and were always contented and cheerful, iu spite of the inevitable di-comforts of their winter quarters and the occasional hardship of the jonrney.

Refurn Jourwoy. - We were ranning great risks of being overtaken by the winter, and therefore lost no time in our departure.

The last hourly observation was made at midnight on August 31, 1883 , after which the In struments were dismounted and packed, their cases baving been previously arranged in readiness outvide the observatory. The remainder of the baggage was already in the boat, so that by $2,30 \mathrm{a} . \mathrm{m}$. on September i we were en route, and reached Fort Chipewyan on September 17, and Portage la Loche on October 4, having experienced some delay in surmonnting the rapids of the Clearwater, the hard frosts having frozen all the small tributary streams, thus considerably lowering the water in the river.

The boat awaiting us on the south side of the portage was f_{r} zen in, but fottunately the wind changed and the ice broke up before our arrival. Had it been otherwise, we maxt have waited until the rivers were thoroughly frozen and travelling with dog-trains possible. Iu that case we shonld have been compelled to abandon our instruments and hagg'ge.

On the 21st we reached Carlton on the Saskatchewan, where we were detalned a day, the man engaged to transport our baggage across the prairie having refu ed to proceed. Anvoher man was engaged, and on October 31 we reached the railway at Qu'Appelle, arriving at Winnlpeg the following day. We were fortunate in crossing the prairie with so little difieulty, as at the same time last year it was covered with three feet of anow.

At Winuipeg I remained a couple of days to adjust accouts with the Hadson's Bay Company, and on November 4 we started for Quebec, going by rail via Chicago. We reached Qnebec ou the 8 th , and Liverpool on November 20.

In conclusion, I have to acktow ledge the assistance received
from the officers of the Hudson's Bay Company, who spared no trouble in carrying out my wishes, especially Chief Commissioner Grahame at Winnipeg, Chief Factors MacFarlane and Camsell in charge of the Athabasca and Mackenzie River Districts respectively, and Mr. King in charge at Fort Rac. To their hearty co-operation the success of the expedition is in great part due.

Reswlts of Expedition.- The following is a list of the oberva. tions taken at Fort Rae, the result of our year's work there, which 1 have now the honour to lay before the Royal Society :Magnetic

Howrly-

Declination from September 3, 1882, to Aagust 31, 1883 .
Hor. Force
Hor. Force
Vert. Force
Term Day-
In accordance nith programme laid down by St. Petersburg Conference-from September 15, 1882, to August 15, 1883.
Occasional-
Absolute observations of Hor. Force Dip and Dec.ination.

Mifforvlogical

Hourly-
Barometer
from Sept. 1, 1882, to Aug. 31, 1883.
Dry and Wet Bulb Therms.
Anemometer
Wind, Clonds, and Weather
Aurora (when visible)

$"$	"	"
$"$	"	"
$"$	$"$	$"$

Halr Hygrometer (when in working order).
Terrestrial Radu. (occa ionally in clear weather).

Duily-

Max. and Min. Solar and Terrest. Radn. Therms.
Rain Gauge.
Earth Thermometers every two days.
THE EVIDENCE FOR EVOLUTION IN THE HISTORY OF THE EXTINCT MAMMALIA ${ }^{1}$

II.

COMING to the vertebre as a part of the osseous ystem, I will mention the zygapophyses, or antero-posterior direct processes, of which the postr rior looks down and the anterior looks up. They move on each other, and the vertebral column bends from side to slde. In the lower forms of mammals they are always flat, and in the hoofed mammals of the Puerco period they are all flat. In the Wasatch period we get a single group in which the articulation, instead of being perfectly fl t, comes to be rounded; iu the later pericds we get them very much rounded; and fiually. in the latest forms, we get the double curve and the locking process iu the vertebral column, which, as in the limb, secures the greatest strength with the greatest mobility. In the fint stages of the growth of the spinal enrd it is a uotochord or a cylinder of cartilage or softer material. In later stages the tony deposit is made in its sheath until it is perfectly segmented.
Now all the Permian land animale, reptiles, and batrachians retain this notochord with the beginning of oweous vertebrx in a greater or less degree of complexity. There are some in Soath Africa, I believe, in which the os ification has come clear through the notochord, but they are few. This characteri tic of the Permian appears alnowt alone-perhaps absolutely alone as regards land aniunals. There is something to be said as to the condition of that column from a mechanical standpoint, and it is this: that the cord exists, its osscous elements di•pored about it ; and in the batrachians related to the salan anders and the frogs, these osseous elements are arranged under the sheath in the skin of the cord, and they are in the form of regular concave segmento, very much like such segments as you will take from the skin of an orange-parts of spheres, and having greater or less dimen. sions according to the group or species. Now the point of divergenee of these segments is on the side of the coiumn. They are placed on the side of the column where the segments separate-the upper segments rising and the lower segments coming downward. To the upper segments are attached the arches and their articulations; and the lower segwents are like
: A lecture by Prof. E. D. Cope of Philadelphio, civen is genera sesion before the American Association for Advancement of Science at Minneapolis, Augurt 20,188 ? Stenographicalty reported for Science. Continued from p. a go.
the segments of a sphere. If you take a flexible cylinder and corer it with a more or less inflexible skin or sheath, and bend that cylinder sidewite, you of course will find that the fractures of that part of the surface will take place along the line of the shortest curve, which is on the side; and, as a matter of fact, yon have breaks of very much the character of the segments of the Permian batrachia. It may not be so symmetrical as in the actual animal, for organic growth is symmetrical so far as not interfered with ; for, when we have two forces, the one of growth and the other of change or alteration, and they contend, you will find in the organic being a quite symmetrical result. That is the universal rule. In the cylinder bending in this way, of course the shortest line of curve is right at the centre of the side of that cylinder, and the longest curve is of course at the summit and bave, and the shortest curve will be the point of fracture. And that is exactly what I presume has happened in the case of the construction of the segments of the sheath of the vertebral culumn in the lateral motion of the anim: 1 swimming always on one side, and which at least bas been the acturl cuse of the disposition of the o-seous material in its form. I bave gone beyond the state of the discussion in calling attention to one of the forces which have probably produced this kind of result. That is the state of the vertebral column of many of the vertebrata of the Permian period.

I go back to the mammalia, and call attention to the teeth. The ordinary tooth of the higher type of the mamma'ia, whether hoofed or not, with some exceptions, is complex with cre-ts or cusps. In cutting the complex grinding sarfaces we find they have been derived hy the unfolding ex'ensions of fonr original cusps or tnbercles. They have been flattened, have been rendered oblique, have run together, have folded up, have become spiked, have descended deeply or have lifted them-elves, so that we have teeth of all sorts and kinds, oftentimes very elegant, and sometimes very effective in mechanism. In many primary ungulates, the primitive condition of four conical tubereles is found. In passing to older periods we find the mammalia of the Puerco period, which never have more than three tubercles, with the exception of three or four species. In the succeeding periods, however, they get the fourth tuhercle on the posterior side. Finally, you get a complicated series of srinding or cutting apparatus, as the case may be.

Last, but not least, we take the series of the brain. No doubt the generalisation is Irue, that the primitive forms of mammalia had small brains with sm oth hemispheres; later ones had larger brains with complex hemispheres. In general, the carnivora have retained a more simple form of brain, while herbivorous animals have retained a most complicated type of brain. The lowest forms of mammalia display the additional pecaliarity of having the middle brain exposed, and the hemispheres or large lobes of the brain, which are supp: sed to be the seat of the mental phemomena, are so reduced in sixe at the back end that you see the middle brain dintinctly, though it is smaller than in reptiles and fishes. It is beyond the possibility of controversy that these series have exi.ted, and that they have originated in simplicity, and have resulted in complication ; and the further deduction must be drawn, that the process of succession has always been towards greater effectivene ss of mechanical nork. There are cases of degradation, as in the growing deficiency in dentition in man. There is no doubt that a large number of people are now losing their wisd sm-teeth in both jaws.

We are now brought to the question of the relations which mind bears to these principles. The question as to the nature of mind is not so complex as it might scem. There is a great deal of it , to be sure ; but on examination it resolves itself into a few ultmate forms. An analysis reduces it to a few principal types or departments-the departments of intelligence and of emotions (with their modified smaller forms, likes and dislikes), and the will, if such there be. Those three groups, proposed by Kant, are well known, and adopted hy many metaphysicians ; and they stand the scrutiny of modern science perfectly well in both men and the lower animals. Bat the question of the material of the mind, the original raw stuff out of which mind was made, is one which is claiming attentiun now from biologiste, as it always has done from physiologists proper and phy:icians. This is sensibility, mere simple sensibility, unmodified sensibility, or co..-sciou-ness. Sensibility, in connection with memory, is sufficient for the accomplishment of wonderful results. It is only necessary to impress the sensibility with the stimuli which this world affords, whether from the outside or the inside, to have the
record made, and to have the record kept. Among wonderful things this is perhaps the most wonderful: that any given form of matter should be able to retain a record of events, a record which is made during a state of sensibility for the most part, a greater or less degree of sensibility, which is retained in a state of insensibility, and is finally retorned to the sensibility by some curious proces of adhesion, and the results of impresses which are found on the material tissue concerned.

And these simple elements of mind are found in animals. No zoologist who has perception or honesty, nor any farmer or breeder, nor any person who has charge of animals in any way, can deuy sensitiliny to all the lower animals at times. The great stumbling-block is the way of the thinker in all this field is the great evane cence of this sensibility: the great ease with which we di sipate lt , the readiness with which we can deprive a fellow-being of his sense, is a stumbling-block in more ways than one. While it is a questiun of the greatest difficulty, nevertheless, like other departments of nature, doubtless it will ultimately be explained by the researches of physiologisto: I only need to call attention to the fact as an important factor in evolution.
Of course, if these structures are suggested, affecting the mechanical apparatus, the question arises whether they were ma e ready to hand, whether the amimal, as soon as he got it, undertook to use it, and whether he undertook to use the organism under the dire stimuli of necessity, or amended through ages these modifications lu his own structure. We are told by some of our frieuds that law implies a Lawgiver, that evolution implies an Evolver; the only question is, Where is the Law giver? where is the Evolver? where are they located? I may say, it is distinctly proven in some directions, that the constats applications of force or motion in the form of strains, in the form of impacts and blows, upon any given part of the animal organism, do not fail to produce results in change of structure. I believe the changes in the ungulates to which I have called your attention are the result of strains and impacto, precisely as 1 have shown jou the manner of the fracture of the vertebral column of the primitive vertebrates of the Permian period. This would require long discussion to render clear ; nevertheless I venture to make the assertion that this series of structures is the result of definite and distinct organic forces, directed to special ends. We have yet to get at the conflicting forces which have produced the results we see. Mechanical evolution will give us a good deal to do for some time to come. Of course, if motion has had an effect in modifying structure, it behoves us to investigate those forces which give origin to motion in animals. Fint in order come the sensiridities of the animal, which we have traced to simple consci usness ; stimuli, upon notice of which he immediately begins to move. The primary stimulus of all hinds of motion is necewarily touch. If a stone falls upon the tail of some snimsl which has a tail, he immediately gets out of that vicinity. If a jellyfish with a stinging apparatu runs across an eel which has no scales, the eel promp'ly removes. External applications of unpleassnt bodies will always cause an animal to change his location. Then be is constantly as-aultad by the dire etemy of beasts, hunger, which is an instlnct which is evidently universal, to judge fron the actions of anima's. This seems to have fa bioved, in large |art, all forms of life, from the least to the greatest, from the most unorganised to the most complex. Each exercised itself for the purpose of filling its stomach with protoplasm. Then come the stimuli, which should be included under the class of touch, changes of temperature. No animals like to be cold or too hot; and when the temperature is disogreeable the tendency is to go an ay from that locality. Among primary iustinct must be incladed that of reproduction. After that cones the sensation of re-istance, or, carried to a high degree, of anger: when an animal's intere:ts are interfered wihh, its movements resksted, it prompts to the most energetic displays. So yon see it is a matter of necessity that mental phenomena lie at the back of evolution, always provided that the connecting link of the argu-u:ent-that motion has ever affected stucture-be true. That is a point which of course admits of much discussion. I have placed myself on the affirmative side of that question; and, if 1 live long enough, I expect to see it absolutely demonstrated.

Of couse the developenent of mind becomes possible under such circumstances. It is not like a man lifting himself up by his boots, which it would be if he had no such thing as memory. But with that memory which accumulates, which formulates first habits, and then stracture", especially in the 5 ft , delicate
nervous ti-suc, the development of the mind as well as the machinery of the mind becomes perfectly possible. We develop our intellect through the accumulation of exact facts, through the collation of pure facts, no matter whether it be a humble kind of a truth-as the knowledge of the changes of the seasons, which induces some animals to lay up the winter's storewhether it be knowledge of the fact that the sting of the bee is very nupleasant, or knowledge of the fact (of which the ox, no duabt, is thoroughly aware) that the teeth of the wolf are not pleasant to come in contact with, or whether it be the complex knowledge of man. When the cerebral matter has become larger and more com. lex, it receives and retains a much greater number of impressions, and the animal becomes a more highly etucaled being.

As regards the department of emotions or passions, it is also much stmulated by the environment. Animals which live in a atate of constant sirife naturally have their antagonistic passions much developed, while amiable, sympathetic sentiments are better and more largely produced by peace-loving animals, Thus it is that the various departments of the mind have the beantiful results which we now find in the buman species.

There are some departments of the mind which some of our friends decline to admit having had such an origin. The moral faculty, for instance, is excepted by many from this series. But the reasons why they object to its production in this way are, to my mind, not valid. The development of the moral faculty, which is exsentially the sense of jusice, appears to them not to fall within the scope of a theory of descent or of evolution. It consists of two parts. First is the sentiment of benevolence, or of sympathy with nankind, which gives ut the desire to treat them as they should be treated. It is not sufficient fur justice that it is unmixed mercy, or benevolence, which is sometimes very injurious, and very ofien misplaced. It reqnires, in the second place, the criticism of the jndgment, of the mature intellect, of the rational faculty, to enable the possestor to dispose of his sentiments in the proper manner. The combination of rational diserimination and truc judgment with benevolence constitntes the sense of justice, which has been derived, no doubt, as a snmmary of the development of those two departments of the mind, the emotions and the intellect.

It is said that a sence of justice could not be derived from the sen-e of no justice ; that it conld not have been derived from the state of things which we find in the animals, because no animal is known to exhibit real justice: and that objection is valid as far as it goes. I suspect that no animal has been observed to show a true sense of justice. That they show sympathy and kindness there is no question; but when it comes to real jnstice they do not display it. But do all men display justice? Do all men understand justice? I am very , ure not. There are a good many men in civili-ed communitie ${ }^{2}$, and there are many tribes, who do not know what justice is. It does not exist as a part of every mental constitution. I never lived among the Bn-hmen, and do not know exactly what their mental constitntion is ; but in a general way the jnstice of savages is restricted to the very smallest possible circle-that of their tribe or of their own family. There is a clas of people who do not and irstand justice. I do not refer to people wbo know what right is, and do not do it ; but to the primitive state of moral character, in which, as in children, a sense of jnstice is nnknown. I call attention to the fact becanse, ome of our friends have been very much afraid that the demonstration of the law of cvolution, physical and metaphysical, wonld resnlt in danger to society. I suspect not. The mode in which I understand this question appearn to me to be beneficial to society, rather than injurious; and I therefore take the liberty of appending this part of the subject to its more material aspect.

To refer to another topic, and that is to the origin of life, the physical basis of life. "The word "life" is so complex that it is neces-ary to define $i t$, and so to define it away that really the word "life" does not retain its u-ual definition. Many phenomena of life are chemical, physical, mechanical. We have to remove all these from con idcration, because they come within the ordinary lans of mechanical forces; but we have a few things left which are of a different character. One is the law of growth, which is displayed in the processes of embryonic succession; secondly, the wonderfal phenomena of sensibility. Those two things we have not yet reduced to any identity with the ordinary laws of force. In the phenomena of embryology the phenomena of evolution are repeated, only concentrated in the i arly stages through which animals have to pass. So whatever
explains the general phenomena of evolution explains the phenomena of embryolory.

What is the nature of physical sensibility? In this planet it is found residing only in one form of matter which has a slightly varied chemical constitution, nawely, protoplasm; 50 called from a physical standpoint. Now this world, as you all know, has passed throngh many changes of temperature. Its early periods, it is probable, were so very hot that protoplasm had a very poor chance. The earth has passed through a great many changes of temperature, many of wbich would not permit the existence of protoplasm. Again, can we assume for a moment that this little speck in the great universe is the only seat of life? I suppose scarcely any cientific man will venture to do so. If, therefore, life exists in other parts of this great universe, does it necessarily occupy todies of protopla=m in those different, remote spheres? It wonld be a great a samption. It is altogether improbable. The eerta nty is that in those planets which are in proximity to the sun's heat there coald be no protoplasm. Protoplasm in the remote planets would be a hard mineral, and near the sun it would be dissipated into ins emponent gases. So that, if life be found in other parts of this universe, it must reside in some different kind of material. It is extremely probable that the physical conditions that reside in protoplasm might be found in other kinds of watter. It is in its chemical inertness and in its physical constitution that its adaptation to life resides; and the physical constitution necessary for the sustentation of life may be well, uppoed 10 exist in matter in other parts of the nniverse. I only say the door is open and not closed 1 any one who asserts that life cinnot exist in any other material basis than protoplasm is assuming more than the world of science will permit him to assume. And that it is confined to this single planet, and not in the great systems of the universe, -that assumption will not for a moment be allowed. Therefore the subject is one which allows us a free field for future investigation: it is by n) means closed in the most important laws which it presents to the rational thinker. I hope, thererore, if the evidence in favour of this hypothe-is of the creation of living forms be regarded as true, that no one will find in it any ground for any very serious modification of existing ideas on the great questicns of right and wring, which have long sinee been known by men as a reult of ordinary experience, and without any scientific demonstration whatsoever.

THE REMARKABLE SUVSETS

WE have received the following further commanications on this subject :-
Referring to Mr. Meldola's letter in yonr last number ($\mathrm{p}, 224$), I beg leave to state that I likewise ob-erved an a \times tonj hing atmospheric luminosity, out ide of this town, at $2-3 \mathrm{a} . \mathrm{m}$. in the moonless and fogey night of Jannary 1-2. It is reported that in these days the "Dimerungserscheinungen" have again been very striki g at many places in Gerwany. Here the state of the atmosphere has of late been unfavouratile for observing these phenomena; their most brilliant display, a "red glow" of oextraordinary extent and intensity, I witnes ed on the morning of December 1 , teginning about two hours before sunrise.

The view that these luminosilies are caused by volcanic dust acting as nuclei for the condensation of vapour in the higher strata of the atmosphere will have suggested to many of your readers the probability of so-called cosmical dust being ofien derivable from siauilar terrestrial sources. To me it has, more over, recalled an hypothesis on the origin of metenrites, put forth some twenly years ago in an elaborate treatise by Mr. P. A. Kesselmeyer of Frankfurt-on-the-Maine ("Abbandlungen der Senckenbergischen Naturfor chenden Gesellechaft," vol. ini.). Mr. Kesselmeyer contends for the derivation of meteorites from condensation of metallic and other vapours issned from vol canoes; he distinctly supposes those of Eastern Asia as chief sources, and, among other ingenious reasons for these views, he particularly in-ists on remarkable statisties of geograjbieal and seasonal distribution of stone-falls (NATURE, vol. xvl. p. 558).

I am well aware of the momentous difficulties of this bypothesis, which fails to explain why such masses of vapour (or dnst), after travelling for enormous distances, become ecinden-ed into sclid bodies. Un the other hand, there appears to me not to be such a contradiction to astronomical theories as might seen at first sight ; the view in question would merely involve the assumption that there are fireballs and fireballs : thowe which
precede the fall of meteorites being of a distinct nature from those which accompany the periodical swarms of shooting stars, and thereby manifest their cosmical origip. As far as 1 know there does not exist a connection, which might be expected by the usual theory, between these periodical swarms and Increased frequency of stone-falls; on the other hand, it is evident that the late extraordinary manifestations of volcanic activity must furnish a crucial te-t for the hypothesis in question; if it were right, there must be expected an augoented fall of aneteorites to follow this period of dust-spreading.
D. Wetterhan

Freiburg, Hadenia, January 5

Amongst the many interesting points for consideration in connection with the late sunset phenomena is the very general prolongation of twilight produced by thew, doubtless from the reflection of the sun's rays from clouds or diffused vapour at a more than ordinary elevation, after the sun b id set to all at a lower level. In reference to this subject, Mr. F.. Douglas Archibald states that he estimated the height of a glowing stratum (i.f. oiffused clouds) as from ten to thirteen miles ; that Miss Ley, from calculation, bad given thirteen miles as the beight of a similar eloud, and in continuation he says:- "I think this height is far more probable than forty miled, as calculated by Prof. Helmholtz. Besides, can we imagine either vapour, or volcanic dust, or a mixture of botb, to be capable of remaining in suspension in the air of such tenuity as must exist at such an altitude?" (Nature, December 20, 1883, p. 176). To this question I would reply by another, and ask if we can imagine vapour or volcanic dust to be capable of remaining in suspension in air of some 17,000 times less density than water, as, at thirteen miles, higb, that is about the calculated comparative den-ity of the two.

Or I will go farther, and ask if any oue can imagine that water, which is about 860 times heavier than the air at sea-level, can be suspended in the atmosphere without the aid of some buoyant power.

A theory on the cause of rain, storms, the aurora, \&c., which I submitted to the British Association at the Glasgow Mecting, 1840 (sce Repori), was briefly as follows:-

That, as electricity coats the surface of all bodies, occupies space, and has no weight, in evaporating, the minute particles of water take up electricity in accordat ce with their surface and teaperature, and are buoyed up into the atonosphere by it, where, if condensed (i,e, cooled), their capacity for electricity is reduced, and the surcharge is retained or passes away in accordance with the conducting or non-conducting state of the atanosphere. I cannot go further into particulars in this paper, but I may say that I have no knowledge of any phenomenon connected with the cause of rain which is not explicable in aecordance with the theory, although forty years' exertion has not enabled me to bring it fairly nader con tderation.

In my first paper I suggested, as a test for the theory, that conductors should be raised from the earth to the regions of the clonds, under the idea that the withdrawal of electricity by this means would produce rain in temperate, and the aurora in frigid regions. And I hold that I am fully borne out on both these poiuts by Prof. Lematröm's grand auroral experiment ; as, on the connection being made be ween the wirework on the top of the mountain and the earth at the foot of it, electric currents were observed, the aurora became visible, aud the formation of ice on the wirework was so heavy as to break it down; thus showing that rais would have fallen if the experiment bad been tried in a lower latitude. I hold also that the experiment already proves that electricity is the buoyant power of vapour in the atmosphere.

With respect to the undoulted great elevation of vapour and volcanic dust thrown up by the Java eruption, I have long been led to believe that electricity coats the surface of bodies in accordance with their temperatures, and that the non-burning property of superheater metal is from the intense force with which electricity coats the surface, and thus the hand is not actually in contact wi h the met. I when placed upon it ; and in the case of effluent bigh-pressure steam, I believe the particles are so completely wrapped up in their coatings of electricity that they do not touch the object the steam impinges on. Viear. ing these points in mind, it may easily be imagined that particles of dust or water as vapour, when cast up from a voleano, may be at the bighest conceivable temperature, and eharged with electricity in a like degree, and that, being driven up by currents of hea ed air, the farticles may rise to an elevation far
above that of ordinary vapour, and may remain suspended there, more or less, in accordance with the von-conducting condition of the atmosphere at such elevations.
G. A. Kowell

Oxford, January 2
A mongst the many int resting questions rained by the discus* sion on the recent sun-ets, not the least intereving is the question of the upper en rents of the atmosphere. Mr. Norman Lockyer, in bis article in the Times of December 8, writes of the presumed translation of volcanic dust round half the equatorial circumference of the eaith in six days as being in accordance with our actual knowledge of these currents. There are probably many readers of Nature b-sides myself who would be glad to be referred to the observations upon which this sta ement is founded.

An opinion prevalls that, in the rotation of the earth about its axis, th: bigher parts of the atmosphere mast to a certain extent lag lochind, thus producing an ea: t wind relatively to the surface of the earth; and if we allow ourselves to adopt this view, we may eavily imagine that in the equatorial regions there may exist an upper current from the east having sufheient velocity to meet the case supposed. But can thi. view be justified? Is it not more reisonable to consider that the whole of the earih's atmosphere rotates with the earth as if it were part and parcel of it? It is difficult to see why it should not do so, uuless we suppose a resisting medium occupying the inter-planetary spaces.

It is certainly remarkable how well (on the volcanic hypothesis) the entire observations of the coloured suasets and associated phenomena agree with the supposition of an east wind sweeping round the earth with hurricane speed in the upper regions of the a mosphere. Not only the olservations from the Mauritius, Cape Coast Cavtle, Brazil, and the West Innies, but eve, thove from the Sandwich I lands and from Au-tralia, may be made to harmonie with this theury, and the dust from Krakatoa may be said to have made " a girile ruund the earth "in a fortnight. But in case the theory should prove to be iuadmis-ible, it may be worth while to inquire whether some of these earlier observations may not find their exp'anation in an earlier eruption of the same volcanu. The first erup ion of Krakatoa is said to have occurred on May 20, and it is evident that long before the date of the great eruption (August 26) enormous quantities of material had been ejected, vast fields of floating pumice having beeu met with in the neighbouring seas at various times between July 9 and $A u_{b}$ ust 12.

George F. Burder

Clifton, January 7

One feature of the recent sunrises I have not seen described, viz, a large and striking pink semicircle opposite the sun, having a bluish centre. I have only iwice seen it well marked, viz on November 27 and December 15. This seems to be one distinct mark of difference between these sunrises and ordinary ones, inasmuch as I never saw it before, though possibly this may be partly owing to the phenomenon only lasting a few minutes at each time. On November 27 it was at tts beight at $7.43 \mathrm{a} . \mathrm{m}$. At 7.50 there was only a trace of it left. On December 15 it was at its height at $8.6 \mathrm{a} . \mathrm{m}$. At 8.4 it was very faint, and by 8.16 it had again become so, and wa - whitish. At $8.6 \mathrm{a}, \mathrm{m}$, the north-western sky was darkish to an altitude of about 5°, and light pinkish purple thence to 10° : so far the appearance was quite ordinary ; but on the darkish sky rested the broad half ring, which was pink, but the inner part inclining to salmon-c,loured. Being much brighter than the pinkish purple, it obscured it where they crossed. I eatimated the radius of its onter edge at about 25°, and therefore its apex was about 30° in altitude. Within the ring was a bluish white semicircle of about half the radius of the pink semicircle; whish was thus 122° or 13° in width. The sky beyond was blue. The phenomenon seemed to be an ordinary cirrus, though this was of an indefinite type; the spaces between its wisps were pretty blue in all parts of the north-western sky, but partook somewhat of its coloar. On November 27 there did not appear to be any cirrus, but the semicirele must have beea on the film which has beeas; remarkably coloured during sunrise and sunset. I have noticed traces of this semicircle on one or two other mornings, but so faint that I should not bave noticed it if I had not looked for it. I presume that it is of the same character as the pink circle with green or blue centre that bas been visible round the sun by day. This alo is a phenomenon which I never oberved previons to last month ; it was most striking about the 26 th, but continues to be seen almost daily. This
favours the volcanic dust theory; for it is strange that 1 should never have noticed it before, if it is of common occurrence ; still we know that a phenomenon is more easily seen again after it has once been observed, than seen in the first instance. Can these pink rings be accounted for optically? If they conld, would it not throw much light upon the cause of the fine sunrises and sunsets?
With regard to the height of the film whicb bas caused these, I should like to ask whether it is considered proved that the san is actually shining on it so far into the twilight, or whet her the glow may not be caused by reflection from bright sky upon which the sun is really shining. The after glow among the Alps is clearly caused in this latter way, and not by the sun shining upon the mountains them elves. At the same time, the appearance of cirrus cloads dark against the hright sky, as oc curred this morning at ab rut 7.40 a m. ., seems to point to the film being far above them.

Thos. Wм. Backhouse
Sunderland, December 19, 1883
P.S.-This morning the pink half-ring was again conspicuous, only the inner half was nearly white; within was the blue, darkish, as before. It was at its best at $8.10 \mathrm{a} . \mathrm{m}$.

December 20, 1883
T. W. B.

I learned from a Dutch paper (but I forget from which) that a b! ue swn was observed at Paramaribo in the beginning of September (I think it was the 2nd or the 6th).

Stuttgart, January
E. Metzger

The following letter appears in the Times of Tuesday :-
" A shower of matter having 'a white sulphurous appearance' is reported from the vicinity of Queenstown, Cape Colony, towards the close of November. The appended paragrapb, giving an account of the phenomenon, is extracted from a Kim. berley (Griqnaland West) newspaper of Decemher 1. Taken in connection with the description in your correspondence columns of December 25 of a somewhat analogous shower at Scutari, the paragraph is certainly interesting, and, perhaps, of value t, physicists investigating the cause of the recent celestial phenomena.

* Walter Clark
" Edinburgh, January 3
" We were informed yesterday of the occurrence at Glen Grey, absut twelve miles from Queenstown, of a phenomenon which, while it lasted, nearly terrified the white and native population out of their wits. On the afternoon of Wednesday a thick shower of matter, presenting a white sulphurous appearance, fell in the valley in which this village is situate, and, passing right over it from east to west, covered the entire surface of the country with marble-sized balls of an ashy paleness, which crumbled into powder at the slightest touch. The shower was confined to one narrow streak, and while it lasted, we are told, the surrounding atmosphere remained unchanged and clear, as it had been before. Great ncises accompanied the shower, and so frightened the people working in the fields, who at first were ander the impression that it was a descent of fire-the white substanc-glistening in the sun-that on perceiving it they fled into their bouses for shelter No damage was cansed by what fell, and apon examination of the substance afterwards it was fonnd to be perfectly barmless. At first the little balls were soft and pulpy, but they gradually became dry and pulverived, crumbling at the touch. We have before $n s$ a piece of earth on which one of them fell, and the mark left behind resembles a splash of limewash or similar matter. It does not smell of snlpbur." "

Mr. John Terbutt, of Windsor Ohservatory, N.S.W., writes as follows to the Sydmcy Hcrald:- The appearance presented by our evening skies for some weeks past has bean the subject of general remark. Last evening, the 14th, the sky was almost clondless after sunset, and the usual brick-red light again made its appearance along the west-south-west borizon. It was reflected apparently from an almost invivible ard ganze-like cloud in the higher regions of the atmosphere. About seven o'clock the red glow was at its maximum, when a solitary clund, whose apparent surface did not exceed ten square degrees, presented tself above it at an altitude of 25°. This cloud, which was at first white, quickly changel to a beantifnl green, its borders heing of a decper tint. Of all the eloud phenomena that I have witnessed, it was one of the mast remarkable. It retained its green colour for the space of about ten minutes, being all the time subject to mucb internal commotion. It soon afterwards
resolved itself into several cloudlets, and finally disappeared. Two or three other small cloods were visible at the same time, and about the same altitude ahove the northern borizon, but these were of a gray colonr throughout. The eastern sky about the moon was of that deep blue which is frequently observed to surround ber when rising during the winter oppositions. Sbortly after the dispersion of the green cloud, the ruddy glow gave place to the ordinary pale gray of the twiligbt, but by balf-past seven o'clock the western sky became suffused with red, but this time of a clearer and more aursra-like tint. It did not appear, as in the former case, to be reflected from hazy cloud, and it extended mucb bigher in the sky. This repetition of the ruddy glow on the sume evening is a phenomenon which I had witnessed on several occasions during the present month. I remember that many years ago (prubably twenty-five) a somewhat similar patch of red light used to make its appearance regularly after sunset in the west-north-we.t. This phenomenon occurred previously to the commenceant of my regular meteorological observations in 1863, and was, I think, contemporaneous with a very dry winter. That the preient raddy skies are not merely a local phenomenon is obvious from the fact that they have been regularly observed during the past three months over a considerable portion of the Indian Ocean.

UNIVERSITY AND EDUCATIUNAL INTELLIGENCE

Cambridge.-The following appointments have been made in accordance with Grace No. 19, confirmed on December 6 last :-J. II. Randell, B.A., Pembroke College, Ansistant Demonstrator in Physics ; J. C. McConnell, B.A., Clare College, Assistant Demonstrator in Physies; K. H. Solly, Demonstrator in Mineralogy, and Assi tant Cnrator of the Museum; Walter Gardiner, IS.A., Clare College, Demonstrator in Botany ; A. Sheridan Iea, M.A., Trinity College, Senim Demonstrator in Phy-iology ; W. D'Arcy Thompson, B.A., Trinity College, Junior Demonstrator in Pbysiology ; A. Harker, M.A., St. Jobn's College, Demonstrator in Geology. Baron Anatole von Huigel has been appointed Curator of the Muceum of General and Local Arebaoology.

SCIENTIFIC SERIALS

THE American Yournal of Srience, December, 1883.-Some points in botanical nosienclature, a review of "Nouvelles Kemarques sur la Nomenclatnre Botanique," par M. Alph. de Candolle, Geneva, 1883. by Asa Gray. The main object of this very valuable contribution to the vexed sulject of botanic nomenclatare is to enforce the principles and supplement the data supplied by M. de Candolle in bis epoch making worh. If is doctrines are on the whole cordially accepted, and often very ably illustrated, while bere and there some uceful sozges. tive remarks and criticisms are offered on matters of detail upon which diversity of opinion and practice still prevails, -Precarboniferous strata in the Grand Cañon of the Colorado, Arizona, by Charles D. Walcott. The results are here embodied of over 'wo minths' careful examination especially of the Kaibah Division of the Grand Cañ n and lateral gorges undertaken during the winter of $1882 \cdot 3$. The autbor, an active member of the United States Geological Sarvey, concludes that the Grand Cañon and Chuar groups correspond to that of the Keweenawan of Wisconsin, both being referable to the Lower Cambrian. J.intly with the Paradoxides horizon of Braintree, Massachnsetts, and St. John's, New Brunswick, the olenellus of Nevada, Vermont, New York, and Newfoundland, and the Putsdau series of Wisconsin, New York, Canada, \&c. ; they constitute the Cambrian age as so far determined in North America. -Contrinutions to meteorology, nineteenth paper, with tbree plates, by Prof. Elias I.oomis. This paper deals at some lengtb with the barometric gradient in great storms. The results confirm in a general way the aecuracy of Ferrel's formula :-

$$
G=\frac{1076.4(2 n \cos \psi+\nu) s P}{\cos i(1+004 t) P^{\prime}},
$$

where G denotes the barometric gradient in millimetres per degree of a great circle, or sixty geographical miles. But it is sbown that the effect of friction is considerahly greater than was supposed by Ferrel.-A hrief study of Vesta, by M. W. Har.rington. The auth ir considers it probable that this asteroid hasa
liameter of over 500 miles, that she resembles the moon in her albedo, bence lacks an appreciable atmosphere and water, that the irregularities of ber light indicate a very rough surface and rotation on ber axis; lastly, that what is true of Vesta is likely to be true, mulatis mwtandis, of the other asteroids. -On a new form of selenium cell and some electrical discoveries made by its use, by Charles E. Fritts. This new form of scleninm cell las the following properties:-(1) its resistance can be made as low as desired, do *n to nine ohms; (2) the light is made to Atrike the cell in the same plane as the current; (3) it is far more sensitive to light than any before known, one cell having had fifteen times as high resistance in dark as ordinary diffused daylight in a room. Since the paper was written, the author announces the discovery of a new form of selenium, quite colourless and transparent, obtait ed undrr conditions excluding everything but selenium. - The Ischian earthquake of July 28, 1883, by C. G. Rockwood, jun. The anthor concludes that this disturbance had its orgin in a rupture taking place along an old volcanic fissure running roughly north and south, and extending radially under the northern slope of Mount Epomeo ; and that the cau e of the increa ed tension resulting in this ru ture must le referred to the residual volcanic activity u hich ischia shares with the adjacent mainland, rather than to any merely local subsidence, as suggested by l'rof. Palmieri.

Annalen der Physth und Chemie, Bd. xx. No. 11, 1883.K. Clat-ius, on the tbeory of dynamo-electric machines. This is a remarkably clear and able paper, dealing with the funds. mental points in the theory of dynamo-electric machines in a masterly way, and introduces several new notions requiring the determination of the arbitrary constants in different machinec. The questions of self-induction and mutual indaction between different segments of the armature receive special attention. The author promises a further paper with applications of the equa-tions.-L. Sohncke and A. Wangerin, on interference-phenomena in thin and particularly in wedge-shaped films. This paper is a continuation of one in last month's issue, giving new fundamental formulx for Newton's rings and other interferencephenomena of thin films.-B. Hecht, on the determination of the axis-ratios of the elliptic paths in elliptic polarisation in quartz. A discuysion of furmule of Cauchy, Lommel, Voigt, and Jamin, in reference to the anth, r's experiments, - W , Vuigt, on the theory of light : a pulemie againtt Herr Lommel respecting the latter's views on the possible intermolecular friction of the luminiferous ether.-1H. Wild, on the application of his photometer as a spectrophotometer; this instrument, constructed by Hermann and P6ister, of liero, contains a slit, a calc-spar rhombohedron, a Foucault prism, a second rhombohedron, a selenite plate, a Nicol prism, a pair of adjustable glass prisms, a 5 prism Amici direct-vision prism, and sundry lenses. The light to be examined has to pass through these successively.-Revearches on forced vibrations of plate $;$ part ii., on vibrations of square plates, by A. Elsas. This paper, which is accompanied by a set of forty-nine figures, is in continnation of a previous research on forced vibrations of round plates. The author points ont that we already have the well-known researches of Cbladni and Wheatstone on tbe figures due to natural vibrations of such plates. Tbe aim of this research was to ascertain wbether Savart's rule, that the forms of the forced vibrations merge into one anotber by a perfectly continuous series of modifications, is true for square plates: whether the figures corresponding to forced vibrations agree w ith those of the free vibrations of the same pitch; and whether the legitimacy of Wheatstone's method of superposition is confirmed or disallowed. The most important of all the results is that it is impossible for a square plate to vibrate in response to any time whatever, higher than its own fundamental, that may be forced upon it.-On Boltzmann's theory of elastic reaction, by Prof. E. Riecke; a malhematical discussion of Boltamann's equations.-On aqueous solutions, by J. A. Groshan=. A discussion of the dependence of the density of the solution on the quantity and molecular constitution of the soluble substance. - Measurement of the quantity of electricity produced by a Zamboni's pile, by Prof. E. Riecke. The valnes were calculated from currents travering a long-coil galvanometer and a very bigh resistance.-On the galvanic-temperature coefficients of steel, rod-iron, and cast-iron, by V. Strouhal and C. Harus. For steel this coefficient diminishes as the hardness of tempering increaser, while the specific resistance increases with the hardness. Glass.hard steel has about three times the specific resistance of soft steel.-On the relation between viscosity and electric resistance of solutions of salts in various
solvent medis, ty E. Wiedemann. There appears to be no such relation a b bs been conjectured to exist,-On Arabian measurements of specific gravity, by E. Wiedemann,-Simplifications in experimenting with the air-pump, by K. L. Bauer, suggests the expedient already well known in England, of placing a sheet of soft caoutchouc under the receiver of the pnop instead of greasing its rim; also similarly between the edges of the Madgeburg bemispheres. Gutta-percha paper is suggested as a substitute for bladder to be burst by air-pressure.

SOCIETIES AND ACADEMIES

London
Chemical Society, December 20, 1883.-Dr. W. H. Perkin, F.R.S., president, in the chair.-The following gentlemen were elected Fellows of the Society:-W. P. Bloxam, A. Cobl, J. C. Chambers, A. E. Ekins, F. P. Haviland, F. Keeling, W, H. R, Kerry, J. J. Pilley, M. Percy, J. Phillips, A. W. Rogers, W. J. Saint, G. Smith, A. Smithells. The following papers were read:-Researches on the gums of the arabin group, by C. O'Sullivan. Part I. Arabic acid; its compositi n, and the products of its decomposition. In this most important paper the anthor has studied the action of dilute sulphturic acid upon arabic acid. The arabic acid was prepared by the method of Neubauer, and the sulpburic acid was allowed to act for various lengths of time from fifteen minutes to several hours. The molecule of arahic acid, $\mathrm{C}_{89} \mathrm{H}_{142} \mathrm{O}_{74}$, is broken down, a series of eleven acid of gradually decreasing molecular weight (differing hy $\mathrm{C}_{6} \mathrm{H}_{30} \mathrm{O}_{3}$) having been isolated, and the barium salts formed and analysed ; the lowest acid is $\mathrm{C}_{33} \mathrm{H}_{38} \mathrm{O}_{25}$, and is comparatively stable ; these acids the author calls a_{1}, β, \&c., arabinosic acids. Simultaneously a series of sagars having the compo ition $\mathrm{C}_{6} \mathrm{HI}_{12} \mathrm{O}_{6}$ is formed of gradually decreasing optical activity, whitb the author names a, β, γ, and δ arabino e. Ambic acid is the chief constituent of all the lavorotatory gums, but other acids are present which bear a simple relation to it. In a future paper the author promises an account of the dexirorotatory and optically inactive gums, the acids of which are built up in the same manner as arabic acid.-On the decomposition of ammonia by heat, by W. Ramsay and S. Young, This decomposition commences about 500°, and is nearly equal in extent with porcelain, glass, iron, and asbestos, but at 780° ammonia is almost completely decomposed by passing through an iron tube. Copper, when beated, is not so active.-On the halogen compounds of selenium, by F. P. Evans and W. Ram-say.-On the preparation of pure chlorophyll, by A. Tscbirch. This substance is ohtained by the action of zinc du-t on chlorophyllan (Bot. Teif., 1882, 533) ; its spectrum is identical with that given by living leaves.

Zoological Society, December 18, 1883.-Prof. W. H. Flower, F.R.S., prevident, in the chair. - Dr. F. Leuthner read an abstract of a memoir which he had prepared on the Odontolablni, a suhfamily of the Coleopterous family Lucanidre, remarkable for the polymorphism of the males, while the females remained very similar. The males were stated to exhibit four very distinct phases of development in their n-andibles, which the anthor proposed to term "priodont," "amphiodont," "mesodont," and "telodont." These forms were strongly marked in some species; but in others were c nnected by insensible gradations, and had been treated by the earlier authors as disinct species. The second part of the memcir contained a monograph of the three known genera which constitute the group Odontolabi,i,-Mr. E. B. Poulton, F.Z.S., rrad a memoir on the structure of the tongue in the Marsupialia. Tbe tongues of species of neariy all the important groups of this subclass were described in detail. It was found possible to classify the tongnes in three divisions. Of these, Halmafurws was the type of the lowest, Phalangisfa of the intermediate, and Pcrameles of the most advanced, division.-Mr. J. Wocd-Mason, F.Z.S., read a paper on the Embiidre, a little-known family of insects, on the structure and habits of which he had succeded in making , ome investigations during his recent re. idence in India. He came to the conclusion that the Embiidx undoubtedly belong to the true Orthoptera, and are one of the lowest terms of a series formed hy the families Acridioider, Locustidx, Gryllidx, and Phasmatidx.-Mr. G. A. Boulenger, F.Z.S., read an account of a collection of frogs made at Yurimaguae, Huallaga River, Northern Peru, by Dr. Hahnel. The collection contained examples of eighteen species, eight of which were
regarded as new to science, Mr. W. F. R, Weldon read a paper on some points in the anatomy of Phernicoplerws and its allies. An account was given of the air cells of the Flamingo, which were shown to differ from those of Lamellirostres, and to agree with those of Storks (1) in having the praebronchial aircell mach divided, (2) in the feeble development of the posterior intermediate cell, and (3) in the great size of the abdominal cell. The pseudopiploon was also shown to differ fro n thit of Lamel lirostres, and to agree with that of Storks, in extenling back to the cloaca. A detailed emmparison between the muscles, especially those of the hind lim', gave the same resulis. The larynx, however, being Anserine, and the skull intermediate, the position expressed by Huxley's term "Amphimorphx" was considered fully justifiable.-Mr. Sclater read a paper, in which he gave the description of six apparently new species of South American Passeres.

Anthropological Institute, D.cember 11, 1883.-Prof. Flower, F.R.S., president, in the chair. - The election of Mr. E. W. Streeter was annonnced.-Mr. Walton Maydon exhibited some photographs of North American Indians,-A paper by Mr. A. W. II switt, on some Australian ceremonies of initiation, was read by I'r. E. B. Tylor. The ceremonies described by the author are common to a very large agsregate of tribes in the south-eastern part of Anstralia, and as himself an initiated person, Mr. Howitt has had unusual opportunities of observation and of chtaining information from the Blacks, When it has been decided that there is a sufficieut number of boys ready for initia'ion, the headman sends out his messenger, who travels ronrd to the headmen of the same totem, who then communicate the message to the principal men of the different totems which form the local groups. The messenger carries with him, as the embleus of his mission, a complete set of male attire, together with the sacred humming instrument, which is u rapped n_{p} in a skin and carefully concealed from women and children. The ceremonial meeting having been called together, that moiety of the community which called it prepares the ground and gets all ready for the arrival of the varions contingents. Mr. llowitt then described at lengih the procession from the camp to some retired and secret place where the ceremonies are to be performed, each novice being aitended by a guardian, who fully explains to him all that is said or done. A camp is formed when the spot is reached that has been fixed upon for the site of the tooth-knocking-out ceremony, which was fully described by the anthor in the latter part of the paper.--Dr. R. G. Latham read a paper on the use of the terms "Celt" and "German."

Geological Society, December 19, 1883.-J. W. Mnlke, F.R.S., president, in the chair.-Rev. W. R. Andrews, Robert James Frecheville, and Rev. Philip R. Sleeman were elected Fellows of the Society. - The following communications were read :-On some remains of fossil fishes from the Yoredale series at Leyburn in Wensleydale, by James W, Davis, F.G.S. - Petrological notes on some North-of-England dykes, by J. J. H. Teall, M.A., F.G.S. The anthor described the stratigraphical relations and the structare, macroscopic and mi ro--copic, of a number of dykes whieh cecur in the north east of England, giving analyses. He pointed out that they fell into four more or less distinct groups : (1) the Cleveland dyke and that of Acklington; (2) the Heth and its related dykes; (3) the dykes of Hebburn, of Tynemonth, of Brunton, of Harley, and of Morpeth ; (4) the Migh Grean dykes. Groups (1) and (3) resembled one another in specific gravity and chemical composition, as did (2) and (4), the percentage of silica in the first two (except in the Morpeth dyke) varying from 57 to 59, and the specific gravity being about $2^{\prime} 7$ or $2^{\circ} 8$, while the others had a silica percentage of from 51 to 53 , and a rather higher specific gravity. The former present some microscopic differences, the Jatter are very closely related. The Cleveland, Ackling:on, and Heth dykes have been examined at intervals far apart, and exhibit no variation or relation to the surronnding rocks; so that evidently they have not taken up any appreciable portion of the material tbrough which they have broken. The dykes of Gronp (3) being probably pre-Tertiary (the author does not himself find it possible to distinguish igneons rocks by their geologic age) would be termed melaphyres on the Continent; but those of (2) and (4) are nearer to the gronp of diabases. The Cleveland dyke (Gronp i) is almost certainly of Tertiary age, and its structure and composition entitle it to the name of an augite-andesite. The Iroitwich brine springs and saliferous marls, by C. Parkinson, F.G.S.

Edinsurgh

Royal Soclety, December 17, 1883.-Robert Grey, viceprexident, in fthe chair.--Prof. Tait communicated a paper by Mr. A. Campbell, containing the results of additional experiments on the Peltier effect. The results agreed closely with their values as calculated from the thermoelectric diagram. Dr. Sang read a paper on the problem of the lathe band, and en problems therewith connected.-Prof. Tait read a note by the Astronomer-Royal for Scotland, on Brewster's line Y in the infra-red. The olject of the note was to point out that this line, u bich had been ascribed by some recent observers to air, and therefore omitted from the spectrum, is a true solar line, which has been found to be due to sodinm.-Mr. John Murray read a communication by Mr. P. H. Carpenter, on the Crinoidea of the North Atlantic between Gibraltar and the Faroe Islands: with notes on the Myzostomidx, by Prof. T. von Graff, Ph. I. -Mr. R. W. Felkir, F.R.G.S., gave a very interesting account of the Madi or Moru 1 ribe, from which the flower of the Egyptian army has beed drawn.-A paper was also read, on the structure of the pitcher in the seedling of Nepentbes, as compared with that in the adnlt plant, by Prof. Alexander Dickson, M.D. Prof. Dickson gave the results of his examination of Nepenthes seedlings lately raised in the Edinburgh Koyal Botanic Garden. One of the most important points to which he drew attention was in connection with the annulus or rim of the pitcher orifice. In the seedlings this structure is seen even in the pitcber leaf immediately succeeding the cotyledons, and a row of cushion- or button-like glands is to be found just within its inflexed edge. From observing these glands, Prof. Dickson was led carefully in examinc the annulus in the adult plant, with the result of his discovering their representatives in a remarkable series of gigantic glands. If the inflexed rim be examined, there is to be found, just above its free edge, a single line of small orifices, alternating with the ridges of the corrugated annulas and with their toothlike prolongations, when these are pre ent. On dissection, each of these oritices is seen to be the outlet of a canal-like fosse, from the bottom of which a cellular, nipple-khaped body or mammilla projects. This mammilla is the free apex of a gland, the great balk of which is immersed in the parenclymatons substance of the annulus. These glands vary in length, according to the species, from $1 / 37$ ($N_{\text {. amfullaria) to the enormous }}$ measnre of $1 / 12$ of an inch (N. destillatoria, N. phyllamphora, \&c.). Prof. Dickson could not speak definitely as to the function of these glands, but thought that they probably secrete boney, affording to the insect the last drops just as it is on the brink of destruction! Sir J. D. Hooker, in his arldress on insectivorous plants delivered at the Belfast meeting of the Brit sh Association, had spoken of the pitcher rim as secreting honey, but withont making any reference to these remarkable marginal glands.

Bermingham

Philosophical Society, December 13, 1883.-Peculiar absorption of a compound of iodine by aluminium, by Dr. G. Gore, F.R.S. This paper contains a statement of the discovery of a peculiar fact by the author, viz that when a sheet of aluminium was simply inmer-ed in a solntion composed of $17 \frac{1}{2}$ grains of pure iodic acid dissolved in 34 ounces of distilled water, it absorbed as much as 16 per cent. of its weight of a foreign substance, and emitted a strong odour of iodine. It retained its metallic appearance, although it had become peeuliarly rough by corrosion. When struck by a hard substance is emitted a less metallic sound. In several similar experiments the plates gained much more in weight by absorption than they lost by corrosion. By examining the edges of the sheets under a microscope, the sheets were found to be partly disintegrated into thin layers, A variety of other methods were tried, including electrolytic ones, to produce the same effect, but in no instance did the metal emit much odour of iodine, or appear to have absorbed freely a foreign substance. With aluminiam immened in dilute hydriodic acid containing dissolved iodine, similar though much less conspicuous effects of disintegration and emission of odour of iodine were, however, observed. By immersing a sheet of the metal in a solntion of bromic acid, the metal did not appear to absorb much bromine. A partial investigation was made of the phenomena. By washing the sheets with water, the water became strongly coloured by iodine, and continued to do so after many washings. Although, after having been washed and dried, they continued to emit a strong odour of
iodine, they did not by iamersion in carbonic bisul,phide at 60° F., during thirty-six hours, yield any iodine, or impart any c slour to that liquid ; the absorbed substance was not, therefore, siuple iodine. A flat sheet of aluminium varnished on one side, and then immersed in aqueous iodic acid, did not assume a curved shape. A chemical analysis of the absoried substance has not yet been made.-Reduction of metallic solutions by means of gases, \&c., by Dr. G. Gore, F.R.S. This paper is a record of a number of instances in which various solutions of metals were reduced to the metallic state by contact with gases, and different organic compounds. The solutions chiefly employed were those of palladium, iridium, platinum, gold, silver, and mercury, and less frequently those of copper, lead, iron, manganese, chromium, vanadinm, and tellurium. The gases used were hydrogen, carbonic oxide, coal gae, and crude acetylene. The organic compounds included both liquid and solid snbstances; the liquids were amylene, petroleum, benzenc. P'ersian naptha, xylol, toluol, carbolic acid, "petroleum ether," mesitylene, and liquid chloride of carbon, and the solids were paraffin, ozokerite, naphthalene, anthracene, chrysenc, elaterite, solid chloride of carbon, \&ec. By con'act with gases the metals were generally reduced in the form of films upon the surface of the liquids, as well as in that of precipitated powder; some of the films produced, both by the contact of gaces and by that of non-miscible liqnids, were remarkably beantiful, and of a surprising degree of thinness. Amongst the most conspicnous instance of reduction were the following: -a solution of palladic chloride was rapidly redaced by carhonic oxide, hydrogen, coal gas, and amylene. One of terchloride of gold was quickly decomposed and reduced by coal gas, carbolic acil, and amylene. The mot beautiful films were those produced by a solution of terchloride of gold, with coal gas or with amylene. Solations of chloride of pulladium were usually more rapidly decomposed than those of chloride of gold. The films of metal thus produced might prove of service in some optical and other physical inve-tigations. It is worthy of consideration also by geologists, whether the reduction of metals to the native slate in the interior of the earth may not in some cases have been effected by contact of their solutions with liquid or gasenus hydrocarbons derived from coal and other mineral substances of organic origin.

Paris

Academy of Sciences, December 31, 1883.-M. Blanchard, president, in the chair-Action of heat on aldol and paraldol, ly M. Ad. Wurtz. On a white rainbow (Ulloa Circle) observed at Courtenay (Loiret) on the morning of November 28, by M. A. Cormu. This extremely rare phenomenon occurred under atmospheric conditions closely analogous to those described by Bravais in the Fourn. de l'Ecole Polyoerh., xxx. p. 97. The radins appears to have been much shorter than that of the ordinary rainbow.-Mission to Cape Morn : Snmmary report on the researches made in natural history and anthropology by the Romanche, by Dr. Hahn. In the north eastern islands of Tierra del Faego acquaintance was made with the Ua people, who present several remarkable peculiarities. Althongh fiving on frien ly terms and even intermarrying with the more southera Yahgans, they seem to be related in stock and speech rather to the continental Patagonians. They appear even to exceed them in stature, and thus to rank as the very tallest race on the globe. - Note on the tidal curves registered between November, 1882, and Septexber, 1883 , by the maregraph at Orange Bay, Cape Horn.-Observations of the Pons. Brooks cowet at the Obser. vatory of Nice (Gautier-Eichens equatorial), by M. Perrotin. -Spectroscopic stady of the Pons Brooks comet made with the reflector of $0 \times 50 \mathrm{~m}$, at the Observatory of Algiers, by M. Ch. Trépied. The following results were obtained :-

		Comet		Flage of
Reading for				
First green line (less refrangible)	...	13.92	...	14.09
Second green line	$15 \cdot 12$		$15 \cdot 20$
Blae line		1676		17.04

showing that in its visible parts the spectrum of the comet is identical with that of a flame of alcohol.-On the mnltipliers of the linear differential equations, by M. lidehen.-On a means of determining the factor of integrability, by M. W. Maximo-vich.-On the generation of surfaces, by MM. J. S. and M. N. Vanecek.-Reply to M. Larroque's observations on the experiments recently made in connection with the study of earth currents, by M. E. E. Blavier.-On the temperature obtainable by
means of boiling oxygen, and on the solidification of nitrogen, by M. S. Wroblewski. Reserving a description of his proces, the author annonnces as a first result an approximale temperature of $-186^{\circ} \mathrm{C}$. When subjected to this intense degree of cold, nitrogen became solidified, falling like saow in crystals of a remarkable size.-On the maximum of solnbility of soda, by M. E. Pauchon, - On an incomplete oxygenised monamine (oxallyldiethylanine, by M. E. Roboul.-On the fluorides of sodium, by M. Guntz.- Researches on ptomaines and analogous compounds, by M. A. Gabriel Pouchet.-Action of copper on the health of persons engaged in the copper industries; bistory of a workshop and of a village, by MM. A. Hoales and de Pietra-Santa. The history of this village (Tarn, Durfort) extends over a period of a hundred years, and teads to show that coppersmiths (forgers, braziers, \&e.) are on the whole as long-lived if $n x$ mare so than the agricaltural population of the same distr.ct. - On the anatomy of a hunian enbryo in the fourth week, by M. H. Fol -On a new species of the genus Megaptera (Mcgaptera indica) from the Bay of Bassora, Persian Gulf, by M. P. Gervais.-Oa a rare suecies of Dolphin (Orca pladiator, Grav $=$ Delptinus orca, Fab.) recently captured off Tréprrt. Seine-Inférieure, by M. II. Gadeau de Nerville-On the vitelline nueleus of the Araneide, by M. A. Sahatier.-New ophidological discoveries, by M. lichtenstein.-On a phenomenon accompanying the red afterglow of the sunsets of December 26 and 27, 1883, at Tortosa (Spain), by M. Joné J. Landerer.-Terrestrial physics: the Krakatoa catastrophe ; velocity of the earthquake waves, by M. Erington de la Croix. From observations made in Ceylon, Mauritius, and other places, the earthquake wave of August 27, 1883, seems to have been propagated across the Indian Ocean at the prodigious velocity of abjut 550 m . per second, or 2000 km, per hour.

Berlin

Physiological Society, December 7, 1883.-Prof. Waldeyer brought before the Society the results of investigations pursued by Herr Koganei in his Institute into the histogeny of the retina. It was known that the retina was a development of a vesicular projecting flap of the brain (Hervostiülpwng des Gehirws), and that this membrane of the eye consisted in its early stages of fusiform cells. Whether there were other cells besides contained in it, how they were developsd, and how the different constituents of the developed retina were differentiated, were, on the other hand, all matters of debate. Iferr Koganei had now found that in the earliest stages this membrane of the eye was composed of two series of cells, one of fusiform cells on the distal side of the membrane, the other of round eells supplied with caryokinetic nuclei on the proximal side. The fusiform cells were called "fundamental," the round cells "prolific," these latter alone mnltiplying, as they did, by scission, and furnishing the whole material for building up the retina. The increase in retina elements proceeded therefore altogether from the proximal side, whence the newly-produced cells intercalated themselves into the layer of fusiform cells, all which phenomena entirely corresponded with those of the brain, it likewise growing only by multiplication of cells on the ventricular side. The differentiation of the fusiform cells into separate retina layers began after the ocular chamber was formed by the invagination of its most anterior part which becomes transformed into a double saucer shaped form, or rather it was only the inner most saucer which became the retina, while the onter saucer was converted into the pigment layer, the cells of which were filled with pigment. The differentiation followed a law of quite aniversal application. In every case it began on the distal side, which, on the invagination of the ocular chamber, became the inner side, and advanced gradually to the vuter side of the retina. It began consequently with the oldest fusiform cells, and passed gradually over to the laterformed fundamental cells. As analogous to this was next recognised the membrana limitans interns, with the supporting fibres of Muiller. These formed themselves out of the innermost layer of the oldest fusiform cells, which ranged themselves strongly out in a longitudinal direction, and became flattened on their inner end. The basal lamine (Fussplatten) of these cells impinging on each other formed the membrana limitans. Then the layer of ganglion cells appeared, and, almost simultaneonsly, the layer of optic fibres intervenimg between the layer of ganglion cells and the membrana limitans. The mode by which the ganglion cells were developed was through the rounding of the fusiform cells and their emission of offshoots. With regard to the layer of nerve-fibres it was a"cer-
tained that they develope i themelves out of continuations of the ganglion cells. Whetber and in what manner they came later into conflnence with the optic fibres proceeding from the hrain was a point whicb must be reserved for further investigation. Prof. Waldeyer deemed it not impossible that the optie fibres growing out of the ganglion cells penetrated into the brain, and there merged into the central ganglion. Thereafter was developed the so-called molecular layer. This name had been given to it in consequence of its finely granular appearance under slight enlargement. With the powrrful amplification which was now customary it was, however, at the pre-ent day, universally recognised as consisting of an extremely fine network of the most delicate filaments. In the middle of this layer Herr Koganei had found a series of round cells whicb, having issued from fundamental cells, formed the mother-cells of this layer. Since it was now hnoun that cellular protoplasm consisted of a reticular coating and fluid contents, it became intelligible how, from the protoplasm of the series of m ther-cells occupying the middle zone, the fine fibrous net of the molecular layer was formed by more vig rrou* development of the proto-pla-mic coating and the proportionate reduction of the liquid contents. In the further development of the embryonal retina there now appeared the intersal granular layer with the median granular layer, followed, sbortly after, by the external granular layer. Both granular layers developed themselves from the fusiform fundamental cells through the latter becoming round and partially emitting continuations. In this manner they formed thernselves into ganglion celle, as the granules of the granulur layer muct be considered. The median granular layer was in the highest probability a layer of fibre-nets intercalating itself, like those of the molecular layer. In the granular layers, lesides round and ganglion cells, fuxiform cells were aho met with. These fasiform cells, by vigorous longitudinal growth, developed themselves into supporting fibres (Stuifzfasern), flattened themselves at their extreme ends, and by superimposition of their terminal laminze forn ed the membrana limitans externa. On the development of this latt membrane the ganglia or granules of the granular layer began to send continuations out wards striking through the membrana limitans, which, therefore, very soon appeared occupied with the little blant endings (Stüm pfchen). These again grew to be granular interior members of the rods and pins that, finally, developed the hyaline external members which were powerfully refractive and cylindrical, or cone-shaped, the la-t members in the series of the development of retina elements. At this point the fact, of supreme importance to the physiologist, was established, that new-born animals only begau to see when the exterior members of the rods and cones were deve. loped. From the foregoing observations, Prof. Waldeyer deduced an important general conclusion, which had equal applicability to the brain as to the retina. The devel spment of the retina demonstrated that all its morphological constituents, the ganglion cells, the nerve fibres, and the supporting fibres were developed from the same fundamental cells. The supporting fibres of the retina, and in like n anner the neuroganglia of the brain, must consequently be classed as belonging to the nervous system, and having nothing in common with the ligamental tissue. They were nervous apparatus, whicb only did not perform nervous functions. In the case of regenerative processes, however, they played an important part. It was known that bighly differentiated tissues were not capable of regeneration, which was therefore impossible in the case of ganglion cells and nerve fibres. Supporting fibres and neuroganglia, on the other hand, were capable of regeneration, and, being developed from neurously constituted cells, were also capable of undertaking nervous functions or of further differentiating themselves for those higher functions, This highly important question deserved a very thorough investigation.

Vienna

Imperial Academy of Sciences, October 11, 1883.-On the genetic formation of the flora of New Zealand, by C. von Ettingshausen.-On isobutyl-biguanidine, by A. Smolka.-On the Diatomacere collected by the Austro-Hungarian North Polar Expedition in Franz-Josef Land, by A. Grumov.-On gravitation, by A. Iarolimek.-On the comet discovered by Brooks, by E. Weiss, -On some spectral analytical researches carried out with the large refractor of the Vienna Observatory, by C. H. Vugel.

October 18, 1883.-On the theory of diffusion of gases ; part il., dealing with the diffasion of a gas into itself, hy L.' Bolizmann.-On the quantity of work which can be obtained by
chemical combination, by 1. Boltrmann.-On the forms and chemical composition of the cap, lith series, by F. Tschermak.

Octoher 25, 1883.-On rocuncrite, botryogen, and natural magnesia iron vitriol, by T. Blaas -Ichthyologieal contributions, (thirteenth paper), by T. Steindachner.

November 8, 1883.- Contributions to general nerve- and mu-cle-physiol agy; xii., on the change of the electromotor bebaviour of muscles produced by electric irritation, by E. Hering and W. Biedermann.-Supplement to his paper on the quastity of work which can be obtained by chemical combina. tion, by L. Boltzmann. - On a series of new mathematical principles, by O. Simnny.-Report on the French Fixpedition sent to the Manibiki Islands to observe the solar eclipce of May 6, 188 3, by T. Palisa.

November 16, 1883.-On the role of the inferior asternids, by F. Chapel.-On the intercellular spaces of the epithelium of the Polmonata, by A. Nalepa,-On the axis of the tail of the comet 1827 III., by T. von Hepperger.
Novermber 22, 1883.-Contribution to general nerve- and muscle-physiology; xiii., on Du Bois Reymond's researches on the secondary electrical phenomena of muscle, by E. Hering. - Ou the genetie formation of the flora of Hong Kong, by C. von Ettingshausen.-Contributions to the theory of respiratory innervation (fourth communication), by Ph. Knoll.-On the specie-, sub-species, varieties, and bybrids of the section Ptamica of the Achillea genus, by A. Heimerl.-Contributions to the kno *le tge of the fishes of the Adria, by E. Steindachner and G. Colom-batovic.-Contributions to the knowledge of the chemical composition of starch-granales, by B. Bruckner.

December 6, 1883.- On a vertebral syno-tois in Salamamdru maculosa, Saur., by T. 11. Iist.-On the mechanism of the distant action of electrical forces, by T. Odstrril.-Calculati in of the altitude of the pole and of the aximuth at the Kremimünster Observatory, by W. Tinter. - Keport on his geological researches carried out in the westem Balkan and the adjacent regions, by F. Toula.-Determination of the orbit of the Russia planet (232), by N. Herz
December 13, 1883.-Histological and physiological studies on the organ of taste, by O . Drasch. - On the satellite curves and satellite planes, by G. Kohn,-Struggle of physical axioms, by T. Sehlesinger.

CONTENTS
 Page

American Geology. By Arch. Geikie, F.R.S. . . . 233
Our Book Shelf:-
Mme. Royer's "Attraction et Gravitation d'apres Newton"

235
" Electrotechnicches Jahrbuch von der Electrotechnischen Geselischaft in Franl.furt am Main" .

Letters to the Editor :-

What are the Saccopharyngoid Fisbes ? - Theo. Gill 236
The Mildness of the Season.-Viator ${ }^{2} 3$
River Thames-Abnormal High Tides,-J. B. Redman
Deafness in White Cats.-Joneph Stevena .. ${ }_{2} 37$
Teaching Animals to Converse.-J. S. B. . 237
On the Absence of Earthworms from the Prairies of the Canadian North-Wert-Richard M. Barrington
Merrifield's "Treatise on Navigation." John Merri. field
An American Rothamated. By Prof, W. Fream : ${ }^{237}$
Edelmann's Electrometer (Wish Diagrams) . . . ${ }^{2} 39$
Gleanings from the Reporta concerning the Erup-
tion of Krakatoa. By E. Metzger (Wirh Chart) . $\quad 2+0$
Notes
Our Astronomical Column :-
The Solar Motion in Space
The Late M. Yvon Villarceau
The English Circumpolar Expedition. By Capt. H. P. Dawson, R.A.

The Evidence for Evolution in the History of the
Extinct Mammalia, II. By Prof. E. D. Cope
The Remarkable Sunseta. By D. Wetterhan; G. A. Rowell; George F. Burder; Thoa Wm. Backhouse ; E. Metzger
University and Educational Intelligence 252
Scientific Serials
Scientific Serials
Societies and Academies 253

THURSDAY, JANUARY 17, 1884

FAMILY RECORDS

Record of Family Faculties. By Francis Galton, F.R.S. (London: Macmillan and Co., 1884.)
Lije-History Album. By Francis Galton, F.R.S. (London : Macmillan and Co., 1884.)

MR. GALTON is indefatigable in his zeal to promote the cause of eugenics. His most recent efforts in this direction have resulted in the publication of two quarto books, which respectively bear the titles above given, and which betoken no small amount of labour on the part of their author. Feeling the importance of casting a wide net for the capture of facts bearing on the science of eugenics which he hopes to inaugurate, Mr_{M}. Galton has here presented to the public a formidable array of blank forms or tables, to be filled up by any one who may have caught a spark of his own enthusiasm in the new cause. And not only so, but, to stimulate the energies of a blind and foolish generation, he has offered rewards or prizes to the extent of $500 /$. for the best writing up of the Records of Family Faculties. Lest any of our readers, however, should be induced from sordid motives alone to invest a few shillings in the purchase of this curious book, we think it is desirable to warn them at the outset that if they intend to write for one of the prizes they must know a good deal more about their family history than was known even by the writer of the book, which begins-" This is the book of the generations of Adam." For, as far as it appears from bis preface, Mr. Galton would not award even the least of all his prizes to any one who could prove direct descent from Adam ; nay, it would be useless to prove such descent even from any particular gorilla. For, we are expressly told, "no countenance is given to the vanity that prompts most family historians to trace their pedigree to some notable ancestor. . . . We shonld remember the insignificance of any single ancestor in a remote degree. . . . One ancestor who lived at the time of the Norman Conquest, twentyfour generations back, contributes (on the supposition of no intermarriage of kinsfolk) less than one part in $16,000,000$ to the constitution of a man of the present day."

What Mr. Galton wants, therefore, is not the record of a long pedigree, but an accurate and detailed account of a short one. And this is just what makes his tables so difficult to fill up. We must not only know all about our father and mother and grandfathers and grandmothers, but also about our father's father's father, father's father's mother, father's mother's father, father's mother's mother, mother's father's father, mother's father's mother, mother's mother's father, and mother's mother's mother. Even this, indeed, is not enough to satisfy Mr. Galton; for, " besides the direct ancestors, the brothers and sisters of each of them have also to be taken into account," and are accordingly all'provided for in the blank tables. Obviously not many of us could answer any of the following questions touching, say, a mother's father's mother's brother:-Date and place of birth, occupation, residences, age at marriage, ditto of spouse, number and ages of sons and daughters, mode of life, height, colour of hair and

Vol. xxix.-No. 742
eyes, general appearance, degree of strength, perfection or imperfection of special senses, mental powers, personal character, favourite pursuits, artistic aptitudes, minor ailments, graver illnesses, cause and date of death, and age at death.

The impossibility, however, of any one competitor filling up all the tables is of course no argument against setting the questions. The same questions are submitted to all the competitors, and those who can answer most or best will receive the 500/. Perhaps a few years hence, when Mr. Henry George shall have effected his social revolution in this country, our aristocratic families (who are favourably handicapped in their knowledge of ancestry) will be thankful to assist the science of eugenics upon the terms now offered by Mr. Galton.

The "Life-History Album" is, in size, date, and general appearance, a companion to the "Record of Family Faculties." It runs to 72 pages, which are arranged for entries in five-yearly periods from birth to 75 years of age. We can imagine the melancholy aspect of a man who in the year 1959 sits down to fill up the last page of a copy of this album, the first page of which is now being begun by his parents. What a retrospect will lie before his dim and saddened gaze! Every tooth that he gained in childhood, and every tooth that he lost in age has been duly chronicled; all the fluctuations in his weight, health, and strength are recorded; he can trace the dawn and rise of all his bodily and mental powers from infancy to manhood, and can measure with the most painful nicety their continuous decline from manhood to old age. He has before him a little picture gallery of fifteen photographs taken at five-yearly periods, to impress upon him with yet more cruel vividness what a wreck he has become; and now there is no further page whereon to continue the record so long and so faithfully kept. Even the interest of Mr. Galton in all that he was to be and all that he was to do has come to an end; he has literally turned over the last page of his life, and if his poor old eyes do not drop a tear upon the closing tragedy, it can only be because his zeal for science has devoured every other emotion.

But although this aspect of the matter is irresistibly suggested by the close of the album at 75 years of age, without even the provision of a blank page for any further possibilities (with trembling fingers these might, indeed, be pasted in), we must remember that the evil here lies in the fact of mortality. So long as a man is alive, it may be useful to him in many ways-apart from eugenics -to have such a physical record of his life thus kept from his earliest days. No doubt the sooner it is begun the more value it will subsequently have; but Mr. Galton virtually tells us that, as in the Pilgrim's Progress, so in the pilgrimage of life, "better late than never" in making a beginning.

In order to show some of the personal, as distinguished from any scientific, advantages which may reasonably be expected to arise from keeping such a biological history of one's self, we shall conclude by quoting an extract from Mr. Galton's own exhortation.

"To the Owner of this Book

" 1. It will show whether, and in what way, your health is affected by the changes that take place in your residence, occupation, diet, or habits.
" 2. It will afford early indication of any departure from health, and will thus draw attention to conditions which, if neglected, may lead to permanent disorder. Without such a record, the early signs of disease, which are commonly slight and gradual, are very likely to pass unrecognised, and thus the opportunity will be lost of seeking advice at the time when preventive or curative measures can be most successfully taken.
" 3. A trustworthy record of past illnesses will enable your medical attendants to treat you more intelligently and successfully than they otherwise could, for it will give, them a more complete knowledge of your 'eonstitution' than could be obtained in any other way. This knowledge is so important that life itself may in many illnesses depend upon it.
"4. The record will further be of great value to your family and descendants; for mental and physical characteristics, as well as liabilities to discase, are all transmitted more or less by parents to their children, and are shared by members of the same family. 'The world is beginning to perceive that the life of each individual is in some real sense a prolongation of those of his ancestry. His character, his vigour, and his disease, are principally theirs. ...The life-histories of our relatives are, therefore, more instructive to us than those of strangers; they are especially able to forewarn and to encourage us, for they are prophetic of our own futures.'-(Fortnightly Review, January, 1882, p. 31)."

We have now said enough to show the general character of these original publications. We ought to add, however, that they may be purchased separately, and therefore, notwithstanding the prizes offered for the best Records of Family Faculties, we think it probable that the "LifeHistory Albums" will have the better sale. They are inexpensive to buy, and, apart from the trouble of writing them up at intervals, require for their keeping no other kind of expenditure.

George J. Romanes

SIAM

Temples and Elephants: The Narrative of a Fourney through Upper Siam and Lao. By Carl Bock. (London : Sampson Low, Marston, and Co., 1884.)

THE expedition undertaken by Mr. Bock in 1881-82 to the Indo-Chinese mainland was practically a continuation of his previous ramblings in the Eastern Archipelago, a graphic account of which he has given us in his "Head-Hunters of Borneo." Of both the main object appears to have been rather archaological and ethnographical than strictly scientific, and of both the incidents and results have also been somewhat analogous. In each case some hitherto unvisited tracts were explored, or at least traversed, each was marked by a striking ab ence of any stirring adventures "by flood or field," both yielded, besides some additions to our geographical and ethnological knowledge of the regions in question, a considerable amount of "curios and treasure-trove"; but she quest of the "tailed people" proved as bootless in Further India as it had in Borneo.

In other respects "Temples and Elephants," although far less profusely illustrated, compares not unfavourably with "The Head-Hunters." It is uniformly written in surprisingly good English, and it gives us for the first time a tolcrably clear account of the region of the waterparting between the head waters of the Menam and the Middle Mekong basins, and indeed of the whole course of the Menam almost from its source to the Gulf of Siam.

The source itself was not actually reached, but it was ascertained with some certainty to lie altogether within Lao territory, or about $20^{\circ} \mathrm{N} ., 99^{\circ} \mathrm{E}$. , and not further north in the Shan States, as shown on all recent maps, even that accompanying vol. viii. of Reclus' "Géographie Universelle." By taking boat at the now ruined city of Fang, and sailing down the Me-Fang and Me-Kok, the Mekong was reached just below Kiang-sen, where, a thousand miles from its mouth, it was found to be still a magnificent stream "twice as wide as the Menam at Bangkok." This was the furthest point reacbed, and on the return route the narrow but rugged water-parting was crossed by a pass 2000 feet high leading down to the Meping, as the Upper Menam is here called Henceforth the rest of the journey was made eatirely by water, proving that for small craft the Menam is navigable almost from its source to its mouth. Even the dangerous rapids near Mutka, above the Lao and Siamese frontier, were successfully run by the ingeniously constructed boats specially adapted for navigating this section of the great Siamese artery.

All the chicf towns in this basin were visited, and a very full account is given of such important but almost unknown places, as Raheng (Rahein), Lakhon, Lampoon (Labong), Cheng-mai (Kiang-mai), Muang-Pitu (Prau), and Kiang-hai), all except Raheng lying within the western Lao domain. Raheng, the northernmost town in Siam proper, appears to be the centre of a very considerable trade with the surrounding lands, and some strong arguments are urged in favour of the projected railway between that place and the capital. Such a line would present no engineering difficulties, running as it would through an almost perfectly level country ; it might be cheaply constructed by Chinese coolie labour, available on the spot; it would run through the most densely peopled districts in Siam, and would at once open up a vastly productive region, whose almost boundless resources are now lying waste.
"The agricultural resources of the district of which it [Raheng] is the centre and natural outlet are extremely rich. Its timber alone is sufficient to insure prosperity ; but it has further sources of wealth in the varied indigenous products of the country, and still more in the entirely undeveloped resources of its fertile soil. All that it wants is a railway to carry the products of the country at all seasons and without delay to the markets of the world, and to enable it to receive the large imports which an increasing population would at once necessitate " (p. 37).

But most readers will probably turn most eagerly to the chapters devoted to the habits and customs of the Karians (Karens), Mussus (Mossos), Ngiou (Shans), and especially of the Laosians (Laotians, Laos), whose political and social institutions, domestic life, religion, arts, and daily pursuits are here very fully described. The remarks on all these subjects will be found both interesting and valuable to the ethnologist, because mainly the result of personal studies made on the spot by a shrewd and experienced observer. Mr. Bock speaks of the Laos as of a finer type, fairer, and better-looking not only than the Malays but even than the kindred and more civilised Siamese. They are described as of superior physique, lighter complexion, with good, high foreheads, more
regular features, and nostrils. not so dilated as those of their neighbours. A curious peculiarity is the power of bending the elbow the wrong way, and similarly distorting the wrist joint, so that the hand can be bent over till the back of it touches the arm. This, however, does not appear to be the result of any special conformation of the joints, but rather of a long and severe course of training, in which "force is often resorted to in order to distort nature's handiwork" (p. 321). It will be remembered that one of the distinctive features of Krao, the little specimen brought from Bangkok by Mr. Bock, was a remarkable pliancy of the joints, extending even to the toes, which were almost as prehensile as those of the higher apes.

Amongst the illustrations is a curious design by a native artist (unfortunately "invested with artistic merit" by the English engraver) representing a scheme of the universe, with Mount Zinnalo, the Meru of the Hindus, as the centre. Above all is the outer darkness, or Buddhist Nirvana, usually suppose 1 to involve extinction, or at least absorption in the divine essence, but which our author agrees with Mr. Alabaster in identifying rather with the highest heaven, a place of perfect happiness or repose. But however this be it is obvious that the Laotian Buddhism has been otherwise profoundly modified by the older cult, on which it has been engrafted, and from which it still takes its colouring. This older cult was little more than a universal spirit-worship, probably the first distinct stage in the evolution of all religious systems. Hence "the desire to propitiate the good spirits and to exorcise the bad ones is the prevailing influence on the life of a Laosian. With 'phees' to right of him, to left of him, in front of him, behind him, all round him, his mind is haunted with a perpetual desire to make terms with them, and to insure the assistance of the great Buddha, so that he may preserve both body and soul from the hands of the spirits, and, by making merit either in almsgiving, in feeding the priests, in building temples or prachedees, he may ultimately attain supreme happiness" (p. 198). At MuangFang the people are shown a telescope, whereupon they immediately ask, "Can you see the spirits through it ?" And when it is reversed so that everything seems to fade away in the distance, they are hugely delighted at such a wonderful instrument, which has the power of making all things-spirits of course included-near or far off at the will of the owner !

Then these spirits, some of which, such as the phee-ka, are very baneful, require to be thwarted by all sorts of counter-charms, conjurings, exorcisms, spirit-dancings, and other devices of the professional medicine-men, and even of "paid mediums." For this institution-somewhat of an anachronism in the West-still flourishes in the Far East, where almost every family has its private mediums, who are consulted on all urgent affairs, and who, when required to question the spirits, work themselves into a state of ecstasy, and utter short, incoherent sentences, regarded as the oracles of the spirit world.

Amongst the illustrations are a coloured engraving by the author, giving a good idea of the "white elephant" visited by him at Bangkok, and a life-size portrait of the enlightened young King of Siam, to whom the work is dedicated. There are also an index and a small sketch-
map of the route followed, in which the geographit al nomenclature is, as usual, at variance with that of the text. Thus we have Kiang-mai, Toune, Me-ourng, Chandaw, for Cheng-mai, Tunn, Me-wang, and Shanduu respectively.
A. H. Keane:

LETTERS TO THE EDITOR

[The Editor does not hold kimself responsible for openions expressed by his correspondents. Neither can he undertake to return, or to correspond with the zuriter's of, rcjected manuscripts. No motice is tahen of amonymons communications.
[The Editor urgently requests correspondents to kopp their letters as short as possible. The pressure on his space is so great that it is impossible otherwise to insure the appnarance rven of conviwsnications comtaining interesting and nowl facts.]

The Remarkable Sunsets

Althoigh the prevailing mist and fog do not make the summit \& Ben Nevis as a rule a favourable situation for viewing sunsets, yet, when clear and fine, the colours of the sky shine out with fn greater clearness and purity than at lower levels. For about a week at the end of last month we had fine weather, and the colours of the sky before sunrise, after sunset, and even during the day, were of the most extraordinary character.

On December 30 before sunrise the lower sky to eastward, between a cloud-bank and a thin dark band of stratus, was pale green, above the stratus it was yellow, passing into red higher up. This arrangement of colour was not observed again ; on other days the sky was red or yellow at the horizon, passing into green aud blue higher up At sunset on the 3oth the colours were of the most gorgeous deveription-dark smoky red below, passing into blue and violet without any intermediate shade of green.

Similar colours have no doubt been seen as well at luwer levels at sunrise and sunset, but here we see the sky round the horizon coloured in the most wonderful manner all day long-usually a copper red under the sun, and a peculiar dirty green at the opposite azimuth. But it is impossible to give any idea of the exceeding beauty and weirdness of the tints at sunrise and sun-set-the whole sky near the san gleaming with constantly changing masses of colour, indescribable tints of red and green mingled in wild confusion.

On December 31 the thin edge of the crescent moon (three days old) was bright green, but I have not ohserved any unusual colour in the sun itself.
R. T. OMOND

Ben Nevis Observatory, January 9
I beg your acceptance of the two inclosed clippings from the Sazarday Press of this city, together with an advance sheet from Thrum's Hatcaiian Annsal for 1884 , which contain nearly all that has been put into print here about the wonderful "afterglow" which has excited such attention in so many parts of the globe. In the first communication of September 19, I recorded the important date of September 5, when the first and most brilliant display was observed, being moved thereto by the arrival of the news of the Java eruption, whose proximity in time seemed to lend especial importance to the phenomenon. In the second notice is recorded an ohservation of like phensmena in lat. 24° o6' N., long. $140^{\circ} 29^{\prime}$ W., 1100 miles east-northeast of us, from the log of the bark Mope, Penhallow, master, on September 18.
In my article in the Hasoaiian Anmual, the record is brought down to November 25, during which month the glow continued, somewhat diminished. Since then it has again increased in a marked degree. I have also been enabled to definitely connect ourselves with Melanesia and Micronesia. Brig Hazard, Tierney, master, arrived from those parts on December 5 . Capt. Tierney is reliable and intelligent. He reports to me that on September 1, when off the south-west coast of Now Ireland, about lat. 5° S., long. 152° E., he first observed the "glare," as he termed it; and again on September 3 off Ncw Hanover, two degrees further west. It was identical in character with what he has seen since arriving in Honolulu. It would seem to have been rather less brilliant than was first observed here September 5, as described in the inclosed elippingDaring his voyage from New Hanover, sighting Ascension, calling at the Marshall Islands, and thence to Honolulu,
over ninety days in all, the "glare" was of constant eccurrence. By the arrival of O.S.S. Mariposa from San Francisco, Decem. ber I to 8 , I am happily able also to trace a continuous line of these phenomena heace to that point. They were not observed there until about November 23. Two of our leading eitizens who came down by the Mariposa assure me that the appearances there were identical with oars, and further that they were of frequent recarrence during the whole passage. We thus prove a continuous chain of these phenomena from New Zealand to Califormia.

Permit me to call special attention to the very peculiar corona or halo extending from 20° to 30° from the sun, which has been visible every day with us, and all day, of whitish haze, with pinkish tint, shading off lato litac or parple against the blue. I have seen no notice of this corona observed elsewhere. It is hardly a conspicuous object.

The long continuance and extending diffasion of this haze or dry fog seems to justify expectation that it may become visible around the globe, and give ample opportunity for investigation.

Although not seen in San Francisco until November 23, it was brilliant in Santa Barbara on October I4- A rapid upper corrent seems to have borne it in a belt within the tropics in a very few days, leaving a slow diffasion to extend it to the ternperate zone. Australia is perhaps an example of this.

I trust this lefter may be a useful contribution towards a complete history of the diffusion of this very peculiar element around the globe. A good record of dates of earliest appearances might contribute something to our limited knowledge of currents in upper strata of the atmosphere.

Honolulu, December 14, 1883
 Sereno E. Bishop

[We have already referred to Mr. Bishop's letters in the Honolula journal, but give here the following extract from his article in the Hawaiian Annmal:-
"It now seems probable that the enormous projections of gaseous and other matter from Krakatoa have been borne by the upper currents and diffused throughout a belt of half the earth's circumference, and not improbably, as eareful observation may yet establish, even entirely around the globe. This implies an amount of matter discharged that seems incredible. We learn, however, that the ocean was thickly and closcly covered with floating pamice for hundreds of miles from the crater. A steamer 150 miles distant reports her barometer falling and rising half an inch every two or three minntes! This almost incredible statement implies a terrifie undulation of the atmosphere, such as could only be prodnced by a vast and continnous jet of gas projected upwards beyond the limits of the atmosphere, and driving the air in vast waves in every direction. So abnormal and gigantic a force may well have propagated not only its tidal waves as it did across the Pacific, but it may also have transmitted its portentous and lurid vapours to belt the globe with flaming skies."]

For the last two months these appearances have in this province excited no small wonder and admiration, not unaccompanied in some cases with awe and dismal forebodings of impending calamity. As an example of what has been witnessed in greater or less intensity almnst every morning and evening, about an hour before sunrise and after sunset, 1 may instance what was observed on the evening of the 29 th and morning of the 3 oth ult. The ground from my residence rises towards the south and west, and the city of Fredericton lies towards the north-east, on a flat too feet lower, and at a distance of half a mile or more. On the evening in question, at an honr after sunset, the red glow in the sky was very conspicuous, and seemed to light up the whole heavens, so that the houses in the city were distinctly seen by the reflection from their sides, and the intervening snow appeared of an orange eolour. It was bright enough to suggest the impression of a second snnset. Next morning at an hour before sunrise the deep red glow was equally decided.
W. Brydone.JAck

Frederieton, New Brunswick, January 3
In response to your note in NATURE of Deeember 13, $\mathbf{1 8 8 3}$ (p. 157), I beg to inform you that the recent red sunsets have been especially observed by me on the following occasions:-

November 30,1883 , lasting until $5.30 \mathrm{p} . \mathrm{m}$. ; barometer at 1 o'elock $30^{\circ} 22$ inches, at 9 p.m. $30^{\prime} 10$.
January 2, 1884 , lasting until $7.30 \mathrm{p.m}$; barometer at I p.m. $30^{\circ} 4 \mathrm{~S}$, at $9 \mathrm{p}, \mathrm{m} .30^{\circ} 43$.

January 3, 1884; Barometer at 1 p.m. $30 \cdot 30$, at 9 p.m. 30. 23 .

On several other occasions the same phenomenon has been observed in a less degree. Ad. Wentz' L, JUN.
Krasnieza Wola, Grodzisk, near Warsaw, January II

Ture "red glow" has again been very brilliant here on the evenings of January 9 and 10 , as well as on the morning of January 10. On the following morning, Janaary 11, the sky being likewise very elear, I confidently expected another display, but to my astonishment no trace of red did appear, the sun riving after an ordinary twilight of pale yellow. During the night a strong south wind had set in, which prevailed through the whole day, with extraordinary transparency of the air. In the evening clouds arose in the west, at first showing the red marginal eolouring of ordinary sunsets, but later on there eame again, distinctly higher than even the cirri, a very brilliant and lasting red luminosity.

It would be interesting to know whether at other places too the phenomena in question had been, as it were, saspended on the morning of January 11, in spite of a clear sky, or whether such a suspension had occurred on other days under similar meteorological circumstances.
D. Wetterhan

Freiburg, Badenia, January 12

The last two days and nights here have been very fine with sunrises and sunsets as already described. This evening especially the colonrs were most brilliant, and did not fade away until at least an hour after sunset. It may interest those who are trying to account for this extraordinary appearance of the sky to know that here it has been followed by excessive rain and very bad weather. During December we had 9 '57 against an average for the last twenty-two years of $4 * 46$ inches. The greatest December rainfall registered at our Scutari Cemetery was 10'36 in 1862, the least being one inch in 1868 . A printer's error makes me speak, in my letter of December 21, of a crescent moon "eighteen" days instead of 1.8 day old.
W. E. J.

Constantinople, Jannary II

Dust Atmosphere of China

Is the remarkable work on China by V. Richtofen, he give. (vol. i. p. 97) the following description of the dust afmosphere of the Loes country, China, which, it seems to me, bears npon the question of the influence of dust on the appearance of the sun and sky, the question now nnder discussion.
"All these, and other similar operating causes, give rise to that dust atmosphere (SVaubatmosphare) so characteristie of Central Asia, and still more particularly of the Loes District. Eveo during nearly complete calms the air is often for many days yellow and opaque. The view is completely hemmed in, and the sun appears merely as a dull bluish disk. More markedly is this character presented by these peculiar dust-storms so well known to travellers visiting Tien-tsin and Peking, and even more so to those who travel in the interior of the north-western provinces of China. The wind then blows from Central Asia; when it acquires motion, everything becomes coated with a fine, yellowish dust coating.
"In Shensi, where the atmosphere is but rarely clear and transparent, the whole landscape has a yellow tint ; streets, houses, trees and crops, even the traveller one meets on the road, and the air itself, one and all are yellow-coloured."

He also cites Johnson's "Journey to Ilchi, the Capital of Kotan " (R. Geogr. Soc. xxxvii. 1867, p. 5), as bearing on this same character of those dry, dusty atmospheres.

Dublin, January 7
J. P. O^{\prime} Reilly

Electric Shadows

On reading Prof. Thompson's eommunication to Nature of the 13 th ult. (P. 156), giving the result of Prof. Righi's researches on the production of electric shadows in air at the ordinary pressure, I at once endeavoured to repeat the experiments with such simple means as were at hand. Two sticks of sealing-wax stuck to a small iron stand sufficed to support a long, big headed pin and the screen or object for casting the shadows. Instead of a plate of ebonite I used a cake of resin of six inches diameter, which selves ordinarily for the production of Lichtenberg's

Ggures; and from subsequent experiments it would seem that the resin serves the purpose almost as well as ebonite as far as clearness of definition is concerned. A metal plate, which may or may not be insulated, formed a base for the resin. I mention these details since the ebonite rods and plate are not so well within every one's reach, on the score of greater expense and the necessity of having them specially constructed for the experiments. A plate machine of some size (18 -inch plate) seem s neces. sary, as I find that, unless the Leyden jar is charged to rather high potential, no shadow is formed, and, farther, that the sharp definition of the shadows increases with the charge of the jar. The screen used was a design, cut out in cardboard and tinfoil pasted over it, very similar in shape to that given in Fig. 2 in Prof, Thompson's paper, and the shadows obtained were substantially similar to that in Fig. 3. But here a small point not before recorded came out:-1f the pin, from whose point the discharge is made to take place, be slanted in any direction, which is easily done with the sealing wax holder by simply beating, the shadow of the object then lengthens out curiously, just as do the thadows formed by an ohject intercepting light rays as the obliquity of incidence is increased.

The new feature, however, which appeared from my experiments, and which is not recorded by Prof. Thompson, although very likely the experiment may have been done before, is as follows:-Instead of starting with the resin plate in a neutral condition, I gave it a rather strong negative charge by ruhbing it vigorously with a fox's brush and discharging the Leyden jar as before on to the pin, using precisely the same object to cast the shadow as before. Its character now, however, was completely altered, appearing as I have endeavoured to represent it in the figure. A simple eross, having little resemblance as to outline

with the object, was the result. The red-lead of course was picked out by the negatively-charged resin under the object and piled up to form the cross, which was much more strongly red, as one would expect, than the former shadow. There was also a rather wide neutral region around the cross, considerably more than in the former experiments. It seems to me that this effect is something more than the attenuation of the shadow spoken of by Prof. Thompson, where the screen is electrified independently. Since the subject is one of considerable interest, perhaps it may be useful to show that any one having access to a fairly good electrical machine can repeat and possibly extend Prof. Righi's investigations.

17, Colville Mansions, W.
W. F. Smith

Cosmic Dust

I Founn in the Niewwe van den Dag of December 28, 1883. that a violet sand had been fonnd in the dunes (probably near Scheveningen). The paragraph runs as follows :-When seen under the microscope (feeble magnifying) the ordinary yellow sand seemed to be eomposed for the greater part of almost white transparent grains, among which were a few light yellow, and pink, and single black grains. The violet sand, however, showed almost all the grains imbibed by a light violet tint, and moreover it contained a very great number of black glittering grains. An idea which occurred to me made me take up a stall magnet, and on stirring with it in a glass full of the sand, the ends were covered by feathers formed by the black grains quite the same as the feathers which are formed on putting a magnet into filed dust. Probably I had there grains of a combination of iron ; of the latter there was a great deal in it. Now this is the question: Are these grains of the same kind as those which the
naturalists have found and gathered on the snow-fields in the Polar regions, thus called cosmic dust?

Stuttgart, January
E. Metzger

Diffusion of Scientific Memoirs

I ThiNK it would promote scientific information if it were more the custom for those who need copies of papers to make direct application for them. Authors are usually provided with separate impressions for distribution, but are often much in the dark as to how to turn them to the best arivantage. The bulk of such copies usually find their way to men of established scientific positiou who have worked at the suhject of the paper in past years, but bave perhaps ceased to take interest in it; while those who are actively engaged upon the subject, if they do not happen to have already published matter of importance, sre left unprovided for.

I believe that most authors would willingly send copies of their memoirs to younger men, known to be engaged in scientific work, why should make application. But there is one rule which must be observed with the utmost stringency-otherwise I should feel that the evil of the present suggestion outweighs the good-viz. the afflicant must neter expert a arvilten ansmer.

Cambridge
R.

Weather on Ben Nevis and Snowdon

I was much interested with the account of a visit paid to the Ben Nevis Observatory on Ilecember 26, 1883, described in Nature of January 3 (p. 219), more particularly as the weather experienced on the summit was almost identical with that ou Snowdon at the same time. I ascended Snowdon on December 23,25 , and 26 from the we.t, east, and north, and a neighbonring mountain, Glyder Fach, on the 24th. The views from the summit on the 25 th and 26 th can be best described by the following quotation from Nature (p, 219), referring to Ben Nevis :- "The view from the summit was magnificent. All round there floated a billowy ocean of white mist " (extending from the slopes of the mountain to the horizon north, south, east, and west), "through which rose bere and there black mountain peaks." "Overhead the sky was blue," and the sun shone brilliantly. The upper vurface of the occan of clouds was on the 25 th about 2000 feet, and on the $26 t \mathrm{~h} 1000$ feet, above sea-level.

On the $24^{\text {th }}$ I ascended Glyder Fach through about 2500 feet of mist, and, to again quote from Nature (p. 219), on reaching the ridge "suddenly emerged from the gloom of the mist into the brightest of daylight. Overhead the sky was blue, a fresh light brecze was blowing " from the north-west. I here noticed a curious phenomenon. I became suddenly aware, whilst standing in the sunlight on the ridge, that the air was full of an exceedingly minute dust driven by the wiud from the north-west and descending at an angle of about 40°. The fall ceased quite suddenly one or two minutes after I noticed it. The impression left on my mind was that anything popularly spoken of as dust would be exceedingly coarse compared with it. There was no snow on the ground.

The phenomenon known under the name of the "Brocken Spectre," mentioned by Mr. Chrystal, may frequently be seen from the summit of Snowdou by any one not afraid of a little mist.
T. Sington

Kersal Moor, Manchester, January 7

Teaching Animals to Converse

J. S. B, seems to have misunderstood Sir John Lubbock's idea. It would be no great test if drawings were made, as the dog would see so little difference. Thus a dog of mine knows instantly whether he may go out with my housekeeper or not according to whether she wears her hat or her bonnet. In the first instance he knows she is going where he may go, and he is on bis feet barking with joy as soon as she appears. If she has the bonnet on, he knows it to be church, or a visit to friends in the country, where be cannot go, and, like the "eldest oyster" (I quote from memory), he "winks his eye, and shakes bis hoary bead." If drawings of hat and bonnet were made, he would know them at once.

Some years since I had a remarkably clever Skye terrier, whose wisdom was at the time shown In a letter to the Times. This dog I taught as follows. When I went out it was quite sufficient to say "Yes" or "No" in an ordinary tone; but wanting to take him beyond that, I taught him very quickly to
know the two words when printed on cards, YES or NO, and after a few weeks' teaching he never mistook them. I have no time now for much teaching; if I had, I am sure it could be done with the dog I now have. The intelligence of cats is greatly underrated. My wife's favourite eat follows her everywhere, and comes when called wherever she may be. Cats, too, are very grateful for kindness. When I went into the Malakhoff I found a cat on whose paw a bayonet had fallen and pinned it 10 the ground. I released it and took it houe, and it always followed me all over the camp till the end of the war. And this cat did as follows. I took her to a doctor of the nearest regiment for two mornings to have ber foot dressed. The third morning I was away on duty before daylight, and the cat went herself to the doctor's tent, scratched the canvas 10 be let in, and then held up her paw to be doctored. The intelligence that can be developed in almost any animal depends in most caves on our treatment of it.
H. Stuart Wurtley

South Kensington Museum, S.W., January 14

Circling to the Left in a Mist

ONE generally reads that persons walking without landmarks perform a large cirele and cut their old tracks again. This cireling, as far as my present knowledge goes, is to the left.

My present theory is that in most penons the right leg is the stronger and the more forward to step over any obstacles, and hence that it slightly outwalks the left; this theory involving as further consequences that those in whom the left leg is the stronger would eirele to the right, while those whose legs are of equal strength would either keep straight on or would wander either way indifferently. I imagine this "outwalking" of one leg by the other to be similar to the manner in which a body of troops wheels to one side or the other.

In the following I use the expression "right.legged." By this I mean that the right leg is that chosen to kick with, jump from, \&c.

My negative evidence is as follows :-

1. I myself am right-legged, and in a mist I always circle to the left. I have only eome across cases similar to my own in these respeets. On the other hand, my left arm has been trained (by always rowing on the bow-side) to be stronger than my right for rowing purposes; and in sculling I al ways eircle to my right side.
2. Those savages of whom I have read that they eould keep a vtraight course without any landmark were also represented as using both arms (and legs ?) impartially.

I bave given the above evidence chiefly to show how weak it is, in the hope that some of your readers will try to collect data of the following nature from any of their acquaintance who have had experience in the matter :-
(d) To which side, if any, do they eircle?
(b) Are they right- or left-armed, right- or left-legged? or are the two sides equally strong?

It might also be interesting to learn from boating friends if they have observed any connection between the side on which they Lave been accustomed to row and the side to which they circle in scalling ; such connection as that indicated above.

Finally, I may suggest that more might be known on the question of the herediry of right- or left-ridedness; and as to whether persons are often right-armed but lefi-legged, \&c. But in must be remembered that tendencies of this nature are often "edueated out" in ehildhood.
W. Larden

Cheltenham College

THE POKPITIDAE AND VELELLIDAE

 ROFESSOR ALEXANDER AGASSIZ has quite recently (July) published an important contribution to our knowledge of the morphology and embryology of these families of marine Hydrozon. This appears as one of the quarto memoirs of the Museum of Comparative Zoology at Harvard College, and is illustrated with twelve plates. While at the Tortugas, during March and April, t88t, examining the structure of the coral reefs, Prof. A. Agassiz took advantage of cvery possible opportunity of exploring the surface fauna of the Gulf Stream, and when not otherwise occupied be devoted his time to completing the notes and drawimgs which he accumumted regardingPorpita and Velella under less favourable circumstances at other points of Florida, at Newport, and on board the Blake. These notes are now published as forming the principal points in the natural history of a small and limited group of oceanic hydroids, interesting from their affinities on the one hand to the Tubularians, with which Vogt, Kolliker, and Agassiz were inclined to associate them, and on the other hand with the Siphonophorae proper, with which they have, however, but little in common. Mr. C. O. Whitman was sent this spring to Key West to complete this memorr, and especially to investigate anew the whole subject of the structure and functions of the so-called yellow cells; but although he spent six weeks at Key West, he was unable to accomplish the object of his trip, as not a single Velella appeared at Key West during the whole of his visit. Under these circumstances Prof. A. Agassiz thought it advisable to at once publish his drawings and notes, completing the descriptive part when the neccssary preparations can be finished. The Florida species of Velella (V. mufica, Bosc) is much larger than the Mediterranean form (V. spirans) ; specimens measuring nearly four inches in length are not uncommon. On plate I is figured in profile and from above and below a huge Velella nearly five inches in length, and in all the glories of its metallic colouring. Thousands of this species are brought by favourable winds and tides into Key West Harbour; they are usually scen in large schools, and although capable of considerable independent movement by means of their tentacles in a smooth sea, yet are they practically at the mercies of the winds and currents. Even moderate waves destroy them in vast numbers. When kept in confinement they soon die, and are rapidly decomposed. The dead foats are thrown ashore in enormous numbers. The large central polypite of the system is the main feeding mouth, but the smaller lateral polypites feed also to a limited cxtent. All these are connected at their base with the general vascular system, through which as in the polypites the fluids are rapidly propelled by the action of cilix lining the inner walls. At the base of the polypite there are, according to its size, from five to eight clusters of Medusx buds: the small oncs alrcady contain the peculiar yellow cells so characteristic of the free Medusae, The young Medusx have a very striking resemblance to such Tubularian Medusa as Esuphysa and Ectopleura. It has like them a row of lasso cells extending from the base of the tentacles to the abactinal pole. The yellow cells are arranged in clusters along the sides of the four broad chymiferous tubes, as well as on the surface of the short, rounded, conical, rudimentary proboscis. The young Medusre move with considerable activity by sudden jerks. The air-tubes branch much less frequently than is the case in the Mediterranean species. All the Velellax floats examined were left-handed.

The Florida species of Porpita (P. linneana, Less.) is nearly related to but is larger than P. mediterranea. It is capable of a considerable control over its movements, and is not stranded at all in the same numbers as is Velella. If upset by wind or waves it can, by the great size and power of its numerous long marginal tentacles force itself back again into its normal position. It does this by bringing its tentacles together over the disk and throwing up the free edge of the mantle slowly in a given direction, then expanding the tentacles of one sidc far over in the opposite direction beyond the central part of the disk, it readily changes the centre of gravity, and so tilts the overturned disk back again. Round the base of a large central polypite are five to six rows of small, stout, flesh-coloured, feeding and reproductive polyps; these have a slightly rectangular head capable of considerable expansion, with four clusters of lasso cells. At their base are to be found Medusæ buds in all stages of development. When the clusters of these are well developed they complctcly fill the space between the small
polypites, giving to the ring which they occupy on the lower surface of the float, a dark yellowish tint from the colour of the yellow cells, found along the rudimentary proboscis of the Medusz buds, as well as along the chymiferous tubes. The large marginal tentacles are of a bluish tint, their knobs of a darker colour. The smaller polypites occupy on the lower surface that portion of the mantle which covers the ring formed by the so-called white plate of Kolliker round the base of the single central polypite. Sometimes these polypites are seated in cavities of the white plate, and sometimes projections of this latter will be found to extend far up into the lower part of the small polypites. This white or pinkish plate consists of an irregularly anastomosing system of needles and spurs, or of bars of greater or smaller size, leaving a series of narrow openings for the passage of the tubules. Prof. A. Agassiz suggests the alliance of Porpita with the Hydrocorallinz, basing this suggestion on the presence of the white plate, and of its peculiar structure, which reminds him of the porous siructure of the corallum of Sporadopora, Allopora, Millepora, and although, of course, not having the regular horizontal floors of the latter, yet possessing, like these genera, large pits, the whole mass being riddled with passages and openings, forming the spongy mass of the white plate. If this homology be correct, it shows far-reaching affinities in the Porpitidx. The Plates, twelve in number, give a great number of anatomical details, and there are full-sized and coloured representations of the two species described.

HUCHES' NEW MAGNETIC BALANCE

ANEW magnetic balance has been described before the Royal Society by Prof. D. E. Hughes, F. R.S., which he has devised in the course of carrying out his researches on the differences between different kinds of iron and steel. The instrument is thus described in the Proceedings of the Royal Society:-
"It consists of a delicate silk-fibre-suspended magnetic needle, 5 cms . in length, its pointer resting near an index having a single fine black line or mark for its zero, the movement of the needle on the other side of zero being limited to 5 mms . by means of two ivory stops or projections. When the north end of the needle and its index zero are north, the needle rests at its index zero, but the slightest external influence, such as a piece of iron 1 mm . in diameter 10 cms . distant, deflects the needle to the right or left according to the polarity of its magnetism, and with a force proportional to its power. If we place on the opposite side of the needle at the same distance a wire possessing similar polarity and force, the two are equal, and the needle returns to zero ; and if we know the magnetic value required to produce a balance we know the value of both. In order to balance any wire or piece of iron placed in a position east and west, a inagnetic compensator is used, consisting of a powerful bar magnet free to revolve upon a central pivot placed at a distance of 30 or more cms . so as to be able to obtain delicate observations. This turns upon an index, the degrees of which are marked for equal degrees of magnetic action upon the needle. A coll of insulated wire, through which a feeble electric current is passing, magnetises the piece of iron under observation, but, as the eoil itself would act upon the needle, this is balanced by an equal and opposing coil on the opposite side, and we are thus enabled to observe the magnetism due to the iron alone. A reversing key, resistance coils, and a Daniell cell are required."
The general design of the instrument, as shown in a somewhat crude form when first exhibited, is given in the figure, where A is the magnetising coil within which the sample of iron or steel wire to be tested is placed, B the suspended needle, c the compensating coil, and M the
magnet used as a compensator, having a scale beneath it divided into quarter degrees.

The idea of employing a magnet as compensator in a magnetic balance is not new, this disposition having been used by Prof. von Feilitzsch in 1856 in his rescarches on the magnetising influence of the current. In von Feilitzsch's balance, however, the compensating magne ${ }_{\text {t }}$

was placed end-on to the needle, and its directive action was diminished at will, not by turning it round on its centre, but by shifting it to a greater distance along a linear scale below it. The form now given by Hughes to the balance is one of so great compactness and convenience that it will probably prove a most acceptable addition to the resources of the physical laboratory.

WINTER LIFE AT SPITZBERGEN

THE following is an extract of a report by one of the personnel of the Swedish Meteorological Expedition of the wintering at Spitzbergen :-

One of the deepest fjords of Spitzbergen is the Ice Fjord on the west coast. On a map of the islands it will be seen, some fifteen miles from the mourh, to split into two smaller ones. The promontory which divides the two is Cape Thordsten. It is formed of slate rocks some 2000 feet in height, from which in some places precipices descend perpendicularly into the sea, and in others valleys slope down into the plain. The latter is furrowed by streamlets and deep ravines, while the rocks around are the breeding places of every sea bird of the Arctic fauna, as, for instance, the seagull, the auk, the rodge, and the Uria grylle. In the plain reindeers graze, and on the mountains ptarmigans and snow-sparrows breed. The plain is covered with grass, rather strongly interspersed with moss, but here are to be found many plants and flowers, such as Polymonium pulchellum, Dryas ortopefula, the white and red saxifrage, the Spitzbergen poppyr and the common buttercup.

In the plain close to the mountain the huts are situated which now bear the name of "Smith's Observatory," from the munificent equipper of the expedition. The buildings were erected here some ten years ago by the Ice Fjord Company, which was formed for the utilisation for guano of the coprolite deposits found in the adjacent mountains.

On July 21, 1882, the vessels of the expedition arrived here, but it was at that period doubtful whether we should establish our station here, as the mountains around contain a large quantity of hyperite, a mineral which it was feared would affect the magnetical instruments. We found on landing a line of metals up the hill, with a gradient of 45°, a winch being fixed at the other end for its working. Here was also, still intact, the little dwelling house on four poles, alongside which we found the material required for the building of a new house as stated in works on Spitzbergen. Near to the house is a cross raised with the following inscription: Her hviler Stövet af 15 Mand, som aïde her i Foraaret 1873. Fred med deres Stöv. This is the epitaph to the Norwegian fishermen who sadly perished here ten years ago.

We found by experiments that the mineral in question did not affect the magnetic instruments, and decided therefore to establish the station here. We had a hard time to get everything in readiness, as, for instance, the building of the magnetic hut and the thermometer cage, by August 15, when the observations were to begin, but on August 22 we had so far advanced that both magnetical and meteorological observations could be prosecuted simultaneously.

The view from the observatory was grand. Heavy clouds generally cover the sky, driven hither and thither by strong gales; below the sea roars, with ice floes floating on its crest, while thousands of sea birds wheel in the air. Suddenly the clouds part, and the sun comes forth, the snow-white peaks flash in the rays, the stony ridges bccome purple, and down below the dark gloomy sea assumes the colour of the sapphire.

On August 23 the sun set for the first time, and on October 23 it did not appear. Already, on August 31, the ground became covered with snow, but early in Scptember, and towards the middle of October, it again thawed, and it was not until October 21 that the snow remained. The birds now began to leave, and the Tringa maritima were last seen on August 20. The brent geese soon departed in flocks, and flew cackling southwards out of the fjord. The last was seen on September 13. On October 14 we saw an eider, and sone specimens of Procellaria glacialis, and on October 21 a snow-sparrow appeared at the station. From that date none of the migratory fauna was seen until the spring. Quite alone, howcyer, wc were not, as the mountain foxes soon appeared, and were not the least shy. Ptarmigans were plentiful, too, in the ravines, where they feasted on Polygonum seed. On October 26 we shot the first two reindeer at Sauriehook, but it was not until the spring that they came in any numbers.
Our work progressed too. We had first of all to fix the anemometer and the weathercock on the mountain above the station, or 800 feet above the sea, and to connect it with the observatory by a telegraph wire, as the readings were to be made by electricity. Then there was a workroom to be constructed, and the astronomical observatory for the passage instruments to be erected. On October 3 the wire to the anemometer was ready, and the hut carried up to the top of the mountain, where it was fixed. On October 25 the astronomical observatory was finished. It was now so dark that no work could be done outdoors, and on October 23 it was necessary to light up at 3 p.m., on October 28 at 2 p.m., and on November 2 light was necessary throughout the day. The Polar night had set in.
From October 23 until February 18 the sun remained below the horizon; thus for a period of 118 days and nights. At first it was not quite dark at noon, but from November 11 it was a night throughout. On November 12 a thin layer of ice appeared on the Ice Fjord, which gradually increased in thickness, but it was afterwards broken up and again formed several times during the dark winter. It was only when the light came back that the ice formed in a bridge across the fjord.
Now the island was in darkness and perfectly deserted. The terrible winter storms had commenced, and it was $16^{\circ} \mathrm{C}$. below freezing-point. And the snow! Snow on the mountains, snow on the plain, snow on the huts, snow covers the little windows, snow comes in through the chimney, and even the thermometer cage cannot exclude the tiny, pointed crystals which penetrate even a kcyhole. In such an hour it was a delightful sensation to seek the hearth in the library 1
Again I stand by the shore. The clouds have cleared away; only one enormous mass, which we never saw fifting, lies over the mountains across the fjord. The sky s clear. the ocean roars below, there is no ice; the moon is about to piss her meridian.

Slowly one long tidal wave after another comes rolling towards the shore; they gather into one tremendous wave, which, striking the lofty rocks, sends its spray a couple of hundred fect into the air. Then it recedes with a deep sigh, leaving two or three magnificent ocean algx, each a yard long, on the shore.

When the moon is absent, it is, however, pitch dark, provided there is no aurora borealis. The aurora borealis was observed throughout the winter, when it was clear, and in every form and position.

Now a faint arc appears far down on the south horizon. Below it is a dark segment. Slowly it travels towards the zenith, increasing in intensity. It is perfectly symmetrical, and both its points almost touch the horizon, and strike east and west as the arc moves upwards. No streamers can be made out in it, and the whole forms one continuous layer of light of a strange transparent yellow colour. The arc is broad; its size is three times that of the rainbow, and its edge, which is far more defined than that of the rainbow, forms a strong contrast to the dark sky of the Arctic heavens. Higher and higher the arc travels; in the whole display there is a solemn rest, and only here and there a wave of light suddenly leaps upwards. Above the snowy fields yonder it begins again to get clcarer. Still it is far from the zenith, and already another arc separates itself from the segment in the south, and by degrees others follow. All of them now travel towards the zenith, traverse the point and descend on the northern horizon, while some rapidly recede to where they originated. Seldom, however, does the aurora appear in this regular and defined form.

In the corner of the horizon lics a light cloud-mass. Its upper rim is illuminated, and from this a luminous band is quickly developed, which spreads east and west, increases in intensity, and travels towards the zenith. The colour is the same as that of the arc, but the intensity is greater. In a constantly changing play the band slowly alters, but remains continuous in form and plane. Now it is interlaced into several plaits and folds, but throughout there is an undulatory motion which throws waves of light through the band in its entire stretch from right to left, or vice versa. Again it unfolds itself and forms into draperies and festoons, which are lost in the depths of the horizon.
On another occasion the band assumes quite a different form. It then consists not only of luminous matter, but also of solitary streamers ranged in a parallel plane, all pointing to the magnetic pole. In each of the streamers the intensity is, through the light-waves which follow in rapid succession, greatly increased, which gives the streamers the appearance of being in a constant leaping motion, while the two edges, green and red in colour, move wave-like up and down, according to the play of the coursing waves of light. Often the streamers prolong themselves throughout the entire band ; they stretch even as far as the magnetic pole, and then remain at rest. They are sharply defined, but fainter in light than the band itself, and do not lie close together. They are yellow in colour, and appear like millions of fine threads of gold thrown across the firmament. Again a thin veil of light creeps over the starry heavens, and the golden threads of which it is woven stand clearly out from the background, while its lower garniture is formed of a broad, intense, yellow-white border with a thousand filaments in a slow but constant motion.
Again it appears in a third form. Throughout the day bands of every form and grade of intensity have been drifting over the sky. It is eight o'clock in the evening, the hour when the aurora borealis reaches its greatest intensity. At the present moment only a few groups of streamers stand in the firmament, while down in the south, just above the horizon, lies a faint band which is hardly noticed. But suddenly it begins to move upwards with great rapility, spreads its folds out east and west, the
light-waves begin to leap in it, and long, solitary pillars shoot towards the zenith. At this moment there comes life into the sky. From every quarter of the firmament streamers come rushing with the speed of lightning towards the zenith. The little, fiery tongues whirl round, or sway to and fro, appearing as though they were Cupids in golden mantles with borders of purple. They dart and leap in vain to reach the zenith; they begin to move wave-like, slower and slower; they seem to get tired, still they whirl on towards the north, when suddenly they lose in intensity, and, in a fraction of a second, vanish!

It is again dark and cold; a thin veil of light again begins to form over the star-covered sky. This is as the aurora appears in its grandest form, and any description of it would fail to give even an idea approaching its real majesty and even grandeur.
In addition to the meteorologieal and magnetic observations, those of the aurora borealis were also made during the Polar night by means of the well known theodolite, and from October the electricity of the air was also examined. On the two agreed dates, the $15 t$ and 15 th of every month, the magnets and the aurora were examined and registered every fifth minute, and during one hour, every twentieth second. Besides these observations, meteors and shooting stars were watched and carefully noted, attempts made to measure the quantity of the snow, measurements of the aurora borealis effected, along with astronomical determinations of hour and place, absolute magnetic measurements, simultaneous observations every twentieth second of the magnets, the aurora, and the electrometer, and researches on the moisture of the air, and the nightly radiation, while the temperature of the snow was examined at various depths.
Already in October the remarkable depressing influence which darkness exercises on the human mind, with which every one who has wintered in the Arctic regions is familiar, began to be manifest. In that month it was, however, felt only slightly, but with November it rapidly increased, and at the end of December it had reached "the first stage of insanity." This influence eaused a remarkable dislike to conversation, accompanied by great lassitude. When lying down, phantoms of the scurvy erept over one's mind, and the thought uppermost was that here, next to us, the bodies of fifteen brave men were found in a horrible condition ten years age. The best cure for this was, we found, an exhausting walk, a good dinner, and a few glasses of lime-juice accompanied with the cheering thought that our expedition formed one of the moments in the great work of the human race.

The moonlight during midwinter was very remarkable, and imparted in the day a transparency to the air which we had never seen before. The greatest mountains did not oppress the eye, but seemed to assume a lightness which made them appear as if they were floating on the dark background.
On February 19 the sun was to reappear, but already on January 23 it was so light that we could read fine print out of doors, and on February 8 we could, at 11 a.m., read the thermometers in the cage without a lantern. On February 19 the sun came at last. During these days the scenery was magnificent. On the light sky clouds of every shape floated, coloured in the loveliest tints by the sun's rays, while over the whole was cast a bue of purple and gold.
In the beginning after the sun's return, aurore were still seen in the night, but on March 25 we saw the last of this phenomenon. Eventually on April 19 the sun became circumpolar, and from that date we had perfect daylight.
We often noticed during the spring a thick, cold haze lying over the landscape, in which mock suns and some other optical phenomena were frequently seen, caused by the reflection of the sun's rays in the ice-crystals.

I he fjord was in the light period entirely covered with
ice, and, as the sun reappeared, even the open leads which could be seen between the ice-floes became covered with thin ice. Only far out on the horizon above the fjord as "water cloud," bespeaking open water, could be seen, and the increase or decrease of this we watched with great interest.

The migratory birds now began to arrive, and the Procellaria glacialis was already seen on February 7. On April 13 the first snow-sparrow came, soon after followed by the auks, the rodges, and the seagulls. The ptarmigans, which had lived in flocks during the winter, now began to separate, and preferred the mountains to the plains.
The observations were steadily continued, and the particular object of the researches of the meteorologist at this period was the radiation from the snow's surface. We thus believe we have discovered that the thermometers in the cage did not give the true temperature of the air, which was to be tested by means of a "swing" thermometer, i.e, a thermometer fastened to a cord, and then swung rapidly round, as such a thermometer will give the air's exact temperature as near as possible. Under these observations, which were made every hour, it, however, often happened that the cord broke, and the instrument suffered injury. In order to avoid this a mechanism was constructed, driven by hand, which kept the thermometer in a constant rotary motion, and from May 4 until the end of the month, when the thaw set in, this thermometer was read every hour. Another subject also investigated, from February 15, was the temperature of the snow on the surface and at three different depths.
During the light period three hydrographic-magnetic excursions of research were made on the ice in the Ice Fjord, viz on April 19, April 24, and May 24. The longest of these, the one on May 24, extended six miles from the shore, and it was very difficult work to drag the sleigh over the rough ice. The results of the same were several absolute magnetic measurements, observations of the temperature of the sea at various depths, and testings of the saltness of the water. The greatest depth found was 250 metres.

At the same time, while the snow still remained on the ground, several topographical works were effected. A base some 600 metres long was measured between the universal instrument and a pole south of the same, while two signal posts were erected on two crests south-west and north-east of the station, and three miles apart. Afterwards the greater base was determined by means of triangular measurements from the smaller, in order to serve as a basis for further work. In addition to this there was built, on the sun's return, an astronomical observatory for the universal instrument, which was finished on February, 14, and finally a magnetic hut was built fur the Wrede's variation instrument, finished on May 19.

There was, during the dark period, one question which was much discussed, and which we were anxious to test, viz. whether the Polar night has the effect of turning the complexion white. On January 23, therefore, when it was light enough to see out of doors, we assembled in the open to examine our faces, and the concensus of opinion was that the darkness had not affected the skin in the least.

In the end of May the thaw set in in earnest, and soon mosses and shrubs came forth. In the beginning of June the fjord was still covered with ice, but by the 1 ith it commenced to open towards the sea, and by the 21 st it began to break up and drift. On July 4 the fjord was free from ice.
The fauna now began to appear: thus already on June 2 the red blossoms of Sarifraga oppositifolia came out from the snow; on June 11 Salix polaris was in bloom, as well as Draba zuahlenbergii, and soon the plains were covered with flowers.

At that time some exceedingly interesting experiments in horticulture were commenced. A small garden was first formed by breaking up the layer of turf on the surface, to enable the sun to thaw the frozen earth underneath, and in this manner sufficient mould was obtained to lay out proper beds. In these were then planted seeds, among others radishes brought from Sweden, while several species of the Spitzbergen fauna were planted here. Both flourished remarkably, as did also the rye and oats which we planted berc. The latter grew well, although slowly, and were, at the end of July, six to eight centimetres long. Their growth was measured every fifth day, while studies of the sun's chemical influence on the same were simultaneously prosecuted.

The migratory birds continued to arrive : thus on June 2 the brent geese put in their appearance, and in great flocks took possession of the innumerable lagoons. They were, however, very shy, and comparatively few were shot. Of wild reindeer several were shot, and one Polar bear was seen, but escaped.

At last on June 26, at 4 p.m., the first reminder of the outside world appeared in the shape of a fishing smack, but, although every effort was made to attract attention, she passed northwards. On July 8 an expedition was despatched to Cape Staratschin, the "general post-office" of Spitzbergen, which brought back news, letters, and the literature of the civilised world for a whole twelvemonth, the period of our isolation.

Shortly afterwards we bad several calls of Norwegian hunters, among whom may be mentioned the well known Capt. Kjeldsen, of the Isbjörnen, who participated in the Payer-Weyprecht expedition of 1872, and in the Austrian to Jan-Mayen, 1882-83. He made the remarkable report that he had found the sea at the Norse Islands early in July this summer entirely free from ice, not even seeing the "ice-blink," i.e. the light reflected from new ice formed out of sight. This was in the exact spot where the Swedish expedition was compelled to return on account of enormous pack-ice, at the same period in 1882. He was of the opinion that a steamer would have been able to penetrate very far north of the Seven Islands this summer.
In the middle of August the relief boat Urd arrived, and, after having cleared the houses, and nailed up the windows and doors, we went on board, and steamed out of the Ice Fjord on August 25, having for a period of exactly 400 days, contributed our quota to International Polar research.

THE WEIGHTS OF BRITISH NOBLEMEN DUKING THE LAST THREE GENERATIONS

IT is of considerable interest to know in an exact way the amount of change that may have occurred in our race during recent generations. I therefore send the following results concerning the changes in weight, which I have calculated from data obligingly furnished to me by Messrs. Berry, of 3, St. James's Street, London. Messrs. Berry are the hcads of an old-established firm of wine and coffee merchants, who keep two huge beam scales in their shop, one for their goods, and the other for the use and amusement of their customers. Upwards of 20,000 persons have been weighed in them since the middle of last century down to the present day, and the results are recorded in well-indexed ledgers. Some of those who had town houses have been weighed year after year during the Parliamentary season for the whole period of their adult lives. I examined two of the ledgers at my own house, and was satisfied of their genuineness and accuracy; also that they could be accepted as weighings in "ordinary indoor clothing" unless otherwise stated. Much personal interest attaches itself to these unique registers, for they contain a large proportion of the historical names in our upper classes.

I have ventured to discuss only a small and definite
part of this mass of material, and I selected the nobility for the purpose, because the dates of their births could be easily learnt, which had to be done in order to connect the years in which they were weighed with their ages at the time. They formed a more homogeneous group than one that included younger brothers and men about town, who marry late and lead less regular lives. I therefore begged Messrs. Berry to find a clerk for me who should make the required extracts under their direction in an anonymous form for statistical purposes. I also asked to be furnished with an alphabetical list of the persons weighed, that I might know generally with whom I was dealing, and that each schedule should bear a reference to the folio whence it was extracted, so that, whenever verification was needed, the original might be referred to. All this was done, and I am in possession of 139 schedules referring to as many different persons, namely, 109 peers, 29 baronets (who were added as makeweights), and 1 eldest son of a peer. They were born at various times between 1740 and 1830 , or thereabouts. Each schedule gives the age and year of the several weighings, the highest and lowest weights recorded in that year, and a copy of such remarks as were entered at the time about the dress. An age-weight trace similar to those in Figs. 1 and 2 was plotted on a

SAncimens of the Agro Wright Curtes of Inditriluals

Ftg. 1 -One-fourth of the Series are nore irregular than this Specimen.
(The U1per Quartile.)

Fig. 3.-One-fourth of the Series are less irregular than this Specinen. (The l.ower Quartile.)
large scale on each schedule. My best thanks are due to Messrs. Berry for their careful oversight of the tedious clerical work and for the intelligent assistance they gave in having it satisfactorily accomplished.

The age-weight traces differ widely and in many ways: (1) in the annual range of weight, (2) in its fluctuations from year to year, (3) in the age at which the weight reaches its maximum, (4) in the bluntness of the culminating point.

The annual range is shown in Figs. 1 and 2 by the short, \mathbf{v} rtical lincs that connect the upper and lower contours. The top of each line corresponds to the bighest weight recorded in the year to which it refers, and the bottom of the line to the lowest. I find the average annual range in my whole series of cases to be 6 lbs ., and that, in the successive decades extending over nincty years, it has decreased prettily steadily from 7 lbs. to 5 lbs. This points to an irregularity in the mode of life that was greater two or three gencrations back than now, and we shall shortly see that it is by no means a solitary indication of this well known fact. It would be interesting to learn how much annual irregularity in the weight of an adult is consistent with perfect health.

The only evidence I know that could throw mach light upon it is summarised in a Parliamentary paper on prison discipline, ${ }^{1}$ whence it appears (p. 54) that a certain amount of irregularity is normal among prisoners, that they are heavier in summer than in winter, and that the changes are abrupt; also, that fluctuations in weight, bearing no sort of proportion to previous changes of diet, are of constant occurrence.

I calculated a rough numerical measure of the irregularity of each trace for the purpose of elassifying them. I did so on the same principle that one might adopt to measure the discursiveness of a rambling path, in comparison with that of a straight turnpike road between the same points, namely, by finding the proportion that the length of the one bore to the other. I measured the trace and also the general sweep of the trace with a mapmaker's "perambulator," divided one by the other, and corrected each result on the principle that a fluctuation of 12 lbs in a man of 16 stone should not count more than one of 9 lbs . in a man of 12 stone. 1 also exercised some judgment in my measurements, to avoid the error of dealing with ups and downs in the trace that were apparently due to the fragmentary character of the observations (sometimes only one record in a year, and sometimes two), as if they were real fluctuations. Each a vailable trace was marked on this principle, and the traces were classified according to their marks. Figs. I and 2 are the "quartiles" of this class.

Fic. 3.-Mean Age-Weight of Brit,sh Noblemen in thrte sucesesive gemerations

One quarter of all the traces are more irregular than Fig. 1, one quarter are less irregular than Fig. 2, and the remaining two quarters lie between them. The "median" trace occupies the half-way position; it is unnecessary to reproduce it here, as an imaginary interpolation between Figs. 1 and 2 will suffice.
I next divided the traces into three divisions, A, B, and C , according to the dates of birth of the persons they referred to. It happened that each division covered a period of thirty years, so A, B, and C may be taken to represent three successive generations, born respectively between 1740 and 1769, 1770 and 1799, 1800 and 1829. The numbers of traces available for the present purpose were 21,22 , and 26 respectively. It appeared that the most irregular trace in Group C would rank only as the seventh in Group B, and as the fifth in Group A, and yet C contains the greatest number of cases.
There can be no doubt that the dissolute life led by the upper classes about the beginning of this century, which is so graphically described by Mr. Trevelyan in his "Life of Fox," has left its mark on their age-weight traces. It would be most interesting to collate these violent fluctuations with events in their medical life-histories; but, failing such information, we can only speculate on them, ${ }^{2}$ Copies of correspondence between the Secretary of State for the Hume Department and the Inspector of Pris ons, \&c., and the Report of a Committee, \&k. Ordered to be printed May' 20,1864 -
much as Elaine did on the dints in the shield of Launcelot, and on looking at some huge notch in the trace, may hazard the guess, "Ah, what a stroke of gout was there!"
The age at which the weight reaches its maximum is earlier in the earlier generations. I attempted eye estimates, and found it comparatively easy to form them in respect to the traces of the earlier period, where the culmination was usually distinct, and found that it frequently occurred at an early age; the number of times in which it took place in the successive decades of life in those days being as follows: under the age of 29,2 cases ; $30-9,5$ cases ; $40-9,6 ; 50-9,7 ; 60-9,12 ; 70$ and upwards, 2 . In the latter generations the culminating point was frequently too indistinct to be localised, so that I am unable to offer a corresponding statement for comparison that would be trustworthy. In short, the development of the latter generations was more regular.
The clearest evidence of the different age-weights in the three generations, A, B, and C, is obtained by comparing their Means. The following is a brief numerical abstract of them to which the number of cases upon which each mean is based is added in a different type below it. The figures in parentheses are doubly meaned results, those to the left being derived from observations made at the ages of 26 and 28 , and those to the right from observations at 68 and 72 . For purposes of comparison I subjoin the weights of the professional classes, extracted by interpolation from the table, published by the Anthropometric Committee of the British Association in their Report, 1883, p. 40. The number of observations on which these are based, are given in a form that does not admit of strict comparison with those of my series. They are 24 , for observations at the ages $30-35 ; 24$, for 35.40 ; 44, for $40-50 ; 13$, for $50-60$; 5 , for $60-70$.

Mann Weibhts at Various Ages

Class	Yenet or Agit					
	27	33	40	so	60	\%
A	(166)	${ }_{13}^{17}$	184	181	$\underset{181}{181}$	${ }_{(180)}^{(180)}$
B	${ }_{(168)}^{(168)}$	171	172	184	178	(178)
C	${ }_{(165)}^{(165)}$	165	171	175 37	${ }_{22}^{181}$	$\underset{(7)}{(188)}$
Profe : sional	151	167			174	-

These figures are rendered much more expressive by translating them into smoothed curves; those from which A was drawn are shown by crosses; those from which C was drawn are shown by small circles; but those from which \mathbf{B} was drawn are omitted for clearness' sake.
Whatever may be the exact significance of these mean values, which is by no means so clear as may at first sight be imagined, and whatever may be their absolute worth, which I do not rate very highly, there can be no doubt as to their differential importance. They show with great distinctness that the noblemen of the generation which flourished about the beginning of this century attained their meridian and declined much earlier than those of the gencration 60 years their juniors. They were nearly a stone heavier at the age of 40 .

The weights of these two generations were identical at the age of 62 or 63 , but at that period of life the earlier generation was declining in weight with almost the exact
speed at which the latter was continually rising. The steadiness of the rise of the latter from early manhood to late years is very striking; it is almost in a straight line. 1 have not sufficient data to justify me to say when its curve culminates; I have closed it at 70 with a dotted line.

It is only necessary to add that the ledgers of Messrs. Berry are a quarry from which, with some labour, much further information of the kind just given might be drawn. Perhaps the publication of this paper will suggest methods of treating them that have not occurred to myself.

Francis Galton

THE ERUPTION OF KRAKATOA ${ }^{1}$

" SIXTEEN volcanoes now working between the spot where Krakatoa was before and Sebesie." Such was one of the first reports which was sent by eable to Singapore, and which we heard at Pontianak. Never before had we been so longing for news from Java, for when H.M. ship Hydrograaf steamed into the PadangTikar River, we heard heavy detonations and explosions like far-off shots, so that we were alarmed about Java. As we expected, our ship was soon ordered to survey the Sunda Straits. This survey was finished at the end of October, and the reader will probably feel interest:d to know what really has happened there.

Krakatoa has not entirely disappeared, while, till now, no new volcanoes are visible in the neighbourhood. But the report that new islands were said to have

Fic. 1. - Krakatoa during the erupti n of May, after a drawing of the Military Survey Bureau, Hatavia.
arisen between Sebesie and Krakatoa is easily to be explained, for the new islands are like a mass of smoking and steaming rocks, and if scen from afar they may easily suggest the idea of a great number of working volcanoes But, when looked at closely, it appeared that the masses of rock were composed of hot pumice-stone, mixed with eruptive masses. In them there were a great many cracks and splits, in which, by the heavy breakers, steam of water was continually generated.

The northern part of the island has entirely disappeared. At what is now the northern edge the peak rises nearly perpendicularly from the sea, and forms a crumbled and rugged wall, and shows a vertical cutting (which is more than 800 metres high) of Krakatoa.

Where was land before, there is now no bottom to be found; at least we could not fathom it with lines of 200 fathoms (360 metres) long. When we had quite calm weather, and steamed slowly and cautiously to and fro along the base of the peak, or had turned off steam and let the ship drift, and were busy in measuring the depth, we could distinctly sec the different strata and rocks of the bare, opened mountain. Only here and there a slight trace of melted volcanic matter was to be seen, which,
'By M. C. van Doorn, officer in com nazd of H. M ship Hyimemenf Translated (an! partially abridged) by \mathbf{E} Metzger from Kigen Haard, ${ }^{188}{ }_{3}$. No. 31 .
after half of the mountain had crumbled away, had flowed over the wall, which is still there. What remains of the slopes is covered with a grayish-yellow stuff (which, as plainly appears, had been in a melted or fluid state), full of cracks or splits from which steam is continually coming out.

In the same way steam is also coming forth from the deeper cracks of the steep wall, which is still remaining. Sometimes this is accompanied by slight explosions; at that time clouds of brown dust fly up from the cracks, and stones roll down which are ofien so big as to disturb the sea around the entire base of the mountain. Our

Fic. a.-Krakatoa after the eruption in May, after a drawing of the Alilitary Survey Bureau, Batavia.
entire survey of the north of Krakatoa suggested the idea that we were above a crater which had been filled with water and quenched by it, and this idea was still strengthened on observing that the decrease of depth, south of Sebesie, bad principally been caused by matters which were cast out and flung away.
Almost in every place here the lead came up from the bottom, filled with black sand or carbonised dust, sometimes mixed with pulverised pumice-stone and little black stones, which apparently had been in a red-hot or melted state. Moreover, the soundings were very different, and the new rocks resemble clods of substances which, when

Fig. 3. - Peak of Krakatua after the eruption in Augut, by M. C. van Doorn,
in a melted or very hot state, had contact with water. Probably such a whimsical shape of the rocks above the sea-level suggests the state of the bottom of the sea in the neighbourhood. The stones were still too hot to allow us to discover whether massive stones are under the pumice-stone also. It was not difficult, it is true, to knock off large pieces of these rocks by a hatchet or a chopper, but when a big block fell unexpectedly down, the sailors had often to flee on account of the gases which suddenly arose. The knocked off pieces which were brought on board were still warm after they had been in the boat for an hour.

Fig. 4.- Peak of Sebesie and the volcanic rocks before it, by M. C. van Doors.

As is to be seen from the map, a great part of the lost ground of Krakatoa is found again at the bottom of the sea, a few miles to the north at least, if we suppose that no undulations of the ground took place. After having passed the limits to which the matters were thrown out, one finds the same soundings as were found before, and the decrease of depth is so local that the idea of an upraised bottom is dissipated at once. If such an elevation had taken place, it certainly would be remarked over a far greater extent and be more regularly ascending and descending. The firmer and stronger part of the crater wall, the peak of Krakatoa, which is still there,
remained standing when the lower and feebler part dropped down, and the water found its way into the fearful boiling pool. We cannot wonder therefore that then a quantity of steam came forth (of which we are not able to form an idea), which caused a strong explosion. The movements of the sea which followed it caused tidal waves, the destroying force of which was experienced in such a fearful manner at the coast of Bantam and the Lampongs.

It is also worth mentioning that a change took place in the figure of Verlaten Island; the area is now triple what it was before, though it is plainly visible that large pieces of the beach were there knocked off a short time ago.

Lang Island, in size and formation, has remained almost unaltered. The sight of these islan is, which were formerly covered by a luxurious vegetation, is now very
melancholy. They are now buried under a mass of pumice-stone, and appear like shapeless clods of burst clay (i.e. covered with cracks). After a torrent of rain, the coming forth of steam is sometimes so dense that these islands, when seen from afar, appear like hilly ground covered here and there with snow. If looking at these spots with the telescopes, one can plainly see that these white specks are formed by a great number of clouds, which issued like steam from the fissures.
Sebesie is also covered with ashes up to the top- 859 metres-which appear like a grayish-yellow cloth. But it seems that the cover is already less thick here, for here and there one sees the stumps of dead trees peeping out from the crust.

Sebuku shows a dreadful scene of devastation. Perhaps all that lived here is not 30 completely destroyed as was the case on the southern islands, but the sight of the bare

Krakatoa and neighbouring islands bef.re and after the enuption, from official surveys.
fields of ashes, alternating with destroyed woods, the trees of which are all either dead or uprooted, gives one a still better idea of the destructive powers which were here at work. It is not until we come to the small islands northward of Sebuku that our eyes are gladdened by little specks of green.

I do not try to describe the scene of destruction and misery which we saw at Anjer and the villages along the coast. The papers have already reported the full particulars, and therefore 1 do not care to repeat melancholy facts which are already known.

It was a dreadful narrative which was related to us by a native, a lighthouse-keeper of Fourth Point, one of the few men at the lighthouse, who by a wonder was saved.

When the wave approached, all fled to the tower (the light was 46 metres above the sea), which, though shaking, resisted the violent waves for a long time. It
was a terrible moment, when at last an enormous rock, which was swept away by the stream, crushed the base of the tower, which then fell down. The man who was saved saw his wife and his children drowned before his eyes. He related this fact in the very resigned way of a Javanese, and considered it the most natural thing in the world that he was now obliged to light the interim light, which was erected as soon as possible.

It has been almost a month that we have been in the Sunda Strait3, and even in this short period we could observe that the coasts of Bantam commence to revive. From many places from the heavy rain the ashes are washed down, and a fresh green appears again. Even on the beach young cocoanut trees and banana trees are shooting out between the chaos of dead trees, blocks of rocks, \&c.

Off Batavia, October 23, 1883

CHARLES WATKINS MERRIFIELD, F.R.S.

MR. CHARLES WATKINS MERRIFIELD,F.R.S., who died at Hove on the 1st inst., at the comparatively early age of fifty-six, was a native of Brighton. Having entered for the Bar, he in 1847 received from the then Marquis of Lansdowne an appointment in the Education Department of the Privy Council Office. Though called to the Bar in due course, he never practised, but was speedily promoted to the office of an Examiner, the duties of which he discharged with marked attention and success, while finding time for other work which made for him a name among men of science. Though well versed in Greek and Latin, as well as in the classic authors in French and Italian, both of which languages he wrote well and spoke fluently, the bent of his mind was decidedly towards the more exact sciences. He was an early member of the Royal Institute of Naval Architects, of which he was for many years Honorary Secretary, receiving a handsome testimonial on his retirement in $\mathbf{1 8 7 5}$. Some mathematical papers he had contributed to the Transactions of some of the learned societies, and especially some memoirs on the calculation of elliptic integrals in the Philosophical Transactions, led to his election as a Fellow of the Royal Society in 1863. In 1867 the Government established the Royal School of Naval Architecture and Marine Engineering at South Kensington, and Mr. C. W. Merrifield, at the request of the authorities, accepted the office of Vice-Principal. He only intended to take this as a temporary measure, but as the result of the lamented death of Mr. Purkiss, who was to have been Principal, Mr. Merrifield was appointed to that office. On the transfer of the Institution to Greenwich in 1873, he resumed his office of Examiner in the Education Department. Mr. Merrifield was a frequent attendant at the annual meetings of the British Association, and filled the office of Vice-President of its Section of Mechanical Science at the Brighton meeting in 1875, and was President of the same Section at the Glasgow meeting in the following year. He served on many important committees of that Association; one of these was the committee whose report on the stability, propulsion, and seagoing qualities of ships in 1869 was drawn up by him, and another was the committee for reporting on Babbage's celebrated analytical machine. Mr. Merrifield was a member, and in due course became President, of the London Mathematical Society, and he held the office of Treasurer until he was compelled by his health to resign it in 1882. To some of the leading scientific journals and periodical publications his contributions, extending from 1853, have been very numerous; they may be found in the publications of the Royal Society, the Philosophical Magazine, the Assurance Magazine, the Messenger of Mathematics, \&c. His acquaintance with mathematical arithmetic, methods of interpolation, and tabular work in general, was very wide and complete. Mr. Merrifield edited many of the works in the Textbooks of Science published by Messrs. Longman, and himself wrote a successful treatise on arithmetic and mensuration as one of that series. Some of his papers on the difficult and scientifically interesting subject of sea waves were translated into Italian for the Rivista Mariltima, in which they appear, and a footnote to one of them, after bearing testimony to the author's extensive knowledge and excellence of style, expresses the satisfaction of the editor at his adding to these qualifications that of "writing correctly our language." He was closely connected with the Association for the Improvement of Geometrical Teaching from its foundation, and took an active and leading part in the work of the Association. Mr. Merrifield served on several important Royal Consmissions, including one on the seaworthiness of ships, of which the Duke of Edinburgh was President. During the last few years he frequently sat as scientific a ssessor to Mr. Rothery in the Wreck Court. A part of
his unofficial work consisted of the conduct for many years of the mathematical part of the May examinations of the Science and Art Department. All his arrangements for this purpose were completed in 1882, when, in April of that year, he was prostrated by an attack of apoplexy. He had so far recovered as to give hopes that his life might be spared for some years, but on October 18 last he was seized with a third attack, from which be never rallied.

GEOLOGICAL SURVEY OF PRUSSIA

THE Report of this important Survey for 1882 has just been issued as a well-printed octavo volume with maps, sections, and plates of fossils. The first division is devoted to an account of the operations of the Survey in the field. These were conducted in the Harz, where the keen-eyed Lossen still wields his powerful hammer among the eruptive rocks of that classic region; where, also, Dr. von Groddeck and Herren Halfar, Dames, Branco, and von Koenen bore a share; in northers and eastern Thuringia and the Thuringerwald, where ten geologists were engaged; in Hesse-Nassau, with a force of five surveyors; in the southern part of the Rhine province, where Herr Grebe was at work; in Silesia, where the Survey was commenced by Dr. Dathe ; in the Berlin district, where the superficial deposits and agricultural features were mapped, and the special geological and agricultural map of that district, consisting of thirty-six sheets, was completely surveyed ; in the low grounds about Stendal and Gardelegen, in the plain of the Lower Elbe, and further east in West and East Prussia; and lastly among the diluvial and alluvial formations to the north-west of Halle.

In the course of the year eighteen sheets of maps and sections were published, including fourteen of the geologi-cal-agricultural survey of the Berlin district and four sheets of the map of older formations. The total number of sheets now published amounts to 109 . There were likewise issued in 1882, besides the Annual Report, three parts of the Transactions of the Survey: viz. an account of the Coal-basin of Lower Silesia and Bohernia, by A. Schütze ; descriptions of the Regular Echinids of the North German Chalk, by C. Schlüter ; and a monograph of the species of Homalonotus in the Lower Devonian rocks of the Rhine, by C. Koch.
The plan of operations for 1883 included further surveys in the Harz, Thuringia, and the Thuringerwald, Hesse-Nassau, Rhine province, Silesia, and the great lowlands of Prussia.

The most important feature of the Annual Reports of the Prussian Geological Survey is the series of papers by members of the staff and others, with illustrative coloured maps and sections. Of these papers no fewer than twenty-two are published in the Report for 1882, including four by geologists not attached to the staff, and amounting in all to nearly 700 pages, with 23 plates of maps, sections, and fossils. Among these the following important communications may be cited:-"The Kulm of the Upper Harz," and "The Kersantite Dyke of the Upper Harz," by A. von Groddeck; "The Fauna of the Taunus Quartzite of the Rhine," by E. Kayser : "Preglacial Freshwater Formations in the Diluvium of North Germany," by K. Keilhack; "The Variolite-bearing Kulm Conglomerate of Hausdorf in Silesia," by E. Dathe ; "New Borings in East and West Prussia," by G. Berendt and A. Jentzsch; "The Lower Devonian Rocks of the Siegerland and their Associated Veins," by H. Schmeisser ; "The Trough of Eifel Limestone of Hillesheim," by E. Schulz.

NOTES

Professor Sylvester has been elected a Foreign Member of the Royal Academy of Sciences of Göttingen, of which be
was previously a Corresponding Menber. Science, in speaking of Prof. Sylvester's departure from America, says :-" Prof. Sylvester's departure removes from the Univensity not only the most distinguished scientist but the most interesting personality connected with it ; and his absence will make a gap in the general life of the University no less than in his own department. It is somewhat notieeable that no American college has conferred an honorary degree npon him duriag his residence in this conntry."

At a meeting on Tnesday, in eonnection with the memorial to the late Mr. Spottiswoode, Mr. De La Rne stated that he believed a portrait would be painted by Mr. John Collier, and that it would be placed along with those of other presidents of the Royal Society, in the Society's rooms.
The death is announced, in his fifty-third year, of Mr. John Henry Dallmeyer, the well-known optician.

Dr. Johnston-Lavis writes to us from Naples, Jan. ro:"For some six days the seismographs at the Vesuvian Observatory have been in a disturbed state, and on Monday, January 7, at 1.48 p.m., a distinct shoek was registered. As the sirocco was blowing, the mountain was enveloped in fog and cloud, so that on Wednesday morning when the news arrived at Naples of an eruption during the night it was received with half incredulity. The volcano appears to have eommenced its violent throes about $1 \mathrm{a} . \mathrm{m}$. on the 9 th , when there issued a stream of lava which has flowed down the north-north-west side of the cone and crosed the Atrio del Cavallo. Thore who were fortunate enough to look towards the mountain at abont $2.30 \mathrm{a} . \mathrm{m}$. on Wednesday morning describe the sight as splendid. The maximum explosive violence was at about $10 \mathrm{a} . \mathrm{m}$. We passed the afternooa and evening on the mountain between the observatory and the lava stream, but were paralysed by the quantity of cloud, which prevented a near approach. To-day the view of the mountain has eleared up, bat the activity scems to have mnch diminished. I hope to visit and photograph the crater to-morrow, when I will send more details." The Saandard's Naples correspondent, writing on the inth inst,, says:-"The violent eruption of Vesuvius has come to a sudden close. The new mouth, which had opened just below the old crater, and from which a lange stream of lava issued, flowing down the north-eastern side of the mountain, has to-day ceased to be active. On examination of the old crater, a fissure can be seen directed in a straight line to the new mouth. No signs of similar activity have been experienced since 1875 , and a much stronger eruption is now looked for by Prof. Palmieri."

We understand that Prof. McIntosh, who has nndertaken some investigations for the Trawling Commission, is about to institute inquiries at St. Andrew's in connection with the Fishery Board for Scotland, in order to throw some light on the habits and time of spawning of the sole, turbot, and other flat fish. These investigations are intended to enable the Fishery Board, by artificial cultivation or otherwise, to increase the supply of these important and much-esteemed fishes, and bring them within the reach of the general community more than is at present possible, owing to their being in great part imported from Grimsby and other fishing stations, and where, the supply being often very limited, the prices are extremely high. In this and other work we believe the Fishery Board is making arrangements to provide Prof, McIntosh with tanks and other appliances, so that, in addition to assisting the Board in its scientifie investigations, he will be better able to prosecute his inquiries for the Trawling Commission. It is anticipated that, while the sole and other flat fish are being studied at St. Andrew's, the herring and its allies will be investigated in a laboratory to be formed by the Fishery Board at North Berwick. Besides Prof. MeIntosh, it is
expected that Prof. McKendrick of Glasgow, Prof. Stiring of Aberdeen, and Prof. Schafer of University College, London, will assist in these investigations. It is also interesting to note that, in addition to this work which it is intended to nodertake, the fishery officers of the Board, at its twenty-six stations on the coasts of Scotiand, and the Doard's cruiser Vigilant, are engaged with great success in eollecting materials for the Board, which, when examined, will go far to clear up many of the mysteries as to the food of fishes. The materials collected are being sent from time to time to the University of Edinburgh, where they are examined by Prof. Cossar Ewart, the eonvener of the Seientific Investigation Committee of the Fishery Board, and by Mr. J. Duncan Matthews, one of the laboratory assistants.

THE thirty-seventh annual general meeting of the Institution of Mechanical Engineers will be held on Thursday, January 24, and Friday, January 25, at 25, Great George Street, Westminster. The chair will be taken by the President at half-past seven p.m. on each evening. The following papers will be read and discussed as far as time will admit:-On Thursday, 24th, Experiments on Friction: Report of the Research Committee (adjourned discussion); On the Consumption of Fuel in Locomotives; by M. Georges Marić, of Paris ; on Friday, 25th, On the Physical Conditions of Iron and Steel, by Prof. D. E. Hughes, F.R.S. ; On Portable Railways, by M. Decauville, of Petit-Bourg, Paris ; On the Moscrop Engine Recorder, and the Knowles Supplementary Governor, by Mr. Michael Longridge, of Manchester.

We are glad to see that Dr. Doberck's enterprise is meeting with the approval it deserves in Hong Kong and China. "Dr. Doberck, the Government Astronomer, who arrived at Hong Kong a few months ago," the Hong A'ong Firce Press of Nov. 6 says, " has since been most usefully employing hiv time in visiting the different coast ports and Formosa, and returned from the latter yesterday. He has, we nnderstand, verified a number of instruments belonging to the Imperial Maritime Customs of China, and has studiod the geographical conditions of the const as bearing on meteorology, a very necessary matter in order to arrive at accuraey in discussing observations. We are glad to learn that the Chinese Imperial Maritime Customs Authorities evince a strong disposition to cooperate with the Hong Kong Observatory in the matter. It is of the first importance, in order to be able to arrive at any definite results so as to be able to forecast the weather, and comprile a reliable weather table, that the meteorological observations condueted at different ports on the China coast should be made at the same hour, in the same manner, and by instruments corrected to tbe same standard. It is to be hoped therefore that Sir Robert Hart will allow his able staff to take part in this work, and that monthly registers will be kept at all the treaty ports from Newchwang to Pakhoi and transmitted to the Hong Kong Observatory, which, by situation, is best fitted to become the centre of such a system. The Obeervatory in this colony is on a very modest scale, and the vote for its maintenance is a mere trifle when the good that is to be gained from it is considered, and we trust that the efforts of the astronomer will not be paralysed by too great attention to economical considerations on the part of the local government. The Inspector-General of Customs has always displayed a zost laudable desire to promote improvement in lighting the coast and facilitating navigation ; and he will, we hope, see his way to promote the success of Dr. Doberck's work by cooperating with the Hong Kong Observatory. The Sicawei Observatory has done some good work, but its operations have necessarily been limited owing to the absence of reliable observations at the ports. What is expected from the Government Astronomer is that ultimately he may be able not only to give forecasts of the weather bat to furnish such a guide to mariners as would render
it possible to make voyages and to avoid typhoons or bad weather. The value of such a service is not measurable by mere money; it means greater security to life and property, fewer risks to shipowners, and a diminution of loss to naderwriters. It would, in short, have an appreciable effect on commerce generally, and the business of this great shipping port in particular." We trust that this just and accurate view will prevail among those in a position substantially to help Dr. Doberck in his valnable work.

Professor Forel (Morges) writes in the Gavefte de Lausamne: -We are again passing through an earthquake period. On December 18, 1883, at 6.25 a.m., a shock was observed at Neufchâtel ; on December 22, at 3 a.m., another one at Cortaillod, and at 4 a.m. at Neufchatel and Cortaillod. On December 17 and 18 earthquakes were noticed in various parts of Italy, and on December 22, at 3.39 a.m., one at Lisbon.-A rather violent shock, followed by another an hour afterwards, was noticed at Laibach on December 31 at $3.30 \mathrm{a} . \mathrm{m} .-$ At Sadikli, near Brussa, an earthquake caused some destruetion on January 3 , fortunately unattended by loss of life. -The Siberian newspaper Sribir reports that at Korssa Kowskoje Sjelo on Lake Baikal no less than nine earthquakes occurred dnring the month of September last, i.e. on the 3rd, $7 \mathrm{ih}, 12 \mathrm{th}, 14 \mathrm{th}, 17 \mathrm{th}, 20 \mathrm{th}$, $24 \mathrm{th}, 27 \mathrm{th}$, and 3 oth of that month (old style).-A sharp shcek, causing some alarm, was also felt at Messina at 11.30 on the night of the 13 th inst., but no damage was done.

AT 5.25 p.m. on January 11, at Fort William, a ball of light, shaped like a pear, with the broad end dowawards, was seen as if suspended midway between Ben Nevis and the Caledonian Valley. It descended till near the surface of the earth, and then it burst, lighting the whole valley. In colour it resembled the electric light. Mr. W. Gnnn writes from Berwick-on-Tweed:-"On January 11, at 5.33-34 p.m., I saw a remarkably brilliant white meteor-certainly as bright as Venus-rather low down in the sky to north-north-west. Apparent motionabout in a line from Vega towards a point in the horizon nearly vertically below the end of the tail in Ursa Major; seen for two or three seconds moving slowly; seemed to largely and suddenly increase in size and brightness just as it was lost to view behind some trees. Perhaps this was the bursting seen at Fort William."

The list of lectures to be delivered before the Association Scientifique de France has been published. They will be delivered as usual at the Sorbonne, under the control of M. Milne Edwards, president of this association. Some of them will be delivered by members of the eouncil of the Association Française, a rival institution, and it is pretty certain that the two societies will be incorporated into one single body. The Association Scientifique is the older of the two, and was created by Leverrier about twenty years ago.

We learn from Science that Mr. H. M. Wilson, in charge of one of the topographical parties in Prof. A. H. Thompson's Wingate division of the U.S. Geological Survey, surveyed, during the season of 1883 , about ten thousand square miles in NorthWestern New Mexico and North-Eastern Arizona. The area covered by his work lies between parallels of latitude 36° and 37°, and extends from meridian 109° to 111°. He also worked some smaller detached areas outside of the limits thus indicated. This region has hitherto remained a terra incognita, partly on account of its aridity and barren condition, and partly on aecount of the difficulty of traversing it. So little has been known of it that within the area surveyed by Mr. Wilson a small monntain range has been indicated as occnpying two places on the same map. On the engineer's map of 1879 it is called Calabesa Mountains in the northern place, and Squash Mountains in the southern ; and on the 1 and-Office Map for $\mathbf{1 8 8 2}$ both are in di-
cated withont names. Mr. Wilson's work proves that they are one and the same, occupying a position very close to that assigned to the Squash Mountains.
News has been received in Berlin from the African traveller, Dr. Richard Böhm, dated July, 1883, from Qua Mpara, on the western shore of Lake Tanganyiha, near the estuary of the Lafuku River. Dr, Böhm and his companion, Panl Reichardt, seem to have settled there for some time. Before reaching Qua Mpara they met with considerable difficulties, having to combat the natives, by whom Dr. Böhm was seriously wounded. He left the Belgian station Karema at the end of June, and reached Qua Mpara on Jnly 8. There he was seized by a fever, yet he retained sufficient energy to complete his zoological investigations (principally ornithological) and to forward the results to Europe. All his collections and his scientifie instruments were nufortunately destroyed by fire on the Mto ja Ugalla, Dr. Eöhm, however, set to work again and commenced making new collections, which he left at Karema in safe heeping. Amongst other things he is reported to bave discovered a beautiful freshwater Medusa, with a broad, umbrella-shaped body and numerous long and short prehensile filaments ; he found it in Lake Tanganyika. At the same time a report from Herr Paul Reiehardt was received describing in detail the Soko so well known to readers of Living. stone. The animals live together in heris of from six to twenty individuals, and build nests on trees at an elevation of $8-19 \mathrm{~m}$., the nests measuring from $\mathrm{I}-1.2 \mathrm{~m}$. in diameter. Reichardt found groups of nests in which he eounted over fifty separate nests. Up to the time of sending the report Reichardt had not succeeded in securing a specir.en.
In the Bolletino of the Italian Goographical Saciety for December, 1883 , Sig. Colini eontinues his valuable notes on the information supplied by Cavaliere Lucioll on the topography and ethnography of the Upper Amazons regions. The paper is accompanied by a large map of the Huallaga and Ucayali river basins, based on Petermann's South America, but corrected and supplemented by fresh data furnished by Lacioli. The position of a large number of tribes, many hitherto unknown, is determined along the banks of the head waters of the Amazons, and to these is added a list of about sixty others, supplied by Dr. Colini from the old records and the writings of recent explorers. But it is obvious that many of these are mere duplicates or even triplicates of the same tribes dne to careless transcription, ignor* ance, ehange of tribal deignations, and other sonrces of confusion. Thus Carapacho and Picambio are only older names of the present Caribs s and Remos of the Middle Ucayali. So with the Amalmacas, Chuntagurus, and Tambas of the older writers, who may be safely identified with the modern Amahuacs, Chontaguiros, and Campas respectively. Nor, as Colinl rightly remarks, are these names always distinctly tribal, but the designations of mere clans, or small family gronps, or members of larger divisions. These are eontinually shifting their locality, disappearing, or becoming absorbed in more powerful groups, another fruitful source of perplexity in the ethaical terminology of the Amazons regions. But, after making all due allowance for this nneertain nomenclature, there still remains a surprising number of really distinet tribal groups scattered along the banks of the Huallaga, Napo, Ucayali, and other Amazonian streams, groups differing from each other always in speech and frequently in habits, usages, and physical type.
On January 26 the Berlin Wissenschafliche Central Verein and Humboldt Academy will celebrate the fiftieth anniversary of its foundation.
The additions to the Zoological Society's Gardens daring the past week include a Bonnet Monkey (Macacus sinticus 8) from India, presented by Mr. C. S. Norman ; two Great Kangaroos (Macropus giganteus \& 8) from New Snuth Wales, presented
by the Zoological and Acclimatisation Society of Melbourne; a Dorsal Squirrel (Sciurus hypopyrrhus) from Central America, a Greater Sulphur-crested Cockatoo (Cacafua galerita) from Australia, twenty-five Indian Crocodiles (Crocodilus palustris) from India, deposited.

OUR ASTRONOMICAL COLUMN

Parallaxes of Southern Stars.-We learn from Mr. Gill, H.M. Astronomer at the Cape, that he has completed a memoir on the parallax of some of the principal southern stars, founded upon observations by himself and Dr. Elkin ; the memoir contains investigations on parallax of
a Centauri (two series with different comparison-
ly Gill stars) ; Sirius; E Indi; Lacaille 9352 (Gould's star with proper motion of 7^{7}) ; ρ^{2} Eridani, and (β Centauri.
a Centauri (two series with different comparison-
By Elkin stars from Gili's); Sirius ; a Indi (also with different stars) ; §Tucani ; e Eridani and Canopus.
Mr. Gill's important memoir has been communicated to the Royal Astronomical Society, and its pablication will doubtle:s be awaited with much interest by astronomers.
The large proper motion of Lacaille 9352 was detected by Dr. Gould, and announced in No, 2377 of the Astronomische Nachrichten. The annual P.M. in arc of great circle is $6^{* " 96}$ in the direction $79^{\circ} \cdot 2$. It is a star of 7.5 m . in Piscis Au trinus : Mr. Stone's place for $1880^{\circ} 0$ is in

$$
\text { R.A. } 22 \mathrm{~h} .58 \mathrm{~m} .543^{\mathrm{s}} ., \text { N.P.D. } 126^{\circ} 32^{\prime} 40^{\prime \prime} \cdot 0 \text {. }
$$

In only one instance has the existence of a larger proper motion been discovered, viz. in that of the well known 6.7 m . Groombridge 1830 in Ursa Major, where the amount is $7^{\prime \prime} \circ 5$. E Eridani, $4^{\circ} 4 \mathrm{~m}$., is in R.A. 3 h .15 m .8 .16 s ., N.P.D. $133^{\circ} 31^{\prime}$ $46^{\prime \prime} .8$ for 1880 , according to Stone, who attribates to it an annual proper motion of $3^{\prime \prime}$ o in the direction $75^{\circ} 5$. S Tucani, a fourth magnitude, is in R.A. oh. 13 m .48 .60 s ., N.P.D. 155° $34^{\prime} 49^{\prime \prime} \cdot$ for 1880 , with an annual proper motion of $4^{\prime \prime} \cdot 35$ on an angle of $74^{\circ} \cdot 8$, by Stone's values.
Mr. Gill expects to be in England early in February, to superintend a large amount of official printing, for which he brings copy with him.
Pons' Comet.-For a few evenings this comet will form a pretty conspicuous object as it desceads in the sonth-western shy ; after it ceases to be visible in Europe observations may be continued at the observatories of the other hemisphere for several months. On March 26 the theoretical intensity of light will be ten times, and a month later, five times, greater than at the beginning of September, when the comet was discovered through the diligent scrutiny of the heavens, followed up by Mr. Brooks, who found it considerably beyond the limits of the sweeping ephemerides then in the possession of observers. Mr. S. C. Chandler has conjectured that a meteor-stream may be connected with this comet. MM. Schulhoof and Bossert's orbit for 1884 gives the radiant in R.A. $197^{\circ} 8$, Deel. $+67^{\circ} 3$.

The Minor Planets.-The Berliner Astromomishes Yahrluck for 1886 contains elements and approximate ephemerides for the present year of 231 of the known members of this extensive gronp, only four therefore being omitted in the absence of the necessary data. In addition there are twenty-six accurate opposition-ephemerides. Four of the e small planets approach the earth, within her mean distance from the sun, in 1884. At the end of December No. 132 Efhra, situate in the vicinity of a Orionis, will approach the earth within 0.85 , and shining as a star of the ninth magnitude, will afford another favourable opportunity for the investigation of solar parallax, on the method advocated by Mr. Gill.

SCIENCE IN RUSSIA ${ }^{1}$

T'HE Memoirs (Zapiski) of the Novorossian Society of Naturalists, at the University of Odessa, founded only in 1873, have already reached their eighth volume, and contain a good deal of valuable work. Confining our analysis to the last three volumer, we notice in them the following papers:In the domain of geology Prof. Sintsoff contributes several

 Oderu
papers. One of them is an elaborate monograph on the sponges from the chalk of Saratoff. Revising his former work on the same subject, and taking advantage of the well-known work of Prof. Zittel, as well as of new extensive collections, M. Sintsoff creates a number of new species and four new genera: Micandrofychinm, which he prop ses to substitute for thase of Calloptychium, Etheridgia, and Tremabolites; Labyrinholites, closely allied to Plocoscyphia; Polyscyphia, akin to the preceding; and Zittdispongia. The author de-cribes (with figares) seven species of the first, four species of the second and the third, and one species of the fourth, as well as the following species :Cwculsspongia triloba, Trautschold, Craticularia cylindrica, Mischl.; two species of Ventriculites, two species of Coscino. pura, Leplophragma simplex, T. Smith, Actinosiphonia radiata, Fisch, and the new species Hallirhoa peskowi and /soraphinia cavala. - The same author contribates a seco id paper on Mesozoic fossils from Simbirsk and Saratoff (the first paper having appeared in vol. iv.), and describes the following species:Ammonites longispinus and culetanus, Scalario dupiniana, var. rhodani, Astarte beaumonfii, Panopea nevcomiensis, and as new species Aporrhais striata-earinata, Nucula subarduennensis, and Lwcina mentralis.-A third paper by the same author contains a description of the following Tertiary fossils of Novorossia :-Drcisena rostriformis, Desh., AJdrobia math ildsformus, Fuchs, H. dimidiala, Eichw., Valvata variabilis, Fuchs, Neritina danubialis, Pfeif., var. litumata, Eichw., N. prevosiriana, Partsch., and N. capillocea, Brusina, from the Pliscene; Trockus rollandians, d'Orb., Phasianella kischinerviar, d'Orb., and as new species Trochus mimufus, semistriatus, and ciegantulus, Hylrobia substriatula, Amnicola cyclostomoides, and Valvata pscudo adiortis, from the Miocene. All these fossils are represented in the plates. -M. Prendel contributes a paper on the geological structure of the districts of Elizabethgrad and Alexandria, in the government of Kherson. The rochs are granites, mosily as schists, and considered by the late Barbot-de-Marny as a product of metamorphism of sedimentary rucks, and very syall patches of Huronian schists, covered with numerous isolated inlands of Eocene. The whole is covered with the "White Sands," where M. Prendel has found a stem of Cuprestomoxylum st(tursovi, Merklin (Miocene?), and with loess, which cuntaine, besides the usnal fossils, remains of Arctomys bobar, which does not now extend in Russia south of $52^{\circ}-54^{\circ} \mathrm{N}$. lat. - The same author contributes (vol viii.) another paper on th: crystalline rocks on the Bazavlouk and Saksagan Rivers, right tributaries of the Lower Dnieper. The paper is accompanied by a map of coloured sections of microscopic specimens of crystalline rocks.

The chief papers in these Memoirs are however devoted to comparative anatony and zoology. Without attempting to summarise their varied contents, we can merely enumerate most of them. All are profusely illustrated with plates. In the sixth volume we notice a preliminary communication by Madause Olga Mechnikoff, on the anatomy of cartilaginous fishes ; and a note, by Prof. H. Mechnikoff, on the larva of the Anisoplia.-M. Repyakoff contribates an elaborate paper on the morphology of the Bryosoa. Without attempting to determine the place that the Bryozox ought to occupy in systematic classification, the author devotes his special attention to the relations between the two great subdivisions of the Endopruct and Ectoproct Bryozos, and his paper is a valuable contribution to the work undertaken by Nitsche, Hatschek, Joliet, and Barrois.M. Zabarinsky contributes a paper on the morphology of the Hydra.-In vol. vii. M. Buchinsky publi: hes a paper on the development of the earthworm, devoting his special attention to the development of its mesoderm and of its nervous system. -In vol, viii. M. Krasilschik contributes an elaborate paper on the development of the Polytrema, and the place it occupies with regard to other Flagellate; M. Repyakoff publishes a note on the larver of the Polygorifius flavorapitatus; M. Depp, on the life of the Macropodes; and M. A. Kovalevsky, on the development of the Chiton.-In physiology we notice the researches, by M. Spiro, into the development of bile, being the result of various experiments, and accompanied with tables showing the dependence of its amount upon the food.
In botany we find the researches by M. Rishavi on the development of the organs of reproduction in Dasya elegans (vol. vi.) ; a list of lichens collected on Mount Castel in the Crimea, and determined by Dr. Brutann in Dorpat (vol, vii.); and a work, by M. Kojernikoff, on the anatomical structure of the corrlla in flowers. The author has extended his researches
to a great number of flowers, and bas come to the conclusion that, however great the analogy between the petals and the leaves, still the former have a series of well-established anatomical features which enable us to characterise them as well as any uther part of the plant. Some of their anatomical features can be explained by the physiological function of the organ, whilst the others have no connection with them, and the explanation of these peculiarities must be songht for elsewhere-says the author-in the yet unknown internal structural form of the plant as also, perhaps, in the position occupled by the flower in the whole of its organic life.

In chemistry and physics we notice two papers, by M. Tanatar, on the fumaric and maleinic acids (vol. vi.), and on their cmpounds with chlorite (vol. viii.) ; by M. Klimenko, on the lactic and propionic aeids (vol. vi) ; by M. Melikov, on the componnds of acrilic acid; and by M. Geritch, on electrical phenomena observed during the diffusion of several llquids,

A paper of general interest, intended to show some relations between animals and plants at their lowest degrees of development, is contributed by M. Shmankevitch (vol. vii.). When the Flagellate, Anisonema acinus, Blitochli-having a relatively high organisation-is cultivated for many generations in a medium which is slowly modified, for instance, in sweet water to which a certain amount of lake salt is added, its structure is modified, in proportion as the concentration of the solution of salt is increased. The individuals become less developed, their size diminishes, and the feeding-canal loses its former develop. ment. Numberless intermediate forms between the Anisonema acinus and its new, less developed representatives, make their appearance, as well as between these and the still lower Anisonema sulcatum, which would be thus but a lower organised variety of the former. When the concentration of the medium in which the Anisonema lives is carried on side by side with a change of temperature of the medinm, the transformation goes further on, and the lowest Anisonomic are transformed on the one side into alga-like organisms, and in another direction into organisms which seem to belong to the category of fungi. The individuals not only become smaller, but they give rise also to a progeny long before reaching their foll size. Under the inflaence of the sun's rays the uncoloured Flagellate aequire a new physiological function, and develop chlorophyil. "We see thus," the author says, "the beginnings of two kingdoms, animal and vegelable, radiating from one common stem. We see the transformation of one of them into the other, not only in its morphological features, bat also in its physiological funclions, under the direct influence of physical and chemical agencies. The saline solutions, as compared with sweet water, diminish the size of the lower organisme, and at the same time they contribute towards the development of chlorophyll in the sweet-water algx, thus giving them, so to say, a more vegetable character, together with an incrensed prodnctivenes." And further: "While descending from the Anisoncma sulcatum to a unicelhiar alga, we see the regressive development, a simplification of organisation; we descend towards the planis containing chlorophyll., . . While descending from the same Anisomema on another branch, we enter into the region of such lower organisms which, under the influence of another medium, do not develop chlorophyll, and having no nutrition from the air, find their food from the substratum; they could be described as parasitie Rhizopodxe, and this the more as from the fungoid form we can ascend, under some circumstances, not only towards the Amcela-like uncoloured Flagellata, but aloo towards the moving Monad. On the contrary, by reversing the physical ageneies, we can arrive, from the unicellular alga, as well as from the fungoid form, to an uncoloured form having the structure of the Anisonema." The researches of A. Giard, Cienkowsky, and Famintzyn, and some observations by Ray Lankester, seem to be, in the author's opinion, in accordance with the above.

PROFESSOR HAECKEL ON THE ORDERS OF THE RADIOLARIA ${ }^{1}$

[The following translation of a recent paper of mine, by Miss Nellie Maclagan, has been revised by myself.-Ernst HaEckel.]
THE "Outline of a Radiolarian System founded on Studies of the Challonger Radiolaria," published by me in the Fouaischs Zcilschriff für Naturwisscwschaf! (Bd. xv. pp. 418-472),

[^30] far Medicin. und Wissenschaf!." Jahirg. 1883. Sitrung. von 66 Februar.
shortly before starting for Ceylon in October, 1881, gave a very short survey of the systematic results of the researches which I had been carrying on xince 1876 among the inconceivably rich Radiolarian waterial of the Challenger collection. At that time I distinguished in this Rhizopod class seven different orders (p. 421) and 24 families, containing in all 630 genera (" Prodromus Systematis Radiolarium," l.e., Pp. 423-472). 1 was able even then to distingui h no less than 2000 new species, and thi goodly number has since been considerably increased. Further investi. gations corroborated all the principal essential points of the views then triefly given as to the morphologico-phylogenetic conditions of relation among this Protista class, but I gradaally came to simplify my views as to the relation of the principal groups, and have now reduced the seven orders to four, which makes the compllieated system mnch more comprehensible.

The systematic arrangement of the 15 families, given in my "Monographie der Radiolarien," 1862 (following Johann Müller, who first broke ground in his treatise, 1858) was essentially improved Ly Richard Hertwig, whose admirable work on the "Organismus der Radiolarien," 1879 , thoroughly explained for the first time the difficult histology of these Protista, and definitely determined their unicellular nature, despite all peculiar modifications of the cell structare. On the ground of important differences discovered by him in the stracture of the membrane of the central capsule, and the consequent varying comportment of the passage of pseudopodia, Hertwig distinguished the following six orders ($1, c$, p, 133):-1. 7halassicollat, monozoic uninuclear Radiolarians, having the capsule membrane pierced on all sides: skeleton siliceous, irregular, or wanting. a Spherrozen, polyzoic multinuclear Radiolarians, having the capsule membrane pierced on all sides: skeleton siliceous, irregular, or wanting. 3 . Peripylea, monozoic uninuclear Radiolarians, having the capsule membrane pierced on all sides: skeleton siliceous, consisting of fenestrated spheres or modified fenestrated spheres or disks. 4. Acanthometra, monozoic uninuclear Radiolarians, having the capsule membrane pierced on all sides : skeleton non-siliccous, consisting of twenty spicules arranged according to J. Muller's law. 5. Monofylom, monozoic uninuclear Radiolarians, the capsule open on one side, and with a peculiar porous area: skeleton siliceous. 6. Tripyla, monozoic uninnclear Radiolarians; capsule membrane donble, with one principal and two accessory openings ; skeleton siliceous, formed of tubes.

As I found that the imporiant differences in the structure of the membrane of the central capsule and the consequent passage of the peeudopodia, discovered by liertwig in the comparatively limited material at his disposal, were corroborated in their mot essential points hy my researches among the wider world of the Challenger Radiolaria, I adopted his scheme in my "Conspectus Ordinum Radiolarium Classis," 1881 ((l,c, p. 421), but with this difference, that I divided Hertwig's Sphurrosova into two orders-Symbelaria and Syncollaria. The latter, Sy nedlaria, inclndes the families of the Sphurrvizoida in the wider tense, and, from the absence or incompleteness of the skeleton, corresponds as a polyzoic group to the monozoic Thalassicallea, whil-t the former, Symbelaria, includes the family of the Collaspharida in the wider sense, and by its spherical, reticulate, siliceoas skeleton corresponds as a polyzoic group to the monozoic Perifyles.

Recent rescarches, which have brought to light an immen e number of new, hitherto nuknown Radiolarians helonging to the last-mentioned groups, have, however, convinced me that the distinction between the monozoic (solitary) and the polyzoic (social) Radiolarians is of much less importance than was formerly supposed. They are as insignificant and of as little valne in forming a system as the differences between monozoic Hydropolyps (e.g. HJdra, Myriothda) and polyzoic IIydropoly|s (Tu'ularia, Corywe), or as the differences between solitary Infusoria (Vorticella, Trichedina) and social Infusoria (Carchesium, Epistyis). According to Hertwig, the essential difference between the two groops is that the solitary Thalassicollca are uninuclear, the social Spherrosoca ($=$ Symbilaria) multinuclear. Nevertheless, the central capsule in all Radiolaria (without exception) is aninuclear at an early stage and mulinuclear later on. We would require to be more exact about this distinction, inasmuch as in the Spharozona ($=$ as in the Acantiometrra) the division of the simple nucleus into a number of nuctei (spore nuclei) takes place at a very early period, whilst in the Thales sicollat (as in the other Radiolaria) it only takes place later on. This relative modification ic, however, of no staudard value
for the systematic distinction of the orders, and is, moreover, subject to varions exceptions.

Among the new Radiolaria of the groups above mentioned riscovered in the Challengar collection, there were, moreover, monozoic and polyzoic species which correspond completely, even in the specific cbaracteristics of the skeletal form. For example, a monozoic Thalassoxanthium has precisely the same characteristic spicules as the common cosmopolitan Spharosowm punclatum, but whilst in the latter the small polyzoic central capsule incloses a large central oil globule and nnmerons small peripheric nuclei, in the former the central capsule, which is three times as large, incloses a single, large central nucleus and numerous small peripheric oil globules. The complete identity of the chamcteristic skeletal form might even lead us to suppose that a kind of alternation of generation may take place between the two forms. In the same way, a social Cellosphard corresponds completely to a solitary Cemospherra, the polyzoic Acrosphara to the monozoic Conosphery a, and so forth.

Un the ground of these observations-the importance of which I shall explain in detail in my work on the Challenger Kadio-laria-I consider the distinction between monozoic and polyzoic Kadiolarians (which I contrasted in 1862, according to Muller, as Afonocytlaria and Poljcytfaria) as practically mnmportant, and for the present connect the polyzoic familiea in the system imme. diately with the monozoic. In this waty the number of the six or seven groups is reduced to four, as I refer all the gronps thns formed to Ifertwig's Peripylea. As I have already shown ($\mathbf{8 8}$ t, l.c. P. 421), these may be again divided in pairs into two principal groups or sub-classes-into Hololrypasta and Merofrypasfa. The Zfolotrypasta (Acantharia and Piripylos, the latter including the Collodaria, Symbelaria, and Symcollaria) includes all Radiolaria in wbich the capsule membrane is pierced on all sides by fine pores, and the pseudopodia consequently radiate equally on all sudes. The M/crotrypasta (Monopylaria and Pharadaria) include all those Radiolaria in which the membrane is pierced at one side either by a single area of pores or by openings confined to a few spots, so that the pieudopodia project from the central capanle as a single bunch or as slightly separated bunches.

The bigh standard importance of the central capsule for the proper conception of the Radiolaria to which I first drew attention in my monograph, 1862, has since been recognised by Hertwig and most other investigators of these Protista, but recently disputed by Carl Brandt (Mlonalsb. Berlin. Akad. 188ı, p. 398). As I reserve the detailed reasons for my opinion for my work on the Challinger Radiolaria, I shall now merely remark that $m y$ more recent reiearches have fully corroborated my former views, and that in all true Radiolaria the central capsule is separated by a distinct membrane from the extra. capsularium (or external gelatinous soft part). The so-called "freshwater" Rarllolaria (uhich, from absence of the membrane, are not Radiolaria but Helizoa) do not of course furnish any counter-proof. Brandt's erroneons asiertion rests upon the extremely limited amount of material investigated by him. Careful investigation enabled me to discover the capsule, even in all species which be regards as "without capoule." In isolated species, however, the capsule membrane is somewhat late in forming a definite boundary between the capsule and the gels. tinous sheath (sometimes just before the formation of spores), whilst in other caces it usually takes places at a very early stage. I therefore maintain now, as formerly, that the chief character of the class is the differentiation of the unicellular body into two essential, principal component parts, viz. the inner central caprule with nucleus and membrane, and the outer gelatinous sheath with matrix and forest of peeudnpodia. On the other hand, it is Immaterial whether "yellow cells" (or "zooxanthella") are present or not. I found them wanting in many cases, thongh they are usually present. I therefore agree with Cienkorosky, and regard the symbiosis of these uniceliular Algw as an accidental and not an essential phenomenon. They are in no way mecessary for the nourishment of the Radiolaria, though they may be important agents in the matter.

Meantime I am convinced that the four orders of the class Radiolaria, Acantharia, Spwmellaria, Nassellaria, and Phecodarra represent four distinct, perfectly natural, principal divi-ions. In each of these four orders the numerous forms belonging to it, despite their astonishing variety, may be referred by morphological comparison to a common primitive form, which may iherefore be regarded as their ancestral forn. in a phylngenetic sense. Tlis phelngenatic view of the four orlers as distinct monophy. leis gronps is jnsutued by the fact that the remarkable and ex-
tremely complicated relations of all the forms of each common ancestral groap have the rame natural, strong phylogenetic signification as they have in the comparative anatomy of the Vertebrata or of the Articulata. Butschli was therefore in the right at the close of his admirable dissertation on the skeletons of the Cyrtida (1881, l.c. p. 538), where he lays stress on the fact that the complicated phylogenesis of this section, so rich in specific forms, may be regarded as an excellent argument in favour of the doctrine of descent, and that in this way those painstaking investigations of the microscopic world (which many "exact physiologists" consider mere morphological triffing) come to be of real importance.
I. The Acantharia, which are distingui-hed from the three other orders by their organic acanthine skeleton-they never have a true siliccous skeleton-correspond on the whole to the Acanthometra of J. Miller (including, however, part of the Halionma), and to the Acanthometrae of 1lertwig, which he divides into Acanthometrida and Acanthophractida. I bold the remarkable Actinelius to be the ancestral form of this order. It was first described by me in 1865 , bnt I have lately found several forms closely allied to it, partly Astrolophida, partly Litholophida, in the Challonger collection. In Acfinelius the spherical central capsule is pierced by numerous simple, radial spicules (without definite number and arrangement) meeting in the centre of the capsule. Acfimelius may be held to have ariven immediately from Aclinospherium by the hardening of the firmer axial fibres in the radial pseudopodia of the latter into radial spicules. Activelius is the common ancestral form, on the one hand, of the whole Actinelade (Astrolophida and Lithol phida), all with indefinite number and arrangement of the spicules, and, on the other band, of the remaining Acantharia, in which twenty radial spicules are invariably arranged according to J. Muller's law in five furur-rayed zones. The oldest of shese are the Acanthonida (or Acanthometra in the more limited sense) from which the Ilorataspida and Diploconida having shells are derived later on.
II. The Spumellaria, by which I understand Hertwig's PeriAylea, Thalassicollat, and Spharosona, had been previously nnited with tolerable accuracy by Ehrenberg, on the ground of observations made by him on the skeletons of the fossil Kadiolaria of the Barbadoes, and opposed to the Nassellaria as Polydictya or Polycystina composita. His Spyridina (our Spyroida) belongs, however, to the latter, not to the former. All Spumellaria (which may also ultimately be termed Peripylaria or Peripylaa) have-in contradistinction to the Nassellaria and Pheeodaria-a central capsule pierced ou all sides by fine pores, and agree in this respect with the Acautharia, from which, however, they are distinguished by the absence of the acanthine skeleton. All Spumellaria may be easily referred to a common ancestral form -to Actissa, the simplest form of the Thalassicollida. An interesting species belonging to Acfista was aceurately described by Hertwig in 1870 , nnder the name Thalassolampe primordialis ("Organismus," p. 32, taf. iii. fig. 5). It has neither the extracapsular alveola of 7 halassolamp nor the intracapsular alveola of Thalassicolla. I ohserved another specie: of the genas, which I shall describe later in detail, as Actissa princops in Ceylon, 1881. Actissa certainly represents the simplest possible Radiolarian form, in a mea-ure the actual embodiment of the simplest ideal type of this whole Khizopod class. In a phylogenetic sense it may therefore claim to be regarded as the ancestral form not only of all Spumellaria, but perhaps als? of all Kadiolaria. All Collodario the solitary Thalaisicollida and Thalassosphaerida, the social Collozoida and Sphserozoida) are derived immediately from 1t, then all Sphardlaria. The ancestral group of the latter section, which is richest of all in specific forms, is the Sphervida (or Spherida), and, first among shem, the Monospharida, furnished with a simple, fenestrated spherieal shell. From the latter all the others, viz, Pylonida, Zygastida, Discoida, and Lithelida, can be derived without difficulty.
111. The Nasvellaria, which correspond on the whole to IIertwig's Monopylea, had already been defined by Ehrenberg as Monodycla or Polycystina solitaria, in contrast to his Spumellaria, His definition was correct on the whole, though the Spyridina (our Spyroida), which he places among the latter, belong rather to the former. Hertwig was the first to determme correctly the essential characters of this large order, so wonderfully rich in forms, viz. the simple area of pores at one pole of the capsule axis, 1879 (l.6.), and I would therefore have retained his name, Monopyra or Monofylaria, for the entire order, had it not been equally suitable to jart of the I'meodaria. I therefore prefer

Ehrenberg's older nomeuclature. Like Hertwig, I regard the skeletonlexs Cystidium inerme, discovered by him (l.c. pp. 87, 136, taf. vii. fig. ${ }^{1)}$ as the ancestral form of the order. Cystidium inerme is distinguished essentially from Actissa by the restrictiou of the capsule pores to a single area, and the consequent monaxonous fundamental form of the central capsule. All other Nassellaria are derived from Cystidium by the development of a characteristic silicesus skeleton. Hertwig assumes that there are at least two or three entirely different original forms for the Nassellaria skeleton, viz a simple silieeons ring (Lithocircus) fir the Cricoid skeleton of the Acanthodesmida and Zygocystida, and a triradial siliceous framework consisting of three spicules united at one point (Plagiacantha) for the Plagiacanthida and Cystida (l.c. p. 126, $\& \mathrm{c}$.). I then endeavoured to refer these two fundamental forms to a single form, as I made out the combination of the simple siliceous ring and the triradial framework in many Cystida and Spyroida (or Zygocystida). In my "Pr.dromus" (October, 1881, l.c. pp. 423-444) I divided the Nassellaria order iuto five faniliez, and placed the Plectida (with triradial siliceous framework) as the common ancestral group. From it I derived first all the Cystida, from these again the Botryoida and Spyrida ($=$ Zygocystida), and from the latter the Staphida ($=$ Cricsidea). At the same time, and quite independently of my researches, Butschli was busy with the same morphological problem, and arrived at essentially the same couclasion, except that he reversed the phylogenetic series of the forms. In his admirable treatise on the skeletons of the Cystida (also dated October, 1881 , published in the Zeif. f. zvissen. Zoologie, 1882, b1. 36, p. 485) he tries to prove the morphological counection of all Na-sellaria (bis Cricoiden), but regards the Stephides ($=A$ anthodesmida) as the primitive ancestral form, not as the last degenerated scion, an opinion which I myself fur. merly shared (compare Hertwig, 1879, p. 126). Which of these two opinions is correct cannot bedetermined at present. Important facts favour my present view, that the trimdial siliceous frumework may be the common ancestral form of all Nassellaria (Triplagia, Plagiacanfta). Again, other important facts favour Buitschli's view that this ancestral form may be the simple siliceoas ring (Lithocircus, Monostpphus). Finally, there are good grounds for supporting Hertwig's opinion, that both these ancestral forms (the triradial and the annular) may have ari-en independently from the skeletonless Cystidium. I shall discuss this difficult and interesting question at length in my work on the Challenger Radiolaria.
IV. The Pheodaria were only known up to 1876 by three types described by me in 1862 (Aulocantha, Aulospham, Calodendrum). By the discovery of numerous forms in the Challenger collection this has since aequired an importance of which we had no previous idea, as those Kadiolarians far surpass all others both in size and singularity of form, as well as in peculiar combinations of structure. In my preliminary paper ou the Phxodaria, 1879 (Yena. Naturwissen. Sitrungzb., December 12) 1 distioguished 10 families with 38 genera, a number which has since been increased considerably by the contiuuous and attonishing discovery of new forms. As iu the majority of these the skeleton is composed of hollow, siliceous tubes (differing therefore from tha' of all other Radiolarians), I termed the whole order Pansolemia, 1878 ("Protistenreich," p. 102). This name, however, suits all members of the family as little as the name Tripyla, proposed by Hettwig, 1879. Ou the other hand, the present name Phoodaria indicates the common characteristic of the whole order, the peculiar pheadium, a voluminous; dark body of pigment, lying excentrically outside the central capuule. The latter is, moreover, universally distinguished by its d ubble membrane and by the pecul'ar opening furnished with a radiated operculum, which lies at the pole of the axis, and may therefore be termed the principal opening. In addition to it there are usually (though by no means invariably) two small accessory openings, lying one beside the other at the opposite (aboral) pole. Sometimes there are more than two, whilst at other times they are entirely wanting. Despite the extraordinary diversity of the peculiar, and often very complicated siliceous skeleton, all Phaxodaria may likewise be derived from a common ancestral form-the skeletonless Pherodina.
The forther phylogenetic question, whether all the hypothetic primitive forms already mentioned of the four Radiolarian orders can be referred to a single common primitive form, may now in all probability be decided in the affirmative. From Actissa the parent form of the Spumellaria, the ancestral form of
the three other orders may be derived without difficulty. Acfinilius, the ancestral form of the Acantharia, may bave arisen from Actissa by the thickening of part of the radial pseudopodia into acanthine spicules. Cystidium, the probable ancestral form of the Nassellaria, may be derived from Actissa by the pores of the capsule membrane, originally developed equally and on all sides, becoming restricted to a single distinct porous area. Phaodina, the ancestral form of the Pheodaria may have arisen in a similar way from Actissa by the porous area becoming replaced by a single, simple opening, or small, additional, accessory openings, still being left, whilst at the same time the capsule membrane became double, and the pigment mass of the pheoodium deposited excentrically round it. Whilst, on the oue hand, the simplest Spumellaria form, Actissa, may be easily accepted as the ancestral form of all Radiolaria, Actinosphacriwm and Actinophrys show, on the other hand, how it may be derived from the simplest Rhizopoda.
(To be continsed.)

UNIVERSITY AND EDUCATIONAL INTELLIGENCE

THR Technical Schools in connection with the University College, Nottingham, will be formally opened by Sir Frederick Bramwell on the 24 th inst.

Mr. J. T, Dunn, M.Sc., Demonstrator in Chemistry at the College of Science, Neweastle, and formerly L'emoustrator in Physics, has been appointed Science Master and Director of the Chemical Laboratory in the High Scbool for Boys, Gateshead. In the Gateshead High Scbool, which opened in May 1883, there are already about 175 boys, and it is intencled that all the boys shall learn Physics and Chemistry at some period of their school course.

SCIENTIFIC SERIALS

Yournal of Franklin Institute, vol. cxvi. No. 696, December, 1883. - The cheapest point of cut off, by W. D. Marks. Par tially based on, and in criticism of, a previous paper by Mr. Hill.-Experiments upon non conducting coverings for steam pipes, by Prof. J. M. Ordway. In this research calorimeters are used, consisting of sheet-brass vessels so shaped that they can be clamped together outside the steam pipe, inclosing a known length of it and of its covering. Of more than fifty substances tried, simple hair-felt with a cheap cover of burlap proved best; seventeen other compositious owed their efficiency to hair. Asbestos hard pressed was a very bad material ; it was non-conductive only in the downy state when full of air.- Pressure attainable by the use of the "Drop Press," by Prof. R, H. Thurston, These presses appear to be very efficient for forging hot iron.The theory of turbines, by Frof. R. 11. Thurston. This is the first part of an ab-tract of a most valuable mathematical discussion of the subject.-A new valve-motion, by Carl Angstrom. This is a so-called "radial" valve-motiou, resembling those of Browu, Marshall, and Joy.-A simple and sensitive thermostat, by Dr. N. A. Randolph, designed for incubation and other experiments in the physological lisoratory. The adjustment is obtained by the more or less closing of the orifice for the gas by the expansion of alcohol causing mercury to rise toward the orifice.
Annalen der Physik und Chemic, xx. No. 12 (a), December, 1883.-Ou the condensation of carbonic acid ou smooth surfaces of glass, by Prof. R. Bunsen. The condensation of the gas goes on for years, in spite of continual changes of density and pressure. In three years each square centumetre absorbo, at standard pressure and temperature, 5^{\prime} t35 cubic centimetres of the gas, about two-thirds of this amount being absorbed during the first year.-Density proportions of normal salt solutions, by C. Bender. - The law of rotational dispersion, by E, Lommel.A simple method of investigating the thermo-, actino-, and piezs. electricity of crystals, by Irof. A. Kundt! consists in applying Lichtenberg's powder.-On the measurement of electric forees by means of the electric mill, by D. Kaerspfer.-On the question whether the condensation of steam produces electrification, by S. Kalischer.-On the influeuce of the hardness of steel on its magnetisability, by V. Strouhal and C. Barus ; also, on the influence of annealing on the retentivity of the magnet, by the same authors. These are two very elaborate and important
papers, covering the gronnd of many previous scattered rev searches. The first gives the curious result that, to obtain the highest possible degree of magnetisation, short magnets should be tempered glass hard, but long magnets should be at the other extreme of softness. The second research gives the resnlt that the mott constant magnets are thote which, after fairly hard tempering, are annealed for twenty to thirty hours by heating in a steam bath, then magnetised, finally heated in steam for five hours more.-Correction, by A. Guébhard, relative to his electrochemical figures.-Use of the method of "Schlieren" for investigating intrusions in quartz, by A. Knndt.-On absolute measure, by Prof. C. Bohn.

Jowrnal de Physique, t. 1i. No. 23, November, 1883.-A. Potier, on the experiments of Wroblewski and Oltzewski on the liquefaction of oxygen, nitrogen, and carbonic oxide.-B. Elie, electrodynamic and magnetic potentials in elasticity.-A. Terqnem, description of a new cathetometer of M. Dumoulin Froment. This cathetometer is divided into two parts-a vertical standard scale mounted on three levelling feet, to be set up near the apparatus, and a levelled observing telescope sliding upon another vertical stem to be set up at a distance, this second part of the apparatus being just an ordinary cathetometer with out a scale.-Bichat and Blondlot, influence of pressure on the electrie difference between a liquid and a metal in contact. Krouchkoll, on immersion currents and on those due to the movement of a metal in a liquid, and on currents of emersion.E. H. Hall, abstracts (by M. Leduc) of papers on so-called rotational coefficient.-Aug. Righi, on Hall's phenomenon. Righi finds this phenomenon to be 5000 times as strong in bis. muth as in gold. The process by which his film of birmuth, only $0^{\circ} 079 \mathrm{~mm}$. in thickness, was procured is not stated. -H . Kolti, on Hall's phenomenon in liqnids. - H. Koch, on magnetoelectric rotations.

Bulletins de la Sociké d'Anthropologie de Paris, tome vi. fasc. 3, Paris, 1883 , contain :- A paper by M. Hamy, on the interpretation of an inscription on the Mexican stone tablet in the Museum of the Trocadéro, supposed by him to refer to the fonndation, in 1483, of the temple of the great Aztec divinity, Hiutzilopochtli. -On the special frequency in criminals and in the insane of an anomalous medial occipital fossa, by Prof. Lombroso.- On the significance of the interlaced hearts common in the ornamentation of rings, erosses, \&e., in use in La Bretagne and La Vendke, by M. Bonnemère, who regards them as of medixeval origin, and connected with marriage, while Madame Clémence Royer showed that they were of modern design, and religious in character, representing the hearts of Jesus and the Virgin, as symbolised in the convents of the Sacre Coenr,-A communication from Madame Clemence Royer, setting forth her claim to be regarded as the first person who pointed out that Lamarck was the true father of the theory of evolution, she having expounded his doctrines in a course of lectures on philosophy given by her in 1859-60.-On the explorations of the Grotto des Cottés in Poiton, by M. de Rochebrane. The finds exhibit fossil bones in great abundance, well-cut flints, and a human skeleton, which has been submitted to M. de Mortillet.-On the Chelléan deposits of Ternifine, in Algiers, by M. le Dr. Tommasini. These contain remains of so-called Elophas allanticus. -On Prof. Putnam's recent explorations of Kjökkenmöddings, mounds, ash-pits, and stone-graves in Maine, Ohio, and Tennessee, by M. de Nadaillac.-On a more correct mode of classifying the colour of the eyes and hair in reference to the determination of ethnic characteristics, by M. Ikow.-On the "Er Fousen," or pit-graves in St. Plerre-Quiberon, in La Bretagne, by M. Gaillard.-On the anthropomrtric determination of the principal races of France, by M. le Dr. Collignon. A detailed and exhaustive treatise, in which the author, after setting apart a distinct group of Frenchmen, considers the rest of the French nation, somewhat arbitrarily, under four heads-Celts, Cimri, "Lorrainians," and so-called "Mediterranéens." Under the latter term he treats of those south-western races of France, whose chief soarce of origin is the Fastern Pyrenees, and who designate themselves as Catalans. -On the craniometric study of plagiocephalics, by M. le Dr. Manonvrier, bearing on the question af cerebral asymetry as a characteristic of superior brain-capacity.-On anomalous muscles in man, by M. le Dr. Testut-Note on the various objects of fetish from Upper Ogooe, by M. Delisle. In the discussion to which the commanication gave rise, M. de Mortillet maintained the view, to which he has frequently given expression, that in Africa originated the use of iron for indostrial purposer, while the

African was the only savage who knew how to extract and work the metal. In the iron projectile arms from the Congo M. de Mortillet believes we have analogous weapons to those seen in the hands of the Assyrian kings when represented as engaged in lion-hnnting.-On the decrease of the population in France, by M. Lagneau. This decrease was known to amount to seven for every hundred inhabitants in twenty-six Departments, although there were only eight of these in which the deaths exceeded the births.-On the " Questionnaire de Sociologie et d'Ethnographie" of the Society, drawn up by MM. Hay, Hovelacque, and Vinson, and submitted by them to their confrires.-On two crania fonnd in the Department de la Drome, by M. le Dr. Delisle. One of these is dolichocephalic, and similar to the Cro-Magnon type; the other is brachiocephalic.-On the dangers of premature exercise of the higher intellectual faculties and of the physical powers in relation to the present excessive academic requirements and early term of mulatary service in France, by M. Dally.-On M. Testut's elaborate prehistoric chart of La Dordogne, by M. IIamy.-On the practices and superstitions which prevail in Artois and Picardy in connection with bees, by M. E. T. Hamy. Such practices in no way differ from those described in the "Georgics" excepting in as far as concerns the aspersion of the hive with holy water by the modern peasant bee-cultivator. In Artois, as in Berry, when the master of the house dies his hives mast be covered with black, and the fact of his decease whispered to the bees to avert their otherwise inevitable death. - On some cephalometric determinations on the living subject in Greece, by M. Apostolides. He consiners that the people of the Peloponnesus have best preserved the dolichocephalic type of the ancient Greeks, as shown in the crania of tombs belonging to the fourth century B.C.-The first part of a paper by M. de Ujfalvy on the " Kafirs-Siapochs," or "Black-roted " tribe of the Hindoo-Koosh.
Archives of the Physical and Natural Sriences, Gencoa, Nov. 15, 1883. - Researches on the absorption of the ultra-violet rays by aqueous and vitreous humours, albuminoids, and other substances, by M. J. L. Soret.-On electrolytic condensers, by Dr. C. E. Guillaume.-Sixty sixth session of the Helvetic Society of Natural Seiences held at Zurich in Angust, 1883: Report on the Geological Session, president, Prof. Suess of Vienna. Papers were read on the structure of the Alps, by the President, who rejected the theory of upheaval, denying the existence of any natural motive power capable of raising lofty mountain ranges ; on the old glaciers of the northern slopes of the Alps, by M. Alph. Favre; on the climateric zones during the Jurassic and Chalk epochs, by Prof. Neumayr of Vienna ; on ihe Kimmeridge formations of the Vaude Alps, by M. Schardt of Montreux ; on the fossils of the same geological area, by M. de Loriol; on the physical and chemical changss undergone by rocks subject to glacial pressure, by Prof. Mühlberg of Aarau; on some specimens of spath fluor recently found in the dolomitic limestones of Trolerengraben, Valais, by M. Ed.de Fellenberg ; on the hydrographie system of the Jura range in the canton of Neuchatel, by M. Jaecard; on the mollasse and glacial formations of Upper Suabia, by M. Probst of Essendorff; on the gypsum formations of Vorarlberg, by M. Chavannes ; on a sectional profile of the Schlossberg in the Titlis range, showing the geological dispositions of the limetone rocks of the twelfth sheet in Dufour's map, by Dr. C. Moesch of Zurich; on the fauna of the coal and limestone formations in the Permian system of Bohemia, by Dr. A. Fritsch; on an ancient postGlacial lacustrine basin in the Soleure district, formed by three concentric frontal moraines, slight traces of which still inrvive in the Aar valley, by M. Alph. Favre; on the earthquake at Ischia, by Prof. Suess.

Nachrichten of the Royal Seciety of Sriences and of the University of Goifingen, July 30, 1883 .-On some historical documents connected with the history of Bavaria during the fourteenth century, by Ludwig Weiland. - Remarks on Jacobi's theory of elliptical functions, with special reference to his logarithm of theta functions (continued), by A. Enneper.

SOCIETIES AND ACADEMIES

LoNDON

Royal Society, December 20, 1883.-" Note on the Constitution of Chlorophyll." By Edward Schunck, F.R.S.

The author having for some time been engaged in examining the derivatives of chlorophyll, the question of the constitution of
that body presented itself. Whatever chlorophyll may be from a physiological point of view, for the chemist it is simply an onganic colouring matter. The colouring matters occarring naturally in the organs of plants and animals are of several kinds. The greater number belong to the class of so-called glugosides, i.e. bodies which by decomposition with acids or ferments yield some kind of glucose or sagar as one of the products. The anthor was led to suspect that chlorophyll might turn out to be a glucoside, its general properties being such as characterise that cla*s of compounds. To prove this by direct experiment was almost impossible, on account of the difficulty in preparing chlorophyll in a state of parity ; but the author? describes some experiments made with solations of chlorophyll, which tend to show that when decomposed with acids it does behave as a glucoside, splitting up into glucose and other bodies, the phyllo. cyanin and phylloxanthin of Fremy beingiproducts that are formed at the same time.

Mathematical Society, January to.-S. Roberts, F.R.S., vice-president, in the chair,-Messrs. D. Brockelbank and Asntosh Mukhopadhyay were elected members, and Messrs. Fortey and Heppel admitted into the Society. - The Chairman spoke npon the late Mr. C. W. Merrifield's mathematical work and upon his services to the Society, and concluded his remarks by reading the words of a vote of condolence with the family of the deceaved which the Conncil had requested the President to communicate to them.-Mr. A. Buchheim stated an extension of Pascal's theorem to space of three dimensions, and commnnicated a paper on the theory of screws in elliptic space. His special object was to show that Grasimann's "Ausdehnungslehre "supplies all the necessary materials for a calculus of screws in elliptic space, and that Clifford was apparently led to construct his theory of biquaternions by the want of such a calculus.-Mr. H. Fortey read a paper on contacts and isolations, a problem in permatations,-Mr. Tucker presented a paper by Prof. H. Lamb on the induction of electric currents in cylindrical and spherical conductors, and spoke on a group of circles whieh are connected with the "triplicate-ratio" circle.

Edinburgh

Royal Physical Society, December 19, 1883 .-Dr. R. H. Traquair, F.R.S., president, in the chair. - The following officebearers were elected for the year $\mathbf{t 8} 3-84$, viz. Presidents, Dr. R. H. Traquair, F.R.S., B, N. Peach, F.R.S.E., F.G.S., J. A. Harvie-Brown, F.R.S.E., F.Z.S. ; Secretary, Robert Gray, V.P.R.S.E. ; Assistant Secretary, John Gibson; Treasurer, Charles Prentice, C.A., F.R.S.E.; Librarian, J. T. Gray, M.A. - The following papers were read, viz.:-Notes on the genus Gyracanthns, by Dr. H. Traquair, F.R.S.-On a specimen of Pecopteris in circinate vernation with remarks on the genera Spiropteris and Rhlzomopteris of Schimper, by Robert Kidston, F.G.S.-On a new species of Schutzia from the calciferous sandstones of Sentland, by R. Kidston, F.G.S.-On the structure of Sarcodictyon, by Prof. W. A. Herdman, F.R.S.E.-Notes on the islands of Sula Sgeir or North Barra and North Rona, with a list of the birds inhabiting them, by Mr. John Swinburne. Specimens of eggs from the islands were also exhibited,-Mr. J. A. Harvie Brown, F.Z.S., exhibited, with remarks, a specimen of the Little Gull (Larus minutus), shot in the island of North Uist.-Mr. Hoyle exhibited, with remarks, a skeleton of the extinct Moa (Dimornis diliformis).-Dr. Traquair exhlbited a specimen of the Osprey (Pandion haliectus), shot in Midlothian -Prof. Arch. Geikie, F.R.S., was elected an honorary Fellow of the Society.

Mathematical Society, Jannary it.-Mr. Thomas Muir, F.R.S. E., president, in the chair.-Prof. Chrystal delivered an address on surfaces of the second order, in which he advocated strongly the study of the properties of these surfaces from the surfaces themselves. The address was illostrated by a large number of beautiful models in wood, plaster, cardboard, and thread,-Prof. Tait communicated an analytical note, and one or two geometrical problems were discussed.

Dublin

Royal Soclety, December :7, 883 .-Rev Dr. S. Haughton, F.R.S., in the chair. - On the Ringhals or Cape Cobra, by M. G. R. O'Reilly. The author briefly describes some of the habits of this snake (Suppdon hamachates), called "ipimpi" by the Kafirs. He is peculiarly subject to fear, but, when compelled, fights savagely. Raising one-third of his length perpen-
dicularly, and with expanded hood, he advances, daahing his head repeatedly to the ground and hissing furiously. Should he come close enough, he strikes repeatedly, not open-mouherl, but only with the point of the fangs that protrude lightly downwards over the lower lip. But little poison is intr-riuced into the superficial wound produced in this way, and such wounds are not nearly so often fatal as those produced by the puff-adder. There is, however, a time when the Ringhals is much more to be dreaded. When driven to an extremity, he sometimes subsides into a kind of swoon, and lies as if dead with his muulh somewhat gaping, but woe to the man who shoald curionsly ventare his finger therein; it would be instantly locked as in a vioe, the fangs wonld be buried in the flesh, and the poison would flow nnceasingly. He will not let go, but, like a bulldyg, will allow hiuself to be beaten to death rather than relinquish his hold. When he finds fatigue coming on, he exerts himelf to hold the faster, and each new exertion causes the deadly venom to flow more and more. By degrees fatigue overcomes him, and inch by inch, from the tail upwards, his muscles lose their rigidity, till at last after perhaps a quarter of an hour, finding bionself unable to hold on any longer, he lets go. Then if azain attacked he fights anew, apparently as fresh as ever; but if allowed a little peace he will lie still a few moments, and then calmly glide away to feast again on the frogs in the sedges or sun himself once more by the heated rocks on the hillside.On more convenient equivalents for converting Britiwh into metrical measures than those hitherto in uke, by G. Juhnstone Stoney, D.Sc., F.R.S. Capt. Clarke's determination of the length of the British yard in metrical measure, made at Sinuthampton in 1866 for the Ordnance Survey (vee Philosophical Transactions for $\mathbf{t} 867$), differs by a small amount from that which had previonsly been made by Capt. Kater, and it is noteworthy that the small difference between these excessively careful determinatio:s is greater than the difference between Capt. Clarke's determination and the very simple equivalent,

The yard $=944.4$ millimetres;
so that the outstanding error which will be incurred if this very convenient number is allopted is of an amount which is inappreciable in ordinary good scientific work. It is less than the expansion produced in iron standards of length by one degree of temperature. Again, the pound avoirdapois differs, accordiag to Prof. Miller's determination (which is the mont elaborate we possess), from the simple equivalent,

The pound $=453.6$ grammes,
by only one-quarter of a grain avoirdupis in a kilogramme. This is abont $t / 70$ of the correction which would have to be made in weighing water in order to redace its apparent weight to its weight in vacuo, and is of small account even in carefally conducted scientific work. The value of the gall in, which follows from Capt. Clarke's determination of the metre, is 1*000027 times that adopted in Dowling's Metrical Tables, and differs from the simple equivalent,

The gallon $=4544$ cubic centimetres,
by an amount which is less than a cubic centimetre in ten litres, an error which is inappreciable; measures of capacity not admitting of being compared so closely as weights and measures of length. Hence we may take as our fundamental units-

The yard $=914.4$ millimetres,
with an error of less than a fifth-metret ${ }^{2}$ in the metre, on the anthority of Capt. Clarke ;

The pound $=453^{\circ} 6$ grammes,
with an error of one-quarter of a grain avoirdupois in a kilogramme, on the authority of Prof. Miller ;

The gallon $=4544$ cubic centimetres,
with an error of less than one cubic centimetre in ten litres, on the authority of the best previous determinations corrected by Capt. Clarke's. It is a truly remarkable circumstance that the first of these numbers happens to be divisible by 3^{2} and 2^{3}, the second by 2^{3} and 7 , and the third by 2^{6}. Divissrs more convenient could hardly have been chosen for dealing with the disorderly way in which British measures are subdivided. They furnich the following tables, which may be safely re-commended:-
:By wetrets are to be underntood decimal subdivisions of the metiee. The
fifib-metret in she fifth of these, or the hundred thousandth of a metre. If
is about the diameter of one of the red diaks in human blood.

Table I.-Mramures of Length.
The yard $=914.4$ millimetres.
The foot $=304^{\circ} 8$
The inch $=25^{\circ} 4 \quad$ "
Table II. - W'ights.

The pound	$=453.6$	grammes.
The half-pound	$=226.8$	"
The quarter pound	$=113.4$	$"$
The ounce	$=28.35$	"
The grain	$=2.0548$	"

[This last' 'gives the gramme $=15.43210$ grains, a number which it is singularly easy to recollect.]

Table III.	-Mfasures of Capacify
	$=4544$ cubic centimetres.
The gallon	$=1136$
The quart	$=568$
The pint	"
The half pint	$=284$
The noggin	$=142$
The fluid ounce	$=28.4$

If any person asing these tables wishes to carry refinement farther, he may do so by subtracting one in every hundred thousand after using Table I., by subtracting one in sixty thousand after using Table II., and by subtracting one in ten thousand after using Table III. These corrections will carry accuracy to the limit of Prof. Miller's and Capt. Clarke's determinations,-R. J. Moss, F.C.S., slowed an experiment illustrating the use of Robrhach's heavy liquid-a solution of baric and mercuric iodides. Minute garnets occurring in Dublin granite were separated from the roughly pulverised rock in a state of purity, and in quantity quite sufficient for an exhaustive analysis.

Sydney

Linnean Society of New South Wales, October 31, 1883. -The President, C. S. Wilkinson, F.G.S., in the chair. -The following papers were read:-Occasional notes on plants indigenous in the immediate neighbourhood of Sydney, No. 5, by Fidward Haviland. - Notes on the temperature of the body of the Eshidna hystrix, by N. de Miklouho Maclay. This is a detailed account of nome experiments made by the writer at Brisbane in July, 1879. He found, after ohservations carefally made on two occasions, that the average temperature of the body of the Echidna is $25^{\circ} \mathrm{C}$., equal to $78^{\circ} \mathrm{F}$., or very little more than that of fisb, and about 25° nnder that of mam mals generally.-On the Plagiostomata of the Pacific, part ii., by N. de Miklouho Maclay and William Macleay, F.L.S. The continuation of a paper by the same authors, written some years back, on the genus I leterodontus. The present paper gives descriptions and illustrations of a new species from Japan, named Hetcrodontus japonicus.-Notes on some reptiles from the Herhert River, Queensland, by William Macleay, F.L.S. In this paper, after enomerating all the Reptilia contained in the collection sent to bim by Mr. Boyd from the Herbert River, Mr. Macleay describes as new a lizard, Tiaris boydii, and three snakes, Tropidonotus angusliceps, Dendrophis biloralis, and Herbertophis Numbews, the latter a new genus allied to Coronella. -Notes on some customs of the aboriginal tribes of the Albert District, New South Wales, by C. S. Wilkinson, F,G.S., president. The President read some notes furnished him by Mr. W. H. J. Slee, the Government Inspector of Mines, regarding a singular ceremony which the aboriginal tribes of the Monnt Poole district perform, when, as is often the case in that arid region, they need rain. Oceasionally pieces of the fibrous variety of gypsum, Satin-spar, are found by the natives, who highly valne them and call them "rain-stones," for they believe that the Great Spirit uses them in producing rain. The President exhibited one of the "rain-stones" which had been secured by Mr. Slee, who witnessed the ceremony when performed two years ago by the Mount Poole and Mokley tribes.-On the brain of Grey's whale (Kiogia greyi), by William A. Haswell, M.A. -On a new genus of fishes from Port Jackson, by Wm. Macleay, F.L.S. This paper consists of the description of a large fish taken a few days ago in a seine net at Watson's Bay. It is of the family Cirrkitidee, and somewhat allied to the genus Chilodactylus. The generic name given to it is Psilocranium, from its naked head, and the specific name Casii, in honour of the Iresident of the Commissioners for Fisheries of New South Wales, This fish was exhibited by Mr. Morton, Assistant Curator, Australian Museum.

Royal Society of New South Wales, October 3, 1883 .Hon. Prof. Smith, C.M.G., president, in the chair.- Two new members were elected and thirty-five donations received.-A paper by H. Ling Roth, F.M.S.; on the roots of the sugar-cane, was read,-Mr. H. C. Ruscell exhibited a modification of Faure's bichromate battery.-Mr. Russell exhibited several new photographs of the sun taken by him at the Sydney Observatory.

November 7, 1883.-H. C. Rassell, F.R.A.S., in the chair. -One new member was elected and eighty-eight donations received.-A paper, on irrigation in Upper India, was read by H. G. MeKinney, M.E.-Prof. Liversidge exhibited portions of fossil crocodile from the Flinders River in Queensland, and other fossils.

November 14, 1883.-Hon. Prof. Smith, C.M.G., president, in the chair. - An adjourned meeting was held, and a japer, by Mr. A. Pepys Wood, on tanks and wells of New South Wales water supply and irrigation, was communicated by Mr. Warren, C,E.

Paris

Academy of Sciences, January 7.-M. Rolland, president, in the chair.-M. Bouley was elected vice-president, and MM. H. Minc Edwards and Becquerel added to the Central Committee of Management for the year 1884.-The President reported on the papers, memoirs, and documents of all kinds issued by the Academy and received from various sources during the year 1883. The changes that took place amongst the members and correspondents during the same year were announced.-Report on the hydrographic explorations of the Romanche in Tierra del Fuego, by M. F. Martial. The work accomplished comprised three distinet parts-(i) the regular triangulation of a portion of Beagle l'assage and of several islands, besides twenty plans of varions roadsteads; (2) the survey of the north-western branch and about half of the south-western branch of Peagle Passage and the Ildefonsus Islands; (3) exploration of the north-west extremity of Talbot Passage, of the west side of the archipelago from Cook Bay to Black Head Cape, and of the various channels connecting Brecknock Passage with Whaleboat and Darwin Sounds.-Report on the climate of Cape Horn, by M. J. I.ephay. Appended to the report are various meteorological tables showing the temperature, barometric pressure, atmospheric currents, direction and velocity of the winds observed at the station of Orange Bay from September 26,1882 , to August 31, 1883.-On the spectrum of the Pons-Brooks comet, by M. Ch. Trecpied.-Spectroscopic observations made at Nice on the Pons-Brooks comet, by M. Thollon.-Observations at Marseilles on the same comet (one illustration), by M. E. L. Trouvelot.-On certain doubly periodical functions of the second species, by M. E. Goursat.-On the application of Vandermonde's notation to the representation of hypergeometrical polynomes in a condensed form, by M. Radau. Calculus of the contact are of a flexible, spiral, metallic rod, according to any given conditions, on a circular cylinder, by M. H. Iéante. -Note on the action exercived on polarised light by the cellulose solntions in the Schweizer reagent, by M. A. Levallois, -On the compound heat of the soluble fluorides and the law of substituted thermic constants, by M. D. Tommasi.-Some new sulphuretted salts derived from the trisulphuret of phoshorus, by M.G. Lemoine.-On the law of free surfaces in vegetable anatomy, by M. C. Eg. Bertrand. - On the modifications presented by the muscles after severance of the nerves communicating with them, by M. J. Bahinski.-On progressive atrophic myopathy (hereditary myopathy beginning in infancy with the muscles of the face, without change in the nervous system), by MM. L. Landouzy and J. Dejerine.- Kesearches on some recent pretended infallible specifics against hydrophobia (second note), by M. P. Gibier, Garlic and pilocarpine (active principles of jaborandi), tested on rats and cats, were found to be powerless to prevent the develop. ment of rabies, -Note accompanying the photographs of natural size of two children delivered by the operation of paratomy in cases of extra-uterine pregnancy by M. Championniere, of the Tenon Hospital, by M. Just Lncas Championnière-Observations on the remarkable sunsets and dawns observed at Campan during the month of December, 1883, by M. Soucaze. No solntion of the phenomenon is offered; but to the volcanic theory it is objected that the effects should be permanent if due to the permanent presence of minute igneous particles in the atmo. sphere.

Berlin

Physical Society, December 14, 1883.-Prof. Börnstein described an apparatus for measuring the momentam of
the wind, constructed and set up by him in the High School of Agricultnre. Hitherto, as is well known, in order to compute the momentnm of the wind, people had either registered its velocity by means of the Robinson anemometrical scale, or its pressure by means of the so-called pressure table. The cross-cup instrument laboured, however, nnder this disad. vantage, that it was incapable of following a rapid change of the wind's velocity, being neither able, under an increase of velocity, to pess at once to the duly accelerated pace, nor in the case of an abrupt abatement of the wind's speed, to fall back, till after a considerable time, to the commensurately slower rate. The pressure-table, again, was attended with this disadvantage, that on each occasion it had to he placed in the direction of the wind, and in the case of a relief of pressure, performed o-cillations of its own, which registered themselves on the writing apparatus, Prof. Börnstein's insurument consisted essentially of a ball, 126 mm . diameter, affixed to a vertical descending rod, which by an axle-system, at four-fifths of its length, was rendered freely wovable on all sides. To the lower end of the rod was fastened a long wire, likewise movable on all sides, and snspended inside a tube 4 metres long. At a still greater distance was placed a quadrilateral vertical prism, movable between rollers, so that each lateral movement of the ball became converted into an up and down wovement of the prism. To the prism there hung a frame with a pencil, which marked in curves on a passing strip of paper the movements produced by the pressnre of the wind on the ball. At the lower end, again, there was fixed a horizontal plate, by way of a damper. Several of the curves described by this measurer of wind-pressnre were shown by Prof. Börnstein, among others that of December 4 , a day distinguished by a very low mininnm (730 mm .), which passed over Europe from west to east. The observer perceives in this curve a very great rise of the wind's momentum during the day, then at about seven to nine in the evening he sees the curve descend almost to the line of zero, remounting thence in the later hours of the night to its maximum. This showed that the centre of the barometric minimum had passed exactly over Berlin, two periods of intense wind-momentum being separated by a lull of considerable duration.-Dr. König added some supplementary notes to the address recently delivered by him before the Society, setting forth the results of his investiga tions into the state of the colour-blind (-ee NATURE, vol. xxix. P. 168). Amnng other things he read a passage in Goethe's "Theory of Colours," showing that Gocthe had already examined a colour-blind person, regarding whom he was of opinion that he was blue-blind, or akyanobleN. From Goethe's statements, however, it was plain that the individnal iu question was red-blind, and it would accordingly appear that this was the first real observation of a case of colour-blindness.

Physiological Society, December 21, 1883.-Prof. Fritsch gave a demonstration of the model of a brain, prepared according to the directions of Prof. Aeby in Znrich, and acquired by the Physiological Institute. By means of differently coloured wires and of coloured balls of different sizes, it shows the situation of the cerebral ganglia, and the course of the nerve-fibres in connection with them. The nerve-cords and the ganglia per taining to them are withont exception of the same colour. The connections between the spine and the epparate sections of the cerebrum and cerebellnm, the cerebral cavities and fissures, come out very clearly in the skilfully fashioned model.-Dr. Falk spoke of the transference from mother to foetus of corpuscular and chemical poisons, and brought prominently to notice the different results yielded by observations on man and experiments made on animals with a view to obtaining knowledge on this subject. Infectious diseases, such as small-pox, syphilis, \&c., were conveyed from the mother. Other diseases, sach as inflammation of the spleen, were not so conveyed. With respect to chemical poicons, the case was likewise various, The statements of different authors respecting the oxide of carbon did not agree. Dr. Falk bad quite recently had occasion to dissect a womau who died from the poison of oxide of carbon. Her body displayed all the symptoms characterising this form of death, showing in a singularly perfect manner the bright colour of the skin, of the muscles, and of the blood. The dead foetus of the deceased woman, which was of eight months' growth, had, on the other hand, normally coloured muscles and dark blood, in which neither chemical reagents nor spectral analysis disenvered a trace of the oxide of carbon. A case having, however, been el-ewhere observed of the passage of the oxide of carbon into the blood of a fcetus six months old, Dr. Falk conjectared that
the age of the embryo, more particularly the greater or less thick ness of the partition dividing the mother's system of blood-vessels from that of the child, formed a considerable item in the account. This point be would study by experiments on the osmosis of gases,-Dr. Blaschko communicated the results of his investigations into the structure and embryological development of the outer skin in the palm of the hand of man and apes. On the under side of the epidermis he not only found prntaberances corresponding with the regular furrows visible on the surface, but, answering to the prominences of the surface, were also found protuberances on the under side connected with the former by transverse swellings. The study of the histological development of the outer skin further tanght Dr. Blaschko that the epidermi , with its protnberances and depressions, was first fully formed before the cutis came into shape, attaching itself to the epider-mis.-Dr. Salomon has endeavoured to fill a gap which was yet perceptible in our knowledge of the urine of domestic mammalia. In particular there existed but four analyses of the urine of the pig, whicb, as an omnivorous animal, stood specially near to man, and of these four, three were of earlier date than 1845. These four analyses, moreover, all concarred in denying that the urine of swine contained any uric acid, a circumstance very remarkable in face of the fact of the universal diffusion of this substance among all the other higher animals that had yet been examined. Its place was supposed to be supplied in the pig by guanine. As the result of his examinations, Dr. Salomon found that in all cases the urine of swine contained uric acid, and that in no inconsiderable quantities. The proportion of uric acid in the urine was, in swine, as I to 150 ; in man, 1 to 50 . Guanine, on the other hand, could not be indisputably proved to be present in the urine of swine ; but a crystalline substance, very closely related to guanine, and showing similar reactions, was fonnd ; lactic acid, the presence of which in swine had been maintained, could not be discovered, although succinic acid, which comes near to it, was found. Creatine and creatinine, as also other xanthine substances, were likewise searched for in the nrine of swine, -In connection with this subject, Dr. A. Baginski stated that in the urine of a diptheritic child suffering from nephritis he had found a substance very nearly related to guanine, as also xanthine, both in perfectly perceptible quantities. Both these substances, however, decreased in quantity with the abatement of the disease.

CONTENTS

Pagi
Family Recorda. By George J. Romanes, F.R.S. 257 Siam. By Prof. A. H. Keane

Letters to the Editor:-

The Remarkable Sunsets.-R.T. Omond; Sereno E. Biahop; W. Brydone-Jack; Ad. Wentz'l, Jun. ; D. Wetterhan ; W.E.J. Dust Atmosphere of China.-Prof. J. P. O'Reilly Electric Shadows. - W. F, Smith (Witk Diagram) Cosmic Dust.-E. Metzger
Diffusion of Scientific Memoirs.-R.
Teaching Animals to Converse,-Col. H. Stuart Wortley
Circling to the Left in a Mist.-W. Larden
The Porpitidse and Velellidse
Hughes' New Magnetic Balance (With Diagoam) Winter Life at Spitzbergen

258

The Weights of British Noblemen during the last Three Generations. By Francis Galton, F.R.S. (With Diagrams)
The Eruption of Krakatoa. By M. C. 'van Doorn (With /llustrations)

Geological Survey of Prussia

Notes

270
Our Astronomical Column :-
Parallaxes of Southern Stars
Pons' Comet 273
Tons Comet 273
The Minor Planets 273
Science in Russia . 273
Professor Haeckel on the Orders of the Radiolaria
University and Educational Intelligence
Scientific Serials
Societies and Academiea

THURSDAY, JANUARY 24, 1884

THE ALPS OF NEW ZEALAND

The High Aips of New Zealand; or, A Trip to the Glaciers of the Antipodes, with an Ascent of Mount Cook. By William Spotswood Green. (Macmillan, 1883.)

T${ }^{7}$ HE laborious explorations of Dr. Julius von Haast and his associates, undertaken in 1862 and subsequent years, had, as their results, an excellent sketch map of the New Zealand Alps, and a general knowledge of their topography and geology. It was also made evident that, although the summits did not attain the elevation of many in the Swiss Alps, yet, as they were steep and precipitous, as they rose from valleys comparatively low, and as the snow line descended far below its ordinary level in the Northern Alps, there would be considerable difficulty in scaling the higher peaks. No real attempt on these was made till the year 1881 , when Mr. Green decided to try his hand at mountaineering in New Zealand.
It was of course necessary for any one contemplating glacier excursions to take guides from Europe. Mr. Green was fortunate enough to secure the services of Emil Boss and Ulrich Kaufmann, both well known guides from Grindelwald. His narrative shows that he could not have made a better choice-the two men proved to be not only first rate mountaineers, but also pleasant and trustworthy companions, always uncomplaining and unselfish.

Mr. Green must have begun his journey under an unlucky star. Small-pox broke out on board among the forecastle passengers before they reached Table Bay. On arriving in Australia, all were put in quarantine for some three weeks, where, we may add, the arrangements for the reception of the unfortunates appear to have been disgracefully bad. Then, when Mr. Green escaped from this bondage just in time to catch the New Zealand steamer, it happened to be full, so that altogether more than a month of valuable time was lost.

At last, after touching at one or two spots on the western coast of the Southern Island, Mr. Green landed at Christchurch, and, after a brief consultation with Dr. von Haast, hastened to push up the country towards Mount Cook. The physical structure of the Southern Island is comparatively simple. A map of it bears some resemblance, except for the smallness of the scale, and the greater height of the mountains, both relative and absolute, to the southern part of the Scandinavian peninsula. The watershed-that of the Southern Alps-lies comparatively near to the western coast, and runs roughly parallel with it; between these is a mountain land, pierced with beautiful fjords, especially towards the south, and covered with dense and generally impenetrable forest; on the eastern side, between the main range and the sea, is a comparatively level district; a zone of lakes borders the mountain region, similar to that on the southern flank of the European Alps; and the lowlands extend far into the recesses of the peaks. The Tasman valley, for example, which runs up to the glacier of the same name in the very heart of the chain beneath the peak of Mount Cook, is described by Mr. Green as an
immense flat, from which the mountains rise as from a shore. The end of the glacier being 2400 feet above the sea, the average fall of the river is about 25 feet to a mile. Mount Cook, which attains an elevation of 12,349 feet above the sea, is the culminating point of the Southern Alps, but there are several fine peaks near it which are not very mucb lower. A grand group of glaciers descends from these, of the beauty of which Mr. Green speaks in enthusiastic terms.

The mountains of New Zealand are of great interest to the student of physical geography. The latitude of Mount Cook corresponds with that of Florence in the northern hemisphere, but the mean annual temperature of the Southern Island is 10° lower than that of corresponding latitudes in Western Europe. There is, however, much less difference between the extremes. For instance, the mean summer temperature of Dunedin (lat. $45^{\circ} 50^{\circ}$) is $57^{\circ} 2$, the mean winter $50^{\circ} 7 \mathrm{~F}$. The rainfall on the eastern coast is much the same as on the English lowlands, being 33 inches at Dunedin and 25 inches at Christchurch; but on the western coast, at Hokitaka, it is 118 inches. Thus the snowfall on the mountains is heavy, and the line of permanent snow is full three thousand feet lower than on the Alps. Hence the glaciers descend far below the level of those in Switzerland, coming down on the western side at one place to within 670 feet of the sea-level, while on the eastern they terminate at about 2000 feet ; on this side, however, the limit of perpetual snow is about 750 feet lower than on the western. On the whole the area covered permanently by ice and snow in the Southern Alps is about 160 square miles, or 20 more than that in the Bernese Oberland. The Grest Tasman Glacier is eighteen miles long, thus exceeding the Great Aletsch by three miles ; further it is two miles wide at the end, while the other does not exceed a mile in any part.
The Southern Alps present another very singular feature. To the south of Mount Cook the cbain is severed by a singular flat-topped pass-named after Dr_{r}. von Haast-the ill-marked summit of which is only about 1600 feet above the sea ; yet to the south of it again the mountains rise rapidly, and attain elevations of full ten thousand feet. Thus a depression of a couple of thousand feet would convert the Southern Island of New Zealand into two mountainous islands, divided by a narrow channel, just as the Raftsund parts Hindo and Vaagö in the Lofotens.
The Alps of New Zealand are more ancient than those of Europe, as they were probably uplifed in Jurassic times. The oldest rocks-granites (or possibly in part granitoid gneisses) appear on the western side ; these are overlain by crystalline schists, to which succeed slates, grits, \&c., of Silurian and later ages. Probably when this district is fully surveyed the New Zealand Alps will be found to consist of a series of Archrean rocks overlain by sedimentary deposits of considerably later date. The highest rock on Mount Cook appears to be a quartzite, and Mr. Green mentions the occurrence, lower down the mountain, of some volcanic tuffs.
For Mr. Green's adventures during the ascent of Mount Cook we must refer readers to his volume. Suffice it to say that this proved to be no easy task. The difficulties were twofold: those of conveying the necessaly
supplies of food and covering to a sufficiently elevated bivouac, and those presented by the mountain itself. The former of course will be overcome as the country is opened up, but it is evident that Mount Cook is equal in difficulty to most of the first class Alpine peaks. Mr. Green first attacked it by the southern ridge, but, after reaching a beight of 7500 feet, found that route impracticable. An attempt was then made to reach the north-eastern face of the mountain by a route which also had to be abandoned. Mr. Green then mounted by a ridge on the left bank of the Hochstetter Glacier, and, after bivouacking at a height of about 7000 feet, succeeded in attaining the summit by a circuitous and difficult climb near the ridge connecting Mount Cook with Mount Tasman. His usual ill-fortune pursued him. The weather was bad, as it seems often to be in these partsand the approach of night compelled him to return without actually setting his foot on the very highest point. The ascent however was practically accomplished, only a slight detour to avoid a crevasse and a little more plodding along a snow ridge remained; but even the quarter of an hour or twenty minutes which this would have added to the expedition could not be spared. The summit of Mount Cook is not the place on which to spend a night in bad weather, nor is it a peak which can be descended in the dark. As it was, notwithstanding their utmost exertions, the travellers were compelled to halt for the night at an elevation of some 10,000 feet above the sea, on a ledge so dangerous that they dared not sleep -even one at a time!

Mr. Green afterwards visited the neighbourhood of Mount Earnslaw, a ligh peak south of Haast Pass, but his usual ill-fortune pursued him, and the weather prevented him from doing more than make a reconnaissance.

We lay down this volume with regret that the Fates were not kinder to Mr. Green in giving him the opportunity of writing a longer tale of adventure. He tells his story so well and pleasantly that we regret he could not carry further his explorations of New Zealand peaks and glaciers. He is evidently a close observer and devoted student of nature, so that without any attempt at book-making he has contrived to incorporate with his narmative many interesting facts relating to the natural history and physiography of these remarkable islands, which raises his work far above the level of an ordinary book of travel.
T. G. Bonney

DOBSON'S "MONOGRAPH OF THE INSECTIVORA"

A Monograph of the Insectivora, Systematic and Anatomical. By G. F. Dobson, M.A., F.R.S. Parts I. and 11. 4to. Pp. 1-172, 22 Plates. (London: Van Voorst, 1882-83.)

THE Insectivora constitute an order of Mammals at the same time but little known and of great scientific interest. Until recently they were not considered an attractive group. Small in size, shy and retiring in habits, difficult of capture, none of them of commercial value or capable of domestication, they have received little notice even from professed zoologists, and to the general public their existence, except in the case of two or three of the commonest species, has been almost un-
known. The fact, however, on which Prof. Huxley insisted many years ago, in his lectures at the College of Surgeons, that in this order we find some of the most generalised members of the Eutherian or placental Mammals, little-modifisd representatives of what appear to be ancestral forms, whose study is an excellent introduction to a knowledge of the more modified or specialised members of the class, has done much to elevate them in the eyes of naturalists who are seeking the key to unlock the history of the evolution of the Mammalia. Mr Dobson, whose excellent work in the Chiroptera is familiar to all zoologists, has done well then to take up the Insectivora, and to give us, for the first time, a thoroughly reliable and exhaustive monograph upon them.

Aided by wisely-bestowed grants from the Government Fund administered by a committee of the Royal Society, and with the assistance of numerous scientific friends, he has been enabled to collect abundant materials, and publish the results of his investigations in a copiously illustrated form. To facilitate comparison and avoid repetition, Mr. Dobson commences with a detailed account of the anatomy, paying especial attention to the myology, of two species, Gymnura raffesiand Erinaceus europaus, which have been selected, the former as the nearest representative of an undifferentiated Eutherian, and the latter as being a well-known species, easily obtainable for examination. With these the anatomy of the species subsequently described is compared and contrasted. With regard to the general classification of the group, a knowledge of which can of course only be obtained from a thorough examination of their structure, Mr. Dobson has wisely reserved his views until the work is completed, adopting provisionally that which has been gradually elaborated by Peters, Mivart, and Gill.

The two first parts of the work already issued contain the families Erinacrida, Centetida, Solenodontida, Potamegalida, Chrysochlorida, and Talpide, each family, genus, and species being treated of fully, both anatomically and zoologically. The difficult group Soricide, as well as the Macroscelida, Tupaiida, and the aberrant Galeopithecida, will form the subject of the third and concluding part. If this part should be, as we have every reason to believe it will, equal to its predecessors in thoroughness of detail and beauty of illustration, we shall have a work which will do great credit to its author, and rank among those solid contributions to knowledge which form landmarks in the progress of science.
W. H. FLOWER

OUR BOOK SHELF

Manual of Mathematical Tables. By the Rev. J. A. Galbraith and the Rev. S. Haughton, F.R.S. (London: Cassell, Petter, and Galpin.)
"Now what so pleasing can there be, if a man be mathematically given, as to calculate or peruse, Napier's logarithms, or those tables of artificial sines and tangents, not long since set out by mine old collegiate, good friend, and late fellow-student of Christchurch in Oxford, Mr. Edmund Gunter, which will perform that by addition and subtraction only which heretofore Regiomontanus's tables did by multiplication and division? ${ }^{n}$ We shall not take up the cudgels against quaint old Burton, but will simply say that, for those to whom the subject is a "pleasing " one, here is an exceedingly handy and neatly got up
manual, whose raison d'tire is justified by its having reached a fourth edition. If our readers are "philosophers," they will not require an account of what logarithms are (see Mr. Glaisher's excellent description in the "Encyclopaedia Britannica," vol. xiv.) ; if they are not, with Mr. Squeers we say, "Then I am sorry for you, for I sha'n't be able to explain them."

The tables, are in the main, five-figure tables, except that the logarithms of 1001 to 1100 are given to seven places, and in the case of the logarithns of numbers extend to the logarithm of 10000 . The other tables are logarithms of sines and tangents to every minute of the quadrant, and Gauss's sum and difference logarithms. Besides, there are a capital introduction, tables of useful constants with their logarithms, and solutions, by trigonometrical tables, of quadratic and cubic ($x^{3} \pm p x \pm q=0$) cquations. There are no tables of natural sines and tangents. We have no hesitation in commending these tables to a still wider public than they have already reached.
R. T.

Principles of Theoretical Chemistry. By Ira Remsen. (Philadelphia: H. C. Lea's Son and Co., 1883.)
Unfortunately for some years past we have been treated with an immense number of "books" on chemistry in England of a most mechanical type : books in which no reasoning theory is apparent. A dry epitome of facts in a most unpalatable shape, embellished here and there with formulx of various kinds, graphic, symbolic, empiric, or glyptic, but in very rare cases any attempt at showing the learner, easily, how these ideas of chemical constitution, represented by formulx, are clearly arrived at. If a student is unable to see, in his mind, how the formula $\mathrm{H}_{4} \mathrm{SO}_{4}$ represents a knowledge of the constitution of sulphuric acid, he had much better only know its percentage composition, as it may otherwise lead him wrongly.

From the style of the present work, and some others we have recently seen from the other side, our cousins are taking up chemistry in a more philosophic manner than ourselves. And it is easy to see whence this view comes. Considering that we own a Dalton it is strange that the development of chemical theories is so lightly treated in English text-books. Are English students so superficial or so under the domination of Exams, that a work like Kopp's " Entwickelung" is too much for them ?

This very condensed little work, just over 200 pages, is intended for somewhat advanced students who have a basement of facts to build upon. It commences with a general discussion of atoms and molecules, which is continued in a very simple and clear manner, with the exception of a few newish words like chemism. The chapters on atoms and molecules and on valency are about as clear and simple as they can be made, and the same may be said in regard to the opening chapter on carbon compounds. The author has evidently a reasonable notion of the value and permanence of a chemical theory, and no exception can be taken to the manner of discussion or expression. Speaking, for instance, of Avogadro's hypothesis, the author says: "It is at present almost universally accepted by chemists, some, indeed, going so far as to speak of it as a law." It is certainly one of the best additions to the list of small chemical books that has been made for some time.

Sludies in Micrographic Petrography. (Ady and Hensoldt, 7, Muchell Road, Nunhead, S.E.)
THE growing interest taken in this country in the study of petrography is well shown by the rapidly increasing facilities offered for the prosecution of this branch of science. The most recent of these has just appeared under the foregoing title. It is to consist of the issue of two dozen microscopic slides of characteristic minerals and rocks prepared by Mr. Hensoldt of Wetzlar, with illustrative
drawings and descriptive text by Mr. J. E. Ady, who is already favourably known for his microscopic preparations of British rocks. The first number of the "Studies " is devoted to "Eozoon, Led Beg, Sutherland." It contains two lithographic plates illustrative of the so-called cozoonal structure of a limestone in the north of Scotland, and four pages of descriptive text. The author gives a brief reference to the literature of the subject, and an account of the microscopic structure of some portions of the limestone in question, which he regards as akin to that of the Canadian Eosoon, but as being of inorganic origin. We are afraid his sketch is too slight to have much weight in the controversy regarding Eosoon. His effort to extend the opportunitics of petrographical investigation, however, and to popularise this fascinating but difficult branch of geology is praiseworthy, and we hope that his "Studies" may meet with such success as may induce him to continue them.

LETTERS TO THE EDITOR

[The Edifor does not hold himself responsible for opinions expressed by his corresfondents. Neither can he undertake to return, or to correspond wish the writers of, rejocled manuscrifts. No motice is taken of anonymows communications.
[The Editor wrgently requests correspondents to kap their Letters as short as possible. The pressure on his space is so great that it is impossible otherwise to insure the afpearance rien of comn, unications containing inferesting and novel facts.]

The Remarkable Sunsets

Tue numbers of Nature for October, which are the latest to be scen here at this date, contain in the correspondence accounts of the green appearance of the sun in India. Some solar phenomena observable at present and during the whole of the past month are probably related to the-e, and yet are sufficiently distinct to deserve a separate description. They have, Indeed, attracted the attention of everybody here by their novelty and spectacular magnificence, and to some bave an ominous signif cance in connection with recent seismic disturbances.

In Novern' er and December we bave in this part of Japan 2 remarkably clear atmosphere, and this year has proved no exception, The great snow-capped uruntain, Fujii, some ninety miles away to the west, is beautifully defined to view both at sunrise and sunset on most days, alihugh during the greater part of the year-the warmer part that is-it is rare to catch a glimpse of it.

The phenomena of which I wish to record a description occur every day before and after sunset and sunrise, and serve to materially lengthen our day. In this latitude, although not in the tropics, the shortness of the twilight is very noticeable as compared with that of England, but at pre-ent at least an hour and a half elapses between the moment of sunset and that of the disappearance of the last of its rays, and this, with the same time betu een dawn and sunrise, causes our day to be very appreciably lengthened.
On some d.ys there is round the sun, even while it is still bigb, a considerable area of silvery glare, 40° to 50° in diameter, and bordered by a larid reddish-brown or purplish-brown halc. A similar lurit turbidity lies in the borizon, and av the sun desceads the halo blends with this b-low, while above the sun it attenuates and divappears, the silvery glare remaining undiminished. When the sun sets there is still a nearly circular area of this intense glare with a diameter of about 12°. On other days there is before sunset only a thin silvery light round the sun diffuing away from it, and only about and after the setting is the more defined area of strong light strikingly visible, and on these days the horizon also shows litile of the dull redness mentioned ahove. Besides the above peculiarities, the sun pre-erres its whitenees much more than usual, so as to be only golden orange u hen etting.
Now follow the more remarkable phenomena. The white glare, or 1 tatch of silvery light, gradnally sets, spreading out along the hurizon as it does so, and passing through the sunset coloun until little more than a red line one or two degrees der., remains. This happens at about twenty minutes after sunset. At this moment, on the gray curtaln of twilight appear a white luminosity, which rapidly intensifies over the sunset, and shade away over almost half the visible bemisphere. The brightne
over the sunset becomes vividly brilliant, and at the same time delicately eoloured. Over a somewhat depressed circular ares, about 12° high and 15° broad, it assumes a pale green tint. Above this comes an eqnally dazzling pale yellow-orange, and again above this a soft rose colour melts away to the zenith. The revival of the light, or return from commeneing twilight, is peculiarly striking. Buildings become brilliantly illuminated, and strong shadows are east. All this outglow occurs in no more than five minutes, and now continnes for about a quarter of an hour, but the brilliancy gradually contracts in area and sets with a magnificent display of snnset colours reaching some 120° round the horizon, until, by fifty minutes after sanset, this light has also gone down to a red line of about 2° elevation. I should not have omitted to say that the green light passes to yellow.

By this time night has fairly well come in the eastern half of the heavens, but already another but more delicate silvery whitening begins to show itself on the western curtain, and this also diffuces very rapidly up to the senith and round to north and south. It also then goes through a process of contracting, intensifying to considerable brightness, and gradually passing through the sunset colours. Night is now full-with or without moonlight, according to date-and from the west, or rather from a point well to the north of it, spreads a delicate but brilliant light, having an almost perfect resemblance to the bnrning of a vast distant eity. The last crimson light of this reflection does not disappear till an hour and a half after sunset.

The phenomena I have attempted to describe cannot possibly, I think, be explained otherwise than as being the effects of reflection, and that from a canopy many miles above the earth's surface. The matter of this canopy is highly transpareat, for not only are moon and stard brilliantly clear, but in the crescent moon the dark surface of its sphere was on some nights in both months visible and so distinct as to have been notieed independently by several persons. (It has been suggested that this greater visibility of the dark surface of the moon may be due to a stronger reflection from the present atmosphere of the earth.) The reflecting matter must, I suppose be water, but in what form and under what conditions it is there so high np day after day in varying weather, it is difficult to me to conceive. We have had wet days intervening, cloudy days, and very windy days, but on all occasions, except during rain, the phenomena have been visible with strange uniformity.

Not counting the setting of the silvery glare twenty minutes after sunset, which ought perhaps to be done, there are, it will be seen, two reflected sunsets following the true one. In the morning before sunrise the same phenomena in inverse order are perhaps still more remarkable to see. Indeed the whole phenomena, night and morning, have a most unnatural and magical appearance, very different from those of the ordinary sunset and sunrise.

One other phenomenon, also of reflection, has yet to be mentioned. Rarely with much distinctness, but always to be noticed, there appears high up in the east, just after the silvery glare following the sun has set, and lasting only a few minntes, a dim image of the white glare and the western horizon just after sunset. It is of a delicate rosy light, with a grayish central part.

I am informed that somewhat similar appearances are being seen in Sbanzhai.

EDWard Divers
Imperial Japanese College of Enginecring, Tokio, December 12, 1883

If the red sunsets are to be attributed to smoke and dust in the atmosphere from volcanie cruptions, as seems linely from the contributions in the last nnmber of Nature at hand (I) ccember 20), then it becomes important to take into account other eruptions which may have happened simultaneously with or since that of Krakatoa on August 27, 1883. In any discussion of atmospheric currents as fixing the dates of the appearance of these sunset phenomena at different places this is of special importance, in order that no confusion may arise in trying to reconcile places and dates that may refer to dust and a-hes brought from entirely distinct eruptions. For this reason I send you the following extracts.

The first is fiom the U.S. Lignal Scrvice Mowthly Wather Revicw for October, 1883 , and is as follows :-
"Unalaska, Alaska, October 22, 1883
"Exaculive Officer, Sigmal Service, U.S.A., Washington, D.C.
"Sir,-I forward by this mail a sample bottle of sand that fell during the storm of October 20, 1883 .
"At $2.30 \mathrm{p} . \mathrm{m}$. the air Lecame suddenly darkened like night, and scon after a shower of mixed sand and water fell for about ten minutes, covering the ground with a thin layer. The windows were so covered that it was impossible to see through them.
"This sand is supposed to have come either from the Menkushin or the new volcano adjacent to Bogoslov. The former is at a distance of about nineteen miles south-west, but for years has only issued furth smoke or steam. The latter is a new one, which made its appearance this summer, and burst out from the bottom of Behring Sea. It has been exceedingly active, as it has already formed an island from 800 to 1200 feet high.
"According to the report of Capt. Anderson, the discoverer, who sails one of the company's versels, and who went within so00 yards of it, it presents a most magnifieent sight. The fire, smoke, and lava are coming ont at many crevices, even under the water line. Large boulders are shot high in the air, which, striking the water, send forth steam and a hissing sound.
" Bogoslov is about sixty miles from here, in a westerly direction. The new volcano is about one-eighth of a mile north-west of it.
"I am, Sir, very respectfnlly,
"'S. ApPLegate,
"Sergt. Sig. Corps, U.S.A."
The other extract is from a recent paper as follows :-

"San Francisco, Cal., December 28, 1883

"Prof. Davidson recelved from Alaska to-day the particularof the volcanic disturbarces there in October last, near the entrance to Cook's Inlet. On the morning of October 6 a settle ment of fishermen on English Bay h:ard a heavy report, and, looking in the direction from whence the sound came, immense volumes of smoke and flame were seen to burst forth from the summit of Mount Augustine. The sky became obscured, and a few honrs later great quansities of pnmice dust began to fall, some of it being fine and smooth, and some gritty. At half-past three o'elock on the same day an earthquake wave shirty feet high caune rushing in over the hamlet, sweeping away all the boats and delnging the houses. The tide at the time being low saved the settlement from utter destruction. This wave was followed by two other wavts eighteen feet high, which were succeeded at irreyular intervals by others. The pumice ashes fell to a depth of five inches, making the day so dark that lamps had to be lit. At night the surrounding country was illuminated by flames from the erater. Ordinarily Mount Augu tine is eovered with snow, but this year it is completely bare. Upon examination after the disturbances had subsided, it was found that the mountain had been split in two from base to summit, and that the northern slope had fallen to the level of the surrounding cliffs. Simultaneously with the eruption, a new island made its appearance in the passage between Chernabonra Island and the mainland. It was seventy five feet high, and a mile and a half long. So violent was the volcanic action that two extinct volcanoes of the Peninsula of Alaska, lying to the westward of the active volcano Iliamua, 12,000 feet high, burst into aetivity, and emitted immense quantities of smoke and dust. Flames were visible at night. It is stated that the wives of a party of Aleut Indiane, who were engaged in otter-hunting in that locality, became afraid of the subterranean noises, and refused to stay, retarning to their homer. None of those who remained can be found."

The approximate positions of some of the points mentioned in these reports are as follows:-

Here we have the record of (1) a new volcano which appeared near Bogoslov some time during the summer, and had been continuously active and thrown np an ivland 1000 feet high np to some time in October; (2) an explosive eruption of Mount Angustine on October 6, which split off the whole side of the volcano and distributed asher to a depth of five inches many miles away, and started a wave in the ocean abont thirty feet high; and (3) of a shower of sand and water on October 20 at Unalaska, which probably arme from some fresh or renewed craption of a neighbouring volcano.

Many of these phenomena revemble those reported from Krakatoa, though on a smaller scale. It is not necessary to point out that a continuons cruption of a new volcano for weeks
or months would probably eject as mnch or more dust and ashes than accompanied the Krakatoa convulsion, thongh not to so great a height. If, however, Mr. Precce's theory of electrie repulsion of the dust particles be true, then the finest of them, if highly electrified, might rise to great heights, independent of the force of ejectment from the volcano.

In this connection it is well to remember that there nay have been many other volcanic outbnrsts during the last few months, of which we have not yet heard, and perhaps never may. The whole chain of islands from Java to Alaska, including the Philippines and Japan, is full of volcanoes, and seems to be a sensitive seam in the earth's crust. A convulsion like that of Krakatoa is likely to be accompanied or followed by others along this live, the northern portion of which is only visited by otter-hnnters.

Without presuming to question the theory as to the rapid transmission of Krakatoa dust by the upper currents of the atmosphere until we see the evidence on which it rests, it occurred to me that the above conviderations might possibly modify or supplement it in some degree.

Referring to the remarkable results dedaced by General Strachey, showing an atmospheric wave travelling three times round the globe from the Krakatoz eraption, which seems to be of even more scientific interest from a physical point of view than the transmission of the dust and ashes, and which deserves a thorough and careful re-examination when the data are in from all available barometric records, I would say that I have been kindly allowed to examine the barometrie records of the Signal Office here at Washington, and I find no trace of any such disturbance following the reported Alackan eruptions of October 6 and October 20, In connection with the record of the waves following the Krakatoa catastrophe there are some interesting points whieh I wish to examine more carefully before disenssing them.

Wasbington, January 8
Referring to Mr. Burder's letter in Nature of January 10 (p. 251), is it so certain that, if there be no resisting medium in interplanetary space, the whole of the earth's atmosphere must "rotate with the carth as if it were part and parcel of it"? Take a stratum of the atmosphere at, say, forty five miles in alti. tude at the equator. According to the received theory, this ought of course to move with a velocity greater than that of the surface of the earth immediately below. But each snce ssive inferior stratum moves with less velocity. And thus they must tend to retard the superior strata with which they may be assumed to be in contact. Of course the merging of stratum into stratum is gradual, but this does not affect the amount of friction and retardation.
In like manner, imagine a section of the atmosphere taken al ing the equator. Sections taken along successive parallels of declination north and south would tend to retard the velocty of this central layer.
These two causes eombined might bave a considerable effect in retarding the velocity of the upper atmosphere in equatorial regions. And it seems to me donbtful whether the upper atmospbere near the poles would be actually carried ronnd with each terrestrial rotation. The rarity of the npper regions of the atmosphere and the lessered force of gravity wonld both help towards the result indicated, inasmuch as they would tend to make the atmosphere less rigid.
As I am writing, I venture to make another snggestion. Gilbert White mentions that in the summer of 1783 , when, as at present, the atmosphere was filled with dant consequent on volcanic eruptions, and "a peculiar haze or smoky fog prevailed for many weeks in this island and in every part of Enrope, and even beyond its limits," "all the time the heat was so intense that butchers' meat could bardly be eaten the day affer it was hilled, and the flies swarmed so in the lanes and hedges that they rendered the horses half frantic, and riding irksome." May not the present May-like weather be due to a like cause? Sweet violets, primroses, waliflowers, roses, and several other flowers are now blooming in my garden under the Clevel ind Hills.
Had the balos round the moon seen here last and the previous night any possible connection with the dust in the atmosphere? I computed the diameter of the inner dirty white to be twice, the dirty orange one and three-quarters, and the outer green three and a quarter times the moon's apparent diameter.

John Hawely
Ingleby Greenh วy Vicarage, Yorke, Jannary 15

I THINK a few notes relating to the recent sunsets may still have an interest for some readers of NaTURE. Notwithstanding the length of time these remarkable phenomena have been apparent, the sunsets of January 11 and 12 were as brilliant as regards the second after-glow as any that bave preceded them, the final glow having lasted on the 12 th till $5 \cdot 55$; while the sun set that evening at 4.12 .

The pink halo so often seen of late conld not be discerned that day though the sky was clovdless ; but it has been often visible when clouds partly obscured the sun, or portions of the sky, and could then be recognised between them, separating the blue of the remoter sky from the whitish light surrounding the sun, as a ringformed glow of a strong pink culour.
These broad pink halos bave been less commented on than the splendid sunsets which have invariably succeeded them, bnt they have been nearly as persistent in their presence. You have bad so many accounts of the suecession of colours and effects of the two after-glowx, that I will not allude fnrther to them here ; hut as I have retained a reeord of many remarkable sunsets and sunrises which I observed in Wales in former days (possibly the very same mentioned by Prof. Piazzi Smyth in Nature, December 13 , 1883. p. 149, as observed by him thirty years ago), and as I carefully noted in them the time and bour of the changes in the sky down to that of the complete extinction of the after light, it may interest others than myself to compare displays of that date with those of this winter.

What is worthy of espeeial interest is the great difference between the periods of prolongation then and now of the illnmination of the western sky, showing that the second after-glow of recent sunsets is a phenomenon distinet from and additional to those belonging to normal sunsets.

The following table exhibits the two series of observations made in 1855, 1856, 1857, and in 1883-84 respectively :-

들앙y88	或		
	$\begin{aligned} & \text { w } \\ & \text { \% } \\ & \text { \% } \\ & \text { w } \end{aligned}$		
	免		

The colours associated with the actual sunset are quite in accord in both.

The first after-glow, or pink cone or dome of light appearing after the sunsel colours bave nearly faded, is also sumilar in both series, but its time of setting has been apparently somewhat prolonged in the recent observations.

It is the $1883-84$ series alone, however, that shows the second after-glow, and the duration of this strange phenomenon, which I have the advantage of observing over a wide bird's-eye view in North Wiltshire, has extended on evenings when it could be well
observed to about one hour after the first after glow had disappeared below the horizon. The exact moment of this disappearance has been more difficult to determine than in the earlier observations where darkness followed; as recently the heavens and the earth have been reilluminated just as the natural night would have begun.
T. Story-Maskelynie

Salthrop, January 13
As the "halo" exactly opposite the sun, reported by Mr. T. W. Backhouse in Nature, January 10 (p. 251) may prove to be of considerable importance, I beg to ald my observations of it on the 12th. I had noticed a mats of ruddy colour under the given eonditions, previously, but had not detected its strange rature. The sunset on the 1 Ith was very fine. The 12 th, until after sunset, was cloudless, except for the hazy masses which seem to precede every sunrise, and, more especially, sunset, at present. Our sunshine record is an unbroken scorch from $9.15 \mathrm{a}, \mathrm{m}$, to 2.52 p , m, (sun seen elear of horizon at 8.26, and touched at 4.0); I doulst if, previou-ly, we have recorded even five hours in early January. At $7.45 \mathrm{a} . \mathrm{m}$. on the 12th (sun rose at 8.22) the eloud-glow had turned to silvery green below, and rose from 15° to 30° is the south east. At $7.47^{\text {the }}$ rose reached 60°, but was fainter. I first noticed the "halo" at 7.52. It was then so well defined that, calling a lady's attention by asking what she saw there, she spole of it as " a broad rainbow," Position, by compass, 30° north of west. It was a semicircle situated 10° above the horizon, standing on the dark gray arch of dawn, Jupiter being on a line with the base of the left end of the rosy arch. The inner are of this measured 10°, and the outer 24° in radius, but it spread out to 30° at the base. The centre was of the same blue as the sky to the right and left of the rosy semicirele, above the gray. The base, ainking faster than Jupiter, spread out so that, at 8 oclock, the arch having now broken above, its outline was rather like a railway chair. The base now reached from west-north-west to north-north-west by north. After sunset there were signs of a siovilar phenomenon, but clouds prevented certainty.

Is not fitty miles an and restimate for the altitudes of the light-reflecting material? If Mr. Symons is nearer the mark in his suggestion (100 to 200 mile), then mire than half of the eastward velocity of the original erupted dust is accounted for by retardation, due to matter having velocity belonging to an earth radins of 4000 miles, revolving in a eircle of 4100 to 4200 miles radius. Would it need an cruptive force of more than two to four miles per second (six to twelve times greater than a eannon hall) to attain such altitude? The constant uprush would minimise the air-resistance enormoucly.

York, January 14
J. Edmund Clark
P.S.-January 15.-This morning, at 7.47, the "halo" began to form, but was not nearly as perfect as on the 12 th. The arch (upper part only) was ruyed, as if it were the op, rosite point of si, ht for rays from the sun. All over before 8, or fully twenty minutes before sunrise.-J. E, C.

Witil reference to Herr Wetterhan's inquiry as to the absence of the sky-glow in a clear sky at other places than Freibarg on the morning of January 11, 1 find that at San Remo, in Northern Italy, where I spent the week endinz on that day, a similar falling off of effect occurred at the same time. The sumri e was "very fine, but nothing to compare with the sunset of yesterday," and "the filmy streaks were very thin, and stretched this morning from south-west by south to north-east by north." Nevertheless there was the strange bluish-white glare above the eastern horizon, casting shadows, and a thin pink film up to about 75° at 28 min . before sunrise. The sun et glow of this day and of the day before was magnificent, the procession of eolours beginning about 15 min . after sunset, and lasting a fult hour. I see that your Constantinople corresponient also mentions the sunset of the ith as a remarkally fine one. The air on the Ioth, not the 1 ith, as at F'reiburg, was wonderfully transparent at San Remo, the whole range of Corsican mountains, over eighty miles distant, standing out sharply for 15 min. liefore and after sunrise, and the sun himself bursting forth in great splendour from below the sea line.

London, January 19
F. A. R. Russell.

Unconscious Bias In Walking

Some ten or twelve years ago 1 made some experiments upon the subject of Mr. Larden's letter in Nature (Jan. 17, p. 262),
vamely, unconscious bias in walking. Tho experiments werc not numerous, but they left no doubt in my mind as to the cause of divergence from a siraight path. My notes were sent, at my father's suggestion, to the late Mr. Douglas Spalding, who was about to undertake experiments on the curious power which animals have of finding their way. I rather think he made some trials with pigs, but I believe he never published anything on the subject. In stating my results I am compelled therefore to rely on memory oily.

1 began with walking myself, and getting various friends to walk, with eyes shut in a grass field. We all walked with amazing crookedness in paths whith were not far removed from circles. I myself and Mr. Galton on the first trial described circles of not more than fifty yards in diameter, although we thought we were going straight, and afterwards I was generally unable to impose a sufficiently strong conscions hias in one direction to annul the unconscious bias in the other. I believe we all diverged to the right excepting one of us who was strongly left-handed.

I then got eight village schoolboys, from ten to twelve years of age, and offered a shilling to the boy who should walk straighest blindfold. Before the contest, however, I dusted some swwlust on the ground, and after making each of the boys walk over i , measured their strides from right to lefi and left to right. They were also made to hop, and the foot on which they hopped was noted ; they were then made to jump over a stick, and the foot from whieh they sprang was entered; lastly, they were instructed to throw a stone, and the hand with which they threw was noted. Each of these tests was applied twiee over.

I think they were all right-handed in throwing a stone, but I believe that two of them exhibited some mark of being partly left-handed. The six who were totally right-handed strode longer from left to right than from right to left, hopped on the left leg, and rose in jumping from that leg. One boy pursued the opposite course, and the last walked irregulsrly, but with no average differ nce between his strides. When told to hop, he hopptd on one leg, and in the repetition on the other, and I could not clearly make up my mind which leg he used most in jumping. When I took them into the field, I made the boys successively take a good look at a stick at about forty yards distance, and then blindfolded them, and started them to walk, guiding them straight for the first three or four paces. The result was that the left-legged boys all diverged to the right, the right-legged boys diverged to the left, and the one who would not reveal himself won the prize. The trial was repeated a second time with closely similar results, although the prizewinner did not walk nearly so straight on a second trial.

I also measured the strides of myself and of some of my friends, and found the saase eonnection between divergence and comparative length of stride. My own step from left to right is about a quarter of an inch longer than from right to left, and I am strongly right-handed.

Comment on the-e experiments seems needless, and they entirely confirm Mr. Larden in his view.

It seems to be generally held that right-leggedness is commoner than the reverse ; this I malntain to be incorrect. I believe that nine out of ten strongly right-handed persons are left-legged. Every active effort with the right band is almost necessarily accompanied by an effort with the left leg, and a right-handed man is almost compelled to use his left leg more than the other. I believe that Sir Charles Bell considered that men were gene rally right-legged, and sought to derive the custom of mounting a hore from the left side from the fact that the right leg is stronger than the other. I suggest as almost certain that we mount on that side becau-e the long sword is necessarily worn on the left, and would get betwcen our legs if we went to the off-side of the horse. Some of your readers may perhaps be able to tell us whether the Chinese do not wear their short swords on the right and mount their horses from the right.

1 will not hazard a conjecture as to why the rule of the road in Great Britain, and inside of the towns of Florence and of Salzburg (?), is different from that adopted by the reat of the world. For an armed hor enan the English rule is, I presume, more advantageous, both for attack and defence.
Jannary 20
G. II. Darwin

Tus que tion whether a man will walk to the right or lef in a mist, in darkness, or if blindfolded, has led to n . little controversy and dispute. Almost every conceivable reason has had its advocates for the fact that some men jersistently turn to the
left, and others to the right, when walking without the aid of sight. I am familiar with some amhidextrons men, and about the same number of left handed men, hut I cannot recall a single instance of a left-legged man, and think they must be sowiewhat rare. In the present question it might, perbaps, be well to put aside peculiarities of the arms-as occupation and education enter very largely into the method of their use-and confine observations to the lecs alone. Mr. Larden has, I think, very nearly arrived at the solntion of the problem with his definition of right or left strong legged men circling to the right or left re-pectively. I take exception, however, to his referring the peculiarity to the strength of the limb, and think the following suggetion way afford help in the matter, being founded upon observations, and providing a reas n for circling in walking in either right-or leftlegged men:-It has been frequently remarked of late years that short-leggedness on one side or the other is of common occur. rence-the cause is doubtless attributable to a retardation in the growth of the limh caused by one or more of the many illnesses to which we are subject in the earlier years of our life. Exeepting when the setardation in the growth of the limh is considerable, it produces no inconvenience, and the possessor of a limb shorter than its fellow by some tenths of an inch may never be aware of the defieiency. To apply this fact to the question (it is another matter why the left leg is more frequently the short one), Mr. Larden's strong leg should correspond to nyy 1 ng leg. The long leg makes a longer step in proportion to the difference in its length over its fellow. If the right be the longer leg, as is oftener the case, the walker will circle to the left, and vice versd. In my experiments I fixed a drawing pin into the sole of each boot, elected a hard, level, untrodden piece of sand on the seashore, about 250 yards in length, and used a measuring-tape which would take ten or twenty paces in one measurement for obtaining the difference in length of the paces ; the drawing-pins afford a definite and precie mark in the sand. To insure a good and regular start 1 always allowed my man a few yards start with his eyes open and fixed on the distant mark. He then, without stopping, put over his bead and face a cardboard cylinder open at the top. This allons the eyes to be open, whilst effectually preventing any lateral vision. I think this, small detail as it is, important, as a bandage tied round the head acro's the eyes is sometimes unpleasant and often confusing.

97, Adelaide Road
Thos. Hawkseey

Diffusion of Scientific Memolrs

Prov. Tatt's letter in your issue of December 27 (p. 196) raises two questions of interest to the Cambridge Philosophical Society. Prof. Tait states that during the lant thirty years he has received very few of the publications of the Society. I cannot find from the records of the Society that Prof. Tait has ever expressed the wish to have the publications sent to him. The Cambridge Philosophical Sociely, like the Royal Society of Londor, the Koyal Astronomical Society, and, I believe, other scientific societies, sends its puhlications to all Fellows who claim them within a reasonable time from the date of iswe. Any Fellow requesting that all publications may in the future be sent to him receives them as they appear. The second point is the free distribution of copies. I find that at the present date the Tranaactions or Procedingy of the Society, or both, are sent either gratis or in exchange for other pablications to the following number of centres:-

Home					
London	\ldots				
Rest of England	\ldots	\ldots	16		
Sontland	\ldots	\ldots	\ldots	16	
Ireland	\ldots	\ldots	\ldots	8	
					6
	Total	\ldots	\ldots	46	

Foreign					
Germany	..	\ldots	\ldots	\ldots	22
France	\ldots	...	9

$\begin{array}{lccccc}\text { London } & \ldots . & \ldots & \ldots & \ldots & 16 \\ \text { Rest of England } & \ldots & \ldots . & 16 \\ \text { Sontland } & \ldots & . . . & \ldots & \ldots & 8 \\ \text { Ireland } & \ldots & \ldots & \ldots & \ldots & 6 \\ & & & & - \\ & \text { Total } & \ldots & \ldots & 46\end{array}$

United States $\quad . . . \quad 12$
$\begin{array}{lrrr}\text { British Colonies } & \ldots . . & . . . & 8 \\ \text { Other foreign countries } & . . . & 23\end{array}$

Honorary Fellows...
Total 74
Total number distributed
...
... about 40 this 160 about 40 have been added since the year 8860 . In Edinburgh at 1 resent there are three centres receiving the publications of the Society. I doubt very greatly if there are many societies which doas much as the Cambridge Philosophical Society towards spreading their publications.
k, T. Glaze日rook,
Secretary Cambridge I'hilosophical Society
Cambridge, January 19

Reeent Low Temperatures in America

On or about December 19 some very low temperatures are reported to have been registered in Manituba. At Emerson, in lat. 49°, a cold of 46° below zero, and in Daliota (United State-) -49° are recorded.
I do not presume to say that these temperatures are incorrectly given, but they must he received with some distrust, arising from possible, I may almost say probable, defect in the thermometers used.

These sources of error are two, and by no means uncommon. First, the construetion of the instrument may be defective. Second, it is not unusnal during the heat of summer for a portion of the spirit to become vaporised, and afterwards cundensed in the upper end of the tube. If the spirit is colourlesr, and if the detached fluid extends down to the metal band which keeps the tube in its flace, the error, which may amount to 8° or more, is not readily noticed, unless pecially looked for. I had several examples of this error in thermometers used by me in Canada, and one not long ago at the house of an Engli-h gentleman, who had perfect faith in the correctness of bis thermometer.

Of the errors arising from defective construction there were two notable examples among some twenty thermometers which were tested hy freezing mercury at Great Bear Lake in the winter of 1848-49. Eighteen of these thermometers agreed very closely with each other, indicating $-3^{\circ}{ }^{\circ} 5$, or about 2° too high. Two others, beautifully finished, and made by a London maker of high repute, showed at the same time, and under sinilar circumstances, 57° below zero, or about 19° of error.

John Rae

Meteors-Unpublished Notes of November 30, \&c.

ON November 30, at $8.27 \mathrm{p} . \mathrm{m}$., a large meteor passed from Dubhe, in the Plough, through the lower part of Auriga, exploding in sparkling reddish light; and at 9 another described nearly the same line, but without explosion. The latter left a very vivid bluish light in its path, which lasted about ten scconds. At 10.55 a very large meteor dropped right down from Psi Urse Majoris, and disappeared in a blaek cloud a few degrees above the horizon. At 11.10 one sped rapidly from Beta Ursoc Minoris through hetween Epsilon and Zeta (Mizar) Ursa Majoris, and exploded in very brilliant white light. At 11.20 one proceeded from a point about 1° below Benetnasch, and disappeared in the right shoulder of Hereules without explosion. At 14.25 one blazed out from a point 2° above Etanin, and disappeared near Beta Cygni. At 11. 30 a large and brilliant but a transient meteor went from Omicron Ursoe Majoris, and disappeared in the tail of the Dragon. At 11.35 one dashed out from a point about 3° above Pi Urre Majoris, and I thought that it would go through Merak, but just before it reached Merak it eurved snddenly from it and exploded. About 12 a number of small ones were seen. December 1-Meteors seen at 0.13 a.m., $0.18,1.12,1.23,1.45,3.30,3.40,4,4.23$. 4.40, 4.55, 5.7. 5.10, 5.18. December 4-At 215 a.m., $2.20,2.25,2.28$; and a number of meteors were observed between 5 and $6 \mathrm{p} . \mathrm{m}$. December 5-A goodly number of meteors seen from $1 \mathrm{a}, \mathrm{m}$. to 6 , and from 8 p.m. to 10 . Deeember 6-1.12 a.tr., 1.15, 1.22, 2.10, 2.30, 3.40, 5.21, 5.25 . December 7-Three meteors scen. December 8,9,10, and 12Only a few meteors were observed here; and from the unfavcurable state of the weather, not a meteor conld I manage to see since. I have ascertained the paths of all the above meteors, hut to give them all would encroach too much on your space. I will supply particulars if required. On November 30 and December i last there was a brilliant display of meteors. A few Leonids, Leo Minorids, Taurids, and Geminids were scen. Six Andromedes made their appearance from December 4 to 8 . On December 8 a beantiful bolide rushed through the elouds from scuth-west to south-east, at 6 p.m. Not a star in that part of the heavens could be seen at the time, hut the moon thone dimly a little to the left of it. The point at whieh it appeared was a few degrees higher than the moon, and it disappeared a few degrees above the earth. It blazed in and out three different times on its way through the black clouds, and a little before the end of its journey it swelled out into a huge magnificent ball of red fire, and by its explosion it illumined the western heavens and earth with its hright crimson light. A few of the spectators were alarmed at the nnusual apparition. No intonation. Left in its wake a red belt of fire. The light of
most of the meteors was blue, or the colour of electric light. A number of the meteors curved suddenly round just before disappearing. Numbers of meteors were seen dropping into black clouds, others seen dropping out of them down to the horizon. Mossvale, Paisley, January 14

Donald Cameron

BRITISH APHIDES ${ }^{2}$

ENTOMOLOGISTS are fond of attaching themselves to some special group of insects-bees, beetles, or butterflies; but there are very few, we believe, who take an interest in collecting the winge 1 or wingless forms of the Aphides. One is very apt to overlook the value of the work of a mere collector, but it comes home to us when amid a group so large, and so important from an economic point of view, as this of the plant lice is, we find only some half a dozen of our British naturalists collecting specimens of the species or making observations on the marvellously strange habits of their heterogeneous forms. Under these circumstances it was most fortunate that a society like the Ray Society was in existence, for the number of those interested in the subject of the history of British Aphides would have been too miserably small to have justified any publisher, no matter how energetic, from publishing an account of these insects; but, thanks to the Ray Society, we have, as the works published by them for their subscriber 3 for the years $1875,1877,1880$, and 1883 , four handsome octavo volumes by Mr. G. Bowdler Buckton, F.R.S., which seem well entitled to their designation of a "Monograph of the British Aphides." These volumes, besides the text, contain over 140 plates, of which ten are devoted to anatomical details, and the rest to coloured portraits of the species both in their immature and various mature forms, and in some few instances there are representations of the various pardsites which feed on them. It is to be specially noted that these figures are both drawn and lithographed by the author, and certainly a more interesting series of life-like figures of Aphides is nowhere to be found.

While it seems true that the Aphides are not general favourites of the collector, it is also true that no group of insects has attracted more attention. For nearly a century and a half the mysteries of their growth and development have been laboriously inquired into, and the researches of Réaumur and Charles Bonnet in the eighteenth, and those of Huxley in this our nineteeth century, have not exbausted all the marvels of these strange forms. Their history makes them in many ways attractive. Thus, to those interested in the details of embryology, these Aphides present questions for solution of the greatest importance, an 1 concerning which there is still no absolutely settled opinion. Even the brilliant investigations as to this branch of the subject by Huxley still left work to be done. To the general naturalist they present a source for abundant study-not only their varied and often strange forms, but their curious habitations and the defences which they seem to have against hosts of different insect foes; while to the practical economist they have an immense interest when he thinks that by their success in the struggle for life they cause distress to human nations, often bringing about decrease in the amount of our food material and an increase in the amount of our taxation. To name the Hop Fly or the Vine Aphis is to at once illustrate our meaning.

It is not our intention to write a criticism on Mr. Buckton's learned monograph; it pleases us better to introduce it to our readers as a scientific work full of many easily read and wonderful histories of our native species of plant lice-one that the reader will not lay down in a hurry when he once takes it up; one in which, open where be will, he shall find sometbing in it to interest and attract bim. In order that we may in some measure
" "Monograph of the Britisla Aphides." By George Boadler Buckton, FR S., sc. Four volumes; being the volames isused by the kay Society of Londas to their subscribers fur the years $2875,1377,4850$ and 8853 .
prove this we will give a brief sketch of the chief subjectmatter of these volumes. Passing over the disquisition as to the origin and meaning of the word "aphis," we have a general history of the group; included under this heading we find a sketch of their anatomy, an account of the most noteworthy contributions to their history by the early writers, and a sketch of what is known as to their metamorphoses and their very strange reproduction. This is followed by the classiticatory portion, in which full diagnoses are given of the genera and species.

Mr. Buckton would account for the want of activity in our entomologists in their study of this group by the confusion into which the group bas fallen with reference to its synonomy. One species of Aphis possesses no less than thirty synonyms, while in another case the same name has been given to no less than six different species of the group. There is this further difficulty in their study, that the distinctive characters are far less marked than in most other insects. As to colour, not only are the young sometimes in this respect quite unlike their parents, but their hues vary with the hour, and even the adult forms may undergo as great a change in their tints as the autumn leaves amongst which they nestle.
The family itself belongs to the order of the Hemiptera and to the sub-order Homoptera, where it is located between the familics Coccidx and Psyllidx. Among the anatomical peculiarities it may be noted that the winged forms are provided with no less than three different kinds of eyes-ocelli, compound eyes, and supplementary eyes. The larvae of some have eyes ; in others the eyes are quite rudimentary ; while in some subterranean forms they are absent. Though all the winged forms have ocelli, yet their nocturnal habits are not marked. All the λ phides are suctorial in their habits; as the source of their food varies so does the structure of the mouth parts, especially the rostrum and setæ. In Stomaphis quercis, feeding in the alburnum of the oak, the rostrum is nearly twice the length of the insect, and the setae are much longer ; and in the genera Lachnus and Schizoneura, in the young forms, the rostrum projects beyond the end of the abdomen, and is carried as if it were the tail of the insect ; while in the young of Chermes laricis the long and delicate seta are coiled into a spiral, which would scem to act as a kind of spring cable by which the insect moors itself so to its feeding ground that it is not easily dislodged by the rough winds of early spring as they play among the larch branches. The punctures are not made by the rostrum, which seems only to act as a sheath, but by the setx, which can be seen to lance open a number of the parenchymatous cells, and so cause a plentiful flow of cell-contents.

On the question as to the function of the cornicles, the author does not agree with Kaltenbach that they are organs connected with the respiratory apparatus, but rather regards them as the external terminations of excretory ducts. As to honey-dew, the remarks of Kirby and Spence, ascribing it to a secretion of Aphides, is accepted as true by almost all who have written on the subject-including the author-though others, among whom may be mentioned Liebig, Sir J. Hooker (t873), Boussingault (1872), still combat this view.
The chapter on the bibliography begins by alluding to the work of the celebrated anatomist and philosophical lens grinder, Leuwenhoek, in 1690 , glances at that of Réauıur (1737), Charles Bonnet (1779), De Geer (1778); the more modern writings of Schrank, Hausmann, Burmeister, Harting, Kaltenbach, Kyber, Morren, Leuckart, von Siebold, Ratzeburg, and Koch among the Germans; Passerini among the Italians ; Signoret, Balbiani and Claparede among the French writers; Newport, F. Walker, Haliday, and Huxley among the English writers on the subject.

Aphides are to be found almost everywbere throughout Britain. Some are hardy enough to thrive on the stony
heaths of Scotland and Northumberland, whilst others will live almost in the reach of the spray on the seashore ; terrestrial and aquatic plants are alike subject to their attacks. Some feed on sueculent herbs, others on hard timber trees; others again on the roots of flowering plants. Sometimes the white water lily (Nymphaa alba) is almost destroyed by the myriads of Rhopalosiphum nymphace which crowd on its leaves and flowers. While certain trees and shrubs appear to be attacked exclusively by their own peculiar Aphis, other trees give nourishment indiscriminately to numerous species. Thus the oak is attacked by at least six, the willow and birch by eight, and the conifers by the same number. Some families of plants are free or almost free from them, such as the Gentian and Irid families. But one species of the large group of the ferns is as yet known to be attacked by them; indeed the cryptogams are as a general rule very free from Aphides; but we have known a species of Marsilea to swarm with them.

The migration of the Aphides is still involved in some mystery, and we seem to have as yet no certain knowledge of the winter habitats of numerous species which seem to occur only during a few weeks of midsummer such as Siphonophora millefolii, which may be found from July to September, and then entirely eludes our notice for the rest of the year.

The peculiar habits of the species opens an immensely interesting subject : some are almost sedentary, others are fairly active; some form receptacles which strangely mimic fruits; some if disturbed dropto the ground, others run to the opposite side of a leaf or twig; some throw up their hind legs when alarmed, which action gives a signal to the rest of the colony, which responds by going through the same performance; some assimilate their colours to their food plants, so as to be difficult to perceive. An interesting phenomenon in connection with these insects is their dimorphism. Thus the early spring form of Chermes laricis is different from that of all her progeny till the last, and the same is the case with Aphis mafi. These variations often relate to size and colour, but often also to considerable change in form and modification of parts. The most extraordinary instance occurs in Chaitophorus aceris, "the early spring forms of which occasionally are so diverse that they have been described as belonging to not only different genera but even to distinct families. Thus Mr. Thornton, the original discoverer of this strange insect, gives it the name of Phyllophorus testudinatus; afterwards Mr. L. Clark called it Chelymorpha testudo, placing it between the Aphididx and the Coccidx." But a nearly equally striking example occurs in the dreaded Phylloxera vitis, which has two entirely different habits of life and form. In one it is active and winged; in the other it is apterous and subterranean.
We would have liked more ample information as to the geographical distribution of the group. We read that "it is confined to the more temperate regions of the globe," and "that as we approach the tropics it appears to give way to such forms as Coccus." Over the whole continent of Europe they are spread, and across Europe into the Amur district of China. They abound in North America; seem not to be indigenous in New Zealand, though in this country, according to Prof. Hutton, imported species were often very destructive to the crops; and nothing is said as to their occurrence in Australia or the Cape of Good Hope district.
Mr. Buckton divides the family into four sub-families : Aphidinx, Schizoneurinx, Pemphaginx, and Chermesinx.
Volume i. is taken up with an account of the first halfdozen genera of the first sub-family, and is illustrated with three plates of anatomical details, and forty-two coloured plates of species. Among the more familiar epecies whose life-histories are given are the Rose Aphis (Siphonophora rosa), the Wheat Aphis (S. granaria),
the destructive Hop Fly (Phorodon hamuli), the Cherry Aphis (Myzus cerasi), and the Peach Aphis (M. persice), this last one of the most beautifully coloured of our native species.

Volume ii., with forty-eight plates, concludes the descriptive details of the genera and species of the subfamily Aphidinx with seven jointed antenna, including the type-genus Aphis. Full details are given of that troublesome insect Rhopalosiphum dianthe, the Aphis vastator of Smee, which feeds on almost every cultivated plant, often swarming on the potato, turnips, pinks, not to mention hyacinths, tulips, and oleanders, but which the author agrees has nothing to do with the production of either the potato disease or clubbing in crucifers. Fortyfive species of the genus Aphis are enumerated, and a very useful analytical table of these is appended. No less than seven synonyms are quoted to A. rumicis, Lin., which commits such destruction often on the bean and turnip crop, and which is not very particular as to its food plants. Seven species of the genus Chaitophorus are described, and a full account is given of the very extraordinary dinorphism existing in C. aceris. In this volume we have accounts of the aphidivorous Hemerobiidx and Hymenoptera.
Volume iii., with twenty-seven plates, contains the description of the forms of the sub-family Aphidinæ with six-jointed antennx, of the sub- family Schizoneurinx, and of some of the forms of the sub-family Pemphigine. Among the more familiar species we have bere the Aphis (Pterocallis tiliie) which abounds on the lime tree, and so bedews it with its sweet secretion ; the Beech Aphis (Phyllaphis fagi), so well known as often covering the leaves of the beech tree with its white cottony or rather waxy fluff; the Sallow Aphis (Lachnus viminalis), which sometimes swarms on our willows. The "Ameriean blight " (Schizoneura lanigera) on our aptle trees is an introduced species, apparently from America. It appears that they descend into the soil in winter and attack the roots of the apple trees. S. lanuginosa is the aphis which produces the wonderful fig-like galls on the elm tree. These galls are about the size of small green figs, with a small opening at their summits; they contain thousands of the plant lice. In 1866 Mr . McLachlan, travelling in the south of France, gathered a number of these galls, which were in extreme profusion-elm trees twenty feet high being one mass of galls-with the intention of bringing them home; but they made such an awful mess from the viscid liquid in the galls, that he was compelled at last to throw them away. Pemphigus lactucarius is the species found living in little earth cavities in the vicinity of the roots of various plants. If a stump of lettuce be pulled up in spring, these "downy flocks" will be very often detected.
The last volume, with twenty-four plates, concludes the account of the species of Pemphiginax, and gives descriptions of those of the sub-families Chermesinx and Rhizobiinx. Mr. Buckton agrees with Passerini, and retains Chermes among the Aphididx. The Greek verse on the title page of this volume having caught our eye, we are reminded how little the families treated of in it are the subjects of parasitism ; the reason why seems obscure : with these forms the big and little fleas seem to lie down together, not causing each the other any alarm. The FirAphis (Chermes abietis) is the maker of the curious cone-like galls of the spruce, and a closely related species is often very destructive to larch plantatione. Of the genus Phylloxera two native species are described, and a full account of the Vine Aphis (P. vitis) now introduced into our hothouses is also given. In this account we have a very interesting and important communication from that eminent entomologist, Jules Lichtenstein, in which he gives a summary of his views on the metamorphoses of the plant lice. This volume has appended to it chafters on Aphides in their economical relations to ants; on the reproduc-
tion of Apbides; on the biology and morphology of Aphides ; on the antiquity of the Hemiptera, and particularly with regard to the Aphidine as represented in the sedimentary rocks and in amber; diagnoses of the Aphides found in amber are given, with figures; and we have also an account of those known to occur in a fossil state in America. Directions for the mounting and preservation of Aphides are given, and we find a very complete bibliography of authors who have treated about Aphides, and a very excellent general index.
In conclusion it only remains for us to congratulate the author on the very successful accomplishment of this important work, which is certain to excite an interest in this marvellous group of insects, and the Ray Society on being the medium of publishing the most beautifully illustrated work on the Aphides that has as yet appeared.

EARTHQUAKES AND BUILDINGS

ACOMPLETE discussion of the effects which earthquakes produce upon buildings would form a treatise as useful as it would be interesting. Not only would it involve a discussion of the practical lessons to be derived from the actual effects of earthquakes, but it would include deductions based on our present knowledge of the nature of earthquake motion. Such knowledge is obtained from the records of seismographs.
In the following few notes I intentionally overlook this latter portion of the subject, and confine myself to a few of the more important practical conclusions respecting the effect of earthquakes on buildings, which may be of value to those whose mission it is to erect buildings in earthquake countries.
With regard to the situation of a building, it is sometimes observed that after an earthquake it is the portion of a town situated on low ground which has principally suffered, whilst adjoining portions on hills may have practically withstood the disturbance. In $\mathbf{8 ; 5}$ this was the rule governing the distribution of ruin in Tokio. The reverse, however, has been the rule in Yokobama. Speaking generally on this point it may be said that there is no universal rule,- each small area in an earthquake region having its special rule. As a ste for a building, theory seems to indicate that soft earth or marshy ground, which would absorb much of the momentum communicated to it, and therefore act as a buffer between a building and a shock approaching through other strata, would prove a safe foundation. This seems also to have been an old opinion, for we read that the tcmple of Diana was built on the edge of a marsh to ward off the effects of earthquakes, but experience has repeatedly shown us, as in the case of Tokio and Manila, that swamp-like ground, as an earthquake palliative, has but little effect. On the oher hand, hard rocky strata, where the amplitude of motion is small, but the period quick as compared with the motion in the inelastic material of the plains, has, as was markedly illustrated in 1755 at Lisbon, and in 1692 at Jamaica, proved the better foundation. Places to be avoided are the edges of cliffs, scarps, and cuttings. For emergent waves, these are free surfaces, and from their faces materials are invariably shot off, much in the same way that the last car in an uncoupled train of carriages may be shot forward by an engine bumping at the opposite end.
As foundations for a building there are two types. In one, which is the European method of building, the structure is firmly attached to the ground by beds of concrete, brick, and stone. In the other, which is illustrated in the Japanese system of building, the structure rests loosely on the upper surface of stones or boulders. As an indication of the relative value of these two forms of building, it may be mentioned that in Yokohama, in 1880, many of the European buildings were more or less
shattered, whilst in the Japanese portion of the town there was no evidence of disturbance.

The houses, like the foundations, are also of two types. In the European house built to withstand earthquakes, of which there are examples in Tokio and San Francisco, and for which in America patents have been granted, we have a building of brick and cement bound together with hoop iron and numerous tie rods. A building like this, which from time to time is jerked backwards and forwards by the moving earth, to which it is secured by the firmest of foundations, is expected to resist the suddenlyapplied and varying stresses to which it is exposed by the strength of its parts. This type of structure may be compared to a sieel box, and if its construction involves any principle, we should call it that of strength opposing strength. Some of the buildings in Caraccas, which are low, slightly pyramidal, have flat roofs, and which are bound along their faces with iron, belong to this order. These so-called earthquake-proof buildings, with the exception of their chimneys, have certainly satisfactorily withstood small earthquakes in Japan. As to how they would withstand a disturbance like that at Casamicciola is yet problematical. Unfortunately these structures are very expensive.

The second type of building may be compared to a wicker basket. This is certainly as difficult to shake asunder as the steel box type, and at the same time is not so expensive. The Japanese house belongs to this type. It is largely used on the west coast of South America; and in Manila, since the disaster of 1880 , it has rapidly been replacing the heavy stone form of structure. Briefly, it is a frame house with a light roof of shingle, felt, or iron. As put up in Japan, its stability chiefly appears to depend on the fact that it is not firmly attached to the earth on which it rests, and that its numerous joints admit of considerable yielding. The consequence is that, whilst the ground is rapidly moving backwards and forwards, the main portions of the building, by their inertia and the viscous yielding of their joints, remain comparatively at rest.

A house that my experience suggests as being aseismic, and at the same time cheap, would be a low frame building, with iron roof and chimneys supported by a number of slightly concave surfaces resting on segments of stone or metal spheres, these latter being in connection with the ground. Earthquake lamps, which are extinguished on being overturned, would lessen the risk of fire, while strong tables and bedsteads would form a refuge in case of sudden disturbances.

In earthquake towns the strcets ought to be wide, and open spaces should be left, so that the inhabitants might readily find a refuge from falling buildings. Brick chimneys running through a wooden building, unless they have considerable play and are free from the various portions of the building, are exceedingly dangerous. In consequence of the vibrational period of the house not coinciding with that of the chimney, the former by its sudden contact with the latter when in an opposite phase of motion almost invariably causes an overthrow. In 1880 nearly every chimney in the foreign settlement in Yokohama was overthrown in this manner, and the first alarm inside the houses was created by a shower of bricks falling on beds and tables. Since this occurrence the chimneys in Yokohama have had more or less play given to then where they pass through the roofs.
Chimneys with heavy tops, like heavy roofs, must be avoided. Another point requiring attention is the pitch of a roof. If this is too great, tiles or slates will be readily shot off. Archways over openings should curve into their abutments, otherwise, if they meet them at an angle, fractures are likely to be produced.
If for architectural reasons, or as a precaution against fire, it is necessary to have buildings which are substantial, their upper portions ought to be as light as is
consistent with the requisite strength. Hollow bricks, light tiles, with papier-mache for internal decorations, have been recommended as materials suitable for superstructures. At the present time the city of Manila, partly through Government interference, and partly through the desire of the inhabitants to reduce the chances of farther disasters, presents a singular appearance of light superstructures rising from old foundations. Iron roofs are visible in all directions, whilst on the massive basements of old cathedrals and churches upper stories of wood, with cupolas and spires of corrugated iron, have been erected.
Although the suggestions embodied in the above notes are few in number, it is hoped that they may be of some practieal value. Without extending them, they show us that, even though we may not be in the position to escape from earthquakes by forewarning ourselves of their approach, we can at least mitigate the effects of these disasters by proper construction.

John Milne
Tokio

THE LATE ERUPTION OF VESUVIUS

OUR visit to the crater of Vesuvius on January iI, 1884, was a most interesting one. In my former letter I gave the rough details of this new eruption as well as could be ascertained from the base of the cone. The lava that issued on Tuesday night continued to flow till Wednesday evening, but seemed to have arrested its progress about 10 o'clock that night, when I was in the Atrio del Cavallo. This stream proved to have welled out at the base of the little cone of eruption and to have flowed across the solid lava plain in the crater of 1872, and then to have poured down the north-north-west slope of the cone till it reached the Atrio, across which it extended but little. Within the crater of 1872 we have a somewhat convex plain of lava, which is continuous with, or, more properly, overlaps, the crater edges, except for a short distance on the south-south-west side. The northeast part of this is covered by the remnants of the crater of January, 1882. Within this were a series of crater rings that have since filled up to a certain extent the cavity of 1882. For some time the vent has travelled south, so that the present cone of eruption overlaps the crater ring of January, 1882, on its south side, whereas there is a deep crescentic fossa between the present cone and the north crater ring of two years since. The vent was giving forth great volumes of vapour, and there was an almost continuous fountain of fragments of molten lava, which often attained the height of one or two hundred yards. As a consequence much filamentous lava, often as fine as cotton, was raining around the crater, and as we sat there eating our lunch, it was so covered with these rock fragments, that it required a long climb on foot to make such a gritty meal palatable. The ejectamenta are composed solely of lava in detached pieces, ejected in a plastic state with a few bombs, consisting of older solid lava fragments partially fused and rounded on the surface, which is varnished irregularly by the fluid magma that enveloped them. This indicates that the lava is very near the top of the chimney, which must be full, as it has been for some time. Photography was no easy matter amidst this fiery bombardment, for such was the abundance of the ejectamenta that we could see bow rapidly the cone of the eruption was growing. I made a rough calculation of the quantity of new material expelled, and 1 think six cartloads in four seconds as quite a fair estimate. The lava that had flowed was solid and cold enough to allow my dog to cross it with ease, though through a few cracks it was seen to be still incandescent, and a green staff thrust in immediately blazed. The lava that was flowing in the direction of Pompeii is still doing so in one or two points, apparently at the same rate and place as two weeks since.

Altogether this eruption seems to be of very little importance, and during the last four years there have been many similar ones. Prof. Palmieri, in the Corriere del Mattino of January ${ }^{11}$, prophesies a great eruption, but on what grounds it seems difficult to make out. No one would deny that such could occur and is not improbable ; but there seems to be no more reason now than two months since.

The smoke or vapour yesterday had, when seen by reflected light, the same colour as usual, namely, a salmon tint. The sky was very clear, and I looked at the sun through this vapour, bearing in mind the recent remarkable sunsets and green suns. The transmitted light ranged from a burnt sienna brown to a dirty orange, having much the same colour as when we look through a dark London fog. I noticed that the light that traversed the vapour column and fell on the opposite escarpment of Monte Somma was of a colour that would be obtained by mixing a mauve with about equal quantities of brown.
Naples, January 13 H. J. Johnston-Lavis

THE EGYPTIAN SUDAN AND ITS INHABITANTS

A^{s}S some degree of vagueness seems still attached to the term Sudan, it may be well to state at once that it is simply the Arabic equivalent of the older and more intelligible expressions, Nigritia, Negroland, which have in recent times somewhat unaccountably dropped out of use. In its widest sense it comprises the more or less fertile zone lying between the Atlantic on the one hand and the Red Sea and Abyssinian Highlands on the other, and stretching from the Sahara and Egypt Proper southwards to the Gulf of Guinea, the still unexplored Central Equatorial regions, and further east to Lakes Albert and Victoria Nyanza. This vast tract, which may on the whole be regarded as the true domain of the African Negro race, is commonly and conveniently divided into three great sections:-(1) Western Sulan, comprising roughly the basins of the Senegal and Quorra-Binue (Niger) with all the intervening lands draining to the Atlantic; (2) Central Sudan, comprising the basins of the Komadugu and Shari with all the lands (Kanem, Bornu, Baghirmi, Wadai) draining to Lake Chad; (3) Eastern Sudan, comprising everything east of Wadai, that is mainly the Upper and Middle Nile basin.
Politically, this third section, with which alone we are here concerned, has for some years formed part of the Khedive's possessions, hence is now more generally known as Exyptian Sudan. Until 1882 it formed a single administrative division under a Governor-General resident at Khartum. But in that year a sort of Colonial Office was created for this region, which was placed under a Cabinet Minister and broken up into four separate departments or divisions, each under a Hukurdar, or Governor-General, directly responsible to the Minister for Sudan at Cairo. The various provinces hitherto forming the single administration of Egyptian Sudan thus became distributed as under :-
west Sudan, comprising Darfur, Kordofan, Bahr-elGhazal, and Dongola, with capital Fasher.
Central Sudan, comprising Khartum, Senaar, Berber, Fashoda, an I the Equator (Hat-el-Istwa), with capital Khartum.
EAST SUdAN, comprising Taka, Suakin, and Massowah, with capital Massowah.

Harrar, comprising Zeyla, Berbera, and Harrar, with capital Harrar.
The complete development of this scheme has been some what rudely interrupted by the successful revolt of the "Mahdi," who has for the moment wrested the greater part of the country from Egyptian control. But should this arrangement be carried out after the restoration of order, a further element of confusion will be introduced
into African geographical nomenclature, for we shall then have three political subdivisions of Egyptian Sudan bearing the same names as the three above described physical subdivisions of the whole region.

These however are matters of detail, with which statesmen do not usually concern themselves, and apart from the terminology the projected arrangement in this instance really recommends itself both on geographical and ethnological grounds. Thus the provinces of Darfur, Kordofan, and Dongola, forming the bulk of "Central Sudan," present a certain physical uniformity in the somewhat steppe-like character of the land, destitute of forest timber and covered mostly with prickly grass, scrub, gum trees, mimosas, and other thorny plants. It is intersected by no large streams, and generally open
except towards the west, where the Marrah range forms a water-parting between the few rivers and intermittent torrents flowing south-east to the Nile and south-west through the Bahr-es-Salamat to the Shari. The inhabitants also are of a somewhat homogeneous character, the aborigines belonging mainly to the old Nuba stock almost everywhere interspersed with nomad and slave-hunting Arab tribes. This region communicates with the Nile through two historical caravan routes, one running from El Obeid north-north-east to Khartum, the other from Fasher north-east to EI Dabbeh above Old Dongola Through these outlets the produce of the land-gums, ivory, ostrich-feathers, and slaves-have for ages been forwarded down the Nile to Egypt, the natural emporium of East Central Africa.

Ethnological Map of the Fantern Sudan.

The Nile itself imparts a distinct geographical unity to the more fertile and better watered provinces of Khartum, Senaar, Berber, Fashoda, and the Equator, forming the second division of "Central Sudan." Here the great artery forms a broad, somewhat sluggish stream, often choked with "sudd," or floating masses of tangled vegetable matter, but nevertheless generally navigable from the confluence of the White and Blue Niles at Khartum nearly to Lake Albert Nyanzu. The Bahr-elJebel, as its upper course is called from the lake to the Sobat junction, is thickly peopled on both sides and along the tributary valleys by numerous tribes and even great nations (Dinka, Shilluk, Mittu, \&c.) of pure Negro and Negroid stock. Lower down the White Nile, that is, the section from the Sobat to the Azrek confluence,
is held mainly by intruding "Baggara" and other cattlebreeding Arab tribes, interspersed with isolated groups of Nuba, Funj, and other peoples now mostly assimilated to them in speech, usages, and religion.
Although more varied in aspect, the third division of "Eastern Sudan" enjoys a certain unity at least in its outlines, its three provinces of Suakin, Taka, and Massowah being comprised between the middle course of the Nile and the Red Sea, and stretching from the Egyptian frontier southwards to Abyssinia. Here the main stream from Khartum to Asuan (Syene), where it enters Egypt, is essentially a mountain torrent, describing great bends to the right and left while forcing its way over six cataracts and other obstacles through the sandstone and granitic ridges intersecting the Nubian wilderness on the

Racs	Main Divisions	Incality
Hamite	Tibbu: Baele; Zoghawa; Wanyanga Bishari Hadendoa; Hallenga ; Ababdeh; (Beja) Beni-Amer Danakil: Adaiel; Dahimela, \&e. Saho; Bogos; Habab Somali: Idur ; Isa ; Mijarten, \&e. $\left.\begin{array}{c}\text { Galla } \\ \text { (Orma) }\end{array}\right\}$ Yeju; Wollo; Mecha, \&\&c.	N. and N.W. Darfur Between Red Sea and Nile, $15^{\circ}-25^{\circ} \mathrm{N}$. Between Abyssinia and the coast, $10^{\circ}-15^{\circ} \mathrm{N}$. Massowah district Gulf of Aden Coast E. and S. of Gojam
SEmite	$\text { Arab }\left\{\begin{array}{l} \text { Kababish; Sheygieh; Robahat, \&c. } \\ \text { Homran; Rekhabin; Alawin } \\ \text { Homran ; Hamr, El-Homr; Ha- } \\ \text { banieh; \&c. } \\ \text { Ziaieh; Hahemid } \end{array}\right\}$	W. from Nile between Dongola and Khartum Senaar Kordofan and Darfur N, Darfar N. and E. Abyssinia E. from Shoa
Nubay	$\left.\begin{array}{l}\text { Barabra } \\ \text { (mixed) }\end{array}\right\}$ Kenus; Mahasi; Dongolawi True Nuba $\left\{\begin{array}{l}\text { Kargo; Kulfan; Kolaji } \\ \text { Jebel Nuba; Tumali }\end{array}\right\}, ~$ Fur: Fur ; Konjara; Fongoro, \&c. $\text { Sub-Nuba }\left\{\begin{array}{l} \left\{\begin{array}{l} \text { Takruri } \\ \text { Rarea; Basé (Kunama) } \\ \text { Funj; Hamagh } \end{array}\right. \end{array}\right.$	Nile Valley from Egypt to Old Dongola Kordofan Darfur Gallibat Taka (Mareb Valley) Senaar
Negro	$\begin{aligned} & \text { Sudanese: Birklt ; Masalit; Abu-Sarib, \&c. } \\ & \text { Nilotic }\left\{\begin{array}{l} \text { Shilluk; Dinka; Nuer } \\ \text { Fallaugh; Kumkung; Ninak, \&e. } \\ \text { Krej; Bongo (Dor) ; Mittu (Moro) } \\ \text { Bari; Madi ; Lur ; Latuka } \end{array}\right. \end{aligned}$	Darfur White Nile and B, el Arab Sobat basin A bout W. tributaries White Nile B. el Jebel, N. of Lake Albert Nyanza
Banty	Waganda; Wanyoro; Wasoga ; Wagamba	Extreme S. frontier, N. side I ake Victoria Nyauza

Hamite is here equivalent to the Kiushite of some writers ; but is taken in a wider sense, answering to the African Division of the Mediterranean or Caucasie anthropological type of mankind. For the removal of the Tibbu from the Negro to this connection, see Nature, March 1, 1883 ("North African Ethnology"). Most of these are zealous Muhammadans.

The Arab Semites are recent intruders, mainly vial Isthmus of Suez and Egypt ; the Himyarifes are intruders from prehistoric times from South Arabia vid Strait of Rab-elMandeb. The former are all fierce Mu hammadans, the latter mostly monophysite Christians.

The Nubas hold an iutermediate position between the Negro and Hamite ; but the speech is distinetly Negro, and has no connection with the Fulah of West Sudan, as has been supposed by Fr. Müler and others. The Kordofan Nubas represent the original stock and are mainly pagans ; those of the Nile are Negroid and a historical people, Christians from the sixth to the fjurteenth century, sinee then Muhammadans of a mild type. They represent the Uaua of the Old Egyptian records, the Nube of Strabo, and the Nubata of later times.

Most of the e Negroes have been reduced in recent years, and are still virtually pagans. Some, such as the Mittu, Krej, and Bongo, are of a red-brown rather than a black complexion, but the type is Negro, although the speech of all except the Dinka shows grammatical gender. They are very brave and fierce, but easily controlled by firmness and kindness.

The Bantus have not been reduced, although included in the Moudirié de l'Equateur of Messedaglia's official "Carte du Sudan" (Khartum, 1883).
east and the Libyan desert on the west. It is thus practically useless for navigation, and the communications with the upper provinces have to be maintained by difficult caravan routes subtended like arcs to the curves of the stream, or radiating from Berber near the Atbara confluence to Suakin on the Red Sea. But south of these dreary solitudes the Atbara basin itself, comprising parts of the Berber and Taka provinces, is a magnificent subtropical land, the flower of the Khedive's possessions, diversified with a varied succession of dense woodlands, rich pastures, and well-watered arable tracts. Hence the route traversing this region from the Nile, through Kassala to the Red Sea at Massowah, although much longer, will be found far more practicable than the more northern highway to Suakin. Like the land itself, the inhabitants of this division present a great diversity of type, the narrow valley of the Nile being occupied by Nubas from the Egyptian frontier to the Old Dongola, and thence on the left bank by Kababish Arabs to Khartum, while the whole region between the Nile and Red Sea, and from Egypt southwards to Abyssinia, is the almost exclusive domain of the great Hamitic Bishari nation. Along the northern frontier of Abyssinia these come in contact at various points with Arab, Amhara, and Tigré peoples, and in one instance even with an isolated Negroid or

Nuba tribe, the Base (Kunama) of the Khor-el-Gash (Mareb) Valley.

The fourth division of Harrar, with its three provinces of Zeyla, Berbera, and Harrar stretching along the northern verge of Somaliland eastwards to Cape Gardafui, is practically separated from the rest of Egyptian Sudan by the intervening "Empire" of Abyssinia, and will be totally severed whenever that state resumes possession of its natural outport of Massowah. It is mainly an arid strip of coastlands fringing the Red Sea and Gulf of Aden, and inclosing the recently-founded Italian and French settlements on Assab Bay and at Obokh on the Gulf of Tajurrah. With the exception of the small Amharic inclave at Harrar, the whole of this division is inhabited by peoples of Hamitic stock and speech-Saho and Danakil, between the Red Sea and Abyssinia, Idur, and other Somali tribes along the Gulf of Aden.

Egyptian Sudan thus stretches north and south across nearly twenty-four degrees of latitude from Egypt to the equator, or about 1650 miles, and west and east across twenty-two degrees of longitude from Wadai to the Red Sea at Massowah, or from 1200 to 1400 . Within these limits it has a total area of at least $2,500,000$ square miles, with a population that cannot be estimated at less than $12,000,000$. Of these probably three fourths are of pure
or mixed Negro descent, and mostly pagans or nominal Muhammadans. The rest belong to various branches of the Semitic and Hamitic stocks, and are nearly all Muhammadans of a more or less fanatical type. In his valuable "Report on the Sudan for 1883 " Lieut. Col. Stewart remarks: "Besides the main division of the people into Arab and Negro, they are again subdivided into a number of tribes and sub-tribes, some sedentary and others nomad. Of the Negro tribes all are sedentary and cultivators, but the Arabs are for the most part nomads or wanderers, each tribe within certain wellknown limits. All these Arab tribes are large owners of cattle, camels, horses, and slaves. These last, along with the Arab women, generally cultivate some fields of doora (a kind of millet) or corn, sufficient for the wants of the tribe. The Arab himself would consider it a disgrace to practise any manual labour. He is essentially a hunter, a robber, and a warrior, and, after caring for his cattle, devotes all his energies to slave-hunting and war " (p. 8).

This presents a fairly accurate picture of the natural relations of the people in all respects except as regards the main division into two ethnical groups-Arab and Negro. From what has been already stated it is obvious that this is a totally inadequate distribution. It is another and signal instance of that official ignorance or disregard of the racial conditions that has ever been such a fruitful source of political troubles and disasters in lands governed or controlled by foreign administrators. As a matter of fact, Egyptian Sudan is a region of great ethnical complexity, and so far from being occupied by Arabs and Negroes alone, there are scarcely any Arabs or Negroes at all anywhere east of the Nile between Khartum and Egypt. To designate as Arabs the tribes at present blocking the Suakin-Berber route, as is currently done, betrays a depth of ethnological ignorance analogous to that of the writer who should group Basques, for instance, and Slavs in the same category. The Arabs themselves are comparatively recent intruders, although it is possible that some, such as the Beni-Omr, now fused with the Funj and Hamagh Negroid peoples of Senaar, may have found their way across the Red Sea into the Nile basin in pre-Muhammadan times. But the Bishari tribes about Suakin are the true autochthonous element, lineal descendants of the Blemmyes and other historic peoples whose names are enrolled in Greek, Roman, and Axumite records. But these and other points will be made clear by the above synoptical table, with accompanying map, of the East Sudanese races and tribes.

Khartum, the centre of administration for all these discordant elements, has been brought within the sphere of civilisation since 1819, when it was occupied by the Egyptian troops under Ismael Pasha. At that time it was a mere outpost of the Hamagh kingdom, Senaar; but, thanks to its convenient position at the confluence of the two Niles midway between the Mediterranean and the equator, it soon rose to importance under the strong government of Mehemet Ali. Under Khurshid Pasha (1826-37) its skin and reed hovels were replaced by substantial brick houses, and at present it is by far the largest and most flourishing place in Central Africa, with a motey population of over 40,000 , including the garrison roops. Here considerable quantities of goods in transit are always in deposit ; here are resident many Europeans interested in the African trade, and in the more philanthropic work of African culture and exploration. Khartum has thus become inseparably associated with all the work done during the last half century towards developing the material resources of the land and raising the moral status of its inhabitants. At its mention, the names of Petherick, Beltrami, Schweinfurth, Baker, Gordon, Marno, Junker, Linant de Bellefonds, Emin Bey, Gessi, and many other heroic pioneers in the cause of African progress, are irresistibly conjured up. Such names plead silently but eloquently for its preservation to civili-
sation in the better sense of the 'word, and make us feel how great a crime against humanity would be its abandonment to barbarism and the villainous Arab slavedealers of Central Africa.
A. H. Keane

NOTES

We understand that subscriptions to a memorial to the late Mr. F. Hatton are being asked for in a paper in which the name of Prof. Huxley is mentioned as one of the committee and an intending subscriber. We are authorised to state that the name of Prof. Huxley has been employed without bis knowledge.
We have received the following subscriptions on behall of the Hermann Müller Fund:-Prof. W. H. Flower, F.R.S., 1l. ; Mr. W. E. Hart, 1/. ; K., 10 .

Mr. Frank E. Beddard, M.A., of the University of Oxford, Naturalist to the Challonger Commission, has been selected out of thirteen candidates for the post of Prosector to the Zoological Society of London, in succession to the late Mr. W. A. Forbes, Mr. Beddard was a pupil of the late Prof. Rolleston, and for the past year has been employed on editoria! and other work connected with the issue of the official reports on the scientific results of the Challenger Expedition. He has also been intrusted with the examination and description of the Isopeda collected by the Expedition, and has the reputation of being a most promising and enthasiastic naturalist.
Among other legacies in the will of the late Sir William Siemens are 1000 , each to the Scientific Relief Fund of the Royal Society and the Benevolent Fund of the Institution of Civil Engineers.
The Cunningham Medal of the Royal Irish Society was presented on the 15 th inst. to Mr. John Birmingham of Tuam, for his "Contribations to the Advancement of Knowledge in Astronomy."
Mr. Archibald Geikir, F.R.S.; Director-General of the Geologisal survey of the United Kingdom, will give the first of a course of five lectures on the Origin of the Scenery of the British Isles, on Tuesday next (January 29), at the Royal Institution of Great Britain.

In January, $\mathbf{1 8 8 3}$, one of the officers of the Geological Survey of Ireland, Mr. F. T. Hardman, was selected to proceed to Western Australia for the purpose of taking part in an exploration of the Kimberley district of that colony. He tnok the field in April last, and continued on active service in the bush until near the end of September, having in this interval travelled at least 1500 miles, and having obtained materials for a first geological sketch-map of about 12,800 square miles of coantry. He has determined the sequence of formations which hegin with certain quartzites, schists, and other metaunorphic rocks, which he classes provisionally as altered Lower Silurian, but which may be of Archaran age. These are succeeded by limestones and gandstones with gypsum, \&c., which are referred to Upper Carboniferous horizons. Certaia basalts and felstones oceur, the age of which is uncertain. The youngest deposits are Pliocene sands, gravels, conglomerates, and marly limestones (" pindar" of the natives) overlaid by river gravels, exiensive plains of alluvium, and, along the sea-coast, by raised beaches.

Mr. Barnum's so-called white elephant arrived safely last week at the Zoulogical Gardens from Burmah, and has already attracted many visitors, Prof. Flower, writing to the Tiwes, says :-"The Burmese elephant now deposited in the Zoological

Society's Gardens, Regent's Park, is apparently not quite full grown, being between 7 feet and 8 feet in height, and has a wellformed pair of tusks about 18 inches in length. It has a remarkably long tail, the stiff bristly hairs at the end of which almost touch the ground. The ears are somewhat larger than in the ordinary Indian elephant, and are enriously jagged or festooned at the edges, whether as a natural formation or the result of early Injuries it is difficult to say. It is ehiefly remarkable, however, for a pecnliarity of coloration which is quite unlike that of any elephant hitherto brought to this country. In this elephant the general surface of the integument is quite as dark as, if not darker than, that usnally seen in its kind, being, perhaps, of rather a more blaish or slaty bue. There are, however, certain definite patches, disposed with perfect bilateral symmetry, in which the pigment is entirely absent, and the skin is of a pale reddish brown or 'flesh colonr.' These patches are of various sizes, sometimes minute and clustered together, prodncing only an indistinet mottling of the surface, sometimes in large elear spaces, bnt which are mostly, especially at their edges, dotted over with circular pigmented spots of the prevailing dark colour about half an inch or more in diameter, which give a remarkable and even beantiful effeet. The largest and elearest light-coloured tract is on the face, extending from the level of the eyes to the base of the trunk. . . . The animal is not a pale variety of the ordinary elephant, as some have supposed the so-called 'White Elephant' to be, but one eharacterised by a local deficiency of the epidermic pigment, in symmetrically disposed patches, and chiefly affecting the head and anterior parts of the body. It does not resnlt from any disease of the skin, as has been suggested, but is doubtless an Individual congenital condition or defect."

In Cosmes les Mondes for January 19 Prof, P. Guy describes the remarkable sanrise witnessed by him at Perpignan on January 8. From his bedroom window, looking southwards, he noticed a sudden flash, which lit up the whole room, and which was followed by a lovely pale light diffused thronghout the sonthern sky from horizon to zenith. This was at 4 a.m., and consequently could not have been produced by the clouds reflecting the light of the moon, which had set at $2.42 \mathrm{a} . \mathrm{m}$. The luminous matter presented a milk-white appearance, not nnlike that of the Milky Way, and scarcely more intense. So transparent was it that the stars remained perfectly visible without any dimiuation of their brightness through the vapours which seemed to canse the effulgence. Mars and Jupiter, visible near the zenith, were encircled by a halo like that often visible round the moon. Along the southem horizon there stretched a dark band formed by elouds at an elevation of about 15°, the upper edge of which was lit np intermittently by the action of successive waves of light resembling the sheet lightning so often seen in summer. About $4.45 \mathrm{a} . \mathrm{m}$. the light gradually faded away, after which the sky became overcast and quite dark. The local and interwittent light, Prof. Guy thinks, was obviously due to electricity, to whieh with less certainty may also be attributed the more general manifestation. The npper regions of the atmosphere contain a large quantity of electricity, as shown by the potential increasing with the increased altitude. To its presence are probably due such faint and phosphorescent diffusions of light as are here described, and have often been observed elsewhere.

Avter more than a fortnight's working without the slightest hiteh of any kind, the experiment of the direct electric lighting of one of the District Railway trains between Kensington and Putney may, it is stated, be fairly looked upon as a distinet success. The fitting of the Putney train is of a rather heterogeneous character, being a eollection of plant procurable without special manufacture, the whole consisting of a launch boiler, a small Willan's three-cylinder steam-engine, running at 500 revo-
lutions, and driving direct off its own shaft, a Siemens' shuntwound dynamo supplying eurrent for 50 Swan 20 -candle power incandescent lights. In addition there are two water-tanks, and a coal-box, the whole being placed in a separate van, and this tentative arrangement has this advantage-that by the removal of the van to other lines more extended trials can be made on longer trains, as in the present case only 30 of the lamps are employed for the actual service of the train, the remaining 20 being kept lighted in the van itself. The effect on the train is very brilliant, altbough the arrangements are not what are ultimately proposed-namely, to place a small high-speed engine and the dynamo on the tender and take steam from the locomotive itself, and so dispense with the attendant now required in the special van.
THE fiftieth anniversary of the birth of Philipp Reis, the inventor of the telephone which bears his name, was celebrated by the Elektrotechnische Gesellsehaft of Frankfort on January 7 by a special meeting in the afternoon, followed by a banquet, to which the son of the deceased inventor and a namber of his surviving scientific friends and comrades were invited. A memorial discourse was pronounced by Herr Postrath Grawinkel, dwelling on the inventions of Reis and his now generally admitted elaims. At the bangnet a speech was made by Dr. Petersen, president of the Physical Society of Frankfort, on behalf of that body, at whose session in 1861 the telephone first saw the light. The speeches and toasts lasted till after midnight.
We mentioned last week that the Scottish Fishery Board on the recommendation of Prof. Cossar Ewart had taken steps to utilise the abundant machinery at their disposal for collecting material that will assist in solving some of the important fish problems. As a firstruit of this organisation a splendid specimen of a torpedo was forwarded to the University of Edinburgh by the fishery officer at Wick on Saturday last. Prof, Ewart exhibited this, apparently the only torpedo ever found off the Scottish coast, at the last meeting of the Royal Physieal Society of Edinburgh (January 16). After giving a short account of the torpedo group, Prof. Ewart mentioned that the specimen exhibited was taken about five miles off Lybster, that it was 28 inches in length and 191 inches across the pectoral fins, and that it belonged to the species hebelans, several specimens of which have been found in the English Channel. This torpedo will in all probability be presented by the Fishery Board to the Edinburgh Museum of Science and Art.

The members of several scientifie societies in the east of Scotland baving had under consideration the advantages that would result from a federation of the varions societies, believing that thereby the value of their scientific work would be greatly increased and their objeets promoted, have determined to call a meeting of delegates from the various scientific bodies in the east of Scotland, to be held at the Perthshire Natural History Museam, Perth, on Saturday, February 9 next. At this meeting it is purposed to consider the question of federation, and how it may best be carried out, and also to adopt a constitution, and to arrange for a first general meeting. Some of the advantages of such an assoclation are thas briefly stated:-(1) Increased value of work by having an aim in common; (2) Increased zeal amongst members by definite work being put before them ; (3) Improvements in methot of carrying out excursions; (4) Increased facilities for intercourse amongst members of the different societies. The idea of a federation of societies is not a new one. In England the societies of three large districts have formed associations, with excellent results; and though in Scotiand no unions of a similar natare have yet been formed, the joint meetings (inaugurated by the Inverness Seientific Society) of some of the northern societie; which have taken place annually during the past two or three years, have been a step in the same direction.

The Geographical Society at Antwerp has given a reception to the distinguished geographer, Dr. Chavanne, editor of the Mittheilungen of the Vienna Geographical Society. He has undertaken the task of drawing up a complete map of the Congo territory, showing the stations of the African Association, He will leave for the Congo at the beginning of next month.
The first maps of the Algerian survey have been published and presented to the Paris Academy by Col. Perrier.

THE largest ice cavern in Carniola has lately been discovered by Prof. Linhart of Laibach, having hitherto been known only to a small circle of woodcutters and hunters. It is now called the Friedrichstein Cavern, and can be reached in about two to three hours from Gottsehee. The apper aperture is large and rectangular, the back is formed by a limestone rock rising some 80 metres perpendieularly ; there is also a colossal gate fringed by icicles some metres in length. The sides are very steep. The area of the cave is about 450 square metres, nearly circular in shape, the level ground being covered with ice several feet deep. Altogether the cave seems to offer one of the grandest aspects imaginable.
News about the Russian expedition to Western Africa under Herr Schulz von Rogosinski was communicsted at a recent meeting of the Berlin Geographical Society. The expedition has investigated the district north and east of the Cameroon Mountains, and discovered a large native settlement or town, Kumba by name, on the Mungo River east of the mountains mentioned. They intend to penetrate still forther to the east. Dr. Pauli and Dr. Passavant of Bacle have started also for the same districts on an exploring tour. A letter was also read, dated Ibi, September 30, in which Robert Flegel makes some official business commnnications.
The additions to the Zoological Society's Gardens during the past week include a Black-handed Spider Monkey (Atdes genfroyi) from Central America, presented by Mr. Colin Wm. Scott ; two Yellow-bellied Liothrix (Liothrix luteus) from India, a Goldfinch (Carduelis elegans), Britisb, presented by Mre. Edwards ; an Iadian Elephant (Mottled Variety) (Elephas indiicus 8) from Burmah, a Slow Loris (Njcticelius tardigradus) from Sumatra, a Gray Iehneumon (Horpestes griseus) from Iudia, deposited ; a Rufous-necked Wallaby (Halmaturus ruficollis) from New South Wales, a Brush Bronze-wing Pigeon (Phaps drgans) from Australia, received on approval; an Axis Deer (Cervws axi), three Brown-tailed Gerbilles (Gerbillus erythrurus), a Babirussa (Babirussa alfurns), burn in the Gardens.

OUR ASTRONOMICAL COLUMN

A Southern Comet.-A telegram from Melbonrne addressed to Prof. Krueger of Kiel, editor of the Astronomische Nachichicen, notifies the discovery of a small comet on January 12 in R.A. 22 h .40 m ., and N.P.D. $130^{\circ} 8^{\prime}$, and consequently in the constellation Grus. It is stated to be moving quickly to the south-cast.

Possibly this comet may add to the very small number of cases where one of these bodies has been telescopically discovered in the other hemisphere, and the elements of the orbit have wholly depended upon southern observations. We can call to mind unly two such instances: (1) the comet of 1824 detected by the late Cart Rümker at Parramatta, and observed there by him and by Sir Thomas Brisbane, the fonnder of that observatory, and Governor of the Colony. The orbit was first calculated by Künker, and has lately been more completely investigated frou the Parramatta observations by Dr. Doberck ; (2) the eomet of 1833, discovered by Dunlop (Ruimker's successor) at Parramatta at the end of September, and observsd there from October I to 16: orbits by Henderson, Peterr, and Hartwig.

Pons' Comet.-For the convenience of readers who are obverving in the southern hemisphere we subjoin an ephemeris of this comet, deduced from the provizionally corrected ellipse
of MM. Schulbof and Bossert. The positions are for Greenwich mean noon :-

The theoretical intensity of light on February 5 is sixty-nine times that on the day of discovery; on April 17 only six times the same. Probably the comet may be discernible with the naked eye natil the end of February.

Dr. G. Müller of the Astro-physical Observatory at Potsdam records a second remarkably sudden increase in the brightness of this comet. On January I at 5 h .47 m. M.T. its appearance was very similar to that of the preceding days, the nucleus large and diffused ; photometrie comparisons showed that it was following pretty nearly in the calculated light-curve, and harmonised with the measures on December 29 and 30. At 7 h .20 m . he was astonished at the altered aspect of the comet. In place of the previourly diffused nucleus, there was now an almost stellar point, equal in brightness to a star of the seventh maguitude, so that he was at first nnder the impression that a bright star was seen through the comet. By comparisons with two neighbouring stars, estimated in the Durchmusferung 7° o and 6.8 , the following magnitudes were determined :-

At ${ }_{7}^{\text {h. }}$ m m_{28}		At ${ }_{8}^{\mathrm{h} . \mathrm{m}} \mathrm{m}$		
728 741	… ${ }^{7} 533 \mathrm{~m}$.	At $\begin{array}{r}8 \\ 88 \\ 88\end{array}$...	$7{ }^{7} 03 \mathrm{~m}$.
758	. 697	9 -	...	713
7	... 6 '89	7	...	733

With the help of a eurve the observations appeared to fix the maximum of the development of light to $8 \mathrm{~h}, 12 \mathrm{~m}$. M.T. at Potsdam corresponding to 7 h . 20 m . Greenwich M.T. At 9h. $30 m$. the comet's aspect had again changed and resembled that presented at the previous day's observations. The whole variation amounted to about $1 / 3$ mag. On that evening the eomet's distance from the sun was 0.90 , and that from the earth 0.665 .

Attention will be no doubt directed in the other hemisphere to these abnormal variations in the light of the comet. It will be remembered that the first remarkable change occurred about September 22, three weeks after the diseovery by Mr. Brooks, when the distance from the sun was $2^{\prime} 18$, and from the earth 2.14

PROFESSOR HAECKEL ON THE ORDERS OF THE RADIOLARIA ${ }^{1}$
 II.

[THE following translation of a recent paper of mine, by Miss Nellie Maclagan, has been revised by myself.-Einst Hagcker.]
Systewatic Survery of the 4 Orders, io Sub-oriers, and 32 Familics of the Class Radiolaria. (Compare the former survey of the families in my Monograph, 1862, and in " Prodromus," J.c. 1881).

1. Order I. Acantharia, Hkl. (Acamharia, Hkl., 1881 $=$ Acamhomitrak, 1 ertwig, $1879=$ Punacantha, Hk1, 1878).
Central capsule otiginally (and usually permanently) spherical ; nneleus usually early divided into numerous small naclei. Cap-
${ }^{1}$ " Separal-Abdrôck aus den Sitruagsberichten def Jenaischen Geevllochaft far Medicin. und Wissenschaft:" Jahrg. 1883. Surung. v-n 16 Februar. C. included from p. 275.
sule membrane spherical, pierced on all sides by innumerable fine pores. Extracapsularium, a voluminous gelatinous sheath, without phroodium, usually without mooanthella. Skeleton always intracapsular, consisting of acauthine spicules, which meet in the centre of the central capsule, and pierce the membrane.

1A. Sub-order I. Acanthometra, J. Muller, 1858. Acautharia, in which the acanthine skeleton is composed merely of radial spicules, but does not form a fenestrated shell.

Family 1. Actinelida, Hhl., 1865. Skeletou composed of a varyiny number of spicules, not distributed according to J . Müller's law (Astrolophida, Litholophida).

Family 2. Acanthonida, Hkl., 1881. Skeleton composed of twenty radial spicules, distributed regularly according to J. Müller's law, in five quadriradiate zones (Acantkometrida, Acanthosfaurida, Acantholonchida).
18. Sub-orier 11. Acanthophracte, Hertwig. Acantharia, in which the skeleton is composed of twenty radial spicules regularly distributed according to J. Müller's law, and forming a fenestrated or solid shell round the ceatral capsule by means of connected transverse processes.

Family 3. Dorataspida, Hkl, 1862 . Fenestrated shell, spherical, spheroidal, or ellipsoidal, simple or double (Phractaspida, Spherrocapsida, Phractopelnuida.

Family 4. Diploconida, H., 1862. Shell shaped like an hour-glass or a double cone, having in its axis a pair of strong spicales running in opposite directions (Diplovonus).
2. Order II. Spumellaria, Ehrenberg ($=$ Perifylea + Thalasticollea + Spharosen, Hertwig, $1879=$ Spherellaria + Collodaria + Polycyttaria, Hkl., 1881).
Central capsule originally (and usually permanently) spherical, more rarely discoid or polymorphous. Nucleus usually divided only immediately before the formation of spores into a number of small uuclei. Capsule membrane simple, pierced on all sides by innumerable fine pores. Extracapsularium a voluminous gelatinons sheath, wihout phoodium, usually with zooxanthella. Skeletou consisting of silicium, or of a silicate, originally usually forming a central reticulate sphere, later extremely polymorphous, more rarely rudimentary or entirely wanting.

2A. Sub-order 111., Collodaria, H., 1881 (sensm ammiori). Spumellaria without skeleton, or with a rudimentary skeleton composed mainly of detached siliceous spicules scattered outside the central capsule.

Family 5. Thalassicollida, H., 1862. Skeleton entirely wanting. Central capsules living solitary, monozsic (Actissa, Thalassolampr, Thalassicolla, \&e.

Family 6. Collozoida, H., 1862. Skeleton entirely wanting. Central capsules social, thickly embedded in a cominon gelatinous body, polyzoic (Collozoum).

Family 7. Tbalassosphrerida, H., 1862. Skeleton composed of numerous detached spicules, scattered round the solitary central capsule. Monozoic (Thalassospherra, Thalassoxanthiam, \&c.).

Family 8. Sphzerozoida. Skeleton composed of numeron; detached spicules, scattered round the social central capsules, or embedded in their common gelatinous body (Spherosoum, Rhapidonoum).

28, Sub-order IV. Spharellaria, H\&1., 188ı, Spuruellaria having a reticulate or spongiose siliceous skeleton, forming a single connected plexus of siliceous fibre, originally evolved from a simple fenestrated sphere.

Family 9. Spharoida (vel Spharidea, H., 1879. "Protistenreich," p. 103 ; "Prodromus," 1881, pp. 448, 449). Skeleton either a simple fenestrated sphere, or composed of several concentric fenestrated spheres, with or without radial spicules. Central capsule solitary, monozoic. The family of Spumellaria richest in specific forms (Monospharia, Diospliaria, Triosphacria, Tatrasphacria, Polyspharia, Spongospheria).

Family 10. Collosphrerida, H., 1862. Skeleton either simple reticulate spheres, or composed of two concentric reticulate spheres, severally inclusing the spherical, social, central capsules. Polyzoic (Acrospharids, Clathrospharida).

Family 11. Pylonida, Hkl., 1881 ("Prodromus," p. 463). Skeleton subspherical, ellipsoid, or polywarphous, distinguish.d by large fissures or gaps, which break tbrough the originally spherical or ellipsoidal fenestrated shell, at defiuite paiuts. Fenestrated shell, simple or composed conceutrically, with or without spicule. Geometrical fundamental form with three unequal, equipolar axes, perpendicular one to another (Pylocaspida, Pylophonnida).

Family 12. Zyga atida, Hkl., 1881. Skeleton an ellipsoida I or almost cylindrical fenestrated shell prolonged in the direction of oue axis and constricted annularly in the middle, perpendicular to the said axip, often articulated by repeated annular strictures. One or two concentric, small, fenestrated shells, ofien inclosed in the middle. Both poles of the principal axis equal (Artiscida, Cyphinida).

Family 13. Lishelida, Hkl. ("Monogr. Prodrom." 1881, p. 464). Skeleton spheroidal or irregular, composed of a small, central, fenentrated sphere, and of series or heaps of chambers piled round it, sometimes spirally or axially according to definite, complicated laws, sotnetimes quite irregularly (Phorticida, Sorcumula, Spireumida).
Family 14. Discoida (vel Discida, Hkl., 1879, " Protistenreich," P. 103, "Prodrom." p. 456). Skeleton flattened like a disk, originally circular, lenticular, later often polymorphous by means of peripheric processes ; sometimes distinctly composed of rings, sometimes spongiose (Pheodiscida, Coccodiscida, Porodiscida, Spon ఢadiscida).
3. Order III. Nassellaria, Ehrenberg (= Monopylea, Hertwig, 1879 ; Monopylaria, Hkl., 1881).

Central capsule originally lavariably uniaxial, oval, or conical, with two different poles of the axis; at one pole the characteristic porous area through which the whule of the psendopodia project like a bush. Nucleus usually divided late, iommediately before the formation of spores, into numerous sinall nuclei. Capsule membraue simpla., Extracapsularium, a voluminous gelatinous sheath withovt phreodium, usually without zooxanthellæ. Skeleton consisting of silicium or of a silicate, originally (it is probable universally) a ring or a triradiate framework of spicules, later extremely polymorphous, usually forming a dipleuric fenestrated shell (wauting oaly in the simplest form, Cystidium).

3A. Sub-order V., Plectellaria, Hkl. Nassellaria, in which the skeletou consists of a simple siliceous ring or of a triradiate framework of spicules, usually furnished with processes forming simple or branched spicules. The branches of the latter may be united into a loose plexus, without, however, forming a chambered fenestrated shell. The skeletou is entirely wanting ouly in the simplest form (Cystidiam).

Family 15. Cystidina, Hkl., nov. fam. Skeleton entirely wanting (Cystidium).

Family 16. Plectoida (vel Plagonida), Hkl., 1881. Skeleton originally composed of three spicules or siliceous rods, radiating from one point (near the mouth of the central capsule), the latter often ramifying into loose plexus (Plagonida, Ploctanida).
Family 17. Stephoida (vel Stephanida), Hkl., 1881. Skeleton originally (?) forming a simple siliceous ring (with or without spicules), later often several connected siliceous rings or a loose plexus, not, however, developed into a regular fenestrated shell Monoslephida, Purastephida, Dyostephida, Triostephida).
36. Sub-order VI. Cystellaria (HkL, 188i). Nassellaria, having a chambered (usually dipleuric) fenestrated shell, the primary foundation of which consists either of a simple ring (like the Stephoida), or of a triradiate framework (like the Plectoida), sometimes of a combination of both. Primary foundation sometimes entirely lost.

Family 18. Spyroida (vel Sphyridina, Ebrenberg). Skeleton dipleuric, forming a fenestrated twin-shell, the two halves of which (right and left chamber) are connected by a vertical ring, lying in the median plane. At the npper (aboral) pole of the longitudinal axis, usually an occipital apical thorn, at the lower (oral) pole an oscular network, with four (rarely three, five, or more) openings, and three (rarely more) spicules. (Triospyrida, Diorpyrida, Tatıasfyrida, Pentarpyrida, Polyspyrila, Porispyrida, Pleurospyrida) $=$ Lypocystida.

Fanily 19. Botryoida (Hkl., $1881=$ I'olycystida, 1862). Skeleton an irregular fenestrated shell, composed of several unequal chambers, piled usually irregularly (rarely in definite order varying frum that of the Cyrtida) round a primary capitulum (derivable from the twin shell of the Spyroida), with or without spicules (Pyloborryida, Canmoborryida).

Family 20. Cyrtida, Hkl., 1862. Skeleton, diplearic (at least originally), consisting either of a primary capitulam (derivable from the twin-shell of the Spyruida?) or (usually) of one or more ehambers, joined to the oral pole of the said capitalum in the longitudinal axis. Osculam sometimes open, sometimes reticulate. Usvally three radial spicules (one median and two lateral), rarely fuar or mare spicules, or none at all (having undergoue retrograde formation?). The family most rich in
specific formas of all Nassellaria (Cystocorida, Cystopilita, Cyzlo. phonnida, Cystocapsida, Cystoperida, Cystophatwida, "Prodrom.," 1881, p. 426).
4. Order IV. Phatodaria, Ilkl., 1879 ($=$ Pansolenia, Hkl., 1878 = Tripylas, Hertwig, 1879).
Central capsule always uniaxial, sometimes almost spherical, sometimes lenticular or oval, always with two different poles of the axis. At one pole invariably the characteristic principal opening with radiated operculum, from which the bush of psendopodia project through a tube; at the other pole, frequently (though not invariably) two or more accessory openings. Nucleus usually only late divided into namerous small nuclei. Capsnle membrane double. Extracapsularium usually (or always?) with zooxanthellx distinguished by the pharadium, a voluminous body of pigment lying excentrically in the gelatinous sheath round the principal opening. Skeleton always extracapaular, consisting of silicinm or of a silicate, usaally composed of hollow tubes, polymorphous (wanting only in the most simple forms, Pheadina, \&e.).

4A. Sub-onder V1I. Phæocystia, HkL, 1879. Phseodaria, without skeleton, or with a rudimentary skeleton formed merely of detached siliceons tuhes (or of reticnlated pieces of silex) scattered outside the central capsule.

Family 21. Phwodinida, $11 \mathrm{kl} ., 1879$. Skeleton entirely wanting (Phorodina, Phaodella).
Family 22. Cannoraphida, Hkl., 1879. Skeleton consisting of detached hollow tubes or reticnlated pieces of silex, deposited tangentially round the central capsule (Cannonaphis, Thalassoplaneta, Dictyorha).
Family 23. Aulacanthida, Hkl., 1862. Skeleton consisting of a superficial pallinu of fine tangential tubes and a number of strong radial spicules (kimple or branched) which pierce the mantle (Aulocantha, Aulospathis, Auloraphis, Aulodondrum, \&c).
48. Sab-order VIII. Pharogromia, Hkl., 1879. Phreodaria with a dipleuric single-chambered shell having a large opening, usually armed with one or more teeth at the basal pole ; besides the primary, often several secondary openings.

Family 24. Lithogonida, Hkl., nov. fam., single-chambered dipleuric shell, with solid wall of peculiar crystalline structure, like porcelain (Lithogromia, Tuscarora).

Family 25. Challengerida, John Murray, 1876. Single chambered shelln, varying greatly in form, with porous glass-like wall, and very fine, perfectly regular, hexagonal pores (resembling the stracture of diatoms) (Challengeria, Gaselletfa, Porcupinia, \&c.).
4C. Sub-order 1X. Phxospharia, IIkl., 1879. Phseodaria having a spherical, or subspherical, fenestrated shell, usually consisting of one single, rarely of two concentric spheres; sometimes with a lange principal opening, sometimes without; parlly with, partly without, radial spicules, Heams of the reticulum sometimes solid, sometimes hollow.

Family 26. Castanellida, Hkl, 1879. Fenestrated shell, spherical, simple, composed of solid rods, having at one point a large principal opening (often armed with a corona of spicules), with or without radial spicules (Castanella, Castanidium, \&c.).

Family 27. Circoporida, $11 \mathrm{kl} ., 1879$. Fenestrated shell, spherical, subspherical, or polyhedric, composed sometimes of reticu. late plates, usually with hollow, radial spicules, always with one large, principal opening, and with several detached porous arex (Circopornc, Porastophantes, Porasputhis, \&c.).

Family 28. Sagenida, Hkl., nov. fam. Fenestrated shell, sometimes spherical, sometimes subspherical or polymorphous, forming a spongiose plexus of solid beams, without principal opening (Sagrwa, Sagevidium, \&c.).

Family 29. Anlosphscrida, HkL., 1862. Fenestrated shell, spherical, more rarely subspherical or polymurphous, composed in a peculiar fashion of hollow tubes, usually with hollow, radial spicules, without principal opening (Aulosphera, Auloplogna, \&c.).

Family 30. Cannosphaerida, Hkl., 1879. Fenestrated shell, spherical or subspherical, double. The inner (medullar layer) composed simply of solid beams, the outer (cortical layer) of hollow tubes with radial spicules at the nodes of junction ; both layers connected by hollow, radial rods (Cannosphara, Calocanika, \&c.).
4D. Snb-order 10. Pharoconchia, Hkl., 1879. Phaoodaria, having a bivalve fenestrated shell, composed like that of a mussel, of two convex, separate, perforated valves, with or without hollow, radial tubes.

Family 31. Concharida, Hkl., 1879. Fenestrated shell, without radial spicules, composed of two smooth, hemispherical or lenticular valves, the edges of which usually catch one another by rows of teeth (Concharium, Conchidum, Conchopsis, \&c.).
Family 32. Coclendrida, Hkl., 1862. Fenestrated shell composed of two hemispherical or lenticular valves, having processes in the form of large, hollow, radial spicules, usually dendritically branched at their apical, centre points or at the two poles of the transverse axis of the shell (Calodendrum, Calothamna, \&c.).

Differential Characters of the Four Orders of Radiolaria
 \section*{Holotrypasta}

Radiolaria having the capsule membrane pierced on all sides.

I. Acantharia.

Central capsnle originally spherical.
Homaxonous.
Capsule membiane pierced equally everywhere by innumerable fine fores.
(Pripylea).
Skeleton acanthine.
Zooxantbelle usually (or invariatly ?) wanting. Without pheodiam.
II. Spumellaria.

Central capsule orignally spherical.
Homaxonous,
Capsule membrane pierced equally everywhere by innumerable fine pores.
(Peripyles).
Skeleton siliceous.
Zooxanthelle usually present.
Without phsoodium.

Merotrypasta

Radiolaria having the capsule membrane partially pierced.
III. Nassellarla.

Central capsule oval or conical.

Monaxonous.

Capsule membrane with a single area of pores at the oral pole of the principal axis.
(Monopylas).
Skeleton siliceous.
Zooxanthelle usually present.
Without phatodium.
IV. Phazodaria.

Central capsule oval or subspherical.
Monaxonous.
Capsule membrane with a single simple principal opening and often several accessory openings.
(Tripyica).
Skeleton siliceous. Zooxanthelliz usually (or invariably ?) wanting. Always with pheodium.

Conspartus Ordinum at Familiarnm Radiolarinm classis

Ordines	Subordines	Familis	Genus typicum
I. Ordo: Acantharia Holotrypasta skeleto acanthinico	I. Acanthometra (sine tesa) 1I. Acanthophracta (testa completa)	$\left\{\begin{array}{l}\text { 2. Actinelida } \\ \text { 3. Acanthonda } \\ \text { 3. Durataupida } \\ \text { 4. Diploconida }\end{array}\right.$	Actinelius Acanthonia Dorntaopis Diploconus
1I. Ordo: Spumellaria Hoktry pasta skelcto deficiente aut viliceo polymorpho	III. Collodaria (sine testa) IV. Spherellaria (testa completa)	5. Thalassicollida 6. Collozvida 7. Thalasoospharida 8. Spharosuida 9. Sphaerida 10. Collosphacrida 15. Pylonida 12. 2 ygartida 13. Litheinda 14. Discoida	Actisea Collonvum Physematium Spharrozoum Phormouphara Collosphata Tetrapyle Didymocynix Porodiscus Linbelus
111. Ordo: Nassellaria Merotrypasta membrana caprulie sianplici, sine phacodio	V. Pectellaria (sine testa completa) VI. Cyrtellaria (testa completa)	$\begin{aligned} & \begin{cases}\text { 15. } & \text { Cyutidiaa } \\ \text { 15. Plectoula } \\ \text { 17. Stephanida }\end{cases} \\ & \begin{cases}18 . & \text { Spyroida } \\ \text { 19. Botryoida } \\ \text { 20. } & \text { Cyruda }\end{cases} \end{aligned}$	Cystidiam Plagiacaatha Lithoeireus Dictyospyriu Botryocyris Dictyophimas
	(VII. Phseocystia (sine testa)	$\left\{\begin{array}{l}\text { 21. Phasodinida } \\ \text { 23. Caneorhaphida }\end{array}\right.$	Phaondina Thalassoplancts Aulacantina
IV. Ordo: Pheoodaria	VIII. Pheogromia (testa dipleura)	\{34. Lubegromida	Lithogromia Challengeria
Merotrypasta membrana capsula dupplici, cum phaeodio	IX. Phazoupharia (resta globosa aut sublylobosa) X. Pheroconchia (testa bivalva)	(26. Castaneltida 27. Circoponda st. Sagenida 29. Aulospheerida 3o. Cannosph serida \{3x. Concharida \{32. Ceelodendrida	Castanelh Circoporus Sayena Aulouphera Cannosphera Concharium Coelodendruin

Hypothetical Ancestral Tree of the Radiolaria (1882)

UNIVERSITY AND EDUCATIONAL

 INTELLIGENCEOxpord.-The following courses of lectures and instruction in Natural Science will be held during the present term. In the Department of Physics Prof. Clifton lectures on "The Distribution of Potential in a Circuit," and on the Galvanometer. Mr. Heaton lectures on Elementary Mechanics. Practical instruction in Physies is given daily by Prof. Clifton and Messrs. Ileaton and Walker in the Clarendon Lahoratory. At Christ Church Mr. Baynes lectures on the Kinetic Theory of Gases, and gives practical instruction in magnetic and electric measurements. At Balliol Mr. Dixon lectures on Elementary Heat and Light.

In the Chemical Department Prof. Odling continues his course on the Naphthalene Compounds. The Courses on Organic and Inorganic Chemistry are continued by Dr. Watts and Mr. Fisher. At Christ Church Mr. Vernon Harcourt has a class for Quantitative Analysis.

Prof. Story-Maskelyne continues bis course on Crystallo-
graphy, and Prof. Prestwich concludes his course on Dynamical Geology, and lectures on Stratigraphical Geology.
In the Department of Morphology practical instruction is given by Prof. Mo eley and Messis, Robertson and Hickson on Human and Comparative Anatomy. Prof. Moseley lectures on the Comparative Anatomy of the Vertebrata, Mr. Hickson on the Elements of Animal Morphology, Mr. Jackson on Mimicry and Parasitism, Mr. Poulton on Deseriptive Histology, Mr. Morgan on Odontography, and Mr. Barclay-Thompson on the Anatomy of Amphibia and Reptilia.

In the Department of Physiology (which is much cramped for room pending the erection of new buildings) Prof. Burdon Sandersen lectures on the Nervous System, while practical instruetion is given by the Professor and Mr. Gotch on the Elementary Physiolagy of the Nervous System and of the Sense Organs, and by Mr. Dixey on Histology. At Magdalen Mr. Yule has a class for instruction in Practical Physiology.

The new Reader in Anthropology will give a course of six lectures on the Development of Civilisation and the Arts of Life.

Candidates for the Professorship of Botany are requested to send in their applications to the Registrar of the University on or before January 26 . The stipend is 700%. a year, and a house rent free in the Botanic Garden.
New College offers an Exhibition in Natural Science (Chemistry or Biology). The examination commences Msy 6.
Cambridge,-The following are the principal coarses in Natural Science during the present term :-
Mathematics.-Prof. Adams, Lunar Theory, commencing January 31 ; Mr. Turner (Under Plumian Professor), Instruction in the Use of Astronomical Instruments, January 30; Mr. Mollison, Vibrations and Sound, January 24; Mr. Stearn, Hydrudynamics, January 25 ; Mr. Hobson, Fourier's Series and Conduction of Heat, January 28 ; Mr. Thompson, Electromagnetism, January 25 ; Mr. Glazebrook, Wave Theory of Light, January 24 ; Mr. Ball, Algebra and Determinants, January 25 ; Dr. Besant, Analysis, January 23 ; Mr. Peudlebury, Analytical Optics, Janury 23.

Chemistry.-Prof. Liveing, General Course, January 24; Prof. Dewar, Organic Chemistry, January 28 ; Mr. Main, General Course, January 28 ; Mr. Pattison-Muir, Carbon Compounds, January 25 ; Non-Metals, January 26; Mr. Scott, Elementary iOrgavic Chemistry, January 25 ; Mr. Lewis, Catechetical Lectures, January 25 ; Mr. Heycock, Chemical Philosophy.
Practical Chemistry.-Mr. Sell and Mr. Fenton, Demonstrations in Quantitative Analysis, January 25.

Physics.-Lori Rayleigh, Acoustics, January 26 ; Mr. Trotter, Electricity and Magnetism, January 24 ; Physical Optics, January 24 ; Mr. Atkiuson, Heat, January 25 ; Mr. Glazebrook, Elementary Physict, Jsnuary 25; Mr. Shaw, Elementary and Advanced Phyics, Hydrostatics and Meat, January 25.

Mechanism.-Pr jf. Stuart, Theory of Structures, January 29; Mr. Lyon, Statics and Hydrostatics, January 29; Rigid Dynamics, January 30 ; Mr. Ames, Elemeutary Mathematics for Students of Mechanism, January 30.

Geology. - Principles of Geology and Stratigraphy (advanced), Prof. Hughes, January 24 ; Dynamical Geology, Mr, Roberts, January 24 ; Palxontology and Petrology, by Demonstrators, January 26.

Botany.-General Elementary Course, Mr. Vines, January 24 ; Anatomy of Plants, Mr. Gardiner, January 25 ; General Bio. logy of Plants (advanced), Mr. F. Darwin, January 26 ; Morphological Botany, Mr. Hicks, January 26.

Zoology and Comparative Auatomy.-Geographical Distributiou of the Vertebrata, by Prof. Newton, January 30 ; Elementary Biology, Mr. Vines and Mr. Sedgwick, January 25 ; Practical Morphology, Mr. Selgwick, January 24 ; Morphology of Sauropsida, Mr. Gadow, Js nuary 23 -

Biology.-Elementary, Mr. Vines and Mr. Sedgwick, January 25.

Anatomy aud Physiology.-Osteology, Prof. Macalister, January 25 ; Physiolozy, Prof. Foster, January 24 ; Anatomy of the Digestive and Circulatory Organs, Prof. Macalister, January 24 ; Chemical Phyciology, Mr. Lea, January 25 ; Physiology of the Circulation, Dr. Gaskell, January 24; Practical Work, Dissection, under the supervision of the Professor and Demonstrator, in the Dissecting Room.

SCIENTIFIC SERIALS

Bullatin de la Socitht des Naturalistes de Moscou, année 1883, No. 2.-Recearches into the compounds of the acetylenes, by A P. Sabanceff. The author has stadied these imperfectly known compounds, namely, di-brom-acetylene, and the double compounds of acetylene with bromine and chlorine, and with chlorine and iodine. He has discovered a new metbod of preparing larger quantities of the former by acting with zinc on an alcoholic solution of the four-brom-acetylene, and describes its various reactions.-On the periodical changes of level of the ocean, by H. Trautschold (in German). The author, who already in 1869 supported the idea that the geological changes are due, not to the rise of the continents, but to the falling of the level of the ocean, fiads in the disporition of the series of dcposits of all ages up from the Silurian, on the plains of Russia, new and very interesting arguments for his iflea. He maintains that the level of the ocean was falling from the Silurian epoch to the cend of the Trias, when the seas had, around the now Russian plains, nearly the same shape as now.

The level of the ocean rose, however, during the Jurassic period, retiring again about the end of the Chalk period.-On the bastard of the Anas crecea with Anas boschas, by Dr. N. Sewertsoff, with a colonred plate (in German). The most lnteresting bastard of the nearly two extremes of the ducks (relatively to their size) has been shot in the province of Ryazan. The Russian ornithologist describes its features at length, aud adds some remarks on the bastards of the ducks generally.-Monvpetal plants of Radde, by Ferd, von Herden (coutinued).-Description (in German) of ihe Veronicas, Castillejas, Siphonastgia, Phtheirospermum, and Omphalotrix.-A Mastodon tooth, note by 11. Trautschold.-On the photographic photometry of fixed stars, by Ed. Lindemann (in German). - Materials for the fauna of Hemiptera of Russia, by W. Yakovleff, being a description, in Russian, of several new species.

Rivista Scientifico-Indastriale, October 31.- $~$ detailed account of the electric exbibition held in September at Lodi, by Prof. Alessandro Volta. - Programme of the anthropological section of the Italian exhibition to be held next year in Turin. Amongst other attractions there will be a large collection of typical Italian skulls of all dates and from every part of the peninsula. Materiuls will also be brought together for studying the history, ethnography, language, and present condition of all the foreign communities (Albanian, Greek, Catalouian, Slav, German, Rumansch, French) settled in various parts of the country.

Rendiconti dd R. Istituto Lombardo di Sciense e Lettere, November 29, 1883.- On Lagrange's general expression of the force necessary to produse a tantocronous motion regurded as a function of space and velocity, by Prof. C. Formenti.-Geological notes on the Alps of the provinces of Regrio and Modena, by D. Pantanelli.-On the first traces of a national debt in the Byzantine Empire, by Z. von Lingenthal.-Unimetalism and bimetaliem, by Dr. A. Villa Pernice.-Meteorological observa. tions in the Brera Obuervatory, Milan, during the month of September, 1883.
Nachrichten of the Royal Secicty of Sciencer and of the University of Gottingen, August 22, 1883. - Contributions to the study of spermatozoa and their evolution (preliminary paper), by Dr. A. von Brann.-Researches on the action of glycol on orthophenylendiamiu, orthodinitrobenrine, and sulphuric acid.

November 7.-On the meteorological relations of Göttingen, by Hugo Meyer.- Optical researches on the substance (ealcarcous spath) into which crystals of aragonite become decom. posed under the aetion of heat, by C. Klein.-Ou the age of th: iron ores at Hohenkirchen, by A. von Koenen.-On the theory of modular equations, by A. Hurwitz-On the relations between solar and atmospheric electricity, showing how the latter is referable to the former and allied causes.

SOCIETIES AND ACADEMIES

London

Royal Society, November 22, 1883.-"Some Relations of Heat to Voltaic and Thermo-Electric Action of Metals in Electrolytes," by G. Gore, F.R.S., LL.D.

The experiments described in this paper throw considerable light upon the real cause of the voltaic current. The results of them are contained in twenty tables; and by comparing them with each other, and also by meaus of additional experiments, the following general conclusions and chief facts were obtained.

Whe? metals in liquids are heated, they are more frequently rendered positive than negative in the proportion of about 2.8 to $1 \circ$; and whist the proportion in weak solutions was about 2.29 to $1^{\circ} 0$, in strong ones it was about $3^{\prime 27}$ to $1^{\circ} 0$, and this accords with their thermo-electric behaviour as metals alone. The thermo electric order of metals in liquids was, with nearly every solution, whether strong or weak, wilely different from the thermo-electric order of the same metals alonc. A conclusion previously arrived at was also confirmed, viz, that the liquids in which the hot metal was thermo-electro-positive in the largest proportion of cases were those containing highly electro-positive bases, such as the alkali metals. The thermo-clectric effect of gradwally heating a metal in a liquid was sometimes different from that of suldemly heating it, and was oceasionally attended by a reversal of the current.
Degree of strength of liquid greatly affected the thermoelectric order of metals. Increase of strength usually and con-
siderably increased the potential of metals thermo-electronegative in liquids, and somewhat increa ed that of those poritive in liquids.

The electric potenial of metals, thermo-electro-positive in weak liquids, was usually about 387 times, and in strong ones 1. 87 times, as great as of those which were negative. The potential of the strongent thermo-electric couple, viz. that of aluminium in weak solution of sodic phosphate, was ' 66 volt for $100^{\circ} \mathrm{F}$. difference of temperature, or about 100 times that of a bismuth and antimony couple.

Heating one of the metals, either the positive or negative, of a voltaic couple, usually increased their electric difference, making most metal more positive, and some more negative; whilst heatiny the second one also, usually neutralised to a large extent the effect of heating the first one. The electrical effect of heating a voltaic couple is nearly wholly composed of the united effects of heating each of the two metals separately, but is not however exnctly the same, because whilst in the former case the metals are dissimilar, and are heated to the same temperature, in the latter they are similar, but heated to different temperatures. Also, when heating a voltaic pair, the heat applied to two metals, both of which are previously electro-polar by contact with each other as well as by contact with the liquid; but when heating one junction of a metal and liquid couple, the metal has not been previously rendered electropolar by contact with a different one, and is therefore in a somewhat different state. When a voltaie combination, in which the positive metal is thermo-negative, and the negative one is thermopositive, is heated, the electric potential of the couple diminishes, notwithstanding that the internal resistance is decreased.
Magnesium in particular, also zinc and cadmium, were greatly depressed in electromotive force in electrolytes by elevation of temperatnre. Reversals of position of two metals of a voltaic conple in the tension series by rise of temperature were chiefly due to one of the two metals increasing in electromotive force faster than the other, and in many cases to one metal increasing and the other decreasing in electromotive force, but only in a few cases was it a result of simultaneous bnt unequal diminution of potential of the two metals. With eighteen different voltaic couples, by rise of temperature from 60° to 160° F., the electromotive force in twelve cases was increased, and in six decreased, and the average proportions of increase for the eighteen instances was " 10 volt for the $100^{\circ} \mathrm{F}$. of elevation.

A great difference in chemical composition of the liquid was attended ly a considerable change in the order of the voltatension series, and the differences of such order in two similar liquids, such as solutions of hydric chloride and potassic chloride, were mnch greater than those produced in either of those liquids by a difference of $100^{\circ} \mathrm{F}$. of temperature. Difference of strength of solution, like difference of composition or of temperature, altered the order of such series with nearly every liquid; and the amount of such alteration by an increace of four or five times in the strength of the liguid was rather less than that caused by a difference of $100^{\circ} \mathrm{F}$. of temperature. Wbilst also a variation of strength of liquid cansed only a moderate amount of change of order in the volta tension series, it produced more than three times that amount of change in the thermo-electric tension series. The usual effect of increasing the strength of the liquid upon the volta-electromotive force was to considerably increase it, bnt its effect upon the thermo-electromotive force was to largely decrease it. The degree of potential of a metal and liquid thermo-couple was not always exactly the same at the same temperature during a rise as during a fall of temperature; this is analogous to the variations of melting and solidifying points of bodies under such conditions, and also to that of supersataration of a liqnid by a salt, and is probably due to some hindrance to change of molecular movement.

The rate of ordinary chemical corrosion of each metal varied in every different liquid; in each solution also it differed with every different metal. The most chemically positive metals were usually the mast quickly corroded, and the corrosion of each metal was usually the fastest with the most acid solntions. The rate of corrosion at any given temperature was dependent both apon the nature of the metal and upon that of the liquid, and was limited by the most feebly active of the two, usually the electrolyte. The order of rate of corrosion of metals also differed in every different liquid. The more dissimilar the chemical characters of two liquids the sore diverse usually was the order of rapidity of corrosicin of a series of metals in them. The order of rate of simple corroxion in any of the liquids
examined differel from that of chemico-electric and still more from that of thermo electric tension. Corrosion is not the cause of thermo-electric action of metals in liquids.

Out of fifty-eight cases of rise of temperature the rate of ordinary corrosion was increased in every instance except one, and that was only a feeble exception-the increase of corrosion from 60° to $160^{\circ} \mathrm{F}$. with different metals yas extremely variable, and was from i' 5 to 3216 times. Whether a metal increased or decreased in thermo-electromotive force by being heated, it increased in rapidity of corrosion. The jmportions in which the mont corroded metal was also the most thermo-electropositive one was $65^{\circ} 57$ per cent. in liquids at $60^{\circ} \mathrm{F}$. and $69^{\prime 12}$ in the sane liquids at $160^{\circ} \mathrm{F}$. ; and the proportion in which it was the most chemico-electro-positive at $60^{\circ} \mathrm{F}$. was 84.44 per cent, and at 160° F. $80^{\circ} 77$ per cent. The proportion of cases therefore in which the most chemico-electro-negative metal was the most corroded one increased from $15^{\circ} 5^{6}$ to 19.23 per cent. by a rise of temperature of $100^{\circ} \mathrm{F}$. Comparison of these proportions shows that corrosion nsually influenced in a greater degree chemico-electric rather than thermo-electric actions of metals in liquids. Not only was the relative number of cases in which the volta-negative metal was the most corroded increased by rise of temperature, but also the average relative loss by corrosion of the negative to that of the positive one was increased from 3.11 to 6.32.

The explanation most consistent with all the various results and conclusions is a kinetic one :-That nuetals and electrolytes are throughout their masses in a state of molecular vibration. That the molecules of those substances, being frictionless bodies in a frictionless medium, and their motion not being disvipated by conduction or radiation, continue incessantly in motion until some cause arises to prevent them. That each metal (or electrolyte), when unequally heated, has to a certain extent an unlike cla-s of motions in its differently heated parts, and behaves in those parts somewhat like two metals (or electrolytes), and those unlike motions are enabled, throngh the intermediate conducting portion of the substance, to render those parts electro-polar. That every different metal and electrolyte has a different class of motions, and in consequence of this they also, by contact alone with each other at the same temperature, become electro-polar. The molecular motion of each different substance also increases at a different rate by rise of temperature.

This theory is equally in agreement with the chemico-electric results. In accordance with it, when in the case of a metal and an electrolyte, the two classes of motions are sufficiently anlike, chemical corrosion of the metal by the liquid takes place, and the voltaic current, originated by inherent molecular motion under the condition of contact, is maintained by the portions of motion lost by the metal and liquid during the act of uniting together. Corrosion therefore is an effect of molecular motion, and is one of the modes by which that motion is converted into and produces electric current.

In accordance with this theory, if we take a thermo-electric pair consisting of a non-corrodible metal and an electrolyte (the two.being already electro-polar by mutual contact), and heat one of their points of contact, the molecular motions of the heated end of each substance at the junction are altered; and as thermo electric energy in such combinations usually increases by rise of temperature, the metal and liquid, each singly, asually becomes more electro-polar. In snch a case the unequally heated metal behaves to some extent like two metals, and the unequally heated liquid like two liquids, and so the thermo-electric pair is like a feeble chemico-electric one of two metals in two liquids, but without corrosion of either metal. If the metal and liquid are each, when alone, thermo-electro-positive, and if, when in contact, the metal increases in positive condition faster than the liquid by being heated, the latter appears thermo-electronegative, but if less rapidly than the liquid, the metal appears thermo-electro-negative.

As also the proportion of cases is small in which metals that are pusitive in the ordinary thermo-electric series of metals only become negative in the metal and liquid ones (viz. only 73 out of 286 in weak solutions, and 48 out of the same namber in strong ones), we may conclude that the metals, more frequently than the liquids, have the greatest thermo-electric influence, and also that the relative largeness of the number of instances of thermo-electro-positive metals in the series of metals and liquids, as in the series of metals only, is partly a consequence of the circumstance that rise of temperature usually makes substance -metals in particular-electro-positive. These statements are
also consistent with the view that the elementary substances lose a portion of their molecular activity when they unite to form acids or salts, and that electrolytes therefore have usaally a less degree of molecular motion than the metals of which they are partly composed.
The current from a thermo-eouple of metal and liquid, therefore, may be viewed as the united result of difference of molecular motion, first, of the two junctions, and second, of the two hented (or cooled) substances; and in all cases, both of thermo- and chemico-electric action, the immediate true cause of the current is the original molecular vibrations of the sulistances, whilst contact is only a static permitting condition. Also that whilet in the case of thermo-electric action the su-taining cause is molecular motion, supplied by an external source of heat, in the case of chemico-clectric action it is the motion lout by the metal and liquid when chemically uniting together. The direetion of the current in thermo-electric ca-es appears to depend upon which of the two substances componing a junction facreases in unolecular activity the fastest by rise of temperature, or decreases the most rapidly by cooling.

Zoological Society, January 15.-E. W. II. Holdsworth, F.Z.S., in the chair.-The Secretary exhibited, on the part of Mr. H. Whitely, an immatnre speclmen of the Night-Heron (N yeticorar priseus), which had been shot in Plumstead Marshes, Kent, in December last.-A communication was read from Mr. J. C. O'Halloran, Chief Commissioner and Police Magistrate for Rodriguez, accompanying a specimen of a large lizard found only in that island, and very rare there. The specimen had been identified by Mr. Boulenter as Phelsuma newtoni, belonging to the family Geckotidx. - Sir Joseph Fayrer exhibited some additional specimens of the horns of deer gnawed by other deer, in confirmation of previous remarks on the salject.-Canon Tristram, F.K.S., exhibited and made remarks npon some specimeas of species of the genus Pachycophala, which appeared to have been ignored or wrongly uniled to other species in a recently published volume of the Catalogue of Birds of the British Museum.-Mr. W. F. R. Weldon read a paper in which he gave a description of the placenta in Tetraceras quadricornis. The author showed that this placenta is intermediate hetween that of Maschus and that of the typical Bovidx, having few cotyledons with diffuse vascular ridges between them. Associated with this primitive character is a uniserial psalterium,-A second paper by Mr . Weldon contained some notes on the anatomy of a rare American monkey, Callithrix gigot, which had recently died in the Society's Gardens. The author gave a description of the external characters, and the principal viscera were eomrared with those of C. molorh and of Afycter.-A communicathon was read from Mr, E. J. Miers, F.Z.S., giving an acconnt of a collection of Crastacca from the Mauritius, which had been forwarded to the British Museum by M. V. de Robillard. In the collection was an example of a new species of Callianassa, proposed to be called C. martensi.-Mr. Francis Day read a paper on races and hybrids among the Salmonidx, and exhibited a series of specimens of young salmon and hybrid Salmonide reared at Sir J. Gibson Maitland's IIowie-town Fish Establish-ment.-Prof. F. Jeffrey Bell read a paper on the gencric position and relations of Eckinanthus tumidws of Tenison.Woods, from the Australian seas, which he showed to belong to a different genus, proposed to be called Anomalanthus.
Chemical Society, January 17,-1)r, W. H. Perkin, president, in the chair.-The following gentlemen were elected Fellows :-B, H. Brough, G. Daubeney, C. C. Hutchinson, W. S. Kilpatrick, E. Matthey, H. Peile, J. Pallister, R. Romanis, S. G. Raw-on, F. M. Rogers, W. Robinson, T. Stenhouse, W. O. Senier, J. A Voeicker.-The following papers were read: - On camphoric peroxide and barium camphorate, by C. T. Kingzett. In 1863 Brodie described the formation of camphoric peroxide by triturating camphoric anhydride with barium peroxide in the presence of iceecld water. The author has repeated the above experiments, and concludes that no camphoric peroxide is formed, but that the anhydrde iv first converted into camphoric acid, which decomposes the barium peroxide, yielding camphorate of barium and peroxide of hy $/ \mathrm{n}$ 'gen. - On the decomposition of silver fulminate by hydrochloric acid, by E. Divers and Michitada Kawakita. Formic acid and hydroxyammonium chloride are formed, as is the case with mereury fulminate, but the authors have only been able to obtain two-thirds of the calculated quantity of these bodies. Some ammonia and hydrocyanic acid are also formed.-Supplementary note on Liebig's
production of fulminating silver without the use of nitric acid, by E. Divers and Michitada Kawakita. The authors have succeeded in preparing the fulminate, but only when the reaction was allowed to proceed for somc time. The solution was then warm, and always contained nitric acid.-On hyponitrites, by E. Divers and Tamemasa Haga. The authors critici-e the recent paper of Berthelot and Ogier, and give an account of frenh investigations, which confirm the formula originally proposed by Divers, AgNO. They have not been able to obsain hyponitrite, either by the method proposed by Mencke, i.e. heating potassium nitrate with iron filings, or the method proposed by Zorn, in which ferrous hydrate is used as the reducing agent.

Royal Meteorological Society, January 16.-Mr. J. K• Laughton, F.R.A.S., president, in the chair. - The Secretary read the Report of the Council, which showed that the past few months mark a very important epoch in the hi-tory of the Society. In October the Council received the intimation that Her Majesty had been graciously pleased to grant the Society permistion to assume the prefix "Royal." In consequence the Society has become, and will henceforth be called, the Royal Meteorological Society. In December the Fellows made certain alterations in the by-laws by which the annual subscription has been locreased. The Report also showed that the Society is doing a great deal of practical work, not only by bolding meetings and publishing the papers read at the same, but also by the establishment of a large number of observing-stations, which are regularly inspected, so that the results obtained from them may be strictly uniform and comparable. The number of Fellows as 549 and of honorary members 19, thus making a total of 568.The President then delivered his address, in which he referred to the experiments made by Mr. Saxon Snell, Mr. Bertram, and Mr. Hele Shaw, with the object of determining the coefficients of Biram's anemometers; as yet these can scarcely be considered quite satisfactory, for, though made with the utmont care, they give results differing from each other by nearly 25 per cent. and from the known truth in opposite directions. The reduction of barometric readings to sea-level is another problem of great interest and importance, the solution of which is fur from perfect, and, as applied to the converse determination of altitudes, has been pronounced by Mr. Gilbert, of the U.S. Geological Survey, to be beset with diffculties "so numerous and so bafling that there is no reason to hope that they will ever be fully overcome." In masy cases, too, the reduction, even if correct, implies an accumulation of air in places where no air exists; and isobars so drawn, traversing mighty mountain ranges such as the Rocky Mountains or the Himalayas, or elevated plateaus such as those of Central or Eastern Asia, convey an impression which may easily lead to serious mistakes. The great achievement of the year is unquestionably the gathering in of the observations taken, by international agreement, at nine Aretic stations, in which, amidst circumstances of more or less discomfort, parties continued through a full period of twelve months. With one station established by the United States on the shores of Lady Franklin Bay, it has been found impossible to communicate; this was established in the summer of 1881, and no trastworthy news has since been received. Preliminary reports have been pub-1i-hed from the English station at Fort Rae on the northern shoreof the Great Slave Iake; from the German station in Cumberland Sound; from the Austrian at Jan Mayen, and from some of the others; but the principal interest attaches not to the observations taken separately but to the collation and comparison of the whole, which may be expected to lead the way towards problems of the greatest importance to meteorology. In the present day one science is 30 mixed up with a number of others, and so involved in them, that it is impossible to separate them, or to define the exact limits of each. Many of the problems of meteorology belong as mach to geography, or at tumes even to experimental phyxics, and an address which speaks of the progress of meteorology is perhaps apt to appear in some degree discursive. It is that the true student of nature, whilst limiting his detailed work to one particular direction, must consider her kingdom as a grand and eomprehensive whole, one and indivisible.-The following gentlemen were elected the officers and Council for the easuing year:-President: Robert Henry Scott, F.R.S.; Vice-Presidents: Hon, Ralph Abercromby, Edmund Douglas Arehibald, M.A., John Knox Laughton, F. R.A.S., William Marcet, M.D., F.R.S.; Treasurer: Henry Perigral, F.R.A.S. ; Trustees: Hon. Francis Albert Rollo Russell, M.A., Stephen William Silver, F.R.G.S.;

Secretaries: George James Symons, F.R.S., John Williaen Tripe, M.D. : Foreign Secretary : George Mathews Whipple, F.R.A.S. ; Council: William Morris Beaufort, F.R.A.S.; George Chatterton, John Sanford Dyason, F.R.G.S., William Ellis, F.R.A.S., Charles Harding, Richard Inwards, F.R.A.S., Baldwin Latham, F.G.S., Kobert John Lecky, F.R.A.S., Edward Mawley, F.R.H.S., Cnthbert E., Peek, F.R.G.S., Capt. Heary Toynbee, F.R.A.S., Cbarles Theodore Williams, M.D.

Anthropological Institute, Janaary 8.-Prof. Flower, F.R.S., pre-ident, in the chair.-The election of the following new members was annonnced :-Rev. E. S. Dewick, M.A., F.G.S., Prof. A. Macalister, M.D., F.R.S., and Mr. Oldfield Thomas as ordinary members, Dr. E. T. Hamy and Dr. Hermann Welcker as honorary memberx, and Mr. Lacien Carr and Dr. A. B. Meyer as corresponding members.-The President stated that Mr. Francis Galton had offered 500\%. in prizes to those who should before May 1, 1884, furnish him with the best extracts from their family records according to the form prescribed in his "Record of Family Faculties," published by Macmillan and Co., and he urged all members of the Anthropological Institute to give Mr. Galton every ascistance in their power. - Mr. H. H. Johnston read a paper on the races of the Congo and the Portuguese colonies in Western Africa. The author stated that Western Tropical Africa, between Senegambia to the north and the River Cunéne, offered a vast studying ground to the anthropologist, whercin types of nearly every wellmarked African race might be observed. After detailing many of the various races, he proceeded to deveribe the Bushmen north of Canéné, which he characterived as about the lowest type of men, but, of the five or six specimens which came more particularly under bis notice, he remarked that their mental ability was strangely at variance with their low physical eharacteristics. The Hottentots were much finer men than the Bushmen as regarded height and build, but they exceeded the latter in baboon-like licentiousness. The western slopes of the Shella Monntains were peopled by a tribe called the A-ndombe, a sturdy race of carriers, which extended as far north as Benguela. Referring to the races of the lower Congo, Mr. Johnston ohserved that they depended almost entirely upon vegetable diet, whilst they were remarkable fur their initiation ceremonies, Traces of phallic worship were noticed, especially in the interior, and more particalarly in the neighbonrhood of Stanley Puol. A Congo market was exceedingly interesting, and was held for about four or eight days. The natives would often go 100 miles to attend one of these markets, the women generally being the keenest traden Between Staaley Pool and the coast there is only one great leading tongue spoken, though this has several dialects. This is the Congo language, one known to and studied by Europeans probably before any other Bantu tongue. It bears many signs of Portuguese influence.

Geological Society, January 9.-J. W. Hulke, F.R.S., president, in the chair,-Patrick Doyle, Alfred Harker, Rev. Frederick Hastings, Kev. John Milne-Curran, and Williaun Ford Stanley, were elected Fellows; Prof, G. Capellini, of Bologna, a Forcign Member, and M. Alphonce Briart, of Mins, a Foreign Correspondent of the Society,-The following communications were read :-On the volcanic group of St. David's, by the Rev. Prof. J. F. Blake, F.G.S. The result of the author's examination of the rocks in the district of St. David's which have been designated Dimetian, Arvowian, and Pchidian, is that they belong to one volcanic series, whose meabers are those ustually recognised in eruptive areas, and whose age is anterior to and independent of the true Cambrian epoch. The independence of this series and the Cambrian is shown by the nature of the junction at all points of the circuit that have b en seen. The supposed i-ocline west of the granitic mass cannot $\mathrm{b}=$ verified on an examination of the coast-section, there being great irregularity and gentle synclinals not far from where the avex of the isocline shonld be. With regard to the nature of the rocks which thus antedate the Cambrian, the author was unable to recognise any true alternations in the materials of the granitic axis, though the rock is a pecul ar one in the arrangement of its constituents. The felsitic rocks are not independent of the granite, as they surround it on all sides, the line along the north and south being specially traced. They are also often intrusive into the ashes, and hence can have no definite strike. Attention was drawa to the bighly acid character of the whole
series, and to the small size of the centres of eruption, and it was suggested that such centres have continually decreased iu number and increase 1 in magnitude during geological time.On further discoveries of vertebrate remsins in the Triassic strata of the south coast of Devonshire, between Hudleigh Salterton and Sidmouth, by A. T. Metcalfe, F.G.S. The author gave a brief stratigraphica! account of the Triasvic rocks of the coast. He then described some vertebrate remains, consisting chiefly of porions of jaw-bones with teeth in line, probably of Labyrinthodonte, found in the opper sand tones (Uxher's clas-ification) at High Peake 11ill, near Sidmouth, by H. J. Carter, F.R.S. At numerous places between Budleigh Salterton and Sidmoath, Mr. Carter and the author had found a large number of isolated bone fragments. Such fragments had been submitted to a microscopical examination by Mr. Carter. In some specimens the bone structure was visible thronghont ; in some the bony portion had been partially removed and replaced by an infiltration of mineral matter ; in others the removal of the bony portion was complete. From these facts the author drew the c melusion that a comparative abundance of vertebrate life was maintained during the Triassic period; and that the raresess of Triassic fossils was due not so much to the paucity of animal life during that period as to the fact that Triassic strata afforded no suitable conditions for the preservation of organic remains.

Eminaurgh

Royal Physical Society, January 16.-J. A. HarvieBrown, F.R.S.E., president, in the chair. - The following commnnications were read:-On intra-epithelial capillaries in Oligochata, by F. E. Beddard, F.R.S.E.-On the geognosy of the Harz Mountains, part 1, by H. M. Cadell, B.Sc., of the Scottish Geological Survey. The writer stated that there was still some room for original investigation in that quarter, notwithstanding the great attention the German geologists had bestowed on the region. The Germans had not yet learned the art of detailed structural geological mapping and section-drawing as carried out in the British geological surveys, and many of their so-called gealogical maps were nothing more than mere petrographical pictures. The writer then went over the various formations of the Harz, and noticed the fact that graptolites were found at the top only of the lowest or Hercynian rocks, which he suggested might be cited as an example of one of Banaudes' "colonies." The older or "core rocks" of the Harz terminating in the Knlm were overlaid in violent unconformability by the border rocks, beginning at the coal measures and extending upwards to the Trias and Cretaccous systems. He agreed with th se who consider the loess an "zcolian " deposit swept as dust into sheltered valleys and nooks by the wind, and thought that water had had nothing directly to do with its origin. The paper was illustrated by the exhibition of rock: and metallic minerals from the region devcribed.-Pruf. Cossar Ewart, F.K.s.E., exhibited, with remarks, a large torpedo recently caught in a trawl off Wick, and believed to be the only specimen of the kind ever found north of the English Channel. The specimen exhibited was 28 inches in length and $19 \frac{1}{2}$ inches across the pectoral fins, and belonged to the species hebrtans.

SYDNEY

Linnean Society of New South Wales, November 28, 1883.-C. S. Wilkinson, F.G.S., F.L.S., president, in the chair. - The following papers were read :-Some fishes of New Hritain and the adjoining islands, by Charles W. De Vis, B.A. The names of the new specimens described are-Sirranus Aergmitatus and cruentus, Mesoprion flavinosea, Tefrangege vestita, Acanthurws sebra, Rynchichthys move-brilanntie, Harpage nosea (a new gentus of the Berycida), Salarias aquipinnis, Amphuprion arion, Pomacontrus owyix and nolatus, Nesiofes purpurascens (a new genus of the Labridxe), Execetus longiharba, Ariws arwiger, Herpetichthys cobra, (a new genus of the Muranida), Tarodon inswlarium and Lavis.-Some results of trawl fishing outside Port Jackson, by William Macleay, F. L.S. In this paper are given-(1) An account of two trials of a large beam trawl in forty to fifty fathoms water, by the order of the Commissioner of Fisheries ; (2) a list of the fishes enptured; and (3) descriptions of two new species-a skate, Raia ansfralis, and a gurnard, Lepidotrigla nuthalli, Mr. Macleay eonsiders the result promising on the whole.-Baron Maclay read a nute on the "Barometro Araucano" from the Chiloe Islands. He stated that this remarkable instrument had been shown to him among a number of other curiosities by Capt. C. de Amezaga, of the

Italian corvette Caraciolo, who informed him that it was used by the natives of the Chiloe Islands as a kind of barometer to foretell the approach of either dry or wet weather. This "Barometro Arancano," whieh eonsisted merely of the shell of a crab, pronounced by Mr. Haswell to be one of the Anomura, probably of the genus Lithodes, is most peculiarly sensitive to atmospheric changes. In dry weather it remains nearly white, but, with the approach of moisture, small red spots appear on the shell, increasing in number and size with the increase of humidity, until during the wet season it becomes completely red.

Paris

Academy of Sciences, January 14.-M. Rolland in the chair.-On the researches of M . Guntz in the thermo-chemistry of the fluorides, in reply to the strictures of M. Tommasi, by M. Berthelot.-On a process of anresthesis by the method of titrate mixtures of vapours and air; its application to the human subject in the form of vapours of ehloroform, by M. Paul Bert. The cbief advantages of this process are stated to be: delirium always slight, sometimes altogether absent, even in adults; absolute and regular insensibility obtained in six to eight minutes; quiet sleep; normal breathing, circulation, and temperature ; no symptoms of nausea; normal and perfectly reassuring appearance of the patient while asleep; constant and always very protracted consecutive anasthesis; great economy in the outlay for chloroform.-Generalisation and strictly mechanical demonstration of Joule's electrical formula, $w=i \in \mathrm{~T}, \mathrm{by}$ M. A. Ledieu. -On the preparation in large quantities of artificial virus attenusted by rapid heating, by M. A. Chauveau. By this process sufficient virus for the prophylactic inoculation of from 4000 to 8000 sheep may be rapidly prepared in the same reser-voir.-Observations of the Pons-Brooks comet made at the bent equatorial of the Paris Observatory, by M. Périgaud.-On the genus of some entire functions in mathematical analysis, by M. Lagnerre.-On the geometrical curve known as Pascal's "limaçon," by M. A. Genoechi.-On linear differential equations with doubly periodical coefficients, by M. G. Floquet, On the adiabatic expansion of the vapour of water, by M. P. Charpentier.-On the agreement of experienee witb the general theoretic law regulating capillary surfaces, especially in its application to water confined between two moistened plaques, vertical and parallel, by M. Quet.-Ou a new method of determining the magnetic inclination by means of the induction compass, by M. Wild.-On the observation of earth earrents who e intensity is shown to be subject to secondary fluctuations depending on the degree of moisture and temperature of the zone comprised within the circuit, by M. Larroque.Determination of the intensity of combustion in some acetones and in the two ethers of carbonic acid, by M. W. Louguinine.On the phenomena of chemical dissociation, by M. Isambert. Here the author endeavours to resume the results of his experimental researches on dissociation in a simple theory based on the thermic data, by means of which alone it is poesible to appreciate chemical phenomena.-On the preparation of the sulphate of the sesquioxide of pure chromium, by M. H. Ban-bigny.-Explanation of a method for determining the density of liquid oxygen, by M. Menges. The author obtains the equation $d=\frac{v_{1} d_{1}}{v-v_{1}}$, where $d=$ the density of the liquid gas, $v=$ its volume, $\mathrm{V}=$ the volame of the gaseous portion, all known quantities.-On colloidal ferric ethylate and ferric hydrate, by M. Ed. Grimaux.-On a ebloruretted silicate of manganese, by M. Al. Gorgeu.-On the influence of plastering on the composition and the chemical properties of wine, by M. L. Ma mier de la Source. The plastering process with chemically pure sulphate of lime has the effect of decomposing not only the cream of tartar, but also the neutral organic combinations of potassium which are present in a very eonsiderable proportion in the perfectly ripe grapeOn the presence of the diamond iu some graphic stone occurring near Mellary, Madras Presidency, by M. Chaper.-On the fossil Fchinidx of the Eocene formations at Saint-Palais (Charente Inféricure), by M. G. Cotteau.

Berlin

Physical Society, January 4.-Prof. Neesen briefly cormmunicated the contents of a paper sent in by Herr Friedrich C. S. Muller, de cribing three apparatus used in connection with the delivery of lectures: a tangent compass, a galvanometer, and a rheostat. These instruments were intended to take rapid measurements, and to render them visible to a large audience.

Following up this subject, Prof. Neesen gave a short account of the contrivance by which in his lectures he measured the mutual attraction of two magnets by means of scales. Iu conclasion, he reported experiments instituted by him with a view to determining the influence of magnetisation on electrical conducting power. In these experiments he had made use of a magnetic substanee of high specific resistance, a solution of chloride of iron. Two equal tubes were filled with the same solution, and inserted as the two branches of a Wheatstone bridge into the circuit of a galvanic battery; the two other branches being so arranged that the galvanometer stood at zero. The electrodes in the tuo tubes consisted of iron plates, and were exactly alike. The tubes, that i ¢ , the fluid conductors, had in the different ex periments different shapes and different diameters. The contents of the one tube were then magnetised either by a magnetising spiral or by a powerful electromagnet, and the galvanometer was observed during this process of magnetisation. The result of the experiments was in every case a negative one. Very slight deflexions were indeed observed in the galvanometer needle in the case of the experiments with the magnetising spiral, but these proceeded from the slight heating of the fluid, an effect which, notwitbstanding the solution of ehloride of iron was surrounded by a casing of circulating water, had not been wholly avoided. In those experiments, on the other hand, in which the magnetisation was made by means of the electromagnet, the needle remained invariably at rest.-Prof. Roeber diccussed and explained the principle of experiments made on the Rhone and reported in the Comples Rendus. These experiments had for their object the towing of ships by means of ropes wound round the whole vessel.-Dr. Koenig gave a short preliminary communication on the experiments, which, in eooperation with Dr. Dietrici, he had made, with a view to determining the precise position of different spectral colours and the sensitiveness of the eye for distinguishing colours. At the next meeting of the Society he would speak at greater length on the subject, illustrating it by numerical data.

CONTENTS

Page
The Alps of New Zealand. By Prof. T. G. Bonney, F.R.S.

28 I
Dobson's "Monograph of the Insectivora." By
Prof. W. H. Flower, F.R.S. 282
Our Book Shelf:-
Galhraith and Haughton's "Manual of Msthematical Tables"
Remsen's "Principles of Theoretical Chemistry"
"S:udies in Micrographic Petrography"
282

Letters to the Editor:-
The Remarkable Sunsets.-Prof, Edward Divers ; H. M. Paul ; Rev. John Hawell; T. StoryMaskelyne; J. Edmund Clark; Hon. F. A. R, Russell
Unconseious Bias in Walking-G. H. Darwin; Thos. Hawksley
Diffusion of Seientific Memoirs,-R. T. Glazebrook Recent Low Temperatures in America.-Dr. John Rae, F.R.S.
Meteors-Unpublished Notes of November 30, \&e. Donald Cameron

British Aphides

Earthquakes and Buildings. By Prof. John Milne .
The Late Eruption of Vesuvius. By Dr. H. J. Johnston-Lavis
The Egyptian Sudan and its Inhabitants. By Prof.
A. H. Keane (With Map)

Notes
Our Astronomical Column :-
A Southern Comet
Pons' Comet
296
Professor Haeckel on the Orders of the Radiolaria. II.

296
University and Educational Intelligence 209
Scientific Serials 30
Societies and Academies

THURSDAY, JANUARY 31, 1884

THE INDIANS OF GUIANA
Among the Indians of Guiana: being Sketches chiefly Anthropologic from the Interior of British Guiana. By Lverard F. Im Thurn, M.A. Oxon, (London: Kegan Paul, Trench, and Co., 1883.)

GENERALLY speaking, the books of travel on which anthropologists have to depend for information as to the less cultured tribes of mankind are descriptions of a country and its exploration, with a chapter or two on the natives. Here the plan is reversed, the main book being a treatise on Caribs and Arawaks, to which is prefaced a short but lively description of the forests and savannahs of Guiana, with their plants and animals, forming as it were a frame in which to set the human picture. When Mr. Im Thurn first went to Guiana in :877, he spent much of his two years' stay in wanderings among the Indians, and before the end of 1881 went back to the colony, where he is now Resident Magistrate of the Pomeroon District. Such appointments are much to be commended, on the one hand as putting the indigenous tribes under the control and protection of an official thoroughly conversant with native character and custom, on the other hand as placing a scientific man in intimate relations with the fast disappearing culture of the lower races.
The question to what races these native tribes of Guiana belong has occupied Mr. Im Thurn, with results which are not only interesting in themselves but have a bearing on larger problems of anthropology. We too readily take it for granted that the lower barbarians have no history beyond two or three generations of old men's memory. In the present district, however, something far beyond this seems to be made out. The native tribes of Guiana fall into two divisions. One group is made up of the Arawaks, Warraus, and Wapianas ; and these, though unintelligible and hostile to one another, are united by a common feeling of aversion to the Caribs, who, native tradition says, came from the West India Islands. These Caribs, who form the other group of tribes of Guiana, are in appearance, language, and customs similar to those of the West Indies, so that we have here a case of native tradition asserting that certain tribes of a country were invaders from another region, though the Carib immigration thus remembered took place perhaps three to five hundred years ago. The present author is so convinced of the reality of this event that he calls the Caribs in Guiana "stranger" tribes to distinguish them from the "native" tribes. Long ago as the invasion happened, Mr. Im Thurn points out that the industrial arts of the two races have not yet become blended. The Arawaks and other native tribes continue to make their hammocks of palm fibre, not taking to the use of cotton thread for hammock-weaving, although the Caribs brought this art so long ago with them from their islands, and have practised it in Guiana ever since. What is still more curious is that the rude method of making thread by rolling palm or grass fibre into a twist with the palm of the hand on the thigh, may be commonly seen in Guiana, although the use of the spindle for spinning
cotton is also usual. The explanation of this coexistence of a savage and a more civilised art is no doubt that the old native tribes were "thigh-twisters," but the new stranger tribes were spinners, and the descendants of both have more or less kept up their hereditary methods (pp. 171, 287).

Among matters bearing on the history of civilisation which struck Mr. Im Thurn was the custom of building houses on piles. This may be seen in its primary form among the Warraus (p. 202) ; although quiet times and security from enemies make it no longer worth their while to build actually out in the waters, they still build many pile-huts in the swamps. These miscrable huts have been described as standing on a platform of interlaced stems of the manicole palm, supported on tree trunks five or six feet high, with a notched trunk serving as a ladder, to which, when the waters were high, the canoe was made fast. The motive of building in such a situation is intelligible enough as a means of safety from enemies, but next we come to an extension of the practice requiring explanation :-
"A most remarkable fact is that houses on piles are not unfrequently bailt, for no apparent reason, on the savannah; and this is done not by any special tribe, but occasionally by Arecunas, Macusis, and by other Carib tribes. They stand not in swamps but on dry ground, sometimes on top of a hill. Except that they are much langer, they are exactly like the Warrau houses already described; and it is a noteworthy fact that the platform on which the house stands is, as in the case of the Warrau houses, made of the stems of manicole palms (Euterpe oleracea), though this moisture-loving palm is very locally distributed in the savannah region, and the Indians fetch it from long distances, although other apparently equally suitable material is at hand. It is probable that these savannah pile-builders revert to a form of house which they saw-and perhaps used-on the coast land, when they first reached the mainland from the islands."

This explanation of pile-houses on land as due to survival of the once purposeful habit of building them in the water is the more interesting from its correspondence with a theory based on similar facts on the other side of the globe. Prof. Moseley, describing New Guinea (" Notes by a Naturalist on the Challenger," p. 396) points out that the pile-dwellings must have been first built in the water for protection and afterwards were continued on land. Pushing the argument further, he suggests that the pile-house on dry ground was converted into a two-story dwelling by filling in the spaces between the poles with leaves or mats, so that the lower part might serve as a storehouse or cowhouse. In this way Prof. Moseley accounts for the Swiss peasant's chalet as derived from the watery home of the ancient lake-dweller, the present balcony representing the old platform to which the lakemen climbed up from their canoes. When the present remarks find their way into Mr. Im Thurn's hands, it is to be hoped that he will test this ingenious view by the evidence within his reach.

Mr. Im Thurn's researches into the religious ideas of the Guiana tribes disclose a remarkable theological condition. To so acute a student of the theory of religion it must have been an exciting occupation to live in daily mental contact with Animistic conceptions at once so primitive and so vivid. In any future discussion of

Animism, the results obtained by hin must take a prominent place. ${ }^{1}$ Few, if any, Europeans have had such perfect opportunity of seeing the idea of soul originate in the evidence of the senses in dreams, as interpreted by childlike, savage philosophy. Dreams are, to these rude people, events of real life, in which the spirits or phantoms of other men come to them in sleep, or are seen when the slecper, in like manner, leaves his own body lying and goes forth into the dream-world. Both these conceptions are illustrated in the following stories of what occurred to our traveller :-

Abstract

" 1t becomes important, therefore fully to recognise the complete belief of the Indian in the reality of his dreamlife, and in the unbroken continuity of this with his working life. It is easy to show this belief by many incidents which came under my notice. For instance, one morning when it was important to me to get away from a camp on the Essequibo River, at which I had been detained for some days by the illness of some of my Indian companions, I found that one of the invalids, a young Macusi, though better in health, was so enraged against me that he refused to stir, for he declared that, with great want of consideration for his weak health, I had take I him out during the night and had made him haul the canoe up a series of difficult cataracts. Nothing could persuade him that this was but a dream, and it was some time before he was so far pacified as to throw himself sulkily into the bottom of the canoe. At that time we were all suffering from a great scarcity of food, and hunger having its usual effect in producing vivid dreams, similar effects frequently occurred. More than once the men declared in the morning that some absent men, whom they named, had come during the night and had beaten or otherwise maltreated them; and they insisted upon much rubbing of the bruised parts of their bodics. Another instance was amusing. In the middle of one night I was awakened by an Arawak named Sam, the captain or head man of the Indians who were with me, only to be told the bewildering words, 'George speak me very bad, boss; you cut his bits!' It was some time before I could collect my senses sufficiently to remember that 'bits' or fourpenny-pieces are the units in which, among Creoles and semi-civilised Indians, calculation of money, and consequently of wages, is made ; that to cut bits means to reduce the number of bits or wages given ; and to understand that Captain Sam, having dreamed that his subordinate George had spoken insolently to him, the former, with a fine sense of the dignity of his office, now insisted that the culprit should be punished in real life" (p. 344).

Not less clear is the train of native argument by which the notion of soul extends itself from man to the other animals, which in the view of the rude Indian are beings differing indeed from man in bodily form and strength, but comparable with him in ways and cunning, creatures talking among themselves in their own languages, not more unintelligible to him than are the languages of surrounding tribes of men. Indeed the peai-man or magician of his own tribe, carrying into fraudulent effect this real belief, holds converse in his hearing with birds and beasts. What rude men think of the intelligence of animals is well illustrated by a custom which came under Mr. Im Thurn's own notice. "Before leaving a temporary camp in the forest, where they have killed a tapir and dried the meat on a babracot (stage of green sticks for

[^31]smoking meat over a fire), Indians invariably destroy this babracot, saying that should a tapir passing that way find traces of the slaughter of one of his kind, he would come by night on the next occasion when Indians slept at that place, and taking a man, would babracot him in revenge."

Not to discuss here the spirits of rocks, waterfalls, and objects generally, which animate the Indian's world, mention may be made of those particular phases of Animism which underlie the proceedings of the native magicians, as to which Mr. Im Thurn has brought some picturesque and instructive facts into view. To understand these ideas, it has to be borne in mind that by the native law of vengeance, when an injury has been done (or believed to have been done)to a man, his nearest relative, as his avenger (kenaima), sets himself to follow and slay the wrongdoer, or, if he cannot be found, one of his relatives. Thus every Indian lives in constant dread that a kenaima may be following him like a shadow through the forest till he can catch him sleeping or helpless, strike him down, and rub deadly poison into his flesh, or dislocate his limbs. All this really happens, but the Indian extends the idea into his spirit-world, and, with a rude but sufficient philosophy, finds a cause of all sickness and death in attacks by the spirits sent by the imaginary kenaimas, which enter into the bodies of beasts of prey to attack their victims, or poison them, or, embodied in worms or insects, or any other small objects, pass into their bodies, and cause aches and pains. Against these spirit-foes the Indian has a protector, the magician or peai-man. This personage's craft is based on the same Animistic theory as that of his dupes, as is plain from the training for the profession which he undergoes, fasting, wandering in the forest, and drinking large draughts of tobacco-water, till he can work himself up into morbid passions of excitement, in which his intercourse with the spirits is carried on, partly no doubt in knavish imposture, but partly also in genuine belief. The methods by which this practitioner drives out disease-spirits from his patients were actually experienced by Mr. Im Thurn, who had the luck of getting a peai-man to operate on him for a slight headache and fever. A company of some thirty people, mostly attracted by the prospect of so novel a performance as peai-ing a white man, were assembled in the house of the doctor, the entrance was closed, the fires put out, and all lay in their hammocks, our travelicr being especially warned not to set foot on the ground, for the kenaimas would be on the floor, and would do dreadful things to him if they caught him. Much like his analogue the professional medium at a modern sfance, the peai-man made the patient promise not to stir out of his hammock, nor look, nor lay hands on anything that might touch him. For a while all was still, till suddenly the silence was broken by a burst of indescribable and really terrible yells and shouts, which filled the house, shaking walls and roof, sometimes rising rhythmically to a roar, which never ceased for six hours. Questions seemed to be thundered out and answers shouted back, with no pause in the sound. A little Macusi boy, who had slung his hammock close to Mr. Im Thurn's, whispered to him that it was the peai-man roaring his questions and commands to the kenaimas, who were yelling and growling and shouting
their answers. Every now and then, through the mad din, there was a sound, at first low and indistinct, and then gathering in volume, as if some big winged thing came from far toward the house, passed through the roof and then settled heavily on the floor; and again, after an interval, as if the same winged thing rose and passed away as it had come. As each of these mysterious beings came and went, the air, as if displaced by wings, was driven over the patient's face. They were the kenaimas coming and going. As each came, his yells were first indistinctly heard from far off, but grew louder and louder until, as he alighted on the floor of the house, they reached their height. The first thing each did was to lap up some of the tobacco-water, with an ostentatious noise, from the calabash on the floor. But while he lapped the peai-man kept up the shouts, until the kenaima was ready to answer. When each kenaima had given an account of itself, and had promised not to trouble the sick man, it flew rustling away. They came in the form of tigers, deer, monkeys, birds, turtles, snakes, and of Ackawoi and Arecuna Indians. Their voices were slightly different in tone, and they all shouted in voices which were supposed to be appropriate to their forms, but, oddly enough, all hoarsels. It was a clever piece of ventriloquism and acting. The whole long terrific noise came from the throat of the peai-man, or perhaps a little of it from his wife. The only marvel was that the man could sustain so tremendous a strain upon his voice and throat for six long hours. The rustling of the wings of the kenaimas, and the thud which was heard as each alighted on the floor, were produced by the magician skilfully shaking the leafy boughs brought in for the purpose, and then dashing them suddenly aga inst the ground. This Mr. Im Thurn discovered by the boughs accidentally touching his face, when he seized some of the leaves with his teeth. At the crisis he seemed to feel a hand laid on his face. The effect of all this upon him was very strange. Before long he passed into a kind of fitful sleep or stupor, probably akin to mesmeric trance. Incapable of voluntary motion, he seemed to be suspended somewhere in a ceaselessly surging din. Now and then when the noise all but died away, and the peai-man was supposed to have passed out through the roof and to be heard from a great distance, he awoke to half-consciousness, but as the magician came back and the noise grew again he fell back into stupor. At last 'towards morning, when the noise ended, he awoke thoroughly, and finding the entrance unbarred, rushed out to find relief in the rain and storm. His head was indeed anything but cured of its ache, but the peai-man insisted that he inust bs cured, and asked for payment, producing a caterpillar, which he declared was the kenaima which had caused the pain, and which he had extracted when he touched the patient's face. Accordingly he received a fourpenny looking-glass as his fee, and was satisfied.

These extracts will give an idea of the goodness of the material contributed by Mr. Im Thurn to the study of the lower phases of human thought. In conclusion, a few words may be said as to his suggestions on the interesting problem how an explorer may reach the plateau-top of the precipice-walled Roraima, and settle the question what ancient and modern animals and plants have survived and developed there, and whether there may be any truth in
fancies of strange human tribes dwelling there, cut off for ages from their fellow-men. In the far west of Guiana or over the Brazilian boundary, where the savannah itself rises 5000 feet above the sea, Roraima springs from it in perpendicular sandstone cliffs 2000 feet high, topped by a flat tableland apparently forest-covered, and whence waterialls pour down. Round the whole circumference the cliff-wall is said to be perpendicular, but this is mere conjecture, for no traveller has ever been round it. The summit may prove accessible from the other side, and at any rate enough is known of the fauna and flora of the district to make it certain that a naturalist who should accomplish the circuit would be well rewarded by discoveries, even if he failed to reach the top. There is a way as yet untried, which Mr. Im Thurn is convinced will prove more practicable than those by which Roraima has been hitherto approached. He recommends going up the Potaro as far as possible by boats, and thence striking across the savannah on foot. The journey is one of difficulty and privation, which Mr. Im Thurn warns any explorer against undertaking without fully weighing the difficulty and eost. Perhaps we may hear some day of himself, as the leader of a well-equipped expedition, making the attempt.
E. B. Tylor

THE COLLECTION OF DEERS' HORNS AT THE ROYAL CASTLE OF MORITZBURG
Die Hirschgeweih-sammlung im Königlichen Schlosse $\mathbf{z k}$ Moritsburg bei Dresden, mit allerhöchster Genehmigung und Unterstützung Seiner Magestät des Köonigs Albert von Sacksen. Herausgegeben von Dr. Adolf Bernhard Meyer, K.S. Hofrath und Director des K. Zoologischen Museums zu Dresden. (Dresden : Wilhelm Hoffmann, 1883.)

THE King of Saxony's Hunting Lodge of Moritzburg lies some three hours' journey north from Dresden; it is built on an island in a little lake embowered amid the Friedewald. It was built between the years 1542 and 1589, under the Electors Moritz (1541-1553), August (1553-1586), and Christian I. (1586-1591), after the plans of the first of these Electors, apparently by the arehitect Hans von Dehn-Rothfelser, and it has been enlarged and renovated from time to time chiefly under the Electors John George I. ($16 \mathrm{t} 1-1656$), and Jolin George IV. (16911694), and Augus: II. King of Poland (1694-1763). It contains some two hundred rooms and seven halls, in which latter are arranged the series of pictures relating tohunting, and a collection of horns of all sorts. For this latter the Castle may thank the celebrity which it has among all sporting characters and zoologists. The walls of the large Banqueting Hall, which is 20.25 m , long, 10.50 m . wide, and 11.60 m . in height, are adorned with a collection of seventy-one noble horns of deer, of which none are under four-and-twenty points; while in the Audience Hall is preserved a collection of forty-two more or less extraordinary or monstrous horns, amongst which is the celebrated pair with sixty-six points.

It was a happy thought of Dr. A. B. Meyer, the indefatigable Director of the Royal Zoological Museum at Dresden, to publish an illustrated catalogue of this collection, which, with the gracious approval and assistance of the present King Albert of Saxony, has assumed the form
of a splendid folio volume, with 30 plates, in which from I to 26 contain figures of all the remarkable horns from the Banqueting Hall, and from 27 to 29 represent some of the more interesting of the monstrous horns, while on Plate 30 we have a most extraordinary instance of a pair of horns-one of ten, the other of twelve, points - which had during life got inextricably interlocked with one another. The finest and most characteristic pairs of horns were selected for these photographs, which are by a new process most excellently reproduced on the plates. As a frontispiece to the text we have a photograph of a quaint sketch of the Castle.
About 1861, Dr. Meyer informs us, acting under the direction of Grand Marshall H. von Freisen, a catalogue of the seventy-one horns in the Banqueting Hall, with measurements in inches, was compiled, but unfortunately some of the identifications cannot be regarded as certain. It is strange that, in spite of the great care with which this collection of horns has been kept, there seems to be no record of when and whence the very ancient ones came to Moritzburg. Even the Archives of the place are nearly silent about them. Dr. Meyer has in this quite luxurious catalogue done what be could to rescue all that is known about the collection from oblivion, and he promises at some future time to give the history of the remaining two-thirds as a continuation of this work.

OUR BOOK SHELF

Guide to Methods of Insect Life, and Prevention and Remedy of Insect Raz'ag'e. By Eleanor A. Ormerod. Pp. 1-167,8vo. (London : Simpkin, Marshall, and Co., 1884.)

The text contains the substance of ten lectures delivered for the Institute of Agriculture. At p. 7 there is an italicised remark to the effect that "insects alway's begin life by being produced by a female." This may be regarded as an indication of the presumably ultra-ignorant class for whose benefit the lectures were prepared. But we prefer to think that far too low an estimate of the knowledge possessed by our agriculturists has been made, and doubt not that, by a majority of them, the remark will be taken as the reverse of complimentary. The book is exceedingly well got up, and in a very attractive style, and will no doubt become popular (on account of the multitude of illustrations. For the agriculturist purely, it seems to us that it goes either not far enough or too far ; it is too "showy" for practical purposes, and often, unwittingly, too abstrusc. The copious illustrations are mostly excellent, and many of them are original (among the very few very indifferent figures, that of the "Beeparasite" may be cited). But the necessity for many of the figures in a book apparently intended for the agricultural class may be doubted, and some have evidently been introduced for effect. That American bogey (or "fraud") the "Colorado Beetle," is honoured by the reproduction of his portrait, and the Phylloxera is dismissed with only dishonourable mention. The general information is sound, but occasionally vague, as in the definitions of the terms "larva" and "pupa," and in the apparent assumption that respiration is exclusively effected by the external air being conveyed to the trachex by means of spiracles. The "Glossary" will no doubt be found very useful to the majority of the readers of the book, but some terms (e.g. "Telum") appear wonderfully abstruse, as used in a work in which it was necessary to explain that "insects always begin life by bcing produced by a female."

LETTERS TO THE EDITOR

[The Ediler does wos hold himself responsible for opinions expressad by his corresfondents. Neither can he undertake to return, or to correspund with the weriters of, rejected mannescriphs. No notice is taken of amonymous communications.
[The Editor wrgently raquests correspondents to kapp thair letters as short as possible. The pressure on his space is so great that it is impossible oflerwise to insure the appearance envw of communications containing intcresting and novel facts.]

The Remarkable Sunsets

On Friday, the IIth inst, the weather was very remarkable ; it recalled to our minds, though on a smaller scale, the storm of December 12, 1883. In the afternoon, about three o'clock, the wind arove with violence, and great squalls alternated with rels. tive calms. The movements of the clouds were also very curioas Layers of air of different elevation floated in various direetions, and the lower very low-hanging clouds which moved at the same level had, at different points of the sky, an unequal and changing rapidity. The wind beneath was, at 6 p.m., west south-west ; the lower clouds came from the west, the more elevated, on the contrary, from the north-north-west, so there is no doube that whirlwinds blew that day in the upper air. The sun had set with a very fine after-glow, and in the ensuing night and morning there fell, now and then, showers of rain occasionally accompanied by snow and hail. Besides, the night before a magnificent halo had been observed around the moona, so

Fig. 1.-Sediment and residue of an evaporated drop of rain, fallea January 83, 1884 , on a window-pane. a a a, particles of the ash: $\$ 8$. drops of hygroscopic matter: ec cc, crystals of conamon sall; and andessous mineral; ddd, drops with sale crystals.
that the presence of ice crystals on January 11, in the higher regions of the atmosphere, is certain. In consequence of the low temperature, the air in those regions must have had a gres: density, and so, apparently, there must bave been a great chanoc that the whirlwinds on Friday had moved the heavy, cold air from above downwards.

That this was really the case seems to proceed from the fact that during the night of January 11 and 12 the rain had brought down on my windows the same sediment as that of December 12, though in smaller quantity. The identity of this sediment with the ashes of Krakatoa will now be beyond doubt to any one who has read the numerous communications in Nature on the remarkable sunsets. Why I wish to refer to this affair onee more is that at the microscopic examination of the dust of January 12 I found in it a relatively great quantity of complete individas crystals, partly soluble, partly insoluble, in water, which had remained unobserved by me in December.
After having scraped the dust off the window-panes and put it on the slide in a drop of oil, I made a drawing of the erystals
thy means of the camera lucida, magnifying them 400 times, as represented in Fig. 2.

The crystals, as seen in Fig. $2 a$, evidently exist in common salt ; this follows from their solubility in water, their crystalline form, and their reaction in the flame. They are found in so great a number in the residuum of every drop of rain that we some to the conclusion that these little crystals must be found as such in those regions of the atmosphere where the dust is floating, the air containing there hardly anything else but ice, and surely little liquid water.

In Fig. 26 we seq the crystals insoluble in water. They are uncoloured and perfectly transparent, and may be considered to be the crystalline form of the ande-itous mineral of which the ashes consist for the greater part.

The residuum of the evaporated rain-drop of January 12 showed itself abont in the manner seen in Fig. I. If the window-pane is used as a slide and the du.t examined direetly with the microscope, one will find there a great number of little drops (6 b, Fig. 1), in mot of which a very fine sediment is seen of the constituents of the ashes ; in a few drops, however, there are to be found crystals of common salt (d d) ; fnrther, many loose erystals spread over the whole space (cc). Probably

Fig. $2(\times 400)$-Crystalline matter in the residue of Fig. r. A, crystals of common salt; B, crystals of the andesilous mineral, insoluble in water.
the little drops are due to the presence of some hygroscopic matter such as MgCl_{2} or CaCl_{3} aronnd some salt crystals. I specially at the lower end of the whole drop assemble the larger, glassy, black and brown jarticles of the ashes,

The above proves that during the last few weeks crystals of a particular nature were floating in the air, and will perhaps explain the appearance of mock suns described by some of the observers of the after-glow.

In a fample of original asbes from Krakatoa, when examined in oil, I only found very few salt crystals, and the completely outgrown andesit ns crystals not at all. I aw, however, convinced that with longer research 1 should have found the latter, and otherk seem to have discovered them indeed, bat they are without doubt very rare. So it scems to me that it may be taken for granted that in the atmospheric dust the proportionate number of completely formed crystals is larger than in the natural ashes, and the presence of so wuch common salt in the npper air during these days is surely a remarkable fact.

Wageningen, January 14 M. W. Beyerinck

The atmospheric appearances frequently seen dnring the last few months, principally at sunrise and sunset, from the similarity of some of the manifestations to auroral appearance, have led some persons to susject connection of the phenomena with magnetism.

Hitherto auroral exhibitions have, at Greenwich, been invariably accompanied by considerable magnetic disturbance, and the abseuce of such disturbance on days on which the recent remarkable atmospheric phenomena have teen seen at Greenwich seems conclusive as to the question of direct connection with magnetism. The Astronomer-Royal has therefore thought that a brief statement of the circumstances in this respect might be of interest to your readers. It appears that, either at sunrise or sunvel, unusual atmospheric appearances were seen at Greenwich on November $8,9,13,25,26,27,28,29$, December $1,2,4,5$, 6, 7, 11, 17, and January 12 last. Of these day, on November 13 and January 12 the magnets were quiet, and on November 8, 9, 25, 26, 29, December 4, 5, 6, 7, and 17 very quiet; on Novem her 27, 28, Decenber 1, 2, and 11, there was a little motion. The whole perind was quiet generally as regards mag. netic aetivity; only at one time during the period from November 8 to January 12 was there any noteworthy disturbance, which occurred on the days from November 19 to 22, and ia no case wav it in any degree remarkable.

William Ellis
Royal Uhservatory, Greenwich, January 26

ON p. 157 of your current volame yon ask yoar "readers in all parts of the world " to communicate facts relative to the singular sunsets which have been seen.

Until seeing yonr request I had made no note of dates, but as far as I can trust my memory the "after-glow" was noticed here early in September, 1883. On one night it lasted about two bours afier sunset. The phenomenon of "Contrast-Farben" inentioned by von Helmholtz in Nature, December 6, 1883, p. 130, 1 have noticed most markedly on two occasions-once in October, and again on December 28 or 29, 1883. During this year the sunsets on January $5,9,12$, and 13, have been accom panied by the "after glow."

About 120^{\prime} clock on the $13^{\text {'h }}$ I saw a peculiar colour in the neighbourhood of the sun, which on closer inspection was seen to be in the form of an ellipse, the major axis being in the plane of the meridian. The length of this axis was about 50°. The sun was situated nearer the npper extremity of this axis, in breadth about 20°. The colour of this ellipse was a pale reddishviolet a-hen (if you can imagine sueh a combination). The sky at the time was a deep blue, except in the ellipse. I suppose the violet tinge was due to a combination of the red of what at evening forms the "after-glow" and the blue sky. There were a few clouds slowly moving from the west, and as one of these approached the suv, when within about 6 diameters of the sun, the edge nearer the sun becaze coloured a faint yellow; then followed , ale pink, dark pink, green, th-n again dark pink in bands ; as the cloud flouted cver the sun's disk one saw the bands of co'our continuous, forming a halu. The clouds were of a fleecy texture ; I believe they were "cirro-stratus," not, however, as open as what we call a "mackerel sky," and so tenuous that they did not appreciably diminish the sun's brilliancy. The sunset on this day (January 13) was followed by a most intense "after-glow," but of only short duration. The pink colour was at first in three broad rays, extending about 50° from the point at which the sun disappeared, the central ray almost vertical, one of the others on each side between the central ray and the horizon. Afier a short time the intermediate spaces became coloured red and thell the colour ceased.

The colour itself when most marked I can best describe as that of burning cyanogen gas, a deep peach blossom. I have noticed that the brilliant after-glows here have been preceded by a dazzling glow, ell ptical in shape, in the immediate neighbourhood of the sua, the outer edge of this ellipse being comparatively dull and marked, acd not having the same colour as the sky a little further removed. The eastern horizon I have also seen tinged pinkish before the colours make their appearance in the west, and so marked has this been that I have regarded it as a sign of the coming after-glow.
I may add that for the last ten days the ground has been covered with snow, and the temperature during the early part of last week quite low, from $15^{\circ}-20^{\circ} \mathrm{F}$. during the day. During the end of the week the temperature was about $32^{\circ} \mathrm{F}$.

I have written thus at length, hoping that there may be something of interest to you. Should you find anything it will give me pleasure; shonld you not, this will at least show you that some of your distant readers would lihe to aid you in paths which are not their own.
W. G. Brown

University of Virginia, U.S.A., January 15

THE brilliant morning and evening glows have not yet left us. In connection with a letter of one of your correspondents of December 20,1883 , it may be interesting to add that the year ${ }^{178} 3$, which was characterised by a fearful eruption of Skaptar Jokul in Iceland, and by remarkable sky-colour phenomena similar to those we bave lately had, was al o the year in which the last great eruption of Asama Yama in Japan took place (see Tramsartions of the Asiatic Soxicty of Japan, vol. vi. part ii. p. 327). Asama Yama is the greatest active volcano in Japan. In connection also with the unusual quantity of aqueous vapour with which the atmosphere bas been charged, as proved by the spectroscopic observations of Prof, Michie Smith and others, and the facility that dast particles give for the formation of clouds, and therefore also of snow, it may be interesting to note that the beginning of the present year bas been eharacterised by the greatest fall of snow that the oldest inhabitants here have known for thirty years. The minimum temperature reached this winter ($-28^{\circ} \mathrm{C}$. on the morning of December 23 in the neighbourbood of the college) is also the lowest for Kingston daning the same period. Prof. Goodwin is now engaged in anslysing the snow in order to find out whether similar impurities to those found in Europe and in Java are present.
D. II. Marshall

Queen's University, Kingston, Canada, January 13

Circular Rainbow seen from a Hill top

In the Philosophical Magasine for Jsnuary, 1884, p. 61, is an interesting article by Prof. Tyndall describing experiments made to produce circular rainbows by artificial light and artificial mist, his attention hsving been attracted to the subject by an obeervation made in the Alps on one occasion when the shadow of his body was projected at night time on to mist by a lamp hehind him, and was seen to be surrounded by a luminous circle, or halo of light. I was so fortunate as to see lately identically the same effect produced with remarkable beauty and completeness in broad daylight from the summit of a Welsh hill. Staying last week for a couple of days at Pen-y-Gwryd, near Snowdon, in company with a friend, we walked one morning up the GlydrVach. The rain was steadily descending as we left the little inn, and the thick mist swathed the hill-sides in obliterating folds. Just as we reached the summit at noon a slight breeze thinned away the mist in front of the san, and a burst of sunshine illuminated the hill-tops. Clambering on to the natural eairn which crowns the summit, we looked down into the valley, in which lies the small lake Llyn Idwal. Along the valley the wind drove masses of thin mist and scud, and on this we saw to our surprise the shadow of the summit with our own sharply-marked shadows projected on it. We uaved onr arms, and the mystic figures replied by waving theirs. Surrounding these immense shadowy figures we could see two concentric rainbows completely circular, the centre being the shadow of our heads. The colours of the inner rainbow were in the order of the primary bow, and the outer was a secondary and more faintly-tinted rainbow. During all this time the sun was shining brightly on our backs; when the wind eleared away the mist completely in the valley, the shadows and the rainbows vanished, but reappeared when fresh mas es of vapour were blown into the line of our shadows. A very rough attempt at determining the angle subtended by the diameter of the primary bow seemed to show that it was mnch less than 90°, in fact not probably above 20°. This interesting appearance lasted only for a few minutes, as the wind drove up fresh mist in front of the sun, and the rainbow-circled phantoms disappeared. It would be interesting to know if any of your readers bave ever observed a similar phenomenen. It has, I believe, been scen by balloonists when the altitude of the sun is great and a layer of mist and cloud lies beneath. Shadows thrown on mist are common; but this rainbow addition was new, not only to me, but to my friend, and his mountaineering experience has been very considerable.
J. A. Fleming

Unconscious Bias in Walking

Mr. Larden's letter in your issue of the 17th inst. (p. 262) regardilly "circling to the left in a mist," and the replies of Mes.rs. (G. H. Darwin and Hawksley, have opened an interesting question, and one which seems to be but imperfectly understood. The true explsnation of this vexed question has for some years appeared to me to be that to which it is attributed b; Mr. Hawksley, namely, inequality in the length of the legs. A
few yenrs ago I made some investigations on the length of the lower liubs in man, the results of which were published in the Tournal of inalomy and Physiology, vol. xiii. p. 502 (1879). I found that of seventy well-authenticated skeletons which I examined, the lower limbs were equal in length in only seven instances, or in 10 per cent.; in twenty five instances, or $35^{.8}$ per cent., the right limb was longer than the left, while in thirtyeight instances, or 54.3 per cent., the left limb was longer than the right. The left leg I found not only to be more frequently longer than the right, but the difference in length between the two limbs is greater on an average when the left is the longer. Inequality in length is not confined to any particular age, sex, or race, but seems to be universal in all respects. My observations corroborated those of several American surgeons made on the living subject. The result of one limb being longer than the other will naturally be that a person will unconsciously take a longer step with the longer limb, and consequently will circle to the right or to the left aceording as the left or right leg is the longer, unless the tendency to deviation is corrected by the eye. The feft leg being mare frequently the longer, circling should, if this theory of its being due to inequality of the limbs be correct, take place more frequently to the right than to the left. This is precisely what we find to obtain, and in this reipect Messes. Larden, Darwin, and Hawhs'ey's observalions agree with some I made my elf on this question. The diameter of the circle formed by thase circling to the right should, if my observations on the skeletons be correct, be less than that made by those circling to the left, since the difference in length between the two limis is greater when the left is the longer.

To determine the comparative lengths of the right and left arms I made observations on fifty skeletons (the first fifty of those measured to estimate the length of the lower limbs), the results of which 1 hope to publish soon. In thirty-siv of these skeletons, or in 72 per cent, the right arm is longer than the left; in twelve, or in 24 per cent., the left arm is the longer; and in two, or 4 per cent., the arms are of equal length.

On com paring these measurements of arm and leg int the fifty skeletons the right arm and left leg are longer than the left arm nad right leg in twenty-three instances, or in 46 per cent. ; the left arm and right log are the longer in six instances, or 12 per cent. ; the right arm and right log are longer than those of the left side of the body in thirteen instances, or 26 per cent. ; the latter are the longer in four instances, or 8 per cent. ; while in the remaining four skeletons the legs are of equal length but the right arm is longer than the left in two instances, and the arms are equal in two cases, but the left leg is the longer in one of those and the right in the other.

Asymmetry of beth upper and lower limhs, then, is the rule, and $n o t$ the exception, as might naturally be supposed. Not knowing the hitories of the persons whose skeletons I measured, I am unable to throw any light as to the connection between the proportions of the limbs and right- and leffhandedness.

The particular causes of inequality in the length of the bones of the right and left sides of the body will probably always be more or less a matter of theory. The general cause is, as Mr. Hawkskey states, owing to more rapid growth of the one limb than the other. 1 do not think in the majority of instances it can be attributed to "illnesses to which we are subject in early life," as he surmies. Asymmetry is almost invariably found throughout the whole skeleton, for example it is extremely rare to find a skull the two sides of which are absolutely symmetrical. In the limbs it is perhaps more eavily attributable to the blood-supply being greater to one bone than to another. The nervous sy-tem may also bave to be taken into account as a cause.
J. G. Garson

Royal College of Surgeons, London, January 26

I AM left-handed and left-footed; that is, if there is anything to do that requires strength or skill, the left hand is always used; in football-playing, or anything requiring the use of the foot, the left foot gets the work to do.

I remember being onee lost in the woods in America whulat trying to make a short cut home, avd, after walking a good many miles, came upon my own snow-shoe track on its left sile; thus my bias had been from right to left.

In a bitter cold day with thick snowdrift and a gale of wried on our "'left front," as a soldier would say, some men were os a fledge journey on the Arctic coast in 1847. It was important
t.) reach a certain point, and each of the party in turn (inciuding an Esquimaux) took the lead, but all failed to keep the correct course beyond a minute or two, sn that the constant stoppages necessary to consalt the compass were trying to the hands; in fact one of the native dogs, protected by a thick fur, fairly succumbed to the cold, and the poor thing bad to be abandoned to its fate.
We at last thought of placing an Esquimanx boy of about fourteen as leader, and he managed to keep a straight course with wonderful accuracy, although he walked crab-fashion, sideways, so as to protect his face from the bitter blast.
Is Mr. Larden's theory correct, namely, "that those in whom the left leg is strongest would circle to the right ?" I think not, because according to my idea it is the leg from which one stepr, and not the leg that takes the step or that is placed in advance that imparts the impetus; so that a strong left leg would cause the step with the right foot to be longest, and the person would circle to the left.

4, Addison Gardens, January 26

With reference to the letters by Messrs, Darwin and Hawksley in the current number of Nature (p. 286), I may say that I am very strongly "left-legged " (also strongly right-handed), but so far as I am aware there is not the , lightest difference in the lensths of the two limbs. I became aware of the peculiarity when a child, by noticing that on a slide the other boys used to go right foot first, and I left foot. Subsequent attempts to break myself of the habit only resnlted in my coming ignominiou-ly to grief, and if I tried now to leap a ditch right foot first I would tumble headlong into it instead of clearing it. The next time 1 find occasion to kick 1 will try to remember which foot was used. It is right to state, however, that in my case I think there has probably existed from infancy a very slight natural weakne:s of the right ankle. Attempts with me to walk a straight line with the eyes shut seem invariably to result in my swerving to the left, which appears to be contrary to Mr. I aruin's experience.

Lewisbam, January 25
R. Mclachlan

Might ant the longer step taken by one leg be explained as follows:-

Most people when standing at ease habitually throw their weight on one leg ; but, whichever it be, its movement is more likely to disturb the balance of the body. It would therefore be more quickly replaced on the ground, and a shorter step would result.

The unequal steps would not necessarily effect a circular course, as may be easily shown by experiment. A divergence, say, to the right would be caused by the left leg swinging in its step towards the right, and such would be its natural movement if the body inclined to the right. Now a person who constantly stands more on the right leg than the left would bave that inclination in his walk, in spite of the alternate removal of the barden from each leg. Thi tendency to lean towards the right would be still further c couraged by the ancestral or individual ase of the walking-stick in the right hand.

The suggestion of Mr. G. H. Darwin (January 24, p. 286) that the mounting a horse on the left side may be accountelf for by the sword is strengthened by the freedom of the sword-arm requiring that the left hand be used to grasp the reins, which is the fint act in mounting. There would be a momentary want of control over the horse if under these circumstances, it were mounted from the right side.
F. M. Campasle

Rose 1ill, Hoddesdon, January 28

In a letter to you about another subject Mr, G. H. Darwin suggested last week that the British rule of the rosd for riding was jastifed by the advantage of having yonr sword hand towards a stranger, but why then should the rule of the road in walking be, what I understand it to be, the revere of the rale in riding?

I would suggest that perhaps the rule in riding is adopted from the rule in driving, and that the la'ter results from the fact that a driver may be assumed to carry his whip in his right hand and therefore to sit to the right if there be two on the driving seat, and that when he is so seated he can see better how he is passing another vehicle if our rule is adopterl.

This, like Mr. Darwin's suggestion, would leave us without xplanation why most nations have adopted a rule the reverse fours.

It would perhaps be hardly scientific to say it is because Englishmen are always right and foreigners always wrong, nor would it be much more so to say that it is because English drivers like to make a close shave and foreigners as a rule give an obstacle a wide berth, for the latter fact, if it be an observed fact, may be the effect, not the cau $\mathrm{c}_{\text {}}$ of the rule of the road. Can it be that the foreign rule was adopted where it was custorary for the driver to sit alone on his seat and could therefore see equally well on both sider, and at the same time wished to have freedom to use his whip.

Stephen A. Marshall

Diffusion of Scientific Memoirs

When, in reviewing Prof. Stokes' Reprint, 1 spoke of "the almost inaccessible volumes of the Cambridge Philosophical Transactions," I was referring expressly to the 7 ransactions only, and to the period $1845-54$. That there are wote 120 "centres" in which " 7 ramsactions or Procadings, or both" are accessible, is an interesting and important fact, but wholly beside the question raised by my remark. [I leave out of account copies sent to Honorary Fellows ; for these are not more accessible than those obtained by Ordinary Fellows.)

The question at i-sue between the Secretary of the Society and myself is:-What was the state of matters in 1854 ? Mr. Glarebrook gives me data for the present time, and for 1869 , only. From these it is not posible to obtain wore than an approximate answer to the question. But, in default of further data, I assume that (in accordance with the published statistics of similar Societies) the number of Hion. Fellows of the C.P.S. has not changed since 1854 ; and that the increase of "centres" from 1854 to 1869 was nearly the same as from 1869 to the present lime. It follows from Mr. Glazebrook's data that the number of "centres" in 1854 must have been about 40 only.

But I referred to Transactions alone, not to "Transactions or Proccedings, or both." To obtain a rough idea of the correction to be made on this account, I take the numbers for the Royal Socicty of Edinhorgh (with which I am best acquainted, and which are at lea-t as large as those for the Rojal Society). In Mr. Glazebrook's form of statement, these numbers are at present

$$
\begin{array}{llllllr}
\text { Hon. Fellows ... } & \ldots & \ldots & . . & . . & \text {... } & . . \\
\text { Total number distributed } & \text {... } & \text {... } & \text {... } & \text {... } & 343
\end{array}
$$

Deduct the first number, and there remains 287 . But of the:e "centres" 96 (one-third, say) receive Procodings only.

Hence it would appear that, in 1854 and previous years, to which alone 1 referred, the Cambridge Philosophical Transar. tions were to be found at some 27 "centres" only; say 10 at home and 17 abroad. Surely this would much more than justify the term "almost inaccessible" !

I cannot recollect having made any application for the C.P.S.'s publications, though I have ofien asked Cambridge friends why I did not get them regularly. But, according toMr. Glozebrook's view, I should either have received all ${ }_{4}$ or mone.

The state of matters, in the three Edinburgh "centres " to which Mr. Glazebrook alludes, is at present as follows :-

All three "centres' "bave the Transactions complete; except the University Library, which wants vol. xiii. parts 1 and 2.

The Advocates' Library has not the Proceedings; the Royal Society wants vols, i, and ii ., all but a few pages ; and the University Library wants vol. iv. parts $1,2,3,4,5$. Thus one "centre" has no Procedings, another has almost half, and the third three-fourths,

1 must, in conclinding, repeat my hope that Nature may do a new and great service to science by collecting full statistics as to the "centres" at which the publications of the various scientific Societies are acce-sible.

College, Edinburgh، January 26
P. G. TAit

Water in Australia

Referring to my letters in Nature of May 12, 188 t , and March 30, 1882, on the underground water supply of Australia, it is interesting to observe that the search for it is being actively carried on by some energetic coloni ts, and that their efforts are succesful. The following extract from The Quecnslander of May 26, 1883 , shows what can be done:-
"The subterranean waterflow now proved to exist beneath the vast arid plains of the west has been tapped at get another
point, and the discovery of another invaluable spring of fresh water is the result. Recently we have had many discoveries to record, all tending to encourage the seareh for underground water, on the supply of which the pastoral industry of this district so much depends; but none has been of more value to the discoverers or has tended more to encourage others to persevere in spite of difficulties. This latest discovery was made last week in the conntry known as the Pack-Saddle, forming the western portion of Messrs. Donelly and Co,'s Gnalta run. The well was started in the summer of 1881, but had to be abandoned some time after for want of water for the use of the men, and Mr. Donelly was urged to ehoose another site. He peristed, bowever, in continuing the original work as soon as surface water was available, and he has now come upon a practically inexhaustible spring. The flow was cut at 272 feet in a properly slabbed 6 feet $\times 3$ feet shaft, and during the night following the water rose 172 feet, or within 100 feet of the surface. The discovery is worth every penny of 10,000 ., as it renders immediately available a large tract of good country hitherto dry and therefore comparatively useless. There is another fine well on Gnalta, from which 30,000 sheep bave been watered in the dry season, and that discovered last week promises to be as good, if not better."

In my first letter I pointed out as one evidence of the undergroand water the growth of huge gum trees where there was no visible supply. In a recent number of the Scientific American it is stated that, on clearing out a well, the owner was surprised to find the bottom covered with a dense mass of fine, fibrous roots, which were traced to a Fincalyptus growing at a distance of fifty yards. The large Eucalypti are trees of remarkably rapid growth, which implies the absorption of large quantities of water. My what subtle sense did that root find out where water could be had, and travel oo far to get it? Darwin has shown that there is some kind of irritability in the growing points of plants, and that it is sometimes communicable to distant parts. We shall probably come in time to admit that there is a nervous current in plant', though without visible nerves; and that this rudimentary system of sensation is accompanied by rudimentary desires, and even by rudimentary ideas, which guide the growing points in their search for the desired oljects.

Birstal Hill, Leicester, January 20

Deafness in White Cats

THIs subject has been of much interest to me, and otologists as well as evolutionists must feel indebted to your contributor in Nature of December 13. Mr. Iawson Tait, for his efforts to determine the cause. May 1 be permitted, however, from an otologist's point of view, to draw attention to a possible source of error in conducting researches of this kind when deductions are made, as they were in this instance, from acoustic experiments mainly? I allude to Mr. Tain's method of determining the hearing power of the animal experimented on, uamely, his cat, "Old Pudge," and the conclu-ions that he has drawn from the results obtained; thus he infers that purely "tympanie" deafness, consisting in an emire failure of the transmitting mechanism of the middle ear to respond to acrial undulations of sound, existed in the case of "Old Pudge," brcause the concussion produced by stamping on the floor could be heard by that animal, whilst the voice was not heard. Abnormal hearing of this kind, I am convinced, by no means establishes the fact that inuer ear trouble does not exist, since such deaf-mutes as are believed to be defective in this regard are very sensitive to grave or deep tones-thunder, for example, being painful even to them. Pudge's cochlear (inner ear) functions were believed to be serviceable, inasmuch as he could use his voice; but such evidence cannot be accepted as conclusive, for absolutely deaf persous, who have been dejrived of both "tympanic" and "cochlear" functions, are yet capable of making noi-es, and often of learning to speak after a fashion. Another point is also of interest in this connectiou : the ears of Pudge, it is said, were found to be normal in every respect, both as to their tran-miting and perceptive functions, with the exception of the absence of a triangular gap from cither tympanic membrane. In reference to this it may be said, in the first place, that it is difficult to understand how the delicate mucoas membrane lining the tympanum retained its "normal" condition under such exposare; and, in the second place, these defects could scarcely be the cause of absolute deafness, since it is a well-known fact that quite good
hearing often remains in the human subject where, from disease, much greater loss in the tympanic msmbrane has bsen sustained than was found to exist in the hearing organs of Pudge. Altogether it seems probable that in certain white cats great congenital deafness may exist, and that the animal, on finding aërial transmission of sound to be imperfect, comes finally, like man under similar circumstances, to disregard its use entirely, and place its reliance solely on sound that can be felt, as it were. Moreover, is it not probable also that the trouble, in some degree at lea-t, may lie in the perceptive centre of the brain? It is a significant fact that in Pudge at least some disease of the nervous centres existed, since he was the subject of epileptic convulsions.

Samuel Sexton
12, West Thirty-fifth Street, New York, January 3

FURTHEK DISCOVERIES IN THE FLORA OF A^CIENT EGYPT ${ }^{1}$

SINCE my last communication on the Flora of Ancient Egypt (Nature, vol, xxviii. p. 109) I have made some interesting new botanical discoveries in connection with the mummies of the twenty-first dynasty, found at Deir-el-Bahari in July, 1881, which I will now describe in some detail; the objects having been forwarded to the Museum of the Royal Gardens, Kew.

In the coffin of the Princess Nzi-Khonsu of the twentyfirst dynasty there was a large number of well-preserved wreaths, in which 1 found three species of plants of the ancient flora not previously authenticated by specimens. Besides wreaths of the leaves of Mimusops Schimper and the petals of Nymphaa carvulea, already described from examples found on the mummy of Ramses II., there were on the mummy of the Princess Nzi-Khonsu, daughter of Tontonthuti, numerous floral wreaths composed as follows: (1) folded leaves of a willow (Salix safsaf) strung on threads of the leaves of the date palm, and serving as clasps; (2) perfect flowers of the corn poppy (Papaver rharas) ; (3) complete flower-heads of a corn flower (Centcurrea dipressa); and (4) complete flower-heads of a composite (Picris coromopifolia).

The flowers of Papaver rhazas equal in size those of the small form one has an opportunity of seeing in such abundance in the Mediterranean region in the spring months as a weed in cornfields, by roadsides, and on walls. In order to prevent the petals from falling, the flowers were picked in an unopened condition; and in drying in the vault the petals had shrivelled and shrunk up into a ball, to which circumstance is due the fact that in examining the moistened flowers all the inner parts appear before the eyes in a wonderful state of perfection. Not a stamen, not an anther is wanting ; nay, one might almost say that not even a pollen-grain is missing. Rarely are such perfect and well-preserved specimens of this fragile flower met with in herbaria. The colour, too, of the petals is maintained in a high degrce, as in dried specimens of the present day. It is a dark brown-red, that leaves a deep stain on the paper where the flowers have been soaked. The very caducous sepals were wanting in the flowers examined; but all the peduncles were thickly beset with the cbaracteristic, horizontally-spreading, bristly hairs. The petals are destitute of the dark spot on the claw which is common to many varieties of the species. The naked ovary is shortly obovate in shape, or, in some of the very young flowers, cylindrical, though never so much elongated that one could doubt its belong. ing to the genuine variety described by Boissier in his "Flora Orientalis." The stigmatic disk is obtusely and broadly conical ; and the rays vary in number from eight to ten. The edge of the stigmatic disk is bordered with orbiculate, auriculate, white appendages incumbent upon it. The anthers are oblong, twice as long as broad, and
${ }^{1}$ This article was sent by the author, Dr. G. Schweinfurth, to Sir Joseph Hojker, logether with the botanical objects described therein. The orifinal is in German, and the aranslation here given is as nearly literal as possible. W. Botting Hemslev.
the filaments subulate. The smallness of the flowers ($2 \frac{1}{2} \mathrm{~cm}$. in diameter), the broad petals, the red colour, the bristly peduncles, the 8 -10 stigmatic rays, the oblong oval anthers, the subulate filaments, \&c., point conclusively to the determination of the plant as Papazer rhacas, var. genuina.

At the present time this species is found nowhere in Upper Egypt, and also appears to be absent from the whole Nile Valley, while it is met with in abundance near Alexandria and on the Mediterranean coast as a weed in cornfields.

The flower-heads of Centaurea depressa, the involucral part of which is 15 to 17 cm . in diameter, belong to a form that is now met with in Persia and Afghanistan; whereas in many countries-Greece, for instance-only small-headed varieties seem to occur. The peduncle served, as in the poppy flowers, to fix the heads in the garlands, which was not always the case in the ancient foral wreaths. ${ }^{1}$ Two or three of the leaves are still left on many of the specimens. They are narrow-linear, almost sessile, and exhibit, besides the arachnoid-canescent pubescence characteristic of the species, the peculiar prickle-like tip, which is several millinetres long, and serves to distinguish C. depressa from its only allies C. cyanus and C. cyanoides. From most of the leaves, however, this brittle appendage has fallen, in consequence of repeated handling of the wreaths. Close under the base of the flower-heads appear some linear bracts, sha ped like the upper leaves of the stem. In the ancient specimens these bracts were present in unequal numbers, from two to seven, and ofien wanting altogether. They do not overtop the whole involucre. This character was rather against the correctness of the identification, for such bracts are not usually present below the heads of C. dcpressa, though they are in C. cyanoides, which differs very much in having pappusless achenes. But I have seen a recent specimen (Afghanistan, Griffith, 3294) having one or two leafy bracts at the base of each head. In the recent forms of Centaurea depressa, the lanceolate teeth of the membranous margin of the involucral bracts are sometimes colourless, sometimes brown at the base. In the flower-heads of the twenty-first dynasty these teeth are deep brown in the middle, with a white margin and a white tip, and they are here, as the specific character requires, a little shorter than the breadth of the bract. The three or five teeth at the tips of the bracts are grown together about half their length. On the lowermost bracts of the involucre the teeth are quite decurrent and colourless; on the upper they are more limited in number-from eleven to fifteenand only towards the tip. In consequence of the incautious handling of the wreaths when the coffin was opened, the beautiful ray flowers, which in this species are exceptionally large, are mostly fallen away. In many heads, however, they are still attached, and exhibit a dark violet colour, similar to recently-dried specimens. The lobes of the limb of the corolla are broad, almost ovate and acuminate. Very well-developed achenes occur in the ancient flower-heads, affording indubitable evidence of the corrcctness of the determination of the species. The achene is light in colour, shining, slightly laterally compressed, and oblong-ovoid in shape. The areole incloses half the length of the achene, and at the base there are a few small hairs, as in recent specimens from Schiraz (Kotschy, 302), Afghanistan (Griffith, 3294), and from Sber (C. Koch), while others from Asia Minor are quite naked.: The intermediate bristles of the pappus are one-fourth longer than the achene, the inner ones half as long. The long prickly tips of the upper leaves, the large, broadly-lobed ray-flowers, and the achene bearing a pappus exceeding it in length, prove that the

[^32]flower-heads of the mummy-wreaths belong to Centaurea depressa. This species is wanting in the present flora of Egypt as well as in that of the contiguous countries. It now occurs as a cornfield weed in all parts of Asia Minor, Armenia, Persia, Afghanistan, Beluchistan, and West Thibet ; and Prof. Heldreich found it around Tripolitza, in Arcadia, and in the Attic Plain, near Hergellon. In the last-named country the species flowers in April. There are no localities for this plant in Syria and Palestine to my knowledge. Specimens of this Centaurea from ancient Egyptian wreaths are preserved in the muscum at Leyden. ${ }^{1}$ It is not stated, however, from what epoch they date.

Many of the wreaths of the mummy of Nzi-Khonsu consist entirely of willow leaves and the flower-heads of Picris coronopifolia, Asch. ${ }^{2}$ The numerous features in the parts of the flower-heads which characterise this species are easily seen in the ancient specimens, and not a single peculiarity is apparent by which it might be distinguished from the recent small form with low-spreading branches, now so common on the outskirts of the desert.
The indumentum of the involucral bracts is particularly well preserved. The bracts theinselves are long lanceolate with an undulated membranous naked edge, and taper off into a long point; while on the outside along the midrib they are furnished with one to three rows of spreading bristles, glochidiate at the tip, and between these a white aracbnoid felt-the same kind of tomentum clothing the peduncles. The achenes of the ray are smooth and cylindrical, more or less curved, as thick at the tip as in the middle, and crowned with a pappus of short persistent bristles cobering about balf their length. The achenes of the disk are broadly club-shaped, somewhat constricted at the tip, and provided between the ten angles with two rows of small round tubercles. The pappus consists of bristles plumose at the tips and is deciduous, and exceeds the achene in length five times.
Tbe dissimilarity of the inner and outer achenes of the ancient Egyptian Picris at once shows that it belongs to the section Spizzelia, Schultz Bip. The smallness of the flower-heads and the nature of the indumentum prove that it belonged to the small desert form, still common about Thebes, and not to the large-headed, otherwise hairy, varieties (Picris lyrata and P. pilosa), only found in the neighbourhood of Alexandria, and on the coast of the Mediterranean Sea. The ultimate inflexion of the involucral bracts over the ripening achenes ("phyllis demum carinatis, incurvis") is perceptible in many of the flower-heads from the an:ient wreaths.

Picris coromopifolia belongs to that set of desert plants which are usually only found on the border of the desert as far as the waters of the Nile reach by infiltration. It is not met with in the valleys and channels of the lower desert strips any more than among the weeds which follow cultivation in the black earth of the Nile alluvium. It gencrally grows associated with Crepis senecioides, Leonfodon hisphidulum, Picris sulphurca, Lolus pusillus, \&c., which likewise belong to the flora characteristic of the borders of the desert. The flowering time of these plants in Middle Egypt is March and April. In February they only begin to develop, and it may be assumed that the flora of Tbebes is from two to four weeks in advance of that of the neighbourhood of Cairo. From the occurrence of the flowers of Picris coronopifolia in the wreaths of the mummy of Nzi-Chonsu we may conjecture that the solemn rites of placing this princess in the vault took place in March or April. The assumption that it took place in February or May would be doubtful, and it is very

[^33]unlikely to have happened in any other months of the year. At Thebes the floral carpet is quite dried up and destroyed as early as April, and in the district of Cairo in May, so that there would have been great difficulties attending the collection in one day towards the end of April of the large number of flower-heads requisite for the preparation of the wreaths of Nzi-Chonsu. And as far as the other flowers of these wreaths are concerned February to March are the only ad nissible months. This applies espesially to the flowers of the poppy, which even in Alexandria disappear towards the end of April.

If we are able, from our knowledge of the sea son; of the present Egyptian vegetation, to limit the iaterment of a mummy to a short series of months, it follows therefrom the fact, that in the case of the date of the funeral rites attending the placing of a mummy in the final tomb being originally indicated in the inscription on the coffin or elsewhere, light might be thrown on the theoretical determination of the relative Sothis (Sirius) periods. In chronological determinations, which, as far as concerns ancient Egypt, anterior to the time of the twenty sixth dynasty, are still open to grave suspicion, the aid thus possibly attainable is not to be despised. We know from the hieroglyphical writings, the temple inscriptions and ornamental pictures of the temple, that the ancient Egyptians had a great predilection for their gardens; and we learn from the narratives of their crusides in distant countries that they gave a prominent place to foreign vegetable productions, even in their triumphal prucessions. Amongst objects met with in the funeral repasts and in the offering ; in the tombs there are, moreover, so many product 4 of evident foreign origin, that we cannot be surprised at finding that miny of the flozers and leaves employed in the composition of the funeril wretths and garlinds could not have belonged to the native flora of the country, but must have been cultivated expressly for the purpose. This may, then, have been the case with Centsurea depressa, which, like Alcea ficifolia and Delphinium orientale, suzgests Western Asia, and especially the countries of the Upper Euphrates. As far as Papaver rheas is concerned, it may also b: assumed thit it was cultivated by the ancient Egyptians on account of its brilliantly coloured flowers, although this does not exclude the possibility, independently of any necessity for a change in the climat: to have taken place in the interval, that the common poppy was not such an extraordinary rarity in the cornfields o? that period as it is at the preient time.

Among the mummies of the twenty-first dynasty discovered at Deir-el-Bshari, there may lie hidden a number of plant remains still unknown to nue; as a careful search throug't the coffins, especially as far as those mummies are concerned which are still preierved with their wrappers intact, was for many reasons necessarily postponed. The garlands, particularly, in those coffins, composed as they are of various leaves and flowers, may be expected to furaish many novelties to the ancient flora of Egypt. Among a few fragments of the wreaths of Mimuso ps leaves and Nymphera petals that have reached the Natural History Museum of Milan there accidentally appeared a detached corolla of a Jasmine, which may belong to Jasminum sambac, a species still commonly cultivated in Egyptian gardens. The Eyyptian Museun in the Cairo suburb of Boulak contains in addition a number of plant remains of authenticated species taken from earlier exploration; of tombs that would go :o enrich the flora of ancient Egypt.

In the spring of last year Dr. Maspero discovered in the well-known burying-place of Nofert Sekeru, near Sheykh Ablel Gurna, Thebes, an unopened vault of later date, in which was a well-preserved femve mummy of the Greco-Roman period. This mummy is swathed from head to foot in wreaths of the leaves of Mimusops, without any flowers. These leaves are larger (eight centi-
metres without the petiole), becauie fully grown, than those in the older garlands. The petioles are broken off short, and the whole construction of the wreaths is of a much ruder and more careless description. Specially interesting in this mummy is a wreath around the forehe id composed entirely of the leaves of Olea curopiza. These leaves are also folded and threaded edge to edge with the tips directed upwards; but the mode in which they are sewn together is different from the other wreaths, being done by a coarse string of a fibrous material as yet unknown. The Leyden Museum possesses similar funeral wreaths of olive leaves, ${ }^{1}$ and in the Berlin Museum there are some bundles composed of branchlets of the olive tree. Whether the "wreath of justification" mentioned in the obituary of Osiris was such a w eath of olive leaves, or whether under this designation the garlands of Mimusops and willow leaves which encircled the neck and breast of the mummies were intended has not get been ascertained.
Moreover, Theophrastus, Pliny, and Strabo authenticate the presence of the olive in Upper Egypt. According to Theophrastus (iv. 2, 9) the olive tree grew in the Theban province. According to Strabo (xvii. § 293) olive trees were only found in Fajum and ir the vicinity of Alexandria. Now the olive tree flourishes in Lower and Middle Egypt, and very old trees exist in Fajum and in the Oase3.

In a special glass case in the Egyptian museum at Boulak is a variety of objects which formed the funeral repasts and offerings in a vault at Dra Abu Negga (Thebes) of the twelfth dinasty (2200 to $2400 \mathrm{~B} . \mathrm{C}$.) Among them are the following vegetable products: grains of barley ${ }^{2}$ and wheat ; tubers of Cyperus esculentus; kernels of Mimusops Schimperi; fruits of Punica gravalum, Ficus Carica, Balanites agypliaca, Hyphane thedaica, Medenia argun; a water-jlask of Lagen mia vulgaris; two cones of Pinus Pinea; a mess of Lens esculenta; two see 's of Faba vulgaris, and one seed of Cajanus indicus; a broom made ot Ceruana pratensis ; a bowl full of capsules of Liuum humile intermixed with pods of Sinapis ariensis, var. Alliomii. Among the plants here cited the Linum deserves special consideration, for, notwithstanding our ample knowledge of its cultivation, thanks to the records of the early authors, botanists who have busied themselves with the investigation of the vegetable remains of ancient Egypt bave hitherto not been able to determine with certainty the species of Linuin cultivated.

Linum capsules of the twelfth dynasty exist in a very good state, together with the calyx and pedicel, the latter two centimetres long. They are all closed, alhough the seeds appear to have attained perfect maturity. The length of the capsules reaches 8 millimetres, and the breidth 6.7 millimetres; and the seeds are 5 mm . long. The dimensions given are very little inferior to those of the capsule of the Linum, cultivated in Egypt at the pre ent day. In external ciaracters it is so like the capsule of the flax now cultivated, that one detects no difference at first sight; and it is only after cutting the seed through that one becomes aware of the change wrought in the course of 4000 years. The proportionate size of the seed, which is much narrowed upwards, but above all the numerous long weak hairs which occur on the inside of the partitions of the capiule, leave no doubt as to the ancient flax belonging to the kind exclusively cultivated still in Egypt and Abyssinia, the Linum humile, Mill. (syn. Linum usitatissimum, Linn., var. crepitans, Schubl and Martens).

Another coincidence in the ancient and modern Linum

[^34]cultivation is the presence among the ancient capsules of numerous seed-vessels of a species of mustard which is still the commonest and most flourishing weed in every flax field in Egypt. The pods of mustard are almost spherical in shape with a long point, and are seated on pedicels a little less than half the length of the whole pod. Judging from the shape describe ${ }^{1}$, the pods must belong to one of the two varieties, common in Egspt, of Simapis arvensis, Linn., namely, S. Allionii, Jaç., and S_{i} turgida, Del., for the common form of this species is distinguished by elongated pods. As the two varieties named can only be distinguished from each other with certainty by the degree of cutting of the leaves, it would be difficult to decide to which of the two the pods of the twelfth dynasty belong were it not for the circumstance that as S. Allionii, Jacq. (characterised by the long-pointed muchdivided leaves), is the prevailing form at the present time in Middle Egypt, a probability offersitself that the ancient pods belong to this form. On the other hand Sinapis arvensis, Linn., var. /urgida, Linn., affects the winter cornfelds.
It may be assumed that this species of wild or colonised mustard answers to the Sinapis to which Pliny refers (hb. xix. 54 [8], as a plant commonly met with under such conditions, and of which he asserts that the Egyptian was the best for yirlding oil, and that the Athenians called it Napy, others Thapsi, and others again Saurion.
Lentils, as far as I know, have not hitherto been authenticated from the ancient graves. Pliny (lib. xviii. 31) mentions them as a product of Egypt, where two kinds of them were cultivated. The lentils of the twelfth dynasty appear in consequence of boiling and subsequent shrivelling to have lost a considerable part of their bulk. They are $3 \frac{1}{2} \mathrm{~mm}$. in diameter, while the recent ones average 4 .
From Ceruama pralensis, a characteristic composita of the banks of the Nile, which has hitherto only been found in Nubia and E.gypt, the ancients made those hard hand brooms, still met with in every part of Egypt, and used for sweeping out the houses and especially the privies; for which purposes they are offered for sale in all the markets. The Egyptian department of the British Museum contains a similar specimen.
Furthermore, the two pine cones (Pinus Pinea) noted belong to a species not previously known from the ancient Egyptian relics. Like Parmelia furfuracea and the juniper berries (\mathcal{H} uniperws phaniceus), they point to the commercial relations that existed between Egypt and Greece, Asia Minor and Syria. The pine cones which were found in a large basket filled with numerous kinds of fine liren thread, fruits of the Doum palm ard a small calabash of Lagenaria, are small and unripe, the scales clinging close together. It is evident that only such of these rare northern exotic fruits as were unsuitable for the table were put in the offerings.
Among objects not previously authenticated from ancient Egypt are the legumes Faba vulgaris and Cajanus indicus. Unger ${ }^{1}$ suggests that the broad bean (Faba) was probably not found in the tombs because it was regarded as unclean. ${ }^{2}$ The two seeds in question were found amongst dried grape-skins and matters of that kind. In shape and relative size they fully corresfond to the variety cultivated on a large scale in Egypt at the present day. They are smaller, rounder, and thicker than the European bruad bean. ${ }^{3}$, The dimensions of the ancient beans are $t 0,8$, and $6 \frac{1}{2} \mathrm{~mm}$.

Pliny (lib. xviii. 12 [30]) says of the broad bean that it was used in funeral solemnities; hence the priests ate none, \&c. Perhaps the presence of the broad bean in the offerings of the twelfth dynasty had a meaning similar to that which it had for the Romans.
${ }^{1}$ Sifawngalorichte der Aais. Ahatemic der Wirs., W'irn., asis, Rand xExix.
"Compare " Herodotus," Ii. p. 37 .
3 The aushor most likely alludes to the variety called "field" or "hosse. bean "* in this country.-W. B. H.

Among the funeral offerings of the ancient Egyptians often occur messes of a pap of roughly cut or coarsely ground grain of barley. They are in small earthen bowls, placed on the floor of the vault like the other ufferings. In Prof. Maspero's opinion these messes of barley, which are in no way suitable for human nourishment, answer to the Mola (Mola sa/sa) offerings of the Romans of earlier epochs; and I would hazard an explanation of the presence of the broad beans in the offerings of the twelfth dynasty as an example of a possible analogy between ancient Rome and ancient Egypt. For, supposing the correctness of Herodotus's account that the ancient Egyptians regarded the broad bean as unclean, that they ate it in no shape or form, and that their priests could not bear the sight of it, some explanation for its presence must be found. The single seed of Cajanus indicus found with the broad beans in no way differs from the Upper Egyptian variety with yellow flowers. The plant, which is cultivated and wild all over India, as well as in all parts of tropical Africa, is nowhere cultivated in Egypt, though it occurs here and there in a wild state in Upper Egypt. It is certainly one of the oldest cultivated plants in the world, a fact further attested by its discovery in the ancient tombs.
G. SChWEINFURTH

ME TAMORPHISM AMONG DEVONIAN ROCKS

THE tract of Devonian rocks which stretches through the north of France and Belgium, and across Rhenish Prussia into Westphalia and Nassau, has furnished ample materials for geological disquisition. Among the problems which it presents to the observer, not the least important is the remarkable metamorphism of certain bands or areas of its component strata. Dumont first called atterition to this feature in the Belgian Ardennes. It was subsequently shown by Lossen to be extensively ${ }^{\text {² }}$ developed in the Taunus. More recently the question has been attacked anew with all the appliances of modern petrography. M. Renard has subjected some of Dumont's original localities to a critical revision, which has resulted in a confirmation of the accuracy of that remarkable geologist's observations. The latest contribution to the literature of the subject is a paper (Annalis Soc. Geol. du Noid, vol. x. p. 194) by Prof. Gosselet, who at first refused to admit the metamorphism contended for by Dumont and corroborated by M. Renard, but who now comes forward with independent evidence in its support, from another locality. He describes the arkose of Haybes and of Franc-Bois de Villerzies on the frontier of Belgium as having undergone such a metamorphism as to be no longer recognisable. M. Barrois reports that on examining microscopically some sections of the altered rocks, he found among them bi-pyramidal crystals of quartz with liquid inclusions and movable bubbles, as in the quartz of pegmatite. These crystals have been broken in sifu, with conctoid: 1 fractures, and the surrounding paste appears as if injected into them. This paste is composed of small irreçular quartz-grains like those of schists, and is co'oured by fibrous chlorite, so arranged is to impart a more or less schist-like structure. The chlorite, arising from alteration of biotite, is predominant in some specimens, while the quariz-grains preponderate in others. M. Barrois compares this altered arko:e with some porphyroids and some granitic veins in Brittany recently studied by him. Prof. Gosselet shows that these crystalline intercalations are portions of the true Devonian strata, and he accounts for their highly altered condition by what he terms a metamorphism by friction. A portion of the Devonian rocks has slipped down between two faults and has undergone great lateral pressure, ar.d has in consequence been heated sufficiently that metamor hisin has been determined in it. The extent of change has been proportionate to the degree of pressure. The metamor-
phosed arkose is provisionally referred to the Gedinnian division of the system.
M. Renard is understood to be at work upon a detailed memoir on the metamorphosed rocks of the Ardennes, in which their chemical constitution and microscopic characters will be fully described.

THE RECENT STORM

THE great and destructive storm of Saturday and Sunday last may almost take rank as a historical event, seeing that on the Saturday evening atmospheric pressure fell considerably lower in Scotland than is known ever to have occurred in these islands since the barometer became an instrument of observation. This remarkable barometric fluctuation, as observed at Edinburgh, is shown by the following obscrvations made on those two days, the observations being reduced to 32° and sea level:-

	Barometer Inches		Barometer Inches		Barmmeter Inches
Saturday.	28.934	Saturday.$5.30 \text { p.m. }$	27.853	Saturday.	
9.0 a.m.				$9.30 \mathrm{p}, \mathrm{m}$.	$27 \cdot 467$
$2.0 \mathrm{p} . \mathrm{m}$,	$28 \cdot 376$	60 "	. 819	10.0 "	. 451
2.30 "	$\cdot 266$	6.30 ",	779	10.30 "	$\cdot 464$
3.0 "	$\cdot 167$	7.0	721	11.0 "	'505
3.30 "	'064	7.30 "	. 6 t	11.30 "	- 565
40 F	27.984	8.0 ",	'580	Sunday.	
4.30 "	"934	8.30 "	516	$3.0 \mathrm{n} . \mathrm{m}$.	27.835
5.0 "	-921	90 "	494	4.30 l	.968
				9.0 "	28311

As the barometer was closcly watched for some time before and after to p.m., and no change was observed, the reading 27.45 I inches may be regarded as absolutely the lowest that occurred. Since the wind veered during the storm from S.E. by S.W. to N.W., the centre of the storin passed to the northward, and along its path still lower readings were doubtless recorded.

The following observations have been already received, showing in inches the lowest observe 1 readings and the hour when they occurred:-Moffat, 27.662 at $10^{\prime} 15 \mathrm{p} . \mathrm{m}$.; Marchmont, near Duns, 27.581 at 11 p.m. ; Inverness, 27.516 at 11 'to p.m. ; Fort William, 27467 at 8 p.m.; Joppa, near Edinburgh, 27464 , Leith, 27453 , and Edinburglh, $27 \cdot 451$, at 10 p.m. ; Glaskow, 27 '427 at 9 p.m. ; Dundee, 27.382 at $10^{\circ} 30$ p.m. ; Ochtertyre, near Crieff, 27.332 at 9.45 p.m. ; and 27.400 is stated to have occurred at Aberdeen. With the observations made at the 160 stations of the Scottish Meteorological Society, it will, in a few days, be easy to trace the histury of this extraordinary atmospheric depression in its passage across the i,land.

At Ben Nevis Observatory, the lowest reading of the barometer on Saturday, $23^{\prime} 173$ inches, occurred at $8.30 \mathrm{p} . \mathrm{m}$. ; at noon, temperature was 15°, and at $10 \mathrm{p} . \mathrm{m} .22^{\circ}$; at 7 p.m. the wind was S.E. force 8, and at 10 p m. N.E. force 4.

In the sixty years preceding 1827, during which Mr. James Hoy made barometric observations, the lowest reading was 28.007 inches; during the last 43 years observations have been made at Culloden, and the lowest reading, observed by the late Mr. Arthur Forbes, was $27^{\prime} 9^{84}$ inches at $11 \mathrm{a} . \mathrm{m}$. on December 27, 1852. During the inter val between these twolong continued series of observations, Mr. George Innes, optician, made ob ervations at Aberdeen; and on the occasion of the inemorable storm of January 7, 1839, recorded an observation on that morning of 27695 inches. On the same morning, at 90^{\prime} clock, the lighthouses on the east of Scotland, which were near the centre of the storm at the time showed readings varying from 27.806 inches in the Firth of Forth, to 27716 inches near Yeterhead.

As these three series of observations extend over the last 120 years, it is evident that over at least the east of Scotland. from Inverness to the Tweed, atmospheric pressure fell on the evening of Saturday the 26 th from a third to half an inch lower than has occurred during that extended period.

NOTES

We are glad to be able to announce that Prof. Flower has been definitely appointed by the Trustees to the position of Superintendent of the Natural History Department of the British Museum, vacated by the recent revignation of Sir Richard Owen.

Tue German Emper or, at the instance of the Berlin Acadeay of Sciences, has been pleased to make Prof. Sir Willinm Thoo son a Knight of the Order Pour Le Mt́rite for Seience and Art.

According to an announcement made by Prof. F.. Stefan a the lave meeting of the Vienna Physical Society, Prof. S. vor Wrublewski, of Krakow, has succeeded in solidifying hydrogen

1t is reported that Prof. Wilhelin Klinkerfues, the well-knom astronomer, shot limself on Monday in the Observatory a: Göttingen.

We are glad to see that the fishermen of Scotland have a: last realised the necessity of a thorough seientific investigation into the halnits of fish. At a meeting at Peterhead tbe other day the Solicitor-General for Scotland was requested to belp the fishermen to obtain Government aid for the prosecution of such research; the country, it was admitted, is behind all otbers "in scientific information on fish." The Solicitor-General, Mr. Asher, adinitted the lamentable deficiency of our knowledge of the habits of food fishes, and promised to do all he could to obtain s grant for the Committee of the Fuheries Board, who are not endeavouring, with the slender means at their command, to investigate the subject. "Prof. Ewart and his colleazues," Mr. Ather tated, "had entered upon an investigation which, if daly prosceutd, could not fail to he prodactive of immense realts and advantages in connection with all kinds of fisheries."
At the end of March the Austrian botanist, Mr. Joseph Knapp, Conservator des Herbariums des Allgemeinen Oesterreichischen Apothelacrvereines of Vienna, will go to Northern Persia (Azerbijan), with a scientific expedition for exploring the flora and fauna of that little-known province.
Durtng Fehruary Prof. W. K. Parker will give a series of lectures at the Royal College of Surgeons on Mammalian Descent, as follows:-Febraary $4^{\text {th }}$, Introductory; 6th, On Monotremer; 8th, On Mar>apinls ; Ith, On Edentata; $13^{\text {th, }}$ On Insectivora ; 15th, Insectivora (continued) ; 18th, Insectivon (cmeluded); 20th, On the remaining Orders of Mammalia; 22nd, On Man (conc'usion).
In connection with the opening of the Turin Exhibition, the Itaiinn Governnent offer a a prize of 400 , to the inventor of the most practicable me:hod for the transmission of electricity to a distance. The eompetition will be international.
Wituin a few days the exhibition of the Talisman collection will lee ofened at the Jardin des Plantes of Paris, with diagrams exhibiting the circumstances of the operations, and the instruments which were used.
Tite Asiatie Society of Bengal celebrated its centenary 00 Tuesday last week. The froceedings began with a special meeting, the Hon. II. Reynolda, the President of the Society, being in the chair. Six gentlemen, namely, Dr. Joule, Frof. Haeckel, Mr. Charles Meldrum, Prof. Sayce, M. E. Senart, and Prof. Monier Williams, were eleeted bonorury members,

Tur Cambridge University Press announces for publication "A Treatise on the General Principles of Cbemistry," by M. M. Pattison Muir, M.A. This book is intended to give a fairly complete acconnt of the present state of knowledge regarding the principles and general laws of chemistry; it is addressed to those students who have already a considerable acquaintance with descriptive chemistry, and it is boped that by such students the book will be found complete in itself. An attempt is made to treat the chief theories of modern chemistry to some extent from an historical point of view, and to trace the connection between the older theories and those which now prevail in the science. Fall references are given to all memoirs of*importance. The first part treats of the atomic and molecular theory, and the application thereof to such objects as allotropy, isomerism, and the classification of elements and compounds ; fairly complete accounts are also given of the methods and more important applications of thermal, optical, and other parts of physical che nistry. The second part is devoted to the subjects of chemical affinity, relations between chemical action and losees or gains of energy, and the various questions suggested by the expression "chemical equilibrium."

At the weekly meeting of the Society of Arts on Wednesday last week, under the presidency of Sir John Lubbock, a paper was read by Mr. W. L. Carpenter, on "Science Teaching in Elementary Schools." The chairman said the ;nbject under consideration was one of very great importance. The Duke of Devonshire's Commission had reported that the neglect of science and modern languages in our schools was a national misfortune; and though, no doubt, there was some improvement since that time, almost the same might be said now. Considering how much science had done, and was doing for ins, the general, though happily now not nniversal, neglect of it in our schools was astonishing. If we did not avail ourselves to the utmost of the resources of nature, our great and growing population would become more and more miserable, and they would be distanced in the race by foreign nations. Mr. Carpenter said his object was not merely to draw attention to the erying need for clementary scientific in truction in our primary schools, bat also to point out bow such instruction could best be given, and to show that that could be done, and bad been done on a large scale, with extraordinarily beneficial results to the children thns taught, withont any more expenditare of time than at precent. The ore great mistake which vitiated the whole organisation of English education was the conception of Intellectual training as the acquisition of information rather than as the development of the facalties. He pointed out the enormous value of science teaching in quickening the intelligence, as well as the very great practical value of the knowledge imparted. The special feature of the Liverpool School Board system was that the science demonstrations and experiment; were given not by the ordinary staff of the school, bnt by a specially-appointed expert, whose sole duty it was to go roand from school to school, giving practically the same lescon in each one until all had been visited, and abandoning altogether the u-e of text-books by the scholars. Theresults of that system were (1) the general quickening of the i tellectual life of the school; (2) the sending of a large number of lads to science classes after leaving school ; (3) the finding out of lads of exceptional scientific ability, and setting them on their ruad ; (4) the attracting the attention of the ordinary teachers to science and to the results of teaching it . He concluded by urging that instruction in some branch of elementary science, preferably mechanics or physics for boys, and domestic economy for girls, should form a necssary part of the education of every child who remained in a public elementary school above Standard IV., that such instraction should be oral, that snch teaching shonld be given daring the ordinary school hours, and that such
alterations shonld be made in the scale of grants ander the new Code as should enconrage the teaching of elementary science.

OU' readers may remember that some years ago Lieut, Julius von Payer, one of the discoverers of Frana Josef Land, gave up the sea for the brush; but he has carried his Arctic enthusiasm into art. He bas for years been engaged on a series of four pictares illustrating the last expedition of Sir John Franklin, and according to the Times Paris Correspondent, the last of them, entitled "Starvation Cove," is just completed. Lieut. Payer has taken the greatest pains to acquaint himself with the minutest detail of the expeditions of the Erdous and Torror, their formation and equiposent, and the pictures will at least be Interesting. We hope they may be exhibited in this country.

This catalugue of the scientific books in the Reference Department of the Nottingham Free Library spins a list of abont 750 titles out into a catalogue of nearly 40 pages, with between 50 and 60 entries upon each, and among them are a good collection of the most important Yournals and Transactions. To a library the wide circle of whose frequenters forbids its shelves being thrown open to them all, it is doubtful whether a small collection of works with a fall subject catalogue is not of greater advantage than a large accumulation of books of which the librarian only is aware. But instead of giving any reference at all to the subjects treated in these books and Faper, there is only given here the name of each writer and the heading nuder which his production may be found. This can be of little use to any student and none at all to the majority of those using a free library. A supplement of something less than 200 titles is added now, but the collection is so small at present that it is beneath criticism as to its deficiencies.

A telegram from Constantinople, Jan. 23, states that during the previuus furtnight shocks of earthquake, varying in severity, have been felt throughout the district of Kalah-Jik, in the province of Castambul. Some of the minarets of the mosques have fallen in. Shocks alss contlnue to be felt in Central Asia. One occurred at Tashkend a few days ago. A correspondent, writing from Viern) to the Turkestan Gasette, state, that they have been lately very frequent, and somewhat severe at Oosh. Several shocks have also been recently experienced at Tiflis.

The Naples Correspondent of the Standard writes:-"Prof. Silvestri, Director of the Observatory on Monnt Etna, reported on the 5^{5} th inst. that frequent movements of the soil had taken place at Nicolssi and all the other villages near the site of the eruption of last March. Be-ides this, within a zone of abont 6o km. in extent, the villages of Biancaritta, Aderno, Bronte, Maletto, Randazzo, Linguaglossa, and Piedimonte have experienced during the last few days subsaltory and undulatory shocks; the most remarkable occurring on the evenings of the toth and 14 th inst. The oscillations moved in a north-easterly direction, along the mountain chain of Pilori, and were distinctly but slightly felt at Castiglione, Rovara, Castroreale, and as far as Messina. No damage was done, but at Randazzo and Linguaglossa, where the shocks were stronger, the people were much alarmed. At Catanis, only the Instruments of the Observatory registered the perturbation coincident with the alove-mentioned shocks."

THE additions to the Zoological Society's Gardens during the past week include three Bonnet Monkeys (Macarus simicus \& \& 母) from India, a Toque Monkey (Macacus pileatus) from Ceylon, an Arabian Batoon (Cymorephaluz hamadryas 8) from Arabia, an Indian Gazelle (Gazella bonnetti \& India, presented by Capt. Spencer Stanhope; two Bonnet Sonkeys (Macacus sinicus \& 8) from India, presented by Mro. St. John Mitchell ; a Huanaco (Lama hnanacos 8) fon Peru, presented
by Mr. J. W. Firth ; four Harvest Miee (Mus minntus), British, presented by Mr. G. T. Rope; a Greater Sulphor-crested Cockatoo (Cacalua galcrita) from Aurtralia, presented by Mr. George Wood; a Great Grey Shrike (Lanius excubitor), British, presented by Master Arthur Blyth; two American Flying Squirrels (Sciuroperws volucella) from North America, presented by Mr. F. S. Mosely, F.Z.S. ; a Cape Adder (Vipera atropus) from Scuth Afriea, presented by Mr. C. B. Pilians ; a Black Tanager (TacAyphonns melalowcus), a White-throated Fineh (Spermophila albigmlaris), a Tropical Seed Finch (Orysoborws corridus), a Common Boa (Boa constrictor), a South African Rat Snake (Spilotes var iabilis) from South America, a Cberla Eagle (Spilornis chela) from Ceylon, two Illiger's Macaws (Ara maracana) from Brazil, a Common Guillemot (Lomvia troile), British, fur* chased; two Brown-tailed Gertilles (Gerbilus erythrurus), born in the Gardens.

GEOGRAPHICAL NOTES

The first report of Prof. Hull, dated from Gaza, January 1, has been received. It is necessarily brief, the details being reserved for the full report to follow, but it announces the success of the expedition so fur. The professor has made a complete geological survey of the Wady Arabab and the Dead Sea, with a traverse across Southern Palestine. Capt. Kitchener, R. E., who accompanied him, has made a trigonotnetrical survey. Akabah he found to be laid down too far sonth; the south part of the Dead Sea as shown on the maps, is quite out of its true shape and position, and the Lisan has to be shifted three miles. From Gaza, when the rest of the party were in quarantine, Capt. Kitchener rode back to Egypt, accompanied by four Arabs only. He took a previousiy unknown route, particulars as to which will follow, and arrived at Ismailia after a ride of 200 miles. He was everywhere well received by the Arabs, who took him for a cousin of Sheikh Abdullah (the late Prof. Palmer), whose memory is still revered among them, and whose murder they still deplore. They are also reported to be deeply impressed with the energy and pertimacity of Sir Charles Warren's pursuit of the murderers. As regards the other members of Prof. Huli's party, Mr. Hart is reported to have made large additions to the flora: Mr. Lawrence bas kept a continnous series of mete orological observations, and Mr. Gordon Hull has obtained a hundred photogiaphs, large and small. Prof. Hull had still to execute tno traverses of the country, in which he is no doubt at present engaged. The complete reports, both of himself and Capt. Kitchener, will be extremely important. They will probably be publinhed in the journal of the Society.

We have received the ninth issue of the Geographisches fahrbuch. In the present volume, the reports which appeared in the first six publications on the additions successively made to our knowledge of extra. European parts of the earth are resumed; the new African annexations to geography being disposed of by Prof. K. Zoppritz the Asiatic by Dr. Hans Lullies, and the Polar by IIerr W. Wichmann. Two impertant departments in geography find for the first time distinct places assigned them in the present number; geographical onomatol gy and theoretic cartography. The former has indeed but very recently been recognised as the independent and important province of ge graphy it really is. The first and as yet only comprehensive scientific work on the subject is that by its reviewer in the present ${ }^{\text {Fahbouch, Prof. J. J. Egii, " Versuch einer Allge- }}$ meinen Geographischen Onomatologie" (Leipzig, 1870-72), essay towards a general gengraphical onomatology. The name of a place is either immediately descriptive of its physical features (" natnre-names," as Prof. Egli calls this clavs) or descrip. tive of some historical or other connection between tie place and its earlier or later inhabitants or discoverers ("culturenames "), in either and every case is significant and intere-ting and a 7 organie part of its gengraphy.-Prof. Sigismund Giunther, iu his masterly review of theoretie cartr graphy, first gives a brief jet clear and comprehensive "histcty of the development of geomet ical cartography," taking notice more particularly of midern vorks on the sabject, and then estimates recent works un projection.-Prof, von Oppolzer, reporting the progress made in European measurement of degrees, summarises the transactions
of the sixth General Conference held on the subject at Munich, September 13-16, 1880 . He calls special attention to the rewalts deduced by von Baucrnfeind from taking the measurement of the zenith simnltaneously at Dobra and Kappellenburg, in which the same anomalies came to light as those pointed out years before by yon Bayer. These anomaiies are entircly parallel with tho e which appear in taking barometrical measnrements of heights, and von Bauernfeind attributes them to the circumstance ibat the registered temperatures at given places form no correct criterion of the temperatures of the intermediate air-strata, the temperstures at the given places being to a certain extent determined by purely local influences. These conclusions are confirmed by Oppolzer's studies in astronomical refraction, in which ansogous anomalies are to be explained by the fact that the universul law of diminution of temperature with ascent is modified is the lowest air-strata by local causes. In clear nights, e.,., the temperature in the lowert atwospheric strata invariably rised with ascent up to a certain moderate height. During the day, on the other haad, in corresponding conditions, temperature diminishes with ascent at a rate considerably above the average. These facts afford Oppolzer a very simple explanatlon of hitherto puzzling phenomena.-In the review of geographical metecrology by Prof. J. Hann is presented a great treasure of dats as to rainfall, nebulosity, at mospheric pressures, winds, \&c.-In a map by Remon of the nebulosities of different parts of Earope and North Africa, the extremes are given at 20° In the Algerian Sahara, and 68° in the north-west of Europe. Cloudiness in general diminishes southwards and easta arde; as compared with the centre of Europe.-Space allows only of the bare mention of the review of the geography of plants by Prof. Drude; of animals, by Prof. Schmarda ; of ethnology, bv Prof. Gerlind; of deep sea exploration, by Prof, von Boguslawski; of the stracture of the earth's snrface, by Prof. von Fritsch; and of the meth d of geogr' phy, by Pref. Wagner.

We understand that the expedition with which Mr. Wilfrid Powe'l has undertaken to explore New Gninea will leave this country about the beginning of March. It will cunsist of Mr . Powell, with four or five Europeans, including a naturalist and a geologist, and the work of traversing the thoasand or twelve hundred miles which have been mapped out for the route is likely to occupy over a year. Mr. Powell has chartered a sanll screw steamer, in which the pariy will proceed up the Amberad river, a large stream in Dutch territory, on the north enast. The explorers will proceed up this river in a steom launch as far as they can get. The launch will then return to the seamer, and the party will strike in a south-westerly direction acro-s the high central range of mountains u hich runs from east to west, clled the Snow Mountains, or the Finisterre Mountains. When this difficult task has been accomplished, Mr. Powell will march to the east coa-t, where he will hope to find his screw steaner in Astrolabe Bay. After refiting, he will again strike westwrids, across the south-east corner of the island, to Port Moresbr. Mr. Powell will thus explore the country from north to sooth, avoiding the Fly River, or any other pirtion which has bees visited by Europeans.
Tue S\% Peters'urger Zeitung has received news from Khar toum about Dr. Junker. Herr Bohndorf, Dr. Junker's conr. panion, has arrived at Khartoum, and reports that Juater is still in the Niam Niam country, and that bis researches are favourrbly progressing.
THE last is ue of the Bulletin of the St. Petersburg Academy of Sciences contains a letter of M. Bunge, the medical officer of the Lena polar meteorological station. The country aroand the station is but little fitted for co!lecting. It is a fat region, periodically covered by the tide, and there may be co question about sea-tiora or sea-fauna to be found in the creeks that intero sect the ground. The ice bear s smetimes makes his appearanof, as also the wolf, the fox, especially Canis lagofus, of which the neighbouring Yakuts catch about 300 every year; the Murfela herminica is not very rare. The Yakuts do not know lemmings, bat one species at least, the M, odes lorguatas, in hab ts the delta. The reindeer come in large flocks in the suamer, retaruing to the forest region in the autumn. They are killed when passing the streams, shooting being prohibited by the Yahut community. One Agocrus montanus has beea per: ceived, foin a great distance, within the del:a. Walruse, some times seals, and dolphins also enter the mouth of the Len. As to the birds, M. Bunge gives a list of 10 species he bas observed or shot during bis j urney. The water invertebrats are
very poorly represented i.i the Lena. As M. Bunge gives great attention to the collecting of skulls of a imals, his collecii in promives to be of great valne, as also his collection of human ,kulls taken from the efffins that dot the Iundrathe Yakuts merely putting them on the surface between a few rough flanks. I is worthy of notice that, whilst having many r.pprortunities for visiting the sick Yakuts in the neighbourhood, M. Bunge has not yet noticed a single case of scurvy; it is quite un nown among them.

We have received a separate copy from the forthcoming number of the Iarstia of the Kussian Geographical Society of a notice of the renarkable Russian expeditions to the Pamir, eat ried on during list summer. It is sufficient to cait a glance at the map that accompanies this note to ascertain that "the Kcof of the World " has pow been quite deprived of the veil of my stery that covered it for centuries past. Many years since Russian travellers penetrated into ir, and studied detached portions as they followed the course of the rivers which led to these gi; antic plateaux, inclosed between still bigher mountains. Pur,uing his researches for several consecutive years, Dr. Regel and bi- companions have explored the valleys of the Psnj and of its numerous tributaries, penetrating as far zouth as Sist $\left(37^{\circ} \mathrm{N}\right.$. lat.) and as far east as the sources of Shakb-dere, $72^{\circ} 50^{\prime}$ E. long. An immense bend to the west of the Panj River beneath Kaia-vamar, due to the presence of a high chain of mountains running north east, and a wide lake, Shiva, 11,000 feet high, ,ituated to the west of this bend, discovered by Dr. Regel, con, iderably modify our former maps of the western part of the J'amir region. But the expedition of last summer, whieh consisted of MM. Putiata, of the general staff, Ivanoff, geologist, and Bendersky, topographer, throws quite a new light on the still less known eastern Pamir. The expedition has literally covered with a netuork of surveys the whole of this regioa from $39^{\circ} 30^{\prime} \mathrm{N}$. lat. to the sources of the Vakhan-daria, in $37^{\circ} 10^{\prime}$, and from 72° 10' $1075^{\circ} 20^{\prime}$ E. long., penetrating thus twice to the foot of the Mustag-aga, or Tagarma Peak. The great Pamir chain, between the Shakh-dere and the Upper Panj has ween crossed at four places, 100 miles distant, and the Russian surveys have been brought into connection with those of the pundit M. S. The expedition seems to have established that the pundit M. S. was misled, and that the Ak-su is really the upper part of the Murghab. The other results of this expedition are also very important : not only a map on the scale of five vers's to an inch of the whole of this wide region has been drawn, but also the heights of a v.ry great number of psints have teen determined by barometrical and trigonometrical measurements; large geological and botanical collections havs been brought in, as welt as many drawings, and a dictionary of the Shugnan language. Detailed reports will follow, the foregoing information being due to a preliminary letter of M . Ivanoff.
A tilegram from Nerchinsk, in Siberia, states that M. Joseph Martin, the French traveller, passed through that place recently on his way to Irhutsk. M. Martin has (says a lieuter's telegram) explored the country from the Lena to the A nuur, and has crossed the intervening Stanovi Mountain range He has collected a large amount of gergraphical and geological inforwation concerning the region which be has traversed.
Mr. Schuver, the Dutch African explorer, bas been murdered at Bahr Gazal, in South KorJofan.

According to the latest number of the Annalen der Hydrasraphie und maritimen Mcterologie the greatest depth of the Atlantic is 8341^{\prime} metres ; this was found in $19^{\circ} 39^{\prime} 10^{\circ} \mathrm{N}$. lat., and $60^{\circ} 26^{\prime} 5^{\circ} \mathrm{W}$. long. The next greatest depression of the sea bottom is in $19^{\circ} 23^{\prime} 30^{\circ} \mathrm{N}$. lat, and $66^{\circ} 1 t^{\prime} 45^{\prime \prime} \mathrm{W}$. long., where 7723 metres were found.

THE AIMS AND PROSPECTS OF THE STUDY OF ANTHROPOLOGY

THOSE who are present at this meeting need scarcely be reminded of the importance of the subject u hich is our common bord of union, that which is defined in the prospectus of the Institute as "the promotion of the science of manhind

3 Addrest delivered at the anniversary meeting of the Anthropological Institute of Great Br.tain and Ireland, January $23,288_{4}$. by Pruf. Flower, LL.D., F.R.S., P.Z S., \&.., Prevident.
by the accumulation of observations bearing oa man's past history and present state in all part; of the globe."
But those present are a very tmall fractio. iadeed of the persons in this country to whom this great subject is, or should be in some one cr other of its various divisions, a matter of deep in'erest, and as it is possible that the words which it is my privilege and duty as your president to address to you on this oceasion may be read by some who are not yet so much conversant with the aims of anthropology and the means for its cultivation which this Institute affiords as those who have taken the trouble to come here this evening, I hope that you will pardon me if I bring before you some general considerations, perhaps familiar to all of you, regarding the scope and value of the science the advancement of which we have at heart.

One of the great difficulties with regard to making anthropology a special subject of study, and devoting a special organisation to its promotion, is the multifarious nature of the branches of knowledge comprehended under the title. This very ambition, which endeavours to include such an extensive range of knowledge, ramifying in all directions, illustrating and receiving light from so many other sciences, appears often to overleap itself and give a looseness and indefiniteness to the aims of the individual or the institution proposing to cultivate it.
The old term eihnology has a far more limited and definite meaning. It is the study of the different peoples or races who compose the varied population of the world, including their physical charseters, their intellectual and moral development, their languages, social customs, opinions, and beliefs, their origin, history, vigrations, and present geographical distribution, and their relations to eaeh other. These subjects may be treated of under two aspects-first, by a consideration of the general laws by which the modifications in all these characters are determined and regulated ; this is called general ethnology : secondly, by the study and dercription of the races themselves, as distinguished from each other by the special manifestations of these characters in them. To this the term special ethnology, or, more often, ethnography, is a pplied.

Ethnology thus treats of the resemblances and differences of the modific tions of the huwan species in their relations to each other, but anthropology, as now understiod, has a far wider scope. It treats of mankind as a whole. It investigates his origin and hi, relations to the rest of the universe. It invokes the aid of the sciences of zoology, comparative anatomy, and physiology; and the wider the range of knouledge met with in other regions of natural structure, and the more abundant the terms of comparison known, the less risk there will be of error in aftempting to estinate the distinctions and resemblances between man snd his nearest alles, and fixing his place in the roological scale. Here ne are drawn into contact with an immense domain of knowledge, including a study of all the laws which modify the conditions under which organic bodies are manifested, which at first sight seem to have little bearing upon the particular study of man.

Furthermore, it is not only into man's bodily structure and its relations to that of the lower animals that we have to deal; the moral and intellectual side of his nature finds its rudiments in them also, and the difficult study of ecmparative paychology, now attracting mnch attention, is an important factor in any complete system of anthropology.
In endeavouring to investigate the origin of mankind as a whole, geology must lend its assistance to determine the compararive ages of the strata in which the evidences of his exist ence are found ; but researches into his early history soon tranch upon totally different branches of knowledge. In tracing the progress of the race from its most primitive condition, the characteristies of its physicul structure and relations with the 1,wer animals rre soon left behind, and it is upon evidence of a kind peculiar to the human species, and by which man is so pre-eminently distinguished from all other living beings, that our conclusions mainly rest. The study of the works of our earliest hnown forefathers, " prehistoric archacology," as it is commonly called, although one of the most recently developed branches of knowledge, is now almost a science by itself, and one which is receiving a great amount of attention in all parts of the civilised world. It investigates the origin of all human culture, endeavours to trace to their common beginning the sources of all our arts, customs, and history. The difficulty is what to include and where to stop; as, though the term "prebistoric" may roughly indicate an artificial line between the province of the anthropologist and that which more legitimately belongs to the archaeolo-
gist, the antiquary, and the historian, that the studies of the one pass insensibly into those of the other is an evident and necessary proposition. Knowledge of the origin and development of particular existing eastoms throws immense light upon their real nature and importanee, and conversely, it is often only from a profound acquaintance with the present or comparatively modern manifestations of culture that we are able to interpret the slight indications afforded us by the scanty remains of primitive civilisation.

Even the more limited subject of ethnology mut be approached from many sides, and requires for its cultivation knowledge derived from sciences so diverse, and requiring such different nental attributes and systems of training, as scarcely ever to be found combined in one individual. This will become perfectly evident when we consider the various factors or elements which constitute the differential characters of the groups or races into which mankind is divided. The most important of these are-

1. Structural or anatomical characters, derived from diversities of stature, proportions of different parts of the hody, complexion, features, colour and character of the hair, form of the skull and other bones, and the hitherto little-stadied anatomy of the nervous, muscular, vascular, and other systems. The modifications in these structures in the different varieties of man are $3>$ slight and subtile, and so variously combined, that their due appreciation, and the discrimination of what in them is essential or important, and what lncidental or merely superficial, requires a long and careful training, superadded to a preliminary knowledge of the general auatomy of man and the higher animals. The study of physical or zoological ethnology, though it lies at the hasis of that of race, is thus necessarily limited to a comparatively few original investigators.
2. The mental and moral characters by which different races are distinguished are still more difficult to fathon and to describe and define, and although the subject of much vague statement, as there are few people who do not consider themselves competent to give an opinion about them, they have hitherto been rarely approaehed by any strietly scientifie method of inquiry,
3. Language, - The same difficulties are met with in the study of language as in that of phyical pecoliaritiet, in the discrimination between the fundamental and essential, and the mere accidental and superficial resemblances, and in proportion as these difficulties are suecessfully overcome will be the results of the study become valuable instead of misleading. Though the science of language is an essential part of ethnology, and one which generally absorbs almost the entire energies of any one who cultivates it, its place in discriminating racial affinities is unquestionably below that of physical characters. U,ed, however, with due caution, it is a powerful aid to our investigations, and in the difficulties with whieh the subject is surrounded, one which we can by no means afford to do without.
4. The same may be said of social castoms, lacluding habitations, dress, arms, food, as well as ceremonies, beliefs, and laws, In themselves fascinating subjects of stady, placed here in the fourth rank, not as posees-ing any want of interess, but as contributing comparatively little to our knowledge of the natural classification and aftinisies of the racial divistons of man. When we see identical and most strange custons, such as particular modes of mutilation of the body, showing themselves among races the most diverse in character and remote geographically, we cannot help coming to the conelusiou that these castom have either been comnunicated in some hitherto unexplained manner, or are the outcome of some counmon element of bumanity, in either of whieh cases they tell nothing of the special relations or affinities of the races which practise them.

This subject of ethnography, or the discrimination and description of race characteristics, is perhaps the most practically important of the various branches of anthropology. Its importance to those who have to rule, and there are few of us now who are not called upon to bear our share of the responsibility of government, can scarcely be overestimated in an empire like this, the population of which is composed of examples of almost every diversity under which the human body and mind can manifest itself. The physical characterestics of race, so strongly marked in many cases, are probably always associated with equally or more diverse characteristics of temper and intellect. In fact, even when the physical divergences are weakly shown, as in the case of the different races which contribute to make up the home portion of the empire, the mental and moral characteristics are still most strongly marked. As it behoves the wise physician not only to
study the particular kind of disease under which bis patient is suffering, and then to administer the approved remedies for such disease, but also to take into careful accoant the peculiar idiosyncracy and inherited tendencies of the individual, which so greatl modify both the course of the diseare and the action of remedies, so it is absolutely necescary for the statesman who would govern successfully, not to look upon human nature in the abstract and endeavour to apply universal rules, but to consider the special moral, intellectual, and social capabilities, wants, and aspirations of each particular race with which he has to deal. A form of government under which one race would live happily, and prosperously would to another be the cause of unendurable misery. No greater mistake could be made, for instance, than to apply to the ca e of the Fgyptian fellah the remedies which may be desirable to remove the difficulties and disadvantages under whieh the Birmingham artisan may labour in his struggle through life. It is not only that their education, tralning, and eircumstances are dissimilar, but that their very mental constitution is totally distinct. And when we have to do with people still more widely removed from ourvelves, African Negroes, American Indians, Australian or Pacific Islanders, it seems almost inpossible to fin I any common ground of union or modus viecnifi; the mere contact if the races generally ends in the extermination of one of them. If such disastrous consequenees cannot be altogether averted, we have is still in our power to do much to mitigate their evila.

All these questions, then, should be carefully studied by those who have any share in the government of people of races alien to themselves. A knowledge of their special characters and rela. tions to one another has a more practical object than the mere gratification of seientific curiosity; it Is a knowledge upon whieh the happiness and prosperity, or the reverse, of millions of our fellow-creatures may depend.

It is gratifying to find, then, that there are in our own country -for on this occasion I will not speak of what is being done elsewhere -many signs that the prospects of a thoroagh and scientific cultivation of anthropology in its several branehes are brightening.

I may first mention the publication of the final Report of the Anthropometric Committce of the British Association for the Advancem ?at of Science, of which formerly the late Dr. W. Farr, and recently our vice-president, Mr. Franels Galton, have been chairmen, and in which Mr. Charles Koberts, Dr. Bedioe, Sir Rawson Rawson, and some other of our members have taken so active a part. This Report, and those which have from time to time been issued by the Commintee during the progres. of the work, contain a large mass of valuable statistical information relating to the physical charactery, including stature, weight, chest girth, colour of eyes and hair, strength of arm, \&c, of the inhabitants of the British Isles, illustrated by maps ami diagrams, Excellent as has been the work of the Committee, there is still much to be done in the same direction, and larger numbers of observations even than those already obtained are in many cases necessary to verify or correct the inferences drawn from them. This is thoroughly acknowledged in the Report, which states in one of the coneluding paragraphs that "the Committee believes that it has laid a substantıal foundation for a further and more exhaustive study of the physical condition of a people by anthropometric methods, and that its action will prove that it has beer useful as an example to other scien'if.: societies and to individuals in stimulating them, as weil a, directing them in the methods of making statistical inquiries relative to social questions."

It is satisfactory to learn that many portions of the work thus inangurated will be carried on by bodies specially interested in particular departments, as the Collective Investigation Commit'ee of the Brisish Medical Association, and the Committee of the British Association for collecting phutographs and defioing the eharacteristies of the principal races of the United Kingdom, a subject In which Mr. Park Ilarrison is taking so deep an interet.

It should be mentloned that the rriginal returns upon which the reports of the Committce are based, includicg much information which has not yet been analy;ed and tabulated, on account of the time and labour such a process would involve, as well as the instruments of investigation parchasel with funds supplied by the British Association, have been, by the consent of the Council of the Association, plaeed under the charge of the officers of this Institute.
It is very satisfactory, in the next place, to be able to record that our great centres of intellectual cultare are gradually
waking up from that state of apathy with which they have hitherto regarded the subject of anthropology.

In Oxford the impulse given by the geniusand energy of Rolleston has begun to bear fruit. The University has taken charge of the grand collection of ethnological objects most liberally offered to it by our former president, General Pitt-Rivers, and has undertaken not only to provide a suitable building for its reception but also to maintain it in a manner worthy of the scientific discernment and munificence displayed by the donor in collecting and arranging it. Furthermore Oxford has shown her wisdom in affiliating to herself the most learned of English anthropologists in the widest sense of the word, one of the few men in this country who has made the subject the principal occupation of his life. I need scarcely kay that I rcfer to another of our former presidents, Mr. E. B. Tylor. By conferring a Readership in Anthropology upon hin Oxford has instituted the first systematic teaching of the subject yet given in any educational establishment in this country, and it is a great credit to the oldest U'niversity that it should thus lead the way in one of the most modern of sciences. It is, however, only a beginning; the whole of the great subject is confined to the teaching of one individual with modest stipend and not adritted to the dignity of the professoriate. In the Ecole des Hautes Etudes at Paris antbropology is taught theoretically and practically in six different branches, each under the direction of a professor who bas specially devoted himself to it, aider, in some cases, by several assistants.

In Cambridge also there are many hopeful signe. The recently-appointed Professor of Anatomy, Dr. Macalister, is known to bave paid much attention to anatomical anthropolngy, and has already intimated that he proposes to give instruction in it during the summer term. An Ethnological and Archasological Museum is also in progress of furmation, which, if not detined to rival that of Oxford, already contains many objects of great value, and a guarantce of its good preservation and arrange:vent may be looked for in the recent appointment of Baron Anatole von Hügel as its first curator.

Perhaps in no place in the wor!d could so varied and complete an anthropological collection be expected as in the national museum of this country, which should be the great repository of the scientific gleanings of the numerous naval, military, exploring, and mercantile expeditions sent out by the Government or by private enterprise for more than a century past, and penetrating into almost every region of the globe. Our insular position, maritiue supremacy, numerous dependencies, aud ramifying commerce, have given us unusually favourable opportunities for the formation of such collections, opportunities which unfortunately in past times have uot been used so fully as might be desired. There is, however, 3 great change coming over those who have charge of our national collections in regard to this subject. Thanks to the foresight and munifience of the late Mr. Henry Christy, and the well-directed energies of Mr. Franks and his colleague , the $^{\text {, the }}$ collection illustrating the custome, clothing, arts, and arms of the varions existing and extinct races of men, in the British Maseum, is rapidly assuming an importance which will be a surprise to those who see it for the first time arranged in the large galleries formerly devoted to mammals and birds. Even the grand proportion of space allotted to this collection in the re. arrangement of the Museum is, I am told, scarcely sufficient for its present needs, to say nothing of the accessions which it will doubtless receive now that its importance and good order are manifest.

A national collection of illustrations of the physical characters of the races of men, fully illu-trated by skeletons, by anatomical apecimens preserved in spirit, by cants, models, drawings, and photographs such as that which exists in the Muséum d'Mistnire Naturelle at Paric, is still a desideratum in this country. The Hritish Museum till lately ignored the subject altogether, and in the beginning of the century actually expelled such specimens of the kind ns had accidentally found their way within its walls. Recently, bowever, skalls and skeletons of man have been admitted, and since the removal of the zoological collections to the new building at South Kensington their importance as an integral part of the series has been recognised, and their exhibition in the osteological gallery will doubtless stimulate the growth of what we may trust will be ultimately a collection worthy of the nation, although unfortunately, from causes too well known, the difficulties of procuring pure examples of many races are gradually increasing, and in some cases have become well-nigh insuperable. The
mnseum contains at present 407 specimens illustrating human osteology, of which to are skeletons more or less complete.

In the meantime the College of Surgeons of England has done much to supply the deficiency. During the last twenty years it has let few opportunities pass of attracting to itcelf, and therefore saving from the dertruction or lapse into the neglected, valueless condition into which small private collections almost invariably ultimately fall, a large number of specimens, now, it is to be hoped, placed permanently within the reach of scientific observation. The growth of this collection may be illustrated by the fact that, whereas at the time of the publication of the Catalogue in 1853 it consi-ted of 18 skeletons and 242 crania, it now coathins 89 more or less complete skeletons and 1380 crania, nearly all of which have been added during the last twenty years. This is, moreover, irrespective of the great colleetion of Dr. Barnard Davis, purchased in 1880 by the College, which was thus the means of preserving intact, for the future advantage and in-truction of British anthropologists, an invalaable series of specimens otherwise probably destined to bave been dispersed or lo.t to the eountry for ever. This collection consists of 24 skeletons and 1539 crania, making, with the remainder of the Collexe collection, a total of 3032 specimens illustrating the osteological modifications of the human species. These are all in excellens order, clean, accessible, and catalogued in a manner convenient for reference, although somewhat too crowded in their present locality to be readily available for observation.

Large as is this collection, and rich in rare and interesting types, it is far from exhaustive ; many great groups are almost or entirely unrepresented even by crania, and the series of skeletons is (with the exception of one race only, the Andamanese) quite insufficient to give any correct idea of the average proportions of different parts of the framework. In fact, such a collection as would be required for this purpose must be quite beyond the resources of, as well as out of place in, any but a national museum.

The collections illustraling anatomical anthropology in the University museams of Oxford, Cambridge, Edinburgh, and Dublin have all greatly increased of late, but for the reasons just given they can never be expected to attain the dimensions required for the study of the subject in its profoundest details. The small, but very choice collections formed by the officers of the medical department of the army, and kept in the museum of the Royal Victoria Hospital at Netley, and that of the navy at Haslar Hospital, are, I believe, in a stationary condition, but in good preservation. Our own collection, which also contains some valuable specimens (notably the enmplete skeleton of one of the extinct Tasmanian aborigines, presented by the late Mr. Morion Allport), and which during the past year has been catalogued for the first time by Mr. Bloxam, has not been added to, owing to a feeling which the Council has long entertained, and which induced them to part with the ethnological collection, that a museum, entailing as it does, if worthily kept up, a very coasiderable annual expense, is not within the means of the Institute, at all events not until the more pressing claims of the library and the publications are fully satisfied.

This leads me to speak, in conclusion, of the work accomsplished during the past year by the Institute, and of its present position and future prospects.

I must first refer to that portion of the retrospect of the year which always cast t a certain sadness over these occasions-the losies we have sustained by death. Happily these have not been numerou:, and do not include, as has been the case in many former years, any from whom great work in our own subject might still have been expected. Though we were all proud to number William Spattiswoode, the President of the Royal Suciety, among our members, and though we all honoured him for his accomplishments in other branches of science, and loved him for his work as a man who roce high above his fellows in his chivalrous sense of honour and simple dignity of demeanour, we could not claim him as a worker at anthropology.

Lord Talbot de Malahide's antiquarian pursuits frequently verged upon our own subjects in their proper sense, and be was often present at our meetings, and a very recent contribator to our journal. He had, however, reached the ripe old age of eighty-two.

From the list of our honorary members we lave lost a still more venerable name, that of Sven Nilsonn, Professor in the Academy of Lund. He was born on March 8 , 1787, and died on November 30 of last year, and was therefore
well on in his ninety-seventh year. His long-continued and laborions researches in the zoology, palxontology, anthropology, and antiquities of his native land gave him a high place among men of science. Among a host of mi tor contrihutions he was the author of a standard work on the Scandinavian fauna; but that by which he was best known to us is the book of which the English trandation, edited by Sir John Lubbock, bears the title of "The Primitive Inhabitants of Scandinavia; an Essay on Comparative Ethnozraphy, and a Contribution to the History of the Development of Mankind."
The number of our ordinary members has been fairly kept up, the addi-ions by election having slightly exceeded the losses by death and resignation; but a larger increase in the future will be necescary in order to carry on the operations of the Institnte in a successful manner, especially under the new conditions to which I shall have to advert presently. Even by the most eareful management our treasurer has not succeeded in bringing the expenditure of the year quite within our ordinary incom:.
The journal, I am glad to report, has been brought out with exemplary panctuality, under the able and encrgetic supervision of our director, Mr. Rudler. To this part of our operations I think we may look with unmixed satisfaction, the number, character, and variety of the communications contained in it being quite equal to those of former years.
With regard to onr future, the next year will probably be one. of the most momentous in onr annals, as we have determined upon a great step, no less than a change of domicile. It was ascertained in the conrse of last snmmer that we could obly remain in our present quarters at an increased rent upon that which we had bitherto paid, and we therefore considered whether it would be possible to obtain as good or better accommodation elsewhere. It happened fortunately that the Zoological Society was about to move into new freehold premi es at No. 3, Hanover Sqnare, and wonld have spare rooms available for the oecupation of other societies. A committee of the Council was appointed to examine and report upon the desirability of moving, and negotiati nss were entered into with the Council of the Zoological Society which have ended in onr becoming their tenants for the future. We shall have for the purposes of our library, office, and Council meetings, two convemient rooms on the second floor immediately above the library of the Zoological Sosiety, and for the parpose of storing our stock of publications a small room on the basement. We shall also have the nse of a far more handsome and commodious meeting room than that which we occupy at the present noment, and in a situation which is in many respects more advantageons. Let us trust that this change may be the inauguration of an era of prosperity to the In titute, and of inereased scientific activity among its members.

THE FORMATION OF SMALL CLEEAR SPACES IN DUSTY AIR ${ }^{1}$

[N the introduction a few remarks are made on the growing interest in everything connected with dust, whether it be the organic germs floating in the air, or the inorganic particles that pollute our atmosphere. Prof. Tyndall's observations on the dark plane seen over a hot wire ${ }^{2}$ are referred to, Lord Kayleigh's recent discovery of the dark plane formed under a cold body ${ }^{3}$ is described, and attention called to Dr. Lodge's experiments described in a letter to NATURR, vol. xxviii. p. 297.
The experiments described in this paper weie made in a small dust-box, blackened inside, glazed in front, and provided with a window at one side. For illumination two jets of gas inclosed in a dark lantern were used. The light entered the dust-box by the side window and could be condensed on any part of the inside of the box, by means of two lenses fixed in a short tube, and loosely attached to the front of the lantern. Magnifying glasses of different powers were ased for observation. The dusts experimented on were made, some of hydrochloric acid and ammonia, some by burning snlphur and adding ammonia, some by burning paper, magresinm, or sodium. Calcined magnesia and lime were also used, as well as gronnd charcoal. These three last substances were stirred up by means of a jet of air.
: Abstrict of a paper read to the Royal Society of Edinburgh, January ar, 1884: Ey, Mr. Joh Alitken.
". E, ays Ca the Ficatimp-Matuer in the Air," p. 5. (longmana, Green, and Co., 1883.)
${ }^{2}$ NATVに, vot xxvili. p ${ }^{3} 39$.

For testing the effects of slight difference of temperature, tubes in s)me form or other were generally used. These tubes were closed at the front, projected through the back of the dust-box, and were brought clowe to the glass front for observation under strong magnifying powe: The tubes were heated or cooled by circulating water through them, in a small tube passing through their interior.
Suppue the experiments to be begun by introducing a round tube into its place in the dust-box and then filling the box with any dust, everything being then left for some time so that all the apparatus may acquire the same temperature. If the light be now allowed to fall on the box, and be quickly brought to a focus on the tube, it will be found that the dust is in close contact with it on the top and sides, bat undernoath there will be seen a clear space. Close examination will show the particles to be falling on the npper surface of the tube, and coming into contact with it, while underneath a clear space is formed by the particles falling out of it. If the tube is now slightly cooled, a downward current is formed, and the currents of dustless air from below the tube meet under it, and form a dark plane in the centre of the descending current. It is shown that gravitation can, under favourable conditions, produce this separation of the dust quickly enough to keep up a constant supply of dustless air. No increase of effect is produced by a lower temperatare. A temperatnre of $-10^{\circ} \mathrm{C}$. makes the dark plane thinner, because it increases the rate of the descending current and carries away the purified air more qnickly.
A form of apparatus was arranged to get rid of this separating effect of gravitation. It consisted of an extremely thin and flat piece of metal. This test-snrface was placed vertically in the dust-box. The air in passing over this piece of apparatus was not caused to take up a horizontal movement at any part of its passage. The result was that even with a temperatnre of - $10^{\circ} \mathrm{C}$. the dust kept close to its surface, and no dark plane was formed in the descending current. The dark plane in the cold descending current seem ${ }^{*}$, therefore, not to be an effect of temperature, but is the result of the action of gravitation on the particles nnder the body. A dark plane was, however, ohserved when working with this flat surface when eooled, but it was not formed in duty, but in foggy air, and was fonnd to be due to the evaporation of the fog particles when they approached the cold surface.
If a very little heat, instead of cold, is applied to the round tnbe in the previous experiment, then the dark space under the tube rises and encircles the tnbe and the two currents of clear air unite over the tube and form the dark plane inthe upward current. Bnt in addition to this heat has been found to exert a repelling effect on the dust. This was provel by putting the thin vertical test surface in the dast-bjx and heating it, when it was found that the dust was repelled from its surface, and a dark plane formed in the ascending current, neither of which effects was obtained with cold. The dust begins to be repelled with the slightest rise of temperature, and the dark space in front of the test-surface becomes thicker as the temperature rises. An experiment is then de cribed in which air flowing up between wo parallel glass plates is caused to pass from side to side of the channel by the repelling action of heat at different points.

For testing the effects of kigher temperatures a platinum wire beated by mians of a battery was nsed. The platinum wire was bent into a U-shape, the two legs being brought close together. This wire was fixed in the dust-Gox with the bend to the front, and the legs in the same horizontal plane, the two copper wires to which it was attached beirg carried backwards and out of the box. By this arrangement a clear view was obtained all round the wire, and other advantages secured. Experimenting with this apparatus it was found that every kind of dust had a different sized dark plane. With magnesia and other inde.tructible dusts it was very thin, with the sulphate dust it was much thleker, and with the sal-ammon'ac dn thicher still. So thick was it with the two latter hinds of dert that the dark planes over the two legs expar.ded and formed one plane. As the particles could be seen streaming into the dark space under the wires, it was obvious that these large dark plares were not caused by repulisn, but by the evaporation or by the disiitegration of the dunt particles. When making the exjeriment in a mixture of different kinds of dusts, the hot wire was surromnded by a series of zones of different brightnes*, and having sharp outlines. The size of the different zones was determined by the temperature necessary to evaporate the different kinds of dust present, and
outside these zones was another, caused by the evaporation of the water from the particles.

The conclusions arrived at from these experiments are that the downward dark plane is produced by tbis separating action of gravitation, in the space under the cold body, and that the upward dark plane is produced (1) by the separating action of gravitation, (2) by the repulsion due to heat, (3) by evaporation, and (4) by disintegration.

The effect of centrifugal force is considered. It is pointed out that as the air, in its passage over a body such as a tube, curves as much in one direction as it does in another, therefore any centrifugal effect produced in the one part will be reversed in the other. An experiment is described in which an air current is caused to curve through $18 c^{\circ}$ in its passage round the edge of a thin plate, and without any curving in the opposite direction, but no decided centrifugal action could be detected.

The moticns of the dust particles produced by the repul-ion of the hot surface su;gested that electricity might play some part in these phenomena. Experiments were made to test this. The hot body was insulated and connected with an electroscope ; but no electrical disturbance was observed, nor could any electrification be got from the dust and hot air streaming up from the hot wires. The effects of electrification were studied by insulating and charging the hot surface. The effect was found to be the opposite of the heat effect. If the potential is slight, and the temperature high, the heat is able to keep the dust off the surface of the b-dy and the dark plane district, but if the temperature falls, or the potential is increased, a point is reached when the electrical attraction overcomes the heat effect, and the dust particles break in upon and destroy the dark space.

It was observed that after the dust particles were electrified they tended to deposit themselves on any surface near them, and experiments were made to determine the best conditions for purifying air in this manner. It was found to be best done by cauing as rapid a discharge of electricity as possible, by means of points, surfaces being placed near them to increase the electrification of the dust, and to augment the rate of the currents of air which were driven from the poiuts. The e surfaces became places on which the du-t deposited itself before lo-ing its charge. A large flask was found to be rapidly cleared of a cloud of dust by means of a point-the dust being almont entirely deposited on the inside surface of the flask. If the end of the conductor in the flask terminated in a sphere, but little effect was produced. Electricity has also been found capable of depositing the very fine dust of the atmosphere. The air in a large flask was purified much more quickly by means of the electric discharge than it could have been by means of an air-pump and cotton-wool filter.

It is shown that a wet and hot surface repels dust more than twice as strongly as a hot dry one. From this it is concluded that the heat and moisture in our lungs exert a protecting influence on the surface of the bronchial tubes and tend to keep the dust in the air which is ebbing and flowing through them from coming into contact with their surfaces. This was illustrated by placing a hot and wet surface in a current of dense smoke, where it remained some time without receiving a speck of soot, while a similar surface, but cold, was blackened with the smoke. It is pointed out that on account of the irregularities on the surface of the tubes, and of the more violent movements of the air in the lings, and on account of curves and 1 rojecting edges, the protection in the lungs is not perfect. Still it is thought that this repeling action at these surfaces must have some influence, and it seems possible it may explain some clinatic effects, as it is evident that the lungs will be wuch better protected in such places as Davos Platr, where the air is cold and dry, and the repelling forces at a maximum, than at places like Madeira, where the air is warm and moist and these forces are at a minimum. This point can, however, only be determined satisfactorily by anatomical examinations of lungs which have lived under the different conditions.

In the experiments it was observed that dnst not only tended to move away from hot surfaces, but also that it was attracted by cold ones, and attached itself to them. To stujy this effect glass plates were put in different positions near the hot platinum wire. Very beautitul impressions of the dark plane can be obtained by placing a piece of glass vertically and transversely over the hot wire. The hot air in flowing over the glase, deposits its dust on the surface of the plate leaving a clear line in the middle, indicating where the dustless air of the dark plane had passed. In this way the dust is trapped on the glass to which it
adberes with some firmness, and not only the impressions lut the dark planes themselves may thus be preserved. ${ }^{2}$

Other experiments to study the repulsion and attraction of hot and cold surfaces were made by placing glass plates on both sides of the hot u ire. An interesting result was obtained when the plates were about I mm . apart. Using magnesia pouder, the particles could be seen ri-ing in the current, and approaching the bot wire; they were then observed to te violently repelled towards the cold suiface, to which they adhered. If there was sufficient difference of temperature, not a single particle of dust was carried by the current past the hot wire.

A thermic filter is then described. In this filter the air is passed through the space formed between two concentric tubes. One tube is kept cold by a stream of water, and the other heated by means of steam or a flame. This instrument was shown in action; one end of the filter was connected with a glass flask, in which the condition of the air was tested. So long as the difference of temperature was kept ap, and the current not too rapid, the air passing through it showed no sigus of producing eloudy condensation on the presture being reduced, thowing that the filter had trapped all, even the invisible dust particles

Some experiments on the effect of diffusion on the distribution of dust at the surface of a diaphragm are described. When carbonic acid diffuses into a space, the duvt comes clore to the diffusing surface, but if hydrogen is the diffusing gas, a clear space is formed in front of the diaphragm.

An explanation is then offered of the repulsion of dust by hot surfaces and its attraction by cold ones It seems porsible, that the dust might be repelled in the same way as the vanes of a Crookes' radiometer, by a radiation effect. That this was not the true explanation was, however, proved by placing in the dust-box a polished silver flat test-surface, one half of which was coated with lamp-black, when it was found that the dark space in front of the lamp-black was not any thicker than that in front of the polisbed metal. It is thought that the repulsion is due to the diffusion of the hot and cold air molecules. The hot surface repels because the outwand diffusing molecules are hot, and have greater kinetic energy than the inward moving ones; and as the side of the dust particle next the hot surface is bombarded by a larger number of hot molecules than the other side, it is driven away from the hot surface. The attraction of a cold surface is explained by the less kinetic energy of the outward than of the inward diffusing molecules, Some experiments are referred to, to show that the rate at which gas molecules diffuse indicate that this diffusion effect is sufficient to account for the repulsion and attraction of the dust.

If the explanation here given is correct, then the dust is repelled in the same way as a vane of a radiometer when placed in front of a suiface fixed inside the radiometer bulb, and hotter than the residual gas, the principal part of the energy producing the motion being transferred from the hot surface to the repelled surface by the kinetic energy of the molecules, and not by radiation.

In Illu-tration of the tendency of dust to move from hot and to deposit itself on cold surfaces, the following experiments were made. Two mirrors, ore hot and the other cold, fixed face to face and close to each other, were placed in a vessel filled with a dense cloud of magne ia, inade by lurning mag. nesium wire. After a short time the mirrors were taken out and examined. The hot one was quite clean, while the cold one was u hite with magnesia duzt. In another experiment a cold metal rod was dipped into some hot magnevia powder; when taken out it had a club-shaped mass of magnesia adhering to its end, while a hot rod attracted none.

This tendency of dust to leave hot 1 urfaces and attach irself to cold ones explains a number of familiar thingr, among others it tells us why the walls and furniture of a stove-heated room are always dirtier than those of a fire-warmed one. In the one case the air is warmer than the surfaces, and in the other the surfaces are warmer than the air. This effect of temperatare is even necessary to explain why so much soot collects in a chimney. It explains sometling of the peculiar liquid-like movements of hot powders, and perhaps something of the spheroidal condition.

For practical application, it is suggested that this effect of temperature might be made available in many chemical works for the condensation of fuwes, and that it might also be nsed
${ }^{2}$ Specinens of these trapped dark planes were shown at the meeting, some of them made of white powder deposited on blackened glass, cthers of charcoal deposited on opal klast.
for trapping soot in chimneys. A small trap of this kind was shown. It consisted of a tall metal tube or chimney, surrounded by another tube slightly larger. The products of combustion are taken up the centre tube and down the intervening space. The beat of the gases is thus made to do its own filtering. This apparatus being placed over a smoky lamp, it trapped out most of the soot, and deposited it on the inside of the outer tube. This arrangement of apparatus is too delicate and troublesome for general use, and it is suggested that, as by simply cooling gases in presence of plenty ot surface much of its dust is deposited, it might be possbble and advantageous under certain conditions to purify air by heating and cooling it a number of times, which could be done at a small expense by means of regenerators.

Experiments were also made by discharging electricity into the smoke in a chimney. This also produced a marked diminntion in the blackness of the escaping smoke. The supply of electricity of sufficiently high potential is however a difficulty for the present.

A VAST DUST ENVELOPE ${ }^{1}$

SCIENTIFIC men have evinced extraordinary interest in the wonderfully lrilliant sunsets that have for some time pa-t been observed in different parts of the world. Various theories have been advancerl, but all are agreed that the real cause is not yet definitely determined. At the Brevoort Howe yesterday, a Tribune reporter spent a couple of bours with Prof. S. P. Langley, astronomer at Allegheny Observatory, Allegheny, Penn. His views upon the topic of the transmissibility of light through our atmosphere are stated below :
' At first I supposed the sunset matter a local phenomenon, bat when the reports showed it to have been visible all over the world, it was obvious that 4 e must look for some equally general cause. We know but two likely onex, and the e have been already brought forward. One is the advent of an unusual amount of meteoric dust. While something over ten millions of meteorites are known to enter our atmouphere daily, which are dissipated in dust and vapour in the upper atmosphere, the total mass of these is small as compard with the bulk of the atarosphere itself, although absolutely lirge. It is difficult to state with precision what this amount is. But severa! lines of evidence lead us to think it is approximately not greatly les tban 100 tons per diem, nor greatly more than 1,000 tons per diem. Taking the largest extimate as still below the truth, we must suppose an enormously greater accession than this to supply quantily sufficient to produce the phenowenon in question; and it is hardly possible to imagine such a meteoric inflow unaccompanied with visual phenomena in the f rm of 'shooting stars,' which would make its advent visible to all. Admitting, then, the possibility of mete ric influence, we must consider it to be nevertheless extremely improbable.
"There is another cause, which 1 undertand has been 4 gg . gested by Mr, Lockyer-though I have not seen his articlewhich seems to be more acceptable-that of volcanic dust ; and in relation to this presence of dust in the entirc atmosphere of the planet, I ean offer some little personal experience. In 1878 I was on the apper 'lopes of Mount Etna, in the voleanic wastes, three or four hours' jonrney above the zone of fertile ground. I passed a portion of the winter at that elevation engaged in studying the trausparency of the earth's atmosphere. I was much impressed by the fact that here, on a site where the air is supposed to be as clear as anywhere in the world, at this considerable altitude, and where ne were surrounded by snow-fields and deserts of black lava, the telescope showed that the air was filled with minute dust particles, which evidently had no relation to the local surroundinge, Lut apparently formed a portion of an envelope common to the whole earth. I was confirmed in this opiaion by my resollection that Prof. Piazzi Smyth, on the Peak of Teneriffe, in mid-ocean, saw these strata of dust rising to the height of over a mile, reaching out to the horizon in every direction, and so dense that they frequently hid a neighooring island mountain, whose peak rose above them, as though out of an upper sea. In 188 1 I was on Mount Whitney, in Southern California, the bighert peak in the United Statcs, unless rome of the Alaskan mountains can rival it. I bad gone there with
${ }^{2}$ From the Nrav Joot Daily Tribunc, Jmnuary 2. Communicated by rof. Piazzi Smyth.
an expedition from the Allegheny Observatory, under the official direction of General Hazen, of the Signal Service, and had camped at an altitude of $12,0 c 0$ feet, with a special ohject of studying analogous phenomena. On ascending the peak of Whitney, from an altitude of nearly 15,000 feet the eye looks to the east over one of the most barren regions in the world. Immediately at the foot of the mountain is the Inyo Desert, and on the east a range of mountains parallel to the Sierra Nevada. but only about 10,000 feet in height. From the valley the atmosphere had appeared beautifully clear. But from thiaecial height we looked down on what seemed a kind of level dust-ocean, invisihle from below, but whoce depth was six or seven thourand feet, as the upper portion only of the opposite mountain range rose clearly out of it. The eolour of the ligbt reflected to u from this dust-ocean was cle rly red, and it stretched as far as the eye could reach in every direction, although there was no special wind or local cause for it. It wav evidently like the dust scen in mid-ocean from the Peak of Teneriffe-something present all the time, and a permanent ingredient in the earth's atmosphere.
"At our own great elevation the sky was of a remarkably deep violet, and it seemed at fir,t as if no dust was present in thrs upper air, but in getting, just at noon, in the edge of the hadow of a range of cliff, which ruse 1,200 feet above us, the sk y immediately about the sun took on a whitish hue. On scrutinising this through the telescope it was found to be due to myriads of the minutest dust particles, I was here at a far greater heigbt than the summit of Eina, with nothing around me except granite and snow-fields, and the pre-ence of this dust in a comparaively calm air much impressed me. I mentioned it to Mr. Clarence King, then Director of the U'nited States Geolog cal Surveys, who was one of the first to ascend Mount Whitney, and he informed me that this upper dust was 1 robably due to the "loess' of China, having leen borce across the I'acific and a quarter of the way around the world. We were at the summit of the continent, and the air which swept by us was unmingled with that of the lower regions of the earth's surface. Even at this greal altitude the dust was perpetually present in the air, a d 1 became confirmed in the opinion that there is a permanent dast shell inclosing the whole planet to a height certainly of ab int threc miles (where direct observation has followed it), and not impro3ably to a height even greater; for we have no reason to suppose that the dast carried up from the earth's surface stops at the height to which we have a cended. The meteorite, which an: consumed at an average height of twenty to forty miles, must add somew hat to this. Our olservations with special apparates on Mount Whitney went to show that the red rays are transmitted with greatest facility through our air and rendered i: extremely probable thit this has a very large share in the colourof a cloudless sky at suncet and suorice, these colours depending largely upon the average size of the dust paricicles.
"It is esjecinlly worth notice that, as far as such observationgo, ne have no reason to doubt that the finer du t from the earth's surface is carried up to a surprising alitude. I speal here, not of the grosser duat particles, but of those which are so fine as to be individuaily invisible, except under favouring circumstances, and which are to minute that they might be an almost unlimited time in ettling to the ground, even if the atamosphere were to become perfectly quiet. I have not at hand any data for estimating the amount of dues thrown into the air by such eruptions as those which recently occurred in Java and Alaska. But it is quite certain, if the accounts we have are not exagyerated, that the former alone must bave been counted by millions of tons and must in all probability have exceeded in amount that constributed by meteorites during an entire year. Neither must it be supposed that this will at once sink to the surface agzio. Even the smoke of a conflagration so utterly insignuficant, counpared with nature's scale, as the burning of Cbicago, was, according to Mr. Clarence Kiny, perceived on the Pacific Coast; nor is there any i pprobability that I can see in supposing that the eruption at Krakatoa may have charged the at sosphere of the whole planet (or at lenst of a belt encircling it) for montbs with particles sufficiently large to scatter the rays of red light and partially abworb the others, and to produce the phenomenon that is now exciting so much public interest. We must not conclude that the cause of the phenomerion is certainly known. It is not. But 1 am inclined to think that there is not only no antecedent improbability that these volcanic eroptions on such an unprecedented scale are the cause, but that they are the most likely cause which we can acsi?n."

THE ORIGIN OF THE SCENERY OF THE BRITISH ISLANDS'

THE insular position of Britain, which we are accustomed to regard as an essential and aborizinal feature of the country, is merely accidentsl, and has not always beea msintained. The intimate relation of Britain with the Continent is well shown by the Admiralty charts. If the west of Europe were elevated 200 ft .that is, the height of the London Monument-the Straits of Dover, half of the North Sea, and a large part of the English Channel would be tarned into dry land. If the elevation extended to 600%. -that is, merely the united heights of St. Psnl's and the Monu-ment-the whole of the North Sea, the Baltie, and the English Channel would become land. There would likewise be added to the European area a belt of territory from 100 to 150 miles broad, stretching to the west of Ireland and Scotland. A vast plain would nnite Britain to Denmark, Holland, and Belgiam, and would present two platforms, of which the more southerly would stretch from what are now the Straits of Dover northward to the northern edge of the Dogger Bank. The steep declivity separating the two plateaux is doubtiess a prolongation of the Jurassic and Cretaceous escarpments of Yorkshire. It is trenched at either end by marked depressions, of which the western is a magnificent valley through which the nnited waters of the Rhine and Thames would flow between the Dorger Bank and the Yorkshire cliffs. The eastern gap would allow the combined Elbe and Weser to escape into the northern plain. Possibly all those rivers would nnite on that plain, but, in any case, they would fall into a noble fjord which would then be revealed following the southern coast line of Norway. Altogether an area more than thrice that of Britain would be added to Europe. By a total ri-e of 1,800 feet, Britain would be nnited to the Faroe Islands and Iceland; while the Arctic and Atlantic Oceans would be separated. From its position on the oceanic border of a continent, Britain has been exposed to a great variety of geological cbange. In such a position marine erosion and deposit are most active, and a slight upheaval or depression, which would have no sen ible effect in the interior of a continent, makes all the difference between land and water. Moreover, there appears to be a tendency to special disturbance along the edge of an ocean. America affords the most marked proofs of this tendency, but in the structure of Scandinavia and its prolongation into Scotland and Ireland there appear to be traces of similar ancient ridging np of the oceanic border of Europe.

There is a remarkable convergence of geological formations in Britain, each carrying with it its characteristic scenery. The rugged crystalline rocks of Norway reappear in the Scottish Highlands ; the fertile Chalk, with its smooth downs and gentle escarpment, stretches across to us from the north of France ; the great plains of North Germany, strewn with the debris of the northern hills, extends into our eastern lowlands; even the volcanic plateanx of Iceland and Faroe are prolonged into the Inner Ifebrides and the north of Ireland.

The present surface of Britain is the result of a long, complicated process in which underground movements, though sometimes potent, have only operated occasionally, while superficial erosion has been continnous, so long as any land has remained above the sea. The order of appearance of the existing features is not necessarily that of the chronological seqnence of the rocks. The oldest formations have all been buried nnder later accumula. tions, and their re-emergence at the snrface has only been brought abont after enormous denudation. In its general growth, Britain like the rest of Europe has, on the whole, increased from the north by suecessive additions along its sonthern border. The oldest npheavals ridged ap the Palazozoic rocks into folds running north-north-east and south-south-west, as may yet be seen in Scotland, in the Lake Country, and in Wales. By a later series of folds the younger Palzozoic rocks were thrown into north and south and east and west ridges, the latter of which still powerfully affect the topography in southern Ireland, and thence through South Wales and Belgium. An east and west direction was followed by the more important subsequent European disturbances, such as those that npheaved the Pyrenees, Jura, and Alps. Some of the latest movements that have powerfully affected the development of our scenery were those that gave the Secondary rocks their general tilt to south-east. It is very doubtful if any part of the existing topography can be satisfactorily traced back beyond middle or older Tertiary time. The amount of erosion

- Abstract of the first of five lecturea by Archibald Geikie, F.R.S.. DirectorGeneral of the Geological Survey, given at the Royal Institution, January ag.
of some of the hardest rocks of the country since that date has been prodigious, as may be seen in the fragmentary condition of the volcanic pliteaux of the Inner Hebrides.
The main topographical features of Britain may be arranged as mountains, tablelands, valleys, and phains. All our mountains are the effect of erosion on areas ofiland successively upheaved above the sea. In the development of their forms, the general outlines have been mainly determined by erosion independent of geological struetnre ; while the details have been chiefly guided by structure, but partially also by the rate "and kind of erosion. Kuggedness, for example, has reculted primarily from structure, but has been aggravated by greater activity of erosion. The mountainous west, with a greater rainfall and steeper slopes, is more ragged than the mountainous east. The tablelands of Britain are of two orders-1, those of deposit, which may be either (a) of sedimentary rocks, horizontal or nearly so, as in the millstone grit and Jurassie plateaux of Yorkshire, or (b) of volcanie rocks, as in the wide plateaux of Antrim, Mull, and Skye; 2, those of erosion, where, as the result of long-continued degradation, a series of plicated rocks bas been cut down into a more or less uniformly level surface, as in South Wales. By the elevation of such a surface into a high platean, erosion begins anew, and the plateau is eventually trenched into a system of ridges and isolated hills, as has happened in the llighlands. The valleys of Britain are the result of erosion either (a) guided by geological structnre, as in what are called longitudinal valleys, that is, valleys which run along the strike or ontcrop of formations, as the Great Glen and Glen Spey in Scotland and the valleys of the Trent and Avon in England; or (b) independent of geological structure, as in the transverse valleys which embrace the great majority of British examples. Our plains have been produced by the spreading ont of delrifus by the operation of rain and rivers, as in river terraces and alluvial plains; by the sea, as in raised beaches; or by land-ice and floatingrice, as in the glacial drifts of the Lowlands. The existing watershed of Britain is profoundly significant, affording a kind of epitome of the geological revolutions through which the surface of the country has passed. It lies nearer the west than the east const. The western slope being thus the steeper, as well as the more rainy, erosion must be greater on that side, and consequently the watershed must be slowly moving eastward. Probably the oldest part of the watershed is to be found in the Highlands, where its trend from north-north-east to south-south-west was determined by the older Palzozoie upheaval. Its continuity has been interrupted by the dislocation of the Great Glen. After quitting the Highlands it wanders across the Scottish Lowlands and Southern Uplands, with no repard to the dominant geological structure of these districts, as if, when its course was originally determined, they had been baried nader so vavt a mass of superincumbent rock that their structuredid not affect the surface. Ranning down the Pennine Chain the watershed traverses a region of enormous erosion, yet from its general coincidence with the line of the axis of elevation, we may perhaps infer that the anticline of the Pennine Chain has never been lost under an overlying sheet of later andisturbed rocks. The remarkable change in the character of the watershed south of the Pennine Chain carries us back to the time when the great plain of the Secondsry rocks of England was npraised with a gentle inclination to enst and soatheast. The softer strata between the harder escarpment-forming members of the Jnrassic series and the Palaozoic rocks of the Pennine Chain were worn away, and two rivers carrying off the drainage of the southern end of that chain flowed in opposite directions, the Avon turning sonth-west and the Trent northwards. By degrees these streams moved away across the broadening plain of softer strata as the escarpments emerged and retreated. At the same time streams collected the drainage from the aprising slope of Secondary rocks and flowed sonthcastward. Successive lines of escarpment have since been developed, and many minor watersheds have arisen, while the early watershed has undergone much modification, these various changes pointing to the continuous operation of ranning water.

SOCIETIES AND ACADEMIES London

Royal Society, December 13, 1883.-" Experimental Researches on the Electric Discharge with the Chloride of Silver Battery." By Warren De La Rne, M.A., D.C.L., Ph.D., F.R.S., and Hugo W. Müler, Ph.D., F.R.S.

Second Postcrift to Part IV. "Phil. Trans." Part II., Vol. clxxiv.
Striking Distance-In a post-cript to Part IV, of our researches, ${ }^{\text {r }}$ we stated that, with 14,400 cells, partly of the rod form, partly of the chloride-in-powder form, the length of the spark between paraboloidal points was 0,7 ineh (17.8 mm), and betueen a point and disk $0^{\circ} 62$ inch ($15^{\circ} 7 \mathrm{~mm}$.), and that it does not appear, therefore, that the law of the spark being as the square of the number of cells bolds good beyond a eertain namber.

These results were obtained at the Royal Institation; since the remival of the battery to our lahoratory we had not, at the date of the po tscript to Part IV. of our researches, charged up the whole of it. Recently, however, we have put the battery in thorough order, by scraping the zine rods ${ }^{2}$ of the cells already charged up and added newly made up cells to bring up; the total to 15,000 cells, all of the rod form.

Ilaving the whole 15,000 cells in perfeet order, we-thought that it would be desirable to make fresh determinations of the striking distance, Inereasing the potential a thonsand cells at a

time, between two very slightly convex disks (planes), a point and disk, and two paraboloidal points. These points are oneeighth of an inch (3.175 mm .) in diameter, and three-eightbs of an inch ($9^{\circ} 525 \mathrm{~mm}$.) long. In the case of a point and disk, the point was like one of those used for two points, and the disk was Ig inch [3 '334 cm .] in diameter. The two $1^{\text {lanes used were } 1}{ }_{1} \frac{6}{8}$ inch [$3^{\circ} 334 \mathrm{~cm}$.] in diameter.

As the points, particularly the negative, are deformed by the discharge, the precaution was taken to touch up the point after each discharge in the shaping-tool, scresed to the mandril of the

lathe, mentioned in Part I, of our researches, ${ }^{2}$ ejand thus to restore them to a true paraboloidal form.

Results were obtained which are plotted down in the diagram. The several results, the different sets being distinguished by plain crosses or crosves with a dot, are laid down on the diagraun, Fig. 1, to which are also added other results already published from former experiments ; these latter have a ring on one of the members of the cross.

- We are at present making experimeats in order to prevent the deposit of onychloride of rinc on the zac rods by covering the charging fuid with a layes of paration nil
Layet fill. Tramb., put i. vol. elxik p. 79, separate copy p. ag.

From these curves were deduced the numbers given in Tables I , II., III. in C.G.S. buits.

Table I.-Two Disks

Table II.-A Paraboloidal Point and a Disk

E. M.F. in voles	Striking distance in centimetres	Diflerence of potential per centimetre. Voles	Intensily of force	
			Fiectromagnetic	Electrostatic
1,000	$0 \% 123$	81,103	8.11×10^{12}	270
2,000	0.0567	35,274	3.53 "	118
3,000	- 1379	21,755	2.18 .,	73
4,000	$0 \cdot 2447$	16,347	:63 "	54
5,000	0.4029	12,410	$\cdots 24$ "	41
6,000	0.5631	- 10,655	107 ",	36
7,000	0.7039	9.945	0.99 "	33
8,000	0.8447	9,478	0.95 "	32
9,000	0.9709	9,270	0.93 "	31
10,000	10874	9,196	0.92 ",	31
11,000	1.1990	9,174	0×92	31
12,000	1.3058	9,190	0.92 ,	31
13,000	14078	9,234	0.92 "	31
14,000	I'5145	9,244	0.92 "	31
15,000	$1 ' 6116$	9,307	0.93 "	31
15,450	1.6600	9.307	-*93 ",	31
Table III. - Two Parabolovidal Points				
		Difference of	In ensity of force	
	ceatimetres		Electro mavgetic	Electrostatic
1,000	0.0173	57,866	$5^{7} 79 \times 10^{12}$	193
2,000	$0 \cdot 0493$	40,568	4.06	135
3,000	$0 \cdot 1282$	23,409	$2 \cdot 34$ "	78
4,000	0.3078	12,996	1.30 "	43
5,000	0.5107	9,790	0.98 "	33
6,000	0.6845	8,766	0.88 "	29
7,000	0.8496	8,239	0.82 "	27
8,000	10117	7,908	0'79 "	26
9,000	$1 \cdot 1602$	7,757	0.78	26
10,000	1'2913	7,744	0.77 "	26
11,000	1.3130	7,785	0.78	26
12,000	1.5243	7.873	0.79 "	26
13,000	1.6271	7.990	0.80 "	27
84,000	17146	8,165	0.82 "	27
15,000	1.7961	8,351	0.84 0	28
15,450	18500	8,351	0.84 "	28

An inspection of the diagram, drawn on a reduced scale from the earves as originally laid down, shows that the eurve for approximate planes (slightly convex, to in.sure the centres being the most prominent) is continuously concave, whereas those for both point and disk and two points are concave only for a certain distrace, and then turn off and become convex. Moreover, it is seen that the intensity of force per centimetre decreases continuously up to $\mathbf{5 5 , 4 5 0}$ volts in the case of planes; but that, in the case of a point and disk, and also in that of two points, the decrease ceases after a certain potential has been reached, and that then it increases so as to become nearly a constant quantity. Between a point and a disk the potential per centimetre at 9,000 volts and beyond is very nearly 9,200 ; consequently, if the law holds gooi, to produce a spark 1 decimetre ($3^{\prime \prime} 94$ inches) long, 92,000 volts, one 1 metre (39.37 inches) long, 920,000 volis, ${ }^{1}$ and a flash of lightning i kilometre (0^{-621} mile) in length, a potential of $920,000,000$ volts would be required, but this potential wculd be lessened by the diminution of the atmospheric pressure at the height of a kilometre, namely $607^{\circ} 4 \mathrm{~mm}$. (799,210 M), or a mean pressure of 713.8 mm . $(939,211 \mathrm{M}$) between I kilometre and the earth. Taking the mean pressure 939,2 II M , it would require $864,000,000$ volts to produce a discharge between a cloud (regarded as a point) \& kilometre high and the earth.

It is extremely dificult to eonjecture how a cloud can become charged to such an enormous potential, unlens the charged molecules balance each other (as those of a stratum in a vacuum tube may be conceived to do) until a disturbing cause breaks up the arrangement ; and then the whole of them are discharged in one direction with their aggregate potential.

We may add that less than 15,000 cells would not have sufficed to make out the fact that the intensity of force to produce a discharge between a point and disk or two points becomes a eonstant after 9,000 to 11,000 cells has been reached.

The following table gives the ratios of the striking distances between a point and a disk and two points respectively, taking those between two disks as unity. And aiso the relation between the striking distances between a point and a disk and between two points, taking those between a point and a disk as unity.

Cells	Ratio between point and dink to that berween two disks	Ratio between two points and that between two divks	Ratio belween two points and that between a point and disk
With 1,000	0.60	0.84	1.40
" 2,000	$1 \cdot 32$	1.15	$0 \cdot 87$
" 3,000	2.09	$t ' 94$	0.93
" 4,000	2.68	3.37	$1 \cdot 26$
", 5,000	3.42	4.34	$1 \cdot 27$
" 6,000	$3 \cdot 82$	4.65	1.22
,7 7,000	391	472	1.21
" 8,000	3.94	$4 * 71$	${ }^{\prime} 20$
" 9,000	3.89	4.65	$1 \cdot 20$
", 10,000	3.80	4.51	119
" 11,000	3.69	4.35	$1 \cdot 18$
", 12,000	3.58	4.18	${ }^{1} 17$
" 13,0¢0	3.46	$4^{\circ} \mathrm{CO}$	$1 \cdot 16$
" 14,000	3*39	3.84	113
" 15,000	3.30	3.68	$1 \cdot 12$
			Mean 1't6

The striking distances from which the above ratios are esleulated are those obtained from the smoothed curves.
January 17.-"Evidence of a Large Extinct Australian Lizard (Nosiosaurus dentatus, Ow.)," by Sir Richard Owen, K.C.B., F. R.S., \&c.

This evidence is based on a small fragment, seemingly of coal, with roots of two teeth adherent thereto, transmitted to the author from the Department of Mines, Sydney, New South Wales; bat stated to be from a Pleistocene deposit. The author had
, To produce a spark between a point and a disk used for example as the dischargers of an induction coil-

In le				oul	require voles
1 inch	*	-	\ldots	...	23.367
1 foot	\ldots	*-	280,400
1 yard	**	\cdots	\cdots	-.	841,230

noted that vegetable fossils from the same formation and locality presented a similar jet-black colour, and glistening petrified fracture. The paper details a series of comparisons with known recent and fossil Saurians. The size and striated exterior of the teeth suggested, at first, crocodilian affinity. But closer comparisons, aided by application of the microscupic test to the tissuex of both the bone and tooth, led to a eonclusion of the affinities of the fossil reptile represented by the fragment of mandible and attached parts of teeth. It was equal in size to the extinet horned lizard M/egalania, which had an armature of the mooth like that of a tortoise. Notiosaurws was a toothed and plenrodont lizard, like the large existing Hydrosaurus of Australia, but of more than twice its size.

Linnean Society, January 17.-Sir John Lubbock, Bart., president, in the chair,-Mr. A. S. Penniugton was elected a Fellow of the Society.-Ir. R, C. A. Prior exhibited and made remarks on a series of useful timbers from British Guiana. These were all hard woods, among which may be mentioned the "greenheart" (Naclandra rodiat); the "duealibolly,", a rare, red wood used in the colony for farniture ; "wamara," a very hard wooded tree sixty feet high, used by the natives for clubs, \&c.; " letterwood" (Brosimum anbletii), useful for inlaying and making very choice walking stieks; "hyawabolly" (Omphalobium lamberti), a rare tree of twenty feet high, known commercially as zebra wood.-Mr. H. N. Ridley drew attention to a fasciated braneh of holly from Herefordshire, in which certain of the leaf-branches were curiously interwoven.-A presumed portrait of linnews, in oil, was exhibited on behalf of Mr. F. Piercy.-A paper was real by Mr. J. G. Baker, viz. a review of the tuber-bearing species if Solanum. As they stand in De Candolle's "Prodromus" awel other botanical works, the taber-bearing Solannms are estimated as belonging to twenty distinet species. Mr. Raker thinks that not more than six of those are really diatinet, viz. (t) Solamum tuberosum, a native of the dry, high regions of the Andes from Chili northwards to Venezuela, reappearing in other varieties in Mexico and the Rocky Mountains; (2) S. medglia, au inhabitant of the damp eoasts of Chili, as far south as lat. 44° to 45°; (3) S. commerrom, a low-level plant of Uruguay, lately introdnced as a novelty under the name of S. ohrendaif ; (4) S. cardiophyllum, a littleknown species from the Mexicau highlands ; (5) S. jamesii, a native of Mexico and the Rocky Mountains ; and (6) S. a.rycarfum, a native of Central Mexico. The two last have the tubers very small. All our cultivated races of potato belong to S. fuberosum ; lut the plants gathered by Darwin in the Chonos Archipelogo, and that experimented upon by Solme at Chiswick, are both S. maglia. The author attribntes the deterioration of the patato partly to its being cultivated in too humid climates, and partly to the tuber having been unduly stimulated at the expense of the other organs of the plant. There are many hundred species of Solanum known which do not produce any tubers, but maintaiu their ground in the world by their seeds alone, and he urges that, in order to extend the power of climatic adaptation of potato species, (2), (3), and (4) should be brought into caltivation and tried both as pare specific types and as hybridised with the nnmeroas forms of S, tubcrasum.- The next paper read was by Mr. A. D. Michael, ou the "Hypopus" question or life history of certain Acarina. From a careful series of experiments and observations he coucludes that true "Hypopi" are not adult animals, but only a stage, or heteromorphous nymphs of Tyroglyphus and allied genera. Nor do all individuals hecome "Hypopi," which latter stage takes place during the second nymphal eedysis. It seems a provision of nature for the distrilution of the species irrespective of adverse conditions. "Hypopi" are not truly parasitic, nor confine themselves to any particular insect. A new adult form described is called by the author Disparipes Comh h, and he believes there are other species of the genus. Donnadieu's bee parasites are admitted to be adults, though it is uncertain if they are identical with Dufour's Trichodactylus.-Dr. M. C. Cooke made a communication ou the structare and affinity of Spheria pacula. Its position has hitherto been unquestioned, since originally deseribed by Schweinitz in 1825. Dr, Cooke, however, shows from mieroscopical examination that structurally it is Hymenomycetal, and not Asconycetal, being allied to the genus Polyporus or Porothelium. He designates it as Polyporns (Mesopus) pocwlus, Sehwein., allied perhaps in habit to P. pendulus, bnt in substance to P. कhipidium.-A paper by Mr. W. Joshna was read, viz. notes on some Burmese Desmidiere, in which he figures and
describes new and interesting species. -Novitates Capensis ma the title of a paper by Mr. Henry Bolus, ant mainly confined to diagnoses of new or rare orehids from South Africa.
E. Institution of Civil Engineers, January 22.-Sir Frederick Bramsell, F.R.S., vice-prevident, in the chair. - The paper reed was on the adoption of standard forms of test-pieces for bars and plates, by Mr. William Hackney, B.Se., Assoc. M. Inst.C.E.

Edtnburgh

Royal Socicty, Jauuary 7.-T. Stevenson, C.E., vice. president, in the chair. - Papers were read on the approximation to the routs of cubie equations by recurring ehain fractions, b_{5} Mr. E. Sang, and ou the researches of M. E. de Jonquieres oo periodic continued fractions, by Thomas Muir, M.A. The author showed that the results which M. de Jonquicres is from tive to time communicating to the French Acarlemy are merely particular cases of a more general result which he commanicated to the Society some years ago.-A paper was also read on new forms of nerve terminations in the skin of mammals, by S . Hoggan, M. B, the latter being communicated by Prof. Turner. -A recond paper was laid ou the table on a diagnosis of the phanerogamous plants of Socotra, by Prof. Bayley Balfour.-A communication was read ou the Tnnicata of the Porrupine Expedition by Prof. Herlman.-An arrangement of the metalsin an electro-frietional series was submitted by A. Macfarlabe, M. A., D.Sc. As the result of a large number of quantitative experiments, he found that the arrangement of the metals according to the amount of negative electrieity produced upon them by a constant amount of friction (without abrasion) is as follows:-Gold, 181; platinum, 136; tin, 126; silver, 103 ; copper, 100 ; lead, 62 ; nickel, 59 ; brass, 59 ; irok, 56 ; aluminium, 50 ; zinc, 45 ; magnexium, 43 ; antımony, 38 ; German silver, 32 ; bismuth, 22.

CONTENTS

Pagi
The Indians of Guiana. By. Dr. E. B. Tylor, F.R.S.

305

The Collection of Deers' Horns at the Royal Castle of Moritzburg 307
 Our Book Shelf :-

Miss Ormerod's "Guide to Methods of Insect Life, and Prevention and Remedy of Insect Ravage" . 308
Letters to the Editor:-
The Remarkable Sunsets.-Dr. M. W. Beyeriuck (With Diograms) ; William Ellis; Prof, W. G. Brown ; Prof. D. H. Marshall
Circular Rainbow seen from a Hill-top-J. A. Fleming
Unconscious Bias in Walking.-Dr. J. G. Garson; Dr. John Rae, F.R.S.; R. McLachlan, F.R.S.; F. M. Campbell; Stephen A. Marshall

360
Diffusion of Scientific Memoirs.-Prof. P. G. Tait 3^{11}
Water in Australia, - F. T. Mott 3^{11}
Deafness in White Cats.-Samuel Sexton 3^{12}
Further Discoveries in the Flora of Ancient Egypt.
By Dr, G. Schweinfurth
312
Metamorphism among Devonian Rocks 315
The Recent Storm 316
Notes . 316
Geographical Notes 3^{18}
The Aims and Prospects of the Study of Anthro-
pology. By Prof, Flower, F.R.S.
The Formation of Small Clear Spaces in Dusty Air. By John Aitken

The Origin of the Scenery of the British Islands.
By Archibald Geikie, F.R.S., Director-General of the Geological Survey325
Societies and Academies (Wish Diagram) 325

THURSDAY, FEBRUARY 7, 1884

JURASSIC ROCKS UNDER LONDON

OV two previous occasions ' the attention of the readers of Nature has been directed to the facts which have been revealed by deep borings in search of water under London. In the first of these communications it was shown how completely the predictions of geologists, as to the nature, succession, and thicknesses of the different strata under London had been verified; and in the second the question of the possibiliy of finding workable coal-seams beneath the metropolitan area was discussed at some length.

Quite recently, however, a new boring bas been put down within the London Basin, which has made known so many new facts of surpassing interest to the geologist, and has at the same time furnished them with new data, tending to modify their former conclusions on some important problems, that it may be well to recur to the subject in the pages of this journal, and to give a short account of these remarkable discoveries.

The growing wants of the town of Richmond in Surrey have caused the local authorities of that place to seek an augmentation of their water-supply by carrying to a much greater depth a well which had some years ago been put down into the Chalk. This has been done by boring by Mather and Platt's flat-rope system, the work being done under the direction of Mr. C. Homersham, C.E., and at the present time a depth of 1308 feet has been attained. Not only is this well actually a few feet deeper than the famous well at Kentish Town, which was carried 1302 feet beneath the surface, but, commencing as it does near the level of the Thames, it reaches, reckoning from the Ordnance datum line, a level more than 150 feet lower than that of any well hitherto sunk within the London Basin.

Up to the present time only insignificant supplies of water have been obtained, but it is to be hoped that as the work is carried on this spirited enterprise may meet with the success it so well deserves. To the student of London geology it has already afforded a number of facts of wonderful novelty and interest.

The succession of strata found in this well was as follows:-

Tertiary, 2431 feet	Made ground and gravel			***	**	feet to
	$\left\{\begin{array}{l}\text { London Clay... ... } \\ \text { Woolwich and Reading Series } \\ \text { Thanet Sand }\end{array}\right.$				**	160
					...	60
					-	231
Cretaceous, 8881 feet	$\left\{\begin{array}{l}\text { Chalk with flints } \\ \text { Grey Chalk } \\ \text { Chalk Marl } \\ \text { Upper Greensand... } \\ \text { Gault }\end{array}\right\}$					
			***	671
				...	-*.	16
			...	\ldots	\ldots	2013
	Neocomian (?)	*..	***	**	**	10
	Great Oolite			871
	New Red Sandstone and			M		$60+$

The lines indicate unconformable breaks in the series of strata, and the lapse of enormous periods of time between the deposition of the beds which they separate.

Down to the base of the Gault the order and thick-
${ }^{2}$ See Nature, vol. xvi. p. s, and vol. xxv. pp. 31t, 36 r .
VoL xxix.-No. 74
nesses of the several formations was exactly what would be predicted by any geologist conversant with the details of London geology. Some very interesting facts concerning the divisions of the Chalk strata under London have, however, been made out for the first time by the study of the admirable series of "cores" brought to the surface during these boring operations.

But it is with respect to the strata found lying beneath the Gault that the greatest amount of interest has bcen excited among geologists.

The Gault clay has at its base the usual band of phosphatic nodules, the so-called "coprolites," and beneath this was found a series of beds, ten feet in thickness, the nature of which is peculiar, while their age is somewhat problematical.

These beds appear in fact to consist of materials derived from the wearing away of the roc's on which they repose, but include fragments of other rocks evidently brought from a distance. They contain many "derived fossils," greatly fractured and waterworn, but very few of its organic remains are of the age of the deposit itself, and serve to fix its geological age. From a consideration of the whole of the evidence in this case, however, this series of rocks, ten feet in thickness, may be referred with considerable probability to some part of the Neocomian period. Unfortunately the typical Lower Greensand was wholly wanting, and the expected supplies of water from this source were therefore missed.

But immediately beneath this peculiar and somewhat puzzling stratum, deposits of great interest to the geologist were encountered. They consisted of thick beds of oolitic limestone, with some subordinate beds of clay, fuller's earth, and sandstone, the whole having a thickness of $87 \frac{1}{2}$ feet. A few fossils, for the most part very imperfect, were found in the limestone, but one of the clay bands, when carefully washed, proved to be veritable "El Dorado" to the palxontologist. It was seen to be crowded with specimens of Brachiopods, Bryozoa, Echinoderms, and other organisms, all of them in the most exquisite state of preservation. It is evident that the ie organisms which flourished upon the floor of the sea were killed and overwhelmed by a sudden influx of muddy sediment. The species found in this interesting bed of clay, which is only six inches in thickness, are similar to those which oceur in the Bradford Clay of Wiltshire, and the Calcaire de Ranville of Normandy. It is evident, therefore, that the deposit which contains them is of the age of the Great Oolite. These great oolite strata are found to rest directly on the Trias,-the Inferior Oolite, Lias, and Rhætic being absent.

Now no strata of the age of the Lower Oolites were before known to exist under the London Basin, though it is but fair to remember that Mr. Godwin-Austen, in his celebrated essay on the probable existence of coal under London, distinctly pointed out the possibility of the existence of such deposits.

In the boring which in the year 1878 was put down at Messrs. Meux's Brewery in the Tottenham Court Road some anomalous strata about 64 feet in thickness were found lying between the Gault Clay and the Devonian rocks in which that boring terminated. From some obscure casts of fossils detected in these beds, they were, at the time of their discovery, referred to the Neocomian.

But a careful re-examination of the question shows that, like the beds above described at Richmond, they certainly belong to the Great Oolite, though they were deposited under shallower water conditions than their equivalents at the latter place, and were perhaps, in part at least, of estuarine origin.

The Trias is another formation which has not hitherto been certainly detected under London. It is true that some geologists think that the rocks reached in the Kentish Town and Crossness borings belong to that formation, but this identification is disputed by some very eminent authorities. Although no fossils have been found in the red and variegated strata of the Richmond boring, yet their mineral characters are such as to leave scarcely any room for doubt that they belong to some part of the "Poikiltic" or New Red Sandstone system. They consist of coarse and fine grained sandstones, often exhibiting falre-bedding, which alternate with red and variegated clays or "marls." It will be of great interest to geologists if it can be determined upon what member of the Palioozoic rocks these Triassic strata repose.

The result of the deep boring at Richmond is to show that while the water-bearing strata of the Lower Greensand do not extend so far northward as Richmond, other unexpected deposits do exist beneath that town. During portions of the Triassic and Jurassic periods the great Palaozoic ridge, stretching between the Mendips and the Ardennes, was in part or wholly subnierged, and thus we find deposits of these ages along its flanks. The relation of the Great Oolite under the central and southern metropolitan district are strikingly similar to those of the Lower Oolite in the Boulonnais. Taking into consideration the proved thickness of the Upper and Middle Oolites in the "Wealden boring" at Battle, we most be prepared to find the Palrozoic axis, with its possible coal-beds, at a considerably greater depth beneath the surface in the southern half of the London Basin than had hitherto been anticipated.

Although no beds of Middle Oolite age have as yet been found under the London Basin, yet, that strata of this period were originally deposited there, we have a very interesting and curious proof. Among the beds of the Lower Greensand of the North Downs, between Sevenoaks and Farnham, we often find deposits consisting of such coarse materials as almost to merit the name of conglomerates. These consist in great part of waterworn fragments of hard and sub-crystalline rocks, evidently derived from the great Palrozoic ridge lying to the north. Mingled with these pebbles are great numbers of excessively eroded but sometinies still recognisable fossils evidently washed out of beds of Lower and Middle Oolite age. The former, as we have just showed, have now been detected under London ; but such is not the case with the latter, which may not improbably have been wholly removed by denudation before the deposition of the Cretaceous strata.

In one of the articles referred to at the commencement of this notice, it was pointed out that not only might coal be found at workable depths under London, but that, when discovered, this coal would probably be of the anthracite variety. Now although no beds of coal have hitherto been found in place beneath the metropolis, yet the Richmond boring has yielded striking and un-
mistakable evidence as to the presence and nature of the coal-seams under the London Basin. In several of the deposits pebbles of coal-measure sandstone with fragments of anthracite have been detected. From this interesting fact it may be justly inferred that while the beds in question were being deposited on the flanks of the old Palazozoic ridge, portions of that ridge consisting of Carboniferous strata and containing seams of anthracite rose above the level of the sea and yielded the fragments mentioned. That the source of these fragments was not very distant may be inferred from the brittleoess of anthracite, which certainly could not have travelled far. Thus at last the prediction of geologists has been verified, and coal has been found under London, though as jet unfortunately not in sifu.

JOHN W. JUDD

MENTAL EVOLUTION IN ANIMALS

Mental Evolution in Animals. By G. J. Romanes, M.A,, LL.D., F.R.S., \&c. With a Posthumous Essay on Instinct, by Charles Darwin. (London: C. Kegan Paul \& Co., 1883.)

IN the present volume Mr. Romanes redeems a part of the promise which he gave us in his "Animal Intelligence." He traces in its main outlines the development of mind in the lower animals. The other part of the promise, to follow the course of mental development in man, will be fulfilled in another work. We think it well that the author has thus divided his task. Each division is of sufficient magnitude to require a separate volume; and though as an evolutionist Mr. Romanes would of course maintain the continuity and identity of the process of mental evolution from its first obscure manifesti. tions in the lower grades of animals up to its higbest present point of attainment in civilised man, he woold probably allow that the two stages of the process, the sub-human and the human, are sufficiently differenced by the difference in the degree of complexity of the factors involved. To this it may be added that the detailed study of each of these two stages of mental life requires a body of knowledge of its own, a special modification of psychological method, and a particular kind of psychological interest.

In the present work the author has to face a mach more difficult task than that which he undertook in his earlier volume. This no doubt had its difficulties. For in what we call the "observation" of mind, whether in our fellow-men or in the lower animals, a process of itference is involved; and when the action to be psychologically interpreted is far removed from the ordinary types' of human action, this process is one of peculisr difficulty. But in the earlier work inference or interpre tation played a subordinate part. Here, however, it becomes the main problem. In order to connect the facts ascertained and to present a systematic view of mental life as a whole, we must have clear notions respecting the nature of mind in general, as well as of its several phases, which we mark off by the names of the faculties perception, imagination, \&c. It is not too much to say that in carrying out the task of tracing the evolution of mind in the lower region an inquirer needs to combine the special aptitudes of a naturalist with those of a psychologist.

Readers of the earlier writings of Mr. Romanes are well aware that he possesses a considerable skill in psychological analysis; and the present volume amply justifies the high expectations in this respect which his other works had excited. He shows acuteness and now and again subtlety. But ingenuity is invariably kept in check by that too uncommon quality, sound common sense. He does not strain after originality, but rather takes pleasure in affiliating his views on the doctrines of recognised masters of the science. The reader has throughout the conviction that the writer has a disinterested enthusiasm for his subject, and cares much more for adding to the store of wellascertained truth than for adding to his own reputation as a contributor to this result. In all this be seems to have caught something of the spirit of bis favourite master, Charles Darwin, of whose valuable work in animal psychology the present volume is to so large an extent a continuation.
At the very outset Mr. Romanes has to face a question which makes unusual demands on the inquirer's sobriety of judgment. What are we to include under the head of mind? How far down in the zoological scale can we confidently maintain that mind is to be found? And by what criterion are we to asccrtain its presence? The student of psychology need not be reminded that even competent writers have grown confused in seeking to demarcate the area of mental phenomena, whether as presenting themselves in connection wlth a single organism, or with the sum of organic beings. A trained psychologist like G. H. Lewes used the terms "sensibility" and "sentience" in a way that left his readers perplexed as to whether he was speaking of a psychical phenomenon properly so called, that is, a mode of feeling, or simply of a physiological phenomenon, actions of the nervous system or nervous processes. Mr. Romanes has steered clear of this confusion. He rightly criticises Lewes's use of the term "sensation," and confines it to its proper subjective signification. Mind being thus coextensive with feeling or states of consciousness, the author proceeds to lay down a criterion for asceraining its presence in any given case. It is as follows :-" Does the organism learn to make new adjustments, or to modify old ones, in accordance with the results of its own individual experience ?" Otherwise expressed, it is the manifestation of choice, choice being proved by "the antecedent uncertainty of adjustive action." In laying down this test, however, Mr. Romanes is careful to point out its imperfections. "It is not rigidly exclusive, either, on the one hand, of a possibly mental character in apparently nonmental adjustments, or, conversely, of a possibly nonmental character in apparently mental adjustments." That is to say, it is a rough test sufficient for practical purposes, and eminently in accordance with the dicta of common sense.

After a brief account of the structure and function of nerve-tissue, and of the growing complexity of nervestructures as evidenced by the double result, compounding of mental elements and compounding of muscular elements, the writer proceeds to discuss what he terms the root-principles of mind. He has already told us that the criterion of mind is choice. He now considers what is involved in the simplest type of choice. Being a mental quality, it must have its physiological correlative.

This the author takes to be what he variously calls "the power of discriminating between stimuli irrespective of their relatize mechanical intensities," the power of "selective discrimination," of "discriminative excitability," \&c. It is illustrated by the capability of a sea-anemone which had been surrounded by a turmoil of water, after a time of expanding its tentacles on contact with a solid body. This implies the discrimination of qualitatively unlike stimuli. Each of the organs of special sense has as its function "the rooting out, selecting, or discriminating the particular kind of stimulation to which its responsive action is appropriate." This power of discrimination is regarded as the root-principle of mind. This doctrine has a certain rcsemblance to the theory of Mr. Spencer and Dr. Bain, that the feeling of difference is the fundamental mode of consciousness. But the author is very explicit in saying that the discrimination he speaks of is a physiological and not a psychological property. Indeed, he allows that it manifests itself in plants, that is to say, much lower down in the scale of organisms than mind can be supposed to reach. It may, however, occur to the reader that the property is not even peculiar to organic structures. Does not a piano manifest just this selective discrimination (to qualitatively unlike stimuli) when its several strings pick out and resonate to the appropriate vibrations of a composite mass of sound? And is it not easy to conceive an artificial mechanism showing such discrimination in a far higher degree than the lower grades of animals? It may be urged, further, that what choice, as previously defined by Mr. Romanes, requires as its correlative is a germ of conscious discrimination. A new adjustive action, not provided for by the inherited nervous structures, seems to involve some vague consciousness of a difference between the new and the old, the exceptional and the usual, circumstances. Mr. Romanes might not improbably meet these difficulties by saying that in calling this physiological discrimination the rootprinciple of mind he simply means to single out the most important property of nerve-structures, the development of which up to a certain point is an antecedent condition of the appearance of mind or consciousness. But even then it would be hard to see why this was exclusively erected into the root-principle of mind to the disregard of another property, relentiveness or memory, which Hering and others have shown to be a property of all organic structure, and the importance of which, indeed, the author seems to allow later on in his work.
In order to complete the author's account of the physiological conditions of mind it is necessary to add that he supposes consciousness to arise when the time occupied by the nervous process, or the interval between sensory stimulation and muscular action reaches a certain magnitude. Mcre complexity of nervous actions does not involve consciousness, as we may see in the case of highly compound reflexer. To use the author's graphic language, consciousness involves as its immediate physiological condition a ganglionic "friction" or "state of turmoil" This increase of time "implies that the nervous mechanism concerned has not been fully habituated to the performance of the response required.' As more complex organisms are evolved, and the stimuli playing on them become in consequence more varied, this insufficiency of mechanical arrangements and consequent rise of gang-
lionic friction become more and more marked, and the insufficiency is met by the activity of the higher centres in "focusing many and more or less varied stimuli," which function involves a higher manifestation of the aptitude of discrimination, and as a consequence of this a psychical accompaniment or consciousness.

The author now proceeds to sketch out his general scheme of mental evolution by the aid of a somewhat elaborate diagram. By this last, which is of a tree-like form, we see how out of excitability, the distinguishing property of living matter, there arises, by a double root, contractility, the property of nerve-fibres, and discrimination, the property of nerve-cells, first refiex action, then conscious or voluntary. In branch-like appendages of the stem are represented the successive grades of intellect on the one side, and emotion on the other. To this are added at the sides two finely graduated scales giving the products of emotional and intellectual development. Opposite the numbered divisions of these scales appear the names of those classes of animals, species or larger groups, in which the particular products first distinctly present themselves. Finally the corresponding stages of mental development of the human individual are appended in a parallel scale. It is only fair to Mr. Romanes to say that in thus seeking to mark out by definite stages or levels the progress of mind in the animal series, he is fully aware of the impossibility of assigning hard and fast lines of demarcation. His psychological knowledge tells him that the several faculties, sensation, perception, \&c., are not absolutely distinct one from another, but involve common psychical functions. And his clear sense of the limits of our insight into the mind of the lower animals keeps him from dogmatically asserting that a particular faculty or product of mind is not present below a certain zoological level.

Having thus mapped out his ground, Mr. Romanes goes on to investigate its several divisions in detail. The order of treatment is as follows :-(1) sensation, (2) perception, (3) pleasures and pains, memory and association of ideas, (4) perception, (5) imagination, (6) instinct, (7) reason, (8) animal emotions. This does not seem a very good logical arrangement of the subject, or one which grows naturally out of the diagram. It appears, moreover, to make too much of the intellectual side of the animal mind, and too little of the emotional. This strikes one in the cursory treatment of pleasures and pains along with memory, \&c., and in the somewhat meagre review of the emotions in the final chapter. The same thing is seen, too, in the elaborate discussion of instinct, in which the highly interesting emotional element in the phenomenon is hardly touched on.
But it is, perhaps, ungracious, in view of the interesting and valuable material with which the author here supplies us, to complain of what he has not given us. To touch on only one or two points of interest, the account of the development of the several varieties of sensation from their simplest rudiments is full and instructive. The fundamental fact in memory, namely, retentiveness, is clearly seized, and it is satisfactorily shown that different grades of memory, c.g. mingling of traces of past sensations with present ones, recalling of absent sensations by association, precede the apparently simple but really complex act of perception.?

The facts brought forward in proof of the existence of imagination, that is the power of mentally picturing absent objects, even low down in the scale of animals, are interesting and conclusive. The presence in dogs, horses, asses, \&c., of what the author calls the third degree of imagination, where the image is not suggested by external objects present at the time, is ingeniously maintained by the facts of dreams, delusions, and evidences of prolonged anticipation, e.g. of the stable by the homewardjourneying horse, and recollection, e.g. of the lost master or mistress by the pining dog.

The piice de resistance in the volume is, as we might expect, the discussion of the perplexing subject of instinct. To this no fewer than eight chapters are devoted. Here Mr. Romanes shows himself at his very best. We see that he has mastered the wide range of facts involved, and keeps the many varieties of the phenomena steadily in view. We see, too, that he has pondered long and well on his facts, reading what has been said by others on the subject of his meditation. Finally we recognise his thorough sobriety of judgment, freedom from one-sidedness and from everything like speculative extravagance. Mr. Romanes begins by showing that instinct is clearly marked off from reflex action, not merely by the degree of its complexity, as Mr. Spencer says, but by its accompaniment of consciousness. Then he proceeds to illusirate perfect instincts, in which the actions are perfectly adapted to the circumstances of life for the mecting of which the instincts exist, and imperfect instincts, in which the adjustment to the circumstances of the animal's life is less perfect.
This prepares the way for the main problem, the explanation of the origin and development of instinct. There have been two chief theories propounded to meet the case. On the one hand, G. H. Lewes, and also with him apparently Wundt and others, conceive of instinct as a kind of "lapsed intelligence" analogous to the effect of habit as operating during the development of a single human life. Just as we come to do things in a mechanical and semi-conscious way as the result of having frequently done them with full consciousness, so actions of the lower animals carried out with conscious design at first may, as the result of long continuance in succeeding generations and the operation of the principle of heredity, ultimately become instinctive. In opposition to this view, a more humble origin has been assigned to the phenomenon. According to this theory, instinct does not involve intelligence in any stage of the action. Its origin is mechanical. The germ of instinctive action is due to accidental variations which have become fixed and perfected by natural selection. With this view we may take that of Mr. Herbert Spencer, that instincts grow out of reflex actions when these reach a certain degree of complexity, and only involve consciousness in their later stages of development. Mr. Rumanes combines these different theories. He allows a certain weight to Mr. Spencer's hypothesis as serving to explain the lowest type of instinctive action occupying the border land between reflex and instinctive actions proper, that is those accompanied by consciousness. But fully developed instincts can only be accounted for by the principle of variation and natural selection, and by that of lapsed
intelligence. In the first place, what the writer calls primary instincts, including those of many low animals and certain instincts of higher animals, eg. incubation, arise by the action of the first cause. This is proved by the fact that purposeless habits, tricks of manner, e.g. the trick of barking round a carriage showing itself in certain varietics of dogs, occur and are inherited. In the second place, secondary instincts, including many of those of the higher animals, eg. dread and shunning of man, or other enemies, were originally intelligent actions, and illustrate the principle of habit or lapsed intelligence. This proposition, again, is established by showing first, that " intelligent adjustments when frequently performed become automatic in the individual, and next that they are inherited till they become automatic habits in the race, ${ }^{3} \mathrm{eg}$. in the tendency of certain breeds of dogs to "beg."

In combining both these principles in his theory of instinct, Mr. Romanes follows his master, Mr. Darwin, and he has derived much assistance from the valuable essay on instinct by that writer, which was written for the "Origin of Species," but, having been withheld from that publication for want of space, now appears for the first time as an appendix to Mr. Romanes' volume. But the author has elaborated the theory sketched out by Mr. Darwin. More particularly he has illustrated at great length how the two causes may combine. He shows how on the one hand, primary instincts may come to be put to better uses by intelligence, and, on the other hand, secondary instincts may be modified and put to better uses by natural selection. The effects of domestication illustrate most clearly this conjoint action of the two principles. With respect to the comparative importance of the two causes, Mr. Romanes seems inclined to look at natural selection as the chief agency, intelligent adjustment being regarded as an auxiliary agency, the chief function of which is to supply to the controlling principle of natural selection an additional class of variations which are from the first adaptive. Mr. Romanes supports his theory by a cumulative chain of argument of very great strength, and he orders the successive steps of it in such a way as to make the reader feel its full force. His main positions seem to us unassailable. The only point we feel inclined to criticise is the limitation of the action of intelligence in the instincts of animals low down in the scale. The author appears to argue on general grounds that these must to a large extent b : due to the working of natural selection. But the facts of intelligent modification of instinctive actions cited by him, eg. in the case of the constructive actions of bees, \&c., appear to show that the animals concerned possess a considerable measure of genuine sagacity. And while it is no doubt difficult, as the author remariss (p. t9t), to attribute to an animal so low down in the scale as the larva of the caddice fly a power of consciously reasoning, it seems, on the other hand, hard to understand how, by the mere play of natural selection unaided by any rudiment of conscious discrimination and adaptation of means to ends, this little creature could have acquired the habit of either lightening its floating case by attaching a leaf to it or weighting It by attaching a small stone according as it becomes too heavy or too light. But the author shows himself so completely the master of his subject, that the reader feels
disposed to accept his conclusions in the very few instances in which his individual judgment leans the other way.

James Sully

OUR BOOK SHELF

An Introduction to the Study of Heat. By J. Hamblin

 Smith, M.A. (London: Rivingtons, 1883 .)Though the author states in the preface that "he has endeavoured in this book to explain the elementary facts connected with the theory of heat so far as a knowledge of them is required by the University of Cambridge in the general examination for the ordinary B.A. degree," it will be found that he has succeeded in producing a book which is not only admirably adapted to help a student who is preparing for this or any other elementary examination, but which, from the simple nature of the language and the clearness of the descriptions, may be read with advantage by those who have no examination to pass, but who may wish to understand something of the science of beat for its own sake.

The text is composed of short numbered paragraphs, in each of which the author deals with one new fact only, a plan eminently adaptef to save the student confusion. These paragraphs may be taken as model answers to imaginary examination questions.

Over two hundred questions are given on those parts of the subject, such as expansion, calorimetry, conductivity and hygrometry, which admit of being put in simple numerical form. Many of these are essentially exercises in arithmetic, and must irresistibly remind the reader of the unlikely questions which he used to have to answer at school. In the questions on thermometers, for instance, an observer seems to have noted the sums, differences, products, \&c., of the readings of every kind of thermometer in his laboratory, without noticing what those readings were, and then, when too late, to have met with the necessity of finding from his observations the temperatures which the instruments actually indicated. However, though observations of such a kind are rarely made, the excrcises which they furnish will of necessity make those who work them out absolutely familiar with the fundamental principles of the subject.
C. V. B.

LETTERS TO THE EDITOR

[The Edilor does not hold himself responsible for opinions expressea ty his correspondents. Neither ean he undertake to return, or to correspond with the woriters of, rejeted mannseripts. No natice is taken of anonymous commnnreations.
[The Editor wrgently requests conespondents to kemp their letters as short as possible. The pressure on his space is so great that it is impossible otherwise to insure the apprarance even of conn wnications containimg inferesting and novel facts.]

The Ear a Barometer

At a time when Ifrequenily went between Peterborough and London by the Great Northern Railway express trains, 1 found that the sudden compression of the air produced on entering a tunnel was not only perceptible by the ear, but even unpleasant, and that this unpleasant fen*ation remained till the open air was reached, when it suddenly ceased. Of course it was natural to suppose that the noise was the primary cause, but I satisfied myself that this had nothing to do with the effect, for on swallowing after entering the tunnel the sensation ceased, but recurred in the opposite sense on leaving the tunnel, when a second operation of swallowing removed it. This sbowed clearly that what was observed was real.

As far as I remember there was, as measured by the sensation, an increase of pressure, at first sudden, and then gradually rising for a second or two on entering, and a corresponding gradual and sudden decreace on leaving a tunnel.

1 did not at the time have the opportunity of taking an aneroid with me to measure the amount of the compression, but intended to try an air thermometer which I thought would be more
sensitive to a sudden change of pressure than even the most delieate aneroid.

It is strange that so few people have noticed this sensation in the ears ; besides Mr. Horace Darwin I do not know of any one who I may say has been disturbed by it.

During the gale on the 22nd and 23 rd inst. it occurred to me to try whether I eould get an idea of the pressnre that could be felt by the ear. My room faces west, and the wind was beating against the windows; so nfter shuiting the door I opened one of the windows suddenly during a furious gust, at which a small gas-flame bobbed nearly out, and the same instantareous senation was plainly felt. On shutting it again the gas-flame started np , bnt the inverse sensation was not perceptible. The gas-flame stood at apparently the same height with the window shut or open. Its movements were simply due to the starting and stopping of an extra draught in the ehimney. On examining the meniscns at the top of the column in a mercurial barometer, the ehange of pressure was plainly vivible, not by a rise and fall of the whole colamn, but by a change of curvature which was very marked when the window was opened daring the stronger gusts, A pocket aneroid showed the same thing perfectly, rising, as far as 1 could judge, about $1 / 150$ inch in general, but during one very furious blast $1 / 20$ inch; on that oceasion only did the shock on the ears seem at all comparable with what I remember to have felt in the tunnels.

It is not necessary to wait for a gale in the right direction to test the ears. I found that if a friend charger the door with bis whole strength, mueh the same enmpression was produced as by the average gust of wind. Of course the compression will depend partly on the conten's of the room, which were, in the cace in question, ahout $\mathbf{2 5 0 0}$ cubie fect.

It is probable that the change of pressure noticed by the ear is greater than that shown by the barumeter, for the in tantaneous effect on the gas flame was enormows, while the permanent action was barely perceptible ; on the other hand, the aneroid showed a permanent displacement with only a very slight recoil. The greater mobility of the gas doubtiess corresponds to the great sensibility of the ear.
If the actual ehinge of pressure felt by the ear is $\mathbf{1} / 150$ inch, which correspond, to a change of level of six feet, it might be expected that a sensation would be ob-erved on running up or down stairs. This I have not noticed, the elange of pressure being so gradual.

I need hardly add that descending a mine at the high speeds common in the collieries is most painful to me, and is only rendered bearable by continuously swallowing.

The very great and apparently unrecognised difference that there seems to be in the sensibitity of the ears of different individuals may be an excuse for occupying so much of your valuable space with what is in other respects a long and uninteresting letter.
C. V. Boys

Physical Laboratory, South Kensington

The Remarkable Sunsets

In Nature for December 20, 1883 , Dr. James Macaulay has collected ($\mathrm{Pp} .176,177$) some recorded instances of the wide distribution at former periods of volcanie dust. Perhaps the following may be worth adding. It is to be found in that extraordinary repertury of curious information and suggestion, the "Philosophical Notes" to Darwin's "Botanic Garden" (part ii. 3r: edition, 1791, p. 167).
W. T. T. D.

The Kev. Mr. Sterling gives an account of a darkness for six or eight hours at Detrott in America, on October 19, 1762, in which the sun appeared as red as blood, and thrice its usual size: some rain falling eovered white paper with dark drops like sulphur or dirt, which burnt like wet gunpowder, and the air had a very sulphureous smell. He snpposes this to have been cmitted from some distant earthquake or volcano (Phil. 7 rans. v. liii. p, 63).

In many circumstances this wind [the llaimattan] seems tauch to resemble the dry fog which covered most parts of Europe in the summer of $\mathbf{1 7 8 0}$, whieb has been supposed to have had a volcanic origin, as it succeeded the violent eruption of Mount Hecla and its neighbourhood. From the subsidence of a white powder, it seems probable that the Ilaimatian has a similar origin, from the unexplored mountains of Africa. Nor is it improbable that the epidemic coughs which occasionally traverse immense traets of country may be the products of volcanic eruftions; nor impossible that at some fulure time contagious
miasmata may be thus emitted from subterranean fissures in wach abundance as to contaminate the who!e atmo-phere and depopalate the earth (Darwin's "Botanic Garden," jart ii. 3rd editios, 1791, p. 167).

W'E had the sunset display again to-nigbt, but the after-giow was much less prolonged, suggesting that the stratum of dust and crystals is slowly settling down. But repeated flashes of lightning and peals of thnnder, in a place where storms, at the unal tiure of year for them, are very infrequent, seem to suggest also the question whether the ash is not brought wlthin the sphere of rain-clouds rather by loss of electricity than the iafluence of surface-gales. At the same time the large fluctoations of prossure seen to tell, on the contrary, that the whole collams is affected to unusual altitudes. Since 1 have been a reader of jouruals 1 have seen nothing more enthralling in its interest tha the contributions made, week by week, to Natukg on this subjeet from all parts of the world. It marks an era in observation from which we may hope great things in the fature.

Bregner, Bonrnemouth, February 2
Henky Cech.

Reperring to the latter part of Mr. Hawell's letier in Nature, Jabuary 24 (p. 285), there seem to be several differnt ways in which volcanic dust might affect the temperature, asd theugh all of them secm likely to have bat small effect, the quan ities they affect are so vast that a very small percentace may form a very eonsiderable quantity.

1. The volcanic gases would form at fir-t a stratum mad warmer than would be natural to the heights at u bich they would rest, and would thus retard the outward flow of heat from the earth.
2. The volcanic dust, forming an unusually high stratum of opaqne matter, would intercept rays from the sun that would be otherwise lost to the earth.
3. The volcanic duvt would act as a screen to preveat the earth losing heat by radiation, while it would also (4) act es a
 doing would make the dust stratnm warmer, ard so woold aid cau-e No. 1 .

The indirect effects, av influeneing evaporation and condenss. tion, and the formation of elouds, are probably greater than the direct, but are more difficult to nnalye.
1)ecember 3.-1 bave noticed that December 3 was generally iemarhably cluudy. Here, however, it was conspicnoos as the day on which all the most marked features of the sunsets cal munated. At 4.45 the green and pink glows covered the wetern half of the sky, and the rest of the sky was filled with a purple glow of lihe character, while the crescent moon was green Theve glows had to a great extent facled at 5 ; and though the phenomenon laster late, I can give no more details, as I took no notes, not being able to give it continuous attention.
37. The Square, Ripon, January 28
W. W. Taydot

Christian Conrad Sprengel

Speakeng of Christian Conrad Sprengel's discoveries, 1r, 11. A. Hagen says (Nature, vol. xxix. p. 29):-"In Germaty these discoveries were well known to every naturalist during the whole century. Certainly between 18,30 and 1870 at every univensity in Prussia the same facts were taught as well-know facts of the bighest importance, and of course known by every student." Frou the eomplete want of papers relating to the facts ol.served, and the theories proposed by Sprengel in the German botauieal and entomological periodicals published before the time of I/arwin, strangely contrasting with the penfosion of such papers in modern botanical literature, one might have bees led to a very different connclusi in, viz that Sprengel had falen into almost complete oblivion in Germany also, and that hardy any profecsor in any of the universities of Prussis and of Germany in general duly appreciated and taught his discoveno before I)aruin's time. And this, I think, is really the case. Certainly at the University of Berlin in 1841 , neither Lichtenstein, in his lectures on zoulogy, nor Kunth in those on botasy, ever spoke of Sprengel and his work, nor did Erichson in hin course on entomology. At the Universily of Greifwald, is I842, the professor of nalural bistory, Hornschuch, never metntioned Sprengel's discoveries. In 1848 my broher, Hermant Muller, began the study of zoology and hotany at the Universtr of Halle, where he never heard of Sprengel, with whose wrort
he became acquainted only much later through Darwin's books. Thus it appears that between 1840 and 1850 , in three at least of the six universities of Prussia, Sprenzel's work had fallen into the most complete oblivion. Now it is improhable in the highest degree that the several professors of natural bistory in these universities should have censed, unanimously and at the very same time (1841) to teach what, between 1830 and $t 840$, they had taught "as well known facts of the highest importance." Hagen's statement, therefore, needs some further proof before it can be accepted.

If in Germany Sprengel's discoveries had been "well known to every naturalist during the whole centary," the opinion that his treatise had been unduly neglected until it was, as it were, re-discovered by Darwin, conld never have prevailed, as it appears to do, among German bitanists, and Prof. Eduard Strasburger conld never have written the following lines, with which I may appropriately conclude this letter: "Until 1860 and some years afterwards in any catalogue of old botanical books, the work of Conrad Sprengel, pablished in 1793. ' Das eotdeckte Geheimniss der Natur im Bau und in der Befruchtung der Blumen' might be found at the price of abont 15 sgr . ($1 s, 6 d$.), and I myself bought it there at that price as a curiosiny, for the sake of its strange title. In the 220th catalogue of Friedlander (1873) the price of the same book is 3 thlr. 20 sgr . (11s.) This rise in the price of Sprengel's book shows very strikingly the change through which in the meantime it has passed in our appreciation. For only during the la-t ten years, after it had remained wholly wnoficed for nearly seventy years, the old book has come to be duly valued. It was Charles Darwin, who by his excellent book on Orchids. . . revived the questions treated by Sprengel" (femacr Literafier Zeitung, 1574, article 140.)

Fritz Mullek
Blumenan, Santa Cathariua, Brazil, December 15, 1883

Diffusion of Scientific Memoirs

Prof. Tatt appears to have misunderstood my object in writing the letter publivhed in your isone of January 24 ($p, 287$). It refers distinetly to his letter of December 27, and not directly to the review which began the correspondence. In that letter Prof. Tait stated publicly that he had $\mathbf{n}, \boldsymbol{t}$ received certain pablications of the Cambridge Philosophical Society. I desired, as secretary, to explain that it was not due to the neglect of the officers of the Society. He also says :-" Natuke woald do a real service to science by collecting stativtics as to the numbers of different centres . . . at which the Transactions of various scientific societies were freely accessible in 1883 (say) and also in 1853." It was in my power to give the statistics for "Transactions or Proctedings or both" for the year 1883; in ansuer to part of Prof. Tait's suggestion I did so. There is no reference in my letter to the year 1854, so that Prof. Tait is not correct in stating (NATURE, January 31, p. 311) that the question between us is, "What was the state of matters in 1854 ?" The year 1869 was the eerliest for which, with the data ready to hand, I could ohtain the numbers, I therefore gave statistics for that year in addition; I had no knowledge of what may have heen the case in 1854, and I said nothing alout it Prof. Tait referred to a malady and suggested a cure. I merely wished to show that the cure had already been applied. My remarks were addressed solely to that point, and were not " beside the ques. tion." Prof. Tait, in your last issue, has an claborale argument to prove that about one-third of the centres receiving publications receive Procedings only. In this he is entirely mistaken. At present the number of such centres is 6 ; in 1854 it was o. The history of the case is as follows. Until the year 1843 the Cambridge Phslosophical Society published no Procentings. Between that year and 1864 short accounts of the papers read and of the discussions were published in the Fhil. Mag., and separate copies were supplied to the Society. In 1864 these were collected, and form vol. i, of the Procedings. At the time they were not circulated separately; circulation was given them in the Phil. Mag. In that year the arrangement with the Phil. M/ag. came to an end, and notices of the same kind were printed by the secretaries and distributed to resident Fellows. Almost withont an exception all the important papers published by the bociety appeared in the Transactions. There was no need therefore to circulate Procodings, and it was not done. This practice was continued up to $\mathbf{1 8 7 6}$, when the second volume of the Procentings was closed, and a new sy,tem begun. Thus up to 1876 all centres re-
ceiving pablications necessarily racired Transactions, and as a matter of fact nothing else. A few copies of vols. i. and ii. of the Procedings have since been issned. Vol. iii, of the Procodings was commenced in 1876, and both it and succeeding volumes contain in fall the shorter or the less important communications made to the Society, as well as abstracts of matter pablished in full in the Transac'ions. Vol", iii, and iv., then, of the Prorrelings have, as a general rule, been sent with the Transactions, and the centres have asually, since 1876 , received both. Within the last few years, however, 6 centres have been added to the list which receive the Procredings orly. Thas in $t 883$ (omitting the honorary Fellows) 114 centres received Transactions only, or Transactions and Arocentings, in most cases the latter, and 6 received Pnocretiongs only; while in 1853 all the publications distributed were Transactions. I do not pretend to know what the number of centres uas at that date, and my fint letter made no direct reference to it. Nothing in that letter, however, supports the arguments adduced by Irof. 'Tait to prove that "it follows from Mr. Glazebrook's data that the number of centres in $t 854$ must have been about 40 only."
R. T. Glazebrook,

Secretary of the Cambridge Philosophical Society
Cambridge, February 4

Brooks' Comet

I SKND you a sketch of Brooks' comet, in which an attempt is made to represent a remarkable change which took place in the enmet about January 13. On that evening the welldefined and almost circular envelope which is represented in the figure was entirely wanting when the comet was seen on previous occasions. The nucleus was much more condensed and star-like than at any time before. The envelope was of nearly uniform brightness, with a perfectly defined ontline, which was easily measured. It seemed to be produced by two fan-shaped emanations from the nucleus, which, curving backward toward each other, met at the oater edges, leaving a darher elliptical space on each side of the nuclens, the space on the north side being the darker, and the preceding fan-shaped portion having an extension on the north side. A line drawn through the middle of the dark spaces would be perpendicular to the axis of the tail.

The diameter of this envelope was $I^{\prime} 20^{\prime \prime}$, while the diameter of the outer nebulous envelope, as far as it could be readily traced, was about $6^{\prime} 9^{\prime \prime}$. The spectroscope showed a bright comtinnous spectrum, which was surprisingly strong in the red, which completely masked any lines. As the comet had not been seen here for several days previous to the $13^{\text {th }}$, this appearance may have been of considerable duration. Clouds prevented another view antil January 17, when the inner envelope had entirely lost its sharp outline, and the following portion had disappeared, leav. ing a cortesponding dark space, while the preceding portion had increased its angular dimensions and revolved through an angle of about 60°.
This is the appearance it presented, though the ehange may have occurred in a very different manner. The 26 -inch equatorial did not bring out any additional details. The distance from the following side of the nucleus to the outer edge of the inner envelope was about $32^{\prime \prime}$, whereas it had been $40^{\prime \prime}$ on the I 3th, taking half the diameter of the envelope on that oceasion to represent the corresponding measurement on the 17 th.

A very marked increase in the length of the tail of the comet occurred between December 27 and 28 . For abont one-third of its length the tail was broad and fairly uniform in brightness ; from the middle of this broad portion istued two long bright streams, one being longer and brighter than the other. The total length was about 4°.
W. T. SAMPSON

Naval Ohservatory, Washington, January 19

"Mental Evolutlon in Animals"

The appearance of Mr. Romanes' new book with the above title reininds me of a reference in his work on "Animal Intelligence" to an observation of my own. I have intended for at least twelve months past to write you about the matter, but as Mr. Romanes' new book is practically a continuation 0 his former work, you will probably not conclude that 1 have procrastinated too long.

On page 251 of "Animal Intelligence" Mr. Romanes quotes my story of a skate in the Manchester Aquarium. The fish in
question, unable to seize a morsel of food lying in the angle formed by the glass front and bottom of the tank, " raised himself into a slanting posture, the head inclined upwards and the under surface of the body towards the food," and, by waving his fius, caused a current in the water which lifted the food straight to his mouth. Mr, Komanes adds that this observation is practically wortbless "from the observer having neglected to repeat the conditions in order to show that the movements of the fish were not, in their adaptation to these circunustances, purely accidental."

I quite agree with Mr. Romanes thet such observations should te tested in every possible way, and I should have been only too glad to repeat the conditions of this and other ob ervations had 1 been able to do so. The fact is, bowever, that as neither the directors nor the curator of the Manchester Aquarium were willing to call in the aid of those extra attractions which you London people seem to have successfully employed in the case of the Westminster institution, the Manehester Aquarium came to an untimely end, and thus my observations were cut short. There are, however, two comments which I should like to make. On p. 35 t of "Animal Intelligence" (the coiscidence in the numbering of the respective pages may help the reader's memory), Mr. Komanes quotes a story by Mr. J. S. Hutchinson eoncerning a Polar bear at the "Zoo." A bun was thrown into a pond, and fell "at the angle" beyond the reach of the bear. The animal therenpon "commenced stirring the water with its paw, so that it estahlished a sort of rotatory current which eventually brought the bun within reach." This story was communicated to Mr. Romanes privately, and my skate story wa. published in your eolnoms four years before Mr. Komanes pobished his book (see Nature, vol. xix. p. 160). No repetition of the conditions is mentioned in the case of the bear, yet Mr. Romanes speaks of the story as "a most remarkable observation." In jnstice to Mir. Romanes I must add that he appears to accept the bear story as a proof of intelligence in tha: animal because it corroborates a similar story communieated to Mr_{r}. Darwin by another observer. I feel, however, that I have a right to back my skate against either of the bears named, for the folluwing reasons. Had I repeated the conditions in the case of the skate with precisely the same result, it would have appeared as though the skate acted in obedience to inberited habit, or instinct, and even the similar conduct of the bears suggests this inference in their case. On the other hand, had a eccond trial with the skate failed, it would not bave been pruved that the first case was accidental, and therefore not the result of a "happy thought" on the part of the skate; for it might still have been contended that the skate, like a man, might display presence of mind on one occasion, and not on another, and the chief interest of the incident lies in the assumed spontaneity of the action. Finally, if Mr. Romanes will reflect upon the attitude of the fish as described in my narrative, I think he will see that the movements could not be "parely accidental." For, from the position of the skate's cyes, it follows that, when in the slanting posture described, he could no longer see the food. Vel be opened his mouth and adroitly canght it, the waving of the fias and the opening of the mouth being necessarily rapidly consecutive actions. 'l'bis fact seems to me to show that he cxperled the food to rise in the way in which it did rise.

Mancbester, January 2I

Your correspondent scems to think that I had some particnlar spite against bis skate, and quotes my indulgence to a bear as proof of inconsistency. But the two eases are very different. Even apart from the uncunscious corroboration to which he alludes (and which as evidence of a fact I consider better than even verification by the same ohserver), we must remember that the stirring of water for a long time in the same direction with its paw is not quite so habitual an ac ion o.l the part of a bear as is the ordiuary swimming movement cut the part of a skate. As for any difficalty which the skate myy have had in seeing the food approach its mouth, surely the fact of its opening its mouth when the food was near enough to gra $\cdot \mathrm{p}$ is no better evidence of design than of accident. In either case, under the conditions, and more especially the "attitude," described, the seizure of the food at the proper moment can only be ascribed to the sense of smell, which in the skate is so highly developed. Lastly, why does your correspondent begin lyy raying that verification would have been desirable, and end by arguing that it would have been of no use? Even if the ex, eriment had failed on repetition, he says, his inference would not thereby have bsen negatived, If
this is so, assuredly there would have been no object in repeating the condition ε. I once told a terrier to fetch me the ace of hearts from a pack of cards, and he did it. I happened previously to have known that the ace of bearts was the top card. Suppose I had repeated the experiment fifty times, and the dog hal every time hrought the wrong card, should I have been jnstified in attributing the first success to a " happy thought "?

George J. Romanes
1

The Storm of January 26

I send you inclosed particulars of the great storm of January 26 and 27 as observed at Newport, opposite Dundee. Another observer six miles to the north-east of Newport took readingi which corresponded almost exactly with those at Newport for the fall, but were thirty to forty minutes later for the rise. They were as follows, being redaced and corrected :-

Hour2.15							$\begin{aligned} & \text { Inches } \\ & 273^{885} \end{aligned}$
						Saturday,	
3.15	"	"	28.218				27.385
4.15	"	"	28.036	3		Sunday,	27.665
6.15	"	"	27.834	6		"	27.922
8.15	,	"	27.598	9		"	$28 \cdot 143$
10.15	"	"	27.406	11	"	"	28.230

Dundee, January 30
David Cunntighax

Ozone at Sea

DURING my voyage hither from Lonjon in the Maranor, via the Canal, and calling at Malta, Aden, and Colombo, I was surpri-ed at the low values for ozone as registered by Moffat's tests, which I pinned to the "uprights" in Stevenson's thermometer screen. I tried periods of exposure varying from half an hour to twenty-four hours, and the highest value noted was bat 56 for eight hours (scale 0 to 10). The test papers, however, were always tioted, more or less, sometimes to $3^{\prime} 0$ in half an hour, whereas tests exposed at the same time and examined when eixht bours had elapsed, ouly gave $4^{\prime 6}$. At Ben Nevis and Fort Whliam, and in the moorlands of Staffordshire I have recorded far higher ozone values than at sea under the same force of wind and like periods of exposure. From my long experience of these teats 1 cannot eonsider them satisfactury; but in the absence of a more reliable method I would strongly suggest that they wonld give results more intercomparable if iniformly exposed for an agieed hourly period, especially at the various land stations.

Clement L. Wragge
Adelaide, Sonth Australia, December 22, 1883

Meteor

Ar 9.55 p.m. on Sunday, January 27, I saw a meteor start from a point in 'Taurus, near to Saturn, and fall vertically a distance of 20°, and then burst with a brilliant flash, giving off several colours that almost instantaneously died away. The meteor was visible about three seconds, and increased greatly in brightness from the time first scen uatil it barst. It was the most brilliant metcor I ever saw, and its greatest brightness much exceeded that of Venus.
E. Howar: ${ }^{\text {H }}$

Muscum, Sheffield, February 5

Ravens in the United States

Ouk Natural Historics say Ravens are common all over the United States, but I have never met any one who was aware of having ever seen one. Are they common in Westchester County, near the Hudson, and confounded with erows?
New York, January is
Manhartan

Uneonscious Bias in Walking

THE thought has occurred to me that "unconscious bias in walking " may be the result of inequality in the length of the lower limbs caused by the manner in which young children are carried. Each person appears to nurse solely on one arm ; I think the right is more treqnently employed. I bave noticed when a child is held in the arm the side which is nearer the nurse appears to be in a somewhat cramped and unnatural position, the leg more or less bent, while the outer side is comparatively traight and free. Would not this, while preventing the full play of the muscles of the inger leg, tend to arrest to some extent its
proper development at a time when growth is very rapid, and thus cause that difference in the length and strength of the limbs remarked by your correspondents? Sara S. Owen
4, Soames Street, Grove Park, S.E., February 2
ON THE HEIGHT OF THE AURORA BOREALIS

I^{T}is with pleasure that I respond to the invitation of Nature to give an account of the work of the Danish Meteorological Station, which was maintained, under the international scheme, at Godthaab in Greenland, in 1882-83, and of which I had the honour of being the chief. I intend, in the present article, to confine myself to the aurora borealis.

The results, which have been obtained from calculations of the height of the aurora borealis in the temperate zone, which lies south of the so-called auroral belt, all agree in fixing the minimum height of the aurora very high, as the aurore seem to be confined to the part of the atmosphere where its density is only a fraction of that at the surface of the sea. However different the value may have been of the heights of the aurorx observed outside their true zone, the average of the minimum heights is hardly under two hundred kilometres. On the other band, the observations in the Arctic regions show that the aurora may descend to much lower elevations above the earth's crust, and that they may even reach down into regions of the atmosphere where the density is about the same as on the surface of the sea.

Dr. S. Fritz has thus, at Ivigtut in South Greenland, in February and March, 1872, measured aurore the lower edges of which were only from 50 to 200 metres above the level of the sea, while in nearly every monograph of the aurora borealis cases are cited in which the aurore appear to have reached much further down in the atmosphere. I may further mention some instances, which have, by the bye, not been made public before, observed by the eminent zoologist, Prof. Steenstrup, and which he has permitted me to publish here.

During Prof. Steenstrup's sojourn in Iceland, 1839-40, he saw, on several oscasions, aurore which bid the top of the mountain Esia, some 600 metres in height, lying behind Reykjavik. He further states that he has seen auroral streamers between the masts of a ship, in such a manner that they disappeared where there were sails, and reappeared where the space was free. The Professor asserts even that on one occasion, on January 28, 1840, when walking between Reykjavik and Bessastad with the chief magistrate, Herr Tvede, and Judge Jonasson, he, as well as these two gentlemen, saw auroral streamers appearing between themselves. The phenomenon was not a solitary one, but occurred three or four times during this walk, and in spite of the pedestrians keeping about a yard from each other.

Although many estimates of the low descent of aurore in the Arctic regions may have been due to optical illusions, specially through irradiation, one cannot, even from a casual observation of this magnificent phenomenon, but come to the conclusion that, while some aurore lie in the same great, indefinable distance from the observer as those observed in the temperate zone, there are others whose whole appearance has the character of being a phenomenon of a purely local nature. During our stay at Godthaab this point had my special attention, as it appeared to me of importance to demonstrate by measurements as accurate as possible whether this subjective impression answered to the true facts.

To this end the Danish international station at Godthaab, $64^{\circ} 10^{\prime} 36^{\prime \prime} \mathrm{N}$. lat. and $51^{\circ} 40^{\prime} 0^{\prime \prime}$ E. long., has, during October and December, 1882, effected a series of measurements. The site of the station was particularly suited for the solution of the problem, as it lies just at the northern border of the great Arctic auroral belt, i.e. in a place where the aurore appear with all the peculiarities which distinguish them in their true zone.

The distance between the two points of observation, separated by the Godthaab Fjord, was 5.8 kilometres, and the direction between them eoincided with the magnetic meridian. The two instruments u,ed for the measurements, exactly similar in construction, were arranged as universal instruments. Instead of a telescope, a tube was employed, which had in one end a small opening, and in the other a metal cross of very fine wires. In order that the errors in the observations should not affect them very much, measurements were only made in the vertical plane between the two points of observation. The placing and reading of the instruments were effected by means of pre-arranged fire-signals, and only those measurements of which the reading signals were instantaneously answered, and for which the time of reading exactly coincided, were recorded. Only the lower edges of the auroral bands were measured, as these are nearly always the most clearly defined.

We have, during our evenings of observation, measured the height of thirty-two auroral bands. The subjoined figures, showing the result of these, demonstrate that the lower edge of the band certainly descends very low. Thus of the thirty-two aurore measured by this method ten only had a parallax under 1°, for six the parallax was between 1° and 2°, four had a parallax of between 3° and 4°, two one between 5° and 6°, four one between 7° and 8°, while we measured six of $10^{\circ}, 14^{\circ}, 15^{\circ}, 17^{\circ}, 86^{\circ}$, and 143° respectively.

Leaving the aurore whose parallax was under 1° out of the calculation, I have found the following heights for the other twent $\}$-two lower edges:-

1	...	67.81 kilometres.		...	12	...	7.43 kilometres.	
2	\cdots	5960	"	...	13	-..	6.16	
3	-.	5473	"	..	14	...	$5^{\prime 28}$	"
4	\cdots	46.94	"	**	15	-..	$3 \cdot 72$	"
5	*.	$45^{\circ} \mathrm{4}$	"	...	16	..	3.69	"
6	...	38.09	"	...	17	...	3.22	"
7	...	29.81	"	...	18	**	2.87	"
8	.	19.14	"	...	19	...	$1 * 99$	"
9	-	$9 \cdot 76$	"	**	20	**	196	"
10	.	9.40	',	...	21	**	$1 \cdot 35$	"
11	\ldots	7.67	"	...	22		0.61	"

The three heights of $1.99,2.87$, and 3.22 kilometres belong to the same aurora as that whose edge was measured at an interval of two minutes between each measurement. The two aurore of 1.35 and 0.61 kilometres stood both above the fjord between the observatories. From the southern one they were secn at an altitude of $13^{\circ} .6$ and $30^{\circ} \% 3$ respectively above the northern borizon, while at the northern station they were $80^{\circ} 5$ and $7^{\circ} 25$ respectively above the southern horizon. These two and the above-mentioned third, the height of which was measured three times, had the appearance of curtains with large folds, or of bunches or wreaths of streamers lying close together, separated by darker, faintly-shining spaces, but connected below through a common band The others were bands or arcs without radiating streamers. The edges measured were all nearly at right angles with the magnetic meridian. Only the height of those edges which were distinctly defined, and whose course did not deviate greatly from perpendicularity on the magnetic meridian, were measured.

I must further, as regards the small height of the aurore observed at Godthaab, state that not only three observers besides myself, but even a student as conversant with auroral phenomena as Herr Kleinschmidt, all agree that aurore were seen below the clouds on several occasions during the winter of $1882-83$. On this point we do not entertain the least doubr.

In conclusion 1 will describe some observations made on several occasions during our stay at Godthaab of the peculiar type of the aurora known as phosphorescent auroral clouds.

On September 21, 1882, Herr C. Petersen, one of my
assistants, observed, at 9.45 p.m., an aurora appearing as a lustrous green light behind the nearest hills. The top of the mountain, "Sadlen," 1200 metres in height, was distinctly seen above the lustrous plane. The phenomenon rapidly disappeared. At 10.45 a light was seen in the south, which resembled that of dawn, and contracted into a faint shining cloud, oblong in shape, which oscillated slowly before the mountains "Hjortetakken" (1200 metres) and "Store Malene" (800 metres) at a distance of 8 to 12 kilometres from the station. The tops of the two mountains were distinctly seen above the luminous cloud, while at times small but intense spots of light developed themselves in it. When the cloud, at $11-45$ p.m., had moved in front of the mountain "Lille Malene," the light became more intense, and had the appearance of a lustrous white cloud of smoke rolling up the hill to north-east. When the cloud travelled over the hill, the light became yellow, and was bordered by a coloured rim. At 11.10 it shot three faint red streamers up towards the zenith, and then the whole dissppeared.

The following phenomenon was observed by the writer of these lines:-On November 14, 1882, at 6 a.m., I observed an auroral band without streamers through Vega, the Great Bear, and the Twins, while another stood parallel with this further west. From the "Store Malene" I now saw a peculiar shining white cloud descend into the fjord below. It descended in long, straight, shining bands. In a few minutes the mountain in question, as well as "Hjortetakken" were completely hi lden in the cloud. A little further east the cloud possessed greater intensity, while on the plain at the foot of the hill on which the observatory stands, two luminous gatherings were seen, which seemed to rest on the snow, with a strongly phosphorescent light. These two gatherings, which were at first isolated, now came in contact with the above described cloud with long luminous bands radiating from the latter. By opening the slit of the spectroscope as much as possible and simultaneously keeping foreign light from the eye, I beheld the auroral line faintly but clearly defined. The cloud now began to disappear without oscillation, when suddenly a number of borizontal openings formed in it, through which the mountain stood torth. In the next second all had disappeared.

I admit that, as regards the last described phenomenon of the lustrous cloud, it might be explained as being caused by the reflex of the aurore which were simultaneously visible ; but such an explanation is not applicable to the one first described. It would be very interesting to learn if other observers have noticed this form of the aurora.

Adam Paulsen
Copenhagen

THE EFFECTS OF THE WEATHER UPON DEATH RATE AND CRIME IN INDIA

$S^{\circ} \mathrm{OME}$ time ago a very interesting series of articles, by Mr. Buchan, upon the connection between certain meteorological conditions and the zymotic diseases, as illustrated by the mortuary returns of the l.ondon district, appeared in Nature Happening to have undertaken, at the request of the provincial superintendent of census operations, certain investigations concerning the life statistics of the population of the North-West Provinces and Oudh, just about the time when Mr. Buchan's articles appeared, it occurred to me that it would be worth while to see whether any similar concomitant variations of meteorological conditions and causes of death could be detected in India. The results arrived at are so curious, and at the same time so definite, that I think they may be of interest to readers of this journal.

At starting, however, it should be observed that, though the mortuary returns of the province with which I am connected are probably the best in India, they are
still very far from complete. The agency employed for registration is that of the village choukiddr or watchman, who is supposed to take note of all births and deaths which occur in his village (aiding his memory, if necessary, by variously cut notches on a stick) and to report these weekly at the nearest police station. From such an agency nothing like an exact account of the causes of death can be expected; hence in the detailed tables given below I have confined my attention to the four most obvious causes-small-pox, cholera, suicide, and wounds. Even as regards the number of deaths registered a considerable defect may confidently be anticipated, owing to lapses of memory on the part of the chaukiddr. This defect has been found by Dr. Plauck, the Sanitary Commissioner, to amount to about 20 per cent. of the whole on the average of a large number of cases personally examined by him in various parts of the province. The proportion thus obtained is confirmed by a comparison of the deaths actually registered with the death rate arrived at in the last census report. During the five years, 1878-82 (the only ones for which complete returns are obtainable), the deaths registered appear, from figures supplied by Dr. Plauck, to have numbered 7,311,013. The average population during the five years having been about $45,000,000$, this gives an annual death rate of $32^{\circ} 5$ per thousand. Now in Mr. White's report on the census of 1881 it is shown that the distribution of the population according to age, and the observed death rate among certain tribes and castes suspected of practising infanticide, and therefore placed under strict police surveillance, point to 40 per mille as the probable rate of mortality for the general population. The unrecorded deaths therefore amount on the average to 7,5 out of 40 , or 19 per cent. of the total-almost exactly the same defect as Dr. Plauck arrived at by his personal investigat:on of special cases.

It follows that, though the returns collected by the rude illiterate agency employed are not strictly accurate, the totals arrived at probably on the whole bear a nearly constant proportion to the true number of deaths, the popuLation dealt with being sufficiently numerous to eliminate any individual peculiarities of the agents.

The death rate varies enormously from year to year, as may be seen from the table of the total number of deaths recorded, here given in full :-
Number of Deaths from all Causes Rcgistord in lhe North. Wcat Protinces and Oudh during the Five Y'ars 1878-82

Year	Jan.	Feb.	March	April	May	June	July
1878	137,161	,	760	157,326	136,867	20,767	91.677
1879	75.387	62,837	71,874	\$7.302	100,010	83,802	73,120
1850	116.366	72,030	69,250	72,534	76,622	7S,200	56,502
1881	95,226	91,011	97.829	124.831	115.683	86,083	81,609
1882	114,220	92,472	96,596	107,62S	119.714	114,382	22,110
Total	53	234	. 3×9	549,621	548	3,234	25,018

Year	Aug.	Sept.	Get.	Nov.	Dec.	Arnual total
1878	113,701	120,607	138,997	127,656	93.032	1,521,724
1879	131,702	196,135	429,115	369.390	233,795	1,914,499
1880	74,127	87,618	91,218	99.459	93,264	987,190
1881	86,316	109,837	181,519,	180,683	151,846	1,402,473
1882	151,779	159,604	156,065	128,040	122.517	1,485,127
Total	557,625	673,801	996,914	905,228	694,454	7,311,013

The deaths recorded average a little under a million and a half per annum, but in 1880 they were less than a million, and in 1879 nearly two milli nos. In that disastrous year one district or county, that of Aligarh, lost nearly half a million of its po Lation. The chief difference between 1879 and 1880 , from the meteorological
point of view, was that in 1879 the monsoon rains were unusually heavy, while in 1880 they were so scanty that for a long time grave apprehensions were entertained of another famine, like that which followed the drought of 1877. The year 1877 (which does not appear in the table) was an extraordinarily healthy one, but the effect of the scarcity produced by the drought of that year is seen in the high mortality of the first six months of 1878.
The first rough generalisation suggested by the table is that dry years are healthy and wet ones unhealthy. That this is generally true is well known to residents in the country. Among the natives also I have heard it sald that one must choose between health plus famine and abundance plus fever. It would nevertheless be false to infer that in India mortality is due to rain ; for we have only to compare the figures for the several months to see that on the average, and in almost every single year, the month in which fewest deaths occur is July, which happens to be just the rainiest month of the twelve. Rain is no doubt one of the indirect causes of death; but it seems to produce unhealthy effects by increasing the humidity of the air and hastening the growth of rank vegetation, which, decaying at a time of the year when the air is almost perfectly still over the Indian plains, produces that noxious condition of the lower atmospheric strata known by the name malaria. Compared with the deaths from malarial fevers, those due to cholera, smallpox, and other epidemics count almost as nothing. Hence, though these epidemics have their particular seasons of maximum and minimum, their effect is completely hidden in the general mortality table under the great annual variation which culminates in October and November.

Besides rainfall, atmospheric humidity, and wind velocity, other meteorological causes which presumably have some effect upon health are the mean temperature and the daily range of temperature-the last, according to the prevalent opinion amongst Indian medical men, who are fond of attributing almost every ailment to nocturnal chills, being a most important cause. The next table gives approximate monthly mean values of all these meteorological elements for the North-West Provinces and Oudh, exclusive of the Himalayan districts, which are very sparsely populated.
Maan Values of Certain Climatological Factors in the North. West Provinces and Oudh

Before proceeding to estimate the relative effects of these factors upon the death rate, it will be found convenient to convert the totals given in the first table into mean rates per annum. The mean number of deaths per annum for each million of population is 32,493 , and this number is distributed over the months as follows, when the months are all reduced to the same length :-

Jan.	Feb.	March	April	May	June
2351	2201	2093	$\mathbf{2 4 8 0}$	2397	2181
July	Aug.	Sept.	Uct.	Nov.	Dec.
1855	2435	3040	$\mathbf{4 3 5 2}$	4083	3025

It has already been pointed out that the effect of the rainfall upon health is very indirect, and therefore need not be taken into account here. The relative effects of the other factors in the second table may be calculated approximately by the formula -

$$
d=a t+\beta r+\gamma h+\delta v
$$

Here d, t, r, h, and v respectively denote the variations of the death rate, the mean temperature, the range of temperature, the relative humidity, and the wind velocity each month from their mean annual values. From the twelve equations of this form, furnished by the monthly means, we get the following most probable values for the coefficients, viz. :-

$$
\begin{array}{l|l}
\alpha=79.7 & \beta=113^{\prime 6} \\
\gamma=43.4 & 8=-35.6
\end{array}
$$

If there be any approach to truth in the assumed proportionality between the variations of the death rate and of these climatological elements, it therefore appears that a mere rise of temperature within the limits observed produced comparatively little effect, one degree of increase in the mean temperature increasing the deaths about 80 per million per month, or rather less than one per thousand per annum. The variations of the diurnal range have a much greater effect, while the change of the death rate due to varying humidity is even less than that due to temperature changes.

The relation between the death rate and the movement of the wind is inverse, the proportionate increase of deaths being $35^{\circ} 6$ per million per month for a decrease in the velocity of the wind amounting to only one mile in twenty-four hours. In the months of October and November, when so-called malarial diseases attain their maximum, the air is almost absolutely still; and there can be very little doubt that if a moderate breeze were occasionally to spring up at this time of the year, so as to dissipate the malaria, or at all events mix it with good air from other districts or from above, the effect would be an immediate decrease of the death rate.
As regards special causes of death, I have already stated that I have confined my attention to those cases in which the chaukiddr may be trusted to make a correct diagnosis. Small-pox, a disease now happily almost banished from Europe, but still carrying off many thousands of victims annually in India, is one of these almost unmistakable causes. The average number of deaths from this disease during the five years was 59,240 , distributed as follows:-

Jan.	Feb.	Mareh	April	May	June
3195	3830	6611	12,561	13,790	9140
July	Aug.	Sept.	Oct.	Nov.	Dee.
4855	1924	742	366	536	1690

The deaths from this cause, numerous as they are, are fewest in the months when the gencral mortality attains its maximum. The meteorological caues which favour the spread of small-pox appear to be heat, drought, and possibly also an unusually high wind velocity, the solid particles which constitute the contagion being presumably blown about by the wind. The relative effects of these may be roughly computed from the totals for each quarter, using the formula-

$$
n=N+a t+\beta(1 c o-h)+\gamma v ;
$$

n being the recorded number of deaths in any month; N the number that would occur under the hypothetical conditions of a still, saturated atmosphere at $0^{\delta} \mathrm{F}$; and t, h, and v standing for the temperature, humidity, and wind velocity respectively. The coefficients thus found are $a=92 ; \beta=237 ; \gamma=97$; the condition most favourable to the propagation of small-pox appearing therefore
to be dryness. The number N, for the unatainable conditions assumed, comes out negative.
Another disease which the village watchman may be trusted to recognise in most instances is cholera. Cases of severe diarrheea are doubtless frequently returned as cholera, but this does not sensibly impair the value of the registers, since the two diseases are usually provalent about the same time. The mortality from cholera is subject to an annual variation quite as distinct as that of small-pox, but there are two maxima, in April and August, with a slight diminution between these months. The averages for the five years are :-

Jan.	Feb.	March	April	May	June
$\mathbf{3 1 7}$	338	1304	9027	6541	6344
July	Aug.	Sept.	ret	Nov.	Dec.
5735	8129	4839	4665	1514	426

From the records of the army, police, and jail departments, extending over a lorger serics of years, it appears that the maximum mortality from cholera usually occurs in the rainy season. The sccondary maximum in April becomes the principal one in this table on account of the excessive prevalence of rholera in April 1880. This epidemic was popularly attributed to the immense number of Hindu pilgrims assembled at the great religious fair of Hardwár, the disease having been caught from some infected persons in the crowd and spread abroad over the country as the pilgoims returned to their homes. The Sanitary Commissioner with the Government of India, however, does not accept this view, but seems to attribute the disease or its dissemination to some occult atmospheric influence. Whatever may ultimately prove to be the nature of the disease, there can be little doubt that in the North-West Provinces it is to a great extent dependent upon heat and moisture, being almost unknown in the cooler months of the dry season. To estimate the relative effects of these two atmospheric conditions, we may employ the formula-

$$
n=N+a!+\beta \hbar ;
$$

the letters having similar significations to those mentioned with the previous formula. Combining the months in groups of four, commencing with December, we get three equations which give the following approximate results :$a=281 ; \beta=45 ; N=-20,076$. The principal effect is that due to high temperature; while at the temperature assumed for \boldsymbol{N}-zero F .-that number comes out negative. That is to say, in a perfectly dry atmosphere cholcra would disappear at a temperature considerably above freczing, about $70^{\circ} \mathrm{F}$., in fact, if we may judge from these tables. In the cold weather months, indeed, cholera never assumes epidemic proportions in the NorthWest Provinces ; but when the poison, whatever it may be, is widely disseminated, as in the beginning of 1882 , after the great mela or religious fair at Allahabad, it remains reearly quiescent, manifesting itself only in a few sporadic cases until the commencement of the hot weather in April, when it breaks forth with alarming rapidity.

Deaths by violence are also, as a rule, unmistakable. In the Sanitary Commissioner's tables two causes of death are given which both come under this headsuicide and wounds-the latter presumably including only the results of murder and manslaughter, as there are separate headings for accidents and wild beasts. The average numbers of these deaths recorded each year are-

Suicide		$\begin{aligned} & \text { Jan. } \\ & 105 \end{aligned}$	Feb. 109	March 196	April 268	May	June
Wounds	...	105	109 94	196 105	268 119	240 125	248 128
Total	-*	210	203	301	387	371	376
Suicides	**	$\begin{aligned} & \text { July } \\ & 246 \end{aligned}$	Aug. 242	$\begin{aligned} & \text { Sept. } \\ & 269 \end{aligned}$	Oct. 250	Nov. 151	$\begin{aligned} & 1 \mathrm{Hec} . \\ & 100 \end{aligned}$
Wounds	...	132	154	145	135	115	98
Total	\cdots	378	¢93	414	3^{85}	$2(6$	193

Both series exhibit a distinct annual variation, notwithstanding some irregularities which wculd probably disappear if we had larger numbers to ceal with, and in both the phases are similar, the minimum being reacbed in the middle of the cold weather, and the maximum in the hot season and rains. Both forms of death by violence are, in fact, manifestations of the same cause, irritability of temper; for suicides in India are, as a ruie, not the result of a fixed melancholia, three-fourths of the cases being those of young marricd women, who, finding life unbearable under the daily and hourly sting of the mother-in-law's tongue, end it at last by jumping down a well.
The monthly totals given in the last table may be approximately represented by the formula -

$$
n=a(l-x)+\beta h,
$$

since they seem to depend both on temperature and humidity. In this formula x would be the temperature at which crimes of violence would disappear. Grouping the months in fours, commencing with November, we get three equations wbich give $a=7^{\circ} 2, \beta=2 \circ$, and $x=48 \cdot 4^{\circ} \mathrm{F}$. Crimes of violence in India may therefore be said to be proportional in frequency to the tendency to prickly heat, that excruciating condition of the skin induced by a high temperature combined with moisture. Any one who has suffered from this ailment, and knows how it affected his temper, wilf readily understand how the conditions which produce it may sometimes lead to bomicide and other crimes. And any one who has been in India in the cold weather and seen to what an abject condition the ordinary native is reduced by a temperature of 60° or so can believe that there is probably some truth in the arithmetical result above given, tbat about 48° crimes of violence would disappear, for at such a temperature nobody would possess a sufficient store of energy to enable him to commit crime of any graver description than petty larceny.
S. A. Hill.

ALGEI

THE new work of Dr. Agardh, forms the third part of a series of monographs of algæ, two parts of which have already appeared. The first part contains the gencra Caulerpa, Zomaria, and certain groufs of Sargassum ; the second contains the Chondariacere and Dictyoter. The Ulvacere form the subject of the present monograph. This work should have special interest for algologists, from the circumstance that in it the author bas expressed his views, and the reasons on which they are founded, concerning the much-debated question whether Bangia, Porphyra, Goniotrichum, and Erythrotrichia belong to the Floridex or to the Ulvacex. The fact that Dr. Agardh still retains them among the Ulvacere is a sufficier.t proof that he is not convinced by the perusal of Dr. Berthold's work (noticed in Nattre, vol. xxvii. p. 385), and the statement of the latter that thes belong to the Floridere.

Dr. Agardh discusses the subject at some length, calmly and dispassionately ; and, considcring his immense expe rience in the study of al x, his opinion is deserving of much consideration. It may be as well to give the reader some idea of the arguments upon which the author has grounded his opinion. He relies principally, it will be secn, upon the assumed difference of the reproductive organs in the Ulvacea and in the Floridex, namely, on the sporidia endowed with motion (zoospores) in the true Ulvacere; and on the antheridia, cystocarps, and tetraspores of the Floridea; the antheridia and cystocarps being considered by Thuret and others as sexual, the tetras; ores as asexual.
 ninges). Lundo Arsakr.ft, 1om. xix.
 und der Schweix." 7.weiner Band : "Die Mertesalgen Deutsch'aads wol Oesterreichs" Bearbertet von \boldsymbol{F}. Hauck. 4-6 Lieferung (Leipsig Fiduard Kummer, 889_{3}.)

Dr. Agirdh points out that the organs with powers of motion, observed by Derbès and Solier, are scarcely to be referred to the Floridex, because in their eruption from the plant, as well as in their movements, they have an appreciable analogy with the organs of Prasiola, described by the author in a ne π species, P. cornucopice (see Table 111., fig. 74, c, f, g).

On the other hand, Dr. Agardh shows that the chief consideration which induced some algologists to remove Bangia and Porphyra from the Ulvacex to the Floridcæ was derived from the quaternate division of the cells, which was thought to be analogous to the quaternate division of the tetraspores in the Floridea. He points out that Janczewski and Thuret had obscrved that it was not tetraspores, but octospores, which resulted from the division in Porphyra; and he calls attention to the fact that the so-called octospores are themselves repeatedly divided into new generat'ons of tetraspores and octospores, in the same manner as the cells or cell-contents in Prasiola, Tetraspora, Palmella, Monostroma, Ulva aureola (Ilea fulvescens), and some species of Enteromorpha divide ; thus showing an analogy with these plants rather than with the Floridex.

The author observes that if the organs of Porphyra be considered analogous with the tetraspores of the tloridere, these organs, according to some authors, should possess different functions, the tetraspores being deemed neutral in the Floridex, but the octospores sexual in Porphyra. If, he says, those organs which in Porphyra are called antheridia agree with the antheridia of the Floridea; if, also, those 4 -partite orzans which constitute spores are to be compared with the tetraspores of the Floridea; there still remain in Porphyra and Bangia no organs whizh can be considered identical with the cafsular fruit of the Floridex. If, therefore, those organs which form the principal characteristic of the Florideæ are absent, it is evident that Bangia and Porpbyra are far inferior to the Floridea, and that very distant affinities must be sought for them. Moreover, if those organs which are neutral in the Florider become sexual and female in Porphyra, this rather seems to indicate divergence than affinity.

With regard to Bangia, Dr. Agardh observes that the filaments of this plant growing together in patches, as already observed by Dillwen and others, always vary in thickness and in appearance, and that this difference of appearance may have suzgested the idea that they were of various kinds (male and female filaments). Accorling to Dr. Agardh, these differences are merely differences of age; and the so-called special organs are to be considered rather as different states during the evolution of the fructification, than as distinct organs.

Reviewing the statements of different algologists with regard to the fructification of these plants, the author shows from their published works that much difference of opinion existed among them. Thus, according to Derbes and Solier, those organs in Bangia which they considered as male are said by them to be endowed with lively motion; while Thuret and Reinke, referring to the same organs, say that they are motionless. Agdin, the author observes that Janczawski, alluding to the octospores of Porphyra, says that they have an amoboid motion; Thuret, on the contrary, states that they are motionless.

After quoting Thuret's description ("Etud Phyc.") of the processes of fructification in Porphyra, Dr. Agardh cites the fellowing passage referring to the antheridia: "La division s'arréte plus tôt pour les spores et se prolonge davantage pour les antheridies; mais il u'y a pas de différence fondamentale dans le procédé. On en a la preuve dans les cas anormaux, déjà mentionnés par M. Janczewski, ou le contenu d'une méme cellule primitive se change, partie en spores, partie en corpuscules mâles.' So remarkable does this statement appear to Dr. Agardh that he quotes it also in the note to p. 26, where he thus
comments on it - "Quomodo ii, qui hoc observarunt, sibimetipsis persuaserint eam partem contentus, quae organis perhibitis fermineis constaret, sub stadio evolutionis panlo posteriore in organa mascula non transmutaretur, mihi non liquet."

Leaving this subject to the consideration of algologists. the more general features of the work may now be noticed.

Dr. Agardh arranges the Ulvacea under the following genera : 1, Goniotrichum ; 2, Erythrotrichia; 3, Bangia; 4, Porphyra ; 5, Prasiola ; 6 ? Mastodia ; 7, Monostroma ; 8 , Ilea; 9 , Enteromorpha; 10 , Ulva; and 11, Letterstedtia.

Of these genera Mastodia and Letterstedtia are natives of the Southern Ocean. Ilea, of which one species only is known, l. fulvescens (Ulva aureola, C. Ag.), is a small tubular plant which grows at the mouths of some Swedish rivers. The cells of which it is composed are arranged in series of fours, as in Prasiola, but the colour is dusky as in Dictyota.

The other genera, of which many species are natives of these shores, will have more interest for British algologists. Prasiola marina, Crouan, which Dr. Agardh unites with P. stipitata, has been recently found in Scotland and in Devonshire; and the Ulva calophylla of Greville, and Ulva crispa, have been removed to Prasiola.

Of the twenty specie; of Monostroma, five, namely, $M /$. bullosum, M. laceratum, M.quaternarium, M. hatissimum, and M. witfrockii have been found on our coasts. To these Dr. Agardh adds another species, M. lactuia (U. lactuca, C. Ag.), which he considers identical with M. wndulatum of Thuret, and probably with M. pulchrum, Farlow, of the east coast of North America. While thus transferring the specific name lacluca to a Monostroma, the author excludes it from Ulva, where it has been a sourse of confusion.

Wish regard to Porphyra, Dr. Agardh agrees with Dr. Greville in considering P. linearis as a distinct species; and he mentions P.amethystea as a native of England. Harvey had stated that the latter had been found on the west coast of Ireland, but the plant appears to have been unknown to him, and has not been found until recently, when Mr. G. W. Traill met with it on the east coast of Scotland. The arrangement of the cells in the plant is very beautiful.
In accordance with the views of most algologists, P. vulgaris and P. laciniata are united by the author; but he has changed the name of the plant to P. umbilicalis ("L. Sp.," ed. 2, 1633), of which he describes several forms. In his views of the structure of this alga, Dr. Agardh is at issue with Janczewski and Thuret. The last-mentioned authors state that the vegetative structure of the plant is always monostromatic, and that it is in the fruitful parts only that the cells are arranged in two series. Dr. Agardh, on the contrary, says that the alga is at all times distromatic. A reference to Plate 11., fig. 61, t, will show that the two strata seen in the transverse section do not exhibit that subdivision of the cells which constitutes the fruit.

Dr. Agardh agrees with M. le Jolis in removing the Ulva linsa of Harvey to Enteromorpha, where it takes the name of E. linza. Of Ulva, seven sp:cies only are enumerated. Under U, rigida there are no fewer than twenty-four synonyms. While, however, the author deserves thanks for clearing away so many reputed species, he describes many forms of this very generally distributed alga.

Enough has now been said to show the interest this work should have for algologists. It is illustrated by four plates, beautifully executed, containing 124 figures. Although the title is Swedish, the work is written in Latin.

Of Rabenhorst's " Kryptogamen-Flora," Nos. 4, 5, and 6 of Part II., in which the marine algæ are described by M. Hauck, have recently appeared. Numbers 4
and 5 treat of the Floridex, which are concluded in the sixth part. Then follow the Pheophycere; but before touching on these, a few points relative to some of the Floridex call for observation.
M. Hauck tells us that in Gelidium the cystocarps are of two kinds-(1) those in which the placenta is basal, and have consequently only one series of gemmidia; (2) those in which the placenta is central, on both sides of which the gemmidia are placed. M. Hauck does not seem to be aware that the former were long ago separated by Dr. Agardh from Gelidium, under the name of Pterocladia, the typical species of which is Pt. Iucida, a very common alga in the Southern Ocean. The Gelidium capillaceum, described at p. 190, is a true Pterocladia, and has been described as such by M. Bornet under the name of Pt. capillacea. M. Hauck mentions this name among the synonyms of G. capillaceum, and at p. 191, fig. 82, he gives us copies of M. Bornet's figures of the cystocarps of this plant, and also of Gelidium; thus showing the characteristic differences between the two algæ; it is therefore surprising to find that M. Hauck still retains the old name of the plant, and places it under the genus Gelidium.
The cystocarpic fruit of Dasya punicea, apparently unknown in the Adriatic, was found on our southern coast as long ago as 1859. Before that time a specimen bearing cystocarps was collected by Miss Catlow in Jersey, and Dr. Harvey gave to it the provisional name of Dasya catlowvia. There is considerable difference in the aspect of the plants which bear cystocarps and those which bear stichidia; so much so, that they have been taken for distinct species. British specimens of this plant are much larger than those of the Adriatic.
M. Hauck describes the tetraspores of Melobesia corallina as "zweitheilig," and he refers to Solms' "Corallinenalgen des Golfes von Neapel," Table 111., fig. 23. Now, on turning to this figure in the work of Graf Solms, it will be seen that the tetraspores are 4 -partite. It is true that they have been described by MM. Crouan and Areschoug as dipartite, but, according to the observations of M. Rosenoff in his very interesting "Récherches sur les Melobésiées," p. 45, there seems good reason to believe that, although tetraspores are often found divided into two parts only, the complete number is four.
With regard to M. macrocappa, M. Hauck is apparently right in uniting it with M. pustulata, and also in considering M. corticiformis as a synonym of M. membranacea.

In a former number of his work, M. Hauck had stated that the tetraspores of Nemaleon were unknown. They had, however, been described by Dr. Agardh in "Sp. Gen. et Ord. Algarum," vol. ii. p. 417, and again in the "Epicrisis," p. 507 ; but the author did not, in either work, state in which species he had found them. Some uncertainty, therefore, existed on this point ; and Thuret was of opinion that up to his time there had been no trustworthy record of the discovery of the tetraspores of Nemaleon. It would have been easy to solve the doubt by an appeal to Dr. Agardh, who is always ready and willing to impart information, but no one seems to have thought of adopting this course. The writer is glad to be able to mention, on the authority of Dr. Agardh, that he (Dr. Agardh) found tetraspores on a plant of Nemaleon multindwm from Copenhagen, but he had met with them ooly once. It is hoped that this statement will finally settle the question.

The description of the second division of the marine algre, Phacophyceax, is begun at p. 282 with the Fucoidex; these are followed by the Dietyoteac, and after these follow the Phreozoosporea. Each order is preceded by a careful description of the structure and fructification of the plants included in it, and an enumeration of the genera; in the case of the Phxozoosporer, a short diagnosis of each family is inserted. We are glad to see, from the long list of synonyms appended to the descrip-
tion of many plants, that M. Hauck has greatly dimin., ished the number of species, especially of those Irom the Adriatic.

British algologists will find in the later numbers of this work, as well as in those which preceded them, mach that is interesting and instructive. The succeeding numbers will be welcome. It is hoped that they will be fot lowed by a good index, which will add very much to the value of the work.

Mary P. Merrtiteld

METEOROLOGICAL OBSERI'ATIONS FROM BEN NEV/S

AWEATHER REPORT from the Ben Nevis Observatory is now published daily, which gives the observations made at $9 \mathrm{a} . \mathrm{m}$. and 9 p.m., these being the hours adopted by the Meteorological Societies of the Britioh Islands, to which are added the highest and lovest temperatures, the amount of rain and snow in all cases where it is possible to measure it, the height of the snow on the plateau, measured by the snow gauge, the hours of sunshinc, taken directly from the sunshine recorder, and the quantity of ozone, droughts, changes of wind, aurons, glories, halos, electrical and other phenomena, recorded as they occur. The record is strictly one of observatioss, and as these are made at the usual observing-bours. British meteorologists and all persons interested in the weather are thus afforded the means of comparing ther own observations with those made at Ben Nevis Obserntory, which is by far the most valuable high-level statica we possess, as furnishing data of the first importance is the study of the weather changes of Europe. In the winter climate of the Ben, the problem of hygrometric observation is beset with formidable difficulties. With 2 view to the practical solution of these it is part of the winter's programme that Mr. Omond conduct a series of investigations with a hygrometer of a novel descriptiom specially designed by Prof. Chrystal for the purpose. In the meantime, and unil the problem be solved, the mord "Sat," meaning saturation, is entered in the wet bulb column in all cases when the wet does not read lovet than the dry bulb, it being evident that in such cases the air is all but, if not altogether, saturated. Indeed, s saturated atmosphere at all temperatures may be almot regarded as a persistent feature in the climatology of the lien. Occasionally, however, as recently happened aboc' Christmas and the New Year, a sudden change sets in, the clouds clear away, the sun blazes out in a sky of mar yellous clearness, and a dryness of air comes on such as is rarely if ever experienced at lower levels. In thes circumstances the dry and wet bulb readings separate to a degree so extraordinary that Glaisher's tables are 10 longer of any use in calculating the humidities of the air. As the periods of sudden and intense dryness of the atmosphere are intimately connected with the anti-cyclonic systems prevailing at the time in north-western Europe, it is not improbable that a careful record and study of them will lead to a more exact forecasting of some of our most important weather changes.
$13 y$ and by the observations, combined with those mate by Mr. Livingstone at the low-level station at Fort William will furnish the data for ascertaining what is the normal distribution of pressure, temperature, and bumidity if the stratum of the atmosphere between the top of B6E Nevis and the level of the sea at its base. These being once determined, all deviations therefrom, whenere occurring, will be readily seen. When the departures from the normals to subsequent changes of weather havt been further investigated and their relations more acce. rately determined, the high expectations formed regarding the part to be played by the high-level station on Ben Nevis in contributing important data towards the forecasting of the weather of the British 1slands will doubcless be realised. It must not, however, be forgoten thas
this intensely practical problem is an excessively difficult one, requiring for its successful prosecution no small expenditure of time, labour, thought, and money.

NOTES

THE Royal Society at their last mesting elected the following five savants foreign members:-Anton de Bary (Strasbarg), Carl Gegenbaur (Heidelberg), Leopold Kronecker (Berlin), Rudolph Virchow (Berlin), Gustav Wiedemann (Leipzig).

We are inforved that it has been arranged that Sir William Thomson will give, at Johns Hopkins University daring the first twenty days of October next, eighteen lectures on " Molecular Dynamics."

Captain W. J. L. Wharton, R.N., at present in command of H.M. snrveying vessel Sylvia, has been selected to succeed Capt. Sir F. Evans, K.C.B., as Hydrographer to the Navy.

On Tuesday afternoon, at Oxford, Convocation witnessed in the Sbeldonian Theatre the most excitirg scene that has been enacted in the University since the opposition to Dean Stanley as Select Preacher. Last summer Convocation passed by a small majority a vote of to, ocol. for a new physiological laboratory. The vote was opposed by the anti-vivisectionists and by some on the gronnd of economy. A memorial got up by Mr. Nicholson against vivisection having produced no effect on the Council, the opponents of Prof. Burdon Sanderson determined to oppose the decree brought before Convucation on Tuesday for empowering the sale of stocks for the 10,000 . voted last June. The decree was supported by the Dean of Christchurch, Dr. Acland, and the Warden of Keble, and was oppesed by Prof. Freeman and Mr. Nicholson. After a stormy debate the vote was carried by 188 votes against 147 . The result was received with enthaviasm, and Oxford is to be congratulated on it. To what shifts Dr, Sanderson's opponents were put may be seen from what the Times calls "the most astonishing speech " of Mr, Freeman the historian, " who afforded a curious example of the confusion of thought into which even intellygent men may be ied by an over-incalgence in sentiment. It would be as reasonable, said Mr. Freeman, for the historian to illustrate the festivities of Kenilworth by an actual bull-baiting as for the physiologist to experiment upon living animals. Mr. Free. man, in his zeal to extablish the scientific eharacter of the hislorian, forgets the difference between description and discovery, and ignores the fact that the physiologist, at least under the existing law, makes his experiments not for the instruction of 1 upils, but with a view to discover what is as yet unknown. A usore curious article in the indictment against vivisection we have not met with since the celebrated letter in which Sir Geor, ${ }^{\text {e }}$ Dnskett told the Royal Commission that he had no evidence to give, but that he considered vivisection 'an abomination introduced frou the Continent going hand in hand with Atheism.'" The Times in its leader on the subject treats it sensibly and moderately. " All those who are open to argument have been long ago eonvinced that scienee cannot proceed on her beneficent way without the aid of experiments, some of which must be painful ; and those who are not open to argument, and those who believe, like some of the wiseacres whose opinion is on record, that 'medical science has arrived probably at its extreme limits,' are not likely to be convinced by anything that can be said or by any facts that cau be brought against them. Parliament, on the recommendationof one of the strongest Royal Commissions ever appointed, has legislated in the matter, and physiological experiment is now under himitations as severe as it is possible for it to be consistently with any kind of progress in discovery. Abuses are of the rarest occurrence. Men like Dr. Sanderson are not only humane, but they are conscious that public opinion is awake on
the matter, and their discretion as to what should be done and what should not is absolutely to be trusted. It is to be hoped that the sensible action of Convocation will not only encourage the Wayufiete Professor to proceed as his scientific conscience may guide him, but will convince the well-meaning but irrational opponents of scientific freedom that further action on their part would be not only vexatious but unsuccessful."

By the election of Dr. j. H. Gilbert to the separate chair of Rural Economy, Oxford has gained a man of European repatation, whose advent to the professoriate all parties will welcome.

Dr. P. P. C. Hozk, of Leyden, writes to Inform us of the death of Prof. Dr. H. Schlegel, Director of the Royal Mnseum of Nataral History at Leyden, on January 17 last. Schlegel was born in $18 \mathrm{O}_{4}$ in Altenburg (Saxony). It was intended to make him a brazier, but on his paying a visit to Viemna about 1824, his love for natural history was awakened. He came to Leyden $\ln 1825$, and tried to obtain an appointment as traveller for the Mureum of Natural History, of which Dr. Temminck was then superintendent. He did not receive that appointment, but stayed in the Museum as preparator. He remained in this position until he was nominated conservator in 1839 . He was appointed to the post of Director of the Museam in 1858 after the death of Temminck. Schlegel was doctor honoris causa of the Leyden University, member of the Royal Academies of Sciences of Amsterdam and Berlin, \&c. The Leyden Museum of Natural History, well known to every zoologist, has become under Schlegel's superintendence one of the richest in existence. For descriptive zoslogy, and especially that of the vertebrata, (reptiles, birds, and mammals), Schlegel was a first authority; the number of papers and monographs published by him in these groups is very considerable, and their scientific importance great.

The death is announced of M. Richard Cortambert, fils, at the age of forty-eight years. He was attached to the geographical department of the National Library, and, in company with his father, had published many geographical works.

Admikal Mouchez read a paper before the Paris Academy of Seiences at the sitting of February 4, in which he stated that it was impossible to make any observations with large instruments in the old establishment at present the beadquarters of French astronomy. He proposes to erect a new obscrvatory on a site in the vicinity of Paris, Admiral Monchez states, moreover, that to find the money required it would be advisable to sell the new grounds which were annexed to the Observatory in the time of Leverrier. The extent of this land is about 28,000 square metres, and the Admiral states that the sale might realise 4. per metre. This ground was given to the Government by the City of Paris, which sold it for the nominal price of 41 ; ; it is sapposed that the Mnnicipal Council will oppose the scheme, which has come to light quite unexpectedly.

By the last mail from Iceland we have received a commanication from Dr. Sophus Tromholt, dated Reykjavik, middle of December, in which he informs us that the weather had till then been mild and very unfavourable for his researches, in consequenee of which he defers to the next mail giving to Nature an account of his stndies io the island. By the same mail apparently the reports which have lately been circulating in the Scandinavian press of terrific eruptions in the island have also arrived. It is stated In private letters that in November two enormous colnmns of smoke were seen in the direction of the great Vatnajökull, and that ashes had fallen in the Seidisford. According to the direction it seemed as if this eruption was far more easterly than that occurring in the spring. In connection herewith it may be of interest to call attention to the note published in Nature (vol. xxix. p. 135), in which it is reported that on the night of

November 17 the snow in the valley of Storelo, in Central Norway, between 61° and $62^{\circ} \mathrm{N}$., became covered with a layer of gray and black dust. It is, however, remarkable that Dr. Tromholt's communication contains no reference whatever to any volcanic eruption.

With reference to the Krakatoa eruption, Prof, Alph. MilneEdwards read at the Paris Academy of Sciences, on January 28, a letter from a correspondent in Réanion, in which it is stated that the intensity of the sky-tints was always greatest where the showers of voleanic ashes had been observed. Thus the path of the voleanic cloud can be traced step by step, and its trajectory found to be that of an ordinary cyclone. M. Wolf showed how a study of the curves registered by the barometer establishes two atmospheric waves starting at the same time from Krakatoa, one towards the east and the other towards the west; the former to reach us had to traverse 11,500 kilometres, and the latter 13,500 . M. Wolf showed that the rate of progress was that of sound, and on the basis of this and the di-tances, he found the eruption to have taken place on August 27, at $1 \mathrm{th} .43 \mathrm{~m} . \mathrm{a} . \mathrm{m}$.

The Birmingham Town Hall was crowded on Sunday night, January 27, to hear a lecture from the Rev. W. Tuckwell on "Natural History for Working Men." He dwelt upon the difference between the homes of the working man and his employer, the first being destitute of the beauty and the resource with which the latter overflowed. One resource at any rate be eould recommend to them in the study of natural history. Illustrations were drawn from the modification of the sap in their window-plants, the rise of the flaid in their trees, the structure of the spiders' webs on their walls, the transformation of insects in their water-butts ; from tbe heavenly bodies within their gaze, Mars with his polar ice-caps, Jupiter with his moons, the sun with his spots, the moon with ber craters, the nebular clusters, and the falling meteorites, to show that enveloping and pressing on us everywhere were miracles of creative and developing energy, surparsing a thousandfold the wonders of human enterprive, and that we walked amongst them unheeding and uninquiring. Instances were given of working men who had been discoverers and happy workers in these subjects, some unknown to fame, others, like Charles Peach, Robert Dick, and Thomas Edwards, the heroes of widely read memoirs. Instructions were detailed for setting up aquariums, collecting fossils and insects, preserving plants, stuffing birds, buying mieroscopes or telescopes with one year's saving from the public-house. A good museum should be examined; and a visit to Cxford on the next bank holiday was proposed. Annual soirdes were recommended, at which the collections and constructions of the past year might be exbibited. The lecture ended with a few words of relligioas feeling arising out of the sulject, which were received with deep sympathy by the audience. Thanks were proposed by Mr. Jesse Collings, M.P., Mr. Lawson Tait, and Rev. E. F. MaeCarthy. The lecture will shortly be published.

In connection with the forthooming International Health Exhibition, it is desired to illustrate as far as possible the rela: tions of meteorology to he lth, and for this furpose a special sub-Committee has been formed. It is hoped that the Royal Meteorological Society will establish a typical climatological order station, provide the complete equipment, and supervise the same. This will be arranged on a level grass space about thirty feet square, which space will be railed in, and provided with a gate through which a limited number of the pablic can from time to time be admitted. The attendant will take daily observations from the instruments, which will be exhibited in diagrams, and a copy of them furnished to the editorial department of the Exhibition, for nublication in the daily programmes and also as a communiqud ot the press. It is hoped that a series of large diagrams illustrative of the climatal conditions prevail-
ing in various parts of the world may be exhibited. Besides the collective exhibit above described, space will be provided for the exhibition of instruments by manufacturers, lnventors, and others who may desire to show them. Attention is particularly directed to the fact that the Committee specially invite the exhibition of meteorological instruments bearing upon the ielations of climatology to public health. The Committee also appesl to authors of papers upon the relations between health and disease, rainfall, percolation, evaporation, and flow from ground, and other subjects eabraced by the Exhibition, and invite them to exhibit diagrame, models, and apparatus illustrative of their researches.

Bulletin No. 3 of the Entomological Division of the U.S. Department of Agriculture (Washington, 188_{3}), when stripper of the "red-tape" that appears to be even more necessary in official documents in the States than it is in this country, is of more than usual interest. The notorious "army-worm" appears in a new character, viz. as destructive to cranberries, which form an important feature in the productions of the States. Varions additional enemies to forest-trees are treated on by Dr. Fackard. A long chapter (by Drs. Anderson and Barnard) is devoted to the "cotton-worw," in which (in addition to interesting biological information) elaborate contrivances for distributing arsenical solutions are described. Dr. McMurtrie contributes an exhaustive report on the examination of raw-silk "growa" in the States. From a scientific point of view the most valuable article is a posthumous one, by the late Dr. J. S. Bailey, on the North American Cosside (or "goat-moths"), illustrated by two very excellent plates.

We cannot speak too highly of the work and management of the Sheffield Free Libraries. One-quarter of their rate is mortgaged to meet the debt incurred at starting ; yet more than oneseventh of its entire amount is spent in books, Practically this is more than one fifth of the available income; and sioce, besides the central library, there are three large active branches as well as a museum and observatory, it shows a careful economy in the expenses. The committee regret in their report that their income will not allow them to farther increave their premises in both size and number. In many libraries the income is almose swallowed up in the expenses of a single costly establishment. The management of Sheffield, therefore, combined with the excellence of the collection of books which its catalogue displayso deserves support from any who feel an interest in intellectand progress or wholesome and harmless recreation.
Tue Norwegian naturalist, Dr. S. A. Buch, bas been commisoioned by his Government to prosecute practieal scientific researches as to the herring fisheries of Norway during the present year, according to the instructions of the Society for Promoting the Norwegian Fisherles in Bergen.

On January 24, at 11.25 p.m., a splendid meteor wa* observel at IIusquarna in Sweden. The meteor passed rather slowly is a sontherly direction, leaving a lustrous trail behind about a yard long. It was nearly the size of an ordinary cheese-plate. After a few seeonds it burst with a loud report, e:nitting a light green lustre. The fragments seemed to turn red and sson vanished.

With the January number the Austrian Menatschrift fuir dew Oricnt has increased its size, and introduced illustrations. It is also promised that scientific supplements will be oceasionally issued.

Messrs. Hodder and Stoughton have issued a translation of the first volume (the only one yet published) of Dr. Rein's work on Japan-" Japan: Travels and Researches undertaken at the Cost of the Prussian Government "-of which we were able to speak in high terms in reviening the original German edition. Altogether it is probably the most solid contribution
which has been made to a knowledge of Japan and its people ; the translation seems to as to be well done.

THE next evening lecture of the Society for the Encoaragement of the Fine Arts will be delivered by Mr. Iennox Browne, at the rooms of the Society in Conduit Street, on February 14. It will be entisled "Science and Singing," an I will be elucidnted by vocal and other illastrations.

From the Addaide Express and Telrgraph of December 31, 1883, we learn that Mr. Clement L. Wragge was about to start an astronomical and meteorological observatory on his own account on the banks of the Torrens. Observations of the usual meteorological elements were to be commenced on Jan. 1, 1884. The meteorological instruments comprise mercurial barometers, a barograph, numerous self-registering and other thermometers by the bett makers and Kew verified ; besides rain-gauges, ozone tests, rain-band spectroscope, and other appliatices used by Mr. Wrigge at the Ben Nevis Observatory. He hopes to train an assistant, who will carry on the work during any prolonged absence. The house is to be called the Torrens Observatory, and is admirably situated on Stephens Teriace, Gilberton, two miles from Adelaide.

On the proposal of M. de Lesseps, the Paris Geographical Societs has decided to publish the biographies of all the French travellers of the present century.

Tue Yournal of the Socicty of Arls for February 1 contains two papers of special interest. One by Mr. J. G. Colmer, the Secretary to the Canadian High Commissioner, tells what the British Association will find in Canada on its visit in August next; the other is a paper of mach practical value, by Mr. Thomas Fletcher, on coal-gas as a labour-saving agent in mechanical trades.

We learn from a communication from Orkney that on January 27 at 3 a.m. the barometer fell to $27 ; 508$, and that the tide was unusually high. At Dundee the lowest record was 273^{82} at $10.30 \mathrm{p} . \mathrm{m}$. on the 266 h , while the velocity of the wiad is given at from fifty to sixty-five miles per hour. In Orkney a velocity of tighty-eight miles was recorded by the anemograph.

IT appears from the researehes of M. Sokoloff that the water of the Neva at St. Petersburg, at a depth of 9 feet, is very pure when eompared with the water supplied to other large citieThe matter in suspension in a cubic metre of water (in September and October) does not exceed 5.5 grm ., and sometimes it is so small as to be less than 0.02 grm . The mineral matter dissolved varies from $3^{\circ} \circ$ to $3^{8.1} \mathrm{grm}$., and the organic matlers reach but 18.7 to 22.5 grm . The average for Angust atd September is $20^{\circ} 4 \mathrm{grm}$. of organic matter and $31^{.6}$ of inorganic ; for October, $2 t \cdot 7$ and $33^{\prime} 9 \mathrm{grm}$. respectively.
Captain Stub, Coriesponding Member of the Society of Arts at Suyrna, writes to Mr. Hyde Clarhe that " the cold wave which was passing over America reached here last Sunday. January 21, and for Sunyrna the cold was intense. I am told iu ex, osed posinions the thermometer went down to 10° below zero. At the point near the railway station I saw ice one iach thick. On the 24th the weather became milder."
THE additions to the Zoological Society's Gardens daring the past neek include a Macaque Monkey (Macacus cynomolgus) from India, presented by Dr. Harrison Branthwaite ; a Bonnet Monkey (Maracus sinicus \&) from India, presented by Mr. E. F. Short1; a Quebec Marmot (Arctomys monax) from Virginia, U.S.A., preseuted by Mr. G. S. White; a Longeared Owl (Asio orms) from Germany, presented by Master Owen Dallmeyer; a Water Kail (Kallus aquaticus), British, presented by Mr. T. E. Gunn ; a West African Python (P) thon selur) from West Africa, pre>ented by Capt. J. Grant Elliott ; five European Tree Frogs
(Hyla arborea) froun France, presented by Miss E. Brunton; a Europeau Tree Frog (/lyla arborca), South European, presented by the Kev. J. Stapledon Webber; a Khesus Monkey (Macaicus rhesus) frum India, a Common Wolf (Canis lugus), European, a Fallow Deer (Dama valguris 8), ,British, two Chattering Lories (Lurius garrulus) from Muluccas, two Vieillot's Firebacks (Euplocamus vicilloti \& 8) from Malacca, depusited ; a Sykes's Monkey (Cercopithecus albigularis), a Gray-cheeked Mangabey (Cerrocebus albigena 8) from West Africa, two Spotted Hyocnas (//yuma crocuta \& 8) from South Africa, a Red-vented Parrot (Pionus mowstruss) from Brazil, a Golden Eagle (Aquila ciry. satclos), a Tawny Eagle (Aquila narvioides), a White-tailed Eagle (Haliailous albicilla), a Cinereous Vulture (V'wlur monachus), reven Knots (Tringa canntus), European, a Temminek's Snapper (Afacroclommys /cmmincku) from North America, parchased.

OUR ASTRONOMICAL COIUMN

The Comet or 1664.-" Cette comète de 1664," remarks Ping'c, in introducing the description of it given in his "Coméiographie," "n singulièrenten exercé les presses des Imprimeurs," and that this statement was ju-tified will be evident to any onc who may ec.nsult Lalande's "Bibliographie," the catalogue of the library in the Oliservatory of Pulkowa, or the "Repertorium der Cometen-Astronomie," by Dr. Carl of Munich ; in the latter will be found references to some eighty works, either treating specially upon this comet, or in which it is noticed in more or less detail. And further, as Madler observes: "Lubienietshy hat uber ihn allein ciuen ganzen Quartbaud geschrieben, der freilich fur unsere Zwecke sich auf einige Seiten reducirt;" the volume here referred to is the tirst of the "Theatrum Cometicum."
This comet appears to have been discovered in Spain as early as Novembir 17. Hayghens observed it at Leyden on December 2. 'while the ubservations of Hevelius at Dantzic, which have been used exclusively in the determination of the orbit, commeneed ou lecember 14, and it was generally observed in France and Italy absut the same tiase. Obsersaticns properly so-called do not appear to have been made in this conntry, and on scanuing the long list of publicatiors enumerated by Carl we find, in addition to a notice by J. Ray in the Phi'osophical Transactious for 1707, only tno works named as having been printed here: (1) "An Astronomical description of a comet as it appeared it new Ingland, in the year 1664;" and (2) "The blazing slar, or a discourse of Comets. In a letter from J. B. to 'I. C. esncerning the late comet." Flam-teed was then an ailing youth, and though given to astronomical exercises he has no reference to the comet in questivn. Indeed, in his account of his early life we read: " 1 had now completed eighteen yeary, when the winter (that of 1664-1665) came on and thrust me again into the chianney, whence hle heat and the dryness of the preceling summer had happily once before withdrawn me ;" and he thus attended rather to calculation from Street's "Caroline Table-" which he had just procured, than to observations.

The comet was not suffered to remain nithout notice by Samuel Pepys, and we find several references to it in his "Diary," whieh it may uot be quite uithout interest to examine. Pep)s records the old style dates, but we reduce them 10 the present reckoning. The first notice of the comet is on December 27, and runs thus: "Mighty talk there is of this comet that is seen a^{\prime} nights; and the King and Queene did sit np last nigbt to see it, and didit seems. AnJ to-night I thought to have done so too; but it is eloudy, and so no stars appear. But I will endeavour it." On the night of December 26 the comet would rise in London just before eleven o'clock, and would be ou the meridian at two o'clock at an altitude of less than nine degrees, in R.A. $126^{\circ}{ }^{\circ}$, and declination $30^{\circ} \circ \mathrm{s}$ s.nth, distant from the earth $0^{\prime} 193$. The apparent length of the tail (37°) men ioned by Carl, assigns a real leagth of $43,000,0 c 0$ miles, if it were in the line of the radius-vector. On December 31 we tead: "My Lord Sandwich this day writes me word that he hath seen (at Portsmouth) the comet, and says it is the most extraordinary thing he ever saw." On January 3 Pepys says: "1 saw the comet, which is now, whether worn away or no I know not, but appears not with a tail, but only is larger and duller than any other star, and is come to rive betimes, and to make a great arch, and is gone to quite a new place in the heavens than it was before ; but I hope in a clearer
night something more will be seen." At eight o'clock on the evening of January 3 the comet was in R.A. $47^{\circ} \cdot 5$, declination $1^{\circ} 5$ south, distant from the earth $0 \cdot 276$; the moon was at full two days previously, so that the tail might have been in great measure overpowered by her light in the indifferent state of the sky. Pepys has no further refereuce to the comet till March $1 t$, when the "Diary" says: "To Gre ham College, where Mr. Hooke read a second very curious lecture about the late comet ; among other things proving very probably that this is the very same comet that appeared before in the year 1618 , and that in such a time prohably it will appear again, which is a very new opinion; but all will be in print." We do not remember to have met with other reference to this opinion of Hooke's, though probably such must exist ; and it is not easy to explain upon what grounds he founded the idea. The comet referred to was the third of 1618, which, to use Pingre's phrase, almost exercised the printing-press as much as that of 1664 . It was observed by Harriot at Sion House, Isleworth, or, as it was then called, Thistleworth.

GEOGRAPHICAL NOTES

Ovr readers may have noticed that Dr. Holub had met with unexpected difficulties at the Cape in the prosecution of his journey into the African interior, the Cape authorities insisting on payment of the full duty on the traveller's scientific equipment. It will be seen from the following communication, which has been sent us for publication, that the difficulty has been happily and promptly settled:-"Downing Street, February 2, 1884.-Sir,-I am directed by the Earl of Derby to aeknowledge the receipt of your letter of the 29th ult., relative to the exploring expedition undertaken by Dr. Holub in South Africa; and 1 am to acquaint you, for the information of Sir Joseph Hooker, that a telegram has been sent to the officer administering the Government of the Cape of Good Hope, requesting that special concessions may le made in respect to the Customs duties, and that support may be afforded to Dr. Holub in the prosecution of his enterprise. A despatch to the same effect will follow by the outgoing mail.-I am, \&c. (signed), Robert G. W. Herbert, -The Assistant Ilirector, Royal Gardens, Kew."

Is the Bolldino of the Italian Geographical Society for January an account is given of a curious manuscript recently presented to the Soeiety by Count Pietro Astonelli. It forms a bulky codex of 125 sheets of parchment, consisting mostly of formulas and magie incantations writteu in the old Giz (Ethiopie) language with a large admixture of Amharic. Amongst the conteuts is also the Aud Neges't, or Royal Circular, comprising sixteen circles, each of which occupies a whole page of the eodex. All are divided into sixteen segments, each contarning some text on the various iucidents of human existence, which are afterwards expounded in greater detail. Theu come thirty chapters, each divided into fifteen lines, every one of which contains fome sentence or aphorism. The donor has received the King Humbert gold wedal for the scientific work accomplished by him in the ftalian settlement of Assab and neighbouring dittrict. The same number of the Bolletino coutains a description of the interesting collection presented last year to the prehistoric ethnographic museum at Kome by M. van Oordt of Leyden. This collection comprises a beautiful series of amulets, nusical instruments, eostumes and all kinds of personal ornaments used by the Maronites of the Lehanon, the Druses of Haurau and other Syriau populations. Some have a eonsiderable intrinsic value, while others are noteworthy for their rarity and the elegance of their forms and ornamentation. One of the most remarkable objects is the girdle norn by rich Bedouin and Druse brides, consisting of a broad many.coloured silken sach with a large ilver clasp nearly oval at both extremities. It is opened by means of a needle, and embellished with conic filigree buttons and silver chains, from which are suspended litile globules, crescents, and other charms.
The Sjdrey Morning Herald of December 27, 1883, says:An exploring party, under the leadership of Mr. Charles Winnicke, an experieuced explorer and bushman, has just made a succe sful journey throngh a large portion of unkuown country in the interior of Au-tralia. The party was provided with camels and horses, but the latter were never required. Mr. Widnieke made a start from Cawarrie station, on the Warburton River, in latitude 28° S., aud traversed the country to the north as far as latitude 27°, effecting a connection with previous explorations
near Goyder's Pillars. A most remarkable natural feature in the Tailton Range was discovered by Mr. Winnicke daring hiHerbert River explorations. Several loug stages without water were encountered a few days after the party left Caxarrie station. and a distance of 200 to 300 miles had to be traversed across the highest sand ridges in Australia before water could again be obtained. Many more long stages of between 100 and 200 mile: withoat water were travelled. In many instances the sand ridges, which were from 300 to 400 feet high, and very steep, had to be crossed at right angles. Two large rivers and au extensive range were discovered near the Queensland boundary, and altogether Mr . Winnicke succeeded in mapping about 40,000 square miles of unknown country, which will help to fill in another large blank space on the map of Australia,
Mr. O'Netll, who arrived at Mozambique on February 4, after having traversed 1400 miles of unexplored country, situated between Mozambique and Lake Nyassa, has discovered Lake Amarambu, the existeuce of which was previously unknown, and which he declares to be the true source of the Pienda (?) River. Mr. O'Neill reports Lake Shirwa to be smaller than has been represented. On his return Mr. O'Neill followed the L.ikelungo Valley, which he found to be well populated.

Dr. Chavanne will start in a few days on his expedition to the interior of Africa, undertakeu for the Belgian "lnstitut National de Géographie." He will employ the first eight months of his time in drawing up an accurate ehart of the Congo; and then penetrate from Leopoldville to the north to explore the bitherto unknown districts lying in that direction and the watercourses. It must depend on cireumstances whether he will effect his return along the Nile, by Zanzibar, or by the Congo. The provisional chart of the Congo, which was published a short time since in America, is now sold bere.

In vol. xix. of the Investia of the Russian Geographical Society we find the results obtained by M. Grinevetsky during his journey across Novaya Zemlya in the spring of $\mathbf{1 8 7 8}$. The country is a plateau, about 450 feet above the sea-level, with deep valleys in which several lakes are concealed. The riven eut deeply into the plateau. The south-eastern winds blow freely on the plain, denuding it of its snow covering. Three different parts may be distingulshed in the southern island of Novaya Zemlya : the northern part, which is covered by mountains quite unknown, is boanded on the snuth by the Pukhovaya River. The middle part is covered by five or six parallel chains of hills, the highest summits of whieh reach 800 feet; they run northwest, close to the western eoast, having a wide plateau to the east. The southern part is a plateau not more than 450 fert high, and M. Grinevetsky doubts very much if there are mountains 2000 feet high, as has been stated. One observation of M. Grinevetsky is worthy of notice. It is most probable, he says, that there are two varieties of reindeer in Novaya Zemlya. Oue of them inhabits the southern island, and the other, which does not mix with the former, inhabits only the northern is lisnd; it is said by the hunters to be much like that of Spitzbergen. In fact the Russian hunters have found very often on Spitzbergen a kind of reindeer with cut ears, whicb, they are persuaded, comes from Novaya Zemlya. In the Report of the Polar Commission in the Iavestia of the Russian Geographical Society (1871) reasons were given for believing, along with Baron Shilling, in the existenee of an archipelago to the north-west of Novaya Zemlya (the feebleuess of the cold sea current in Bareuts Sea, and the large quantities of mud and gravel seen on the floatigg ice north-west of Novaya Zemlya). The remark of the hunters was also referred to, and the opinion expresserl that, if such an archipelago existed, the Novaya Zeralya reindeer really might cross the sea during favourable years, reach this archipelago, and thence coutinue their migrations to Spitz'ergen. The diseovery of Franz Josef Land rendens this supposition still more probable, especially if the Franz Josef archipelago extends farther to the east, which extensiou seems most probable, on account of the feebleness of the polar current that enters Barents Sea, which surely would be much stronger if the space between Novaya Zemlya and the North Pole were occupied eutirely by an open sea. The observation of M. Griuevetsky again raises this question: Is it true that the Novaya Zemlya reindeer afford so many distinct affinities with the Spitzbergen reindeer as to be cousidered as belonging to the same subvariety? And if so, how explain these affinities without admitting (as the hunters do) that the reindeer in his migrations
goes from Novaya Zemlya over to Spitzbergen, availing himself of the archipelagos scattered between the two islands?
In Nos, 9 and 10 of vol. x. of the Transactions of the Berlin Geographical Saciety, is an address on the wild tribes of Madagascar, by Herr J. Audebert, who divides them collectively, both those of Malayan (the Hovas) and those of African descent, according to their mode of life, into three classes : the inhabitants (1) of the eoast ; (2) of the woods ; (3) of the grassy lands and steppe-like wastes of the southern interior. Of all the races the Sakalavi are first in point of number, power, and civilisation. The aborigines, or Malagavy proper, are generally of a dark complexion, though those of direct Arabian descent are very clearskinned, with hard features, broad, often also high forehead, eyes wide apart, nose flat, lips prominent, but not swollen, mouth broad, with splendid teeth. The long rather woolly hair is worn in innumerable plaits woven, in the case of the women, into crowns, vaccine ears, snail-shells, $\&$ c., smeared with tallow and ashes into the hardness of stone, and very malodorous. In the grassy interior cattle-rearing is the principal industry; on the coast fishing and the cultivation of rice. In the woods the people live on roots, tnbercles, and honey.-Next follows an interesting thongh hrief account of Dr. Stecker's chequered travels, of nearly three years' duration, through Abyssinia. About the middle of February, 1881, when Dr. Roblfs left Debra Tabor, Dr. Stecker made his way to the Tana Lake, which he travelled round, sending a detailed map of it, executed on the spot, to the German African Society. At Zabul, the recently-acquired seat of King John, 1)r. Stecker drew a plan of the grand and interesting chain of mountains traversing the eastern part of Abysinitia, but both report and map failed to reach the German African Society, whither they were directed. Dr. Stecker was bent on penetrating into Koffa, but on account of war tumults and King Jobn's refusil to give him permission, was obliged to abandon his design. He, bowever, joined the three kings, King Jobn, the King of Shos, and the Negus Tekla Haimanot into the Eavtern Gala lands of Komboltsha, Antsharo, Tshaffia, Rikke, and Argobba, and was thus enabled to make first acquaintance with a tract of eountry never before trodden by a European.-Some interesting particulars of travels in South America are taken from a letter of Dr. G. Steinman to Dr. W. Reiss, dated November 5, 1883. -The stones collected by Herr P. Guissfeldt on the north-west slopes of Aconcagua, at a height of from 5500 to 6100 metres have been analysed by Prof. J. Roth of the Academy of Sciences, and the result has entablished beyond all further donbt the fact that Aconcagua is a volcano.

THE ORIGIN OF THE SCENERY OF THE BRITISH ISLANDS:

ATRUE mountain chain is the result of a local plication of the earth's crust, and its external form, in spite of sometimes enormous denudation, bears a elose relation to the contonrs produced by the origunal nplift. Tried ly this tandard, hardly any of the heights of Britain deserve the name of mountains. With some notable exceptions in the south of Ireland, they are due not to local hut to general nphearals, and their outlines have little or no eonnection with those dne to nnderground movement, hut have been carved ont of upheaved areas of unknown form by the various forces of erosion. In the course of their denudation the nature of these eomponent rocks has materially influenced the elaboration of their contours, each well. marked type of rock having its own characteristic variety of mountain forms. The relative antiquity of our mountains must be decided not necessarily by the geological age of their component materials, but by the date of their npheaval or of their exposure by denndation. In many cases they can be shown to be the result of more than one nplift. The Malvern Hills, for example, which from their dignity of outline better deserve the name of mountains than many higher eminences, bear internal evidence of having been upheaved during at least four widely ser arated geological periods, the ea, liest movement dating from before the time of the Upper Cambrian, the latest eoming down to some epoch later probably than the Jurassic period. The oldest monntain fragments in Britain are those of the Archsean rocks, and of these the largest portions occur in the north-west
${ }^{\text {i }}$ Abstract of second lecture given at the Royal Institution. February 5n by Archibald Geikie, P.R.S., Director-General of the Geological Survey. Continued from p. 3as.
of Scotland. Most of our mountains, however, belong to upheavals dating from Palzozoie time, though the actual exposure and shaping of them into their present forms mnst be referred to a far later period. Two leading epochs of movement in Palzozoic time can be recognized. Of these the older, dating from before the Lower Old Red Sandstone and part at least of the Upper Silarian period, was distinguished by the plication of the rocks in a duminant north-east and sonth-west direction, and the effects of the e movements can be traced in the trend of the Lower Silnrian ridges and hollows to the present day. In Wales two types of mountain form exist-the Snowdon type, and that of the Breconshire Beacons. In the former the greater prominence of the high grounds arises primarily from the existence of masses of volcanic rocks, which from their superior durability have been better able to withstand the progress of degradation. In the latter the heights are merely the remaining fragments of a once continnous tableland. The Iake District presents a remarkahle radiation of valleys from a central mass of high ground. It might be supposed that these valleys have been determined by some radiating system of fractures in the rocks ; but an examination of the area shows them to be singularly independent of geological strueture. So entirely do they disregard the strike, alternations, and dislocations of the rocks among which they lie that the conclusion is forced npon ns that they have been determined by some cause wholly independent of structure, and lefore the present visible structure was exposed at or could affect the snrface. This eonld only have happened by the spread of a deep cover of later rocks over the site of the lake mountains. The former presence of such a eover, which is demanded for the explanation of the valleys, can be inferred from other evidence. The Carboniferous Limestone on the flanks of the Lake District is so thick that it must have spread nearly or entirely over the site of the mountains. Hut it was overlaid hy the Millstone Grit and Coal-measures so that the whole area was probahly buried nnder several thousand feet of Carboniferous strata which stretehed eontinuonsly acruss what is now the north of England. At the time of the formation of the anticlinal fold of the Penninc Chain the site of the Lake District appears to have been upraised as a dowe-shaped eminence, the summit of which lay over the tract now occupied by the heights from Scafell to Helvellyn. The earliest rain that fell upon this eminence would gather into divergent streams from the central watershed. In the eourse of ages, after possibly repeated nplifts, these streams have cut down into the underlying core of old Palaozoic rocks, retaining on the whole their original trend. Meanwhile the whole of the overlying mantie of later formations has been stripped from the dome, and is now found only along the borders of the mountains. The older rocks yielding to erosion, each in its own way, have gradually assumed that picturesqueness of detail for whieh the area is so deservedly famons. The Scottish Highlands likewise received their initial plications during older Pabeozoie times their component rocks having been thrown into sharp fold, trending in a general north-east and sonth-west direction. But there is reason to believe that they were in large measure baried nnder Old Red Sandstone, and possibly nnder later accumula. tions, No positive evidence exists as to the condition of this region during the vast interval between the Old Red Sandstone and the older Secondary rocks. We can hardly belicve it to have remained as land during all that time, otherwise, the denndation, vact as it is, would probably have been still greater. Not improbably the region had become stationary at a base-level of erosion bencath the sea; that is, it lay too low to be effectively ahraded hy breaker-action, and too high to become the site of any important geological formation. The present ridges and valleys of the Ilighlands are entirely the work of erosion. When they began to be traced the area must have presented the aspect of a wide nndulating tableland. Since that early time the valleys have sunk deeper and deeper into the framework of the land, the ridges have grown narrower, and the mountains have arisen, not by npheaval from below, but by the earving away of the rest of the block of whieh they formed a part. In this evolution, geological structure has played an important part in guiding the erosive tool. The composition of the rock-masses bas likewise been effective in determining the individuality of mountain-forms. The monntains of Irelsnd are distributed in scattered groups round the great central plain, and belong to at least three geological periods. The oldest groups probably took their rise at the time of the older Palxozo'e npheaval, those of the northwest being a continuation of the Seottish Highlands, and those
of the south east being a prolongation of those of Wales. Later in date as regards the underground movements that determined their site, are the mountainous ridges of Kerry and Cork. These are lueal uplifts which, though on a small scale, are by far the best examples in Britain of true mountain structure. The Old Red Sandstone and Carboniferous rocks have there been thrown into broad filds and troughs whieh run in a general east and we-t direction. In some cases, as in the Knockmealdown Monntain, the arch is composed entirely of Old Red Sandstone flanked with Carboniferous strata, But in most instanees an nnderlying wedge of Lower Silurian rocks has been driven through the areh. As not on'y the Carboniferous Limestone, but the rest of the Carboniferous system covered the soath of Ireland and participated in this plication, the amount of denudation from these ridges has been enormons. On the Galty range, for example, it can hardly have been le is but may have been more than 12,000 feet. The third and late-t gronp of lribh monntains is that of Mourne and Carlingfird, whieh may with some probalility be referred to older Tertiary time when the similar granitie and porphyritie masses in Mull and Skye were erupted.

The tablelands of Britain strietly include the mountains, which are in general only prominences earved out of tablelands. But there are still large areas in which the platean character is we:l shown. Of these the most extensive and in many repects the moot interesting is the present tableland or plain of Central Ireland. As now exposed, this region lies upon an nodulating eroded surface of Carboniferous limestone. But it was formerly covered by at least 3000 or 4000 feet more of Carboniferous strata, as can be shown by the frag nents that remain. The present syten of drainage across the eentre of Ireland took its oripin ling befre the ancient tableland had been rednced to its present level, and before some of the ridges, now prominent, had been exp osed to the light. The Moors and Wolds of Yorkshire present us with a fragment of a tableland co nposed of nearly horizontal Jurassie and Cretaceons rocks The Lammermuir Hills and southern Uplands of Seotland form a broad tableland which has heen formed on a deeply eroded surfaee of Lower Silurizn rueks,

THE MONK FISH

NATUREN has recently supplied its readers with some in teresting details eoncerning the so-called "monk-fish" of the Sonnd, which may be regirded as the genuine forerunner of the sea-serpent of modern times. Its capture and appearance were deemed worthy of reco-d in Arild Hirt'eld's great "History of Denmark," published in 1595 . while portraits of the sea-monk embellished the works of various Scandinavian and German natural history writer 4 of the middle of the sixteenth century. Among these, Guillaume Rondelet, in his great folin work, "Libri de Piscibus Marinis," fint eluimed the special privilege of giving to the world a facsimile of the anthentie likeness of the monk. This, we are assured, bad been taken from life for, and in the presence of, a nobleman, who had enused one copy to be made for the Emperor Charles V., and another for Margaret, Queen of Navarre, by whom it was presented to the author. Hirtfeld does not profes to have been hrought into such close e inecetion with the original, but he and the historians, Krag an-1 Stephanius, agree in reporting that a fish, bearing the semblance of a hnman head with a monk's shaven crown, and having torn or matilated limbs indistinctly defined under a scaly eovering, was, in the year 1550, captared in the Sound, in a berring-fisher's net, and brought to the King of Denmark, who immediately gave orders that it should be baried de:p undergroand, " t, , hinder indiscreet talk among the ignorant, whose minds are always pertnrbed by what is new." The speedy burial of the monster did not allay the excitement caused by its ap aration, and Rondelet found, to hiv extreme annoyance, that his $S_{w i s s}$ friend, Gesner, and other philosophers then in Rome, were in pissession of other reputed original likene ises of the monk, differing from his own. This circumstance, he admits, inclined him to suspect that the artist had added "this or that according to fancy to make the fish seem more wonderful than it was iv reality." He even confesses that some of the portraits bave no more resemblance to a human head than might be detected in a frog or a toad; that the extremities look like fins, and that the so-called monk's gown is more like a dark seal's skin than a sealy armour. From these and other corrections, conpled with Gesner's mention of a fish's
tail having formed part of the monk's body, Prof. Steenstra; infers that the "monk-fish" was an unusually large specimen of the Loligo or Squid family, who ece candal extremily, bearing probably bruises or other marks on the skin, had aequired in the imagination of the spectators the semblance of a bead and neck with torn-off arms, while the arms of the cepialopod had served to represent lacerated extrenities. A compari-on of the numerous conflicting enntemroraneous deccriptions of the Danish "sea-monk" and of the later "Kraken" of the old Norwegian Bishop Pontoppidan might passibly be not wholly useless in the present day in ehecking an over hasty confidence in the trath of every fresh tale of encounters with sea-serpents, as recorded by crednlous seafaring men. We may, in the meanwhile, refer all who are interested in sea-monsters to the Jnly number of Naturen, in whieh they will find a faithful representation of Rondelet's monk-fish, while the September number of the same journal gives reprodnctions of two eharacteristie Japanese pictures, in one of which a solitary boatman is battling in a stormy sea with a formidable creature, evidently a bighly magnified form of octopus, one of whose arms has been revered as it encircled man and bar, while the other arms are represented as striving to draw their prey nearer to the huge head with its protruding eyes. In the second pictnre, which, if less forcible, is more realistie we sec in the wondering and terrified exprestion of the assembled men and boys the surprise and alarm exeited by the appearance at a fishmonger's stall of two octopus arme, not unlike suspended serpents. The terror of the spectacle has conmunicated itself to do nestie animals-a dog hiding himself, while a cat is taking rapid flight up the roof of the house.

UNIVERSITY AND EDUCATIONAL INTELLIGENCE

Oxford. - The Examiners for the Radeliffe Travelling Fellow,hip give notice that the examination will commence on February 20 at 10 m m . in the University Mnseum. The Fxamination for the Burdett Coutts Geological Scholarship will commence on March 3 at to a.m.

Mr. Kobert Stockdale, of Giggleswiek School, has been elected to a Hastings Exhibitioa in Natural Science at Qneen's College.

Cambridge.-The following are the worls spoken by the Public Orator in presenting Dr. Hans Gadow (formerly of the British Museum), Curator of the Striekland Collection of Birds, for the complete degree of M.A. honoris cansáa :-
"Dignissime Domine, D mine Procaneellarie et tota Aca demia : Anni proximi sub) finem (iuvat recordari) fabulam illam Aristophanis quxe Aves nominatur cum voluptate maxima prope omnes spectavimus. Hodie vero, ad studia nostra severiora redenntes, nihil auspicatius esse arbitramur, quam annum novam honore in illum collato signare qui omnium avium genera el naturas quasi propriam provinciam sibi sumpsit explorandam. Illnm izitur senatoribas nostris bodie merito adscribimus, qui Pomeranix maritime in parte orientali a gente antiquissiona oriundus is celeherrimiv Germanie Academiis zoologix, palaon tologix, mineralogix, studiis operam suam feliciter impendit qui quarto abhinc anno in Britanniam idcirco est vocatus, ut aves in Museo Britannico eonservatas summa cura describeret; qui in nostra denique Academia nuper non modo de vertebratis quae dienntur animalitus prelectiones babnit doctissimas, sed eliam thesauris nostris ornithologieis cust diendis cum fructu nostro maximo est propositus. Inter antiquos quidem aviem a volatu cantuque rerum futurarum owina ducebantur; mas meliora edocti hodie in hoc viro Procancellarii novi auspicis veram avium cientiam laude deb ta exornamns, ex initio tam felici omnia fansta in futurum augurati. 'Dafe candida cieves Omina, at incepis dertera cantd avis.' Vobis presento virum et de stndiis ornthologieis et de Acadenia nostra optime meritum, Hans Gadow.'
Mr. W. F. R. Weldon, B.A., St. John's College, has been appointed Demonstrator of Comparative Anatomy.
Mr. Francis Galton, F.R.S., has been appointed Rede Leeturer for the present year.
Pmf. W. J. Sollas, M.A., late Fellow of St. John's College, First Class in the Natural Seiences Tripos, 1873, and Mr. P. 11. Carpenter, M.A., Trintty College, First Class in the same Tripos, 1874, have been approved for the degree of Dector of Seience. The able original works in Geology and Zoology by both these gentlemen are familiar to all students.

London.-At King's College, Trof. W. Grylls Adams, F.R.S., will continue the course of lectures on Light, and the scientific Principles involved in Electric Lighting, during the remainder of the session. A course of practical work in Electrical Testing and Measurement with especial reference to Electrical Engincering will also be carried on under his direction in the Wheatstone laboratory. The lectures will be given ohce a neek-on Monday-, at 2 p.m. -and the Laboratory will be open on Wednesday and Friday from 1 to 4.

SCIENTIFIC SERIALS

The monthly parts of the Fournal of Bolany for 1883 contain many useful and ioteresting papers. Among the more important must be regarded Mr. J. G. Baker's synopsis of the genus Selagivella. This is not yet completed, but already extends to nearly 100 species, many of tbean now described for the first time. This is undertood to be an inssalment of a complete monograph by Mr. baker of the Vascular Cryptogams, excluding ferns, a work eagerly demanded by botanists. - The additions to the pbanerogamac flora of Great Britain are not yet completed ; and the palm of recent discoveries mnst be awarded to Mr. Arthur Bennett. In this year's record he deseribes and figures two, one of them, Polamogeton Grifishiti, new t.) science, from a lake in Caruarvonshire. The other, Naias marina, is a native of the "Brouds" of Norfolk. This is rendered more interesting by the discovery, by other botanists, of another species of Naias, N. alagnensis, also dnring the present year, in Lanca-hire. It is not many years since the genus was first found in Britain; and the only species hitherto known, \boldsymbol{N}. fexilis, has been gathered only in Scotland and Ireland. -The structure and distribution of the Characese are still engaging attention from Mesirs, H, and J. Groves and others ; and of this eryptogamic order, another species, Chara Braunii, has also been added to the flora of Great Britain.-Mr. H, Boswell also describes two new British mossec, Brywm gemmiAarmm, from Bresonshire, and Sphagnum torrejanwm, from Shropshire.Messrs. R. M. Christy and H. Corder contribate an interesting paper on the cross-fertilisation of Arum maculatum,-Numerous other articles and short notices of more local and special interest fill up the number.

Tuz second part of vol. xiv, of Pringshcim's Yahrbücher fur zussenschaffluche Botanik contains two important articles on cryptogamic botany:-Dr. A. Fischer, on the occurrence of crystals of gypsum in the Desmidiex shows that they are of very wide distribution in the family, as well as in other freshwater algre such as Spirogy ra, though by no means univenally present. He believes it to be simply a product of excretion in the process of metastasis, whether present in the form of crystals or dissolved in the cell-sap. Dr, O. Muiller, on the law of cell division in Afdosira arenaria, offers an important contribution to the life-history of the diatoms. By a most careful series of observations he establishes the law that "the larger daughtercell of the nth generation divides in the followiug or $(n+1)$ st generation, while the smaller daughter-cell always divides only in the $(n+2)$ nd generation," by an argument which is too long to go into here. He deduces from this law the reason of the comparatively rare occurrence of the auxospores, by which the original size of the species is restored after the continned degradation which it necessarily undergoes in the process of division, - B. Fritsch contributes also a paper on coloured granular constitnents of the cell-contents.

THE second part of vol, iv. of Ensler's Bolanische Jahr. bucher for 1883 contains a continuation of its very valuable review of the more important works on systematic and geographical botany which appeared in 1882.-The other papers are :-By T. Wenzig, on the genus Fraxinus.-By F. Moewes, on hybrids of Mentha arvensis and M. aquatica.-By E. Warming, on the order Podostemaces.

Archives of the Physical and Natural Sciences, Geneva, December 15, 1883.-Metcorological nfsumf of the year 1882 for Geneva and the Great Saint-Bernard, by M. A. Kammermann, Assistant-Astronomer.-On the ancient lake of the Soleure district (coloured map), by M. Alph. Favre. The existence of this lacustrine basin confirms the conclusion arrived at by other geological studies, that daring the early post-Glacial epoch a far gre-ter portion of Switzerland was under water than at present.

- Descriptive notice of the meteorological observatory installed on September 1, 1882, at Sentli , canton of Appenzell, 2467 metres above sea-level,-On the periodical oscillations of the ground, determined by the spirit-level (fifth year, 1882-83), by M. P. L.. Plantamour,-On the theory of dynamo-electric machines, by M. R. Clausius. These machines having in their practical development outstripped the theory of their construction, an attempt is made in this elaborate paper to expound a theory more in harmony with the results already obtained tban are any of the mathematical formulas hitherto employed to represent them.

Rendiconto of the Sessions of the Accademia delle Sciense di Bologna for the year 1882-83. Nov. 19, 1882.-Memoir on the "uuil envelopes" of the second class in a given system of points affected by given coefficients, showing bow, from the general formnia, others may be deduced, rendering more evident the property of the envelopes, and solving some questions connected with the momenta of the second order of said system, by Prof. Ferdinando P. Ruffiani.-On three sicephalous monsters, and more particularly on the seven-month Janus recently born in Bologna, by Prof. Luigi Calori.-Note on the extremities of the motor nerve fibres in the striated muscles of the torfedo (Torpedo marmorata) treated with bichloride of gold and cadmium, by Prof. G. V. Ciaccio.-Microscopic researches on the traces of electric sparks incised on glass, by Prof. Elmilio Villari, On the electric figures of condensers, by the same author.

November 26.-A systematic classification of the genus Pnccinia, by Prof. Cocconi and Dr. F. Morini,-On a case of hypertrophic hepatitis, by Prof. C. Taruffi-Symptomatic and anthropometric stadies on the cretinism prevalent in the Valle d'Aosta, P'iedmont, by the same author.-Some new researches on the artificial reprodnction of the spleen, by Prof. Guido Tizzoni.-On the results of the measures hitherto adopted to improve the soil and climate of malarious districts in Italy, by Dr. Paolo Predieri.-A new contribution to the study of Addison's disease, by Prof, Ferdinando Verardini.

Janaary 14, 1883.-On a fossil cetacean (Orca celoniensis) recently discovered at Cetona in Tuscany, by Prof. G. Capellini. -A study of some reactions of phosphuretted hydrogen gas, by Dr. Alfredo Cavazzi.

January 28 . - On a rapid method for determining the lanar motions, by Prof. A. Saporetti.-New researches on the anatomy and pathology of the placenta in mammals, by Prof. G. Escolani.

February 11.-Notes on the history of geodesy in Italy from the earliest timesdown to the second half of the present century, by Prof. P. Riccardi.-Experimental researches on the hypertrophy and partial regeneration of the liver, by Dr. V. Colucci. - On the relative length of the neck in both sexes, and on the best method of making these anthropometric mea-urements, by Dr. G. Peli.-On the preventive inoculation of contagious pleuro-pnenmonia for cattle by means of intravenous injection of the virus, by Prof. A. Gotti.- Anatomical researches on five bovine monatroaities, by Prof. G. P. Piana.

SOCIETIES AND ACADEMIES

London

Royal Soclety, January 10 - "Experimental Researches on the Electric Discharge with the Chloride of Silver Battery." By Warren De I.a Rne, M.A., D.C.L., Ph.D., F. R.S., and Hugo Muller, Ph. D., F.R.S.

Plusticity and Viscosity of Strata.-During our experiments we have ofiea been struck by the evident plasticity of strata whose form at times becomes modified when they meet with an ol tacle or are influenced by other causes, as, for example, the crissing of other strata produced by a separate discharge.

One of our tubes, No. 9, with a residual hydrogen vacuum, has a diaphragm in the centre $\frac{1}{8}$ of an inch, 0.63 cm ., thick, through the centre of which there is a hole $\frac{1}{8}$ of an inch, $0.63 \mathrm{~cm}_{\text {, }}$, in diameter. To the end of the tube is attached a potash absorption chamber, the heating and cooling of which causes a change in the nnmber of strata; when the number of strata increases they approach closer and closer to the diaphragm, and oecasionally one threads itself through it, as if squeezed through, and its form is gradually changed thereby.

A tube, No. 368 , Fig. 1, with a hydrogen residue gives evidence of the vi-cosity of a stratum.

At right angles is a tube of s maller diameter ; in this tube is a stopper having a loop underneath frow which is suspended by two silk fibres, s, a piece of decarbonised iron, $n n^{\prime}$. The stopper when greased turns quite smoothly, and by rotating it the needle can be easily placed in any direction with regard to the tuhe.

In the first place the tube was placed in the magnetic meridian, and the needle of iron wire, $n n^{\prime}$, in the same direction; tested by means of a very small magnet, both ends were equally attracted and not repelled, showing that the needle had been thoroughly decarbonised; this was done by heating it to redness for many hours in peroxide of iron, prepared by burning its oxalate.

The discharge was in the first instance passed from the ring to the point, so that the needle was in the dark space; no magnetism

was developed in the needle, which would have been the case if the discharge had had a spiral motion as we have often observed and de-cribed to be sometimes the case. It was indeed with the object of ascertaining this fact that the apparatus had been made.

The needle was now placed at right angles to the tube, and the point made positive; after a few trials at different exhausts a beautiful tongue-shaped stratification was obtained, and it was then possible by altering the amount of the current to make the apex of a stratam impinge on one or the other end of the needle, Figi. 2 and 3; on whichever end the stratum touched, that end was pushed away by it , showing clearly that the balance of forces which hold together the molecules composing a stratum are sufficient to render it vi-cous, and unyielding to a small resistance.

Geological Society, January 23.-R. Etheridge, F.R.S,, vice-1 readent, in the chair.-George Henry Nelson and John Thilip Spencer werc elected Fellows of the Society.-The following communications were read:-On the Serpentine and associated rocks of Porthalla Cove, by J. H. Collins, F.G.S.Outline of the geology of Arahia, by C. M. Doughty. Communicated hy Prof. T. G. Bonney, F.R.S. The author described the general outline of the geology of a considerable district of the western part of Arabia, over which he had travelled. It was not in his power to enter into details, especially as regarded the sedimentary rocks, because the circumstances under which his journey was undertaken made it impossible to bring back specimens. There was, however, considerable simplicity in the geological structure of the country, The igneous rocks consisted of granites and basalts, the latter
breaking through the former. The sedimentary rocks, which are ne aer than the 2 ranites and, in fact, rest upon them, consiat of-(a) A yellowish sandstone, with stains of a reddish or greenish colour and veins of iron tone. In this, for example, the rock tombs, \&c., of Petra have been excavated. These substance, in the author's opinion, may be traced as far as Medina, and occur all about Kasim. They often weather in a singular way ; pebbles are scarce in them; fossils he had n nt reen. (b) The fimestone contains bands of flint, and appears to be identical with that which occurs in Palestine, and is, he thinks, probably of Cretaceous age. (c) Of much later date is a coarse flat gravel which overspread a considerable tract of country, as, for example, at Mount Seir in Edom, altogether about 250 square milex. The flints are doubtless derived from the limestone, and are often polished by drifting sand. It occurs on plateaux at very considerable elevations ahove the sea, sometimes forming the highest ground in the neighbourhood; and sections had shown this gravel to be more than 20 feet deep. In it the author had discovered (w) or three flint weapons of palacolithic type, rude, but very like those of Hoxne or St. Acheul. The granite by its aspect and mode of occurrence recalls that of Sinai. It is cut by dykes of basalt; and now and then the author had ob-erved other intrusive igieous rocks, which be must be content to classify as traps. The dykes of basale, how ever, were not the only modes of occurrence of this rock; there were considerable flows of basaltic lavas and ocensional sinall craters. Theve volcanic districts bear the name of Harra; the principal are the Aneyrid, the Khaybar, and the Kesshub. The last lies between Nejd Arabia and the Mecea country. These masses of lava, \& ${ }^{2}$., are comparatively modern; eruption, indeed, has in one or two localities occurred in historic times, and steam has been seen to issue from certain craters.

Phyaical Society, January 26,-Prof. Clifton in the ehair. - New member, Vung Free, Secretary of the Chinese Legation. - Pruf. Clifion announced that Lady Siemens had presented a portion of the late Sir William Siemens's library to the Society.The meeting, which was at first a special meeling to consider the resolution that it is expedient for the past presidents of the Society to be permanent vice-presidents, having agreed to this resolution, was constituted an ordinary meeting, and Professors Ayrton and Petry described and exhibited their new ammeters and voltmeters, also a non-sparking key. The well-known ammeters and voltmeters of the authors used for electric light work are now constructed so as to dispense with a constant, and give the readings in amperes and volts without calculation. This is effected by constructing the instruments so that there is a falling off in the controlling magnetic field, and a considerable increase in the deflecting magnetic field. The deflections are thus made proportional to the current or E.M.F. measured. The ingenious device of a core or soft iron pole piece adjustable between the priles of the horseshoe magnet is used for this purpose. By means of an ammeter and voltmeter used conjointly, the resistance of part of a circuit, say a lamp or heated wire, can be got by Ohm'slaw. Professors Ayrton and Pery's non-sparhing key is designed to prevent sparking with large currents. It acts by introducing a series of resistance-coils determined experimentally one after the other in circuit, thereby cutting off the spark. - Dr. C. R. Alder Wright, F.R.S., read a paper on the electromotive force set up during interdiffusion, heing the result of experiments made by hioself and Mr. . Thompson to determine the effect of varying densities of solutions used in voltaic cells on their E.M.F.'s, The observitions werc made by constructing the cells of pure materials and oppoing them so that the differential E.M.F.'s could be measured by galvanometer or quadrant electrometer, when solutions of different densities were employed. The following general conclusions were reached: (i) In any two fluid cells containing solxtions of two metallic salts and plates of the respective metals contained therein, an increase of strength in the solution surrounding the plate acquiring the higher potential in virtue of the normal action of the cell causes an increment in the potential difference between the two plates; and the opposite effect is prodaced by an increment in the strength of the solution surrounding the other plate. (2) A law of summation holds, expressible thus: the effect of the sum of a series of changes in the strengths of the solutions in a two-fluid cell is equal to the algebraic sum of the effects of each change severally. The author considered this law very fully; and pointed out that "diffusion cells" act at least partly after the fashion of thermo-couples transforming into electric energy a certain amount of sensible heat.

Anthropological Institute, January 22 -Anniversary meet. ing.-Prof. Flower, F.R.S., president, in the chair.-The following gentlemen were elected officers and Council for the year 1584 :-President : Prof. W. II. Flower, F.K.S. ; vicepresidents: Hyde Clarke, John Evans, F.R.S., Francis Galtou, F.K.S., Lieut.Col. H. H. Godwiu-Austen, F.R.S., MajorGeneral Pitt-Rivers, F.R.S., E. B. Tylor, F.R.S. ; director: F. W. Rudler, F.G.S. ; treasurer : F. G. H. Price, F.S.A. Council: J. Beddoe, F.R.S., S. E. B. Bouverie-Pusey, E. W. Brabrook, F.S.A., C. H. E. Carmichael, M.A., W, L, Distant, C. I. Elton, B.A., A. W. Frauks, F. R.S., J. G. Garson, M.D., Prof. Huxley, F.R.S., Prof. A. H. Keane, B.A., A. L. Lewis, Sir J. Lubbock, Bart., M.P., R. Biddulph Martin, M. P., 1 lenry Muirhead, M.D., J. E. Price, F.S.A., Lord Arthur Russell, M.P., Prof. G. D. Thane, A. Thomson, F. R.S., Alfred Tylor, F.G.S., M. J. Walhouse, F.R.A.S.-The President delivered an address on the aims and prospects of the study of anthropology, which we gave last week.

Edinbjrgh

Royal Society, January 21.-Robert Grey, vice-president, in the chair.-Prof. Crum Brown communicated a paper on distant vision, by Dr. Maddox. Dr. Maddox finds that accommodation for a distant object in the case of most persons is naturaily connected with a slight convergence of the optic axes, so that the intersection of the optic axes is nearer than the object looked at. At a certain distance, different in different persons, and probably varying in the same persou from time to time, the optic axes naturally converge at the distance focused for. When a nearer object is looked at, the point of intersection of the optic axes is beyoud the object. In ordinary vision these differences between the distance of convergence and of accommodation are not observed, because the effort for single vision easily overcomes them, and forces the optic axes into the portion corresponding to the accommodation,-Mr. Johu Aitken read a paper on the dark plane in dusty air, a full report of which was given in our last issuc.-Mr. Aitken also read a note on the recent sunsets.

Cambrtdgas

Philosophical Society, January 28.-On the microscopic structure of a boulder from the Cambridge Greensand found near Ashwell, Herts, by Prof. Bonney.-Un critical or apparently neutral equilibrinm, a note on Mr. Greenhill's paper, Camb. Phit. Proc., 1883 , by Mr. J. Iarmor. - On the normal vibrations of a thin isotropic shell, bonnded by confucal spheronns, by Mr. W. J. Ibbetson,-On the isocbromatic curves of polarised light seen in a nuiaxial crystal cut at right angles to the optic sarface, by Mr. C. Spurge.-Tables of the number of numbers less than n and prime to it, and of the sum of the divisors of n_{1} and the corresponding iuverse tables up to $n=3000$, by Mr. J. W. L. Glaisher.

Pakis

Academy of Sciences, January 21.-M. Rolland in the chair.-Reflections on M. P. leert's last commnnication regarding his new method of anasthesis in surgical operations, by M. Gosselin. Although somewhat inconvenient in practice, the author still considers that the innovation presents certain advantages, while supplying a fresh argument to those who recommend moderate and progressive inhalation, rather than a large dose administered all at once. In his reply M. Bert submits that the objections raised to his method on the ground of the cumbrous nature of the apparatus are greatly exaggerated in the case of public hospitals. He further urges that it appears to be the only process in which surgeons are relieved of all personal responsibility in administering ansesthetics.-On the preparation in large quantities of artificial virus (hacilli of splenetic blood) attenuated by rapid heating (continued), by M. A. Chauveau. Here the author explains the conditions essential to the successful performance of this important and difficult operation. The subject is treated at length under the following heads:-(t$)$ on the degree of heat required for the complete atteuuation of the artificial virus; (2) on the heating process; (3) on the practical value of this system of prophylactic inuculation.-Extract from a letter by Baron Nordenskjold on the remarkable optical effects observed during she last two mouths at sunset and sunrise in Sweden, presented by M. Daubrée. The author suggests that the phenomenon cannot be attribnted exclusively to the dust discharged during the recent eruptions in Sunda Strait. Small particles of
dust contained iu the snow which fell near Stockbolm at the end of last December were found on anslysis to contain a considerable quantity of carboniferous matter, which burnt in the dry state with a flame, and left a reddish residuum containing oxidised iron, silica, phosphorus, and as much as $0^{\circ} 5$ per cent. of cobalt and nickel.-Observations of the Pons-Brooks cumet made at the Brunner 6 -inch equatorial ($0^{\prime} 160 \mathrm{~m}$.), Observatory of Lyons (contivued, by M. F. Gonvessiat.-On the multipliers of linear differential equations, by M. Halphen.-On the approximate values assumed by an integral polynome when the variable quanity varies within defini/e limits, by M. Laguerre.-Note on the shading of a sphere, by M. J. Cotillon. The author here attempts a reproduction of the sbaded sphere traditionally said to have been constructed at the Ecole Polytechnique on the theoretical indications suiplied by Monge.-On the electric conductibility of greatly diluted saline solutions, by M. E. Bouty. M. Berthelot, who insists on the importance of the results obtained by M. Buaty, points out that, according to the new law established by his numerous experiments, the electric resistance of greatly diluted solutions is determined, not by the atomic weight, but by the chemical equivalent of the bodies, - On the repulsion of two consecutive portions of the same electric current, by M. Izarn.- On the development of the nacreous crystals of sulphur, by M. D. Gernez-Determination of the equivalent of clirominm by means of the sesquioxide of its sulphate, by M. H. Baubigny.-Telegraphic despatch regarding the liquefaction of hydrogen addressed to M. Debray by M. Wroblewski. On this communication, which was worded: "Hydrogen cooled by boiling oxygen has been liquefied by expansion," M. Debray offers some remarks, and shows how it entirely confirms the remarkable observations made by M. Cailletet on the expansion of hydrogen.-On the products of reduction of erythrite by formic acid, by M. A. Henninger. On an aromatic diacetone, by M. E. Loujse-Quantitative analysis of the moisture of amylaceous substances (starch, fecula, \&c.), by M. L. Bondonneau. - On the classification of the plumicole Sarcoptidze (sub-family of the Analgesinac), by MM. E. L. Trouesvart and P. Méguin,-On the Cipolino marble of Paclais, Loire-Inférieure, by M. S'an. Meunier. From a carefnl stndy of this remarkable calcareous formation the author considers that even more than the blne marble of Antrim it may be regarded as a type of metamorphic rock by contact.-On the nature of the depoits ohserved in the water of contamiuated wells, by M. E., Gautrelet. To the organisms examined under the microscope the anthor gives the name of Stercogona tetrastoma, and for several reasons concludes that they are the true typhic microbe.On the remarkable atmospheric disturbances produced by the Krakatoa eruption, by M. E. Renou,-On the twilight effects observed on December 27 on the summit of the Pay de Dome, by M. Alluard. - The recent remarkable sunsets and snnrises compared with those observed in various parts of Europe during the summer of $183 t$, by M. A. Angot.

January 28,-M. Rolland in the chair.-Spectral study of the group of telluric bandsin the brightest regions of the solarspectrum, which were discovered by Brewster and collectively called a by Angström, one illustration, by M. A. Cornu. A prot racted study of the bandlets of lines in this mysterious α band has suggested a practical method for distinguishing by simple inspection the lines of telluric from those of solar origin. It has also enahled the author to establish the intimate relation between this group and the A and B Fraunhofer bands, while the origin of the group itself must be referred to absorption by the oxygen of the air. Remarks on Faraday's electrochemical law in connection with the law discovered by M, Bouty regarding the conductibility of greatly diluted saline solutions, by M. Wurtz.-On the atmospheric disturbances attribnted to the Krakaton eruption, and on the storm of January 26, by M. C. Wolf. The storm was announced the day before by great oscillations of the magnetic curves, especially those of the declinometer. The most remarkable feature attending it was its sudden cessation about one o'clock a.m. when the velocity of the gale fell at once from 38 m , to 12 m . per second. - On the physical disturbances that have taken place during the last few months, by M. Faye.-On the period of most frequent oecurrence of solar spots in recent times, according to the data supplied by M. R. Wolf of Zarich, by M. Faye, The maximnm (424) seems to have been reached during the first six months of 1882 .-Remarks on the official topographic chart of Algeria, scale $\mathbf{I}: 50,000$, the first twelve sheets of which have been presented to the Academy, by M. F. Perrier.-On the employment of titrate mixtures of anmesthetic vapours and air in the
$a^{\text {d ministration of chloroform. by M. Riehet. - Note on the dis- }}$ semination, assimilation, and determination of phosphoric acid in arable lands, by M. P. de Gasparin.-On the mean movement of the first satellite of Saturn (Mimas), based on ninety-one observations made at Toulouse since October 24, 1876, by M. R. Baillaud,-Obeervation of the Pons-Brooks comet made at the Observatory of Meudon (one illu-tration), by M. E. L. Trinvelet.-On the reduction of a continuous fraction of a fraction satisfying a linear equation of the first order with rational coefficients, by M. l.aguerre,-Further redaemon of the limits furnished by Descarte's rule of signs, by M, I. André.-On the distribution of the potential in liquid masses limited by two parallel planes, hy M. Appell.-Relation between the power and resistance applied to the two points of attachment in a continuous spring break, regard being had to the elasticity of the spring, hy M. H. I érute.-On the reciprocal action of two electrified spheres, by M. Masca't.-On the Skrivanow electric pile (preket model), by M. 1). Mnnnier, -On the variations of tlectromotor force in accumulators, by M. E. Keynier.-On a method of determining the longitude of a place, the latitude and astronvwic time being knoun, by the obvervation of the true altitude of the moon at a given moment beforehand, by $\mathrm{M} . \mathrm{Ch}$. Rouget.-Report on the fresh experiments made with the marine gyrme ype on board the ironclad lf Tarcons in the harbour of Brest on November 11 and 16,1883 , by M. Vidm. Dubois, -On a new method of preparing the permanganate of barytum, by MM. G. Roussean and B. Bruneau. -On ta nitrous colloid derived from amid ibenzoic acid, by M. E. Grimanx.-On sone remarhable properties of the lutidine derived from coal tar, by M. Oechsner de Coninck.-On the operculum of the gastcropods, by M. Houssay. - On the proportion of incompletely oxidised phosphorus contained in the urine, especially under eertain nervous endlitions, by MM. R. Lépine, Fymonnct, and Aubert. -Recearches on the intensity of the chemical phenomena of reepiration in superoxygenised atmosphercs, by M. L. de Saint Martin.-Researches on abnormal menstrual discharges, by M. J. Rouvier.-On the barometric disturbances produced by the Krakatoa eruption (second note), by M. E. Renou.-On the barometrie disturbances obeerved on August 27, 1883, at Montsouris, by M. Marié-Davy.-On the canses (1) of the production of atmospheric electricity in general ; (2) of electricity in thundentorms ; (3) of electricity of sheet-lightning, by M. G. le Goarant de Tromelin.-On an auroral and crepuscular display of light obverved at the island of Réunion, in the Indian Ocean, on September 8,1883 , by M. Pelagaud.

Berlin

Physiological Society, January 11.-Prof, Kossel discussed the methorls which had hitherto been adopted in onder to become acquainted with the transformations of nitrogenous substances in the animal body in the course of their passage from the well-known starting point, the alhumen, to the likewise wellknown final products, urea, uric acid, and creatinc. The way which, in the opinion of the speaker, was most likely to lead to good results was to srek in the tissues the chernical combinations which, in accordance with their composition, stood midway hetween the albumen and its final products. In relation to this point, the analyses of nitrogenous substances occurring in the animal body had already yielded gcme definite data to work on. The proportion of carbon to nitrogen (C:N) bad, namely, been fiund to be, in the albumen, $100: 30$; in urea, $100: 233$; in creatine, $100: 66$; in hypoxanthine and xanthine, 100:93; and in guanine, $100: 116$. It appeared evident, therefore, that the substances creatine, hypoxanthine, xanthine, and guanine were mediate products in the process of the transmutation of the albumen, with the discovery of which in the tiones Prof. Kossel had been busied. The bases hypoxanthine, ranthine, and guanine were not found in an isolated state in the tis ues, but compounded with albumen and phosphoric acid into the complicate molecule, nuclein, a subject to which the speaker had devoted searching inquiry. There were different forms of nuclein which varied probably according to the share the bases bad in their composition. Alf of them, however, agreed in having eommon reactions. Nuclein had already, by its discoverer, been brought into close relationship with the cell-nucleus, and it would be of great consequence if it enuld be conclusively proved that the cell-nucleus consisted exclusively of nuclein, as in that case the changes of the cellnucleus occurring under different physiological conditions would be accompanied ty chemically demonstrable quantitative changes in this nuelein substance. The quantitative analysis of the
nuclein conld, namely, be worked out by determining the xamthine or guanine hases. In thil case, however, it was necessary to ascertain b.forehand that the tissue examined contained no free xanthine or guanine besides the nuclein. A second method for dctermining the quantitative nuclein was through determining the amount of phosphoric acid in the composition. Phosphoric acid occurred in the body in three different combinations, namely, as inorganic phosphoric salt, iu lecithin, and in nuclein. Inorganic phosphoric acid was to he extracted by diluted acids, lecithinic phosphoric acid by bot alcohol. The phosphoric acid then remaining would belong to the nuclein, and could scrve for its quantitative determination. Prof. Kossel had now ascertained that the blood of mammalia contained no nuclein, while on the other hand the blond of birds did. The muscles contained little nuclein, the brain somewhat more; still more was found in the liver, and most of all in the spleen. In all the e suceessive cases the nuclein substance kept abut equal pace with the presence of cellnucleus. Nuclein was al-o, however, to le met with in substances which contained no cell-nucleus ; in the yolk, for example, ald in the milk. Possibly in this case there night be chemical proof of granules without their having come morpholngically to view. In pathological proceises, by which cell nucleas becomes excescively developed in tiscues which otherwise contained no cell-nucles: as was the case in leucxmia or sarcomatous tumours in the muscles, Prof. Kossel had invariably found an increase of nustein in corresponding quantities.-Dr. W. Wolff explained some microscopical preparations which he had set up in the demonstrating hall. In one of these preparations was seen a stage in the development of the nerves in the tail of the larva of a frig. These nerves consisted of primitive fibres ramifying as far as the finest fibrelets. At a farther stage cells were seen attaching themselves to these at the thicker parts. Next appeared the nerve-sheath, and finally the marrow. Other preparations demonstrated the growth of the bones of frogs which took place only at the periostenm and at the ends of the diaphyses By treatment with chromic acid and with two different aniline colours, Dr. Wolff had stained the cartilages a beautifal blue, and the oveous tinsue red, and was therefore able readily to follow the dcvclopment of the latter.

CONTENTS

Page
Jurasaic Rocks under London. By Prof. John W. Judd, F.R.S.
Mental Evolution In Anlmals. By James Sully 329
Our Book Shelf :-
Hamblin Smith's "Introduction to the Study of Heat " 333
Letters to the Editor:-The Ear a Barometer.-C. V. Boys333
The Remarkable Sunsets.-W. T. T. D. ; Henry Cecil; W. W. Taylor 334
Christian Conrad Sprengel.-Dr. Fritz Muller 334
Diffusion of Scientific Memoirs.-R. T. Glazebrook 335
Brooks' Comet.-W. T. Sampson
"Mental Evolution in Animals."-F. J. Faraday ; 335George J. Romanes, F.R.S.The Storm of January 26,-David CunninghamOzone at Sea.-Clement L. WraggeMcteor.-E. Howarth335336
Ravens in the United States.-Manhattan 336
On the Height of the Aurora Borealis. By AdamPaulsen
337
The Effects of the Weather upon Death-Rate and Crime in India. By S. A. Hill 338
Algie. By Mrs. Mary P. Merrifield 34°
Meteorological Observations from Ben Nevis 34^{2}
Our Astronomical Column :-
The Comct of 1 C 64343
Geographical Notes 345
The Origin of the Scenery of the British Islands.By Archibald Geikie, F.R.S., Director-General of346
the Geological Survey347
University and Educational Intelligence348Sclentific Serials349
Socleties and Academles (With Diagram) 34°

THURSDAY, FEBRUARY 14, 1884

MR. RUSKIN'S BOGIES

PROFESSOR RUSKIN'S utterances are perhaps to be taken least seriously when he is himself most serious, and probably he was never more in earnest than in his jeremiad on modern clouds, delivered at the London Institution on the $4^{\text {th }}$ and 1 th inst. Probably none of the readers of Nature bave been terrified by the storm cloud of the nineteenth century, but should it be otherwise we hasten at once to their relief. Twenty years before the date fixed by Mr. Ruskin for the first appearance of his portentous " plague-cloud," the writer of the present article commenced a series of observations on the forms and structures of clouds, followed a few years later by such daily charts of wind and weather as could be constructed from the data, somewhat meagre, that were then aceessible. As might be expected, cyclone and anticyclone were then as they are now. The dimensions and densities of the cloud layers have not altered, neitber has our moral degeneracy nor the increased smoke of our manufacturing towns developed any new form of cloud. Neither (until the phenomenal sunrises and sunsets of the last three months) has Nature, in painting the clouds, employed upon her palette any fresh tints, whatever artists may have done. Further, we have not observed, nor met with any one, except Mr. Ruskin, who has observed, that the wind during the last thirteen years has adopted a "hissing" instead of a "wailing" tone, or that the pressure anemometer indicates that the motion of the air has become more tremulous than heretofore.
Admiration ought ungrudgingly to be bestowed on one who has done good service as an art critic and as a contributor to English literature. The sympathy, moreover, which, denied to those who are in advance of their age, is naturally accorded to the archaic type of mind, is enbanced by the attractiveness of a personality whose idealism is as lofty as that of Mr. Ruskin. But we maintain that there is a further sentiment which contributed to the applause which Mr. Ruskin's audiences bestowed upon him. Speaking generally, "broadly and comfortably," as he would say, Mr. Ruskin is not a representative man, yet he represents a certain spirit of Philistinism (for it merits this name), which is far from being unpopular, and which shows itself in opposition to scientific culture. He is the spokesman of that mental attitude which misinterprets the province of science and affects to misunderstand the plainest utterances of the physicist. "The first business," he says, "of scientific men is to tell you things that happen, as, that if you warm water it will boil." "The second and far more important business is to tell you what you had best do under the circumstances -put the kettle on in time for tea." "But if beyond this safe and beneficial business they ever try and explain anything to you, you may be confident of one of two things-either that they know nothing (to speak of) about it, or that they have only seen one side of it, and not only have not seen, but usually have no mind to see, the other. When, for instance, Prof. Tyndall explains the twisted beds of the Jungfrau to you by intimating that the Matterhorn is growing flat, or the clouds on the lee side of VoL xxix.-No. 746
the Matterhorn by the winds rubbing against the windward side of it, you may be pretty sure the scientific people do not know much (to speak of) yet either about the rock beds or the cloud beds. And even if the explanation, so to call it, be sound on one side, windward or lee, you may, as I said, be nearly certain it will not do on the other. Take the very top and centre of scientific interpretation by the greatest of its masters. Newton explained to you-or at least was supposed to have ex-plained-why an apple fell [sic], but he never thought of explaining the exactly correlative but infinitely more difficult question how the apple got up there." One would have supposed that even the lecturer must be aware that modern science is at least as much occupied with the last as with the first of these problems. Mr. Ruskin has not yet done with Prof. Tyndall; -in other words, be can nowhere suppress his dislike of scientific thought. "When I try to find anything firm to depend on, I am stopped by the quite frightful inaccuracy of the scientific people's terms, which is the consequence of their always trying to write Latin-English, and so losing the grace of the one and the sense of the other." "I am stopped dead because the scientific people use undulation and vibration as synonyms. 'When,' said Prof. Tyndall, ' we are told that the atoms of the sun vibrate at different rates, and produce waves of different sizes, your experience of water waves will enable you to form a tolerably clear notion of what is meant.' 'Tolerably clear,' your toleration must be considerable then. Do you suppose a water wave is like a harp string? Vibration is the movement of the body in a state of tension, undulation that of a boty absolutely lax. In vibration not an atom of the body changes its place in relation to another; in undulation not an atom of the body remains in the same place with regard to another. In vibration every particle of the body ignores gravitation or defies it; in undulation every particle of the body is slavishly submitted to it." And more of the same sort. We should not weary the reader with these quotations were it not too true that much of the poetry which Mr. Ruskin adores, and much of the art of which he is the apostle-not a little in short of the poetry and art of our day-are full of this anti-scientific Philistinism, whose ideal is ever in harsh contrast to the real, and which from its antagonism to the facts of Nature is the great producer of bogies. One has only to go through any picture exhibition to see plenty of those clouds which Mr. Ruskin persuades himself occur in Nature, which, "irrespective of all supervening colours from the sun," are intrinsically "white, brown, grey, or black"; "argent or sable, baptised in white, or booded in blackness."

We recommend those who sympathise with Mr. Ruskin to study some of those little books which are beginning to be the delight of our children. Such readers may never attain the scientific spirit, yet they may possibly catch a few chords of that great song in which there is complete harmony between the Universe of Nature and that of poetic and artistic sentiment, whose faint beginnings will alone be heard in this plague-stricken century.
Against cloud-classification the stars in their courses have bitherto fought, and Mr. Ruskin in his continues. the battle. Grievous are the wounds which he inflicts

Let us see how he heals them. 'Every cloud is primarily definable-'visible vapour of water, floating at a certain height in the air." It is thus distinguished from that "form of watery vapour" which "exists just as widely and generally at the bottom of the air as the clouds do on what for convenience' sake we may call the top of it." Mr. Ruskin hopelessly confuses vapour with water-dust, and this confusion leads him into some amusing difficulties. He asks whether it is " with cloud vapour as with most other things, that are seen when they are there, and not seen when they are not there, or has cloud vapour so much of the ghost in it that it can be visible or invisible as it likes, and might, perhaps, be all unpleasantly and malignantly there just as much when they did not see it as when they did?" To this he answers "comfortably and generally" that "on the whole a cloud is where we see it, and not where we do not see it," and that we must not allow the scientific people to tell us that rain is everywhere, but palpable in one place, impalpable in another. He presently returns to his point. He has defined a floating or sky clous, and defined the falling or earth cloud (which by the way had been altogether excluded by his first definition from his category of clouds). "But there is a sort of thing between the two which needs another sort of definition, namely, mist." The definition of this intermediate substance, however, Mr. Ruskin does not supply, being content with asking what difference there is between clear and muddy vapour. This division of clouds has at least the merit of brevity, although it is subsequently complicated by a further division into "two sorts of clouds, one either stationary or slow in motion, reflecting unresolved light, the other fast-flying and transmitting resolved light. [Really, clouds at a distance and clouds overhead.] As regards the difference in the nature of these, Mr. Ruskin merely "bints to us his suspicion that the prismatic cloud is of finely comminuted watcr or ice, instead of aqueons vapour ";-it is difficult to under stand what he supposes the former kind of cloud to be composed of.

During the forty years previous to 187 s , according to the certificate of Mr. Ruskin, the clouds, thus divided and cross-divided, appear to have behaved themselves in a peaceable and orderly manner. Even the "thundercumulus" (English-Latin, by the way) did "its mighty work in its own hour and in its own dominions, not snatching from you for an instant or defiling with a stain the abiding blue of the transcendent sky, or the fretted silver of its passionless clouds" We may remark that these "good, old-fashioned, healthy storms" frequently had rather extensive dominions: e.g. on August 13, 1857, one of these storms was simultaneously felt over many thousand square miles, and extended from the Land's End to John o' Groat's, besides covering a very extensive district on the north-western parts of the European continent. The deportment of the great bogy meteor, "storm-cloud or more accurately plague-cloud," of the nineteenth century is exceedingly different. From one part of Mr. Ruskin's description of this phenomenon we imagine 1 that he might allude to the sheet of stratus commonly accurring in winter anti-cyclones, a sheet which occasionally covers upwards of 60,000 square miles, with scarcely a rift in its surface, the greatest vertical thickness of the cloud being only 300 or 400 feet. But this illusion was
soon dispelled. For we find that "in the plague-wind the sun is choked out of the whole of heaven all day long by a cloud which might be a thousand miles square and five miles deep." One would scarcely have expected so dense a cloud mass merely to turn the sun red, but Mr. Ruskin is angry with it for not doing so: "That thin, scraggy filthy, mangey, miser able cloud, for all the depth of it, could not turn the sun red as a good business-like fog did with a hundred feet or so of itself." Further, it is accompanied by a ter rible wind by which "every breath of air is polluted half round the world " [sic]. Mr. Ruskin omitted to mention the effects of this plague-wind on agricultural or vial statistics. " It is a wind of darkness," also " a malignant wind." Further, "it always blows tremulously, making the leaves of the trees shudder as if they were all aspens but with a peculiar fitfulness which gives them an expression of anger as well as of fear and distress." Further, "it pollutes as well as intensifies the violence of all natural and necessary storms." Here again some explanation is sorely needed, since we should much like to know whether during the plague-wind barometric gradieats become steeper, or whether the force of the wind in relation to the gradient is greater than usual.
Enough for the present of such bogies; although we fear that we have by no means done with them until our literary men will master the simplest elementary primers. But not enough of Mr. Ruskin, whom we could ill spare. His English is often delicious; always in his most dyspeptic diatribes amusing. And we can all appreciate his concluding advice that we should "bring back our own cheerfulness and our own honesty ; and cease frem the troubling of our own passions," and (not least we think of all) "the insolence of our own lips." A good recipe : add a dash of humility and of respect for the opinions of wiser men;-and all may yet be well, even though our return to the paths of rectitude should fail to dissolve the "mangey" clouds, and quench the fevered wind of a storm-harried and woe-worn era.
W. Clement Ley

SPINOZA

Ethic. By lenedict de Spinoza. Translated from the Latin by William Hale White. (London: Trubner and Co., 1883.)

IF proot were requisite that the standard of value is philosophy is different from that which obtains in the estimation of scientific research, it would only be necessary to point to the case of Spinoza. There is probably no thinker of the nature of whose work there obtain conceptions more hopelessly irreconcilable ; there is certainly none about whose position there is more general unanimity. To refer to the more recent of his English critics, Prof. Caird and Mr. Frederick Pollock are at one in assigning to Spinoza most important functions in the development of philosophical inquiry. Yet there is scarcely a single point in his system as to which their respective interpretations are not mutually exclusive. But as regards the broad feature which makes Spinozism deeply interesting to students of science in the strict sense there can be no doubt. The application of the method of geometry to philosophical problems finds its counterpart in the prevailing, and apparently by no means diminishing, disposi-
tion to bring certain questions of metaphysics within the scope of scientific inquiry. That any one should have rejected the current method of metaphysics in favour of a geometrical investigation into the nature of God and existence, cannot be otherwise than significant to persons who seek to determine the psychological problem of the nature of consciousness by physiological means. Hence it is that there are some students who think that, if any philosophy were possible, it were that of Spinoza, and others who say that in the work of Mr. Spencer and Prof. Clifford they find the inheritance which Spinoza left behind him.
Mr. Hale White has done bis difficult work well. The translation is executed with great care, and the style of the original has been reproduced with some success. That English readers of Spinoza have entertained very loose notions of his real teaching has been due in no small measure to the very inaccurate translation which has bitherto passed current. The present volume should do much to improve the popular conception of Spinoza's system.

At the risk of repetition of what has already been insisted on in these columns, it is right to contrast the position of the naturalists who accept Spinoza's application of scientific methods to metaphysical questions, with the procedure of Kant and those who are currently described as Neo-Kamians. It is the more desirable to revert to this topic because, although there is much complaint that the Neo-Kantians do little (if anything) more than repeat Kant's criticism of the naturalist (or, as he would have described it, dogmatic) doctrine, there is but little evidence that this criticism has been considered, much less met. People go on reasoning upon the old lines about the relation of mind to body and of God to the world as if Kant (to borrow a phrase from another branch of learning) had never obtained a rule calling upon them to show cause why there should not be a new trial of all such questions. It cannot be sufficiently borne in mind that at the present time there are only two courses open in this reference to conscientious thinkers. Either they must abstain altogether from the discussion of an increasing number of problems which are suggested by scientific inquiry, or they must be at the pains, however irksome, to master the nature of the sceptical doubts which Kant brought to bear upon the possibility of these problems. And it may be added that to single them out for elimination is not so easy a task as might be supposed. Probably the real reason why the study of Spinoza's ethics is attended with so much difficulty is that the extraordinary instinct which guides men of the highest genius in inquiries in new and unknown regions raised doubts in his mind which the investigations of Kant subsequently exbibited as the consequences of a more profoundly sceptical point of view. That difficulties arise when men reflect upon the nature of God was for Spinoza, as for Kant, due to the impossibility of reasoning on such matters as if they were ordinary facts of experience. In Spinozism the geometrical method culminated in the abrupt cessation of thought of this kind, just as in Hume empiricism ended in the paralysis of speculation. Had Spinoza pressed his distinction between different kinds of knowledge further, his system must have become in a greater or less degree sceptical in its tendencies-sceptical
in the sense in which Kant was sceptical as a preliminary to reconstruction, or in which, to take the case of a very recent scientific writer, the late Prof. Clifford was a sceptic when he completed his analysis of experience with his theory of ejects. The difference between the three cases is that Kant clearly saw the origin and nature of the difficulties raised by himself, and made the inquiry the preliminary to a radically different discussion of the issues raised in philosophy and science alike. It were well if the fact were less left out of account that the rule obtained by Kant for a new trial of these issues has never yet been discharged.
R. B. Haldane

LETTERS TO THE EDITOR

[The Editor does not hold himself responsible for opinions expressed by his correspondents. Ncither san he undertake to rriurn, or to corresfond with the writers of, rejected manwerifts. No notice is taken of anonymous communications.
[The Editor urgently requests correspondents to kaep fiair Iediers as short as possible. The pressure on his space is so great that it is imposible otherwise to insure the appratance cown of comwunications containing interesting ana novel facts.]

The Krakatoa Eruption

The Council of the Royal Society has appointed a Committee for the purpose of collecting the various accounts of the \mathbf{v} leanic eruption at Krakatos, and attendant phenomena in such form as shall best provide for their preservation and promote therr usefulness.
The Committee invite the communication of authenticated facts respecting the fall of pumice and of dust, the position and extent of floating pumice, the date of exceptional quantities of pumice reaching various shores, observation of unusual disturbances of barometric pressure and of sea-level, the presence of sulphurous vapours, the di-tances at which the explosions were heard, and exceptional effects of light and colour in the atmoxphere.
The Committee will be glad to receive also copies of published papers, articies, and letters bearing upon the subject.

Corresp sndents are requested to be very particular in givino the date, exact time (stating whether Greenwich or local), and position whence all recorded facts were observed. The greate dt practicable precision in all these respects is es.ential.

All communications are to be addressed to

> G. J. Symoxs,

Chairman Krakatoa Comnittee
Royal Society, Burlington House, W., February 12

The Remarkable Sunsets

Tute following facts in reference to the unusual sunsets, as witnessed in the United States, will I hope be of sufficient value to your readers to justify an insertion in the pages of Nature.

The place from which I write is 1063 feet above sea-level, $40^{\circ} 48^{\prime} 47^{\prime \prime} \mathrm{N}$. lat. and $\mathrm{S}^{\circ} 53^{\prime} 37^{\prime \prime} \mathrm{W}$. long. from Greenwich. The main features of the exhibition h-re have been the crimson glow-the first and after-glow, with other accompanying colours, closely corresponding with those in England and Europe. Hence I need not occupy your pages with a special description.
I have on record seven cases, hearly all the weather would permit one to see. These occurred on Novemher 27, December $9,10,25$, ard 28 , and on January 13 and 17.
The first and second glow have extended in two or three instances, though faintly, to the zenith, and the first has occasionally been refected on the eastern sky. On December 28, the most brilliant exhibition in the series, an arch was formed in the east, the colours red and yellowish green, very soff, and much blended. The crimson glow on the sky flooded the western sides of buildings with an uneartbly liglot, and cast faint shadows across the snow. The appearance of the after glow, when the sun had reached a certain angle in its decline, favours the view that it is a reflection of the first. If this lie true, it is not neces-
sary to admit so great an elevation of the reflecting matter above the earth, and thus removes a serious difficulty in explaining the glow by known causes.

In no case here has the sun during the day or at setting appeared green. On December 28 and January 13 Venus has appeared a beautiful green through the complementary crimson. This fact becsme important only when it was discovered that the green remained after the crimion had disappeared. The light of the pla'et was struggling through some medium invisible to the eye, but which arrested the other colour .

Ansther important pint. The glow has been seen without the slightest trace of cirrus clouds behind it. Three times faint ribbon-like stripes of eirri appeared in the first glow, but in the second the gorgeous crimson hasgenerally been projected against the clear blue sky.

The writer has seen no notice of observations on the appearance of the san and sky during the day, and especially the afternion, before the brilliaut sunsets.
The peculiar appearance of the atmosphere in the vicinity of the sun attracted his attention on the day the first remarkable sun glow occurred. The sky was perfectly clear except anound the sun, which was embelded in a soft haze that extended out some 6° or 8° on every side. Yet a distant boundary could not be assigned to the haze, so gradually did it shade into the blue of the sky. The san was obscured so that the eye could look at it for a moment and outline its disk. Covering the sun with the hand the haze adjacent glowed like a furnace, the light diminishing rapidly as the eye swept outwards.

Two or three remarks, naturally spring from this appearance. 1. The haze was not an ordinary cirrus cloud. It had no dis. tinct bounding surfaces; it was invisible every where except near the sun. 2. There was, of e surse, no more of the matter forming the haze arjund the sun than elsewhere. 3. It was capable of reflecting intensely the light that fell upon it at a large incident angle, nearly 90°. 4. The reflection of light in a high degree by any substanse at a large incidence would indicate a liquid. But the clearness of the sky showed the absence of condensed vapour. And yet there was something in the air around the sun-and no more there than anywhere else-which was then, some three hours farther east, flinging its gorgeous crimson over earth and sky, and which, three hours later, would drape the earth and sky of the observer in the same beantiful colours. And what was that something? That is doubtless the great question, and I can only echo, What was it? If the answer be "Vapour of water in sime peculiar state," then it is wondrous strange that water, subject as it always has been to almost every eonceivable change in the air, should rarely if ever before have assumed this peculiar state! Besides, the prevalence of this pheno menon around the globe, manifevting the same characteristics everywhere, requires some marked and probably unusual cause.

As to the voleanic thery, it bas sone good points. It gives an unarual explanation for an unusual occurrence.

It might be expected that a convulsion which would ingulf islands and mountains, and send the throbbings of ocean a round the gli'se, would leave some tokens of its presence on the more sensitive air.

The difficulty of ace sunting for the suspension of solid particles for months in air of extreme rarity may be avoided by admitting the effects to be due mainly to gases ejected in the eruptions. Most of these being condeasible by extreme cold would occupy definite strata and n ot rise to an extreme height.

The sinhing of Krakatoa and the admission of sea water to the awful and firry gulfs below, would, it seems, set free immense quantities of chl rine from the salt water. As this gas is readily aborhed by pure water it miy have condensed around its mole cules the vapour of the air, and thas become capable of reflecting the light in a higher degree.

Of course these are supposition ; consistent as far as we know with liw; and they may stand ainong other probabilities till clearer light confirms or rejects them.

In a co nmunication to Nature, December 13, p. 149, Prof. C. Piazi Smyth advances the idea that one of the conditions of the red sansets was the drymess of the lower atmouphere. The hygromstric condition of the air here on the days the crimson sinsets were see.a, is given in the following table, taken from the monthly reports of the writer to the U.S. Signal Office. The two coluans give the mean tenperature of the dry and wet balb thermoneters (F.) for three observatioas each day, at 7.32 $a \mathrm{~m}, 2.32$ and $9.32 \mathrm{p} . \mathrm{m}$.

Dates			Dry bulb			Wet bulb	
November		29	**	*.	$26 \cdot \mathrm{~s}$
December	5	***	...	40	38
"	9	...	**	366	32
"	10	36	33
"	25	$29^{\prime} 5$	26
"	28	23'6	$22^{\prime 2}$
January	13	37	33
\because	17	$23^{*} 2$	\cdots	...	$21^{\prime} 2$

A mere inspection of the table shows that the dew point was high, and the percentage of possible moisture in the air quite large. Whether this weird and beautiful play of colours around the dying day is due to watery vapour in the air time will show ; here it has certainly not been due to any deficiency in the vapoor of the lower strata.
O. N. Sroddard

Wooster, State of Ohio, United States, January 18

Uneonscious Bias in Walking

THE following little experiment seems so show that if the majority of people are, as Mr. Darwin argues, left-legged, they would circle to the left in a mist, as Mr. Larden says they do. I would call myself normal, my left leg being the stronger. That is to say, like the majority, I jump from the left, ret my weight standing on the left (a glance at a photograph albana shows this to be normal) and generally cross my right over my left whilst sitting. Having put my-elf in a dark empty room, I could not satisfy myself as to which way I circled, there not being space enough, but when I artificially lamed myself by putting a few tin tacks in my slipper, I circled strongly in the direction of the sound foot. From what hal been said in Nature on the subject at the time, I expected the for-the-time-being longer and stronger limb to eircle round the other. The fact seens to be that there is a bias towards the stronger, most-leantupon limb, irrespective of length. It is worthnoting that, if the object eausing pain be placed under the inside of, say, the right foot only, the experimenter will lean on the outvide of that foot and eircle to the right.

In the matter of left-leggedness I have requested reveral righthanded people to feign lameness. Every one of them has limped with the right foot; and, on being asked to do so, has found difficulty in imagining the left lame, and acting as if it were. May it not be because the right leg is somewhat weaker that canes are carried in the right band?

But although left-leggedness quad strength seems normal, the reverse seems to bold good quaf skill: one pushes a door to with the right, feels his way down a dark stair with the right, kicks a football with the right. A friend of mine, a skilful athlete, particularly known as a jumper, at first expressed astonishment that there should be any doubt as to the left leg being the stronger. On reflection he added: "I'm not sure, however ; figures in skating are easier on the right." This nine figure-skaters out of ten will assent to. It is to be expected, if my theory is correct, The right leg is more easily controlled, guided, and kept in posi-tion-in a word, the more skilful limb; and at the same time the left being the better kicker, the impulse is better given.

It seems to me that mounting a horse from the near side is not a mere fashion (except for the left-handed minority). The stronger leg is pat in the stirrup and gives the lift, whilst the more skilful leg is thrown over the animal's back.

It would be interesting to know which foot it is, if any in particular, which Indian servants use for prehensile parposes; also whether the higher quadrumana are right or left hind-handed.

I have noticed that persons walking in the street dwell longer on the one foot than on the other, and I remember once arguing that in-toed persons with a rolling gait were the only people who were not lame. I have been trying to observe this seriously for some days, and believe it to be so, but as the mind naturally invents a beginning and an end for a eontinuous motion it may be imagination.
W. G. Stmpson

5, Kandolph Cliff, Edinburgh, February 6

The Ear a Barometer

The phenomenon described by my friend Mr. Boys, on p. 333. is pathological, and not physiological. He is clearly suffering from slight obstruetion of the Eustachian tube, a canal which leads from the inner side of the tympanie cavity into the posterion fauces. Its natural relief is, as he very accurately describes, by
the act of swallowing, which temporarily distends the tube. He can test its perviousne-s by holding his nose with his fingers and forcing air into the nasal cavity. Physicians are in the babit of placing an ordinary stethoscope over the ear, causing the patient to go through the act of deglutition, and listening for the "click" of escaping air. Mr. Boys will see, as a physictst, that, if the access of air on either side of the tympanam were free, increase or decrease of atmospheric pressure would make no difference.
t4, Dean's Yard, February to
W. II. Stone

With regard to the letter of Mr. C. V. Boys in Nature of Fehruary 7 (p. 333), I should like to make a remark or two on the matter, in which I have had practical expericnce. I am in the habit of running between Rngby and London daily, and pass through six different tunnels on the roate. The Leighton tunnel is divided into three parts, the down fast line being single, and the space between the rails and the walls of the tunnel very small. On entering this, if in the first three coaches next to the ergine, a sudden expansion of the tympannm is felt. I have been led to account for this phenomenon as follows: The engine acting as a piston forces the air before it through the tunnel, and so causes a partial vacuum, which extends to the first three or four coaches. After that the air has had time to rush in and fill the empty space, and this explanation is rendered almost certain by the fact that at the end of the train of twelve or fourteen coaches no aural effects are observable, thus demonstratiog that the sudden propnlsion of the air through the tunnel is compensated for before the middle of the train has entered. In Kilsby tunnel nothing has been noticed by myself, I account for the pressnre altera. tion in the abjve manner, the engine and the tunnel-mouth closely fitting, and so are fairly comparable to a piston within a cylinder. The effects decrease from the engine to the end of the train, and are practically unobservable in the last few coaches.
Rugby, Febraary 9
George Rayletgh Vicars

Diffusion of Sclentific Memoirs

Allow me a few final words on this curious case. I spoke of the Trans. C. P. S., 1849-54, in which Stokes' papers were "buried," as "almost inaccessible." This expression was chal. lenged by the ex-Secretary of the Society, and I replied that the question could be decided by statistics alone. I indicated what statistics were required, and waited some weeks for them. The present Secretary then gave me the less essential part of the desired information, and I proceeded to make the best I could of it. Now I am told that I misunderstood his object, and that he practically admits what his predecessor challenged.
I also stated that my eopy of the Proc, was very imperfect, and that I had not received any Trans. I was then told that "pahlications" were given only on application. If 87 , 1 replied, I should have had all, or none. To this there is no ans wer.
P. G. Talt

Coll. Edin., February 9

Wind Sand Ripples

Some time ago, whilst reading an account in Nature of very ingenious and interesting experiments by Prof. G. H. Darwin on sand ripples, my memory was recalled to some very beautiful sand ripples cansed by the action of wind, seen by another person and myself on the west coast of Ireland, near Bundoran. The locality was a sand ridge twenty or thirty feet above highwater mark, and beyond the infinence of either sea or river action; the ripples extended over a space of twenty yards or more. At the time there was a fresh breeze, with freqnent squalls, hlowing across this ridge. This ripples moved before the wind at the rate of about a foot in three or four minates, but faster during the squalls, retaining all the time (I watched them an hour or more) perfect uniformity of shape and size. The distances were roughly measured by sticking np in the sand bits of wood at, as nearly as could be guessed, one foot apart, ia a line with the direction of the wind. The ripples were about three inches from summit to summit, and the depth of trough three quarters of an inch.

The time was carefully no'ed wi'h a watch. The forward movement of the ripples was evidently caused by the sand being drifted from their weather sides, and deposited on their lee, and thus there was a progressive srovement to leeward, more or less rapid according to the increase or diminntion of the wind force.

4, Addison Gardens, Fehruvry 9
John Rae

Animal Intelligence

The folluwing anecdote, received the other day from Russia, may possibly interest your readers:-"The following was narrated to me by Mohl's brother, on whose estate it took place. The carcass of a cow was laid out in the woods to attract the wolves, and a spring-trap was set. Next morning the forester found there the track of a bear instead of a wolf on the snow ; the trap was thrown to some distance. Evidently the bear had put his paw in the trap and bad managed to jerk it off. The next night the forester hid himself within shot of the carcass to watch for the bear. The bear came, but first pulled down a stack of firewood cut into seven-foot lengths, selected a piece to his mind, and, taking it up in his arme, walked on his hind legs to the carciss. He then beat about in the snow all round the carcass with the log of wood before he began his meal. The fore:ter put a ball in his head, which I almost regret, as such a sensible brute deserved to live."
J. M. Hayward

Sidmouth, February 9

Circular Rainbow seen from a Hill-top

Clisbing, several summers ago, with three friends amone the Coolin Hills in Skye, I was fortunate enough to witness phenomena similar to those described by Mr. Fleming in last week's Nature (p. 310). Our shadows were apparently thrown against the precipitous side of a deep corry, distsnt 200 feet or perhaps more. They vanished and reappeared as thin mists passed through the corry, the sun shining continuously. We could not see each other's shadows unless close. The distance apart at which they became visible 1 d) not clearly remember, but know it was approximately as one of my friends, Mr. W. A. Brown, writes:-" So long as we kept a few yards apart each could only see his own shadow, but when two were within arms' length a double shsdow was visible to each, and on getting still nearer the shadows merged into each other." My estimate of the angle subtended by the diameter of the rainbow is 15°, that of my friend 10°. He adds, however, "I may be very far out in this,"
Spring Grove, Dundee, Fehruary 5

Referreng to Mr. Fleming's letter in Nature of Jaluary 31 (p. 3to), I would state that many years ago, before Pontresina, in the Grisons, was so resorted to as it is now, I walked up the Piz Languard early one fine morning with an old smnggler and chamois hanter-the terms are syonymous on the frontier-named Colani. On the summit of the peak is a ledge of rock, on which I lay down for twenty minntes' sleep. I had been asleep but a few minutes when Colani woke me, and, with excuses and an expression of fright on his face, begged me to come with him to see something which he had never seen in bis life befre. We moved to the western edge of the peak. Below us were some thin clouds of mist curling about like vapour from a large cauldron. On these clouds appeared a circular rainbow and ,within it, as though in a gilded frame, were two figures-in fact, the shadows of ourselves.
"There are two of them now," cried Colani, and it was not until I told him to take off his hat and wave it, as I did mine, and he saw the action repeated by the fignres, that he began to feel assured they were not "Geists." It was not the "Areh St. Martin," a Romansch name for a rainbow, which had frightened him, though it was the first time he had seen a circular one, but the appearance of the dark solitary figure had awaker ed his conscience, for some of his smuggling adventures had not been without bloodshed. The details of the phenomenon were the same as those described by Mr. Fleming, with the exception, perhaps, that the figures were more vivid and the whole spectacle of longer daration, owing to an nnclouded sun.

A similar appearance has lately been seen on the Tonja' e Range in Nevada, by Mr. R. A. Marr, of the Coast and Geodetic Survey. I subjoin his description of it, taken from a recent number of the Nail.
T. R. Maynard

The Black Forest, Fehruary 7
" Snddenly, as I stood looking over the vast expanse beneath me, I saw myself confronted by a monster figure of a man statding in mid air before me, npon the top of a clearly-defined moun. tain peak, which had but the thin air of the valley below for a resting place. The figure was only a short distance from me. Aronid it were two circles of rainbow light and colour, the outer
cfaintly defined as c mpared with the inner one, which
briybt and clear and distinctly iridescent. Around the head of the figure was a beautiful halo of light, and from the figure itself shot rays of colour normal to the body. The sight startled me more than I can now tell. I threw up my hands in astonishment, and perhaps some little fear, and at this moment the spectre ceemed to move lowards me. In a few moments $1 \mathrm{~g}, \mathrm{t}$ over my fright, and then, after the figure had faded away, I re-cogni-ed the fact that I had enjoyed one of the most wonderful phenomena of nature. Since then we have seen it once or twice from Jeff Davis Peak, but it never created such an impression upon me ay it did that evening when I was doing service as a heliotroper all alone on the top of Arc Dome."

The St 3 rm of January 26

DUEing this storm there was a remarkable depression of the barometer, it falling to 26%, as shown in thr accompanying chart. The lowest depression last year was 28.2 on Nov, 25. Largytrack lies in lat. $54^{\circ} 56^{\prime} \mathrm{N}$., and long. $7^{\circ} 42^{\prime} \mathrm{W}$. It is 225 feet above the Ordnance datum level. A nearly similar depres-

sion was observed at Letterkenny, 140 feet above the Ordnance datum level. The wind vecred round from the north-west by north and east to the south, and from the latter by west to north. The storm was succeeded by a fall of snow, which has now melted away. G. Ilenry Kinahan
I.urgyhrack, Letterkenny, Ireland, January 29

EARTHQUAKE DISTURBAACES OF THE TIDES ON THE COASTS OF INDIA

F^{\prime}T some years past tidal stations have been estal, 'ished at various points on the coasts of India, from Kıurachee round vid Cape Comorin and Adam's Straits to Calcutten, and on to Rangoon and Moulmein; also bryond these points, eastwards at rort Blair in the

Andaman Islands, and westwards at Aden; but not anywhere in the Island of Ceylon, which happens-unfortunately for the interests of science-to be outside the administration of the Government of India. At each of the tidal stations an observatory has been established, containing a self-registering tide-gauge, and all requisite meteorological instruments, with a clerk in charge who tends the instruments, sets the driving clocks to true time-usually received telegraphically from Madras-and sends in daily reports to the supervising officer. That officer exercises a general superintendence over all the tidal stations, inspects them periodically, collates and analyses the obscrvations, and deduces from them the values of the "tidal constants" for each port or point of observation; these constants enable future tides to be predicted, and tide tables to be prepared for the guidance of mariners; they are also otherwise valuable, in that they have thrown light on the question of the earth's rigidity, and on varicus other matters of scientific interest.
The operations have been carried on in connection with the Great Trigonometrical branch of the Survey of India. Major A. W. Baird, R.E., has been the supervising officer from their commencement in 1873 up to the present time, with the exception of an interval of a little more than a year, when he was on furlough in Europe, and Capt. J. Hill, R.E., first, and afterwards Major M. W. Rogers, R. E., officiated for him.

At certain of the Indian stations the registrations have twice indicated that the normal tides had been greatly disturbed by supertidal waves: first, on the occasion of the earthquake in the Bay of Bengal on December 31, 1881; and secondly, during the volcanic eruptions in the Island of Krakatoa, between Sumatra and Java, which occurred on August 27 and 28 last. The first disturbances do not appear as yet to have attracted much attention out of India; a full aecount of them is given in the General Report on the Operations of the Survey of India for 1881-82, and also in the Proceedings of the Asiati Sociely of Bengal for March 1883. The second are now famous all the world over, not merely because of the havoc they are known to have produced on the spot and at the time, but also because of the effects they are believed to have produced on the condition of the atmosphere long afterwards and in far distant quarters of the globe. A report on the tidal disturbances at Indian stations which were caused by the eruptions at Krakatoa has been drawn up by Major Baird, and sent to me for communication to the Royal Society, and an abstract of it was read at the meeting of the Society on January 31.

I now propose to indicate certain points of similarit) and others of dissimilarity between the recorded effect, of the disturbing forces on the two occasions; for fuller details the reports themselves must be referred to.

The usual effect of an earthquake or volcanic eruption occurring at an island or under the bed of the sea is the transmission in all directions of an "earth-wave" and a "sea-wave"; the former travels with much greater rapidity than the latter, and may reach points which the latter does not reach; or it may die away and cease at points far short of those attained by the latter; which of the two will travel the greater distance depends generally on the strueture and homogeneity of the strata through which the earth-wave is transmitted, and on the depth of water and configuration of the bottom over which the sea-wave passes.

On the occasion of the earthquake of December 31. 1881, the "centre of impulse" was situated under the bed of the ocean in the western portion of the Bay of Bengal ; the shock of the earth-wave was very violent in the Andaman and Nicobar Islands, and along the entire length of the Madras coast up to Caleutta, and also fat inland ; it was followed ly a succession of sea-waves which the tifal diagrams slow to have arrived after the
earth-wave, at an interval ranging from half an hour at Port Blair (in the Andamans), the nearest station, to six hours at Dublat (in Sangor Island at the mouth of the River Hooghly), the furthest station at which such waves were certainly registered. At Rangoon, Moulmein, and various points in the Mergui Archipelago, the earth-wave was distinctly perceptible, though its shock was here much less violent; but no trace of a sea-wave has been met with at any of the tidal stations in this quarter; the belt of islands and shoals which extends from Cape Negrais to the Island of Sumatra, practically dividing the Bay of Bengal into two portions, must have formed a barrier to the sea-waves, for though great and numerous at Port Blair, they died away in the deep sea beyond, and in no case reached the eastern coast line.
The position of the earthquake in the Bay of Bengal was necessarily not a matter of observation as at Krakatoa; but it has been inferred by Major Rogers from the following facts. The moment at which the shock of the earth-wave was felt happens to have been recorded with considerable accuracy at three places, two on the west coast of the Bay, viz. the Madras Astronomical Observatory and the tidal station at False Point ; the third on the east coast, Kisseraing, a principal station of the Great Trigonometrical Survey, where Major Rogers was actually at the moment observing a distant station in the field of the telescope of his theodolite. He reports that "he saw the earthquake before feeling it," for he first became sensible of its occurrence by noticing the object which he was observing appear to rise and fall in the telescope; he immediately examined the spirit-levels of his instrument, found they were violently agitated, and made a note of the time. Subsequently he ascertained that the shock he felt and those recorded at Madras and False Point must have occurred almost simultaneously. due allowance being made for the differences of longitude, Therefore, assuming the carth-wave to have travelled from the centre of impulse with the same velocity in all directions, the centre would be near that of the triangle joining the three points of observation, but probably a little to the south, towards the line joining Port Blair and Negapatam, the stations at which the tidal disturbances were the greatest.
Having thus ascertained the probable position of the centre of impulse, Major Rogers proceeded to ascertain the probable time of the eartoquake. Here again he was favoured by his facts. It so bappened that his assistant, Mr. Rendell, had just completed an inspection of the tidal station at False Point, and was at work on a line of levels a few miles away, when he felt a violent shock of carthquake; he noted the time; the clerk at the station also felt the earthquake, and noted that the observatory was much shaken ; afterwards it was found that at the time recorded by Mr. Rendell the pencil of the tide-gauge had been vibrating very sensibly on the diagram; the vibration must have been caused either by the shaking of the observatory, or by a forced sea-wave such as is sometime; produced momentarily in shallow waters by a passing earth-wave. The great sea-wave which was transmitted from the centre of impulse arrived 3 hours 18 minutes afterwards. Now there can be no question that the vibration mark on the diagrann correctly registers the moment at which the earth-wave reached False Point ; Major Rogers therefore conjectures, with much probability, that a similar very prominent vibration mark on the l'ort Blair diagram registers the moment of the arrival of the earth-wave at Port Blair; thirteen minutes after the time thus registered Major Rogers felt the earthquake at Kisseraing, and as the distance bet ween the two points is 400 miles it may be inferred that the earth-wave travelled with a velocity of about 1800 miles an hour. With this velocity, the distance of the assumed centre of impulse from either of the three surrounding stations,
and the time of the occurrence of the earth-wave at either station, Major Rogers calculates the time of the original disturbance when both the earth-wave and the sea wave were initiated. Comparing this time with that of the arrival of the sea-wave at his stations, he obtains the following velocities for the sea-wave : to Port Blair 360 miles an hour, to Madras and Negapatam 240, to False Point 180, and to Dublat 120. The average depth of the sea is known to diminish in every instance of diminished velocity.
The sea-wave here specifically referred to was the first and generally the greatest of the supertidal waves; its amplitude from trough to crest was a maximum, 36 inches, at Negapatam, and 30 inches at Port Blair: it was always positive, the crest preceding the trough and raising the sea-level. The latter point is to be specially noticed because the first result of the great eruption at Krakatoa was the reverse of this, namely, a negative wave or general lowering of the sea-level at the stations of observation, as will be shown more fully further on. Secondary sea-waves followed the first, disturbing the normal tides for some hours; their greatest duration was twenty-five hours at Port Blair, the nearest tidal station to the centre of impulse. A single earth-wave of a few seconds' duration is all that appears to have been perceived at the tidal stations ; possibly, therefore, the whole of the tidal disturbances were due to a single earthquake.

Proceeding now to the eruptions at Krakatoa, we find that while there is no uncertainty as regards their locality, and there is evidence of one great eruption far exceeding all the others in violence, there is as yet no certain information of their number nor of the times at which any of them, even the greatest, occurred. No carth-waves appear to have reached India; but sea-waves of more or less magnitude were transmitted to all the tidal stations on both coasts of the peninsula, and not alone to those on the east coast, as on the former occasion ; they were also transmitted far beyond, to Aden, the Mauritius, and the south-east coast of Africa, as shown in Major Baird's report. Lately it has been announced that traces of the sea-waves have been discovered at French tidal stations on both coasts of the Atlantie.
The principal facts set forth by Major Baird are the following:-

1. Distinct evidence of tidal disturbance was met with at twelve of the seventeen Indian tidal stations, including all which were fairly placed to receive the force of the impulse from Krakatoa; but, as in the previous instance, no disturbance was perceived at the stations on the east coast of the Bay of Bengal.
2. The first result of the great eruption at Krakatoa was a negative supertidal wave, or general fall of the sealevel, at Major Baird's stations and also at the Mauritius.
3. This negative wave was succeeded by a great positive wave, at an interval ranging from seventy-five minutes at Negapatam, the station nearest Krakatoa, to twenty-four minutes at Aden, the most distant station.
4. Supertidal waves of greater or less magnitude were registered at the Indian stations some hours before the negative wave of the great eruption, showing that there must have been antecedent minor eruptions. They appear at Aden about three hours before the negative wave, and eighteen bours before at Negapatam, showing that the explosions were at first comparatively feeble, affecting only the nearer stations; but afterwards they increased in intensity and became sensible even at Aden, a distance of over 4000 miles.
5. Waves of amplitudes ranging from a maximum of 22 inches at Negapatam to a maximum of 9 inches at Aden were registered at all the noore favourably situated stations. The first was the positive wave immediately succeeding the primary negative wave, and it was generally of a greater amplitude than any wher wave, but in a
few instances it was succeeded by greater waves. The succeeding waves maintained considerable amplitudesnot less than half the maxima values-for about twelve hours, appearing at intervals of one or two hours apart at all the more prominent stations. They were succeeded by wavelets gradually diminishing in size, but continuing for some time, being traceable on the diagrams for August 29 and 30 , the second and third days after the great cruption. It is noticeable that they ceased first at Port Blair and Negapatam, the two nearest stations, and last at Aden, the farthest station.
6. Loud reports, resembling the firing of distant guns, were heard at Port Blair on August 26 and 27, and being supposed to be signals from a vessel in distress a steamer was sent out in search of the vessel; similar reports were heard on the 26th in Ceylon.

These facts show that the great eruption at Krakatoa was preceded by minor eruptions sufficiently powerful to produce effects which were sensible at a distance of upwards of 4000 miles ; also that it was probably followed by minor eruptions, to the influence of which the longprotracted continuance of tidal disturbance is due.
The time at which the great eruption occurred is still not known with any precision. Major Baird has endeavoured to calculate it from the following data : he was informed by Her Majesty's Consul in Java that the first great (positive) wave reached Batavia at 12 h . Iom. local time on the afternoon of August 27; as the distance from Krakatoa by sea is 105 miles, and the average depth of the sea about 186 feet, he infers from the table of the velocity of free tide waves, passing over seas of different depths, in Sir George Airy's sarticle on "Tides and Waves" in the Encyclopedia Met ropolitana, that the wave must bave taken about two hours to reach Batavia, and therefore that it must have started at $10.5 \mathrm{a} . \mathrm{m}$. Krakatoa time, allowing five minutes for the difference of longitude. Another estimate has been recently furnished by General Strachey in a paper-read before the Royal Society-on the "Barometrical Disturbances which passed over Europe between August 27 and 31^{n}; General Strachey connects these disturbances with the great eruption at Krakatoa, and infers, from the recorded evidence of the times of transit of the barometric waves over the European observatories, that the initial barometric rise occurred at 9 h .24 m . Krakatoa time on the morning of August 27. Now we have seen that the first cffect of the great eruption on the ocean was the production of a negative wave which preceded the great positive wave by an interval of seventytive minutes at Negapatam, and twenty-four minutes at Aden; if then we assume that the interval was somewhat more than seventy-five minutes at Krakatoa itself-as is to be inferred from the fact that wherever registered it increases as the distance from the centre of impulse diminishes-General Strachey's and Major Baird's determinations will be seen to corroborate each other very closely; indeed, considering the absolute independence of the two methods of deduction, the facts of observation being in one instance derived from the atmosphere, in the other from the ocean, the coincidence between the results is very striking.
Major Baird has calculated the velocities with which the great positive wave travelled from Krakatoa to the more important of his own stations, and also to Port Louis in the Mauritius, and Port Elizabeth in South Africa. ${ }^{1}$ Starting with the assumption that the wave left Krakatoa at $10 \cdot 5$ a.m, August 27 , local time, he finds that it attained its maximum value, 467 statute miles per hour, in transit to
both Port Louis and Port Elizabeth. Considerable interest attaches to this determination, in that it is identical with Sir George Airy's tabulated value of the velocity of a free tide-wave passing over an ocean 15,000 feet deep, which is supposed to be the average depth of the

[^35]ocean in this direction ; moreover, the fact that the same velocity is obtained for both the ports, and that the nearer of the two is only 3400 miles from Krakatoa, while the other port is 5450 miles distant, indicates that there is probably no material error in Major Baird's adopted time of starting. The velocity of the wave in all other directions is less, viz, to Galle 397 miles, to Negapatam 355 miles, and to Aden 371 miles. The velocities are necessarily computed on the assumption of a uniform rate of progress from the origin to the point reached; but each of the slower waves must have coincided with the wave which impinged on Ports Louis and Elizabeth for a considerable distance in the early portion of its course, and it must then have travelled with the same high velocity; afterwards, on passing over shallower seas, the velocity must have much diminished, and very possibly it may have fallen to the smaller velocity values which Major Rogers has calculated for the se2-waves in the Bay of Bengal, on the occurrence of the earthquake of December 31, 1881.
The Admiralty chart of the Eastern Archipelago shows that Krakatoa is situated at the focus of what may be regarded as a parabolic figure, formed by the contiguous portions of the coasts of Java and Sumatra; the axis of the figure is directed towards the Indian Ocean. Thus the waves generated by an eruption at Krakatoa would be mostly propelled towards that ocean, both directly and by reflection from the coasts; but near the apex of the parabola there is an opening, the Straits of Sundz through which a great wave passed, carrying widespread destruction for some distance beyond along the contiguous coasts. This wave may have impinged with great force on the south-west corner of the 1sland of Borneo, which is on the prolongation of a straight line drawn from Krakatoa through the Straits. But it did not reach Singapore, where a tide-gauge is established, and which is within a third of the distance of the nearest Indian station from Krakatoa; the Master-Attendant at Singapore reports that the gauge shows "no difference whatever in the tide." This is obviously due to the fact that the wave which passed through the Straits of Sunda bad but a shallow sea to advance over towards Singapore, and its course must have been greatly impeded by numerous islands and shoals and the narrow straits and passages between them. For sinilar reasons, and because the axis of the parabola in which Krakatos is situated is pointed towards the Indian Ocean, it is probable that the effects of the eruptions were not conveyed to anything like so great a distance along the numerous groups of islands to the east and into the Pacific Ocean.
J. T. Walker

THE INDIAV SURVEY ${ }^{1}$

THIS is the fifih report of the amalgamated Department of Surveys under the Government of India. It is divided into two parts with an appendix. Part 1. gives a summary of the operations of the great trigonometrical, the topographical, and revenue survey parties; also of the geographical, geodetic, and tidal, and levelling operations. Part II. describes the operations at the Head-Quarters Offices, viz. the Surveyor-General's Office, the Revenue Survey Office, the Lithographic Office, the Photographic Office, and the Mathematical Instrument Department, all in Calcutta; and of the Trigonomerrical Survey Uffice in Dehra Dun. Index charts, coloured maps, and sketches showing the present state of this very important department accompany this report; to which is prefixed, as frontispiece, a "Specimen of Heliogravurt by Major Waterhouse's Process," which invites the
"General Report on the Operations of the Survey of ladia duriag the year ${ }^{1881-g_{2} . " ~ P r e p a r e d ~ u n d e r ~ t h e ~ s u p e r i n t e n d e n c e ~ o f ~ L i e w t, ~ G e n e r n l ~}$ (Calcutta, 188 3)
special attention of photographers and engravers. An appendix, separately paged, of 120 pages, completes the volume, and consists of extracts from the narrative report of the executive officers in charge of the survey parties and operations.

This report is distinguished from previous ones by announcing the completion of the great triangulation on the lines originally marked out in 1830 by Col. Everest, which affords the Surveyor-General, in his introductory statement, an opportunity of giving a brief but interesting history of this great undertaking from its commencement in the year 1800, in Southern India, by Major Lambton, on the recommendation of the Hon. Col. Wellesley, afterwards the Duke of Wellington. The object of this so-called "Mathematical and Geographical Survey" was then stated to be "to determine the exact positions of all the great objects best calculated to become permanent geographical marks to be hereafter guiles for facilitating a general survey of the peninsula," and further, that in the interests of general science it woul. 1 have to be executed with the utmost possible precision, and be supplemented by astronomical determinations of position, with a view to the requirements of geodesy.

The operations between the years 1800 and 1825 may be briefly described as consisting of a network of triangulation over Southern India, and through the middle of which a principal chain of triangles was carried in a meridional direction from Cape Comorin up to Sironj in Central India. This chain forms that which is now known as Lambton and Everest's Great Arc. Col. Lambion died in 1823, and was succeeded by Col. Everest, who, two years afterwards, proceeded to Europe, spending four years in supervising the construction of new instruments-great theodolites, astronomical circles, standards of length, and compensation bars for base-line measurements, for employment in extending and revising the Great Arc, the importance of which was recognised by all men of science in Europe.

Returning to India in 1830 , Col. Everest recommended the abandonment of the network system of triangulation and the substitution instead of what he called the "gridiron" system, consisting of meridional chains of triangles tied together at their upper and lower extremities by longitudinal chains. The meridional chains were to be constructed at intervals of about one degree apart, while longitudinal chains would follow the parallels of Calcutta, Bombay, and Madras, and thus run at intervals of from five to six degrees apart. The external chains of the gridiron would of course follow the British frontier lines and the coast lines, and all grounded on ten base lines measured with the Colby apparatus of compensation bars and microscopes. This programme of operations was approved by the Government of India and Court of Directors, and has furnished the guiding lines on which the principal triangulation has been executed during the period of almost exactly fifty years which has since elapsed. For geodetic purposes, the amount of principal triangulation is now ample. Outside the limits of India proper, the recently completed chain of principal triangles, called the eastern frontier series, is a valuable contribution to geodesy and geography.

Thus the great work of the principal triangulation of India is now an accomplished fact. Commenced in 1800 , under the auspices of the Madras Government, it was carried on, almost alone, by Major Lambton, until 1818, when the Marquis of Hastings, then Governor-General, placed it under the control of the supreme Government, and Capt. Everest was appointed assistant to Major Lambton. In 1832 additional officers were appointed, and by the year 1840, when the northern section of the Great Arc was completed, the personnel sufficed for the equipment of six triangulation survey parties, which number has been uniformly maintained from that time onwards until gradually diminished on the completion of
the successive chains of triangles. The operations have been unif,rmly and consistently supported by successive Governments of India with equal liberality and constancy, and to whom it must be a source of much satisfaction to know that this great work of permanent peaceful usefulness will assuredly take the highest rank as a work of scientific labour and skill.

It is stated that there are 3472 principal s'ations. On the plains they are constructed in the form of towers, rising from 20 to 40 and even 60 feet above the ground, and usually about 16 feet square at base, with an isolated central pillar for the instruments to rest on. On hills and mounds and other eminences the central pillar, always of masonry, is raised 2 to 4 feet above the ground level, and is surrounded with a platform of earth and stones. Markstones, engraved with circle and central dot to define precisely the station point of observation, are inserted at the surface and at the base of the pillar. The stations, scattered over 338 Brilish districts and native states, are placed under the protection of local officials, each of whom is required to send annual reports of the condition of the stations within his district. Repairs are effected when necessary, and if so maintained by "future generations of officials, the duration of the stations should be coeval with the hills and plains on which they stand, and be of lasting utility.

The field operations of measurements of base-lines and angles of the principal triangulation being completed, the simultaneous reduction of the vast number of such facts, acquired over all India, by many individuals and during a period of many years, to a harmonious whole, was obviously impossible. Thus it became necessary to divide the triangulation of India proper into five sections; and even then the simultaneous reduction of the numerous facts of observation collected together in each group was a work of enormous labour, necessitating, as stated by the most eminent living authority (Col. Clarke, C.B., Geodesy, p. 257), "the most elaborate calculations that have ever been undertaken for the reduction of triangulation by the method of least squares." The final results of the first section are given in vols. ii., iii, and iv. of the "Account of the Operations of the Great Trigonometrical Survey of India," published in 1879 (vol. i. is devoted to base-lines, and vol. v. to pendulum operations) ; those of the second section in vol, vi, published in 1880, and those of the third in vols. vii. and viii. will be shortly published. The simultaneous reduction of the fourth section is now completed. The final reduction of the last section has not yet commenced, nor has the recently completed eastern frontier series.

The requirements of geodesy necessitate a:tronomical observations for the determination of latitude and azimuth and electro-telegraphic observations for the determination of differences of longitude at several stations of the principal triangulation. These have already been completed to a considerable extent; and further operations of this nature are in progress by two small astronomical parties attached to the geodetic branch of the department, and by whom all the operations subservient to geodetic science should be completed in the course of a few years. An extensive series of penduluin observations for investigations of gravity and the figure of the earth, tiken chiefly at stations of the principal triangulation, has been completed and connected with the groups of corresponding observations in other parts of the globe. Long lines of spirit levels have been, and are still being carricd on in connection with the principal triangulation, from the sea to the base-lines in the interior, and from sea to sea acros; the peninsula; they rest on determinations of the mean sea level, which have been and are being made at tidal stations on the coasts, and which promise to furnish most in purtant data by means of which our knowledge of the constitution of the earth's mass may be extended.

Reference can only be here made to the report for most
interesting information as to the progress of the thirteen topographical parties, the two Mousawar, or village survey parties, and the six cadastral or field survey parties, whose duties now include, as an experiment, the reecording of particulars about each field; thus reducing the cost of preparing the "Record of Rights" for the Board of Revenue. The geographical reconnaissance and trans-Himalayan explorations are replete with curious information to every student of nature, and of the habits and customs of the frontier hill tribes and peoples. The perusal of this report increases, if possible, our good opinion of the skill and devotion to duty of the several officers, and of the marked ability of the administration of this department by General Walker, and which it is most pleasing to find so handsomely acknowledged by the Governnient of India.

ZOOLOGY AND BOTANY OF AL.ASKA ${ }^{1}$

THE United States Revenue cutter Corain went on a cruise in 1881 to Alaska and the Arctic Ocean. The main object of the voyage was to search the various accessible portions of the Arctic coasts for traces of the Yeannette and two missing whaling vessels which were lost the same season that the feannetle entered the ice. Leaving St. Michael's on June 21, Behring's Sea was crossed to St. Lawrence Island and Plover Bay on the Siberian coast ; then the Corwin went along this coast through the Straits and north-west to the vicinity of Nordenskjold's winter quarters, where a sledge party, which had been left there earlier in the season to search the coast in that district, was taken on board; it then returned to St. Lawrence Island and St. Michacl's. Afier a short delay it again proceeded to the Arctic, touching at all the islands in Behring's Straits, visiting in succession the entire Alaskan coast line from Behring's Straits to Point Barrow, including Kotzebue Sound, and on the Siberian shore from the Straits to North Cape. It also cruised along the edge of the ice pacis, visiting Herald and Wrangel Islands-almost unknown masses of land-and, returning homewards, some time was spent at Ounalaska in the Aleutian Islands fitting for the voyage to San Francisco, which was reached in October.

As one of the results of this cruise, we have a series of notes and memoranda, medical and anthropological, botanical and ornithological, published by order of the House of Representatives at Washington.

The medical and anthropological notes of Alaska are by Dr. Irving C. Rosse. The health of the ship's crew was fairly good throughout the voyage, very careful precautionary measures being observed: for the usual habit of deluging the decks above and below every morning with water, a system of scraping and dry scrubbing was substituted with excellent results, and the decks were only wetted once or twice a month on fine days. Good water was procured nearly everywhere in the Arctic, and it is noted as of unusual excellence at Cape Thompson and at Herald and Wrangel Islands. The weather was mostly wild, with snow and hail; in the latter part of June at St. Michael's the sun was found almost overpowering, although the thermometer registered but 60°. Dr. Rosse gives a sketch of the diseases peculiar to the aboriginal population, especially of an epidemic of pneumonia which prevailed at Uunalaska. He declares "that there is an absolute consensus of opinion both among the executive and medical officers of late Arctic expeditions in regard to the judicious use of alcoholic beverages," and that though himself of abstemious habits, et the facts observed "warrant him in testifying to the undeniable good effects of whisky when served out to the crew after
Weat Arctice of the Revenue Steamer Cormin in Alaska and the NorthWeat Arctic Octan in 1838 . Notes and Memoranda, Medical and Anthroprological, Botanical and Ornithological" (Washington: Government
unusual fatigue and exposure." On reaching St. Lawrence Bay, Siberia, a native speaking a little English was at his own request taken on board; the bustle and stix brought on a state of sleeplessness, and his state of mind was not improved on seeing the collection of skulls on board, nor by the chaff of the forecastle men, who tried to persuade him he was to be brought to San Francisco as an anatomical curiosity. As a result he stabbed himself dangerously in the left chest, and then leaped overboard ; a boat being alongside, he was promptly rescued The knife was found to have entered several inches, and blood and air were escaping from the wound. The symptoms were such that, writes Dr. Rosse, "the patieal ought to have promptly perished, notwithstanding the treatment," but in a few days the patient was landed at Plover Bay, where he recovered sufficiently to start on foot for his home over a rugged mountain way 150 miles distant. "Wounds seem to heal uncommonly well inthe Arctic, a fact doubtless owing to the highly ozonised condition of the atmosphere, and the absence of discase germs and organic dust."

Dr. Rosse's anthropological notes on the natives met with are of some importance, though his conclusiocs based on these may not always be acceptable. Refering to the prevalence of tattooing among the Esquimats women, he gives a figure of strange design seen on the cheeks of a woman of St. Lawrence Island. Some drawing of crania are given, but we have failed to find any detailed account of them.
The botanical notes on Alaska are by John Murs There is no line of perpetual snow on any portion of the Arctic regions known to explorers. Every summer the snow disappears not only from the low sandy shores add boggy tundras, but also from the mountain tops; for nearly three-fourths of the year the plants lie buried under it, but they awake up in June and July to a vigorvas growth, and on the drier banks and hills about Kotzebue Sound, Cape Lisbourne, and elsewhere, many species show but little climatic repression, growing during the long summer's day tall enough to wave in the wind, and to unfold a rich profusion of flowers. A list of the species found at the following localities is given-5: Michael's, Golovin Bay, Kotzebue Sound, and Cape Thompson, where a new species of Erigeron was found (E. muiviG, Gray). On Herald Island sixteen species of flowering plants were gathered. At Wrangel Istand, from an area of about half a square mile, twenty-seres species of flowering plants were collected; they $\sqrt{ }$ لl occurred in separate tufts, leaving the ground betweef them bare and raw as that of a newly ploughed feld Some portions of the coast, however, farther south, presented a greenish hue, as seen from the ship, at a distance of eight or ten miles, owing no doubt to vege tation growing under less unfavourable conditions than at the point the Corwin touched at.

The birds of Behring's Sea and the Arctic Ocean are described by Mr. E. W. Nelson; many of the breeding quarters of North American birds are given, and details are also added of some of the rarer forms met with A fine adult male Siberian Wagtail (Motacilla aulant, Swinhoe) was taken at Plover Bay the last day of Jost; it was in perfect breeding plumage. A specimes d Lanius crisfalus was picked up dead on Wrangel liand Strictly an Asiatic bird, it must have reached this disum spot during some storm, and died of starvation of exposure. A fine adult female, in breeding plamage, d Eurinorhynchus pygmaws, was taken at Plover Bay, ad several others were seen. A specimen of Rhadostudiov rosea in immature plumage was obtained at St. Michuelio and reference is made to three fine specimens secured by Mr. Newcomb during the drift of the Jranneft, whid are now in the Smi:hsonian eollection, one of which sime retains its extremely rich peach-blossom pink so clara* teristic of this the most beautiful of the guls.

A list of the fishes known to occur in the Arctic Ocean, north of Behring's Straits, by Tarleton H. Bean, is appended. The list is based exclusively upon specimens in the United States National Museum, and is acknowledged to be incomplete ; it only contains twenty-one species, eight others being added as "properly belonging to the fauna." No details beyond the localities where found are given.

SOUND-MILLS

AFTER the notable researches of Crookes on radiation, which culminated in the discovery of the radiometer, or light-mill, it was a natural transition of thought which suggested to several minds almost simultaneously the possibility of devising an apparatus which should rotate under the influence of sound-waves as does the radiometer under the influence of the rays of light and heat. Such instruments were indeed devised independently about six years ago by Lord Rayleigh, by Prof. Alfred M. Mayer of Hoboken, by Mr. Edison, the wellknown inventor, by Prof. Mach of Prague, by Dr. A. Haberditzel of Vienna, and by Prof. V. Dvorák of the University of Agram (in Croatia). These researches, though of great scientific interest, have been somewhat overlooked in the rus'h of scientific inventions during the intervening years. During the course of the past year,

Fic. 1.

$+16$
however, Dr. Dvorak has given to the world, in the pages of the Zcitschrift der Instrumentenkunde (vol. iii. Heft 4), a detailed account of his experiments, together with figures of various pieces of apparatus hitherto undescribed. We propose to give a risumt of the principal points of Dvorák's researches.

Four kinds of sound-mills are described by Dvorák, two of them depending on the repulsion of resonant-boxes or cases, and two others on different principles.
The first of these instruments is depicted in Fig. 1, and consists of a light wooden cross, balanced on a needle point, carrying four light resonators made of glass. These resonators are hollow balls of 44 cms . diameter, with an opening of 0.4 cm . at one side. They respond to the note g^{\prime} ($=392$ vibrations). When the note g^{\prime} is forcibly sounded by an appropriate tuning-fork, the air in each of the resonators vibrates in response, and the apparatus begins to rotate. As a resonator will respond when placed in any position with respect to the source of sound, it is clear that one single resonator properly balanced should rotate ; and this is found to be the case, though, naturally, the action is more certain with four resonators than with one.

Before prozeeding to the other forms of sound-mill devised by Dvorak, it may be well to explain briefly the cause of the phenomenon, and to describe Drorák's
particular method of exciting the appropriate sound Dvorák has pointed out, as indeed has been done elsewhere both by Lord Rayleigh and by Prof. A. M. Mayer, that, when sounds of great intensity are produced, the calculations which are usually only carried to the first order of approximation cease to be adequate, because now the amplitude of motion of the particles in the sound-wave is not infinitely small as compared with the lengths of the sound-waves themselves. Mathematical analysis shows that under these circumstances the mean of the pressures in the condensed part and in the rarefied part of the sound-wave is no longer equal to the undisturbed atmospheric pressure, but is always greater. Consequently at all nodal points in the vibrations of the air in tubes or resonant-boxes the pressure of the air is greater than elsewhere; and therefore any resonator closed at one side and open at the other is urged along bodily by the slight internal excess of pressure on the closed end. The apparatus, Fig. I, therefore rotates by reaction, in the same way as Hero's primitive steam-engine rotated, though the reaction is due to a different cause.

To produce vibrations of sufficient intensity Dr. Dvorák employs heavy tuning-forks mounted on rs-sonant-cases, and excited electrically. For this purpo ie he places between the prongs of the fork an electromagnet constructed on the following plan. Two plates of iron separated by a sheet of paper are used as a core. They

Fic. 30
are cut of such a breadth as to lie between the prongs without touching them. This core is overwound with insulated copper wire, as shown at E, Fig. 2, and the electromagnet is then mounted by a bent piece of wood, $a b c$, upon the sounding-box, k, of the fork. The wires are connected in a circuit with a battery, and with the electromagnet of a self-exciting tuning-fork of the same note. Dr. Dvorak is extremely particular about the arrangements of the resonant-boxes of his tuning-forks. They must not touch the table, the arm abcbeing clipped at about the point b in a firm support. Moreover the resonant-boxes themselves require to be specially tuned, for all are not equally good. Dr. Dvorák points out that, beside the tone of the fork, and the tone of the air column in the cavity of the box, there is also a tone proper to the wood of the box itself, which in most of the forks used in acoustic researches is too base, the wooden walls being too thin. To hear this tone the prongs of the fork should be damped by sticking a cork between them, and the cavity should be filled with cotton-wool, while the wooden box is gently struck with the knuckle or with a cork hammer. It is important that the wood-tone should be tuned up to coincidence with the tone of the fork and with that of the air in the cavity. Dr. Dvorák himselt used the box depicted further on in Fig. 6, in which drawing F is the socket into which the stem of the fork
was screwed. The wood was tuned by planing it away at the top and bottom, while the air cavity was tuned by enlarging the circular opening in front. In the later researches the box stood on four feet made of indiarubber tubing. The note of the fork so mounted, was very strong. At 40 cms . distance it would set the soundmill in motion.

Dvorík's second apparatus, a "rotating resonator," consists of a short cylindrical box, constructed of stiff glazed paper, having four projections, shown in plan and elevation in Fig. 3, each of which bears at its side a short open tube of paper. It is, in fact, a resonator with four openings, arranged so that it can be hung upon a silk fibre. A fine needle projects also below to steady the

Fi3. 4
motion during its rotation, which occurs whenever the apparatus is brought near to the sounding-fork. For the note g^{\prime} the dimensions were : diametcr, 7 cms ; height, 3.6 cms . ; diameter of openings, 0.6 cm .

The third apparatus is the "sound-radiometer" described by Dvorák before the Imperial Viennese Academy in 1881. Its cause of action is less readily explained, though its construction is even more simple. Its form is shown in Fig. 4. D; there being, as before, a light cross of wood, pivoted by a glass cap upon a vertical needle. To the four arms of the cross are cemented four pieces of fine white card, about 008 cm . thick, perforated with holes which are depressed conically at one side, and raised at the other. These holes may be made by punch-

Fic. s .
ing the card upon a lead block with a steel perforatingpunch of the form shown in Fig. 5, A, the dimensions of which are: $a b=0.38 \mathrm{~cm}$.; $c d=0.2 \mathrm{~cm}$. The holes should be from 06 to 065 cm . apart from one another. When a card so perforated is held in front of the opening of the resonant-box of the tuning-fork it is repelled if the smaller ends of the conical holes are toward the box ; or is attracted if the wider openings are toward the box. A better, but less simple, way of perforating the cards is by the use of the conical steel punch shown in Fig. 5, B, and the matrix, Fig. 5, c. The angle of the cone is 55°, and the narrow projecting nose of steel is $0^{\circ} 2 \mathrm{~cm}$. The card should be damped, laid on the matrix C , and the hole
pierced by two or three blows upon the die. Dr. Dvorák prefers this plan : it throws up a high burr or edge behind the conical hole, and such perforations are more effective. The cards may be varnished, and are then mounted upon the cross. The rotations are more rapid if the cards are set on obliquely in the fashion shown in Fig. 4, E, the burred sides being outwards. Cards with twenty-five perforations so mounted rotate briskly when the "mill" is set in front of the resonant-box.
"The fourth apparatus of Dvorák is called by him an "acoustic anemometer." It is shown in Fig. 6. This is merely a little "mill" of simple construction, the vanes being small pieces of stiff paper or card slightly curved. The sounding-box previously described is placed a litle way from it, and between them is held an ordinary Helmholtz's resonator, with its wide mouth, b, turned toward the box, and its narrow opening, a, toward the mill. From what has been previously said it will be understood that the internal inclease of pressure in the resonator at a has the effect of driving a jet or air gently against the sails of the mill, which consequently rutates. Dr. Dvorak also suggest's that this two-aperture resonator may be replaced by one having but one aperture, as shown at R, with its

Fig. 6
open side, l, turned towards the mill. This resorator is formed of a glass ball cut away at one side and cemented to a glass plate having a small hole at the centre. It may be remarked that when the air ejected from the mouth of this resonator is examined by the method of mixing smoke with it, and then viewing it through slits cut in a rotating disk, the currents are seen to consist of a series of vortex-rings.

A second kind of "acoustic anemometer" may be made by taking a card pierced with too conical holes, as previously described, and placing this between the resonant-box and the "mill." The latter rotates in the wind which passes through the conical holes.

Space does not admit of a comparison being drawn between these instruments and those of Mayer, Mach, and others, which are very closely akin in their design and mode of action, interesting though such a comparison might be. Nor can we here compare the action of these instruments with the "phonomotor" with which Mr. Edison literally accomplished the feat of talking a hole through a deal board. But this remarkable machine was a purely mechanical toy, which converted the vibrations of the voice, by means of a very finely-cut ratchet-wheel, into a motion of rotation round an axis.

Silivanus P. Thompson

NOTES

In the last week British science has sustained a great loss in the death of Mr. Thomas Chenery, the editor of the Tiwa. During his all too short reign the leading journal of Europe has been in strict barmony with the real progress of humanity, iustead of being merely a chronicle of "polities" and "society," and day by day it has been wonderful to watch with what coatinuous well-balanced vigour and skill the general public has been made interested in the victories achieved in the domains of science, literature, and art, as only a daily journal can interest it.

Never before in the history of daily journalism in any country did ecience receive the recognitlon which Mr. Chenery accorded to it. Mr. Chenery was not only a great scholar, but the nearest approximation to an admirable Crichton that we have known, and in this we find the secret of his skill as an editor. So many-sided was be that whether teaching Arabic at Oxford as Lord Almoner's Professor ; taking his part in the revision of the Old Testament; acting as Special Correspondent in the trenches in the Crimea; at his post as Editor of the Times or in private life, be won the admiration of all who knew him by his deep knowledge and splendid modesty. He was a perfect friend, and gained the rexpect and love of all who came into contact with him.
Dr. John Hutton Balfour, Emeritus Professor of Medicine and Botany in the University of Ediuburgh, Regius Keeper of the Royal Botanic Garden, and Queen's Botanist for Seotland, died on Monday at Inverleith House, Edinburgh. He was birn in 1808. Dr. Balfour was the father of Prof. Bayley Balfour, whose appointment to the vacant Chair of Botany at Oxford we announce to-day. We hope to say more about the late Prof. Balfour next week.
The death is annonnced of the distinguished American geographer, Prof. Arnold Henry Guyot. He was born at Neuchatel, Switzerland, on September 28, 1807. He studied at Neuchâtel, Stuttgart, and Carisruhe, and at the last-named place formed a close friendship with Agassiz, with whom he studied natural science. In a tour through Switzerland in 1838 he first discovered the laminated structure of the iee in glaciers, and showed that the motion of the glacier is due to the displacement of its molecule. Agassiz, Forhes, and others afterwards confirmed these discoveries. For seven successive summers Guyot now Investigated the distribution of erratic boulders, tracing them on both sides of the Central Alps, in Switzerland and Italy, over a surface 300 miles long and 200 miles wide, and delineating eleven different regions of rocks. Their vertical limits and the laws of their descent were determined hy means of more than 3000 barometrical observations; and the characteristic speries of rock of each basin were tracked step by step to their source. In the United States be was employed by the Massachusetts Hoard of Education to deliver lectures in the normal schools of the State, and before the teachers' institutes, and by the Smithsonian Institution to organise a system of meteorological observations. In 1855 Guyot was appointed Professor of Physical Geography in the College of New Jersey at Princeton, which post he retained till his death. He was awarded a medal for bis researches at the Vienna International Exhibition of 1873 .

The Royal Society has appointed a committee, consisting of Sir F. Evans, Prof. Judd, Mr. Lockyer, Mr. R. H. Scott, General Strachey, and Mr. G. J. Symons, with power to add to their number, to collect the varicus accounts of the voleanic eruption at Krakatoa, and attendant phenomena, in such form as shall best provide for their preservation and promote their ueefulness ; and a sum of 25 t . has been placed at their disposal for this purpose. In connection with this we direct attention to the letter of Mr. Symons in our Correspondence Columns.
The following note has been sent us from the Meteorological Office:-" We have received notice of the establishment of a system of storm and weather warnings on the Spanish coast. The warnings are based upon obvervations recelved from stations reporing daily by telegraph to the Marine Observatory at San Fernando, which is superintended by Capt. C. Pajazon of the Spanish Navy. This institution also issues a daily weather report and chart."

The "Johns IIopkins University Circulars " have become an important medium for commanicating briefly the results of research in all departments in connection with the many-sided institation which issues them. Doubeless they are to be found
at the leading scientific centres in this country, and are always well worth looking into. The number for January contains a brief report of the meetings in connection with the departure of Prof. Sylvester from America; bow highly he was appreciated there is evident from the following :-On the afternoon of December 20 the academic staff of the University met in Hopkins Hall, by invitation of the President, and after a brief review by Dr. Story of the mathematical lectures bere gives from 1876101883 , and a like review by Dr. Craig of the contributions printed in the American Yournal of Mathematics, Prof. Gilderslecve read the following paper, which, on motion of Prof. Rowland, was adopted by the meeting as an expression of their respect and good will. "The teachers of the Johns Hopkins University, in bidding farewell to their illustrious colleague, Prof. Sylvester, desire to give united expression to their appreciation of the eminent services he has rendered the University from the beginning of its actual work. To the new foundation he brought the assured renown of one of the great mathematical names of our day, and by his presence alone made Baltimore a great centre of mathematical research. To° the work of his own department be brought an energy and a devotion that have quickened and informed mathematical study not ouly in America, but all over the world; to the workers of the University, whether within his own field or without, the example of reverent love of trath and of knowledge for its own sike, the example of a life consecrated to the highest intellectual aims. To the presence, the work, the example of such a master as Prof. Sylvester, the teachers of the Johns Hopkins University all owe, each in his own measure, guidance, help, inspiration; and in grateful recognition of all that be has done for them, and through them for the University, they wish for him a long and happy continuance of his work in his native land; for themselves the power of transmitting to others that reverence for the ideal which be has done so much to make the dominant characteristic of this University."

An ascent of Ben Nevis was made on Monday by Mr. C. D. Cuoningham, a member of the Alpine Clab, accompanied by M. Emile Key, a Swiss guide, and John Cameron, the wellknown guide at Fort William. There were about six inches of snow on the ground from the commencement of the new road to the Red Burn. Here considerable difficulty was experienced in crossing the Burn and arriving on the top of the opposite bank, owing to the grea' quantity of snow which had drifted into the watercoarse. From the well to the snmmit the ground, covered with deep snow, was hard frozen, making the task comparatively easy. Mr. Oanond and his companions at the Observatory appeared in good health and spirits, and eatertained the party in the most hospitable manner. The ascent occupied three hours thirty-five minates, and the descent two hours.

THE estimates submitted to the Dominion Parliament inclucle (says a Reuter's telegram from Ottawa) the sum of 25,000 dolla) 5 for the expenses connected with the meeting of the British Ass ciation at Montreal this year.
Tue German Cholera Commission has sent a fifth report from Calcutta, dated January 5. Dr. Koch seems to have really discovered special cholera bacilli. The Commission was further oscupied with the investigation into the causes of the great decr.ase in cholera mortality in Calcutto, where the percentage of deaths per thousand has diminished from ten to three. This diminntion is attributed to the improvement of the water supply.
Tue Nautical Meteorological Office of Swerten maintains at present nineteen stations at which meteorological observations are made on a large scale, twenty stations for measuring the fall of rain and snow, and sixteen hydrographical observatories, Weather journals were last year received from eleven men-of-war and fifteen merchantmen. The Meteorological Office in London
having requested that of Sweden to forward as eomplete jonrnals as possible of the meteorological phenomena of the North Atlantie Ocean between Angust i, 1882, and September 1, $\mathbf{1 8 8}_{3}$, the Office has made a eareful abstract of these journals for this purpose.
THE eonsistory of the Upsala University has voted a sum of abont 200%. for the purchase of objecta of natural history for the University collected by the savantt of the Vanadis Expedition round the world, now taking place.

On January 14 a "green" moon was observed at Kalmar in Sweden. At about 5 p.m., just after the sun had set, leaving an intense parple glow on the sky-more intense than the late sun-glows-the moon came out of a layer of heavy clouds in the east. A few seconds after-the disk being then perfectly elear-a light haze gathered around it, partly veiling it, which immediately ehanged the bright silver colour to an emerald green. The phenomenon lasted for three minutes, when the disk again by degrees assumed lts former brightness. A similar phenomenon was observed near Stockholm on January 17 at about 8 o'elock in the morning. It lasted about three minutes.

The Council of the Royal Meteorological Society have arranged to hold, at 25 , Great George Street, S.W., by permission of the President and Conncil of the Inctitution of Civi ${ }_{1}$ Engineers, on the evening of March 19 next, an Exhibition of Thermometers. The Committee will also be glat to show any new meteorological apparatus invented or first constructed since last March; as well as photographs and drawings possessing meteorological interest.

A special meeting of the Committee of the Sunday Society was held on Monday afternoon, February 4, at 9, Conduit Street, W., Prof, W. II. Corfield, M.D., in the chair. The Honorary Secretary submitted a Report on the recent voting as to the future political action of the Society, from whieh it appeared that 39 t bad voted in favour of making the Sunday opening of museums a test question at elections of Members of Parliament, and that 470 voted against this proposal ; 853 voted in favour of making the question the subject of an annual motion in the Ilouse of Commons, and only it voted against this proposal. Resolutions were subsequently passed pledging the Society to action in accordanee with these resalts.

Like its better known namesake in the metropolis, the Royal Institution, Liverpool, has done much to popularise seientlific knowledge during the present century. So far back as 1820 lt first gave a permanent home to a scientifie society in Liverpool, by admitting the Literary and Philosophical Society to share its roof, for the purpose, say the Minutes, " of extending the knowledge of arts and sciences." Since then the number of societies with scientific aims has steadily grown in Liverpool, and the number of members composing them to some extent increased as steadily. The accommodation of the Institution is found to be limited, and the iden of devoting the whole of the available space for the purpose of meetings is beginning to take definite shape, and was supported by Mr. Morton, F.G.S., in hls presidential address last week. A very large part of the building is occupied by the museum, whieh was formerly the most important in Liverpool ; for many years not less than 30,000 persons visited it on free days annually; this number was maintained np to $1868-69$, when it all at once fell off; last year the number was ouly 44^{89}, of whom only 1019 visited the natural history collections. This diminution of interest was eoincident with the opening of the Free Publie Museum. In 1817 the Instltution disposed of the mammalia, reptiles, fishes, crustacea, polyzoa, and corals in the museum, and it is thought desirable that the remaining collections of interest and local character should be absorbed into the Cor-
puration Museum. The Institation has schools which are in an exceedingly prosperous condition, and its library has a large collection of standard works in natural science.

Is a letter on the remarkable sunsets from Mr. S. E. Bishon dated Honolulu, January 15, the writer mentions the importan: fact that the reddish haze was seen 4000 miles west of Paname on September 3 from the barque Sowthand-Hurlburt.

The Worshipful Company of Clothworkers has been pleaed to grant a donation of 217. to the National Health Society, 4, Berners Street.

A rroposition has been presented to the Municipal Cosneil of Paris to give the name of Darwin to a new street about to be opened.

The Hotel Dieu, Paris, having Gramwe machines and stem. engine, the Administration of the Assistance Publique has decided to introduce experimentally the use of Edison incandescent lighs in the halls inbabited by patients. The Hotel Dies is thelarget and the leading French hospital.
The French Minister of Public Instruction will organise in Paris an exhibition of the objects which have been collected at Cape Ilom by the Romanche. The collection is composed of 170 cases of valuable specimens of mineralogy, geology, and zo log gy , as well as living plants which will be acclimatised as fur as possible in Freneh forests.
THE International Association of Electricians, of which ve have announced the creation in Paris, will hold its montbi' sittings at the rooms of the Society of Geography. The first took place at the beginning of this month. The first part of the Transactions of the Association has reached us.
A new popular scientific paper has been publishet in Pris entitled Le Monvement Scientifique.
The Aristotelian Society for the Systematic Study of Phiosophy will meet henceforth in the rooms of the Royal Asimit Society, 22, Albemarle Street, W.
Shortiv before sumset on Tuesday evening when the whol of the population of Notaresco, in the Abruzzo, had retird within doors on account of the intense cold, a shock of eurt quake was felt, of sueh severity that the people rushed heidlong into the streets and remained there until after midnight. The shock was also felt at Atri, Guilianova, Avellino, aod Ces Sant' Angelo. A violent earthquake also oceurred on the nath inst, in the distriet of Birvari, Provinee of Bitlis, Tarke. A large number of houses and other buildings were thrown doms
Mount EtNa has, sinee Saturday, entered into in enfiour stage by throwing out ashes from the topmost crater. Smos earthquake shocks in the districts aronnd the mountain precoled the outbreak.
AN unusually bright meteor was seen in Western Germany ${ }^{\text {an }}$ January 28, about 7.30 p.m. At Barmen its motion seemd n be from east to west, while at Neuwied south to north was be direction. Its brilliancy is generally compared to that of tis full moon.
Ar the last meeting of the Berlin Anthropological Soidty Prof. Nehring reported on the diseovery of s cave sare to village of Holzen (Branswiek), which is of special interes in asmuch as there is strong evidenee of cannibalism among to ancient cave men of that place, the first time that sach eridoue is forthcoming concerning the prehistoric inhabitants of wher 1 now Germany. In Belgium and Spain similar eridesce bd been found, but had been dismissed as doubtful. The toses remains of the Holzen cave are not completely calcined; it th
same time there is proof that the bones were opened to get at the marrow. But the strongest evidence of cannibalism was farnished by the arrangement in which the bones were found. Besides these bones and bone implements, roughly worked bronzes were found. At a lower level numerons lemming bones were found, which, with regard to the age of the cavern, seems to point to the Glacial epoch. In the debate following Prof. Nehring's report, Prof. Virchow raised some doubts regarding the cannibalism of the cave dwellers.

A meeting of delegates of Natural History Societies in the east of Scotland (including the counties of Fife, Perth, Forfar, Kincardine, and Aberdeen) was held in the lecture-room of the Perthshire Natural History Museum, Perth, on Nebruary 9, to consider the question of federation alluded to in Nature. The following societies were represented:-Aberdeen Natural History Society, Alford Field Clab and Scientific Society, Arbroath Horticultural and Natural History Association, Dundee Naturalists' Society, Dundee Naturalists' Field Club, Kirkcaldy Naturalists' Society, Largo Field Naturalists' Society, Montrose Natural Hitory and Antiquarian Society, and the Ferthshire Society of Natural Science-being all but four of the Societies in the above mentioned counties. Two of the four societie. considered that their objects did not quite entitle them to join the proposed federation, at least for the present ; and from the other two no response had been received. After deliberation it was resolved to federate the societies under the title of "The East of Scotland Union of Naturalists' Societies" The objects of the Union are the promotion of good and systematic work by the various societies in it, and of friendly intercourse amongst their members; its affairs are to be conducted by a council of representative members, two being elected by each society. The president is to be a man of scientific eminence, connected with the district ; and it is to hold ao annual general mecting at the headquarters of the various societies in rotation, and other meetings in such places in the district as may be agreed on. The Union starts with a membership of about 1300 . It was determined that the first general meeting should be held in Dundee on June 6 and 7 next. Dr. Buchanan White, F.L.S., was elected President, and Mr. F. W. Young, F. R.S.E., Hon. Secretary of the Dundee Naturalists' Society, was appointed Secretary.
We learn from Science that Mr. Joseph Wharton of Philadelphia writes to the Public Ledger of that city (January 22) that he has found volcanic glassy dust in fresh, clean snow of recent fall. The snow, melted under cover in the porcelain vessel it was gathered in, showed at first no sediment; but after a time, and aided by a gentle rotatory movement which brought all to the deepest point, a slight deposit appeared. By poaring off most of the water, and evaporating the remainder, a little dry dust was obtained, which, even to the naked eje, showed, in the sunlight, tiny vitreous reflections. The dust weighed by estimate a hundredth of a grain, and showed under the microscope the characteristics of volcanic glass. It was partly irregular, flat, and blobby fragments, and partly filaments more or less contorted, which were sometimes attached together in little wisps, and were mostly sprinkled with minute glass particles. Under a knife-edge the filaments broke easily and cleanly. The irregular fragments were of various sizes and shapes, mostly transparent, but, even when examined by strong transmitted light; showing no trace of crystalline structure. Their diameter was about that of single filmments of silk. No crystalline particle of pyroxine, or black erumb of augite, such as observers have found elsewhere in similar dust, was present ; nor did a strong magnet stir any particles of magnetic oxide of iron, though they also have been found in other volcanic dust. It may fairly be assumed that those heavier minerals, if at first mingled with the
volcanic glass, had been already deposited during the long voyage through more than ten thousand miles of space and more than four months of time, while the tenuity of the intrinsically lighter glass threads (the Pele's hair of Mauna Loa) enabled them to float farther from the point of eruption.
"THE International Conference for fixing upon a universal prime meridian and a universal system of time has," Science states, " at length been called by the State Department to meet in Washington, Oct. 1. Diplomatic proceedings are always expected to go on with a certain dignified leisure; but the arrangements for the mecting of this conference have been delayed far beyond anything customary even in diplomacy. The act authorising the conference became a law in August, 1882. As there was some doubt whether there would be a sufficiently general response to the invitation to insure the success of the conference, a preliminary circular requesting the views of the various governments interested, and an expression of their willingness to enter the conference, was issued from the State Department toward the end of 1882 . The responses were in some cases favourable, and in others negative or undecided. A desire was felt by the Europeans to have a preliminary discussion of the subject at the International Geodetic Conference at Rome in October, 1883. The feeling at this conference having shown that there would be little difficulty in the universal adoption of the Greenwich meridian, the final step of calling the conference was taken. Why so late a date was chosen we are not informed."
The Magdeburg Wetter Verein has been transformed into a branch of the general German Meteorological Society, which is ander the direction of Dr. Neumayer of Hamburg.
THE valuable ethnological collection made by Herr Zembsch at Apia, for many years German Consul-General at that place, has been purchased by the Ethnological Museum at Berlin. It consists of over 500 specimens.
The additions to the Zoological Society's Gardens during the past week include a Chacma Baboon (Cymocephalus poncarius 8) from South Africa, presented by Col. Gildea; a Macaque Monkey (Macacus cynomolgus 8) a Black Kite (Mitivus migrans) from India, presented by Mr. John M. Hagerman; a Common Hedgehog (Erinactus curopons), British, presented by Mr. Archibald Aitchinson ; a Bonnet Monkey (Macacus sinicus) from India, presented by Mr. J. Wilson; a Vulpine I'halanger (Phalangista vulpina) from Australia, presented by Capt. F. K. Slater; two Common Jackdaws (Pica rustica), British, presented by Master Harrott; a Chanting Hawk (Mclicrax musicus) from South Africa, a Partridge Bronze-winged Pigeon (Geophaps scripta) from New South Wales, purchased.

OUR ASTRONOMICAL COLUMN

Pons' Comet.-It appears that this comet was sufficiendy conspicuous to attract the attention of unscientific passengers on board one of our mail steamships in approaching Kio de Janeiro from the south on January 20, while it was an object of popular interest in Southern Italy towards the end of that month, acconding to the Naples correspondent of the Times. Observers in the other hemisphere may be able to follow it for several months longer ; in the last week in June the theoretical intensity of light will be equal to that at the date of its discovery by Mr. Brooks
This comet approaches the orbit of Venus within 0.076 ; that of Jupiter within 1.98; and that of Uranus within 1'17. The ascending node falls at a distauce of $15{ }^{\circ} 46$. Daring the revolution 1812-1884, the calculations of MM. Schulhof and Bossert show that the approximate effect of planetary attraction upon the periodic time, at the instant of perihelion passage in the former year, has been as follows :-

Comet accelerated by action of Jupiter			
Comet "retarded " by action	Uranus		13.
" \quad "	Neptun		

Hence the period of revolution in 1812 has been shortened by perturbation to the extent of 445 '49 days. The orbital velocity of the comet at perihelion is $29^{\prime 2}$ miles in a second, at aphelion it is 3550 feet in the same time.

The Glasgow Catalogue of Stars.-Prof. Grant has jnst issned the important catalogue of stars which has been for some time in active preparation at the Observatory of Glasgow, and towards the publication of which the Royal Society has largely contributed from the Government Grant Fund. Its appearance is too recent to allow of a description of the contents in the present column.

The Varlable Star U Geminorum.-Mr. G. Knott, writing from Cuckfield on the $4^{\text {th }}$ inst., sends observations of a recent maximum of this star; bis estimates are :-

h. m,			h. m.		
Jan. 24, 810	\cdots	13.3 m .	Jan. 28, 815	...	9.95 m .
26, 950	...	9.6	30, 9 -	...	114
27, 853	...	9'7	Feh. 2, 720		13*9

The period which best represented the observations in the years immerliately following the discovery of the star's variability by Mr. Hind (in December 1855) was 97 days, but there has been subseqnently great irregularity, and according to Mr. Knott it has fluctuated between 71 and 126 days, though the values on the whole cluster abont a mean of from 90 to 100 days; the limits of variation being atout $14 \frac{1}{\mathrm{~d}}$ and $9 \frac{1}{6}$ of Argelander's scale. These inferences are drawn from thirty fonr maxima, observed partly by Mr. Knott and partly by Mr. Baxendell (see the Observatory, April, 1882).
The late J. F. Julius Schmidt.-Practical astronomy has sustained a serious loss in the sudden death of the well-known Prof. Julius Schmidt, who has been for many years Director of the Observatory at Athens. According to a Reuter's telegram bis funeral, which tnok place on the 8 th inst., was of a public character, the King and Queen of Grecee being present at the Observatory during the delivery of the fnneral oration. A notice of Prof. Schmidt's long-continued astronomical labours must be deferred to another week.

THE ROYAL SOCIETY OF EDINBURGH

A
T the meeting of this Society on the 4 th inst., the Pre ident, Lord Moncreiff, delivered an address on "The Past Hundred Years' History of the Society." Regarding this long interval, Lord Muncreiff said: "From the watch-toner of the Royal Society I can trace within the century a revolution more wonderfil and more extensive than monarchs, or empires, or republics can display. Since this Society held its first weeting, how great to the community has been the fruit gathered from those branches of knowledge which it was incorporated to prosecnte! During that interval, what has science not done for human comfort and happiness? What interest so great, what dwelling so hamble, as not to have felt its beneficent influence? Since the invention of the art of pinting, no such advance in material comfort, prosperity, and intelligence has ever been made within a similar period as this century has witnesced. Its triumphs have not been confined to the more abstruse fields of thought and study, bnt have come straight to the world of every-day life. One homely illastration meets me on the threshold of the open. ing night, and homely things go deep into the foundations of human life. I picture to myself our founders wending their way to the College Library, through close and u ynd, in mid- w inter 1783 , while flickering cil lamps made the darkness visible without, and a detestable tallow candle made the student miserable within doors. Those who cannot recollect the nniversal reign of tall w candles and their snfferers, cannot appreciate how much the sam of human enjoyment ha, been enhanced, and the tranquillity of hnman temper increased, by the transmutasion- partial, we must admit-of darikness into light. There has teen, I believe, no more potent agent in hnmaniring the denizens of our large cities than the flood of light u bich chemical science has in onr day poured into their recesses. Prophe's tell us that, before the
end of the century which we now begin, gaslight will probally have followed the tallow candle into the same unlamented obscurity; but, even should this be so, history will carry to its credit the vast amount of public atility, and the many bours of useful employment or comfort in the factory, the study, or ibe sick-room, which this simple application of chemical science gained in its day for the ninsteenth century. But the disper ion of material darkness is but a slender illustration of the trium? of scientific discovery. Time and space are no longer the tyime they were in 1783 . I rather think that when our founders find met they could hardly hope to hear by post from London aster ten days, as Palmer's mail coaches had not begun to rue ucil 1789. It would be an interesting inquiry, if my limits permittol to trace the moral and social effects of the change from the dap when a Loudon letter took even three days to reach Edinburgh and cost $13 \frac{1}{2} \mathrm{~d}$ - the pre-Macadamite days, when twenty milo a day was a fair posting rate on any roads but the main thorougb fares. Lord Cockturn lamented over the prespect of Lonno being within fifteen hours of Edinburgh, as endangering the characterittics of our social commanity. His sagacity was net altogether at fault, but even that time has been reduced $\log 2$ third, and I rather think we and the world are all the better bo the change. But although larger victories were in store for the century, they came slowly. Both Boulton and James Watt ser original members of the Royal Society, but it was more thas thirty years before steam navigation became gencral, and mre than fifty before the first passenger railway traiu ran in Scothal No doubt, in 1791, Erasmus Darwin, in his 'Botanic Garden, a poem too little read, had exclaimed in the well-kiven lines:-

> "Son shall thy arm, uncongue red sleam, afar.
> Drag the sow barge, and urge the flying car."

Godwin, too, looked forward with confidence to the ulfimite victories of steam. Now, the locomotive carries manhind 10 all ends of the earth; their sanguine suggestions have been all the realised. There has been during this interval a still more pore ful magician at work. To this audience I need not dwell on the triumphs of the future ruler of the world of science-electrict But one illustration I may be permitted. Franklia was one of be first of the non-resident members elected by the Royal Sodity of Edinburgh. How little he thought when, many years before, be drew the electric spark from the cloud, that, before 100 y (an had sped, his experiment, but slightly modified, might coare! ${ }^{2}$ message from a meeting of the Society in Edinburgh to ore d its fellows in New York, and bring back an answer before be meeting separated. In slightly alluding to this scientific revis tion, my object has been partly to illustrate the surroundings of 1783, and also to remind my hearers that, of all the change the century bas seen, far the most important and the deejest lare been the work of science. Increased facilitics for intereotmunication carry with them a complete change in the economial and social condition of the communities they affect. Nem mass new customs, new ambitions, new possibilities, follow in the train by the operation of inevitable laws. By this talisman re have seen, periaps sometimes without due appreciation, many ${ }^{2}$ social problem solved which had before seemed hopeloss; and although in the process of transition some period of adappatize may be necessary, and some temporary hard-hips endurd, the result in alt casts must be beneficent, and is, at all events, beyod the power of lawgivers to control or to resist.
"The Edinburgh Royal Society sprung parly out of be example of the Royal Society of London. But is immediate antecedent was the Philosophical Society, which had ben founded nearly fifty years before by the celebrated McLarih, and contained many distinguished names. Lord Kames hectme its president, and raised it to considerable distinetion, boht io science and literature, although that vigorous and verstik thinker and writer did not live to witness the commencement: the new institution. Dr. Robertson's plan was to stsorb th Sc cie'y and all its members in a new institute, on the model d the Berlin Academy of Seiences, for the prosecution both of physical science and of literature. The charter, howerer, vx not obtained without some controversy, for, even as Romily and Remus quarrelled over the boundaries of unbuilt Rome, ${ }^{5}$ did the Philoso, hical and the Antiqnaries squabble over be charter of the Royal Society. The Antiquaries wanted 2 chante of their oun; Dr. Robertson thought Scotland not wide enoup for two such institutions; the feud ran high, and great was be "dust," as Prof. Dalzel calls it, which was raised by bind Buchan on the occasion. Some notice of this disfute will te
found from the Antiquaries' , ide of the question in the recent life of Henry Erskine ; and it is al.o alluded to. in Mr. Cosmo Innes' work, where a letter is quoted from the energetic Professor of Greek eonched in terms more forcible than philosophical. But it is certainly time to bury such feuds when they come to be a hundred years old. I find, from the minntes of the first ineeting, that the Society was of opinion that the College Library was an inconvenient place for their usnal meetings, and a committee was appointed to find one more suitable, apparently without success, for they continued to be beld in the Library for twenty-three years, when the Society migrated to the Physicians' Hall in George Street in 1807. They afterwards purcbased No. 40, George Street, in which the meetings were held nntil they obtained their present rooms in the Royal Institution. At a subsequent meeting, held on August 4,1783 , it was resolved that the Society should divide into two classer, which should meet and deliberate separately, to be called the Physical Class and the Literary Class, with separate officebearery.
"The first president was Heny, Duke of Bucelench, who had rendered great assistance in obtaining the charter. The vicepresidents were the Right Hon. Henry Dundas and Sir Thomas Miller, the Lord Justice-Clerk. I forbear to go over the names of what may be called the original members of the Society. I include in that term all who were elected within the fint ten years. All the members of the i'hilosophical were assumed wishout ballot; the rest, to the number of more than 100 , were clected by ballot, and a general invitation uas made to the I.ords of Session to join. There were the ordinary resident members. There was also a list of non-resident members, which comprised nearly as many. Of the ordinary resident members shere is hardly a name which is not known-I might say con-spicuous-in the annals of Scotland at that time. 'Iwelve of the Lords of Session aecepted the invitation, inclading the Iord President, the Lord Ju tice Clerk, and the Lord Chief Paron of the day ; upwards of twenty professors, with Principal Robertson at their head; twenty-two members of the bar, including Sir Hay Campbell, the Lord Advocate, and of the-e at least fourteen rose afterwards to the bench. The medical contingent included Munro, Culleu, Gregory, and Home; and the nonresident list contained the names of the Duke of Buccleuch, the Earl of Morton, the Earl of Bute, the Earl of Selkirk, Lord Daer, James Steunrt Mackenzie, the Lord Privy Seal, Sir George Clerk Maxwell of Penicuik, Sir James Hall of Dunglass, and many other familiar names. But 1 select from the list those of the members on whom fell the barden of the real work; and I venture to say that no city in Europe could have brought together a more distinguished circle. They were-Hay Cambell, Heary Dundas, Joseph Black, James Hntton, John Playfair, Adam Smith, William Robertson, Dugald Stewart, Adam Ferguson, Alexander Monro (secundius), James Gregory, Henry Mackenzie, Allan Maconochie, and Willam Miller of Glenlec. 1 ought to add to these Sir James Hall of Dunglass, and Sir George Clerk Maxwell of l'enicuik, the last of whom died the first sear. Some of these names are European ; all are celebrated; and these were men who, for the most part, did not merely contribute the lustre of their names to the infant Association, but lent the practical vigour of their great intellectual power to aid in the first steps of its progress. And very soon the impress thus stamped on the Society began to establish its reputation in the world, and it took no undistinguished place among the learned societies of Europe. I find the names of Goethe and Buffon among the original foreign members ; and althongh the events of the next twenty years interrupted our selations with the Continent, by the time the Society had completed the halfcentury there was scarcely a distinguished savaut in Europe who had not joined, or been invited into, our ranks.
"In the Physical Class were four men who rose to great poritions in the scientific world, and to n hom the Society was greatly indebted for their general reputation, and for the vigour and efficiency with which their proceedings commenced. They were James Hutton, Joseph Black, John Playfair, and Dugald Stewart. Ifutton and Black were then in the zenith of their fame, and have left a strong impress on the first years of our Society. I am desirous, in this review of the Society's early days, to revert with gratitude and respect to the memory of one whose labours on belalf of the Society were invalnable. Hutton was an observer and a thinker of remarkable originality and power. Black, again, uas a Freuchman by birth, although lis parents were British, and he was nearly related hoth to Adam

Smith and to Adam Ferguson. He came to Scotland when he was abont twelve years old, and, long before the institution of the Royal Society, had risen to the front rank of Eurofean chemists-his discoveries on pneumatic chemistry and latent heat having laid the foundation of mnch that is valualle in subseqnent investigations, and opened a course of inquiry pursued with great ability in our own Transactions by Leslie, and Brewster, and Forbes." Lord Moncreiff having glanced at some peculiarities of the social meetings of those days between 11lack, Adam Smith, Hutton, and others, procerded to speak of Playfair and Dugald Stewart, who by themselves could have raised to distinction any circle to which they belonged. "Both of them were men of great versatility, and, within the walls of the Koyal Society, capable of filling a foremost place whether in the fields of abstract science or in those of literatnre or mental philosophy. Dugald Stewart's contributions to the Transactions are not so numerous as those of Ilayfair ; but no man had more influence in moulding the tone and cast of thonght prevalent among the cultivated class of his countrymen than that most popular and most eloqnent instructor of youth. But no one can ztudy these volumes of the Tramsactions, as I have done, without feeling that, for the first two decades of the existence of the Royal Society, Playfair was the soal and life of the institution. His veryatility and power have impressed me exceedingly, high as was the estimate I had previously formed of him. Profound and transparently clear, whatever might be the topic, he bears about with him a far-reaching vigour which never flags. Whether it be the origin and investigation of porisms, or the astrono uy of the Brahmins, or their trigenometrical calculations, or meteorological tables, or a double rainhow, nothing seems too great or too small for him.
"There are many curious and interesting by-paths, buth of science and of literature, traversed in these earlier volumes. In 1787 Mr . George Wallace read a paper, which he did uot incline to have printed in the 7ransactions, which I regret, for it telated to a suhject the interest of which has not ceased by the lapse of nearly a century. Its tile was, 'On the Cavses of the Disagreeablene:s and Colducss of the East Wind. In the first volume of the Transactions a very singular problem was presented to the Society, through Mr. Adam Smith, alon; with other learned bodies in Enrope, by a Hungarian nob'eman, Count Windischgra1z, and a prize was offered by him of 1000 duents for the best solution of it, and 500 ducats for an approximation to a solution. It was a vold effort of philanthropy, for its object was the abolition of lawyers for the future. The problem was addressed to the learned of all nations, It was couched in Latin, but was in substance this:- "To find formulx by which any person might bind himself, or transfer any property to another, from any motive, or under any conditiuns, the formale to be such as should fit every possible case, and be as free fiom doubt and as little liable to controversy as the terms used in mathematics.' I suppose that the prospect bere held out of dispensing for the future with the least popular of the learned profesions inclined the Society to entertain it favuurably, fur they proceeded to invite solutions of the problem, and three were received by them. In 1788 ue find it recorded in the minutes that Mr. Commissioner Smith (for so the author of the ' Wea!th of Nations * was designated) reported the opinion of the Committce that none of the three dissertations amounted to a solution, or an approximation to a solution, of that problem ; bnt that one of these, with a certain motto, alshough neither a solution nor an approximation to a solution, was a work of preat merit ; and Mr. Fraser-Tytler was instructed to inform Count Wineischgratz of their opinion. Whether this meritorious dissertation obtained the 500 ducats or not, we are not informed, but as lawyers continue to flourish, and legal tcrminology to produce disputes as prolifically as ever, it seems clear that the author had not earned them.
"Now that we have an Observatory on Ben Nevis, our successors at the end of the next century will know accurately the conditioss of the climate under which the hundred years have been spent. There are, however, some details scattered over these volumes which are sufficiently interesting, although whether they show any material alteration in our seasons may te doubtful. The only cheering fact which they disclose is that the first set of retnrns is decidedly the most discouraging, and certainly does not support the idea that the mean temperature in the olden time was higher than it is now. There are two sets of returns printed in the first volume of the Transactions-one kept at Branxholm from 1773 to 1783 , communicated by the Duke of Buccleuch, who was the
first president of the Society; and the second by Mr. Macgon an, kept at Hawkhill, near Edinhurgh, from 1770 to 1776 . In the first, the mean temperature of the ten years is 44°; in the seoond, $45^{\circ}-$ not a very genial retrospect. Things must have been somewhat discouraging for the farmers in 1782 , for a paper is noticed in the second volume of the Transactions, by Dr. Roebuck, of Sheffield, who was the manager of the Carron Iron Works, recommending farmers not to eut their corn green in October, although there was ice three-quarters of an ineh thick at Borrow. stounness, because corn would fill at a temperature of 43°. Things looked brighter from 1794 to 1799 , for which years we have results furnished by Flayfair. For the first three years-1794, 1795, and 1796 -the mean temperature was 4°; and that although 1795 was one of the most severe winters on record, the thermometer having stood frequently several degrees below zero, and a continuous frost having lasted for 53 days. The mean temperature in 1794, however, was 50°. The account of the great frost of 1795 , which is given in the Transactions, is well worth referring to. In the next three years the mean temperature was 48°, that of 1798 being $49^{\circ} \cdot 28$. Of this year (1798) Playfair says that the climate of this part of the island hardly admits of a finer seavon. No tables were furnished to the Society, in eontinnation of those of Prof. Playfair, until 1830, when fortunately Dr. Barnes of Carlisle eommunicated to the Society a series of meteorologica' tables kept at Carlisle for the first twenty-four years of the eentury. The results seem mainly to concur with those of Prof. Playfair-the mean temperature for the twentyfour years being $47^{\circ} 4547$, being 3° high.r than the average of the ten years from 1773 to 1783 at Rranxholm, and 2° higher than the mean temperature of the seven years from 1770 to 1776 at Hawk hill. The higher temperature I have noted in these returns is that of May 1807 , when the thermometer stood at 85° at Carlisle, and the next, that on the 5 th of August, 1770, when the thermometer at Iawkhill was at 81°. The two years of the century in which the mean temperature was the highest were 1811 and 1822 , in both of whieh years it was 49°.
${ }^{4}$ Of the purely scientifie part of the Royal Society's work for the first fifteen years of its labours, while IIutton and Black and Playfair and Stewart were in full vigour, it is not too much to say it was brilliant-full of interest, full of power, and full of enthusiasm. The first great founders of course gradually waned, and all such associations are necessarily subjected to alterations of the tide, bnt as the tale goes on the mathematical papers begin to bear the names of John Lestic and William Wallace. We encounter Walter Scott in $\mathbf{1 8 0 0}$, in 1808 the name of David Brewster, and in 1811 that of Sir Thomas Macd $\cdot \mathrm{u}$-all Brisbane, whose names adorned and whose labours were in the fnture the prop and stay of the Society. Of Scott I need not speak; but of the services rendered by Brewster it is impossible to express myself too strongly. Ife, too, like Playfair, had a mind of rare veratility. He eould observe, as well as drav from his own resources. He could reason as well as describe. He could build a framework of sound dednction from the most unproais. ing hypothesis, and work out with unflagging spirit the thread of demonstration, hoa ever slender. He was the most prolific eontributor of his day; nor do I think that any one but himself in these times could have kept the fire lighted by Hutton and Playfair burning so brilliantly. For it is not to be disguised that in the heat of the Continental struggle an air of languor creeps over the proceedings. The joyous entbusiasm of 1783 refuses to be invoked, and is elicited in vain. Nor is it wonderfal. When the Ganls were so nearly at our gates, the safety of our own commonwealth was comparatively our only care. But when 1815 had arrived, and men's minds, set free from the long anxiety, basl again tranquillity to cultivate the arts of peace, the energy of the rebound was great, and the history of British science has been one continuel triumph ever since. By the exertions of Breaster and Brisbane, and many other associates, our Society again began to flourish, both leading and following the cource of discovery as the stream flowed on. Both of these men continued to be the pride and ornament of the Society long after the expiration of the half-century which 1 have assigned to myself as my limit, for Thomas Brisbane succeeded Sir Watter Scott as president in 1832, and survived until 1860. Long before that a new generation had surrounded the veteran philosophers, and their destiny has been to recount and carry forward dis. coveries of which even Brewster and Brisbane hardly dreamt.
"Enough for the present of this retrospect, and the slender tribute I have attempted to pay to the memory and labours of a masculine and powerful generation. That we have bailt on their
discoveries and learnt even by their errors is quite true ; for the history of the second half of the eentury exhibits science far is. advance of 1783 , and even of 1833 . In 1783 geology was is it infaney; palacontology was all but unknown. Cuvier was onl then cominencing his pursuits in comparative anatomy, whid were to end in reprodacing the forms of extinct life. The Glacial epoch had not then been elueidated by the research and geait of Forbes and Agassiz, and the dynamic theory of heat was still unproclaiwed. The wonders of the photographic art werc unknown even in 1833, for Talbot and Daguerre did not come on the scene for several years afterwards. In 1833 the aposk and disciples of evolution had not broken ground on that nat field of inquiry. Spectrum analysis and the marvellons ressllwhich it has already furnished and those which it promises hav in our day only heralded the advent of a new science. Be how ever far in advance of the founders of the Royal Society th current philosopher may be, there was a robustnes and charic-teri-tie individuality about the great men of that generation which we may not hope to see replaced. We may assumeindeed, we hope-tbat the close of the next century will find th progress of knowledge as far advanced beyond its present limis; as we tbink that the science of to-day is beyond the point reachen a eentury ago. We may be assured that before that time arme many surmices, still in the region of hypothesis, will have be come certainties and that many supposed certainties will bave turned out fallacies. Many errors will have been correctec, many dogmas discredited, many theories confirmed or refuled, a the bar of accertained fact, as those of 1783 have been. Ve even then will our successors, 1 trust, as we do now, star reverently before the memory of our founders. Happy is Lim institution which ean show such a muster roll, and happy the country which can boast such sons. I take leave of my thee: with the fervent hope and firm conviction that in the centiv? which we now inaugurate the Royal Society will contmer with success the noble task to which by its charter it is devote, of investigating the hidden treasures of nature and approprixtir? them to the benefit and liappiness of mankind."

IASTINCT

1. Is there a Scrince of Comparatite Pstydidogy?

" ${ }^{\text {s }}$I N the family of the sciences Comparative Psychology mul claim nearest kinship with Comparative Anatomy; for رs as the latter aimps at a scientific comparisun of the bodily strictures of organisms, so the furmer aims at a similar compartes of their mental structures." These words form the opening setence of Mr. G. J. Romanes' Introdnction to his recently pa lished volume on "Mental Evolntion in Auimals," and in a footnote he is carefnl to remind us that the phrase " menta stractures" is used in a metaphorical sense. Let us con-ije how far a comparison of the mental struetures of animals, evel in a metaphorical sense, is possible.
Our knouledge of mind is either direct or inferential : dive on the part of each individual so far as his own individual mit is eoneerned; inferential so far as the minds of others are cor cerned. For it is a law of our being that mind cannot come is: direct cuntact with mind. This fact-that the mental procese of our neighbours can never come within the sphere of or objective knowledge-has long been recognised (see ex. gro $^{\text {ro }}$ Berkeley, "Princ. Hum. Know." $\$ 37$ and 145 ; Kant 3 quoted in F. Pollock's "Spinoza," p. 177) ; and the late Prof. Clifford (see "Lectures and Essays," vol, ii. p. 72) comed the exceedingly convenient term giectite as descriptive of that cha of phenomena which belong neither to the snbjective nor ton the objective category. My neighbour's mind is not and never as be an object ; it is an eject, an image of my own mind throm out from myyelf. Into every human being that I meet I breath: this snbtle breath; and that man becomes for me a living soal
Our knowledge of mind is therefore partly sabjective, partly ejective. Now it is perfectly obvious that, were I an isclesed unit, shut off from all communication with my fellows, no scicmer of psychology would be possible for me. I might by the amalysi of my own mental processes arrive at certain conclusion- win regard to my own state; of consciousness; 1 might reach some sort of knowledge of the working of my oun mind. Bet ths would not be a science of mind. À seience of mind only beoumer possible when I am able to compare my own conclusions wath those which my neighbours have reached in a similar manaer. Hy means of languge homen beings can communicate to each
other the results which each has obtained; and each human being is able to submit these reswlts to the test of subjective verification. For human beings therefore a science of psychology is possible just in so far as the results obtained indirectly are capable of direct verification.

One of the most remarkable results of modern scientific investigation is the establishment of a more or less definite parallelism between the phenomena of ejective psychology (thus capable of subjective verification) and certain objective phenomena of physiology-a parallelism of psychosis and neuroxis. But these phenomena of physiology are not restricted to the human subject; and we therefore bave grounds for believing that running parallel to the neuroses of animals there are certain psychoses. And it would seem at first sight possible that corresponding to a science of comparative neurosis we might have a science of comparative psychosis. We must remember, however, that it is only on the lower mental levels, so to speak, that we know anything approaching to definiteness with regard to the parallelisin of neuro is and psychosis. All, therefore, that, as scientific investigators, we seem to have any grounds for inferring is that accompanying the neuroses of animals there are in all probability some kind of psychoses. We may speculate as to the character of these psycboses-and in the case of the higher mammalia our speculations are probably by no means worthless-but we cannot construct a comparative science of these paychoses because the results we obdain ejectively are incapable of direct verification. As a speculation modern constructive poychology has its value -like other speculations it may give direction to our scientific investigations-but let us not forget that the invaluable process of verification is, from the nature of the cave, impossible.

To sum up. All our knowledge of minds other than our own is ejective; but in the case of human psychology the results reached ejectively may be verified subjectively. Animal minds are also ejective ; they are more or less distorted images of our own minds. But such is the extraordinary complexity of the human mind-a complexity largely due to the use of language that we may well snppose that any coneeption we can form of animal consciousness is exceedingly far from being a true conception. The results of comparative psychology-the science which has for its object the comparative study of these distorted images of our own mental processes-are incapable of verification. These are the faets which have to be taken into consideration when we seek an answer to the question " Is there a science of comparative psychology?" Notwithstanding that it has won for itself a more or less recognised place among the sciences, I venture to submit that our answer to this question should be an emphatic negative.

It must be noted, however, that I here mean by psychology the science which deals with subject and eject. If we include under paychology the science which deals with the " perpetual adjustments of special inner actions to special outer actions which accompanies increasing evolution of the nervous system," or that to which Mr. Herbert Spencer gives the name abjective paychology ("Prin. Psychol.," vol. i. p. 142), our answer will of course be different. Objective psychology, or the comparative physiology of the uervous system flus a comparative study of the corresponding adjustive actions, has every right to be termed a science because the results obtained admit of verification. And it is a science in which Ferrier, Hitzig, Romanes, and others have done geod work.

2. The Place of Conscionsmess

There would seem to be four hypotheses with regard to the place of consciousness in the animal world.

1. That according to which con ciousness is a motive power (Free Will).
2. That aceording to which con-cion-ness is altogether absent (Automatism).
3. That according to which conscionsness is a product (Conscions Automatism).
4. That according to which conteiousness is a guide (Determinisu).
5. Free Will.-By free will I here mean the power of initiating actions by the mere volition of the self-conscious Eso. The exercise of free will involves an interference ab extrd with the normal working of the nervous system.

This is not the place for a discussion of free will and determinism. That battle must be fought out within the domain of haman psychology. From its bearing on the question of animal
consciousness, however, I may be permitted to say a few words on the subject.
The answer which the ordinary believer in free will gives to the determinist is contained in three words-I can choose-and he thinks that there is an end of the matter. But the real point at issue lies deeper down, and is involved in the question- What $a m$ If Let us hear the answer which the determinist gives to this question. I am, he replies, the sum of $m y$ states of consciousness at any moment. A part from the stream of my mental states I, as a self-conscious individual, have no existence. This stream of conscious states or psyehoses I believe to be the subjective aspect of a stream of nervous states or neuroses. And this stream is rigidly subject to law. But if these states of mind -under which head must be included states of definite consciousness, states of sub-consciousness, and states of submerged con-scionsness-if these states of mind, I say, constitnte me, then, sinee these states of mind determine those which follow, these following states, and the actions which accompany them, are determined by me. But at the same time they are part of an orderly seqnence subject to law. The moment I identify myself with my states of mind I begin to see clearly that free will in the common-sense acceptation of the term-that is, a sense of individual choice-is perfectly compatible with the doctrine of deter-minism-that my mind is completely subject to law. The sense of choice I nndoubtedly possess is due to the temporary equilibrium of motives, and the eventual prevalence of one set of motives over another set of motives. The freedom which every man is conscious of possessing is freedom to act in accordance with his own character.
"Freedom," says Kant, "is sach a property of the will as enables living agents to originate events independently of foreign determining canses." This at first sight seems utterly opposed to determinism. And yet it contains a central core of truth which every determinist will accept. No determinist can deny that every human being carries about with him a special something, peculiar to himself, which is a most important factorconstituted as we are, the most important factor-in determining his choice in any act of volition. This special something we call, ejectively, his character, and, objectively, his organisation. Men are not like inorganic clouds at the mercy of external forces, but contain the springs of action in themselves. The brain is not merely a mass of inert matter; but a mass of matter cunningly organised, in which is lncked up a vast store of potential energy The organism is, moreover, a variable piece of mechanism Hence at different times it reacts differently under the influence of the same stimulus. And this difference of reaction helps to fix the idea that the will is absolutely free. On a certain occa. sion we acted in a certain way. We see on reflection that our action was not the best. On a similar occasion afterwards we act differently. And we then imagine that we could have acted differently in the first instance. But it is clear that the two eases are not alike. Reflection has altered one of the determinants of action, the character. The character having changed, the action is different. Such a definition as Kant's-the eisential tuth of which I take to be that a man's actions are the outcome of bis character-is as valuable to the determinist as to any one else. At the same time "it is inconceivable," as Chaldai Creskas said long ago (circa 1410), "that two men, being themselves of like temper and character, and hiving before them like objects of choice in like circumstances, should choose differently" (quoted from F. Pollock's "Spinoza," p. 96).
Determinism simply comes to this-that both on the objective side and on the subjective side our actions are determined by law. On the one hand a perfect knowledge of the organism Dlus a perfect knowledge of any stimulus and the surrounding conditions would enable us to say how the orcanism would act under that stimulus. On the other hand a perfect knowledge of the character plus a perfect knowledge of any motive and the circumstances of the case would enable us to say what feelings would realt (the actions being the objective side of the feeling.). If by free will it is meant that our actions are the outcome of the play of a motive-stimulus on our character-organisation, then free will and determinism are at one.

But this is not what is meant by those who maintain the doctrine of free will. What is meant by them is this-that presiding alike over our thoughts and actions, initiating, guiding, and inhibiting, there is a certain " masterful entity," the self-conscious Ego. This Ego, though in no wise connected with our bodily organisation, has nevertheless the power of interfering with the action of that or ganisation. And it is absolutely free, ntterly unfettered
by law. This ductrive I reject : not because I am in a posituon to di-prove it, but because I see no reason for accepting it. And rejecting this doctrine in the sphere of the human mind, I feel bound to reject it in the sphere of animal intelligence. But I am not blind to the fact that many of my neighbours do not reject it in the sphere of the human mind. To them two courses are open: either to extend it into the spherc of animal intelligence, or not so to extend it. If they do so extend it, they thereby render the study of animal intelligence incupable of scicntific treatment, even from the objective standpoint, by the introduction of a factor not subject to law. If they do not so extend it, they must accept onc of the three views next to be considered.
2. Automatism. -Very little space need be devoted to a doctrinc that very few belicve. Those who accept the doctrine of the parallclism (or identity) of neurosis and psychosis and add to this a belief in evolution are l ggically bound to accept the corollary that the neuroses of animals are accompanied by some kind of psychoses which more or lest dimly foreshadow our own psychoses. Those, however, who reject the hypothesis of evolution, or at least deny its application to the mind of man, and who believe in the doctrine of free will as restricted to the human being, will, not improbably, accept the doctrine of automatism in animals. In any case it is a theory upon which the study of organic processes, reflex, instinctive, and intelligent (or selectivc), admits of scientific treatment. It is indee1 "objective psychology" pius the dogmatic assertiou that cons siousness is absent.
3. Conscious Aufomatism.- "Ma'erialism," stys Mr. Romanes, "is logically bonnd to argue in this way: We cannot conceive of a conscious idea, or mental change, as in any way affecting the c surse of a cerebral reflex, or material change; while, ou the other hand, our knowledge of the conservation of energy teaches us as an axiom that the cerebral changes must determine each other in their sequence as in a continuous series. Nowhere can we sappose the physical process to be interrupted or diverted by the piychical process ; and therefore we mast conclnde that th ught and volition really play no part in determining action. Thonghts and feelings are but iedices which show in the mirror of the mind certain changes that are proceeding in the matter of the brain, and are as inefficient in influencing those changes as the shadow of a cloud is powerless to direct the movements of that of which it is the shadow. . . . This is opposed to common sense, becanse we all feel it is practically impossible to believe that the world would now have beeu exactly what it is evcu if consciousness, thought, and volition had ncver appeared upon the scene -that railway trains would have been running filled with mindless passenger , or that telephones would have been invented by brains that cjull not think to speak to ears that could in their" (Nineteenth Century, December, 1882, p. 879). IIow far the matcrialist-the logical results of whose doctrinc are apt to be forced on him fron all sides-is ready to accept this particular logical result I leave it for him to say. It is at any rate a possible view, and, like thit of une niscious automatism, is onc upon which a scicntific treatment of orgenic processes is adinissible.

4 Determinism - This view has already been incidentally given nader the heading of the directly opposed dectrine of free will. It is the dectrinc of the parallelism (or identity) of neuroses and p ychoses, which, both in their snbjeetive and ob. jective aspects, are rigidly law-bonnd. Determinisn may be treated either fro n the philosophical or from the scientific standpoint. Fro n the point of view of the man of science we may say that consciononers is a gwide to action and has been a guide in evolution; that during the procest of evolution there gradually emer ged something distantly related to what we know in ourselves as consciousness, which at a very early stage of evoIntion became, so to speak, polarised into pleasurable and painful ; that those actions which were alsociated with pleasurable feelings were mure frequently parformed than thoie associated with painful feeling: that those organians in which there was an association between rigat aetion and pleasurable feelings would stand a better chance of survival than thase in which the association was between wrong actions and pleasnrable feellngs ; and that finally those organisms in which conscioas adjustments of all orders were more perfectly developed would be the winners in life's race. Some sach deductions as these would seem to be admissible on the hypothesis of evolution. With such questions as How have piychoses become associated with neuroses? or Why have psychoses been associated with neuroses? or How can pryehosis cxercise a guiding influence on
neurosis?-with such questions as these the man of science, asuch, has nothing to do. These are questions for the philosopher, and this is, therefore, not the place ts discas them. Suffice it to say that we must either accept some sach view as that advocated by Clifford in his masterly essay "On the Nature of Things in Themselves" ("Lectures and Essays' vol. ii. p. 71) or be content to confess our ignorance.

Upon this vicw of the place of consciousness in the animal kingdom, the stady of organic processes, reflex, instinctive, and intelligent (or selective), admits of scientific treatment. A science of "objective psychology" is possible for us; and a science of ejective piychology is also possible, but not for w.

3. The Lapse of Consciousness

One of the moit surely established inductions of psycholog: is this: that the more frequently an action is performed the more perfectly automatic does it become-the more does it tenc to pass into stereotyped reflex action. Actions which are a first perforaned with that definite con-cionsness implied in the term close attention can, after frequent repetition, be performed almost, if not alto sether, without even indefinite consciousnes It would seem that after the definite establishment of the nerve connections necessary for the performs ce of certain actions op sets of actions the guiding influence of consciousness might be withdrawn.
This prineiple is tos well known to require illustration here I shall therefore content myself with drawing attention to one or two of its corollaries.

1. Since the same action or set of actions may be performed with full consciousness-a conselousness of the end in vlew, and of the means neces ary to that end-with indefinite consciousne ze, or with a vanishing amount of c ansciousness, it is impossible for me to suy what amount of cin icionsness, if any, an action performed by my neighbour involves. Again and again we see our neighbones perform most complicuted actions-such as winding ep their watcbes-with so little cmacionsness as to leave no trace opon the memory. Abernethy quotes a case of a lawyer writixy out an important opinion in his sleep. Still more impossible is it for me to say what am unt of consciousness, if any, an action performed by onc of my dumb companions involves. Decapitated frogs -in which we have sone grounds for believing that ensscionsness is absent-perform a na nber of seemingly purposive actione.
2. Since thas: actions which are frequently and persistently performed by the individual have a tendency to pass into the automatic and anconscions stage, it would seem highly probabic that thos? actions which have been performed not only by the Individual but by a long line of ancestors whose or ganisation he inherits are, or very suon becume, completely, or in a very high degree, antomatic and unconscious. Who can say what amoant of consciousness, if any, is involved in the actions of newly-born piglings or newly-hatehed chicks ?
3. It would therefor a seem difficult or impossible to disprove the hypothesis that all truly instinctive actions-in so far as they are not modified (as they s) often are modified) by a lirtle dose of reason-are antomatic and anconscions. I do not mean to maintain that bypothecis. But I say that, having regard to the known phenomenon of the lapse of consciousness, I do not see how that hypothesis could be disproved.

4. The Psychological Definition of Instinct

"Instinct," gays Mr. Romanes in his recently published "Mental Evolution in Animals" (p. 159), repeating the definitioe given In "Animal Intellizence" (p. 17), "Instinct is reflet action into which there is iaported the element of consciousness. The term is therefore a gencric one, comprising all those facal ties of mind which are concerned in cunscious and adaptive action, antecedent to individual experience, without necesvary knowledge of the relation between means employed and ends attained, but similarly performed under similar and frequenty recarring circomstances by all individuals of the same species."

To such a psychological definition of instinet there seem to me to be twa grave objections. First, there is the general objection, Indicated in the fir section, arising out of the ejective nature of our knowled ge of animal consciousness. Secondly, there is the special objection raised noder the head of "The Lapse of Con: sciousness." These objections have not escaped Mr. Romanes' n tice, but I think be underestimates them. "No dou'st," he says ("Meat. Evol.," p. 160), " it is often difficult, or even
impcssible, to decide whether or not a given action implies the presence of the mind-element-i.e. conscious as distinguished from unconscious adaptation; bnt this is altogether a separate matter, and has nothing to do with the question of defining instinct in a manner which shall be formally exclusive, on the one hand of reflex action, and on the other of reason." But I venture to think that the difficulties of application are from the very nature of the case insuperable, and that the definition is therefore, whatever its logical value, practically of little service.

Again, on p. 17 of his recent volume, Mr. Romanes tells us that "the only test [of the conscious choice element] we have is to ask whether the alljnstments displayed are invariably the same under the same circumstances of stimulation. The only distinction between adjastive movements due to reflex action, and adjustive movements accompanied by mental perception, consists in the former depending on inherited mechanisms within the nervons system being so constructed as to effect particular adjustive movements in response to particular stimulations, while the latter are independent of any sueh inherited adjustment of special mechanisms to the exigencies of special circumstances." And a little further on (p. 18) he says, "It is enough to point to the variable and incalculable character of mental adjustments as distinguished from the constant and foreseeable character of reflex adjustments." All which may be very true. But it seems to cut away the ground from under his definition of instinct. For surely what he says here of reflex actions is also true of instinctive actions. Surely instinctive actions "depend on inherited mechanisms within the nervons system being so constructed as to effect particular adjustive movements in response to farticular stimulations." Surely we may also point to the "constant and foreseeable character of instinctive adjustments."

But tbough an instinctive action may involve no consciousness in the individual, it may have involved consciousness, during the process of its evolution, in the ancestors of the individual. In this way, perhaps, we may admit consciousness into our definition of instinct. But if we hark back to ancestors in one case, we may fairly do so in another. And since the secondary instincts of the individual involved intellizence in his ancestors, we must import not only consciousness but intelligence into onr definition of instinct. If we admit lapsed consciousness, why not admit lapsed intelligence? Our definition will then become : Instinct is reflex action into which is imported (ance-trally) the elements of consciousness and intelligence. In which case instinct and reason run together.

It seems to me, therefore, that the psychological definition of instinct lacks that definiteness of application which is not merely desirable bat essential. If I might be permitted to paraphrase Mr. Rowanes I would say, " 1 am persuaded that if we are to have any approach to definiteness in the terms which we employ -not to say to clearness in our ideas concerning the things of which we speak-it is "not "desirable to restrict the word instinct to mental as distinguished from non-mental activity." And this just because it is so "difficult, or even impossible, to decide whether or not "instinctive aetions "imply the presence of the mind-element-i.e. conscious as distinguished from unconscious adaptation."

5.-A Physiological Defintition of Instinct

" Instinctive actions are actions which, owing to their frequent repetition, become so habitual in the course of generations that Ill the indlviduals of the same species antomatically perform the ame actions under the stimnlus supplied by the same appropriate sircumstanees." This physiological definition of instinct, which s incidentally given by Mr. Romanes ("Animal Intelligence," sp. 16-17), is, if I mistake not, of more practical and scientific ralue than the psychological definition which immediately folows, and which introdnces "the element of consciousness" and "faculties of mind."

Were it impossible to define instinct in such a manner as to be formally exclusive, on the one hand, of reflex action, and, on he other, of intelligent (or selective) action, without having ecourse to the associated phenomena of consciousness, then it night be advisable to introduce consciousness into ourdefinitions or the sake of giving them a logical status. And Mr. Herbert ;pencer seems to see this difficulty when he defines or describes astinct as compound reflex action. But, though reflex action hades into instinctive action, and instinctive action (as seen in he phenomena described by Mr. Romanes, under the heading - The Plasticity of Instinct ${ }^{\prime \prime}$) into intelligent action, still some
such definitions as the following wonld serm sufficicitly to answer to the demand for formal excluxiveness:-

1. Refiex Actions are actions taking place in, or performed by, an individual in virtue of his possession of a general type of nervous organisation.
2. Instinctive Actions are actions ferformed by the Individual in virtue of his possession of a special type of nervous organisation, that is, a type of organisation common to his species.
3. Intelligunt (or Selecrive) Actions are actions performed by an incividual in virtue of his possersion of an individnal nervous organisation, that is, an organisation special to himself.
If we call the foundation type of nervuns organi ation (in the mamm ${ }^{2}$ liz, for example) a, the special modification of that type (in all dogs, for example) b, and the individual modification developed in some individual (say Dr. Huggins's "Kepler") c; then reflex actions are the outcome of a, instir ctive actions the outcome of $a+b$, and selective or intelligent actions the outcome of $a+b+c$.
That there are difficulties in the application of these definitions to special cases I readily admit, but I venture to subwit that they are by no means of so grave a nature as those involved in the psychological definitions advocated by Mr. Romanes.

I need not say here that such definitions do not by any means imply the absence of consciousnets, since I have devoted a special section to The Place of Consciousmess with the special object of showing that the doctrine of determinism, which I accept, maintains the parallelism or identity of psychosis and neurosis.

6. - The Origin and Development of Instincts

This article has already exceeded the length to which it was intended to ren. On this head, therefore, I must be brief. The problem of the origin and development of instincts comes to this-How has it come about that certain nervous structures, and the actions which are their external and obvious manifestations, are developed in all the members of a certain species? It is clear that such a development of certain structure and their corresponding actions in all the individuals of a particular species must answer to a widely felt need. The actions answer to circumstances of frequent occurrence in the life-history of the species, just as intelligent actions "answer to circumstances of comparatively rare occurrence in the life-history of the species" ("An. In." P. 17). The question is-How far is the equil:bration direct, i.e. by adaptation, and how far is it indirect, $i, e_{\text {. }}$ by natural selection? To discuss this question would require a separate article. I content myself with giving two quotations, the former from Mr. Darwin, the latter from Mr. Spencer. " I believe that most instincts are the accumulated result, throuzh natural selection, of slight and profitable modifications of other instincts, which modifications I look at as dne to the same causes which produce variations in corporeal structures Bnt in the case of the many instincts which, as I believe, have not at all originated in hereditary habit, I do not doubt that they havebeen strengthened and perfected by habit ; just in the same manner as we may select corporeal structures conducing to fleetness of pace, but likewise improve this quality by training in each generation" (qnoted "Ment. Ev. in Ans.," p. 264). So far Mr. Darwin. Mr. Spencer says: "The equilibration of organisms that are comparatively passive is necessarily effected indirectly by the action of incident forces on the species as a whole. Bnt along with the gradual evolntion of organisus having some activity, there grows up a lind of equilibration that is relatively direct. In proportion as the activity increases, direct equilibration plays a more important part. Until, when the nervo-muscular apparatus becomes greatly developed, and the power of varying the actions to fit the varying requirements becomes considerable, the share taken by direct equilibratun rises into co-ordinate importance" ("Princ. Biol.," vol. p. 4(8). It seems to me that we have here substantial agreement as to the part played by indirect eqnilibration in laying the foundation, and the part played by direct equilibration in perfecting the saperstructure. (I venture to think that Mr. Romanes somewhat mistakes Mr, Spencer's position with regard to the "very subordinate importance of natural selection as an evolving soarce of instinct," and with regard to the question of "lapsed intelligence.")

7. Conclusion

One or two words in conclusion by way of snmmary.

1. While fully admitting the great interest that attaches to the study of the inferred mental faculties of the higher brutes, I believe that, from the ejective nature of the animal mind and the
necessary absence of verification, no science of esmparative psychology, except such as is restricted to "objective psychology," is possible.
2. Of the four views of the place of consciuusness in the animal world only one-that of free will-renders the study of the actions of animals incapable of scientific treatment. Of the other three I believe deferminism to be the most satisfactory. According to this view both neuroses and psychoses are subject to law. But from our necessarily ejective knowledge of psychoies, we are forced to confine our attention (from the scientific point of view) to the objective phenomena of neurosis, expecially as manifested in conduct. Of the psychoses we can know nothing with certainty ; of the neuroses we may learn a little ; of conduct we may learn much.
3. From the principle of the lapse of consciousness certaiu corollaries may be drawn-(a) that it is difficult or impossible to say what amount of consciousness, if any, an action performed by my neighbonr involves; (b) that it would seem prohable that the lapse of consciousness in the individual is paralleled by a lapse of consciousness in the species; and (c) that the hypother is that instinctive actions are unconscious is incapable of disproof.
4. On the general grounds given in 1 , and on the special grounds given in 3, 1 see grave difficultier in accepting the psychological theory of instinct-that instinct is reflex action into which is imported the element of consciousness.
5. In acc rdance with the principle thus advocated a physiological definition of instinct must be sought. Some such definition as tbis may be proposed: Instinctive actions are actions performed by the individual in virtue of bis possession of a special type of nervous organisation, that is, a type of organisation common to his species.
6. The question of the origin and development of instincts thus becomes a question as to how this special type of structure has been evolved. It takes its place as part of the general question of the evolution of structures-the actions being the external manifestations of internal structures. To the question as to the relative importance of direct and indirect equilibration. I could give no definite answer within the limits of this article, and tberefore gave quotations from Darwin and Herbert Spencer.
C. Llovid Morgan

A NEW ORSERVATURY FOR PARIS

THE last number of the Compers Rendus of the Paris Academy of Scienees contains a meunoir by Admiral Mouchez, urging the necescity of removing to a separate establishment beyond the city the chief departments of the Paris Observatory. When the bnilding was originally erected by Perrault abont a mile to the sontb of the Luxemboung, the city scarcely reachel beyond that point. But since then it has spread in every direction, completely surrounding the Observatory with lofty edifices, and charging the atmosphere with all sorts of gases, smoke, and other impurities. These altered conditions are all the more injurious that, thanks to the progress of astronomical studies, the power and accuracy of the instruments have to be continually increaced, while a clear and still atmosphere is more than ever needed for taking ob-ervations. The vicinity of the Catacombs and of busy streets has also rendered the ground less firm than formerly.

In 1854, and again in 1868, these adverse conditions were brought before the Government, and discussed in the Academy. After a careful study of the situation, the Commlssion appointed by the Academy to inquire into the matter unanimously reported in 1869 in favour of a branch establishment ontside of Paris; but this suggestion, although fally approved of by the Academy, was for various reasons allowed to fall into abeyance.

Since then the evils complained of have been aggravated, in spite of all the improvements introduced for the purpose of modifying them. Hence it becomes more than ever indispen *able to carry out the project forthwith, if the Observatory wishes to maintain its efficiency and keep pace with similar establishments abroad. The most serions obstacles to lts legitimate development are the disturbed and clouded state of the atmosphere in the centre of a large city, the constant vibrations of the ground, and the impossibility of accommodating the astronomers in the building, as is done in all foreign observatories. Hence arises an insurmountable obstacle to the proper organisation of the night service, while extreme difficulty is felt in improving the existing plant and obtaising other much needed instruments, for which no suitable position can be found.

Merely to erect the long-contemplated tower and cupola of the great telescope there would be required a Government grant of from 20,000 . to 24,000 ., besides at least an equal sum to prevent the erection of lofty houses in front of the new grounds and to purchase the instruments still needed. But even were such grants obtained, the Ubservatory would continne to labour uuder the serious inconveaiences above described. Without, however, imposing such a bu-den on the State, the difficulty might be met, and the old historical edifice of Lonis XIV. preserved, by erecting in one of the public domains a new and magnificent observatory furnished with all the improvements and appliances of modern science. In order to effect this, it would suffice to alienate about 22,000 square metres of gardens and open spaces surrounding the present Observatory, and serving only to isolate it from the neighbouring bouses. Sold at the moderate estimate of from 4 . to $6 l$. per metre, a sum of nearly 120,000 l, might be raised, which would be more than sufficient for the purpose.

After sacrificing enough land for the construction of two new streets in continnation of the Avenne dn Laxembonrg, and ioolating the Observatory on all sides, it would still retain the nortbern court and a garden on the south 70 to 80 metres long by 50 broad. The building would thus also retain the exset apperance that it presented when originally constructed by Perranlt. Here might be preserved the Archives, the Buresu des Calculs, the Museum, and three or four instruments still eapable of rendering some service if placed at tbe disposition of the Faculty of Sciences for the instrnction of students.

All the plans of some such project as is bere proposed have already been prepared with the greatest care by the able arehitect, M. Deharme. They include accommodation for thirty astronomers and assistants with their families, all the Instrsmental and service rooms, the halls, and an underground gallery, a structure 300 metres high for the study of the atmosphere, gaworks, a covered gallery connecting all the instruments with the apartments of the astronomers; lastly, the great cupola for the 16 m . telescope, at a total cost of 98,350 . Including the price of the new instruments, fittings, and inclosing wall, this sum would be raised to $108,000 /$., which might be obtained by tbe proposed sale of lands.

The Council has unanimously adopted this project, demanding that it be referred to the Academy and to the Bureau of Longitudes, which bodies had already pronounced favonrably on ,ome such scheme in 1854 and $\mathbf{8 6}$. Thus no serious objections seem to stand in the way of a project by which alone the present advene conditions may be removed, and France endowed with the most complete and finest observatory of modern times.

UNIVERSITY AND EDUCATIONAL INTELLIGENCE

Oxford. - The Sherardian Botanical Chair at Oxford has as length been filled up by the election of Mr. Bayley Balfoar, Professor of Botany at Glasgow. Mr. Balfour has had a distinguished career. Passing his student life at Edinhargh, he finally graduated as a Doctor of Medicine, receiving the University Gold Medal for his thesis, having previously carried off first class honours as Doctor of Science in Botany. Two years were spent in acqniring a practical knowledge of the methods of morphological and physiological research in the hotanical laboratories of France and Germany under Prof De Bary and Sachs. We next find him as-isting his father, the Regius Professor of Medicine and Rotany in the University of Edinburgh, in conducting his classes alike in the lecture-room, in the laboratory, in the herbarium, and in practical field work, For four years be was assistant to the Regius Professor of Natural History in the University of Edinburgh, and for six years he lectured on botany to the students of the Royal Veterinary College, until finally he was appointed Crown Professor of Botany in the University of Glasgow. Of good scientific work done there is an ample record. A valuable paper published in the Philosophical Tramsactions gives the result of his labours at Rodrigaes, where be was sent by the Royal Society in 1874 as botanist and zoologist to the Transit of Venus Expedition In 1880 we find him making a scientific exploration of the I land of Socotra, the resnlts of which have been published in various periodicals, the final report on the botany of the island lieing now in course of publication by the Royal Society of Edinburgh. Prof. Balfour's wide experience in field, laboraton; and herbarium, will make him a valuable addition to the Natural

Science Staff of Professors in Oxford. As Magdalen College has under its new statutes added a Fellowship to the endowments of the Chair, we may congratulate the College on gaining another addition to its already long list of distinguished Natural Science Professors who are members of the Society. Profs. Westwood, Burdon Sanderson, Odling, Lawson, Balfour, Danbeny, Phillips, Brodie (now dead), were all members of the College.

On May 6 an examination will be held at New College to elect an Exhibitioner in Natural Science. The Exhibition will be given for profieiency in Chemistry and Biology.

At Magdalen College an open Demyship will be offered for Natural Science in June next.

THE University College (London) School "Old Boys" anuual dinner will be held this year at the Holborn Restaurant, on Tuesday, February 19, at 7 p.m. ; George Bnchanan, M.D., F.R.S., in the chair.

The Central Institution of the City and Guilds of London Institute in Exhibition Road is now approaching completion, and the Executive Committee are proceeding to appoint, in the first instance, four professors to the chairs of Chemistry, of Engineering, of Physics, and of Mechanics and Mathematics respectively. The salary attached to each professorship will be 1000. per annum, with a prospect of increase depending npon the number of students in attendance. It is expected that the appointments will he made during the next few weeks. The Council of the Institute, at the request of the Dake of Bucking. ham and Chandos, have consented to lend, during the summer months, and pending the preparation of the fittings, a portion of the Central Institution to the Commissioners of the International Health Exhihition for the display of appliances for scientific and technical instruction and of the work done in technical schools here and abroad.

SCIENTIFIC SERIALS

The Fournal of Physiology, vol, iv. Nos, 4 and 5, December, 1883, contains :-An account of the discussion which took place in the Physiological Section of the International Medical Congress held in Iondon, 1881, on the localisation of function in the cortex cerebri. Prof. Goltz of Strasburg, it will be remembered, exhibited a dog, and Profs, Ferrier and Yeo a monkey. The brains of these animals were handed over to a Committee, consisting of Dr. Klein, Mr. Iangley, and Prof. Schafer. The report of this Committee is preceded by a memoir on the normal structure of the dog's brain, by J. N. Langley (plates 7 and 8), and the report consists of a report on the parts cestroyed on the right side of the brain of the dog operated on by I'rof. Goltz, by J. N. Langley (plates 9 and 10) ; of a report on the parts destroyed on the left side of the brain of the kame dog, by \mathbf{E}. Klein (plate 11) ; and of a report on the lesions primary and secondary in the brain and spinal cord of the Macique monkey exhibited by Profs. Ferrier and Yeo, by E, A. Schafer (plate 12).

The fournal of the Royal Mficroscopical Soricty for December, 1883, contains:-On some new Cladocera of the English lakes, by Conrad Beck (plates 11 and 12),-On an improved method of preparing embryological and other delicate organisms for microscopical examination, by Edward Lovett.-Gn the relation of aperture and power in the microscupe, by Prof. E. Ahbe. On a new camera Jucida, by Dr. Hugo schröder. - On optical iube length, an unconsidered element in the theory of the microscope, by Frank Crisp.-Also the usual summary of current researches relating to zology, botany, and microscopy.

The American Naturalist for December, 1883 , contains :-On ihe development of a dandelion tlower, by John M. Conlter.Notes on Chatonotus larws, by C. A. Fernald.-Notes on the aborigines of Cooper's Creek, Anstralia, by E. B. Sanger, Zoological gardens, a eritical essay by Theodore Link, - The Copperhead, by Dr. R. E. Kunze.-Experiments with the antenne of insects, hy C. J. A. Porter.-On the position of the Compositze and Orchidere in the natural system, hy J. F. James. -On the habits of certain sunfish, by C. O. Abbott.-Recent literature, and general notes.

Revue Internationale des Srienses Biologiques, October 15, 1883, contains :-Translations of Mr. W. S. Duncan's-Probable region of man's evolution, and of Prof. Huxley's-Living beings and the method of studying them ; Dr. Huhrecht-on the
ancestral form of the Chordata ; ani I)r. W. G. Parker-on the people and language of Madagascar.

The number for November 15, 1883, contains:-An essay by Dr. Lanessan, on Buffon: his ideas, his role in the history of science, his work, and on the development of the natural sciences since his epoch, which exsay is to serve as an introduction to a complete edition of Buffon's works, including his correspondence, to he shortly published by Le Vasseur, Paris.

Revdiconti del Reale Istotuto Lowbardo, Milan, December 29, 1883.-Reports on the work of the various physical, literary, ethical, mathematical, and poitical sections of the Institute during the year 1833, by the Secretary.-Meteorological observations made at the Brera Observatory, Milan, during the month of December, $\mathrm{I}_{2} \mathrm{~S}_{3}$.
Nachrichten ton der K . Gesellschaft der Wissenschafien wnd der Universitat zu Göttingen, December 1, 1883.-On the formation of isomerous derivatives of toluol, by Paul Jannasch.- On the irreducibility of linear differential equations, by Leo Königs-berger.-On the polar repulsion, the coefficient of induction, and temperature of a magnet, and on the determination of the moments of inertia through sifilar suspension, by F. Kohlrausch.

SOCIETIES AND ACADEMIES London

Royal Society, January 10.-"Extracts from a Report on the Volcanic Eruption in Sunda Strait by Commander the IIon. F. C. P. Vereker, M.M.S. Maspis, dated Singapore, Octoher 22, 1883." Communicated by Sir Frederick Evans, K.C.B., F.R.S.

On the 18th inst. I entered Sunda Strait, passing east of Thwart-way Island. This island bad been reported to be split by the eruption into several portions. This is incorrect.

The island is intersected by low valleys in several places; these being eovered with tall trees did not show so prominently formerly as they do now. The whole of the vegetation having been swept away by the tidal wave, the island at a short distance off is apparently divided, the low necks joining the higher portions being only visible on close approach.

The surface of the Strait in this neighbourhood is covered with extensive fields of floating pumice-stone, often in one to two foot cubes, throngh which the ship easily forced her way. . . .

I inclose sketches which I trust will convey the general appearance better than a written description. The whole of the neighbourhood is covered with greenish yellow mnd, and all traces of vegetation everywhere destroyed.

I commanicated personally with the captain of the Netherlands frigate Queen Emma stationed on the spot, and was informed by him that the changes are considerably more extensive than was at first thought, and that Verlaten Island is still in a state of activity as well as Krakatoa itself.

From observation he thinks that another eruption is impending, but that Verlaten Island will be the centre of disturbance.

The Netherlands Government vessel Hydrograaf obtained a sounding of 100 fathoms without reaching bottom, in the centre of the group and off the cliff falling from Krakatoa Peak.

The two new islands are low mud and pumice hanks, their configuration is continually altering, and 1 was informed that they are gradually subsiding. . . .

It is still impossible to examine Lampong Bay, but thejpumicestone is now begianing to float out.

The light on Fourth Point (Java) has been temporarily replaced by one of the 6th order, visible five miles, but beside this there are no signs of life on the Java shore. The whole coast is covered with the debris of trees, $\$ \mathrm{cc}$., demolished by the earthqnake seawave, and over all lies a thick incrustation of volcanic mud.

During the height of the eraption a terrific whirlwind and a fierce south-westerly gale, apparently local, was experienced. . . .

Victoria Institute, February 4.-Mr. Ernest Budge, B. A., of the Oriental Department of the British Museum, read a paper upon a new and important inscription of Nebuchednezzar the Great. Two copies of the same text had been brought to England by Mr. Rassam, one of which was much mutilated, but by a careful comparison of the texts Mr. Budge has succeeded in gaining a nearly perfect copy of the inscription, It related chiefly to the restoration of the fortifications of Habylon-the great walls, gates, and quays along the river bank, which had been thrown down by the conquering armies of Sowgon, Sennacherib, and Assurbanipal. It also stated the area of the citadel of Bahylon
was 4000 sqnare cubits. The inscriptions described the restoration of the famous temple of Belus, which was made " bright as the beauty of heaven," with gold, silver, crystal, and precious stones ; the roof of the "honse of the oracle" was of cedar wood, plated with gold. The King recorded the restoration of many other public and sacred edifices, and among otber the Tower of Borsippa, known as the Tower of Babel, acco-ding to Rabylonian tradition. In concluding the inseription, the King, in a most beautiful prayer, commended his pious works to the keeping of "Merodach, King of Heaven and Earth," to whom he prayed "for long life, fullness of glory, and a widespread dominion."

Edinburgh

Mathematical Socicty, February 8.-Mr. A. J. G. Barclay, vice-president, in the chair.-A presidential address was delivered by Mr. Thomas Muir, F.R.S.E., on the promotion of research. Attention was drawn to the backward state of mathematical rescarch in Scotland, particnlarly when compared with the activity of Germany in the same department. Some of the canses of this were discussed, and methods were suggested for bringing about a reform,-Mr. H. H. Browning, Glasgow, contributed a paper on illnstrations of harmonic section; and Mr. Muir communicated a theorem regarding the area of a polygon of $2 n$ sides.

Paris

Academy of Sciences, February 4.-M. Rolland in the chair.-Note on the necessity of establishing a branch of the Observatory ontside of Paris, by Admiral Moachez. - On a new application of the mercurial level suggested by M. Renouf for calculating the altitude of the stars at sea when the horizon is invisible, by Admiral Monchez. This ingenious contrivance, which is available on land as well as on sea, almost completely removes the difficulties bitherto experienced in obtaining altitudes with in 4^{\prime} or 5^{\prime} at night or in foggy weather. The apparatus, made by M. Hurlimann, mechanician, has been for some time in use on board the Transatlantic steamers piying between France and the United States. M. Mouchez describes it as much simpler and more exact than any other system hitherto lnvented.-On an optical phenomenon observed during a fire that broke out at Joly cn January 31, by M. E. Chevreul. For three-quarters of an hour the light of the street gas presented the complementary colours of the light of the fire, that is, from yellow-green to green and bluish, the sensations being referable at once both to the simnitaneous and successive contrast, according as the observer beheld both lights simultaneonsly, or one only at a time.-On Faraday's law regarding an electric current traversing a series of electrolisable salts during the same time, by M. Berthelot. The author argues that Faraday's law is in general more simply expressed by means of the equivalents than by the atomic weights, both for the electro-positive and for the electro-negative elements.-Reply to M. Richet's remarks on the method of anasthesis by means of the titrate mixtures of chloroform and air, by M. Paul Bert.-Curves registered by the marcograph established at Colon (earthquakes at Santander, Guayaqnil, Chios, \&c.), by M. de Les seps, The curves recorded on October 13 and 14, 1883, appear to have indicated the underground disturbances caused by the earthquakes that occurred on those dates at Santander on the Atlantic, Guayaquil on the Pacific, Chios in the Mediterranean, and elsewhere. Yet nothing abnormal was registered by the mareograph of the island of Naos, Gulf of Panama, - On the quantities forming a group of nonions analogous to the qnaternions of Hamilton, by M. J. J. Sylvester.-N'fsumf of the meteorological observations made during the year 1883 at four points in the Upper Rhine and Vosges districts (Colmar, Munster, Schlucht, and Thann), by M. G. A. Hirn. Referring to the recent twilight effects observed at these stations, the anthor feels justified in concluding that the particles, whether gaseous or in the form of dust, lit up by the solar rays, were situated, at least to a large exten', beyond the terrestrial atmosphere, in any case at elevations where no traces have ever been observed either of cirrus or vapour of water.-On the late twilight phenomena, by M. de Gasparin. The author considers that the chief features of these phenomena were their rapid appearance from fifteen to sixteen minutes after sunset, and their constant recurrence in a given place for a period of sixty-six days.-On an instrument capable of producing in the same telescope the images of two stars at the moment when they are at the same altitude, and of farthe determining by a single observation the astronomic time o
the place, its latitude, and exact position for the whole borizon, by M. Ch. Rouget.-On biquadratic involutions, by M. C. Le Paige. - On a class of abelian functions and on a hyperfuchian group, by M. E. Picard, -Note on the exact number of variations obtained in the multiplication of the integral polynome $f(x)$ by the binome $x+\alpha$, by M. D. André. - Transelementation of glyoxal into glycolic acid, by M. de Forcrand.-On the thermal properties of the numerons oxichlorides of mercury, by M. G. André.-Researches on the formation of the crystalised fnoride of antimony and its dissolution either in pure water or in solutions of fleorhydric acid, by M. Guntz. - On the heat of transformation of the prismatic oxide of antimony into octahedric oxide, by M. Gnntz - On the liquefaction of hydrogen, by M. S. Wroblew,ki. From the results already obtained, the author supposes that the temperature required for the complete liquefaction of hydrogen is about that which may be obtained by means of bjiling oxygen.-On a case of isomerism of chloronitrous eamphor, by M. P. Cazeneuve. - On the segmentary organs and the puducyst of the embryos of the slug family, by M. S. Jourdain.-On the Tongrian deposits at Longjnmeau, Department of Seine-et Oise, by M. Stan. Meunier.-On some freshwater formations of the Tertiary period in Algeria, by M. Pb. Thomas.-On the influence of oxygen under increased pressure on the caltivation of Bacillus amfhrucis, by M. J. Wosnessenski-On the cause of the twilight effects of 1883 , by M. G. Tissandier. Accepting M. Angot's assumption that hypotheses inapplicable to the year 1831 must be rejected for 1883 , the author shows that the atmospheric conditions of both years resembled each other in every respect. The circumstances attending the eruptions in the Sicilim waters in 1831, when the volcanic island of Pantellaria made its appearance, were completely analogous to those of the Krakatoa eruption in 1883. Oa both occasions the optical phenomena were immediately preceded by igneous disturbances ejecting into the atmosphere vast quantities of gaseous productand fine dust. Hence the probability that to volcanic eruptioas were due the optical manifestations in both years.-On the twilight effects of the last few months, by M. Perrotin. This author also argues that the twilights of 1831 prove nothing against, but rather confirm, the volcanic theory adduced to account for those of 1883.

CONTENTS

Page
Mr. Ruskin's Bogies. By Rev. W. Clement Ley 353 Splnoza. By R. B. Haldane
Letters to the Editor:-
The Krakatoa Eruption,-G. J. Symons, F.R.S.
The Remarkable Sunsets.-Prof. O. N. Sioddard
Unconscions Bias in Walking.-W. G. Simpson
The Ear a Barometer.-Dr. W. H. Stone; George Rayleigh Vicars
Diffusion of Scientific Memoirs.-Prof. P. G. Tait
Wind Sand Ripples.-Dr. John Rac, F.R.S.
Animal Intelligence.-J. M. Hayward
Circular Rainbow seen from a Hill-top.-J. M. White; T. R. Maynard
The Storm of January 26, -G. Henry Kinahan (With Diagram).
Earthquake Disturbances of the Tides on the Coasts of India. By Lieut.-General J. T. Walker, C.B., F.R.S.

The Indian Survey

Zoology and Botany of Alaska \dot{P}. Thompson ${ }^{662}$
Sound-Mills. By Prof. Silvanus
Sound-Mills. By Prof. Silvanus P. Thompson
(Wuth Illusirations)
363
Notes . 364
Our Astronomical Column:-
Pons' Comet 367
The Glasgow Catalogue of Stars 3^{68}
The Variable Star U Geminorum 3^{65}
The Late J. F. Julins Schmidt 3^{68}
The Royal Socicty of Edinburgh 368
Instinct. By C. Lloyd Morgan 370
A New Observatory for Paris 374
University and Educational Intelligence 374
Scientific Serials 375
Socicties and Academies 375

THURSDAY, FEBRUARY 21, 1884

THE MODERN LANGUAGES OF AFRICA

A Sketch of the Modern Langwages of Africa, accompanied by a Language Map. By Robert Needham Cust. 2 vols. (London: Trübner, 1883.)

WHY this work has been restricted to the "modern" languages of Africa is not apparent, seeing that there are not half a dozen ancient or extinct African tongues altogether of which science has any knowledge. The limitation is the more remarkable that every one of these ancient tongues is duly recorded and dealt with in its place, partly lest it should "seem to have been overlooked," partly seemingly for no other reason than that the author has forgotten the restriction so needlessly imposed upon himself. Yet when we are told that Gí, the most important of them next to Old Egyptian, " may be deemed the Lingua Franca of Abyssinia" 1 (p. 88), and when Rinn's remark on the possible reconstruction of an Archaic Berber "offering analogies to the languages of High Asia" (p. 105) is quoted without comment, one begins to feel that after all it might have been wise to have adhered to the restriction.

But Mr. Cust does not profess to be critical or even scientific, and although in one place science is declared to be his "sole object," it is elsewhere explained that his "chief motive" is to assist the missionaries, "the peculiar outcome, the most wondrous development, and the great glory of the nineteenth century" (p. 461). He hastens even to assure us that personally he knows "absolutely nothing" of the subject, and in one not very clear passage he seems to take the anticipated charge of "his entire absence of training in any school of comparative philology" as "a compliment" (p. 15). Most people, however, will probably feel that some knowledge of the principles of comparative philology would at al ${ }^{\text {l }}$ events have been an advantage, if not an absolute sine gud non, in a writer undertaking to give us "a sketch of the modern languages of Africa." Anyhow, in the absence of such a qualification it is the less surprising to find the hand of the amateur betrayed in almost every page of the present work, which supplies abundant evi. dence that it is written by a person sure neither of himself nor of his subject. Great vagueness, inaccuracies, and incoherencies of all sorts, eommonplace platitudes gravely put forward as important truths, the existence of well-known or historical people, such as the Funj (Fung) of Senaar, referred to as doubtful, such expressions as "parallels of longitude," "Hervas, the Father of Comparative Philology " 1 and the like, everywhere reveal an essentially unscientific habit of thought. This is strikingly manifested in the treatment of the Bantu prefixes, which are described as "an intolerable nuisance," as indeed they must needs have proved themselves to be to a writer ignorant of their very meaning. He refers (p. 12) to "languages of the Hamitic group, such as WaGalla," where the form should obviously be $\mathrm{K}^{\prime} \mathrm{i}$-Galla, Wa indicating the people, $K i$ their specch. Hence the difficulty presented by these troublesome particles is perhaps not unnaturally met by the naïve plan of making a clean sweep of them. Thus we have everywhere Swahili, Suto,

Chuana, Ng'anga (Nyanja), for Ki-Swahili, Se-Suto, SeChuana, Chi-Ng'anga, and so on ; nor can it be denied that at least on the score of simplicity this plan may possibly recommend itself to the ordinary reader.
To a writer ignorant of eomparative philology, the phonetics, structure, and general morphology of the languages must necessarily have proved equally "intolerable nuisances." Hence this difficulty is also met by the same simple expedient of elimination, and we are accordingly quietly warned (p. 15) that "it lies outside the purport of this sketch to dwell upon the grammatica peculiarities of languages, or families, and groups of languages," the object being "to give a sketch of the whole subject, not to write an account of each language." Certainly a zoologist might in the same way undertake to write a "sketch" of the animal kingdom without reference to the eomparative anatomy, osteology, general morphology, or other structural "peculiarities" of his various orders and families. But by so doing he would perform a remarkable tour de force, if he thereby either added to his own reputation or conferred any substantial benefit on his readers.
Nevertheless, it cannot be denied that, heavily handi. capped as he was, Mr . Cust has contrived to produce a work of value to linguistic students. This he bas done by wisely restricting himself to what may be called the topography and bibliography of the subject. Abundance of time and means, industrious habits, and the opportunities of procuring information afforded by his connection with a number of learned bodies in England and abroad, have enabled him to deal with these useful branches almost exhaustively. Apparently following somewhat on the lines suggested by the linguistic and ethnological appendixes to Stanford's Compendium, he has collected from all quarters copious materials bearing on the history, habitat, literature, bibliography, and classification of almost every known language and dialect still current amongst the African aborigines. The bibliographical references, perhaps the most valuable feature of the work, are reserved for a very full appendix, containing "a bibliographical table of languages, dialects, localities, and authorities." The other materials, generally brought well up to date, are distributed over the various chapters devoted to the "prolegomena" of the subject, and to the several linguistic families of the African continent. Here the author unfortunately still follows Fr. Müller's classification, apparently unaware that on some material points this writer's views have lately been completely exploded. Thus the Tibbu of the Eastern Sahara, although clearly shown by Nachtigal (Sahdra und Sudan) to be essentially distinct both in speech and physical type from the Negro, are still grouped with that division. The consequence is that in the accompanying coloured language-map by Mr_{r}. E. G. Ravenstein, the Negro domain is extended beyond the Sudan northwards to Fezzan and Tripoli, at least 7° of latitude beyond its proper limits. The nomenclature is here also both confused and, as frequently elscwhere, at variance with the text. Thus we have "Teda or Tibbu" instead of Teda or Northern Tibbu, and below it "Dàza or Gora'an" for "Daza or Southern Tibbu." And in quoting Nachtigal's work why does Mr. Cust go out of his way to give us a false prosody (Sahira), where the author was so careful to write correctly Sahdra?

A more serious blunder is his retention of the unfortunate "Nuba-Fulah" family, which has no objective existence, and which he has rashly taken upon bimself even to enlarge. On this subject he writes in the true style of the amateur:-" This arrangement [an arrangement absolutely unscientific] commends itself to my judgment from its convenience, as enabling me to pass on from the confines of the Hamitic language-field, and sweep into this new group all that is not strictly Bántu, or which cannot be conveniently treated as Negro" (p. 142). So in their reports on Egyptian Sucian our officials "sweep" into the Arab group all that is not strictly Negro, and vice versa. And so nearer home our popular ethnographists "sweep" into the "Turanian" group all that is not strictly Aryan, and so on. The scope that this sort of thing gives to discursive writing is about as boundless as is the mischief it does to the cause of scientific progress. In future editions Mr. Cust ought relentlessly to exscind this "convenient" Nuba-Fulah group, and relegate to one of his numerous appendixes "all that cannot be conveniently treated" under any recognised divisions.
These remarks will apply with equal force to the "Hottentot-Bushman Group," of which Mr. Cust again writes: "Following F. Muller and T. Hahn, I constitute a separate group, and take the opportunity of enlarging its dimensions, so as to sweep in certain tribes speaking apparently languages which differ entirely from any above described ${ }^{\text {b }}$ (p. 434). It will be seen that Mr. Cust has constituted himself a sort of African "Spazzacammino," sweeping up and down the continent with an airy recklessness which may astonish the groundlings but "cannot but make the judicious grieve." The result in this instance is to scatter over the southern half of Africa a number of tiny little enclaves, all coloured alike and reacbing as far north as Abyssinia, which make Mr. Ravenstein's otherwise excellent map look like nothing so much as one of those coloured maps of Scotland with fragments of Cromarty, Elgin, and the other northern shires strewn promiscuously over the face of the land. Now in Scotland these fragments have literally a tribal connection, but the connection between the African enclavesTua, Sarwa, Nena, Sania, Akka, Twa, Doko, \&c.-is of a purely negative character. None of them speak Negro, Fulah, or Bantu idioms; therefore let us sweep them together. It is the old joke about elephant and tea-cup, which are said to resemble one another because neither can climb up a tree.

Besides the general classification, the whole text will need careful revision before the book can be accepted as a standard work of reference on the points with which it professes to deal. Almost on every other page we read such statements as these :- Chere is "nothing savage" in the Somali nature. There is little doubt that Kandáke was Queen of Napata on the Middle Nile, and a Hamite, The very existence of the $\mathrm{Ni}_{\text {, }}$ er was unknown before the present century. The Siwah language is of no importance whatever, \&c. The account given (p. 110) of the word Tamashek is hopeles 1 muddled. It is stated to have been applied to the peo, sle " by the Arabs, and not by the tribes themselves, wh.0 scarcely recognise it, and call themselves 1 moshagh, or Amazirg," the fact being that Imoshagh and Tamash k are the same word, the
former masculine, indicating the people, the latter feminine, indicating their language. About the closely related Kabail dialect again, Mr. Cust writes: ' I was unable to satisfy myself on the subject of this language until 1 had personally visited Algeria, Tunisia, and the Sahara, conferred with men on the spot, and seen with my eyes the conformation of the country" (p. 106). Here there seems to be some mystification. It is not obvious at first sight what the conformation of the country has to do with the language; and it is still less obvious how a visit to the Sahara, of which we now hear for the first time, could throw any light on a language scarcely current within the frontier of that region.

At the same time it is but fair to state that, with all its inevitable shortcomings, it often betrays evidence of extreme labour profitably bestowed on obscure languages. A good idea of the general treatment of the subject is afforded by the subjoined account of the little-known Komóro group:-" There is no doubt that these languages are African, and not Malayan, like the Malagási. Several names are recorded, and it is presumed that they are dialects :-(1) Hinzua, (2) Angazidya, (3) Antilote, (4) Mohilla. Elliot left in manuscript a vocabulary of Hiszua, the dialect of the Island of Johanna, compiled by himself. Hildebrandt supplies a considerable one of Ki-Nzuáni compiled on the spot. Casalis in his Suto [Se-Suto] grammar gives a dozen words picked up br chance. Bleek in the 'Languages of the Mozambfk' gives words picked up by Peters during a week's residence in the island. Hildebrandt remarks that this dialect is only spoken in the Johanna 1sland, but that the dialects of the other islands only differ a little. It is never committed to writing. For purposes of business the people use the $S_{\text {wablil }}$ language in the Arabic character. Steere printed in 1869 a short vocabulary of the language of Great Komóro, called Angazidya, supplied by the sons of one of the kings of the islands. Van der Decken remarks that it is only a dialect of Swahfli, greatly altered in pronunciation and affected by the contact of Malagasi. Gevret, a French employd in Mayotte, one of the islands, and a French colony, published an account of the group from personal knowledge in 1870 . He divides the population into fractions : one-tenth are Arabs, one-tenth are Malagási, four-tenths are Antilote-a mixture of Arabs and Africans, and four-tenths are of the Bántu family, though not entirely pure. The Antilote speak a mixture of Malagasi and Swahfli. Very few in the island speak or write pure Arabic, but Swahili, which is the language of the schools, the towns, and good society. The character used for writing is a corrupted form of Arabic." A. H. Keane
RECENT TEXT-BOONS OF DETERMINANTS Die Anfangsgründe der Determinanten. Von Dr. H. Kaiser. (Wiesbaden, 1882.)
Die ersten Elemente der Determinanten Theorie. Von Prof. Wilh. Bunkofer. (Tauberbischofsheim, 1883.) Ellments de la Theorie des Determinants. Pat P. Mansion. (Paris, 1883.)
Teoria elemental de las Determinantes. Por D. Dario Bacas y D. Ramón Escandón. (Madrid, 1883.)
\mp HE literary activity of Germany seems to make it necessary that a new Introduction to Determinants shall appear at least once a year. What amount of good
results from this is not quite apparent to an outsider: it is even probable that there is none, unless the unintended reflex benefit, in the form of experience in book-making, which the authors thereby obtain.

Here we have two elementary booklets, one of 40 pp ., the other of 28 pp . ; and a very short examination of them suffices to show that the writers could have spent their time and energy to much better purpose, if it was the public that they intended to benefit. What they have written is probably not worse than what has been in use for years ; but certainly it is not any better. Indeed Germany has always had more really good elementary expositions of the theory of determinants than any other country, and two or three of these have passed through several editions. Dr. Kaiser and "Professor" Bunkofer are quite capable men for the work they have under. taken : on this score little fault can be found. The latter sketches his "Notes of Lessons," as young English teachers would call them, with pedagogic ability and skill ; the former is more wooden, and more unwisely ambitious, and we cannot, unsupplicated, pardon him for saying that Gauss in coining the word "determinant" thereby introduced a definite new idea into analysis, but he goes about his work in a sufficiently workmanlike manner, and is on the whole sure of the ground he treads. We only wish both authors "more power," and next time a happier selection of subject.

Prof. Mansion's "Elements" is a book of a higher type. The present edition, however, is the fourth; and therefore no detailed examination can be looked for. Suffice it to say that there is really no better introductory book published; the exposition and arrangement are admirable, and it has, what so many Continental text-books want, small collections of suitably graduated exercises for the learner. There is only one point which it seems desirable that Prof. Mansion should reconsider, viz. the nomenclature of the special forms of determinants. He employs, for example, both Sylvester's term "persymmetric" and Hankel's "orthosymmetric." Should not one of these immediately receive decent burial, and should not the latter be that one? It is not shorter, it is not more descriptive, it is not more accurate in its description than its rival, and its rival was by several years first in the field. As for "doppelt-orthosymmetrisch," its author is simply unconscionable; it is one of those words which, as Mark Twain puts it, are alphabetical processions and have a perspective: we should have been glad if Prof. Mansion had dealt more summarily with it. In another instance, that of "skew" determinants, we have confusion worse confounded. Cayley's first paper regarding them appeared in Crelle (18.46), and was written in French, the title being "Sur quelques propriétés des déterminants gauches." The term gauche (Eng. skew, Germ. schief, Italian gobbo) was at once accepted and employed, as well it might, by all the standard writers. Of late years, however, there have been busy times with the mathematical coiners on the Continent, and in consequence we have as substitutes for "skew"-

> "symmetrale,"
> "congruente" (not in Mansion),
> "pseudosymétrique."

Surely it is too tiresome and quite unnecessary to wait until by a process of artificial selection the fittest or un-
fittest of these shall survive. Prof. Mansion's "Elements" and the German translation of it have deservedly a large circulation on the Continent, and thus have much power to propagate good or evil. We would therefore earnestly ask him to consider whether it would not be better to recognise throughout his work only one name for each special form, and to relegate all synonyms to the index.

The last text-book on our list is Spanish. Although it is the largest (200 pp .) and most pretentious of the four, we regret that it is impossible to say a good word regarding it. The authors have most manifestly no grasp of the subject, and advance with a gay step and light heart through inaccuracy after inaccuracy. Their model unfortunately is Dostor, and equally unfortunately they are more than faithful to him. At the very outset they show their hands. The so-called "notation of Cauchy" is not Cauchy's; what is really Cauchy's is not attributed to him; and the "notation of Leibnitz" is more Cauchy's than Leibnitz's, but belongs to neither. Nor is this wild start of Book I. redeemed by a good end. On pp. 96-98 five examples of skew determinants are calculated at length with a complacent unconsciousness of the simple property which makes all the calculation unnecessary; and pp. 99-10I are taken up with the rather epoch-making definition-

$$
\left\|\begin{array}{lll}
a & b & c \\
a^{\prime} & b^{\prime} & c
\end{array}\right\| \equiv\left|\begin{array}{lll}
1 & 1 & 1 \\
a & b & c \\
a^{\prime} & b & c
\end{array}\right|,
$$

and some perfectly legitimate deductions from it. Book 11. deals with the so-called applications of determinants, and closely follows Dostor. The most amusing part of it, as is the case also with Dostor, is the chapter devoted to "Applications to Trigonometry." Dostor, however, is outdone on his own ground. For example, after it has been proved that $\cos A=\left(b^{2}+c^{2}-a^{2}\right) / 2 b c$, one whole octavo page is occupied in showing, by means of determinants, that $\sin \frac{1}{2} A=\sqrt{(s-b)(s-c) / b c}$. This tour de force is like that of Hudibras, telling the clock by algebra; and the moral in both cases is the same.

LETTERS TO THE EDITOR

(7he Editor does not hold himself responsible for opinions expressea by his correspondents. Neither cas he undertake to return, or to correspond with the writers of, rejected manuscripts. No notice is taken of anonymous communications.
[The Editor wrgently requests correspondents to kepp their letters as short as possible. The pressure on his space is so great that it is impossible otherwise to insure the apprarance even of communications containing interesting ana novel facts.]

Mr. Lloyd Morgan on Instinct

I have read with much interest Mr. Lloyd Morgan's very able paper on "Instinct" in the current issue of NATURE, and I feel it is desirable, without following him over all the ground which he has traversed, briefly to consider those parts of his communication which have special reference to my own work.
The broad question with which he begins-viz: "Is there a science of comparative psychology ?"-is not a question which I feel specially called upon to answer, inasmuch as almost every one who has hitherto written upon psychology has taken it for granted that there is such a science. Nevertheless I may state the justification which I am myself prepared to give of this universal assumption.

When we say that a dog is a more intelligent animal than a sheep, we do not doubt that we are making as real a proposition as when we say that the President of the Royal Society is a more intelligent man than Dick, Tom, or Harry. Now in all cases where there is a general consensus of feeling of this kind, there is
an antecedent presumption that the eommon sense of which it is the expression is in the right, and that any ingeniously-construeted argument of seep+icism is in the wrong. We miy therefore approash Mr. Lloyd Morgan's ar gu nent with the antecedent presumption that there mut bs something wrong about it somewhere; and I do not think that it requires maeh reflection to sie where the error lies.

According to the argnament as state 1 by my eritie, there is a true ssience of human psychology, because, alth ough my knowledge of an ther human mind is no less ejective than is my kaowledge of a dog's mind, yet " by means of language human beings can commanicate to each other the results waich each has obtained, and each human being is able to submil these resmlts to the lest of subjective verification." But how, let us ask, in its last analysis is thisverification obtained? By linguage, no doubt ; but what in its last analysis is language? As spoken by my neighbour, it is for me nothing more than my owa interpretation of a meaning presented by the observable activities of an organism. Therefore, if on such a basis I am entitled to affirm that such interpretations as I make are of the nature of "subjective verifications" of conelusions drawn from the introspective observation of my own mind, why am I not entitled to a similar view when the eject of my eontemplation is the mind of a dog? The dog canaot speak, but he can display other activities whieh, so far as they go, are quite as valid as a basis on which to construet my " subjective verification " as are the activities manifested in language. Of counse language is able to convey immeasurably more information touching the ejective mind than can be eonveyed by any other kind of activity ; but this fact is merely due to the further fact that language is a system of activities expressly designed for this very purpose. The higher value of language in this respect is therefore nothing more than an expression of the higher development of intelligence, which enables the mind to perceive the desirability of devising a system of bodily activities expressly designed to serve as the vehicle of commanication between subject and eject, -as is proved by the fact that any system of bodily activities whieh may be agreed upon (such as gesture, lipreading, writing, \&c.) are alike available for this purpose. Language, then, of any kind is merely a conventional system of bodily activities which, because intenfal to eonvey information from mind to mind, we call signs. Bat now, the eloment of intention on the part of my neighbour is in no wise essential to my eiective interpretation of his bodily activities, or to what Mr. Morgan calls my subjective verification of them. The involuntary groan of pain, the pallor of fear, and a thousand other unintended "expressions of the emotions," as well as a thonsand other unintended expressions of thought ($\mathrm{c} . \mathrm{g}$. the act of pocket-picking under the eye of an unseen detective), are, as it is proverbially said, "more eloquent than words."

I submit, therefore, that, although a dog cannot give us any large measure of ejective information intentionally, or by purposive signs (he does, bowever, give us some even of this), we have still abundant material furnished by bis other bodily activities for constructing our ejective inferenees. For example, the dog gives very much the same indications of pain under the whip that a boy gives under the cane; therefore the gamekeeper has no more doubt that he is hurting the dog than the schoolmaster has that he is burting the boy-nor would the schoolmaster be more satisfied on this point by asking the boy whether the eane did hurt.

If I have been followed thus far, I should be inelined to go still further, and to say that in my opinion the "unpremeditated art " of natural movements (whether in men or animals) is a surer basis on which to baild ejective eonelusions than is the more indirect information supplied by intentional gesture or language, so far as the loto or simple intelligence to which animals altain is concerned. Poets and moralists are fond of insisting upon this point as regards young ehildren, where the level of intelligence may be even eonsiderably above that of the most intellizent animal. The immense service of language in ejective analysis is rendere 1 in those higher and more complex resions of intellectual life to which man-alone attains. Still, I doubt not that if animals could speak, so that we could interrogate them as to their mental operations, we should obtain a great deal of supplementary information; only of coarie this sapporition is an impossible one, seeing that, if an animal could speak, its intelligence would no longer be " animal intelligence."

On the whole, then, as eoncerns the question whether there is a sciense of comparative payehology, I should say that there certainly is surh a seience, in the same sense as there is a science of
human psychology. For it seems to me, in view of the above considerations, that the argument adduced by Mr. Lloyd Morgan against the former is quite as applicable against the latter. In both cases alike our ejective inferences can only be founded on the observable activities of organisms, and if it is true that of these observable activities language affords an exceptionally meaning elass, it is also true that where language is absent the mental processes which stand to be ejectively analysed are of a comparatively simple nature. I therefore see no reason to recede from the position which I have taken up in the works to which Mr. Lloyd Morgan refers, where I observe with reference to the peculiar standing of psychology (both human and comparative) among the sciences in the matter which we bave been consider-ing-" although the evidence derived from ejects is practically regarded as good in the case of mental urganisaticns inferred to be elosely analogous to our own, this evidence clearly ceases to be trustworthy in the ratio in which the analogy fails; so that when we eome to the ease of very low animals-where the analogy is least-we feel uncertain whether or not to ascribe to them any ejective existence " (" Mental Evolution in Animals," P. 22). And again, with reference to such objections as that of Mr. Morgan- "Scepticism of this kind is logically bound to deny evidence of mind, not only in the case of the lower animak, but also in that of the higher, and even in that of men other than the sceptie himself. . . . This is evident because, as I have already observed, the only evidence we can have of ejective mind is that which is furnished by objective activities; and, as the subjective mind can never become assimilated with the ejective, so as to learn by direct feeling the mental processes which there accompany the objective activities, it is elearly impossible to satisfy any one who chooses to doubt the validity of inference, that in any case, other than his own, men. tal proeesses ever do accompany objective aetivities" ("Animal Intelligence," p. 16). And, by parity of reasoning, the same argument may be used against Mr. Morgan's sceptical objection to comparative psychology as a science. In whatever measure he is on princiolic a sceptic touching the inferenees whieh this science is able to draw as to the existence and nature of animal psychology, in that measure I think he ought in consistency also to be a sceptic with reference to the same points in the scienee of human prychology.

Coming now to Mr. Mongan's strietures on my psyehological definition of instinet, I understand that they are made, not with reference to any defect in my definition as a psychological definition, but with reference to the possihility of any such definition whatever. In his view there can, from the nature of the case, be no psychological definition of instinct ; there can only be a physiological definition of the cerebral procesces which are eoneerned in actions termed instinctive. Here, then, is a broad issue, although it ouly constitutes a part of the still broader one which we have just been considering.

I may say first of all that, if we want a physiological definition of instinct, I do not think that the one which is fnrnished by Mr. Lloyd Morgan is valid. This definition is that reflex actions are due to a general type of nervous organisation, instinctive actions to a specifie type, and intelligent actions to an individual nervous organisation. Now, this threefold definition presents none of that "definiteness of application" which Mr. Morgan implies, nor does it tend, as he supposes, to add any " clearness to our ideas concerning the things of which we speak." For it is open to the fatal objection of arbitrarily elawifying as instinetive many actions which are now universally regarded as reflex; while, eonversely, a still greater number of actions now universally regarded as instinctive would, under this definition, become classified as reflex. That is to say, there are, on the one hand, many reflex actions which we should all feel it absurd to call instinctive, and whieh are nerertheless manite-ted by only one species (in our own organisations, for example, we may mention the "patellar reflex," and the convulsions produced by tiekling the soles of the feet); and, on the other hand, there is a very mueh greater number of instinctive actions which we should all feel it absurd to call reflex, but which are novertheless manifested by many species of a genus, others by many genera of an order, and so on, until in such cases as those of nidification, incubation, \&\&c., we arrive at instincts general to a whole class. The truth, therefore, is that a zoological classification, being made with reference to the whole organisations of animals, has no sueh special application to the refined structure of their nervous systems (whieh, indeed, we can only appreciate by its effects on conc'uct) as would be required for the groundwork of

Mr. Morgan's physiological definitions of reflex action, instinct, and intelligence. If we want such a definition it must be made independently of any zoological classification, and with exclusive reference to the foint whether the adaptive action rovires for its performance the operation of the bigher merve-centres-a point which can only be determined by vivisectional experiment. In other words, on the side of objective psychology the only distinction that can be drawn between a reflex and an instinctive action, is as to whether the action can be performed by the lower nerve-centres alone, or requires likewise the cooperation of the higher nerve-centres. And this is just what we should expect to find to be the case on the objective side if, as I have endeavours do show, the one peculiarity which distinguishes actions classed as reflex from actions classed as instiactive, consists in the latter exbibiting in their performance a mental or conscious clement which is not exhibited in the former.

Now, if the raison d"dre of the term "instinct" is thus to denominate a class of adaptive actions in which there is a subjective, or rather let as say an ejective element, I cannot ee that anything but confusion is to be gained by forcing this term into objective implications. Were any term needed to designate the neurosis of instinctive action, it would be far better to coin a new one than thus to abuse an old one. I am fully sensible of the difficulty which often arises in deciding whether a particular action should be assigned to the instinctive or to the refiex class ; but, as I observe in "Mental Evolutioa in Animals," "this difficulty does not affect the validity of the classification any more, for instance, than the difficulty of deciding whether Limulus should be clas-ified with the crabs or with the scorpions affects the valiaity of the classification which marks off the group Crustacea from the group Arachnida."

For the rest, Mr. Morgan's criticism on my psychological definition of in tinct hang e entirely upon his previous criticism as to the possibility of a science of comparative psychology, and as I have already endeavoured to answer the latter, I need not go over the same gronnd again by answering the former. There are only two points raised by his paper to which this general answer does not apply, and with these, therefore, I shall conclude.

The first of these two points is a charge of inconsistency. My critic observes that, after having said " it is enough to point to the variable or incalculable character of mental adjustments as distinguished from the constant and foreseeable character of reflex adjustments," I go on to define instinctive actions as mental adjustments which are nevertheless of a constant and foresecable character. Now I think, if any one will read my chapter on "The Criterion of Mind," he will see that this apparent inconsistency is not a real one. It would be a real one if the passage above qnoted referred only to this and that particular action of an animal, apart from all the other actions of the same animal, which, according to my criterion of mind, are competent to inform us whether or not the animal in question is a choosing and Aerceiving animal. But the passage quoted refers to the whole constitution of an animal so far as we can know it by observa. tion of activities, and therefore the question whether this or that particular activity is to be regarded as mental or non-mental (instinctive or reflex) requires to be answered by all that we learn concerning the other activities of that animal. If none of its activities are other than those of a constant and foreseeable character, we have no reason to suppose that it is a choosing or per. ceiving animal ; but if some of its other activities are indicative of choice and perception, our knowledge of this fact must be allowed due we'ght in any attempt that we may make at classifying this or that particular action as reflex or instinctive. The case, in short, is just the converse of that which I thos state in the chapter referred to:-" Many adjastive actions which we recognise as mental are, neverthelese, seen beforehand to be, under the given circumstances, inevitable; but analysis would show that this is only the case when we have in view agents whom we already, or from independent evidence, regard as mental."

The second point to which I have referred as the only one that now remains for me to consider, is to the effect that I have mis taken '" Mr. Spencer's position with regard to the 'very sabordinate importance of natural selection as an evolving source of instinct, ${ }^{\text {, }}$ and with regard to the question of "lapsed intelligence." Here I can afiord to bebrief, inasmuch as any one who cares to do so can compare my interpretation of Mr. Spencer's writings with the passages in those writings to which I refer. It seems to me perfectly clear that, although both the principles in question are alluded to by Mr. Spencer, neither of them holds the same pro-
minence in his theory of the development of instincts from reflex action as they hold in the theory of Mr. Darwin.

In conclusion, I trust Mr. Morgan may feel that, in writing this somewhat elaborate reply to his criticism, I am marking as emphatically as I can my sense of its ability. And if the general effect of this discussicn is to show that the phenomena of instinet present peculiar difficultles to any attempt at a fnodamental analysis, I should like no less emphatically 10 express my conviction that such an analysis is not to be facilitated by closing our eyes npon the entire class of phenomena to which alone the word is applicable. We may, of course, abstain from any attempt at such analysis, and devote onr attention exclusively to the physical as distinguished from the mental side of the subject. Only in this case we may not speak of instintt.

George J. Romanes

" Mental Evolution in Animais"

Mr, Romanes' comment on my communication in Nature of February 7 (p. 335) is not quite satisfactory. I do not suppose that he has any spite against my skate; but as he does not know me, and did not see the incident in the Manchester Aquarium, I think it is very possible that be may bave been naturally predisposed to underrate the significance of the story. I do not admit that I can be reasonably blamed for saying that a repetition of the conditions would bave been useful, if possible, while at the same time pointing out that the result would not necessarily bave settled the question. Test experiments are always useful, even if they do not settle the main question. Mr. Romanes' terrier story was not necessary to make clear what he means by "accident," and there is no analogy between it and my skate story. In one case a trained, or at least tamed, dog did as he was sold, and the conditions of success were prearranged ; in the other, a fish spontaneously did something for his own advantage. As for the fish smelling the food, this does not harmonise with the circumstances as I describsd them, and had Mr. Romanes seen the incident I do not think this explanation wonld have occurred to him; the whole series of actions was too rapid, and had too much the appearance of co-ordination. The propulsion of the food into the ready mouth was the work of an instant. Had the mouth not been ready, as the cricketer's bat is the instant the ball leaves the bowler's band, the morsel would have been missed. Finally, Mr. Romanes tells us ("Animal Intelligence," p. 351) that the bear observed by Mr. Hutchinson was a Polar bear. Now this species is "almost marine in its habits." It lives upon seal-flesh and also upon dead meat which it finds floating in the water, It is not infrequently cast adrift on an ice-fioe or an iceberg. It is there* fore not at at all improbable that the method of fishing described may be an instinct developed hereditarily. The fact that two bears behaved in precisely the same manner strengthens this supposition. Mr. Darwin does not say whether the bear observed by Mr. Westropp in Vienna was a Polar bear or not, but be observes that the action in question "can hardly be attributed to instinct or inherited habit," as it would be "of little use to such an animal in a state of nature." It seems to me that such action would be very usefal to Polar bears in a state of nature.

Manchester, February 11
F. J. Faraday

The Remarkable Sunsets

AT the present stage of the discussion npon the "green sun" and rosy sunsets it seems to me it wonld be well to recall attention to a few facts, for there seems to be a tendency on the part of some correspondents to allow imagination to earry them beyond the region of fact into that of fancy. First, then, I would point out that my observations show conclusively that at the time of the green sun there was an altogether abnormal amount of moisture in the npper regions of the atmosphere, while the ordinary hygrometric observations showed the air near the ground to be comparatively dry. I have studied the rain-band spectrum almost daily for the last six or seven years, and I have never before known such a long continuance of the heavy rainband in a comparatively clear sky-a sky in whicb there was only a light haze. At sunset and sunrise the intensity of the bands was such as I have before seen only from an altitude of some six or seven thousand feet, and even then rarely. In this connection it may be well to point out that the spectrum as observed by Mr. Donnelly (Nature, vol. xxix. p. 132), though, as remarked by Mr. Lockyer, resembling that observed here in
some respects, yet differed from it in some important points, The "low sun-bands" appeared weak rather than strong, partly perhaps by contrast with the great intensity of the rainband, and the rainband itself was easily divided into lines, of which cight are recorded in my note book as being seen with a onc-prism spectroscope. The band between b and F , observed by Mr. Lockyer, was also seen here, and was found to be one ascribed to aqneous vaponr, W.L. 504. A spectrum almost in all respects similar to that observed here can be seen by any one who will examinc the absorption produced by a small cloud passing over the sun as scen with the spectroscope, having a lens in front of the slit. The contrast with the bright spectrum of the sun shows the general absorption in the red very clearly, and if the sun be near the horizon the other bands will be, in most cases, fairly well seen.

It is worth noting that we have had an unncually early and beavy monsoon, ushered in by a remarkable thunderstorm and followed by a period when the spectrum showed an abnormal freedom from vaponr, the rainband at times being quite invisible. Daring this latter period we have had beautiful rosy after-glowe, the sunlight being apparently reflected from thin, almost invisible, cirrus clonds.
If the presence of dust can be proved, these phenomena, as I previously indicated, can be readily explained in accordance with the facts so beautifully illutrated by Mr. John Aitken (Trans.R.S.E., vol. xxx. p. 337), for the dust particles would condense moisture in the upper parts of the air, and we would have a light haze, such as was observed here, not sufficiently dense to canse actual clouds, bnt deep cnough to give the special absorption effects, while the dust it-elf would asslst in prodncing the general absorption.

Against the idea of Java dast, however, have to be set a number of facts of which the following are a few :- The maximum phase of greenness was on the same day (Scptember 10), all over Ceylon and South India, and ns far west as long. $64{ }^{\circ}$ (at sea). "The green sun was not seen at Rangoon nor at the Andaman Islands, though at the latter place the sounds of the eruption were heard. The first rain that fell here afterwards was subjected to careful microscopic analysis, and showed no trace of voleanic dast. The phenomenon reappeared on September 22.

For my own part I think there is strong evidence that the influence of the Javan eruption was an clectrical one, and that that was not necessarily propagated by the actual transference of mitter. Mr. Whymper's very interesting letter is of course by no means conclusive as regards the effects of dust, for it is, I believe, regarded as virtually proved that the mere existence of dast in large quantities in volcanic cjecta proves the presence of an abundance of water vaponr.
C. Miche Smith
P.S.-There is a misprint in my letter to Sir William Thomson whicb, as I have seen it twice quated, ought to be corrected. It is in vol. xxix. p. 55, lime 8, which should read: "After the electricity had gone to megatiove"
C. M. S.

The Christian College, Madras, January 23

Since the end of October, when I first observed an unusual red glow for a considcrable time after sunset, I have been a close ob-erver of the atmospheric phenomena so fully described by your correspondents. For some time past they have appeared with little of their former brillancy, until the evening of the 7th inst., when there was a remarkably fine display, equalling in many respects those of December. Of this I shall particularly mention but one feature which I had seen three times previously, bnt never displayed with such intensity and clearness of definition. At 5.30 , when the after glow was at its maximum, a lovely crimson are appeared oppo-ite it in the eastern horizon, in every respect as described by Mr. Divers in bis letter dated from Japan, which appeared in NATURE of January 24 (p.283). I may remark that I have observed here, from November 10 to this date, but latterly with much diminished intensity, cvery one of the phenomena he so graphically describes.

Roscommon, February 11

"The Indians of Guiana"

In the notice of Mr. Im Thurn's work on the Indians of Guiana, in the currett volume of Nature (p. 305), Mr. Tylor writes: "What is still more curious is that the rade method of
making thread by rolling palm or grass fibre into a twist with the palm of the hand on the thigh may be commonly seen is Guiana, although the use of the spindle for spinning cotton is also usual." As such a fact appears to be carious to so eminent an anthropologist as Mr. Tylor, it may be of interest to some of your readers to learn that this mode of twisting fibres is still by no means nncommon in India, though spinning must there have been familiar to the natives for unnumbered generations. I have frequently seen Mindus of various castes twist a mass of jutefibre into a compact and firm rope of considerable length, between the palm of the hand and the inside of the thigh, and by the same means they will frequently produce long pieces of strongly coherent twine when the need for it arises, From my cxperiencc, which, though confined to a small geographical area, comprehended an acquaintance with both Hindus and Moham. medans imported into the tea-districts from almost every part of British India, I should suppose that this custom of twisting fibres into rope and t wine is universal throughout the country, though doubtless it is resorted to rather as a makeshift than as a regular mode of mannfacturing twisted cords. That such a means should be resorted to by the wild tribes of the north-eastern frontier is by no means strange, though these have acquired not a little skill in spinning and weaving cotton, but that so primitive a methord should still prevail amongst peoples so highly caltured as the Hindns and Mohammedans of India often struck me as remarkable.

While noticing Mr. Tylor's interesting article, I cannot refrain from questioning the justice of the supposition that pile-dwellings on the land are duc to the "survival of the once perposefa habit of buildiug them in the water." That in New Guinea such is the case there can be little donbt, as Dumont d'Urville and Mr. Wallace, as well as Prof. Moseley, have remarked. And that Mr. Im Tburn's snpposition with regard to the natives of Guiana is also correct there can hardly be a doubt. But these two cases scarcely seem to mc sufficient upon which to generalise, cven when added to Prof. Moseley's pretty and ingenious view as to the origin of the Swiss challet. As has been pointed out to me by my friend Mr. W. E. Jones, F.R.I.B.A., Lecturer on Architectnre in the Bristol University, a somewhat similar development of single-storied into two-storied dwellings is to be traced in the stonc luildings as well as in the les; substantial dwellings of Western Asia, between the twentieth and the twelfth centuries B.C., and though of course it is not impossible, it certainly ecems improbable that a race of ancient lake dwellers should bave perpetuated on sandy plains a practice which must altogether have ceased to be useful long before it reached a region so far removed from its original home. And indeed it seems to me that pile-dwellings may be observed in localitics in which it is scarcely possible that the practice coold have originated in lake-dwellings, or in any dwellings of amy yort erected in water, whether fresh or salt. I allude more particalarly to the raised dwellings of the Nagas, Kukis, Cacharis Khssias, and other hill-tribes of the north-eastern frontier of India, in the midst of which I lived for several years. That these people should ever have dwelt so near the sea that they acquired the habit of erecting pile-dwellings therein seems to me highly improbable when it is remembered that their racia and linguistic affinities place them undoubtedly in that grent Mongolian group of which the Thibetans and Hurmese are ex amples ; and that therefore they may be regarded as immigrants from more Eastern Asja, rather than as tribes which have been gradually drives back from the Bay of Rengal by the encroaching civilisation of the Hindns. Nor does it seem probable that their pile-dwellings were originally erected in lakes amongst the hills, for in fact the lakes nowhere exist. There arc indeed es tensive bhedls or marshes, which during the rainy season some times contain a good deal of water. But these bheds are, daring at least a portion if not the whole of the year, so pregnant with fever and ague that I cannot believe that they were ever em. ployed, as were the lakes of Switzerland and Italy, for the protection of the habitations of man. Yet these north-eastern frontier tribes for the most part build their houses npon pites These are generally of bamboo, and so of conrse arc very perishable, but occasionally small timber is cmployed. The floor or platform (of coarse bamboo matting) is seldom raised more than from twenty-four to thirty lnches above the ground, though, if my memiory serves me, I bave occasionally seen it raised as much as between six and seven feet. Beneath this platform a good deal of lumber generally accumulates, and the poultry and pigs frequently congregate for shelter, but I think I never saw an
instance of the lower portion of the erection being inclosed by matting to form a "ground floor." Were these pile-dwellings confined to the low, flat lands upon which the Bengali delights to place his paddy-fields, it would be obvious that they were adopted for the purpose of obtaining a dry, wholesome floor, and security against unanticipated floods. But so far is this from being the case that only very rarely is a Naga or Kuki village to be fiund on low-lying ground, and generally they are to be seen upon the sides and eren the summits of considerable elevations, where any danger from floods is quite out of the question. Again, it might be supposed that these elevated dwellings were adopted as a protection against wild animals but for a curious practice occasionally observable amongst the hill-men. This is the habit of building upon the steep side of a hill in such a manner that the back of the dwelling rests directly upon the ground, while the front is supported upon piles which arc of a height sufficient to render the floor, throughout its` length, horizontal. Such a plan as this reduces the protection afforded from vermin and wild animals to a minimum, and seems to justify the belief that the fear of these creatures at least could have little or no influence upon the architectural habits of the hill-tribes of this part of India; and I long ago came to the conclusion that here at least the object of the pile-dwelling; was simply to attain in the easiest way a floor which should be exempt from the damp exhalations of a tropical soil.

James Dallas

"Probable Nature of the Internal Symmetry of Crystals"

Under this head Mr. Barlow has pullished in Nature of December 20 and 27, 1883 (pp. 186 and 205) an interesting and ingenious memoir. The subject being very important, but also very difficult and intricate, a discussion of the new theory may perhaps contribate to render our ideas a little more precise.

Whilst Haïy, Frankenheim, Delafosse, Bravais, and others think a crystal huilt up of mere congruent particles, which may be either the chemical molecules or rather certain aggregates of them, Mr. Bailow considers the arrangement of the different chemical atoms in the interior of a crystallised compound, and illustrates some facts by this manner of viewing them. I purpose in the following submitting some objections which arise against the deductions of the author. These objections are of a geometrical, chemical, and physical nature; let us begin with the geometrical ones.

The first prollem of Mr. Barlow is "to inquire what very symmetrical arrangements of points or particles in space are possible." He comes to this result : "It would appear that there are but five." Then he describes these five arrangements. What conditions are to be fulfilled by an arrangement of points in space which is to be "very symmetrical," is nowhere said. According to this indefiniteness of the fundamental notion, the five kinds of very symmetrical arrangement seem to be found rather by divination than by systematic reasoning. Therefore the foundation of the theory appears somewhat arbitrary; and we may suspect that it is incomplete. We are in fact confiumed in this presumption if we consider the results of a geometric research pablished in my "Entwickelung einer Theorie der Krystallstruktur" (Leipzig: Teubner, 1879). In this book I have specified all possible arrangements of points that are regular and infinite, I have called a system of points regular if the points are disposed around every one point of the system in precisely the same manner as around every other. There are sixty-six such regular systems of points possible. According to the peculiarity of their symmetry they are subdivided into groups, which correspond strictly to the known crystallographic systems. Many of those arrangements of points have a hemiliedric or tetartohedric character; others have the structure of a screw; and amongst the latter I could even suggest one particular system which represents the internal structure of quartz. The latter result was obtained (Voc. cil. pp. 238-245) by comparing the crystallographical and optical properties of quartz with those of the known combination of thin laminse of mica arranged in the manner of winding-stairs, described by Prof. Reusch fourteen years ago. All sixty-six systems are in agreement with the principal law of crystallograply, the law of rational segments of the axes (Wiedemann, Annalcon dar Physiz, 1882 , vol. xvi. p. 489). For example, if we have reason to suppose that a certain one of these systems should represent the structure of a given substance crystallising in hexagonal pyramids, then we derive geometrically the same series of posible pyramids which nature actually exhibits.

Four of Mr. Barlow's five kinds of "very symmetrical arrangements" prove to be extremely particular cases of four general systems of mine. The first, second, and third kinds of Mr. Barlow's result from the systems which 1 have called the "rhombendodecahedric, cubic, and octahedric system with 24 -points-aggregates" ("Entwickclung," pp. 165-16S), if we suppose the twenty-four points of the so-called " 24 .punkter" csiuciding in one point, and if we identify this point with the centre of a sphere of Mr. Barlow. Mr. Barlow's fourth kind of "very symmetrical arrangements" results as a particular case from wy "3 gängiges 6-puakt-schraubensystem" (Voc. cif., Fig. 46), if the sides of all hexagons are supposed to touch one another, and the layers to have convenient distances. Mr. Barlow's fifth kind of symmetry, not being regular in the sense defined above, cannot be found amongst my sixty-six systems. Though every point is surrounded by six neighbouring points at equal distances, the latter have not throughout an identical arrangewent. Every point of the first, third, fifth, \&c., layers is situated at the centre of a perpendicular prism (with regular triangular base) whose angles bear the six neighbouring points of the system, but around cvery point of the second, fourth, sixth, \&c., layers, the six neighbouring points are situated at the angles of two regular triangles, which do not lie parallel over one another as before, one of them being turned round in its plane 60°.
As my sixty-six systems comprise four of Mr. Barlow's kinds of symmetry, it may be expected that they include other arrangements besides, which may also pass as "very symmetrical." For example, in a cubic aggregate of points, the centres of the edjes of all cubes determine a very symmetrical arrangement of points, where every point has equal distances from the next eight surrounding points (cf. "Entwickelung," \&c., p. *an" From this I believe I have shown that the geometrical if dation of Mr. Barlow's theory is somewhat arbitrary incomplete.

I now come to the chemical objections, which I will explain by an example. A chemical compound of two kinds of atoms, present in equal number-for example NaCl -could, according to Mr. Barlow, crystallise into the first or second of his five kinds of symmetry, for either of these two kinds allows the regular arrangement of two kinds of particles in equal number. In the first kind of symmetry (for example) spheres are so arranged that they constitute a cubic system of points, in which the centre of each cube bears also a point of the system. By putting atoms of one kind (Na) on the angles, and atoms of the other kind (Cl) on the centres of the cubes, we have built up the structure of a crystal of NaCl . Thus cight atoms of Na stand in exactly identical manner around an atom of Cl (and also eight atoms of Cl around an atom of Na). The atom of Cl seems consequently to be in equally close connection with eight atoms of Na ; it has exactly the same relation to these eight atoms. It appears therefore as octovalcnt, certainly not as univalent ; for it would be entirely arbitrayy to suppose any two neighbouring atoms of NaCl in an e-pecially close connection and to take this couple for the chemical inolecule of NaCl . By this example we see that from Mr. Barlow's point of view both the notion of shemical valency and of chemical molecule completely lose their tresent import for the crysfallised statc. This objection, of course, will not destroy the theory of Mr. Barlow, since chemical valency does not yet belong to perfectly clear and fixed notions, and since the idea of the chemical molecule in a erystal is also not evident and clear. The suthor, however, is at all events obliged to show why these two notions, of such great moment for sabstances in a gaseous state, should become completely insignificant, as soon as crystallised bodies are in question.

Finally for a physical objection. With respect to the fact that most sulstances change their volume in congealing, Mr. Barlow admits that the atoms themselves undergo an expansion (positive or negative) in the act of crystallisation. Thus he attributes to the atoms variability of volume, i.e. one of those qualities, for the explanation of which the atomic theory has been devised. Well, let it be so, but this hypothesis of atomic expansion is not even found sufficient everywhere, but must be assisted occasionally by auxiliary hypotheses. Thus for explaining the isomorphism of substances which contain atoms of the same kind (e.g. CaCO_{3} and FeCO_{3}) Mr. Barlow supposes that the expansion in the act of crystallising is confined to the common atoms, whilst the different atoms in boih substances remain unaltered.
All these objections do not overthrow the author's theory, but they shake it. Perhaps they will induce Mr. Barlow to establish
his theory in a more solid and more general way, and in this case also I shall have altained my aim. L. Sohncke

Universily of Jena

Holothurians

THE observations which I made in 1883 among the coral-reefs of the Solomon Group on the habits of the Holothurians support the view that these animals do not subsist on living coral. I carefully examined the material voided by about twenty individuals, and found its composition to be of a mixed character. In addition to the calcareous sand and gravel which formed its bulk, there were numerous tests of the large foraminifer-Orbi-tolites-and several small univalve and bivalve shells, besides the joints of a stony alga and the operculum of a young nerite, \&c. This observation is supplementary to those contained in my previous letter on this subject (NATURE, vol. xxvii. p. 7).

Traders in this group tell me that when collecting a species known in the trade as the "large tit-fish," they have frequently found a small eel inside the animal, which usually escaped before it could be secured. One man received a smart electric shock, whilst handling a trepang containing one of these eels.
H. B. Guppy

> H.M.S. Lark, Auckland, N.Z., January I

Unconscious Bias in Walking

Surely Mr. W, G. Simpson has written from imperfect memory when he tells us in Nature (vol. xxix. p. 356), "if the majority of people, as Mr. Darwin argues, are left-legged, they would circle to the leff in a mist, as Mr. Larden says they do." In Mr. Larden's letter ($\mathrm{p}, 262$) the following passage occurs: "This theory (his own) involving as further consequences that those in whom the left leg is the strongest would circle to the right," \&c.; again, "I myself am right-legged and in a mist I always circle to the left." Although Mr. Simpson has misquoted Mr . Larden, he bas arrived at the same conclusion that I did (zee Nature for January 31, p. 3:1), but gives his views in different word", namely, that "there is a bias tovorads the stronger limb, irrespective of length."

John Rak

The Storm of January 26

THE lowest reading, reduced to the sea-level, of the barometer here, about six miles south-east of Omagh, during the gale on Saturday, the 261 h ult., was $27^{\circ} 68$, and occurred at $4.15 \mathrm{p} . \mathrm{m}$. Dublin time.

Robert Dixon
Clogherny, Beragh

PALESTINE EXPLORATION

THE following communication has been forwarded to us for publication :-

Mediterranean Hotel, Ferusalem, Fanuary 18, 1884

Dear Professor Oliver,-A chest in a waterproof cover leaves here to-morrow for London to Messrs. Cook and Son, Ludgate Circus. It should arrive on February 25 or sooner, and I have directed that it should be forwarded immediately to Kew. I hope to arrive soon after. It contains all my dried plants. They are made up in various packages, with localities written outside. Of course you will have them kept dry and looked after, but I think they had better not be overhauled until I come, as I should like to open them as they are, while the eontents of each package and its associations are fresh in my memory. The earlier desert plants are in many cases only valuable for recognition, I fear, as they are withered remains, but I frequently obtained a lingering flower and many seeds. All my seeds and bulbs I have sent according to promise to Mr. Burbidge, of the College Botanic Garden, Dublin. In the mountains about Sinai and Jebel Catherine I obtained better specimens, and things gradually improved to Akaba. We got through a good deal of unexplored country and had a most efficient conductor. Along the Wady Arabah I made frequent detours into the mountains on either side, and was espe-
cially fortunate in having a good collection on Mount Hor and at Petra and its neighbourhood. The flora of Mount Hor (5000 feet) is extremely rich-a warm sandstone. I also collected mosses and lichens in the desert, and am still gathering all I can. My collections reach to here, including a run down to the Jordan. The pace is now (horses) often too rapid, but the camel was an admirable companion on a long march. We were delayed in the Ghor-en-Safiet, at the south-east end of the Dead Sea for ten days, an unparalleled sojourn in this most interesting place. It was early a little, but I made large collections there, and was very glad of the difficulties that opposed our departure. I found many unexpected plants -three ferns, for instance, on Mount Hor, and a Stapelia. I knew the names of very few of the things, and had no books, but Redhead and Lowne's papers were a help, though they gave a very poor idea of the real state of affairs. There is a fine Acacia in the Ghor-en-Safiet, distinct in many respects and far finer than A. scyal. It is the true "scent" about which there seems a lot of confusion. Hoping my collections will be satisfactory, I remain yours very truly,
(Signed) Henry Chichester Hart
P.S.-Here in Jerusalem there are about six plants in flower ; down below in the Jordan I gathered about a hundred two days ago I
(Signed) H.

FAIRY RINGS

THE dark green circles of grass known as "fairy rings" formed the subject of a paper in the Philosophical Transactions of the new-born Royal Society in 1675 ; but it was only last year that the Rothamsted chemists, Messrs. Lawes, Gilbert, and Warington, announced what is no doubt a correct explanation of these phenomena.

The original theory of the electrical origin of the rings was succeeded by that of "chemical causes" propounded by Dr. Wollaston at a meeting of the Royal Society in 1807 , and by Prof. Way in a paper read to the British Association in 1846. Besides the "mineral theory " which was here pressed into the service of a discussion that commenced, as already stated, more than two hundred years ago, De Candolle applied his famous "excretory theory" to its elucidation. At Rothamsted, however, the causes of fairy rings were still regarded as having been unsatisfactorily explained.

Sir John B. Lawes and his colleague Dr. Gilbert commenced their inquiries on this subject many years ago. Almost from the commencement of their experiments at Rothamsted they had regarded the alternate growth of fungi and grass as a striking example of what may be called the "natural rotation" of crops. As long ago as 1851 they described fairy rings in the Fournal of the Royal Agricultural Society as "a beautiful illustra. tion of the dependence for luxuriant, growth of one plant upon another of different habits." It will be remembered that the experiments at Rothamsted led to the substitution of what is called the "nitrogen theory" for the "mineral theory" of former days, and practical agriculturists who know the value and the cost of nitrogen as an all-important agent of fertility will learn, perhaps without surprise, that the rich verdure of a fairy ring is due to the effect of nitrogen. Nitrogen is the sine gud non of plant growth, and fungi require a large amount of it. From what source do they obtain it? At the present time few, if any, chemists would maintain that they obtained it by the absorption of free nitrogen from the atmosphere, but in 1851 the eminent investigators at Rothamsted attributed the nitrogen of the fungi to their extraordinary power of accumulating that substance from the atmosphere ; and this they thought enabled them to take up the minerals which the grasses, owing to
their more limited power of obtaining nitrogen, could not appropriate from the soil. They assumed that it was the nitrogen rather than the mineral constituents of the fungi to which the manuring action was mainly to be attributed, and in this they were right; but the theory has required some correction nevertheless, inasmuch as they have since proved the source of nitrogen in the fungi to be the soil, not the atmosphere.

As doubts were entertained at first on this point, direct experiments were tried at Rothamsted, and in 1874 samples of soil were taken within a fairy ring, immediately upon it, and outside, and these yielded on analysis the lowest percentage of nitrogen in the soil within the ring, a higher percentage under the ring, and a higher still outside it. The soil therefore had lost nitrogen by the growth of the fungi, and the obvious conclusion was that the fungi possess a greater power than the grasses of abstracting nitrogen from the soil.
The analyses of the various species of fairy-ring fungi do not greatly differ. Two species occurring at Rotham-sted-Agaricus prunulus and Marasmius orcadumcontain nitrogenous compounds to the amount of onethird of their dry substance, the ash being rich in potash and phosphoric acid. Their occurrence on pastures, like that of the common mushroom, is probably due to the manuring of the ground by animals and their continuance and growth depend on certain conditions of soil and season. They are rarely developed on rich soils, or on those which are highly manured, or in seasons favourable to the general herbage of the turf; and when they do appear under these conditions they will probably not be reproduced, or only in patches. The recent wet seasons have dispersed fairy rings in situations where they have usually proved persistent. They prevail wherever the growth of the grasses is inferior, especially on the poor downs of the chalk districts, and on poor sandy soils where the natural herbage is wanting in vigour.
The history of fairy rings, as it has now been written at Rothamsted, will attract close attention from all who are interested in the nutrition of plants, including the student of agriculture, and all, in fact, who are specially concerned in the question of the food supply. It was not previously known that any kind of plant could feed directly on the organic nitrogen of the soil itself. It was recognised that the root-development of plants differed, and that the greater extension of their roots enabled some plants to secure a larger proportion of the constituents of the soil than others. But here is a race of plants possessing quite unsuspected powers of assimilation! Instead of rising from the ashes of the phcenix they feed upon its undecayed body, that is, upon the organic nitrogen of the soil. The Leguminosa, for example, such as beans and clover, are known to assimilate more nitrogen from a given soil than the Graminea, such as wheat and barley, and this has been attributed to absorption by their leaves, or to the superior development of their roots. Another alternative is now suggested, and possibly a new departure may be taken in the science of agriculture, as the result of the recent discoveries in connection with fairy rings.

A CHEAP INSULATING SUPPORT

INSULATING-SUPPORTS are so indispensable in the work of an electric laboratory that several forms have come into extensive use. The plan devised by Sir W. Thomson for securing high insulation by surrounding a glass stem with concentrated sulphuric acid to absorb the moisture which otherwise would condense from the air and form a conducting film over the surface of the glass is remarkably efficient, and has many advantages. Modifications of this form of insulator have been largely used by Prof. Clifton, F.R.S., in the Clarendon Laboratory, and by Profs. Ayrton and Perry in the laboratories of the Technical College at Finsbury. Another modification
due to M. Mascart, was described in Nature, vol. xviii. p. 44; and this pattern has come into extensive uve under the name of the support isolant Mascart. Though excellent in every way it is very expensive, as its manufacture necessitates a special piece of glass-blowing. The central support of glass is solidly fused into the bottom of a glass vessel with a very narrow neck into which acid is poured through a tubulure at the side.
The insulating support which I have recently described before the Physical Society of London is a much simpler affair, and can be made very quickly and cheaply fron the materials at hand in every laboratory. The figure shows the form of the support. A wide-mouthed glass bottle, e, about 10 cm . high, and from 5 to 6 cm . diameter, is selected. A piece of stout glass tubing about 20 cm . long is then taken. One end is closed in the blowpipe flame, and blown into a thick bulb; and while yet hot the bulb is flattened, so as to form a foot for the stem. The flattened bulb should be as large as is compatible with its insertion into the mouth of the bottle. To hold it in its

place some paraffin wax is melted in the bottle-from 50 to 70 grm . is quite sufficient-and when it has cooled so as nearly to have become solid the stem, previously warmed, is inserted. When cool, the paraffin holds the stem firmly in its place. To keep out the dust a disk cut out of sheet guttapercha is fitted on as a lid. If dipped into hot water for a minute it can be moulded to the required form. It fits loose-tight upon the stem, as shown at C , and when the stand is not in use is slid down over the mouth of the botle. A brass disk, A, having a short brass stem, B, below it, slips into the upper open end of the tube, and forms the top of the stand. It is also found convenient to make from rods of glass other supports, shaped at the top in the form of hooks, which can be slipped down into the central tube. These are very useful for holding up wires that pass over the experimenting table and require to be well insulated. The bottle is let into a wooden foot, G. In cases where very perfect insulation is required I have poured a little strong sulphuric acid into the bottle above the paraffin. In practice, however, the insulation of the paraffin is amply sufficient for most purposes, provided dust is properly excluded.

Silvanus P. Thompson

JOHN HUTTON BALFOUR

IN Prof. Balfour, whose death we announced in our last issue (p .365), has passed away another of that group of eminent teachers, including Goodsir, Syme

Simpson, Christison, \&e., which maintained the reputation and added lustre to the fame and prestige of the Medical School in our great northern University during the middle decades of this century; one, too, of that band of working British botanists of the first half of the century which counted amongst its members the Hookers, Munby, Carmichael, Greville, Walker Arnott, Babington, Parnell, Prior, the Macnabs, \&c., the majority of whom have now left us; and where are their successors? By his death a figure-in later years picturesque with grey locks and patriarchal beard-familiar all over Scotland, and where scientific men do congregate, has been removed. Few men were more universally esteemed and popular, and few quit their sphere of active and busy life leaving behind them more pleasant reminiscences than he whose decease we have recorded. Compelled by failing health to retire about five years ago from public life, his powers since then gradually weakened, until on the 1 Ith inst. he quietly breathed his last.

John Hutton Balfour was born in Edinburgh on September 15, 1808. Related, as his name indicates, to James Hutton, the famous author of "The Theory of the Earth," he possessed much of the enthusiasm and fire which characterised his ancestor. His early education was completed at the High School of Edinburgh, then at the zenith of its reputation, under Pillans and Carson, and he subsequently studied in the Universities of Edinburgh and St. Andrews, in the former of which he graduated in Arts and Medicine. His first intention appears to have been to enter the Church, and to this aim his studies were directed; but he afterwards abandoned this purpose and commenced to practise modicine in Edinburgh, having spent some preparatory time in Continental schools, and having become a Fellow of the Royal College of Surgeons of Edinburgh. During his early years he was devoted to botany, and his taste received a great stimulus by the teaching and example of Graham, then Professor of Botany in the University of Edinburgh. Whilst engaged in the active work of his profession, he found time to foster his bent and love for nature, and gathered around him many of those who, like himself, were keen students of natural science, and thus was formed the nucleus of the Botanical Society of Edinburgh, of which he was, in 1836, the founder-a socicty which has done much to promote the study of botany in Scotland, and in which, throughout his whole life, he was a guiding spirit. In 1840 Balfour found time amidst his medical duties to commence lecturing on botany in Edinburgh, and his ability as a lecturer was at once proved by the large numbers attracted to his classes. But it was not until 1842, when he was appointed to the Chair of Botany in the University of Glasgow, vacated by the translation of Sir William Hooker to Kew, that he was able to give up medicine, and devote himself solely to botany. After four years in Glasgow, the death of Prof. Graham made an opening in the East of Scotland, and Balfour was elected Professor of Botany in the University of Edinburgb, shortly thereafter obtaining the appointments of Regius Keeper of the Royal Botanic Garden and Queen's Botanist for Scotland. Subsequently he undertook the duties of Dean of the Medical Faculty in the University, and his energy on behalf of the Royal Society of Edinburgh led to his appointment as Secretary. From all these positions he retired in 1879, when a fitting tribute to the value of his services was paid by the presentation of his portrait, and he was then elected Assessor in the University Court for the General Council, and each of the three Universities with which he had been connected conferred on him the degree of LL.D. For many years he was an F.R.S., and also a member of a vast number of British and foreign scientific societies.

As a botanical investigator Balfour was a systematist, belonging to that school which is now, by a species of reaction, often held in contempt by those within whose
reach the modern developments of physics and chemistry have placed methods of morphological and physiologicai research denied their predecessors. He had an acute perception of resemblances and a keen eye for a species But it is not upon his original investigations that Balfour's reputation rests; his work of that character was not extensive, for the time which might have been devoted to it was fully occupied by his official duties as Dean of the Medical Faculty and Secretary of the Royal Society, and he was one of those who sacrificed scientific laurels for the good of the institutions he served. But as a teacher his fame was world-wide, and as a great teacher he will be remembered. He had in a remarkable degree the power of lucid exposition, and the inestimable qualification of infusing in his pupils the enthusiasm which possessed himself. Painstaking and conscientious in his work, no trouble was too great for bim if it could contribute to the better comprehension by his students of the subject taught, and the wealth of illustration and the carnestness of manner which clothed his lectures impressed all who heard him. Though the natural cast of his own mind made taxonomy his favourite branch of botany, yet in his teaching, especially in his carlier ycars, this was given no undue prominence ; his success, indeed, was in great part due to the way in which all branches of the science were handled, and he had the eredit of being the first to introduce in Edinburgh classes for practical instruction in the use of the microscope. His text-books reflect the character of his teaching, and "if," as a critic remarked on their first appearance, "we recall the dry and dictionary-like manuals to which students were forced to have recourse in our young days-as inviting as so many pages of Johnson's Dictionary - we can but envy their successors." In later years his books and he himself fell behind-and who does not ?-in the rapid march of science ; but any onc examining his books cannot fail to recognise how thoroughly they represent the state of science at their date of publication, and to appreciate the industry and the skill with which the author seems to bave exhausted every source of information.
Another feature of Balfour's teaehing was the "excursion." Amongst the 8000 students whom it was his pride to have passed through his classes will be many to whom the announcement of his death will recall pleasant recollections of these outings on hill and in glen; how, as they neared the habitat of some rare Alpine herb, the wiry and energetic Professor-"Woody Fibre" as they called him -would outstrip all in his eagerness to secure it ; or how, toiling up some long barren slope, his constant flow of jokes and puns would enliven and rouse their flagging spirits. In these rambles, to which many will look back as not only healthful and recreative, but as. giving them their first lessons in accurate observation of nature, Balfour visited almost every part of Scotland, ascended every important peak, and gathered every rarity in the flora. No one knew Scotland and its plants better. In this way Balfour became associated with his students in a way no other Professor did, and his position as Dean of the Medical Faculty brought him still more in contact with them. The Rhadamanthus of the examination-ball he enjoyed a unique popularity, and the esteem with which old pupils regarded him may be traced to the intimate relationships thus established, to the way he identified himself with and interested himself in them and showed himself always anxious to merge the professor in the friend. In all he did Balfour was methodical, and bis powers of organisation and administration found exercise in the management of the Royal Botanic Gardens, which, under his direction and with the Macnabs-father and son-as curators, was greatly increased in extent, provided with a magnificent palm-house and other planthouses, as well as with a botanical museum and improved teaching accommodation, and made one of the finest in the country. The latest addition to the garden-the
arboretum-accomplished just before he retired from public life, was part of a scheme (perhaps chimerical) he encouraged with the view of establishing a School of Forestry in Edinburgh-a scheme now receiving some attention in Scotland.
Ready and rapid with his pen, Balfour's contributions to botanical and other literature are very numerous. Besides contributing to several Encyclopadias, he was for many years one of the editors of the Annals of Natural History and of the E.tinburgh New Philosophical Fournal. Of independent works, his text-books, to which we have already alluded, were very popular in their day, and are now valuable for reference, and he published works on Botany and Religion, Plants of the Bible, \&c.
We should fail to give an adequate idea of the veteran Professor were we not to allude to that which gave a character to all he did-his religion. To him all nature was a symbol. He was one of that band of which Faraday, Clerk Maxwell, Greville, Wm. Allen Miller, and others were in the van, who "recognised the harmony between the word and the works of God," and who saw "in the objects of nature around indubitable evidences of a great designing mind."

By those who knew him-and his was a wide circle of friends-he will be remembered as a genial companion with the best attributes of humanity, and his name will always remain inseparably linked with the progress of botany in Scotland during this century, and as that of one of the eminent teachers in the University and city to which he belonged.

CAPTAIN HOFFMEYER

IN the early death of Niels Hoffmeyer, which occurred at Copenhagen on the 16 th inst., modern meteorology has lost one of its most diligent and successful students, and one whose place it will be bard to fill.
Like more than one of our own physicists, Hoffmeyer was an artillery officer, and had attained the rank of captain in the service. At the elose of the Prussian war he had fallen into bad health, and accordingly, on the reduction of the Danish army which then ensued, his name was placed on the retired list, and he was for a time unoccupied.
The Danish Meteorological Institute was organised in 1872, and Hoffmeyer was nominated its first director. There could scarcely have been a more fortunate appointment, for Hoffineyer was gifted not only with unusual energy, but also with a very pleasant manner, so that he made friends for the new office and for its work wherever he went. He will be:t be known by his Atlas. He undertook to prepare daily weather-maps of the Atlantic-in great measure at his own expense-and he actually published them for a period of three and a quarter years, from September, 1873 , to November, 1876. It is only a few months ago that he announced his intention to resume the work in combination with Dr. Neumayer, of the Deutsche Seewarte at Hamburg.
The most important results which Hoffmeyer had deduced from his own maps were contained in his pamphlet, "Étude sur les Tempêtes del"Atlantique Septentrional, et Projet d'un Service Télégraphique International Relatif à cet Océan," Copenhagen, 1880 ; and up to the very last he never ceased to use his utmost efforts for the establishment of a metcorological telegraphic service with America, via the Faroes and Iceland.

While Hoffmeyer's chief work was in the domain of synoptic meteorology, he by no means disregarded climatology, and the service wbich the Danish Office has rendered to that science by the maintenance of stations in Iceland and Greenland has been very material.
When Capt. Hoffmeyer was in London last summer as Danish Commissioner to the Fisheries Exhibition, he was complaining of great weakness of the heart. During

December he was laid by for some time, but he had somewhat recovered, when he was seized last week with rheumatic fever, to which he soon fell a victim. He leaves a widow, but no children. He was an Honorary Member of the Royal Meteorological Society (London). He had been one of the secretaries of the Meteorological Congress at Rome, 1879, and of the Conference on Maritime Meteorology in London, 1874, but his chief official service of this nature was as Secretary to the International Polar Commission, where his loss, coming after that of Weyprecht, will be severely felt.

NOTES

The Council of the Royal Society of Edinburgh bas awarded the Keith Prize for the biennial period $\mathbf{1 8 8 1} \mathbf{- 8 3}$ to Mr . Thomas Muir for his researches into the theory of determinants and continued fracions, the most recent instalment of results obtained by him being in a paper on permanent symmetric functions. Also the Macdougall-Brisbane Prize for the period 1880-82 to Prof. James Geikie for his contributions to the geology of the north-west of Europe, including his paper on the geology of the Faröes, published in the 7 ransactions of the Society, 1880-8r. And the Neill Prize for the Iriennial period 1880-83 to Prof. Herdman for his papers in the Proceedings and Transactions on the Tunicata.

We learn from the Slandard that the Royal Astronomical Society has awarded Mr. Ainslie Common its gold medal for his photographs of celestial bodies. This high award has, it is believed, been mainly bestowed on account of the magnificent photograph he has succeeded in taking of the great nebula in Orion, of which we gave an illustration in a recent number.
We regret to learn of the death of M. T. du Moncel, editor of La Lumiere Electrique, and author of numerous works in theoretical and practical electricity.
THE needs of the bigher education of women in London are gradually being met in the manner that has been found'so satis* factory at Oxford and Cambridge, where women students have long enjoyed the advantages of collegiate life. On Monday, February 11, there was a gathering of many of the most influential friends of the movement to inspect an important extension of the College Hall of Kesidence established at Byng Place, Gordon Square, in October 1852. The success which attended the first development of the scheme, and the growing demand on the part of students for admission, has encouraged the commistee to provide additional accommodation by adapting the adjoining house, No. 2, Byng Place. With the new extension they look forward to a yearly surplus instead of a deficit. With the power of accommodating thirteen extra students the receipts would be increased by 876%. for the short session, and there would not be a proportionate increase in the expenditure. The advantage of holding the two houses is therefore evident. The second house was opened at the commencement of the current term, and there are now seventeen students in residence. Of this number two are pursuing the course of instruction provided at University College for the B.A. degree, two that for the matriculation examination of the London University, and another, a foreign lady, is a student of English literature at the same college; another student is preparing for the examination of the Pharmaceutical Society. Four ladics are students of the London School of Medicine for Women, and preparing for the M.B. degree (Lond.), and the remainder are studying art at the Slade School and elsewhere. The first student of the Hall who went up for the examination for the B.A. degree pas-ed successfully last October, and has now an appoimment as teacher at a school in York. The expenses for board and residence vary, according to the size and position of the room occupied, from 51 to 75 guineas for the

University College session of about thirty-three weeks. Even these fees, moderate as they are, are beyond the means of a large nnmber of students, so that the eommittee, withont such a sistance as would be afforded by exhibitions, are unable to extend to them the advantages of the Hall. Besides help in this direction a need is felt for a referenee library, as the books necessary for many of the courses at University College and the School of Medieine are numerous and costly. A special fund has been started for this purpose, and it is hoped that further snbscriptions may be obtained. It is worth mention that the eommittee have recognised a principle which, so far as we know, has never been adopted in institutions of this kind. We refer to the representation of students on the governing body. This liberal measure, which invites the cooperation of students and gives them a means for the legitimate expreasion of opinion, will enable the students in residence to have a member elected annually as their representative on the committee. It is hoped that the benefit of this may be felt in strengthening the bond of a common interest. We have not tonched on many of the advantages of the Hall which are felt by those who know the difficulties incident on a student's life in lodgings, as they were dwelt upon when we recorded in this jonrnal the commencement of the scheme in the winter of 1882. It is therefore only necessary to state that the Hall in its enlarged scale offers the same eomfortable and well adapted academie residence as that originally provided, and that under Miss Grove, the able principal, the high tone which has marked the institntion from the beginning is still maintained. When we point out that the scheme has received the support of the late and present Presidents of the Koyal Society, the late Sir William Siemens, Sir John Lubbock, M.P., Mr. Samuelson, M.P., Dr. Gladstone, Prof. Carey Foster, and many o hers, we have said enough to commend it to all our readers. In the nature of things Science and Art, as well as Literature, will gain by this and similar attempts to put the higher education on a more satisfactory basis.

Dr. Revich has eommunicated to Naturen the result of his analysis of a portion of volcanic ash from the Krakatoa eruption, given him by Prof. Kjerulf, who had receivel it direet from Batavia. He finds the principal constituents of the ash to be ordinary pumiee-stone, s me fragments of which are more than 1 mm . in length, while others are rednced to a condition of colourless or slightly brownish vitreous pumiee-powder. Intermixed in the general mass are fragments of larger crystals of felspar (Plagioklas) and of some rhomboidal mineral of the natare of augite.

At a meeting of the Norfolk and Norwieh Naturalists' Society on the 29th ult., an account was read from the Peth Enquirer of a volcanic eruption in Western Australia, contributed by a highly respected settler who had lived in that distriet some years. The phenomenon be describes was witnessed by him on the same day as that on which the calamity occurred in the Sunda Straits, although be was in total ignorance of that disturbance at the time. He writes:-" I was travelling inland whth a flock of sheep, when late in the afternoon of Saturday, August 25, to my profound astonishment, a shower of fine ashes began to rain upon me and my party. The fall of the ashes commenced just about sunset, and the shower, which was at first but very slight, soon became thicker, until it resulted in a steady and heavy rain of light calcined fragments. After the sun set I noticed a bright ruddy glare on the horizon towards the north-east; this was at first only just perceptible, but as the time wore on it increased In both brilliancy and extent. The glare was not at all diffused, and it was of such a nature that it was impossible to mistake it for a display of the Aurona Australis. On the contrary, I could easily see that the soarce of the glare was strictly circnmeribed,
or, in other words, it was confined to one spot; but as it increased in intensity the fervid glow mounted higher and higher in the heavens. So far as I could roughly calculate, the sours of this extraordinary illumination must have been situated about 400 miles inland to the north east of Roeburne. The showers of ashes ceased just after sunset, and I observed that the steady glare was still to be seen until before sunrise, but as the sun soce the lorid appearance of that portion of the horiz in gradually decreased, and at last quite died away when the orb of day made its appearance. Fortunately, I afterwards had an opportunity of questioning some natives who had recently come from that pan of the country, and they described the cause of the glare plainly enough. 'Big mountain burn up big,' they said; and then they added, 'He big one sick. Throw him up red stuff, it run down side and burn grass and trees. We frightened and run away, and fire-stieks (i.e. I presume the ashes) fall on us. Two three days after we go loak again; mountain only smoke then, and red siek turued black and hard, just like stone.' A plainer description of a voleano in a state of eruption could hardly be given by uncivilised beings; and 1 am therefure compelled to eonclude that I was the far-distant witness of the first eruption of a voleano that has occurred in Anstralia within the memory of living men."

Nine lectures on the prineipal types of the haman species will be delivered in the theatre of the Royal College of Surgeons, on Mondays, Wednesdays, and Fridays, at 4 o'clock, commencing on Monday, February 25, by Prof. W. H. Flower, LL.D., F.R.S., as follows :-Introduction, anthropology and ethnolozy ; Physical or zoological anthropology ; Nature and extem of the differenees between the permanent types or races of meth Illustrated by comparison between the European and the Tar manian native; Methods of estimating the differential characters of the various modifeations of the hnman species, elements of craniometry ; Characteristics of the black, or frizzly-haired races, in their typical and modified forms; Characteristics of the yellow, or so-called Mongolian raees; Characteristics of the white, or so-ealled Caucasian races; Races not readily grouped under either of the above principal types ; Classification of the races of the haman species. The conrse will conclade on Friday, March 14.

We regret to learn that the Couneil of the Geographical Society have decided to discontinue the examinations which they have held for a number of years for papils attending our pablic schools. The number of candidates has been dimini-hing every year. The Council are, we understand, considering a scbear for establishing a Professorship of Geography; but, while we recognise their anxiety to promote in this way their brach of science, we confess that we are doubtful if this is the beit means of attaining the object. The sphere of geography is at present quite undefined; ln Germany it embraces something of nexily every science, while in this conntry it is often regarded as almost synonymous with topography.

Preparations for the bolding of the International Health Exhibition are proceeding rapidly. The General Committee now nombers nearly 400 members, and from these 17 Snb -Committes have been formed. These have all been doing valuable work in advising the Executive Council as to the nature of objects which It is desirable should be fully illustrated, in obtaining the es operation of many persons of eminence in the various branches on which the Exhibition will treat, and in sapervising the applications for space. The allotment of space, which bas bees largely applied for, is being rapidly proceeded with, and spplicants will soon be informed of the decision of the Executive Couneil with regard to their applications. In response to a reqnest made by His Royal Highness the Prince of Wales, President of the Exhibition, the eight Water Companies of London
have resolved to exhibit, in a pavilion which is being erected for them, their appliances for the supply, filtration, \&c., of water, together with diagrams showing the various processes and localities ; and a powerful Sub-Committee, under the active chairmanship of Col. Sir Francis Bolton, has been formed to carry out this branch of the Exhibition. The Water Companies have also determined to put up in the grounds a large fountain, which will be illuminated at night by electricity. It is impossible, as yet, to give any defnite information with regard to foreign countries; but, so far as one can judge at present, Belgium, China, and India will be the best represented.

According to information received in St. Petersburg everything is well with the Russian Meteorological Expedition wintering at Cape Sagasta at the mouth of the Lena. Every preparation was made last autumn for the wintering-the second one-the Governor of Yakutsk having provisioned the station most plentifully. During the previous winter-1882-83-the cold was rarely before January $40^{\circ} \mathrm{C}$. below zero, but in January and February the thermometer frequently fell lower. The greatest cold occurred on February 9, when it fell to $52 \cdot 3^{\circ} \mathrm{C}$. below zero. In March even the cold was 40° in the night and 19° in the day. One of the members of the expedition, Dr. Bunge, has forwarded to St. Petersburg some valuable reports on the fauna in and about the mouth of the Lena.

The Academy of Sciences has received a requisition from M. Ferry to appoint three delegates to the International Commission which is to meet at Washington on October 1 next in order to determine the choice of a firt meridian. It is the first time that places have been offered to the Academy on a diplomatic commission.

Pror. Hull, who has returned with his party, brings with him, it is stated, materials for the construction of a geological map of the Holy Land very much in advance of anything which coald hitherto be attempted. He is reported to have traced the ancient margin of the Gulfs of Suez and Akaba to a height of 200 feet above their present level, oo that, according to Prof. Hull, the whole country has been submerged to tha! extent, and has been gradualiy rising. As one result of this rise, the Professor is of opinion that at the time of the Exodus there was a continuous connection of the Mediterranean and the Red Sea. As regards the Dead Sea, Prof. Hull believes he has discovered that it formerly stood at an elevation of 1400 feet above its present level-tbat is to say, 150 feet above the level of the Mediterranean. The history of this gradual lowering of the waters will form a special feature in Prof. Hull's fortbcoming report. He belicves he has also found evidences of a chain of ancient lakes in the Sinaitic district, and of another chain in the centre of the Wady Arabah, not far from the watershed. The great line of the depression of the Wady Arabah and the Jordan Valley bas been traced to a distance of more than a bundred miles. The materials for working out a conplete theory of the origin of this remarkable depression are stated to be now available. They are bound to differ in many details from the one furnished by Lortet, whose patient observations have hitherto been received with respect. The terraces of the Jordan have been examined, the most important one being 600 feet above the present surface of the Dead Sea. The relation of the terraces to the surrounding hills and valleys shows, according to Prof. Hull, that these features had already been formed before the waters had reached their former $l_{\text {evel. . Sections have been carried east and west across the }}$ Arabab and Jordan Valley. Two traverses of Palestine have also been made from the Mediterranean to the Jordan. Prof, Hull has in hand, besides his scientific report, a popular account of his journey, which will finst appear in the Transactions of the
society. Captain Kitchener's map-work is in the hands of Mr. Armstrong, who was for many years on the survey of Western Palestine. He has bimself been ordered on service up the Nile : but it is hoped that his absence will not retard the publication of a new and very interesting piece of geographical work.

We have received the following communication from the Royal Victoria Coffee Hall:-" By the kindness of the Gilehrist Trustees the Committee of the Royal Victoria Coffee Hall, Waterlos Road, have been enabled to arrange another series of Penny Science Lectures on Tuesday eveninge, as follows:March 4, Prof. H. G. Seeley, F.R.S., on Ancient English Dragons; 11, Wm. Lant Carpenter, B.Sc., F.C.S., on Air, and why we Breathe (with experiments) ; 18, P. H. Carpenter, M.A., D.Sc., on Fossils, and what they teach us; 25, Edward Clodd, on the Working-Man 100,000 Years Ago. April 1, E. B. Knobel, F.R.A.S., F.G.S., Hon.Sec.R.A.S., on the Planets ; 8, J. W. Groves, on the Dangers and Safeguards of Beauty in Animals. All the lectures will be illustrated by means of the oxyhydrogen lantern. If any of your readers can distribute handbils among working people, or cause window bills to be displayed in suitable situations, we shall be grateful for their help, and beg they will com nunicate with the Honorary Secretary. The difficulty of making anything known in this crowded, busy London is acknowledged on all hands, but it is believed that if these lectures could be made known in the right quarters, people would come long distances to hear them."

It appears from the report of Drs. Broaardel, Segond, Descout, and Magnin, who conducted the autopsy of Tourguenief, that the brain of this eminent Russian author weighed 2012 grms. This extraordinary weight, which is only known to have been exceeded in the case of Rudolphi, is inexplicable, for Tourguenief, although tall, was not of exceptionally high stature. The brain is said to have been remarkably symmetrical, and distinguiahed by the extreme amplitude of the convolutions. According to generally accepted views, however, symmetry of the circon volutions is not a favourable cerebral characteristic.

An Anthropological Society has been founded at Bordeaux with Dr. Axam as president, and Dr_{r}. Testut as vice-president; both being members of the Faculty of Medicine of Bordeaux.

A spectal commission has been established by the French Government to investigate the several processes proposed as a cure for phylloxera. It was stated officially at the last meeting of this body that every suggestion had proved abortive.

King Oscar of Sweden has personally conferred upon Mr. Carl Bock the Order of St. Olaf.
"In our issue of December 14 ," Science states, "we published an article on 'The Signal-Service and Standard Time, criticising the action of the chief signal-officer in not adopting the new standards of time at signal-service stations. We have since learned that our criticism was not well founded, as the information upon which it was based gave an incomplete idea of the position of the service in this matter. It is true that the observers of the service are still governed by the local times of their respective stations; but this is only a temporary arrangement, and will be changed as soon as possible. The reason of the delay is this: the international observation, which is taken at many stations of observation throughout the whole world, is made at $7 \mathrm{a}, \mathrm{m}$., Washington time. It is proposed to make this observation eight minutes earlier, or at $7 \mathrm{a}, \mathrm{m}$. of the time of the 75th meridian, which is exactly Greenwich noon ; but, before this change can be made, the cooperating weatherservices and numerous independent observers must first be notified, and their consent obtained. Correspondence has already been begun, and a circular letter sent to all who co-
operate in the international work asking consent to the proposed change. Favourable replies are being received; and there is little doubt that the change will be made, probably Jan. I, 1885. It should be remembered that the international observation is made largely by observers who kindly cooperate with the chief signal-officer, but who are not under his orders: a change of this kind cannot, therefore, be summarily ordered, but must be made by mutual consent."

THE Commissioners on Technical Education have now practically concluded their labours, and are likely to have only one more meeting to formally sign their Report, the greater part of which is in type. It will consist of at least five octavo volumes, it being found impracticable, even after careful consideration, to bring the mass of evidence and information within smaller compass. It is stated that any rlsumt of the series of conclusions and recommendations at which the Commission have arrived would not be useful or fully intelligible to the public without the explanatory details with which they will be accompanied. It is, however, hoped that the complete Report may be presented soon enough to permit of the House of Commons proceeding during the present session with such legislation, based upon the recommendations, as may be thought necessary. Meantime it is understood that technical training will form an important part of the measures of which the Government and Mr. A. O'Connor have given notice with regard to education in Ireland.

Messrs. W. Eagle Clarke and W. Denison Roebuck, Leeds, are preparing a supplement to their "Handbook of the Vertebrate Fauna of Yorkshire," and would be glad to have notes of additions or corrections to that work, or notices of the occurrence of any species of quadrupeds, birds, reptiles, or fishes in Yorkshire which their friends may be pleased to communicate. As they wish to publish in the April magazines, it is hoped that the desired information may be sent in immediately. Communications may be addressed to No. 9, Commercial Buildings, Park Row, Leeds.

At the Royal Institution Prof. Tyndall will begin a course of six lectures on "The Older Electricity-its Phenomena and Investigators," on Tursday next (February 2S), illustrated by experiments ; and Capt. Abney, R.E., will begin a course of six lectures on "Photographic Action, considered as the Work of Radiation," on Saturday (March 1). Prof. IIughes will give a discourse on Friday evening next, on "The Theory of Mag. netism," illustrated by experiments.

We have already referred to the International Ornithological Congress which is proposed to be held in Vienna on April 16-23, under the protectorate of the Crown Prince Rudolf. It is now announced that arrangements are in progress for an International Ornithological Exhibition, which is to precede the Congress, and which will occlipy from April 4-14. Single specimens and collections of living birds of all kinds, including domestic birds; all apparatus serving for the protection, cultivation, breeding, and conveyance of birds; implements used in bird catching and bird shooting, falconry, carrier-pigeon-post; aviaries, and bird cages; scientific objects and products which originate in or refer to the feathered world, will all be included in the programme of the Exhibition. All details will be furnished to intending exhibitors or partakers in the Congress by the Secretary of the Vienna Ornithological Society, Dr. Gustav von Hayek, III. Marokkanergasse 3 Vienna. The main subjects to be discussed at the Congress are-(1) An international law relating to the better protection of birds ; (2) the eatablishment of a system of ornithological observing stations all over the inhabited globe; and (3) investigations concerning the origin of the domestic fowl, and measures for the amelioration of the cultivation and breeding of domestic birds generally.

THe additions to the Zoological Society's Gardens during the past week include a Macaque Monkey (Macacus cynowolgus 8) from India, presented by Miss Furniss; two Common Roe (Caproolus capraea 8 8) from Dorsetshire, presented by Mesers. Charles Hambro and J. C. Manuel Pleydell ; a Passerine Owl (Glaucidiom passerinum), European, presented by Mr. G. R. Lake; a Naked-necked Iguana (Igmana delicatissimus), a Banded Basilisk (Basilicus vilfatws) from Nicaragua, presented by Mr. Albert Vidler ; two Prairic Marmots (Cynomys ludoviciannus) from North America, a Shaw's Gerbille (Gerbillus shewvii) from North Africa, a Military Macaw (Ara milifaris) from South America, two Iceland Falcons (Hierofalco islawdus) from Sweden, deposited; a Red-eared Monkey (Crcopifhecus erythrotis 8) from Fernando Po, two Slow Loris (Nycticebus tardigradus) from the Malay Countries, a Red-eyed Ground Finch (Pipilo eryitroFhalwus) from South America, an Eyebrowed Weaver Bird (IIyphantormis superciliosws) from West Africa, foar Asiatic Quails (Perdicula asiatica of 89) from India, purchased.

OUR ASTRONOMICAL COLUMN

Australian Observatories. - The eighteenth Annual Report of the Director of the Observatory at Melbourne to the Board of Visitors (who in their turn report to the Grovernor of Victoria) has been issued. The new transit-cirele was expected in a sbort time, and would find the new circle-room ready to receive it, but the instrument which had been in use for twenty years continued to give excellent and trustworthy results ; nevertheless each year had forced upon Mr. Ellery the necessity of greater optical scope for the meridian wurk. The inevitable loss of reflective power in the great telescope increases a little year by year, but does not yet sensibly atfect the work up-n which it is employed. Indeed. Mr. Ellery says, "Some photographs of faint objects obtained lately are elear evidence of the immense light-gathering power it still possesses, and of the trivial loss occasioned so far by the sligbt tarnish apparent." The instrument had not been kept quite so closely to its special work-the revision of the southern nebala-as before, owing to the number of nights occupied with the great comet and in experimenting in celestial photography. Among the subjects of observation Mr. Ellery refers to the transit of Vexus, the Port Darwin Expedition for determination of longitade of Australian observatories, and measures of differences of declination of the minor planets Sappho and Victoria for determination of the solar parallax, according to the sebeme arranged by Mr. Gill. The great comet of 1882 was kept in view for 250 days or until April 26. A large portion of the work connected wnth the telegraphie determination of the longitude of Australian obvervatories from Greenwich fell upon the Melbourne establinhment, which is now assumed to be in longitude 9 h. 39 m . 53.37 s. E., subject perhaps to some very small correction. As soon as the new transit-circle was properly adjusted, it was Mr. Ellery's intention to devote it to the revision of a rather lar, c catalogae of stars at the request of the " Astronomi-che Geacil. schaft," besides its more special work. The great telescope would be applied more exclusively to the contination of the revision of Sir John Herschel's nebula, several of which, by the war, the Melbourne ob-ervers have not been able to find.

Mr. H. C. Russell sends us an historical account of the Observatory at Sydney and of the observations which preceded the erection of the present one in that colony. With the detai's of the actual observatory the reader will be probably acquainted through the volumes of results which have been iscued therefrom ; that for $1877-7 \mathrm{~S}$ contains a general view of the baildiny: but Mr. Kussell mentions circumstances attending the erectioc of the first observatory on Australian soil which are perhaps little known. IIe extracts from the " IIstory of New Soutt Wales," by Col. Colline, the following note :- "Among the buildings that were undertaken shortly after our arrival [that of the first colonists in 1788] must be mentioned an observatory which was marked out on the western point of the cove, to which the astronomical instruments were sent, which bad been sent out by the Iloard of Longitude for the purpose of ohe erving the comet which was expected to be seen about the end of this year. The construetion of this building was placed under the directlon of Iieut. Dawes, of the Marines, who, having made
this branch of science his peculiar study, was appointed by the Board of Longitude to make astronomical observations in this country." The observatory was erected as soon as the colonists landed, but, being found small and inconvenient, a new one for the better reception of the instruments and the residence of Lieut. Dawes was built of stone, for which ample materials were found upon the spot.
The comet to which reference is here made was that of 1661, supposed to have been identical with the comet of 1532 , and again expected about the end of 1788 or beginning of 1789 . It is not difficult to explain how this body came to be associated with the arrival of the first Australian colonists. Halley, who had calculated the orbits of the comet observed by Apian in 1532, and that observed by Hevelius in 1661, gave very similar elements in his "Synopsis of Cometary Astronomy." Pingré considered the comets identical, and thought he had recognised several previous appearances, as detailed in his "Cometographie," which was published in 1783. Maskelyne appears to have adopted Pingre's opinion, and was at the trouble of preparing sweeping ephemerides, which he communicated to the Royal Society, and we may conclude that it was through his interest with the Board of Longitude that Lieut. Dawes was supplied with instruments and charged with a search for the comet. Mr. Russell says there is no record of what was done at the Dawes' Point Observatory, but since the comet was not observed as expected, we may infer there were only negative results to be reported, though Lieut. Dawes did occupy himself it other ways to assist in the progress of the colony.

CHEMICAL NOTES

The water supply of Boston (U.S.A.) became contaminated about a year ago with some substance or substances which imparted to it a peculiarly nauseous odour and taste. Chemical examination resulted in showing a large percentage of "albuminoid ammonia," and also that the "free ammonia" increased somewhat rapidly when the water was kept. The production of ammonia, and also the odour and taste, was finally traced to the decomposition of a freshwater sponge (Spongilla fluviatilis, Anct.) present in large quantities on the sides and bottom of one of the storage basins ; removal of this sponge was followed by improvement in the water (see Analyst, viii. p. 184).

Pror. Cleve describes, in the August number of the Four. nal of the Chomical Sosiety, methods for extracting and purifying the earth samaria. From determinations of the amount of sulphate obtained from quantities of this oxide, Cleve deduces the number 150 as the atomic weight of the metal samariam. Various salts of samarium are described; the metal is closely allied to didymium.

Hartley showed some time ago (C.S.7. Trams. for 1882, p. 8_{4} d seq.) that the ultra-violet spectra of elements belonging to the same series (in the nomenclature of the periodic law) exhibit fairly marked analogies as regards general character; recent observations of the spectrum of beryllium and comparison of this spectrum with that of allied metals have led Hartley to the eonclusion that this metal probably belongs to the group which contains magnesium, calcium, \&c., and not to that containing aluminium, scandium, \&c. But if this is so, oxide of beryllium must be represeuted as BeO , and the atomic weight of the metal-about which there has lately been so much disputemust be taken as 9 (C.S.7. Trans, for 1883, p. 316).
V. Meyer has recently separated, from benzene oils, a compound to which he gives the name of Thiopher. The eomposition of this body is repremented by the formula $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~S}$; it presents the elosest analogy in general reactions with benzene, yielding a sulphonic acid, a methyl derivative, \&c.; it reacts with diketones to form highly coloured compounds. The further study of this ibteresting compound, now being carried on in Prof. Meyer's laboratory, is likely to lead to important results (Brrichite, xvi. 2968).

OsTWALD has recently made a further advance in his study of chemical affinity. He has examined the action of acids on methylic acetate, determining the velocity-coefficients of variuus acids, and from these calculating the relative affinities of the acids in terms of hydrochloric acid taken as 100, His results are entirely iu keeping with the theory of Guldberg and Waage, and confirm the supposition that each acid possesses a specific affinity constant. The determination of affinity constants for
groups of compounds must evidently be a work of preeminent importance to chemical science. Ostwald's results, Cg . for acetic and trichloracetic acids, enable us to see that in these constants we shall find materials for constructing a theory which will represent the connection between molecular structure and reactions as resting on a real basis, and not, as is done at present, on a purely formal conception (f. fiir pract. Chem. (2) xxviii. 449).
A NUMBER of redeterminations of atomic weights have recently been published. The most important are these :-
Thorpe, $\mathrm{Ti}=48.0$, Berichle, xvi. 3014.
Baubigny, $\mathrm{Ni}=58.75$, Compl. Rend. xcvii. 95 I .
 in Kussian).
Marignac, $\mathrm{Bi}=208 \cdot 16$, Archiv. des Sci. Phys. at Naf. (3) x. 5 -

Ir is known that Dr. Landolt, after laborious researches iuto the refracting power of chemical eompounds, arrived at the conclusion that it may be expressed, for organic bodies, by a very simple equation: the refracting power of the compound is equal to the sum of the same powers of carbon, hydrogen, and oxygen, multiplied each by the number of atoms of each of these bodies which enter into the compound. This law proved, however, not to be quite exact with regard to several organic bodies, and the researches of Herr Brubl established that in the lower compounds the refracting power received from the equation must be increased by two units for each double pair of atoms of carbon. These results had been arrived at with liquid compounds. As to the solid ones, which were the subject of the researches of Dr. Gladstone, it was desirable to pursue these researches to the same degree of accuracy as the researches of I andolt and Bruhl. M. Kanonnikoff has prosecuted this work on a great many solid bodies belonging to both groups of the fatty series, the aromatic series and the group of terebenes and camphors. He pullishes now in the Mcmoirs of the Kazan University and (abridged) in the Yournal of the Russian Chemical Socity (vol. $\mathbf{x v}$. (asc. 7) the results of his researches. It appears from them that the method of determining the refracting power of a solid from its solution, applied by Dr_{r}, Gladstone, is quite satisfactory, the dissolved body not changing its refrangibility when dissolved, and that the laws discovered by Landolt and Bruhl for liquid bolies are quite true also with regard to solids. This inquiry at the same time enables M. Kanonnikoff to arrive at most interesting conclusions as to the stracture of the investigated bodies.

THE atomie weight of tellurium not eorresponding to what it ought to be according to Prof. Mendelćeff's theory of periodicity, M. Brauner hat tried to determine it again with greater accuracy. The chief difficulty is to have the telluriam free from selenium, but this difficulty has been overeome, and the body has been obtained in beautiful erystals. As to Berzelius's method for the transformation of tellurium into anhydride, M. Brauner discovered that it is liable to considerable losses, and to avoid them he has had to take the most minute precautions. The process was controlled also by transforming tellurium into a new salt, $\mathrm{Te}_{2} \mathrm{O}_{4} \mathrm{SO}_{3}$, and by the synthesis of the telluric copper, $\mathrm{Cu}_{2} \mathrm{Te}$. The results are four series of figures varying from $124^{\prime \prime} 94^{\prime 2}$ to $125^{\circ} 40$, which would give, on the average, an atomic weight of 125 , that is, corresponding to the theory.

We find, in the last number of the Fournal of the Russion Chemical Soxicty, an interesting theory of solutions, by M. Alexeyeff ; the forces of gravitation, cohesion, and chemical affinity being considered as three different degrees of one single force, which differ from oue another only by the distances at which the action of the force is exercised. M. Alexeyeff asks, Which of these two last forces, of cohesion or of chemical affinity, is manifested in solutions? and pronounces himself for the former. The simplest cases of solutions are, in fact, those where there is no chemical affinity between the bodies disolving and dissolved. Such eases were well known long since for gases and solid bodies. The solution of gases in solid bodies is quite analogous to imbibition of solids with liquids, and the much greater solubility of gases in liquids may be easily explained by the easier penetration of gases between the molecules of a liquid; the law of solubility of gases given by Dalton is perfectly agreeable with the supposition that the dissolved gases maintain
their owa agregation when dissolved. The same is true with regard to solutions of liquids. The simplest of these is the solution of phenol and aniline in water. The stability of the compound formed by phenol with aniline shows that both have no affinity to water. Further, M. Alexeyeff discusses the applicabiiity of his theory to bodies which easily pass from one state to another, and the relations of water to colloids. The solutions of liquids in liquids being, on his hypothesis, quite like emulsions. He is engaged now in experiments intended to show that the common emulsions have the properties of solutions.
M. Flavitsiky proposes, in the Gournal of the Russian Chemical Saciety, the following interesting theory of chemical affinity. According to this theory, the atoms of each simple chemical body, when its molecule is dissociated, move in circles paraliel to one another, and to a certain plane, the position of which is constant in space. Each chemical element has its own plane of motion, and the circles described by the atoms of different elements cross one another under different angies. Be sides, the atoms of opposite elements (such as metals and haloids) move in opposite directions. The chemical relations between different elements would thus depend upon the masses of the atoms, their velocities, their positions on their orbits, the direction of the motion, and the angles between the orbits ; wbiie the chemical conbinations would be nothing more than the mutual destraction (or rather equilibration) of the velocities of the atoms of the respective chemical elements which enter into a combination. This supposition would explain all the variety of chemical relations even without a great difference in the masses of the atoms and their velocities; a complete stop might be brought only when the orbits are paraliel, or the orbits being inclined wihh regard to one another-when a certair number of velocities acting under different angles make together the necessary resultant. This mutual action of the atoms on one another could be imagined-the author says-at a distance, by means of the ethereal medium which would be thus the medium of transformation of the physical energy into the chemical one.

TECHNICAL EDUCATION ${ }^{1}$

Genzral Objects

THE object of the Central Institution is to give to London a College for the higher technical education, in which advanced instruction shall be provided in those kinds of knowledge which bear upon the different branches of industry, whether manufactures or arts.
Just as the Royal School of Mines gives a technical training to mining enginecrs, so the Central Institation is intended to afford practical scientific and artistic instruction which shall qualify persons to become-

1. Technical teachers.
2. Mechanical, civil, and electrical engineers, architecte, builders, and decorative artists.
3. Principals, superintendents, and managers of chemical and other manufacturing works.

The main purpose of the instruction to be given in this Institution will be to point out the application of different branches of science to various manufacturing industries ; and in this respect the teaching will differ from that given in the Universities and in other institutions in which science is taught ratber for its own sake than with the view to its industrial application. In order that this instruction may be efficiently carried ont, the Institution, in addition to the lecture theatres and class rooms, will be fitted with laboratories, drawing offices, and workshops; and opportunities will be afforded for the prosecution of original research, with the object of the more thorough training of the students, and for the elucidation of the theory of industrial processes.

Students

It is probable that the students seeking admission into the Central Institution will belong to one or other of the following classes :-
I. Persons who are training to become technical teachers.

These will be students entering the \mathbf{C}. llege by means of exh:bitions ander category $2(b)$; or students selected at the May examinations in technology who pass with special distinction in

- The scheme for the organisation of the Ceniral Institution of the City and Gailds of London Instilute, recommended to the Council for adopti- n at a meeling of the Executive Committee held January 21, 1 889^{4} : Is sow being circulated. We regard the matier as so important, and the sebeme so perfect in its way, that we give in in full.
the Honours Grade; or teachers of the Institute, registered under the scheme of technological examinations, who, during certain months of the year, when they are disengaged, will receive gratuitous instruction, and will have the opportunity of using the laboratories, collections of machinery, instruments, and apparatus with which the College will be provided.

2. Persons not under sixteen years of age who, having passed a matriculation or entrance examination, are prepared to take a complete course of instruction with a view to some professional or industrial occupation. These stadents will probably belong to two classes-
(a) Persons who pay full feez, and will receive in this Institution an education similar, in many respects, to that which they may acquire in one of the technical high schools of the Continent.
(b) Persons who are received into the Institution from the Finsbury Technical College, or other similar colleges in the provinces, by means of exhibitions, which will cover the whole or part of their educational and other expenses.
It is probable that many of the persons in sub class (b) will be telect papils from the public elementary and national schools, who, having received a preliminary science training, and distinguished themselves at the Finsbury Technical College or elsewhere, will proceed to the Central Institution in the hope of qualifying themselves for some of the higber posts in engineering or manufacturing industry.
3. Persons who, having been already engaged in industrial pursuits, de ire to attend special courses, with the view of acquainting theroselves mare fully with the scientific principles underlying their work.

Conditions of Entrances

The matriculation or entrance examination for students intending to take the ordinary science curriculum, with the view of subsequently obtaining a diploma, will include mathematics, fure and applied; chemistry; pbysics; drawing, and modern languages. Whilst considerable freedom will be allowed to students entering the College as regards the courses of instruciion which they desire to follow, a definite scheme of instruction will be drawn up for each of the different branches of industry, and students intending to spend two or three years in the College and to devote their whole day to istudy will be recommended to follow the scheme laid down. The fee for the courses to be pursued by a matriculated stuJent will he about 30 . per anaum, and a fee of about 20 . per annum will be charged to stadents wishing to take special courses and to occupy themselves for the greater part of the day with laboratory practice and research work. With the view of encouraging research work, the Institution will be provided with separate laboratories in which the students will have the opportunity of working without distraction or disturbance. The permission to use these laboratories will be reserved for the advanced students who have previously parsed through the ordiuary courses of ths College, and for non-matriculated students under very special circumstances.

Subjects of Instruction
As the object of this Institution is to train technical teachers, proprietors and managers of chemical manufactories and of other industrial works, as well as mechanical, civil and electrical engineers, architects, builders, and persons engaged in art industries, the Institution will comprise five chief divisions, viz.:-(1) Chemical Technology ; (2) Engineering, mechanical, civil, and electrical ; (3) General Manufactures ; (4) Architecture and Building Construction; (5) Applied Art; and the subjects of instruction may accordingly be grouped under the general headings of Chemistry, Engineering, Mechanics and Mathematios, Physics, Manufacturing Technology and Art. Inasmuch as the Royal School of Mines is already establisbed as a trainiug school for mining engineers, no provision will be made for the instruction of students in this branch of industry ; and consequently the sciences of geology, mineralogy, and metallargy will not necessarily be included in the subjects of instruction at the Central Institution.

Professorial Stafy

Chemistry. - The main object of the instruction in this department will be to afford to students facilities for acquiring a knowledge of the highest branches of Chemistry, and of its application to such industries as alkali manufacture, the manofacture of artificial colouring matters, brewing, soap boiling, the manufacture of oils and varnishes, dyeing, \&c. To provide the requisite instruction in this department, it will be necessary to
have one chief professor, who sball devote the whole of his time to the work of the Institution, and who will be expected to direct and superintend the students in his department and to train them in the methods of original research. In addition to this appointment, it will be advisable to have two assistant professors, who shall respectively take charge of the research and of the technical departments. A separate latoratory will be placed under the direction of each professor; and the arrangements of the bnilding, which provide three large laboratories, besides several smaller rooms which may be used as such, render possible this division of the work. Besides these professors, demonstrators, laboratory and lecture assistants and attendants will be required to complete the staff in this department.
Engineering. -The instruction to be given in this sabject will have for its object the practical scientific training of persons who intend to enter any branch of the engineering profession. The instruction will be adapted to those who have already spent some time in the office of a civil engineer or in engineering works, as well as to those who desire to obtain in the College a sound theoretical knowledge of the principles of science applicable to their fnture career, and an insight into the practice and manipulative work in which they will be subseqnently engaged. The professor appointed to take charge of this department will be expected to devote the whole of his time to the work of the College, and to lecture on such subjects as the strength of cunstructive materials; the construction of docks, road\%, bridges, and roofs ; machine designing ; hydraulic and other machinery ; steam-engines, gas-engines, \&c. He will also be required to give instruction in levelling and surveying, to snperintend the laboratory practice of the stadents in the testing and engine rooms, and to direct their work in the machine shops and drawing offices. He will need the assistance of a teacher of machine draving, and of a work-hop instructor, besides one or two laboratory demonstratort, and the necessary attendants to look after the engines and machines Later on, an additional professor will be required to take charge of some of the work of this departinent.
Mechanics and Mathematics.-Immediately connected with the teaching of engineering and physics is the in truction reqnired by the students of a technical college in mechanics and mathematics. There is little doubt that the student's proyress in the several branches of engineering depends very mach upon bis possessing such a knowledge of pure and applied mathematics as enables him to use it as an instrument of his ordinary work, and for this purpose it is necessary that his knowledge should be in advance of such applications of it as he may at any time be reqnired to make. The professor appointed to this to t will be expected to give practical instruction in the application of mathematics and mechanics to the solution of engineering and physical problems. He will be required to devote the whole of his time to the work of the College, and to give courses of in-truction, illustrated by laboratory practice, on the principles of dyuamics and of mechanicism, on graphical statics, on detcriptive geuntetry, and on some of the higher parts of pure and applied mathematicx. He will need the services of two demonstrators to assist in the mechanical laboratory and in the drawing office.
Physics.-In view of the present and future applications of electricity to engineering probleme, cons derable inportance attaches to the character of the instruction to be given under this neading. The teaching of practical phyyies has only recenily been introduced into schools of applied science, and the number of students receiving laboratory intruction in this subject in our own colleges, and in foreign polytechnic schools, is still very limited. The large number of students in at endance at the courses of electricity in the Finsbury Technical College shons that there is already a strong demand for instruction in the practical applications of this important branch of phy ical science. In order to supply the requisite teachiag staff in tbis snbject, it will be necessary, in the first instance, to appoint a professor, who shall devote the whole of his time to the work of the College, and who shall be responsible for the work of his department. This appointment will be supplemented by that of an additional professor, whose duties will depend very much upon the particular branch of physics to which the chief professor may devote his attention. Whilst it is highly deirable that every facility should be afforded in the Central Institntion to students desiring to become electrical engineers, of receiving practical instruction in the theory and application of electricity to such technical subjects as telegraphy, electric lighting and the transmission of power, for
experiments in which subjects special laboratories will be set apart, it will be the duty of the chief prufessor or of the additional professor to give courses of lectures on heat, light, and sound ; to superintend and encourage laboratory practice in these branches of physics ; and to take up from time to time the consideration of other technical subjects, such as the principles of thermo-dynamics in their application to the theory and working of steam-engines, gas engines, ventilation, \&c. To complete the teaching staff of this department, the professors will require the assistance of one or more demonstrators, according to the number of students in attendance at their laboratories.

Tochnology.-Under this heading is included instruction in the processes and practical details of various manufactures, some of which will be treated of by the professors of the several departments already referred to, whilst others will need the assistance of specialists who will be engaged to give lectures on these subjects. The gentlemen appointed to give these lectures will be either the Institute's examiners in technology, or other persons equally well aequainted with the technical details of particular manufacturing processes. They will be appointed from time to time as required, and will not necesvarily form part of the permanent staff of the College.
The lectures will probably be of two kinds, aceording as they are delivered dnring the session or during the long vacation. The one conrse will form part of the curriculum of the ordinary students of the College, whilst the other course will be especially arranged for the instruction of teachers of the Institute, registered under the scbeme of Technological Examinations. The lectures given daring the session will be attended by the matriculated students towards the close of their recular course of study, those deiivered during the recess by teacbers of technical classe i in London and the provioces, who will be invited to hear them without payment of fee. Arrangements will also be made by which other persons seeking information on technical matters may be admitted to these lectures.

The lectures will embrace several of the subjects included in the programme of Technological Examinations, such as Alkali Manofacture, Spirit Distilling, Glass Manufactnre, Pottery and Purcelain, Printing, Weaving, the Manufacture of Cotton, Wool, Linen, \&c., and will treat of the technical details involved in these and other indu-trial processes. For the illistration of the lectures, specimens of materials in various stages of mauufacture, models and diagrams of machinery, will be required ; and these should be found ready for use in the Museum of Technology, a room for which has been provided in the Instiution. Facilities will be afforded to the lecturers and stadents for carrying on experimental work in explanation of the lectures ; and considering the varied character of the work which may lave to be performed in connection with this department, for which it is impossible to make provision at the outset, it is very important that here and there rooms should be left available to be fitted n ith such ar. rangements and apparatus as experience may show to be desirable. These lectures will form a special and characteristic feature of the in truction t) be given in the Central Institution.
Archilcthure and Building Construction.-To give c mpleteness to the iustuction which this Institution should afford, a department of Archivecture and of Building Constrnction should be added to these already enumerated. The e-tablishment of a special school fur Architects and Builders wonld not involve any great addition to the professorial staff which it is suygested should be provided for the other de, artments of the College. But as the funds at the disposal of the Institute are nut sufficient to enable the Council to give effect at starting to a complete scheme of higher technical instruction adapted to all the different industries of the country, it wuuld seem advisable at first to restrict within certain limits the work to be carried on in the Institution, and to defer for some little time the organisation of this special school.

Applid Art.-Under this heading instruction might be given in decorative art, and in several special branches of applied art, particularly in those in which artistic effects are prodnced by a combination of art with processes involving applications of science, such as Chromo-lithography, Enamelling, Photoengraving on Metals, Photo-lithography and Photography. Lectures might be delivered on these subjects, and on the scientific principles connected with them; and the processes themselves might be practically illustrated nader the direction of experienced teachers in the workshops of the building. Lessons might also be given in designing for, and in the execution of, glass painting, mosaic work, wood and ivory iolaying, the
inlaying of metals into various substances, wood-engraving and wood-carving.
Instruction of this kind wonld be very serviceable in creating and developing art industries in this country, and it would be especially valuable in the training of teachers; and it is hoped that means will be found, at a very early date, for giving such instruction.

Modern Languages.-In view of the increasing importance to students of applied science of being able to read foreign scientific and trade journals so as to understand what is being done abroad in the particular branch of industry in which they are engaged, the students will have the opportunity in the Central Institution of parsuing their studies in the French and German languages. It is true that they might obtain these lessons elsewhere, but it is found, as a fact, that students very rightly object to the loss of time involved in going from place to place in pursuit of the instruction they require, and commonly neglect the lectures which they have not the opportunity of attending in the Institution in which they pass the greater part of their day. Moreover, students are attracted to a place of learning in which they can obtain all the instruction they need. For these reasons, it is thought desirable that teachers of French ard German shonld, as soon as possible, be appointed. At the same time it is hoped that, as the teaching of modern languages becomes so far improved that studentr, seeling admission to the College, will be able to translate with ease passages from French and German into English, the necessity of sapplementing the technical instruction, which the Institution is intended to afford, by providing for this branch of education will cease to exist.

Courses of Instruction

Systematic conrses of instruction will be drawn up for matriculated students, which will be obligatory upon those who seek the Diploma of the Institute. These courses will cover a period of three years, and will be varied according to the branch of engineering or of manufacturing or art industry for which students are preparing. The details of these courses will be best settled in consultation with the several professors; but it is understood that, besides the general and special lectures and class work already referred to, the instraction will consist largely of laboratory practice in chemistry, mechanics, and physics ; and that for students who may not previously have acquired any manipulative skill, the workshops of the Institution will be available; whilst machine drawing will form an important part of the ordinary curriculum. It is hoped, too, that the professors will have opportunities of conducting their students to some of the different factories and works in and near London.

Diplomas

It is desirable that the Institute shonld grant diplomas, in accordance with the power eonferred upon the Council by the Articles of Association, Sec. 51. The diplomas should be of two kinds, the Associateship of the Institute, and the Fellow. ship of the Institnte.
The Associate hip should be awarded to students of the Central Institution, who shall have gone through the complete course of instruction as laid down for them, and have satisfactorily passed their several examinations. Of these examinations, the first would be the Matriculation or Entrance Examination, and candidates unable to pass it would be recommended to spend one year, at least, in some suitable College, in preparation for it. A sulsequent examination would be held at the end of each year on the College work, and the final examination, at which external examiners would be selected to assist the l'rofessors of the Institution, would be essentially practical in character. The diploma might be granted to students educated at any other College affiliated to, or associated with, the Institute, who should pass the Alatrieulation and other examinations.
The Fellowship would be conferred upon persons who, having obtained the Associateship, and кpent at lenst five years in actual practice, should produce evidence of having done some origipal and valuable researeh work, or of having otherwise contributed to the advancement of the industry in which they are engaged.

Evening Insthuction

Although, at the outset, the education of day students is all that can with advantage be attempted, it is desirable that, later on, the experiment shall be made of giving evening instruction in the Central Institation.

The instruetion so given should consist of courses of lectures dealing with some of the applications of science or art to special branches of industry, and serving the double purpose of imparting information and of showing the importance of more systematic technical teaching. These lectures should be somewhat of the character of the Cantor lectures periodically delivered at the Society of Arts, and somewhat similar to the well-attended and varied courses held at the Conservatoire des Arts et Métier. at Paris. Whilst differing from class lessons, they would have a distinctly educational value; and, as distinguishing them from the Cantor lectures as well as from those given at the Paris Conservatoire, opportunities would be afforded to some of the students attending them of themselves doing laboratory work on one or more evenings of the week. It would be necessary that the evening instruction should be soarranged as not to interfere with the ordinary day courses.

Appointment of Chief Professors

Should the scheme now proposed for the organisation of the Central Institution be adopted, there are numerous details connected with it which will need to be carefully worked out. Bat before entering further into the consideration of these details, it is desirable that the chief professors should be appointed, not with the view of their entering immediately upon their duties, but in order that the Sub-Committee may confer with thean as 10 the courses of instruction to be given, and as to the fittings of the several laboratories and class rooms, the preparation of whict will occupy some considerable time.

It is recommended, therefore, that the Committee should at once appoint-

A Professor of Chemistry.
A Professor of Engineering.
A Professor ofeMechanics and Mathematics.
A Professor of Physics.
These gentlemen having been elected, the appointment of the other professors, the demonstrators, and lecturers on technolog may be deferred, it being understood that some of these additional posts must be filled before the opening of the first session. Meanwhile, bowever, the work of preparing the fitting. and of arranging the courses can be advanced.

Management

The following Rules have been drawn up for the regulation of the educational and administrative work of the Central Institution:-

1. There shall be a Board of Studies, componed of the Professors of the Institation, for the consideration of all matters connected with the education of the students.
2. Any lecturer holding an annual appointment and giving 3 separate course of instruction may be appointed by Sub-Committee A as a member of the Board.
3. Subject to a general scheme of instruction to be laid down by the Institute, the lioard shall arrange courses of instruction for students, and shall recommend to the Institute with respect to the appointment and removal of instructors, teachers, demonstrators, and attendants.
4. The Organising Director and Secretary of the Institutc shall have a branch office in the Central Institution, and shall have a right to visit its classes, laboratories, and workshops, and to call for any information he may think necessary for the use of the Sub-Committee A. He shall also have a right to be present at any time he may think it desirable at the meetings of the Board, and to take part in the discusions, but without a vote.
5. All communications from the Board to the Institnte shail be made in writing, and shall be addressed to the Organising Director and Secretary.
6. The Institute, at the ontset, shall appoint, for the period of a year or longer, from among the professors, a Dean, who shall preside at the meetings of the Board, and who shall attend any meeting of Sub-Committee A at the request of the Sub-Coumittee or of the Board for consultation on any special basiness
7. The minutes of the meetings of the Board shall be recorded, and shall be laid on the table at the meetings of Sub-Committee A .
8. The chief clerk of the Central Institution shall act as sceretary to the Board, receiving in that capacity his instructions from the Dean, and shall take minutes of the proceedings.
9. The Dean shall consult with the Organising Director and Secretary, who shall confer with the Chairman of the Executive

Committee, or, in his absence, with one of the honorary secretaries, with respect to any ad interim arrangement that may have to be made requiring the subseqnent sanction of SubCommittee A.
10. All the administrative work of the Central Institution, general questions of discipline, and the superintendeuce of the library and museum, shall be iu charge of the Organising Director and; Secretary of the Institute, who shall act under instructions from Sub-Committee A.

GEOLOGICAL SURVEY OF THE UNITED KINGDOM ${ }^{1}$

THE completion of the one-inch Geological Survey Map of England and Wales affords a fitting opportnnity for direeting public attention to the history and progress of this great national undertaking.

As far back as the year 1832 that enthusiastic geologist, Henry T. De la Beche, began at his own expense to prepare geological maps of the mining distriets of Cornwall and Devon. Being impressed with the great public utility of such maps in a country deriving so large a portion of its wealth from its mineral resources, he applied to the Government of the day for recognition and assistance. Eventually he and his two or three nssistants were incorporated as a portion of the staff of the Ordnance Survey. From this modest beginning De la Beche's genius conceived the idea of founding a great central establishment in London, in which specimens of all the ores and other mineral products of the country should be selected and arranged for public inspection and reference, and where should also be preserved copies of the plans of mines and collieries, from which it would be possible to learn at any moment what areas had been exhausted and the condition of the abandoned underground workings, But besides the practical applications of science, he contemplated the foundation of a school in which all the sciences concerned in mining operations should be taught by the ablest professors in the country, and of a museum in which the rocks, minerals, and fossils of the British Islands should be thoroughly illustrated and made completely available to the public for instruction as well as for economic purposes. Being gifted with indomitable perseverance and no commou measure of personal tact, he succeeded in impressing his views upon the Government. By degrees the Geological Survey was fully organised and equipped, and the Mining Record Office and the Royal School of Mines were established, De la Beche himself becoming the Director-General of the whole scheme. The accommodation afforded him at first in the buildings in Craig's Court soon proving inadequate, Parliamentary sanction was in the end obtaised for the erection of the present establishment in Jermyn Street, which was opened in 1851 , and which, as was theu said by the late Sir Roderick I. Murchison, "stands forth, to the imperishable eredit of its author, as the first palace ever raised from the ground in Britain which is entirely devoted to the advancement of scieuce."
In the meantime, while its offshoots were showing such vigorous growth, the original and parent Geological Survey was extending its operations over the country. The objects for which it was created were twofold. In the first place it was meant to advance geological science by the production of an accurate and detailed geolozical map of the United Kingdom, with the necessary sections and descriptive memoirs, and by the collection of a full series of specimens to illustrate the mineralogy, petrography, and palieontology of the various geological formations. In the second place it was designed to be "a work of great practical utility bearing on agriculture, mining, roadmaking, the formation of canals and railroads, and other branches of national industry." This original conception of the object of the Survey has been steadily kept in view. From the districts first surveyed in Devon and Cornwall the mapping was pushed forward into the south-west of England, and then into South Wales. In $\mathbf{1 8 4 5}$, the importance of the work having now been fully realised by the Government, some changes were made in the organisation. In particular, the charge of the whole scheme was transferred from the Board of Ordnance to the Office of Woods and Works. A branch of the Survey was likewise equipped for the investigation of the geology of Ireland, where some progress had already been made by Capt. Portlock, R.E. Nine years later-viz in 1854 -the operations of the Sarvey
\times From the Times.
were extended to Scotland, and the whole establishment was finally placed nuder the Science and Art Department, which had now been created. The basis of the Geological Survey map is the one-inch map of the Ordnance Survey. In Ireland and Scotland, where Ordnance county maps on the scale of six inches to a mile have long been in existence, the geologists of the Survey made use of this larger seale for their field work, which was subsequently redaced and published on the one-inch scale. In England corresponding six-inch Ordnance maps having meanwhile appeared, the Geological Survey of the northern 'counties was carried on upon them. The surveys of the northern coalfields and other mineral tracts have been engraved and published on this larger scale. These maps embody a mass of accurate information regarding the structure and resources of our mineral districts, and have beeu much appreciated by those who are practically interested in the developmeut of this branch of the natioual industry.

The Ordnance Map of England and Wales is divided into 258 squares, known as sheets or quarter-sheets. These can now be procured as sheets of the Geological Survey, except those last completed, which are now in preparation. As the whole ground has been surveyed, the remaining maps may be expected to appear with no great delay. To make the maps fully available for the information of the public, sections and memoirs are issaed. The sections are of two kinds. One of these, called Horizontal Sections, of which 130 have been published, are drawn on a true scale of six inches to a mile, the profile of the gronnd being accurately sbown by levelling, with the geological structure underneath. Many of these sections are aecompanied by explanatory pamphlets. For various economic purposes, such as railway-cutting, tuonelling, water-sapply, mining, road-making, building, and so on, these Horizontal Sections are of the utmost value. The second kind, called Vertical Sections, are drawn on the scale of forty feet to an inch, in explanation of the detailed structure of our coalfields. One of the most valuable parts of the work of the Survey is embodied in its "Memoirs." At first these were issued in goodly octavo volumes, either embracing a number of disconnected essays, some of which, like Edward Forbes's famous paper on the history of the British flora, have become classics in geological literature, or devoted entirely to the description of a particular area, such as John P'hillips's well-known treatise on the Malvern Hills. After 1855, when, on the death of Sir Henry De la Beche, Sir R. I. Murchison became DirectorGeneral, this form of memoir was postponed in favour of shorter explanatory painphlets with which each sheet or quarter-sheet was to be accompanied. These were designed to supplement the map and sections, and to make their information at once intelligible to the public by giving detailed information regarding the natural sections, characteristic :fossils, ecouomic minerals, \&c., in each distriet. It was fully determined, however, that, as the Survey advanced, ample monographs should be prepared for each geological formation or important district. Among the other publications of the Survey are the "Decades" and "Monographs" of organic remains, of which seventeen have been issued; the "Mineral Statistics" of the Mining Record Office, which have appeared as an annual volume for the last thirty years; and various catalogues and other works, which swell up the total separate printed publications of the Survey of the United Kingdom to upwards of 270 . It ought to be stated here that, first under De la Beche, and subsequently under Murchison, the work of the Survey depended largely for its efficiency and breadth of view on the Local Director, Prof. (now Sir A. C.) Ramsay, who on Marchisou's death was appointed Director-General in 1872, and continued in that post until his retirement from the service at the end of $\mathbf{1 8 8 1}$. He was then succeeded by Prof. Geikic, who had for more than fourteen years held the office of Director of the Survey in Scotland, and who since his appointment has pushed on the completion of the oneinch map of England and Wales, which is now announced by him as accomplished. The completion of the map of what is termed the "Solid Geulogy" of England and Wales-that is, the rocks underlying the superficial deposits-terminates indeed an important part of the work of the Survey.
But much remains to be acc mplished. The one-inch map of Ireland will be completed in a few years; but that of Seotland, not having been begun till much later, and having always had a much smaller staff, will require longer time. From the last published report of the present Director-General we learn that such of the staff as are qualified for the difficult mountainous area of Scotland will be transferred to that region as soon as
they have prepared their recent work for the eugraver. The staff retained in England will have to complete the survey of the superficial deposits, which is so valuable as a basis for the agricultural valuation of land, as well as for other, purposes, For some years pas! the mapping of these depo itt has advanced simultaneously with that of the rocks underneath them. Two kinds of mapa are supplied to the public, one indicating the superficial accumulations, and therefore invaluable as an agricultural map, and the other showing the "solid geology" or older rocks that lie below. The importance of mapping the superficial deposits, however, both from an industrial and scientific point of view, was not recognised until comparatively recently. Over the larger part of the country, therefore, these deposits are not expressed upon the Survey maps, and it is to the completion of this work that one part of the energy of the staff must now be directed. It will be desirable also to resume the survey of the coalfields on the, cale of six inches to a mile, which has been temporarily interrupted in order to hasten the completion of the one-inch map. The South Wales coalfield, for example, was mapped some forty years ago, and so much has been done in the iuterval towards the development of that vast mineral basin that the maps are so antiquated as to be of comparatively little practical value. We learn from the same report that the most important work lying before the Survey in England and Wales is the geological description of the country. As the issue of explanatory jamphlets to accompany the one-inch maps was not begun until 1857, there is a large area of ground of which no publshed aceount has been given, except on the maps and sections. Priated explanations of each sheet are now to be supplied, and from these and all the data in possession of the Survey a series of Memoirs or Monngraphs is to be compiled which will embrace a generalised view of the geological structure and of the minerals and industrial resources of the whole country. It is the fate of geological maps, ss well as of other human productions, to get out of date. As the nation has expended so ungrudgingly to earry on a Geological Survey which is acknowledged to stand at the head of the geological surveys of the world, it would be worse than folly to lose the benetit of all this expenditure by allowing the maps to becone obsolete. New openings are continu lly being made which throw fresh light on what lies beneath u_{4}. It will be the duty of Parlia. ment to sce that a permanent staff, which need not be a large or costly one, is always retained for the purpose of keeping the maps up to date. Meanwhile it is pleasant to see that the work of this worthy national enterprise is being carried on with vigour, and that its staff are fully alive to the importance of the duties that still lie before them.

THE ORIGIN OF THE SCENERY OF THE BRITISH ISLANDS ${ }^{1}$

THE Scottish Highlands must be looked upon as the relics of an ancient tableland cut out of highly crumpled and plicated schists. Among the eastern Grampians large fragments of the plateau exist at heights of more than 3000 feet, forming wide undulating plains terminating here and there at the edge of precipices. In the Western Highlands, the erosion having been more profound, the ridges are narrower, the valleys deeper, and isolated peaks are more numerous. It is the fate of a tableland to be eventoally eut down by running water into a system of valleys which are widened and deepened, until the blocks of ground between are sharpened into ridges and trenched into separate prominences. The Highlands present us with far advanced stages of this process. In the youngest of British tablelands-that of the volcanic region of Antrim and the Inner Hebrides-we meet with some of the earlier parts of the change. That interesting tract of our islands reveals a succession of basaltic sheets which appear to bave spread over the wide valley between the Outer Hebrides and the mainland, and to have reached southwards beyond Lough Neagh. Its original condition must have been like that of the lava-fields of Idaho and Oregon-a sea-like expanse of black basalt stretching up to the base of the mountains. What may have been the total thickness of basalt cannot be told ; but the fragment remaining in Ben More, Mull, is more than 3000 feet thick. So vast has been the erosion since older Tertiary time that the volcanic plateau has been trenched in every direction by deep glens and arms of the sea, and has been reduced

[^36]to detached islands. It is strange to reflect that all this revolstion in the to ography has been effected since the soft clays and sands of the London Basin were deposited.

The intimate relation of a system of valleys to a system of drainage lines, first clearly enunciated by Hutton and Playfair, has received ample illustrations from all parts of the world. Yet the notion is not yet extinct that in some way or other valleys have been as much, if not more, determined by subterranean lines of di-location as by superficial erosion. Some favourite dogmas die hard, and though this dogma of fracture has been demolished over and over again, it every now and then reappears, dressed up anew as a fresh contribution to scientalic progress. We have only to compare the surface of a much dislocated region with its underground structure, where that has been revealed by mining operations, as in our coal-fields, to see that valleys comparatively seldon, and then only as it were by accident, run along lines of dislocation, but that they everywhere cut across them, and that faults rarely make a feature at the surface, except indirectly by bringing hard and soft rocks agnisst each other.

In Britain, as in other countries, there is a remarkabls absence of coincidence between the main drainage systere and the geological structure of the region. We may infer from this fact that the general surface, before the establishmert of the present drainage system, had teen reduced to a base-level of denudation under the sea, the original inequalities of configuration having been planed off irrespective of structure ; or at least, that the present visible rocks were buried under a mass of later unconformable and approximately level strata, on the anequally upraised surface of which the present drainage system began to be traced. Where the existing watershed coincides generally with the erest of an anticline, its position has obviouly been fixed by the form of the ground produced by the plication, though occasionally an anticline may have been deeply buried below later rocks, the subsequent folding of which along the same line would renew the watershed along its previous trend. Where draingge lines coincide with structure, they are probably, with few exceptions, of secondary origin; that is, they bave been developed during the gradual denudation of the country. Since the exi-ting watersbed and main drainage lines of Britain are so independent of structure, and have been determined chiefly by the configuration of the surface when once more brought up within the inflaence of erosion, it may be posible to restore in some degree tbe general distribution of topography when they were begun.

One of the most curious aspects of the denudation of Britais is its extraordinary inequality. In one region the framework of the land has been cut down into the very Archaean core, while In the immediate vicinity there may be many thousands of feet of younger strata which have not been removed. This inequality must result from difference in total amount of upheaval above the base-line of denudation, combined with difference in the length of exposure to denudation. As a rule the higbest and oldest tracts will be most deeply eroded. Much of the denudation of Britain appears to have been effected in the interval between the close of the Carboniferous and end of the Triassic period. This was a remarkable terrestrial interval, during part of which the climate was so arid that salt lakes were formed over the centre of England. Yet the denudation ultimately accumplished was enormous, thousands of feet of Carbonifeross rock being entirely removed from certain areas, such as the site of the present Bristol Channel. An interesting analogy to this condition of things is presented by the Great Basin and adjoining tracts of Western America, where at the present time great aridity and extensive salt-lakes are accompanied by great crosion.

This deeply-eroded post-Carboniferous land was eventually screened from further degradation, either by being reducel through denudation to a base-level or by being protected by sabmergence. It was to a large extent covered with Secondary rocks, though the covering of these may have been but thin over what are now the higher grounds. The present terrestrial areas emerged at some period later than the Chalk. In England there were three tracts of land-Wales, the Pennine Chain, and the Lake District. The eastern half of the country, covered with Secondary rocks, was probably the last portion to be uplifted above the sea ; bence the watersheds and drainage lines is that tract may be regarded as the youngest of all.

The history of some of the valleys of the country tells the story of the denudation. The Thames is one of the youngest

3 ivers, dating from the time when the Tertiary sea-bed was raised into land. Originally its source probably lay to the west of the existing Jurassic escarpment of the Cot wold 1lills, and it flowed eastward before the Chalk excarpment had emerged. By degrees the Chalk downs have appeared, and the escarpment has retreated many miles eastward. The river, however, having fixed its course in the Chalk, has cut its way down into it, and now seems as if it had broken a path for itcelf across the escarpment. As all the escarpments are creeping eastward, the length and drainage area of the Thames are necessarily slowly diminish. ing. The Severn presents a much more complex course; but its windings across the most varied geological structure are to be explained by its having found a channel on the rising floor of Secondary rocks between the base of the Welsh hills and the nascent Jurassic escarpments. The Wye and Usk afford remarkable examples of the trenching of a tableland. The Tay and Nish are more intricate in their history. The Shannon began to flow over the central Irish plain when it was covered with several thousand feet of strata now removed. In deeqening its channel it has eut down into the range of hills north of Limeriek, and has actually sawn it into two.

SCIENTIFIC SERIALS

THE American Yournal of Science, January, 1884. - The effeet of a warmer climate on glaciers, by Capt. C. E. Dutton. The author fully discusses the theory of those ; who argue that the more copious snowfall required for a more extended system of glaciation implied more atmospheric moisture, greater evaporation, and a generally higher temperature ; in fact, a warmer climate than at present, due probably to a greater rate of solar radiation. He concludes that the possibility of obtaining a greater snowfall by a warmer climate would be necessarily limited to the Arctic regions, or to altitudes far above the present snow line. Elsewhere a higher temperature would add to the rainfall, and actually diminish the snowfall. The advocates of the theory have failed to perceive that the additional moisture postulated could fall only as rain. Not until the air has discharged as rain all the moisture in excess of the quantity which saturates it at zero, can it begin to yield snow.-On the application of Wright's apparatus for distilling, to the filling of barometer tubes (one illustration), by Frank Waldo.-Account of a new method of measuring the energy expended on or rendered by a dynamo or a magneto machine in connection with the production of electricity in a large way, by C. F. Brackett. -On some points in climatology : a rejoinder to Mr. Croll, by Simon Newcomb. The assumed lower mean temperature of the northern hemisphere at some former geological epoch is attributed by Mr. Croll to a greater eccentricity of the earth's orbit, combined with a position of the perihelion near the northern solstice, causing a short perihelion summer and a correspondingly long aphelion winter. To this the author replies that too little is known of the laws of terrestrial radiation of heat through the atmosphere to justify the establishment of any theory of the glacial epoch, and that, in any case Mr. Croll fails to show why the mean temperature should be different at the supposed periods. Hence the conclusion, not that Mr. Croll's theory is false, but that it is not proven. -An account of some recent methods of photographing the solar corona without an eclipse, and of the results obtained (one illustration), by Dr. W. Huggins. Elliptical elements of comet 1882 I., by F. J. Parsons,-The Minnesota Valley in the Ice Age, by Warren Upham. - On the so-called dimorphism in the genus Cambarus, by Walter Faxon. -Evolution of the American trotting horse, by Francis E, Nipher. In reply to the criticism of Mr. W. H. Pickering, the author argues that the known facts are not opposed to the conclusion that the trotting horse may finally trot his mile in about the same time that the running horse will cover the same distance.On the origin of jointed structure, by G. N. Gilbert.-A theory of the earthquakes of the Great Basin, by the same author.

Retue d'Anthropologic, tome vi. fasc. 4, Paris, 1883. -The larger portion of this number is devoted to M. Mathias Duval's lecture on Transformism, of which two parts have already appeared in the earlier fascicules of the Revwe for 1883. For English readers generally the address lacks the interest of novelty, as it is little more than an exposition of the works and opinlons of Darwin and of the principal authorities, chicfly English, whote observations corroborate his views. It is satisfactory, however, to find that, while maintaining with patriotic
zeal Lamarck's claim to be regarded as the originator of the theory of evolution, M. Duval recognises in Darwin the one man who, through varied yet profound scientific acquirements, intellectual qualifications, and special personal and social conditions, was alone capable of giving to novel conclusions of such extraordinary significance the authoritative force and stability of a ture science. - On so-called Wormian or supernumerary bones in domestic animals, by M. Cornevin, Professor in the Lyons Veterinary College. The author finds that while in man such bones are generally cranial, in animals they are facial, and he believes him elf justified in drawing from his observations two important conclusions (which, however, need support) that in animals the Wormians appear some time after birth, developing more and more with age, and that they are of frequent occurrence in the less carefully bred races, while they are very rarely found in the high breeds of horsec, oxen, sheep, pigs, \&c.-On the Kalmuks, by M. Deniker. The author, who is a native of the regions which he describes, has made the presence of an encampment of Kalmuks in the " Jardin d'Acelimatation," at Parie, the occasion for bringing together all the most reliable historical, geographic, ethnic, and socio-physical data in connection with this people, w hose vanous migrations, including their great exodus from the region of the Volga in the eighteenth century, he treats at great length. He considers the oblique opening of the eye, which most writers accept as an ethnic characteristic, as of little scientific value, since in is not of specially frequent occurrence among pure Mongols such as are the Kalmuks; but he recognises, on the other hand, that such an ethnological peculiarity is to be found in a peculiar introversion of the upper eyelid which in young Kalmuk ehildren has often the effect of obliterating the eyelashes; while the general narrowness of the opening imparts a triangular furm to the eye, Black, scantily developed hair, dark brown eye-, slightly yellow skin, and a stature somewhat below the mean (the adult Kalmuk presenting the proportions of Europeans of thirteen to fourteen years of age), constitute the chief physical characteristics of the Mongol race. The pafer, which is illustraied by an admirable map of the Kourghees and Kirghees territorics of South Russia and West Thibet, will be continued in a subsequent number.

Fowrmal of the Russian Chemical and Physical Sociely, vol. xv. fasc. 7.-On the relations between the refracting power and the chemical constitution, by S. Kanonnikoff,-On the velocities of chemical reactions, by A. Potylitzin. The thermo-chemical equivalents obtained separately for several pairs of elements allow to foresce only the direction which will be taken by the reaction when they are brought together; the heat disengaged by one pair of elements brought into reaction in the presence of other bodies, which are also liable to chemical modifications, is not equal to the whole of the thermo-chemical work of the pair, a part of it being employed for chemical work in the accessory bodies; the thermo-chemical equivalents are proportionate to the velocities during the first moments of the reaction.-Sketch of the present state of the theory of explosive sub-tances, by S . Tcheltsoff. The actual tendency of the technies to substitate determined chemical combinations, instead of the mixtures which were used at first as explosives, is quite rational. Not only the decomposition goes on with more regularily in a chemical compound, but also the potential energy is greater. - On the chloride of pyrosulphuryl, by D. Konovaloff.-On the cause of the changes in the galvanic resistance of selenium under the influence of light, by N. Hesehus. The author concludes in favi ur of the dissociation transmitted into the interior of the body as the cause of this change, and, following the hints of Mes-rs. Bidwell and Siemens, tries to prove it by mathematical argi ments, Notes on radiophony, by M. Geritch; and on resounding tubes, by M. Bachmetieff.

Zeifschrift firr wissenschaftliche Zowlogic, vol. xxxix. Part 2, November 6,1883 , contains:-Researches on the brain struc* tures in Petromyzons, by Dr. F. Ahlborn (plates 13-37). A very excellent and detailed. memoir, based chiefly on the brain in Pelromyzon Naneri and 'P. fuviatilis.-On the binlogy and anatomy of Clione, by N. Nassonow, assistant in the Zoological Museum of Moscow (plates 18 and 19). These investigations were carried on at the biological station at Sebastopol, and on an apparently new form called C. slationis, found in the shells of Ostrea adriatica, in it the oscula are prominent orange coloured. Brancbing plasmodia were traced through the shell-structure, reminding one of the mycelial threads of a fungus, - Contributions to the histology of the Echinoderms, by Dr. Otto Hamann
(part 2), -The nervous system of the Holothuria pedata : Cuvier's organ. The nervous system and sense organs of the Holothuria apedata (plates 20-22).-On some new pecies of Thalassema, by Kurt Lampert, Eirlangen.

Vol. xxxix. Part 3, December 21, 1883, contains:-On the Rotifers of the environs of Giessen, by Karl Eckstein, natural history student, Giessen (plates $23 \cdot 28$), enumerates and describes in detail fifty species (one new genus Distyla, with two new species, D. giessemsis and D. hudtuigii). A list of all known genera is given, with a general description of the natomy, development, and habits of the group. A very complete bibliography is appended. - On the digestive apparatus of the Decapods, by Dr. F. Albert (plates 29-31, and woodeut).

Vol. $x \times x i x$. Part 3, December 31, 1853, contains:-On Bucephalus and Gasterostomum, by Dr. H. Ernst Ziegler (plates 32 and 33) (Buccphalus polymorphus was found in eonsiderable quantities in Anodonta mutabilis). - On the central nervous system in Pcriplaneta orientalis, by Dr. Max Koestler (plate 34). - Ov the varieties of the eerebral fissures in I.epus, Ovis, and Sus, by Dr. Vietor Rogner (plate 35). -On the structure and fissiparity of Ctenodrius monostylus, sp. nov., by Max Graf Zeppelin (plates 36 and 37). -On the nervous system of the snout and npper lip in oxen, by Ivan B. Cybulsky (plates 38 and 39). -On the anatomy and plysiology of. the proboseis in Musca, by Dr. Karl Kraëpelen (plates 40 and 41).-On the connective tissue of the epiphyses in Plagiostomes, Ganoids, and Teleostea, by Dr. J. Th. Cattel.

SOCIETIES AND ACADEMIES London

Royal Soeiety, Jannary 10 . - "On the Amount of Light Reflected by Metallic Surfaees," By Sir John Couroy, Bart., M.A. Commanicated by Prof, Stokes, Sec. R.S.

In a paper which Prof. Stokes did me the honour of communicating to the Royal Society, and which appeared in the Pro. cedings, vol. xxxv. p. 26, I gave an account of some experiments I had made on the amount of light reflected by polished metallic surfaces when ordinary unpolarised light was incident upon them.

The light of a parafin lamp fell either directly, or after refleetion from the metallie surface, on a photometer, and the readings were made by altering the distance at which another similar lamp had to be placed from the photometer in order to produce an equal illumination.
1 have repeated the experiments with the steel and speculum metal mirrors with polarised light. The polish of the tin and silver mirrors being defective, it was not thought worth while to re-exanine them.

The general arrangement of the apparatus remained the same ; but in order to ohtain a more intense light, a magie lantern (the one known as the "Sciopticon" being used) was substituted for the paraffin lamp carried by the goniometer.

The metal plates were clamped to the vertical stage, and their adjustment examined by placing a second, or analysing, Nicol in the path of the reflected light and erossing the Nicols, the former being placed with its principal section either in or perpendicular to the plane of ineidence, and adjusting the stage screws till the light reflected from the plate was completely extinguished.

The experiments were made in the manner deseribed in the former pafer, the light being polarised in, or perpendicularly to, the plane of incidence by the Nicol. It was found that the illunination of the paper varied with the position of the Nicol, being always greatest when the light which fell on the paper was polarised in the plane of incidence.

Four sets of observations and their means, made with the steel and speculum metal mirrors, are given in the tables.

Table I. -Stel, with Light Polarised in the Pane of /ncidence

Angle of incidence	A	B	C	D	Mean
$3{ }^{\circ}$	$57^{\circ} \mathrm{O}$	61.67	63.06	61.05	60'70
40	$61^{\circ} 73$	$6.4{ }^{\circ} 0.4$	68.18	62.90	$64^{* 21}$
50	$65^{*} 31$	$67 \cdot 41$	71'97	69.41	$68 \cdot 52$
55	68.76	70.41			
60	70.88	74.55	77.96	74*3I	74.42
65	77.22	76.02	81.40	74.83	$77 \cdot 37$
70	81.48	80'77	85.22	81.57	$82 \cdot 26$
75	84.09	84.92	90.32	$84^{\prime 7}$	$86^{\circ} \mathrm{OI}$
80	84.58	86'34	91:55	89% I	87.87

Table II.-Sted, with Light Polarised Perfendicularly to of. Plane of Imsidence

Angle of incidence -	A	B	C	D	Mean
30	49.27	50.53	$53 \cdot 67$	47*28	$50 \cdot 19$
40	45.53	45.39	$49^{*} 79$	$44 * 40$	$46 \cdot 28$
50	$40 \cdot 45$	41'24	$43 \cdot 47$	$3^{8 * 78}$	$40 \cdot 98$
55	37.47	37*34			
60	35.54	$33 * 79$	36.90	32.89	3478
65	29.57	28.88	31'97	29.70	$30 \cdot 03$
70	25.69	26.61	$27^{\prime} 72$	$26 \cdot 14$	26.54
75	23.71	25.55	25.38	24*30	24:73
80	$26 \cdot 29$	$26 \cdot 46$	$27^{\prime} 60$	26.04	26.60

Table III. - Sfeculum Aftal, woith Light Polarised in the Plame

Angle of incidence	A	B	C	D	Mean
$3{ }^{\circ}$	64.58	64.09	63.37	66.18	64.55
40	67'76	68.22	$65 \cdot 14$	69.86	6774
50	72.65	72.23	$69 \cdot 0.4$	71.90	71.45
60	76.63	78.65	77 '57	77 '95	77.70
65	79.65	$79 \cdot 68$	79.44	8I'26	So'01
70	$83^{\prime} 09$	81.25	8494	$83 \cdot 90$	83.29
75	$82^{\prime 9} 9$	84.20	86.93	88.01	85.52
80	87.52	86.78	90'96	$89^{\prime 72}$	85.74

Table IV.-Speculum Mfdal, with Light Polarised Porpendicar.

Angle of incidence					
	A	8	C	D	Mean
$3{ }^{\circ}$	59.31	57.86	59.83	59.63	59'16
40	$53 \cdot 30$	54.01	56.41	54'29	54.50
50	$49 \cdot 47$	51.44	$49^{\circ} 61$	$49 \cdot 69$	50.05
60	41.50	$43 \cdot 36$	$44^{\circ} \mathrm{O2}$	43.83	$43^{1.18}$
65	39'95	$39^{\prime} 12$	40'50	$40 \cdot 85$	40.10
70	$38 \cdot 27$	$35 \cdot 84$	37.42	$38 \cdot 29$	37.45
75	$36 \cdot 20$	34.45	$36 \cdot 84$	$35 \cdot 88$	$35 \cdot 84$
80	40'51	$38 \cdot 67$	41^{+22}	42:15	40'39

The amount of light which, according to Cauchy's theory, ought to have been reflected by the mirrors was calculated out by the formule, the principal incidences and azimuths for the two mirrors having been determined-

$$
\mathrm{J}^{2}=\begin{aligned}
& \theta^{2}+\cos ^{2} i-2 \theta \cos \cdot \cos i \\
& \theta^{2}+\cos ^{2} i+2 \theta \cos \cdot \cos i
\end{aligned}
$$

and

$$
1^{2}=\frac{\theta^{2} \cos ^{2} i+1-2 \theta \cos e \cos i}{\theta^{2} \cos ^{2} i+1-2 \theta \cos 6 \cos i}
$$

and the observed and calculated results are set forth in Table V. and VI.

	Observed		Calculated	
	J	$1{ }^{\text {a }}$	J^{3}	I^{2}
30	60'70	50'19	$63^{1} 17$	54.95
40	64.21	46.28	66.44	5131
50	$68 \cdot 52$	$40 \cdot 98$	70-80	42.09
60	74'42	$34^{\prime 7}$	$76 \cdot 72$	39.24
65	$77 \cdot 37$	30.03	79.52	35'32
70	82,26	$26 \cdot 54$	$83^{\circ} \mathrm{O} 4$	31.62
75	86.01	24.73	\$6.85	29.46
80	87.87	26.60	90.97	32.39

Table V1.-Amount of Light Refieted by Sacrulum Menal Mirror

	Observed		Calculated	
	J^{2}	$1{ }^{2}$	J^{2}	$1{ }^{2}$
30	64.55	$59 \cdot 16$	$69 \cdot 78$	62.82
40	67:74	$54 \cdot 50$	72.53	59.74
50	71.45	50.05	$76 \cdot 18$	55.37
60	$77^{\prime 7}$	43.18	$80 \cdot 77$	49.59
65	80.01	40'10	83.42	46.38
70	83.29	$37 \cdot 45$	86.32	43.53
75	85.52	$35 \cdot 84$	89.44	42.29
80	$88 \cdot 74$	40'39	92:77	45'88

As far as regards the general character of the phenomena the agreement is complete and in aceordance with the observations of
$M_{\text {. }}$ Jamin, but the actual values of the observed intensities al ways fall short of the calculated intensities, the difference being least with the steel mirror.

The polish of the mirrors was examined at the end of the experiments by the method suggested by Prof. Stokes, and described in the paper already referred to ; both the mirrors stood the test satisfactorily, the polish of the steel being very slightly the best.

These experiments appear to show that the generally received formalxe for metallic refiection are approximately correct, but that the actual intensity of the reflected light is always less than the theoretical intensity, and that therefore, unless this be due to defects in the metallic surfaces, the formular do not completely express the laws of metallic reflection. If, as appears to be the case, a change in the reflective power of a plate can occur without any change in the valnes of the principal incidence and azimnth, it is necessary to regard the formulx as only approximately true, and there is additional reason for thinking that, as Prof. Stokes has suggested, three constants are required to define a metal optically.

Linnean Society, February 7.-Sir J. Labbock, Bart., president, In the chair.-Mr. Henry Groves of Florence and Mr. F. L. Keays of Cobham were elected Fellows,-Mr. F. O. Bower showed specimens of the leaf of Tomeia mensiesii, with adventitious buds situated at the base of the lamina. These buds appear at the same point in all the leaves, and under normal circumstances, so that their development seems to be a constant character of the species. Their origin is exogenous, and the buds are found already present at the period when lignification of the xylem of the young vascular bundles begins. Mr. Bower compared this development with that already known in Cardamine pratensis and Athyrurus ternatus.-There was exhibited, on behalf of Mr. Arthur C. Cole, a box containing mounted preparations illustrative of his "Studies in Microscopic Science," a work devoted to animal and vegetable histology, now being issued in parts.-A note on the gemmax of Aulacomnion palustre was read by Mr, F. O. Bower. Specimens kept in a warm and damp atmosphere flourished well, bnt showed no sign of sexual organs. It was fonnd, however, that the ordinary vegetative axes often bore towards their apices structures which were andoubtedly of a foliar nature, with a special adaptation for effecting asexual or vegetative reprodaction of the plant. Indeed, these gemmax were found to be capable of immediate germination when laid on damp soil or even foating on water. The second part of the Rev. A. E. Eaton's monograph on the recent Ephemeridx or mayflies was read in abstract, its contents being a descriptive account of the genera and species from Potamanthws to Callibdes inclusive.-Another paper taken in abstract was by the Rev. A. M. Norman, on European and North Atlantic Crustacea. In this an attempt has been made to gather together all the present known and recorded forms of the group. Notices of many of the species are only to be found in obscure periodicals, \&c., difficult of access almost in every language ; consequently, since the prodnction of Milne-Edward's "Histoire Naturelle des Crustaces" in 1834, the numbers have increased nearly threefold-revision therefore being highly necessary.-Mr. B. T. Lowne gave an interesting communication embodying his researches on the compound vision of insects. He compares the structures of the simple ocellus with those of the compound ocellus (common in larval insects), and with those of the compound eye. The compound eye, according to him, is but composed of aggregated compound ocelli, or one of the latter in the larval insect is merely equivalent to a single segment of a compound eye. He refers to the development of the compound eye, and points out that in many larvee during the moolting stages the "segregate" retina is finally replaced by another. He describes a deep, spindle-like layer in intimate connection with the nervous structures, and which layer he regards as playing an important part in the phenomena of compound vision rather than that this kind of vision is solely dependent on the number of corneal facets.

Mathematical Society, February 14.-Prof. Henrici, F.R.S., president, and subsequently Sir J. Cockle, F.R.S., vice-president, in the chair.-Messrs. A. B. Basset and D. Brocklebank were admitted into the Society.-The following communications were made :-On the intersections of a triangle with a circle, by H. M. Taylor.-On the difference between the number of $\left(4^{n}+1\right)$ divisors and the number of $(4 n+3)$ divisors of a number, by J. W. L. Glaisher, F.R.S.-On a general theory, inclading the theories of systems of complexes
and spheres, by A. Buchheim.-Prof. Sylvester, F. R.S., made some remarks on matrices with reference to nonions, \&c. (see forthcoming paper in the American Yournal of Ma/hematiss).

Chemical Soclety, February 7.-Dr. W. H. Perkin, president, in the chair.-It was announced that a ballot for the election of Fellows would be beld at the next meeting of the Society (February 21). The following papers were read :-On the expansion of liquids, by D. Mendelefff; translated from the Russian by B. Brauner. In this paper the anthor, principally from data furnished by Thorpe (Chem. Sor. Journ. Trans., 1880,
p. 141), gives the equation $V=\frac{1}{1-\kappa t}$ as expressing approximately the expansion of liquids. κ is named the "determinator of expansion." It is a coefficient characterising each liqnid, just as each liquid has a specific gravity, boiling point, \&c. The anthor states that the above expression, although many liquids deviate sligntly from it, is sufficient in the majority of physicochemical investigations.-Researches on seeondary and tertiary azo-compounds, by R. Meldola, No. 2. The author describes, in continuation of his former researches, the action of diazotised paranitraniline apon tertiary monamines. In the case of dimethylaniline the resulting product is paranitrobenzenazodimethylaniline. This, on reduction with ammoninm sulphide, furnishes an amido-componnd, which is a most delicate test for nitrous acid. The nitro-azo compounds of the meta-series could not be reduced by ammonlum sulphide without complete decomposition. The author concludes that the B-naphthylamine compounds of para- and meta-nitrodiazo-benzene do not contain an amido-group, as they yield with nitrous acid nitroso deriva-tives-Note on the nitrogenous matters in grass and ensilage from grass, by E. Kinch. The author has determined the albuminoid and non-albuminoid nitrogen \ln a sample of grass and in the ensilage made from the grass. In the grass 9 per cent. of the nitrogen was non-albuminoid; in the ensilage 55 per cent. of the nitrogen was non-albuminoid. The albuminoids were determined by the phenol, the copper hydrate, the mercuric hydrate, and the lead hydrate methods. The author points ont the importance of this serions diminution in the albuminoids, with reference to the food-value of ensilage.-On the inflaence of the temperature of distillation on the composition of coal-gas, by L. T. Wright. The author finds that more gas is obtained at high temperatures, but that it contains more hydrogen and less hydrocarbons.

Physical Soclety, February 9--Prof. R. B. Clifton, president, in the chair.-Annual General Meeting.-The motion to make past presidents permanent vice-presidents was carried, and the articles of the Society altered accordingly.-Prof. Clifton read a report on the business of the past year, which showed that steady work had been done by the Society. Dr. Atkinson read the balance-sheet, showing a flourishing condition of the Society. A proposal to adopt certain letters to indicate membership of the Society when placed behind the name was, on the motion of Prof. G. Forbes, supported by Prof. Adams, Prof. McLeod, and others, held in abeyance for the present. The officers and Conneil for the ensuing year were then elected, and were as follows :-President: Prof. F. Guthrie, F.R.S. ; Vice-Presidents: Profs. R. B. Clifton, F.R,S., W. E. Ayrton, F.R.S., W. Chandler Roberts, F.R.S., Dr. J. Hopkinson, F.R.S., Lord Rayleigh, F.R.S. ; Secretaries: Prof. A. W. Reinold, M.A., Mr. W. Baily, M.A. ; Treasurer : Dr. E. Atkinson ; Demonstrator: Prof. F. Guthrie ; other Members of Council: Mr. Shelford Bidwell, M. A., LL B., Mr. C. W. Cooke, Prof. F. Fuller, Mr. R. T. Glazebrooke, F. R.S., Mr. R. J. Lecky, F.R.A.S., Prof. H. McLeod, F.R.S., Dr. Hugo Muller, F.R.S., Prof. I. Perry, Prof. s. P. Thompson. Honorary Member, Prof. II. A. Rowland. I'rof, Clifton then resigned the chair to Prof. Guthrie, whose zeal for the Society he warmly praised. Prof, Guthrie expressed his high appreciation of the courtesy and kindness of the retiring President while in the chair. Mr. W. Lant Carpenter proposed a vote of thanks to the Lards of the Committee of Council on Education ; Mr. Whipple moved the cordial thanks of the meeting to Prof. Clifton ; Mr. Griffich and Prof. Adams proposed a vote of thanks to the secretaries, demonstrator, and treasurer ; Prof. G. C. Foster proposed a vote of thanks to the auditors.-The meeting was then resolved into an ordinary one, and the Secretary read a paper by Dr. O. J. Lodge and J. W. Clark on the phenomena exhibited by dusty air in the neighbourhood of stronglyilluminated bodles, which we hope to print next week.

Mineralogical Society, February 12.-Rev. Prof. Bonney, F.R.S., president, in the chair.-Messrs, T. Vaughan Hughes and W. Semmons were elected members, and the Grand Duke of Leuchtenberg, M. E. Bertrand, and Prof. von Lang, corresponding members. - The following papers were read :-Note on a case of replacement of the quartz constituent of a granite by fluor spar, by the President.-On an arsenical copper ore, "garbyite," from Montana, U.S.A., by Mr. W. Semmons - On an altered siderite from Alston Moor, by Dr. C. O. Trechmann. -Notes on a picrite (Palzopicrite) and other rocks from Gipps Land, and a serpentine from Tasmania, by the President-Prof. Jodd, on invitation by the President, submitted some slides of dust from the volcano of Krakatoa, which were exhibited under the microscope, and explained the principal features noticeable in these deposits - The President exhibited some slides of dast from Cotopaxi, which had fallen on Chimborazo at the time that Mr. Fidward Whymper was ascending the latter mountain.

Svdney

Royal Soclety of New South Wales, December 5, 1883. -Hon. Prof. Smith, C.M.G., president, in the chair.-Three new members were elected and seventy-eight donations received. - A paper on additions to the census of the genera of plants hitherto known as indigenous to Australia, by Baron Ferd, von Müler, K.C.M.G., F.R.S., was rend.-Prof. Smith exhibited Stroh's apparatus for producing attraction and repulsion by vibrations of air.--The following specimens from the Solomon Islands, collected by Dr. H. B. Guppy of H.M.S. Lark, were exhibited and described by Prof. Liversidge, F.R.S. :-1. White flint from Ulana or Contrariété Island. 2. Flints, including chips and cores, from Ugi, also a large flint tomahawk weighing about four pounds. The flints possess all the characteristics of those from the chalk of Europe, and cannot by mere inspection be distinguished from them. Prof. Liversidge remarked that some years ago Mr. Brown, the Wesleyan missionary, brought from New Britain a soft white limestone which was quite undistinguisbable from chalk, not only physically but chemically, and pointed out that this discovery of flints afforded another very strong proof of the probable presence of true chalk of Cretaceous age in the South Sea Islands. 3. Samples of water from the fresh-water lake of Wailava in the Island of Santa Anna. 4. Water from the boiling spring in the Island of Simbo; temperature $212^{\circ} .5$. Water condensed from one of the fumaroles in the Solfatara on the south-west point of Simbo, at an elevation of about 300 feet above the sen. 6. Water condensed from one of the fumaroles on the summit of the South Hill in the Island of Simbo, elevated about 1100 feet above the sea. 7. Two kinds of fruits ejected from the crops of pigeons shot on a small Island off the south coast of St. Christoval.

Berlin

Physical Society, January 25.-Dr. Kayser spoke on the results of an investigation, recently published by Prof. Bunsen of Heidelberg, into the condensation of carbonic acid on smooth glass surfaces, reults which did not coincide with those of other physieists, the speaker among the rest. Prof. Bunsen had found that the condensation of carbonic acid was a continuous process which could not be regarded as finished even after a period of three years. According to the views hitherto entertained, the process referred to came to a conclusion in a very short time. Dr. Kayser was of opinion that the diverging result of Prof. Bunsen's examination was to be explained on the ground that in his experiments he made use of an absorbing vessel stoppered by a greased glass cock. Carbonic acid appeared, however, to diffuse itself thoroughly through fat, as had been proved by an experiment set in operation some weeks'ago. Two cruciform glass vessels were set up, one arm of which, directed downwards, passed into a capillary tube dipped in quicksilver, while the three other arms were closed up in one vessel by greased glass plates and bermetically sealed in the other. Both were filled with carbonic acid. In the grease-stoppered vessel the volume of carbonic acid showed a slow progressive diminution, bat in the other vessel it continued unaflected. Anything like condensation of the carbonic acid was here quite out of the question, though on the other hand there was clearly a case of osmose through the grease, a subject which Dr. Kayser would further prosecute-Prof. Vogel exhibited iostantaneous photographs of various animals in motion-horses, cows, dogs, and stagswhich had been executed by Mr. Muybridge in San Francisco. Prof. Vogel having explained the mode of their production,
directed attention to particular pictures completely at raname with the representations of animals in motion hitherto customary among artists. When, however, whole series of these fyee, which were oceasionally very curious, were viewed through the stroboscope, it was recognised how true to nature thesc ters sentations were. - Prof. Neesen laid before the Society two nev apparatus-one a call-apparatus for telegraphic purposes on structed by Herr Abakanowics, which, from the small nambe of its vibrations, would exercise no disturbing infnence a neighbouring conductors ; the other an electro-magnetic tuning fork constructed by Herr Künig, in which the quictuke contact common in other instruments of the kind was rephocelly a metallic contact.-Dr. Aron communicated a practical ape ment he had made on an old frictional electrical machine. 2) the application of cacao-butter as grease for the amalgm, is clicited from an old machine, which was no longer able to te charged, beautiful sparks of four incbes long, and he rems mended this fat for trial, particularly in the case of old electiad machines.

Viensa

Imperial Academy of Sciences, December 20, 1833-f von Hoehnel, on the mode of occurrence of some regetable tir material in stem plants,-F. Strohmer, on quantitutive ders mination of pure aqueous solutions of glycerine by means of bar refractive index. - E. Lippmann, on the action of orgamic bjpa oxides on organic compounds (sealed packet). $-\mathbf{V}$. liilber, ${ }^{2}$ a recent land-snail found in the loess from Chim (seez paper).-C. Auer von Welsbach, on the earths of the gadolinu of Y'terby (on a modification of spectral analysis).-A. Arde on cerite and its breaking up to cerium, lanthan, and didywa compounds.-E. Stefan, on the calculation of the coetficien | induction of wire coils.
January 3, 1884.-R. Andreasch, contribution to a koowles of allyl urea.-R. Rumpf, on the andesin in the liguite of Tuif (Styria).-A. Wassmutt, on the heat produced by magnetimL. Fodor-Mayerhofer, contribution to the theory of the raves vertical sun-dial,-H. Zukal, studies on liebens.-M. Kretadr, researches on kynurinic acid. -S. von Wroblewski, on the erd boiling oxygen as a freezing mixture, on the temperature obtino thereby, and on the solidification of nitrogen.
January 10.-F. Hoehnel, on wood-tissue with a star the structure.-T. Wolfberger and F. Strobmer, on a geraly applicable method of analytical determination of acitity t weight (sealed packet).

CONTENTS

Pacs
The Modern Languages of Africa. By Prof. A. H. Keane
Recent Text-Books of Determinants ${ }^{\circ}$.
Letters to the Editor :-
Mr, Lloyd Morgan on Instinct.-George J. Romanes, F.R.S.
"Mental Evolution in Animals," $"$ F. J Faraday
The Remarkable Sunsets.-Prof. C. Michic Smitt; A. C.
"The Indians of Guiana,"-James Dallas.
"Probable Nature of the Internal Symmetry of Crystals."-Prof. L. Sohncke
Holothurians.-Surgeon H. B. Guppy
Unconscious Bias in Walking.-Dr. John Rae, F.R.S.

The Storm of January 26. -Dr. Robert Dixon
Palestine Exploration. By Henry Chichester Hart Fairy Rings. By Henry Evershed
A Cheap Insulating Support. By Prof, Silvanus P.
Thompson (With llustration)
John Hutton Balfour
Captain Hoffmeyer
Notes
Our Astronomical Column :-
Australian Observatories
Chemical Notes
Technical Education
Geological Survey of the United Kingdom
The Origin of the Scenery of the British islands
By Archibald Geikie, F.R.S., Director-General of the Geological Survey
Scientific Serials
Societies and Academies

THURSDAY, FEBRUARY 28, 1884

THE GERMAN CHOLERA COMMISSION

DR. KOCH, as chief of the German Cholera Commission, has just issued his fifth report. When we commented on his first report, which was transmitted from Alexandria on September 17, 1883, we drew special attention to the discovery by that expert of certain bacilli which were found to swarm in the discharges and coatings of the intestines of cholera patients, which were certainly not due to post-mortem cbanges, and which were absent from the intestines of bodies dead from diseases other than cholera. Dr. Ko:h believed that these bacilli, which much resembled those fornd in cases of glanders, stood in some special relation to the operation of cholera, but he was not prepared to say whether invasion of the bacteria was the primary cause of cholera, or whether it was merely an effect of the cholera infection. At that time the epidemic in Egypt had reached its decline, the period which of all others is the least satisfactory for etiological investigation ; and hence, apart from some further record confirming the existence of the same bacilli in other cholera bodies which had since been examined, the reports which Dr. Koch has transmitted to his Government between his first one and the one now under consideration have not dealt with any scientific discovery. But since November last the Commission have pursued their investigations in India, the city of Calcutta having been decided on as the head-quarters of their mission of inquiry ; and it is to the results there obtained that Dr. Koch's last report relates. In the meantime, however, Dr. Straus had reported on behalf of the French Commission, and had expressed his belief that the bacilli discovered by Dr. Koch did not bear the relation to cholera which the German Commission attributed to them ; and that, unlike Dr. Koch, who had found nothing noteworthy in the blood of cholera patients, he had discovered in that fluid a definite micro-organism, which he believed he had succeeded in cultivating in the laboratory.
At this stage the subject is again taken up by Dr. Koch, who now gives an account of the further labours of his Commission. Under conditions of the most favourable sort, experiments have been renewed in Calcutta with an unbroken series of cholera patients and cholera bodies, and at the outset it is stated that microscopical examination has in all cases confirmed the existence, both in the choleraic discharges and in the cholera intestines, of the same bacilli as those which had been found in Egypt. And further, that which had not been possible in Alexandria, namely, the isolation and cultivation in pure media of these special bacilli, is stated to have been successful in Calcutta, with the result that they bave been found to exhibit under cultivation certain characteristic peculiarities as to shape and mode of growth which enable the Commission to distinguish them with certainty from otber bacilli. The Commission, too, have sought, as far as possible, to exclude sources of error, and hence they have subjected the bodies of patients dying from diseases other than cholera to careful micropathological examination, with the result that they are able to say that it has not been possible to find bacilli

VoL. XXIX.-No. 748
similar to the cholera bacilli in any of the bodies of persons who had died of pneumonia, dysentery, phthisis, and kidney disease. Nor has it been possible to detect these bacilli in the intestinal contents of animals and in other substances commonly abounding with bacteria.
The inoculation of the lower animals with cholera discharges and other cholera material bad, in Egypt, led only to negative results; and even if nothing further had been adduced as to this, we should in no way have reregarded failure in this respect as invalidating any inferences that may be drawn by Dr. Koch and his fellowworkers as to the speciality of this bacillus, because it has been found impossible to transmit many of the specific infectious diseases of man to any other animal. We now learn, however, that several experiments made on animals have given resulis which allow of the hope of furthet success. Reviewing their more recent work, in this and other respects, the Commission are evidently hopeful of establishing an etiological relation between the bacilli in question and the cholera process, and this quite irrespective of success being attained in the reproduction of the disease in the lower animals. A telegram of more recent date than the report itself announces that Drs. Koch, Fischer, and Gaffky have discovered the same bacillus in a water-tank. If this be confirmed, it will be of value as proving that water, which, when polluted with excreta, has so often been alleged to be one of the principal means of conveying the cholera poison, is a medium favourable to the transmission of the "germ" from person to person, and the announcement comes aptly in connection with a report in which the German Commission announce that a diminution in the annual mortality from cholera in Calcutta from $15^{\circ} 1$ per 1000 inhabitants before 1870 , to 3 per 1000 since that date, is regarded by nearly all the physicians in that city as being solely due to the introduction of a water-supply of excellent quality.

Referring to the report of the French Commission, Dr. Koch declines to accept the conclusions of Dr. Straus as to the existence in the blood of organisms which are peculiar to cholera, and he expresses the belief that the alleged organisms are nothing but certain small, roundish blood-plates, which, not absent even in health, undergo a peculiar increase in the case of cholera patients, and which were referred to as far back as 1872 by Dr. D. Cunningham in his "Microscopical and Physiological Researches into the Nature of the Agents producing Cholera."
Whilst desiring to follow in the steps of Dr. Koch in observing an attitude of caution as to the meaning of the researches of the German Commission, we cannot but feel that the tendency of the reports as yet issued is favourable to the doctrine that cholera is associated with a specific organic contagion. A connection has already been established between specific disease on the one hand, and the staff-shaped bacilli of splenic fever, the spirillum of relapsing fever, and the microzymes of vaccinia and of sheep-pox on the other; and though it may still be doubtful whether these bodies should be regarded as actual generators of the diseases with which they are associated, or as mere carriers of infection, yet the advance which is being made is in the direction of the doctrine of the particulate nature of contagion. We may have to wait before there is sufficient evidence to warrant the application of this doc-
trine to the case of cholera, but we can congratulate Dr. Koch on the result of his labours so far, and at the same time trust that the example set us in this instance by the German nation may not be thrown away upon the people of this country, who, whilst having a higher interest than any other in ascertaining the real nature of cholera, allowed the opportunity of the Egyptian epidemic to pass by without attempting any scientific investigation as to its causes.

SCHOPENHAUER

The World as Will and Idea. By Arthur Schopenhauer. Translated from the German by R. B. Haldane, M.A., and J. Kemp, M.A. Vol. I. (London: Trübner and Co., 1883.)

$\mathrm{A}^{\text {s }}$S the Kantian leaven works, philosophy shows less and less of an inclination to quit what Kant described as the fruitful bathos of experience. No doubt many a structure is still reared "around us, " pinnacled dim in the intense inane," but that is simply because philosophy, more than any special department of knowledge, is exposed to the inroads of the uninstructed. But here, as elsewhere, the honest inquirer will find a consensus of competent opinion which estimates these piles at their true value. Serious workers pass by on the other side without controversy, lest perchance they should be as those on whom the tower of Siloam fell. On the other hand, only confusion of thought can lead people to identify philosophy with science, and to suppose that, when they have reckoned over the list of the sciences, they may erect a stone to the great god Terminus. For, though the matter of philosophy is the same as that of the sciences (and not, according to the current myth, a spider-like product of intestinal origin), yet the point of view from which the common material is regarded is $a b$ initio different. Science, in its whole extent (including psychology), deals with the world of objects, whereas the first task of philosophy is to remind scientific men of the abstraction which they have been making -- and for their own purposes rightly making-by showing them that the world of objects is unintelligible without a subject to which it is referred. Having rectified this fundamental abstraction, philosophy proceeds, as theory of knowledge, to a critical analysis of the conceptions on which, as ultimate presuppositions or working hypotheses, the different sciences are based. The notion of the atom and of infinite space may be mentioned as two of the earliest cases where such criticism is required. The result of such a criticism is to show that no science can say of its "facts" that they are absolutely true, because they cannot be stated except in terms of the conceptions or hypotheses which are assumed by the particular science. But conceptions such as those of space or atom are found to dissolve in self-contradiction when taken as a statement of the ultimate nature of the real. It follows, therefore, that they must be regarded as only a provisional or partial account of things. The account they give is one which may require to be superseded by-or rather, which inevitably merges itself in-a less abstract statement of the same facts. In the new statement, the same "facts" appear differently, because no longer separated from other aspects that belong to the full reality of the known world.

For the philosopher is essentially what Plato in a happy moment styled him, नuvontuxós, the man who insists on seeing things together; and philosophy, in her office as critic of the sciences, aims at harmonising the notions on which they respectively rest, and thereby reaching a statement of the nature of the real which may claim to overcome the abstractness of the several provisional stages represented by the different sciences.
Judged by this standard, it is to be feared, Schopenhauer's philosophy will be found wanting. Its interest is undoubtedly, in the main, more literary than scientific; and in his central dogma of a metempirical or transphenomenal Will, Schopenhauer shows himself quite the traditional "metaphysician." Taken as literature, high praise must be awarded to the style of his productions, which is very different from that of his heavy-footed countrymen generally. Pessimism was lately much in fashion, and Buddhism is still highly esteemed. The philosophic father of these things is tolerably sure, therefore, of an interested audience ; and "the general reader" will find rich pasture in the aphoristic wisdon of the man of the world, his keen and often eynical psychological analysis, and his genuine appreciation of art, especially of music, which was almost the one redeeming feature in an otherwise ignoble character. Mr. Haldane and Mr. Kemp have done their work so well, that those who are drawn to the book by the literary reputation of the original will not have their enjoyment marred by the intrusiou of foreign idioms, clumsy constructions, and the general lameness of the translation style. All praise must also be given to the clearness and accuracy with which they have rendered the philosophical terminology of the work.

But the translators would probably hardly have undertaken the task, had they not believed that there was more of value in Schopenhaucr than what has just been allowed him. And, in point of fact, it is perfectly possible to divide Schopenhauer's work into two parts. The world presents itself to him under the twofold aspect of "Will and Idea." "The world as Idea" is the phenomenal world, the world of science, while Will-one mighty unconscious desire or force-is the inner or noumenal reality of which the phenomenal world is the outward expression. 1 appear to others, and to myself, as an organised body-that is, as an object or complex of ideas; but I also know myself, Schopenhauer says, on the inner side as Will. He next denudes this Will of the characteristics which belong to it in the conscious life, ignoring at the same time the other features which, equally with Will, go to constitute that life, and then, with a superb sweep of anthropomorphism, declares that Will, as an impersonal force, is the essence of all phenomenathe steam that drives the world. In support of this thesis, he fastens on obscure facts like those of instinct; and, though he scouts at the "Bridgewater Treatises," be argues from teleology in an exactly similar sense. But as no scientific reader is likely to be led away by Schopenhauer's reasoning here, it is needless to enter into any tormal refutation of his positions. It is more to the purpose to draw attention to the side of the book which, though not so distinctly Schopenhauerian, and probably not so attractive reading as the collection of brilliant analogies on which his system is built, contains an acute,
and, so far as it goes, a sound, criticism of certain false or inadequate views of the world. Schopenhauer claimed to be the true follower of Kant, and when be is speaking of "the world as Idea," we find ourselves on the general ground of the modern philosophical criticism which dates from Kant. Schopenhauer certainly neglects much that is valuable in Kant, and presents other elements superficially ; but, perhaps for that very reason, he may be useful as a populariser of thoughts which, in one shape or another, it is essential for the modern world to master. We need only note here his insistence on the complete relativity of subject and object-a relativity which, of course, excludes the possibility of any causal relation between them-and his criticism of the ideas of space, time, and matter, leading him to the conclusion that the world of objects exists as a system of complete relativity, in which no individual objects can claim any reality except what consists in their necessary relation to one another. Any one reading these and similar passages must acknowledge that, where his doctrines are otherwise sound, Schopenhauer's clear and incisive style makes him an admirable interpreter.

Andrew Seth

OUR BOOK SHELF

Cours de Min'ralogie. A. De Lapparent. (Paris: Savy, 1883.)
Mineralogy was the father of Geology; but the son has for many years in this country shown great want of respect to his parent. A very large proportion of our geologists are extraordinarily ignorant of mineralogy. To them as well as to those who have not so seriously neglected that branch of science we recommend a perusal of the work before us. The object of its distinguished author (who has already rescued French Geology from the charge of possessing no modern text-book of native origin) is in the first place to simplify as much as possible the teaching of rational crystallography, asestablished by the works of Bravais and completed by Mallard, so as to bring it within the comprehension of all earnest students of minerals and rocks; and in the second place to put geologists in possession of the knowledge which they must acquire if they would apply themselves with any satisfaction and profit to the study of the microscopic structure of rocks.

The volume is divided into three parts. In the first of these, entitled Geometric Crystallography, M. De Lapparent states the laws of crystalline symmetry and shows in detail the forms of which each system is composed, these forms being rigorously classed and deduced from each other aecording to the method of Bravais. Tables and stereographic perspective diagrams are added.

The second part, or Physical Crysfallography, is devoted to the explanation of the physical, and especially the optical, properties of crystallised matter. It concludes with an analysis of the different crystalline groups, with which, following Mallard, the author connects the phenomena of isomorphism and dimorphism.

The object of the third part is the Description of the Principal Mincral Species. The author adopts a system of classification which is entirely new, and which might be called the geological system of mineralogy, because it is based upon the part which each species plays in the composition of the earth's crust. From this point of view minerals are divided into four great classes:-(1) silicates or elements of the fundamental rocks. (2) Elements of mineral veins. (3) Metallic minerals. (4) Combustible minerals.

The work consists of 550 pages, with 519 figures
inserted in the text, a chromolithographed plate, and an index comprising 3500 names, from which a knowledge can be obtained of all terms employed in mineralogy.

LETTERS TO THE EDITOR

[The Editor does not hold himself responsible for opinions expressea by his correspondents. Neither can he anderlake to return, or to correspond with the writers of, rejected mannscripts. No notice is taken of anonymous communications.
[The Editor wrgently requests correspondents to kenp thair letters as short as possible. The pressure on his space is so great that it is impossible otherwise to inswre the apparance even of commonications containing interesting and novel facts.]

The Remarkable Sunsets

THE remarkable and beautiful atmospheric phenomena which within the last four or five months have so powerfully attracted attention in all parts of the world, made their appearance here about the same time that they did in England and on the continent of Europe. It is true that 25 early as October 14, $\mathbf{1 8 8} 3$, something similar was noticed at Santa Barbara, about 280 miles south-east of this place ; but the characteristic phenomena were not observed here and at other positions on the coast of California until after the middle of November, 1883. I first observed it on the evening of November 24, when it presented a very striking appearance. That afternoon the sky had been overcast with dark clouds, and the sonth-east wind had brought a slight rainfall. Towards snnset a bright portion of sky appeared at the western horizon, extending to an altitude of about 10°, while the dark hood of clousis enveloped the remainder of the celestial vault. At 6 p.m. the lurid redness (blmost angry) of the western horizon attracted universal atlention ; it had the appearance of a sky illuminated by an immense conflagration. Ioubtless the effect was heightened by the contrast with the dark canopy of clouds. Similar appearances, more or less conspicuous, presented themselves during the remaining days of November, and in a less striking manner (when the weather was favourable) during the month of December, both after sun et and before sunrise. At a quarter past six on the morning of Novemher 29 the eastern sky eunitted such a brilliant ruddy light as to arrest my attention by the peculiar red illumination of the window-curiain of my bedroom. On looking ont, the whole eastern sky was seen to be drenched in gorgeous red. During the month of Jannary, 1884, the "upper-glows" (as Miss Ley appropriately designates them) became much less conspicuous.

At the period when the phenomena were most conspicunus, the atmosphere during the day was not perfectly clear, although the sunlight was not obscured to any considerable extent :-there was always observed a thin veil of fleecy clouds covering the heavens, and a zohitish glare manifested itself about the sun, extending to a distance of abont 20° or 25° from his eentre. It is evident that the suspended matter producing these phenomena must have been above the region of the loftiest cirri, for ordinary changes of weather and disturbances in the atmosphere did not modify the appearances.
But the manifestations presented by the sky seem to have been so nearly identical in all parts of the globe, tbat detailed descriptions of them, as exhibited here, are unnecessary. It was, however, evident that the phenomena were less pronounced on this coavt than they were in many other conntries. This was indicated by the fact that, wherever the phenomena were sufficiently developed, the sun during the day was encircled by mure or less distinct coloured halos or eorone ; whereas at this place it amounted to nothing more than a wikitish glare about that Inminary. The Rev. S. E. Bishop writes me from Honolulu, that the e ehromatic circles around the sun were constantly observed in all of the Hawaiian Islands from September 5 to December 15, 883 ; and I notice that they were oberved in England as frequent accompaniments of the upper-glows.

While the large size of these coloured circles might (as I have indicated in a letter to Srimse) seem to connect them with the well-known ice-crystal halos of 22° radins, yet 1 am disposed to regard this chromatic feature of the phenomenon as mainly due to the diffractive action of the impalpable dust-particles suspended in the lofty supra-cirri regions of the atmosphere. Nevertheless, inasmnch as the experiments of M. Conlier and Mr. John Aitken show that the presence of dust-particles in the
air as nnelei is essential to the enndensation of aqueous vapour, it is by no means inprobable that ice may be associated with these phennmena. For, as these 1)fty regions mus', even within the tropics, be far above the plane constituting the lower boundary of the term of perpetual eongelation, the condensed vapour mnst necessarily assume the form of aggregations of ice around these maclei. Hence the diffractive corona may be a ssociated with imperfectly developed ice-crystal halos.

It seems to me scarcely necessary to invoke-as Mr. Rowell has done (NATURE, val. xxix. p. 251)-the repulsive agency of electricity to account for the per-istent suspension of the volcauie dust, even in these regions of rarefied air. If the attenuation be sufficiently great, there will bs no sensible subsidence of the dust-particles. Faraday found that even metallie gold, when minutely divided, required months to subside when suspended in water ; and some forms of ins sha le mineral matter remain suspended in water for an almost indefinite period. Now, the du:t-particles constituting the nuclei of condensation for fogs and clonds are absolutely ultra-microscopic in smallness ; heuce their suspension, even in rarefied air, may be prolou ed almost indefinitely. Moreover, it is possible that air may posse-s some degree of ziscosity; in which case the indefinitely attenuated dust-particles might have no tendency to subside, and conld only be removed from the atmosphere by those meteorological agencies,-such as the condensation of vapuur, -which tend to augment their size.

Mr. D. Wetterhan (Nature, vol. xxix. p. 250) refers to Mr. Kescelmeyer's hypothesis of the atmospheric origin of meteorites pat forth some twenty years ago, which ascribes them to the condensation of metallic and other vapours issued from volcanoes. If I am not mistaken this hypothesis was advanced by Biot near the beginning of the preseut ceutury. The high velocitics of meteorites is overwhelmingly fatal to their terrestrial origin.

Berkeley, California, February 1

The recent sunsets were nearly or quite as remarkable in the Rocky Mountain region as they were in Europe, and the phenomena were very similar. There was the same peculiar fire-red after-glow continuing for two honrs after sunset, \&c. Theve unucual appearances began to attract attention soon after the middle of November. They were most brilliant during the last week of November, but continued at intervals until early in January. The carefully kept meteorological record of Prof. F. H. Lond, of Colorado College, shows that the atmospherie pressnre varied considerably during the latter part of November, but there was no apparent accompanying change in the after-glow. The sunrises were also quite brilliant, but le as so than the sunsets. Late in November I began to observe the wide chromatic belt which surrounded the sun, and at midday usually reached from near the sun to the horizon. Somewhat similar appearauces and chromatic halos are not uncommon here, and it was not until after several weeks of comparison of colours that I became convinced that the tints seen around the sun during the time of the remarkable sunsets were somewhat different from those ordinarily seen. By degrees the brick, or fire-red, and other abnormal tints of the twilight hours have given place to the ordinary prismatic colours, and a similar but le-s marked change could be seen in the colours observed near the sun during the daytime. These day colours were brightest when the sky was overcast with thin clouds or filmy eirri, though plainly visible when there was no eloud to be seen. The prevailing day tint is usnally a peculiar dall purple, bat duriag the time of the red after-glow the common colour was duller, more like a yellowish brick-dust.
Colorado College, February 8
G. II. Stone

"Probable Nature of the Internal Symmetry of Crystals"

Is reply to the important criticisms offered by Herr L. Sohncke on my new theory published in NATURE of December 20 and 27, 1883 (pp. 186 and 205)-

Taking first those relating to the geometry of the subject; the following explains why only the five symmetrical arrangements of points in space described in my paper are taken as the basis of the theory.

If it is the case that, prior to the act of erystallisation, the chemical atoms of a body fall into some symmetrical arrangement, it is nataral to sappose that they do so through some
inflnence they exert on one another-such, for example, as mutual repul-ion-and that a similar influence is exerted by each atom of the same kind on atoms around it. And if this be so, there will be no stable equilibriwm of the forces thas exerted woril the atoms are very ecvenly disfributed throughouf the space allotfod to them.

Now although, as Herr Sohncke has shown, there is a large variety of symmetrical arrangements of points in space in which the points are disposed around every one point of the system in precisely the sarne manner as around every other, it would appear that only four of these regular systems, the first four described in my paper, signally fulfil the requirement of even distributiou, these four systems beiny distinguished from all the rest by the property that, if the nearest points grouped arownd any point of cither of these four systems are joinnt, the solid thw owt. linul has its edges all equal.

And further, although the fifth system described in my paper is n t one of Herr Sohncke's regular aystems, its points are more evenly distributed through space than those of any of these systems except the four just referred to. In this system the property is found that either linss joining the nearest points around any point of the system, or lines joining the next nearest, in all cases outline a solid whose edyes are all equal.

As the five systems I have in my paper too vaguely distinguished as " very symmetrical " thas stand alone, and moreover, if my views are adopted, they appear to be adequate to all cases of crystallisation, I still incline to think that the chemical atoms of bodies about to crystallise always have one or other of these five kinds of symmetrical arrangement. If I am wrong in this, aud some other symmetrical arrangements are admissible, the general lines of the new theory will not however be affected.

Next, as to the bearing of the theory on chemical valency and the usual conception of a chemical molecule, it may be remarked that, while there is no clear knowledge of the nature of the nnion between the different sorts of atoms in a compound by which to test the new theory, this theory appears to receive support from the phenomenon of electrolysis. For the fact that one ion is liberated at one pole, the other at the other, while no apparest alleration takes place in the fuid between the poles, goes to show that any particular atom can ehange its partners without dissolving the chemical ties subsi-ting between the several atoms of the compound, and thus favoars the view that similar atoms equally near to a particular atom are similarly related to it.

As to my supposition that the expansion, or contraction, occurring in the act of crystallisation, is due to the increased or diminished repulsion exerted by some only of the atoms of a body on surrounding atoms, it $i \varsigma$, perhaps, interesting to notice that if this conception could be extended to the gaseons state, and the expansion to the state of gas of any compound attribated to the agency of certain atoms in each molecule, or ideal nnit, to the exclusiou of the rest, the simple relations found subsisting between the volumes of compounds and the volumes of their nncombined constituents might in this way be accounted for:Thus the fact that aqueous vapour has a volume two-thirds that of the added volumes of the hydrogen and oxygen of which it is composed would be explained if all the gascous expansion of this componnd is due to the hydrogen atoms only.

Muswel! Hill
Wm. Baklow

"Mental Evolution in Animals"

Mr. Faraday dnes not seem to have quite understood one point in my comment on his letter. I said that whether the action of the skate was accidental or designed, "in either case, under the conditions, aud more especially the 'attitude" described, seizure of the food at the proper moment can only be ascribed to the sense of smell." When we remember the form of a skate, it is certain that, under the conditions described, the animal could not see the approaching food, and therefore Mr . Faraday's illustration from the ericketer would only hold if the cricketer contiuned to hit the ball after he had been blindfolded.
I do not care to continue this discussion; bnt I may say that as the glass wall of a tank is not au object upon the solidity of which a skate would be likely to calculate, and as the sense of smell in this animal is so highly developed that it might easily give rise to "the appearance of co-ordination" described, I still think that the incident was probably accidental. Any other piece of food happening to approach the mouth would no doubt have been seized in jnst the same way.

George J. Romanes

Instinet

Were it merely for the sake of reiterating my views, I should not feel justified in commenting upon Mr. Romanes' letter on instinct in last week's Nature ($\mathrm{p}, 379$). He seems, however, to have nnderstood my "subjective verification" in a sense somewhat different to that which I intended to convey by that expression. I venture, therefore, to beg a little space in these colnmes for explanation.

There is but one metbod in human prychology-that of introspection. By this method I obtain certain results. These results I communicate to my neighbour, and he by introspection verifies them for himself. This I call "submitting the resnlts to the test of subjective verification," In this way and in no other can a science of hmman psychology be constitnted.

1 remember once secing a schoolfellow caned. He did not flinch, but grew deadly pale. "Did it hurt mnch?" I asked afterwards, in schoolboy fashion. "Hurt! Who cares for pain? I was caned for a lie that I never told." I can remember to this day the indignation that his words ronsed within me. I could verify to some extent the true nature of his feelings. How can I verify the feelings of my dog? The feeling that I infer may be as wide of the mark as the mere pain I fancied my schoolfellow smarted under. Without myself becoming a dog, I can never know the true nature of my dog's feelings.

Mr. Romanes contends that "the involuntary groan of pain, the pallor of fear, and a thousand other unintended expressions of emotions, as well as a thousand other unintended expressions of thought, are, as it is proverbially said, 'more eloquent than words., In this I cannot agree. The groan, the pallor, tell plainly of some intense feeling; of its nature they can tell us little. So do the actions of animals testify to some corresponding mental states ; of their nature we can form bat a dim conception. Out of such dim conceptions no science of comparative psychology can, as it seems to me, be constituted.

Whether this is common sease (for which, by the way, in these matters I have not quite so much reverence as Mr. Romanes) or " an ingeniously constructed argument of scepticism," I must leave others to judge.

In conclusion let me thank Mr. Romanes for bis letter, and assure him that 1 shall give to his objections to my physiological theory of instinct that weight which I feel to be due to the opinions of one from whose writings 1 have learnt much and hope to learn more.
C. Lloyd Morgan

University College, Bristol, February 25

Protection by Mimicry.-A Problem in Mathematical Zoology

Under the above heading in the Japan Wrekly M/ail of February 3, 1883, we drew attention to what appeared to ns an error made by Mr. Alfred R. Wallace in a letter to Nature regarding the protection gained by two distinct species of insects of distasteful nature assimilating in appearance when subject to the attaeks of young and inexperienced birds. The article was sent to Mr. Wallace, who by letter, and in an article in Nature, vol. xxvii. p. 481 , withont hesitation, acknowledged the correction, saying that he had misstated Dr. Müller's proposition. He then gives Dr. Muller's own words, which are:-" If both species are equally common, then both will derive the same benefit from their resemblance-each will save half the number of victims which it has to furnish to the inexperience of its foes. But if one species is commoner than the other, then the benefit is unequally divided, and the proportional advantage for each of the two species which arises from their resemblance is as the square of their relative numbers." This alters the question altozether. Mr. Wallace had stated it, through an oversight, quice otherwise. He said :-"The number of individuals sacrificed is divided between them in the proportion of the square of their respective numbers." Snch was what we took objection to; and we showed that it was not according to the squares, but to the simple numbers.

Mr. Wallace carries out his article, which is accompanied by one by Mr. Meldola (p. 482), to show by examples how it is that, notwithstanding the loss is in direct ratio to the numbers of each species, the proportionsl saving through resemblance is inversely as the squares; and he farther says:-"The advantage will be measured solely by the fraction of its own numbers saved from destruction, not by the proportion this saving bears to that of the other species." On this Mr. Meldola remarks :- "The
fact that these numbers stand to one another in the ratio of "the squares, "is a mathematical necessity from which I do not see how we can escape." Now even if this latter statement were strictly correct, we fail to see how it affects Mr. Wallace's statement. We shall show, however, that it is not correct but only an approximation when the number eaten by the birds is a small percentage, for as this becomes greater the ratio of proportional advantages increases considerably above that of the squares.

The proportional advantage that either species has after imitation over its former state (before imitation), appears to be according to the fraction of its original number remaining. Because while in its former state, should it lose one half its number, it would have one-half left, while if it after imitation lost only onefourth, it would have three fourths remaining ; a clear adrantage of one-fourth over one-half, or 50 per cent. This, however, is not a simple case for an example when we come to consider the relative numbers of the two species; we will therefore put it thus :-A has donble the number of B. Snpposing that when dissimilar A loses 30 per cent. then B loses 60 per cent. Bnt after assimilation both lose in the same proportion, namely, 20 per cent. A has conseqnently an advantage, over its former state, of 10 , and similarly B of 40 . But in the former state the remainder of A not lost was 70 per cent., while that of B was 40 per cent., so that A's real advantage is so on 70 or $14^{\prime 2} 2857$ per cent., and B's 40 on 40 , or 100 per cent. These two numbers do not bear Dr. Mutler's ratio of 1 to 4 (the sqnares of the nnmbers) but a greater, namely, 1 to $7=1^{2} \times 40$ to $2^{2} \times 70$.

The following examples will illustrate the increasing ratio :1. A to B as 2 to I.

If when dissimilar A loses 20 per cent. then B loses 40 per cent., the remains being for $A, 85$ per cent. ; for R, 60 per cent. When similar each loses 131 per cent., leaving remains of 86 \% per cent.

The advantage to A therefore is the excess of 863 over 80 on $80=8.33$ per cent., and the advantage to B is the excess of 863 over 60 on $60=44^{\prime} 44$ per cent. These advantages compared to each other are as I to $5^{\prime} 33$ (according to Dr. Muller 1 to 4).
2. A to \mathbf{B} as 3 to 1.

Dissimilar A loses 20 per cent. ; B, 60 per cent. Remains $80-40$.

Slmilar A loses 15 per cent. ; B, 15 per cent. Remains 85-85.

Advantage to A excess of 85 over 80 on $80=6.25$ per cent.
Advantage to B excess of 85 over 40 on $40=112^{\circ} 5$ per cent.
Ratio 1 to 88 (Muller 1 to 9).
3. A to B as 4 to t .

Dissimilar A loses 20 per cent. ; B, 80 per cent. Remains 80-20.

Similar A loses 16 per cent. ; B, 16 per rent. Remains 84-84.

Advantage to A excess of 84 over 80 on $80=5$ per cent.
Advantage to B excess of 84 over 20 on $20=320$ per cent.
Ratio 1 to 64 (Miiller 1 to 16).
Dr. Muller's squares reqnire to be multiplled by the remains per cent. (taken also inversely) of the two species when dissimilar, to bring out the proper ratios. Thus: 1 to 4 (the squares) in the first example, multiplied by 60 and 80 respectively, give 60 to 320 or it to $5 \cdot 33$. In the second I $\times 40$ to $9 \times 80=40$ to 720 or 1 to 18 . And in the third, 1×20 to $16 \times 80=20$ to 1280 or 1 to 64 .

It will be anderstood therefore that, whether we reckon the proportionate advantage that each species obtains over its previons state of existence by the mimic, or calculate the ratio of proportionate advantage of mimicry between the two, the comparison has to be made with the state each wonld have been in had not mimicry taken place, indicated by the proportion of survivors each would then have had. If we ignore this, the comparison is nntrue. What we want is the advantage a species which adopts mimicry has over one which fails to do so. So that if we speak of one nnmerous species A, and two equal nonnumerous species B and B^{\prime}; if B mimics A, while B^{\prime} mimics no species, \mathbf{B} receives protection, and thus has an advantsge over \mathbf{B}^{\prime}, which in particalar cases may amount to so much that, while \mathbf{B} survives, \mathbf{B}^{3} may become exterminated. This is perhaps the simplest way of putting it.

It must be remembered, however, that B does no harm to A by mimicking it ; on the contrary, the act of mimicry is of advantage to \mathbf{A} over its former state of existence as well as to \mathbf{B}; but \mathbf{A} being the more numerous the advantage is less. Still after the assimilation neither has an advantage over the ofter.

Proportionally they suffer from the ravages of the birds equally; the percentage of losses is the same; they are on equal terms. No matter how long they continue the association, neither gains nor loses on the other; though through one being more pumerous it loses more individuals, yet equally in proportion with the other. So that, if one is twice as numerous as the other at the time of assimilation, it must alway-other conditions being equal-remain twice as numerous.
We now give the mathematical reduction :-
Designation of species A
$\begin{aligned} & \text { (1) Original number } \\ & \text { (2) No. lost withott imitation ... }\end{aligned}$
(2) No. lost without imitation ..
(5) Remains with imitation
$a\left(1-\frac{a}{a+\bar{b}}\right){ }^{b}\left(1-\frac{b}{a+b}\right)$
6) Excess of remains due to
imitation, or absolute ad.
vantage (3)-(5) ...
br
$a+b \quad a \frac{a b}{a+b}$
(8) Ratio of excess to remains
without imitation (6) : (3),
or proportional actuantage $\frac{c}{a+b} \cdot \frac{b}{a-a} a+b \quad b=\frac{a}{-c}$
(9) Ratio of proportional advantage of B to propor-

$$
\text { tional advantage of A } \quad \ldots \quad \cdots \frac{a(a-c)}{b(b-c)} \text { or } \frac{a^{2}}{b^{2}} \frac{1-\frac{c}{a}}{1-\frac{c}{b}} \text {. }
$$

From (8) wc see that, if $c<b<a$, there is a proportional advantage to both, the mimicry "is twiee blessed," but the proportional advantage to B is greater. If e is zero, there is no advantage to either. If $c=b<a$, the prop, advantage to B is infinite, while that to A is still finite; this is as it ought to be, seeing that to B it is a case of "to be or not to be," of existence with mimicry or extinction without. And in this extreme case it must be evident to every one that the ratio of $a^{2}: b^{2}$, both terms finite, cannot be the ratio of the infinite advantage of B to the finite advantage of A . The greater c the greater are both advantages.

From (9) we see that, if c is swall compared to b and a, the ratio is nearly $a^{2}: b^{8}$ (Miller's law), but the larger 0 is the further it deviates from that law, the ratio becoming rapidly greater than $a^{2}: b^{2}$, and approaching infinity as \subset approaches b.

To conclude, we may point out that Müller's law, as given in his own words and quoted above, is incompletely enunciated, and but for the numerical examples, it might lead any one astray as to what the law is. It ought to have the ratio of interpolated between "and" and "the proportional"; then "adzantage" and "syware" ought both to be plural; "relative" ought to be respective: and, lastly, the fact that the ratio is inverse whould be explicitly stated.

Finally we enanciate our law. Let there le two species of insects equally distasteful to young binds, and let it be supposed that the birds would destroy the same number of individuals of each before they were educated to avoid them. Then if these insects are thoroughly mixed and become undistinguishable to the binds, a proportionate adtontage accrucs to each over its former state of existence. These proportionatc adiantapers are inversely in the duplicate ra:io of their respective original numbers compounded with the ratio of the respective percentages that would have narvived without the mimicry.

This last "ratio compounded "corrects Muller's law, but we still think with Mr, Wallace that the law, even when corrected, has not much bearing on the question that the individual absolnte advantages (6) above, together with the probable value of e and the ratio $a: b$ indicated by relative frequency of capture, solve the whole question. In our first paper above mentioned we established formulx for calculating these last-named itens, although in a different manner from and quite independent of Muller's law, which we had not then seen.

Thomas Blaktstos
Thomas Alexander

Christian Conrad Sprengel

I became acquainted with Christian Conrad Sprengel's work, "Das entdeckte Geheimniss der Natur im Bau und in der Hefruchtung der Blamen" (Berlin, 1793) in 8850 at the University of Berlin through Prof. C. H. Schultr-Schulzenstein, who brought it forward in one of his lectures on botany, praling Sprengel's good observations and illustrations bat making his teleol.gical views appear so irksome as to dispose his hearers rather to depreciate and reject the book than be attracted to it by respect. The value of Sprengel's treatise in its hearing on the theory of selection was finst recognised by Charles Darwiv, whose writings recalled the remarkable book to my mind, and induced me to buy it , which I did at a very cheap rate at an old book-shop.
K. Móbus

Kiel, February 18

Circular Cloud Bowa

1 yancy that the phenomenon described by Mr. Fleming in your issue of January 31 (p .310) is not a very uncommon one. It bas twice fallen to my lot, when in Switzerland, to be a witness of these spectral shadows.

On the first occasion 1 was with a party of three on the mountsins to the north-east of Montreux, almost opposite the Cape de Moine. It was midwinter, and the day was very cloudy, even in the valleys, while the high ground on which we stood, and all the surrounding peaks, were completely swathed in mist. Suddenly, and under the impulse apparently of a blast of wind from below, the mists around us were almost entirely dissipated, and a few sickly gleams of sunshine filtered through the fog. At 1 at moment we saw gigantic lmages of ourselves projected on to the wall of vapour enshrouding the Cape de Moine, immediately opposite the point where the sunheams had permeated. The effect was very tramitory, and, so far as I remenber, there were n) prismatic colours.

The circumstances under which I saw the second appearance were as follows:-
In August last I was standing, just before sunset, on the summit of the Niesen, in company with a friend. The day had bee 1 very hot, and we were jast remarking on the extraordinary difference in temperature between our elevated position there and our situation a few hours before on the Lake of Thun, when we saw some scattered wisps of cloud rising out of the depths below. These increased rapidly, both in size and number, uniting as they rose, till the whole abyss presented the appearance of a seething cauldron, from which was escaping a dense cloud of steam. The prospect towards the east was quickly blotted out, while the sky in the opposite quarter remained as clear as before.
We then saw dim and fragmentary signs of prismatic colours in the cartain of cloud, and these became more defined and vivid as the thickness of the cloud lncreased. Finally there appeared a very distinel circle of rainbow bues, with our own figures looming, weird and awful, in its centre. Both images were visible to myself and my companion, though each could see the other's reflection more distinctly than his own.

Mr. Whymper, in hls "Ascent of the Matterhorn," mentions an iustance in which the prismatic colours assumed the shape of cros es. This effect, occurring ns it did soon after the fatal accident which marked the conquest of the muntain, filled the mind; of the guides with superstitious horror. From my own experience on the Niesen I can well Imagine that, as Mr. Whymper suggests, this form could be accounted for by the suppositiun that there were several circles interlaced, and that only segments of them were visible from the point at which he and bis companions stord.

Perhaps some of your readers.may be able to explain the exact atmospheric conditions under which these appearance becume possible.
E. H. L. Finmstone

Bewdley, February 21

On the Absence of Earthworms from the Prairies of the Canadian North-West

In Nature of Jan. 3 (p. 213) Mr. Robert M. Christy writes on the absence of carthworms from the prairies of the NorthWest. I can confirm his statewents, and extend them to cover the prairies of Kansas, the Indian Terrilory, Idabo, and Washington Territory. In all the above-mentioned territory of the United States the soil is more or less alkaline, and it seems to
me that to this cauce the absence of earthworms may be attributed. Ants and burrowing beetles, or the larvae of the latter, are, however, common, and no doubt do much service in the manufacture of plant-food, as well as in the destruction of decaying material. At Boise City, Idaho, some enthusiastic disciples of Izakk Walton imported and successully reared the coveted hait for their fish-hooks in soil suited to the habitat of the Lumbricida.

Vancouver Barracks, Washington Territory,
January 30
P.S.-Are earthworms found in Arabia and Egypt ?

ZOOLOGICAL RESUITS OF THE WORK OF THE UNITED STATES FISH COMHMSSION IN 1883

IN the summer of 1880 the United States Fish Commission steamer Fish-/Iawk began her first work in dredging upon the Gulf-Stream slope seventy miles south of Rhode Island, working in from 75 to 600 fathoms of water. Upon this steep submarine bank several hundred species of Invertebrates were found which proved to be new to the American coast. Many were entirely new, others had been described from the Mediterranean and the deep waters off the west coast of Europe, and some were identical with fossils from the Italian Tertiary and Quaternary deposits, this being true of the shells more particularly. These species have long since been described in American scientific publications, and two subsequent summers of work in this region have brought to light numerous new and additional species, and at the same time very nearly exhausted the region. The FishHawk, built for the purpose of serving as a floating shadhatching station to work in the shallow inlets of Chesapeake Bay, was, during the summer, when she could not carry on her intended work, made use of for dredging purposes, work for which she was not well suited, for her shallow draft and round bottom rendered her unsafe when far from land and liable to encounter rough weather. She could make trips only when pleasant weather was assured for at least twenty-four hours, thereby losing much valuable time which could have been saved if a perfectly seaworthy vessel had been at the command of the Commission.

Accordingly in 1882 an appropriation was obtained, and early in 1883 the Albatross was launched, and made her first trip shortly afterwards. So much has been written about the Albalross that a mere passing notice will suffice. She is a 1000 -ton iron vessel, 234 feet long, and drawing 12 feet of water. On the port side, near the bows, the sounding-machine is placed. Just forward of the pilot-house is the dredging machine, and here, in a clear space left for the purpose, the rougher work, picking out the specimens from the mud, \&c., is done. Aft of the pilot-house, with a chart-room intervening, are the two la boratories and a store-room, -an upper and lower laboratory, and the store-room beneath. The tiner sorting and microscopic work is done in the upper laboratory, th is being lighted by a skylight and four deck-windows. The library is in this room. In the laboratory beneath ar e cases of bottles ready for use and for those containing specimens, and a bench is placed on two ends of the room, where rough sorting can be done. In the room be low this, bottles, jars, tanks, dredges, nets, and all ap paratus used in the work are contained. Alcohol is ca rried in a large copper tank. In the upper laboratory are two copper tanks each of 32 gallons capacity, one co ntaining fresh water, the other 95 per cent. alcohol. 13 y means of faucets each can be drawn from its respective ta nk. The rest of the ship, with the exception of a few st ate-rooms reserved for naturalists, is given over to m achinery and quarters for officers and crew. She is m anned from the navy, and is under the command of L ieut. G. L. Tanner, U.S.N. Electricity is used for
lighting, Brush incandescent lights being used for ordinary purposes, while an arc lamp suspended from the rigging lights the deck so well that work can go on as well by night as by day. Engineer Baird, U.S.N., chief engineer of the vessel, has succeeded in making an incandescent light that when lowered to 100 fathoms will neither be crushed nor extinguished. Used in connection with some deep-sea trap, this will undoubtedly give good results in capturing such quick-motioned fish as would avoid the trawl but would be attracted by brilliant light. The apparatus in use is the best which the past experience of the Fish Commission, U.S. Coast Survcy, and European dredging expeditions could suggest. The vessel is so constructed that she can go backward as easily as forward. When the sounding wire is running out, she can go completely around it without causing it to depart fron its perpendicular. That the Albutross is perfectly seaworthy and that the machinery and apparatus and the vessel itself are in the best condition has been proved by the numerous trips made during the year just passed, and by the rough weather encountered. Starting early in 1883 upon her trial trip, she went into water as deep as 1200 fathoms. Afterwards numerous trips were made in the deeper waters off the southern coast of New England, some lasting a month. The principal work was done in from 1000 to 2000 fathoms, the deepest work done on the United States coast by an American expedition. Several successful hauls were made in 2.400 tathoms, and one in 2950 fathoms. This latter is the deepest successful recorded haul made with a trawl as far we can find out. Soundings were taken in 3000 fathoms. The naturalist in charge is Mr. James E. Benedict. The Albalross has just started on a cruise to the West Indies, where work will be done both on the shores and in the decper outer waters.

The previous explorations of the Challenger, Blake, Norwegian, and French deep-sea dredging expeditions, investigating similar regions in the North Atlantic, have rendered the results obtained by the Albatross much less remarkable than they would otherwise have been. Notwithstanding this, and the fact that some worked very near the field chosen by the Albatross, many new species -some of them of a very remarkable character-were taken, often in great numbers. The bottom in all the hauls deeper than 1000 fathoms was of globigerina ooze, the absence of pebbles and sand being a well-marked ard universal fact. Whenever mud was obtained from any locality, it was thrown into a tub of water, stirred, and allowed to settle, and by repeating this several times a perfectly pure deposit of Foraminifera was obtained. Fach sounding and mud from each station was treated in a similar manner, so that samples, and ofien large quantities, were obtained in this manner, so that material was furnished for a complete monograph of the group. Over fifty species have been found in a partial examination of a few hauls. Every variety, both in form and in colour, is represented in these shells. Numerous new species of Gorgonians and Pennatulids were found in many localities. In these soft bottoms, where no stones are to be found, such animals or culonies of animals as must bave some firm basis of attachment are almost entirely wanting. Sponges, barnacles, and hydroids are very rare, occurring at times upon the bare stalks of Lepidisis or upon some dead shell. Frequently, barnacles and Actinians are attached to these stalks, fastencd in a cramped manner, the base completely suriounding the stem. The barnacles found here are very remarkable, usually being stalked, but one was taken which was sessile. A common mode of fixation among the Pennatulids is by means of a bulblike process which projects into the mud. Acanella, Lepidisis, and their allies fix themselves by branching, root-like projections. A number of specimens of an undetcrmined species of Umbellifera were taken. Three new species of Epizoanthus, or, more probably, new
genera allied to Epizoanthus, were obtained, each with a new hermit crab. Other genera of Actinians were rare, owing to the few opportunities for attachment. The most abundant starfish was a new species of Zoroaster named Z. diomedia, found in 12 co fathoms. An Archaster-like species was the most interesting, on account of its immense madreporic plate. Several other species of Archaster, and at least one of Solaster, were also taken. Starfishes from these depths belong to the two very opposite genera Asterias and Archaster, or their near allies. Ophiomusium lymani and armigerum formed the greater bulk of Ophiurians, but we dredged, in smaller quantities, Ophioglypha convera, several species of Ophiocantha, and a number of other species not yet determined. One species of soft, flat sea-urchin was quite abundant, and another much larger one was taken in smaller numbers. Echinus norvegicus, previously found only rarely in the dredgings of the Commission, was obtained in great quantities in 1000 fathoms. Several other species of Echinus and a number of Spatangoids formed the best part of the collection of Echini. Holothurians were represented by many forms. One, resembling Leptosynapta in form and in its anchor hooks, another similar to Molpadia, and several others having the form of the typical Holothurian, will undoubtedly prove to be new. The most peculiar species of Holothurian were two new forms taken in great numbers from several localities. They are new species belonging to genera described from the Challenger Expedition; one will be called Benthodites gigantea, the other Euphronides cornufa. We can describe them no better than by giving the names applied by the sailors, Benthodites being called the "lump of pork," and "animated boxing-gloves," while Euphronides was christened "Old Boot," and its resemblance to an old, unblacked, low shoe was certainly remarkable. As the specimens of Benthoditestumbled from the trawlnet, they looked very much like pork, and reminded one of boxing-gloves, on account of their size and apparently useless bulk. In the 2950 -fathom haul, a specimen of a Tunicate, allied to Boltenia, was taken, and a number of shrimps.

Several new and remarkable Cephalopods were dredged during the summer. Pleurostoma, Bela, and allied genera were taken in great variety and abundance. One species of Pleurotomella was very large. A Dentalium, differing in no respect from D. striolatum, excepting in size, it being often nearly two inches long, was very abundant in from 1000 to 1500 fathoms. Nucula reticulata, Cryptodon ferruginosus, and several other species had their range extended as deep as 1500 fathoms. Dolium bairdit was obtained, and several specimens of a species which differs from Dolium only in the fact that it has an operculum, which would lead to the inference that it is a Buccinum. The Mollusca probably have more new species than any other group.

In several of the 200 to 400 fathom hauls, Calliostoma bairdii was taken. This species is remarkable from the fact that it is one of the few animals which, when taken from the cold bottom waters, will survive and flourish when placed in the aquarium. It is one of the few shells found in our deep water which has a truly tropical appearance. Many Annelids, mostly very minute, were taken at nearly every locality. It is probable that many will prove to be new. Hyalinacia artifex, a worm which secretes a horny quill-like tube, was encountered in soine of the shallowest dredgings.

Crustacea were represented by many new and interesting forms, especially of shrimps, including many very curious types. In 2300 fathoms we dredged a shrimp nearly a foot in length, and an Amphipod 3 inches long. Some very odd species of crabs, and hermits furnishing types for entirely new genera, were taken on several occasions. Collossendes, that gigantic Pycnogonid, was dredged many times, and several other large species were also
taken. One specimen measured over 2 feet from the end of one leg to the opposite extremity of the other. Notwithstanding this remarkable length of legs, the body was less than an inch long, and an eighth of an inch in breadth. To support this great length of legs, a branch of the stomach extends into the base of each leg. The fish were perhaps the most remarkable, in point of curious structure, aberrant forms, and marked specialisation. One, Gastrostomus bairdif, forms the basis of a new order, and is one of the most remarkable recentlydescribed types of primitive anatomical structure, and, especially as regards the skull and branchial apparatus, it presents a remarkable phase of specialisation. It; nearest ally is a Eurypharynx, described by M. Vaillant. It is at present in the hands of Mr. John Ryder and Prof. Theodore Gill, the former studying the anatomy, the latter working out its systematic position. Together they propose to publish a complete monograph of the species. Another remarkable fish has no external traces of eyes. Most animals from the bottom have well developed eyes, although their use is unknown, for, unless some such light as phosphorescence is common, they must live in nearly absolute darkness. Some shrimps and a few other species have no eyes whatever. There are as many as fifteen new species of fish described from the Albatross summer collection, most of them belonging to new genera, while one or two families have been added. The field of deep-sea research is as yet just begun, and with what remarkable results. Hundreds of new animals, belonging to entirely new types, have helped to Gill up gaps in the animal kingdom which had been left unfilled atter a thorough examination of all the shallow waters. Such groups as Crinoids, for a long time supposed to be extinct, are now found quite abundantly and in considerable variety in certain localities. And when the whole ocean bottom has been examined as thoroughly as some portions of the North Atlantic, who can tell what curious forms may be found?

The collections obtained have been placed in the hands of the best American naturalists. Prof. L. A. Lee, of Bodoin College, Maine, has the Foraminifera, Mr. Jas E. Benedict and Prof. H. E. Webster the Annelids, Prof. S. I. Smith the Crustacea, who will work up the greater bulk, but will turn a few groups over to other naturalists. Mr. Sanderson Smith and Prof. H. E. Verrill will work up the Mollusca, Alexander Agassiz the more important Echini, and the rest of the Invertebrates will be studied by Prof. Verrill. It is not yet determined who will study the Sponges. The fishes are being worked up systematically by Prof. Theo. Gill, and Mr. Ryder is studying the anatomy of the more interesting forms.

Kalph S. Tarr

AFRICAN SPIDERS ${ }^{2}$

THE paper above noted forms Part III. of an important and interesting series upon the Arachnida of Africa, and was first published in Annali del Mfuseo Civico di Storia Naturali di Genova, vol. xx. pp. 5-105. Its subjectmatter comprises the collection of Arachnids formed by Count Orazio Antinori in the kingdom of Scioa in the years 1877-1882. Before entering upon the details of this paper it will be well to notice briefly the two preceding ones of the same series. Part I. (published in the same Fournal in 1880) states that the object of the series is to bring together all the existing materials in the shape of papers and other works on African Arachnida and present them on one plan and method in accordance with the following five zoological provinces:-(1) Mfediterranean (extending nearly to the Tropic of Cancer, and in-

* Memoin della Sacieta Gongraphica Ilalinan, vol. it. parte quarea. Pp. 1-103 (Roma, ${ }^{18183}$). Speditione Italiana nell'A rica Equatonale. Rusultati Zoologrei, IV. Aracnidi di Sciod, e consuderazioni sall Aracno-
fauna d'Abissinia, per il Prof. P. Pavezi.
cluding the Azorc3, Madeira, Canaries, and Cape de Verde Islands) ; (2) Oriental, or, rather, Central and Oriental African; (3) Western African (from the Gambia to the Congo); (4) Southern (included by a line drawn from Kalabini to Limpopo, and comprising a portion of the eastern coast to the Mozambique); (5) Malagasic (i.e. the Lemur country with Madagascar). Various expeditions and other means by which materials have been obtained are mentioned, and a bibliographical list is given, in the introduction, of the numerous published works and papers on African Arachnida from the days of Linnæus to the present time. The Arachnida described and recorded in this first part are from Tunis, while the second part (published loc. ait. vol. xvi. 1881) simply contains an account of a collection of Arachnids from Inhambane (in the southern region), with some considerations on the Arachno-fauna of the Mozambique, of which a list of species is also added.
The Tunisian collection described in Part I. numbers II5 species of six orders: Scorpionidea, 6 species (Scorpiones, 5 ; Pseudoscorpiones, I) ; Solpugidea (Solifugar), 4 ; Phalanguidea (Opiliones), 4; Araneidea (Araneze), 96 ; Acaridea (Acari), 5. Of the above, two new genera, and eleven new species (all but one of the latter-a pseudo scorpion of a new genus) belong to the Araneidea. As might be supposed, the essential character of the Tunisian collection is South European or Mediterranean. Very different from these are the arachnids described and recorded in Part II. from Inhambane and the Mozambique. Here we have, though the number of species is very scanty, the true tropical character. Only 54 species are recorded, comprised in 43 genera, 20 families, and $;$ orders. The larger part (35 species) belong to the Araneidea, of which 1 genus and 4 species are new. Coming now to the Arachnida recorded and described in Part III. from Scioa (in the eastern zoological province) we have 71 species belonging to 49 genera, 18 families, and 4 orders. A general catalogue is als? added of Abyssinian Arachnida, which, including those from Scioa, number 124 species. It is noted as remarkable that no scorpions were contained in the collection from Scioa, and that 30 of the Arachnids recorded are new to science; also that only 12 of the Scioan species are common to the rest of Abyssinia.

The author enters into sone other considerations on the distribution of the Arachnids of Abyssinia; but the researches and materials on which his observations are based appear as yet to be too scanty to sustain any very general conclusions. At the same time it must be acknowledged that the plan on which the author has worked, of bringing the materials of so large and varied a region as the African peninsula under the geographical divisions announced in the introduction to Part I. is a most useful one, and the work he has done so far is undoubtedly a valuable contribution to arachnological science.
O. P. C.

MR. BURNHAM'S DOUBLE-STAR MEASURES

THE recently published volume of the Memoirs of the Royal Astronomical Society contains a further series of measures of double stars by Mr. S. W. Burnham, made with the 18 -inch refractor of the Observatory at Chicago. This series comprises measures of 151 double stars discovered by this eminent observer, which brings up the number of such objects discovered by him during the last ten years to no fewer than 1013 , amongst which are included some of the most interesting stars of this class; also measures of a selected list of double stars, 770 in number, made chiefly in the years 1879 and 1880, with an appendix, the results of observations of several objects, as late as the middle of the past year. Every one who is interest d in this branch of astronomical scien ie will read with much regret one
remark in Mr. Burnham's introduction: he writes:"The present catalogue will conclude my astronomical work, at least so far as any regular or systematic observations are concerned." He expresses himself modestly respecting his own labours-"In a field so infinitely large, one can accomplish but little at the most, and how much, or how little, the astronomers of a few centuries hence can perhaps best decide. \qquad At this time I may venture to claim that my work in this field has been prosecuted with some enthusiasm, and for its own sake only, and that my interest has not been divided among several specialities."
But a higher estimate of Mr. Burnham's work in this particular line of observational astronomy to which he has devoted himself may be justly taken. To read of the discovery of upwards of a thousand double stars within a limited period by one observer, we might almost suppose we were living in the days of Sir William Herschel, when the heavens were comparatively an open field, and had not undergone the wide and close exploration which they had done when Mr. Burnham commenced his work. He has had, it is true, the advantage of instruments of the finest class, and we may believe an unusually acute vision; but he must have exercised an extraordinary and most meritorious amount of patience, perseverance, and care in the discovery and accurate measurement of such a list of double stars, and it will be gratifying to the astrononical world that such welldirected exertions have met with so exceptional a success.
Among the more noteworthy stars included in Mr. Burnham's new Catalogue (the fourteenth), which may be considered a continuation of that published in vol. xliv. of the same Memoirs, the following may be mentioned:-

1. 126 Tauri (β 1007), " a most remarkably close and difficult pair, one of the closest known" ; magnitudes 6.0 and 6.2 . With a power of 1400 there was only a slight elongation.
2. B.A.C. 346 ; Mr. Burnham thinks the principal star may be variable, and he is certainly correst in his surmise. Heis gives it as a naked-eye star 67 m , Gould $7 \circ \mathrm{~m}$., and it has been several times noted 8 m ; while the writer has rezorded it as low as 9 m .
3. $\beta 117$; a star with a proper motion, according to Argelander, of $0^{14} 43^{8}$; measures in 1883 show a common motion of the components; their distance is $2^{\prime \prime} \cdot 2$.
4. ζ Sagittarii; detected by Winlock, probably a retrograde motion of 225° in less than fourteen years; and evidently a change of 48° in less than three years, by Mr. Burnham's measures alone. It is an object for large instruments in the other bemisphere.
5. β Delphini $(\beta 151)$-A very rapid binary ; since its detection by Mr. Burnham in 1873, there has been an increase in the angle of about 180°, and a diminution in distance from $0^{\prime \prime} 6$ to $0 " 25$. He thinks " it may prove to have, with the single exccption of 8 Equulci, the shortest period known."

Mr. Burnham collects the measures of \& Equulei, and infers a period of revolution of about 10 ' 8 years. Measures should be easy again in 1885 .
6. 85 Pegasi (β 733).-The close pair was not measurable in 1882 ; the angle was about 3.33° at the epoch 1883.75. The mean annual motion is about $12^{\circ}{ }^{\circ} 5$, at which rate the period would be less than thirty years.
In the introduction to the Catalogue will be found references to the publications where the thirteen previous ones are to be found.

MEASURING THE AURORA BOREALIS

THE study of the height of the aurora borealis above the carth's surface is, it will be easily conceived, of the greatest importance in understanding the nature of this f henomenon. Unfortunately the height of the aurora has always been, and is to some extent still, a nooot point
in natural science. There are, of course, not wanting estimates and obscrvations relating to this question, but the general results of these, particularly of the carlier ones, are very contradictory. There seems, however, to be every probability of this problem being very soon solved.

As a basis for the measurements of the aurora we have generally selected the ares or the more pronounced solitary streamers, when they have been clearly and simultaneously observed from two points situated some distance from each other, the apparent height or position in each place having been determined by comparisons with, and measurements of, stars. In consequence, however, of the rapid shifting both of appearance and position of the aurorx, this method is difficult and unsatisfactory, and these drawbacks may to a great extent explain the very divergent results which have been obtained by the same.

In order to give an idea of the manner and principle of measuring the aurore in their simplest form 1 venture to describe the method I have been in the habit of following.

On March 17, 1880, a great aurora was observed at the 145 stations which 1 had established over the southern part of Norway, the west coast of Southern Sweden, and in Denmark. One of the characteristics of this phenomenon was a large broad arc, or, perhaps more correctly, band, which for a long time spanned the sky from east to west. In Bergen (Norway), where my own observatory was established, it remained for some time in the zenith, then moving a little to the south, but at the stations lying further north it was seen in the south, while at those south of Bergen it was seen in the north.

By its characteristic internal repose and slow motion this remarkable band was especially suited to establish the identity of this aurora at the various stations and to serve as a basis for its measurement. It had apparently, when in its most southern position, no connection with the types which appeared simultaneously in the north, the latter being streamers whic' it was impossible, from their rapid change of form and appearance to observe connectedly at the various stations.

If the various reports of this auroral phenomenon be examined, not the slightest doubt will remain of the object seen being the same, i.e. that the same arc was observed at the most southern as well as the most northern stations. The further we move southwards howeveraway from the same-the more the apparently observed height diminishes, until we find that at the most southern points it was seen merely as an ordinary low-lying arc. In Bergen no trace of an auroral phenomenon was seen south of the band in question, and the reports from the stations south of this place all agree that neither was any seen there. From this we may conclude with certainty that the auroral arc observed in the zenith of the horizon of Bergen was the identical one seen at all the southern stations, and that the line of demarcation of the phenomenon seen from that place was the absolute southern extension of the band.

Before it is possible, however, from the obscrvations before us to measure the height of the arc, it is necessary to ascertain its direction and its position in space relatively to the localities on the surface of the earth from which it was seen. In the main the point of culmination of ordinary auroral arcs is in the direction of the magnetic north of the place of observation, and the arcs themselves follow approximately the magnetic parallels. I found, however, from careful calculations that the apex of this arc deviated some 10° west from the magnetic meridian, and that its course or strike was at an angle of about 25° with the geographical parallel circles.

The calculation of the height of the arc rests on the following principle. If in Fig. is s and s^{\prime} denote points of observation, C the centrum of the earth, and P two
points in the aurora borealis situated in the same perpendicular plane through S and S^{\prime}, whose angles above the horizon h and h^{\prime} have been determined at each station, and the longitude and latitude of each place is known, it is possible (by a well-known trigonometrical formula, viz. $\cos d=\cos \left(l-l^{\prime}\right) \cos b \cos b^{\prime}+\sin b \sin l^{\prime}$, where l and l^{\prime} indicate the longitude and b and ψ the latitude of the two places, and d the distance or great circle between the two) to find the arc $\mathbf{S ~ s}^{\prime}$, which is equal to $\mathbf{S} \mathbf{C s}^{*}$. From this again $\mathrm{SS}^{\prime}\left(\frac{1}{2} \mathrm{SS}=\sin \frac{1}{2} \mathrm{SCS} \mathrm{S}^{\prime}\right)$ is found. Further, $\angle x=x^{\prime}=\frac{1}{2} \mathrm{scs}^{\prime}$. One knows, therefore, in the triangle \mathbf{S} P S ${ }^{\prime}$, the side S S ${ }^{\prime}$ and the angles $\mathbf{P S} \mathbf{S}^{\prime}$ and PS S, so that its other parts, as for instance PS, may be ascertained by means of some simple trigonometrical calculations. If PS is known, we further obtain, in the triangle PSC, SC, which is equal to the radius of the earth, and the angie PSC $=90^{\circ}+h$. From this PC is found, and, subtracting SC , the perpendicular height of P above the earth's surface is determined. Finally, if $\angle P C S$ is ascertained, the point on the earth above which P is situated perpendicularly is found.

In practice the matter is, however, not quite so simple. The method presupposes thus that \mathbf{P} lies in the same

Fig. 1.
vertical plane as both points of obiervation, which would rarely occur, but still it retains its adaptability, cven if P only indicates a point in the upper or lower edge of the auroral arc, the culminating point of which has been determined in both places, provided that these lie in the same plane perpendicularly in the longitudinal axis of the circle, or may at all events be referred to such a common plane.

It is, however, far more difficult to overcome another drawback. Provided that the arc has a perceptible thickness in relation to its horizontal breadth, those parts of the upper or lower edge of the are which present themselves to the various observers cannot always be referred to the same parts of the arc, in consequence of the circumstance that the apparent breadth, particularly with the lower arcs, is due to a combination of both the real breadth and thickness of the arc.

If a, b, c, d in Fig. 2 represent the circumfcrence of a circle observed from the points A, B, C, assuming that the line of demarcation of the arc north and south is parallel with the inclination needle, the point a will denote the upper (southern) edge for A and s, for C on the other hand δ; and, in a similar manner, the lower (northern) edge is determined by the point d for A and B, c for $\mathrm{C}, \& c$.

Now if the determination of the apparent height of the upper edge for A and C is taken as a basis for calculation, the height of the same cannot be ascertained therefrom, but from the crossing point of the lines $\mathrm{A} a$ and $\mathrm{C} b$, and so forth. A great many other variations may also be met with according to the dimension and position of the arc. Generally, however, when the arc lies on one side of both places of observation, the edges observed in the respective places are identical.

In the following simple manner I have succeeded in referring the various places of observation to the vertical plane of Bergen, where my own observatory is situated, in order to find the arc ss in Fig. 1. The direction of the arc I have, in accordance with observations, let form an angle with the circles of latitude of 25°. I have constructed a globe with the circles on a large scale in Mercator's projection, on which the various stations have been denoted. Through the place "Bergen" a straight line is drawn under an angle of 25° with the circles of latitude, while the perpendicular distance of the various stations from this line has been determined in the construction and by direct measurements. The stations whose observations are so complete that the angle of the arc above the horizon has been determined have been combined with Bergen. I have succeeded in forming nineteen such combinations. The heights of the arc calculated at these

stations vary somewhat, but not very much, and if an average is taken we find that the value of the height of this arc above the earth's surface was most probably 146.95 km .

It further appears that the observations were not exact enough to obtain an estimate of the thickness of the arc, so that we can only accept the figure given above as an average one, i.e. an average of the distance of the uppermost and lowest layers from the surface of the earth.

If we compare the height arrived at in this case with those obtained through previous researches, we shall find that it agrees to some extent with the value of the arcs measured in recent times. They differ, however, greatly from old ones. Thus Prof. Fearnley finds, through observing sixteen auroral arcs from one spot, in Christiania, by an ingenious theoretical method, that the average height in these cases was 27.15 geographical miles, or $20 r^{\prime} 5 \mathrm{~km}$. Newton found, by the same method, that the average height was 130 English miles, or $209^{\circ} 3 \mathrm{~km}$., while Nordenskjöld, by a similar method, has come to the conclusion that it is 190 km . The French expedition established at Bossekop during 1838-39 obtained no reliable statistics on this point, owing to the small distance between the two points of observation, viz. 15.6 km . But
from the results obtained it seems that the height must be sought between 100 and 200 km .

In opposition to this Bergman fixes the height at 753 km ., Boscovich at 1328 km ., and Mairan at 780 km . More in correspondence with our result Dalton found the height of the auroral arc to be 241 km ., and Backhouse found the three measured by him to lie between 81 and 160 km . On the other hand, Franklin found at Cumberland House (North America) that several aurore which he measured had a height only of 11.3 km . In fact, the savants who have studied the aurora borealis in the Arctic regions appear to agree that it does not attain the height given above as the results of researches further south.
I have here only mentioned a few of the very divergent values obtained in 'measuring! the aurora borealis, but I

Fig. 3.
do not believe it will be of any service to append more, as the values range from 0 to 2000 km .

In Fig. 3 I have attempted to illustrate the height of the aurora referred to by me by comparing it with other well-known heights. The scale is $1 \mathrm{~mm} .=1 \mathrm{~km}$. Below is drawn a profile of Norway from Bergen in a direction $\mathrm{E} .25^{\circ} \mathrm{N}$. The heights here range to upwards of 5000 feet. Above $n n$ indicates the arc of the aurora in its height of $14^{\circ} 95 \mathrm{~km}$. The thickness given is wholly approximate, and probably too sniall. For comparison is inserted, a, the highest mountain in the world (Mount Everest, 8839 m.$)$; b, the greatest height reached by man (Glaisher and Coxwell in their balloon on September 5, 1862, 31,800 feet); c, the estimated height of the cirrus
clouds (25,000 feet) ; d, the plane of the August meteorsbeginning and ending (155 and 98 km .) ; f, the point of appearance and disappearance of the large meteor which was seen on March 4, 1863, in England, Holland, Belgium, and Germany (134 and 26 km .) ; and finally g, the hypothetical height of the atmosphere (ro geographical miles $=74 \mathrm{~km}$.).
With regard to the results of the measurements of the aurora which I effected during last winter at Kautokeino, in conjunction with the stations at Bossekop and Sodankylä, I may be brief, from the circumstance that the observations made at the latter station are not to hand, while the material at my disposal requires a more careful analysis than I have as yet been able to bestow upon it.

I must, however, state that a preliminary examination of the observations made in the plane KautokeinoBossekop has led to the important diszovery that the aurora borealis, at all events in this locality, lies in a plane at least 100 km . above the earth. I have examined all the observations made simultaneously at the two stations, and have not found the slightest indication of the aurora descending to a level in which it would only be visible at one of them, while there seems to be no reason for assuming that the types observed were not identical, when due regard is paid to the difference in the height above the horizon of the two stations. ${ }^{1}$ The distance between Kautokeino and Bossekop is about 107 km.

I have, on the principle indicated in Fig. 1, made a series of preliminary measurements of the lower edge of aurore observed at both stations, having selected only those where there cannot be the least doubt as to identity, from which I have obtained the following values in kilo-metres:-760, $79^{\circ} 9,84^{\circ} 6,93^{\circ} 6,97^{\circ} 7,9^{8^{\prime} 2}, 99^{\circ} 0,100^{\circ} 0$, $100^{\circ} 6,1070,1166^{\circ}, 124^{\circ} 1,124^{\circ} 9,131^{\circ} 9,141^{\circ} 6,144^{\circ} 9,1499^{\circ}$, 163.6

If the average of these eighteen measurements is taken, the average height of the lower edge will be 113 km ., i.e. a result which is in perfect harmony with the later observations referred to above.

To give any definite results of the studies of the thickness of the arcs, the length of the streamers, \&c., is, of course, impossible, until the material has been carefully sifted. I may here in passing observe that we must in all estimates of the height of the aurora borealis be content with approximate figures; this lies in the nature of the case, apart from inaccuracies in the measurements which it is impossible to avoid. The aurora borealis has, in common with clouds, no absolutely defined and fixed line of extension, either downwards nor upwards. We must therefore rest content with ascertaining only approximately the height of the plane in which the aurora borealis appears.

That the aurora generally appears at a height of 100 km . or more above the earth's surface does certainly not preclude the possibility of its appearance on some occasions much nearer the earth. In fact there are a considerable number of reports in our hands which imply that this is really the case. Thus observers aver that they have seen auroræ below the clouds, in front of mountains and icebergs and coasts, and even on the very ground. These assertions have been greatly doubted as being the result of the imagination, or optical illusions, but with what justice I will not venture to say. For my own part I can only say that during my long stay at Kautokeino I had unfortunately often enough occasion to observe aurora and clouds simultaneously, but although always paying the closest attention to this particular point I have never seen even a fragment of an aurora in front of or below the clouds. Even the most intense development of light, colour, and motion occurred always above what seemed to be the very highest-lying clouds.

When the entire material relating to the study of the aurora borealis has been collected from the various international circumpolar stations, sifted and carefully analysed, the question of the height of the aurora borealis will not, I believe, long remain one of the unsolved problems of nature. Until then the reader must remain content with the discoveries I have indicated in this paper.

SOPHUS TROMHOLT

COUNT DU MONCEL

COUNT THEODORE DU MONCEL, whose death we briefly announced last week, was born at Paris on March 6, 1821. His father had been a General of Engineers under Louis Philippe, and the son was at one time destined also for the army. When but eighteen years of age he showed a predilection for scientific pursuits, and published two treatises on perspective, treated mathematically and artistically. He was also at this time an enthusiastic archrologist and traveller. In 1847 he published a volume entitled: "De Venise a Constantinople à travers la Grece," illustrated with lithographic plates drawn by himself. His family objected to his democratic pursuits, and became estranged from him. In consequence he determined to adopt science as a profession. But not having studied at the Ecole Polytechnique, nor at the Ecole Centrale, he lacked those scholastic recommendations without which, in France, promotion is so difficult. A professorship being absolutely closed to him, he became a scientific writer, and devoted his attention chiefly to electricity. In the years which followed he zealously sought to acquaint himself with every new discovery and invention whish was made ; and his industry in collecting and disseminating information on electric science was immense. During the years 1854-1878 he published at intervals in five volumes, his well-known "Exposé des Applications de l'Electricité,' a work which, though it relates chiefly to inventions and instruments now superseded by newer forms so abundantly poured forth during the past few years, nevertheless maintains its place as a standard work of reference in electric technology. Since 1878 Count du Moncel published several volumes containing popular expositions of various branches of the science. His work on the Telephone and Microphone has been translated into English; so also has his work on Electric Lighting, and that on Electricity as a Motive Power. Thoroughly in his element as a writer for the scientific press, and more of a journalist than a man of science, Count du Moncel nevertheless distinguished himself by a series of valuable contributions to science, chiefly in the form of papers read before the Académie des Sciences. His researcbes on the properties of electromagnets and on the conductivity of badly-conducting bodies are worthy of mention. To du Moncel we owe the observation that the variation produced by pressure in resistance offered at the point of contact between two conducting bodiesa phenomenon well known before his time-is more marked in certain bodies than in others, wood-charcoal being one. In this observation he laid the foundation for the subsequentapplications of this principle made by Clérac and by Edison. Du Moncel was also an inventor, and obtained a gold medal at the Exposition of 1855 for the collection of instruments exhibited by him, including an electric water-indicator, an electric anemograph, an electric recorder of improvised music, a recording galvanometer, and sundry telegraphic instruments. From 1860 to 1873 du Moncel was occupied as electrician to the administration of telegraphs; but he quitted the post somewhat abruptly in 1873 in consequence of disputes in the administration. In 1874 he was elected a member of the Académie des Sciences, in which body he was very active in bringing forward accounts of all discoveries in his favourite science. It was he who thus successively intro-
duced to the Academy the Bell telephone, the Hughes microphone, and the Edison phonograph. He was very prominently connected with the Electrical Exhibition at Paris in 1881. From 1881 until his death he held the editorship of the journal entitied La Lumizre Electrique, which was founded by him, and to which he was an unceasing contributor. Whether he was a great scientific genius may be doubted, and whether in some matters he did not assume the attitude of partisan rather than that of historian is also perhaps open to debate ; but none can deny that he had by his diligence and talents won himself a very important place in the ranks of science. The role of scientific journalist may be said to have almost been created by him, and he was always anxious to maintain the dignity of science and to advance the interests of scientific workers. It would be difficult to fill up the void deft by his sudden decease.

NOTES

M. Faye read to the Academy of Sciences, on Monday, a re;ort drawn up by the Academical Committee appointed to prepare for the election of the three French delegates to the Meridian Congress of Washington. The Committee, whose conclusions have been adopted by the Academy, declines to take any final step, and will ask the Minister to appoi it a certain number of delegates of several public administrations in order to deliberate in common with them and give final advice.

The Coramittee appointed by the Academy of Sciences to report on the proposal to sell the Paris Observatory grounds, has beld its first meeting. M. Wolf, Member of the Section of Astronomy, read a note, which will be printed, opposing the scheme. He said, inter alia, that the Government had eon* structed an Observatory at Meudon, which was almost complete, and that he was certain that M. Janssen, the present director, would lend his instruments and gronends to any astronomer wi hing to execute special work which could not be execnted in the interior of Paris. M. Janssen, who was present, said that he should be most happy to comply with any wish expressed by a competent observer, the Observatory not being his private property, but belonging to the Government.

The Meteorological Observatory of Sentis, in the Canton of Appenzell, Switzerland, at a height of 8094 feet was established in August 1882, and the regular observations began with September I of that year. This observatory, which, from Its position and height, is par excellence the high-level meteorological station of Switzerland, is maintained at an annual cost of 6050 francs, raised jointly by the fonr neighboaring cantons, the learned societies, and the Alpine Club of Switzerland, and is further subsidised hy 1000 francs from the national grant for meteorology. A brief rfsumf of the resnlts of the first year has heen received. The eye-observations are made five times daily ; the results at these hours, however, are only given in full as regards the force of the wind. These are of some interest, as showing that, so far as regards the observing-hours, viz. 7 and $10 \mathrm{a} . \mathrm{m}$. and $\mathrm{I}, 4$, and $9 \mathrm{p} . \mathrm{m}$. , the mean diurnal froce of the wind, for each of the twelve months beginning with August 1882, is least at 1 p.m. We look forward with no small interest to a fuller report than the one now before us of the diurnal results for each month of the barometric, thernometric, hygrometric, and rain observations from this invaluable addition recently made to the high-level stations of Europe.
A curious tidal phenomenon took place on the morning of the 21 st lnst, on the west coast of England. The following communication (dated Feb. 21) to the Secretary, Meteorological Office, from Ellis Roberts, Trinity Buoy Keeper, Aberdovey, contains the leading circumstances connected with the ocearrence:-"Afternoon
of the 2oth (civil time), it blew strong (6 to 7) from south-south-west and sonth-west, increasing towards midnight to very heavy gale (force in the squalls, 10 to 11) with heavy rain. I retired at is. Barmmeter at $29^{\circ} 3$, falling. I cannot say when it moderated, but at 6 a.m. the sky was beantifully clear, with moderate breeze about west (force 3 to 4). The time of high water for this bar, by the Liverpool almanacs, this morning tide would be $\mathbf{2 h} .33 \mathrm{~m}$., but from some observations that I have made for eighteen months that I have been living here, the time of high water in the river off the village wonld be about $3 \mathrm{~h}, 5 \mathrm{~m}$. to 3 h .10 m . I wish to make this remark on account of the times the phenomenon took place. About 6.30 , or near half ebb, I noticed the barometer had risen to 29.34 or " 35 , with beautiful, fine, clear sky; moderate breexe (about 3) from west-south-west, but the stream nearly slack when it ought to have been running edb about two knots; very heavy sea on the bar. At 6.50 the vessels were fairly swang to the flood, which was running about 1 to $1 \frac{1}{2} \mathrm{knot}$, and the water was fast rising. At 8.15 water again nearly slack, with light breeze (aboat 2) from south to south-south-east ; very fine, but clouds beginning to form in the south-west and west. At 8.30 the water was falling ; at 9 , water falling very fast, ebb running 2j to 3 knots ; at 10.45 , water beginning to rise for the nataral tide. As there is no gauge for the rise and fall at this place, I eannot give the corratt rising and falliny, but I will give them according to the best of my judgment. The afternoon tide of the 20th was noticed to be very low, much lower than could be expected from the state of the wind and weather. But this morning's tide rose fally six feet above the ordinary level, or nearly to the height of the tides at foll and change, with the moon's parallax 59^{\prime} to 60° (this tide had fallen as usual, or rather more rapidly, np to nearly half ebb). I cannot exactly say how much the water bad risen before I noticed 1t, but the unnatural tide rose after I noticed it over 2 feet 6 inches; and from 8.30 to 10.15 the same had fallen over 6 feet, although the wind had shifted to the west ward, with passing showers and hard squalls. Barometer all the time very steady at 29 ' 34 or '35. Now, 4 p.m., It is slack water, ships lying head to wind, but a lower tide than any that I recolleet in this river with the wind as strong from the westward. I have heard it reported that there was heavy thnnder and lightning in the neighbourhood, but I neither saw nor heard any." Similar occurrences are reported from the Dee, near Chester, and from the Mersey.
The Second Teyler Society of Haarlem offers a gold medal of the value of 400 florins for a critical study of all that has been said for and against spontaneous generation, especially during the last twenty-five years. The competition is international, and further details may be obtained by applying to "La Maison de la Fondation dn fea M. P. Teyler van der Hulst, Haarlem."

We are asked to state that a society calling ltself the "Society of Arts, Letters, and Science," has no connection whatever with the Society of Arts.

The old Sorbonne and Collège Louis-le-Grand in Paris will soon be demolished, to be reconstructed on a larger and. more magnificent scale. The same measure is to be applied to the College de France. All this part of the Latin Quarter will be quite remodeled, and will in a few years be unrecognisable.

The Municipal Council of Paris has passed a resolution to exhibit, in each of the twenty town halls of that city, the meteorological notices issued every day by the French Office.

Professor Milne of Japan has just made a new move in the direction of investigating seismic phenomena. He has made preparations for the establishment at Takashima, near Nagasaki, of an nnderground or catachthonic observatory. The workings in the eral-mine at that place not only extend beneath the island
of Takashima itself, but also beneath the sea, and have a total length of about seventy miles, About 2500 people are employed there, and the output of coal is about 1200 tons a day. Owing to chemical decomposition going on in the workings, which are on the "post and stall" system, the temperature is so high that spontaneoas combustion is constantly occurring. Prof. Milne visited places having a temperature of $110^{\circ} \mathrm{F}$. This, together with the escape of fire-damp, make the mine very dangerous. The experiments which have been commenced, and which are to be continued systematically, are : (1) the observation of earthcurrents, which so far appear to be but feeble; (2) listening in a telephone to the sound produced by the movement of a microphone placed in the solid rock; (3) the observation by means of a tromometer, or tremor measure, of earth-tremors ; (4) the observation of two delicate levels to see if the seasonal movements of the soil on the surface exist also underground ; (5) attempts to measure the inflnence of the tide, which rises there about eight feet every twelve hourr, in producing a bend, or crushing in the roof of the mine. Observations on atmospherie electricity may subsequently be added. All these will be carried on in conjunction with tidal, barometrical, and thermometrical observations, as well as with those on the escape of fire-damp and the entrance of water to the mine. One practical object of these series of observations is to avcertain whether any of these phenomena are connected with each other, and especially with the escape of fire-damp in the mine. At present it appears that the gas shows itself about eight hours before a fall in the barometer, and therefore the indications of the latter are useless as danger warnings. On the surface of the earth tremors increase with a barometrical fall, and perhaps before it. Earth-tremors and the escape of fire-damp may, therefore, Prof. Milne thinks, be connected ; but, whether practical results be obtained or not, the experiments will enable a comparison to be made between surface phenomena and those which are subterranean. The native company which now owns the mine, as well as the resident engineer there, have afforded every assistance to Prof. Milne in his investigations, and that gentleman, we are informed, will be glad to reeeive suggestions for improved or additlonal observations, from any scientific men in this country interested in the subject. Any communications intended for him should be addressed to the Imperial College of Engineering, Tokio.

The Russian Ievestia publishes the results of the rescarches of M . Brounoff into the variations of temperature in consequence of the cyclones in Europe. He has taken seventy-six cases in which the meteorological balletins showed the presence of a cyclone in Europe, and prepared a meteorological map for each of these days, showing the deviation of temperature from the normal, and the route of the cyclone. The average deviations of temperature in the regions of the cyclones appear as follows for different months: January, $3^{\circ} 7^{\circ} \mathrm{Cels}$. ; February, $2 \cdot 2^{\circ}$; March, $1 \cdot \mathbf{2}^{\circ}$; April, $0^{\prime} 2^{\circ}$; May, $0^{\circ} 0^{\circ}$; June, -0.7°; July, $-0^{\circ} 2^{\circ}$; August, -0.4°; September, $-0^{\circ} \mathrm{t}^{\circ}$; October, 0.2°; November, 0.9°; December, 14°. It results from these figures that, as might have been foreseen, during the winter the cyclones bring warmer air, and colder air during the summer. If the region of the cyclone be divided into four parts by two perpendicular lines traced through its centre, the two right parts widely differ from the two left, the deviations being for the former : winter, $4^{\circ} 6^{\circ}$; spring, 19°; summer, 0.7°; and autumn, 17°, all positive; while for the two left parts the deviations are all negative as well during the summer as daring the winter, namely: $-0^{\circ} 9^{\circ}$ for the winter, $-1 \cdot 1^{\circ}$ for the spring, -1.7° for the summer, and -0.9° for the autumn.

It appears from a notice published in the last issue of the Isvertia that stone-age implements were used by Russians in Siberia at a time very near to our own. Thus, owing to the
difficulty of having iron implements, and even iron, the Cossacks who occupied the valley of the Irkut at Tunka availed themselves of the numberless stone implements they fonnd scattered on the hills around Tunka, where large manufactures of stone implements have been discovered. There are still people who remember also that their grandfathers were compelled to follow the advice of the Mongols, and to make nse of nephrite hatchets; the tradition says also that there were Cossacks who understood themselves the art of making jade implements. Any one who knows the difficulties of obtaining iron in Siberia some thirty years ago, and even now, will not doubt the trustworthiness of the tradition. We may add also that the late Prof. Schapoff has found the settlers at Turukhansk largely using stone pestles and hammers, some of which were exhibited at the Irkutsk Museum, before it was destroyed by fire.

In the last number of Naturen Herr Geelmugden of Christianiz describes the so-called "Jxttegryder" giant-bowls of Orholm, on the east side of Chris iania fjord. These enrious geological forms tions, of which good drawings are given, are not only the largest of their kind in Scandinavia, but are of greater size than those of the well-known glacier garden of Lucerne, which have hitherto been considered as the most extensive of such natural depressions. In two of the upper cavities at Orholm, all of which lie on the edge of a steep fjeld, a few pine and birch trees have taken root and grown in a tolerably normal manner till they reached the level of the surrounding rock, when the branches have invariably been bent and distorted by the force of the winds, and their growth has been arrested. The depth of the depressions has not been determined, but the perpendicular inclination of the inver walls would lead to the inference that it is considerable.

Messis. Crossley Brothers, of Manchester, have recently added an important improvement to their "Otto" gas-engise This consists of a self-starting apparatus by means of which the engine can be put in motion by sioply opening a valve. The apparatus consists of a small receiver into which the engine exhausts for a very short portion of its strokes the burnt gases which result from the igaition of the charge in the cylinder. These gaves fill the receiver, and in the course of half a minute raise a presure in it nearly corresponding to the pressure in the cylinder duriag the moment of ignition. These stored burnt gases are admitted again to the cylinder at the moment of starting by a very simple piecs of mechanism, and thus pat the engine in motion in much the same way as steam moves a steam-engine, thus saving the trouble of pulling the wheel round to get in the first charges.

On January 22, at 8.47 p.m., a meteor was observed in the province of Kalmar, Sweden. It appeared in the north as a fireball, wihout trail, gradually descending to the earth, so slowly that some observers, in order that it should not become hidden from view by intervening houses, ran about 300 m. , and still beheld the object. The speed decreaset by degrees, and finally the ball seemed to remain stationary ans then went out. No whizzing noise or report was heard. The object was observed for a minute and a half. Its path was aot regular but marked by great deviations. When first seen its sise and Instre was like that of Jupiter, and its point of issae 50° abore the horizon, while when disappearing it was 10° above the horison. It seemed to increase in size as it descended. Its slow speed was particularly remarkable, as it differed so greatly from that of ordinary meteors.

THE Anthropological Society of Paris is constituted as follows for 1884:-President: Dr. Hamy; Vice-Presidents: Drs. Dureau and Letonrneau; Secretary; Dr. P. Topinard; Assistant Secretaries: M. Girard de Rialle, Dr. Prat, and M. Issanrat ; Committee of Publication ${ }_{1}$ Drs. de Quatrefages, Matthias Dural, and Thulie.

The death is announced of Dr. Gotthilf Heinr. Ludw. Hagen, with whoce name for the last sixty years progress in the domain of hydrotechnics in Germany is closely associated. He died at Berlin on the 3rd inst., having nearly completed his eightyseventh year.

The death is aunounced of Dr. A. Bernstein, the well.known author of the "Naturwissenschafliche Volksbicher." He was born at Danzig in 1812, and died at Berlin on the 12 th inst.

On February 18 an earthquake was felt in several parts of the Department of Algiers. Its duration was very short. The Turkestan Gastle states that as many as ninety distinct shocks of earthquake bave been felt at Oosh since November 14. Other shocks have also recently occurred at Viernoe and Tashkend. A violent earthquake is also reported from the Birvari district (province of Bitlis, on Lake Van, in Asiatic Turkey) on February to. Great damage was done, as many bouses fell.
Mr. W. Whitaker desires us to point out in reference to the article on the "Geological Survey of the United Kingdom," printed in the last number of NATUke (p. 395), that some of the brikiest publications of the Survey have appeared since 1855 . He favours us with a list of these, in wbich we are glad to observe his own "London Basin, pp. xii. 620."
In consequence of a generally expressed wish from many hundreds of intending participators at the forthcoming Ornithological Congress at Vienna, the Committee of the Congress has a tered the date for the first meeting from April 16 to April 7. As the Ornithological Exhibition will be held from April 4 to April 14, the ornithologists present in Vienna at that time will have an opportunity of seeing the Exhibition, while at the same time attending the Congress, Numerous Belgian, Danisb, French, German, Austrian, Italian, and Russian meat of science will meet in Vienna upon that occasion.
The German Government has issued an edict concerning the preservation of prehistoric burial-mounds which may be discovered henceforth upon German soil.
THE additions to the Zoological Society's Gardens daring the past week include a Bonnet Monkey (Macacus sinicus \&) from India, presented by Mr. W. Graeme; a Sambar Deer (Corvws aristotelis \&) from Ceylon, a European Flamingo (PhanicopNerus antiquorum) from Southern Europe, presented by Mr. James McGregor; a Vulpine Phalanger (Phalangisa vulpina 8) from Australia, preseuted by Mr. A. 1I. Lowder ; a Pine Marten (Mustela martes), Britisb, presented by Mr. Edward de Stafford; a Common Hare (Lepus curopicus), British, presented by Mr. G. Pottier; a Rhesus Monkey (Macacus rhesws) from India, presented by Master A. J. Neill; two Laughing Kingfishers (Dacrlo gigamea) from Australia, presented by Dr. Evaus; a Blackfooted Peuguin (Spheniscus demersus) from Sonth Africa, presented by Mr. F. Bloor; a Greek Tortoise (Testudo graca), European, presented by Miss M. L. Fergusson ; a Stump-tailed Lizard (Trachyclosaurns ragosns) from New Holland, a Bearded Lizard (Amphibolurus barbatus) from Australia, presented by Mr. J. W. Bostock; a Pike (Esex lucias) from British fresh waters, presented by Mr. Charles D. Hoblyn, F.Z.S. ; a Lesser White-nosed Monkey (Cercopitherus pelawrista 9), a Campbell's Monkey (Cercofitherws campbelli \&) from West Afrien, a Kuddy Ichneumon (/Tcrpestes smithi) from India, a Bactrian Camel (Camelus bactrinus 8) from Central Asia, three White-crowned Pigeons (Columba lencorrthalus) from the West Indies, parchased.

OUR ASTKONOMICAL COLUMN

The Solar Eclipse of 1806, December to.-When Ruimker was on the point of leaving England to undertake the direction of the observatory erected by Sir Thomas Brisbane at Paramatta, N.S. W., he came into possession of a letter addressed to Maskelyne by Admiral Bligb, Governor of the colouy, con-
taining observations of a solar eclipse on December 10, 1806, which was described as almost total ; the observations were made at Government House, Sydney Cove, with a three-feet achromatic and two chronometers by Arnold; Rümker communicated the Admiral's letter to Zach, who published it in vol. v. of his "Correspondance Astronomique," with the places of the sun and moon from Delambre and Burckhardt, and the longitude of Sydney Cove, wbich be had deduced from Bligb's observations. Employing Burckhardt's Lunar Tables and the last Solar Tables of Carlini the elements of this eclipse will be found to be approximately as follows :-
G.M.T. of conjunction in R.A. 1806, Dec. 9 at 14 h . 19 m .14 s .

The eclipse was therefore an annular one: it was central and annular with tbe sun on the meridian in longitude $143^{\circ} 23^{\prime} \mathrm{E}$, and latitude $32^{\circ} 23^{\prime} \mathrm{S}$. Admiral Bligh's position was not within the annular phase, but on making a direct calculation for it, we find tbe greatest eclipse at oh. 4 lm. p.m. local mean time, magnitude 0.92 . Perhaps tbis is the first eclipse that was astronomically observed at Sydney, and it may be noted in connection with Mr. Russell's historical account of the progress of astronomy at that place, of wbich we gave some account last week.

The late Prop. Klinkerfues.-Ernst Friedrich Wilhelm Klinkerfues was born at Hofgeismar in Hesse, on Marcb 29, 1827. Me was attached to the Observatory of Göttingen as assistant in 1851 , under Gauss; he became provisional director of that establishment in 1859, and in 1868 was confirmed in that appointment. Since 1863 he was one of the professors in the Philosophical Faculty at Göttingen. He was an able practical and theoretical astronomer, and discovered the comets 1853 III., 1854 I., 1854 III., 1854 IV., 1855 1I., and 1857 V.; the first of these, which bore bis name very generally while under observation, was telescopically observed in full sunshine, and only a few degrees from the sun's place by Mr. Hartnup at Liverpool, and by Schmidt at Athens. In 1860 Klinkerfues proceeded to Cullera in Spain for the observation of the total solar eclip:e in July. His work in theoretical astronomy included a method of determining the orbits of the binary stars, and he was the author of a valuable theoretical treatise on the science. When, on the occurrence of the great meteor shower of November 27, 1872 , it was found that the meteors followed the track of Biela's eomet, and the comet itself was supposed to be close to the earth on that day, Klinkerfaes thought it might be found opposite the radiant of the meteors in Andromeda, and aceordingly telegraphed to Mr. Pogson at Madras to this effect, "IBiela toucbed earth November 27, search near θ Centami." It will be remembered that, in consequence of this telegram from Klinkerfues, Mr. Pogson actually detected a comet in the vicinity, but was only able to obtain its place on two mornings ; so that the orbit could not be determined. There was a divided opinion at the time as to its connection with Biela, and perhaps this may now be said to be more than doubtful, notwithstanding the singular circumstances attending its discovery. Klinkerfues died suddenly at the Observatory of Göttiagen on January 28.

GEOGRAPHICAL NOTES

Mr. 11. H. Johnston leaves Londou to-morrow for Zanzibar, to conduct an expedition to Mount Kilimanjaro. The expenses of the expedition are borne by the Royal Society and the British Association, the object being to form as large a collection as possible of the flora and fauna of the highest mountain in Africa.

AnOTHER attempt will be made this year to rescue the United States observing party in Lady Franklia Bay, under Lieut. Greeley. This party, twenty-five in all, went out in August 188r
and in 1882 and 1883 unsuccessful attempts were made to reach them. This year four vessels will be sent out, one of them H.M.S. Alert, which we are glad to know has been presented for the parpoie of the search to the United States Government, It is to be expected that with such a formidable expedition the Greeley party will be reached, and we fervently hope brought home, though it is to be feared that some at least must have suecumbed to the hardships of three winters in $8 t^{\circ} \mathrm{N}$.

The fourth German Geographical Congress will meet at Munich from April 17 to 19 next. The preparations are now being made. The main subjects for discussion are : the present state of Polar investigution; the innovations relating to the standard meridian ; the Glacial epoch ; and the mode of drawing large-sized maps for schools. Numerous travellers and investigators have promised to read papers.

Dr. Wild of St. Petersburg, the President of the International Pular Commission, is now sending out invitations for the Polar Congress which is to meet at Vienna on April 22 next. All the leaders of the International Polar Expeditions of 1882 are expected to attend.
Dr. Zintgrapf of Berlin is about to follow Dr. Chavanne to the Congo, by order of the Brussels National Geographical Institute. His special investigations are to be of an ethnological nature.

Herr L. Steineger informs Naturen that his fortnight's stay in Kamchatka in May, 1883, proved fairly satisfactory. The conplete success of the expedition was, however, interfered with by the exceptioaally late snowfalls, which had burled the whole district round Petropanlovski under a layer of six to nine feet of snow, the surface of which melted daily under the scorehing sun only to he frozen again at night. Among other interesting points he has noted the presence of four distinct species of the sea-eagle in Kamehatka, while Europe and the whole of the North American continent had only one species of this magnificent bird. One of these four, which Herr Steinezer has named Haliaetus hypolincws, is distinguished from H. lewcocephalus, I1. albicilla, and the giant Thalassatus pelagicus, by the dazzling whiteness of some parts of the body and its generally lighter colour. Herr Steineger'scollections, which have been sent on to Washington, include the bones of a complete skeleton of the sea-cow, ssventeen sea-calves, three skins of the Kamchatkan Alpine sheep, a considerable number of crania of the Cetaces, of which three would appesr to bel ing to new species, Besides these and some 700 skias of birds, with a large namber of manmalian erania, he sends back a large and interesting collection of fish, crutaceans, land and freshwater malluske, and numerons fossil and living plants.

After having done so mach in restoring to our maps the old bed of the Amu-daria, the Russian explorers seem to be inclined now to take a quite opposite view. Thus, Prince Hedroits, geologist of the Amudaria Expedition of 1880 , after having explored the eastern part of the Uzboy, eame to the conclusion that the total want of river-beds in the ravine and the presence of Aral-Caspinan mollusks in it are a sufficient prouf that the water of the Amu never ran on the stretch between the Sary-kanysh lakes and the Caspian. Now, M. Konshina mining engineer who has recently explored the western part of the Uzboy-arrives independently at the same conclusion with regard to the western part of the supposed old bed of the Amu. He considers that its passage between the Greater and the Smalter Balkhan Mountains is a recent strait of the Aral-Caspian Sea, and that the western part of the $U z b o y$ is merely a remnant of the outflow towards the Caspian of the brackish water of the Sara-kamysh lakes. The ravine of the Uzboy wonld be thus one of the numerous sors, or elongated lakes, the likeness of which to beds of rivers had already struck Pallas in the Astrakhan steppes, where the Daban-gol has a length of sixty miles. The view of M. Konshin may be summed up as follows :-The immense Sara-kamysh depression, 4400 mile wide, and at some places 280 feet below the level of the Aral, forme 1 at a geologically recent time a single basin with the Aral; the fossils found on its borders show that it was filled up with at least brackish water. This lake had an outflow into the Caspian; but for 130 miles west of Sara-kamysh there is nothing like a river bed. The likeness begins only west of Balla-Ishem, where the Uzboy begins. This channel, however, was filled up, not with the sweet and muddy water of the Amu, bat with a
brackish and rather pure water of the Aral-Sara-kamysh Lake. In fact, in this channel, on its whole stretch from Balla-Ishem to the Caspian, one finds everywhere the typical Aral-Caspian Carilita, Dreyssema, Niritina, and Hydnobia in the most perfect state, whilst there are no traces at all of a fluviatile flora or fauna, nor any traces of human settlements. However opposite to current opinion, this view of the Uzboy surely has much to be said in its favour.
Tur same geologist publishes in the Investia of the Rassian Geographical Society an interesting acconnt of his explorations in the Kara-kum desert, between Kyzyl-arvat and Khiva. He considers the bad reputation of this desert quite es aggerated. In the neighbourhood of the Caspian and Lake Aral the Kara-kum sands offer a great many difficulties to the traveller. Geologically speakirg they have quite recently emerged from the sea, and the barkhans, or sandy bille, are devoid of vegetation and move freely before the wind ; the same is true with regard to the neighbourhood of Sara-kamysh and the Uzboy. But farther in the steppe the sands are older, and the brushes which cover them render them quite stable, so that the Akhal-Tekkes like better to stay in the steppe, and return to the oasis only for the needs of agriculture. The routes are quite comfortable, with exclusion of sleeper ascents and descents on the slopes of the barkhans; and the cisterns (kaks) when kept in order contain plenty of water; while the steppe yields thronghoat the year abundance of food for the borses and camels. The barkhans are ofien intermingled with takyrs, that is, with places covered with firm clay, on whose surface small canals collect rain-water and bring it to a common basin called kak. The sors, or elongated ravines, the sandy bottom of which is impregnated with brackish water, are most numerons, especially incertain parts of the steppe; in the neighbourhood of the Akhal-Tekke oasis they run in numerous parallel lines for several dozen miles in length. The Uzboy, which M. Konshin visited at Kuriysh, is a ravine, sometimes crossed by hills of sand, at the botton of which one perceives a narrow serpentine of brackish water. The Tertiary beds are covered there with a fine dirty dust filled with rewains of the Aral-Caspian Dreyssena, Neritina, and Cardium. Above Kurty h the upposed old bed of the Amu can be distinguished only by these marine remains. Not u ithstanding the most carefol search, M. Konshin falled to di,cover any traces of flaviatile deposits at Shikh, where the Charjuy bed of the Amu is traced on our maps. The hills at Shikh are remarkable as a rich mine of very pure sulphar (62 per cent.) One of them would contain at least $160,000,000 \mathrm{cwt}$. of pure sulphur, and sulphur appears on the surface of very many of them.

Dr. Regal, travelling for the Geographical Society in Central Asia, has retnrned to Tashkend through Sarafstan and Samarcand, after visiting Hissar, the Mura Pass-never before explored -the town of Karatag, and Baldshan, Duwsy, Rushan, and Shignan. Dr. Regal imtends to start again in a few weeks for Baldshan, and in the spring to continne his explorations as far as the Kashgar frontiers.

Colonel. Prejevalsky, with his Cossacks, must be now in Mongolia, on his way towards Thibe!. The other well-known explorer of the Turcoman region of the Transcaspian, M. Lessar, is ag in on his way to the scene of his geographical triomphs along the Persian frontier to complete his work for the General Staff. He will probably be absent another year or a year and a half.

The Director of the Russian Observatory at Peking, Dr. Fritsche, who made last winter a journey through Scuthern Chim from Peking to Kai fong-fu on the Huan-Lo, has deterimined on his route the positions and the magnetic elements of forty six places. A few days after his return to Peking he left again and went, vid Changhai kuan, on the Gulf of Peche-li, to Tsitsigar Mergen, Aibun, and Blagoverchensk, on the Amur, determining the positions and magnetical elements of sixty three new 1 oints.

A correspondent in Nafuren draws attention to a curioes narrative of an expedition to high northern latitades, undertaken in 1266 , at the instigation of priests belonging to the Monastery of Garde in Greenland. This narrative is derived from an Ioe landic transeript of the so-called "Hauksbok," compiled aboot 1300 by the Norsk laweexpounder, Hauk Erlandson. It mest be observed, however, that the particulars of the Garde Expe dition are not to be found in the still extant parts of the original manuscript of the "Haukst ok," from which various pages bave
been lost. Notwithstanding the absence of this conclusive proof, northern scholars are inclined to accept the later transcript as a Bowa fide version of the original before the loss of its missing parts, and if this assumption can be maintained, we have evidence that the Northmen advanced four days' journey north of 76°. The object of the expedition, we are lnformel, was to discover what lands and people were to be found north of the Christian Station at Garde, and whether the much dreaded Skröllinger or native Esquimaux occupied those nnknown regions in any formidable numbers. The seamen, we are told, saw many islands on which there were traces of the presence of these people, but they were unable to land, owing to the number of bears which, together with numerous seals and whales, frequented the coasts. In reference to the high latitude said to have been reached by these early explorers, and which is inferred from the description of the height of the sun on St. James's Day (July 25), it may be observed that a runic stone was found in 1824 in $72^{\circ} 55^{\prime}$ N. lat., about twenty miles north-wedt of Upernivik, the northernmost existing Danish station. The inscription, which records that three men, whose names are given, erected the stone as a landmark, concludes with six runic characters, which have been variously interpreted to indicate the years 1135 and 1235 .

From his scientific expedition to Anatolia, Syria, Egypt, India, Indo-China, China, and Japan during the years 1880-83, Dr. Emil Riebeck has lately returned to Europe laden with ethnological and archaological treasures of all sorts. This splendid collection, on which the enterprising explorer has expended no less than $30,00 \%$., has during the past few months formed a chief attraction to naturalists in Berlin, where it has been on exhibition at the Knnstgewerbe Mu eum. Here the available space was not sufficient to allow of a thoroughly systematic arrangement of the objects, which however have been roughly disposed in three main geographical groups:-(1) Western Asia and Africa; (2) India and Further India; (3) East Avia (China and Japan). Some idea of the immense variety of articles here brought together may be had from the detailed catalogue of Dr. Riebeck's "Asiatic Collection," recently issued by Messrs, Weidmann of Berlin. From Palestine and Syria we have objects of every description; while the articles from Somaliland, which are very numerous, illustrate almost every phase of the social life of the little known inhabitants of that region. Several specimens are shown of the masks used in Ceylon at the "devil dances" performed during illness. The masks represent divinities of the Hindu mythology, rakshasas or demons, nägakanyäs or snake masks, lions, tigers, crocodiles, negroes, Massulmans, Malays, \&c. India is Largely represented. From Burmah, where the Irrawadi was ascended as far as Bhamo, were brought many costly articles, such as royal coronets and dresses, alabaster and gilt wooden statuettes of Buddha, masks of strolling minstrels and players, amber rosaries, richly carved consols, lacqner ware, ornamental drinking vessels, writing materials, \&c. A visit to Bangkok yielded models of Siamese floating houses, fishing gear, agricultural and industrial implements, \&c. Amongst the most characteristic objects from China are brightly painted clay models of popular types, bronze vases, chased, inlaid in silver, and studded with gems ; shallow dishes of "imperial bronze" (yellow picked out in red), silver teapots, artistic articles in jade, rock crystal, and marble, \&c. The rich and varied Japanese collection comprises specimens of all the most characteristic productions of the country, especially Satsuma porcelain and other ceramic ware, illustrating the development of Japanese porcelain from the sixteenth to the nineteenth century. During the first part of bis journey Ir. Riebeck was accompanied by Dr. Moock, who, after escaping from many perils amongst the Bedouin tribes in the Moabite country, was drowned in crossing the Jordan, and now lies buried in Jericho. During the visit to Egypt he was attended as far as the Nubian frontier by Dr. Schweinfurth, who again accompanied him in March 1881 to the south coast of Arabia and the Island of Socotra. During the rest of his wanderings throughout the Far East Dr. Riebeck had for his associates M. C. B. Rosset, who joined him in Germany, and Dr. Mantei, whom he engaged in Egypt after the untimely death of Dr. Moock.

In the March part of Good Words Mr. Edward Whymper gives some particulars of his jonrneys in Greenland which have not been heretofore pablished; and states that be found the height of the interior in the latitude of Umenak (about $70^{\circ} 30^{\prime} \mathrm{N}$.) con-iderably exceeded 10,000 feet. Mr. Whymper says that
from the various mountains he has a cended on the eastern side of Davis Straits he has had continuous views of the glacier. covered interior of Greenland between about $68^{\circ} 30^{\prime}$ and $71^{\circ} 15^{\prime}$ N. Lat., and that there is no break or depression within those limits, and that the country is everywhere so absolutely covered by snow and glacier that not a single rock or crag can be seen.

ON THE PHENOMENA EXHIBITED BY DUSTY AIR IN THE NEIGHBOURHOOD OF STRONGLY ILLUMINATED BODIES ${ }^{2}$

INN 1870 Dr. Tyndall described the dark or dust-free plane which rises from a hot body in illuminated dusty air, and gave two explanations of the dust freeness of this dark space. Another explanation was suggested by Dr. Frankland. In 1881 Lord Rayleigh re-examiued the phenomenon, and discovered that a cold body gave a similar down-streaming plane. He also suggested a totally different explanation. The writers discuss all these suggested explanations, and see reasons for rejecting them all. They have, moreover, observed that the dark plane rising from a hot body is only a prolongation of a well-defined dust-free coat of nearly uniform thickness under ordinary circumstances surrounding the body, and they point out that this dark coat is the thing really requiring explanation, the dark plane being merely due to the np-carrying of portions of this coat by convection currents.
The preliminary experiments were described in a letter to Nature last July (vol. xxvili. p. 297).
The dark coat is found to increase in thiekness with the temperature of the body, becoming very thick at high temperatures, say 1000° C., but being narrow for temperatures only a few degrees above the air. When the temperature of the body is the same as that of the air surrounding it, the dust-free coat is either nonexistent or exceedingly thin. The thickening of the coat by a rise of temperature is interfered with by convection-currents, which sweep the outer portions off more rapidly than they can be renewed, and so make the coat thinner than it otherwise would be. By means of a blast of air the coat can be almost wholly or entirely blown away; but convection-cnrrents are never able to sweep it off, for the same cause which increases the convection-currents also broadens and assists the formation of the coat. The eoat can be seen on round rods of all materials, on flat plates, both horizontal and vertical, on hollow and irregularly shaped pieces, and in general on every sobstance whatever. Nevertheless the behaviour of certain bodies is peculiar, and is detailed in the paper ; such bodies, for instance, as a stick of phosphorus, which itself gives off smoke, a volatile sold like camphor, moistened solids like soaked carb $3 n$, liquids like sulphuric acid water and ether, and thin films of glass or mica. Other substances examined are: copper, iron, zinc, electric-light carbon, charcoal, glass, mica, selenite, selenium, Iceland spar, toarmaline, potash, rocksalt, bismuth, silver, chalk, and all kinds of paper. In every case the method of exs mination was as follows :-A glass box was mounted in front of the nozzle of an electric lantern, and the body to be examined was supported in any convenient manner, so as to be about the middle of the box, and to be well illuminated. Smoke was introduced, the lamp turned on, and the effect examined by looking along the length of the body at right angles to the light. Sometimes a microscope was nsed, but it was not necessary except for measurements. A hand lens is useful. For smoke, tobaceo was the most common, but ammonic chloride was nsed when a distinetly volatile smoke was desired, and magnesic oxide whenever a non-volatile and incombustible smoke was wanted. Any kind of smoke serves equally well. Hydrogen and carbonic acid and other gases have been used as well as air: in hydrogen the coat is mnch thicker, in carbonic acid a little thinner, than in air. The effect of pressure on the dark coat was examined, and it is found that the coat broadens as the pressure diminishes. An increase in pressure of $4 \frac{1}{2}$ atmospheres renders the coat very thin and sharp, and at the same time causes the convection-currents to be sluggish.
The writers considered that it would be very instructive to examine whether a dark coat and plane could be observed when a warm body was immersed in a dusty liqwid; and they accordingly devoted a good deal of attention to this point. After failures with mastic and other substances, they sncceeded in observing a very thin, dark coat on the surface of an iron wire immersed in water
${ }^{\text {E }}$ Abseract of a paper by Oliver J. Lodge and J. W. Clark, read al the Physical Society, February 9 .
holding rouge in suspension, with a dauk plane rising from it. It is not always easy to obtain the dark coat in liquids, however, and its thickness is enormously less than it is in air. Moreover, the results are less definite and satisfactory. In gases the thickness of the coat may be anything below the eighth of an inch, according to the circumstances of the case, but its commonest width is more comparable with the hundredth of an inch. On a carbon rod in an eleetric beam the coat is about half a millimetre thick, no other heat being applied. Giass shows a perfect coat and dark plane, but for some reason or other very thin films of glass ('0003 inch thick) behave differently, and it is sometimes by no means easy to see any coat at all. It may be that such thin films are unable to absorb enough radiation, or it may be that the cause is more deeply seated. It can hardly be that they give off their heat too rapidly, because the convection-currents set up by them are very sluggish. It is pretty certain that they fail to absorb radiation; for a plate of rock-salt in a perfectly dry atmosphere behaves in the same way. In ordinary air, a lump of rock-salt is able to absorb sufficient radiation to give a satisfactory dark plane. The behaviour of thin films is under further investigation. Covered with lampblack they act perfectly well. Ineidentally it has been noticed that films of freshly-blown glass adhere together though cold, giving the black spot; but that when films are a day or two old they refuse to adhere, doubtless because of the condensed air-sheets with which they have coated themselves. The slow formation of these condenced sheets, as studied recently by Bunsen (Wied. Anv. February 1884) is of great interest.
The effect of electrifying rods from which a dark plane is streaming is not marked except when the potential is high; 100 volts or so produee a little effect, po-itive potential broadening the coat, negative potential narrowing it. As soon as a brush discharge occurs, the effects are violent and the air is rapidly eleared of smoke, the particles being deposited on all the surfaces near. Various eiectrical phenomena can be conveniently examined by means of smoky air ald a strong beam of light. Thus a flake of mica, on being examined for its coat one day, showed a curious phenomenon. The dust aggregated on its surface in little bushes or trees, and its edge became fringed with long aggregations of dust particles. Our first thought was that mica was photo-electric, but we now think that it had been perhaps electrified by easual pressure. This also is still under investigation. Tourmaline shows all its pyro-electric properties exceedingly well by being simply illuminated in dus:y air. If mica be written on with a blunt point, a sheet of paper intervening, the writing becomes manifest when it is exposed to dust. We find, however, that a brass plate is capable of acting in a similar way, and we are not prepared to be content with a mere electrical explanation. We are probably here dealing with phenomena allied to those known as Hauchbilder, which are supposed to be connected with the conilen ed air-sheet on the surface of solids; though their explanation may also be associated with vapour-condensing nuclei on solid surfaces, The phenomena connected with the settling of dust on surfaces by gravitation have also been investigated, and it is found that so 1 ong as a body is warmer than the air it keeps itself free from dust; except that just at the top, where the air is stagnant, the excess of temperature being only small, a large particie or two may drop on. The dust-free coat is not an aboolnte barrier to dust: it marks the region into which dust is not carried by contwtion-curressts; but other causes may drive dust into this region. Thus it may be blown into it either from outside or through a hole in the rod itself if it be hollow; or the rod may give off swoke, or the dust may, as stated, occasionally drop into the dark region by common gravitation. The persistence of the dust-free plane at a distance from the body which produced it is dependent on the motion of the dust particles with the air :tream-lines; whatever drives du-t across stream-lines interferes with and tends to obliterate detaehed dust-free regions. All dark streaks in smoky air are commonly the wiped-off coats of bodies.

We have been led to a fairly complete explanation of the whole phenomenon, and though it is impossible to attribute every case of dust-freeness to one single well-defined cauce, we see reason to believe that the main causes in ordinary operation are two, viz. :-

1. Molecular bombardment. 2. Gravitative settling.

We were long under the impression that the sheets or films of condensed gases which are known to exist on the surfece of all
bodies were conneeted with the dark coats, and had some share in their production; and this view was pressed home by an observation of the surface of warm water in dusty air. The evaporation of the water drives back the dust and keeps a clear space of some thickness above the water; and if the water be linearly heated by a pla'inum wire stretched just beneath its surface and warmed by a current, the dark coat streams upward in a fine and well-defined dust-free plane. The up-streaming of the portion above the wire causes the remainder to become thinner, until there i, an evident equilibrium between the rate at which the evaporation reproduces the dark coat and the rate at which the convection current carries it off. That the dast is kept off a solid, say a warm copper wire, by an evaporation and continued renewal of its condensed air-sheet, we think decirledly improbable, but we are convinced that the dust particles are driven away from the solid by some form of molecular bombardment, postibly such as goes on from the vanes of a (rookes' radiometer. There is, however, a very great difference between the two phenomena; the Crookesian layer is supposed to correspond with the mean free path, and this is enormously less than the thickness of a dust-free coat. A possible suggestion is that the dust-free coat represents something more like the extreme free path of the molecules, the dust particles beirg so easily moved that they are driven away by the blows of even a few molecules. A simpler and more satisfactory mode of puiting the matter is this. The temperature of the air near a warm solid decreases gradually as we recede from its surface. Consequently a dust particle in the neighbourhood of the solid has warmer air on one side of it than on the other; in otber words, it receives heavier and more numerous blows on one side than on the other, and accordingly is driven away from the warm body. Whenever the temperature of air is steadily dif ferent in successive layers, there the dust partieles must get driven in the direction of decreasing temperature at a rate depending on the temperature slope. This is not complete, however, because the extra temperatare really show itself as a diminution of density, not as an increase of pressure. The explanation is further elaborated in the paper, which will appear in the Phifosophical Magasime for April. The conduction of heat across the air near a hot body is it-elf an interesting problem. So also is the distribution of up-streaming velocities. The maximum velocity of convection occurs at some distance from the body, belng ofien di-tinctly outside the dust-free coat.

Some few cares of the dust-free coat and plane can bardly be explained in the manner now irdicated. We point out, bowever, that gravitation is an effective cause certaiuly in operation, which of it elf is competent to account for the formation of dust-free spaces when circumstances are favourable. Dust is alvays settling or falling downward relatively to the air in which it is The velocity of relative fall depends on the size of the particle, on the density and viscosity of the gas, but not on the motion of the gas. Immediately below a solid body round which gentle currents are rising, there is a small region of nearly stagnant air; out of this dast slowly falls, leaving it free, and if then part of it is dracged round the body by the currents, it contribute to the dark coat and to the ascending dark plane. Underneath horimontal plates, also, this gravitation-settling of the dust assists and broadens the coat. But there is also a eoat on the upper surface; and this coat gravitation, so far from produeing, dues its best to spoil. A few of the larger partieles are in fact seen to fall occasionally through it on to the surface of the body, their weight being too great fir the bounbardment to sustain. In the case of a cold body the down-streaming currents deposit a good deal of dnst on the upper surface of the body, and so tbat portion of air w hich has grazed the surface passes on dust-free. The tendency now is for the warmer air outside the dust to bombard it on to the cold surface. This goes on all over the upper balf of the body, bet over the lower half a coat is visible when the cold is not too great, but it is ouly fairly thick at the hottom of the body when it forms the base of the inverted dark plane. A smooth vertical surface of ice gives no dark coat, and the maximum velocity of the particles in the descending current is apparently little, if at all, distant from the actual surface. Finally the writers call attention to a paper just read at the Royal Society of Edimburgh by Mr. John Aitken. They have only reen an abstract of this paper at preient, but it appears that Mr. Aitken has been travelling over much of the same ground as they have, and thet he has arrived on the whole at fairly the same conelu-ions The abstract of Mr. Aitken's interesting paper was printed in Nature of January 31 (p. 322).

AGATES

THE following letter was addressed by the writer in 1871 to Mr. Joseph John Murphy, and though not originally intended for publication, is now published with the writer's consent :-

St. Andreas, Nowember 4, 1871

Dear Str,-1 have on my return found your note as to agates. Though I have been at work on the subject in different ways for many years, I have not found myself in a position yet to publish. In fact I cannot yet say that I know much as to how they have been formed, though I do know, or rather am able to show, that they bave not been made in the manner usually sapposed.
The late Principal Forbes conceived that they had been formed by concentric deposition round a central nucleus :- this I showed him to be untenable. Others conceive that siliceous matter in a state of fusion has been poured into cavities through an opening, such opening being called the "point of lnfiltration." I am able to show that this so called point of infiltration is an orifice of escape or exit of something.

Fully to state bow (from examinatiou of their mode of occurrence, experiments upon the decomposibility of trap rocks under the action of carbonated water, section of agates in every conceivable direction, experiments npon their powers of absorbing liqnids, and from microscopic examination) I conceive agates to be formed would call for indeed a long statement.

I will attempt briefly to put it thas :-
Igneous rocks are being poured forth from a volcanic vent, in perfectly fluid or at least plastie flow; some are dense, some scoriaceous, some frothing, and so when solidified are vesicular, or perchance even hold in suspenslon bnbbles of incladed water, this latter holding in solution (red-hot solntion) solids afterwards to separate as rheolites. Should the air-bubbles of the vesicular rochs arise through the plastle mass while it is motionless, these bubbles will be more or less rounded or pear-shaped. Should the solidifying rock, however, become crystalline or porphyritic, as generally is the case with amygdaloids, the separating crystals of labradorite, \&c., will more or less roughen the sides, and so destroy the smooth and rounded figure of the cavity; while, if the lava-flow continues its motion while the bnbbles are still rising, their shape will be more or less flattened or altered :-try bubbles in flowing treacle.
Stage the first.-An empty cavity of any shape.
Stage the second. - The rock, while solidifying, may contain an excess of a magnesian mineral, which is exuted into the cavity ; or this excest of magnesian componnd (magnesia not being, to any large extent, a natwral constituent of the mass of a trap) may be held as vapour in the cavity, to be, on cooling, deposited on its sides. This forms in Scotland, Faroe, Iceland, \&e., the layer of celadonite or delessite; at Giant's Canseway, of chlorophocite, which, on the extraction of the afterwards filled-up cavity, forms the "skin of the pebble."

Stage the third. - One of two processes, the first very doubtful.
The cooling and shrinking rock holds in a state of liquidity, from heat, an excess of colloidal silica which is exuded into the cavity forming a chalcedonic druse. But, admitting the process, it must here stop, and a solid agate eould not thus be formed. This seems to have been the view of Sir George Mrekenzie.

The other process I pin my faith to. The thoroughly solidi-fied-iadeed the now old-rock is having lis felspar (labradorite or other) decompoed by water holding carbosic acid in solution. I have proved that this process is rapid and continuous, and agate-holding trap: are all rotten ; the colloidal silica, with a certain quantity of tridamyte is taken up by this water, and transfuses into the cavity; the silica is there solidified-probably the layer of delessite is the coagulation. We have now a cavity slightly lined with chalcedonic matter, containing, whithin, water more or less pure, while without (that is ontside of the now double skin, delessite and first layer) we have a strong solution of colloidal silica enstantly supplied. Endosmose and exosmove are set up with all their resi-tless force. The strong solution finds its way through the two or any number of increasing shins: the wo. $a k$ water is forced out through the " point of infiliration," and so in its passage out thins all the successively depo ited layers af that place. By this continuous flow of colloidal silica (held in solution by liquid) through the already coagulated or deposited layers, continuous coagulation of the silica in the yet hollow agate, and continuous extrusion of the residual water, we have the ultimate filling up of the cavity, and a solid agate formed.

The adhesion of agates to the containing rock is slight in most cases from the so-called "skin" being magnesian and soapy.
The " point of lafiltration," instead of being at once filled up, as would result from the inflow of coagulable silica, is in reality the last point filled up, being truly the point of escape: indeed it frequently is not altogether filled up, remaining an open tube.
The microscope shows on a cross section the concentric layers of coagulated silica, soluble in alkalies ; the crystals or fibses of tridamyte cross these layers at right angles, radiating like a rheolite from the skin, and it is always along the sides of these crystals that intruding and staining liquids find a way ; probably, therefore, along their sides also did the ingress of chalcedonic flaid find entrance. I remain very truly yours,
M. Forster Heddle

THE ORIGIN OF THE SCENERY OF THE BRITISH ISLANDS ${ }^{1}$

TIIE Lakes of Britain preseut us with some of the most interesting problems in our topography. It is obvious that the existence of abnndant lakes in the more northern and more rocky parts of the country points to the operation of some cause which, in producing them, acted independently of and even iu some measure antagonistically to the present system of snperficial erosion. It is likewise evident that as the lakes are everywhere being rapidly filled up by the daily action of wind, vegetation, rain, and streamlets, they mast be of geologically recent origin, and that the lake-forming process, whatever it was, mnst have attained a remarkable maximum of activity at a comparatively recent geological epoch. Hardly any satisfactory trace is to be found of lakes older than the present series ; perhaps Lough Neagh, which from lis thick deposits and their fossil2, has been referred back to Pliocene times, is the solitary exception. How then have our lakes arisen? Several processes have been concerned in their formation. Some have resalted from the solution of rock-salt or of calcareous rocks and a consequent depression of the surface. The "meres" of Cheshire, and many tarns or pools in limestone districts, are examples of this mode of orizin. Others are a consequence of the irregular deposit of superficial accumulations. Thus, landslips have occasionally intercepted the drainage and formed lakes. Storm-beaches, thrown up by the waves along the sea-margin, have now and then ponded back the waters of an inland valley or reces. The various glacial deposits-boulder-clays, sands, gravels, and moralnes-have been thrown down so ennfasedly on the surface that vast numhers of hollows have thereby been left which, on the exposare of the land to rain, at once beenme lakes. This has undoubtedly been the orizin of a large proportion of the lakes in the lowlands of the nwth of England, Scotland, and Ireland, though they are rapidly being converted by natural causes into bogs and meadowland. Undergruand movements may have originated certain of our lakes, or at least may have fixed the direction in which they have ntherwise been produced. A very large nnmber of British lakes lie in hasins of hard rock, and have been formed by the erosion and removal of the solid materials that once filled their siter. The only agent known to ns by which such erosion could be effectel is land-ice. It is a significint fact that our rock-basin lakes ocear in districts which can be demonstrated to have been intensely glaciated. The Ice Age was a recent geol gical epirode, and this so far confirms the conclusion already enforced, that the cause which produced the lakes must have been iu operation recently, and has now ceased. We must bear iu mind, however, that it is prohably not necessary to suppose that land-ice excavated our deepest lake-hasins out of solid rock. A terrestrial surface of erytalline rock, long exposed to the atmosphere, or covered with vegetation and humus, may be so deeply corroded as, for two or three hundred feet downward, to be converted into mere loose detritus, through which the harder undecomposed veins and ribs still run. Such is the case in Brazil, and such may have been also the case in some glaciated regions before the gleciers settled down upon them. This superficial corrosion, as shown by Pumpelly, may have been very unequal, so that when the decomposed material was removed, nu nerous hollows would be revealed. The ice may thus have had mach of its work already done for it, a d would be mainly employed in clearing out the
A Abstract of fourth lecture given at the R'yal Institution, February 25, by Arehibald Geikic, F.R.S., Director-General of the Goological Survey of the United Kingdom. Continued from p. 397.
corrodel debris, though likewise finally deepening, widening, and smoothing the basins in the solid rock.

The Hills and Hill-groups of Britain have all emerged during the gradual denudation of the eountry, aod owe their prominence to the greater durability of their materials as compared with those of the surrounding lower grounds. They thus represent various stages in the general lowering of the surface. In many cases they consist of local masses of hard rock. Sueh is the structure of the promineut knobs of Pembrokeshire and of Central Scotland, where masses of eruptive rock, formerly deeply buried under superincumbent formations, have been laid bare by denudation. In connection with such eruptive bosies attention should be given to the "dykes" so plentiful in the north of England and Ireland, and over most of Scotland. In numerous instances, the dykes run along the crests of hills and also cross wide and deep valleys. Had the exinting topography existed at the time of their protrusion, the molten basalt woald have flowed down the hill-slopes and filled up the valleys. As this never occurs, and as there is good evidence that the dykes are not of higher antiquity than the older Tertiary periods, we may conclude that the present configuration of the country has, on the whole, been developed since older Tertiary time-a deduction In harmony with that already announced from other independent evidence.

Escarpments are the steep edges of bills in retreac. The British Isl unds abouud in admirable examples of all ages from early Palreozoic rocks down to Tertiary depasits, and of every stage, from the almost unbroken line of cliff to scattered groups of islet-like fragments. The retreat of our escarpments can be well studied aloug the edge of the Jurassie belt from Dorsesshire to the headlands of Yorkshire, likewise in the course of the edge of the Chalk across the island. Not less suggestive are some of the escarpments of more ancient rocks, such as those of the older Palae 3 zoic limestones, the Old Red Sandstone of Wales, the Carboniferous Limestone and Millitone Grit of Yorkshire, and the Coal Measures of the Irish plain. Our volcanic escarpments are likewise full of interest-those of the Lower Old Red Sandstone along both sides of the Tay, of the Carboniferous system in Stirlingshire, Ayrshire, Bute, and Roxburghshire, and of the Tertiary series in Autrim and the Inner Hebrides.

SUN-GLOWS AND VOLCANIC ERUPTIONS IN ICELAND

INN reply to the iuquiry despatched to me by NATURE with last mail, whether any remarkable sun-glow had been observed recently in Iceland, and which, I learn, has been observed in nearly all parts of the world, and whether any volcanic eruption had lately taken place in the island to which the same might be attributable, I beg to relate, as regards the first of these points, that on November 23, between 5 and $6 \mathrm{p} . \mathrm{m}$., I noticed for the first time an unusaal and striking purple intensity of the sky, a phenomenon which was alss observed on the subsequent mornings and nights. I did not attach much importance to this phenomenon at the time, tnrough the circumstance that I was told that sunrises and sunsets were generally attended by very intense aurore here, and since then I have bad so few opportunities of seeing the sky free from cloads that I have not observed any siuilar phenomenon. I learn, however, on inquiry bere, that the same glow was observed once or twice before Christmas by several persons. On one occasion, January 30, the sky was perfectly clear several hours after sanset, but there was no unusual glow.
With regard to the second point, as to recent volcanic eraptions in the island, I have not much uew information to transmit (Niature, vol, xxix. p. 343). The only thing we know as to this is that a man has written a letter to an Iceland paper statiug that on October 8 and 9 last year he was at a farm about three geographical miles east-north-east inland from the well-known fishing village Seydisfjord, on the east coast, when he saw, on the first-mentioned day, in the direction of the unexplored gigantie volcanic mountain, the Valnajokull, about 130 geographical miles in extent, in the south eastern corner of the island, two columus of fire, and on the following morning, in the same direction, two columns of smoke. He adds that a similar phenomenon was observed on the farm two days previously. It is also reported to us here that ashes have failen in Seydisfjord.
It is most probable that these eruptions have occurred in the same place where similar phenomena have been observed several times in recent years, viz, in the neigbbourhood of the Kverk

Mountains on the north side of the Vatnajokull, and that there are, in all probability, several volcanoes in activity in this district, which is utterly unapproachable to explorers.

There is, however, no reason to assume that eruptions of any magnitude have recently taken place in any other part of the island, as sueh an occurrence would soon have been reported by some means or another to us here.

If, therefore, the remarkable sun-glows of which 1 read are attribated to terrific volcanic eruptions, the latter must be sought in other localities than Iceland.

Sophus Tromhelt

Reykjavik, Iceland, February 1 (by mail February 8)

COMPOSITE PORTRAITURE ADAPTED 70 THE REDUCTION OF METEOROLOGICAL AND OTHER SIMIILAR OBSERVATIONS ${ }^{1}$

I^{T}T has often been remarked that one of the main, if not the chief, of the difficalties the meteorologist has to contend with, is the enormous amount of preliminary labour which has to be expended in the not very pleasing task of forming the observations he may wish to discuss into tables, carting the columns of figures so obtained, and then computing the means Should, as in many cases nowadays, his original material be in the shape of curves, e.g. barograms, thermograms, or anemoglams, he has first to reduce these to figures by tabulation, before he can attempt any step towards their reduction.
The deterrent nature of these preliminary operations not unfrequently forms a complete bar to the entering upon most interesting investigations with a view to the advancement of the science, in the case of persons unable to devote sufficient time is such labour, which may almost be termed drudgery. To cite examples, a glance at the recently published papers in the Procendings of the Royal Soxicty, by Prof. Balfour Stewart (vol. xxv. p. 577) and by Mr. C. Chambers (vol. xxxiv. p. 231), is which they endeavour to trace a possible intimate connection between solar and terrestrial phenomena, will show the immense amount of calculation they had to perform in order to arrive at their results-how, for instance, preliminary means had to be taken of three days' observations and the resalt assumed to be a corrected value for the middle day of the three, then, after the whole series had been s) treated, a second or even a third set of averages computed. The author has also a 1 vely recollection of the excessively tedions calculations required to eliminate in a somewhat similar manner the effect of disturbances in the disemsion of the Kew magnetie observations for the late Sir E. Sabine With the view of arriving at results by a shorter cut, the auther has been led to consider the possibility of employing a method suggested by an examination of the highly ingenioa \& system of composite portraiture invented by Mr. Francis Galton, F.R.S. and utilised in his anthropological studies.
Mr. Galton's method of experiment is based upon the fact that eertain groups of people pos-ess certain physiognomical features in common. This agreement of feature is usually characterised by the term "fanily hikeness." In order, therefore, to select this particular element from the others, and to obtain a pieture ia which it is most strongly defined; or, in other words, to form a characteristic portrait of the group of individual-, Mr. Galton employs a series of photographs. These, representing a large number of men or women, are first reduced to the same scale, and then projected successively upon a sensitised photograplic plate, having been previously so arranged that the eyes or other salient featare shall always fall on the same porti in of the plate.
In this manner a negative is eventually obtained which gives a print depieting a countenance which, although resembling lat partially any one of the component portraits, gives a fair typical picture of the group of individuals, Among other resalis Mr. Galton has detected the likeness existing in various clisses of criminals, and also in patients suffering from the same disesse, as well as the more marked features transmitted through the different members of a family.

Since in meteorological investigations the desire is to seiect and to identify the one particular variable running through a group of phenomena, it has appeared to the author, arguing by analogy, feasible to perform this operation by a method some what resembling that just described. Supposing, for example,
${ }^{1}$ By G. M. Whipple, B.Sc., F.R.Me1. Soc., F.R.A S., Superistendent of the Kegical Socirty, vil ix. Nond (from the Quarlerly lownal of the Mefrren logiral Saciety, vil ix. No. 48).
it is desired to determine the true curve of diurnal variation of the wind velocity at auy given station. In the cave of proceeding by the ordinary routine of hourly sums and means, it will te found that the occurrence of a high wind or gale on a single day will vitiate tbe results for a considerable period of time.

If, on the other hand, instead of doing this, a drawing or photograph be made on one sheet of the daily curves for a few weeks, it will be found that the traces for the days free from storms will lie so fairly close together or upon one another, that little difficulty will be found in selecting or drawing through them a carve representing the general run of the group. Several sets of eurves having been so treated, the typical curves must be in tarn themselves superimposed, and through them another curve drawa, whieh will be still lesw affected by abnormal movements ; so eventually the true curve of diurnal variation would be arrived at.

In the case of subjecting photographie traces, e.g. barograms, thermograms, electrograms, magnetograms, \&e., to this treatment, it would be advisable to employ secondary impressions or prints from the original curves, in order that the composite produced might consist of dark lines on a white baelground ; not the reverse, which would be comparatively useless for the purpose.

For the reduction of anemograms, rain, and sunshine curves by this method, it will be necessary to make drawings or tracings first from the curves, giving the hourly values separated, as is done in the diagrams published in the Quarterly Weather Reports of the Meteorological Office and in the Kew Times curves.

Another application of the method of composite drawing will serve to facilitate the acquisition of a knowledge of the general distribution of weather sy,tems over large tracts of the earth's surface. To do this, a series of weather charts should be taken, and selecting certain prominent features, such as the centres of cyclonic and anticyclonic disturbances, day by day their positions should be marked off upon one chart. This being done in a sufficient number of cases and combined, a repetition of the process would enable a determination to be made of the average distribution of these systems for a given season.

The author illustrated his proposed applications of the method of composite portraiture by three examples, which were exbibited to the meeting of the Society. The data treated in every case were chosen at random, and therefore may be considered as indicating the applicability of the process to meteorological work in general.

In the first example the mean diurnal variation in the wind velocity at the Kew Observatory, Richmond, was determi ed for three months-August to October, 1879. Taking the hourly values of the rate at which the wind was blowing from the Meteorological Office publications, they were plotted down on a conveniently open seale, a fortnight's superimposed curves being on a sheet. Through the fourteen curves so drawn in peueil a mean curve was traced in red. This roughly represented the average daily variation during the fortnight.

The pair of fourteen-day curves being superimposed on a third sheer, a third trace drawn between them was assuaued to be the mean trace for the month, and finally combining the three so derived months' traces, it became easy to draw the final curve showing the mean diurnal variation of wind velocity during the quarter in question. ${ }^{1}$

The second experiment was an attempt to obtain a monthly mean of the barometer directly by the graphic method. Taking advantage of a self-registering aneroid being ou trial, its traces were utilised for the mouth January 8 to February 7, 1883. These were copied off on a sheet of tracing paper, ruled $t 0$ as to comprise one day's curve only. The tracing paper was then folded vertically, so as to compress the curves, and the mean positions of the traces were drawn on the folds. After four foldings a poiut was readily fixed upon as the position of the mean of the month, and the value of this point referred to the scale of the instrument. The resulting value for the mean barometric pressure of the month very satisfactorily agreed with the value determined by calculation from the barometer readings taken daily at the Observatory.

The third series of illustrations represented the general positions of the centres and the contours of the areas of maximum

* It muss be remarked that a due proportion should be preserved belween the scales of the ordinates and abscisser, for unless this is done the combined traces may appear merely as a mass of confused lines. Such was the case in some experiments made by the author, when he attempted to derive mean curves directly from the zine templates engraved at the Meteorological Office for the Quarterly Weather Reports, kindly placed at his disposal by Mr. Scott.
and minimum barometric pres ure over the Atlantic during Jauaary, February, and March, 1881. A number of blank charts were worked off by the chromograph, on tracing paper, to the scale of the international synchronous charts of the U.S. War Department Signal Serviee. Tracings were made on one sheet in blue pencil of the cyclonic centre for each day of the month, and then on another a similar set of tracings in red of the anticyclonic eentres. Having from these drawn the prevailing positions and areas of the systems for the mouth, it was easy to draw auother chart with the general distribution for the quarter. The diagrams were seen, on comparison, to differ materially from thise drawn for the monthly means of the observations. In suggesting the composite method of treatment of meteorologieal data, the author is fully aware that a somewhat similar process has been already applied iu the determination of the radiant points of shooting starr, and would also desire to state that the process is not by him cousidered as equalling or even approximating in accuracy that of employing the harmonic analyser in computing the periodical variations of the elements. As, however, that instrument is not at the command of many investigators, he is of opinion that the labour of reduction may in many ca es be saved by making use of the graphie or composite, instead of the purely numerical, method.

UNIVERSITY AND EDUCATIONAL INTELLIGENCE

Cambridge.-Dr. Hans Gadow, Striekland Curator, bas been approved as a Teacher of Comparative Anatomy: Mr. L. Humphry, M.B., as a Teacher of Pathology ; and Mr. F. H. Neville as a Teacher of Practical Chemistry.

Messrs. J. W. Hieks, K. D. Roberts, and A. S. Lea are appointed Examiners in Natural Science in the Special Examinations for the ordinary B.A. degree.

The Examiners' Report on the Special Examinations in Natural Science states that there was no improvement in the book work, bat the practical work was more intelligently done. The few candidates in Geology did well. Botany was ill done. In Zoology the candidates did well.

Mr. I. A. Lyou (Clare College) has been appointed to the new office of Superintendent of the Mechanical Workshops.

SCIENTIFIC SERIALS

Bulletin de EAcad'́nic Ropale de Belgique, November 3, 1883. On the anatomy and histology of a new species of derostoma (D. bevalewii), by M. Francotte. - Report on the work still required to complete the geodesic survey of Belgium, by Capt. 1)elporte.-Observations on the periodie shooting stars made at Louvain in $1882-83$, by M. Terby, - Influence of magnetie disturbances on the scintillation of the stary, by M. Charles Montiguy. The paper is accompanied by various comparative tables showing the intensity of scintillation before, durin f, and after the magnetic disturbances in dry and wet weather. Summary report on the researehes undertakeu at the Ostend biological station during the summer of 1883 , by Edouard van Beneden. Amongst the remarkable objects fished up near this station were a torpedo of unusual size (TorAido marmorafa), a fine specimen of Labrus maculatus, an Amptioxws lancelither, and an unknown species of Scopelida, referred by Güuker of the British Museum to the Odontostomus, or some a'licd genus. - Ou the observation of very rapid movements, especir:lly when occurring periodically, by M. J. Plateau,-Analytical study of the volcanie ashes which fell at Batavia during the eruption of Krakatoa on August 27, 2883, by M. Renard. The author conclades that these ashes are formed by the pulverisation of a fluid igneous mass, whose particles, projected by the expansion of the gases, are subjected to rapid cooling during their pasvage through the atmosphere. Nothing was detected to indicate the direct action of vapour of water in volcanic disturhances.-On the perfect elastieity of solid bodies chemically defined. New analogy between solids, fluids, and gases, by W. Spring. Here are embodied some of the results of the researches couducted by the author for several years on the action of pressure on solids reduced to a powder. The main object of these researches was to ascertain by experiment whether it be possible by means of pressure permanently to diminish the volume occupied by a given weight of a solid body chemically defined. As a geueral result, a slight increase of density was obtained under a pressure of 20,000 atmospheres. But, this ouce realised, most bodies resisted all further perma.
nent diminution of volume. Some even retained their specific weight intact under extreme pressure.-Observations on M. van Beneden's last note respecting the discovery of fossil iguanodons at Bernissart, by E. Dupont. This communication close the controversy. - Note oo the literature of international law before the publication of Grotius's "Jus belli et pacis" (1625), part ii., by Alph. Rivier.-A literary stady on the position of words in the Latin sentence, by J. Gantrelle.

Journal of the Russian Chewical and Physical Socisty, vol. xv. fasc. 8.-On dipropylacrylic acid, by A. Albitsky.-On the action of iodide of allyl and zinc on epichlorhydrine, by M. I.opatkin.-On an accessory product obtained during the preparation of diallyl carbinol, by W. Shestakoff-On the action of iodide of allyl and of isobutyl on acetone, by A. Shatsky.-On the hydrocarbon $\mathrm{C}_{8} \mathrm{H}_{14}$, by S. Reformatsky.On toe refracting power of $\mathrm{C}_{12} \mathrm{II}_{20}$ by A. Albitzky. - Attempt of a theory of dissolntions, by W. Alexeyeff. - $\mathrm{On} \mathrm{C}_{7} \mathrm{H}_{78}$ and the products of its oxidation, by W. Hemilian.-Analyds of a phorphorite from Nijni-Novgorod, by N. Lubavin.-On some phenomena of remanant magnetism, by P. Bakhmetieff. - On the changes in the galvanic resisfance of selenium nader the influence of light, by N. Hesehns. It depends chiefly upon allotropic dis-ociation of the molecules.-On the characters of the intramolecular foree, by M. Bardsky, being a mathematieal discossion of its dependence upon temperature.

Bulletin de I'Acadtimit Impariale des Sciences de St. Piters* bowrg, vol. xxviii. No. 4--Demonstration of several propositions relative to the nnmerical function $\mathrm{E}(x)$, second paper, by V . Bouniakovsky. - Contributions towards palseontology, by M. Schmalhansen (with two plates); being a description of fossil plants of the Jura coal-basin of Kuznetsk, in the Altay (Thyrsopleris prisca and Rhiplosamises supperti), from North-West Mongolia, at the sources of the Yenivei, on the high plateau of the Ulu-khem (Bornia radiafa, Nruropteris cardiopiervides, Lepidodendron evelfheimianum, Ahiptoanmifes gapperti, Czekanowskia rigida, and Phervicopsis angwstifolia), and from the Djun-khairkhan Mountains (Asplenium argutulum and spertabile, and Czekanowskia rigida).-On the sympathetic nervous system of the Pefromyzon, by Ph. Owsiannikow.-On the camphor of the Latum palustrc, by M. Rizza,-Analyses of samples of water from thermal sources of Southern Altay (Byelukba-Rakhmanovka), and from a number of lakes and wells in the same region, by Prof, Carl Schmidt. Compared with thirty other thermal waters of Enrope, Asia, New Zealand, \&c. (the composition of which is given in a table), the Altay water shows a minimum of mineral substance. - Letter on natural history phenomena observed at the Lena Polar station, by Dr. Bunge.

Rendiconti of the Sersions of the Accadenia delie Sciense di Bologna, March 14, iS83.-On a remarkable anatomical peculiarity observed in the eye of the swordish (Xiphias gladius, L.) (one illustration), by Prof. G. V. Ciaccio.-Some observations on the $\mathrm{M}_{\text {wor }}$ racomosus, Freseniuc, by Dr. F. Morini.

April 8.-A century of premature artificial births at the Lying-in Hospital of Bologna, by Dr. C. Belluzzi.-Chemical analysis of the meteorite which fell at Alfianello on February 16, i883.-Researches on the Phellandrium aquaticam, by Dr. Leone Pesci.-Thermal and galvanometrical researches on the internal discharges of condensers, by Prof. E., Villari.--New stndies on the polygenesis of crystallised minerals, by Prof. I. Bombicci.-Kevearches on the action of the magnet and of the thermal agents in hysterical hypnosis.-Observation on the series of functions, by Prof. C. Arzela. -On the infinite products by analytical functions, by Prof. S. Piucherle.

SOCIETIES AND ACADEMIES

London

Royal Society, January 17.-"On the Electrolysis of Dilute Sulphuric Acid and other Hydrated Salts." By J. H. Gladstone and Alfred Tribe.
On March 1 last a communication was presented to the Royal Society by Prof. Frankland in which, among other things, the reactions the authors had described as taking place in the charging and discharging of secondary batteries were confirmed. Prof. Frankland expressed these reactions, however, by formule founded on the electrolysis, not of $\mathrm{H}_{3} \mathrm{SO}_{4}$, but of hexabasic sulphuric acid, $\mathrm{II}_{4} \mathrm{SO}_{6}$ in accordance with the views of Bourgoin.

The French chemist employed a divided cell, analysing the liquid in each compartment at the close of the experiment. He calls the inerease of the acid in the positive compartment a, and concludes that $2 a$ represents the amount of sulphuric acid electrolysed. This conclasion rests on the well-known theoretical views of Grothuss, and, did his theory express all that goes on in the electrolytic processs, the method would readily discriminate between the actions represented by the following formule :-

(1.) ${ }^{\text {Befure electully }}$ (03s			After electrolysis	
			Panitive pole	Negativ
(2.)	$\mathrm{SO}_{3} \mathrm{HH}^{2} \mathrm{O}$	$=$	$\mathrm{SO}_{3}+0$	${ }_{1}$
(3.)	$\mathrm{SO}_{3} \mathrm{NH}_{2} \mathrm{O}$	${ }^{\text {a }}$	$\mathrm{SO}_{3}+\mathrm{O}_{5}$	$1{ }^{\text {a }}$

But it was pointed out by Reuss, as far back as 1807, that. when electrolytic action occurs across a permeable diaphragm, a portion of the liquid may travel from the positive to the negative compartment of the compound eell by what is now called electrical endosmose. Daniell and Miller in 1844 pointel out that in electrolytic action there was also an unequal transference of the ions. Moreover, Daniell investigated the electrolysis of sulphuric acid of very different strengths by a similar methoch, and concluded that, for each equivalent of bydrogen liberated, the acid which passed across the diaphragm was not more than one-fourth nor less than one-fifth of an equivalent. Most of his experiments incline to the former. Did $2 a$, therefore, represent the amount of sulphnric acid electrolysed, it would appear from his results that tetra-, rather than bexa-, basic sulphuric acid was decomposed by the current. These discrepancies, both of observation and deduction, led the anthors to make some experiments on the subject.

The apparatus employed consisted of a U-shaped tube of about 70 c.c. capacity, having a stop-cock in the centre of the borizontal part. The vertical ןarts of the apparatus were divided into millimetres, and the hole in the stop-cock packed with astbestor. The authors found that the closeness of the packing conld be so nicely adjusted as to allow very little mechanical admixture of the fluids or electrical endosmose. In their experiments the current density was varied, and, nnlike Bourgoin, they found that the increase of sulpharic acid in the positive compartment per equivalent of hydrogen set free decreased along with the decrease in the current density. The results are set out in the annexed table.

Curreat in milli-amperes		Time in hours	Increase of sulphuric acid in positive compartment for one part of hydrogen	
328	\cdots	20	.	9.17
33.4	...	6	..	9.5
$72 \cdot 3$	\cdots	$2 \cdot 5$...	$10^{\circ} 3$
727	\cdots	2	...	$9{ }^{*} 4$
106	...	2	-	11°
117	-.	2.5	**	10.5
215	\cdots	1.5	\ldots	12.05
220	...	1	**	12.04
229	-	2	\cdots	12.31

It is necessary also to bear in mind the remarkable phenome non called by the Germans "Wanderung der Ionen." Daviell long ago described an experiment in which he placed dilnte sal. phuric acid in the positive compartment and a solution of sul phate of copper in the negative. He found that when 15 ' 5 grs . of copper had been deposited on the negative electrode there were 23 grs , of sulphuric acid in the same compartment. Now, as $15^{\prime} 5$ grs. of copper are equivalent to 24 grs. of sulpheric acid, and as Bourgoin's formula allows for the formation of only half an equivalent of sulphuric acid, that is, 12 grss , it is evident that there was a considerable accumulation of that substance unaccounted for. In two similar experiments the authon obtained for $0^{\circ} 147$ and $0^{\circ} 125 \mathrm{grm}$. of deposited copper 0.209 and $0^{\prime}: 18 \mathrm{ogrm}$. of free sulphuric adid. The half equivalents would be 0.114 and 00097 grm , respectively. If both compartments had been filled with sulphuric acid, some similar transference would doubtless have taken place, in addition to what is expressed in Grotthuss' chain of decomposition.
The authors conclade, therefore, that the method employed is incapable of determining whether it is $\mathrm{H}_{\mathbf{x}} \mathrm{SO}_{4}$ or some bydrate which yields to the current.

Copter Smlphate

An examination of the chemical changes which accompany the electrolysis of a solution of copper sulphate appeared, how
ever, capable of throwing additional light on the value of this electrolytic method. It is well known that water forms with CuSO_{4} a definite bydrate, $\mathrm{CuSO}_{4} 5 \mathrm{H}_{2} \mathrm{O}$. Now, if in the elec. trolytie process the water of hydration suffers decomposition along with the CuSO_{4}, the primary chemical changes might be expected to be-

Positive pole Negative pole
(A.) $\mathrm{CuSO}_{4} \mathrm{HH}_{2} \mathrm{O}=\mathrm{SO}_{3}+\mathrm{O}_{6} \quad \mathrm{Cu}+5 \mathrm{H}_{2}$

But, if the water of hydration takes no more part in the electrolysis than the water of solution does, then the chemical changes would manifestly be-

Positive pole
Negative pole
(B.) $\mathrm{CuSO}_{4}=\mathrm{SO}_{3}+\mathrm{O}$

Cu .
Of course the collateral action-

$$
\mathrm{H}_{2} \mathrm{O}=\mathrm{O}
$$

might also take place, but this would occur only with currents of considerable density. The method is obviously capable of discriminating between these two actions, even supposing a con-iderable quantity of the electrolyte travelled unchanged from one compartment of the apparatus to the other. For, in the first case, either free hydrogen would be liberated at the negative pole, or free acid formed in the negative compartment, equal to five-sixths of the total copper deposited; the free acid, and the five-sixths of the total copper, to which it is equivalent, being produced by the chemical action $5 \mathrm{H}_{3}+5 \mathrm{CuSO}_{4}=\mathrm{Ca}_{5}$ $+5 \mathrm{H}_{8} \mathrm{SO}_{4}$; equation A becoming-

$$
\mathrm{CuSO}_{4}, 5 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{CnSO}_{4}=\overbrace{\mathrm{SO}_{3}+\mathrm{O}_{4}}^{\text {Positive pole }} \overbrace{\mathrm{Cu}_{6}+5}^{\text {Negative pole }} \mathrm{H}_{3} \mathrm{SO}_{4} .
$$

On the other hand, if the action was in accordance with B there would be only a deposition of copper on the negative electrode, and no formation of free acid in the negative compartment. In the annexed table the results and particulars of the authors' experiments are set out :-

Experiment I.	Time in Hours			Free sulphuric acid		
				Pos Compart.		Neg. Compart.
	'...	$1 /$	\cdots	'0766	...	nil.
II.	...	2	.	'0936	\ldots	nil.
III.	...	3	...	'1868	...	-0191
IV.	-	3	-	1501 0204
V.	...	3	...	-2442	...	-0237
VI.	...	3	\cdots	-2546	*..	'0372

In none of there experiments was there any trace of hydrogen visibly escaping from the negative electrode, while, as will be seen from the table, there was no free acid formed in the negative compartment till two hours or more had elapsed. By that time some admixture in the horizontal part of the apparatus might reasonably be expected, but even in the greatest instance it is small as compared with the amount of salt decomposed.

Similar experiments were made with the sulphate of zine, with similar results, no hydrogen being evolved, and little or no sulphuric acid appearing in the negative compartment.

We conclude, therefore, that it is not possible to determine the composition, or even to show the presence of a hydrated salt in aqueous solution by means of this electrolytic method.
Zoological Society, February 5.-Prof. W. H. Flower, F.R.S., president, in the chair.-Mr. F. Day, F.Z.S., exhibited and made remarks on a specimen of a Dog-fish, of which the entire interior had been eaten out by Isopod Crustaceans of the genus Conilera.-Mr. G. F. Butt, F.Z.S., exhlbited two specimens of a singular variety of the Red Grouse, shot in West-moreland,-A communication was read from Mr. W. Leche, of the University of Stockholm, in which he gave an account of a collection of bats from Australia. Two new species were described and named respectively $N y c t i n o m m s$ fetersi and N. albidus.-Mr. Sclater read some notes on the Lesser Koodoo (Strepsiccras inberbis of Blyth), with a view of confirming the distinctness of this Antelope from its larger relative, Strepsiceros kudiv.-A cummunication was read from Mr. R. Bowdler Sharpe, containing the description of a new species of BushSbrike of the genus Laniarius, based on a specimen obtained in A shantee by Mr. Godfrey Lagden, which he proposed to call L, lagdeni, after its discoverer.-Prof, Flower made some remarks on the chief points of interest exhibited by the Burmese Elephant now in the Society's Gardens.

Geological Society, February 6.-J. W. Hulke, F.R.S., president, in the chair.-Edward Joln Dunn was elected a

Fellow, and Dr. Joseph Szabo, of Buda-Pest, a Foreign Member of the Society. - A delta in miniature-twenty-seven years' work, by T. Mellard Reade, F.G.S. The author described a delta deposit, which, during a period of twenty-seven years, had formed in the Rake reservoir (Kivington Waterworks) from materials brought down by a stream of that name. The reservoir at this part was divided by a road, water communication being maintained by a culvert, once eight feet high, now almost silted up. The author described the stratification of these deltas: that near the influx of the Rake consisted of peaty matter, gritty sand, gravel, shingle, and boulders of Millstone-grit up to about one foot diameter ; the other chiefly of fine sand with some peaty matter. The former covered an area of 2508 yards, with an average thickness of 2 yards; the latter, an area of 43° yards, with an average thickness of 3 yards. These materials had come from the drainage-area of the Rake. This is estimated as $\mathbf{I} \cdot 176$ square mile, and the delta being estimated at 6306 cubic yards, and the time being 27 years, gives, as the annual rate of denudation over the whole area, $1 / 432$ inch per annum, or 1 foot in 5184 years. The mean rainfall of the Rake Brook watershed for the last ten years was $49^{\circ} 57$ inches per annum. In this calculation no account is taken of the finer materials which have doubtless been distributed over the rest of the bed of the reservoir. The author pointed out that this rate of denudation was rather more rapid than that of the Mississippi (1 foot in 6000 years), and that the arrangement of the materials under the varying condition of the streau illustrated the phenomena of larger deltas.-On the nature and relations of the Jurassie deposits which underlie London, by Prof. John W. Judd, F.K.S., Sec. G.S., with an introductory note on a deep boring at Richmond, Surrey, by Collett Homersham, A.M.Inst.C.E., F.G.S. An account of this appeared in Nature, vol. xxix. p. 329.

SYDNEY

Linnean Society of New South Wales, December 27, 1883.-C. S. Wilkinson, F.G.S., F.L.S., president, in the chair.-The following papers were read:-On the localitics of some plants from the southern parts of New South Wales, by Baron von Miller, K.C.M.G., F.R.S., \&c.-Descriptions of Australian Microlepidoptera, No. IO, by E. Meyriek, B.A. This is a continuation of the Cecophorider of Australia, and deals with the genera Philobota, Leistomorpha, Compsotropha, and Eriadyta. About seventy new species are described. - Notes on the geology of the southern portion of the Clarence River basin, by Prof. Stephens. This was an account of the sugar lands of the Clarence, explaining the mode of their formation, and their relation to the Coal-measures which underlie them unconformably. The period of deposition of these latter rueks was also considered, and their immediate superposition upon the vertical Siluro-Devonian slates and quartrites described. The existence of a great north and south fault at the present outcrop of these rocks was demonstrated, and the probable existence of others near the present coast-line supported by various considerations..

Paris

Academy of Sciences, February 11.-M. Rolland in the chair. - Note on Faraday's law (continued), by M. Ad. Wurtz -Remarks on the slight horizontal and vertical vibrations of the ground observed at Abbadia, near Hendaye, for several years past, by M. d'Abbadie.-Note on the meteorite which fell at Grossliebenthal, near Odessa, on November 7/19, 1881, by M. Daubrée. In its outward appearance and microscopic structure it presents all the characters of the typical meteorite which fell at Lucé, Sarthe, on September 13,1768 , and which is already represented in the collection of the Natural History Museum, Paris, by fifty-four other identical specimens-Description of an absolute calculating actinometer invented by M. G. A. Hira. This delicate instrument is based on the principle of steam condensers, that a saturated vapour contained in a closed vessel acquires a tension corresponding with the minimura temperature of the walls of the receptacle. So far it acts with perfect satisfaction, and the inventor will report the numerical results as soon as he fecls that they are absolutcly trustworthy.-Report on the thunderstorms observed in France during the first six months of the year 1883, with complete and detailed tables of all the accidents caused by lightning in every part of the country during that period, communicated by the Minister of the Postal and Telegraph Department. The fatalities amounted altogether to nine persons and seventy-eight animals killed, and about fifty
persons and seven animals injured, by lightning. - Report on the solar spots and faeulx observed at Kome during the year 1883 . by M. P. Tacchini. The paper is accompanied by a table of dates, relative size, frequency, and number of the spots.-Observations on the Pons-Brooks eomet at the Observatory of Nice, one illastration, by M. Perrotin. - Note on the appearance of the same comet on January 13 and 19, 1884, by M. Perrotin, -On the sudden modifications of form (wings, egrets, \&c.), presented by the aame comet during its passage tbrough peribelion, by M. G. Rayet.-On the barometric disturbanees caused by the Krakatoa eruption, as recorded by the Redier barometer of the Observatory of Toulouse, by M. Baillaud. -On linear substitutions (mathematical analysis), by M. H. Poincaré-Generalisation of Jacobi's theorem on the Hamilton equations, by M. J. Farhas,-On curves of the fourth order, by M. C. Le Paize. - On the propagation of light in a crystallised medium, by Madame Sophie Kowalevski.-On the distribution of potential in a liquid mass having the form of an indefinite rectangular prism, by MM. A ppell and Chervet.-On Joule's electric law, by M. Y. Garbe.-On the electric conductibility of greatly diluted saline solutione, by M. E. Boaty.-Note on several nnsuccessful attempts recently made to liquefy hydrogen, by M. K. Olszewski. These experiments are reporten in consequence of M. Wroblewski's statement that he has succeeded in liquefying hydrogen by expantion at a temperature of -186° C. by means of boiling hydrogen.-On a gas-luurner yielding a white light by the incandescence of magnesia, by M. Ch. Clamond. - On the law of the thermic cons'ants of substitution (thermo-chemistry), by M. D. Tommasi.-On the formation of the iodide of methyl and of the iodide of methylene hy means of iodoform, by M. P. Cazencuve.-Note on the monobromic methylchloroform $\mathrm{CCl}_{3}-\mathrm{CH}_{2} \mathrm{Br}$, by M. L. Henry. -On the albuminoid substances contained in milk, especially caseine, by M. E. Duclaux, ,-Fresh observations on the morphology, anatomy, and development of the parasite of the onion and other bulbous plants (7 ylenchus hyacinth; Tylenchus potrefaciens, \&c.), by M. Joanses Chatin.-Remarks on the preparation of farmyard manure, by M. P. P. Dehérain.-On the presence of pegmalite in the diamantiferous sands of South Africa; observations in connection with M. Chaper's recent communieation on the subject, by M. Stan. Meunier.-On some freshwater formations during the old and reeent Quaternary periods, by M. Ph. Thomas.-On the arched waterspouts of the Indian Ocean (two illustrations), by M. Le Goarant de Tromelin. - Note on the particles of dust found in the snow that fell at Stockholm last December, by M. E. Yung.-Actinometric observations made at Montpellier during the year 1883 , by M . A. Crova.

February 18.-M. Rolland in the ehair.-Observations of the small planets made with the large meridian at the Observatory of Paris during the third and fourth quarters of the year 1883 , communicated by M. Mouchez. -On the reciprocal displacements between fluorhydrie and the other acids, by MM. Berthelot and Guniz-On the law of modules or thermie constants of substitution, by M. Herthelot.-Remarks on a note by M. J. Luvini in connection with the controversies earried on in the eighteenth century on the subject of waterspouts and whirlwinds, by M. Faye. - Determination of the difference of longitude between Paris and the Observatory of Bordeanx, by MM. G. Rayet and Salats. The longitude of the meridian of the Bordeaux Observatory, as here rectified, is fixed at $11 \mathrm{~m}, 26.444 \mathrm{~s}$. \pm 0.008 s . - Remarks in connection with the recent rescarches made on the propagation of the atmospheric currents caused by the eruptions of Krakatoa, by M. Foerster. The author disclaims priority for the observations made by him on this phenomenon, a priority which he awards to General Strachey, whose paper on the subject appeared in a recent number of NATURE ($p, 181$). -On the divisors of certain polynomes, and on the existence of certain primary numbers, by M. A. Genocchi.-On the eomposition of sueh polynomes as admit only of primary divisors of a determined form, by M. Lefébare.-On certain linear substitutions (mathematical analysis), by M. E. Picard.-On an equation of the m degree, whieh has never more than two real roots, by M. D. André.-On a differential equation of the third order, by M. E. Goursat, - On M. Levy's elastic curve, expressing the equilibrinm of an elastic circular rod subjected to normal and uniform pressure throughnut its whole length, by M. Halphen.-On the adiabatic expansion of the vapour of water, by M. Paul Charpentier.-Researches on the fluorhydrate of fluoride of potassium, and on its states of
equilibrium in various solutions, by M. Guntz- On the nitrous derivatives of hydride of ethylene, by M. A. Villiers.-On the probable number of homologous and isomerous rosanilines, by MM. A. Rosenstichl and M. Gerber.-On a new ccmpound arising from the preparation of the hexachloride of benaine, baving the same centesimal composition as that substance, by M. J. Meunier. -On the constitation of milk, by M. E. Duclaux. The author redaces milk by a rew method of analy is to the following elements:-

-On the pigmentary function in the Hirudinex (common leech, Nephelis, Aulostoma zorax, \&c.), by M. Rémy Saint-LoupOn the physiologieal development of the adult Comatule, by M. Edm. F'errier.-On a placentoid organ in the embryo of birds, by M. Mathias Duval.-Origin add mnde of formation of the Jelgian Devinau and Carboniferons limestonec, by M. E. Dupont. The author explains the formation of the older marine rocks of organic origin by causes still in operation, and from this deduees a fresh proof of the value of the comparative method applied to the study of the past geological history of the globe. -On the variability of the composition and concentration of mineral waters, by M. A. Inostranzeff.

CONTENTS

Page
The German Cholera Commission. 401
Schopenhauer. By Prof. Andrew Seth. 401
Our Book Shelf . 402
Our Book Shelf:-
Le Lapparent's "Cours de Minéralogie" 403
Letters to the Editor :-
The Remarkable Sunsets.-Prof. John Le Conte ; Prof. G. H. Stone
"Probable Nature of the Internal Symmetry of Crystals."-Wm. Barlow
"Mental Evolution in Animals."-George J. Ro. manes, F.R.S.
Instinct.-Prof. C. Lloyd Morgan
Protection by Mimicry-A Problem in Mathematical Zuology. - Capt. Thomas Blakiston and Thomas Alexander
Christian Conrad Sprengel.-Prof. K, Möbius
Circular Cloud Bows.-E, H. L. Firmstone.
405
406
Circular Cloud Bows.-E. H. L. Firmstone. 406
On the Absence of Earthworms from the Prairies of the Canadian North-West.-Timothy E. Wilcox Zoological Results of the Work of the United States Fish Commission in 1883 . Hy Ralph S. Tarr
Afriean Spiders
Mr, Burnham's Double-Star Measures
Mr. Burnham's Double Star Measures 409
Measuring the Aurora Borealis. By Dr. Sophus Tromholt (With Diagrams)
Count du Moncel

Notes

412Our Astronomical Column :-
The Solar Eclipse of 1806 , December 10 415
The Late Prof. Klinkerfues
Geographical Notes
On the Phenomena exhibited by "Dusity Air in the Neighbourhood of Strongly Illuminated Bodies. By Profs. Oliver J. Lodge and J. W. Clark .
Agates. By Prof. M. Forster Heddle
The Origin of the Scenery of the British Islands. By Archibald Geikie, F.R.S., Director-General of the Geological Survey of the United Kingdom
Sun-Glows and Volcanic Eruptions in Iceland. By Dr. Sophus Trombolt
Composite Portraiture adapted" to the" Reduction of Meteorological and other Similar Observa. tions. By G. M. Whipple, B.Sc., F.R.Met. Soc., F.R.A.S., Snperintendent of the Kew Observatory University and Educational Intelligence
Scientific Serials
421
Societies and Academies 422

THURSDAY, MARCH 6, 1884

RECENT TEXT-BOON'S ON TECHNOLOGJ

1. Steel and Iron. By William Henry Greenwood. (London : Cassell and Co., 1884.)
2. Bleaching, Dycing, and Calico Printing. Edited by John Gardner. (London : Cburchills, 1884.)
3. The Art of Soap-Making. By Alex. Watt. (London: Crosby Lockwood and Co., 1884.)

A^{L}LTHOUGH the comprehensive system of technological examinations established under the direction of the City and Guilds of London Institute has been at work only a comparatively short time, it has already called into existence a considerable number of manuals and text-books designed to meet the special requirements of teachers and students in connection with those examinations. No doubt excellent works in certain branches of technology already exist, but many of these are scarcely suited to the purpose of the teacher, and most of them are in price beyond the means of the class which the Institute seeks to benefit. The action of many of our leading publishing houses in thus vying with each other in the production of series of low-priced handbooks of technology to meet a demand primarily created by the policy of the Institute is calculated not only to serve the interests of those preparing for examinations but also to react beneficently upon the general intelligence of our workmen. Numbers of these smaller works find their way into the hands of the better class of our mechanics, foremen, and apprentices, to whom the larger and more elaborate works, even when present in our free libraries, are as sealed books. On the whole, it may be said that the handbooks which have already appeared have been prepared with a rational appreciation of the needs of intelligent practical men. The majority of them are written or compiled by specialists, or by men who are well acquainted with the industries to which their works relate, and their descriptions and statements are made with the authority and discrimination which result from a practical knowledge of the manufactures of which they treat. The first and third of the works before us are excellent illustrations of this fact. In Mr. Greenwood's manual we have not only a comprehensive account of the present condition of our iron and steel manufacture, full of sound, practical information, but a very clear and accurate exposition of the scientific principles upon which the manufacture depends. The information is fully up to date ; the illustrations are not mere pictures, but diagrams based upon original drawings, the majority of which have been reduced from scale plans of existing plant, and so arranged as to be readily understood by those who have only a slight experience of mechanical drawings. The chemical portion of the work makes no pretensions to be exhaustive, but it is accurate and sufficiently full. On p. 63, however, we notice that the composition of spiegeleisen is represented by the formula $\mathrm{FeMn}_{4} \mathrm{C}$, probably a misprint for $(\mathrm{FeMn})_{4} \mathrm{C}$, although the evidence in support of the existence of any such definite carbide is very weak. A characteristic feature of the work is seen in the prominence given to

VoL. xxix.-No. 749
such Continental processes as may possibly react upon English methois, as for example the Perrot revolving puddling furnace, and the various reheating furnaces of Bicheroux, Casson, and Ponsard. The chapters on steel are remarkably concise and complete. The author meets the well-known difficulty of definition by assuming that any compound of iron and carbon which is delivered from a vessel in a state of fusion and at once cast into malleable ingots may be considered as steel. This definition is perhaps not very rational or precise ; it seeks to exclude cast iron on the ground of its immalleability, and wrought iron from the circumstance that in practice it is never obtained wholly fused; however, it is at least more accurate than that based upon the quality of hardening and tempering, which the so-called mild steels do not possess to any sensible extent.

The volume on "Bleaching, Dyeing, and Calico Printing " is a production of a very different character. It has not the slightest claim to originality, but is mainly a compilation, of some 200 pages, from the standard works of Crookes, Stenhouse, and Groves and Ure, and consists very largely of receipts and formulx. The chapter on bleaching is fairly well done, especially the portion relating to linen bleaching; and the section on mordants is good so far as it goes. What there is of chemistry in the book is generally accurate, but the author would in nowise have diminished the air of practicality about his work if he had removed or replaced some of the barbarisms in chemical nomenclature affected by dyers. It is quite possible to be precise without being pedantic. The book is poorly illustrated and somewhat loosely put together.

Mr. Watt's book on "Soap-Making" is a thoroughly practical treatise on an art which has almost no literature in our language. The author is the son of the late Mr. Chas. Watt, the inventor of the well-known process of bleaching palm-oil for soap-makers, and he has been connected with that industry for many years. Soap seems to have been made in England only since the middle of the sevententh century, but the manufacture made very little progress until the invention of the Leblanc process for converting common salt into carbonate of soda. The art received its second great impetus from the labours of the venerable Chevreul in the early part of this century, who, with Liebig, elucidated the theoretical principles upon which the manufacture depends. Mr. Watt's book shows what influence these researches have had upon the development of the art, not only directly, but as demonstrating to the soap manufacturer the importance of a knowledge of chemistry in its applications to his processes. The general theory of saponification is first explained, and is followed by a ehapter on the arrangement of a soap factory and a description of the materials used in soap-making. The various methods of making hard soaps and cheapened soaps are then fully described, both by the old processes and by those of Hawes and Bennett and Gibbs, Rogers, and Berghart. The processes for manufacturing potash soaps and soaps for printed goods and silks are next explained, and there are special chapters on toilet and medicated soaps, alkalimetry and the methods of soap-analysis, and on the recovery of glycerine from spent lyes. We congratulate Mr. Watt on the success of his endeavour to fill a void in English technical literature.
T. E. Thorpe

MARINE ENGINEERING

Dic Schiffsmaschine: ihre Construction, Wirkungsweise und Bedienung. Bearbeitet von Carl Busley, \&c. (Kiel, 1883.)

THIS is designed to be a manual and book of reference on marine engineering, for the use of engineers, naval officers, students, and others interested in steamships. The author is a marine engincer in the 1mperial German service, and a professor at the Naval Academy of Kiel. He has laid down a most comprehensive scheme for the work, and the first and second divisions already published contain good evidence that the book when completed will become the standard German work on the subject.

Marine engineering has made great strides in recent years, and is now much more largely regulated by scientific methods than it was formerly. The earlier textbooks have become obsolete to a great extent, and a demand has arisen for new works in which modern principles and practice should be represented. In response to this demand two or three excellent books have recently been published in this country; and Mr. Busley has determined to do a similar service for Germany. It is but right to say that his book will bear very favourable comparison with any book of the class yet published, and it surpasses all of them in the fulness and beauty of the illustrations, which are contained in separate atlases and printed in colours, on a scale which makes many of them virtually working drawing.
Theoretical investigation and practical information on the details of the construction and management of marine engines and boilers both find a place in this book. Its arrangement is admirable. First, there is a clear and succinct description of the principles of the mechanical theory of heat, followes by a discussion of the properties of steam. Next comes a chapter on combustion, including a summary of the conditions essential to good boilers, and a statement of the steam-producing powers of various kinds of coal. If there is not much novelty in this section of the book, it is full of useful information. In the fourth chapter there is a long discussion of the various matters affecting the performance and economy of marine engines; details as to coal-consumption in various types of engines, with methods for estimating the expenditure of steam and coal in ships of new design ; definitions of horsepower, nominal, effective, and indicated; together with remarks on various systems of condensing steam, \&c.

Following these introluctory chapters, three others are devoted to marine boilers, their construction and management, including the best means of preserving them. These chapters are chiefly of a practical character, and will repay careful study, as they contain a most valuable summary of information and good rules for guidance. The eighth chapter is also of a practical nature, containing detailed examples of the auxiliary engines used for a vast variety of purposes in steamships. Amongst these may be mentioned the turret-turning and air-compressing engines of modern war-ships ; steam-steering engines of various types ; engines employed for heaving-up anchors and cables; others used in the production of the electric lights nowgenerally carried by war-ships or large passenger steamers; pumping engines; steam-winches; ventilating
machincry ; appliances for condensing fresh water, \&e. All of these and nuny others are described and illustrated in a manner whicls makes this portion of the book most valuable for reference. No similar summary of information on thesc important, if subordinate, portions in the equipment of a steamship has been previously published ; and Mr. Busley deserves great credit for his perception of the neccssity for and value of the information herein collected.

The ninth, tenth, and eleventh cbapters relate to the construction and theory of the various types of marine engines which are or have been in use. Full descriptions and drawings are given of different systems-including some which are, as yet, only in the experimental stage; screw-steamers, paddle-steamers, and vessels driven by water-jets all come under review; and very valuable tables are given of the dimensions and particulars of the machinery in a large number of German, English, and French ships. Mr. Busley throughout displays a cosmopolitan spirit in his massing of facts, and this makes tis book all the more valuable. The theoretical investigations include rules for estimating the engine-power required to attain the assigned speed of a sbip; examples of the analysis of indicator diagrams for simple and compound engines; graphic processes for dealing with the slide-valves; and detailed investigations or descriptions of slide-valve gear, steering gear, \&c.
This completes the contents of the first half of this book; the other half has yet to be published, we believe. If it maintains the high character of the part already given to the world, the book will be certain to achieve success. It has been produced in excellent style, both as regards letterpress and illustrations. Its chief value consists no doubt in the large amount of information respecting modern practice which has been brought together ; but the treatment of the scientific branches of the subject will assist to secure its favourable reception by the classes of readers for whom it is especially designed.

OUR BOOK SHELF

Guide to the Calcutta Zoological Gardens. By John Anderson, M.D., F.R.S., Honorary Secretary and Treasurer. (Printed by order of the Honorary Committee of Management, Calcutta, 1883.)
Although the meritorious idea of starting a zoological garden at Calcutta was put forward by the well-known naturalist MacClelland as long ago as 1842, and several attempts were subsequently made to carry out the plan. it was not until 1875, chiefly, we believe, owing to the exertions of the late Mr. Schwendler, the telegraph engineer, that an appropriate site was obtained, and the present gardens were founded. After eight years of development the Zoological Gardens of Calcutta, under the energetic rule of the present Honorary Director, have attained a degree of arrangenent sufficiently stable to allow of a "Guide" being prepared. Dr. Anderson's able pen has accordingly been employed in describing the institution which he has so well organised.

For a "Guide" Dr. Anderson's volume is perhaps rather bulky, and the type employed unnecessarily large. It is also, we may add, in our opinion a little too learned for a popular handbook. But the information contained in it, compiled as it is by one of the leading zoologists of India, may be generally depended upon, and so moch can scarcely be said forj some similar publications. At
the same time we may remind Dr. Anderson that the statement that the sternum in all Picarian birds has a "double notch behind" (p. 94) is not quite correct, and that he has overrated the number of African rhinoceroses.

Judging from the "Guide," the series of animals now exhibited in the Zoological Gardens of Calcutta must be considerable, although no actual statistics are furnished to us on the subject. Several animals of special rarity are mentioned as in the collection, such as a specimen of Grant's Gazelle (Gaselle granti) from East Africa, and the second known example of the Hairy-eared Rhinoceros of Chittagong. It is also of great importance to learn that the phenomenon of incubation of one of the large Pythons has been witnessed in Calcutta as well as in European Gardens. On the whole, the naturalist will find many things to interest him throughout the present volume, though, as already said, some of the disquisitions are not perhaps quite suitable to a popular work.

LETTERS TO THE EDITOR

[The Editor does not hold himself responsible for opinions expressed by his correspondents. Neither can he undertake to return, or to correspond with the zoriters of, rejected manuscrifts. No notice is taken of anonymous communications.
[The Editor urgently requests correspondents to kap their letters as short as possible. The pressure on his space is so great that it is impossible otherwise to insure the afpearance even of communications containing interesting and novel facts.]

Earthquakes and Air-Waves

In the Comples Rondus of the French Academy of Sciences for Fehruary 18, 1884, there appears a communication from Prof. Fonster of Berlin relative to a statement previously made in the Comples Rendus, to the effect that it was from observations taken at Berlin that he had arrived at certain conclusions as to the propagation of the atmospheric distarbance caused by the last great explosion in the eruption of Krakatoa in August last.

Prof. Firster explains that the statement referred to was a mistake, and that he had in fact only reproduced, after verifying them by reference to the Berlin observations, the concluslons come to by me, as explainel in a paper t^{2}, ad before the Royal Society on December 17,1883 , the principal part of which was published in Nature of December 20 last (p. 181).

He adds that in his original note on the :uhiject he had not mentioned my name as the author of the conclusions referred to, in consequence of the manner in which I had spoken of them myself.
Prof. Förster, while putting himself right on this point, has interpreted my own intention with great sagacity. For the light I may have been able to throw on the facts was in truth consequent on information put before me by the intelligent officers of our Meteorological Office, aided by a suggestion from Prof. Stokes, who like myself is a member of the Meteorological Council.
Such credit, however, as is due for bringing to notice the curious phenomenon in question may be fairly claimed for our Meteorological Office, as shere is little reason to doubt that it would have remained unnoticed had it not been for the comparison of the several records of the continuously self registering instruments which the organisation provided from the public grant we receive has placed at our command, and which no individual effort could have supplied.

February 26

Richard Strachey

In the Jamaica Weather Report, No. 35, for November last year, I was unable to explain how it was that the Krakatoa airwave had affected our barometer so strongly: the explanation is that Janaiea is very near the antipodes of Krakatoa (Nature, vol, xxix. p. 18r).

The general effect of the disturbance at Jamaica was to produce a barometric depression, preceded and followed by small barometric elevations, according to the following table, which gives for local time the pressure of the atmosphere at the sea-
level, expressed in inches of mercury at 3^{2}, and corrected for diurnal variation :-

$$
\text { Kingzton, Yamaica, } 1883
$$

in.

Augnst	26,	3 p.m.	\cdots	.	.	$29^{\circ} 972$
	26,	$11 \mathrm{p} . \mathrm{m}$.	'975
	27 ,	7 a.m.	'982
	27.	$3 \mathrm{p} . \mathrm{m}$.	\ldots	"944
	27,	$11 \mathrm{p} . \mathrm{m}$.	\cdots	\cdots	...	'983
	28.	$7 \mathrm{a} . \mathrm{m}$.	"994
	28,	$3 \mathrm{p} . \mathrm{m}$.	**	**	***	29.975

Now the impulse at Krakatoa oceurred at $9.24 \mathrm{a} . \mathrm{m}$. local timc, and it reached Jamnica about $3 \mathrm{p} . \mathrm{m}$. lseal time, or eighteen hours afterwards; consequently the average velocity of the wave was ahout 690 miles an hour-which is wholly in accordance with the velocity deduced by Gencral Strachey from places in Europe and el-ewhere.

But there was no great explo-Jon at Krakatoa at 9.24 a.m., and it seems possible that this great air-wave was similar to the airwaves we always experience in J-maica whenever there is a shock in Kingston sufficiently strong to lie distinctly felt.

In Augu-t i881 1 published a Report on Earthquakes in Jamaica, No. 4, in order to call attention to the following facts:-

1. The atmospheric preswure o-cillates for some hours before and after a shock, the lowe.t depression generally occurring at the time of the shock.
2. The wind generally lulls, so that "the weather" is hot and oppressive.
3. Clouds (stratus) gather over the sky after the shock.
4. The temperature of the air, if we allow for the cooling effect of (3), reuains unchanged.
5. The rainfall is unaffected.

These facts have been fully confirmed by subseyuent slineks. As an example let us consider the last shock which occurred on January 14 this year, and which was felt over nearly the whole of the island.
At Kingston it was felt as a sharp double-shock at $1.15 \mathrm{p} . \mathrm{m}$. ; the first shock lasted about three seconds, then there was an interval of about two seconds, which was followed by the second sheck, lasting about five seconds. There was a strong sea-breeze hlowing daring the day, but a temporary lull occarred just before the earthquake.

The following table gives the pressure of the atmosphere at the sea-level, expressed in inches of mercury at 32°, and corrected for diurnal variation :-

Kingslon, Fannary 14, 1884

			${ }_{30^{\circ} 061}^{\text {in. }}$
24 hours before the shock			${ }^{0} 47$
8			-043
At the time of the shock			-16
8 bours after	'024
16 ,"	\ldots	\ldots 063
24	\ldots	30.056

On January 13 the average amount of cloud was 7 per cent. of the whole sky, on the 14th it was 10, and on the 15th it was 43!

Further partic.lars will be found in the Jamaica Weather Report, No. 37, for January 1884, and it will bere be snfficient to remark that the depression at the time of the sh sck was quite as strongly marked at the cinchona plantation, thirteen miles from Kingston, but 4850 fect above the sea-level.
It is needless to say that I am at a loss to account for the connection which most undoubtedly exists in Jamaica between earthquakes and air-waves ; but it is evident that the latter may be connected with the former without any, the slightest, approach to volcanic explosion; and the Krakatoa air-wave was probably similar in all re-pects, except magnitude, to the waves we continually experience in Jamaica at the time of earthquake shocks.
Jawaica, February 7
Maxwell Hall

The Remarkable Sunsets

AT 8.45 a.m. to-day the sun seen from here through a light mist was of a slightly metallic and very pale sea-green colour. The mist was not dense enough to render objects at a distacce of twelve yards indistinct, but beyond that distance they rapidly became invisible. There was no wind, and the mist seemed free trom smoke. I could form no opinion as to its beight. Half
an honr later, in Mavchester, the sun glowed with the ordinary coppery-red hue it assumes when seen through a thin fog.

Eddward J. Bles
Moor End, Kersal, near Manchester, February 26

Instinct

I do not think that the difference between Mr. Lloyd Morgan and myself on the point to which he returns in his last letter is so great as it at first appeared. For he now admits that "the actions of apimals testify to some corresponding mental states," and therefore that from such actions we are entitled to infer something as to these states. His objection to comparative psychology as a science is thus redaced to the observation that our inference from bodily actions to mental states cannot be so clear or certain in the case of animals as in the case of men, where intentional sign-making, or language, comes to our assistance. Now this is precisely what I argued in my own communication to Natyre (p. 379), and also in my books. Therefore I do not consider that this is "an ingeniously constructed argument of scepticism "; I applied that phrase to the argument which denies the possibility of all or any ejective knowledge, both of men and animals.

Thus the only point of dispute between us is whether snch coneeptions as we can form of the mental life of animals are sufficient to constitute this mental life the sabject-matter of a science-i.c whether this mental life admits of investigation. And, so far as I am aware, Mr. Morgan is the only individual who has ever said that such is not the cave.

George J. Romanes
THERE is a remarkable instance of instinct displayed by the common magpie which I have not seen noticed in NaTURE or anywhere else, although it has long attracted my attention and is well known to farmers in the west of Scotland. This bird may be seen each year, on the first Sunday of March (old style), very busily employed carrying small twigs of branches to renew its old nest or form a new onc for the approaching breeding season. This particular day appears to be appointed for taking formal possession of the premises, as no more work whatever is done for some weeks after. The instinct which enables a bird to take the sun's altitude on a particular day in March is certainly a very rare gift, but any person who wishes to satisfy himself of its truth, and who lives in a locality where these birds breed, has only to rise early on Sunday, March 16, this year, to see them at work for himself. It would be interesting to know within what degrees of latitude this particular day is observed by these birds.

Wm. Brown

"Mental Evolution in Animals "

I am as unwilling as Mr. Romanes to continue this discussion needlessly, but inaccuracy calls for correction. Mr. Romanes says that "the glass wall of a tank is not an object upon the solidity of which a skate would be likely to calculate." If he will read my original account of the incident again, he will find that the skate made himself absolutely sure of the solidity of the glass wall of the tank; he tried hard to seize the food, and failed because he could not get his head through the glass, and therefore his mouth could not touch the food. As for his being unable to see the food when the current lifted it, that is precisely my case. Bnt he saw it clearly enough, and had tangible experience of the conditions, before he adopted the successful device. If the matter is worth noticing, it may as well be described correctly.
F. J. Faraday

Manchester, February 29
I Willingly apologise for making the remark about the glass wall without having first consulted Mr. Faraday's original account ; but as, in " noticing" the matter in "Animal Intelligence," I quoted that account zcrortim, I cannot allow that on the only occasion when I "described " the circumstancer, I failed to do so " correctly."
G. J. Romanes

Natural Snowballs

IT is nearly a year since I inclosed to you an account of the natural snowballs or snow-rollers which were to be seen in great numbers for many square miles in this vicinity on February 21, 1883. A friend has called my attention to a brief new-paper
report of a recurrence of the same remarkable phenomenon on a larger scale in Oncida and Herkimer counties, in the State of New York. The rollens were formed by the wind on the night of Taesday, January 22, and are said to have been "innamer. able," hundreds being seen on an acre of ground. The meararements of the largest are the same as those which 1 made of the largest that I saw last year, 18 inches in length and 12 in dismeter. But, whereas all of last year's were extremely deliente, so as to yield to the touch, it is reported that some of those seen in January were "solid and so firm that they could be handled quite roughly withont breaking." I send these memoranda to you, thinking that you may deem them worthy of preservation in the columns of your jonrnal.

Samuel Hart
Trinity College, Hartford, Conn., U.S.A., February 16

Common Domestic Duck Diving for Food

When at Buxton last August I spent a good deal of my tione in watching and occasionally feeding the water-forl is the pords of the garden. On week-days the ducks received large contributions from the visitors, but on Sundays they apparently were on rather short commons, judging by their greater activity in searching for food, and constantly standing on their hadtr in the water so as to search the bottom for aquatic plants. of course every scrap of plant to the depth of ten or fifteen inches (eighteen inches where the geese were) was cleared away.

I was surprised one Sunday to see a common domestic dack (female) diving in three or four feet of water, and searching along the botom, as if she had been "t to the unanner born," for plants, which, when she found, were brought to the surface; some fifteen of twenty other ducks watched her proceeding, with great interest, and made an immediate rush at her when she came ap to share in the food, exactly as the widgeon pounce npon the canvas-back dneks at the mouth of the Delaware River and other favonrite winter feeding-places of these del cious birds, which, notwithstanding their difficulties with their thievish tormentor, must manage to pick up a fairly good living, as when killed they are usually in fine condition.

I saw only one duck (a mallard) at Buxton make any attempt to imia'e the clever diver, but bis efforts were always ignominious failares. Ilad I beeu hiving in Buxton I should hare endeavoured to get some eggs of this diving duck and had them hatched, with the object of finding out if the progeny inherited the peculiarity of the mother.

John Rae
4, Addison Gardens, March I

Circular Rainbow seen from a Hill-top

In the evening of the first Sunday in last September, whes, it will be remembered, there was a very severe storm, I wis walking alone up the south side of the top of the Belchen, in the Black Forest ; the sun was setting in the west over the Rhine, and for some time my shadow was thrown on the mist filling ap the valley to the east of the Belchen, and around it was a mont distinct rainbow, with all the usual coloars. It was so strikigg that it at once suggested the halo one sees in religious pictureh, except that it was round the whole figure, and not confiad to the head. I thought this aneedote might interest thore geatlemen who have already written to you about this beautiful pbenomenon, and especially Mr. Maynard, who I see writes from the Black Forest.
W. Hale Whirs

4, St. Thomas's Street, S.E., March I

Girton College

In reference to a paragraph in NATURE (vol, xxix. p. 308) respecting the representation of the stadents of the College Hall of Residence, Byng Place, on their governing body, allow me to state that the students of Girton College have been represented on the College Committee for some seven years past. The representatives of the stadeats are three in number, one retiring annually; they are elected by those students who hold the college certificate, and have been chosen, so far, from among themselves. As the certificated students keep up a more or less close connection with the College, and their representatives psy regular visits of inspection, the views of past and present stadents can be formally laid before the College Committee. This privilege is much appreciated by the students. If you have recived no other letter to this effect, may I ask you to insert the above information !

Certificated Student
February 26

ANTHROPOLOGICAL NOTES IN THE SOLOMON ISLANDS

IN my last paper on the physical characters of the natives of St. Christoval and the neighbouring islands (Nature, vol. xxvii. p. 607) I drew attention to the variation which was presebted towards the opposite extremity of the Solomon group by the Treasury Islanders, of whom 1 considered the natives of the large adjicent island of Bougainville would prove to be a more pronounced type. My observations during 1883 , which were confined, however, to the islands of the Bougainville Straits, and did not extend to the large island of that name, have confirmed the existence of this variation in the type of the natives at the western end of the group.

Proceeding at once to the comparison of the inhabitants of these two regions, I find that the most important distinction lies in the form of the skull. The cephalic indices obtained from forty head-measurements amongst the men of the islands of Bougainville Straits (Treasury 1sland, Shortland Islands, Faro Island) ranged between 76 and 85 ; three-fourths were included between 79 and 8_{3} (inclusive) ; and the mean was 806 . Of the same number of measurements amongst the men of St . Christoval, half produced cephalic indices between 75 and 78 (inclusive); the range was 69 to 83 ; and the mein 767 . In the first region therefore brachycephaly may be said to prevail; in the latter, mesocephaly. But in addition to being more brachycephalous, the men of Bougainville Straits belong to a noticeably taller and more robust race, their average height being 5 feet $4 \frac{1}{2}$ inches to 5 feet 5 inches, as contrasted with 5 feet 3 inches to 5 feet 4 inches in the case of the St. Christoval natives. I should also add that the hue of the skin is of a darker shade, corresponding to numbers 35 and 42 of the colour types of M. Broca. The character of the hair resembles that of the natives of the eastern islands of the group in being frizzly and bushy; but there is introduced among the populations of these islands in the Bougainville Straits an almost straighthaired element, to which further reference will be made.

The inhabitants of the islands just alluded to are also distinguished from those of St . Christoval and the eastern islands of the group in many of their arts and usages, to some of which 1 can here only just refer. Cannibalism is rarely if ever practised among the natives of Bougainville Straits : it is, however, frequent amongst those of St. Christoval. Polygamy is more prevalent in the former region, where Gorai, the powerful chief of the Shortlands, possesses between eighty and one bundred wives, and Mule, the chief of Treasury Island, owns between twentyfive and thirty. The patriarchal and despotic rule of these chiefs must be contrasted with the little authority which belongs to the majority of the chiefs in the eastern islands. The women of Bougainville Straits manufacture a kind of unglazed pottery, employing for this purpose a wooden trowel, a large smooth pebble 3 to 4 inclies across, and a ring-cushion of palm leaf; a rudely-shaped saucer is first made from a lump of the clay; and upon this the vessel is built up, strip by strip. A large number of the houses in the principal villages of Faro-an island in the middle of the Straits-are built upon piles. I should here refer to the greater prevalence amongst the natives of the islands in Bougainville Straits of the cutaneous disease-an aggravated form of "body-ringworm "-to which I alluded in my description of the St. Christoval natives: four fifths of the inhabitants of Treasury Island are thus affected ; and half of the chief's wives are covered with this disease from head to foot.

From frequent observation of the different modes of wearing the hair which prevail among the Solomon Islanders, I am of the opinion that their variety is to be attributed more to individual fancy than to any difference in the character of the hair. According to his taite, a man may prefer to wear his hair close and uncombed, when the short matted curls with small spiral give a
woolly appearance like that of the hair of the African negro Should he allow his hair to grow, making but little use of his comb, the hair will hang in ringlets 3 to 8 inches long-a mode more frequent amongst the natives of the eastern islands of the group, and best described as the " mop-headed" style. More often from a moderate amount of combing, the locks are loosely entangled and the hair-mass assumes a somewhat bushy appearance, the arrangement into locks being still discerned and the surfaze of the hair presenting a tufted aspect. The majority of natives, however, produce by constant combing a bushy periwig in which all the hairs are entangled independently into a loose frizzly mass, the separate locks being no longer discernible. These four styles of wearing the hair-the woolly, the mop-like, the partially bushy, the completely bushy-prevail with both sexes, the fashion varying in different islands of the group. 1 am inclined to view the mop-headed style as the natural mode of growth, it being the one which the hair would assume if allowed to grow uncombed and uncut. The Solomon Islander unfortunately makes such a constant use of the comb that one rarely sees his hair as nature intended it to grow. When, however, a man with bushy hair has been diving for some time, the hairs, disentangling themselves to a great extent, gather together into long narrow ringlets-nature's coiffure of the Solomon Island native.

Amongst the natives of Bougainville Straits the hair is coarser and of a darker bue, corresponding to numbers 34 and 49 of the colour-types of M. Broca; whilst the lighter hue of the hair of the St. Christoval natives more accords with numbers 35 and 42. The diameter of the spiral when measurable varied between 5 and 10 mms .its usual range throughout the group ; but on account of the practice of combing it was often difficult to measure it with any accuracy. Here I may allude to the almost straight-haired element which has been infused among the inhabitants of Bougainville Straits. The individuals thus characterised have very dark skins, which for want of comparison might be terined black; the hue, however, nearly agrees with colour-type 42 of M. Broca; the hair, which is even darker, corresponding with types 34 and 49, is almost straight, often erect, and giving the person a shock-headed appearance; whilst it may in some instances tend to gather into curls of a large spiral. I was unable to detect any constant change in physical characters accompanying this variety in the growth of hair. The gencral colour of the iris amongst the natives of Treasury Island may be described as a deep muddyviolet, approaching 'nearest to number 14 of the colourtypes of M. Broca.
The relation between the lengths of the upper and lower limbs in over thirty individuals was fairly constant, the mean intermembral index being 68. A steady index, giving a mean of 334 , indicated the proportion of the length of the upper limb to the height of the body; but the corresponding index which my measurements gave for the lower limb was somewhat variable, and the mean $49^{\circ} 2$ is therefore not so reliable.
H. B. GUPPY
H.M.S. Lark, Auckland, N.Z., January 2

ON THE CLASSIFICATION OF THE ASCIDIAE COMPOSITA

COMPOUND ASCIDIANS should undoubtedly be studied in the fresh condition. This becomes evident to any one who, after having admired the graceful forms, gorgeous colouring and transparency of tissue exhibited by the living animals on our western and southern coasts, or in such a favoured spot as the Chausey Archipelago, sceks in vain for these or any other beauties in the leathery repulsive-looking masses usually exhibited in a collection of Tunicata.' And it becomes painfully impressed upon one when working through a large collec-

[^37] airly well when preserved.
tion which has been in alcohol for about ten years. Laborious dissection and the preparation of large numbers of sections are necessary to reveal characteristics which may often be seen in the living specimen by observation merely. And, what is of more consequence, there is a risk of being led into errors and misinterpretations by the abnormal contraction and distortions caused by the alcohol.

Such plates as those of Prof. Giard, ${ }^{1}$ and of Dr. R. von Drasche's beautifully illustrated monograph on the Synascidiz of the Bay of Rovigno, ${ }^{2}$ which has just appeared, show how much can be made out from a natural representation of the living animal, and leave little or nothing to be desired so long as we must be content with some substitute for the actual specimen. In this important work von Drasche criticises Giard's classification of the Synascidix, and explains fully a scheme of his own which appeared in the Zoologischer Anseiger for 1882. Many attempts have been made to classify naturally this difficult group, and this latest effort, although it has corrected some previous errors, appears still to be susceptible of improvement, especially as regards the interesting forms which occupy the borderland between simple and compound Ascidians. Some of these (the Clavelinidie) are placed by Giard and von Drasche in the Synascidix, while in 18801 tried to show that their proper position was amongst the Ascidixe Simplices, and close to the genus Ciona. At the present moment I confess that I am unable to find a single satisfactory character by which to distinguish these two large groups, the simple and compound Ascidians.

Savigny, in 1815 , in his "Obscrvations sur les Alcyons gelatineux à six tentacles simples," ${ }^{3}$ first rescued the compound Ascidians from the Alcyonaria with which they had previously been associated, and demonstrated their affinity with the other Tunicata " In the "Tableau Systématique ${ }^{n}$ Savigny gives no formal statement of the characters distinguishing the two groups, but it is evident from some passages in his " 3^{e} Mémoire" that he relied chiefly, if not entirely, for their separation upon the arrangement of the Ascidiozooids of the compound forms around a central cloaca-a character which he declared was visible even in the young embryo. In this latter point he was mistaken, and it seems rather singular that he should have laid such stress upon the union of the atrial apertures when we find that he describes and figures their separate and independent existence in Diarona and Distoma, two of the genera of his "Téthyes Composées." (lavelina in his system is placed next to the "Phallusix Ciona" ($=$ the modern genus Ciona) in the Ascidix Simplices.

Savigny classified the nine genera which he recognised amongst compound Ascidians by means of characters taken from the branchial and atrial apertures. But although such characters are most uscful and constant marks of affinity in the simple Ascidians, they fail signally as applied by Savigny to the compound forms, and result in the separation of his closely allied genera Didemmum and Eucarlium, while Diazona, Distoma, and Sigillina are thrown together in one group, and Eucalium is placed with Bofryllus, a genus with which it has certainly no close relationship.

Lamarck's arrangement of the Tunicata, published about the same time, showed no improvement upon that of Savigny.

In 1841 Milne-Edwards ${ }^{3}$ established the group of "Ascidia Sociales" as occupying an independent position between the simple and compound forms. This group

[^38](in which he placed the genera Pcrophora and Clavelina) he defines as comprising Ascidians which reproduce by buds as well as by eggs, and which live united by common radiciform prolongations, but which otherwise are free of all adhesion to one another. He distinguished the simple Ascidians as forms which never reproduced by gemmation and were never found in groups united by a common tegumentary tissue; while he separated the compound from the social Ascidians on account of their possessing a test common to all the members of the colony. If we unite the simple and social Ascidians, which I have shown in the Report upon the Challenger Tunicata there is reason for doing, we shall have, according to MilneEdwards, the simple and compound Ascidians distinguished merely by the member's of the colony in the latter being united by a common test, while in the former each individual has its own distinct tunic. This character, although better than the one made use of by Savigny, is, as we shall see later on, by no means an infallible guide.

Milne-Edwards formed a classification of the genera of compound Ascidians into "Polycliniens," ". Didemniens," and "Botrylliens," which, with our present knowledge of the group, still seems fairly natural. These three divisions are distinguished by such anatomical characters as the relations of the other viscera to the branchial sac. In the "Polycliniens" the body has three regions-the "thorax," containing the branchial sac; the "abdomen," formed by the stomach and the greater part of the intestine ; and the "post-abdomen," having the reproductive organs and the heart. In the "Didemniens" there are only two regions-thorax and abdomen-the reproductive organs and heart being placed on the intestine. In the third group, the "Botrylliens," the viscera form a single mass, in which the alimentary canal lics alongside the branchial sac.

This arrangement of the Ascidia Compositax was generally accepted until 1872, when Giard published ' his important memoir, "Recherches sur les Ascidies Composées ou Synascidies," in which is given a classification based upon the method of gemmation. He distinguishes three points of origin for the buds-the pyloric region of the alimentary canal, the reproductive organs, and the posterior end of the body. The latter region is the place of gemmation in his "Catenata," a group which contains three families-the Clavelinidx the Perophoridae, and the Botryllida. But he gives no sufficient reasons for placing the first two families in the compound Ascidians, and, as von Drasche has pointed out, the third one does not really exhibit the essential character of the Catenatz

Giard's second group, the "Glomerate," is characterised mainly by the formation of ovarian buds. It corresponds to Milne-Edwards' "Polycliniens," in addition to half of the "Didemniens." The remainder of the "Didemniens" correspond to Giard's third group, the "Reticulata," and are characterised by gemmation taking place from the pyloric region. This seems a natural and well-defined section, including two families, the Didemnidx and the Diplosomidx, but the "Glomerate" cannot stand without several clianges which von Drasche suggests, and which really reduce it merely to Milne-Edwards' section " Polycliniens." U pon the whole. there can be little doubt that Milne-Edwards' classifica tion is preferable to that proposed by Giard.

We come now to Dr. von Drasche, the latest authority, who, both in his preliminary note ${ }^{2}$ and in the detailed memoir, ${ }^{3}$ wisely abstains from any attempt to form main divisions, and merely groups the genera in a series of carefully chosen families. Of these the Botryllidx corre sponds to Milne-Edwards' section "Botryliiens," while the Didemnidx and Diplosomidx are identical wih Giard's families bearing the same names. The Polyclinidx

[^39]and Distomida do not correspond exactly to any of Giard's families, but the former is Milne-Edwards' "Polycliniens" without change. A new family, the Chondrostachyidx, has been formed for the reception of Macdonald's Chondrostachys and von Drasche's Oxycorynia, remarkable forms in which the Ascidiozooids are placed upon a common peduncle penetrated by large canals. I am inclined to admit the necessity for this new family, and several undescribed and interesting forms obtained during the Challenger Expedition will, I hope, take up a position within its bounds. The two remaining families of von Drasche's system, the Clavelinidx and the Perophoridix, 1 would still maintain arc more closely allied to the simple than to the compound Ascidians. They correspond to Family IV. Clavelinidæ of my arrangement of the Ascidixe Simplices.

Dr. von Drasche does not define the Synascidix, and from one or two passages in his work it seems probable that be is in very much the position in which I now find myself, viz. unable to find any character or combination of characters which will serve to distinguish simple from compound Ascidians. Reproduction by gemmation and the formation of colonies in the latter group will not hold, since it is possible to pass from Ciona-a typical simple Ascidian-to Distoma and the very heart of the compound Ascidians through the following scries of forms, which sbows a perfect gradation of these characters :-Ciona, Rhopalea, Ectriwascidia, Clavelina, Diazona, Chondrostachys, Oxycorynia, Disfoma. The formation of common cloacal cavities, canals, and apertures cannot be considered as a diagnostic feature of the compound Ascidians. Although Giard has demonstrated their presence in some genera in which they were previously unknown, yet there are some forms considered by all authorities as Synascidix, such as Chondrostachys, Diazona, Distoma, and others, in which the atrial apertures of the Ascidiozooids open independently on the surface of the colony, and no common cloaca is formed.

Lastly, we come to characters taken from the condition of the test, but these break down like the others. In the first place, in passing along the series of forms mentioned above as connecting Ciona and Distoma, we encounter all stages between a distinct test or tunic for each individual and a common mass in which a number of Ascidiozooids "are embedded. And, secondly, the remarkable group "Polystyelx," bricfly characterised by Giard in 1874 presents many of the characters of highly differentiated simple Ascidians (the Cynthiidx), along with the supposed S) nascidian feature of a coluny composed of many Ascidiozooids completely buried in a common test.

In the Challenger collection there is an interesting series of Polystyelx-all from southern seas-in which it is possible, I believe, to trace a passage from such aggregated Styelinax as Polycarpa to the Botryllidx. If this passage indicated genetic affinity between these two very distinct groups, which I greatly doubt, it would be impossible to escape from the conclusion that the Ascidixe Simplices and the Ascidix Composite have /wo points of connection, almost at the extreme ends of the two series. I think I am justified in believing that probably both groups were derived from a form not unlike Ecteinascidia or Clazelina. From this common ancestor the simple Ascidians diverged through the Ascidiide to the Cynthide (including Polycarpa) and the Molgulidæ, while the compound Ascidians diverged through Diazona and the Chondrostachyidz to the Polyclinidx, Didemnide, and Botryllide. Hence it seems much more probable that the Polystyela have acquired independently certain characters of Polycarpa or of Borryllus (1 have not yet been able to determine to which of the two they are really most closely related) than that there is any direct affinity between such highly differentiated groups as the C.ynthiida and the Botryllidx. This, however, does not affect the practical difficulty that the Polystyelre completely bridge
across the gap between simple and compound Ascidians as distinguished by the nature of the test or tunic, and consequently it is extremely difficult to separate them from either of these two great series.
Thus all the diagnostic features usually employed fail utterly, and we find ourselves unable to discover a sing'e character or combination of characters which will serve to distinguish the Ascidiz Simplices from the Ascidia Composite.
W. A. Herdman

A METEOROLOGICAL LABORATORY

TO the last issue of Science el Nafure M. L. Mangin contributes an interesting account of the chemical laboratory recently installed on the Pic du Midi, Pyrenees, at an altitude of nearly 9500 feet above the sea. As shown in our first illustration, the laboratory stands between the dwelling-house and the Observatory, of which it forms a dependency, under the direction of MM. Müntz and Aubin. In the second illustration a fuller view is given of the building, which faces southwards, and the slated roof of which is so constructed as to constitute a sort of pluviometer registering the annual rainfall, and retaining sufficient for chemical analysis. This unique establishment, which promises to render great services both to meteorology and to the economic industries, is at present chiefly occupied with the constituent elements of the terrestrial atmosphere, especially in connection with vegetable life. The student of chemistry need scarcely be reminded that, besides oxygen and nitrogen, the air contains in smaller proportions carbonic acid, ammonia, and certain nitric compounds playing an important part in the nutrition of plants, and supplying them with nearly all the nitrogen and carbon that enter into the composition of their tissues. During the summer months of the jears $188 \mathrm{r}-82, \mathrm{MM}$. Muntz and Aubin were mainly engaged with the quantitative analysis of these substances, under conditions peculiarly favourable for the prosecution of such investigations. The results so far obtained inay here be briefly resumed.
Carbonic Acid.-The proportion of this element found in the air at different alttitudes is still a subject of discussion amongst analytical chemists. But de Saussure's average of from 'oo to to 0006 has been shown to be considerably too high by various observations taken of late years at different stations on the globe. These observations are now fully confirmed by the researches on the Pic du Midi, which reduce the average to 2.86 tenthousandths.
Another important conclusion is that the carbonic acid does not perceptibly vary with the altitude, as had hitherto been supposed. Thus the proportion is found to be much the same at Vincennes near Paris, Luz (740 m .), Pierrefitte (500 m .) , and Pic du Midi (2900 m .). On the other hand, the quantity varies slightly in the same locality, being somew hat greater at night and in moist weather than during the day and in dry weather. The subjoined table shows the average quantity of carbonic acid present in the atmosp here during the day and at night at various meteorological stations in different parts of the world :-

		Nighe		Day
Vincennes	2.98	\cdots	$2 \cdot 84$
Pic da Midi...	...	2.90	..	286
Hayti	${ }^{2.92}$...	${ }^{2} \cdot 70$
Flowida	...	2.94	...	2.89
Mar tinique	285	.	2.73
Mexico...	280	...	2.66
Patagonia	...	${ }^{2} \cdot 67$...	2.66
Chili		2.82		$2 \cdot 66$

Ammonia.-Although the presence of ammonia in the air has long been known, Schlösing was the first to show that for this substance, as well as for carbonic acid, the sea is the great reservoir whence the atmosphere receives ts supplies. Eut no light had bitherto been thrown upon

Fig. 1.-Cieneral View of the Pic du Midi Observatory.

Fig. з.-The Observatury and Laburatisy
the distribution of ammonia at different altitudes. Examining the atmosphere from this point of view, MM. Müntz and Aubin now find that at an elevation of nearly 3000 m . the quantity does not sensibly differ from that at extremely low levels, which is ascertained to be about 1.35 mgr . to $100 \mathrm{c} . \mathrm{m}$. Hence the diffusion of ammonia in the air is as complete as that of carbonic acid. Consequently it is in the gaseous state that this substance is incessantly transmitted from the marine basins to the atmosphere. The rain and snow collected on the Pic du Midialso revealed the presence of ammonia in solution, as was to be expected.

Aımospheric Nitrification.-The analysis of rain falling during thunderstorms is known invariably to yield certain nitrous compounds in the form of sal ammoniac. From what is known regarding the affinities of nitrogen, it is argued that these compounds are developed under the influence of electric discharges. The nitrous compounds (nitric acid and sub-nitric acid) are converted, in the presence of water and of ammonia, into sal ammoniacs, which are precipitated by the rain. Hence electric disturbances in the air came to be regarded as the chief source of nitrous compounis.
MM. Müntz and Aubin have analysed by the most delicate processes the rain-water collected on the Pic du Midi, but never succeeded in detecting any nitrates in it, although they are always present in rain-water collected on the plains. Their absence corresponds with the absence of thunderstorms taking their rise above the Pic du Midi. Of 184 storms observed during a period of nearly nine years by M. de Nansouty, the director of the Observatory, not more than twenty-three originated at an altitude of over 2300 m ; but in no case were electric phenomena observed at an elevation higher than 3000 m . Hence the electric discharges, which give rise to the nitrates, are limited to the lower atmospheric regions between sea-level and 3000 m . above the sea.

To the general results here resumed MM. Müntz and Aubin have added some details concerning the formation of vegetable soil. They have distinctly determined the presence of nitric ferment in the ground on the highest summits. But owing to the low temperature prevailing at those altitudes, the activity of this ferment is extremely weak.

It may be observed in conclusion that the uniform proportion of carbonic acid and ammonia in the atmosphere, as determined by these remarkable rescarches, is a fresh confirmation of Schlösing's theory regarding the interchange of gases between the sea and the air. The marine basins are incessantly discharging or absorbing carbonic acid and ammonia in suct: a way as to maintain the constant proportion of these substances. They thus constitute a vast regulator, restoring to the atmosphere the nitrous or carbonic compounds of which it had been deprived by vegetation.

SCIENCE IN ROME

THE recent changes introduced into the constitution of the Accademia dei Lincei, followed by its removal to new and sumptuous quarters in Trastevere, seem to call for more than a passing notice. There are certainly many other famous societies scattered over the Peninsula, all the large to n ns of which have long possessed one or more scientific, literary, or artistic corporations. But, with perhaps the single exception of the Florentine Academy, none of them have been so intimately identified with the progress of the physical sciences since the "Renaissance" as this oldest of still exis:ing learned institutions. Founded on August 17, 1603, by the young prince, Federigo Cesi, for the express purpose of cultivating " le scienze matematiche e filosofiche,' it began its useful career forty years before the birth of Newton, and six before Galileo had rendered

Jansen's telescope a suitable instrument for astronomic observation. The very name of the Lincei, or "Lynxeyed," ${ }^{1}$ breathes the quaint spirit of the times, when every capital in Italy had its centres of intellectual movement, bearing such eccentric titles as the Accademia dei Sonnacchiosi ("The Drowsy"), dei Sitibondi ("The Thirsty"), dei Svegliati ("The Wide-Awake"), degli Ottusi ("The Dull "), degli Innomati ("The Nameless"), dei Storditi ("The Dazed"), dei Tenebrosi ("The Darklings"), and so forth. But while most of these ephemeral corporations have left little but their names behind them, the Lincei have gone on prospering and continually widening the field of their utility until the Academy now finds itself formally constituted the chief national exponent of the natural sciences in Italy, thus taking rank with the French Institute and the Royal Society of London.

Although such a proud position could scarcely have been anticipated by its founder, the Academy none the less possessed from the outset certain elements of stability, which under favourable circumstances could not fail to insure it a prolongel existence. Its generous patron not only provided it with a home in his ancestral palace, but also placed at its disposal a botanical garden, a rich museum and a choice library soon increased the valuable collection of Virginio Cesarini. Its three first members, the founder, Fabio Colonna, and Francesco Stellati, were all noted for their varied accomplishınents, and Colonna especially, at once a mathematician, philosopher, painter, musician, and savant, may be regarded as the greatest of botanists previous to Linné. ${ }^{2}$

During the seven first years after its foundation, Gaetano Marini tells us that the Academy "dared to stand up against the tyranny of the Peripatetics, and to introduce a new and more certain method of philosophy, bravely and religiously enduring a long and most unworthy persecution" (Ist, i. p. 493). The reference in the last clause, necessarily worded somewhat vaguely, is to the action taken by the Lincei in defence of Galileo, who had joined the Academy, and who had in 1615 received his first summons to Rome to recant his "errors." A feeble attempt seems to have been made to continue the struggle between light and darkness till 1632, when Galifeo was finally "suppressed." The "Lynx-eyed" were now shrewd enough to perceive that they had fallen upon times when silence was "golden." Henceforth for many years their records are practically a blank, broken only in 1651 by the publication under their auspices of Francisco Hernandez's great work on the natural history of Mexico.

After the untimely death of Prince Cesi in 1630 the Academicians, now numbering thirty-two members and foreign associates, received a temporary shelter in the house of the Commendator Cassiano del Pozzo. Their first organic constitution had been issued in 1624 , and since that period both residence and regulations have been subjected to many changes. Afier the political unification of Italy and the seleciion of Rome for its capital, fresh modifications became inevitable, and a new constitution was published in the year 1875 . But so rapid has been the progress of the natural sciences, and so great the zeal displayed by the Lincei in the cause for which their predecessors endured "a long and most unworthy persecution," that further alterations in the sense of expansion were soon felt to be imperative. According to the reform introduced in July 1883, better provision is made for the cultivation of all branches of physics by the final and absolute exclusion of the arts and letters. The new

[^40]conditions have of course necessitated this departure from the original scope of the Institute, which, as we are expressly told by Tiraboschi, did not exclude the "humanitics." ${ }^{1}$ The scheme of the natural sciences itself has also been entirely recast, with a corresponding increase and redistribution of members among the various sections. As regards foreign membership the Lincei take the lead in an important innovation, which will doubtless be adopted in due course by the great scientific institutes of other countries. In a truly "international" spirit, they henceforth practically abolish the distinction between Associates (Soci, or home members) and Correspondents (Corrispondenti, or foreign members). The clause bearing on this point in the President's Circular of June 26,1883 , deserves to be here quoted in full:-
" Per ciò che concerne gli stranieri fu unanime il pensiero di togliere la distinzione fra i Soci ed i Corrispondenti : distinzione Ja quale riferendosi a pochi personaggi eminenti nelle scienze a cui attendono e disseminati in tutto il mondo civile, riesce difficilissima e di utilità molto dubbia. Per le scienze fisiche, matematiche, e naturali parve necessario un aumento nel numero degli stranieri aggregabili all' Accademia, non solo per dare una dimostrazione d'onore a personaggi cosi benemeriti, ma anche per agevolare le relazioni scientifiche le quali si fanno ogni giorno più frequenti, più necessarie, e più intime fra i cultori delle stesse scienze ed idirettori di analoghi stabilimenti scientifici, independentemente dai confini politici che li separono." ${ }^{2}$
Amongst the foreign sazvants who thus receive full membership, occur the names of Airy, Adams, Lockyer, at. d Huggins in Astronomy, Ramsay in Geology, Hooker in Botany, Huxley in Zoology, Cayley and Roberts in Mathematics, Whitney in Philology, Freeman in History and Geography, Gladstone in Social Science.
As reorganised under the new constitution, the Academy consists henceforth of two classes : (1) Physical, Mathematical, and Natural Sciences ; (2) Moral Sciences,-distributed into a number of Categories and Sections as under:-

Class I.

On May 14, 1881, an Act was passed granting a large sum for the purpose of erecting or purchasing a suitable edifice for the Lincei, henceforth officially recognised as the "Royal Academy of Sciences." After protracted negotiations, an arrangement was made with Prince Tommaso Corsini, in virtue of which for the sum of $95,400 /$ the Academy acquired the perpetual use of the magnificent Palazzo Corsini, situated in the Via della

[^41]Longara, Trastevere. The purchase, which was effected in May 1883 , included the furniture, fittings, gardens, and annexes, but not the Library and Pinakothek, which, being entailed, the prince had no power to alienate. To meet this difficulty a special Act was subsequently passed, which removed the entail, and enabled the prince to make a free gift of the I'inakothek to the nation, and of the Library to the Accademia dei Lincei. The Library, originally collected by Cardinal Neri Corsini, and bequeathed by him in 1774 to his nephew, Duca don Filippo Corsini, comprises the prints, drawings, books, and manuscripts occupying the nine rooms on the first floor of the north side of the building so well known to English visitors in Rome It passes to the Lincei on the condition of being preserved by them for the public use under the name of the "Biblioteca Corsiniana." It is also to be kept for ever not only in Rome, but in Trastevere, as set forth in the disposition of its chief founder, Cardinal Neri Corsini, Some of our readers may possibly remember the two allegorical busts at the main cntrance of the palace. These are now to be replaced by busts of the Cardinal and of Prince Tommaso Corsini, with inscriptions recording their services to the cause of the arts and sciences. The prince also receives from the Academy the gift of a complete copy of its Atti or Proceedings, of which there are three series: (1) under the Pontifical "dispensation," 23 vols. ; (2) $1873-76,8$ vols.; (3) $1876-83,7$ vols. On the yellow wrapper of the present series the tiara gives place to the royal crown of Italy above the lynx, and the Lincei pass from the shadow of the now silent Sant' Ufizio to a right royal residence on the banks of yellow Tiber.
a. H. Keane

NIELS HENRIK CORDULUS HOFFMEYER

WE have already (p. 387) briefly referred to the death of Capt. Hoffmeyer; the importance of his work in meteorology deserves more detailed notice.
Capt. Hoffmeyer was born at Copenhagen, June 3 1836. His father was Col. A. B. Hoffmeycr. He commenced his studies with a view to a professional career, but the idea was soon abandoned, and he was entered as a pupil in the military academy. At the age of eighteen he became an officer, and on completing his studies be received an appointment in the artillery service.
He was engaged in the Schleswig-Holstein war of 1864, but as early as February he was compelled by illness to retire from active service. In early youth he had suffered from rheumatic fever, and the exposure and fatigues of the winter campaign soon laid him prostrate with another sevcre attack of the same fever. On the reduction of the army at the close of that year, Cape Hoffimeyer was placed on the 1 etired list.
He spent the early part of the summer of 1865 recruiting his health at Sophienbad, a watering-place near Hamburg, and in August he proceeded to Paris, where and at Nantes he remained a year studying the works carried on at the iron foundries there. On his return to Denmark he took an active part in establishing a similar foundry at Christiansholm, but in 1867 he was appointed to a post in the War Department, and became at the same time a captain of the militia of Copenhagen.
It was while residing in France that Hoffmeyer's attention began to be directed to meteorology. At that time, fortunately, the principles which distinguish modern meteorology were being developed and prosecuted by the genius and energy of Leverrier, in the daily publication in the Bulletin International of a weather map for all Europe, which had been begun only two years before. After his appointment to the War Department, he devoted his energies with characteristic ardour to the study of meteorology, and when the Danish Government established the Meteorological Institute in 1872, Capt. Hoffimeyer was appointed director.

He continued to suffer from occasional attacks of rheumatic fever, and during the last year of his life was never quite well; but in spite of the great weakness under which he laboured, his overmastering passion for hard work would not be controlled. His health again gave way at the end of January, and he finally succumbed at one o'clock on the afternoon of February 16.

It was from a singularly clear and firm apprehension of the characteristic principles of modern meteorology, and an unflinching application of them to the facts of observation, that Capt. Hoffmeyer has left his mark on the science,-these principles being the relations of winds, temperature, and rainfall to the distribution of atmospheric pressure. In working out the weather problem of Europe, no country occupies a more splendid position for the observation of the required data than does Denmark with its dependencies of Farob, Iceland, and Greenland. Denmark was slow to occupy the field, nothing being done in this direction by the Danish Government prior to Hoffmeyer's appointment as Director of the Meteorological Institute. In a short time these important regions were represented by stations in Greenland, Iceland, and Farö. The meteorology of Denmark proper was pushed forward with great vigour. In truth, the monthly meteorological Bulletin of Denmark is in several respects among the best that reach us. The number for January, 188_{4}, just received, presents the monthly results of pressure for 13 stations, temperature for 109 stations, and rainfall and other forms of precipitation for 159 stations. These results are graphically shown on four maps, accompanied with a full descriptive letter-pressone map giving the isobars for the month, another the isothermals, and on the same map the mean temperature at each of the 109 stations; a third map, the minimum temperature at each of the stations; while the fourth gives isohyetal lines showing the rainfall, and here again the amount at each of the 159 rain stations is entered in plain figures on the map. The educative effect of these instructive monthly sheets on a people whose industries are so largely pastoral and agricultural must be very great.

It was, however, to the department of meteorology which is concerned with the preparation and study of synoptic weather charts that Hoffmeyer chiefly directed his attention. The great services he rendered in this direction may be indicated by a reference to his atlas of daily weather maps of the Atlantic, embracing a period of fully three years, the expense of which was almost wholly borne by himself, and his annual reports giving tri-daily observations for the Denmark, Farö, Iceland, and Greenland stations-a work which no working meteorologist can afford to be without. It was arranged last summer to resume the publication of the synoptic charts in conjunction with Neumayer, and the work was so far advanced that the first sheets were printed off on February 17, the day after his death.

Of the positive additions Hoffmeyer made to science, the most noteworthy are his papers on the Greenland foehn (Nature, vol. xvi. p. 294), and on the distribution of atmospheric pressure in winter over the North Atlantic, and its influence on the climate of Europe (NATURE, vol. xviii. p. 680). The latter is an original and highly important contribution to science, whether regard be had to the method of investigation or to the results. He showed that the character of the weather, as regards mildness or severity of the winter of the regions surrounding the North Atlantic, is really determined by the position of the region of minimum pressure, according as it is localised to the south-west of Ircland, in Davis Straits, or midway between Jan Mayen and the Lofoden Islands.

It was but fitting that he should have occupied the honourable position of Secretary to the International Polar Commission, one of the principal objects of which
was to collect materials for a satisfactory discussion of the different questions raised by the weather maps of the northern hemisphere. For this office the sincerity of his convictions, his honesty of purpose, and his business habits, eminently fitted him. To all who knew him, the memory of his eager readiness to assist fellow-workers, the urbanity of his manner, his joyous nature, and the unusual warmth of his friendship, cannot but awaken the keenest feelings of regret for his early death.

NOTES

As the British Acsoeiation meets this year-its fifty-fourthon August 27, in Montreal, preparations for the meeting have had to be made unusually early. Already everything is ready, and we are able to announce the lists of officials Predident : the Right Hon, Lord Rayleigh, D.C.L., F.R.S., Professor of Experimental Physics in the University of Cambridge. Vice-Presidents: His Excellency the Governor-General of Canada; the Right Hon. Sir John Alexander Macdonald, K.C.B., D.C.L. ; the Right Hon. Sir Lyon Playfair, K.C.B., M.P., F.R.S ; the Hon. Sir Alexander Tilloch Galt, G.C.M.G. ; the Hon. Sir Charles Tupper, K.C.M.G. ; Sir Narcisse Dorion, C.M.G. ; the Hon. Dr. Chauveau ; Principal J. W. Dawson, C.M.G., F.R.S. ; Prof. Edward Frankland, M.D., D.C.L., F.R.S.; W. H. Hingston, M.D. ; Thomas Sterry Hunt, LL.D., F.R.S. General Treanurer : Prof. A. W. Williams nn, LL.D., F.R.S. General Secretaries: Capt. Douglas Galton, C. B., D.C.L., F.R.S. ; A. G. Vernon Harcourt, F.R.S. Secretary : Prof. T. G. Bonney, D.Sc., F.R.S., P.G.S. Local Secretaries for the meeting at Montreal : L. E. Dawson, R. A. Ramsay, S. Rivard, S. C. Stevenson, Thomas White, M.P. Local Treasurer for the meeting at Montreal, F. Wolferstan Thomas. The Sections are the following :-A.Mathematical and Physical Science.-President: Prof. Sir William Thomson, M.A., LL.D., D.C.L., F.R.SS.L, and E., F.R.A.S. Vice-Presidents : Prof. J. B. Cherriman, M.A. ; J. W. L. Glaisher, M.A., F.R.S., F.R.A.S. Secretaries : Charles H. Carponael, M. A. ; Prof. A. Johnson, M.A., LL. D.; Prof. O. J. Lodge, D.Sc. ; D. MacAlister, M.A., M.B., B.Sc. (Recorder). B.-Chemical Science.-President : Prof. H. E. Roscoe, Ph. D., LL. D., F.R.S., F.C.S. Vice-Presidents : Prof. Dewar, M.A., F.R.S., F.C.S. ; Prof. B. J. Harringtoa, B.A., Ph.D. Secretaries : Prof. P. Phillips Bedson, D.Sc., F.C.S. (Recorder) ; H. B. Dixon, M.A., F.C.S.; T. McFarlane, Prof. W. W. Pike. C.-Geology.-President: W. T. Blanford, F.R.S., F.G.S., F.R.G.S. Vice-Presidents: Prof. Kupert Jones, F.K.S., F.G S. ; A. R. C. Selwyn, LL.D., F.R.S., F.G.S. Secretaries : F. Adams, B.Ap.Sc. ; G. M. Dawson, D.Sc., F.G.S. ; W. Topley, F.G.S. (Recorder); W. Whitaker, B.A., F.G.S. D.-Hiology.-President : Prof. H. N. Moneley, M.A., F.R.S., F.L.S., F.R.G.S., F.Z.S. Vice-Presidents: W. B. Carpenter, C.B., M.D., LL.D., F.R.S., F.L.S., F.G.S.; Prof. R. G. Lawson, Ph.D., LL.D. Secretaties: Proi. W. Osler, M.D.; Howard Saunders, F.L.S., F.Z.S. (Recorder) ; A. Sedgwick, B.A. ; Prof. K. Kamsay Wright, M.A., B.Sc. E.-Geography.-VicePresidents : Col. Rhodes ; P. L. Sclater, M.A., Ph.D., F.R.S., F.L.S., F.G.S., F.R.G.S. Secretaries: R. Bell, M.D., LL.D., F.G.S.; Rev. Abbé Laflamme ; E. G. Ravenstein, F.R.G.S.; E. C. Rye, F.Z.S. (Recorder). F.-Economic Science and Statistics. - President: Sir R. Temple, G.C.S.I., C. I.E., D.C.L., F.R.G.S. Vice-Presidents, J. B. Martin, F.S.S. ; Prof. J. Clark Marray, LL.D. Secretaries : Prof. H. S. Foxwell, M.A., F.S.S. ; J. S. McLennan, B.A. ; Constantine Molloy (Recorder) ; Prof. J. Watson, M.A., LL.D. G.-Mechanical Science.-President: Sir F. J. Bramwell, F.R.S., M.Inst.C.E. Vice-Presidents : Prof. H. T. Bovey,
M.A. ; P.G. B. Westmacott, M.Inst.C.E. Secretaries : A. T. Atehison, M.A., C.E.; J. Kennedy, C.E.; L. Lesage, C.E., ; H. T. Wood, B.A. (Reeonder). H.-Anthropology-Iresident : E. B. Tylor, D.C.L., LL.D., F.R.S. Vice-Presidents : Prof, W. Boyd Dawkins, M.A., F.R.S., F.S.A., F.G.S. ; Prof. Daniel Wilson, LL.D., F.R.S.E. Seeretaries : G. W. Bloxam, M.A., F.L.S. (Recorder) ; Rev. J. Campbell, M. A. ; Walter IIurst, B.Sc. ; J. M. P. Lemoine. It is expected that the public lectures will be by Mr. Crookes, Dr. Dallinger, and Prof. Ball. Liberal reductions of fares will be made by the steamship companies and the American railways; the Canadian Pacific Railway, indeed, gives free travelling to all members from August I to the time for the excursion to the Rocky Mountains, which it offers free to 150 members. Many other excursions have been arranged for, and the American Association invites the members to join its meetings and excursions at Philadelphia on September 3. We are glad to see that Section A is following the good example set by Prof. Lankester in Biology last year. A eireular signed by Sir William Thomson has been issued by the Committee of Section A, inviting the co-operation of mathematicians and physicists, and requesting those willing to read papers and take part in the discu asions to send their names to the Secretaries of Section A, British Ass ceiation, Albemarle Street. The following subjects have been selected for special discussion by the Committee :-On Friday, August 29, The Seat of the Electromotive Forces in the Voltaic Cell. Oa Monday, September 1, The Connection of Sunspots with Terrestrial Phenomena.

The death is announced on March is of Dr Isaac Tothunter, F.R.S., the well-known mathematieian, nt his residence, Brookside, Cambridge. Dr. Todhunter was born in 1820 , and having passed some years of his life as usher in a school, proceeded to University College, London, and when twenty four years of age, entered al an undergratuate of St. Jobn's. He graduated in the Mathematical Tripos of 1848 , ob'aining the distinction of Senior Wrangler and first Smith's Prizeman in a year which produced some remarkably able men. Dr. Todhunter was in due course elected to a Fellowship at St. John's, and sulsequently filled the offices of assistant tutor and principal lecturer in mathematics. Dr. Todhunter is well known as the nuthor of nnmerous mathematical treatises, which bave obtained a wide circulation, and are ree rgnised as standard works of education in the universities and public schools. His treatises on the "Differential Calculus," "Analytical Statics," "Plane Coordina'e Geometry," "Plane Trigonometry," and "Spherical Trigonometry," greatly enhanced his reputation. He also published varions elementary works, all of which enjoyed a large circulation. In 1871 he obtained the Adams Prize for an essay, "Researches on the Calculus of Variations." He published, in 1873, "A Ilistory of the Mathematical Theories of Attraction and the Figure of the Earth from the time of Newton to that of Laplace." In 1876 there also appeared from his pen, "An Ace runt of the Writings of Willinm Whewell, I) D., Master of Trinity College, with selections from his li erary and scientific correspondence." By the new University statutes the University was authorised to confer the degrees of Doctor in Science and Doctor in Letters. Dr. Todhunter was among the first upon whom the distinction of Doctor in Science was conferred, and last year proceeded to that degree. A few years previously he had been elected an honorary Fellow of his College as a mark of recognition of his great mathematical attainments. It may be mentioned that Dr. Todhunter took an active part in University affairs, was a member of several Syndicates and Boards of Studies, and an elector to the Plumian Professorship of Astron)my. He had been in failing health for some time, and a few weeks ago was attacked with paralysis, which precluded all hope of recover..

Natural History, and especially Paleontology, in Siaily, have sustained a great loss in the decease of the septuqenarius Abbé Brugnone, who died at Palermo on the $3^{\text {rd }}$ of last month He published several excellent papers on the recent and Fliocese shells of his native island, which were illustrated by his ow pencil. His real name appears from the obituary card to have been Rugnone. We understand that his valuable collections are for sale.
M. Faye read at the last meeting of the Academy of Scienos the draft of a resolution which will be presented by the Special Commission appointed to report on the removal of the Ob servatory, and which will be discussed by the Academy at one of its next private sittings. It approves the remoral of the Observatory to a site in close proximity to Paris, and the ste of the grounds, on condition that the existing building will remain intact, and so much land as is necessary for exeuting astronomical observations in the establishment.
The Academy of Sciences has nominated M. Darbous a member in the Section of Geometry. Mr. Darboux is the eliliar of a mathematical paper published in Paris, and the sutbor of numerous memoins on analysis and geometry prited in the Transactions of the Academy.
M. Brrtrand has issued the first number of a monthly atto nomical journal published by the Observatory of Paris under the title of the Fiwllcin. It is edited by M. Tisserand, with the c) operation of a number of astronomers of the Paris Obserntory.

Undee the auspices of the Paris Geographical Society ${ }^{0}$ course of lectures is being delivered by some of the most eminent French men of science. These lectures, eight in number, we held every Monday, at $8.30 \mathrm{p} . \mathrm{m}$. ; they began on Febreary th and end on March 31, in the Hall of the Geographical Societs. The following are the subjects of these lectures :-M. Fayad the Institute, the connection of astronowy and geography in the principal periods of history ; M. de Lapparent, M.E., relief of the globe ; M. E. Fuchs, M.E., distribution of minerals; M. Mascart, director of the Meteorological Bureau, climate; y. Velain, lecturer at the Sorbonne, glaciers and their action on the reliefs of the globe; M. Bureau, professor at the Mlusewix of Natural IIstory, geographical distribution of plants ; M. Ed. Perrier, professor at the Muscum of Natural History, thedets of the sea and their inhabitants; M. Alphonse Milne-Edarids of the Institute, geographical distribution of animals. The course will be continued next year. Information respecting the above lectures, to whieh the public is admitted, may be had at the rooms of the Geographical Society, 184, Boulenard St Germain.

The Rev, Marc Dechevrens, S.J., of Zi-ka-wei Obsernator, writes to us under date January 22, that the sky there continus to exhibit remarkable colours ; during this winter the sodiack light appeared to M. Dechevrens to be more feeble than im pre ceding years. He incloces a letter from Dr. D. J. Maggoria of Hankow to the North China Daily News:-" A phenomebso similar to the 'green sun in India' (observed at Ceylon from September 9 to is inclusive; from various portions of the Indian Ocean on the 10th and 13th; and at Trichinopoly, for some three weeks preceding October 2) has been witpesed several times at Hankow ; on November 17 by the Ker. A. ${ }^{\text {W. }}$. Nightingale, and on another occasion about the same time (date unrecorded), and again so recently as December 29 by the Rer. G. John and Rev, A. Foster. On these occasions the sun shart'; before setting was of a pale green tint, the colour deepening as the orb declined; then followed an exhibition of the glowish redness of the westem and southern borizon, which since the early part of December last has been observed from the sea-bourd far into the interior. Information from other parts of Chim respecting the 'green sun' is a desideratum."

The latest official report on the condition of the districts overwhelmed by the Krakatoa eraption states that the surviving inhabitants of the varioss villages have reassembled under their headmen, and are erecting their hnts. The volcanic ashes did little harm to the soil, the growing crops all presenting a luxuriant appearance. The trees, however, have suffered greatly, as had some of the coffee plantations. Two bays, Lampong and Semengka, which were blocked up by the fields of pumice, were free by the middle of December.

ON a summer night of 1882 a woman in Högsby parish, in Sweden, saw a shining object fall from the sky, disappearing behind a stable. Search was made for the meteorite, according to the statements of the wowan, but without snecess. Last autnmn it was, however, accidentally discovered near the spot indicated, and has now been forwarded to proper qnarters in the town of Oskarsbamn. The surface of the meteorite appears as if it had been welded from various substances; it is ahout the size of a billycock hat, very thick, and weighs a little over 14 lbs .
M. W. de Fonvielle writes :-" I took the liberty of sug. gesting in one of the last issues of the Ville de Puris a scheme for discovering clock-work in parcels deposited in loggagerooms. All the luggage should be laid flat on wooden tables supported by iron feet, and not nailed to them ; the least noise within the parcels would be made andible if a microphone of proper construction were placed on each table. The charge for keeping sbould be made heavier to diminish the number of parcels, and the right of opening optional with the railway companies."

The Commission for Montsinri; Observatory held its annual sitting at the end of February. It was resolved to ask from the Manicipal Council an increase of the annual allosation, which is somewhat less than 1200 ., exclusive of some extra charges. But it is not supposed the request will be granted, and a diminution is rather expected. It must be remembered that meteorological observations are now conducted at Montsouris, at Pare Saint Maur, and at the Paris O'servatory, almost on the same principles and with analogous instruments. It is curious to see this triple working by almost independent administrations.

The long isolated kingion of Corea having now been definitely opened by treaties to European trade and residence, we may soon expect English scholars to take their part in exploring its language, literature, and history. For the benefit of those abont to stuily in the new field, it may be well to recall the fact that, so far, we are entirely dependent on French priests for the meagre knowledge we possess of the country. There is a paper in the Transactions of the Royal Asiatic Sevidy, by Mr. Aston of Japan, on the Corean language, but the two works to which for some years to come European students must first resort are the Grammar and Diction ary edited by Msgr. Ridel, and published by Leivy of Yokobama. The latter appeared in 1879, and is a large volume of some 700 pages, containing about 30,000 word? The native words are accompanied not only by a French transliteration, but also by the Chinese characters representing them, so that the work can be usei by a Chinese as well as a Eurupean, and, to those who already know Chinese or Japanese, an additional explanation is thus supplied. All that is known respecting the country to the priests-its fauna, flora, arts, manners, and customs-finds a place in the volume. An appendix gives a brief sketch of the grammar, whil: another contains the geography, the names, and position of the provi ices, moantain", rivers, and chief towns. The Grammar was published last year, and contains an introduction on the character of the Corcan language, and a comparison of it with Chinese, as well as appendices on the divisions of time, weights, measures, the mariner's compass, \&e. Throughout the East the Catholic missionaries
have been the advanced guard of European science and methods of study. The volnmes which they produced nearly a handred years ago on China are still as necessary to thorough study of that country as they were then. The stadent who cannot refer to the original authorities, as, for instance, Chinese history, had, ustil the recent publication of Mr. Boulger's work, to go to the long series of volumes published towards the close of the last century by the Société des Missions Étrangères under the editorship of de Mailla, Amyot, and other missionaries.

We learn from Science that at 7.24 p.m. on January 25 earthquake waves were indicated by the delicate levels of the astronomical instruments of the San Francisco Observatory. The amplitude of each vibration was three seconds of arc in three seconds of time, and they continued for twenty minntes.

At the last meeting of the Sociological (Spencerian) Section of the Brmingham Natural History Society it was decided to commence making an index to the stady of Sociology. Letters were read from Mr. Spencer approving of the system about to be adopted, and stating that time and health had alone prevented him commencing such an undertaking previously.

Thr Westphalian Provinzial Verein for Science and Art is about to publish a large work entitled "West phalen's Thierleben in Wort und Bild." The Society also intends establishing a Provinzial Mnseum.

At Berlin a branch of the German Meteorological Society was fuunded on January 29 last.
We are pleased to learn that a complete catalogue of the Reference Department of the Nottingham Free Library is in c urse of preparation, but as that will be the work of some time, clacs lists have been issued for public use in the meantime. The publication noticed in these columns on January 31 was one of these, already supplemented considerably.

At the suggestion of the Austrian Crowa Prince, a work on the ethnography of the Empire is abjut to be written. Maurus Jokaj, the well-known Hungarian, has been intrusted with the task of editing it.

A severe shock of earthquake, lasting two seconds, was felt at $4 \mathrm{a} . \mathrm{m}$. on February 25 at Chios, Tchesme, and Vourla. So far as is known at present no damage has been doze. An earthquake-wave, lasting about fifteen minntes, and inundating part of the town, was noticed at Montevideo on January 14, at $7.30 \mathrm{a} . \mathrm{m}$. The weather was fine; the direction of the wave was from the Patagonian const. Several people were drowned on the south s'de of the town.

THE death is announced of Prof. IIeinrich Karl Berghaus, the well-known geographer and historian. Born at Kleve on May 3, 1797, he died at Stettin on February 17 last.
An Engineering Exhibition will be held at Breslan from June 9 to 11 next.

Tue additions to the Zoological Society's Gardens during the past week inclade a Grey Ichneumon (Herpostes grisews) from India, presented by Mr. J. B. Drew ; an Arabian Gazelle (Gaslla arabica 8) from Arabia, presented by Lieut. Brown, R.N.; two Herring Gnlls (Larus argentafus), European, presented by Mr. G. D. Macgregor ; a Ring-necked Parrakeet (Paleornis torguatus) from India, presented by Mr. J. Biehl; a Black-headed Gull (Larus ridibundus), Enropean, presented by Miss Elice Cooper ; eight Hoary Snakes (Coronella cana) from South Africa, presented by Mr. C. B. Pillans; a Robben Island Snake (Coronella phocarum) from Sonth Africa, presented by Mr. R. A. Robertion; a Common Heron (Ardea cincrea), a Cirl Bunting (Emberisa cirfus), British, a Banded Parrakeet (Paler. ornis farciafus) from India, purchased ; three Mute Swans (Cygnus olor), Enropean, received in exchange ; eight Brown-tailed Ger billes (Gerbillus crythyru 'ws), born in the Gardent.

THE SIX GATEWAYS OF KNOWLEDGE ${ }^{1}$

ITHANK you most warmly for the honour you bave done me in electing me to be your president. I value the honour very highly; but when I look at the list of distinguished men who have preceded me in the office, I feel alarmed at the responsibility I have undertaken. A very pleasing duty, however, has been already performed in the interesting and not oneroas function we have now gone through. I would gladly speak on the several sabjects, for merit in the study of which these prizes have been awarded; but I am afraid that if I were to do so, it would be more for my own gratification than for your pleasure and profit, and I feel that I shall best consult your wishes in passing on at once to the subject of the address which it becomes my duty to give.
The title of the subject upon which 1 am going to speak this evening might be-if I were asked to give it a title-"The Six Gateways of Knowledge." I feel that the subject 1 am about to bring before you is closely connected with the studies for which the several prizes bave been given. The question I am going to ask you to think of is: What are the means by which the human mind acquires knowledge of external matter?

John Bunyan likena the human coul to a citadel on a hill, selfcontained, having no means of communication with the outer world, except by five gates-Eye Gate, Kar Gate, Mouth Gate, Nose Gate, and Feel Gate. Bunyan clearly was in want of a word bere. He uies "feel" in the sense of "touch," a designation which to this day is so commonly uved that I ean scarcely accuse it of being ineorrect. At the same time, the more correct and distiuct designation undoubtedly is, the sense of touch. The late Dr. George Wilson, first Professor of Technology in the University of Edinburgh, gave, some time before his death, a beautiful little book noder the title of "The Five Gateways of Knowledge," in which he quotes John Bunyan in the manner I have indicated to you. But I have said sir gateways of knowledge, and I must endeavour to justify this saying. I am going to try to prove to you that we have six senses-that if we are to number the senses at all we must make them six.

The only census of the senses, so far as I am aware, that ever made them more than five before was the Irishman's reckoning of seven senses. I presume the Irithman's seventh sense was common sease; and I believe that the large posse sion of that virtue by my countrymen-1 speak as an Irishman-1 say the large poisession of the seventh sense, which I believe Irishmen have, and the exercise of it, will do more to alleviate the woes of Ireland than even the removal of the melancholy ocean which surrounds its shores. Still I cannot scientifically see h ow we can make more than six senses. I shall, however, should time permit, return to this question of a seventh sense, and I shall endeavoar to throw out sugzestions towards anskering the question-Is there, or is there not, a magnetic sense? It is possible that there is, but facts and olservations so far give us no evidence that there is a magnetic sense.

The six senses that 1 intend to explain, so far as 1 can, this evening, are aecording to the ordinary enumeration, the sense of sight, the sense of hearing, the sense of smell, the sense of taste, and the sense of touch, divided into two departments. A hundred years ago Dr. Thomas Reid, Profecsor of Moral Philosophy in the University of Glasgow, pointed out that there was a broad distinction between the sense of roughness or of resistance, which was possessed by the hand, and the rense of heat. Reid's ides has not I think been carried out so much as it deserves. We do not, I believe, find in any of the elementary treatises on natural philosophy, or in the physiologists' writings upon the senses, a distinct reckoning of six senses. We have a great deal of explanation about the muscular sense, and the tactile sense; but we have not a clear and broad distinction of the sense of touch into two departments, which seems to me to follow from Dr. Thomas Reid's way of explaining the sense of touch, although he does not himself distinetly formulate the distinetio 1 am now going to explain.

The sense of touch, of which the organ commonly considered is the hand, but which is possessed by the whole seasitive surface of the body, is very distinetly a double quality. If I touch any object, I perceive a complication of sensations. I perceive a certain sense of roughness, but I also perceive a very distinct sensation, which is not of ruughness, or of stoothness. There are two sensations here, let us try to analyse them. Let me dip
${ }^{2}$ An Addrese al the Midland Inshitute, Birmingham, Oetober 3. nes3. by Prof. Sor William Thomson, J.L D., F.R.S., presudent.
my hand into this bowl of hot water. The moment I touch the water, I perceive a very distinct sensation, a sensation of beat. Is that a sensation of roughness, or of smoothness? No. Agrin, I dip my hand into this basin of Iced water. I perceive a very distinct sensation. Is this a sensation of roughness, or of smoothness? No. Is this comparable with that former sens. tion of heat? I say yes. Although it is opposite, it is compar. able with the sensation of heat. I am not going to say that we have two sensations in this department -a sensation of heat, and a sensation of cold. I shall endeavour to explain that the per ceptions of beat and of cold are perceptions of different degrees of one and the same quality, but that that quality is markedly different from the sense of roughness. Well now, what is this sense of roughness? It will take me some time to explain it fully. I shall therefore say in advance that it is a sense of force; and I shall tell you in advance, before I justify completely what I have to say, that the six senies, regarding which I wish io give some explanation, are : the sense of sight, the sense of hearing, the sense of taste, the sense of smell, the sense of heat, and the sense of force. The sense of force is the sixth sen-e; or the senses of beat and of force are the sense of touch divided iate two, to complete the census of six that I am endeavouring to demonstrate.

Now I have hinted at a pos ible seventh sense-a magneic sence-and though out of the line I propose to follow, and althongh time is precious, and does not permit mach of digression, I wish just to remove the iden that I am in any way suggerting anything towards that wretched superstition of animal magaetism, and table-turning, and spiritualism, and mes merism, and clairvoyance, and spirit-wrapping, of which w have heard $s>$ much. There is no seventh sense of the mystic kind. Clairvoyance, and the like, are the reult of tad observation chiefly, somewhat mixed np, however, with the effects of wilful imp sture, acting on an ionocent, trusting mind. Bet if there is not a distinct magnetic sense, I say it is a very great wonder that there is not.
Many present know all about magnetism. A very lane uumber of pupik have gained an immense a-nount of raluble knowledge in various suljects, from the classes carried on nightly within the walls of the Birmingham and Midand lastitute; and I can see from the prizes that have been awarded, and that I have just now had the pleasure of distribuiing for exsel. lence and proficiency in this department, that many havelarned of magnetism. I had the pleasure of seeing the class-rooms this morning, and I wished I could be in them in the evening to se the studies as carried on in them every evening. Well now, the study of magnetism is the study of a very recondite subject. We all know a little about the mariner's counpass, the nedie pointing to the north, and so on ; but not many of us have goose far into the subject, and not many of us understand all the recent discoveries in electromagnetiom. I cuuld wish, had I the spparatus bere, and if you would allow me, to show you an ex eniment in magnetion. If we bad before us a powerful magnef, or ssy the machine that is giving as this beautiful electric ligb by which the hall is illuminated, it, serving to excite an electromagnet, would be one part of our apparatus ; the other put would be a piece of copper. Suppose then we had this sppersatus, I would show you a very wonderful discovery made by Faraday and worked out admirably by Foucault, an excelleat French experimenter. I have ssid that one part of this apper. atus would be a piece of copper, but silver would answer ${ }^{\text {as }}$ well. Probably no other metal than copper or silver-certiinly no other one, of all the metals that are well known, and oldainable for ordinary experiments-possesses, and no other metal or substance, whether metallic or not, is kno *n to possess, in siy thing like the same de gree as copper and silver, the quality I an now going to call attention to.
The goality I refer to is "electric conductivity," and the result of that quality in the experiment I am now going to de seribe is, that a piece of copper or a piece of silver, let fall between the poles of a magnet, will fall down slowly as if it were falling through mud. I take this body and let it fill. Many of you here will be able to calculate what fraction of a second it takes to fall one foot. If I took this piece of copper. placed it just above the space between the poles of a poweffa electromagnet and let it go, you would sce it fall slowly down before you ; it would perhaps take a quarter of a minute to fal a few inches.

This experiment was carried cut in a most powerful manec by Lord Lindsay (now Lord Crawford), assisted by Mr. Crow
well F. Varley. Both of those eminent men desired to investigate the phenomena of mesmerism, which had been called animal magnetism; and they very earnestly set to work to make a real physical experiment. They asked themselves, Is it conceivable that, if a piece of copper can scarcely move through the air between the poles of an electromagnet, a human being or other living creature placed there wonld experience no effect? Lord Lindsay got an enormous electromagnet made, so large that the head of any person wishing to try the experiment could get well between the poles, in a region of excessively powerful magnetic force. What was the result of the experiment? If I were to say mothing! I should do it scant justice. The result was marvellous, and the marvel is that nothing was perceived. Your head, in a space through which a piece of copper falls as if through mud, perceives nothing. 1 say this is a very great wonder; but I do not admit, I d, not feel, that the investigation of the subject is completed. I cannot think that the quality of matter in space which produces such a prodigious effect upon a piece of metal can be absolutely without any-it is certainly not without any-effect whatever on the matter of a living body; and that it can be absolutely withont any forreptrible effect whatever on the matter of a living body placed there seems to me not proved even yet, although nothing has been found. It is so marvellous that there should be no effect at all, that I do believe and feel that the experiment is worth repeating ; and that it is worth examining, whether or not an exceeding'y powerful magnetic force has any perceptible effect upon a living vegetable or animal body. I spoke then of a seventh sense. I think it just possible that there may be a magnetic sense. I think it possible that an excceding powerful magnetic effect may produce a sensation that we cannot compare with heat or force or any other sensation.
Another question that often occurs is, "Is there an electric sense?" Has any buman being a perception of electricity in the air? Well, somewhat simular proposals for experiment might, perhaps, be made with reference to electricity; but there are certain reasons, that would take too long for me to explain, that prevent me from placing the electric force at all in the same category wihh magnetie force. There wonld be a surface action that would annol practically the force in the interior, there would be a definite sensation which we could distinctly trace to the sense of touch. Any one putting his hand, or his face, or his hair, in the neighbourhood of an electrie machine perceives a sensation, and on examining it he finds that there is a current of air blowing, and his hair is attracted; and if he puts his hand too near he finds that there are sparks passing between his hand or face and the machine; so that, before we come to any snbtle question of a posible sence of electric force, we have distinct mechanical agencies which give rive to senses of temperatare and foree ; bat that this mysteriouv, wonderful, magnetic force, due, as we know, to rotations of the molecules, could be absoIntely without effect-withont perceptible effect-on animal economy, seems a very wonderful resnit, and at all events it is a subject deserving careful investigation. I hope no one will think I am favouring the snperstition of mesmerism in what I bave said.
I intend to explain a little more fully our perceptions in connection with the double sense of touch-the sense of temperature and the sense of force-should time permit before I conclude. But I must first say something of the other senses, because if I speak too much about the senses of force and heat no time will be left for any of the others. Well, now, let us think what it is we perceive in the sense of hearing. Acoustics is one of the studies of the Birmingham and Midland In-titnte, of which we have heard many times this evening. Acoustics is the science of hearing. And what is hearing ? Hearing is perceiving something with the ear. What is it we perceive with the ear? It is something we can also perceive without the ear ; something that the greatest master of sound, in the poetic and artistic sence of the word at all events, that ever lived-Beet-hoven-for a great part of his life could not perceive with his ear at all. He was deaf for a great part of his life, and during that period were composed some of his grandes: musical compositions, and without the possibility of his ever hearing them by ear himself; for his hcaring by ear was gone from him for ever. But he used to stand with a stiek pressed against the piano and touching his teeth, and thus he could hear the sounds that he called forth from the Instrument. Hence, besides the Ear Gate of John Bunyan, there is another gate or access for the sense of hearing.

What is it that you perceive ordinarily by the ear-that a healthy person, withont the loss of any of his natural organs of sense, perceives with his ear, but which can otherwise be perecived, although not so satisfactorily or completely? It is distinctly a sense of varying pressure. When the barometer rises, the pressure on the ear increases; when the barometer falls, that is an indieation that the pressnre on the ear is diminishing. Well, if the pressure of air were suddenly to increase and diminish, say in the course of a quarter of a minute-supp pose in a quarter of a minute the barometer rose one-tenth of an inch and fell again, would you perceive anything? I donbt it ; I do not think you would. If the barometer were to rise two inches, or three inches, or four inches, in the course of half a minute, most people would perceive it. I say this as a result of observation, because people going down in a diving bell have exactly the same sensation as they would experience if from some unknown cause the barometer qnickly, in the course of half a minute, were to rise five or six inches-far above the greatest height it ever stands at in the open air. Well, now, we have a sense of barometric pressure, but we have not a continued indication that allows us to perceive the difference between the high and low harometer. People living at great altitudes-up several thonsand feet above the level of the sea, where the barometer stands several inehes lower than at sea-level-feel very much as they would do at the surface of the sea, so far as any sensation of pressure is concerned. Keen mountain air feels different from air in lower places, partly because it is colder and drier, bat also becanse it is less dense, and you must breathe more of it to get the same quantity of oxygen into your lungx to perform those functions, whieh the students of the Institute who study animal physiology-and I understand there are a large number -will perfectly understand. The effect of the air in the langs -the fuuction it performs-depends chiefly on the oxygen taken in. If the air has only three qnarters of the density it has in our ordinary atmosphere here, then one and one-third tumes as much must be inhaled, to produce the same oxidising effect on the blood, and the same general effect in the animal economy ; and in that way undoubtedly mountain air has a very different effect on living creatures from the air of the plains. This effect is diniuctly perceptible in its relation to health.
But I am wandering from my sulject, which is the consideration of the changes of pressure comparable with those that produce sound. A diving bell allows us to perceive a sudden increase of pressure, but not by the ordinary sense of touch. The hand does not perceive the difference between 15 lbs . per square inch pressing it all around, and 17 lbs ., or 18 lhs , or 20 lbs ., or even 30 llbs . per square inch, as is experienced when you go down in a diving bell. If you go down five and a half fathous in a diving bell, your hand is pressed all round with a force of 30 lbs , to the square inch; but yet you do not perceive any difference in the sense of force, any perception of pressure. What you do perceive is this: belind the tympanam, is a certain cavity tilled with air, and a greater pressure on one side of the tympanum than on the other gives rise to a painful sensation, and sometimes produces rapture of it in a person going down in a diving bell suddenly. The remedy for the painfal sensation thus experienced, or rather I should say its prevention, is to keep chewing a piece of hard biscuit, or making believe to do so. If yon are chewing a hard biscuit, the operation keeps open a certain pasange, by wbich the air pressure gets access to the in-ide of the tympanum, and balances the outidide pressure and thus prevents the painful effect. This painful effect on the ear experienced by going down in a diving bell is simply because a certain piece of tissue is being pressed more on one side than on the other; and when we get such a tremendous force on a delicate thing like the tympanum, we may experience a great deal of pain, and it may be dangerons; indeed it is dangerous, and prodnces rupture or damage to the tympannm unless means be adopted for obviating the difference in the pressures; but the simple means I have indicated are, I believe, with all ordinary healthy persons, perfectly successful.

I am afraid we are no nearer, however, to understanding what it is we perceive when we hear. To be short it is simply this t it is exceedingly sudden changes of pressure acting on the tyopanum of the ear, through such a short time and with such moderate force as not to hurt it ; but to give rise to a very distinct sensation, which is communicated through a train of bones to the auditory nerve. I must merely pass over this ; the details are full of interest, but they wonld occupy us far more than an hour if I entered upon them at all. As soon as we get
to the nerves and the bones, we have gone beyond the subject I proposed to speak npon. My subject belongs to phy-ical science:-what is called in Scotland, Natural Philosophy. Physical science refers to dend matter, and I have gone beyond the range whenever I speak of a living body; but we must speak of a living body in dealing with the senses as the means of perceiving-as the means by which, in John Bunyan's language, the soul in its citadel acquires a knowledge of external matter. The physicist has to think of the organs of sense, merely as he thinks of the microscope ; he has nothing to do with physiology. He has a great deal to do with his own eyes and hands, however, and must think of them, if he would understand what he is doing, and wishes to get a reasonable view of the subject, whatever it may be, which is before him in his own department.

Now what is the external olyject of this internal action of hearing and perceiving sound? The external object is a change of pressure of air. Well, how are we to define a sound simply? It looks a little like a vicious circle, but indeed it is not so, to say it is sound if we call it a sound-if we perceive it as sound, it is sound. Any change of pressure, which is so sudden as to let us perceive it as sound is a sound. There [giving a sudden clap of the hands]-that is a sound. There is no question about it-nobody will ever ask, Is it a sound or not? It is sound if you hear it. If you do not hear it, it is not to you a sound. That is all I can say to define sound. To explain what it is, I can say, it is change of pressure, and it differs from a gradual change of pressure as seen on the barometer only in being more rapid, so rapid that we perceive it as a sound. If you could perceive by the ear, that the barometer has fallen two-tenths of an inch to day, that would be sound. But nobody hears by his ear that the barometer has fallen, and so he does not perceive the fall as a sound. But the same difference of pressure cominz on us suddenly-a fall of the barometer, if by any means it could happen, amounting to a tenth of an inch, and taking place in a thousandth of a second, -would affect us quite like sound. A sudden rise of the barometer would produce a sound analogous to what happened when I clapped my havds. What is the difference between a noise and a masical sound? Musical sound is a regular and periodic change of pressure. It is an alternate augmentation and diminution of air pressure, occurring rapidly enough to be perceived as a sound, and taking place with perfect regularity, period after period. Noises an' musical sonnds merge into one another. Musical sounds have a possibility at least of sometimes ending in a noise, or tending too much to a noise, to altogether pleave a fastidiou tmusical ear. All roughness, irregularity, want of regular, s nooth periodicity, has the effect of playing out of tane, or of music that is so complicated that it is impossible to say whether it is in tune or not.

But now, with reference to this sense of sound, there is something I should like to say as to the practical lesson to be drawn from the great mathematical treatises which were placed before the British Association, in the addresses of its president, Prof. Cayley, and of the president of the mathematical and physical section, Prof. Henrici. B th of these professors dwelt en the importance of graphical illustration, and one graphicil illustration of Prof. Cayley's address m iy be adduced in respect of this very quality of roand. In the languige of mathematics we have just "one independent variable" to deal with in sonnd, and that is air pres ure. We have not a complication of motions in various directions. We have not the complication that we shall have to think of presently, in connection with the sense of force: complication as to the place of application, and the direction, of the force. We have not the infinite complications we have in some of the other senses, notably smell and taste. We have distinctly ouly one thing to consider, and that is air pressure or the variation of air pressure. Now when we have one thing thit varies, that, in the language of mathematics, is "one independent varisble." Ilo not ivigine that mathematics is harsh, and erabbed, and repulsive to common sense. It is merely the etherealisation of common ense. The function of one independent variable that you bave here to deal with is the pressure of air on the tympanum. Well now in a thousand connting houses and business offices in Birmingham and London, and Glasg ww, and Manchester, a curve, as Prof. Cayley pointed out, is regularly used to show to the eye a function of one independent variable. The function of one independent variable most important in Liverpuol perhaps may be the price of cotton. A curve showing the price of colton, rising when the price of cotton is high, and sinking when the price of cotton is low, shows all the complicated changes of that independent variable
to the eye. And so in the Registrar-General's tables of mortality, we have curves showing the number of deaths from day to daythe painful history of an epidemic, shown in a rising branch, and the long gradnal talus in a falling branch of the curve, when the epidemic is overcome, and the normal state of health is again approached. All that is shown to the eye; and one of the most beautiful results of mathematies is the means of showing to the eye the law of variation, however complicated, of one independendent variable. But now for what really to me seems a marvel of marvels : think what a complicated thing is the result of an orchestra playing-a hundred instruments and two hundred voices singing in chorus accompanied by the orchestra. Think of the condition of the air, how it is lacerated sometimes in a complicated effect. Think of the smooth gradual incresse and diminution of pressure-smooth and gradual, thoagh taking place several hundred times in a second-when a piece of beagtifal harmony is heard: Whether, however, it be the single note of the most delicate sound of a flute, or the parest piece of harmony of two voices singing perfectly in tu:e ; or whether it be the crash of an orchestra, and the high notes, sometimes erea screechings and tearings of the air, which you may hear flutiering above the sound of the chorus-think of all that, and yet that is not too complicated to be represented by Prof. Cayley, with a piece of chalk in his hand, drawing on the blackboard a single line. A single curve, drawn in the manner of the curve of prics of cotton, describes all that the ear can possibly hear, as the result of the most complicated musical performance. How is one sound more complicated than another? It is simply that is the complicated sonnd the variations of our one independens variable, pressure of air, are more abrupt, more sulden, less smooth, and less distinctly periodic, than they are in the softe, and purer, and simpler sound. But the superposition of the different effects is really a marvel of marvels ; and to thinl: that all the different effects of all the different instruments can be so represented! Think of it in this way. I suppose everybody present knows what a musical score is-you hnow, at all events, what the notes of a hymn tune look like, and can under-tand the like for a chorus of voices, and accompanying orchestra-s "score" of a whole page with a line for each instrament, nnd with perhaps four different lines for fonr voice parts. Think of how much you have to put down on a pige of mannscript or print, to show what the different performers are to do. Think, too, how much more there is to be done than anything the composer can put on the page. Think of the expresion which each player is able to give, and of the difference betweea a great player on the violin and a person who simply grinds anccessfully through hix part ; think, too, of the difference in singing, and of all the expression put into a note or a sequence of notes in singing that cannot be written down. There is, 03 the written or printed paye, a little wedge showing a diminaenda, and a wedge turned the other way showing a crescendo, and that is all that the musician can put on paper to mark the difference of expression which is to be given. Well now, all that can be represented by a whole page or two pager of orchestral score, as the specification of the sound to be prodaced in say ten seconds of time, is shown to the eye with perfect clearness by a single carve on a riband of paper a hadred inches logg. That to my mind is a wonderful proof of the pitency of mathematics. Do not let any student in this Insitute be deterred for a moment from the pursuit of mathematical studies by thinking that the great mathematicians get iato the realm of four dimensions, where you cannot follow them. Take what Prof. Cayley himelf, in his admirable address, which ! have already referred to, told $u s$ of the beautiful and spleodid power of inathematics for etherealiving and illustrating common sense, and you need not be disheartened in your stady of mathematics, but may rather be reinvigorated when you think of the power which mathewatician e, devoting their whole lives bo the study of mathematics, have succeeded in giving to that marvellous science.
(To be continued.)

THE GEOIOGICAL POSITION OF THE HUWAN SKELETON FOUVD AT TILBURY
I N a paper on this subject read by Mr. T. V. Ilolmes, K.G.S., at the meteting of the Essex Field Club on Saturday, February 23, at Euckhurst Hill, the author pointed out that the Tilbury skeleton was found in recent allavium. The section at

Tiltury, consisting of blue clay with peaty bands, above sand and gravel, strongly resembles those given by Prof. Sollas of the alluvial deposits of the estuary of the Severn ; the aunount of subsidence, as shown by the present position of the lower peaty band, being also nearly the same. Mr. Holmes considered the notions promingated in the brief newspaper reports regarding the antiquity of the remains to be entirely misleading. If any strata were entitled to be styled "reeent," those at Tilbury must be so; for their deposition would now be going on bat for the eabankment of the Thames during the Roman occupation of Britain. Yet the newspaper reports described these beds by the extremely vague term "Pleistocene," while the skcleton was styled " Palzolithic." The remains of man, however, have been found in alluvial deposits fifty feet above the present level of the Thames, and remains found in such beds must be immensely more ancient than any discovered in recent alluvinm. Geological position furnishes the only absolute test of relative age. The test of association with extinct mammalia is largely dependent on negative evidence. A hint on this point was given hy the results of the drainage of Haarlem Lake thirty years ago. Excellent sections were made in all directions across its bed, and carefnlly examined by skilled geologists. Hundreds of men were known to have perished in its waters three centuries before, and it had always been the centre of a considerable population. Yet no human bones were found, thongh works of art were. Thas hundreds or even thousands of mamralia, incapable of producing works of art, might be interred in particular strata, and yet leave no signs whatever of their former exis ence two or ibree centuries afterwards. And, on the other hand, were extinct mammalia present in the Tilbury Dock beds no additional antiquity would thereby be conferred on the beds themselves, tut the period at which the animals became extinct would be shown to be later than had been supposed. Similarly as regards the rude implements known as Palselithic; their preence could confer no antiquity on recent beds. Still, as the steleton was found thirty-two feet below the surface, in alluvium that has received no additions since Roman tiues, it is nnquestionably prehistoric. And the ex:reme rarity of prehistoric human skeletons gives to this di-covery an interest greater than could have been claimed for that of a bushel of flint implements. The age of the Tilbury skeleton may possibly be not far removed from that of the Neanderthal man, to which it is said to have a strong ree emblance: a resemblance which, if as great as it is stated to be, goes far to show that we have in each a normal type of prehistoric man.

At the same meeting a communication from Mr. Worthington G. Smith was read. Mr. Smith stated that he had seen the skeleton, and specimens of the sand in which it was found. Palzolithic sands with fossil bones and stone implements occur about a mile to the north of Tilbury, and nith these Mr. Smith was well acquainted. The Palreohthic sand is quite different in colour from the Tilbury sand, and the former swarms with fossil shells of land and freshwater mollusks. As far as could be seen no such shells were present in the Tilbury sand sent to the British Museum. Mr. Smith's specimens of fostil bones from the Palaolithic sand were in an en'irely different mineral condition from the bones of the Tilbury skeleton, and he could trace no resemblance whatever either in sand or bones. Mr. Smith made this statement with great deference to the opinion of Sir Richard Owen, and confessed that a Palxolithic skeleton might have been washed from the high ground to the low, and got into the mineral state of the Tilbury skeleton, althongh at present there was no evidence of anything of the sort having taken place. His opinion was that there uas no proof of the Palarolithic age of the Tillury relic.

NOTES ON THE VOLCANIC ERUPTION OF MOUNTST. AUGUSTIN, ALASKA,OCTOBER6, 1883^{1}

Othe western side of the entrance to Cook's Inlet (forty-five miles wide) lies Cape Donglas ; and to the northward of the cape the shore recedes over twenty miles, forming the Bay of Kamishak. In the northern part of this bay l.es the Island of Chernaboura ("black-brown"), otherwise called Augustin Island. It is eight or nine miles in diameter, aud near its north-eastern part rises to a peak, called by Cook Mount St. Angustin.: As laid down by Tehenkoff, the island is nearly round.

The northern shores are high, rocky, and forbidding, and are bordered by vast numters of rocks and hidden dangers. The southern shore is comparatively low.

Mount St. Augastin was discovered and named by Capt. Cook, May 26, 1778; and he describes it as having "a conical figure, and of very considerable beight." In 1794 Puget describes it as-
"A very remarkable mountain, rising with a uniform ascent from the shores to its lofty summit, which is nearly perpendicalar to the centre of the island, inclining somewbat to its eastern side. . . T Towards the seaside it is very low, from whence it riser, though regular, with a rather steep ascent, and forms a lofty, uniform, atd e enical mountain, presenting nearly the same appearance from evcry point of view, and clothed with snow and ice, throngh which neither tree nor shrub were seen to protrude ; so that, if it did produce any, they must either have been very small, or the snow must have been sufficieatly deep to have concealed them."

At that time there were native hunters, under the direction of two Kussians, hunting or living in the vicinity of the north eastern point of the island.
Vanconver placed the peak of this mountain in lati ude $59^{\circ} \mathbf{2 2 ^ { \prime }}$; Tebenkoff places it in latitude $59^{\circ} 24^{\prime}$.
The peak of St. Augu-tin is distant forty-nine milks nearly due west (true) from the setilement on the suathern point of Port Grabam, or, as it is sometimes callecl, Enylish Harbour. This harbour is situated on the eastern :ide of Cook's Iulet, near Cape Elizabeth.
In connection with the fall of pumice-dust at Iliuliuk on October 16, 1883 , it may be of interest to observe that the peak of Augustin is over 700 miles to the north-eastward of Bogosloft Island off Unalashka.
About eight o'clock on the moraing of October 6, 1883, the weather being beautifully clear, the wind light from the sonthwestward (compass), and the tide at dead low water, the settlers and fishing parties at English Harbour heard a heavy report to windward (Augustin bearing south-west by west three-fourths west by compass). So clear was the atmosphere that the opposite or north-western coant of the inlet was in clear view at a distance of more than sixty miles.

When the heavy explosion was heard, vast and dense volumes of smoke were seen rolling out of the summit of St . Augustin, and moving to the north-eastward (or np the inlet) under the influence of the loner stratum of wind; and, at the same time (according to the statements of a hunting party of natives in Kamishak Bay), a column of white vapour arose from the sea near the island, slowly asce ding, and gradually blending with the clond. The sea was also greatly agitated and boiling, making it impossible for boats to land upon or to leave the island.

From English Harbour (Port Graham) it was noticed that the columns of smoke, as they gradually rose, spread over the visible heavens, and obscured the sky, doubtless under the influence of a higher current (probably north or north east). Fine pumicedust soon began to fall, but gently, some of it being very fine, and some very soft, withont grit.

At ab,ut 8.25 a.m., or twenty-five minutes after the great eruption, a great "earthquake-wave," estimated as from twentsfive to thirty feet high, came upon Port Graham like a wall of water. It carried off all the fishing-boats from the point, and deluged the houses. This was followed at intervals of ahont five minutes, by two other large waves, estimated at eighteen and fifieen feet; and during the day several large and irregular waves came into the harbour. The first wave took all the boats into the harbour, the receding wave swept them back again to the inlet, and they were finally stranded. Fortunately it was low water, or all of the people at the settlement must inevitably bave been lost. The tides rise and fall about fourteen feet.
These earthquahe-waves were felt at Kadiak, and are doultless recori'ed on the reginter of the Cosst Survey tide-gauge a.t that place. Also the pumice ashes fell to the depth of four or five inches, and a specimen of the deposit was given to the tidal observer at St. Paul. It will be interesting to compare these ashes with those collected at Iliuliuk on October 16, and which, from a confaion of dates, were snpposed to have cume fiom the new Bogosloff volcanic island. I am of the oginion that they came from St. Augustin.
The condition of the Island of Augustin or Chernaboura, according to the latest accoant 8, is this:-
At night, from a distance of fifty or sixty miles, flames can be
seen issuing from the summit of the volcano; and- in the daytime vast volumes of smoke roll from it. Upon nearer approach from English IIarbour it was found that the mountain had teen split in two from peak to base by a great rupture extending across it from east to west, and that the northern slope of the mountain had sunk away to the level of the northern eliff. ${ }^{1}$ 'This is corroborated by the statement of the hunting-party in Kamishak Bay. Smoke issued from the peak at a very short disfance to the southward of the rupture.
The party of natives on Kamishak did not approach the islet, though they gave clear and distinct accounts of its eruption and subsequent appearance ; but Capt. C. T. Sands, who was at English Harbour, gave the Alarka Company a full description; and Capt Cullie, of the Kodiak, states that, if there were plenty of water in the line of rupture, it weuld be possible for a vessel to sail through. At the time of Capt. Sands' observations the low ground of the island was visible, and seemed to be a vast crater, from which smoke and flames were issuing.

But beyord all these phenomena, apart from the volcanic eruption and the rupture of the island, we have the report of Capt. Cullie, of the schooner Kodiak (from whom we also obtain a statement in regard to the rupture), who approached the island from English Harbour on November 10, and found that a new island about a mile and a half long and seventy-five feet high, had been upheaved in the ten-fathom passage between Augustin and the mainland to the westward. This pessnge is from six to cight miles wide, and was sailed through by Puget in Vancouver's voyages of discovery.

This new island (also reperted by the bunting-perty in Kamishak) would appear to have arisen during the late volcat ic activity. It lies to the north-westward of Chernabovra I land (Augustin), and was distinctly seen frem the Kidiok, as that vessel lay ten miles to the north-eastward, and bad ckar weather.

To show the violence of the volcanic convulions at this time, two extinct volcanoes on the Alacka peninsvls, which are reperted to be about weet (true) frem the active volcano llian na (twelve thousand feet high), had turst into activity ; and during the day volumes of sasoke were distinctly seen, and columns of flame at night. Usaally, at that season, Augustin and the peak are covered wish deep snow. On November 1c, huw ever, when Capt. Cullie ap! reached the i - land, whle there was a dej th of four feet of snow at Port Graham (Evgli:h Hart our), Mount St. Augustin was bare and bleck.

George Davidson,
Assistant U.S. Coast and Gecdetic Survey

THE ORIGIN OF THE SCENERY OF THE BRITISH ISLANDS ${ }^{2}$

THE Plains of Britain, like those elsew here, must be regarded as loeal base-Icvels of denudation, that is, areas where, in the whole, det udation has ceased, or at least has hecome much less than deposit. Probably in all cases the areas they occupy have been levclled by denudation. Usually a gieater or less depth of detrital material has been sp read over them, and it is the level surface of these superficial accumulations that forms the plain. But in some instances, such as the flats of the Weald Clay and the Chalk of Salislury Plain, there is hardly any such cover of detritus, the denuded surface of underlying rock forming the actual surface of the plain. Ovr plains, if classed according to the circumstances of their origin, may le conveniently regarded as (i) river plains-strips of meadow-land bordering the streams, and net infrequently rising in a succession of terraces to a considerable height above the present level of the water; (2) lake plains-tracts of arable ground occupying the sites of former lakes, and of which the number is ever on the increase; (3) marine plaint-mostly flat selvages of alluvial ground, formed of materals originally laid down as a littoral marine deposit when the land lay below its present level: in the northern estuaries these up-raised sea-beds spread out as broad carse-lands, wuch as those of the Tay, Forth, and Clyde; (4) glacial drift plains-tracts over which the clays, sands, and gravels of the Ice Age form the existing surface ; (5) submarine plains-the present floor of the North Sea and of

[^42]the Irish Sea, which must be regarded as essentially part of the terrestrial area of Europe.

When plains remain stationary in level, they may eontinue for an indefinite period with no material change of surface. But, should they be upraised, the elevation, by increasing the slope of the streams, augments their erosive power, and enables them once more to deepen their channel. Hence, plains like that of the New Forest, which have been deeply trenched by the watercourses that travere them, may with probability be assigned to a time when the land stood at a lower level than it occupies at present. In this connection the successive river-terraces of the country decerve attention. They may be due not to the mere unaided work of the rivers, Lut to the cooperation of successive uplifts. It would be an interesting inquiry to corselate the various river-terraces throughout the country, for the purpose of discovering whether they throw any light on the conditions under which the most recent uprise of the country took place. That the elevation proceeded intermittently, with long pauses between the movements, is shown by the succession of raised beaches, It may be possible to establish a somewhat similar proof among our river-terraces.

The submarine plains are by far the most extensive within the British area. In the case of the North Sea the tendency of tidal scour and depesit must medify the form of the bottom. This great basin of water is obviously being slowly filled up by the deposit of sediment over its floor. A vast amount of mud and silt is borne into it by the rivers of Wetern Europe, as well as by those that drain the eavtern and larger part of Britain, and the sea ittelf is cutting away the land on both sides and swallowing up the waste. We bave only to contrast the colcur of the Atlantic on the west of Ireland or Scotland with that of the North Sea to be as sured of the wide diffusion of fine mud in the water of the latter. There is practically no outlet for the detritus that is thus poured into the basin of the Noath Sea. From the north a vast body of tidal water enters between Scotland and Norway, and travelling touthuard, aided ty the strong northerly winds, su ceps the detritus in the tame dirccion. On the other hand, another narrower and shallower tidal stream enteis from the Sirail of Dover, and, aided ly the scuth-west winds, drives the sediment nothward. Yet, making every allowance for the tanks and shonls which th is accumulating derosit has already formed, we can still, wibhout much difficulty, recognise the broader fea:ures of the ofd land-surface that now lies subnerged beneath the North Sea. It prevents two plains, of which the souhern has an average level of jerhaps a lintle nore than 100 feet helow the surface of the water. This upper plain ends northward in a shelving bank, probably the prolungation of the Jurassic escerpment of Yorkshire, and is :ucceeded by the far wider northern plain, which lies from ico to 150 feet lower, and gradually slopes norihward. As mentioned in a previous lecture, the drainagelines of the united Rhine, Thames, \&c, cn the one side, and the Elt e, Weser, \&c., on the other, can still be partially tiaced on the sea-floor. The Irish Sea was probably, in its later bistory, a plain dotted with lakes. It appears to have been tubmerged before the whole of the present fauna and flora had reached I reland.

Soure of the most characteristic and charming scenery of the British Islands is to be found along their varied sea-board. Coast-i cenery appears to def end for its distinctive features upon (1) the form of the ground at the time when by emergence or suhmergence the present level was extallished; (2) the compoition and structure of the shore-rochs ; (3) the direction of the prevalent winds, and the relative fotency of subaërial aud mariue denudation. The British coast-line presents three dirtinct phases: in many places it is retreating; in others it is advancing ; while in a few it may be regarded as practically stationary. As examples of retreat, the shores of a large part of the east of Englard may be cited. In Holderness, for instance, a strip of land more than a mile bread has been carried anay during the last eiuht centuries. Fiven since the Ordnance Survey maps were published, thirty-tbree years ago, somen here abcut 500 feet have in some places been removed, the rate of demolition being here and there as much as five yards in a year. The advance of the coast takes place chiefly in sheltered layz, or behind or in front of projecting lieadlands and piers, and is due in large neasure to the deporit of material which has been removed by the sea from adjoining shores. The amount of lard tbus added docs not compensate for the quantity carried away, so that the total result is a perceptible annual loss. The best examples of a slationary coast-line where there is no appre-
ciable erosion by the waves and no visible accumulation of detritus, are to be found among the land-locked fjords or inlets of the west coast of Scotland. In these sheltered recesses the smoothed striated rocks of the Ice Age slip under the sea, with their characteristic glaciated surfaces still so fresh that it is hard to believe that a long lapse of ages has passed away since the glaciers left them.
The remarkable contrast between the seenery of the eastern and western coast-line of the British Islands arises partly from the preponderance of harder rocks on the west than on the east side, but probably in large measure upon the greater extent of the submergence of the western sea-board, whereby the sea has been allowed to penetrate far inland by fjords which were formerly gleas and open valleys. The details of c , ast-scenery vary with the rock in which they are developed. Nowhere can the effects of each leading type of rock upon landscape be more instructively studied than along the sea-margin. As distinct types of coast-scenery, reference may be made to sea-cliffs and rocky shores of granite, gneiss, basalt, massive sandstone and flagstone, limestone, alternations of sandstone shale or other strata, and boulder-clay, and to the forms assumed by detrital accumulations such as sand-dunes, shingle-banks, and flats of sand or mud.
The concluding portion of the lecture was devoted to an indication of the connection batween the scenery of a country and the history and semperament of the people. This subject was considered from fonr points of view, the influence of landscape and geological structure being traced in the distribation of races, in national history, in industrial and commercial progress, and in national temperament and literature.

UNIVERSITY AND EDUCATIONAL INTELLIGENCE

Oxford. - The propasal to allow women to enter for the same hor our examinations as men met with less opposition in Congregation than was generally anticipated. By 100 votes to 46 the statute was passed by Congregation peraitting women to enter for both Classical and Mathematical Modarations, and for the final Schools of History, Mathematice, and Natural Science. Oa March it the statute will come before Covvocation, and will in all probability be pas ed.

In a Convocation held on March 4 a decree was paised anthorising the Professors of Anatomy and Physislogy to engage a table for the use of students of the University at the Zoological Station at Villefranche. The anti-vivisectionists were demionstrative, but did not divide the House.

The Professor of Mediciae gives notice that the Testamurs for Chemistry and Physics ia the Preliminary Honour Examinition excuse candilates from the Chemistry and Physics Examiuntion in the First M. B., but that the Testamurs for Chemistry and Physics in the Pass Schosl are not recognised. Candidates msy take up Chemistry and Physics separately from Aastomy and Physiology.

An examination will be held at Keble College on March 18 to elect a Scholar in Natural Science. Candidates may offer Chemistry and Biology.

Cambridge. - Plans have been obtained for the building of a new foundry and a temporary lecture-room and museum for the Department of Mechanism, suitable eventually for additional workshops. The cost is to be 450 \% The number of pupils in this department has now increased to fifty.seven.

Plans have also been prepared for the new botanical classrwons for microscopic work, the estimated csst being $1055 l$.

Messrs. E. C. Ames, B.A., B. H. Bent, and J. H Nicholl, B.A., have been appointed Demonstrators of Mechanism and Applied Mechanies.

The following Colleges hold Examinations for Open Scholar--hips in Natural Sciences on the respective dates mentioned:Clare, March 18; Jesus, March 13; lowning, June 10; Cavendish, Augut 6. For particulars, application should be made to the tutors of the Colleges. A Clothworkers' Exhibition in P'hyrical Science, tenable either at Oxford or at Csmbridge, will tee a warded in luly. Information may be obtained from the Cenvor of Non-Cullegiate Studen's, Caub i iJge.

SCIENTIFIC SERIALS

Fournal of liotany.-The number for February commences with the first part of an improtant faper hy Mr. Thomas Hick on protoplasmic c rutinuity in the Floridsex. The connection of
protoplasm from cell to cell has now been established in a number of instances in the vegetable kingdom. It may be seen with very great ease, as described and drawn by Mr. Hick, in the frond of some of the red seaweeds, as Polysiphonia and Callithamnion, without any chemical reagent, except one that causes a slight contraction,-Mr. Carruthers contributes a useful paper on the mode of distinguishing the seed of the sweet vernal grass, Anthoxanthum odoratum, from that of A. Pudlit, an annual species with which it is often adulterated by seedgrowers.
THE last part (vol. iii., heft 3) of Cohn's Beitrige sur Bialogie der P'lamzen contaias two important cryptogamic papers: one by E. Eidam, on the development of the Ascomycetes, in which two new forms are described; the other, by M. Franke, describing an interesting new genus of paravitic algre, Endoclonium, dimorphic, and growing on decaying fronds of Lrmma gibba.

Fournal of the Russian Chemical and Physical Sociely, vol. xv. fayc. 9.-On the action of the hydrocarbons of the acetylene series upon oxide of mercury and its salts, by M. Kutscheroff. --Thermic data of pyrosulphuryl, by D. Konovaloff. The heat of formation of a molecule of $\mathrm{S}_{8} \mathrm{O}_{3} \mathrm{Cl}_{2}$ from its elements in a gaseous state is equal to $180^{\circ} 6$ calories. -On a hydrate of silicium obtained from cast iron, by G. Zabudsky.-On the characters of the infra-molecular force, by M. Bardsky (second article).-On electrolytic light, by N. Sloughinoff, being an experimental and mathematical inquiry into the light disengaged during the electrolysis of liquids at one of the electrodes : historical sketeh of the subject ; instruments employed; the laws of the extra-currents of Edlund; light disengaged in a water solution of sulphuric acid, and dependeace of it upon the number of elements in the battery; oscillations of the force of the current; experiments with a rotating glass; wearing of the electrodes ; spectrum ; light in the acid solutions of salts; on the resistance, the electro-spheroidal state, and the heat disengaged; the oscillating currents.-On the theory of the curved nets, by A. Sokoloff.

Atti della R. Accademia dei Lincei, Rome, October 18 and 19, 1883.-On the alterations undergone by the red globules of the blood in malarioas infections, Ly Prof. Ettore Marchiafava. -Meteorological observations made at the Royal Observatory of the Campidoglio during the months of August, September, and October, 1883.

December 2.-Renarks on Dr. F. Mercanti's memoir on the cilian muscle in reptiles, by Signor Moriggia.-On the alterations in the red globules of the blood in malarious infections, by S . Todaro.-Keport on Prof. Fi. Millosevich's memoir on the diameter of Uranus, by S . Respighi.-On the molecular velocities of gascous bodies, by A. Violi.-Note on fluorbenzine and fluorotoluine, by 1'. Eumnuele and O. Vincenzo,-A new series of compounds of titanium, by A. Piccini.- On the transformation of the flaorbenzoic acids in the animal organism, by F. Coppola-A study of the resins of Thapsia garganica, by Fr_{r}. Canzoneri,-On a new species of Salpa (S. dolicosoma), by Fr. Todnro).-Observations on the Pons-Brooks comet, by Pietro Tacchini.-On the nnipolar induced electrie current and nervous excitement, by G. Magini.-Archaological discoveries at Angera, P'eschiera, Viterbo, Rome, Sulmona, and in other parts of Italy, from June to October, 1883 .-S. Sella and S. Mamiani were elected president and vice-president for the ensuing four years, :884.7.

Rirista Scientifico-In lustriale, Florence, November 15-30, ${ }_{1} \mathrm{SS}_{3}$ - Further applications of the nephoscope invented by Filippo Cecchi (four illusteations). -Description of a new electromagnet recently exlibited before the Society of Natural and Econonical Science, at Palermo, by Prof. A. Kiccó. -An account of some of the important results already obtained in the Acclimatication Garden established ten years ago by General Vincenzo Ricasoli at Portercole, by G. Arcangeli. Amongst the exutics here successfully reared are Cocos fexwosa, Calorica borlonica, Phanix reclinata, Boldea fragrans, Citharerylon reticulatun, Casuarina quadrianivis, Edwardsia gramblifora, Eujenias ausfralis, Fïcus dastica, Picconia fragrans, besides numerous species of Bignonia, Agave, Acacia, and Eucalyplus, and other Australian plants.

Rendiconti del R. Istituto Lombardo, Milan, December 13, 1883.-On the distinctions observed in criminal law between the authors and aecomplices in a felony, by Prof. A. Buceellati.lnquiry into the nature of the underground disturbances that
occurred at Ischia on July 28, 1883, by Prof. A. Serpieri.-On nnmbers irreducible by complex numbers, by Prof. C. Formenti. -On some forms of right lines prodnced by two reciprocal stars, by Prof. F. Aschicri.-Meteorological observations made at the Brera Observatory, Milan, during the months of October and November, 1883.

SOCIETIES AND ACADEMIES London

Royal Society, February 14.- "On a New Reflecting Galvanometer of Great Sessibility, and on New Forms of Astatie Galvanometers." By Thomas Gray, B.Sc., F.R.S.E., and Andrew Gray, M.A., F.R.S.E. Commnnicated by Sir William Thomson, F.R.S.

The paper describes first a very sensitive galvanometer, of novel construction, which the authors have bad made, with aid from the Government Research Fund, for their experiments on the electric resistance of glass and allied substances. It consists of two pairs of coils with hollow eores, arranged so that the axes of each pair are parallel and in a vertical plane, which act on a needle-systcm, consisting of two horse-shne magnets of thin steel wire connected by a very light frame of aluminium, and hung with their planes vertical, so that a horse-shoe corresponds to each pair of coils and has its poles within the hollow cores. In the instrument constructed each pair of coils is carried by a vertical brass plate, and these two plates are set so as to make an angle with one another of a hout 106°. A line drawn from the suspension thread (a single fibre of silk) to a point near a pole of either of the needles, when the needles are at the same distance within both pairs of coils, is nearly at right angles to the axis of the coil, and the motion of the ncedle for small deflections is nearly along the axis. The needles enter the eoils from the same side, and ibe current is usnally sent throngh the coils, so that one pair cause their horse-shoe to move outwards and the other pair their horse-sboe to move inwards, thus turning the needle-system ronnd the suspen-ion fibre. A mirror fixed to the alumininm connecting-bar gives a measnre of the deflection in the ordinary manner. This system of needles, when rightly adjnsted, is practieally astatic in a magnetic ficld of uniform intensity.

A magnet (or system of magnets) is generally arranged to give a differential field at the upper and lower ends of the needles, which are nsually placed with unlike poles tarned in similar directions; but any magnetic system may be employed to give directive force in the proper manner and degree for a particular purpose or arrangement.

Another form of the instrument is described in which the coils are all in one plane, and the connecting aluminium bar carrying the horse-shoe ne-rlles passes through the plate in which the coils are set from one side to the other, so that one horse shoe enters its pair of coils from one side, and the other horse-shoe from the other side. When the needle-system is deflected thns, both needles are pushed ont of the eoils or both pulled in.

By the method of arranging the needles and eoils adopted in these instruments the current is made, when the hollow cores are made small, to act very advantageonsly on the needles, and hence in great measure their bigh sensibility. By attaching to the suspended system a small needle to give directive force in a nniform field, the great magnetic moment and leverage of the horse-shoes may be taken advantage of.

The paper then describes a new and very compact form of distributing plate, by means of which a multiple coil galvanomcter, or one in which the coil is wound in sections, may be connected in any desired manner to vary its resistance or its sensibility.

Finally, two forms of instrument are described, in which two perfectly vertical and straight needles connected together rigidly by bars of aluminium are used to give a perfectly astatie system, not disturbed by the magnetiving or demagnctising aetion of neighbouring magnets, a resnit the authors think practically nnatiainable in any arrangement of horizontal needlcs. Two vertical needles, with their npper ends in the position occupied by the npper needle of a so-called a-tatic galvanometer, and their lower ends in the position of the lower needle, experience, if their like poles are turned in dissimilar directions, a similar electromagnetie action to that in the borizontal needles; and the anthors propose when eonvenient to use such an arrangement instead of the ordinary needle sytem.

Also a pair of vertieal needles may be nsed instead of the horse-shoe needles described above, the coils being so placed as
to act advantageously, and give a convenient arrangement of the parts of the instrument.

Geological Society, February 15.-Annual General Meet-ing.-J. W. Hulke, F.R.S., president, in the chair.-The Secretaries read the Reports of the Council and of the Library and Mnsenm Committee for the year 1883. In the former the Couneil congratulated the Fellows upon an improvement in the state of the Society's affairs since the date of their latt Report, the ineome of the Society having been greater, and its expenditure less, in 1883 than in 1882 , while, although the removal from the list of the names of twelve Fellows whose addresses were nnknown, and whose election dated back before the ineorporation of the Socicty in 1826, had produced an apparent loss of three Fellows during the year, the Society might really be regarded as having received an increase of nine Fellows. The increase in the number of contributing Fellows was twenty-two. The Council's Report further announced the awards of the various Medals and of the proceeds of the Donation Funds in the gift of the Socicty.

In presenting the Wollaton Gold Medal to Prof. A. Gavdry, F.M.G.S., the President addressed him as follows :- "Prof. A. Gaudry, - The Council of the Geological Society has awarded yon the Wollaston Medal in recognition of the value of your palzontological researches and the important scientifie gene ralisations yon have deduced from long and laborious observa. tions. The numerons papers on topographical geology and on palzontology you have contributed during the past thirty years your important 'Recherches Scientifiqnes en Orient entreprisepar les ordres du Gouverncment pendant les années 1853-1854, ${ }^{\circ}$ yonr 'Animaux fossiles et géolo, ie de l'Attique,' and lastly, your work 'Les Enchaincments dn monde animal dans le temps géologiques,' have made yonr name so familliar, wherever our branch of natural science is cultivated, that in receiving yon we feel we are not receiving a stranger, bnt a scientifie brother, and one who, by his labours and singleness of aim, has achieved a position as a palacontologist such as few can hope to attain. Pcrsonally it affords me great and sincere pleasure that it has fallen to my lot to hand you this medal, which, by the consent of all, has never been more worthily bestowed."
The President then presented the balance of the proceeds of the Wollaston Donation Find to Mr. E. Tulley Newton, F.G.S., and addressed him as follows :-"Mr. Newton,-The Council has voted yon the balance of the proceeds of the Wolla-ton Donation Fund, in recognition of the valne of your researches amongst the Pleistocene Mammalia of Great Britain, and to assist you in the prosecution of farther investigations. Your memoirs pnblished by the Geological Survcy of England and Wales, 'On the Vertebrata of the Forest-bed Series of Norfolk and Suffolk,' and on 'The Chimeroid Fishes of the CretaceotRocks,' and your papers published in onr fournal are considered by the Conocil to evince great merit; they regard them as a bright earnest of future work which they hope mray be promoted by this award."
In presenting the Murehison Medal to Dr. Henry Woodward, F.R.S., the President said: "Dr. Henry Woodward, -The Council has awarded you the Murchison Medal and a grant of tea guineas in recoznition of your valuable researches into the struclure and classification of the fossil Crustacea, especially of the Merostomata and Trilobita, and your services to the progress of geol ggy in Great Britain by your conduct of the Coulogicind Magasine for nearly twenty years. Your monograph on the 'Merostomata,' published by the Palaontographical Society, and your 'Catalogue of Britihh Fossil Crustacen, with their synonyms and the range in time of each genus and order,' will long continue to be works of reference indispensable to every student of these interesting life-forms. But valuable as are these written records, they discover but a small part of the services you bave rendcred in the advaneement of our science. How mnch more you have done by the assistance yon have so freely given to all who have sought your help at the Museum in deciphering some difficult matters in palaontology will never be fully known."

The President then banded the balance of the proceeds of the Murchison Geologieal Fund to Mr. R. Ftheridge, F.R.S., for transimission to Mr. Martin Simpson, of Whitby, and addressed him as f Alows: "Mr. Etheridge,-The balance of the proceeds of the Murchison Donation Fund has been awarded by the Council to Mr. M. Simpson, Curator of the Whitby Museum. He has devoted much attention to the fossils of that district, and he is the author of two b soks descriptive of them. The Council
bopes that this cheque may be of as ivtance to bim in continuing the useful extra-official work he has long been carrying on iu that locality."

The President next handed the Lyell Medal to Prof. W. H. Flower, F.R.S.f for transn ission to Ihr. Joreph Leidy, F.M.G.S., and addressed biu as follows :-" Prof. Flower, - The Council has bestowed on Dr. J. Leidy the Lyell Medal, with a sum of 25l., in recognition of his valuable contributions to paleontology, enpecially as regards his investigations on the Fo-sil Mammalia of Nebraska and the Sauria of the United States of America, These vast and, in comparison with our oun country, but little explored territories have for some years past yielded a harvest of fossil vertebrate remains of exceeding ricbness, of which we have no exampie here. How well this harvest is being garnered by our Transatlantic confrires the flood of memoirs published by them during the last quarter of a century bears witness. Amongst these scientific larourers in the palmontological haryest-field, Dr. J. Leidy has beld a foremost place. Careful in observing, accurate in recording, cautious in inferring, bis work bas the high merit which trustworthiness always imparts. The well-nigh astounding number of papers witten by him between 1845 and 1873, amounting to 187, his Reports on the 'Extinct Vertebrate Fauna of the Western 'Territories,' bis 'Synopsis of the Extinet Mammalia of North America,' and his 'Cretaceuss Kef tiles of the United State,' testify to the fertility of his fen."

In preenting to Prof, C. Lapworth, F.G.S., the balance of the Lyell Geological Fund, the Preident said: "Pruf. Lapworth, -The Council has awarded to you the balance of the proceeds of the Lyell Donation Fund in recognition of the value of your researches into the palzontology and physical structure of the older rocks of Great Britain, caried on frequently under unfavourable circumstances and to the injury of your health, and to aid you in similar investigation: Your papers on 'The Girvan Succession,' 'The Moffat Series,' published in our Yourna', and 'The Graptolites,' and 'The Secret of the Highlands,' contribated to the Ceological Magazine, were the outcome of an extremely laborions and detailed exploration of the districts to which they refer-an exploration in conducting which you spared no pains and shrank from no hardships. No one who desires to hnow the structure of these districts can safely omit a careful study of these very instructive papers."
The President then handed to Prof. Bonney, F.R.S., for transmission to Dr. J. Croll, a portion of the proceeds of the Barlow-Jameson Fund, and said : "Prof. Bouney, -The Council, in recognition of the value of Dr. James Croll's researches into the 'Later Physical History of the Earth,' and to aid him in further researches of a like kind, has awarded to him the sum of 20 . from the proceeds of the Barlow. Jameson Fund. Mr. Croll's work on 'Climate and Time in their Geological Relations,' and his numerous separate papers on various cognate subjects, including the 'Eccentricity of the Earth's Orbit,' 'Date of the Glacial Period,' the 'Influence of the Gulf Stream,' the 'Motion of Glaciers,' 'Ocean Currents,' and the 'Transport of Boulders,' by their suggestiveness have deservedly attracted muchattention. In forwarding to Dr. Croll this award, the Countil desires you to express the hope that it may assist him in cuntinuing these lines of re earch."
In handing to Prof. Seeley, F.R.S., a second portion of the proceeds of the Barlow. Jameson Fund for transmission to Prof. Leo Lesquereux, F.C.G.S., the President spoke as follows: "Prof. Seeley,-The Council has awarded to Prof. Leo Le quereux the sum of 20 . from the proceeds of the BarlowJameson Fund, iu recognition of the value of bis researches into the palmobotany of North America, and to aid him in further investigations of a similar kind. Prof, Lesquereux's 'Contributions to the Fossil Cretaceous and Tertiary Flora of the Western Territories,' published in the 'Reports of the United States Geological Survey, ${ }^{\text {a }}$ are works which, for their matter, typography, and illustrations, leave nothing to desire. In transmitting this award to Prof. Lesquereux, you will convey to him the hopes of the Council that it may assist him in presecuting further investigations in the difficult branch of research in which he has already accomplished so much."

The Prevident then read his Anniversary Address, in which, after giving obituary notices of some of the Members lost by the Society in 1883 , be passed in review the principal work done by the Society since the last Anniversary Meeting, and finally referred more in detail to some important results obtained elsewhere in connection with the comparative osteology of the Vertebrata, dwelling particularly upon the question of the
existence in the lower jaw of an unpaired bone occupying, or anterior to, the symphysis-the "os présymphysien" of M. Dollo, the "mento-Meckelian" of Cope, the "inferior intermaxillary elemeut" of W. K. Parher,-and upon certain cranial and pelvic characters of the Dinosauria.

The ballot for the Council and Officers was taken, and the following were dnly elected for the ensuing year:-President : Prof. T. G. Bonney, F.R.S. Vice-Presidents: W. Carruihers, F.R.S., John Evans, F.R.S., J. A. Phillips, F.R.S., Prof, J. Prestwich, F.R.S. Secretaries: W. T. Blanford, F.R.S., Prof. J. W. Judd, F.R.S. Foreign Secretary: Warington W. Smyth, F.K.S. Treasurer: Prof. T. Wilshire, F.L.S. Council: H. Bauerman, W. T. Blanford, F.R.S., Prof. T. G. Bonney, F.R.S., W. Carruthers, F.R.S., John Evans, F.R.S., Col. 11. H. Godwin-Austen, F.R.S., Henry Hicks, Rev. Edwin Hill, M.A., G. J. Hinde, Ph.D., J. Hopkinson, Prof. T. M'Kenny Hughes, M.A., J. W. Hulke, F.R.S., J. Gwya Jeffreys, F.R.S., Prof. T. Rupert Jones, F.R.S., Prof. J. W. Judd, F.R.S., J. A. Phillipe, F.R.S., Prof, J. Prestwich, F.R.S., F. W. Rudler, Warington W. Smyth, F.R.S., J. J. H. Teall, M.A., W. Topley, Prof. T. Wiltshire, F.L.S., Henry Woodward, F.R.S.

Chemical Society, February 21.-Dr. W. H. Perkin, president, in the chair.-The following gentlemsen were elected Fellows of the Society :-L. Archbutt, J. H. Burland, D, Bain, W. H. Barr, R. A. Busb, P. S. Chantrell, A. F. Damon, H. C. Draper, T. R. Duggan, V. Edwards W. T. H. El-ley, G. W. Gibson, F. W. Harris, T. Hilditch, R. E. Moyle, P. Morton, W. J. Orsman, F. R. Power, A. F.. Simpson, C. W. Sutton, H. G. Shaw, E. F. Smith, F. W. Tompson, A. Tarn, and E,W. Voelcker.-The following papers were read :-On the composition of the ash of wheat grain and straw growu at Rothamsted in different seasons and by different manures, by Sir J. B. Lawes and Dr. J. H. Gilbert. This is an extremely lengthy paper giving the details of 253 analyses of ashes from produce whose history as to growth, soil, season, and manuring is known. The experiments are given in three series. The first gives the results obtained during sisteen cousecntive seasons under three characteristically different conditions as to manuring, and thus illustrates the influence of the fluctuation of season from year to year. The second represents nine different conditions as to manuring obtained in four seasons-two favourable, two un-favourable-and so shows the influence of characteristic seasons under a great variety of mavuring conditions. The third series represents the proportionally mixed produce for the ten years $18 \mathrm{~g}^{2-61}$, and again for the succeeding ten years, $1862-71$, from ten differently manured plots, and thus brings out the influence of continuous exhaustion or supply of certain constituents. The general results are that the influence of the season on the composition of the ash is very much more marked than the influence of the manure, and that the compositiou of normally-ripened grain is very uniform and in fact only varies in any marked degree according to manure, when there is a very abnormal deficiency of one or more constituents ; the amounts of mineral constituents in the straw have a very obvious connection with the supply or exhaustion of these constituents in the soil. - On the analysis of Shotley Bridge Spa water, by H. Peile. This is a chaly beate water containing $0.0155 \mathrm{grm} . \mathrm{Fe}_{3} \mathrm{O}_{3}$ per litre as ferrous bicarb, nate, 1.73 grm , sodium chloride, calcium salts, some lithium chloride, magnesium bromide and iodide, \&ce.

Zoological Soclety, February 19.-Mr. Osbert Salvin, F. R.S., president, in the chair.-Mr. Sclater laid on the table and made some remarks ou a copy of the lately lssuxd "Guile to the Caleutta Zoological Gardens. ${ }^{\text {n }}$-Mr. W. T. Blanford, F.R.S., made some observations on the collection of drawings of Himalayan birds la'ely presented to the Society's libruy by Brian H. Hodgson, F.Z.S.-Prof. F. Jeffrey Bell real the second part of his contribution to the systemat c arrangement of the Asternidea. In the present communication the author treated of the species of the geuus Ormaster.-A communication was read from M. Fernand Lataste, C.M.Z.S., containing the description of a new species of Gerbille from Arabia. This new species was founded on specimens living in the Society's Gardens, which had been hitherto referred to Gerbillus ary. thrurus, Gray. M. Lataste considered the species to be undescribed, and proposed to call it Mrriones longifrons.-A communication was read from Mr. J. Wood-Mason, F.Z.S., in which he gave a description of a new species of the Neuropterous genus Corydalis. The first example of this insect (a female) was
captured by Lieut. Col. II. II. Godwin-Austen, F.R.S., on the Naga Hils, north-cast froutier of India; but male specimens had since been obtained. The author proposed to call this species Corrydalis asiatica. - A communication was read from Dr. J. Gwyn Jeffreys, F.R.S., on the Molluecn procured during the Lighturing and Porcuptine Expolitions 1868-70, forming the seventh part of bis series of papers on this sulpject. The present part comprised the genera from Rissoa to Acirsa, with seventyfour sp cies, of which fourteen were new to science, as was also one new genus.

Physical Society, February 23.-Prof. F: Guthrie, president, in the chair.-New Members:-Mr. E., F. J. Love, Mr. James Grandy, Rev. F. J. Smith, Mr, F. R. Bawley.-Prof. Silvanus P. Thompson read a paper on a new method of making resstance coils. This consisted in cutting off a liece of the wire of which the coil is to be made, long enough to give a resistance some 2 per cent. higher. From the formula-

$$
\text { Shunt }=\frac{R r}{R-r}
$$

(where R is the rough rexistauce, and r the final resistance), the value of a wire wherewith to shunt the first piece in order to give the resistance required is found. A length of wire giving this resistance (or, rather, about 2 per cent. more) is then cut off and soldered as a shant to the first piece. Practice shows that this method is very quick and accuratc. 1 is is useful for shunts under 10 ohms. Prof. Thompson also described a new form of " meter bridge" devised by him. The wire is 2 mu . lonz, and there are two wires, one of a resistance about $!$ ohm, the other 8.21 ohms. Contact is mate by one or other by a sliding contact with vernier attachel. This arrangement is more couvenient than vernier attachef. single wire meter bridge, and allows of higher resi-tances being measured. A special switch board with an arrangement of mercury cups avoids the necessity of transposing the coils in Foster's method, this being effected by shifting the contact links in the mercury cups.-Mr. R. T. Glazebrook, F.R.S.. explained a cam or axle key devised by Mr. Shaw to effect the contacts neceasary to tranapose the coils by a single movement. He pointed out that a certain pressure was necessary to make good contact with mercury. The ordinary way of making coils was to doable the wire, cut the bight, bare the ends there, and solder a piece of copper across them, which could be shifted until the resitance was got. Prof. G. C. Foster said tbat the copper links in mercury cups should rest on the copper.-Pruf. Foster read a paper ly himself and Mr. Pryson on the difference of potential required to give sparks in air. Let $V=$ this difference of potential, $l=$ length of spark in centimetres, their experiments gave (approximately) $V=102 l+7^{\circ} 7$. Tables and curves of the sparking distances, potentials, and electric fores in the expleriments were given. The results were got with brass balls 1.35 centimetres in diameter, a frictional machine, and a Foster alsolute electrometer. When $I=\mathbf{1 4 2}^{\mathbf{4}}$, the electric force giving a spark was $154 \cdot 76 ; l=28$, the electric force was $133^{\prime} 35$, or less than at a sborter distanee; $l=$ 497, the electric torce was $131.66 ; l=9$, the electric force was $138^{\circ} 57$; that is, th began to rise again.-Prof. G. Forbes made a communication on a magnetied chronometer watch. The watch slowed several minutes a day. He found the rate to vary with the position of the watch with respect to the cardinal points and also in a vertical plane. The bar of the balance was magnetised and some screw nails. He traced the variation of rate to magnetisation of the spring, the bar, and screws. The fact that it varied with position suggested that a magnetised ship's chronometer might be made which would integrate the course and give a mean courne. Messrs. E. Dent and Co. had fitted a gold spring and a platinum iridinm balance to the chronometer, and rendered it non-magnetisable.
Royal Meteorological Soclety, February 20.-Mr. R. II. Royal Meteorological Soclety, February 20-- Mr. R. I,
Scott, M.A., F.R.S., president, in the chair.-T. G. Benn, Capt. C. F.' Cooke, Francis Galton, M.A., F.R.S., Prof. S. A. Hifit, B.S.., Capt. A. W. Jeffery, G. Paul, F.G.S., F.R.II.S., R. Vecerer, H. T. Wakelam, and E. Wells werc elected Fellows of the Society. - The following papers were read :- The great storm of January 26, 1884, by William Marriott, F. R.Met.Soc. This storm was remarkable for its violence and large aree, as well as for the unprecedentedly low barometer reading at its centre. The author has prepared isobaric charts for enct hour from noon on the 26 th to 3 am . on the 27 th, and by this means has tracked the storm across the British Isles. The centre of the depression appears to have first mached the north-west
coast of Ireland at nonn, and passed in a north-easterly direction over the north of Ireland and across the middle of Scotiand. reaching Aberdeen about midnigbt. Its rate of progres was therefore about thirty milesan hour. A vinlent gale was experieneed all over the British Isles, the greatest hourly velacity of the wind being 68 miles at Valencia at 11 a.m., 70 miles at Holyhead at 2p.m., 63 miles at Falmouth at 3 p.m., 69 miles at Armagh and 59 miles at Aberdeen at 5 p.m., 58 miles at Greenwich from 5 to 7 p.m., and 76 miles at Alswiek at midnight. Thunder torms occursed on the south-eastern side of the depression, and travelled across the south of Ireland and England at the rate of abont thirty miles an hour. The lowest readings of the barometer (rediuced to sea.level) yet reported
 at Ochtertyre, near Crieff, at 9.45 . p.m. In the southem part of England, directly after the minimum had oceurred, there was a very sudden rise in the reading of the barometer, in some cases awounting to 08 inch in five minntes. From an examination of previous records, it appears that there has never before been os low a barometer reading as $27^{\circ} 32$ inches, so that this stmrm msy be considered as one of the most remarkable that has occurred in the British I-lands. -The height of the neural plane of pressure and depth of monsoon currents in India, by Prof. E. D. Archibald, M. A , F.R. Met. Soc. - The sunrises and sumsets of Novenher an 4 December, 1883 , and January, 1884 , by the Hoa F. A. Kollo Kusell, M.A., F.R. Met. Soc. The author gives a very interesting account of all the special features of the remarkable sunrices and sunsets which have been observed from Noveaber 8 to February 2. The following are stated to be the marks distingui hing the peculiar sky haze from cirrus :- s . It is commonly much more evenly spread over une sky than cirrus. 2. It is visible (except when very dense or in the peighbourhood of the sun) only about the time of sanrise and sunset. During the day not the faintest trace obscures the clear axure, whereas cirrus becomes more distinct with more daylight. 3. When actually glowing with bright colour, it loses its wavy appearance. 4. It has no perceptible motion, unless perhaps when watched through a long period. 5. It does not interfere with the clear definition of the moon or brilliancy of the stars. 6. It lies, almost without exception, in long streaks, stretching from between south-south-west and west south.west to between northmot theast and eart-month-east. 7. Its radiant point lies, not on the horizon, hut far below it. \&. If both cirrus and sky-hase be present, the sky-huze begins to shine with a red light soon after the cirrus has ceased to glow above the wetern horizon. When cirrus is preseut, however, there is in general a reaction of effects. 9. The sky'haze is destitute of the fibrous twists and angular branches of cirrus, and, since the sunlight leaves it in regular progression, it must be stratified at the same uniform level. io. It has always been visible on every clear day for more than two months, and has been quite independent of wind and wenther.
Entomological Society, February 6.-Mr. J. W. Danning, president, in the chair. -The President nominated Sir S. S. Saunders and Messrs. F. P. Pascee and R. Meldola as vicepresidents for the ensping year. Two new members were elected. -Mr. P. Crowley exhibited specimens of Castnia oudesmia, with exps, larval galleries, and pupa.-Mr. W. F. Kirby exhibited a coloured photograph of an abnormal specimen of the genus Samia, which had been bred by M. Alfred Wailly.-Mr. H. T. Stainton remarked on the food of the larva of Aglassa pin-gzimalis.-The Secretary exhibited photograjphs of the female of Hypocephalus armatus, and read some notes on the sabject by Dr. Sharp.-Mr. F. P. Pascoe exhibited a collection of Cwrcalionide from New Guinea.-The President made some remarks on the attempt to introduce humble-bees into New Zealand. He also called attention to the disappearance of many common butterfies and moths from the neighbourhond of Huddenfield, upon which a discussion ensued, the opinion of most of the speakers being that butterflies were rapidly becoming much scarcer in England than they used to be.-The Secretary read a report from the Committee appointed to inquire into the alleged occurrence of Phylloxera in Vietoria, confirming its presence in that colony.-Mr. J. W. Doughas communicated a description of a new species of Orticria from Monte Cristo.-Sir S. S. Saunders communicated further notes on the caprification of domettic figa.
Anthropological Institute, February 12.-Mr. John Evans, F.R.S., vice-president, in the chair. - The election of Mr. Joseph

Fothergill, F.R.G.S., was announced.-Mr. Park Harrison extibited some remains found la-t year in Castlefield, Wheatley, by Mr. E. Gale, the occupier of the land. The shnlls were of two types, and belonged to subjeets who have been interred for the most part in a flexed or contracted position, bat some at full length. The objects associated with the skulls were aloo diverse. Amongst those lent by Mr. Gale were an unusually long and narrow spear-head and the boss of a target with rivets ornamented with tinned stads, such as have been found elsewhere in Oxfordshire. Other objects excavated at the expense of the late eminent archoologist, Mr. J. H. Parker, and given by him to the Ashmolean Museum, which he had intended to send, were not exhibited, owing to his lamented denth. Mr. Harrison thought the remains at Wheatley dated from the time of the extension of the kingdom of Mercis to the Thames. Dr. Garson is preparing a description of the eranial peculiarities of the skulls.-Mr. Worthington G. Smith exhibited two skulls of the Bronze Age from a tumulas at Whithy.-Mr. Heary Prigg exhibited two Palmolithic implements and a fragment of a human skull from Bury St. Edmund's.-Mr. R. Morton Middleton exhibited some human bones from Morton, near Stockton.-Mr. John T. Young read a paper on some Palaolithic fishing implements from the Stoke Newington and Clapton gravels. Mr. Young exhibited a large colleetion of flint* of various sizes, which be considered had been manufactured for use as fishhooks, gorges, and sinkers; some of them showed evident traces of human workmanship; and the paper gave rise to an animated discusion.-Miss A. W. Buekland read a paper on traces of commerce in prehistoric times, in which she urged that the similarity of three cups of gold discovered, one in Cornwall, another at Mycenx, and the third in the Necropolis of old Tarquinii, might be taken as evidence of the existence of commercial relations between Etruria and Ancient Britain.-A paper was read on a human skull found near Southport, by Dr. G. B. Barron.

Institution of Civil Engineers, February 26.-Sir J. W. Hazalgette, C.B., president, in the chair.-The paper read was on hydraulic propulsion, by Mr. Sydney Walker Barnaby, Assoc.M.Inst.C.E.

Edinburgil

Royal Physical Society, Felruary 20.-Ramsay 11. Traquair, M.I)., F.R.S., president, in the chair.-The following commanications were read :-On the geologieal strueture and age of the Harz Mountains, by H. M. Cadell, B.Sc., of H.M. Geological Sarvey of Scotland, a continuation of his former paper. The rocks of the Palreozoie core of the region had been deposited in an area subject to occasional volcanic outbursts. There were many patches of diahase on the Lower Harz which were usually associated with rocks of Hercynian age, and were regaried by German geologists as portions of interbedded sheets. Mr. Cadell believed they were intrusive sheets and bosses of later date, and gave as his reasons that (i) the adjacent strata were metamorphosed by heat on all sides ; (2) the diabase sometime cut obliquely through the sedimentary strata; (3) there was no tuff as oclated with these diabases as there was with the true interbedded lavas of the Harz ; (4) these diabases did not, like the contemporaneous volcanic rocks, oceur as continuous sheets, but were found in isolated patehes like the intrusive diabases of the Seottish Midlands. The Whintill of Northumberland was cited as an example of an intrusive sheet which, like some of those on the Ilarz, kept on nearly the same horizon for considerable distances, but was not on that account alone to be regarded as interbedded. The first great break in the deposition of the Harz rocks took place in the middle of the Carboniferous period at the time of the irruption of the Brocken granite. The metalliferous veins of Clansthal and St. Andreasberg were all in fanlts traversing the culm strata and the granite, but were truncated by the Zechstein, which rested unconformably on the flanks of the Harz, and were therefore of Permian age. The Harz was bare during the Coal-measure and Permian periods, as conglomerates of Harz fragments were found In these strata. During the Secondary period the whole region appeared to have remained submerged, but the hage fault which bounded the north side of the Harz and inverted the whole of the Secondary rocks showed that the final upheaval had begun at the close of the Cretaceons period.-Remarks on the genus Megalichthys (Ag.), with description of a new species, by R. H. Traquair, M.D., F.R.S. This specimen was found at Bordiehouse, and was believed to be a different speeies from the $M \log a-$
lichthys of the Coal-measures. - On the principles of elas sificati >n, by Prof. J. Cosiar Ewart, M.D. - Oa the ocearie ics of an a tult specimen of Sabine's gall (Larur sabinii) in Scotland, with exhibition of specimen, by Mr. E. Bidwell. Tais was a male bird shot last autumn on a loch in Mull, and is said to be oaly the second specimen of the bird in a matare state kiown to have been found in Europe. Immature specimens of this rare bird have occasionally been met with on the west coast of Irelind, but its home is on the borders of the Aretic region. In eonnection with this, Mr. Harvie-Browa, F.Z.S., made some interesting remarks on the migration of birds.

Paris

Academy of Sciences, February $25 .-\mathrm{M}$. Rolland in the chair, - Notice of the scientific labours of the late M. Th. du Moncel, by M. Edm. Becquerel.-A second communication on hydrophobia, by MM. Patenr, Chamberland, and Roux. The results are reported of further experiments on do 5 s, rabbits, poaltry, sheep, monkeys, ani other animals who were inoculated with the virus, chiefly by trepanning. The object of the operation was to ascertain how far iminunity could thas be secured against rabies eommunicated by mad doges. As many as twentythree dogs have by the process been rendered absolutely safe from the effects of the virus in whatever way and in whatever gnantity administered. To make the whole species in this way free from the disorder would aff red a practical solation of the question in a prophylactie sense, for human beings are never affected by rabies except from virus proceeding directly or indirectly from dogs.-On the equilibriums established between chlorhydric and Aluorhydric acids, by MM. Berthelot and Guntz.General considerations on the distribution of plants in Tunis, and on their chief botavical affinities, by M. E. Cosson.-On the quantities forming a gronp of nonions analogous to the quaternions of Hamilton, by M. Sylvester.-Note on the chief inventions of the Genevere watchmaker, G. A. Leschot, who died on Feb. 4 by M. D. Colladon. Leschot was the first to suggest the use of carbonado (fragments of Brazilian black diamonds) for piercing rocks and tumelling.-Memoir on atmospheric movements above barometric depressions and risings ; schemas deduced from the results of the work of Hildebrand-Hildebrandsson, entitled "On the distribution of the meteorological elements about the barometric minima and maxima," by M. A. Poincaré. R'sumf of the observations made at Cape Horn on atmospheric electricity, by M. Lephay. - Determination of the proportion of carbonic acid present in the air effected by the mission to Cape Horn, by MM. A. Muntz and E. Aubin. From these observations it appears that the quantity of carbonic acid present in the atmosphere at Cape Horn is only about $2^{\prime} 56$ in 10,000 volumes of air, as compared with 2.84 , the average in Enrope--Observations of the Pons-Brooks comet made at the Observatory of Marseilles, by M. Borrelly.-On the appendices to the nucleas of the Pons-Brooks eomet, by M. P. Lamey.On the red glows observed at sunset and sunrise during the mild winter of 1876-77, by M. P. Lamey.-On the rosy, crepuscular after-glows recently observed at Buenos Ayres, by M. Beuf. On a sudden earthquake-wave observed on January 14, at Montevideo, by M. Beuf. At $7.30 \mathrm{a} . \mathrm{m}$. the water suddenly fell several feet, and then rose in two successive waves about $\mathrm{r}^{\prime} 5 \mathrm{~m}$. above the ordinary sea-level. The disturbance seems to have been quite local, and was not felt at Buenos Ayres on the opposite side of the estuary.-On the caleulation of the diurnal rotation of the solar spots, by M. Pansiot. - On the hyperfuchsian groups (mathematical analysix), by M. H. Poincare.-On the propagation of a uniform shock communicated to a gas inclosed in a cylindrical tube, by MM. Sebert and IIugoniot.-On the lowering of the freezing point of solntions of alkaline salts, by M. F. Raoult.-Heat o formation of the chloride and oxychlorides of antimony, by M. Guntz. - On the heat of formation of the oxybromides of mercury, by M. G. Andre.-Synthecis of the pyridic and piperidic bases, by M. A. Ladenburg.-On the addition of the chloride of iodine ICl to monochloruretted ethylene, $\mathrm{CH}_{2}=\mathrm{CHCl}$, by M. L. Heary. -New reduction of the carbamate of ethyl, by M. G. Arth.On ethyl and the methylacetylcyanacetate of ethyl, by M. A. Held. -On theaction of bromuretted ethylene on benzine in the presence of chlorine of aluminium, by MM. Hanriot and Guilbert.-On the action of remnet on milk, by M. E. Duclaux, - Researches on the fermentation of farmyard manure, by M. U. Gayon.-Experimental researches on rabies, showing (i) that birds are liable
to be attaeked; (2) that they recover spontaneously, by M. P. Gibier.-Note on the electric reaction of the sensory nerves of the skin in ataxic animals, by M. M. Mendelssohn.-On the treatment by electricity of the elephantiasis prevalent amongst the Arabs, by MM. Moncorvo and Silva Araujo.-On the poison of the toad and other batrachians, by M. G. Calmels.Un the sexual differences of the Corbaus bifasciafus, and on the pretended eggs of this cole upterons insect injurious to the evergreen oak, by M. A. Laboulbène.-On the coincidences observed between the solar phenomena witnessed in 183 t and 1883 , by M, A. Witz.

Berlin

Physiological Society, February 1.-Dr. W. Wolff had had occasion to make an intimate study of the electrical plates of the torpedo, in the conrse of which he came upon a series of facts which served to explain the still very diverse views of authors on the structure of the electrical organ, and so confirmed his couception of the sulject. The electrical organ of the fish in question consits, as is well known, molly of hexagonal columns extending from the dorsal nsually to the ventral side, though oceasionally not so far. They were embedded in sheaths of ligamentous texture, in which were found the nerves and vessels of the organ, and consisted of single plates of 0012 millimetres thickness piled one above the otber, without any intermediary substance; detached cells of connective ti-sue, each with two or three fine offshoots, were now and again found between the plates, which themselves, in the main consisting of elastic fibres, were easily capable of being coiled in at the edges. In the plates, beiween the fibres were found detached round granules of a diameter equal to the thickness of the plates. These granules were for the most part enveloped each in a transparent sheath. On the lower side of the plate were seen punctiform organs eonsisting of small, powerfully refracting grannles of a semi-liquid gelatinous consistence. Hitherto they had been for the most part regarded as the terminal organs of the nerves, and in the descriptions given of them by different authors the most diverse structures were imputed to them. According to Dr. Wolft, however, these were all accidental productions. The granules had no relation whatever to the nerves, their only fnnction being probably that of making the plates cohere. The nerves ran in the sheaths of onnnective tissue belonging to the columns, and there split up into bundles of primitive fibers bending each to a single plate, In order to spread ont on its lower side, dividing, as they constantly did, in a dichotomous manner. Soon the medullary sheath terminated either at a dividing spot or in the course of a twig, and all that remained was but the axial cylinder with the Schwann sheath. The dichotomous partition having been pushed forward to the most delicate filaments capable of being recognised, the Sehwann sheath passed over into the membrane of the plate, while the axial cylinder in all probability came suddenly to an end.Prof. Kronecker handed in a treatise for the Procedings, in which he rebutted as unjustifiable the elaims of priority advanced by M. Arloing in Paris against Herren Kronecker and Meltzer in the matter of the stoppage of the movements of swallowing. Dr. Mocli gave a report on changes occurring in the cortex of the cerebrum of guinea-pigs, which he had observed after cutting through the eapsula interna of the thalamus. Conjectures he had made on the course of the fibres in the cerebrum led him to cut through the fibrous courses of the corona (Stabkranz) radiating from the thalamus and running to the cerebrum at a point as far as possible from the cerebral cortex, and after a considerable time to examine the changes that had been produced in the cortical tissne in consequence of this cutting. By this examination he found that a large part of the fine filaments of the cortical substance had degenerated and faded away. A part of the ganglia, on the other hand, had eontinned unchanged, while an ther part had been essentially altered. Altogether Dr. Moeli distinguished in the cortex four specios of ganglia: (1) ronnd, (2) fusiform, (3) pyramidal, and (4) suall and round, with short appendages. The first two, slightly tinged with colouring matter, remained unchanged on the side operated on, and like those on the sound side. The pyramidal and caudated cells, on the other hand, which were strongly tinged with colouring matter, had shrunk on the side operated on, and were greatly altered from those on the sound side. From this Dr. Moeli concluded that there was a centripetal pro pagation of the degeneration from the cut fibres to their central ganglia.-Dr. J. Munk took a survey of the various views held on the resorption of fat, and called to mind that in former experi-
ments he had demonstrated how sebacic acids might, in the process of nourishment, take the place of neutral fat, but that even in the chyle neutral fats were alone to be found. By many physiologists the absorption of neutral fats from the food was disputed, and it was sought to derive the whole deposition of fat from decomposed albamen. Dr. Munk considered the arguments adduced in support of this view as not pertinent, and had repeated the fundamental experiment, which consisted in the absorption of a heterogeneous, and therefore easily demonstrable, neutral fat. He gave a dog, which through a long course of starvation had lost almost all the fat of its body, a large quantity of rape seed, and only so much albumen as was just necessary for the preservation of its life. After having been kept on this artificial foxd for a length of time, the dog was killed, and the fat of the skin, together with that of the ventral cavity, was melted in one lot, and compared with the fat of a dog that had been normally fed. The very appearance of the two kinds of fat under the temperature of the sitting room was greatly different. The fat of the dog fed on rape seed was clear and fluid, and bad but a little sediment of a firmer fat, while the fat of the normally fed dog formed a soft opaque mass. Chemically analysed, the first yielded some 80 per cent. of sebacic acid, while the normal fat contained but 68 per ceat. of sebacic acid. Finally, Dr. Munk was able to demonstrate the presence of erueic acid in the fat of the rape-seed fed dog, though in a somewhat impare state, a face which conclusively proved the absorption of rape seod, and therefore of alimental fat. Dr. Munk stated that at the next meeting of the Society he would communicate further experiments regarding thc formation and deposition of the fat in the animal body.-After their addresses Dr. Wolff and Dr. Moeli gave demonstrations in the demonstrating hall of the P'hysiological Institute.

CONTENTS
Page

Recent Text-Books on Technology. By Prof. T.

E. Thorpe, F.R.S. 425

Marine Engineering 425
Our Book Shelf:-
Anderson's "Guide to the Calcutta Zoological Gardens"

426

Letters to the Editor:-

Earthquakes and Air. Waves,-General Richard Strachey, C.B., F.R.S. ; Maxwell Hall
The Remarkable Sunsets.-Edward J. Bles .
Instinct-George J. Romanes, F.R.S. ; Wim 427
Brown 428
"Mental Evolution in Animals,"-F. J. Faraday; G. J. Romanes, F.R.S.

Natural Snowballs.-Prof. Samuel Hart
Common Domestic Duck Diving for Food.-Dr. John Rae, F.R.S.
Cireular Rainbow 'seen from a Hill'top,-Dr. W. Hale White
Girton College.-Certificated Student
425
Girton College.-Certificated Student Min Aslands.
Anthropological Notes in the Solomon
By Surgeon H. B. Guppy
On the Classification of the Ascidize Compositze.
By Prof. W. A. Herdman
A Meteorological Laboratory (With Mlustrations) - 431
Sclence in Rome. Hy Prof. A. H. Keane . . . 433
Nlels Henrik Cordulus Hoffmeyer 434
Notes 435
The Six Gateways of Knowledge. By Prof. Sir
William Thomson, LL.D., F.R.S. 43^{88}
The Geological Position of the Human Skeleton found at Tilbury
Notes on the Volcanic Eruption of Mount St. Augustin, Alaska, October 6, 1883 . By George Davidson, Assistant U.S. Coast and Geodetic Survey
The Origin of the Scenery of the British Islands. By Archibald Geikie, F.R.S., Director-General of the Geological Sarvey
University and Educational Intelligence 443
Scientific Serials 443
Societies and Academies 444

THURSDAY, MARCH 13, 1884

POLISH BONE CAVES

The Bone Caves of Ojcow in Poland. By Prof. Dr. Ferd. Römer. Translated by John Edward Lee, F.G.S., F.S.A., Author of "Isca Silurum," \&c., Translator of Keller's "Lake Dwellings," Merk's " Kesslerloch," \&c. (London: Longmans, Green, and Co., 1884.)

ARANGE of Oolitic hills, extending, in a northwesterly direction, from Cracow in Galicia to Czenstochau in Russian Poland, a distance of about fifteen German miles, contains the caverns termed, as we learn from the title of the work placed at the head of this article, "The Bone Caves of Ojcow," from a town of that name within the Russian frontier, and about three German miles north of Cracow. These caverns first attracted scientific attention from the fact that their deposits, worked for manure, were found to be rich in bones. Prof. Römer visited them first in 1874, and, having obtained funds from the Royal Prussian Ministry of Instruction, and subsequently from the Royal Acaderny of Sciences at Berlin, the work of investigation was begun in 1878, and carried on, at intervals, to the summer of $\mathbf{1 8 8 2}$.

The facts disclosed, with speculations respecting them, were embodied in a work apparently published early in 1883 ; and there can be no doubt that, by preparing and publishing the translation now before us, Mr. Lee has added to the obligation under which his previous labours, both as author and translator, have laid English readers. The volume is enriched wish twelve admirable plates; a charming Woodburytype frontispiece, exhibiting a magnificent skull of Ursus spelieus; and a useful sketch-map of the situation of the bone caves.

The caverns investigated were nine in number ; and it must be stated here that, from 1873 to 1879 , Count Johann Zawisza of Warsaw had with great care carried on researches in two of them-the Lower and the Upper Caves of Wierszchow, to the former of which he gave the name of Mammoth Cave.

The following brief statements respecting the caves themselves must suffice :-

The Cave of Jermanowice, about 1 German mile west-south-west from Ojcow, and the largest of the series, is about 230 metres long, tortuous, made up of a series of small grottoes connected by narrow passages, and famous as the richest of the caves in its palrontological and archacological relics.

The Cave of Kozarnia, about 6 of a German mile west-north-west from Ojcow, measured about 59 metres long, bad a large entrance, and was rich in remains of mammals and of human industry, of which the greater part bad been found, and unfortunately dispersed beyond recovery, before Prof. Römer's researches began.

Near Wierszchow, almost on the frontier of Russian Poland and Galicia, rather more than I German mile due south from Ojcow, there are two caverns known as the "Lower" and the "Upper," the former being Count Zawisza's Mammoth Cave, as already stated. The Lower Cave is about 19 metres long, 13 metres wide, has two narrow lateral ramifications, and is about 577 metres from the Upper Cave.

The Cave of Zbojecka, about 2 of a German mile south-west from Ojcow, is very low at the entrance, but expands at once into a tolerably high arched space, whence two branches are sent off; that on the right being 129 metres long and 4 wide, while that on the left is but short.

The Cave of Czajowice, a short distance south of that just mentioned, is about $16 ;$ metres long. Its stalagmites are more considerable than those of any of the other caverns, attaining in some places a foot in thickness.

Sadlana Cave, about ' 5 of a German mile north-northwest from Ojcow, and the most northerly of the series, has four entrances, and throws off two lateral branches, which, being blocked up with stones, have not been examined.

Bembel Cave, about : German mile south-west from Ojcow, is of but small extent.

Górenice Cave, about 3 German miles west-southwest from Ojcow, the most westerly of the scries, and on the frontier of Russian Poland and Galicia, is so very low that a man can rarely stand erect in it, and has two entrances about 40 metres apart.

An oolitic floor appears to be very seldom reached in any of them. They generally contain a deposit of angular pieces of oolite, from an inch in diameter to the size of the fist, mixed with dark brown calcareous clay, and attaining in some cases a thickness of 6 or 8 feet. A few blocks of oolite, some of them containing several cubic feet, are occasionally met with in the deposit, and it is believed that the entire mass was derived from the walls and roof. In most of the caves there are horizontal layers of coarsely crystalline stalagmite, varying from a few inches to upwards of a foot in thickness.

All the caverns have yielded bones, occurring sometimes under the stalagmite and not unfrequently embedded within it, and most of them have entirely lost their gelatinous matter. An entire infra-human skeleton has never been found, nor does there appear to have been anything like even a distant approash to it ; indeed, except in one solitary case, the two rami of every lower jaw were separated.

Few, probably none, of the caves have received an exhaustive scientific exploration, and it is stated of most ot them that they have only been very partially examined. Unfortunately, as we learn from Prof. Römer, it cannot be always positively stated from which bed the specimens were taken; "but," he adds, "the case is the same with most of the caves which have been excavated in Germany." We agree with hitn that this could only have been avoided by carrying the work on quite slowly and with great precaution under the continued superintendence of a scientific manager, and we venture to add that such a price would have been well worth paying. It must be stated, however, that Count Zawisza, having mainly devoted himself to one of the caves, in which the daylight was available for the whole work, and on which he appears to have spent at least portions of seven years, was able to note the exact situation of each specimen.
The caverns yielded remains of fifty species of mammals, twelve of birds, and two of reptiles. All the birds belong to species still inhabiting the British Isles as well as continental Europe, with the possible exception of very scanty relics of the genera Emberisa and Hirundo, and may be dismissed with the remark that they arc

VOL XXIX.-NO. 750
to the nerves and the bones, we have gone beyond the subject I proposed to speak upon. My subject belongs to physical science; -what is called in Scotland, Natural Philosophy. Physical science refers to dead matter, and I have gone beyond the range whenever I speak of a living body; but we must speak of a living body in dealing with the senses as the means of perceiving-as the means by whieh, in John Bunyan's language, the soul in its citadel acquires a knowledge of external matter. The physicist has to think of the organs of sense, merely as he thinks of the microseope; he has nothing to do with physiology. He has a great deal to do with his own eyes and hands, however, and must think of them, if he would understand what he is doing, and wixhes to get a reasonable view of the subject, whatever it may be, which is before him in his own depirtment.
Now what is the external object of this internal action of hearing and perceiving sound? The external object is a change of pressure of air. Well, how are we to define a sound simply ? It looks a litule like a vieious cirele, but indeed it is not so, to say it is sound if we call it a sound-if we pereive it as sound, it is sound. Any ehange of pressure, which is so sudden as to let us perceive it as sonnd is a sound. There [giving a sudden clap of the hands] -that is a sound. There is no question about it-nobody will ever ask, is it a sound or not? It is sound if you hear it. If you do not hear it, it is not to you a sound. That is all I can say to define suund. To explain what it is, I can say, it is change of pressure, and it differs from a gradual change of pressure as seen on the barometer only in being more rapid, so rapid that we perceive it as a sound. If yon could perceive by the ear, that the barometer has fallen two-tenths of an inch to day, that would be sound. But nobody hears by his ear that the barometer has fallen, and so he does not perceive the fall as a sound. But the same difference of pressure cominz on as suddenly-a fall of the barometer, if by any means it eould happen, amounting to a tenth of an inch, and taking place iu a thousandth of a second, -woald affect us quite like sound. A sudden rise of the barometer would prodnce a sound analogous to what happened when I clapped $m y$ hands. What is the difference between a noise and a musical sound ? Musical sound is a regular and periodic change of pressure. It is an alternate augmentation and diminution of air pressure, occurring rapidly enough to be perceived as a sound, and taking place with perfect regularity, period after period. Noises and musical sounds merge into one another. Musical sounds have a possibility at least of sometimes ending in a noise, or tending too much to a noise, to altogether please a fastidious musical ear. All roughness, irregularity, want of regular, smooth periodieity, has the effect of playing out of tane, or of music that is so complicated that it is impossible to say whether it is in tune or not.

But now, with reference to this sense of sound, there is something I should like to say as to the practical lesson to be drawn from the great mathematical treatises which were placed before the British Association, in the addresses of its president, Prof. Cayley, and of the president of the mathe matical and physical section, Prof. Henrici. Buth of these professors dwelt on the importance of graphical illustra:ion, and one graphicul illastration of Prof. Cayley's address m my adduced in respect of this very quality of sound. In the languige of maliematics we have just "one independent variable" to deal with in sound, and that is air pres ure. We have not a complication of motions in various directions. We have not the complication that we shall have to think of presently, in connection with the sense of force; complieation as to the place of application, and the direction, of the force. We have not the infinite complications we have in some of the other senses, notably smell and taste. We have distinctly only one thing to consider, and that is air pressure or the variation of air pressure. Now when we bave one thing that varies, that, in the language of mathematics, is "one independent variable." Do nut inngine that mathematics is harsh, and crabled, and repulsive to common sense. It is merely the etherealisation of common enve. The function of one independent variable that you have here to deal with is the pressure of air on the tympanum. Well now in a thousand counting houses and business offices in Birmingham and Iondon, and Glasgow, and Manchester, a curve, as Prof. Cayley pointed out, is regularly used to show to the eye a funetion of one independent variable. The function of one independeut variable most important in Liverpool perhaps may be the price of cotton. A curve showing the price of cotton, rising when the price of cotton is high, and sinhing when the puice of cotton is low, shows all the complicated changes of that independent variable
to the eye. And so in the Registrar-General's tables of mortality, we have curves showing the number of deaths from day to daythe painful history of an epidemic, shown in a rising branch, and the long gradual talus in a falling branch of the curve, when the epidemic is overeome, and the normal state of health is again approached. All that is shown to the eye; and one of the most beautiful results of mathematies is the means of showing to the eye the law of variation, however complicated, of one independendent variable. But now for what really to me seems a marvel of marvels: think what a complicated thing is the result of an orchestra playing-a hundred instruments and two hundred voices singing in choras accompanied by the orchestra. Think of the condition of the air, how it is lacerated sometimes in a eomplicated effect. Think of the smooth gradual increase and diminution of pressure-smooth and gradual, though taking plaee several hundred times in a second-when a piece of beautifal harmony is heard! Whether, however, it be the single note of the most delicate sound of a flnte, or the purest piece of harmony of two voices singing perfectly in tu:e ; or whether it be the crash of an orchestra, and the high notes, sometimes even sereechings and tearings of the air, which you may hear fluttering above the sound of the chorus-think of all that, and yet that is not too complicated to be represented by Prof. Cayley, with a piece of chalk in his hand, drawing on the blackboard a single line. A single curve, drawn in the manner of the curve of prices of cotton, describes all that the ear can possibly hear, as the result of the most eomplicated musical performance. How is one sound more complicated than another? It is simply that in the complicated sound the variations of our one independent variable, pressure of air, are more abrupt, more sudden, less smooth, and less distinctly periodic, than they are in the softer, and purer, and simpler sound. But the superpasition of the different effects is really a marvel of marvels ; and to thlnk that all the different effects of all the different instruments can be so represented! Think of it in this way. I suppose everybody present knows what a musical seore is-you know, at all events, what the notes of a hymn tuue look like, and can under-tand the like for a chorus of voices, and accompanying orchestra-a "score" of a whole page with a line for each instrumen, and with perhaps four different lines for four voice tarts. Think of how much yon have to put down on a prge of manuseript or print, to show what the different performers are to do. Think, too, how mueh more there is to be done than anything the composer can put on the page. Think of the expression which each player is able to give, and of the difference between a great player on the violin and a person who simply grinds suecessfully through his part ; think, too, of the difference in singing, and of all the expression put into a note or a sequence of notes in singing that eannot be written down. There is, on the written or printed page, a little wedge showing a diminuendo, and a wedge tarned the other way showing a crescendo, and that is all that the musician can put on paper to mark the difference of expression which is to be given. Well now, all that can be represented by a whole page or two pages of orchestral score, as the specification of the sound to be proluced in say ten seconds of tixe, is shown to the eye with perfect clearness by a single curve on a riband of paper a hundred inches lo-g. That to my mind is a wonderful proof of the ptency of mathematice. Do n it let any student in this Institute be deterred for a unoment from the pursuin of mathematical studies by thinking that the great mathematicians get into the realm of fonr dimensions, where you cannot follow them. Take what Prof. Cayley him elf, in his admirable address, which I bave already referred to, told us of the beautiful and splendid pawer of mathematics for ethercalising and illustrating common sense, and you need not be disheartened in your tudy of mathematic, but may rather be reinvigorated when yon think of the power which mathematiciane, devoting their whole lives to the study of mathematicr, have succeeded in giving to that marvellous science.
(To be continued.)

THE GEOLOGICAL POSITION OF THE HUMAN SNELETON FOUND AT TILBURY
IN a paper on this subject read by Mr. T. V. Holmes, F.G.S., at the meting of the Essex Field Club on Saturday, February 23, at Duckhurst Ilill, the author pointel out that the Tilbury skeleton was found in recent alluvium. The section at
better, though still rough, workmanship, was a small pipkin-like vessel, with its handle perfect. Some of these pieces were roughly and simply ornamented. Specimens from the uppermost level were clearly more modern.
Three of the caves yielded dark gray or black spindlewhorls of burnt clay, of fairly good workmanship.

The metal objects included a bronze fibula and ring, a silver coin supposed to be about the year 140 , and iron arrow- and lance-heads of medixeval form.
We are grateful for this contribution to the palaontology and anthropology of Europe, and are encouraged by it to entertain the hope that Prof. Römer may be enabled to make arrangements for the complete and systematic exploration of at least one of the Ojcow caves at present untouched; and that sufficient means may be at his disposal to place the work under continued scientific supcrintendence.

OUR BOOK SHELF

Poisons: their Effects and Detection. By Alex. Wynter Blyth, M.R.C.S. (London: Charles Griffin and Co., 1884.)

THis claborate volume forms a part of the second edition of the author's treatise on "Practical Chemistry,' which has been wisely split up into two volumes, one on "Foods," the other on "Poisons." Mr. Blyth's experience as a health-officer and public analyst guarantees that his conclusions are largely based on actual practice as a toxicologist ; and the book will be found to abound in records of his own experiences.

But Mr. Blyth is also an accomplished linguist, and his book bears ample evidence of extensive reading, and a wide acquaintance with the European literature of toxicology. Almost every page teems with references to original mernoirs in the French, German, and Italian languages; and this circumstance alone would render it an indispensable work of reference to be placed in the library of every toxicologist. But "Poisons" has other and distinguishing merits.
The general reader will find the introductory chapter on the old poison-lore of great interest, and replete with many but little known facts and fables relative to the history of poisons and their secret administration. Following on this we find a succinct account of the growth and development of the modern methods of chemically detecting poisons, at the end of which nearly three pages are devoted to a bibliography of the chief works on toxicology of the present century, in which we miss any reference to one of the most complete treatises on poisons extantthat forming the bulk of the seventeenth volume of Ziemssen's "Cyclopardia of Medicine."

In giving a scientific definition of a poison, Mr. Blyth somewhat enigmatically remarks that "The definition of a poison, in a scientific sense, should be broad enough to comprehend not only the human race, but the dual world of life, both animal and vegetable." He finally defines a poison thus:-"A substance of definite chemical composition, whether mineral or organic, may be called a poison, if it is capable of being taken into any living organisms, and causes, by its own inherent chemical nature, impairment or destruction of function." He excludes the bacteroid bodies met with in certain diseases, but apparently ignores the views of those observers who are of opinion that these organisms form or excretc true poisons of definite chemical constitutions.
A novelty in the work is the devotion of a section to what are termed "life-tests," i.c. the identification of poisons by their effects on living animals. This, and the elaborate instructions given on the authority of various writers, as to the methods to be adopted for separating and identi-
fying the various poisons, will be found invaluable to the analyst ; and his only difficulty will be the choice of one out of the almost innumerable methods given for the separation of a single poison, say arsenic or opium.

Thomas Stevenson

Informe Official de la Comision cientifiaa agrogada at estado mayor general de la Expedicion al Rio Nigro (Patagonia) realizuda en los meses de Abril, Maye, y Junio de 1879, bajo las brdenes del Gieneral D. Julso A. Roca. Entrega 1. Zoologia (con 4 laminas). Part 1. $410,168 \mathrm{pp}$. (Buenos Ayres, 1881.)
In 1879 the Government of the Argentine Republic despatched an expedition to the southern confines of their territory for the suppression of the hordes of Indians that had for many years previously rendered the district of the Rio Negro unsafe to travellers and to settiers. Under the command of Geural Roca these marauding savages were successfully driven off to the south of the Rio Negro, and a new frontier, which they are not allowed to cross northwards, was established. Gencral Roca (whose excellent example on this occasion it would be well if some of the Governments of Europe would follow) having invited a commission of scientific men to accompany his expedition, Dr. P. G. Lorentz and Mr. G. Niederlein were sent with him as botanical collectors, and Herr Schulz, Inspector of the Zoological Museun of Cordoba, as zoologist. The results of the last-mentioned naturalist's labours are contained in the volume now before us, which has been prepared by Dr. A. Doering, with the assistance of Dr. Berg, Dr. Holmberg, and D. Enrique Lynch Arribálzaga, and is highly creditable to the youthful Academy of Natural Sciences of Cordoba, to whom, it would appear, the task of working out the scientific collections was intrusted.

Dr. Doering commences his labours by a chapter of general observations upon the fauna of the newly occupied territory, which he divides into four "zoogeographic zones"-(1) the region of the Southern Pampas ; (2) the river-region of Northern Patagonia; (3) the central mountain-region ; and (4) the eastern slopes of the Cordillera. The two last regions being very little known and not having been traversed by the expedition, are not discussed in the present essay, but the two former are subdivided into minor districts, and the principal zoological characters of each of their subdivisions are pointed out. Lists are also given of the principal mammals, birds, amphibians, and land-mollusks that are chiefly peculiar to the differcnt districts.
Dr. Doering's instructive "zoogeographical" essay is followed by the systematic portion of the volume, in which the vertebrates and land-shells are treated of by the same naturalist, while his colleagues, Dr. Berg and Dr. Lynch Arribalzaga, have worked out the insects, and Dr. Holmberg the arachnidans. We have thus before us an excellent basis for a fauna of this hitherto little-known portion of the great Neotropical Region, which does credit alike to the Government of the Republic which instituted the investigation, and to the Academy of Natural Sciences of Cordoba, under whose auspices the work has been elaborated.

LETTERS TO THE EDITOR

†Ths Editer does not hold himsel] responsible for opinions expressed by his correspondents. Naither can he undertake to return, or to correspond with the zeriters of, rejerted manuscrifts. No notice is taken of anonymous communications.
[The Editor wrgently requests correspondents to kepp thair leftrest at short as possible. The pressure on his sface is so great that is is impossitle othowise to insure the afprarance reen of comm, snications containing intresting and novel facts.]

Instinct

In bis let:er under this beading in last week's Nature. (p 428 , Mr. Komanes says that I now admit that the actions of
animals testify to some carresponding mental states. If he will kindly refer to my original paper he will find that my views have not undergone the change he implies, for I then w rote: "We have therefore grounds for believing that, running parallel to the neuroses of animals, there are certain psychoses"; and again: "Animal minds are alto ejective ; they are more or less distorted images of our own mind v "; and, in my " Conclusion," *While fully admitting the great interest that at taches to the study of the inferred mental faculties of the higher brutes," \&c.

Were I to take his concludinz remark seriously, and say that, if I were the only individual to hold the view that the mental life of animals cannot be the subject-matter of a science, this would not prove my view untrue, Mr. Romanes would swile at my want of appreciation of his powers of sarcasm. I content myself with drawing Mr. Romanes' attention, and that of your readers, to the following quotations from Prof. Huxley's volume on the Crayfish :-" Under these circumstances it is really quite an open question whether a crayfis has a mind or not ; moreover, the problem is an absolutdy insolusle one, inasmuch as nothing short of being a crayfish would give us positive assurauce that such an animal possesera con-ciousness. So we may as well leave this question of the crayfish's mind on one side for the present, and turn to a more profitable imvestigation," \&c. (p. 89). And again: "At the most, one may be justified in supposing the existence of something approaching dnll feeling in ourselves, and so far as such obscare consciousness accompanies the molecular changez of its nervous substance, it will be right to speak of the mind of a crayfish" ($p, 126$).

The question now seems t) turn on what we mean by a science. Animal minds, as ejects, are distorted imacges of our own minds Can we frame a science which deals with these distorted ejects? Could we frame a science of astronony if the only method of procedure were to observe the stars and planets in mirrors of varying and unbmovn curvathre? If we can give an affircnative answer to the latier question, I am ready to admit that, in the same degree, we can give an affirmative answer to the former.
C. Lloyd Morgax

Circular Ralnbow seen from a Hill-top

Reamng Mr. Fleming's letter ln your issue of January 31 (p. 310), I am moved to put on record an observation of my own involving shadows an't rainbows upon a cloud. On August 19, 1878, I was encamped upon a plateau known as Table Cliff, in the sonthern part of Utah Territory. The plateau has its longer dimension north and south, and ends southward in an acute promontory, precipitous toward the south, west, and east. The altitude is about 10,000 feet. On that day the air was moist, and sasttering clonds were to he seen both in the valley beneath and in the sky above. A strong wind blew from the west. On that side of the promontory the air was clear ; but at the cre-t a cloud was formed, so that the view castward waz completely eut off. This phenomenon is not unusual on mountain summits, and has been plautibly explained as due to the sudden rarefaction of the air on the lee-side of an olsstacle. Standing on the verge of the cliff just bef ore sun-et, I 57 w ing own shadow and that of the cliff divtinetly outlined on the cloud. The figure appeared to be about fifty feet distant, and was not colossal. About the head was a bright halo with a diameter several times greater than the bead. Its colours included only a portion of the rainbow series, but I neglected to record them, and do not venture to recite from menory. At the usual angle out-ide there appeared two rainbuws of great brilliancy, likew ise concentric with the head. They did not describe complete circles, but terminated at the Ieft and beneath, where they met the shadow of the cliff. I esti nated that 225° of are were dis. played. The phenomenon was continuous for some hourx, the clud-mass being persistent in position, notwithstanding the fact that its particles had a velocity of twenty-five or thirty miles an hour.

The olservation has more than a scientific interest, because, in the popsular imagination, the heads of scientific observers are not usually allorned with halos.
G. K, Gilbert

Washington, U.S.A., Felruary 25

Right-sidedness

Is all the letters thus far mblished in Nature on the wabject of she teade.sy to deflection in walkiag, 1 find two things confounded which are quite distinct. There are two distinct senses
in which we may use the term right-leggrduess: the one refers to strength, the other to dexterity or accurate co-ordination of muscular action. In the arm these two always go together; for dexterity gives greater use (dexterity, I believe, is largely inherited), and use gives greater strength. But in the leg these may be and often are dissociated. As Prof. Darwin truly says, the left leg is often the stronger, but I believe the right is nearly always the tnore dexterous. My own case is a typical one. I hop on my left leg, and rise from it in junaping. But I do st not only because the left is stronger, but also, and I think mainly, because I use the right more dexterously as a swinging weight. The dexterous management of the free leg is certainly no less important than the strength of the jumping leg. Ia kicking or performing any other movement requiring dexterity, I stand on the left leg and use the right.

In my own case the whole body is right-sided, as far as dexterity is concerned. Impressions on my left eye are as vivid, perhaps even more vivid, than on my right, yet I see more intelligently (as, for example, in using a microscope) with my right. In the case of douhle images of near objects when lonking at a more distant oue, it is the left-eye image (the right in position) whicl! I neglect. In pointing with the finger, whether of the right or left hand, with both eyes open, it is the right-eye image of the finger (the left in positiou) that I range with the object. In the case of two or three left-handed persons on whom I have made observations, I have furnd, on the contrary, that it is the right-cye image that they neglect, and the left-eye image tha: they use in pointing.

JOSEPH Le Conte
Berheley, California, February 19

"Sulcide" of Black Snakes

While encamped near Mount Wynne, Kimberley district, for a few days from June 13 , iSS_{3}, our survey party saw and killed several black suakes averaging about five feet in length. In tbree days I saw seven of these unpleasant visitors in our camp. As is well known, the black snake is one of the most venompns of the Australian ser; ents, and whenever met with is if possible destroyed. I have seen many killed, but usually they die hand; and even when the back is broken in several places will linger for more than an hour, still capable of revenging themselves on an incautious assailant.

On this occasion our men had di-abled onc, and as I was anxions to obtain the skin I indnced them to let it alone (they usually cut off the head so as to insure death). While we were looking at it some large black ants attacked the wounded part-about three feet from its head-when it instantly turned short rounad and hit itself twice in the neck, with seeming determination. In less than one minute it was dead. There can be no doubt, therefore, that it was poisuned by its own venom.

I do not know if such a custom on the part of snakes has been recorded. However, my men assured me that they had often witnesed similar occurrences, especially in the case of the "death" or "deaf" adder, a very venomous Australian snake. One man informed me that he had often insured the death of this reptile by simply piuning him to the gronnd by means of a forked stick. In all cases the reptile would turn round, bite himself, and die instantly.

Edward F. Hardman,
Government Geulogist
Perth, Western Australia, January 28

Sea Fish in Freshwater Rivers

Dering my journey up the Fitzroy River with the surveying party from King's Sound to the Leopold Ranges (between lat. $17^{\circ} 4^{\prime}$ and $18^{\circ} 20^{\prime}$ S.), I observed many npecimens of sword-an-1 saw-fish. They appeared at intervals the whule way up the river, but none observed were more than three feet or three feet six inches long. About 300 miles up on the Margaret River I procured the saw of a small one. It measures about nine inches long and two inches wide. A few days after this, a little higher up the river, some of our men found a shark five feet long, and recently killed, probably hy natives. I could not vieit the place, as we were then about to break up camp for our return, but the men showed us sonte of the teeth, which were unmistakably those of a shark. They were, besides, well acquainted with the appearance of that fish.

Sowe time after this, when returning down a branch of the Fitaroy, and camped in the sand of the river bed, I found the
body of a small young shark. It was about eighteen inches long. I secured this as evidence. This locality is about 170 miles from the mouth of the river.

Daring the six months we were in the country, the bed of the river, which varies from 50 to 800 yards in width, was almost dry, with the exception of deep pools at intervals connected with each other by a narrow stream, often very shallow, running under the high banks. In the summer time the river is deeply flooded, the waler rising ten to twenty feet (as shown by drift wood in trees) above the banke, in many places from forty to fifty feet high. The force of the flood might at its height prevent fish going up, bat they could easily arcend in the intermediate seacon. In some cases the fish must have lived months in the upper watery, for portions of the Margaret, at least, are absolutely dry in the winter season, May to November usually.

1 am not aware that such a circumstance has ever been noted before. If not, the fact is sufficientiy interesting in itelf. It is also important from a geologiral point of view, as showing that some caution must be observed in the classification of strata as freshwater or marine on the evidence of fish alone. No doubt many of these remains are embedded in the river detritus, and if discovered at some future time when the physical ge slogy of the country has altered, might lead to the conclusion that these deposits were of marine origin.

Edward F. Hardman,

II.M. Geological Survey, Government Geologist

Perth, Westera Aus'ralia, January 28

The Zodiacal Light

One of the members of the staff of this establishment, Mr. E. G. Constable, observed a brilliant appearance of the zodiacal light at about $7 \mathrm{p} . \mathrm{m}$. On the evening of Wednesday the 5th inst., the cone of light being exceedingly well defined. The phenomenon was not visible long, baving completely disappeared by $7.20 \mathrm{p} . \mathrm{m}$.
G. M. Whipple

Kew Observatory, Richmond, Surrey, March 7

THE AXIOMS OF GEOMETRY

SINCE the time when Riemann and Helmboltz began their investigations on the axioms of geometry so much has been written on this subject in learned papers and in a more or less popular form that it might have appeared superfluous again to call the attention of writers on, and teachers of, elementary geometry to it, had it not been for the publication a year or two ago of a new edition of the first six books of Euelid's "Elements," with annotations and notes, by Prof. Casey. I hope the eminent author of this in many respects excellent book will excuse me for criticising some points in it, and making them the opportunity for again returning to the question about the axioms in geometry.

The points I object to besides his treatment of Book V., of which I may possibly say a few words on another occasion, is conlained in Note B at the end of the book. Here Prof. Casey gives Legendre's and Hamilton's proofs of I. 32, that the sum of the interior angles of any triangle is equal to two right angles, implying, of course, that he considers these proofs valid, proofs which are indeoendent of the theory of parallels. The theorem in question depends in Euclid upon Axiom XII., and all depends upon the question whether this axiom is necessary. For the two propositions in this axiom and in Theorem I. 32 stand in such a relation that either is a consequence of the other. Hence if I. 32 can be proved independently, the Axiom XII. changes into a theorem. But the investigations above referred to show that it is this axiom which tells us what kind of a surface the plane really is, and that until this axiom is introduced all propositions apply equally well to the spherical and to the plane surface.

1 select for discussion the " quaternion proof "given by Sir William Hamilton, this being the easiest of the two. But that by Legendre can be treated in exactly the same way.

Hamilton's proof consists in the following :-

One side $A B$ of the triangle $A B C$ is turned about the point B till it lies in the continuation of $B C$; next, the line B C is made to slide along BC till B comes to C, and is then turned about c till it comes to lie in the continuation of A C. It is now again made to slide along C A till the point B comes to A, and is turned about A till it lies in the line A B. Hence it follows, since rotation is independent of translation, that the line has performed a whole revolution, that is, it has been turned through four right angles. But it has also described in succession the three exterior angles of the triangle, hence these are together equal to four right angles, and from this follows at once that the interior angles are equal to two right angles.

To show how erroneous this reasoning is-in spite of Sir William Hamilton and in spite of quaternions-1 need only point out that it holds exactly in the same manner for a triangle on the surface of the sphere, from which it would follow that the sum of the angles in a spherical triangle equals two right angles, whilst this sum is known to be always greater than two right angles. The proof depends only on the fact, that any line can be made to coincide with any other line, that two lines do so coincide when they have two points in common, and further, that a line may be turned about any point in it without leaving the surface. But if instead of the plane we take a spherical surface, and instead of a line a great circle on the sphere, all these conditions are again satisfied.

The reasoning employed must theretore be fallacious, and the error lies in the words printed in italics; for these words contain an assumption which has nut been proved. In fact they contain an axiom which completely replaces Euclid's Axiom X1I., viz. it expresses that property of a plane which differentiates it from the sphere.

On the sphere it is, of course, not true that rotation is independent of translation, simply because every transla-tion-sliding along a great circle-is a rotation about the poles of the great circle.

From this it might be said to follow that the calculus of quaternions must be wrong. But this again is not correct. The fact is that the celebrated author of this calculus bad built it up with the full knowledge of the fundamental space properties in his mind, and making full use of them. Afierwards, on reasoning backwards, he got these space properties out of his formula, forgetting that they were exactly the facts with which he started. The process is, as far as logic is concerned, not very different from that practised by some alchemists, who pretended to make gold, and actually did produce gold out of their crucibles, but only as much as they had themselves put in.

The following considerations may help to clear up this point still further :-

Prof. Sylvester once conceivef, in illustration of some points connected with our subject, an infinitely thin bookworm living in a surface, and consequently limited in its space conceptions to the geometry on such surface. In a similar manner we may imagine an intelligent being consisting mercly of an eye occupying a fixed point in space, but capable of perceiving rays of light in every direction. For such a being space would have two dimensions only, but in this space it could conceive figures for which most of Euclid's definitions and all axioms with the exception of the twelfth, and therefore all propositions up to the twenty-sixth in the first book, would hold. Only the names point, line, angle, \&c., would stand for objects different to those which they represent to our mind. Nothing can put the vagueness of Euclid's definitions and the real nature of his axioms, viz. that they contain the real logical definitions of the geometrical entities, in a clearer light than the fact that it is possible to use these so-called definitions for objects quite different from those to which Euclid applied them.

To return to our imaginary being : let us suppose it capable of studying Euclid. A ray of light, that is, a line,
would appear to it as having no extension but only position, and would answer Euclid's definition of a point. Two such rays determine a plane, but to the eye this would have one dimension only, and it would lie evenly between its boundaries; calling the latter "points" it answers the description of lying evenly between its extreme points, and may be called a straight line, whilst the angle between the two rays would be the distance between the points. If two of these lines be drawn from the same point, we get as the inclination between them a rectiłineal angle; this being to our mind the dihedral angle between two planes. If a line A B were made to revolve about its fixed end λ, the other point 1 would describe a circle; in our space a cone of revolution.

The following is a list of those definitions and axioms from Euclid with which we have here to deal. It will be seen that they hold, every word of them, for the figures above described as conceived by our eye-being. Only it must be remembered that a point for the eye-being is to our mind a line through the eye, and so for the line, \&.c. The words in square brackets indicate what the figures are to our mind.

Definitions

1. A point [line through the eye] is that which has no parts or which has no magnitude.
II. A line [conical surface with vertex in the eye] is length without breadth.
IV. A straight line [plane through the eye] is that which lies evenly between its extreme points [lines through the eye].
1... A rectilineal angle [dihe fral angle] is the inclination of two straight lines [planes through the eye] to one another which meet together but are not in the same straight line [planc].
X . When a straight line [plane] standing on another straight line [planc] makes the adjacent angles equal to one another, cach of the angles is called a right angle [right dihedral angle].
XV. A circle [cone of revolution with vertex at the eye] is a figure contained by one line [surface] which is called the circumference, and is such that all straight lines [angles] drawn from a certain point within the figure to the circumference are equal to one another.
N'I. And this point [line] is called the centre of the circle [axis of the cone].

Axioms called Postulates in Eucl.id

1. Let it be granted that a straight line [plane through the eye] may be drawn from any one point [line through the eje] to any other point [plane determined by two lines through the eye].
2. That a terminated straight line may be produced to any length in a straight line [plane through intersecting lines may be produced beyond these lines].
3. And that a circle may be described from any centre at any distance from that centre [a cone about any axis with any angle at the vertex].

Axioms

入. Two straight lines cannot inclose a space [two planes through a point cannot inclose a space].
XI. All right [dihedral] angles are equal to one another.

Starting with the above definitions and axioms, the cyebeing would have no difficulty in mastering the constructions and theorems contained in the first propositions of the "Elements." Only in Proposition IV. a difficulty might occur. For it may perhaps prove to be impossible to make the two triangles coincident. In Euclid's triangles, namely, it may; be necessary to take of one of the triangles the side opposite to the one originally given by taking it out of the plane and turning it over before it can be made to
coineide with the other triangle. So perhaps our being would find out, if the two triangies [trihedral angles] were right- and left-handed, that it has to take of one of the triangles the opposite side, viz, that on the other side of itself [formed by the continuations of the rays], which then will answer the purpose. After this every other proposition would follow without dif. ficulties till parallel lines were introduced, which might sorely puzzle our eye-being, and finally be dismissed as downright nonsense, parallel lines being absolutely inconceivable. And if Sir William Hamilton's proof of the proposition that the sum of the angles in a triangle equalled two right angles were given to it, it would grant the construction and every step as possible and correct, but it would "shake its head" about the conclusion included in the words printed above in italics. It migh: even consider Euclid a fit subject for a "Budget of Paradoxes." For it is difficult to imagine that this being without moving in space should be able to generalise and invent a geometry in a space of zero curvature.
If in any one of the first twenty-six propositions of Euclid the changes above indicated are made from our conceptions to those of the eye-being, we get a series of well-known fundamental propositions in solid geometry which when obtained in this manner do not require any further proof.
O. Henrict

TIIE SCIENTIFIC WORK OF THE "VEGA" EXPEDITION'

THE second volume of this work is as rich an additios to our knowledge of the far north as the previous one. It contains also not only the bare results of the observations of the scientific staff of the Vega, but also a series of claborate papers connected with the various tupies which were within the circle of the researches of the expedition.
F. R. Kjellman contributes two more papers on the Arctic flora. In the first of these he deals with the phancrogamous flora of the island of St. Lawrence, situated under the 63rd parallel in the Behring Straits This island has been representet in Middendorff's wort as quite devoid of trees and shrubs, although Chamiss had scen on it large spaces covered with a Salix. If Kjellman found, during his very short stay at the island no less than 96 species of phancrogams, of which 53 are new for the island, the whole of the phanerogamous species known reaching thus 113 (22 Monocotyledons, and 91 Dicotyledons). They are chiefly Graminea (11 species), Composita, and Ranunculaccee (9 species each), Saxifragace:e, Cruciferx, and Caryophyllaceæ (8 species each ; the Scrophulariacex, Salicinex, and Cyperacex are represented by 7 species each. The flora is purely Arctic ; 105 species being East Siberian, 79 West Siberian, and rol West American. The island proves to have thus taken in species indifferently from the castern and from the western continent. Having, however, a few genera more in common with Siberia than with America, and these genera having also a wider extension in Siberia, it woold seem that the island stands in a somewhat closer connection with Asia than with America. It is worthy of notice that M. Kjellinan found no endemic species; only the variety tomentosa of the Cineraria frigida, and Saxijotsjs neglecta, var. stolon ifera, which show such variations fro : the typical forms as might lead them to be considere: perhaps as separate species. Both are figured on plares that accompany the paper, as well as Sarifraga negleiz var. congesta, from the land of the Chukches.-Anothe paper, by the same author, deals with the pbanerogams of the "Western Esquimaux Land," that is of the nostrwestern extremity of North America, between Noriz
: a I'en-Expeditionens Vetenskapliga Sakuagclser, bearbetade af dela
gare i rekn och andra forskare, utgifna af A. E. NurJenskjold. " Anta
Gandet, med iz taflor.

Sound and Point Barrow. The Vega stopped at Port Clarence, and M. Kjellman added to the 242 formerly known species about 45 new ones for this locality, one of which-Draba palanderiana-is a new species.
M. Oscar Nordquist contributes, under the title of " Remarks and Studies on the Mammifers of the Coasts of the Siberian Polar Sca,' ' an elaborate paper, the result of the observations made during the cruise, as well as of his studies at the museums of St. Petersburg, Stockholm, and Copenhagen. The North Siberian coast is very poor in mammals, only twenty-nine species altogether being known from the whole of the region; moreover, seven of them inhabit the sea, to which number six or seven species of whales ought to be added. Of the twenty species of mammals inhabiting the northern coast region, only seventeen or eighteen belong exclusively to the coast region, and do not penetrate into the forest region. No distinct zoological regions can be established on this wide space; it can only be said that the fauna of the Behring region has some marked differences (especially with regard to its birds) from. that of the western parts of the littoral, and especially of the coasts of the Karian Sea. The most characteristie mammal from Behring Sound is Phoca fasciata, and Odobrenus rosmarus, var. obesus, from the seas north of Behring Strait. The variety largha of Phoca vilulina does not penetrate north of the Strait. The Chukche peninsula has a few mammals and many birds characteristic of it, namely, Spermophilus parryi, Lagomys usperboraus, Lepus timidus, var. chuschorum, and Arvicola kamchatika. The other parts of the littoral have no special characteristic mammals of their own, and Phoca fatida, Phoca barbatu, and the ice bear, extend from the Ugrian Strait to the utmost eastern extremity of Asia. The most common mammals throughout the Siberian sea coast are Canis lay"pus, C. vulpes, and C. lupus, Rangifor tarandus, MYyodis obensis, ciniculus torquatus, two species of Arvicola described by M. Polakoff under the names of A. midilendorfiii and A. nordenskjöldii, and the hare (probably its Kamchatka variety). The author mentions also the interesting periodical migrations, nut only of the reindeer (well known from Wrangel's descriptions), but also of Myyodes obensis and Cuniculus torquatus, and reproduces a little-known Russian paper, by M. Argentoff, dealing with the migrations of mammals in NorthEastern Siberia. This general sketch is followed by the descriptions of the North Siberian manmals, with plates figuring the skulls of Lepus chulichorum, Odobanus obesus, and Phoca fasciata.

The same volume contains a most valuable contribution to the fossil Rora of Japan, by M. Nathorst, the well-known Swedish paleontologist, to whom we are already indebted for so many researches into the Quaternary flora of Europe, It is known from Nordenskjold's general report that the lega Expedition discovered-embedded in volcanic ashes at Mogi, close by Nagasakia very rich collection of plants belonging to the most recent Tertiary or to the earlier Quaternary period. This find was the more precious, as our knowledge of the fossil flora of Japan was exceedingly meagre. We knew from Japan only Jurassic plants, quite like those of Eastern Siberia, with but very few exceptions, like the Podozamites reinii. Besides, Reiss, to whom we were indebted for these plants, had brought also from "Nikawa, Niphon," one fossil Tertiary plant identified with the Carpinus grandis of Unger ; and Mr. Godfrey has mentioned that the coal beds at Kiousiou contain fossil plants, probably belonging to the Chalk. If we add a collection of fossil leaves at the Berlin Museum-much like those of Mogi-and another collection brought in by Mr. Lyman, and determined by Prof. Lesquercux at Columbus, Ohio the plants appear, according to his communication to the author, much like the Miocene flora of Sakhalin), we have enumerated all we formerly
knew about the younger fossil Hora of Japan. No wonder that with such scant material the climate of Japan during the Tertiary and Quaternary periods remained so little known, and that Engler in his "Entwickelungsgeschichte der Pflanzenwelt" arrived at the conclusion that "no such changes of climate as those undergone by Europe and Northern America have taken place in the Japanese region since the Tertiary period." This opinion of the great German botanist does not seem to be supported by the discoveries of the Vega. The fossil flora at Mogi shows that this southern island of Japan experienced about the end of the Tertiary epoch a colder climate than now; it was covered at the sea-level with a vegetation much like that of the forests which cover now only the mountains of Kiousiou; the description of these forests by Rein (at Fuji-no-yama) shows that they contain a great number of species identical with, or nearly akin to, those which are found as fossils at Mogi. These last originate from a forest which contained a great variety of trees and bushes ; the most common of them was the beech, akin to an American species, but as nearly akin too to the present Fuji-no-yama beech. There are, of course, at Mogi, a few plants that are not met with now in Japan, such as Celfis nordenskj̈̈ldii, Rhus kriffithsii, Liquidambar formosant, and perhaps Alagnolit dicksoniama; but they are few, and have but a secondary meaning only the Magnolia and the beech are American, whilst the others have their nearest relations in the Caucasus and Afghanistan (as the Celfis), or on the Himalaya (as the Rhus griffithsii), where we find also several other Japanese species. Several species of the Mogi flora have disappeared since; however they have still near relations in the flora of the Japanese highlands. Such are the $̛$ ugglans kjellmani, Carpinus suhtiordatu and stenophylla, Uuercus sluxbergii, Aphananthe viburnifolia, Diospyros nordquisti, Clethra maximmevicsi, Fripetaleja almquisti, Sorbus lesquereuxi, Rhus engleri, Aier nordenskjolddiz, and llex hecri (all new species of M. Nathorst), which have very closcly allied representatives in the forest vegetation of the Japanese highlands and northern parts of the Japanese archipelago. At the same time the more southern forms which make a constituent part of the present flora of Japan are absolutely missing in the fossil flora of Mogi. M. Nathorst concludes, therefore, that this last shows undoubtedly a colder climate than that enjoyed now by Japan. As to its age it might be either younger Pliocene or Glacial, or postGlacial; but its characters would exclude both the latter, and thus we must admit that it belongs to the younger Pliocenc; but it would be impossible, until further researches are made, to determine its age with more precision.
M. Nathorst points out also that the Miocene flora of Sakhalin, situated 18° of latitude to the north of Mogi, testifies to a much warmer climate, whilst that of Alaska, of the same period, situated, however, 9^{2} more to the north, scarcely corresponds to a colder climate. The Miocene flora of Japan ought to have been therefore still more different from that of Mogi, and M. Nathorst concludes that the fossil flora of Mogi is a sure testimony of the extension of a colder climate, before and during the Ice period, throughout the whole of the northern hemisphere, and that this colder climate could not depend on those local conditions which were resorted to for Europe and Northern America. We may add to this conclusion that a considerable lowering of temperature throughout Northern Asia is proved also by the unmistakable traces of glaciation found, not only in the deep valleys of the Olekma highlands, but also on the southern slope of the Sayan Mountains, close by Lake Kossogol. Though received at first with some distrust, the glaciation at least of the highlands of the Thian-Shan, the Sayan, and Stanovoy Mountains has since been conirmed by so many testimonies that there can be no more doubt about
it. We can only mention here the very interesting sketch given by M. Nathorst of the relations of the Japanese flora to those of different parts of the Pacific basin; the paper ought to be translated in full in some language more familiar to the geologists of Western Europe. The memoir contains the description of seventy species of plants from Mogi, seven species from the coal-measures of Takasima, and seven species from the plants in the Berlin Museum. The descriptions are accompanied by sixteen plates.

Two other important papers, both in English, are conributed to the same volume by M. Otto Petterson. One of them embodies a general discussion, an account of which appeared in NATURE, vol. xxviii. p. 417, on the properties of water and ice between -20° to $+15^{\circ}$ Cels., on the ground of the author's own measurements. The second paper, "Contributions to the hydrography of the Siberian Sea," not only contains valuable information gathered from the very numerous measurements of depth, saltness, and temperature of water during Nordenskjold's expeditions on the Kara Sea and along the Siberian coast, but also gives a most valuable sketch of the hydrography of the Kara Sea. It seemed that nothing new could be written on this northern Mediterranean Sea after the beautiful researches by Dr. Pcttermann based upon the recent researches of the Norwegian seal-hunters. Still Mr. Petterson introduces a new element into the discussion, namely, the influence of the warm water poured into its basin by the Siberian rivers. During the summer the Kara Sea north of the Obi and Yenisei is covered with a layer of almost f esh water which has a depth of nearly twenty metres in the south, and a temperature of 6^{\prime} to 9° Celsius in the summer. This layer thins out and becomes cooler as it advances towards the north, but still it reaches the north eastern extremity of Novaya Zemlya, where it meets with the salt oceanic current brought along the westcrn coast of the island. On the other hand, the middle parts of the Kara Sea are invaded by the Arctic current bringing cold and much salter water from the north-east. It passes underneath the fresh-water current and reaches the surface about the middle of the Kara Sea, where a sattaess of 303 has been obscrved. This cold current, which has in the deepest parts of the Kara Sea (100 to 222 metres) a temperature slightly oscillating bet acen $-1^{\circ} 4$ to $-2^{\circ} \mathrm{O}$, and a saltness of $3^{1.19}$ to 3.49 , is heated more or less on its suriace, which reaches in the summer from 2° to 4° above zero in the south-western and northeastern parts of the Kara Sea : whilst in the middle, even on the surface, the temperature is generally about zero, or even $-0^{\circ} 8$. This distribution of currents explain3 the very slow melting of ice in the middle parts of the Kara Sea, which Dr. Pettermann compared to an ice-shoal floating in the middle on the surface of our ponds after a free channel has been opened along its coasts. Two maps on a large scale, showing the distribution of temperature and saltness in the Siberian Siea from Novaya Zemlya to Behring Strait, and embodying the results of Nordenskjöld's determinations of latitudes and longitudes on the Siberian coast, accompany the papers of M. 1'etterson.

We find in the same volume an elaborate paper, by A. Wiren, on the Chatopods of the Siberian and Behring Seas. Six tables accompany this paper, which contains the description of seventy-three species of Chrtopods. The chief fatures of this fauna already being known from Nordenskjold's preliminary report, we only notice that the richest part of the Siberian Sea is the Kard Sea, where the Voga Expedition and those of 1875 and 1876 discovered no less than sixty-nine species, whilst in the remainder of the Siberian Sea only fifty-three species were found until now.

Finally, we notice in the samc volume M. Aug. Wijkander's paper on the magnetic observations made
during the expedition (in French), and an appendix to the paper on the geographical determinations, by A. Lindhagen. It appears fron the former that the mag. netic declination on the coast of North-Eastern Asia presents several anomalies. The position of the isodynams is quite different from those given on the map of the German Admiralty ("Isodynamen und Werthe des magnetischen Potentials für $1880^{\prime \prime}$). As to the inclination, it is but slightly different from the values which would result from Sabine's work; but the declination differs notably from the values given on the maps both of the German and English Admiralties. For the Behring Strait region this last, however, is decidedly the best, the average corrections for the English map being $-2^{\circ} \cdot 1$, and $-3^{\circ} 7$ for the German Admiralty map. The errors result from the secular variation having been only calculated, and not yet measured directly.

The interest awakened by the expedition of the Vega towards the North Siberian Sea will be perpetuated by this work. The serious scientifiz spirit in which the different departments of natural history are dealt with in the records of the cruise of the Vega will contribute more towards the increase of our knowledge of the Arctic regions than many costlier expeditions.

The third volume, just published, is mostly occupied by F. Kjellmann's "Algæ of the Arctic Ocean" (430 pages, with 31 plates). This work-the result of the author's ten years' Arctic experience-not only contains a complete botanical description of all the Alge of the Arctic Ocean which came under notice; the author gives also a general sketch of the Arctic marine flora, with its subregions ; he discusses the causes which gave it its present character : structure of the coast-line, tides, characters of the bottom, temperature, and so on ; and he endeavour; to draw also the chief lines of its evolution, giving thus rich material for solid generalisations.

Mr. W. Leche cont ibutes to the same volume a note on the forty-two species of Lamellibranchiata brought in by the I'ega; Mr. P. T. Cleve describes (in English) the Diatoms collected in the Arctic Ocean and on the return journey of the expedition, his paper being illustrated by five plates, which figure eighty-four species, mostly new : and Prof. P. Kramer and Dr. C. J. Neuman describe (in German) thirteen new species of Acarids.
P. K.

EARTH TREMORS

OF the various movements to which the crust of the earth is subject, the minute motions called earth tremors attract our attention by their universality. Between them and the other motions which affect the soil the difference is chiefly in degrec.

Earthquakes are the sudden and violent movements of the ground. Earth pulsations, which may be observed as terminal phenomena of large earthquakes, are movements of considerable amplitude, but so slow in period that without the aid of instruments they may be passed by unnoticed. Earth oscillations are the secular movements of upheaval and depression evidenced to us by raised beaches, sunken forests, and other geological phenomena Lastly, we have earih tremors, or movements quick iz period, but which escape our attention on account of the smallness in their amplitude. As these latter are phenomena whicis are probably observable in all portions o the globe, and have as jet attracted but little attention excepting perhaps where they have proved themselves troublesome intruders affecting astronomical and other observations of a delicate nature, I purpose giving ar epitome of the more important results which their observation has yieided.

Earth tremors produced by artificial disturbances, such as the passing of carriages or trains, the movements of machinery or bodies of people, are at our disposal fo-
daily observation. At Greenwich Observatory the tremulous motion in the soil, especially noticeable on bank holidays and at times when Greenwich Park was unusually crowded, resulted in the construction of an apparatus in which the dish of mercury used in the determination of the collimation error of the transit circle was suspended by flaccid springs. By means of this contrivance the tremulous motions of the ground were absorbed before they reached the mercury, and the difficulty of observation was overcome. French engineers, working with delicate surveying instruments in crowded cities, have similarly been compelled to suspend a portion of their apparatus, so that a steady image could be obtained. Prof. H. M. Paul, seeking for a site for the Naval Observatory at Washington, found that the image of a star reflected from a tray of mercury was disturbed by a train passing at the distance of a mile. Lieut.-Col. Palmer, when engaged in observing the transit of Venus in New Zealand, discovered that a ditch a few feet in depth was sufficient to intrench his instruments against the disturbance created by trains passing at a distance of 700 yards. Capt. Denman found the effect of a goods train to be transmitted 1 too feet over marshy ground, but vertically above the train, passing through a tunnel in sandstone, the disturbance extended only too feet. One result obtained from these and numerous other observations upon artificially produced tremors indicates that these disturbances are superficial, and although they may creep up the surface of a gently sloping hill, their spread is checked by a steep cutting.
Naturally produced tremors differ from those just spoken of by the fact that their distribution is not so superficial, and not only are they to be observed in the most substantial structures which engineers can design, but they are to be equally well seen in cellars and in the walls of rocky caves. Some knowledge of the depth to which they extend might be obtained by a few microseismic observations in the deep mines of lancashire and other parts of the United Kingdom. As the observations are so simple, and the instrument required so easily con-structed-in fact, it may be home made-it is earnestly desired that some of our mine managers will spontaneously undertake this work.

I make this suggestion, not only on account of the scientific value of the work, but because there are reasons to believe that such observations may lead to results of a practical value by relations they may hold to the escape of gas, the circulation of subterranean waters, and other underground phenomena. The instrument I should recommend for this purpose is the tromometer of Bertelli and Rossi. This is shown in the accompanying figure. B is the bob of a pendulum about 100 grammes in weight, suspended by a very fine wire about $1 \frac{1}{2}$ metres in length. The whole is inclosed in a tube. The style S of this pendulum is seen reflected by the prism P by means of the microscope s . The eye-piece E of this microscope contains a micrometer scale, by which to measure the amplitude of the motion of the style.
The direction of motion may be obtained by turning the eye-piece until the scale is parallel with the direction of motion, and this direction then read off from the position of an index moving over compass divisions marked on the fixed tube of the microscope. To commence with, the style of a pendulun might be looked at directly with a microscope, or two microscopes placed at right angles, having magnifications of forty or fifty diameters; and it it was found that movements existed, the prism and micrometer scale might be added subsequently. The pendulums may be hung from spikes driven in the solid rock or trom an iron stand.
The chief results which have been obtained with instruments of this type are those which have been arrived at in Italy. The father of the science of microseismology is Father Bertelli of Florence, who, since 1870, has made
many thousands of observations under a variety of circumstances. Another ardent worker at this subject is Prof. M. S. de Rossi at Rome, by whose exertions numerous observatories have been established throughout the whole of Italy where these observations are systematically carried on. In making these observations every precaution appears to have been taken to avoid accidental disturbances, and the experiments have been repeated in a variety of forms. The results which from time to time have been announced are of the greatest interest to those who study the "physics of the earth's crust," and appear to be leading not only to the establishment of laws of scientific value, but also to the elucidation of phenomena which have an intimate connection with our every-day existence.
It would seem that the soil of Italy is in incessant movement, there being periods of excessive activity usually lasting about ten days. Such a period may be called a seismic storm. These storms are separated by periods of relative calms. The storms have their greater regularity

in winter, and sharp maximums are to be observed in spring and autumn. In the midst of such a period, or at its end, there is usually an earthquake. Usually these storms are closely related to barometric depressions. To distinguish these movements from those which occur under high pressure, they are called baro-seismic movements, the latter being called volcano-seismic movements. The relation of these storms to barometric fluctuation has been observed to be very marked during the time of a volcanic eruption. At the commencement of a storm the motions are usually small, and one storm lasting two or three days may be joined to another storm. In such a case the action may be a local one. It has been observed that a barometrical depression tended to bring a storm to a maximum, whilst an increase of pressure would cause it to disappear. Sometimes these actions are purely local, but at other times they may affect a considerable tract of land.
If a number of pendulums of different lengths are observed at the same place, there is a general similarity in their movements, but it is also evident that the free period of the pendulum more or less disturbs the character of the record. The greatest amplitude of motion in a set of pendulums is not reached simultaneously by all the
pendulums, and at every disturbance the movement of one will predominate. From this Rossi argues that the character of the microseismical motions is not constant.

Bertelli observed that the direction of oscillation of the pendulums is different at different places, but each place will have its particular direction dependent upon the direction of valleys and chains of mountains in the neighbourbood. Rossi shows that the directions of movement are perpendicular to the direction of lines of faults, the lips of these fractures rising and falling, and producing two sets of waves, one set parallel to the line of fracture and the other perpendicular to such a direction. These movements, according to Bertelli, have no connection with the wind, rain, change of temperature, and atmospheric electricity.

The disturbances, as recorded at different towns, are not always strictly synchronous, but succeed each other at short intervals. If, however, we take monthly curves of the disturbances as recorded at different towns in Italy, we see that these are similar in character. The maximum disturbances occur about the winter solstice and the minimum about the summer solstice, and in this respert they show a perfect accordance with the curves drawn by Mallet to show the periodicity of earthquakes.

At Florence before a period of earthquakes there is an increase in the amplitude and frequency of vertical movements. The vertical movements do not appear to come in with the horizontal barometrical disturbances, but they appear to be connected with the seismic disturbances. They are usually accompanied with noises in the telephone, but as the microphone is so constructed as to be more senstive to vertical motion than to horizontal motion, this is to be expected. This vertical motion would appear to be a local action, inasmuch as the accompanying motions of an earthquake which originates at a distance are horizontal. Storms of microseismical motions appear to travel from point to point. Sometinies a local earthquake is not noticed on the trumometer, whilst one which occurs at a distance, although it may be sinall, is distinctly obscrved. To explain this, Bertelli suggests the existence of points of interference and the existence of nodes.

Similar results were arrived at by Rossi when experimenting at difierent points on the sides of Vesuvius. Galli noticed an augmentation in microseismic activity when the sun and moon are near the meridian. Grablovitz found from Bertelli's observations a maximum two or three days before the syzigies, and minimum three days after these periods. He also found that the principal large disturbances occurred in the middle of periods separating the quadrature from the syzigies, the apogee from perigee, and the solstice period from the nodes, whilst the smallest disturbances bappened in the middle of periods opposed to these.
P. C. Melzi says that the curves of microseismical motions, earthquakes, lunar and solar motions, show a concordance with each other. With the microphone Rossi hears sounds which he describes as roarings, explosions, occurring isolated or in volleys, metallic and bell-like sounds, ticking, \&c., which he says revealed n tural telluric phenomena. These are sometimes intolerably loud. At Vesuvius the vertical shocks corresponded with a sound like volleys of musketry, whilst the undulating shocks gave the roaring. Some of these sounds could be imitated artificially by rubbing together the conducting-wires in the same manner in which the rocks must rub against each other at the time of an earthquake, or by placing the microphone on a vessel of boiling water, or by putting it on a marble slab and scratching and tapping the under side of it.

These then are some of the more important results which bave been arrived at by the study of microseismic motions. One point which seems worthy of attention is
that they appear to be more law-abiding than their violent relations, the earthquakes, and as phenomena in which natural laws are to be traced they are certainly deserving of our attention. As to whether they will ever become the means of forewarning us against earthquakes is yet problematical. Their systematic study, however, will enable us to trace the progress of a microseismic storm from point to point, and it is not impossible that we may yet be enabled to foretell where the storm may reach its climax as an earthquake. This, I believe, is a view held by Prof. de Rossi.
Before the earthquake of San Remo, on December 6, 1874, Rossi's trumometer was in a state of agitation, and similar disturbances were observed at Livorno, Florence, and Bologna. Since February, 1883, I have observed a tromometer in Japan, and such results as have been obtained accord with results obtained in Italy.
The increase in microseismical activity with a fall of the barometer is very marked. The style of the pendulum docs not always oscillate about the same point-there is a deflection in the vertical. In Manila Father Faura also makes observations with a tromometer, which I am told gives him by movements very decided indications of approaching typboons.
As to the cause of tronometric movements we have a field for speculation. Possibly they may be due to slight vibratory motions produced in the soil by the bending and crackling of rocks produced by their rise upon the relief of atmospheric pressure. If this were so, we should expect similar movements to be produced at the time of an increase of pressure.
Rossi suggests that they may be the result of an increased escape of vapour from molten materials beneath the crust of the earth consequent upon a relief of external pressure. The sinilarity of some of the sounds which are heard with the microp'one to those produced by boiling water are suggestive of this, and Rossi quotcs instances when underground noises like those which we should expect to hear froma a boiling fluid have been heard beforc earthquakes without the aid of microphones. One instance was that of Viduare, a prisoner in Lima, who, two days before the shock, 1824 , repeatedly predicted the same in consequence of the noises he heard.

A possible cause of disturbances of this order may be the sudden fluctuations in barometric pressure which are visible during a storm.

In addition to the observations which have been especially made for the purpose of recording earth tremors, there are numerous observations which have been made upon these disturbances when they have appeared as intruders in investigations on other subjects. Amongst these may be mentioned the endeavours to measure changes in the vertical, as for instance those which might be produced by the attractive influence of the moon.
Prof. Zöllner, who invented the harizontal pendulum, found that the readings of his instrument were always changing.
M. d'Abbadie, who for several years observed a refiected image in a pool of mercury contained in a basin of solid rock, found it a rare occurrence that the surface of the mercury was tranquil. Sometines it appeared to be in violent motion.
Gcorge and Horace Darwin, in their experiments at Cambridge to determine the disturbing influence of gravity by lunar attraction, found that the irregular and persistent tremors in the ground, as indicated by the instruments, were sufficient to mask whatever effects may have been due to the influence of the moon.
A full account of these latter observations is to be found in Messrs. G. and H. Darwin's Report for 1882 to the British Association.
The general conclusion, then, is that from observations in England, France, Germany, Italy, the Philippines,

Japan, and, I may add, the West Indies, it would appear that the crust of the globe is practically in a constant state of tremor. The variations in these movements are more law-abiding than the large earth movements, and they show a direct relationship to barometric fluctuation.
Their relationship to many other telluric and atmospheric phenomena, together with their cause, has yet to be discovered. As every one has the opportunity to observe these phenomena, they call for attention. Just as a turbulent sea outraces a coming typhoon and gives mariners warning of approaching danger, it is possible that these microscopic disturbances of the soil may hold connection with subsequent phenomena, and lead us by their study to the better understanding of the complexity of phenomena with which we are surrounded.
Tokio, Japan
John Milne

THE MECHANICAL THEORY OF MAGNETISM

IF Prof. Hughes were as great a master of writing English as he is of experimenting, his views on magnetism would receive speedier acceptation, for they would then probably be understood without that close study which his involved sentences and heterogeneous paragraphs now demand. It is very remarkable that such an ardent worker, such a deep thinker, and such a clear and simple experimenter should have such difficulty in expounding his views on paper. His experimental demonstrations are always clear and convincing, his recent lecture at the Royal Institution appealed to every degree of intelligence present, but his papers at the Royal Society want some strong external directing influence to render their meaning evident.
What is magnetism, according to this expert philosopher? It is an inherent quality of the molecules of matter, as determined and constant as that of their gravity, affinity, or cohesion, and like these qualities it differs in degree with every kind of matter. He does not attempt at present to define it closer than this. We cannot tell what gravity is, neither need we say what magnetism is. All Prof. Hughes says is that every molecule in nature is a little magnet imbued with a certain polarity varying in degree but constant for each substance, in virtue of which it has a north and a south pole along the same axis, and that the only change that takes place is a change in the direction of this polar axis. When these molecules are symmetrically arranged by some external directing infuence, so that all their poles lie in the same direction, we have evident magnetism. Iron becomes a magnet in virtue of the fact that its molecules are free to move under the influence of external magnetic action, while copper is not a magnet because its molecules are immovable and irresponsive to the same cause. Steel becones permanently magnetisel because its molecules are rigid, and retain the axial direction inipressed upon them. Soft iron is readily demagnetised because its molecules have great freedom of motion. Cocrcive force is therefore simply absence of freedom of molecular motion-it is, indeed, molecular rigidity. The extent to which the axis of polarity can be deflected from its normal direction is its point of saturation.
Evident magnetism is the symmetrical arrangement of the polarised molecules along one line; ncutrality is symmetrical arrangement of the same molecules in closed curves. In both cases the sum of the magnetic influence of all the molecules is the same; but in evident magnetism it is directed outwards, in neutrality it is directed inwards. Rernaining magnetism is partial neutrality. The experimental way in which Prof. Hughes demonstrated these conclusions is the most beautiful investigation he has yet made. He proves the existence of the same polarity in the atmosphere and in the ether, and he attributes diamagnetic effects to the higher magnetic capacity of the ether than of the substances suspended in it. It is therefore a differen-
tial action. Molecules, moreover, have inertia-they resist being put in motion; and when in motion they resist stoppage-they possess momentum. The direction of the axis of polarity can be displaced by the physical fcress, such as mechanical stress, heat, or electricity. He shows that mechanical motion, heat, and electricity are of similar kind-they are vibratory, or some mode of motion. Magnetism, however, he considers not to be a mode of motion, and therefore it is not a physieal force. It is simply an arrangement of the molecules of matter in symmetry or dissymmetry under the influence of some physical force. He seems to imply, though he does not directly say so, that the influence of electric currents upon magnets is not due to any direct action between them, but to the fact that the currents have polarised the ether in which both are suspended.
His views are very broad and highly suggestive, but there are some points that are not clear and that demand further elucidation. Why, for instance, does mechanical elongation and contraction take place when bars of iron are magnetised and demagnetised? How can heat and strong sonorous vibrations be produced unless there be a considerabie expenditure of energy? How does he account for the attractive and repulsive properties of magnets, and for magnetic induction? He has certainly wrested magnetism from the realms of hypothesis and brought it within the domain of theory. The days of Coulomb.and Poisson's fuids and Ampère's elementary currents of electricity are over; the molecular character of magnetism is experimentally established; but what is a molecule, and how becomes it polarised unless it be in rotation ? How does the external directing influence act? We are also inclined to ask, Has Prof. Hughes sufficiently grasped Impirc's theory? It was purely mathematical, based on the assumption of the circulation of eurrents around each molecule. He goes no further than Ampère did, for he has not answered the question, What is polarity? In fact his polarised molecules are all little magnets, and no theory of magnetism will be complete until it explains these little magnets. Thus the difference between Ampère and Hughes is the difference between a current and a magnet.
However, on the assumption that a molecule is a magnet, Prof. Hughes has built up a very complete theory, which he has demonstrated experimentally in a way that places him in the very front rank of experimental philosophers.

NOTES

Thr number of candidates up this sexiou for the Fellowship of the Royal Society is sixty-seven.
We understand that Sir Joceph Hoaker has been nominated one of the vice-presidents for the Montreal meeting of the Briti-h Association. Instead of Mr. Crookes, Prof. W. G. Adams will give one of the public lectures. For the rednction of the fares of members the sum of 14,000 dollars has been alloted, only tho e elected at or before the Southampion meeting being entitled to share in the sub-idy. This is in addition to the liberal reductions that will be made by the stermship and railway companies. All the American railways will reduce their fares by one-half. The American Association, u hich mee:s at l'hiladelphia on September 3, has given a cordial invitation to the Monireal vistors to take part in its meeting a and excursione. Those wishing to share in the subsidy of 14,000 dollars must apply befure September 25. For the Aberdeen roeeting in 1885 . Sir L.yon Playair will be proposed as president. A well-attended meeting of the Organising Committee of the Chemical Section has been held under the presidency of Prof. Koscoc. Promises of papers were received from several well-known chemists, and a small executive committee was formed to draw up a lise of papers and to communicate with Canadian and American
chemists. Section G has been particularly active. The Conmittee bas prepared a list of suhjects for papers whieh it is thought would be interesting to English visitors if treated by eugineers and mechanieians in Canada; a good supply of papers is expected both from this country and America. We regret to learn that Prof. Williamson, the General Treasurer, will be unable to be present, and the Council have decided to engage the services, pro hac zice, of Mr. Hamy Brown, Assistant Secretary and Accountant of University College, as "Financial Officer," while Prof. Burdon Sanderson has virtually consented to act as deputy for the Treasurer at Montreal.
M. Caro, for the French Academy, and MM. Pasteur and d'Abbadic, for the Academy of Sciences, will attend as delegates the fites at Edinburgh in commemoration of the tercentenary of the foundation of the University of Edinburgh.

Dr. Koch and his colleagues of the German Cholera Commission will proceed siortly to Goappara and Darjeeling to prosecute further inquiries. After passing a few days there, they will return to Germany, but they hope to be back in India next winter to earry on their very important and useful lalerurs.

Dr. Georgr Entelmann of St. Louis-the oldest United States botanist (excepting the venerable Lesquereux), as well as an eminent physician, for a time a fellow-student with Agassiz in Germany-died ou February 11, at the age of seventy-five.
Commodore Samuel R. Franklin, U.S.N., has been detached from duty on the United States Naval Examining Board, and ordered as superintendent of the naval observalory, to succeed Rear-Admiral R. W. Shufeldt, who was placed upon the retired list on February 21.
At the sitting of the Academy of Sciences of March to M. Faye presented drawings which have been executed at Algiers by M. Trépied, Director of the Observatory, and which represent Pons' comet as seen on the very days on whieh have been noticed the ehanges that have excited such surprise amongst certain astronomers. M. Faye took arivantage of this communication to give an explanation of these wonderful observatione, which arc more frequent than has been supposed in the history of astronomy. M. Faye does $n x$ suppiose that they may be attributed to any eollision with cosmical matter, but to a rapid change in the point of view of the comet itself, as observed from the earth. This theory will be illustrated by a woodeut published in the next number of the Comples Rendus.

Consinerable progres has now beeu made in the carrying out of the works connected with the marine station which some time ago the Scottich Meteorological Soeicty resolved to establish at Grantoa; and it is anticipated that the oper tions of the station will be properly commeneed towards the close of the present month. As the first instalment of the work to be done, it is hoped that a tolerably complete descr ption of the Firth of Forth, in its biological, meteorological, physical, and chemical relations, may be prepared in the course of the next few yeare; and when this has leen carried out, the result will have an exceptional, and indeed unique value, as a pi ce of work of the greatest acientific and national importance, produced by cooperation amongst fcientific men. The Council of the Scottish Meteorological Society, it may be mentioned, recently asked Her Majesty's Government for a subscription of $1000 /$. for the purpose of building permanent laboratories in connection with the station-undertaking at the same time to raise an additional 1000l. by public subscription. The Government, however, have not seen their way to assist this school of research, notwitbstanding that the grant was warmly recommended by Prof. Huxley, President of the Royal Society. The Council of the Meteorological Society have, however, every confidence that the scheme will be liberally supported by the general public.

Dr. Casey, F.R.S., has just written a new work on Analylic Geometry, which covers about two-thirds of the ground occupied by Salmon's Conies; in the author's opinion it will contain more new matter than any work on the subject since Salmon's book was written.

An interesting experimeut is to be made by Dr. Zintgrafi, who, in company with Dr. Chavanne, is about to visit the Congo and the interior of Africa. He takes with him a phooograph, wherewith to fix the speech and melodies of hitherto anknowu tribes, which, thus received by the instrument, will be forwarded t) scientific men in Germany. The apparatus (which will be used for such a purpose for the first time) has been made by Mr, Fubrmann, of Berlin, and exactly corresponds with one he has in that city, so that the plates used in Africa can be sent to Berlin to be unrulled by that machine, and caused to re-emit the sounds received.

A remarrable occurrence is reported from Boma (Algeria), An isolated mountain, Jebel Naiba, $\mathrm{So0} \mathrm{~m}$. in height, is rapidly decreasing in altitude, and round its base a considenbic cavity is being formed. The whole mass of the mountuis is evidently sinkiag. The neighbourbood of Bona must, howere, bave already been the scene of a similar phenomenon. Lake Fezzara, which measures over $t 2,000$ hectares in extent, did pot exist during the time of the Komans. Its depth in the centre is only 2.60 m . Investigatlons whieh were made in 1870 showed that the remains of a Koman town now lie in the lake; this town has the ef, re probably sunk in the same manner as the mountain.
A frehistoric burial-ground has been discovered on the sscalled Hasenburg, near Buhla (Kreis Nordhausen, Germanyl. Two complete human skeletons, numerous bronze rings, and several rings made of amber were found. The Hasenburg is an isolated rock on which stood formerly a castle of the Emperor Ilenry IV.; but the uumerous prehistoric remains fuand in the neighbourbood point to its having been an ancient place of worship. The objects receutly found have been deposited in the Museum of Nordhausen.

THE a!pointment by the Swedish Goverument of an entowslogint to assitt farmers has been found of so much value that it has been decided to continue the same. Dr. A. Holmgrea hus been appointed agricultural entomologist fur this year.
Tus eity of Hamburg offers varinus prizes for the plans of a new Natural IIistory Museum. The tutal cost of construction of the building must not exceed 45,000 . Five prites of 50 . each will be awurded for the five best plans; further prirs of $200 /$, will be distributed amongst the victors for further work in cunectiun with the scheme.
At a recent meeting of the Straits Branch of the Royal Asintic Society at Singapore, it was decided to prepare and publish a school geography of the Malay peninsula and the adjoining regions, as well as a skeleton map of the peninsula, on 3 seale of a quarter of au inch to a mile, to be gradually filled in as may be determined by subsequent survey and research.
Dr. Benjamin Silarf has been appoiuted Professor cf Lowet Invertebrata by the Council of the Acadeny of Nataral Scienes of Philadelphia. Dr. Sharp is a graduate of the University of Penneylvania, from which he received the degrees of Doctor of Meiieine and Doctor of Philosophy in 1881. He afterwarls studied under Leuehart in L.eipzig, and under Semper in the University of Wurzburg. Dr. Sharp was granted the privilege of studying at the Bavarian table in the Zoological Station at Naples, an honour rarely granted a foreigner. Dr. Sharp profoses delivering lectures, during the coming spring, on the lower forms of life.

Prof. Karpinsky points out, in the Memoirs of the St. Pctersburg Socisty of Naturalists (vol. xiii.), the following interesting feature of the geological structure of Russia. The anmetamorphosed rocks in Russia appear mostly quite, or nearly quite, undisturbed and horizontal. There is, however, besider the Crimea, a region where some dislocation and disturbance of these deposits are apparent. This distarbed region runs from northwest to south-east, through the Sandomir ridge in Poland to Kaneff in Kiev, Isakchi in Poltava, the eoal-basin of the Don, the Bogdo Mountains of the Astrakhan Steppe, and finally to the Kara-tan and Ak-tan Mountains to the east of the Caspian. Beyond this region even the older deposits (Silurian and Devonian) remain undisturbed, while within it the older gneisses and crystalline schists are disturbed, not only by the Silurian upheaval which has had a direction from north-east to south-west, but also by the more recent one just referred to, which has a direction perpendicular to it. In is worthy of notice that this line of npheaval would join that line of ridges which runs in Western Europe through the monntains of the Weser and the Teutohurger Wald, while in Asia it would join the Sheikh-jeli and Uiz-Dagh Mountains.
We notice in the same serial some very valuable observations of Prof, Beketoff about Dr. Sachs' theory as to the reiations between the increase and segmentation of cells in the embryonal parts of plants. While he warns one against the application of geamertical theories to botany, he points out how some of the conclusions arrived at by Dr. Sachs could be more easily explained by the principles established by Wilhelm Hofweister. Prof. Burodin's researches into the anatony of the leaves of Chrysosplicnium were made on very rich material collected by Prof. C. Maxianowicz for his "Adumbratio Generis Chrysosplenii," and Prof. Burodin was enabled not only to thoroughly study the subject, but also to arrive at some most valuable conclusions as to the relations between the anatomical feasures of different species of this genus and the features on which the classification of these species has been made.
Traces of glaciation in Siberia, so boldly denied a few years ago, have been discovered in different parts of the country. While failing to detect them on the outer parts of the Altai Mountains, M. Sok sloff has found unnistakable traces of nn incomparably wider exteusion of glaciers in the central parts of the ridge, and especially in the Katun Mountain :. Namerous iraces have also been found, poining to a greater extension of lakes during the post-Glacial period, and to the gradual drying up of the existing ones.
in a paper recently published in the Mimoires de l'Acadimic des Sciences de Sf. I'thersoourg for 1883, Prof. Fr. Schmidt, while fully agreeing with the remarkable results of Mr. Walcott's researches as to the feet and re-piratory organs of Trilobites (published in $\mathbf{1 8 8 1}$ in the Bulletin of the Harvard Colloge Shusfum), proposes to inclede in Mr. Walcott's second group of Paleade his own family of Hemiaspide. It con-ists of the genera //cmiaspis, Woodw., Bunodes, Eichw., and Psendoniscus, Nieszk., which are much like Trilobites, but differ from them in the separate and freely-moving posterior parts of the body; formerly it was included in the group of Eurypterides.

Prof. Tarkhanoff contributes to the last volume of the Mimoirs (Trudy) of the Soriety of Naturalists of S8. Pdersburg a very interesting inquiry into the structure of the eggs of birds. He has discovered that the albumen of the egrs of the Insessores (ousel, canary, pigeon, \&c.) notably differs from that of the Autophagous birds (hens, ducks, geese, turkeys). When boiled it remains translucid ; it is fluorescent; its rotation-power of the plane of polarisation is feebler; when diluted with much water it does not give a white deposit, but only gives a feeble opalescent
coloration to the water; finally, it has a stronger basic reaction than the white of the eggs of the hen. It may, however, be transformed so as to become like it by various means, namely : the addition of neutral salts, or of bases, or of concentrated acetic and lactic acids, or even of carbonic acid. The most remarkable fact however is that the same result is also arrived at by incubation, and Prof. Tarkhanoff considers that the modifying agency in this case is the yolk; when moderately heated with yolk in closed vessels, during twenty-four huurs or more, it is transformed into albumen like that of a hen's egg. As to the manner in which the yolk acts on it, it still remains unsettled; the supposition that the diffasion of salts is the cause of the change proved not to be true ; and the cause must be searched for perhaps in the diffusion of gases. The interesting question, as to the albamen of hen's eggs not also undergoing the same stages of development within the ovariam, cannot yet be solved satisfactorily ; bat during his experiences M. Tarkhanuff observed onee the most interesting fact that a small ball of amber introduced into the upper part of the ovarium occasioned the deposition aroand the ball of albumen and the formation of a shell, that is, the formation of a quite normal egg with its chaluze, and other particularities of structure; this observation would thus strongly support the mechanical theory of the formation of the parts of an egg around its yolk.
Dr. Kisg, retired Professor of Mineralogy, Geology, and Natural History in Queen's College, Galway, has lately been elected a Correspondiug Member of the New York Academy of Sciences.

Mr. E. L. Layard writes to us from Noumea, New Caledonia, under date Jan. 6, that the sunsets there have been quite as extraordinary as elsewhere. "As soon," he says, "as the sun's disk has disappeared, a glow comes up from the west like that of white-hot steel, reddening sonew hat as it mounts to the zenlth, but changing the while to blue. From the zeuith it passes into the most exquisite green, deepening as it loses inself in the east. As the sun sinks lower and lower, the red tints overpower the whitehot steel tints, and the blue of the zenith those of the green. As 7 p.m., or a little after, nearly the entire western half of the horizon has changed to a fiery crimson; as time goes on, the northern and southern areas lose their glory, and the grays of night contract, from the northern end tarst, most rapislly; the east is of the normal gray. The south now closes in, and presently, abont 8 p.m., there is only a glare in the sky, just over the sun's path as of a distant conflagration, 'till the fire in the west fades ont.' I have been attempting to describe one of our cloudless evenings, of which we have had only too many, having just come through a fearful drought that has lasted all this while; but who shall paint the glory of the heavens when flecked with clonds! Burnished gold, copper, brass, silversuch as Turner in his wildest dreams never saw ! and of such fantastic furms! The wonderful light from above was reflected on every tree and flower; our scarlet and crimsou geraniums, fuchsias, \&c., blazed in the light as I never saw them before, and the general effect was most extraordinary."

The Cremation Society of Berlin now nambers 365 members, no less than 146 having joined the Society during 1883. The creuation movement is also progressing favourably at Hamburg, Könis sberg, Dresden, Breshiv, and Wiesbaden. At Gotha forty-six bodies were cremated during 1883 , which is about donble the namber of those barat in any of the four preceding years.

The additions to the Zoulogical Suciety's Gardens during the past week include a Bonnet Monkey (Macacus simicus 8) from India, a Pig-tailed Monkey (Mucacus ncnestrinus 8) from Java, presented by Mr. G. H. Lee; two Herring Gulls (Larus argentatus), European, presented by Madam Fridaich ; a Kagu (Khino-
chetws jubutws) from New Caledonia, presented by Mons. J. M. Cornely, C.M.Z.S. ; fonr Blue Titmice (Parms carrulews), British, presented by Mr. Hanaeur ; a Barn Owl (Strix fammoa), British, presented by Mrs. W. Gittens; a Rhesus Monkey (Macacws rhesus 8) from India, deposited ; a Bosman's Potto (Perodicticws potto) from West Africa, purchased ; a Yellow-billed Duck (Anas xanthorhyncha) from South Afrien, received in exchange; a Fengalese Cat (Felis Sengalensis) from India, received on approval ; a Zebu (Bos indicus 8), a Collared Fruit Bat (Cymomycteris collaris), an Emn (Dromaws now-hollandie), bred in the Gardens.

GEOGRAPHICAL NOTES

Although the Chefoo Convention made with China in $\mathbf{1 8 7 6}$ has never been ratified, we are now reaping various advantages from its provisions, With the object of exploring South-Western China, and of watching the possibilities of the development of trade in these regoons, it was arranged that an English Consnlar Agent was to reside at Chnng-King in Sze-chuan on the npper waters of the Yang-tse. The officers who have held this port for the past six years have travelled widely through Yuanan, Sze-chuan, Kweichow, and other provinces, and have made most valuable contribations to the geography of China by the reports which have been published by them. Thus we have Mr. Colborne Baber's explorations in South-Western China published hy the Royal Geographical Society, Mr. Parker's papers in the Chima Reviev, which we have already noticed, and now Mr. Hosie has made two reports, which have recently been pnblished as Parliamentary Papers. The last of these deals with a journey of nearly 2000 miles from Chung-King to Chêng-tu, the provincial capital of Sze-chuan, thence by Tali in Jiunnan to Yunnan-Fn, the capital of this province, returning to ChungKing by another route. The traveller does not think much of the European maps of these districts, for on p. 58 we find him complaining that "the number of mistakes in these maps, whether as regards boundary lines, names of places, \&c., not to mention omissions, is truly alarming. As fairly accurate native maps are procarable, the occurrence of such mistaker as the above is astonishing." Mr. Hosie also gives some account of the aboriginal tribes, who nsually avoid the frequented routes, as as they are afraid of being taken by the Chinese. He saw several Lolos, and a Si-fan or "tame wild man," as he is called by a kind of Hibernicism, as well as representatives of several other frontier tribes. There can be little duubt that in a short time, with these able and energetic English officerstravelling far and wide from Chnag-King as a centre, the geography of the south western corner of China will be as well known to us as that of the districts adjoining the coast.

At the opposite corner of the China Seas, another Englich officer, Conssl-General Leys of Borneo, is endeavouring to promote the commercial development of little-visited districts in that wonderful island. He has recently visited the tracts watered by three considerable rivers flowing into Brunei Bay uear L.abnan, and hopes to get the Chinese merchants of the latter colony, as well as of Singapore, to send trading parties up these rivers. He further suggests the appointment of consular agents in the interior of the dominions of the Sultan of Brunei: a step which cannot fail largely to increase our knowledge of the geography and resources of Borneo.

The December namber of Guido Cora's Cosmos, which completes the first series ($1873-1883$) of tha: useful publication, contains the first part of Capt. C. F. Crema's journey to Moroceo in connection with the Italian Mision under Commander Sconas on in 1882. The text, which gives us a graphic account of the progress of the mission from Tangiers through the maritime provinces southwards to the mouth of the Sebu in the Atlantic Occan, is richly illustrated with numerous woodents from photographs and sketches taken by Crema hiaself. Some of the heads in these illustrations, such as those of Scovasso, the Kaid Raka, and the Arab Surgeon of Caria-ben-Audn, are capital studies of eharacter and ethnieal types. Others vividly reflect the sslient aspects of the laad, the architecture, and industries of its inhatitants. Conspicuous amongst these is the fine north-wet gate of Shelln near Rahat, which, with its two hexagonal towers, is the grandest monument of Moorish architeeture xtill surviving in Moroceo. The paper is also accom-
panied with a map to the scale of $1: 750,000$, which, being based on an accurate survey of the route, forms a raluable contribation to geographical exploration. It fills up many blank spaces, and gives numerons rectifications of existing maps, even in districts that have already been freqnently visited by European travellers. In the same issue Gustavo Bianchi gives an account of his recent explorations in the Gurageh territory daring the spring of the year 1880, accompanied by a useful map of the Galla country to the sonth and east of Shoa, which, with the exception of Cecchi and Chiarini's expedition in 1878, had been visited by no traveller since the time of Major Harris and d'Abhadic ($1843-46$).
The Boldin de la Socied ad Gagrafica di Madrid for Decemher 1883 has a paper by D. Jose Gomez San Juan, on the Spanish porsessions in the Gulf of Guinea. The object of the writer is to establish the exclasive right of Spain to the islands of Annobon, Corisco, and the two Elobeis, as well as to the portion of the opposite mainland stretching from Punta del Campo to Punta Santa Clara on the right bank of the Gaboon. The paper is ably written, and contains much interesting bistorical and geographical information on the whole of the wes: coast of Africa from Sierra Leone to the equator.
The German and Austrian Alpine Club now consists of no less than 100 sections. The last two sections formed were those at Bonn, on the Rhine, and at Schladming Kadstadt in the Upper Erns Valley.

Tur Stuttgart branch of the Berlin Centralverein fir Handelsgeographie contemplates the establishment of a Museurn for commercial geography at Stuttgart.

There will be several special exhibitions at Mnnich on the occasion of the fourth German Geographentag. The following are planned: (1) new maps and books; (2) curiosities of carto graphy and geographic1l literature; (3) Bavarian maps ; (4) maps, reliefs, and books relating to the Alps ; (5) maps, reliefs atlases, and other objects suitable for instruction in geography; (6) work done by pupils in gengraphy, to illustrate the methods of teaching.

Letters have been received from Hert Jnnker and from the Khartoum Consnl, Herr Hansal, which, however, do not give satisfactory details about the traveller's doings during the last two years, nor about his present position. They are principally short notes dating from lecember 1892 , August and October 1883 , in which he refers to longer letters nad reports, which have, however, not yet come to hand. Nevertheless, these notes prove that junker was in good spirits and health in the Seanis Country at the teginning of October last, and far from being diheartened or disturbed by events in the Sondan, of which he knew, was fully occupiel with his travels and the drawing of his maps

Dr. Finsch of Bremen has now published the "Anthropological Resules" of bis journey to the Pacific, and they form a valuable addition to anthropologicil literature. The traveller does not solely rely upon his own researches and observations, but also upon his (according to Virchow) unexampled collection of plaster casts from the faces of living men and women, natives of the islands he visited. This cullection consists of no less than 164 casts, and represents natives of sixty-one different islands; beside. Polynesians, Micronesians, and Melanesians, it also contains Malays of the Indian Archipelago, for the sake of comparison. Copies of the casts will be a welcome sueans of instruction in anthropology, and can be obtained through Herr Louis Crstan at Berlin (Panopticum).

An expedition to the North Pole is being prepared by Capt. Fondacaro of the Italian navy. It is several centuries since an expedition to the North Pole was despatched from Italy.

THE SIX GATEWAYS OF KNOWLEDGE ${ }^{1}$

II.

THE sense of sight may be compared to the sense of sound ie this respect. I spoke of the sense of sound lveing caused by rapid variations of pressure. I had better particularise and sy how rapid must be the alternations from greatest pressure to least, and back to greatest, and how frequently mast that period
${ }^{1}$ An Addresi at the Midland Institute. Birmingham, Oetober 3, 1883_{3} by Prof. Sir Willian Thonssn, LLLD., F.R.S., president. Cootinued from ${ }_{p}$ 440
occur, to give us the sound of a musical note. If the barometer varies once a minute you would not perceive that as a musical note. But suppose by any mechanical action in the air, you could cause the barometric pressure-the air pressure-to vary much more rapidly. That change of pressure which the barometer is not quick enough to show to the eye, the ear hears as a musical sound if the period recurs twenty times per second. If it recurs twenty, thirty, forty, or fifty times per second, you hear a low note. If the period is gradually accelerated, you hear the low note gradually rising, becoming higher and higher, more and more acute, and if it gets ap to 256 periods per second, we have a certain note called C in the ordinary musical notation. I believe I describe it correctly as the low note \mathbf{C}, of the tenor voice-the gravest C that can be made by a flate. The note of a two-foot organ pipe open at both ends has 256 periods per second. Go on higher and higber to 512 periods per sceond, and you have tho C above that-the chief C of th soprano voice. Go above that to 1024 , you get an octave higher. You get an octave higher alnays by doubling the number of vibrations per second, and if you go on till yon get up to about 5000 or 6000 or 10,000 periods per second, the note becomes so shrill that it ceases to excite the hnman ear and yon do not hear it any longer. The highest note that can be perceived by the haman ear seems to be something like 10,000 periods per second. I say "something like," because there is no very definite limit. Some ears cease to hear a note becoming shriller and shriller before other ears cease to hear it ; and therefore I can only say in a very general way, that something like 10,000 periods per second, is abont the shrillest note the human car is adapted to hear. We may define musical notes, therefore, as changes of presure of the air, regularly alternating in periods whieh lie between 20 and 10,000 per second.
Well now, are there vibrations of thirty or forty or fifty or a hundred thousand or a million of periods per second in air, in elastic solids, or in any matter affecting our sense? We have no evidence of the existence in matter of vibrations of very much greater frequency than 10,000 or 20,000 or 30,000 per second, but we have no reason to deny the porsibility of such vibrations existing, and having a large function to perform in nature. But when we get to some degree of frequeacy that I cannot pnt figures upon, to something tbat may be measured in millions, if not in hundred-thousands of vibrations per second, we have not merely passed the limits of the human ear to hear, bnt we have passed the limits of marter, as known to us, to vibrate. Vibras tions transmitted as waves through steel, or air, or water, cannot be more frequent than a certain number, which I cannot now put a figure to, but which, I say, may be reckoned in hundred. thou-ands or a few millions per second.

But now let us think of light. Light we know to be an influence on the retina of the eye, and through the retina on the optic nerve; an influence dependent on vibrations whore frequency is something between 400 million millions per second and $\$ 00$ million millions per second. Now we have a vast gap between 400 per second, the sonnd of a rather high tenor voice, and 400 million millions per second, the number of vibrations corresponding to dull red light-the gravest red light of the prismatic spectrum. Take the middle of the spectrum-yellow ight-the period of the vibrations there is in round numbers 500 million millions per second. In violet light we have 800 million millions yer second. Beyond that we have something that the cye scarcely perceives-does not perceive at all perhaps -but which 1 believe it does perceive, thongh not vividly: we have the nltra-violet rays, known to us chiefly by their photographic effect, but known al*o by many other wonderful experimente, that within the last thirty years have enlarged our knowledge of light to a most marvellous degree. We have invisible rays of light made visible by letting them fall on a certain kind of glass, glass tinged with uranium-that yellowish green glass, sometimes called canary glass or chameleon glass. Uranium glass has a property rendering visible to us invicible rays. You may hold a piece of uranium glass in your hand, illuminated by this electric light, or hy a candle, or by gas light, or hold it in the prismatic spectrum of white light, and you see it glowing according to the eolour of the light which falls upon it ; but place it in the spectrum beyond the visible violet end, where without it you see nothing, where a piece of chalk held up seems quite dark, and the uranium glass glows with amysterious altered colour of a beautiful tint, revealing the presence of invisible rays, by converting them into rays of lower period, and so rendering them visible to the eye. The discovery of this
property of aranium glass was made by Prof. Stokes, and the name of tluorescence from fluor spar, which he found to have the same property, was given to it. It has since been discovered that flnorescence and phosphorescence are continuous, being extremes of the same phenomenon. I suppose most persons here present know the luminous paint made from snlphides of calcium and other materials, which, after heing steeped in light for a certain time, keep on for hours giving out light in the darkness. Persist-nce in emission of light after the removal of the source, whieh is the characteristie of those phosphorescent objects, is manifested also, as Edmund Becquerel has proved, by the uranium glass, and thus Stokes' discovery of fuorescence comes to be continurus with the old known phenomenon of phosphorescence, to which attention seems to have been first called scientifically by Rohert Boyle about 200 years ago.
There are other ray", that we do not perceive in any of these ways, but that we do perceive by our sense of heat : heat rays as they are commonly called. But in truth all rays that we call light have heating effect. Radiant heat and light are one and indivisihle. There are not two things, radiant heat and light : radiant heat is identical with li ht. Take a black hot kettle into a dark room, and look at it. You do not see it. Hold your face or your hand near it, and you perceive it by what Bunyan would have called Feel Gate; only now we apply the word feeling to other senses as well as Tonch. Yon perceive it before you touch it. Yon perceive it with the back of your hand, or the front of your hand; you perceive it with your face, yec, and with your eye, but you do not see it. Well, now, must I justify the assertion that it is not light? You say it is not light, and it is not so to you, if you do not see it. There has been a good deal of logiechopping about the words bere; we seem to define in a vicious circle. We may begin by defining light- "It is Iight if yon see it as light ; it is not light if you do not see it." To save circumlocution, we shall take things in that way. Radiant heat is light if we see it, it is not light if we do not see it. It is not that there are two things; it is that radiant heat has differences of quality. There are qualities of radiant heat that we can see, and if we see them we call them light; there are qaalities of radiant heat we cannot see, and if we cannot see them we do not call them light, but still call them radiant heat : and that on the whole seems to me to be the best logic for this subject.

By the bye, I don't see Logic among the studies of the Birmingham and Midland Institute. Logic is to language and grammar what mathemntics is to common sense; logic is etherealised grammar. I hope the advanced student in grammar and I atin and Greek, who needs logic perhaps as much as, perhaps more than, most students of science and modern languages, will advance to logic, and consider logie as the science of using wnrds, to lead him to know exactly what he means by them when be uses them. More ships have been wrecked through had logic than by bad seamanship. When the captain writes down in his log-I don't mean a pun here, \log has nothing to do with logic-the ship's place is so-and-so, he means that it is the most probable pocition-the position which, according to previous observations, le thinks is the movt probable. After that, suppo-ing no sights of sun or stars or land to be had, careful observation of spe d and direction shows, by a simple reckoning (called technically the dead reckoning), where the ship is next day. But sailors too often forget that what they put down in the \log was not the ship's place, bnt what to their then knowledge was the most probable position of the thip, and they keep running on as if it was the true position. They forget the meaning of the very words in which they have made their entry in the log, and through that bad logic more ships have been run on the rocks than by any other carelessness or bad seamanship. It is bad logic that leads to trusting to the dead reckoning, in running a course at sea; and it is that bad logic which is the cause of those terribly freqnent wrectas; of steamers, otherwise well conducted, in cloudy but perfectly fine weather, running on rocks at the end of a long voyage. To enable you to understand precisely the meaning of your result when you make a note of anything abont your own experience or experiments, and to understand precisely the meaning of what you write down, is the province of logic. To arrange your record in snch a manner that if you look at it afterwards it will tell you what it is worth, and neither more nor less, is practical logic; and if you exercise that practical logic, you will find benefits that are too obvious if yon only think of any scientific or practical subject with which yon are familiar.

There is danger then of a bad use of words, and hence of bad
reasoning upon them, in speaking of light and radiant heat ; but if we distinctly define light as that which we consciously perceive as light-without attempting to define consciousness, becanse we cannot define consciousness any more than we can define free will-we shall be safe. There is no question that you see the thing; if you see it, it is light. Well now, when is radiant heat light? Radiant heat is light when its frequency of vibration is bet ween 400 million millions per second and 800 million millions per second. When its frequency is less than 400 million millions per second it is not light ; it is invisible "infra-red" radiant heat. When its frequency is more than 800 million millions per second, it is not light if we cannot see it; it is invisible ul:ra-violet radiation, truly radiant heat, but it is not so commonly called radiant heat becanse its heating effect is known rather the oretically than by sensory perception, or thermometric or thermoscopic indications. Observations which have been actually made by Langley and by Abney on radiant heat take us down abont three octaves below violet, and we may hope to be brought cansiderably lower still by future observation. We know at present in all about fuur octavesthat is from one to two, two to foar, four to eight, eight to tixteen, hundred million millions-of radiant heat. One octave of radiant heat is perceptible to the eye as light, the octave from 400 million millions to 800 million millions. I borrow the word octave from mnsic, not in any mystic sense, nor as indicating any relation between harmony of colours and harmony of sound. No relation exists between barmony of sound and harmony of colours. I merely ase the wrd "octave" as a brief expresion for any range of frequencies lying within the ratio of one to two. If you double the frequency of a musical note, you raise it an octave : in that sense I use the word for the moment in respect to light, and in no other sense. Well now, think what a tremendous chasm there is between the 100 million willions per second, which is about the gravest hitherto discovered note of invisible radiant heat, and the to,000 per second, the greatest number of vibrations in sound. This is an unknown province of science : the inve-tigation of vibrations between those two limits is perhaps one of the most promising provinces of scie "nce for the future investigatur.
In conclusion, I wish to bring before you the idea that all the senses are related to force. The sense of sound, we have seen, is merely a sense of very rapid changes of nir pressure (which is force) on the drum of the eir. I have passed mercly by name over the senses of ta-te aod wmell. I may say they are chemical senses. Taste common salt and tave surar-you tell in a moment the difference. The pereep ion of that difference is a per seption of chemical quality. Well, there is a subtle molecular inflinence here, due to the truch of the otject, on the tongue or the palate, and producing a sensation which is a very different thing from the ordinarily reckoned sense of touch, in the case now considered, telling only of roughness and of temperature The most subtle of our senses perbaps is sight ; next come smell and taste. Prof. Stokes recently told me that he would rather loak upon taste and smell and sight as being continuous because they are all molecular-they all deal with properties of matter, not in the gross, but molecular actions of matter; be would rather group th ise three together than he wonld couple any of them with any of the other senses. It is not necessary, however, for us to redace all the six senses to one, bat I would just point out that they are all related to force. Chemical action is a force, tearing molecules apart, throwing or pushing then to gether: and our chemical sense or senses may therefore s) far at least be regarded as concerned with force. That the senses of smell and taste are related to one another ceems obvious; and if physiologits would pardon me, I would suggest that they may, without impropriety, be regar eed as extremes of one sense. This at all events can be said of them, they can be compared-which cannot be said of any other two senses. You cannot say that the shape of a cube, or the roughness of a picce of loaf sugar or sandstone, is comparable with the temperature of hot water, or is like the sound of a trumpet, or that the sound of a trumpet is like scarlet, or like a rocket, or like a blue-light signal. There is no comparablity between any of these perceptions. Bat if any one says, "That piece of cinnamon tases like its smell," I think he will express something of general experience. The smell and the taste of pepper, nutmeg, cloves, cinnamon, vanilla, apples, strawherries, and other articles of food, particnlarly spices and fruits, have very marked qualities, in which the taste and the smell seem esentially comparable. In does seem to me, although anatomists distinguish between them, because the
sensory organs concerned are different and because they have not discovered a continuity between these organs, we should not be philosophically wrong in saying that smell and tate are extremes of one sense-one kind of perceptivity-a sense of chemical quality materially presented to us.

Now sense of light and sense of heat are very different ; but we cannot define the difference. You perceive the heat of a hot kettle-how? By its radiant heat against the face-that is ooe way. But there is another way, not by radiant heat, of which I shall speak later. You perceive hy vision, but still in virtse of radiant heat, a hot hody, if illuminated by light, or if hot enough to be self-luminous, red-hot or white-hof, yoa see it; you can both see a hut body, and perceive it by its heat, otherwise than by seeing it. Take a piece of red-hot cinder with the tongs, or a red-hot poker, and study it ; carry it into a derk room, and look at it. You see it for a cerlain time; after s certain time you cease to see it, but you still perceive radiant hess from it. Well now there is radiant heat perceived by the eye and the face and the hands all the time ; but it is perceived only by the sense of temperature, when the hot body ceases to be redhot. There is then, to our senses, an absolute distinction is modes of perception bstween that which is continuous in the external nature of the thing, namely, radiant heat in its visile and invisible varieties. It operates upon our senses in 3 waf that I cannot ask anatomists to admit to be one and the same in both cases. They can rot now, at all events, say that there is an absolute continuity between the retina of the eye in its perception of radiant heat as light, and the skin of the hand in its perception of radiant heat as heat. We may come to know mare; it mty yet appear that there is a continuity. So ne of Darwin's sublime specula ions may become realities to us; and we may oras to recognise a cultivable retina all over the body. We have axt done that yet, but Darwin's grand idea occurs as suggetting thax there may be an absolate continuity betw en the perception of radiant heat by the retina of the eye and its perception by the ti-sues and nerves concerned in the mere sense of heat. We must be content in the meantime, however, to make a distinction between the senses of light and heat. And indeet it matt be remarked that our sense of heat is not excited by nadias heat only, while it is only and essentially radiant heat that gives to the retina the sense of light. II- Id your band under a red-hot poker in a dark roam: you perceive it to be hot solely by its radiant heat, and you see it also by it radiant heat. Now place the hand over it : y, u feel more $d f$ heat. Now, in fact, you perceive its heat in three wiym-by contact with the heated air which has ascended from the plie, and by radiant heat felt by your sense of heat, and by radinot heat seen as light (the ir on being still red-hot). But the sensed heat is the same throughout, and is a certain effect experiences by the tissue, whether it be caused hy radiant heat, or by coasact with heated particles of the air.

Iastly, there remains-and I am afraid I have already taxd your patience too long-the sense of force. I have been vebemently atacked for assertlog this sixth sease. I need nut goims the controversy ; I need not explain to you the ground os which I have been attacked; I could not in fact, because in reading the attack I have not been able to understand it myself. The only tang ble ground of attack, perhaps, was that a writer ia Ner York published this theory in 4880 . I had quoted Dr. Thonw Reid, without giving a date; his date chances to be 1780 ot thereabouts. Bat physio'ozists have very strenuoas'y revitel admitting that the sense of roughness is the sameas that muscalet sense which the metaphysicians why followed Dr. Thoms Rel in the University of Glasgow, taught. It was in the Univencf of Glasgow that I learnel the muscular sense, and I have oot seen it very distinctly stated elsewhere. What is this "mosether sense"? I press upon the desk before me with my right hand, or 1 walk forward holding out my hand in the dark, and wing this means to feel my way, as a blind man does constantly rik. finds where he is, and gaides himself, by the sense of tooch. I walk on until I perceive an obstruction by a sense of force in the palm of the hand. How and where do 1 pereive this sensation? Anatomists will tell you it is fell is the muscles of the arm. IIere, then, is a force which I perceive it the muscles of the arm, and the corresponding perceptivity y properly enough called a muscular sen e. But now take the tip of your finger and rub a piece of sandstone, or a piece of bid sugar, or a sm roth table. Take a piece of loaf sugar betrefi your finger and thumb, and take a smooth glass between you finger and thumb. Yon perceive a difference. What is the
difference？It is the sense of roughness and smoothness．Physio－ logists and anatomists have used the word＂tactile＂sense，to designate it．I confess that this d．es not convey much to my mind．＂Tactile＂is merely＂of or belonging to touch，＂and in saying we perceive roughness and smoothness by a tactile sense， we are where we were．We are not enlightened by being told that there is a tactile sense as a department of our sense of touch．But I say the thing thought of is a sense of force．We cannot away with it；it is a sense of forces，of directions of forces，and of places of application of forces．If the places of application of the forces are the palins of the two hands，we perceive accordingly，and know that we perceive，in the muscles of the arms，effects of large pressures on the palons of the hand But if the places of application are a hundred little areas on one finger，we still perceive the effect as force．We distingaish between a uniformly distributed force like the force of a piece of swooth glas＇，and forces dissributed over ten or a hundred little areas．And this is the senve of smoothness and roughness．The sense of roughness is therefore a sense of forces，and of places ol application of forces，just as the sense of forces in your two hands stretched out is the sence of forces in places at a distance of six feet apart．Whether the places be at a distance of six feet or at a distance of one hundredth of an inch，it is the sense of forces，andsof places of application of forces，and of direc－ tions of forces，that we deal with in the sence of touch other than heat．Now anatomists and physiologists have a grod right to distinguish between the kind of excitement of tissue in the finger，and the minute nerves of the skin and sub－skin of the finger，by which you perceive rou chness and smoothnes＇，in the one case；and of the muscles by which you perceive places of application very distant，in the other．But whether the f，rces lie so near that anatomists cannot distinguilh mascles，cannot point out muscles，resi－ting forces and balancing them－because， remember，when you take a piece of glass in your fingers every bit of pressure at every ten－th ousandth of an inch pres ied lyy the glass against the finger is a balauced force－m whether they be far a－under and obvionsly balanced thy the mucles of the two arms， the thing perceived is the same in kind．Anatomi－ts do not show us muscles balancing the individual forces exp rienced by the small arens of the finger inself，when we touch a piece of smooth glass，or the individual forses in the seores or hundreds of little areas experienced when we touch a piece of rough suzar or rough sand tone；and perhaps it is not by muscles smaller than the muscles of the finger as a whole that the multitudinous－ ness is dealt with ：or perhaps，on the other hand，these nerves and tissues are c intinuous in their qualities with muscles． 1 zo beyond the range of my subject wheltever I speak of muscles and nerves；but externally the serse of touch other than heal is the same in all case：－it is the sense of forces and of places of application of forces and of directions of force－I hope now I have jantified the sixth sense；and that you will excuse we for having taxed your patience so long in not having done it in fewer nords

ELECTRICAL STANDARDS ${ }^{1}$

T^{1}HE Committse report that，in accordance with suggestions made at the last mesting of the Briti－h Association，arrauge－ ments have now been completed for testing resis＇ance coils at the Cavendish Laboratory and is uing certificates of their value． These arrangements hive been made hy Lord Kayleigh and Mr． Glazebrook，and the report contains an account by the latter of the methods employed and the conditions under which the te－ting is undertaken，in order that those who use ：uch coils may have a more exact extimate of the value of the test，

When a coil is to be tested，a suitable standard is chose, and the two are placed in the water haths and left at least three or four hours－more usually over night．The emmparison is then made in the ordinary manner by Prof．Carey Foster＇s method （Journal of the Socicty of Tilegraft Enginuers，1874），and the coils again left for some time without being removed from the water．After this second interval another comparison is made． The temperatures of the water baths are taken at each com－ parison，and as a rule differ very slightly．
${ }^{4}$ Abstract of Report of the Committee，consiating of Prof．G．Carcy Foster，Sir Williars Thomson．Prof．Avrion，Mr．J．Perry，Pruf．W．G． Adauns．Lord Rayleigh，Prof．Jeakin，Dr．O．I．L idge，Dr．John Hopkin－ son，Dr．A．Muirhead（Sesretary），Mr．W．H．Preece，Mr．Herbert Taylor，
Prof．Everett，Prof．Schuster．Sir W．Siemens．Dr．J．A．Fleming．Prof， Prof．Everett，Prof．Schuster．Sir W．Siemens．Dr．J．A．Fieming，Prof，
G．F，Fitzgerald，Mr．R．I．Glazebp．ook，and Pruf，Chrystal，appointed for G．F．Fitzgerald，Mr．R．I．Glazebp．ok，and Pruf．Chrystal，appointed for
the purpose of constructing and issuing pracical Standards for use in Elec－ trical Measurements．

We thus have two values of the resistance of the coil to be tested at two slightly different temperatures．

The mean of these will be the resistance of the coil in question at the mean of the two temperatures．

We are thus able to issue a certificate in the following form：－ ＂This is to certify that the coil No．X has been compared with the Britivh Association Standards，and that its value at a tem－ perature of $A^{\circ} \mathrm{C}$ ．is P B．A．Units or P^{\prime} R．ohms ； 1 B．A．Unit being＂9867 R．ohms．＂We further propose to stamp all coils in the future with this monogram 夏 a id a reference number．

It will be noticed that nothing is said about the temperature coefficient of the coil or the temperature at which the coil is accurately i B．A．Unit．To determine this exactly is a some－ what long and trublesome operation，bat at the same time it is one which every electrician，if he $k n$ ，ws the value of the coil at one given temperature，can perform for himself with ordinary testing apparatus．It does not require the use of the standards． For many purpo es the approximate value of the temperature co－ efficient obtained from a knowledge of the material of the coil will suffice；we may feel certain that any one requiring greater accuracy would be quite able，and would prefer，to make the measurement himself．We can state with the very highest exact－ ness that the resistance of the coil X at a temperature $A^{\circ} \mathrm{C}$ ． is \mathbf{R} ．To obtain the temperature coefficient accurately requires an amount of labour which may be quite unnecessary for the purpose for which the coil is to be used．

In accordance with the resolution of the Committee，a fee of 11．Is．has been charged for testing single unit＂，and of $1 /, 11 \mathrm{~s}, 6 \mathrm{~d}$ ． for others．

The only coils the testing of which is regularly undertaken are single units and multiples of single units by some powerx of 10 ．

But though this is sn，two standard ohms have been ordered， using for the value of the B．A．unit＂9 967 ohms，and when they arrive and have been tested，it will be easy to determine the value of coils which do not differ much from a real ohm．At pre ent，wi lou th－se stamlard．－the c sils actually used in the recent experiments at the Cavendish Labonatory have a resi－tance of a^{\prime} rout $\cdot 1,24$ ，and 168 ohus－the operati in is trouble：ome． The simplest ackurate tuethot seems to lie 10 combine in multiple are the real chm，an I one of the tos B．A．unit standards，and to compare the conbination with a single unit．

ON THE ME゙ASUREMENT OF ELE゙CTRIC CUKRENTS ${ }^{1}$

PERHAPS the simplest way of measuring a current of mode－ rate intensity when once the electro－chemical equivalent of silver is known，is to determine the quantity of metal thrown down by the current tir a given time in a silver voltameter． According to Koblrauseh the electro chemical equivalent of silver is in C．G．S．measure 1.136×10^{-2} ，and according to Mascart， 1.124×10^{-2} ．Experiments enducted in the Caven－ di－h Laboratory during the past year by a method of current weighing decribed in the British Avsociation Report for 1882 have led to a lower nuaber，viz 11119×10^{-7} ．At this rate the silver deposited per ampere per hour is $4^{\circ} 028$ grams，and the method of measurement founded upan this number may be used with good effect when the strength of the current ranges from $1 / 20$ ampere to peroajs 4 anperes．It requires，how ever，a pretty good balance，and some experience in chemical manipulation．

Another method，which gives good results and requires only apparatus familiar to the electriciau，depends upon the use of a standard galvanic cell．The current from this cell is passed through a bigh resistance，such as 10,000 ohms，and a known fraction of the electromotive furce is taken by tuuching this circuit at definite points．The current to he mea－ured is caused to flow along a strip of sheet German silver，from which two tongues project．The difference of potential at these tongues is the product of the resistance included between them and of the current t o be measured，and it is balanced by a fraction of the Knowu electromotive force of the standard cell（vee figure）．With a sensitive galvanometer the balauce may be adjusted to about $1 / 4000$ ．The German silver strip must be large enough to avoid heating．The resivtance between the tongues may be $1 / 200 \mathrm{ohm}$ ， and may be determined by a method similar to that of Mathies sen and Hockin（Maxwell＇s＂Electricity，＂352）．The propor－

[^43]tions above mentioned are suitable for the meaurement of such currents as 10 amperes.

Another method, available with the strong currents which are now common, depends upon Faraday's discovery of the rotation of the plane of polarisation by magnetic force. Gordon found 15° as the rotation due to the reversal of a current of 4 amperes circalating about 1000 times round a column of bisulphide of carbon. With heavy glass, which is more convenient in ordinary use, the rotation is somewhat greater. With a coil of 100 windings we should obtain 15° with a current of 40 amperes; and this rotation may easily be tripled by causing the light to

traverse the coluunn three times, or, what is desirable with so strong a current, the thickness of the wire may he increased and the number of windings reduced. With the best optical arrangements the rotation can be determined to one or two minutes, bnt in an instrument intended for practical use such a degree of deliency is not available. One difficulty a ises from the depolarising properties of most specimens of henvy flass. Arrangements are in progress for a redetermination of the rotation in bi ulphide of carbon.

Ravleigh

UNIVERSITY AND EDUCATIONAL JNTELLIGENCE

OXFORD.-In spite of the large majority in favour of the preamble of the tatute allowing women to enter for certain University Examinations, the statute was again oppored on March it, on being brought up by Council after amendment. After a lengthy debatc, the statute was carried by 107 against 72. The chief arguments used against the measure were based on the alleyed unfaimess to men in allowing women to compete under no restrictions of time and regidence, and for portions only of any examination ; and on the evil to the health of women which might arise from their competing with men. Mr. Pelham, of Exeter, pointed out that the statute was not one to confer degrees upon women, but to make Oxford an examining body for the various centres of female education in England, and enable it to confer certificates which would have a recognised value Mr. Sedgwick read letters from the heads of Newnham and Cirton, at Cambridge, showing that the health of the students was excellent.

SCIENTIFIC SERIALS

The Amerisan Journal of Srience, February.-Examination of Alfred R. Wallace's modification of the phyxical theory of secular changes of climate, by James Croll. While agreeing with much that has been advanced by Wallace in his "Island Life," in explanation of geological elimate, the anthor fails to perceive that any of the arguments or considerations there adduced materially affect his own theory as advocated in "Climate and Time." IIe still holds that with the present distribution of land and water, without calling in the aid of any other geographical conditions than now obtain, the physical agencies detailed in "Climate and Time" are sufficient to account for all the phenomena of the Glacial epoch, including thove intercalated warm periods, during which Greenland would probably be free from ice, and the Arctic regions enjoying a mild climate.-Communications from the United States Geological Survey, Rocky Mountain division, No. v. ; on sanidine and topaz, \&e., in the nevadite of Chalk Mountain, Colorado, by Whitman Cross. The sanidine crystals contain gas inclusions, but no fluids, and the topar, elsewhere found only in granite, gneiss, or other meta. morphic or crystallize schists, here occun in an eruptive rock probably of carly Tertiary age.-On the cccurrence of the Lower
${ }^{1}$ January, ${ }^{\text {a } 884 . ~ I n ~ a ~ n o t e ~ r e c e n i l y ~ c o m m u n i c a t e d ~ t o ~ t h e ~ R o y a l ~ S o c i e t y ~}$ (Procceding. November 15,188) Mr Gorjon poinls out that, owing 10 an cror in reduction, the number given by him for the value of Verdet's contant is twice as great as in sh. uld be. The motations above mentioned anust therefore be halved, a correction which dimiaishes materially the prospect
of coostructing a usefut instrument upon this priaciple.

Burlington limestone in New Mexico, by Frank Springer. The observations made by the author in 1882 in the Lake Valley Mining District, Southern New Mexico, have brought to light numerous facts confirming the views of the Burlington geologist regarding the distinct character of the upper and lower sabcarboniferous groups in that district, but demonstrating that the Lower Burlington limestone has a much wider geographical range than had hitherto been suspected. -The Minnesota Vialleg in the Ice Age (concluded, with two mapa), by Warren Upham, - Glacial drift in Montana and Dakota, by Charles A. White, The author, who had already determined the presence of tree northern Glacial drift in the region about the Lower Yellowstone River, now traces the same drift much further wect. His observati ns were unainly confined to the Missouri Valley, bat also reached to the vicinity of the Great Paw Mountains, extending for over a thousand miles at intervals from the Great Falls of the Missouri to Ilismarck in Dakota.-Phenomena of the Glacial and Champlain perinds about the mouth of the Connecticut Valley, that is, in the New Haven region (with two plates), by James D. Dapa. The author concludes that during the lce period the Mill River channel was excavated or deepened by glacier aetion. This channel, as it widened southwards below the mouth of the Pine Marsh Creek, became partly obstracted by sand-bars, which increased as the flood made progress, and ultimately merged in the wide terrace formation of the Ner Haven plain. - Supplement to paper on the paramorphic origin of the hornblende of the crystalline rocks of the North-Wesem States, by R. D. Irving.-On herderite, a glucinum calcium phosphate and flunride from Oxford County, Maine, by Willim Earl Hidden and James B. Mackintosh.-Note on the decay of rocks in Brazil, by Orville A. Verby.

Bul'etin de I'Acadlmic K'oyale de Belkique, December I, 1883 -Note on the presence of erratic boulders on the Belgian belands, by M. E. Delvaux. From the blocks of Scendinavian granites found at Limburg, in Fast Flanders, at Wachteleke, and other places, the auth r concludes that during the loe Age glaciation extended over the whole of the Netherlands, Belgiam, and the thall-w or expred lands now flonded by the Nork bea terminatin $\frac{1}{\text { on }}$ the plains of Norfolk and Suffolk. -On amygda. line and germin tti' n , by M. A. Jorissen.-On the scintillation of the stars, in connection with the constitution of their light as revealed by spectrum analysis, by M. Ch. Montiguy. The author's spectrose pic studies leal to the conclusion that these stars sparkle most whose spectra prenent the fewest bands, scintillation beinz weakest in those whose spectra are markel by broad dark hands. - On the fo-sil remaius of Sphargis ruchlumiy discovered in the brick clay of the Waas district, by P. J. van Beneden. - Note on a new differential dilatometer and its application to the study of the expansion of alums under the action of heat (one illu-tration), by W. Spring.-Some experiments on thin liquid layers of glycerine prepared from the oleate of sodium, by J. Plateau.-On the false appearancer of aurom borealis observed in Helgium during the month of Nowenber ISS_{3}, hy F . Terby,-Note on the anatomy and thistolngy of Tucpoclaria rhabdocelis (three illustrations), by P. Francothe -On the laws regulating the proprietary rights of apthors of musical and dranatical works in Belgium, by M. Cattreax.An historical study of the reformer Froment and his firt wife, Marie d'Ennetières, by M. Jules Vuij.-On a Snciety of I.awyers that flourished in Brussels during a great part of the eigbteenth century, by Louis Jlymans. - Remarks on the present state d mu ic in the rhief cities of Central Europe, by X. van Flewgck. -Generalisation of a property of surfaces of the second order, by M. lamet.-A ppearance of the satellites of Jupiter during the night of October 14, 1853, by F. Terby.-N ote on the parallax of the sun deduced from the micrometric obserrations made at the Belgian stations during the transit of Venus on December 6,1882 , by means of specially con-tructed helionnetern by J. C. 11 ouzeau.-Contributions to the history of the orem; indirect relation of the germinative vesicle to the periphery of the vitellus (twelve illustrations), by Ch. van Bambeke - Re marks on the study of biology and natural history in Belgium by M. Ed. van Beneden.-On the salient features of the beds of the great marine basins, by M. A. Renard.

Atti della R. Acrademia dei Lincri, December 16, 1853Notice of G. Orano's treatise on "Habitual Criminals," IV S. Ferri. - On the causes of the retirement of the Alpine glaciest, by Roberto Paolo. The author concludes that the glaciers were developed under a mean summer temperature lower than at
present, and that they are retreating not so much through cosmic or telluric causes as through meteorological changes depending partly on the prolonged action of man on the earth.-On the molecular velocities of gaseous bodies (continued), by Arnoldo Violi,-Experimental studies on Thapsia resin, by Francesco Canzoneri.-Distribution of the spots, facule, eruptions, and protuberances on the surface of the sun, deduced from the observations made at the Observatory of the Collegio Romano during the year 1882, by Pietro Tacchini.-Official return of the archroological discoveries made at Este, Bologna, Rome, Bolsena, Albano, and some other parts of Italy during the November of 1883 , by S. Barnabei.- Meteorological observations made at the Observatory of the Campidoglio during the month of November, 1883.

January 6, 1884 .- Notice of Prof. Carlo De Stefani's work on the "Lower Lias Formation of the Northern Alps," by S. Taramelli.-New determination of the optical characters of Christianite (anorthite) and Thillipsite (variegated copper ore), by Alfiedo des Cloizeaux. - Note on the existence of two distinct optical axes in the Gismondine crystals (twoillustrations), by the same author.-On the temperature corresponding to the Glacial period (continued), by Pietro Blasernx. - Some observations of the eighth satellite of Saturn, by E. Millosevich.-Meteorological observations made at the Obervatory of the Campidoglio duriag the month of December, 1883 .

Revue d'Anthropologie de Paris, No. 1, 1884, contains: Coneluding part of Dr. P. Broca's "Description des Circonvolutions Cérébralex de l'Homme d'aprés le Cerveau Schénatiqne," completed by Dr. Pozzi. The latter writer draws special attention to the third frontal circonvolution in man, which was first definitely shown by Broca to be the seat of the organ of speech. This function, in thirteen out of fourteen cases, is associated with the left frontal, and in one out of fourteen with the right frontal, as has leen proved by loss of the faculty of speech, known as "aphacia," or, according to the writer, more correctly as "aphemia," which is due to lesions of that portion of the brain. Dr. Pozzi sugge ts that, in deference to the scientific importance of Bricn's diseovery, this special convolution should henceforth be di-tinguished by his name. - The continuation of M. Mathias Duval's lectures on "Le Transformisme," in which the writer treats specially of beredity and nalural selection, drawing bis materials, as in the earlier parts, alonost exclu-ively from English sources.-" Les Cafres et plus spécialement les Zuulous," by Elie Reclus. This is the first of a series of papers intended by the anthor to elucidate the history of primitive peoples.

Rivista Sientifico-Indwstriale, Flonencr, December 15-31, 1883. - Account of the economic earthquake-warners constructed by the brothers Brassart of the Roman Central Meteorological Bareau (two illustrations), by E. Brassart.-De Tromelin's new aperiodical galvanometer.-On the electric resistance of porcelain, sulphur, and some other non-conducting substances.-On the measurement of electromotor forces.-On the determination of the work execnted and absoribed by a dynamo.-Contribation to palaontological studies in Southern Italy, by Michele del 1лиро.
Rendïonti del R. Istifuto Lowbardo, Milan, January 10, 188_{4}. -On nnmbers irreducible by complex numbers (concluded), by Prof. C. Formenti,-Contribution to the physiology of the enteric jnice, by Prof. L. Solera.-Clinical demonstration of a lymphatic infiltration of mechanical origin in the connea ; preliminary notice, by Dr. R. Rampoldi.-On the declaration of bankruptey at the instance of the creditors, in the new Italian Commercial Code, by L. Gallavresi.-Attenuating and aggra. vating circumstances in the Criminal Code (concluded), by Prof. A. Bnccellati.

SOCIETIES AND ACADEMIES London

Royal Society, February 21.-"On an Explanation of Hall's Phenomenon.'. By Sbelford Bidwell, M.A., LL. B.
Mr. E. H. Hall's papers, giving a full account of his wellknown discivery, are printed in the Philosophical Magasine for March 1880, November 1880, September 1881, and May 1883. Itis original experiment was as follows 1-A strip of gold leaf was cementel to a plate of glass and placed between the poles of an electromagnet, the plane of the glass being perpen-
dicular to the magnetic lines of force. The current derived from a Bunsen cell was pas ed longitudinally through the gold, and, before the electromagnet was excited, two equipotential points were found by trial near opposite edges of the gold leaf, and about midway between the ends: when these points were connected with a galvanometer there was of course no deflection. A current from a puwerful battery being passed through the coils of the magnet, it was found that a galvasometer deflection occurred, indicating a difference of potential between the two points, the direction of the current across the gold leaf being opposite to that in which the gold leaf itself would have moved across the lines of force had it been free to do so. On reversing the polarity of the magnet the direction of the transverse electromotive force was reversed; and when the magnet was demagnetised the two points reverted to their original equipotential condition.
Subsequent experiments showed that the direction of the effect differed according to the metal used. Thus with silver, tin, copper, bracs, platinum, niekel, aluminium, and magne ium, the direction of the transverse electromotive foree was found to be the same as in the case of gold : with iron, cobalt, and zine the direction was reversed, and with lead there was no sensible effect in either direction.
Hall's results may be expressed by saying that the equipotential lines across the strip are rotated in a definite direction with respect to the lines of force. This effect was attributed by him to the direct action of the magnet on the current; and very great importance has been attached to the phenomenon in consequence of the opinion expressed by Prof. Rowland and others that it is connected with the magnetic rotation of the plane of polarisation of light, and thas furnishes additional evidence of an intimate relation between light an 1 electricity.
A number of experiments made by the author convinced him, however, that no direct action of the kind supposed was ever produced, and he ultimately found that liall's phenomenon might be completely expline i by the j rint action of mechanical strain and certain thermo-electric effects.
The strain is preduced by electro-magnetic action. It will be convenient to refer to the metallic plate or strip (which for the purposes of this explanation m2y be assumed to be rectangular) as if it were an ordinary map, the two shorter sides being called respectively we.t and east, and the two longer narth and south. Let the south pole of an electro-magnet be supposed to be beneath the strip, and let the strip be traversed by a current passing throngh it in a direction from west to east. Then the strip will tend to move across the lines of force in the direction from south to north. Since, however, it is not free to move bodily fro n its position, it will be strained, and the nature of the strain will be somewhat similar to that undergone by a horizontal beam of wood which is rigilly fixed at its two ends and supports a weight at the middle. Imagine the strip to be divided into two equal parts by a straight line joining the middle points of the west and east sides. Then in the upper or northern division the middle district will be stretcherl and the eastern and western districts will be compressed, while in the lower division the middle part will be compressed and the two ends will be stretched. If now a current is passing through the plate from west to east, the portion of the current which traverses the northern division will cross first from a district which is compressed to one which is stretched, and then from a district which is stretched to one which is compressed; while in the southern division the converse will be the ease. And here the thermoelectric effects above referred to come into play.

Sir Wm. Thomson, in $\mathbf{1 8 5 6}$, annoanced the fact that if a stretched copper wire is connected with an unstretched wire of the same material, and the junction heated, a thermo-electric current will fow from the stretched to the unstretched wire through the hot junction, while if the wires are of iron, the direction of the current is from unstretched to stretched. From this it might be inferred that a current would flow through the heated juncion from an unstretched or free copper wire to a longitudinally compressel copper wire, and from a longitudinally eompressed iron wire to a free iron wire; and experiment shows this to be the case. A fortiori therefore the direction of the current through the heated junction will be from stretched to compressed in the case of copper wire, and from compressed to stretched in the case of iron. If therefore a current is passed from a stretched portion of a wire to a compressed portion, heat will (according to the laws of the Peltier effect) be absorbed at the junction if the metal is copper and will be developed at the
junction if the metal is iron. In passing from compressed to stretched portions the converse effects will occur.

It follows from the above considerations that if the metal plate (which is acted upon by a force from south to north and is traversed by a current from west to east) be of copper, heat will be developed in the western half of the northern division and absorbed in the eastern half ; while heat will be absorbed in the western half of the southern division and developed in the eastern half. Hut the resistance of a metal increases with its temperature. The resistance of the north-western and southeastern districts of the plate will therefore be greater, and that of the north-eastern and south-western districts smaller than before it was strained; and an equipotential line through the centre of the plate, which would originally have been parallel to the west and east sides, will now be inclined to them, being apparently rotated In a counter clockwise direction.

If the plate were of iron instead of copper, the Peltier effects would clearly be reversed, and the equipotential line would be rotated in the opposite direction.

The peculiar thermo-electric effects of copper, and iron dis. covered by Thomson are thus seen to be sufficient to account for Hall's phenomenou in the case of those metals. It became exceedingly interesting to ascertain whether the above explanation admitted of general application, and the author therefore proceeded to repeat Thomson's experiments upon all the metals mentioned by Hall. The results are given in the following table, where those metals which in Hall's experiments behave like gold are distinguished as negative, and those u hich behave like iron as positive :-

Metals	Forma used	Direction of current	Hall: effect
Copper	Wire sind foul	S to U^{1}	Negative
Iron	Wire and sheet ; annealed	U to S	Positive
Brass	Wire, commercial	S 10 U	Negative
Zine	Wire and foil	U to S	Positive
Nickel	Wire	S to U	Negative
PlatinumGold	Wire and foil	S to U	Negative
	Foil, purity 99.9 per cent. f'ire, commercially pure Jeweller's 18 carat wire and sheet Jeweller's 15 carat sheet	S to U	Negative
		U to S	
		S to U	
		S to U	
Silver	Wice and foil	S to U	Negative
Aluminium	Wirs and foil, pure	U to S	Negative?
Cobalt	Rod : 8 mm . diameter	U tos	Positive
Magnesium	Ribloon	S to U	Negative
Tin	Foil	Sto U	Negative
lead	Foil (asay)	No cuirent	Nil

It will be seen that in every case, excepting that of aluminium and one out of fivespecimens of gold there is perfect correspond. ence between the direction of the thermo-electrie current and the sign of Hall's effect. With regard to the aluminium, a piece of the foil was mounted on glass, and Hall's experiment performed with it. As was anticipated, the sign of the "rotational coefficient ${ }^{n}$. was found to be positive like that of inon, zinc, and cobalt. Either, therefore, Mr. Hall fell into some error, or the aluminium with which he worked differed in some respect from that used by the author. The anomaluus specimen of gold, being in the form of wire, could $n \cdot t$ be subuitted to the same test. It probably contained some disturbing impurity.

It is submitted that the considerations and experiments above detailed render it ahundantly evident that the phenomenon deccribed by Mr. Hall involves no new law of nature, but is merely a consequence of certain thermo-electric effects which had been observed nearly thirty years ago.
"Some Relations of Chemical Corrosion to Voltaic Current." By G. Gore, F.K.S., LL. I).

The author states that the chief object of this research was to ascertain the amounts of voltaic current produced by the chemical corrosion of known weights of various metals in different liquids, and to throw some light upon the conditions which determine the entire conversion of potential molecnlar energy into external (i e . available) electrie current. The metals 2 used were magnesium, zinc, cadmium, tin, lead, aluminium,
' S me ans stretched: U means uniretched.
iron, nickel, copper, and silver; some of them being also used in an amalgamated state. The liquids employed were solutions of nitric, hydrofluoric, bydrochloric, sulpburic, fluosilicic, and acetic acids; and potassic hydrate and cyanide, also of different degrees of strength.

The chief numerical results are given in a series of ten tables, a table for each metal. Each table contains the electromotive of the current, the loss and rate of loss of the corroded metal, and of a comparison sheet not producing a current ; and the percentage of current obtained in ninety-seven different cases.

The results show that the proportion of loss of the positive plate by "local action" to that by corrosion producing external current varied greatly in different cases, viz. from 1 '3 to $95^{\circ} 25$ per cent. In no case was the whole of the metal dusolved by "local action," nor did the whole of the corrssion produce external current. In about 6 per ecnt. of the cases the comparison plate was more corroded thin the one which was used to produce a current. Whilst also the contact of a negative metal with the corroding plate usually increased the total corrosion, it commonly decreaved the corrosion due to " local action."

The proportion of corrosion attended by external curreat to that due to " local action," varied with the kind of metal and of liquid; with cadmium it averaged $75^{\circ} 63$, and with copper 30.33 percent. of the total corrosion ; with molution of potassic cyanide it averaged $63^{\circ} 27$, and with dilue nitric acid $31^{\prime} 14$ per cent. It varied also with other concitions ; and the hind of metal had more influence than that of the liquid. Amalgamation of the metal also had distinct effects upon the propurtion, but opponte in different cases. The rate of total corrosion of the positive plate appeared to be related to the degree of electromotive force of the current. The chief cause of the gruat variation in the proportion of corrosion by "local action" to that producing external current was probably a variation of electric conduction resistance.

March 6.- "Magnetic Polarity and Neutrality." By Prof. D. E. Hughes, F.R.S.

The anthor, citing the researches of Page, Mariavini, Wertheim, Joule, Wiedemann, De la Rive, Weber, Beetz, and Maxwell, together with his own puh ished researches, demonstrating that the molecules of niagnetic bodies, such as iron, have inherent polarity, and that all the known effects of magnetisu can be explained by the demonstrable rotation of the molecules whenever a change of polarity ocears, now gives a new series of experiments verifed by several independent methods, in which he shows that the penetration of the apparent polarity diminishes rapidly from the exterior to the interior of a bar, due to the frictional resistance of its molecules. In rotation, as when the rod or bar is vibrated whilst under the exciting influence, the penetration is four timegreater than previonsly. In all cases, however, there is moreversal of polarity in the interior whilst under the influence of it exciting cause. The instant this is withdrawn neutrality takes place in co!t iron, or a partial return to the same st te even in the hardest of steel.

The author has discovered that this neutrality is not cansed by a mixing of the fluids as assunied by Coulomt, or a heterogenerss arrangewent of the molecules as assumed by Amp.re and all other theories up to the present time, but that a reaction takes place between the outside or strongest polarity with that of the weaker inside, completely reversing it to a remarkable extent.

A bar of iron under the intluence of its exerting canse may be represented by three series of letters, the centre representios the

reversed polarity exactly balanced the exterior the sum of both would be zero, and consequent neutrality.

The paper describes the methods employed, and gives dia,ramb of these curves. In certain cases the exterior becomes reversed, as shown by magnetising a soft strip of steel half a willimetre thick, and then reducing it to a nearly ferfect ueutral state, cither by mechanical vibrations, or by heating the strip to red heat. That the outside is reversed is shown by dissolving the exteriot n dilute nitric acid, when its previous polarity reappear:.

The author cites several methods by means of which an apparent neutrality is shown to be the result of internal reaction, and that in all cases, even in the most permanent magnet, there is a portion of it reversed to its apparent polarity.

The author shows the importance of the knowledge of this fact in the construction of electro-magnets, whenever we desire to have the maximum of effect whilst under the iofluence of a current with a uinimum of remaining magnetism when the influence ceases.

This is shown hy experiments npon bars of similar length bat of different thickness, solid bars having far greater effect than tubular ones. Experiments were made on electro-deposited iron of varying thickness, showing the remarkable retentive power of extremely thin coatings of soft iron.

The result is given of a series of researches not yet completed (the details of which will be published in a futnre paper) upon the saturating point of soft iron and steel. The author has found that the atmosphere as well as all gaseous matter has precisely a similar curve of magnetic rise from neutrality to its magnetic saturation, and that bismnth as well as all socalled diamagnetic bodies obey the same law of saturation. Consequently he assumes that all matter is strongly magnetic, the widest limit yet found, from bismnth to soft Swedish iron, being only forty times greater for the iron.

An explanation is given of the well-known disappearance of unagnetism at yellow red heat, in which the author a sumes, from observed effects of violent mechanical vibrations, that this disappearance is due to a violent molecular oscillation dentroying its symmetrical arrangement of polarity.

The author concludes by saying, "Whatever theory we adopt as an explanation of evident magnetism, it will be found that neutrality occurring after the cessation of an external indncing force upon a bar of iron or steel is the result of symmetrically opposed polar forces, producing apparent waves of opposite polarity, or reactions between the exterior and interior of a bar of iron."

Linnean Society, March 6.-Sir J. Lnbbock, Bart., president, in the chair.-Dr. A. B. Shepherd and Mr. Jas. Dallas were elected Fellows, and Mr. W. Hodgson an A sociate of the Society.- The President announced the receipt of an intimation from the Foreign Office (through the Science and Art Depart. ment) of an International Ornishological Congress to be held in Vienna in the beginning of April.-Mr. J. Britten exhibited -pecimens of Lithosparmum furpurco carruleum, illustrating points in the life history of the plant as described by Mr. J. W. White in the fournal of Bolany,-Mr. F. O. Bower drew attention to a figare published in the Gardencr's Chronicle repre. senting a case of proliferation of the so-called "double needle" of Sciadopitys verticillata. He alluded to the various views as to the morphological value of the "double needle," and concluded that the one first propounded by P'rof. A. Dickson, afterwards discussed adversely by Von M hl, but favourably by (ioebel, appears most in acconiance with the history of its development.-Dr. M. Masters showed and made remarks on an example of bud variation of Pinnss silvesfris.-There was exhibited for Mr. T. E. Gunn a stuffed suecimen of a male variety of the common moorhen (Gajlimula chloropus), shut near Norwich last spring, -Mr. A. W. Bennelt drew attention to specimens under the m croscope of species of Ptilata and Callithammion which demonstrated the continuity of the protoplasm. - Prof. Cobhold gave a verbal acc sunt of a com nunicatiot from Dr. P. Mansonof IIong Kong, in which the author furnishes fresh evidence as to the rik of the mosquito considered as the intermediary host of Filaria sanguinis-homimis. Dr. Manson has verified his previous observations in the mo-t complete manner, and lie now recognise; and deseribes six well-marked stagen of the Filarixe whilst they are dwelling within the loody of the insect. In the discussion following, Ir. T, R. Lewis confirmed Manson's statements in many particulars. - The Secretary read an abstract of a paper on the Indian species of Cyperus, with remarks on some others that specially illustrate the subdivisions of the genus. The author divides this memoir into three sections: (1) a descriptive account of each part of a Cyferw, viz. the culm, infore-cence, \&c., comparing these successively in all the Indian species; (2) contains a discussion of some difficult species and disputed genera ; (3) is a systematic arrangement with descriptions of the Indian speciez, with short citations of some non-Indian species that more particularly illustrate the subdivisions and groups. - l'rof. St. G. Mivart read a paper on the relations between instinct and other vital processes. In this he contended that instinct cannot be
divided by a very hard and fast line from such vital processes as reflex action, processes of repair after injuries, and the process of development of the individual; and that these latter were more readily explained as activities expecially instinctive, than that instinct could be explained by reflex action or by lapsed intelligence. The vital processes referred to were also shown to have an important bearing on the question of the origin of species, - Then followed a paper, notes on Afghanistan algre, by Dr. J. Schaarschmidt, founded on material derived from Surgeon-Major Aitchison's collection of plants made during the $\mathbf{A} \mathrm{fghanistan}^{2}$ Expedition in $\mathbf{1 8 8 0}$.

Zoologleal Society, March 4.-E. -W. H. Holdsworth, F.Z.S., in the chair.-Mr. Howard Saunders, F.Z.S., exhibited and made remarks on specimens of two Gulls (Xema sabini and Larus philadelphia) in the breeding plumage, both killed in Scotland. Mr. Saunders also made some observations apon the specimen of Larus africilla in the British Museum, said to be the one killed by Montagu at Winchelsea, and came to the conclusion that the bird in question was not Montagn's specimen. Mr. Sannders likewise exhibited a specimen of Puffinus griscus killed off the Yorkshire coast.-A letter was read from Dr. Ch. W. Litken, Foreign Member, calling attention to a specimen of an Echidna in the Zoological Museum of Copen. hagen, which seemed to be different from the ordinary Tachy. $\delta^{\text {losus }}$ aculeatus, and which Dr. Lütken was of opinion might possibly be referable to the lately-described T. lazoesi of New Gninea.-Mr. J. E. Harting, F.Z.S., exhibited and made observations on some autlers of roe deer from Dorsetshire and Scotland.-Mr. W, R. Ogilvie Grant read a paper on the fi-hes of the genera Sicydium and Lentipes (belonging to the family Gobiidx), in which an attempt was mide to arrange the species of Sicydium into smaller gronps, the members of which were found to be allied together by convenieat and distinctive characters. Five new species of Sicylium were described,-A communication was read from Mr. F. Moore, F.Z.S., on some new Asiatic Diurnal Lepidoptera, chiefly from specimens in the Calcutta Museum. - A communication was read from the Count T. Salvadori, C.M.Z.S., containing some critical remarks on an African Duck, Anas capensis, Gmelin.
Chemical Society, March 6.-Dr. W. H. Perkin, president, in the chair.-It was announced that a ballot for the election of Fellows wonld take place at the next meeting (March 20). -The following papers were read :-Studies on sulphonicacids, No. 1. ; on the hydrolysis of sulphonic acids, and on the recovery of benzenes from their sulphonic acids, by Drs. H. E. Armstrong and A. K. Miller. By passing steam through a solution of the sulphonic acids or the sulponates in their own weight of sulphuric acid, the authors find that all the benzenes can be recovered. No decomposition of any of the benzenes tried takes place, and an almost theoretical yield is obtained. The method has been of great value in separating the hydrocarbons obtained from camphor. -On a relation between the critical temperature of bodies aud their thermal expansions as liquids, by T. E. Thorpe and A. W. Ruicker. By combining the simple expression recently publivhed by Mendelecff for the expansion of liquids with =ome of the conclusions arrived at by Van der Waals, the auth rrs arrive at the result that the density of a liquid is very nearly proportional to the number obtained by subtracting its absolute temperature from twice its absolute critical temperature. -Kemarks on the densities of members of homologous series. by Dr. W. H. Perkin. The author has plotted curves in the usual way, taking the number of carbon atoms as abscivae, and a scale of numbers embracing those of the densities at $=0^{\circ} \mathrm{C}$. as ordinates. The bodies examined consisted chicfly of very carefully parified acids and ethers of the fatty series. It is obvious from the enrves that the densities of the homologous acids an I ethers follow a regular law,-Note on some experiments uade at the Munster Agricultural School to determine the valne of ens lage as a milk- and butter-producing food, Cows were fed on ensilage for a week and on mixed food for a week, and the author has analysed the milk and weighed the butter produced. The results in the two experiments are almost identical, so that ensilage is not inferior to ordinary food,-Note on the behaviour of the nitrogen of coal during destructive distillation and a comparison of the amonnt of nitrogen left in cokes of various origin, by Watson Smith.-On a hitherto nnnoticed constituent of tobacco, by T. J. Savery. The author, having noticed in tobacco a substance which strongly reduced Fehling's solution, investigated the subject, and separated a body closely resembling
caffetannie acid, and which he proposes to call tabacotannic acid.

Geological Soclety, February 20.-Prof. T. G. Bonney, F.R.S., president, in the chair. - Thomas Lionel Bates, G. J. Williams, and Alfred Prentice Young were elected Fellows of the Society.-The following communications were read :-On a recent exposure of the shelly patches in the Boulder-clay at Bridlington, by G. W. Lamplugh, comwunicated by Dr. J. Gwyn Jeffreys, F.R.S.-On the so-called Spongia faradoxice, S. Woodward, from the Red and White Chalk of IIunstanton, by Prof. T. McKenny Hughes, F.G.S.-Further notes on rockfragments from the South of Scotland embedded in the lowlevel Boulder-clay of Lancashire, by T. Mellard Reade, C.E., F.G.S.-Ripple-marks in drift, by T. Mellard Reade, C.E., F.G.S.

Cambridge

Phllosophical Society, February 25.-The following were elected Fellows of the Socicty :-Mr. A. R. Forsyth, B.A., Trinity College, Mr. W. J. Ibbetion, B.A., Clare College.The following communications were made to the Society :-On the sums of the divisors of a number, by Mr. J. W. L. Glaisher. -On primitive roots of prime nambers and their residues, by Mr. A. R. Forsyth.-A comparisen of Maxwell's equations of the electro-magnetic field with those of Helmboltz and Lorentz, by Mr. R. T. Glazebrook, The author pointed out that the main difference between the two theories turned on the fact that while Maxwell considers the electric displacement throughout the field, Helmboltz deals with the electric moment of each element of volume supposing that by the action of the inducing force opposite electricities are driven to opposite ends of each element. Maxwell's displacement corresponds to the induction in the magnetic field, Helmboltz's polarisation to the indaced magneti-ation. The existence of a normal wave was discussed, and it was shown that Maxwell's equations withont the solenoidal condition $\frac{d f}{d x}+\frac{d g}{d y}+\frac{d h}{d a}=0$, lead to the same result as those of Helmholtz, at any rate in the case in which a plane wave is traversing the medium. It was further pointed out that in the case in which the indaction is due to the presenee of electricity at rest outside the portion of the field considered, the above solenoidal condition must hold.

Fimineurgil

Royal Society, February 4.-The Right Hon. Lord Moncreiff, president, in the chair. - The President gave a review of the hundred years' history of the Society, a full report of which appeared in our issue of February 14 (p. 368). -The Abbe Renard and Mr. John Murray communicated notes on the microscopical eharaeters, the chemical composition, and distribution of volcanic and cosmic dust ; and also a paper on the nomenclature, origin, and distribation of deep-sca deposits, Dust obtained by melting snow fiom Ben Nevis was not volcanic in character. -The Abbé Reuard gave a note on a large cry-tal of calc-spar found by I'rof. Tait in Lough Corrib.

Dublin

Royal Society, January 21.-Physical and Experimental Science Section.-G. F. Fitzgerald, F.R.S., in the chair.-Prof. W. N. Hartley, F.R.S.E., read a paper on a simple method of observing faint lines with diffraction spectroscopes. The author states that he works in a darkened room, the goniometer of the spectroscope being illuminated by a shaded lamp which stands to right of the telescope. The grating is movable, while the collimator and telescope are fixed in such a position as to include as small an angle between them as possible. The telescope being to the right of the collimator, a small gas jet is placed upon the left, the rays of which proceed to the grating and are reflected into the field of the telescope. By the adjustment of this light the field may be illuminated in any colour of the spectrum, and by selecting that tint which is complementary to the eolour of the lines to be measured, they are sure to stand out apparently in relief on a bright ground.-Howard Grubb, M.E., F.R.S., read a paper on a new forin of equatorial telescope. The author referred to an instrument of his eonstruction which has been at work in Cork Observatory for the last two years, in whieh the eyepiece is placed in a fixed position in the interior of a building. The success of this instrument induced the author to attempt to earry out the same principle on a larger scale, the difficulty to be overcome being that of producing a perfect plane
of sufficient size. The author described a form of instrument which, by a eombination of a dialytic telescope and his siderostatie form of mounting, would admit of its being of the langest dimensions withont the necessity for employing very large reflectors, as in the case of the new French instrument describel in Nature, November 8,1883 (p. 36). Mr. Grubbclaimed that the form of instrument now deseribed possesses all the chief advantages of the French form, while the difficulties of manufacture would be one-ninth, and the eost about the same as the ordinury constraction, inclading dome. Another important advantage elaimed is that the difficulty of construction is not increared in the same proportion as in the French form, and therefore Mr . Grubb's arrangement would be applicable to instruments of the largest size.-Greenwood Pim, F.L.S., communicated a paper on the rendering by photography of light and dark colours in their natural values, in the course of which he pointed out that while the ordinary bromide gelatine plates at present so extensively employed rendered a blae of low illuminating power almost white and a yellow of high illumination very dark, by using the isochromatic plates patented by Messrs, Attout-Tailfer and John Clayton of Paris these colours were reproduced in shades corresponding to the illuminating power. Numeros prints from ordinary and from isochromatic plates of ribbons, coloured fabrics, coloured drawing, of flowers, \&c., were ahibited, clearly showing the superiority of the latter plates when blue and yellow colours had to be photographed; thus avoiding over-exposing the blue in order to bring out the detail of the yellow portion. These isochromarie plates are prepared with eosine in presence of an alkali, usually ammonia, and sppear to owe their property more to the chemical action tban to the physical action of its red colour; for a screen of eosined collodion interposed between a band of coloured ribbons and the seasitive plate, so as to cover part and leave part uncoveren, had bat little effect, all that could be noticed being a general slowing action, and not more in the blue than in the yellow.

Natural Scieuce Section.-Rev, Maxwell Close, M,A., in the chair.-Rev. S. Haughton, F.R.S., read a paper entitled "Remarks on the nnusual sunrises and sunsets that eharacterised the close of the year 1883." The older writers on astronomy, sach as Brinkley and Maddy, state that on the average twilight lats until the sun is 18° below the horizon. From this it has beea computed that the height of the twilight-producing atmosphete is-

40 miles on hypothesis of one reflection,	
12 "	"
5 two reflections,	
3	"

Herschel and Newcomb make no statement whatever as to the duration of twilight. Chambers (in his compilation) says that the average depression of the sun is 18°, which is reduced to 16^{\prime} or 17° in the tropics, but in England a depression ranging from 17° to 21° is required to put an end to the twilight phenomens. Dr, Ball informs me that Prof. Schmidt, of Athens, gives for that place $15^{\circ} 51^{\prime}$, and also that Liais (Paris) fixes the first twilight arc to set at $10^{\circ} 41^{\prime}$, and the second at $18^{\circ} 18^{\prime}$. In the following observations I calculate the zenith distance of the sun at the close of the phenowena by the well-known formnla-

```
cos z== + + < cos }\mp@subsup{A}{}{\prime
```

where

$$
\begin{aligned}
& z=\text { sun's zenith distance, } \\
& A=\operatorname{sun} \text { 's hour angle, } \\
& \alpha=\sin \lambda \sin \delta, \\
& \beta=\cos \lambda \cos \delta, \\
& \lambda=\text { latitude of place of observation, } \\
& \delta=\text { declination of sun. }
\end{aligned}
$$

Observation I.-Mr. Bishop, observing at Honolulu, found the phenomenal sunsets to commence on September 5, 1883, and to last up to $7.25 \mathrm{p} . \mathrm{m}$.

$$
\begin{aligned}
\text { Here } \lambda & =22^{\circ} \\
\delta & =6^{\circ} 16^{\circ}
\end{aligned}
$$

This gives the sun's place $18^{\circ} 22^{\prime}$ below the horizon. This indicates twilight phenomena intensified by some unusual cause, bat does not denote an extension of twilight reflection into regions of the air higher than the time-honoured traditional 40 miles The epoch of the main eruption of Krakatoa has been fixed by Gen. Strachey at August 279.32 a,m. If the explosion of Krakatoa on August 27 was the cause of the brilliant sumset at Honolulu on September 5, the result is nothing short of mirtut
lous: The Editor of Nature writes on December 20 (p. 174), with an enthusiastic glow worthy of the twilights: "The extraordinary fact now conses out that before even the lower currents had time to carry the volcanic products to a region so ncar the eruption as India, an upper current from the east had taken them in a straight line siá the Seychelles, Cape Coast Castle, Trinidad, and Panama, to Honolulu, in fact very nearly back again to the Straits of Sunda!" [The note of admiration is not mine]. It is worth our while to calculate the rate at which this wonderful journey of volcanic dust was performed. The actual distance is 255° of a great circle, and the time of journey nine dayx, from which I calculate the speed of the train to have been eighty-two miles per hour! This is absolutely incredible, and becomes still more so when we know that the phenomena observed at Honolulu were nnusual twilight phenomena, but bad no connec. tion whatever with reflection from the upper regions of the air. In point of fact, my calculation of the sun's position disproves the presence of dust or any reflecting substance in the upper nir. Observation II. Ihun-ink Observatory (a letter received from Dr. R. S. Ball, F.R.S., January 7, $18^{8} 4$) :-" Sunday evening, December 30, was exceptionally fine, and the sunset was so well seen, that the moon, though only twenty-seven hours old, was well seen by Cathcart and myself from the roof of the Observatory. We estimated that the twilight lasted certainly for two hours after sunset, and that for ten minutes longer there uas still enough light in the western sky to distinguish it from other parts of the horizon. At two hours the sun's zenith distance is $15^{\circ} 5^{\prime}$; at two hours and ten minntes it is $16^{\circ} 51^{\prime}$. The first figure coincides almost exactly with the $15^{\circ} 51^{\prime \prime}$ given by that most skilfnl observer Sclınidt (zvide Astron. Nach, No. 1 495), of A thens, as the zenith distance at the end of astronomical tuilight. The I° which the text-books state to be the limit, seems to be a survival from Kepler, who had it from Ptolemy. There seems to be rather a dearth of careful observations on the subject, at least I can find but few good references to it in Houzeau's Asfronomy. The only one of this century there contained besides Schmidt is Liais' (Comples Rendus, t. xlviii. p. I10) ; he says that the first 'arc crepusculaire' sets at $15^{\circ} 42^{\prime}$, and the second at $18^{\circ} 18^{\prime}$. It appears to me that on the whole the trath lies nearer to 16° than to any other figure." Observation III. (a letter received from Mr. R. S. Graves, Kingstown, Co. Dublin, December 26, 1883) :- " 1 was on Kingstown Pier yesterday evening (25 th inst.), and as the after-glow of sunset looked so beautiful behind the hill, I lingered on the pier, looking at the wonderful brightness and beanty of the whole west $s \mathrm{ky}$. The red glow continned to throw distinet light on the harbour's shipping till 5.20 ; from that time, however, the light faded very fast, and at 5.30 it was black night, althongh the sky was still very red. After this hour the light-giving power seemed to have gone. I see the sun set at $3.53 \mathrm{P} . \mathrm{m}$. (Dublin almanac). The lights in Kingstown presented a very curious appearance: looking at the bright red above the hill, then the hill, and under the hill the hundreds of lights looked just like one of those fancy forelgn pictures with pinholes stuck in everywhere to represent the lights. I wish you could have seen the whole scene." N.B. The sun was $14^{\circ} 15$ below horizon at close of phenomena. Observation IV. (a letter received from a currespondent in Old Derrig, Co. Carlow, December 31, 1883):-" . . . I have, of course seen a good deal of the after-glow. Some evenings the appearance is like the glare of limelight at a theatre, the effect on grass or garden very strange. With back to west each blade of grass is like fire, a hit of straw like a red-hot needle; but facing the light, it is all lurid light and shade. Last night sun set by almanac at 3.47 ; here the sun disappears twenty and twenty-five minutes hefore, owing to hills. At 430 the glow was splendid; at 5.10 I could see seconds-hand of watch 23 minutes after sunset, or nearly II hour afier sun had vanished from us, A planet from 4.30 to 5.10 was in the glow, and from 5 and 5.30 was bright enierald green." N.B. The sun was $15^{\circ} 15^{\prime}$ below horizon at close of phenomena,-Prof. W. R. McNab, M.D., read a paper entitled: "Note on the botanical topographical divisions of Ireland." The districts adopted by the anthors of the "Cybele Hibernica" not being readily comparable with the divisions into provinces, vice-provinces, and vice-connties, as defined by Watson, it is proposed to treat the "districts" as equivalent to provinces, and to arrange thirty-six vice-counties under the twelve provinces. The divisions Dr. McNab thus proposes to adopt in the "Cybele Hibernica" collection at Glasnevin, Dublin, are the following:-Province I. West Munster.-Vice-counties : 1. Kerry. 2. S. Cork. II. East

Munster.-(3) N. Cork ; (4) Waterford ; (5) S. Tipperary. III. Went Leinster.-(6) Kilkenny ; (7) Carlow ; (() Queen's County. IV. East Leinster,-(9) Waterford; (10) Wicklow. V. North Leinster.-(II) Kildare ; (12) Dublin; (13) Meath ; (14) Louth. V1. West Shannon.-(t5) Limerick; (16) Clare; (17) East Galway. VII. East Shannon-(18) North Tipperary; (t9) King's County ; (20) Westmeath ; (2t) Longford. VIII. West Connanght.-(22) West Galway ; (23) West Mayo. IX. East Connaught.-(24) East Mayo; (25) Sligo ; (26) Leitrim ; (27) Rovcommon. X. South Ulster.-(28) Fermanagh; (29) Cavan; (30) Monaghan ; (31) Tyrone ; (32) Armagh. XI. West Ulster. -(33) Donegal, and City of Londonderry. XII. East Ulster. (34) Down; (35) Antrim ; (36) Derry.-Prof. A. C. Haddon communicated a paper on an apparatus for demonstrating systems of classification, \&c.-The apparatus, which was exhibited last March, consists of a series of glass plates placed horizontal!y one over the other, leaving a small space between each plate. On these plates oblong blocks of wood rest on which are printed the names of the forms whose affinities it is desired to indicate, thus constituting a classification in three dimensions of space. This apparatus is especially useful in palacontology.

Paris

Academy of Sciences, March 3.-M. Rolland in the chair. - Researches on explosive gaseous mixtures, by MM. Bertlelot and Vicille. The results are here tabulated of 250 experiments made with forty-two distinct explosive compounds, inclading not only mixtures of oxygen and hydrogen, the oxide of carbon and formene, pure or mixed with nitrogen, hnt also mixtures including cyanogen, acerylene, ethylene, methyl, methylic ether, and common vapour of ether. Studies were also made of mixtures of oxygen with two combustible gases together, such as the oxide of carbon and hydrogen, as well as combinations of the protoxide of nitrogen mixed with hydrogen, with the oxide of carbon, with cyanogen, and the bioxide of nitrogen mixed with cyanogen. The main object of the experiments was to determine the amount of pressure developed at the moment of explusion, the temperature prodnced, and the specific heats of the gases at various temperatares, and especially those of the compound gases.-On a recent note of M. D. André, by Prof. Sylvester. It is shown that M. Andress theorem is a direct conseqnence of the generulisation given by the author to Newton's theorem ("Universal Arithmetic," part 2, chap. ii.) on the imaginary roots of equations, Remarks on the maps of Madagascar from the Middle Ages to the present time, by M. Alf. Grandidier. The author, who identifies Ptolemy's Menuthias with Madagascar, shows that this island was known to the Greek and Arab geographers 'ong before its rediscovery by the Portuguese in 1500 (not in 1506 as is usually supposed). -On the principle of separate watertight compartments in ship-bnilding, and on the first men-of-war constructed on this principle, by M. Bertin.-New experiments showing how Nobili's electro-chemical rings may be imitated by means of a continuous stream of water failing from a cylindrical tube vertically on a horizontal sheet of black glass moistened all over, by M. C. Decharme.-Description of a new process of generating steam, by M. Bordone. - Theorem by means of which it may be ascertained that certain algebraic equations have no positive root, by M. Désiré André.- Note on hyperfucbsian functions, by M. F. Picard.-On the fgronps of finite order contained in the group of undeterminative and reversible substitutions of the second order, that ${ }^{\text {is }}$, the quadratic substitutions of Cremona, by M. Autonne. - On linear equations of the second order with partial differences, by M. R. Lioaville.-Note ou the oxychloride of barium, by M. G. André.-On a new group of nitrous compoands, by M. R. Engel.-On the oxidation of menthol by means of the permanganate of potassium, by M. G. Arth.-On two campholurethanes with an isomerous relation analogous to that presented by M. Pasteur's right and left tartaric acids, by M. Haller.-Experiments on the toxic or medicinal substances which modify haemoglobin, and especially on those that convert it into methremoglobin, by M. G. Hayem.-On the conditions favourable to the development of root-suckers in plants, by M. E. Mer.-Analysis of the mineral substances friedelite, discovered by M. Bertrand, and pyrosmalite, found at Dannemora in Sweden, by M. Alex. Gorgeu,-Note on the existence of manganese in a state of complete diffusion in the blue marbles of Carrara, Paros, and the Pyrenees, by M. Diculafait, - On the coincidence of the transformations observed in the Pons-Brooks comet with its passage across currents of a cosmic character, by M. Chapel.-Notice of two Chinese works
on elementary and analytical chemistry presented to the Academy by M. Billequin of the Imperial College, Fekin.

BERLIN

Physical Society, February 8.-Prof. Lampe referred to two recent works on mechanics, one by Herr Streintz, the other by Herr Macb, and brought forward certain problems, which were there dealt with at full length. - Prof. Schwalbe deseribed a peculiar ice formation he had observed in the Harz towards the end of December last. Under a temperature of from $+2^{\circ}$ to $+3^{\circ} \mathrm{C}$. by day and -1° to $-2^{\circ} \mathrm{C}$. by night, he perceived, on a road covered with gravel and withered leaves, swellings of the surface at variuus spots, which, on eloser inspection, proved to be ice-protuberances rising from the gronnd and puahing up its topmost stratum. Ou the unfrozen earth stood separate, dimiuutive ice-columns of from three to four centimetres in height, each supporting at its upper extremity a little stone or a withered leaf which it had loosened from the ground and in the coure of growth had lifted upwards. Similar swellings were found by Prof. Sclowalbe on rotten twigs lying on the ground. In these the rind over a large surface was pushed from the wood by ice-excrecences of soft, brilliant, asbestine appearance, and uncommonly delicate to the touch. They adhered in large numbers to the body of the wo d, and reached as great a length as one decimetre. Prof. Sehwalbe brought some of these withered and rotten twigs with him to Rerlin, and it was in his power to produce on them at any time the phenomenon just described. For this purpose all that was needed was thoroughly to moisten the tw ig, in such a manner, however, that no water dropped off, and thes to let it cool slowly in a cold preparation. Ice-excrescences also appeared of themselves on twigs lying in the garden whenever the temperature fell below $0^{\circ} \mathbf{C}$. in the night. In reference to the explanation of this phenomenon, Irof. Schualbe favoured the view of Le Conte, who had described the matter thirty years ago, and considered it as an instance of capillary action. In the process of slow cooling, the water in the pores became frozen into a small capillary tube, which sucked the water up, and this in turn becoming cougealed shot continually further upwards. In this way the little stone or the withered leaf lying on the road, or the rind on the rotten twig, was pushed constantly further away from the substratum, and liffed upwards.

Physlological Society, February 15.-In eontinuation of the address delivered by him at the last sitting of the Society, Dr. J. Munk set forth the further course of his inventigations into the resorption, formation, and deposition of fats in the animal body. After, by feeding a dog on raje-seed oul, he had demonstrated that heterogeneous fats were absorbed and deposited in the animal body, he pnssed to the question in what manner was the resorption effected. It was universally assumed that the fats in the intestinal canal were cmulged, and, as emulsion, entered through the intestinal villi into the chyle vessels. In order to the production of an emulsion it was now first of all necessary that the fat shoukl liecome fluid at the temperature of the body; and second, that the iutestinal coutents slould be alkaline. As was, however, well known, there were fots w hich did rot melt uuless at a temperature of over 40° to $50^{\circ} \mathrm{C}$., that is, they could not become fluid at the temperature of the body-mutton suct, for example, whieh was therefore incapable of being emulged in the intertinal canal. Still less so were the sebacic acids of mutton, which could be ouly melted at higher temperatures. It had therefore to be experimentally proved whether such fats generally were resorbed. Dr. Munk had a year ago briefly related to the Society an experiment dirested to this end, in which he fed a dog with mutton sute. It had yielded a positive rexult. The fat taken from the body of the dog which had been fed on mutton suet was essentially distinct from the normal fat of a dog, both by its whiter colour and by its greater consistence. On chemical examination, too, it was confirmed that the dog had deposited mutton suet in its body. The experiments now in question, which the speaker described at greater length, were of such a kind that a dog was brought to a state of equilibrium in respect to nitrogen, that is, to such a state that just as mueh nitrogen was secreted from the body as was supplied it with the ford. At certain epochs along with the allumen, either land or mutton suet, or the sebacic acids of mutton, were ad. ministered for a number of days, and during that time careful analyses were made of the evacuations. By these analyses, bevides the above-mentioned fact of the deposition of mutton suet in the canine body, it was established that the lard was
almost completely used up, only 2 per cent. having been lost to the body in the evacuations, while of the matton suet about 94 per cent. was absorbed in the intestinal canal, and even of the sebacie acids of mutton 86 to 87 per eent. was taken up la the last case the quantity of nitrogen secreted was qomewhat greater than the quantity received, so that a part of the ahmentary albumen was decomposed. Matton raet, or the sebacic acids of mutton, might therefore be used for feeding; in the excrements a larger quantity of free sebacic acids and of soaps along with neutral fat was always found, a fact which indicated a splitting of the neutral alimentary fats in the intestine. The existence of such a splitting of the neutral fats was also confirmed by the demonstration that the c intents of the small iutestine never showed alkaline reaction, but reacted either in an acid or neutral manner. This could not be referred to asy extensive transition of the contents of the stomach, for the small intestine was fonnd to be always very lax and almost empty, if an excitement of stronger peristaltic movements were carefully avoided during the experiments. A process of emell. sion on the part of the mutton suet, whieh from its consistence offered great difficulties, must therefore, even on account of the reactiou of the intestinal contents, be excluded from the probles: and Dr. Munk was of opinion that the demonstrated splitting ol the fats must play a very important part iu the absorption, the nature and manner of which would have to be studied by fartbe: investigations. Iately, microseopical demonstrations bid been given by other observers that lymphatic corpuscles strayed towards the free iutestinal surface, and there supplied them selves with alimentary substances, laden with which they agun strayed back. Such a mechanical absorption was, in Dr. Nuai" opinion, highly probable in cases in which the fat was uce liquefied by the temperature of the body, as, for example, in the case of feeding on mutton suet.- Dr. Benda described microscopic preparations which he made from tuberculons kideey, and which he exhibited to the members of the Society for ther inspection.

Christiania

Society of Science, February 1.-Dr. Collet de cribed bs Boryx borealif, a remarkable ciep-sea fish, and the nortbern representative of the genus B_{i} ryada, so eommon in the Chals period, and its relation to Bcryx sleiadacts las of Madeira and Japan.- Prof. Lochmann mentioned a case of pui-ouing by ge, and referred to the influence of subterranean air on the human organism.-Prof. Lie presented a paper on the common theory of differeutial equations,-Dr. Kjaer described two species of moss, IJyocomium squarrosum and Climacium dewdroides, which were discovered in the clay in the hill in which the famore Norse Viking ship was found near Sandefjord in 18 So.

CONTENTS
 Pagi

Polish Bone Caves
Our Book Shelf:-
Blyth's "Poisons : their liffects and Detection."-
Dr. Thomas Stevenson 451
Roca's "Expedition to the Rio Negro of Patagonia" 451 Letters to the Editor:-

Instíct.-C. Lloyd Morgan $4!$!
Circular kaiubow seen from a Hill-top-G. K. Gilbert
Right-siderlness-Prof. Joseph Le Conte .
"Suieide" of Blach Snakes,-Edward F. Hardman 452
Sea Fish in Freshwater Kivers.-Edward F. Hard. man
The Zodiacal Light-G. M. Whipple $^{\circ}$.
The Axioms of Geometry. By Prof. O. Henrici, F.R.S.

The Scientific Work of the "Vega" Expedition
Earth Tremors. Hy Prof. John Milne (Whik Diagram)
The Mechanical Theory of Magnetism . 459
Notes
459
Geographical Notes 45
Geographical Notes
The Six Gateways of Knowledge, 11. By Prof. Sir
William Thomson, LL.D., F.R.S.
Electrical Standards
Dions. By Lord
University and Educational Intelligence
4^{515}
460
Scientific Serials
4^{60}

Societies and Aeademies 46.

$$
\text { THURSDAY, MARCH 20, } 1884
$$

A BIOLOGICAL LABORATORY ON THE ENGLISH COAST

ARRANGEMENTS have been made for a meeting in the rooms of the Royal Society at half-past four, on Monday, March 31, the object of which is to found a Society having for its purpose the establishment and maintenance of a well-equipped laboratory at a suitable point on the English coast, similar to, if not quite so extensive as, Dr. Dohrn's Zoological Station at Naples.
The value of such an institution to the progress of zoological science, and the simple necessity which exists for the thorough and detailed knowledge only to be gained by the constant work of a well-supported laboratory devoted to the complete exploration of a definite area of sea-bottom, if any reasonable action is to be taken in regulating and improving British sea fisheries, have been set forth at various times in these pages during the past year in connection withethe conferences held at the Fisheries Exhibition.

English naturalists have at length determined to do their best to bring about the foundation of the desired laboratory. A large sum of money will be needed in order to secure a site and erect the necessary buildings, besides the provision of an annual income. The Society will be able to raise these funds and to administer them in a more satisfactory way than would be possible were the matter taken in hand by a few private individuals only. The laboratory, when once set going, together with its boats and fishermen, will be used for the purpose of carrying on investigations by any naturalists who are members of the Society, and may desire from time to time to avail themselves of its resources. Its work will therefore be chiefly carried on by volunteers, and it is quite certain that there are a very large number of thoroughly competent naturalists who are only waiting for the opportunity thus afforded. At present such men are to be found scattered here and there on our coasts, making shift to carry on observations without laboratory, boats, or any efficient appliances. Eventually it will no doubt be possible to place a qualified observer in charge of the laboratory. The laboratory will also be available for special investigations, for which a public body or other authority may have employed the services of a naturalist.

Apart from the conveniences which it can afford and the value of the moral effect of combined action even in scientific investigation-the continuous working of a number of naturalists at one spot has a most important reaction upon their work. In proportion as a particular area becomes thoroughly familiar in this way, it becomes easy to obtain special animals and plants for study which were at first regarded as rare, or were altogether unknown in the locality. The thorough and long-continued operations of such a laboratory have naturally enough the value of systematised work as compared with the casual dippings and exploratory incursions of the isolated naturalist who spends a month in one year at this place and a month in another year at another place.

Already in Scotland, on the Firth of Forth, close to Edinburgh-through the admirable energy of Mr. John Murray, the director of the Challenger Expedition pub-lications-a small laboratory has been set up, and funds obtained for carrying on its work by the engagement of young naturalists to investigate special problems. The English laboratory will be erected at a point as rich as possible in respect of its marine fauna, and at the same time in proximity to important fishing grounds. No locality has yet been decided upon, but both Torquay and Weymouth have been suggested as presenting the desired combination. Everything depends on the amount of pecuniary support which the Society will be able to obtain. A great work may be done if sufficient funds are forthcoming; a smaller work will be accomplished with smaller funds, and carried on in the firm expectation of gaining increased means of activity as results are produced justifying the enterprise.
But as a matter of fact, no tentative method of proccdure is needed. It is quite certain, from the experience obtained in other countries, that a properly provided observatorywith good working-rooms, large and small tanks, seawater pump, a steam launch and well-trained fishermen and permanent staff-can turn out results which are numerous and valuable in proportion to the completeness of the arrangements and the experience of the permanent staff. France was the first country to start such marine laboratories or obscrvatories. At present there are several in operation on the French coast-viz. at Roscoff, at Concarneau, at Villefranche, and near Cette. Italy boasts of the great international laboratory founded and carried on with wonderful perseverance and success by Dr. Dohrn at Naples. An idea of the cost of a really first-rate institution of the kind may be gathered from the fact that the palatial building in the Villa Nazionale at Naples with its fittings and fishing-boats represents a capital of 20,000 ., whilst the annual expenditure is over 4000l. Austria has such a laboratory at Trieste, maintained by the Imperial Government. Among the most successful of such laboratories have been those established on the eastern coast of the United States. That at Beaufort, directed by the Johns Hopkins University, has furnished an extraordinary amount of interesting results through the activity of Mr. Brooks and the young naturalists of the United States who make use of it. That erected by Prof, Alexander Agassiz at Newport (Maine) is no less satisfactory as an evidence of the utility of such institutions. Since the found ation of these laboratories (within the past decade) our knowledge of marine organisms has increased at an enormous rate : without them we should have gone on in the casual, un certain way which necessarily arose from the fact that every naturalist, before the foundation of these laboratories, had to establish his own little workshop for the summer and to make a fresh start in an unexplored locality, or in one explored only by the efforts of himself alone.

The meeting on March ${ }^{11}$ promises to be one of great influence. Prof. Huxley, P.R.S., is to preside. Prof. Flower, Prof. Moseley, Prof. Milnes Marshall, Sir Lyon Playfair, Mr. W. S. Caine, M.P. (one of the Commission on Trawling), Prof. Michael Foster, Prof. Ray Lankester, Dr. Albert Günther, Dr. W. B. Carpenter, Mr. Gwyn Jeffreys, Dr. P. L. Sclater, Mr. Frank Crisp, Sir John

Lubbock, and other gentlemen, have signified their intention of being present and supporting the resolutions which are to be submitted to the meeting.

We beg to refer those of our readers who are interested in this subject to the articles published during the past year in Nature, and to the arguments advanced in support of the proposal to found such a laboratory, together with a sketch of the relation of z mological science to the wellbeing of British fisheries, in the address on the Scientific Results of the Fisheries Exhibition delivered by Prof. Ray Lankester at the conference on July 19, and published by the Exhibition Committec.

THE UNITY OF NATURE

The Unity of Nature. By the Duke of Argyll. (London: Strahan, 1884.)

THIS boo's is in our jufgment a dreary failure. Although in the mere matter of style it is a well written popular exposition of what we may call the comfortable way of looking at things, in all matters of deeper importance it is utterly barren. Throughout its five or six bundred pages there is no single original observation in science, nor any single original thought in anything t'iat deserves to be called philosophy. Moreover, if regarded only as an exposition, the first chapters are tedious on account of the redundant manner in which elementary science is explained, while the later chapters, in which the author's views on various philosophical questions are unfolded, display a feebleness of thought and argument which renders them even more tedious than the earlier ones. In short, the successive essays strongly remind us of a series of Scottish sermons. There is everywhere a narrow consistency in the doctrine, which is presented in a rhetorical precision of style; but the discussion never seems to get below the surface, while even surface difficulties are either unperceived or intentionally avoided. On this account the discussion itself tends to illustrate the principle of "unity" with which it is concerned ; it begins, continues, and ends in a monotone. No matter how fearfully out of tune this may be with any of the notes struck by the greatest men of our time, the Duke of Argyll, like a Highland piper, is deaf to every orher music, and drowns all else in the one continuous drone of his own particular instrument.

The pages of a scientific journal are not suited to an examination in any detail of the parts of the book to which these general remarks apply. We shall, therefore, proceed to examine the more purely scientifis strands which are woven into the texture of the work. In this connection the chief topic which meets us is that of "Animal Instinct in Relation to the Mind of Man." Here the main question which is dealt with-that as to the mode of origin and development of instincts-appears to us most inefficiently treated. The object of the writer is to argue that the phenomena of instinct point directly to the design of a Creator, who correlates instinct with structure and environment. So far, of course, every evolutionist, who is also a theist, may go. But, in order to enforce this view, the Duke proceeds to argue that the phenomena in question are of so mysterious a nature that it is not possible to point to any causes of a proxi
mate or physical kind which may reasonably be supposed to produce them. Now it would be easy to show-were this the place to show it-that the writer has here adopted a weak position even as an apologist ; but, to consider the matter only from the side of science, surely it shows some grave want either of judgment or of consideration to make the kind of statements of which the following nay be taken as fair examples :-
"1 can therefore see no light in this new explanation to account for the existence of instincts which are certainly antecedent to all individual experience-the explanation, namely, that they are due to the experience of progenitors 'organised in the race.' It involves assumptions contrary to the analogies of nature, and at variance with the fundamental facts, which are the best, and indeed the only, basis of the theory of evolution. There is no probability-there is hardly any possibilityin the supposition that experience has had, in past times, some connection with instinct which it has ceased to have in the present day. \qquad There was a time when animal life, and with it animal instincts, began to be. But we have no reason whatever to suppose that the nature of instinct then or since has ever been different from its niture now. On the contrary, as we have in nature examples of it in infinite variety, from the very lowest to the very highest forms of organisation, and as the same phenomena are everywhere repeated, we have the bes? reason to conclude that, in the past, animal instinct has ever been what we now see it to be-congenital, innate, and wholly independent of experience."

Such passages as these scarcely admit of comment, because all that can be said about them is that the writer has either never read, or has completely forgotten, the whole of the literature to which he alludes. No evolutionist has ever entertained the suicidal "supposition that experience has had, in past times, some connection with instinct which it has ceased to have in the present day ; " and the conclusion that in the absence of so absurd a supposition the only alternative is to regard instinct as always baving been wholly independent of experience is a conclusion which stands in direct opposition to all that constitutes "evolution" a "theory." Of course no one is bound to accept this theory; it may be rejected, or it may be left unmentioned; but it is futile to set up a nonsensical form of words, and then to call the absurdity the "theory of evolution."

And these are no mere chance expressions, which, if standing alone, might be indicative only of carelessness. The whole of the dissertation on instinct is pervaded by a similar misapprehension, or want of apprehension, of the fundamental ideas of the newer philosophy which the writer appears to suppose that he is considering. Thus, he fails to perceive that the doctrine of natural selection has any bearing upon the subject, while, with reference to the factor of what Mr. Darwin called "inherited habit," he says:-
"If the habits and powers which are now purely innate and instinctive were once less innate and more deliberate, then it will follow that the earlier faculties of animals have been higher, and that the later faculties are the lower in the scale of intelligence. This is hardly consistent with the accepted idea of evolution," \&c.

Comment is needless. We shall, therefore, notice only one other point with reference to the essay on instinct,
and this is the difficulty which is thus manufactured to meet the experience theory.
" Did there ever exist in any former period of the world what, so far as 1 know, does certainly not exist now-any animal with dispositions to enter on a new career, thought of and imagined for the first time by itself, unconnected with any organs already fitted for and appropriate to the purpose ? . . . The questions raised when a young dipper, which had never before seen the water, dives and swims with perfect ease, are questions which the theory of organised experience does not even tend to solve; on the contrary, it is a theory which leaves these questions precisely where they were, except in so far as it may tend to obseure them by obvious confusions of thought."

Here one would have thought that the writer need not have gone further than the instance which he himself gives to have found evidence of the growth of an instinct by the accumulation of hereditary experience or habit, and as yet unconnected with the "organs already fitted for and appropriate to the purpose." For the dipper belongs to a non-aquatic family of birds, and therefore has no organs specially adapted to its aquatic instincts. In particular it has no webs to its feet; and therefore, so far as the structure and affinities of the bird can in themselves argue anything, they speak most distinctly in favour of the view that the species must have developed aquatic instincts while not yet having had time to develop the "appropriate organs." It would be no answer to say that this species does not need these organs; else why are they needed by all the families of birds which present the same instincts? Or, conversely, can it be said that these same organs, i.e. webbed feet, stand in any special correlation with the existing iustincts of the upland geese, which, being terrestrial in their habits (though aquatic in their affinities), never use them for swimming or diving? Short of historical or palæontological knowledge (which in the case of instinct is of course impossible), we could have no stronger evidence of transmutation than is afforded by these two complementary cases, in one of which the absence of a structure points to the recent acquisition of the instinct, while in the other the presence of this structure points to the former existence of the instinct now obsolete. Analogous cases occur in the species of ground-parrots and tree-frogs which, while retaining their ancestral structures adapted to climbing, have nevertheless entirely lost their grboreal instincts.

Moreover, a strange want of thought is shown by the remark that, so far as the writer knows, " there certainly does not exist now any animal with dispositions to enter on a new career, thought of and imagined for the first time by itself." It is enough to quote the complete change in the instincts of nidification which has been observed to take place in the house-sparrow, and in several species of swallow, since these birds first had the opportunity of building on houses; or the more recent and perhaps more remarkable case of the mountain parrot, which has been observed to manifest a "progressive development of change in habits from the simple tastes of a honey-eater to the savageness of a tearer of flesh." Many similar instances might be given, and, as showing that they are not uncommon, I may remark that
a very instructive one is published by Dr. Rae in a recent number of this journal.

So much, then, for the Duke of Argyll's views on instinct. Scarcely less unsatisfactory are his views on rudimentary organs. The explanation which he adduces to account for these structures is, not that they are remnants of organs useful in the past, but that they are prophesies of organs which, when more fully developed, are to be of use in the future. We have no space to criticise at any length this wholly untenable inversion of Mr. Darwin's teaching ; but we think it will be enough to notice the singularly unfortunate instance which the Duke selects to illustrate his theory. This instance is that of the whales, and he says that Mr. Darwin's views of the rudimentary organs here to be met with "obliges us to suppose that the ancestors of the whales were once terrestrial quadrupeds, and in that case we start with the conception of hind limbs, and of the quadrupedal mammal, fully formed and perfectly developed. Whereas, if we accept the possibility of useless organs being the beginnings and rudiments of structures which are there because the germ has always within it the tendency to produce them, then we catch sight of an idea which has the double advantage of going nearer to the origin of species, and of being in harmony with the analogy of natural operations as we see them now." Is not this enough ? When we remember the eloquence, as it were, with which the whole organisation of the Cetacea tells us of their having been originally, like other mammals, terrestrial, it seems that the Duke could have chosen no worse example whereby to illustrate his hypothesis.
Passing now to the long discussion of the question whether savages should be regarded as the product of evolution from lower levels of human life, or of degradation from higher levels, we may say in general terms that by adopting the latter hypothesis as applying to all savages, the Duke sets himself in opposition to the theory of evolution as a whole. Moreover, he does not appear to have reflected that the question is not one which can be investigated or decided, as it were, in the lump. It is quite likely that some savages have fallen from a higher to a lower level of savagery; it by no means follows that all savages have done the same. Further, if we were to suppose that they did, from what level of civilised or of uncivilised life are we to suppose that they all started ? This hypothesis, as a general explanation of the savage state of man is, indeed, as incoherent as it is obsolete; yet it is not more so than certain other views upon the savage state to which this writer gives expression. Thus, his chief contention is that savage man shows himself to be, as it were, out of joint with the rest of Nature, or, as he expresses it, an "evident departure" from the unity or order of Nature. Perhaps it is enough to say of a doctrine which from a scientific point of view is so peculiar, that it ought to have prevented the author from styling his book "The Unity of Nature."

We have no space left to consider the only other topic that calls for consideration in these columns, viz. the essay on the Moral Sense. The whole treatment of this subject appears to us most fecble. It is also most inaccurate, as the following quotation will suffice to show :-
"It has been laid down that evolution, in its most perfect conception, would be such that the development of every creature would be compatible with the equal development of every other. In such a system it is said there would be no 'struggle for existence-no harmful competition, no mutual devouring-no death' (Herbert Spencer, 'Data of Ethics,' chap. ii. pp. 18, 19). The inspired imaginings of the Jewish prophets of some future time when the lion shall lie down with the lamb, and the ideas which have clustered round the Christian heaven, are more probably the real origin of this conception than any theory of evolution founded on the facts and laws of nature."

It is needless to say that no more ridiculous travesty than this could well be imagined, or that no such absurdity as that which professes to be formally quoted from Mr. Spencer is to be found either under the reference given or in any other part of his writings. In short, this "most perfect conception" of evolution is a pure invention, which reads almost as if it were intended to misinform the uninformed. We do not, however, suppose that such is the case. This extreme of inaccuracy we take to have been reached by the habit of drawing upon "inner consciousness," until not only the whole sense and substance of other writings are perverted, but even the most pure and delicious nonsense is seen by "the mind's eye" to occur in particular words on a particular page of some other book.

If space permitted or need required, we could point out other inaccuracies, and even still greater absurdities, both in this chapter and elsewhere; but we have doubtless already said more than enough to show that "The Unity of Nature" can scarcely be considered a successful work from a scientific point of view.

George J. Romanes

OUR BOOK SHELF

The Electrician's Direclory, with Handbook for 1884.
67 pp . (London : Electrician Office, 1884.)
THIS work, now in the second year of publication, contains much information of use to electric and telegraphic engineers. Amongst its contents are comprised a list of new electric companies, a list of provisional orders granted by Parliament for electric lighting, a list of the "British Cable Fleet," a list of British railways and railway officials, a fairly complete directory of the professions and trades connected with electricity; also a large amount of statistical information about different kinds of dynamo machines, electric lamps, and telegraph tariffs, much of which will doubtless be out of date in twelve months' time. There is also an obituary of electricians deceased in 1883, a table by Mr. Geipel of the cost of electric conductors as calculated by Sir W. Thomson's formula, and a set of tables by Mr. Crawley for corrections of measurements in horse-power and in watts. These two sets of tables are the only portion of the work claiming independent scientific value. We object entirely to Mr. Crawley's gratuitous remark in the prefatory paragraph of his section that the accepted system of electric units was "really foisted upon electricians by men devoted more to theoretic than to practical work." Nothing could be further from the truth than to accuse Mr. Latimer Clark, Sir Charles Bright, who originated the system, and Sir William Thomson, who did so much to perfect it, of not beiug practical workers. As a matter of fact, ohms, zolls, farads, and webers were used by practical electricians for years belore they found their way into the text-books written by the theorists.

LETTERS TO THE EDITOR

[The Editor does not hold himself responsible for opinions expresw by his correspondents. Neither can he undertake to retworn or to correspond with the writers of, rejected mawascrijt No notice is taken of a monymous communications.
[The Editor urgently requerts conespondonts to keep ehair Iettern as short as possible. The pressure on his space is so grem that it is impussible otherwise to insure the afpearance ever of comb,unications containing interesting and novel facts.]

On a " Magnetic Sense"

Sir William Thomson, in his presidential address at the Midland Institute, which is reported in Nature for March 6 ($\mathrm{p} .43^{8}$), draws attention to the marvellous fact that hitherto we have no evidence to show that even the most powerfal elec tromagnets can produce the slightest effect upon a living vege talue or animal body. But Sir William "thinks it possible that an exceedingly powerful magnetic effect may produce a sensation that we cannot compare with hent, or force, or any other sensation," and hence he cannot admit that the investigation of thit question is completed, for although the two eminent experimenters named by Sir W. Thomson felt nothing when they put their heads between the poles of a powerful electromagoec, it does not follow that, therefore, every member of the hemen race wonld feel nothing.

May I be permitted to point out that some slight evideace already exists in the direction sought by Sir W. Thomson? Scattered in different publications there are numerous statemenil made by different observers in different countries during the present century, which, if trustworthy, indicate that upon certais human organisms a powerful magnet does produce a very di tinct and often profound effect. Unfortunately, with the exception of the careful and excellent observations made by Dr. W. H. Stone, who tried Charcot's experiments on a patient of his at St. Thomas's Hospital, the observations referred to are singrlarly wanting in precision of statement and in a due recognition of the precautions needful in order to avoid fallacioss of ambiguous results from illusions of the senses.
This being the case, an attempt is being made by the Sociery for Psychical Research to ascertain-by direct and carefol ax periment, extending over a wide range of individuals-whether any trustworthy evidence really exists on behalf of a distiect magnetic sense. The sectional Committee of that Society istrusted with this and cognate work has published a preliminary report, ${ }^{1}$ which contains a fragment of evidence pointing in the direction of the existence of a magnetic sense in certain ind. \mathbf{v} duals. Three persons have been found by the Committee, who, when their heads were placed near the poles of a powert! electromagnet, could tell by their sensations when the magnet was excited or not. One of these "sensitives" told the investigating Committee accurately twenty-one times running whether the current was "on" or "of" from a peculiar and nnplenas sensation he alleges that he experienced across his forehead Every precaution that suggested itself was taken to prevent the subjects gaining any information through the ordinary chansel of sensation of what was being done at the eontact-bresker placed in another room. But I am sure the Committee wi. gratefully welcome any eriticism of their procedure or suggetions for future experiment which Sir William Thomson miy feel inclined to give. The honorary secretary of the Commitere is Mr. W. H. Coffin, Cornwall Gardens, S.W.

Two or three months ago one of the gentlemen who a ppeared to have this magnetic sense was in Dublin, and I took the opportunity of repeating with care in my own laboratory th experiments previously made at the Society's rooms in Londoe. The re-ult satisfied me that this individual did in general experienee a peculiar sensation, which he describes as unpleasert when hit head was within the field of a powerful magaet Nevertheless the keenness of his magnetic sense, if such it be varied eonsiderably on different days, and sometimes be statec that he could detect litte or no sensory effect. Usually te effect was felt most strongly when the forehead was in the lim joining the two poles; but one day, when he was suffering fror facial neuralgia, he found that his face was the most sensitive part, and complained of a sudden increase of pain whenever the magnet was excited, his face being near the poles. Sufferer: from neuralgia among the students of science may therefore have a new and usefal career before them, in the parsuit of whed ${ }^{\text {B }}$ Proccedings of the Society foor Paychical Revearch, Part ; (Trither and Co.)
their increased torture will, it is to be hoped, be vanquished by a far stronger intellectual joy.

The pecaliar and unpleasant sensation which the magnet appeared to produce on the subject just referred to was described as slowly rising to a maximum in fifteen or twenty seconds after the current bad been sent round the coils of the electromagnet. In like manner the effect seemed to die down slowly after the contact was broken. Unknown to the rubject, the circuit was closed and opened several times, and the magnetism correspondingly evoked or dissipated, the recult being that there was a farrly accurate correspondence betneen the physical and the psychical effect. The faint molecular crepitation which accompanies the magnetisation of iron, and can be heard when the ear is very near the magnet, is, however, very apt to mislead the imagina'ion. To avoid this, the subject was placed at a distance where this faint sound conld not be heard, and be was then requested to walk up to the electromagnet, and, judging only from his sensations, to state if the current were "on" or "off." The experiment was made twelve times successively, and he was correct in ten out of the twelve trials. He had no means of seeing or hearing the contact-breaker; of course, it is possible for a trickster, \mathbf{u}-ing a concealed comparsneedle, to be able to impose on a careless experimenter, but care was taken, and I have not the least reason to doubt the entire bona fides of the subject of this experiment. Obviously the foregoing observation is but of little value unless corroborated by a far more extensive series of experiments, conducled with the most stringent precautions to avoid the creation of illusory effects.

I have tried experiments with large helices encircling the limbs and head, and animated by powerful cnrrents, but have not observed any peculiar sensory effect in my own case, though I am inclined to think the headache which I have often experienced when working winh a large magnet may not be altogether an accidental coincidence. Meanwhile experiments are in progress in my laboratory to ascertain, if possible, whether any sensory effect is produced upon lower organisms. I hardly anticipate any affirmative results, bat it seemed worth making a systematic investigation from minute structures up to man Sir W. Thomson's address will, I hope, stimulate other workers in this field.
W. F. Barrett

Royal College of Science, Dublin, March in

Instinct

I WRITE one more letter on this subject, in order to observe that I do not think the ouly remaining difference between Mr. Lloyd Morgan and myself is so great as it may be apt to appear. In my books 1 have been careful to point out the peculiar disabilities under which the science of comparative paychology labonrs from its necessarily ejective character. But while in Mr. Morgan's view these disabilities are so great as to render any science of comparative psychology impossible, in my view they are not quite so great. I quite agree with the quotation which be gives from Prof. Hnxley on the crayfish; but this does not amount to saying that no science of comparative psychology is possible. We may still, for instance, feel perfectly certain that a dog is a more intelligent animal than a crayfish, and in this we have a purely scientific proposition.

The difference, therefore, between Mr. Morgan and myself is more apparent than real, and depends upon what we mean by " a science." This is the question that must be answered before we can proceed to consider the question raised by him, viz. "Is a science of comparative psychology possible ?" In my estimation the possibility of a science is furnished wherever there is material to investigate. The more vague the material, the less exact must be the science, and on this account, no doubt, comparative psychology is the least exact of all the sciences. But so long as its subject-matter admits of any investigation at all, so long, it seems to me, comparative psychology is a science.

George J. Romanes

The Remarkable Sunsets

With reference to the theory that the red sunsets are due to volcanic dust in the air, I think that the following extract from a letter which has been forwarded to me is of considerable interest. The writer is Mr. Frederick spofforih, and his letter is dated January 29, from Collaroy, 150 miles from Sydney. It will be observed that the corroboration which he gives to the theory in
question is the more striking from the fact of its being so completely unconscious.

George J. Romanes
"A most pecaliar sight this summer are the sunsets. The sun always goes down as red as can be, and half the night there is the same roseate hue, which lasts till past midnight. Many causes are given for it, but nearly all differ.
" Another curious thing is the enormous amount of dust-even up here, where you see nothing but trees as far as the horizon on all sides. Some days the whole landscape will be covered in dust, and where the dust comes from nobody can tell. It is always worst in the early morning."

Right-sidedness

Mr. Le Conte (Nature, xxix. p. 452) seems rather to complicate than to simplify this que.tion. If the right side of his body shows more dexterity than the left, surely it is his left eye that should share this excellence, if we are to suppose that this difference in dexterity depends upon any central origin. A person paralysed on the left side of the body loves sight-if sight be lost at all-in the right eye, and vice versd. Further, I am right-handed, and use an eyeglass in my left eye; yet, though the right eye is the weaker, I use it for a telescope or microscope by unconscious preference. On the other hand, most persons who use a single eyeglass wear it in the right eye. I may bave adopted the left for case in adjusting the glass, so that my right hand might be free. When I am reading, if I put my hand in front of my left eye, I am conscious of some mascular alteration; if I obscure my right eye, I notice nothing but a slight diminntion of the sense of light, white objects seeming less white to my right eye than to my leff. And this effect is just as noticeable when I wear spectacles as when I am reading without them; so that my myopia is not the cause of the difference.

In diccussing right sidedne-s-whether we regard the decussation of the nerves in the medulla oblongata or not-we must not forget that prize-fighters normally strike with the left hand, using the right as a guard or to deliver the second blow; perhaps this is to gain the ndvantaze of the greater strength of the right leg. Moreover, the habit among Western nations of writing from left to right appears to argue that right-handedness is the rule among them: but Orientals reverse the process, so that the majority of mankind must be left-handed. What do the anthropologists say to this?

Mr. Charles Reade, writing in the Daily Tdegraph some years ago, argued that if the habitual nse of the right hand le 1 to a greater development of the left side of the brain, a further acquired use of the left hand would aid the development of the right cerebral hemisphere, and so increase the general power of the brain. But is there any evidence to show that ambidextrous people, left-handed apparently by natnre, and right-handed from habit, have any general mental advantage over their fellows? I think not.

Henry T. Wharton
39, St. George's Road, Kilburn, March 17

In my own experience (I can with c.nfulence only give that) I differ almost wholly from that of Mr. Joseph Le Conte, us expressed in Nature (p. 452). In my case strength and dexterity of arm do not in werything go together. For instance, although strongly left-handed, I learnt to write with the right hand and skoot from the right shoulder, and could do either very indifferently indeed if attempted with the left hand or arm. I perhaps may call myself with truth a rather handy man, improved upon by living for many years in places where tradesmen were not to be had. In all connected with pencil, pen, ink, and paper, such as printing, chart-making, my left hand, although strongest, was clumsy, whereas my right showed considerable skill, as was exhibited once in rather a ludicrous manner by the Hydrographer of the Admiralty mistaking my pen-and-ink chart of some seven hundred miles of Arctic discovery for an engraving of the same. My left leg is the stronger, yet I a-e it in kicking and in other ways requiring dexterity; e.g. When very many years younger I could perform the many curious movements or steps of some of our Scottish dances with much more accuracy and ease with the left foot than with the right. I fear the sub-ject-matter of this note may be scarcely considered a valid excuse for so much self-notice.
john Rae
4, Addi-on Gardens, March 15

Ravens in the United States

On p. 336 of Natere for February 7, Manhattan asks a question about "ravens." I do not propose to answer his question, bat to state a fact. I was raised from byyhood to manhood in Tioga Co., Penn., and in my boyhood day, when the primeval forests were broken only by the recent settler's small patch scattered here and there along the valleys, the raven was a . common as the crow; nor could the one ever be mistaken for the other. Before 1 had attained the years of manhood, however, the raven had become a rara aris, while the crow, on the contrary, had becone vastly more abundant. The bald-eagle, and the fish-hawk, too, were then very ofien seen, now seldom or never. Other biris could be added to the list if desirable. The question, zuhy? is not so easily disposed of as it is to state the fact. Shoald one be dispoitd to answer by saying the rifle, it would be pertinent to reply that the rifle was just as active again-t the crow, the common hen-hawk, and the crow-blackbird, as it was against the raven, the fish-hawk, and the bald-eagle ; but these latter birds have all disappeared, uhile, in spite of the rifle, the former have increased. We must look deeper for the cause.

Washington, D.C., March 3
In answer to the query of your correspondent " Manhattan," who writes from New York, under date of Jan. 11, concerning the prevalence of ravens in the United States, I would like to remark that ravens quite replace the crow in Nevada. I have never seen them here in the esst. Mr. Ridgway who was with me in 1867.68 could give you much valuable information in regard to their habits and range.
W. W. Bailey

Brown University, Providence, R.I. (U.S.A.), March I

Thread-twisting

In Nature, January 31 (p. 305), I read some remarks by Prof. E. B. Tylor on a "rute method of making thread by rolling palm or grass fibre into a twist with the palm of the hand on the thigh," which Prof. Tylor regards es a "savage art" of old nalive tribes of Gniana, who were thighotwisters. I have often seen thoemakers when at work prepare their threads hy twisting them on the thigh with the palm of the hand. May this practice be one which has survived from a harbarous period?

Truro, March 14
J. S.

BIC YCLES AND TRICYCLES IN THEORY AND IN PRACTICE ${ }^{1}$

W7 HEN I was honoured by the invitation to give this discourse on bicycles and tricycles, I felt that many might think the subject to be trivial, altogether unworthy of the attention of reasonable or scientific people, and totally unfit to be treated seriously before so highly cultured an audience as usually assembles in this Institution. On the other hand, I felt myself that this view was entirely a mistaken one, that the subject is one of real and growing importance, one of great scientific interest, and, above all, one of the most delightful to deal with that a lecturer could wish to have suggested to him.

It is quite unnecessary for me to bring forward statistics to show how great a hold this so-called new method of locomotion has taken upon people of all classes: the streets of London, the roads and lanes in all parts of the country, testify more forcibly than any words of mine can do to what enormous numbers there are who now make use of cycies of one sort or other for pleasure or for the purposes of business.

Not only bas the newly developing trade brought prosperity to towns whose manufactures were dying a natural dcath, but the requirements of cyclists have given rise to a series of minor industries, theinselves of great importance. Riders of bicycles and tricycles come along so silently that instruments of warning have been devised. There are bells that jingle, bells that ring, whistles, bugles, and a fiendish horn which will utter anything from a
' Iecture delivered by C. Vermon Boy, A R.S.M., at ihe Royal Institutivn, Mat 7 .
gentle remonstrance to a wild, unearthly shriek. Lamps, tyres, saddles, seats, springs, \&c., are made in unending variety; these form the endless subject of animated conversation in which the cyclist so frequently indulges Cyclometers or instruments for measuring the distance run are also much used. Some show the number of revolutions made by the wheel, from which the distance can be found by a simple calculation; others indicate the distance in miles. There is on the table a home-made one of mine with a luminous face which at the end of every mile gives the rider a word of encouragement ; it now indicates that a mile is nearly compleie; in another turn or two you will all hear it speak.

Cyclists have a literature of their own. There are about a dozen papers wholly or largely devoted to the sport. They can even insure themselves and their machines against injury by accident in a company of their own.

The greatest and by far the most important growth is the Cyclists' Touring Club, a gigantic club to which every right-minded rider in the country belongs. This club has done more to make touring practicaliy enjoyable than could have been thought possible when it began its labours. Railway companies lave with few exceptions eonsented to take cycles at a fixed and reasonable rate ; in almost every town in the country an agreement has been made with the leading, or at any rate a first-class, hotel, in virtue of which the touring member may be sure of meeting with courtesy and attention for himself and with clean quarters and an intelligent grom for his borse, instead of finding himself as hitherto a strange being in a strange place at the mercy of some indifferent or exorbitant landlord. In consequence of this, thousands now spend their holidays riding over and admiring the beauties of our own country instead of being dragged with a party of tourists through the streets and building; of a foreign town. (1f the delightful nature of a cycling tour 1 can speak from grateful experience; last autumn alone I travelled nearly 1500 miles, meeting on my way with almost every variety of beauty that the scenery of this country affords. Wherever I went I felt the beneficial influence of the C.T.C., as the touring club is called At all the hotels-our headquarters-at which I stopped, 1 found the most sanguine wishes of the club amply fulfilled, our wants understoxd and provided for.

The C.T.C. have also done a great service in providing us with a uniform which has been proved to be as near perfection as possible. They have also designed a ladies' cycling dress, which can be seen in the library.

Though touring in the country is the perfe tion of our art, town riding has its afvantages. 1 , in common with a fair number, ride daily to and from my work no matter what the weather may be: rain, snow, wind, or hail, cycling affords the pleasantest means of crossing London. Instead of waiting in draughty railway stations, of catching cold outside or being stewed inside omnibuses, or of being smoked in the Underground Railway, we, the regular cyclists, look forward to our daily ride with pleasure, for the healthy exercise, the continuous necessity of watching the traffic and avoiding ever approaching danger, form between them a relief from mental worry or business anxiety which we alone can appreciate.

Of the dangers of the streets I have little to say: the regulation of the traffic by the police, and the consideration of drivers, though they are not in general too fond of us, make danger in the quarter from which it might be expected very remote. Our chief difficulty is due to the irregular and utterly waccountable movements of pedestrians, whose carelessness kecps us in a continual state of anxiety.
There remains one point of the utmost importance on which I would say a tew words, I refer to the effect of cycling on our general health. About a year ago there appeared in the lanneit an aricle condemning in no
measured terms the evils hikely to result from the development of this new craze, in which, as far as 1 remember, it was stated that we are now sowing the seeds of a series of new diseases, the symptoms of which will only appear possibly in years to come. I would not for a moment question the accuracy of opinion held by any professional man; whether this is or is not the case I cannot tell ; however, I may mention that the only symptons which I have so far discovered in myself are an improved appetite, increased weight, and a general robustness to which I was formerly a perfect stranger. Having, I trust, succeeded in showing that the advantages offered to riders are sufficient to account for the rapid development of cycling, that it is in fact no mere temporary craze, I shall now procced to consider the theory and construction of the various machines at present known.

From the hobby horse to the bone-shaker, and from the bone-shaker to the bicycle, the steps are so simple and obvious that it is quite unnecessary for me to trace them. It is also needless for me to describe the modern bicycle: every one must be familiar with it, every one must have seen the ridiculous zigzag of the beginner, and have admired the graceful gliding of an accomplished rider. Of the theory of the balance little need be said; anything supported in a mere line, in unstable equilibrium as it is called, must fall one way or the other. The machine and rider would of necessity capsize if some action of recovery were not possible. To whichever side the machine shows any inclination, to that side the rider instinctively directs it. By this means the tendency to fall to one side is balanced by the property of the rider to continue moving in a straight line, and so to go over on the other side. This action of recovery is always overdone, so that a second turn in the opposite direction must follow. Hence the extraordinary path traced by the beginner. Even with the most skilful rider, though he appears to travel in a perfectly straight line, a slightly sinuous course is essential, as the highly characteristic track left on the road indicates. If anything should happen to check this slightly serpentine motion, as, for instance, occurs when the driving-wheel drops in the groove of a tram-line, the balance at once becomes impossible, and the rider is compelled to dismount.
The extraordinary stability of the bicycle at a high speed depends largely on the gyroscopic action of the wheels. On the table is a top supported in a ring which is free to move how it pleases. So long as the top is spinning the ring is as rigid as a block; on stopping it, the freedom of the support is at once apparent.

It is a marvel to many how anything so light, how anything so delicate, can carry the weight or can travel at the speed so common without utterly collapsing. The wheels especially attract attention. In a hoop no one part can be pushed in unless some other part can go out. A bicycle wheel is a hoop in which every part is prevented from going out by the tension of the spokes. To give the wheel lateral stability, the spokes are carried not to the centre, but to the two ends of the hub, thus lying on two cones. Such a wheel is abundantly strong in its own plane: it can withstand the jars and shocks of a bad road without a groan, but once subject it to serious side strain, such as I can with ease put upon it with a jerk of my wrists, and the wheel will crumple up like an umbrella in a storm. Till this year there has been no change in the principle of construction, though in detail many improvements have been carried out and are largely adopted. By the use of hollow rims a stiffer and lighter whecl can be made ; thick-ended, crossed and laced spokes are employed, and other details modified. Essentially, however, the "spider" wheel as a structure is the same as it was when first introduced. Suddenly two radical changes are presented to us. Mr. Otto, whose great work I shall describe in its proper place, has devised a wheel on a new system, in which the spokes that form the structure lie in
the plane of the rim, in which position they are best able to withstand direct shocks. Such a wheel would be unstable, but requires very litile to keep it true. Delicate spokes, not screwed up very tight, are therefore placed on either side, so that a side-strain is met by the whole strength of the spokes on one side, which are not as hitherto weakened by the pull of the spokes on the other. On this system much narrower wheels can be made than was possible before. The other change, due to the same inventor, is still more striking. He has found, contrary to the opinion of every one, that whecls, either of his narrow type or of the usual form, can be made and will remain true when the spokes are made elastic by being bent into a wavy or slightly spiral fornt. If only these wheels will stand the test of time-and I see no reason why they should not-one of the greatest discomforts and possible causes of injury from which the cyclist suffers the vibration and jolting due to a bad road-will have bcen removed.
The bearings in a bicycle are perhaps more to be admired than any single part. Instead of allowing the axle to slide round in its bearings, hard steel rollers or balls are introduced, so that the parts which are pressed together roll over and do not slide upon one another. Any one who has trodden on a roller or a marble must have found in a possibly unpleasant manner the great difference between rolling and sliding friction. I can now give for the first time the result of an experiment only completed this morning, which shows the extraordinary perfection to which this class of work' has attained. I have observed how much a new set of balls which I obtained direct from the well-known maker, Mr. Bown, has lost in weight in travelling 1000 uniles in my machine. Evcry 200 miles I cleancd and weighed the balls with all the care and accuracy that the resources of a physical laboratory will permit. The set of tuelve, when new, weighed 25.80400 grm . After 1000 miles, they weighed $25^{\circ} 80088 \mathrm{grm}$, the loss being 3.12 mgrm ., which is equal to $1 / 20.8 \mathrm{grain}$, that is, in running 1000 miles, each ball lost $1 / 250$ grain. This corresponds to a wear of only $1 / 158,000$ inch off the surface. At this rate of wear3.12 mgrm . per $t 000$ miles-the balls would lose only $1 / 34 \cdot 3$ of their weight in travelling as far as from here to the moon.
The twelve balls, after the first 200 miles, each weighed in grammes as follows. The loss of each in running 600 miles is appended :-

I did not weigh cach ball on the first and last occasion. Howevcr, the wonderfully uniform wear in the intermediate 600 miles speaks well for the cqual hardness of the balls.

The wear of the dozen during each journey of 200 mules was as follows :-

Miles $0-200$	\ldots	Wear in grm.
$200-400$	\ldots	coo55
$400-600$	\ldots	00070
$600-800$	\ldots	0055
$800-1000$	\ldots	00075

I bave given the results of these experiments at length, for I do not think that accurate and systematic observations of the kind have been made before.

We may consider, then, that the balls are practically indestructible. Knowing this, Mr. Trigwell has applied the ball-bearing to the construction of the "head " of the bicycle, not so much with the view of diminishing the
friction there, but of preventing wear in a place where any shake is highly objectionable. One of his ball-heads is on the table.
The frame of the bicycle, consisting merely of the fork and backbone, is made of thin steel tube, the type of all that is light and strong. Indiarubber, besides being used for the tyres of all machines, hiss been worked into every part of the structure to diminish, so far as is possible, that perpetual and wearying vibration of which all bicyclists so bitterly complain. The number of improvements in every detail is so great that any attempt to enumerate them is out of the question. Suffice it to say that the modern bicycle is the perfection of all that is perfect ; as a machine for racing, as a machine for hurrying over good and level roads nothing can approach it. Unfortunately, however, there is ever present danger, and danger of the most objectionable sort, for the most skilful rider knows too well that should he strike a stone of even an ordinary size he must expect to be pitched over the bandles, and come with a crash to the ground. It is true that in general no harm is done, but such a fall may bring any one to a sudden and horrible end.

Many have attempted, while still retaining the advantages of the bicycle, to make these involuntary headers impossible by modifying in some way its construction. One of the earliest attempts in this direction is well named the "Extraordinary." On it the rider is placed much further behind the main wheel, but can still employ his weight to advantage, as the treadles are placed below him and are connected by levers with the cranks. In another safety bicycle a third wheel is carried in front, just above the ground, so as to resist at once any tendency to tilt forward. In another type much smaller wheels are employed, and the feet, now nearer the ground, are eonnected with the cranks, by levers in the "Facile," or by a hanging pedal in the "Sun and Planet." There is a bicycle with two large wheels-one in front of the otherwhich two can ride, which should be both safe and rapid.

By far the most curious and utterly unintelligible of all machines of the bicycle type is Mr. Burstow's "Centrecycle." So incomprehensible did this machine seem to me that I took the trouble one afternoon last week to ride to Horsham to see it in its native place. A careful examination has convinced me that it is not only correct in its design, but that it is in many respects the most wonderful cycle at present made. There is on the table a model Plympton skate. When this is level, it runs straight ; when inclined either way, it wheels around in a manner that was so familiar a few years ago: The four wheels of the Centre-cycle are a counterpart of the four wheels of the skate; when the frame leans either way, they turn in an appropriate manner, or, conversely, when they turn, the machine leans in the proper direction. It might be thought that a thing with five wheels is more nearly allied to a tricycle than to a bicycle; but this is not so, for the Centre-cycle, when ridden skilfully, has rarely more than one wheel on the ground; the leaning to one side in turning a corner (tric)cles unfortunately must remain upright), and the general action is cssentially that of a bicycle. The great peculiarity of this machine is the power that the rider possesses of raising or lowering any wheel he likes. Now that 1 have mounted it you will see that I can rest on one, three, four, or five wheels as I please. In consequence of this power of lifting the wheels, a rider can travel over an umbrella without touching it, lifting the wheels as they approach, and dropping them as they pass, after the manner of a caterpillar.

Whatever difficulty 1 may have had in doing justice to the bicycle, the corresponding difficulty in the case of tricycles is far greater. The number of makers and the variety of their work is so great that it would be sheer madness on my part to attempt to describe all that has
been done. Those who wish to see the great variety of detail which chiefly constitutes the difference between one make and another must go to one of the exbibitions of these things which are now so common.
All I shall attempt will be an explanation of the leading principles which are involved in the design of a tricycle. For this purpose it will be necessary for me to mention occasionally some particular machine ; but in justice to the hundreds to which I cannot even refer, I wish it to be understood that those named, though typical, are not of necessity better than any other.

Till a few years ago the bicycle was the only velocipede which was worthy of the name. Inventive genius and mechanical skill have given rise to a series of machines on three wheels on which any one can at once sit at ease. and which require but little skill in their management Men who do not care to risk their necks at the giddy height of the bicyclist, ladies to whom the ordinan bicycle presents difficults which they cannot well surmount, each find in the tricycle the means of obtaining healthy and pleasant exercise, and of enjoying to a certain extent the advantages which the bicycle affords. Thanks to the perfection of the modern tricycle, cycling has become one of the most popular institutions of the day.

It is first necessary to know what combinations of three wheels will, and what will not, roll freely round a curve. The few possible arrangements determine the general forms which a tricycle can take. A wheel can only travel in its own direction ; no side motion is possible withou: the application of considerable force, entailing strain and friction of a most injurious kind. In any combination, then, of three wheels, each must be able, in spite of the united action of the other two, to move in its own direction. There is on the table a model in which the threc wheels can take every possible position. To begin with, two large ones are placed opposite to, but independen: of, one another, and parallel, and a s nall one, parallel to the others, is mounted between them at one end. This arrangement rolls along in a straight line with perfect freedom; on twisting the plane of the third wheel it is also free to roll round a curve whether the little wheel is before or behind. If I shift the position of one of the large wheels so that, though still parallel to, it is no longer opposite, the other, then, though they can freely move in a straight line, they can by no possibility be induced to roll round a curve. It is clear, then, that two wheels that are parallel cannot be employed in a tricycle unless they are opposite one another. The only class of people who frequently appear to be familiar with this fact are nursemaids, who always tip up the front of a perambulator in turning a corner.

If one wheel is in front of and another behind a third, the combination can only roll round a curve when the front and rear wheel are turned to proportionate extents in opposite directions. The model is so arranged now ; if either of the little wheels is not turned to exactly the right amount, they can no longer roll, they can only be dragged round a curve. It is not sufficient that two parallel wheels should be opposite one another, they must be able to turn at different speeds. I have now the two large wheels keyed on the same axle, so that they must of necessity turn together; this combination is ready enough to go straight, but no amount of encouragement by the steering wheel will induce it to go in any other direction.

Bearing these facts in mind, it will not be difficult to follow the development of the tricycle. It would seem impossible in the first arrangement (that with two wheels opposite one another, and a third, or steering wheel, before or behind between them) to drive both sides, for the wheels must be able to turn at different speeds; let therefore one be free to go as it pleases, if the other only is driven, we have at once a very common form of tricycle, in which one wheel drives, one steers, and one is idic.

Machines of this class have many defects. The feeble steering power, combined with their unsymmetrical driving, render them altogether untrustworthy. If any power is applied to the driver, which can only have its share of the weight upon it, it slips on the ground; if the machine is quickly stopped, owing to the small weight on the steering wheel, it is apt to swing round and upset; nevertheless, those who are content with pottering about on our wood pavement and gravel roads find this class of machine answer their purpose, and owing to their cheapness and simplicity they do not care to get a better.

The second arrangement of the model, in which riders must have recoguised the Coventry Rotary, is free from most of the defects of the form just described; there is more weight on the driver, but not enough to prevent its being made to slip round; there are two steering wheels a long way apart, with plenty of weight upon them, so that the guiding power in this type of tiicycle is all that can be desired.

Let me now return to the first arrangement, in which two parallel wheels are opposite one another. If by any possibility both wheels could be driven, and yet be free to go at different speeds, then there being so large a weight on the drivers they could not be made to slip; the driving being symmetrical, most of the twisting strain would be taken off the steering wheel, and stll the machine would be capable of rolling round a curve with perfect freedom.

All the methods of solving the problem of double driving come under two heads, one depending on the action of a clutch and the other on differential or balance gear.

The clutch action being the simplest, I shall describe that first. In going round a corner the inner wheel must lag behind, or the outer wheel must run ahead of the other; as either wheel may be inner or outer according to the direction of the curve, each must be able to lag behind or each must be able to run ahead. If both were able to lag behind, the machine could not be driven forward, and it would be of little use ; if both were able to run ahead, the machine could not be driven backwardsa matter of small importance. There is on the table a large working model, showing how a four-sided wheel is free to revolve in a ring, but is instantly seized when turned the other way, owing to a jambing action on one or more of four rollers. The four-sided wheel then can be employed to drive the ring one way but not the other. One of these "clutches " or "friction grips" is placed at each end of the crank shaft in the "Cheylesmore" tricycle, and a chain round the ring of each drives the corresponding wheel. The machine named is a rearsteerer; the clutch is also employed in some frontsteerers.

The other method of double driving depends on the use of the well-known gear of three bevel wheels or of some equivalent mechanism. If the axle of the middle of the three wheels is turned round the common axle of the other two, the applied force is divided between those two wheels, yet the pair are free to move relatively. Let then the chain drive a wheel carrying the middle bevel, and let the side bevels be connected with the two drivers. Whatever happens, the power of the rider will be equally divided between them, yet the machine will be free to roll round a curve.

There are a great number of devices which are exactly equivalent to this the simplest of all, which is known as Starley's gear. There is on the table a beautiful model of the gear used in the Sparkbrook tricycle, which has been lent me by the makers of that machine, Bown's differential gear, and some others; but time will not allow me to describe them. There is one gear, however, which presents many peculiarities, which I have devised, and which may be of interest. A large working model is on the table. Between the
conical edges of two wheels which are connected to the drivers lie a series of balls, outside which is a ring with sloping recesses. If the ring be turned by a chain or otherwise, the balls jamb in the recesses as the rollers do in the clutch gear. Nevertheless they are free to turn about a radial axis, and so allow the two driven cone wheels independent motion. The bursting strain on the ring and the side thrust on the cones acting on rolling balis balance one another. With this gear the rider can cause the balls to jainb one way or both ways, and so have or avoid the "free pedal" as he pleases.

In almost all good designs of front-steering tricycles the power applied to the cranks is transmitted to a differential gear by a chain. The crank and connecting rod have also bsen used to transmit the power, but then the clutch is necessary.

There is, however, another type of tricycle, in which the use of cranks is avoided, among which may be mentioned the "Omnicycle," the "Merlin," and that highly ingenious machine, the rowing tricycle. On the table there is the Omnicycle gear. In all these the power is applied direct to the circumference of a wheel or sector, and so dead ponts are avoided, which is a point in their favour when meeting with much resistance. On the other hand, the sudden starting and stopping of the feet in the two former machines and of the body in the latter make this type utterly unsuitable for obtaining anything more than a moderate speed. In the Omnicycle ingenious expanding drums are employed, so that the power may be applied with different degrees of leverage according to circumstances.

There remains one type of tricycle which, for rapid running, surpasses many: I refer to what is known as the Humber patiern. So excellent is this form in this respect that the leading manufacturers have, by turning out machines on the same lines, pad the original makers a conpliment which is not altogether appreciated. This pattern departs less from the ordnary bicycle than any other; it is one, in fact, in which, instead of one, there are two great wheels, giving width to the machine, between which the power is divided by the usual differential gear.

Having spoken of the differential gear and the clutch, I had better show the comparative advantages and disadvantages of the two methods of double driving. With the differential gear the same force is always applied to each wheel, so in turning a corner the outer one, which travels furthest, has most work expended upon it (work = force x distance). In this respect the differential gear is superior. Cn the other hand, when one wheel meets with much resistance from mud or stones, and the other with hardly any, the latter bas still half the strength of the rider spent upon it, which is clearly a mistake. With a clutch-driven machine running straight, the wheels take such a share of the rider', power as is proportional to the resistance they individually mect. When the machine is describing a curve, that is generally, only the inner wheel is driven, and the machine is for the time only a single driver, with the driver on the wrong side.

1 must now describe some devices which are attracting much attention at the present time, the speed and power gear:. Let us suppose there are two machines with wheels of different sizes, but in other respects alize. Then each turn will tike the larger wheeled machine further than the smaller. In going up a bill the larger wheel will take its machine up a greater height than the other in one revolution, which involves more work and therefore more strength. If on the large wheel the chain pulley were increased in size, then for the same speed of the treadles it would not turn so quickly, it would not take the machine so far up the hill as before, it would in fact be equivalent to a smaller wheel, so that less strength than before would be necessary. This diminution of speed, though of great advantage when climbing a hill, is the reverse on the
level, for then very rapid pedalling would be necessary to maintain even a moderate speed. To obtain the advantage of high wheels or high gearing on the level and at the same time low wheels or low gearing on the hills, some highly ingenious devices are employed. On the table is a well-known one of these, the "Crypto-dynamic," which by a simple movement changes the relative speed of wheel and treadle. Time will not permit me to describe the details of this arrangement, but it contains an epicyclic gear which is or is not in action according as the rider desires power or speed. There are several other devices having the same object, some depending on an epicyclic gear in a pulley, others on the use of two chains, only one of which is active at a time. These arrangements have the further advantage of enabling the rider to disconnect the treadles from the wheels whenever he pleases.

Tricycles on which two, three, or a whole family can go out for a ride together, involve few new principles, and I shall not for this reason have a word to say about them.

There remains one machine forming a class by itself, more distinct from all others than they are from one another. It is not a bicycle in the ordinary sense of the word; it is not a tricycle, for it has only two wheels. This machine is, from a scientific and therefore from your point of view, more to be admired than any other. It is called, after its inventor, the "Otto." The Otto bicycle and the Otto gas-engine will be lasting memorials to the ingenuity of the brothers who invented them.

No machine appears so simple, but is so difficult to understand as this. Tricyclists who have been in the habit of managing any machine at once, are surprised to find in this something which is utterly beyond them. They cannot sit upon it for an instant, for so soon as they are let alone it politely turns them off. When at length, after much coaxing, they can induce it to let them remain upon it, they find it goes the way they do not want. Riding the Otto, like any other accomplishment, nust be learnt. Some seem at home on it in half an hour, others take a week or more. It is not surprising that that quick perception, in which ladies have so much the advantage of men, enables them to quickly overcome the apparently insurmountable difficulties which this machine presents to the beginner.

The rider when seated is above the axle of two large equal wheels; being then apparently in unstable equilibrium, he would of necessity fall forwards or backwards if some movement of recovery were not possible. The Ctto rider mainlains his balance in the same way as the pedestrian. If he is toofar forward, pressure on the front foot will push him back ; if too backward in position, pressure on the rear foot will urge him forward. That this must be so is clear, for, whatever turning power he applies to the wheels, action and reaction being equal and opposite, they will profluce an equal turning effect upon him. The steering of this machine is quite f eculiar. In the ordinary way both wheels are driven by steel bands at the same speed; so long as this is the case, the Otto of necessity runs straight ahead. When the rider desires to turn, he loosens one of the bands, which causes the corresponding wheel to be free ; if then he touches it with the brake or drives the other wheel on, it will lag behind, and the machine will turn. It is even possible to make one wheel go forwards and one backwards at the same time, when the machine will spin like a top within a circle a yard in diameter.

There being no third wheel the whole weight is on the drivers, the whole weight is on the stecrers; the frame, which is free to swing, compels the rider to take that position which is most advantageous, making him upright when climbing a hill, and comfortably seated when on the level. (Owing to a curious oscillation of the frame which occur 3 in hill climbing, the
dead points are eliminated, so the rider need not wathe his strength at a position where labour is of no avail.

Though it has been impossible for me to do more than indicate in the most imperfect manncr how numeroas and beautiful are the principles and devices employed in the construction of cycles, I trust I have disappointed those who were shocked and horrified that so trivial a subject should be treated seriously in this Institution.

DANGERS FROM FLIES

IN a note communicated to the Gazzetla degli Ospitai for August 1883, and republished in the current number of the Archives. Jtalicnnes de Biologie (tome ix. fasc. ii.), Dr. B. Grassi calls attention to the fact that flies are winged agents in the diffusion of infectious maladies, epidemics, and even parasitic diseases. During the summer season, when flies occur in swarms, it seems impossible to prevent them from settling on any and every object. In these countries, though sometimes troublesome, they are scarcely ever so numerous as in the warmer climates of the Continent, and even in these latter they are not often to be found such plagues as ther are in Egypt ; but in all these countries alike they may be seen to alight on all moist substances without distuc tion. It may be the expectorations of a phthisical or the ejecta of a tyf hoid patient that have last attracted these inquiring diptera; but, irrespective of the material they may have been investigating, their next visit may be to the moist lips or eyes of a human being. Their feet, their mouth, and the pectoral portion of their bodies will hare all come in contact with the infective mass, and will 2$]$ in turn be more or less cleansed of it by the moisture of the freshly visited mucous membranes. But this danget has already been known and recognised, and it seems scarcely doubtful that in Egypt ophthalmia is constantl carried to the eyes of the infant natives by such winged visitors. Dr. Grassi calls our attention to even greater danger, and this from the ejecta of the flies themselve. Every hou-ekeeper knows how the bright surace of a mirror or the gilt moulding of a picture frame can be covered over with the little flecks left by these fies,no English words occur to us to translate therevith the phrase "les méfaits des mouches." The folloning experiences of Dr. Grassi relate to these :-At Rovellasca, between his laboratory, which is on a first floor, and his kitchen, which is on the ground floor, there lies a couryard, with a distance between the windows of the two rooms of about ten metres. On a plate on the table of his laboratory he placed a large number of the eggs of a human parasite ('Trichocephalus). After a few hours be found, on some white sheets of paper hanging in the kitchen, the well-known spots produced by the excreta of the flies, and on a microscopical examination of thest spots, several eggs of the parasite were found iv them. Some flies coming into the kitchen were poo caught, and their intestinal tract was found quite filkd with an enormous mass of forcal matter, in which the presence of eggs of Trichocephali were detected. Asin was practically impossible to keep all alimentary substances from contact with these flics, it follows than the chances of Dr. Grassi and his family being infected vith Trichocephali were very great. As a matter of fact, the experiment was tried with non-segmented eggs of this worm. Another experiment wa; in the same directios Dr. Grassi took the ripe segments of a Tania soliwa (which had been in spirits of wine) and broke them up in water, so that a great number of the tapeworm's egg remained suspended in the fluid. The flies came to the mixture, attracted by the sugar, and in about half an how the ova of the tapeworms were to be found in their intetines and in the spots. Had these eggs been in a recent and living state, they would doubtless have been just as easily transported. To those who care to try bees
experiments, it is suggested that lycopod powder mixed with sugar and water is a good material, as the lycopod spores are easily detected.

It is self-evident that if the mouth-apparatus of the fly will admit of the introduction of such objects as have bsen above noted, that there will be no difficulty in its adnitting scores of the spores of many parasitic fungi, and above all of those belonging to the Schizomycetes, the possible cause of so much disease. Already has Dr. Grassi detected in fly excrement the spores of Oidium lactis, and the spores of a Botrytis, this latter taken from the bodies of silkworms dead of muscardine.

There arises, of course, the question of how far the active digestion in the intestines of the flies may not destroy the vitality of germs or spores thus taken in, but it would seem probable that in many instances the larger bodies swallowed may not serve as objects for assimilation, but may be got rid of as foreign bodies, and it will be borne in mind that the flies themselves fall victims to the growth of a parasitic fungus (Empusa musca, Cohn), which is probably taken first into their own stomachs.

Dr. Grassi promises to publish the results of his experiments in fuller detail. Judging of their interest by this abstract, they will well deserve to be followed up, and though in these countries our modern sanitary arrangements do not tend to the development of such immense swarms of flies as are so constantly to be met with in Italy, still the dangers to be apprehended from them there are possibly, though in a less degree, to be encountered here, and the investigation of the fact is easy to any one possessing a fairly average microscope and the power of catching a fly.
E. P. W.

EDINBURGH MARINE STATION

AT the half-yearly meeting of the Scottish Meteorological Society held on Monday last, Mr. Murray submitted a statement on the work done by the Fisheries Committee. This included preliminary reports from the Rev. A. M. Norman on the invertebrate fauna of the Scottish fresh-water lochs; Prof. Herdman's report of his researches connected with the fisheries of Loch Fyne, and similar reports from Messrs. Hoyle and Beddard from Peterhead and Eyemouth. After reading several interesting extracts from these reports, which will shortly appear in the Society's Journal, he then stated that the marine station at Granton would be formally opened for scientific work about the 1oth of next month by Prof. Haeckel of Jena. The floating laboratory, which has been named the Ark, was successfully launched on Saturday last, and it has accommodation for seven biologists. The stcam yacht of thirty tons, which is to be called the Medusa, is to be launched on the 26 th inst. at Glasgow, and will be at the station ten days thereafter.

The Station will then be possessed of the three most important requisites, viz. the floating laboratory, with abundance of sea water; a steam vessel fitted with all modern appliances for sounding, dredging, and other biological and physical investigations; and lastly, a most complete library in marine biology and physics. Mr. J. T. Cunningham, B.A. Oxon., Fellow of University College, Oxford, has been appointed Naturalist in charge of the Station; Mr. Hugh Robert Mill, B.Sc., who holds a Research Fellowship in the University of Edinburgh, is to carry on physical and meteorological investigations under the superintendence of Prof. Tait; Mr. Alexander Turbyne, fisherman, Keeper; Mr. William Bell, late Royal Navy, Engineer; and it is hoped the arrangements will shortly be made that will enable a botanist and geologist to carry on systematic work at the Station. The captain of the yacht will be appointed next week.

British and foreign naturalists are invited to make use of the resources of the Station free of charge, and those who desire to do so are requested to communicate with

Mr. John Murray, Challenger Office, Edinburgh, stating the kind of work they propose to undertake and the length of time they will probably remain. Efforts are now being made to provide living accommodation for the naturalists and others who may be working at the Station. Immediately after the meeting Mr. Murray received anonymously a donation of 100% towards the further equipment of the Station. We wish every success to this undertaking, and, from the liberal spirit shown in placing at the service of scientific men the unique facilities afforded by the Station for the prosecution of inquiries of the highest practical importance, we have every confidence that the public will not be slow in seeing that the funds required for its efficient maintenance are forthcoming.

THE DEEP-SEAA FISHES OF THE "TALISMAN"

AMONG the many wonderful animal forms collected during the voyage of the Talisman none surpass the fishes in interest. In the exhibition, now open at the Jardin des Plantes, Paris, of the various specimens collected during this voyage, the collection of fishes holds a chief place. During the cruises of the Travailleur, owing to the apparatus employed, the capture of a fish was a rare event, but by the employment of a kind of drag-net on board the Talisman the number both of species and individuals taken was quite surprising. Once, on July 29, in $16^{\circ} 52^{\prime} \mathrm{N}$. lat. and $27^{\circ} 50^{\prime} \mathrm{W}$. long, in one haul of the dragnet no less than 1031 fishes were taken from a depth of 450 metres. The chief surface fish noted in M. Filhol's very interesting papers, which are in course of publication in our French contemporary La Nafure (to the editor of which journal we are inlebted for the illustrations accompanying this notice), were the well-known shark (Charcharias glaucus), very common between the Senegal coast and the Cape de Verde Islands; its strange attendant fish, the so-called pilot fish (Naucrates ductor), and the very curious and odd-looking fish of the Sargassum Sea, Antennarius marmoratus. It is noted that not only were the pilot fishes never molested by the sharks but that they constantly swam around them, sometimes even they were seen placing theinselves against the shark's sides between their pectoral fins. Many observations were made on the strange Antennarius, the colour of whose body so closely approaches to that of the alga amidst which it lives that it enables these fish to approach almost unseen, and so quite easily take their prey. It is not, however, altogether unworthy of remark that this prey, consisting for the most part of small crustacea and mollusks, is also of the same general sbade of colour as the mass of the weed, so that the assuming of this uniform dull tinge of colour must mean a heightened danger to some of these forms of life.

The great interest, however, of the fish captures of the Talisman centres in the remaricable forms taken from the depths of the sea, which were both considerable in the number of individuals and in the newness of the forms. The question of whether certain fish inhabit certain zones of depths was closely considered, and is answered in the affirmative. These zones are of very considerable depth, varying from 600 to over 3650 metres, and in bringing up specimens from such areas of great pressure these suffer immensely through the phenomena caused by the rapid decompression of the air, the more remarkable effects being dilatation of the s wim bladder, the eyes being squeezed out of their orbits, and the scales clothing the body are shed. In some cases even the fish's body has become smashed into pieces. Notwithstanding all these phenomena, the area in depth of the distribution of many of the deep-sea fish is very considerable. Thus Alepocephalus rostratus is met with between a depth of 868 and that of 3650 metres; Scopelus maderensis, between

Fig, s.-Macrurns nlobicift, Vaill.

Fig. 2.-Finstomiat docwrus, Vaill.
depths of 1090 and 3655 metres; Lepioderma macrops, between 1153 and 3655 metres; and Macrurus affinis, between 590 and 2220 metres. The explanation would seem to be not only that the organisation of these fishes is such as enables them to support the enormous pressures at the greater depths of the ocean, but that in the course of their movements of ascent and descent they proceed very slowly so as gradually to get accustomed to the alterations in pressure. These fishes are all flesh eaters, with well developed dental systems ; the absence of light prevents the growth of marine alga in these depths, and as a general rule all the fish found below 150 metres are of necessity predatory. These deep-sea fishes, as Dr. Günther reminds us, do not belong to any peculiar order, but are chiefly modified forms of surface types; some of these modifications being no doubt very extreme, but serving as indications not only of the struggle for existence, but also of the plasticness of the forms to adapt themselves to the extreme conditions under which they live. The most remarkable phenomena in connection with their deep-sea life is doubtless the tremendous pressure which has to be borne. No one seems to doubt but that these deep-sea forms live as active a life as surface forms, indeed their very appearance seems to indicate a swiftness and energy of movement not to be surpassed by surface swimmers; and we may believe that the abys-al pressure has a great deal to do with keeping their feebly calcareous bones and delicate muscular system compact and in a condition for effective use. The placid state of the water at these depths must also be borne in mindno storms affect them, and the extraordinary attenuation of some organs may be directly ascribed to this phenoinenon. Thus Macrurus globiceps (Fig. 1), which forms one of a family of deep-sea Ganoids, known as living at depths of from 600 to 2200 metres, and occurring in considerable variety and great numbers over all our oceans, is a new species, described by M. L. Vaillant as found at a depth of between 1500 and 3000 metres. Its body, globular in front, will be seen to be very greatly attenuated behind.
In some of the deep-sea fishes peculiar organs, unknown for the most part among surface fishes, are to be found ; these are sometimes "more or less numerous, round, showing mother-of-pearl coloured bodies embedded in the skin"; in some fish these are to be met with on the head, or near the eyes, or along the sides and back. Dr. Günther informs us that of these strange bodies the following hypotheses are possible: (1) all these different organs are accessory eyes; (2) only those having a lens-like body in their interior are sensory, those with gland-like structure are not sensory but are phosphorescent ; and (3) all are producers of light. Many serious objections can be urged against the first view. Some of the fish with immense eyes have these bodies, others without eyes want them, while as to glandular bodies being sense organs this is not yet scientifically realisable. One seems therefore justified in adopting the middle hypothesis, and though on first thought it seems strange that fish with large cyes should have accessory eyes, yet Dr. Günther's supposition may be the true one -that there are light producers behind the lenses, and that these latter may act the part of "bull's-eyes" in a lantern. This form of "light organ" might constitute a very deadly trap for prey, one moment shining it might attract the curiosity of some simple fish, then extinguished the simple fish would fall an easy prey.

Long filamentous organs are to be met with showing apparently a brilliant type of phosphorescence. Among the many curious forms of development of these tactile organs to be met with, one of the most singular is that to be seen on a fish referred by M. L. Vaillant to a new genus and species found at a depth of 2700 metres, and represented in the annexed woodcut (Fig. 2). In this form (Eustomias obscurus) the tactile organ takes the
appearance of a long filament, which is placed underneath the lower jaw, and which ends in an inflated and rayed knob-like phosphorescent mass.

Another peculiarity now well known in deep-sea fishes is the enormous development of the mouth and stomach of these fish. In the genus Melanocetus and in Chiasmodus the capacity of the stomach is such that it can contain prey twice the size of the fish which swallowed it, and perbaps the largest gape of jaws known is that of Eurypharynx pelecanoides. The greatest depth at which a fish was taken doring the cruise of the Talisman was 4255 metres ; the fish was Bythytes crassus : but it will be remembered that during the Challenger Expedition a specimen of Bathyopis ferox was taken at a depth of 5000 metres.
We hope again to have the opportunity of referring to other of the deep-sea forms taken by the Talisman.

ANCIENT $/ A P A N^{1}$

TH1S volume contains a literal translation of the oldest Japanese book in existence, accompanied by introductions, notes, and appendices, and is beyond doubt the most learned and remarkable work which European scholarship has yet produced from Japan. Of the many important propositions on the early history of the Japanese race established by it we shall have to speak later on ; but of the work itself it may be said now that the translator claims it to be "the earliest authentic connected literary product of that large division of the human race which has been variously denominated Turanian, Scythian, and Altaïc, and it even precedes by at least a century the most ancient extant literary compositions of non-Aryan India." Indeed more than this may be said; for if the claim of Accadian to be an Altaic language be not substantiated, not only the archaic literature of Japan (to which the Kojiki belongs), but also its classical literature, precedes by several centuries the earliest extant documents of any other Altaic tongue. This alone would render the work an object of much interest, but it derives additional importance from its contents as well as from the period at which it was written. It is the earliest record of the language, customs, mythology, and history of ancient Japan, and soon after the date of its compilation, as Mr. Chamberlain points out, most of the salient features of distinctive Japanese nationality were buried under a superincumbent mass of Chinese culture; it is therefore to these "Records" and one or two other ancient works that the investigator must look if he would not be misled at every step into attributing originality to modern customs and ideas which have simply been borrowed wholesale from the neighbouring continent. It appears beyond doubt that, though the work existed in tradition for some years before that period, it was not committed to writing till the year 712 of our era, and from it a picture can be formed of the Japanese of that remote epoch. It is to the sections devoted by the translator to the manners and customs of the early Japanese and their political and social ideas that we propose to direct special attention now.

As pictured, then, in these "Records," the Japanese of the mythical era had emerged from the Stone Age and from the savage state. They were acquainted with the use of iron for weapons of the chase, such as arrows, swords, knives; but there is a curious silence about ordinary implements, such as axes and saws, though they had the fire-drill, pestle and mortar, wedge, and shuttle for weaving. The art of sailing appears to have been quite unknown, but boats for use on the inland lakes are mentioned. As would naturally be expected, the population was scattered along the seashore and on the banks
"Tramsactiows of phe Asiatic Saciety of /afan", vol. x. Supplement.
Translation of the "Kojiki" or "Records of Ancient Matters. ${ }^{\text {" }}$ By Basil Hall Chamberlain. Yokohama, 1833.
of the larger rivers, while house and temple building are the subjects of frequent reference. The Japanese of the present day appear to have inherited their habits of great personal cleanliness from their early forefathers, for we read more than once of bathing, and bathing-women are said to bave been specially attached to an imperial infant. Among the religious practices, too, was that of lustration. A custom of the early Japanese, which is still found existing in the island of Hachijo, of the east coast, was that of a woman before childbirth erecting with her own hands a one-roomed hut without windows, into which she was expected to retire and give birth to her child. In Hachijo formerly a woman was driven out from the village under these circumstances to a hut on the mountain side, which she was not permitted to leave under any circumstances whatever before the birth of the infant ; but in later times the custom was so far relaxed that the hut was allowed to be put up within the homestead. Each sovereign on his accession, also, had a new palace erected for him ; but these so-called "palaces" were nothing more than ordinary wood huts. Although cave-dwellers are referred to in the "Records," it appears that at the date to which the work refers they had quite passed away. The principal food was fish and the flesh of wild animals. Rice is mentioned in such a manner that there can be no doubt of its cultivation from immemorial antiquity; sake, the native ricebeer, is also referred to. In dress the mythical Japanese appear to have reached a high level, and we find many garments specialised, such as skirts, trousers, girdles, veils, and hats; while it is interesting to note that although jewellery forms no part of the attire of the modern Japanese, their ancestors adorned themselves with necklaces, bracelets, and other articles formed from stones considered precious. They appear to have had a tolerably extensive acquaintance with the animal and vegetable kiugdons, but the tea-plant was evidently not yet introduced among them. Iron, which was used from time immemorial, was the only metal they knew; and their acquaintance with colours was confined to black, blue (including green), red, white, and piebald (of horses). In the Japan of to-day the different degrees of relationship are distinguished in much the same way as in Europe, except that brothers and sisters, instead of being considered as mutually related in the same manner, are divided into two categories, elder and younger, in accordance with the Chinese usage. But the ancient Japanese had a complicated system of nomenclature, which appears to have perplexed native commentators themselves, the foundation of which was a subordination of the younger to the elder born, molified by a subordination of the females to the males. A distinction also appears to have been drawn between the chief and secondary wives, and the wife is constantly spoken of as "younger sister." It appesrs that consanguinity, however close, was no bar to marriage, as we hear of unions with half-sisters, step mothers, and aunts. When the Chinese ethical code was imported, these gradually disappeared, but not, it is said, without political troubles. Exogamy did not exist, and there appear to have been no artificial impediments in the way of marriage. On death the hut of the deceased was abandoned; and there was a tradition of an earlier custom of burying alive so ne of the retainers in the neighbourhood of a royal tomb. This is the only trace of human sacrifice to be found in the recorts of the Japsnese race, and there is also a total absence of any trace of slavery. They were unacquainted with any of the arts by which theirdescendants are best known; they had neither tea, fans, lacquer, or porcelain. They knew nothing of vehicles, money, or the computation of time. They were igoorant of writing, and of course had no books.

This brings us to another interesting part of the subject, viz. the antiquity claimed by native writers for their monarchy, and the reliability of their early chronolog.j.

There is no break in their history between the fabuloss and the real, and the continuity of their mythology and history is a tenet of the native commentators. They hod the age of the gods to have ceased and that of their human kings to have commenced at an era correspond. ing with 650 в.c., and the then ruler of Japan is climed as the first of an unbroken line of sovereigns extending down to the Mikado of to-day. All the earlier Europeai writers on Japan have accepted 660 B.C. as the commencement of historical Japan ; the Mikado himself has claimed this long descent ; frequently in official publica. tions we find this accepted as the Japanese year $1 .^{1}{ }^{1}$ In native chronologies we find the names of a series of Emperors who have reigned from that time. This antiquity, though as yesterday compared to that of the Chinese, is highly respectable if correct, but unforianately there is nothing whatever to support it. For, ie the words of Mr. Chamberlain, this era, this accession of the first emperor, "is confidently placed thirteen of fourteen centuries before the first history which records it was written, nine centuries before (at the earliest compula tion) the art of writing was introluced into the country, and on the sole authority of books teeming with minat lous legends." Another scholar, who made the chrooolog of Japan a special study, and who has published a valuabie monograph on that subject, the late Mr. Bramien, does not scruple to say that "the whole system of factitions dates applied in the first histories of Japan is one of the greatest literary frauds ever perpetrated, from which we may infer how little trust can be placed in the early Japanese historical works." In short it appears that, fon all historical purposes, Japan is a newer country than England by several centuries. Another proposition for which native scholars have always strenuously contended will also have to be abandoned. It is usual to say thi early Japanese civilisation was a purely indigenous product, and that even a certain form of writing called "letters of the Divine Age" existed long before ther was any contact with China. European scholars have always been doubtful about this divine alphabet, and it is now beyond doubt that they are the invention, ex adaptation from Corea, of a later age ; but it is asso certain from these "Records" that, "at the very earies period to which the twilight of legend stretches back Chinese influence had already begun to make itself fet in these islands, communicating to the inhabitants both implements and ideas." It would occupy too mud space here to exhibit the evidences of this. One mas suffice. "Curved jewels," magatamz as they are called figure largely in the Japanese mythology as ornaments od the early Japanese. These are generally made of jaile or a jade-like stone, and Prof. Milne shows that no snch mineral has ever been discovered in Japan. Furthe proofs of Chinese influence are found in the nature d the myths, the existence of the intoxicant sakr, the lap gange, \&c. The religion of the early Japanese appens to have been merely "a bundle of miscellaneous spper stitions," not an organised system. We find no body of dogmis, or code of morals, authoritatively enforced by d sacred book. The gods of their mythology were of course the object of worship ; conciliatory offerings of miscellaneous kind were made to them. Purifiction by water is the sacred rite of which we hesr must. Trial by hot water also existed; compacts, too, resembling of oaths, were entered into with a god. Priests are mentioned, but the impression conveyed is that in early time they did not exist as a separate class. In his "Hiltary
I'In an interview with she Japasese Minister in Lon Ion, poblimed is th Pall Ma!/ Gasette of February s5, His Excellensy is reported to hax attributed the ardent attechment of the Japanese to h.s country to two for one that Japar has been unconjwared for 2503 yeari, the other the for samepstiod it hat bsen guveraed by the sa ne dyaaty. No otir wo can point t) such a recor l^{\prime} " said Mr. M ric "and it is but nataral that shoull feel a pride in our coustry," \&e., \&e. The Minister, as wir seen, wold have to dejuct nearly fifieen hundred years from his mati premiss before he tou :hed the solid ground of fact.
of Civilisation," Buckle attributes some of the superstition of the inhabitants of Spain and Italy to the occurrence of eartbquakes and other volcanic phenomena; but in Japan there is "no testimony to any effect produced on the imagination by the earthquakes from which the Japanese islanders suffer such constant alarms." Nor is there any tradition of a deluge, which is the more remarkable as Noah's deluge has recently been claimed as a myth of Altaic origin. "Yet here we have the oldest of undoubtedly Altaic nations without any legend of the kind." There is no such thing as star-worship, nor are there any fancies such as the imagination of other races has connected with them.
Much, very much, more might be written on this deeply interesting volume. Although more than a thousand years of Japanese history must be cut away, "the Japanese mythology is the oldest existing product of the Altailc mind." When to this are added the facts that here we have the ipsissima verba (for the translation is literal) of the Japanese compiler of eleven centuries ago, that it is the first complete translation of an archaic Japanese work, that it is the first work in which an attempt is boldly made to separate Japanese history from myths, and to fix the commencement of the historical era, and that it cortains abundant illustrations of the manner and ideas of this primitive race as recorded by themselves, we have said enough to attract a wide circle of students. Besides the very valuable preliminary discussions, the text is abundantly annotated by the translator, who bas for this purpose made use of the works of the numerous native commentators and editors of the work.

NOTES

Tue gold and silver Kumford Medals have been presented by the American Academy of Arts and Sciences to Prof. Row land of Baltimore for his researches on heat and light.
We are sure that every field-naturalist and working geologist will be grateful to Prof. Bryce for introducing into Parliament his Bill "to secure sccess to mountains and moorlands in Scutland." Since the substitution of deer for sheep and cattle on the Scottish moors and mountains, great restrictions have been placed on aceess to these favourite haunts of the lover of nature, so that in some districts the tourist and collector are faced by the trespassers' board in all directions. We have no wish whatever to infringe the rights of private property, but surely the great landed proprietors of Scotland can afford to be generous to those whose noblest game is a rare butterfly, an Alpine flower, or a chip from the rocky escarpment of a hill. Already some of the most valuable hunting grounds of science have been shut up, and in the present condition of things we may soon hear of such natural phenomena as the Parallel Roads of Glenroy being rendered inaccessible, and the traveller confined to the dusty highways. The Bill embodies every possible precaution against the abuse of the access craved, and we strongly advise the members of the many natural bistory societies and field club, all over the country to use every l egitimate means to obtain for it Parliamentary sanction. We need scarcely point out how greatly interested in the provislons of the Bill are all artists and the great army of tourists.

Sir J. H. Lefroy, we are glad to learn, has accepted the presidency of the Geographical Section at the Montreal meeting of the British Association.

Signor Quintino Sella, whose death on March 15 is announced, was president of the R. Accademia dei Lincei.

We regret to learn of the death of Dr. Behm, the emiuent geographer of Gotha, the editor of the Geographische Mittheilungent, the Grographisches fahrbuch, and, along with Prof. Wagner, of the well-known "Bevölkerung der Erde."

We are glad to notice the hearty manner in which the Times recognises the necessity for scientific education among all classes. In an excellent leading article on the Technical Institute, it maintains that the old rule-of-thumb methods will no longer suffice, and that science and organised knowledge are bound to invade industry as they have already invaded almost every branch of human endeavour.

There can be no doabt of the great scientific value of a bathymetrical survey of the Scottish lochs, about which Lord Balfour of Burleigh asked a question in the House of Lords on Tuesday, and concerning which there has been a correspondence between the Royal Society of Edinburgh and the Government. No one wishes to retard the completion of the English Survey for the purpose of this special undertaking; but this is not necessary, as, without golng to any great expense, Goveroment might easily employ other existing ageneies in carrying out the work.

Sir Richard Owen was on Saturday presented with a framed and illuminated address by the Geologists' Association, on the occasion of his retirement from the post of DirectorGeneral of the Natural History Department of the British Museam. A large audience assembled in the lecture-hall at South Kensington to witness the ceremony. The address was presented by Dr. Henry Hicks, F.G.S., who said that in his retirement Sir Richard Owen would take with him the good wishes and warm interest of all who appreciated his scientific work, and his great per onal kindnes; in commanicating its results to others. Sir Kichard Owen, in reply, said that, of all the recognitions which he had recently received of his years of service in the State museums, none would be more valued by him than that testimonial from his fellow workers in those walks of natural science in which he had been for over half a eentury more or less occupied. He would value the address amongst the rarest of his treasures, and he trusted that its contemplation would stimulate his sons and grandsons, particularly the latter, to walk in their grandfather's footsteps. He returned his grateful thanks, and wished the members and all present every happiness.

IT is intended at the forthcoming celebration of the tercentenary of Edinburgh University to confer the degree of LL.D. on sixty-nine gentlemen, among whom are Prof. Cayley, Mr. Archibald Geikie, Prof. Helmholtr, Sir John Lubbock, Sir 1 fenry Malne, and Prof. Haeekel.

At its last private sitting the Academy of Sciences of Paris debated the question of the sale of the Observatory grounds in order to find the funds required for the erection of a swcsursale in the vicinity of Paris. The matter was postponed for fiftee day*, after a long and interesting discussion. The majority of the Academy is of opinion that it would be desirable to grant the credits required for the erection of a new establishment; bat many members are against the sale of any parcel of ground, They contend that the present position of the Observatory must not be deteriorated under any pretence whatever. MM. Wolf and Janssen delivered addresses defending the statu quo.
The convention for the protection of cables has been signed in Paris by the plenipotentiaries of the following nations:Germany, Argentine Republic, Austria-Hungary, Belgium, Brazil, Costa Rica, Denmark, San Domingo, Spain, United States of America, United States of Colombia, France, Grent Britain, Greece, Guatemala, Italy, Netherlands, Persia, Portugal, Roumania, Salvador, Sweden, Norway, Turkey, and Uruguay. The protocol has been left open for acceptation by the other countries. This is the final step towards the accomplishment of the work originated at the Congress of Electricians in Paris.

The exhibition of the submarine objects at the Museum of Paris was closed on March 15, but will be opened on a larger scale on the occasion of the session of the Délégués des Sociétés Savantes, wbich will take place as usual in the Easter holidays.
ThE number of members of the French Alpine Club is yearly increasing, and the financial position of the Society is very prosperous indeed. The general sitting of the Paris section took place on March 10. M. Janssen delivered an address on the sun. The discourse was illastrated by projections exhibiting all the phenomena connected with the eclipse of 1883 , as observed by him on Caroline Island. It is the first tiane these pictures have been presented to the public, and they have been very successful.

Amongest the latest publications in the domaln of electricity we notice "Das Elektrische Potential," by A. Serpieri; "Die Elektrische Kraftubertragung," by Jos. Popper; and "Die Atmosphärische Elecktricität," by Prof. Palmieri. Hartleben of Vienna is the publisher of all the works mentioned.
M. Perrier presented on Monday to the Academy of Sciences of Paris six sheets of the map of Tunisia, which the French military geographers are executing on the scale of $1: 100,000$. The mapping of the whole country from Algeria to the Tripolitan territory will be published in a few weeks. The publication, which will contain twenty-one sheets, will be completed this year. This great work will have required only four yeark to accomplish. The maps are lithographed, and will be ultimately engraved.
We have already mentioned a publication issued by the Direction of Schools at Tiflis, in which the teachers of the Caucasus have the opportunity of publishing descriptions of the interesting hut little known districts where they are compelled to stay, often deprived of any intercourse with the civilised world. We have now received the third volume of thls publication, which contains several valuable papers. The chief of them is the first part of an interesting memoir, by M. Lavroff, on Ossetia and Ossetians, with a map. In this first part the author describes the country, its orography and bydrography, climate, flora, and fauna, leaving the purely ethnographical part for a second memoir. M. Gadovsky contribates valuable notes on the newly-annexed province of Kars : its geography, population, tenure of land, and the occupations of the inhabitants. The second part of this volume is devoted to the rich folk-lore of the Cossacke, Tartars, and Circassians, in which the ethnographer will find rich materials.

In the " Untersuchungen aus dem botanischen In,titut zu Tubingen" F. Schwarz diseusses the structure and functions of the root-hairs of flowering plants. He finds that in maize the surface of a hairy rout is 5.5 times greater than that of a root not covered with hairs; in the pea 12.4 times greater. The intimate contact of the root-hairs with particles of soil is effected by the conversion into mucilsge of the outermost layer of the wall of the hair ; the inner layer of the membrane is stained blue, the outer layer yellowish brown by zinc chloriodide. The greatest development of root-hairs accompazies the greatest energy of growth of the root. A medium degree of moisture is most favoarable for their formation; with plants growing in water they are often altogether suppreised. Nutation promotes their production, especially at the point of curvature. Contact with dry solid bodles has no effect on their production. They are always formed in acropetal succession. They have not in most cases the same form in the same species, being considerably affected by conditions of growth. In many plants the root-hairs are branched.

The annual prize of $\mathbf{2 5 , 0 0 0}$ francs, instituted by the King of the Belgians, will for 1885 be granted to the author of the best work on the means of popularising the study of geography and
developing it in the different educational establishments Foreigners may compete equally with Belgians. The works of the competitors must be sent to the Minister of the Interior before January 1, 1885.

We understand that Messrs. Sanderson and Co, are about to issue a small volume on tall-chimney climbing and lightning-rod testing.

Capt. A. E. Barlow, Commander of the P. and O. steamer Paramatta, writes as follows to the Times:-"An unasual phenomenon was observed during the recent voyage of the P. and O. steamer Paramatta to Sydney, New South Wales, which may be of interest to some of your readers. On December 11 and the following day, about lat. $10^{\circ} \mathrm{S}$. and long. 92° E., the surface of the sea wat covered with lava aud pumice, some being as fine as sawdust and of a yellowish colour, but several patches of large extent were passed through with masses of pumice from the size of a cocoanut to that of a hogshead; this extended over 5° of latitude, and probably much more of longitude, as the densest patches all ran in an easterly and westerly direction. The largest specimen of pumice which I picked up was about ten inches in diameter, and appeared only to have been a few days in the water, as there was no deposit on it. This would lead to the conclusion that a submarine upheaval must have taken place long after the great ernption of Krakatoa, is the Strait of Sanda, our nearest approach to which was over 800 miles. On the homeward voyage on February I the same pbenomenon was observed, but in a much less degree, in lat. $4^{\circ} \mathrm{S}$., long. 88° E., showing that the mass had drifted to the west-north-west about 500 miles in six ueeks."

Under the title of "New Commercial Plants and Drags, No. 7," Mr. Thos. Christy has recently issued a continuation of his notes on useful plants which come before him in the course of commerce. The demand for economic plants of every deseription has of late years considerably increased amongst planters not ouly in our own col snies bat also in other parts of the world ia consequence of the general desire for the greater dissemination of staple articles of cultivatioa that are acknowledged sources of revenue, and also the introduction of new staples where from long cultivation or the ravages of disease the older and better nown plants have ceased to be remunerative. The circulation amongst planters and colonists geaerally of such books as this is calcutated to do a great deal of good even if it were only to let them know of the existence and properties of certain plants, for while there are many that have a kn wwledge of useful plants, there are also others who are content to go on growing the same crops that they have always been accustomed to, and though we may not expect full details of the uses of the plants enumerated, nor botanical descriptions of the plants themselves, safficient is given in all cases to put the reader on the right track for further information. In some of the subjects, however, very volaminow abstracts are given from some of the best journals in which special articles have appeared. It will suffice to say that the present number of "New Commercial Plants and Drugs" contains very interesting artizles on the Cacao (Theobroma cacso) and its preparation, the Siam benzoin tree, pepper and nutmes cultivation, Liberian coffee, and numerous other ec snomic plasts of very varied uses.

The Eleventh Annual Report of the National Health Socicy shows that the Society has carried on its work during the pas: year in a most practical manner. Hundreds of lectures oo sanitary subjects have been delivered, not only all over the poores parts of London, bat in provincial towns, to large audiences of working men and women, classes of girls, district visitors, and others engaged in work amongst the poor. The Society is mach encouraged by the practical results of the lectures on keeping
the house healthy, rearing of infants, prevention of the spread of infectious diseases, preparation of food and kindred subjects, knowledge of which is so much needed in our crowded neighbourhoods. The questions of p sison uis dyes \ln domestic fabrics, of smoke abatement, of dust collection, and the prevention of cholera have been investigated and reported upon by special committees appointed for the parpose. The Health Exhibition held by the Society lant Junc was commented upon, and the Secretary stated that more than 100 members bad joined the Society during the past year.

The great interest manifested in the International Health Exhibition is shown by the fact that application has been made, by British exhibitors alone, for space five times as great as that actually at the disposal of the Exesutive Council. Information has recently been received that the French Government has appointed a Commission ; and Italy-owing in a great measure to the individual excrtions of a member of the Executive Council -will, it is hoped, take an active part. A portion of the Educational Section of the Exhibition will be located in the Central Institute of the City of London Technical Gnild , the handsome building in course of erection in the Exhibition Road, which has been kindly placed at the disposal of the Executive Council. The Royal Albert Hall with its musical attractlons will now form an integral part of the Exhibition; and the Aquarium, a popular feature of the late Fisheries Exhibition, will continne as an important part of the Health Exhibition. In the Dress Section the most popular exhibit will prubably prove to be a series which is being prepared illustrative of English dress of all ranks of lifc, from the time of the Conquest to George IV. An International Congress on Education will be held, and conferences and lectures will conduce to the elucidation of the subjects of the Exhibition. It is also proposed to have a library and reading. room in connection with the Exhibition, which will be open to all visitors, under proper regulations, while the Exhibition is open. The library will consist of books on various subjects comprisel in the classification of the Exhibition, both English and forcign. Application has been addressed to foreign and colonial Governments, asking them for copies of reports and statistics on sanitary and educational matters, and a circular is being sent out to authors and publishers requesting them to contribute works of a similar character.
At a mecting of the Sosiety of Telegraph Engineers held on the $1^{\text {th }}$ inst., a short paper, "Notes on a Train Lighting Experiment," was read by Mr. W. H. Masvey of Twyford, who strongly advocated the uee of a s.mall enginc and dyninomachine placed on each loc motive for working incandescent lamps, by means of which railway carriages would be much better lighted than at present for less than is paid for gas, An interesting discassion took place, and the meeting was adjourned to the 27 th inst., when Mr. Massey is expacted to reply.

The March number of Petermann's Nittheilungen contains a letter from Dr. Junker dated Sami, $6 \frac{1}{2}{ }^{\circ}$ N. lat., 25° E. long., December 8,1882 , in which he gives a brief itatement of the results of his journeys in the Upper Welle and B mokandi, with notes on the various tribes that inhabit the region. Dr. Junker did some further exploring work to the south-west of his station in 1883 ; but his numerous cases of collections have been lost in a fire which consumed the building where they were stored.

THE additions to the Zoological Society's Gardens during the past week include a Squirrel Monkey (Chrysothrix sciurea) from Guiana, presented by Mrs. Dundas; a Leopard (Felis pardus) from Africa, presented by Mr. S. Cresswell ; a West Indian Rail (Aramides cayennensis) from South America, presented by Mrs. Edward Hairby; a Kestrel (Tinnunculus alaudarius), British, presented by Mr. F. E. Banm ; a Common Viper
(Vipera berus), British, presented by Mr. W. H. B. Pain; two Mute Swans (Cygnus olor), Earopean, four Red shanks (Totanus calidris), British, parchased.

PHYSICAL NOTES

Prof. J. H. Poymting has published in the Procudings of the Birmingham Philosophical Socicty a note on a method of calculating the velociny of propagation of waves of longitudinal and tran,verse disturlances by the rate of transfer of energy. The paper di-cusses the two cases by the method originally propounded by Lord Rayleigh.
We have reciived from Madame Plateau copies of three posthumous memoirs by her late husband, the lamented Prof. J. Plateau. Their titles are: "Quclques Expériences sar les lames liquides minces (deuxième note)"; "Sur l'Observations des Mouvements très rapides "; and "Bibliographie analytique des Principaux Paénomenes subjectifs de La Vision." The first of these brochures relates to the preservation of the glyceric fluid, to certain appearances in very thin films, and on the constitution of fuam. In the second the writer contrasts four methods: the rotating mirror, the stroboscopic method, the intermittent illumination by electric sparks, and the process of multiple instantaneous photography. The third is a supplement for the years 1880-1852 to the well-known bibllography compiled by the deceased savant.

We have also received the first instalment of vol, i. of the Bulletin de la Sociètd Internationale des Électriciens (January 1, 1884), containing the laws of the new s ciety, a list of founders, and one of the members already eorolled, now numbering about 1200, of whom only a few are Enslishmen.

Prof, Quincke has lately read before the Berlin Acadcmy a paper on the measurement of magnetic forces by bydrostatic pres ure. He has examined the magnetic inductive capacity, or, as he calls it, the "di-magnetic constant" of a number of liquids, by observing their rise in an open-air manometer when subjected to a field of powerful, but known, intensity, the observed change of pressure being proportional to the square of the intensity of the field and to the difference between the magnetic inductive capacity of the substance and that of the air. \boldsymbol{A} namber of tables are given, with copious numerical data. The di-magnetie constant of such liquids as ether, alcohol, turpentine, nitrie acid, bisulphide of carbon, glycerine, water, \&c., showed small negative values ; whilst the values were positive, and in many cases much more considerable for solutions of chloride of iron, chloride of manganese, sulphate of nichel, aud of cobalt, and for solutions of maynetic salts in general.

A sLight mistake occurred in a note on p. 276, in which Bunsen's estimation that in thrce years $5^{\cdot 1} 35$ cubic centimetreof earbonic dioxide was absorbed by a square metre of glass was stated as the absorption of one square centimetre.

THE CHEMICAL WORK OF WÖHLER ${ }^{1}$

[T seems fitting that these walls, which have vibrated in sym. pathy with that brilliant eulogy of Liebig which Prof. Hofmann pronounced some nine yeara ago should hear something of him whose life-long association with Liebig has exerciscd an undying influence on the development of scientific thought. The names of Frederick Wöbler and Justus Liebig will be linked together throughout all time. The work which they did in common makes an cpoch in the history of chemistry. No truer indication of the singular strength and beauty of their rclation, could be given than is contained in a letter from Llebig to Wohler, written on the last day of the year 1871 . "I cannot let the year pass away," writes Liebig to Wohler, "without giving thee one more sign of my cxistence, and again expressing my heartfelt wishes for thy welfare and the welfare of those that are dear to thee. We shall not for long be able to send each other New-Y'ears' greetings, yet, when we are dead and moulder ing, the ties which have united us in life will still hold us together in the memory of men as a not too frequent example of faithful workers who, without envy or jealousy, have zealously laboured in the same field, linked together in the closest friendship."
'A lecture delivered at the Roya! Institation on Friday evening,
February 15,1884 , by Jrof. Thorge, F.R.S.

And yet, tound as they were in the ties of a friendshij, the purity and warmth of which were but characteristic of the men, and althongh each influenced the other's walk and work in life to a degree which it is almost impossible to gauge, such was the streng'h of their individuality and tuch the force of their genias that, without a donbt, either would bave teen a great figure in the history of science if the other had not existed.
The conditions under which minds of the highest type ari e and develop have on more than one occasion engaged the attention of this audience. Although there were circumstances in Wöbler's surronndings which in early life may have influenced the bent of his mind, it is not easy to see whence sprang that pessionate love of nature which was so strikingly exhibited in the man. Ilis father, Augute Anton Wöler, was formerly an equerry in the service of the Elector William II. of Hesse; he afterwards came to live at Frankfort, and became a leading citizen of that town. His wise literality and poblie spirit are commemorated in the Wobler Fonndation and Wohler School, institutions known to every Frankforter. 1lis mother was con. nected by marriage with the minister of Eschersheim, a village near Frankfort, and it was in the minister's house that Frederick Wöbler first saw the light, on July 31, 1800. Even in early youth his passion for experimenting and eolleeting manifested itself, to the neglect not unfrequently of the lessons of the gymnacium ; indeed it would appear that during his school career Wohler was not characterised by either special diligence or knowledge. The bent of his mind towards natoral scienee was directed by Dr. Buch, a retired] hy-ician who had devoted himelf to the study of chemistry and physics; and it was in the kitclien of his patron's house that he prejared the then newly-discovered element selenium, of which an rocount was afterwards sent by Dr. Buch to Gilbert's Ammalen, with Wöhler's name at the head of it. The elder Wöhler appears to have been a man of considerable artistic feeling, and under his direction the son was taught sketching and otherwise educated in that verception of natural beauty which comes out so strikjngly in his after life; and he was enconraged to make himelf familiar with the literature which the genius of Schiller and Goethe has ennobled. He had, moreover, to thank his father for that love of physieal exercice and passion for outdoor life which reacted soleneficially upon his development, and contributed so largely to the uniformly good health which he enjoyed to within a few days of his death. Mainly, it would seem, lecause his father had been there before him, Wohler, in his twentieth year, entered the University of Marburg. It was his own and the family's wish that he should stndy medicine, and he accordingly put his name down for the lectures of Huinger on Anatomy, Gerling on Physics and Mathematies, and Wenderoth on Botany. He found time also to attend Uilmann's classes on Mineralogy; and although he deelined to hear Wurzer's lectures on Chemistry, he by no means neglected that science. He transformed his living-room into a lahoratory, and to the great, and perhaps not andeserved, disgust of his landlady, occupied himself with the preparation and study of the properties of prossic acid, thic cyanie acid, end other cyanogen compounds. IIe discovered at that time, without knowing that Sir Ilumphry Davy had anticipated him, the beaulifnlly crystalline but intensely poisonons iodide of cyanogen; and in the little paper on cyarogen compounds which his good friend Dr. Buch communicated to Gilbert's Annalen for him we have the first de crimion of the remarkable behaviour of mercurie thiocyanate on heating, which has astonished and amused us in the so-called "Pharaoh"s Serpent."

Wöller, attracted by the fame of Leopold Gmelin, left Marburg for Heidelberg. Ilis main idea was to hear the lectures of that distingui-hed man, but Gmelin declared this to be unnecessary and a waste of time. Wobler in fact never attended any systematic lectures on chemistry; be had seeess, however, to the old cloisters which at that time constituted the Heidelberg laboratory, and there began the work on cyanic acid which some four or five years later was destined to culminate in the great discovery of the synthesis of urea. His association, at this time, with Tiedemann, who was engaged in physiological chemical investigation with Gmelin, bad also considerable inflnence in determining the direction of much of his futnre work, whilst its immediate effect uss the pullication in Tiedemann's Zaischrift für Physiologie of the results of an inquiry into the transformation experienced by varicus sulitarees, organie and inorganie, in their passage through the organism. In 1823 Wöhler obtained his degree, when, on Gmelin's advice, he determined to follow his master's example, and abandon medicine
for cheniitry. At that time the great Swedish chemist Merzehs: was at the summit of his fame: his ma terly analytical *hill, no less than his labours tow ards the development of cheoxical theory, had made him supreme nnong the chemists of Europe, aod to Stockholm therefore, Wöhler, acting on the advice of Gine ${ }^{(m)}$ determined to go. He was warmly weleomed by Berzelies, of whom his comiunications to Gilbert's Annalen had made a favouratle impression, and with the offer of a place in the private laboratory of the illustrious Swede, Wöbler set out $k=$ the Scandinavian capital. Of his experiences with Bersel.shis pupil tas left us a delighiful account. It is valuable act only as a charming character-sketch of the great teacher, be: slso from the side-lightit it throws upon the nature and dispositic. of Wöhler and himself. It is interesting, too, as an accouns of the mode in which Berzelius uorked and tanght, and as showies how the typical laboratory of that time contrasted with the temples which have since been reared by the disciples of Herme.
"With a beating heart," says Wöler, "I stood before Berze. lius's door and rang the bell. It was opened by a well-dory, portly, vigorous-looking man. It was Berzelius himself.
As he led me into his laboratory I was ns in a dream, doubtimg if I conld really be in the classical plaee which was the objor of my aspirations. . . . I was at that time the only one in the laboratory: Eefore me were Mitscherlich and Heinrich and Gustav Koie: after me came Magnus. The laboratory cossisted of two ordinary rooms furnished in the simplest poosinle way ; there were no furnaces nor draught places ; neither gos nor water service. In one of the rooms were two common ded tables ; on one of these worhed Berzeliuc, the other was inteeded for me. On the walls were a few cupboards for the reagens: in the middle was a mercury trough, whilat the glass-blower' lamp stood on the hearth. In addition was a sink, consisting of an earthenware cistern and tap, standing over a wooden thet, where the despotic Anna, the cook, had daily to clean the apparatns. In the other room were the balances, and sxac cupboards containing instruments : close to was a small workshop fitted with a lathe. In the neighbonring kitchen, in v hich Anna prepared the meals, was a small but seldom-used furnace and the never cool sand-bath."
Wobler's first exercies were in mineral analysis, in order that he might become acquainted wi'h Berzelius's special methods and manipulative procedure. At that tio.e be prepared, among other products, some new compounds of tang. sten, notably the beaut fully crystallised monoxychloride a>a the tungsten sodlum-bronze $\left(\mathrm{Na}_{2} \mathrm{~W}_{3} \mathrm{O}_{3}\right)$, whieh some twentyfive years later was introduced into the arts as a broset pouder. It was, however, with his investigation on cyanic acid that both he ard Berzelius were mainly interested. In Berzelius's opinion the existence of this body was of importance frots the light it seemed to him to throw ufon the validity of the se chlotine theory. "I was surprised," says Wohler, "to bear him, the hitherto steadfast ppholder of the old notion, nom always talk of chlorine instead of oxidisel hydrochlaris acid. Once, when Anna, in cleaning some vessel, remarked that it smelt strongly of oxymuriatic acid, Berzelius suid, 'Hearest thon, Anna, thou must no longer speak if oxidises muriatic -cid ; thou must call it chlorine : that is better." Wish what feelings would Davy have listened to that colloquy between the Swedi-h philo-opher and his factotum! Chlorine was dicovered by Berzelins's illustrious countryman, Scheele, but is true nature was first demonstrated in the laboratory of the Rogel Institation.
A couple of months were now spent in travel with Berrelias, in company with the two Brongniarts, Alexander the geolggiv and Adolph the botanist, during which they explored the greater portion of the geologically interesting parts of Southern S w edes and Norway, and collected rich stores of those wonderful mine rals for which Scandinavia is famous. Scandinavia is no les famons for salmon and trout, and it was on his return from a fisbig expedition in Norway that the travellers met with Davy. who, as readers of "Salmonia" know, handied his rod wit great ze t and zeel. Wobler, who as a boy had learned the story from his friend Ir. Buch, of the irolation of the alkaline metals by Davy, and who, aided by his little si-ter, whose business it wss to blow the bellows, had toiled, not ansuc cessfully, to make potassium in the kitchen fire, was presented to the famous chemist.

On the return to Stockholm, Wöbler took leave of Berzelint and prepared to return to Germany. Of his association with this great man Wöbler had ever the kindliest memories. Al-
though the outcome of much of his subsequent work, or at leart much of that which he did in concert with Liebig, might be said to hring him in occasional conflict with Berzelius's cherished convictions on points of chemical theory, the master and pupil remained to the end bound together in the warmest frienduhip. Searcely a month passed without an exchange of letters. Those from Berzelius were religiously preserved by Wohler, who, after his master's death in $\mathbf{8 8 4 8}$, presepted them, to the extent of some huodreds, to the Swedish Academy of Sciences. We are told that in the later letters the "trauliche Du" appears in place of the more formal "Sie," and that "Totus of tantus twus" is a not unfrequent signature,

Wohler's gratitude and almost filial reverence are seeu in the circumstance that even in the full tide of his vigour, and wheu time was doubly precious to him, he continued to charge himself with the yearly trauslation of Merzelius's Fahresbericht into German. It is easy to trace the influence of Wohler's coutact with Berzelins in his after work. To begin with, the men had much in common: their sympathies were as catholic as science itself, and they ranged at will over every department of chemical knowledge. Wohler attacked the composition of a mineral with a* much ardour as he did the preparation of an organic compound: to him the problems of physiological cbemistry were not more important than the isolation of a sare earth or the perfection of some analytical method. The artificial barriers and fancied lines of demareation in the science seemed to have no existence for Wöhler : indeed, it was the crowning triumph of his work to break down such barriers almost at a stroke, and to demonstrate the irrationality of these attempts to draw distinctions regardless of differences. The history of chemistry is indeed like that of the nation which has done so mnch to advance it : its unity to-day is as complete as that of Germany itself.

Wobler was now to embark ou his academic career, and under the advice of Gmelin and Tiedemanr: he prepared to se tle in Heidelberg as prinat dosent. But to Heidelherg he was not destined to go. His work had already been gauged by such men as Leopold von Buch, Poggendorff, and Mitscherlich, and these, without bis knowledge, had strongly recommended his election to the vacant teachership of chemistry in the newlyfounded Trade Sehool in Berlin. Herzelius advised him to accept the post, and to Berlin accordingly Wohler weat in 1825 . He was now in possession of a laboratory which he could call his own, and he had to justify that possession by the uce which he made of it. One of the problems which he now attacked was the ivalation of aluminium, a metallic radicle more abundant and more widely diffused than any other of the fifty loodics we are accustomed to denignate as metala. He succeeded in obtaining the body by the method which, uearly twenty years after, was worked ont on a maunfacturing pale by Sainte-Claire Devilie. Deville caused the first bar of the metal thus procured to be struck as a medal, with the image of Napoleon III. on the one side, and the name Wöhler with the date 1827 on the other, and some time afier the Emperor simultaneously desigrated the two chemists officers of the Legion of Honour.

But of the twenty-two menoirs and papers \mathbf{u} hich Poggendorff's Anvaicn exhihits as the outcome of Wohler's activity and power of work during his six years' stay in Berlin, that on the artificial formation of trea is by far the most important. No single ehemical discovery of this century has exercised so great an infinence ou the development of scientific thought, and the words with which Wohler closes his account of the molecular transformation of am. monium cyanate-a body of purely in rganic origin-into urea-a substance which of all that might be named is the most characteristic of the action of the so-called vial force-are full of meaning: "This unexpected result," he says, "is a remarkable fact, in so far as it presents an example of the artificial formation of an organic body, and indeed one of animal origin, out of inorganic materials." "The synthenis of urea," says Prof. IIofmann in his account of Wohler's life-work, "was an epoch-making discovery in the real sense of that word. With it was opened out a new domain of investigation upon which the chemist instantly seized. The present generation, which is constantly gathering such rich harvests from the territory won for it by Wohler, can only with difficuly transport itself back to that remote period in which the creation of an organic compound within the body of a plant or an animal appeared to be conditioned in some mysterious way by the vital force, and they can hardly realise the impresssion which the luilding up of urea from its elements then made upon men's minds. And yet it canuot
be said that chemists were unprepared for this discovery. Men were long ago in the habit of perceiving that bodies of mineral origin were but the types of those met with in the animal and vegetable organism - in both classes there were the same differences in states of aggregation, the same mutual transformations, the same crystalline forms, the same constancy in combining relations, the same conjunction of the elements according to the weights of their atoms or in multiples of these, in both classes the appearauce of the same species of compounds. But all attempts to build up organic compounds from their elements, as this for a large number of mineral substances had already been done, had hitherto been futile. The chemists of that period had nevertheless the presentiment that even this barrier must fall, and one can cmecive the ferling of joy with which the gospel of a new unificd chemintry was hailed ly the intellect of that time. With the revolution thus effected in the ideas of men, science was directed into new paths and uuto new goals. Who does not know with what zeal these paths have beeu trodden, and how many of these gols have been reached!"

But if at this time Wöhler inade a great discovery for the world, he also, at about the same time, made a great divcovery for himself: he discovered Liebig. The manner in which the two men were brought together is worth mentioning, for it would seem almost as if the hand of destiny was in it. At about the time that Wöhler was at Stockholm thinking and working on cyanic acid, Liebig was at Paris engaged with Gay Lussac on the study of the metallic compounds of an acid which, on account of their formidahle explosive propertics, has received the not inappropriate name of fulminic acid. Licbig, with rare shill and courage, had determined the composition of that acid, and had been rewarded by the honour of a waltz with Gay Lussac, it being the habit of that dis inguished philosopher, as he cxplained to the astonished young German doztor, to express his ecstasy on the oscasion of a new discovery in the poetry of motion. But the most extraordinary result of that iuvestigation wan to show that the terribly explosive fulminic acid and the innocuous cyanic acil were of identical composition. The idea that bodies could exist of identical ultimate composi'ion-that is composed of the same elements united in the same proportion and yet possess essentially different properties, in other words be absolutely dissimilar things, was new to science; Berzelius, the great che nical lawgiver of his tine, scuuted the notion as absurd; to him it was impossible to eoneeive that identity in elementary composinion should not result in identity of properties. And yet, later ou, Berzelius was forced to realise the fact by the discovery by his pupil Wohler of the molecular tran-formation of ammonium cyanate into urea, and to coin for us the word isomerism, by which that fact is denoted.

It was thas from the singular circumstance that Wöhler and Liebig were at the outset of their career engaged upon the elucidstion of the nature of two bodies of identical composition, but of dissimilar origin, dissimilar relations, and very different propertics, that they were brought into juxtaposition. They desired to know cach other : they met in the house of a mutual friend at Frankfort, and the names of Liebig and Wohler became henceforth linked together for all time.
The origin of that partnership, so fruitful in consequences for science, may be seen in the following characteristic letter:-

*Fredertck Wöler to Justus Liebig

" Sacrow, near Piotsdam, Fune 8, 1829

"Dear Professor,-The content of your last letter to Poggendorff has been communicated to me hy him, and I am glad that it affords me an opportunity of resuming the correspondence which we began last winter. It mu t surely be some wicked demon that again and again imperceptibly brings us into c)llision with our work, and tries to make the chemical public believe that we purposely seek as opponents these apples of discord. But I think he is not going to succeed. If you are so minded, we might, for the humour of it, undertake some chemical work together, in order that the result might be made known under our joint names. Of course, you woald work iu Gies ven, and 1 in Berlin, after we were agreed upon the plan, and hid communicated with each other fiom time to time as to its progress, I leave the choice of subject entirely to you.
"I am very glad that you have also determined the identity of pyrouric acid, and cyanic [cyanuric] acids. L.. Gmelin would say: 'God be thanked, there is one acid the less!'.
"Yourf, "WühLer"

Liebig acceded to the proposition at once, and suggested some problem on the cher ical natnre of nitrogen; this Wohler found himself unable to undertake, as it involved the use of chlorine, to the action of which he was at all times extremely susceptible. On the other hand, he proposed to Liebig that they should continue in common a research on mellitic acid, which he himself had begun. Their joint investigation on this body made its appearance within the following year.
It would be quite impossible within the limits of an hour to attempt to give you anything approaching to a complete analysis of Wobler's work. In all, he was the author of 275 memoirs and papers, and of these fifteen were published in coneert with Liebig. I must therefore confine my selection from this vast amount of material to those papers which are of paramount importance from the influence which they have exerted on chemical theory or on the development of the chemical arts.
Very shortly after the publication of the work on mellitic acid Wöhler propnsed to Liebig a joint investigation on cyanuric acid, in the course of which he observed the extranrdinary transformation of that acid into cyanie acid. and the reconversi n of the cyanic acid into cyanaric acid-one of the most remarkable instances of molecular rearrangement known to the chemist. The work progre sed little for some months, owing to the demands made by Berzelius's Yahresbericht on Wöhler's time. "Wirf die Schreiberei zum Teufel," wrote Liebig, "und gebe in das laboratorium, wohin Du gehörst." It was that fnnctionary, doubtless, who in dne time carried off the writing to his master, the printer. Wöhler went hack to his latoratory, and in a few weeks the two investigators had obtained the cline to the puzzle. Liebig wrote to Wöhler: "Now that I have received your experiments the whole thing is cleared up, and with what satisfaction for us! The matter is now decided: the cyanic aid of Serullas is identical with that from urea, . . . Ich bin ganz närrisch vor Freude, dass unser Kindlein nun fehlerlos in die Welt gesetzt wird, ohne Buckel oder Klampfuss."
[It had been suggested to attack the fulminic acid again.] " The fulminic acid we will allow to remain nadisturbed. Like you, I have vowed to have nothing more to do with this stuff. Some time back I wanted, in connection with our work, to decompose some fulminating silver by means of ammonium snlphide; at the moment the hirst drop fell into the dish the mass exploded under my nose. I was thrown backwards, and was deaf for a fortnight, and became almost blind."

The work on cyanic acid appeared in Poggendorf's Amnalow during the last month of 1830 , and Wöbler was able to send the " Kind ein" " im neuen Kleide," as he say=, with a New Year's
 at the moment Wöbler was in no humour to attack anything organic. The Swedish chemist, Seftröm, had just annonnced the existence of a new element in the slag of certain iron ores, and this very substance had slipped through Wöhler's fingers unperceived. "I was an ass," be wrote to his friend, " not to have detected it two years ago in the lead ore from Zimapan in Mexico. I was busy with its analy-is, and had found something strange in it, when 1 was laid np for some months in con equence of breathing hydrofluoric acid, and so the matter was allowed to rest. Meanwhile Berzeliua sends me word of its discovery by Sefström in Swedish bar iron and in slag. It is very like chromium, and just as remarkable. Moreover, it is the same metal that Del Rio found in the Mexican lead ore, and called erythoonium : Descotils, however, had declared this ore to be lead chromate."

Wöhler, no doubt, found a ready sympathiser in Liebig, to whom, not many years before, a similar experience had happened. We all know the story of the young chemist whose unscientific use of the imagination cost bim the discovery of the element bromime. Wohler had sent some of the substance to Stockholm, and Berzelius wrote as follows :-

'Jacor Brrzelius to Frederick Wühler

'Stockholm, Yanuary 22, 1831
" As to the small quantity of the body marked ? I will relate the following story :-' In the far north there lived in the olden time the goddess Vanadis, beaatiful and gracious. One day there came a knock at her door. The goddess was in no hurry, and thought "They can knock again"; but there came no further knock, for he who knocked had paseed on. The goddess, wondering who it could be that cared so little to be let in, ran to the window and recognised the departing one. "Ah!" said she to herself, " it is that lazy fellow, Wohler I He ricbly
deserves his name, since he cares so little to come in." Some days after, some one else knocked, repeatedly and loud. The goddess opened the door herself; it was Seftröm who entered, and, as a consequence of their meeting, vanadium came to light. Your specimen with the ? is, in fact, vanadium oxide.
" But he that has found the mode of artificially forning an organic hody can well renounee the discovery of a new metal; inde: d_{4} one might bave discovered ten unknown elements with out as much skill as attaches to the masterly work which yoo and Lielig have carried out together and jnst communicated 4 : the scientific world."

In 1831 Wöhler was callei from Berlin to Cassel, and fer some little time he was wholly engaged in the planning and erection of his new laboratory at the Gewerie-Schnle in that town. In the spring of the following year he was again ready for a new research; and this time it uas to he the finest piece of worl that the two inve-tigators jointly engaged in. It was, in fact, t be the classical research on bitter almond oil. On May 16. 1832, Wöbler wrote to Liebig:-"Ich selve m'ch nach einer ernsten Arbeit, sillten wir nicht die Confasion mit dem Bitter mandelol in's Reine bringen? Aber woher Material?" I must have been a förscherbick amounting to inspiration which lel Wöhler to take up this subject; but neither he nor Liebig conld have been wholly ennscious of the consequences which were to follow fron their work. To-day oil of hitter almonds is made artificially in Germany by the hundredweight : at that time the investigators conld only obtain it in small quantities from PariThey had indeed to thank Pelouze for the material with which they worked. Wöhler mate this his greatest researeh under the eloud of a great sorrow : afier barely two years of married life he lost his wife. Liebig, in t'e tenderest manner, brought hiss over to Giessen, and sought to win hin from hiv erief and the sense of his loneliness by his c mpany and the wholesome dis traction of their joint work made side by side.
On August 30, 1832, Wöhler wrote to Liebig from Cassel :-
"I am here back again in my darkened solitude. I do not know how I shall thank yon for the affection with wbich ycu received me and kept me by you for so long. How happy was I that we could work together face to face.
"I send you with this the memoir on bitter almond oil. Tbe writing has taken me longer than I anticipated. I want you to read througb the whole with the greatest care, and to notice particularly the numbers and formulie. What does not please gole, al'er at once. I have often felt that there was something not qnite right, without leing able to find what was right."
I shall not attempt to dwell upon the outcone of this grea work. The investigation on the radicle of benzoic acid will ever remain one of the greatest achievements in the history of organic chemistry: the work was indeed epoch-making in the farreaching nature of its consequences. It was fall of facts and rich in the promise of new material; a veritable mine from which sulsequent workers like Cannirzaro, Fehling, Piria, Stas and Illasiwetz have dug rich treasure. The immediate effect of the paper was to establish the doctrine of organic radicles by demonstrating the existence of groups of bodies which had their analogues and prototypes in inorganic chemistry. The concloding words of the memoir strike, in fact, the keynote of the whole investigation. "In once more reviewing and conneeting together the relations described in this memoir." so wrote Liebis and Wöhler, "we find that they may be grouped round a common nucleus which preserves intact its nature and compositios in its ass cciations with other bodies. This stability has indeced us to regard this nncleus as a kind of compound element, and to propose for it the special name of 'lienzoyl.'"

A ignificant feature in the memoir was that each of the substances described and correlated was the type of a distinct grocp of bodies, some of which were known, but of which the analo gies and relations wi re unthought of; others of these bodies werc yet to be discovered, a matter of little difficuly when the mode of their origin had been indicated. The effect of this memor on the chemical world was instantaneous. Berzelins was de lighted. "The facts put forward hy yon," he wrote to W \mathbf{W} le and Liebig, "give rise to such considerations that they may well be regarded as the dawn of a new day in vegetal chemistry. On this account I would propose that thls first-discovered radict eomposed of more than two elements should be named foriz (from mpat, the beginning of day) or orthrin (tpepos, daybreak) terms from which momes like proic acid, erthric acid, prow rhloride, orthric chloride, \&c., could be readily derived."

Wobler remained in Cassel for nearly five years. In the antumn of 1835 died Strömeyer, Profes or of Chemistry in the University of Göttingen. Opinions were divided as to his successor ; the choice lay between Liebig and Wohler. Eventually Wohler was selected, and entered on his work at Göttingen in the early part of 1836 . He was succeeded at Cassel by Bunsen, who was at that time privat docent in Gottingen. In the October of that year Wöhler was again ready for fresh work. He writes to Liebig: "I am like a hen which has laid an egg and straightway sets up a great cackling. I have this morning found how oil of bitter almonds containing prussic acid may be obtained from amygdalin, and would propose that we jointly undertake the further investigation of the matter, as it is intimately related to the benzoyl research, and it would seem strange if either of us should work alone again in this field, denn es laisst sieh gar niclat absehen wie weit es sich erstreckt, und ich glaube es ist gewiss fruchtbar, wenn es mit Deinem Mist gedüngt wird. . . ." In a couple of days afterwards Wöhler was ready with the fundamental facts for the research and had sketched out its plan. He writes:-
"I have just made a most remarkable discovery in relation to the amygdalin. Since it appeared that bitter almond oil might be obtained from amygdalin, it occurred to me that the one might be converted into the other by simply distilling almonds with water by an action similar to that of a ferment upon sugar, the change in this case being due in all probability to the albumen in the almonds. And this idea seems to be completely established. The facts are as follows:
"1. Amygdalin, dissolved in water and digested with a bruised sweet almond, begins almost immediately to smeH of bitter almond oil, whieh after a time may be distilled off in such quantity that it would appear that the amygdalin was wholly transformed into it.
"' 2. A filtered emulsion of sweet almonds produces the same effect.
" 3. A boiled emulsion of sweet almonds, in which, therefore, the albumen is coagulated, affords not the smallest trace of oil with amygdalin.
"4. Bruised sweet almonds, covered with alcohol, and freed therefrom by pressure, transform, as before, anygdalin into bitter almond oil.
" 5 . Bruised peas, or the albnmen they contain, give no oil with amygdalin.
"There are three points, therefore, to be ascertained-
" $a a^{*}$ What is the substance in bitter or sweet almonds which, in contact with amygdalin and water, forms bitter almond oil?
" b. Is the action by double decomposition or catalytic, like that of a ferment ?
"c. What is the other product which in all probability is formed in addition to the oil and prussic acid ?"

The merest tyro in organic chemistry to-dey is familiar with the broad features of this investigation, and knows the answers which Liebig was able to give to his friend's interrogatories. The third substance Liebig discovered to be sugar. Under the influence of a nitrogenised ferment, termed by Liebig and Wöhler cmalsin, amygdalin, in presence of "warer, is decomposed into benzaldehyde (bitter almond oil), prussic acid, and sugar (glucose), thus :-

$$
\underset{\text { Amygdalin }}{\mathrm{C}_{80} \mathrm{H}_{87} \mathrm{NO}_{11}}+\underset{\text { Waler Benzaldehyde Prusaic }}{2 \mathrm{H}_{2} \mathrm{O}} \underset{\text { acid }}{\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}}+\underset{\text { Glucose }}{\mathrm{CNH}}+2 \mathrm{C}_{6} \mathrm{H}_{18} \mathrm{O}_{6} .
$$

It simply remains to explain why this reaction only occurs when the almonds are bruised and digested with water. Both the emulsin and the amygdalin exist together in the almonds, but are contained in separate cells, and are only brought into contact by the rupture of the cell-walls and the solvent action of the?, water. Amygdalin was the prototype of a large and important group of substanees classed together as the glucosides.

At the instigation of Wöler, the friends again returned to the question of the chemical nature of urie acid, and the memolr which they eventually published on the subject is of the profoundest interest, not only to the chemist, but also to the physiologist. Uric acid, originally discovered by Scheele, was showa in 1815, by William Prout, then a boy of nineteen, to be the main constituent of the solid excreta of reptiles ; other chemists had sueceeded in obtaining various derivatives from it, indeed Prout himself had prepared from it the so-called purpuric acid, a substance whieh years after as murexide obtained a transitory importance in the arts as a colonring matter. But nothing was known eoncerning the constitution of the body or of its relations
to its derivatives until Wöhler and Liebig attacked the problem. The extraordinary mutability of uric acid, which had baffled and deceived previous investigators, was to Wöhler and Liebig the very clue to the labyrinth leading to a veritable treasure-house, and the wonderful insight and rare analytical skill of these two great men were never more clearly indicated than in the way in which they trod this intricate maze. No fewer than fifteen new bodies were added to the list of chemical compounds, and these were correlated with the same masterly lueidity that was so strikingly exhibited in the memoir on the radicle of benzoie acid. Some of the greatest triumphs of modern chemistry are seen in the synthesis of organic bodies. That organic chemistry was about to advance along this line was clearly foreseen by Wohler and Liebig. In opening their account of this the last great work they did in common, they say:-"Frum this research, the philosophy of chemistry will draw the conclusion that the ultimate synthetical formation in our laboratories of all organic bodies, in so far as they are not organised (in so weit sie nicht mehr dem Organismus angebören), may be regarded as not only probable but as certain. Sugar, salicin, morphin will be artificially obtained. As yet we know nothing of the way by which this result is to be attained, inasmuch as the proximate materials for forming these bodies are unknown ; but we shall come to know them."

Henceforth the friends worked but little in common. Liebig's energies were spent in other directions, and Wohler turned his attention to inorganic ehemistry. Time allows only the very briefest mention to be made of his more important discoveries in this department of the science. We have first his isolation of crystalline boron, and the preparation of the compounds of boron with aluminium and nitrogen, work done in concert with Sainte-Claire Deville. The readiness with which boron unites with nitrogen, and the mode in which the compound may be decomposed, led Wöhler to a conception of the origin of boric acid and borax in the volcanic waters in which they are frequently found. In collaboration with Buff he discovered the spontaneonsly inflammable hydride of silicon, the analogue of marsh gas, the simplest of the hydrides of earbon, and thereby laid the foundation-stone of a superstructure, which in time to co.we may only be less imposing than that built np of the compounds of carbon. Many years ago Wollaston noted the presence of beautiful lustrous copper-coloured cubes in the slags from the iron blast-furnaces, whieh he assumed to be metallie titanium; Wohler proved this substance to be a compound of carbon, nitrogen, and titanium, and showed how it might be obtained. Of all the elements known to the chemist up to the period of Wöhler's cessation from work, it may be safely averred that there was not one but had passed through his hands in some form or other. Now he was bucy with chromium, then with cerium, next with uranium and the platinum metals; titanium, tantalum, thorium, thallium, tungsten-all came in for some share of his attention. Of the minerals and meteorites he analysed, the number is legion; indeed, as Piof. Hofmann says, whoever sent him a piece of meteoric iron gained his heart. His restless activity was a source of continual wonder to his friends. "How happy art thou in thy work!" wrote Liebig on one occasion; "thou art like the man in the Indian fable, who when he langhed dropped rose s from h's mouth."

The names of Liebig and Wöhler are now so clovely intertwined in the history of chemistry that it is hardly ponsib'r to avoid comparing the men. Such a comparison has already been drawn by one who of all others is most fitted t, craw it. "Liebig," says Dr. Hofmann, "fiery and impetuous, seizing a new thought with enthusiasm ${ }_{6}$ and giving to it the reins of his fancy, tenacious of his convictions, but open to the recognition of error, sincerely grateful, indeed, when made conscious of it, Wohler, calm and deliberate, entering npon a fresh probl.m after full reflection, guarding himself against each rash conclusion, and only after the most rigorous testing, by which every chance of error seemed to be excluded, giving expression to his opinion -but both following the path of inquiry in their several ways, and both animated by the same intense love of truth 1 Liebig, irritable and quick to take offence, hot-tempered, hardly master of his emotions, which not unfrequently found vent in bitter words, involving him in long and painful quarrels,- Wöhler, unimpassioned, meeting even the most malignant provocation with an imonovable equanimity, disarming the bitterest opponent by the sobriety of his speech, a firm enemy to strife and conten-tion-and yet both men penetrated by the same unswerving
sense of rectitude! Can we marvel that between two such natures, so differently ordered, and yet to complementary, there should ripen a frienilship which both should reckon as the greatest gain of their lives?"

Who can fully gauge the influence of such a nature as Wöhler's? How it was exerted on Liebig is indicated in the following letter:-

"Fredrrick WöHler to Justus Liebig

"Götringen, March 9, 1843

"To make war against Marchand, or, indeed, against anybody else, brings no contentment with it, and is of little use to science. . . . Imagine that it is the year 1900, when we are both dissolved into carbonic acid, water, and ammonia, and our ashes, it may be, are part of the bones of some dog which has despoiled onr graves-who cares then whether we have lived in peace or anger; who thinks then of thy polemics, of the sacrifice of thy bealth and rest for science?-Nobody. But thy good ideas, the new facts which thon hast discovered, these, sifted from all that is immaterial, will be known and remembered to all time. But how comes it that I should advise the lion to eat sagar!"

It was thus in philosophic contentment, happy in his work, in his home life, and in his friendships, that Wohler lived out his fourscore years and two. He made Göttingen famous as a school of chemistry; at the time of the one-and-twenticth year of his connection with the university it was found that upwards of 8000 sumdents had listened to his lectures or worked in his laboratory. Ile was a man whom the world bas delighted to honour; and there was hardly an academy of science or a learned society which has not in some way or other recog. nised his services to science. He was made a Foreign Member of the Royal Society in 1854, a Corresponding Member of the Berlin Academy in 1855. Foreign Associate of the Institute of France in 1864, and in 1872 he received the Copley Medal from the Royal Society. On September 23, 1882-
" He gave his honours to the world again.
H is blessed part 10 heaven, and slept in peace."

METEORIC DUST

IR WILLIAM THOMSON has sent us the following commanication for publication :-

"Portkil, Ňilcreggan, Marci 13, 1884

"Dear Sir William Thomson,-Herewith I inclose some of the meteoric dust collected on a cotton filter, and both ignited at a red heat. The change of colour is interesting.
"On Saturday, March 1, the snow lay $5 \frac{1}{2}$ inches deep at $8 \mathrm{a}, \mathrm{m}$. . pure and white. At $9.15 \mathrm{a}, \mathrm{m}$., when I next noticed it, it was sonty looking, the blackish appearance penetrating half an inch only. The sky was clear and calm, any tendency to movement of the air being from the south-east.
"I carefully measured a superficial foot on an outlying field sloping to the south-west at a spot bisected by the 200 -foot line of the Ondnance Survey, and collected the snnw into two bowls of white delft, half into each. After evaporating the snow water, thoroughly drying the residue, I collected and weighed it, that from one giving il grains, and the other $2 \$$ grains, or 4 grains to the square foot exactly.
"I can personally vouch for the dust being all over the Roseneath peninsala, as I trudged through the snow to Coulport on Loch Ling, and found it the same all the way north, also on the top of the Gallow-hill (414 feet). I have since seen those who noticed it at Garelochhead, so that on this peninsula alone, taking 4 grains as an average, there has fallen over too tons.
"From hearsay it appears to have been noticed from Kippen on the north to Largs on the south, and from Hamilton on the east to Dunoon on the west, or over an area (in round numbers) of 810 square miles, and admitting the former estimate, we have the astonishing aggregate of say 5760 tons 1 A weighty gift to Mother Earth, surely of some value.
"I should mention that every crack, scratch, or depression in the glaze of the bowls was filled with the finely divided matter ; it was Impossible, therefore, to collect it all for weighing, consequently 4 grains per square foot is under rather than over the probable average. The observer at Kippen, too, mentions that the snow was permeated there for one inch by the sooty appearance.
"On Monday (March 3), after snow had fallen to the depeb of an additional 8 inches, I watched for a recurrence of the phenomenon, and on the sky clearing about midnight I fetcoed in a dish that I had left out ide and found a litte had fallen in small flakes; these had melted their way through the snow, leaving litule tunnels about the size of crow-quills. The quantity. however, was exceedingly small. Tendency to movement of the air as before from the south-east. Barometer had risen from $29^{\prime} 4$ at 2 p.m. to $29^{\circ} 6$, steady at midnight, thermometer 42°. Oo Saturday previous barometer stood at $30^{\circ} 05$ (90 feet above sealevel, aneroid), thermometer $44^{\circ}, 12$ noon. The dnst I left with you previously contains a little organic matter (grassy fibre), though what I had under the microseope appeared entirely metallic.
"The snow bad melted a good deal before I recognised the importance of obtaining a fair sample. My children, however. had rolled a huge snowball down the slope, at the top of which the cotuage stands, and this bad increased as it rolled until it was something like 6 feet in diameter, and so formed a mine from which to collect the dust. There is still some of the black water in process of evaporation; should you require it more of the dest is at your service.
"One of the older inhabitants remembers a similar occurrence here in 1828 on the 20th or 22nd of March, when the snow, he says, fell in black or sooty flakes
"Perhaps it is well to mention that the goats snffered some what from influenza on Sunday and Monday, and that I my elf had a sharp attaek followed by severe headache for a day, caused probably by inhaling a minute quantity of the dust snuff fashios. It might have been from something else, only the coincidence is suggestive of cantion.
"I am, yoars faithfully,
"Lewis P. Muirhead
"Profersor Sir William Thomson, Glasgow University"

UNIVERSITY AND EDUCATIONAL INTELIIGENCE

Cambridge.-The Buards for Medicine, Physics and Chemistry, and Biology and Geology, after joint deliberation, have recommended an important change in the appointments of Natural Science Examiners. It has been a regulation of the Natural Science Tripos that all answers shall be looked over by two examiners out of the eight, but it has become increasingly difficult to find examiners with the requisite extent of knowledge. Thus it practically happens that each examiner is sole examiner in a single subject, and the places of candidates are often practically dependent on the judgment of a single examiner to an extent unknown in the other Triposes. It is now recommended that two examiners shall be appointed in each saliject of Natural Science, to undertake all the Ubiversity Examinations in that subject, and thus the Natural Sciences Tripos, the Special Examinations for the ordinary B.A., and portions of the M.B. Examinations, will be brought into one system. The examincrs should never both be changed at the same time. The payments recommended are-for each examiner in Physics and in Chemistry, gol. ; in Botany, Zoology, Human Anatomy, and Physiology, 40'. ; in Geology, 201. ; and Mineralogy, 10 .

SCIENTIFIC SERIALS

Fowrnal of the Franklin Institute, No. 697, January.-W. Dennis Marks, note on the losses per horse-power by condenss. tion of steam in pipes and cylinders of engines.-De Volson Wood, the cheapest point of cut-off,-Prof. R. H. Thurston, the theory of turbines. This is the conclusion of a very valuable mathematical paper given in a very full abstract.-B. N. Clark, water-line defence and gun-shields for cruisers.-W. Dennis Marks, economy of compound engines,-Prof. E. J. Houstoo, the Delany synchronous-multiplex system of telegraphy. This invention is founded on La Cour's phonic wheel, and bids fair to supersede harmonic multiple telegraphs.
Annalen der Physỉk wnd Chemic, xxi. January.-O. Fröhlich, measurements of sun-heat. Describes amongst other matters a new pyrheliometer with a special thermopile arrangementA. W. Velten, the specific beat of water. The results confirm Regnault's valnes.-E. Pirani, on galvanic polarisation. The values are estimated by a compensation method.-W. IIittorf,
on electric c nnductivity of gases (first part).-A. Oberbeck, on electric oscillations and on phensmena of polarisation caused thereby,-A. Toepler, on the estimation of horizontal magnetic intensity by use of the balance.-W. von Bezold, a simple experiment on the connection between the ternperatnre of an insandescent wire and the conpoition of the light emitted by it. A platinum wire is stretched horizontally through the tip of a Bnasen burner and examined in a spectroseope with horizontal slit.-E. Ketteler, reply to Herr Voigt's critieisms.
No. 2, February.-S. Czapski, on the thermal variation of the electrom stive force of galvanic batteries, and its relation to their free energy.-J. Kollert, on the properties of flame in their electrical relation. Confirms the previous measurements of Elster and Geitel-F. Fnchs, on a compensation-method for estim 1 tion of the resistance of unpolarisable elements. A modifieation of Pozgendorff's well-known method.-E. Badde, on the theory of thermo-electric forces.-H. Lorberg, on el ctrostriction. A di cususion of Quincke's results, -B . Wein itein, on the calculation of the potential of coils. A mathematical paper.-A. von Waltenhofen, on an instructive expsriment which may be made with asymmetrical thermopiles. On passing an independent current through the therm pile certain n ? n-reversible phenomena of polarisation are observed ari-ing from the asymmetry of the junctions that are beated.-C. Coristiansen, on the emission of heat from uneven surfaces.-A. Tschirch, researches on chlorophyll and some of its derivatives,-W. Holtz, a lecture experiment in proof of the law that the velocity of rotation increases as the rotating masses approach the axis.

Fournal de Physique, tome itii. No. 2, February-GG, Lipp* mann, physical definition and determination of alsolute temperatures. This is the first part of a communication in which the author seeks to find stricter thermodynamic definitions of temperature. He attributes to Carnot the diseovery of the scale of absolnte temperature 1-D. Gernez, researches on the duration of the solidification of sulphur, and on a new variety of sulphur. The crystallisation in octahedra taker from 25 to 100 times as long as the cryytallisation in rhombic prisms. The new crystalline kind obtained by M. Gernez is in the form of very elongated prisms of a nacreous texture. They are produced by rubbing the side of the test-tube containing the surfnsed snlphnr with the end of a platinum wire or glass rod. When theie crystals are introduced into surfused sulphur, they de'ermine a growth of similar crystals throughont the mass; and the formation is much more rapid than that of either of the peviouly known forms.E. Mathieu, suspension of a liquid by a cipillary vertical tube. -E. Mathieu, modification of the pressure of a liqnid by capillary forces.

Rendiconti del R. Ittifuto Lom Sardo, Milann, January 24.Biographical memoir of Emilio Cornalia (t824-1883), by Prof. Leopoldo Maggi.-Necrological notice of the late Camillo Hajech.-Risumf of the meteorological observations made at the Brera Observatory, Milan, during the year 1883, by E. Pini.Some applications of Cournat's priaciple of least effort to the equilibrium of linked systems (theoretical mechanics), by Prof. G. Banielli.-Meteorological observations made at the Brera Observatory during the month of Jannary, $\mathbf{1 8 8} 4$.

SOCIETIES AND ACADEMIES London

Mathematical Society, March 13--Prof, Henrici, F.R.S., president, and subseqnently Mr. S. Rolerts, F.R.S, vice-president, in the chair.-The Rev. A. C. E. Blomfield, Messrs. J. Chevallier, E. H. Hayes, R. S. Heath, and Prof. J. Laraor were elected Members.-Mr. Tucker read a paper by Prof. M. J. M. Hill on the closed fnnicular polygons belonging to a system of coplanar forces having a single resultant ; and commnnicated a paper by Prof. J. Larmor, on the direct application of the priaciple of least action to dynamical analogues -Mr. J. W. L. Glaisher, F.R.S., read a paper on the square of Euler's series.-Mr. J. J. Walker, F.R.S., communicated a note by Mr. J. Grifiths, further results from a theory of transformation of elliptic functions.-Mr. S. Roberts, F.R.S., read a note concerning the Pellian equation.

Physical Society, March 8.-Prof. Guthrie, president, in the ehair.-I ord Rayleigh read a paper on the electro-chemical equivalent of silver. The determination was made by a method described to the last meeting of the British A ssociation at Southampton, which consists in using two fixed coils and a movable
coil suspended between these from one end of a balansed bean n. These coils are in circuit with the current and voltameter. The curreat is reversed in the fixed coils at intervals of five minutes, and the weight required to bring the balance even is noted. The calculation of the effect by this method is independent of the precise me ssurement of the coils Two or more silver voltaneters were in circuit, nitrate of silver being the solution uted. Careful precautions of various kinds were taken, and the result was that unit C.G.S. eurrent depo its $1^{1} 118 \times 10^{-2}$. It follows that 1 ampere will de, osit $4^{\circ} 025 \mathrm{grm}$. of silver per h 3 n . - Lord Kzyleigh als, read a paper on the ab iolute electromotive furce of Clark's cell. Experiments made at the Cavendish Laboratory gave the electromotive frece of this cell as 1.453 volts. The accepted value is 1437 vols. If the B.A. nnit (as Lord Rayleigh believes) is ab ut '9867 of a true ohm, the result, 1453 , becones 1434 volts, -Lord Kayleigh alss mentioned that be had been making expeciments on the rotation of the plane of polarived light in bisulphide of carbon, and obtained a reiult agreeing more nearly with Gordon's than with Becquerel's. Profs. Gnthrie and Ayrton spoke on the pipers, the former eliciting the reply that electro-eorrosion was less satisfaetory than electrodeposition for determining the equivalent ; and the latter that silver was better than copper for accurate results in the voltameter.-Mr. Shelford Bidwell, M. A., read a paper on some experiments illustrating an explanation of Hall's phe 10 men $\mathrm{m}_{\text {, }}$ By these experiments Mr. Bidwell songht to explain Hall's effect through a coubination of mechanical stress and the well-known Peltier effect on the thin metal plate which is placed between the poles of the magnet. He repeated many of the experiments, and showed how he had obtained the save results as Hall, except in the case of alu ninium, which he found to be + like iron, whereas Hall made it -. Mr. Bidwell reversed the effect by cutting two shits in the strip of metal, thereby altering the stress on it. Righi's effect was alio exolained on the sume grounds. Mr. Walter Browne said that difference in the quality of the aluminium might explain the anomaly with this metal. Prof. Perry criticised the explanation of the slitted plate, and Prof. G. C. Foster suggested that results in absolute measure should be obtained.

Edinburgh

Royal Society, February 18.-Sheriff Forbes Irvine, vicepresident, in the chair,-Prof. Tait read a paper on radiation, in which he called attention to Stewart's papers of 1858 as eontaining, so far as it has yet been developed, the theory of exchanges. Yet, in the most recent authoritative treatise on the snbject, the name of Stewart is not even once mentioned. The basis of the whole theory is Carnot's principle, an 1 therefore no demonstration can be considered absolntely rigorous. Thus it is probable that as there are very hot particles in a gas at ordinary temperatures, so there may be feeble radiation of high wavelengths from a black body at ordlnary temperatnres.-Mr. Sang read a paper on the need for decimal subdivisions in astronomy, trigonmetry, and navigation, in which be pointed ont the inconvenience of the sexagesimal system, and estimated it as doubling the labour of calculation. The decimal division of the second, used throughout the Nautical Alm snac, was appealed to as evidence of the need for a change. The paper was accompanied by a number of tables suited to the decimal division of the quadrant, or usefnl therefor, - Prof. Ewing commnnicated a paper by A. Tanakadaté on an electromagnetic declinometer. -Prof. Tuit showed that when one polygon has its eorners at the middle points of the sides of another, the condition that the first, second, or nth derived polygon shall be similar to the original, involves a singular equation in quaternion differences. -Prof. Tait also made some remarks on the basis of the theory of vortex atoms, pointing ont that there is not necessarily any direct action between vortices in a perfect flnid; the present theory, which indicates such action, being based upon the assumed continuity of motion throughout the fluid.

Paris

Academy of Sciences, March 10.-M. Rolland in the chair. -The election of M. G. Darboux was announced, as successor to the late M. Puiseux in the Section of Geometry.-On the forms presented by the nucleus of the Pons-Brooks comet on January 13 and 19 (one illustration), by M. Faye. The author rejects the explanation of these remarkable formas proposed by Bessel, who attributed to the nucleus a polarity like that of the magnetic forces. In virtue of this polarity the nucleus and ante-
rior naclear emission are sapposed to oscillate in presence of the sun like the needle of a compass in presence of a magnet. But M. Faye sees in these changes nothing but the effect of a rotatory motion powerfully affected by solar attraction. Under these conditions the rotation may acquire irregular pendulant vibrations without having recourse to the intervention of polar forces. -Explosive gasenus mixtures ; calculation of their temperatures and specific heat at the moment of explosion (continued), by MM. Berthelot and Vieille. Tables of the results of these expenments are appended for the oxyhydric and oxycarbonic mixtures, for cyanogen, and the carburets of hydrogen.- Note on a letter of the astronomer Mechain in connection with the eompletion of the triangulation of Spain and the extension of the meridian to the Balearic Istes, by M. J. L.efort.-On a differential equation of the third order, by M. E. Gonrsat.-On the decomposition of polynomes which admit only of primary divisors of a determined form, by M. Lefébure,-On the remarkable variation of the nucleus of the Pons Brooks comet (one illustration, by M. Ch. Tiépied.-On the barometric oscillations produced by the Krakatoa eruption, by M. P. Tacchini,-On the crepuscular and auroral lights observed at Morges, in Switzerland, duriug the winter of $\mathbf{1 8 8 3 - 8 4}$, by M. Ch. Dufour, - On a method for messuring the coefficient of cubic expansion of solid substances in the form of misute particles, by M. J. Thonlet. To determine the coefficients of these bodies the author employs a solution of iodide of mercury in iodide of pitassium. The extremedelicacy of the process is shown by its application to quartz, which yields a coefficient of o.00co357 compared with M. Fizean's o cooo3619. -On the action of two consecutive parts of the same electric current, by M. A. Buguet.-On the spectrum of absorption of water; preliminary studies connected with the spectral analysis of the rays transmitted through a more or less dense layer of water, by MM. J. L. Soret and Ed. Sara-in.-Action of electric effluvia on oxygen and nitrogen in the presence of chlorine, by MM. P. Hautefeuille and J. Chappuis,-Observations on the formula of s me sal ammoniac ', by M. R. Engel.-Observation relative to a note of M. Calmels on the poison of Batrachians, by MM. A. Gautier and Ėtard.-On the Malpighian vessels of the Lepidoptera, by M. Chnlodkovsky.-On an aberrant form of the phylum Sporozoa, by M. J. Kuntler.-On the presence of manganese in the white cipoline marbles of Carrara, Paros, and the Pyrences ; geological deductions, by M. Dieulafait.

Berlin

Pinysical Society, February 22.-Prof. Landolt produced a cylinder of solid carbonic acid he had prepared about an hour before the sitting, and described the mode of its formation. From a Natterer eompressing vessel a stream of liquid carbonic acid was made to penetrate into a conical eloth bag. The bag speedily got filled with a loose snow of carbonic acid, which was then, by means of a stamper, hammered together in a cylindrical vessel into a solid cylinder. Compact carbonic acid cylinders of this kind could be touched gently with the hand, and possersed the hardness of chalk, which, too, they resembled in appearance, and on account of their brittleness did not readiiy admit of being cut with a knife. The specific gravity of solid hammered earbonic acid was found to be 1*2.- Prof. Schwalhe showed on a beech twig the ice-swellings he had described at the last sitting. These were prodnced in a moderately freezing mixture, their formation failing in a strongly freezing mixture. A twig which by way of experiment had been completely dried eatirely lost the capability it previously possessed in a high degree of forming ice protuberances. - Prof. Erdmann related an observation he had made some time ago, and had since very frequently repeated. In a perfectly dark room he was able only by indirect vision to perceive an object which reflected light very faintly, while, on endeavouring to look at it fixedly, the object completely disappeared. This phenomenon he observed ouly in the evening in going to bed, after he had been working for a considerable time in a brightly illuminated room. On the other band, when he awoke in the night he perceived the faintly lucent object quite as well by direct as by indireet vision. He was of opinion that this phenomenon was connected with the lassitude of the middle parts of the retina, while Prof. von Helmholtz explained it by the inferior sensitiveness to light of the yellow spat in comparison with its snrroundings.-Dr. Koentg reported at length the experiments which in common with Dr. Dietrici he had instituted with a view to determining the eol ur-sensitiveness of normal eyes. Exbiblting the apparatns he had made use of, Dr. Kcenig explained its construction and the procednre he had fullowed in the experiment. Towards
one angle of a prism was directed an observing telescope, whish, instead of an eye-piece, had a diaphragm provided with a sli', on which the spectrum fell, so that it was possible to observe sections of any degree of minuteness whatsoever. Towards each of the two other angies of the prism was placed a collimator, which in the foens of its lens had a slit for the entrance of the light, which was polarised by means of a Nicol prism. Behind the slit was a donble refracting prism, by varying the pesition of which in the enllimator the slit-image could be doubled at pleasare. Through the slit of the objective were seen cluse heside each other the spectrum of the light which had passed through one collimator, and the spectrum of light which had passed through the other. While one collimator was now keft fixed, the other, by means of micrometers, was displaced till the point was reached at which the observer found the colours is both spectra alike. The wave lengths in both spectral stripes were then measured, and their difference was the standard of colour-sensitiveness in the single regions. For each wavelength fifty readings were in this way made by each of the ton observers, and the mean difference calculated of the wavelengths in the two spectral ranges, which were perceived to be equal. These experiments extended from the wave-length of 640 millionths of a millimetre to the wave-length of 430 , and were made from each 10 millionths of a millimetre, each pirticular spot being examined under two different intensities of light. From the results of these measurements it was establisbed that the colour-sensitiveness of normal eyes ranged from more than 1 to about $0^{\prime} 2$ millionths of a millimetre. The difference of the D-lines in the solar spectrum amounted to 0.6 millionths of a millimetre. Altoge ther three maxima of sensitiveness were found. The first maximum appeared with the wave-length of 570 near the D-line. A second greater maximum approached the F-line with a wave-length of about 490 to 47 o. Finally, a third smaller maximum was found with a wave-length of 45° to 44°. The place of the maximum changed with the intensity in such a manner that, the greater the in ensity was, the more the maximum shifted towards the more refrangible part of the spectrum. Beyond the wave-lengths of 640 and 430 these experiments could not be carried out, because, at the red end especially, no differences of colour, but only differences of brightness, were perceived. From the colonr sensibility thus found, it was calculated that within the range of the normal spectrum the healthy eye was able to perceive about 300 differences of colour. Dr. Kereng hoped to be able to set forth on a future occasion further experiments in conjunction with the measurements here commanicated, and the consequences resulting therefrom in respect of the theory of the perception of colour.

CONTENTS
 Pagk

A Biological Laboratory on the English Coast . 473
The Unity of Nature. By George J. Romanes, F.R.S.

Our Book Shelf :-

"The Electrician's Directory for 1884 " 476
Letters to the Editor :-
On a "Magnetic Sense."-Prof. W. F. Barrett . 4;6
Instinct-George J. Romanes, F.R.S. ... 4π
The Remarkable Sunsets,-George J. Romanes, F.R.S.

Right-sidedness.-Henry T. Wharton; Dr. John Rae, F.R.S.

477
Ravens in the United States.-Ira Sayles ; w. W. Bailey

Bicycles and Tricycles, in Theory and in Practice. By C. Vernon Boys, A.R.S.M.
Dangers from Flies
Edinburgh Marine Station
The Deep-Sea Fishes of the "Talisman" (With 45^{3}
Illustrations)
Ancient Japan
Nhysical Notes
453
48

The Chemical Work of Wbhler. By Prof. Thorpe,

F.R.S.
Meteoric Dust. By Lewis \dot{P}. Muirhead 459
494University and Educational Intelligence 494
Scientific Serials
Scientific Serials
Societies and Aeademies 495

THE CHOLERA BACILLUS

I\mathbf{N} his capacity as chicf of the German Cholera Commission Dr. Koch has issued a further-his sixthreport, and it is one which must become historic in connection with inquiries as to the etiology of that disease. Hitherto Dr. Koch has almost entirely confined himself to reporting facts as they were elicited, and whenever he has referred to any inferences which might be drawn from them, it has only been to show how many sources of error stood in the way of all attempts to arrive at trustworthy conclusions. This attitude of Dr. Koch has naturally tended to increase the confidence in which he is held as a scientific worker, and it has an important bearing on the character of the present report, in which the reserve hitherto maintained is thrown off, and Dr. Koch announces that the bacilli be has discovered are altogether peculiar to cholera, and further, that they are the actual cause of cholera.

The further investigations which have been made relate to the cultivation of the bacilli in question, to their behaviour in the bodies of patients during the various stages of the disease, and to the examination of additional bodies of persons dying both of cholera and of other diseases. The result is that what are now termed the cholera bacilli can be found in no bodies except those of cholera patients; that at certain stages of the cholera disease they are invariably found in the bodies of the patients, whether these have lived and died in Egypt or in a country so far distant from it as India; that these organisms confine themselves to the organ which is the seat of the disease, namely, the bowel ; and that they behave exactly as do other pathogenic bacteria, their first appearance coinciding with the commencement of the disease, their increase being proportional to its advance, and their disappearance corresponding with its decline. Certain incidental studies have also tended to confirm the correctness of the hypothesis that these bacilli are the cause of cholera. It is well known that the linen of cholera patients, has conveyed the infection of that disease. Now Dr. Koch has repeatedly observed that such linen, when soiled by the alvine discharges and kept moist for a period of twenty-four hours, has been the seat of an extraordinary multiplication of the special organisms; and in connection with these experiments it was found that precisely the same result took place whenever cholera dejections, or the contents of the intestines of persons having died of cholera, were spread upon such substances as moist linen or blotting paper. And further, a thin layer of the same discharges, when placed on a moist soil, was found within twenty-four hours to have been converted into a thick mass of cholera bacilli. This latter discovery is one of extreme importance in connection with the observations so frequently made as to the spread of cholera in Indin by means of water-sources, the soil around which is so often befouled by the natives.

From one point of view the report gives special promise. Some bacilli of disease will, in certain stages, with stand almost every form of maltreatment ; they may
be dried, frozen, and otherwise dealt with, and yet they remain as potent as ever for mischief. But Dr. Koch's cholera bacilli die off rapidly when dried, all vestige of life apparently disappearing after three hours' desiccation. And not only so, but these bacilli will only grow in alkaline solutions, a very small quantity of a free acid standing in the way of their development. To these two circumstances we may in all probability to a large extent attribute the frequency with which those who are directly associated with the sick and their discharges escape infection; and the fact that the healthy stomach contains a sufficient amount of acid to destroy the bacilli may possibly lead to the discovery of some therapeutic or other measure of prevention which may be generally adopted. Directly gastric disturbance steps in and the gastric juices give a different reaction, we are probably face to face with conditions specially favourable to the reception of the poison, and in this respect it is noteworthy that cholera so often attacks those persons who have suffered, or are suffering, from diarrheea and other gastric disorders.

In one respect Dr. Koch's experiments have failed. He has not succeeded in producing cholera artificially in any of the lower animals. As we have already pointed out, cholera is not the only specific disease to which man alone appears to be susceptible ; and it is possible that the fact of cholera discharges and portions of diseased intestines having been given as food to the lower animals with impunity may find much of its explanation in the absence, in the stomachs of those animals, of the needed alkaline cultivation fluid.

At one point of the report our confidence in the correctness of Dr. Koch's inferences is weakened. It is where he, in maintaining his view that the bacillus he has discovered is the actual cause of cholera, refers to its resemblance in one respect to the bacillus of enteric fever. Now, leading micro-pathologists in this countryhave hitherto declined to regard it as proved that any such specific bacillus has been discovered. Dr. Koch's views have therefore still to stand the test of scientific criticism by his fellow workers, who will doubtless, as occasion offers, repeat his experiments.

THE SCIENCE OF THE ENAMINATION-ROOM

THOSE persons whose unhappy lot it is to have much to do with examinations must often feel that there is some fundamental common factor dropped out in the relation between examiner and examinees. A straightforward paper is set in a subject, say A, in which we will suppose there is no attempt to "catch" or perplex the student, but simply to sample, as it were, the ordinary commonplace knowledge which average industry might acquire. There returns to the examiner in due time amass of manuscript, evidently written with pains and labour, mostly quite seriously meant, but which does not deal with the subject A, but with something which, thoug h apparently related, is evidently quite different, and which we may call A^{\prime}. After a little while he begins to wonder whether the whole thing is not a nightmare. The form is apparently rational, and yet the details are hopelessly incongruous and absurd. Or, to put the thing in another shape, it is as if one set a paper in solid geometry and
got answers from Prof. Sylvester's infinitely thin bookworm.

If the examination-system is to be maintained without being on the one hand hopelessly discredited, or on the other lapsing into a kind of ceremonial observance like academic dress or a Guy Fawkes celebration, something must seriously be done to ascertain the real relation between A and A^{\prime}. It is generally presumed that the object of "plucking" a candidate is to indicate to him his imperfect knowledge. But though the student of the subject called A^{\prime} is usually plucked by the examiner in A it is not clear that what may be called the moral result is in any way satisfactory. The examiner is disgusted equally with the candidate who has likely enough done his very best, just as the infinitely thin book-worm might do his best. The candidate grinds away at his A^{\prime} with more a siduity than ever if he is modest enough to think his ignorance to be in fault; but this only makes his subsequent failures with the examiner in A more assured, because the radical incommensurability of A and A^{\prime} becomes more intensified.

There is really reason to think that underneath the rational fabric of science as understood by intelligent persons of common sense there is a vast substratum of something altogether different, but with which a large number of individuals are quite seriously occupied. A^{\prime} is only a term in fact of a very considerable series. Every now and then in the pages of this journal strong evidences crop up of the existence of this singular body of knowledge. This existence, however, is scarcely really grasped by the scientific world proper, and it might be compared to a sort of inverse of Prof. Tait's unseen universe.

The present state of things can hardly go on. It is quite certain that, whatever intrinsic interest science of the A^{\prime} type may possess, it is of no kind of practical use to ordinary human beings. If it cannot be displaced by the real thing of which it is a kind of phantom, it is a serious question whether the struggle of the examinationroom had better not be for a time suspended.

In the meantime it is very important to investigate the true nature of this phantom science. A little work, of which the second edition has been lately sent to this journal for review, appears to belong to its literature, which there is reason to think is rather copious. This particular publication is part of the "Students' Aids Series," bears the motto, "Mens sana corpore sano," and deals with botany. ${ }^{1}$ It is impossible to seriously criticise it : indeed, from the point of view of what has been said above it would not be easy to do so. We may content ourselves with reproducing textually from its pages the enlire account given of a well-known and very characteristie group of Thallophytes :-

THE OLIVE SEAWEEDS.

These weeds vary in general appearance from small tufted filaments to immense stalks terminated by a branched thallus.
${ }^{\text {r }}$ "Aids is Brany." By Armand Semple, B.A, M.B., Can'ab. ; L.S.A, M R.C.P.. Land, Paysic.an North. Eastern Hospital for Children, Hackney, Thysician t, the Koyal Socrety of Musicanns, late $\mathbf{S}_{\text {enior Examper in Ars }}$ at Apothecaries: Hall, late Medical Clanical A-sistant and Surgicn! Regerrar at the toond on Houptal, author of the "Esucnt.al Features of Diseases of Children." "A Aids to Chemistry" (Ino"ganic ats I 1)rganic), "Aids to Materia Medica*" (Inorganic and Organic), "Tablets of Materia Medica, "A Als t) Medicine" ($)$ suble Part) Third Thuusard. (Lood un : Ba lliere, Tindall, and Cox, King Willan Street, Strand. Dublin: Fannin and Co Grafron Sircel Fdinburgh: Maclachlan and Stewart. South Bridge. Glangow: A. and W. Stenanure, College Gate. New Vork: Putnam and Sons, 1883.)

In the higher forms a shrubby aspect, a kind of root, and an epidermal layer are observed. Their colour is not bright green, but in general olive.

The zoospores originate in Oosporangia, situated at ends or joints of the frond, or in each ot the cells of a filamentous body called a Trichosporanginm; they resemble those of the Green Algæ.
The zoospores from the Trichosporangium have been mistaken for spermatozoids.
The spores reside in sacs termed Perispores, having a lining membrane, the Epispore.

The perispores or sporangia are either scattered or are arranged in Sori or groups on the frond's surface, or in cavities, Scaphidia or conceptacula, communicating by a pore with its surface.
The scaphidia may appear as club-shaped masses or receptacula at the edges of the frond.
The antheridia are ovate sacs which contain Antherozoa or Phytozoa (two ciliated spermatozoids), and appear on slender filaments in the same or other plants, and in the same or other conceptacles as the spores. If on the same plant, they are called Moncecions; if on different, Diœcious. When in the same conceptacles with the spores, they are Hermaphrodite. To the slender filaments destitute of antheridia the name of Paraphyses is given.
We must leave to our botanical readers to notice for themselves where this instructive specimen of A^{\prime} science differs from the kind of lesson which an ordinarily constituted teacher of real botany would try to communicate to his pupils. At any rate we may ask, would any one having learnt all this by rote (for there is reason to think that such is the method insisted upon) be secure in recognising a piece of bladder wrack when shown to him, of certain of any single fact in its life-history.
A curious point about the A^{\prime} science is the copiousness and more or less unintelligibility of its terminolog:. There is no doubt, however, that this is very generally mastered, however repulsive such a task might seem at first sight. But the problem is still unsolved as to what is the end gained. With the same effort it is probable that the rudiments of an Oriental language might be acquired-say Arabic-and the question arises whether in every way this would not be more profitable.

LEFROY'S MAGNETIC SURVEY IN CANADA

 Diary of a Magnetic Survey of a Portion of the Dominim of Canada, chiefly in the North. Western Torritarish Executed in the Years 1842-44. By Lieut. Lefroy, R.A, now General Sir J. H. Lefroy, C.B., F.RS., \&c (London: Longmans and Co., 1883.)THIS record of magnetical work performed forty yeurs ago by Licut. Lefroy of the Royal Artillery-nor General Sir J. Henry Lefroy-is a contribution of interes' to the science of terrestrial magnetism.

The Magnetic Survey of the British Possessions in North America authorised by Her Majesty's Government in the year 1841 at the recommendation of the Roysl Society, and in great part executed in 1843 and 1844 under the supervision of the late Sir Edward Sabine, had for its primary objects the determination of the regular and irregular changes of the magnetic elements, especially that of the horary variation of the declination; this varistion being then known as subject to wide differences it the high magnetic latitudes of the northern bemispbert
as compared with those observed in middle latitudes, both in respect of the turning hours and in the direction of the movement at the same local time. Furthermore, investigation of observations made by Polar voyagers and Arctic travellers had shown that the northern part of these British possessions was a region of peculiar interest as comprising in its area the most powerful of the two foci of magnetic intensity in the northern bemisphere, and also the locus of vertical dip commonly recognised as the North Magnetic Pole.

To Lieut. Lefroy-furnished with transportable mag-netometers-was assigned the arduous and responsible duty of traversing this region of such striking magnetical interest, to determine the absolute values of the declination, inclination, and intensity at available stations; and at one or more fixed winter residences in high latitudes to make hourly and term day observations of those regular and irregular fluctuations in the movements of the needle presumed to exist in values of more than ordinary magnitude.

Sir Henry Lefroy's present volume contains the diary of his journeys-these latter extending to 5480 geographical miles-in which is given in more or less detail the magnetical elements determined at three hundred and fourteen stations, combined with such astronomical observations as were necessary, in the then imperfect state of the maps of the region traversed, to approximately assign the geographical positions of the places of observation.

The extended series of hourly and term day magnetical and meteorological observations made at the fixed winter and spring residences [1843-44] of Fort Chipewyan on Lake Athabasca (lat. $58^{\circ} 43^{\prime} \mathrm{N}$. , long. $111^{\circ} 19^{\prime} \mathrm{W}$.), and at Fort Simpson on Mackenzie River (lat. $61^{\circ} 51^{\prime} \mathrm{N}$., long. $121^{\circ} 25^{\prime} \mathrm{W}$.), with their very complete and able discussion by Capt. Lefroy, were printed by order of Her Majesty's Government in 1855. This masterly work is well known to those interested in the science of terrestrial magnetism. The Diary now for the first time published is a fitting sequel to the earlier work; and is not the less valuable from what may appear to be its tardy production. The author's preface-which conveys a graceful tribute to his old chief-in a few words clears up the seeming anomaly. He says:-
"The renewed attention directed to the distribution and periodical changes of the earth's magnetism in the North Polar region, suggests an endeavour on my part to present the observations of my magnetical survey of 1843-44 with fuller explanation, and in a form more convenient for reference than that in which they were originally published" [Sabine's 'Contributions to Terrestrial Magnetism.' No. vii. Philosophical Transactions, 1846, and No. xiii. Philosophical Transactions, 1872]; " and being still the principal authority for the received position of the focus or pole of greatest magnetic intensity, as well as for the lines of equal magnetic force, equal inclination, and equal variation over a large part of the continent of North America, it is certain that whenever they come to be repeated, the observer of the future will inquire for particulars not contained in, and not suitable for, the Philoscphical Transactions."

Apart from the value of a full record of the observations made over so great an extent of continental America, is the consideration of the graphical treatment of the isoclinal and isodynamic lines, as embodied on maps accompanying the Diary. The author dwells onfthe difference
in rendering the inapped results on the system followed by Sabine-as given in the Philosophical Transactionsand on that adopted by himself. Sabine's aim was to present, over the vast area he was dealing with, the normal values of the magnetical elements, free-so far as his judgment permitted-from the local disturbances experienced at individual stations, depending on geological conditions; and stations at which the disturbances obviously affected the assumed normal values were designedly rejected. Lefroy's treatment includes every station at which he set up his instruments, rejecting no observation because of its anomaly where there was no internal appearance of error. By the one investigator we are thus presented with a harmonious mapped system of regular lines or curves indicating equal values of the magnetic elements; by the other the equivalent lines of equal values are more or less sinuous, in some places much distorted, and losing the semblance of regularity.

In the case of the isoclinal lines as so developed, the author partly infers that their greater inflections bear some relation to the courses of the rivers ; and he further draws attention to his isodynamic lines or curves, differing both in form and position from those of Sabine.

In a discussion as to the appositeness of either of the systems pursued, it must be borne in mind that, at nuinerous well-known points on the earth's surface, a movement made by the observer of the magnetic needle a foot or two vertically, or a few feet horizontally, either way, considerably affects the observations. This is notably the case at many oceanic islands, and a marked example is to be found on our own coasts at Canna near the ibland of Skye. Sir H. Lefroy's experiences in this direction are well marked at Stations LII. and CXX1., where the total force observed was $15^{\circ} 26$ and $15^{\circ} 38$ respectively; the normal value undoubtedly was about $14^{1 / 10}$ and $14^{\circ} 15$; the disturbance from a local geological cause thus increased the total force by $1 / 1 \psi^{\text {th }}$. It is therefore certain that, unless we have some fairly approximate knowledge of the normal value of the magnetic elements at the disturbed station, we should remain in ignorance of the extent of the disturbance.

In the present state of our knowledge of the distribution of magnetism in the several determinate values of declination, inclination, and intensity over the earth's surface-limited in the best explored regions to a very small number of points of observation compared with the great areas of land and water which they represent-it appears premature to give interpretation to local disturbances as being connected with topographical features rather than geological. On general grounds we must consider the delineation of the normal lines in any region as a primary need, whetber in a theoretical or a practical direction.

Local magnetic disturbances demand a special study ; this has been given effect to in a theoretical direction by Lamont in Germany (" Rescarches on the Direction and Intensity of Terrestrial Magnetism in Northern Germany, Belgium, Holland, and Denmark in the Year 1858," Munich, 1859), and practically is being now worked out in the United States ; it is understood a special magnetic survey of the State of Missouri is nearly complete.

As magnetical obscrvations multiply over large areas of land, it is possible that the normal lines may be found
to lose symmetry by disturhing causes which may extend over many square degrees of surface, as distinct from local irregularities. Lamont's observations in continental Europe point to this. A first essay on a large scale has been lately made by the able and diligent magnetician, C. A. Schott, to chart the distribution of the magnetic declination of the United States for the epoch January 1885. In this work distinct notice is taken of all local disturbances in the direction of the magnetic needle, the number of observing stations being 2359. This valuable essay is published as an Appendix to the Report for 1882 of the United States Coast and Geodetic Survey.

It should be observed that in Sir Henry Lefroy's maps the lines of magnetic declination are reproduced as given by Sabine ; in Mr. Schott's paper this is the only element ciscussed, doubtless from the more ample material at his command, and possibly from its practical value for topographical, geological, or mining purposes.
Whenever the time arrives for undertaking a magnetic survey of the British possessions in North America, Sir Henry Lefroy's Diary will be invaluable as a pioneer work. At the present time his early published magnetical and meteorological observations at Lake Athabasca and Fort Simpson are of great interest in connection with those recently made in a neighbouring region by Capt. Dawson, R.A., at the International Circumpolar Station, Fort Rae.
F. J. Evans

EXCURSIONS OF AN EVOLUTIONIST

Excursions of an Evolutionist. By John Fiske. (London: Macmillan and Co., 1884.)

MR. FISKE is certainly one of the most successful of the writers who have undertaken the task of popularising the many new ideas which have been originated by the theory of evolution. He has not himself added anything of any importance to these ideas; but, having accepted them with enthusiasm, he represents them to the public with so much force and clearness, as well as grace of literary style, that while reading his pages we feel how the function of a really good expositor is scarcely of less value in the world than that of an originator. The applicability of these remarks to his earlier works will, we think, be generally recognised by the readers of this journal; and, if so, they are certainly no less applicable to the series of essays which we have now to consider.

The first essay is on "Europe before the Arrival of Man," and it gives an exceedingly clear and well-condensed resum\& of the present standing of the question as to the probable date of man's appearance in geological time. Next in logical order we have three essays on "The Arrival of Man in Europe," "Our Aryan Forefathers," and "What we learn from Old Aryan Words." Within the compass of the pages allotted to them we do not think that it would be possible to give a more instructive and entertaining history than is presented by these chapters. The fifth essay is on the question, " Was there a Primitive Mother-Tongue? " which is very conclusively answered in the negative. "Sociology and Hero-Worship" is devoted to arguing the relations that subsist between a genius and the age or society in which he lives; this is appropriately followed by the essay on "Heroes of Industry," which is a kind of
historical sketch of the philosophical principles that govern the possibilities of invention. A new point of departure is taken in the next three essays on "The Causes of Persecution," "The Origins of Protestantism," and "The True Lesson of Protestantism." Here the main argument is that the rise of Protestantism and the decline of the persecuting spirit are due to an increasing recognition of the right of private judgment, coupled with an increasing refinement of moral fceling. The theory of corporate responsibility, which is more or less essential to the integrity of the sozial state in the earlier stages of its development, becomes gradually superseded by the theory that the Individual is alone responsible for his beliefs and actions; hence the growing recognition of the right of private judgment. "The Meaning of Infancy" is a brief restatement of the author's views already published in his "Cosmic Philosophy." These are the views which deserve to be regarded as perhaps the most original that Mr. Fiske has enunciated. The general fact that the protracted period of infancy among the anthropoid apes (and therefore presumably among the brutal ancestry of man) must have had a large share in determining the evolution of man is a fact which could scarcely escape the observation of any attentive evolutionist; but Mr. Fiske is the only writer, so far as we are aware, who has treated this fact with the consideration that it deserves. Of the remaining essays, "Evolution and Religion" is an after-dinner eulogium on Mr. Herbert Spencer, "A Universe of Mind-Stuff" is an exposition of Clifford's essay upon this subject, and "In Memoriam: Charles Darwin," is a well-written obituary review of Mr. Darwin's life and work.

As we have not detected any errors on matters of fact, the only criticisms we have to make pertain to matters of opinion. In particular, it appears to us that, in his anxiety to raise the cosmic theory of evolution into a religion of cosmism (or, as he terms it, in his earlier work, "Cosmic Theism"), Mr. Fiske entirely loses the clearness of view and precision of statement which elsewhere characterise his work. Although no friend or admirer of Comte, with a strange inconsistency he follows implicitly the method of the French philosopher in blindfolding judgment with metaphor, and then, without rein or bridle, running away upon a wild enthusiasm. We have here no space to justify this general statement, but we feel sure that no sober-minded man can read the after-dinner speech or eulogy on Mr. Spencer without feeling that its extravagance runs into absurdity. We have no wish to deprive Mr. Fiske of any happiness that he may derive either from his "religion" or from his "hero-worship" ; but we cannot review his essays without observing that in neither of these respects is he likely to meet with much sympathy among "men of science," to whose opinion he habitually professes so much deference.

George J. Romanes

OUR BOOK SHELF

The Zoological Record for 1882. Being Vol. XIX. of the Record of Zoological Literature. Edited by Edward Caldwell Rye, F.Z.S., \&c. (London: Van Voorst, 1883.)
Almost before the shadow of 1883 had passed away, the "Record of the Zoological Literature of the Year 1882"
made its appearance, and the circumstances attending its publication are, as the editor informs us, without precedent in the nineteen years during which this important and most valuable annual has been issued. The sudden death on the Niger of Mr. W. A. Forbes, the late recorder of the literature relating to the maminals, was soon followed by the loss of the help of Mr. Howard Saunders in the arduous work concerning the recording of the literature of the birds. These severe losses have been supplied by Mr. Oldfield Thomas and Mr. R. B. Sharpe. In the records of the fishes Mr. Boulenger has had the assistance of Mr. R. Ogilvie-Grant. Mr. Ridley has handed the recording of the Protozoa over to Mr. W. Saville Kent, and the Myriapod literature has fallen to Mr. I. D. Gibson-Carmichael. It thus happens that of the recorders who, just twenty years ago, assisted Dr. Günther in the arduous undertaking of bringing out the first volume of this work, but one, Dr. E. von Martens, still responds to the editor's call, though happily all of the first recorders still survive to overlook and appreciate the labours of their successors.

The editor apologises for some slight delay in the ap. pearance of the volume, owing to the mechanical difficulties brought about by all these changes, difficulties only to be thoroughly understood by those who have experienced them, and which we trust will not trouble the editor again. It is not without interest to note that nearly two thirds of this volume is compiled by officers of the Natural History Department of the British Museum; indeed, if we include Dr. E. von Martens' work, and remember that be occupies the position of assistant in the Natural History Museum of Berlin, it would appear that over 600 out of 700 pages have been compiled by writers whose lives are devoted to the subjects about which they wrise.

The editor has again to thank the 13ritish Association for the Advancement of Science and the Government Grant Committee of the Royal Society for kindly aid in assistance of the publication. The number of new genera and sub-genera re:orded in this volume is 1015 as against 1438 in the last volume, and it will be remembered that this latter number includel 483 new genera made by Haeckel.

Each recorder seems to have executed his share of the work well and painstakingly. The special treatment of the literature of each group is on the lines of that followed in the later volumes of the series. We warmly congratulate the Zoological Record Association on the result of their editor's labours.

Sketches of North-Western Mongolia. Vol. IV.-Ethnographical Matcrials. By G. N. Potanin. 1025 pages, with 26 Plates (Russian). (St. Petersburg: Published by the Russian Geographical Society.)
THE first turo volumes of this important work containef the results of the journeys by the author in 1876 and 1877. The third, which is in print, will contain the geographical materials collected during the journey of 1879 and the volume we have before us deals with the ethnographical part of the same journey. It begins with an enumeration of the Turkish and Mongolian peoples who inhabit the region: Tartars, Uryankhays, Kirghiz, Durbuts, Darkhats, and Buryats, with the legends current about their origin. There is no general sketch of the populations dealt with; the aim of the author seems to have been to give in this volume a collection of materials, rather than to enter the field of general conclusions. With regard to the former, the present volume is a most valuable one. We find in it interesting facts as to the family, social, and religious life of the inhabitants ; a list of names of stars, plants, and animals, together with the beliefs about them, and finally, their legends and folk-lore. Of these, no lessthin 200 are given, containing a rich and new source of infor-
mation. On almost every one of the 500 pages occupied by these legends and tales one is attracted either by their poetical beauty or by the light they throw on the mythology and popular conceptions of the inhabitants of this border region of Central Asia ; while M. Potanin's name is the best warrant for the accuracy of the transcription of the legends reported. However rich this material, one hesitates to say which of the two is more valuable, the folk-lore published, or the annotations which follow them. These last cover 300 pages of small type, and we find there, philological explanations, comparisons with the legends of other Finnish tribes, most valuable materials for consparative mythology, and so on, all being the result of a thorough study of nearly the whole of the Russian literature of the subject, dissem:nated through periodicals of the most various descriptions. While perusing these invaluable materials one only regrets that the author has not yet been brought to summarise his wide studies and to draw therefrom some conclusions which may enter into the domain of science. In any case a careful index of all matter mentioned in the volume would much facilitate the researches. The plates represent mostly the pictured tambourines of the shamans and the ongons (holy pictures and idols) of the Tartars, Uryankhays, and Buryats.
P. K.

LETTERS TO THE EDITOR

[The Editor does not hold himself responsible for opinions expressed by his correspondents. Neisther can he wndertake to return, or to correspond with the zuriters of, rejected mannscripts. No notice is taken of anonymows communications.
[The Editor wrgently requests correspondents to kerp their letteri as skort as possible. The pressure on his space is 30 groat that it is impossible othervise to insure the afpearance even of communications containimg intercsting and novel facts.]

Quintino Sella

IT is proposed to place a bronze wreath on the tomb of the distinguished Jtalian geologist and staresman, Quintino Sella. English geologists are inviied to express their sympathy with their Italian fellow-workers by sending in their names with a small subscription. I have been requevted to bring the matter before their notice, and to collect the subscriptions in this country.

Thos. M'Kenny livghes
Woodwardian Museum, Cambridge, March 25

Electrostatic Measurement of E.M.F

Perinaps you will allow me to make known through your columns to those who have from time to tive made inquiries concernin; my Absolute Sine Electrometer, that, after many months' wuth, I have satisfactorily concluded a series of experiments with the instrument which was made for Prof. Antbony. When this inssrument was finished lavt year, I made some observation: with it which were so unsatis factory that 1 did not feel justified in allowing it to be sent to America. I have now, how ever, removed all the difficulties e annected with it, and I uniformly obtain re-ults perfectly consistent one with another. Indeed my difficulties during the latt six weeks were due to the fact of wy employing celts which were not sufficiently constant, and not to any fault of the electrometer, a fact which 1 did not re llise for some tine.

1 hope to publish in a few days a full report on the various points eonnected with the instument and on the experimental re sults obtained.

George M. Minchin
Royal Indian Engineering College, Cooper's 1 lill, March 24

Pons' Comet

Tuls comet has been visible here some time. I first saw it at $9 \mathrm{p} . \mathrm{m}$. on January 15, but only for two or three minules, through the clouds. On the following evening (Januay 16) I saw it nell. To the naked eye it looked like a sar of the first maj. niurde seen tbrough a have; the tail was visible, but not at all conspicuons. In the teles :ope (4 -inel)) the bead was large, bet
appeared wholiy nebulous, with a bright central condensation; the tail broad, but faint. I could only trace it some 2° or 3°. The brightness of the nucieus must have been considerable, as when close to the harizon I could see it through a pretty thick eloud. Subsequently the nucleus has seemed to me decidedly more disk-like, I suppose from being better seen. I may add that the sunset-glows and the unusually eloudy weather we are having have interfered greatiy with satisfactory observation.

Nelson, N.Z., February I A. S. Atkinson

The Access to Mountains and Moorlands Bill

I AM glad to observe that you have ealled the attention of scientific men to the importance of Mr. Bryce's Bill. Perhaps nothing can better show the need of such a meawure than eertain facts in regard to the Ciova district in Forfarshire, which is classic gronnd to the botanist ; indeed, I think I may ventare to say that it is the richest ground in the British Islands. From time immemorial a right of way existed through Glen Dale, and, I can remember the time when botanists could ascend any of the hills in that district without being subjected to the tender, though somewhat emharras ing attention of gamekeepers. I have good reason to believe that the case is somewhat altered in recent years, and that, after a man has gone hundreds of miles in order to see Oxytrofis campestris growing in its only British station, he may find himself turned back just within sight of the goal. The thing can still be done by taking advantage of a curious faet in natural history, viz, that two gamekeepers cannot remain long in loving converse with three men: by keeping this fact in mind, one out of three may still study the bstany of Clova. After having gone pretty well over Scotland I am glad to say that there are many places in which there is no need for Mr. Bryce's Bili. In most cases in which it is needed it is where "new men" usurp a power which the old lords of the soil never dreamt they possessed.
A. Craig-Christie

Edinburgh, March 24

A Sixth Sense

IN the valuable address given by Sir William Thomson at the Midland Institute, Birmingham, on October 3, and reported so fully in the columns of NATERE, it is implied that Dr. Thomas Reid of Glasgow brought out the distinction of a sixth or muscular sense. I cannot find any satisfactory evidence of this, although Reid came very near it indeed when he stated in his "Inquiry into the Human Mind," chap. v. section 1:-" By touch we perceive not one quality only, but many, and those of very different kinds ; " and again :-"There is, no doubt, a sensation by which we perceive a body to be hard or soft ; "and again, farther on he even speaks of its being strange that this sense should " be so much unknown as never to have been made an object of thought or reflection nor to have been hononred with a name in any language."
But on the other hand, while I cannot detect any attempt whatever to refer this sensation to the muscles as its peripheral origin, while speaking of our conception of the hardness of bodies, Dr. Reld says (p. 12I, ed. of 1846) :-" We have no way of coming at this conception and belief, but by means of a certain sensation of touch; " and again, "I see nothing left but to conclude that, by an original prineiple of our constitution, a certain sensation of touch both suggests to the mind the conception of hardness and ereates a belief of it." Reid, in short, like his eminent predecessor Hutcbeoon in the same chair, was dissatidfied with the ordinary division of the senses, and really felt disposed to spit up the varied phenomena bundled up under the term "touch" into two or more divisions; but it was reserved for Dr. Thomas Brown, a good physioiogist accurding to the light of the times, and Processor of Moral Philosophy in Fdinburgh ($18 \mathrm{to}-2$), explicitly to complete the distinetion hinted at by Reid, and to refer our coneeption of resistanee or tension (as we find in estimating weights by the hand) to a distinct sixth or muscular sense. Thus in his twenty-second lecture he says:-"The feeling of resistanee is, I eonceive, to be ascribed, not to an organ of touch, but to our muscular frave, to which I have already more than once directed your attention, as forming a distinct organ of sense." In the lecture which follows that, Brown admits the frequent mingling of mere tactual sensation with that of muscular effort :" Rut it is $n x$ of this mere taetual feeling we think when we term bodies hard or soft-it is of the greater or less resistance which they afford to our muscular contraction."

It is remarkable that the teaching of this eminent psychologist, the preceptor of James Mill, should so early have been forgotten in Scotland.

Henry Fauldos
Laurei Bank, Sbawiands, Glasgow, March 18

Mr. Faulds, in the preceding letter, is no donbt quite correct in remarhing that the distinction pointed out and insisted on (not merely hinted at) by Thomas Keid, a little more than a hundred years ago, in the Moral Philosophy Chair of the University of Glasgow, was more elearly and fully defined by his eminent suceessor in Edinburgh, Thomas Brown. But I cannot agree with his last sentence, implying that Thomas Brown is forgotten in Scotland. In fact, my mind was so full of Reid and Brown, from my recollections of the teachings of the Professors of Moral Philosophy and Logle in this University, that, in giving my address at Birmingham, I said Thomas Brown, meaning Thomas Reid, but feeling the names of Reid and Brown both thoroaghly mixed up with all I had ever learned of this subjeet.

William Thomson
The University, Glargow, March 20

Earthworms

THE theory of the formation of vegetable mould through the action of earthworms, by Darwin, received little attention when published from people who had been accustomed to examine the soils of various countries. That the vegetable soil had been formed as he states seemed to have been accepted by his followers without hesitation. In your columns, however, of late, letters have appeared from Messrs. R. M. Christy and T. E. Wilcox, showing that earthworms do not exist in the prairies in the north-west of Canada or in the United States, in those of Kansas, the Indian Territory, or in Idaho and Washington Territory. This is simply what may be expected. Notwithstanding the keenness of observation of Darwin and his width of olservation, there seem vast regions where earthworms have had littie to do with the formation of the vegetable soil. Is many parts of Austraiia, and also in the moister climate of New Zealand, the soil affords few indications that earthworms ever passed it through their bodies. In a section of soil I brought from the Mataura plain, South Island of New Zealand. nothing could be seen to indicate that worms had ever swallowed it. That vegetable soil forms a fit habitation for earthworms is undoubted. Darwin admits "that a layer, though π thin one, of fine earth, which prohably lonz retains some moisture, is in all cases necessary for their existence." Before this thin layer existed, how eonld they-the worms-form vegetable soil? This thin layer must have been formed in some other way; Darwin does not say how. It is not necessary to call in the aid of earthworms to do so. The very name which has been universally applied to the thin npper eovering, the exterior fim enveloping the surface of the depasits underneath, viz. vegetable soil, speaks to its origin in the decay of vegetation. Take for instance the boulder clays of this part of the Lothians in Scotlan1, with their tough, stony texture, their pebbies as finily striated as when the ice squeezed them into the pasty mass of crushed shales out of whieh they appear to hive been partly formed. While these surfaces could have afforded none of the conditions required by Darwin, or indeed supply any other save inorganic food, the slow growth on their suefaces of the more simpie forms of vegetable life, and their decay, wouid in the lapse of ages supply the thin film which Darwin reqnires. It surcly, then, is attempting too much to ascribe to the earthworm the formation of the vegetable sail. The earthworm is nut the only occupant of the material which the grouth and decay of vegetation supplies as a surface covering. The earthworm is not the only drainer. The roo's of many plants not only descend deeply into the subsoils, but also fetch up from dep:hs where worms eould not reach supplies of material to mix with the superfieial coverinz; and so do the various insects which have their habitat in the soil, burrowing as they go, and castung, like the mole, the stnff behind then or upwards as they descend.

So far as I have examined soils, I am inclined to think that the earthworm is far more pientiful when asimal matter in a decaying state is applied to soils near the dwellings of man, or when his deposits are laid over those of the langer animals. As against the views of Hutton and Playfair, and as stated by Darwin, that the vege:able soil or mouid is always diminishing, I have to say it seems entirely the reverse; it seems to have had a be-
ginning, is increasing, and shall increase so long as vegetable and animal life covers the surface of the earth. This is nut the case where vegetation ceases to cover the surface, and the sun and wind get direct access to the surface ; any oil that may bave been formed there soon disappears. In such situations, until vegetation has again spread itself, all the carthworms that cuuld congregate there would only add to the decaying auimal matter, as live they could not, there being no food for them in the absence of vegetation and other animal matter.

Bonnington, Midlothian
James Metivin
I inclose an excerpt from Nature of January 3 (p. 213), which I saw in one of our daily newspapers. The ubservation there made is correct as to the absence of earthworms in the region mentioned, but the reason as-igned is, 1 think, ineorrect. It is well known to settlers on virgin soils in this country that in the first tillage of the ground they will see no earthworms. This is equally the ease whether they settle upon prairie land which has been swept annnally by fires, or upon wood land which has been cleared for cultivation and which has never been burned over. Even in the natural meadows called "beaver meadows," which one will chance upon in an otherwise completely forestcovered region, one will at first find no sign of the earthworm. Some sluggish stream is dammed by a colony of beavers, and the land flooded is eleared of trees by them. Alluvial deposits accumulate, and when the beavers have been killed or driven away the dam is destroyed by freshete, and the little stream regains its former dimensions, while the flooded ground, drained naturally, becomes a meadow covered with wild grass es nourished by rich depths of soil. But, until settlement and tillage by man, there is no trace of earthworms even in these most favourable localities. At first they are found about the stableyard, then in portions of ground enriched by stable manure, garden or meadow, till at length they may be found in all soils, either those cultivated or those pastured by tlomesticated animals.

For years 1 have been necustomed to go to Mukoka, in the Canadian Dominion, for shooting and fishing. This section is a wooded wilderness with numerous lakes and streams. It is still Governmental wild land, and in part unsurveyed for settlement. The frontier settlers there tell me that until a place has been inhabited for five years it is useless to search for the earthworm.
8, East Thirtieth Street, New York City, U.S.A.,
March 5

The Remarkable Sunsets

The following extract from a letter written at Auspaki, province of Vitebsk, Russia, may be of interest :-
"Fobruary 26 (Old Style), March 9
"February has been the coldest and the pleasantest month this winter, particularly the latter part of it ; frost from 5° to 12° Reaumur ; bright sunshine. Now we have been able to sce the roseate sunsets, which for at least three months bave been hidden by clouds. We are, however, so accustomed to brilliant sunsets here, that we might not have remarked them if our attention had not been directed to them. Here, generally, when the sky is clear and the frost severe, the eastern horizon is a misty blue, above which is a rosy streak melting away into the clear blue above. But these laiter suniets have differed from that in a great measure. The west has often been blood-red. and the eastern horizon has been rosy, not so much in a streak but in patches, which have sometimes been visible over head. At the beginning of the month 1 was in Riga, and found the river open below bridge; indeed, the navigation has not been elosed the whole winter. Snow there was none in Riga, and I naw them carting the most miserab'c ice for the icecellars; 1 think it was little more than six inches thick. We bave been favoured here; we have retained our snow, and have had, and still have, good sledge ronds. We filled the ice-cellar the day before yesterday, and the ise was more than a foot in thickness.
Sidmouth, March 24
THOUGH we are no longer favoured with the gorgeous sunsets which marked the autumn and early winter, yet two phenomena are still frequently visible which seem referable to the same cause as those splendid displays.

The first is the anutual white glotv in the nestern sky before
sunset which was an almost constant precursor of the brilliant and long-continued eolouring of the past months. It was very marked on November 8, the occasion of the first remarkable sunset, and it is still to be seen on almost any fine evening before the sun sets, though it is no longer followed by the vore striking phenomena.
The second is a decidedly unusual fink finge occasionally visible for some ten to twenty degrees round the sun when shining in a somewhat hazy : ky, the colour being brought cut with great distinctness if light cumulus cloud happens to Le par sing across it. I frat observed it about 1 p.m. on Sunday, Marchi 2, and it was very marked last Thursday (20th) between 10 and 11 a.m., and again on Friday (2lst) between 1 and 2 p.un., as well as on cne or two ohher days which I have not specially noted.
May not both be due to the gradual subsidence to a loner level in our atmosphere of the particles which at a higher elevatiou caused the wonderful colouring of the past months?

Hampstead, Marcb 24
B. W. s.
P.S.-Since first writing the above, I see in Nature that it was from March 1 to 3 that the fall of dust was noticed at Kilcreggan. Writing from the neighbourhood of London, it may be as well to say that the appearance is wholly different from any effect of London smoke (with which I have been familiar for nearly fifty years) both in colour and in being produced at a higher level than that of ordinary clouds.

"Curious Habit of a Brazilian Moth"

In Nature for May 17, 1883 (p. 55), appeared a letter entitled as above, by Mr. E. Dukinfield Jones, in which the author stated that he had observed a kind of moth in Brazil engaged in suching up water in large quantity through its proboscis. I may say that this strange habit is not confined to Panthera apardalaria, as I have observed tie same thing in two species of butterfly (Papilio orizabws, B., and Appias saba, F.), and imagine that the phenomenon is by no meaus rare. These two butterflies are very common by the sides of streams and damp places on the Ankay plain in Madagascar.

One morning while sitting by the side of one of these streams: I noticed the Papilio, which is an insect measuring about four inches from tip to tip of its wings, resting on the wet bank; and wishing to procure it as a specimen, 1 approached it as gently as possible, the creature being apparently so absorbed in what it was aboat as to be totally uuconscious of my proximity to it. Noticing strange and unaccountable movements-sundry jerks and probings with its protoscis-1 quietly sat down near it to watch it more closely. I observed that every second or two a drop of pure liquid was squirted (not exuded merely) from the tip of its abdomen. I picked up a leaf that was lying near, and inserted the edge of it Letween the insect's body and the ground so as to catch the liquid. Unfortunately I had no watch with me at the time, nor means of measuring liquids; but I reckoned that about thirty drops were emitted per minute. I held the leaf for about five minutes-as nearly so as 1 could reckon-and at the end of that time there was caught in it about a saltspoon full of what seemed to be pure water, without either taste or colour. After watching the butterfly for a time, I seized it by the wings between my hhumb and finger with the greatest ease, so utterly lost did it appear to be to what was going on near it.
In another spot I saw as many as sixteen of these large butterflies within the space of a square foot, all engaged in the same strange action. Some of them emitted the liquid more frequently and in greater quantity than others; and one of them squirted the liquid so as to drop fully a quarter or a third of an inch beyond the point on the ground perpendicular with the end of its tody. It was at tbis spot that I saw the second of the butterflies alluded to also engaged in the same curious proceeding.
Antananarivo, Madagascar, January 3
R. Baron

Representation of Students

THE students in residence at Girton College are indireetly represented by the members elected by the "certificated students," but cannot tbemselves, whilst they are in the condilion of undergraduates, elect a representative on the governing body.
The College Hall of Revidence has advanced one step further in the tame direction by offering direct representation to students. in residencr, and it is this new departure whicb was mentioned in Nature (vol. xxix. p. 388).

Ever since the establishment of Girton College, students in residence have valned their prospective right to have a volee in the management more dearly than would generally be credited, and have held that Girton stood first among' colleges for women partly because it conferred this dignity upon its students.

But the dignity conferred by the actual enjoyment of a privilege exceeds that conferred by a pro-pective right to the same privilege.

Another Certiftcated Student
of Gerton College

"Suicide" of Black Snakes

In Nature, March 13, p. 452, Mr. Edward HarJman, Government Geologist of t'erth, West Australia, mentions an instance of the saicide, by its own venom, of a black snake. The snake had been wounded, and, the wounded part having reen attacked by black ants, "it instantly turned short round and hit itself twice on the neck with seeming determination; ia less than one minate it was dead." Mr. Hardman believed the death to be due to its own venont.

He recordsfurther instances, which, though he had mot wituessed himself, had been related to him by those who had wit. ne sed the facts.

I believe it to be a generally accepted opinion a vong thanatophidiologists that, from what is known of the virulent properies of saake-poison, though fatal to man and other living beings, it is innoxious in its effect, to serpents of like nature. Sir Joseph l'ayrer, a great anthority upon this question, has said : "Strange to say-and this to me is one of its greatest mysteries-: snake cannot poison itself or ore of its own speciec, scarcely its own tongener, ani only slightly any other genns of venomons snake, but it kills innocent snakes quickly" (addrese on "The Nature of Suake-Pois m," delivered at a meeting of the Med cal Society of London, January 28).

The glands which secrete such venom draw their secretion from the blood; that blod, theref see, must have within itself, as part of itself, the elements which constitute its virulence, and sannot therefore be injuriously affected by a further introduction of these ele nents. Their presence in the blood gives to this vital flaid a power whereby an immunity is obtained, somewhat similar to that which vascinati n and syphilisation give to human leeings, and which the vaccination of the culivated virus of anthrax, of rinderpet, of fort and-mouth disease, gives to animals.

It may, however, happen that the climate of Au-tralia has a opecial action producing effects different from those observed in India, and, if so, requiring close investigatio in and study.
The question becomes an interesting one, and, if philosophically prose:uted, may elicit facts which would give to this instance of venom envenoming itself a significance and an established position in the history of natural science.

James Donnet

Unconscious Bias in Walking

Titirty or more tests in nalking, with closed eyes, on a nearly level lawn lightly covered with newly-fallen snow, gave the following results:-My ra ural gait, in which I step a half 10 three-quarters of an Inch further with my right foot than with my left, always produced a sharp curve to the right Whenever the step made by either foot was about three inches greater than that made by the other my course was sub-tantially straight. A curve to the left always resulted when either foot stepped more than three inches further than the otber. Unnatural toeing out of either foot did $n t$ change the result. My right ara is threequarters of an inch longer than my left, but my legs are of equal leng'h. Both limbs on my right side are stronger and mure skilful than those on the leff. When but a single action is required, it is my right Arm or my right leg that prefers to perform it. When two actions are necessary, the right side chooses that requiring the greater skill, leaving to the left the plainer work, regardles of the power demanded by it. Thus, in mounting a liorse, or leaping across a ditch in the ordinary manner, I spriag trom the left foot; yet if 1 am to land on the foot from which i start, I can hop higher and farther with my right leg. I can also lift a greater weight wi.h it ; and can lower myself to, and raise myself from, a kuceling position with the tight leg alonea feat timpo-sthle for me to perform with the left. In my case, at least, the division of labour is decided by skill, and not by trengtl: The efact, e nsidered in counsection with the further
observation that in walking the foot which for the time being supports the person does not rock into a pusting position until the other foot has completed its forward motion and is ready to drop to the ground, incline me to the opinion that walking is a reaching rather than a pushing proce:s. Perhap; photography may help to decide this point.
J. E. Smith

New York, March to

Recent Weather in North America

The icestorm, as we call it, which we have lately experienced, seems to call for a permanent record. It began at about $4 \mathrm{p} . \mathrm{m}$. on the 7th inst., and until $t 2$ noon of the following day there was a constant drizzle or rain, the thermometer being a few degrees below the freezing-point. The amount of the rainfall at the surface of the ground was :'to incher. As the rain fell upon the trees it soon formed a coating of ice upon every exposed branch and twig, and this grew thicker and heavier until saplings were bent to the ground aud large branches were broken from many trees over a wide area of country. The wind blowing gently from the north, the coatin; of ice was much thicker on that side of each $t w i g$ or branch. Fences were decorated with long icicles hanging at a decided angle towards the stuth. Telegraph wires were so heavily loaded that many fell, and some of them, besides the coating of ice, had a most curious decoration In the shape of little icicles hanging about two inches apart, some of them appearing horizontal, and some (it is said) aetuilly printing vpwards. The storm is reported as having ex'ended over an area of some 23,000 square miles. It was not imuediately f llosed by a thaw, which might have relieved the trees of their load; a gentle precipitation, parlly of snow and partly of sleet, took place at intervals from $5 \mathrm{p} . \mathrm{m}$. ot the Sth till early in the morning of the soth, the temperature remaining below freezing. The view on the 10:h, when the clouds broke away and the sun shone on the trees, was heautiful beyond deceription, but the most remarkalle effect was that produced by the moonlight on the evening of that day.

In order to gain something like a accurate idea of the amount of ice which had frosen on the tries, I made meavurements of a number of twigs taken from the extremities of branches, in order to compare their diameter ia their natural state with that they had when covered with ice. Some of the figures may be of interest. One twig 'It of an inch in diameter was enlarged to 73 ; another of the same size to 84 ; one of 12 inch diameter mea-ured 84 with its ice-covering, and another of 12 inch measured $\mathbf{I}^{\circ} \mathrm{O} 3$; one of ' 88 diameter had become $1 \cdot 21$, an I one of 28 had become 107 . The largest ratio of increase which I found on a tree was in the case of a twig "O9 of an inch in diameter, which had attained to 97 , having gained nearly nine times its original diameter. But some upright stalks of weeds standing ahout eighteen inches above the ground gave still larger proportional mea.urements. One $5 / 100$ of an inch in diameter now measured 87, and another of $4 / 100$ of an inch mea sured 8.85 , having increased its diameter by more than twenty times.

I made another estimate of the quantity of ice on the trees by breaking the ends of some branches from an apple-tree and weighing them with and without the ice that coated them. It appeared that wood which weighed ten ounces was carrying ice which weighed sixty-nine ounces.

Perhapt it should be noted that the ice did not freeze on the twigs or stalks so that the cross-sections would be exaetly circular, and that the measurements made were those of the largest diameters in the several instances.

Prof. Brochlesly writes to the papers of a similar storm many years ago, when a piece of branch weighing four ounces carried four founds of i.e.

Samuel. Hart
Trinity College, Hartford, Conne, March it

EDUCATION IN THE UNITED STATES:

ASUCCESSFUL effort made to meet a strong desire that this Report should be brought out sooner enables us to call attention to it in less than twelve months after the last, but, as in material food so in the case of the many reports embodied here, thorough digestion has been essential.
1"United States Reporl of the Commissioper of Education for the Year 188r." (Washngton: Gevernment Printing Office, 1883.)

An additional interest, moreover, is lent to this Report by the working up of the information supplied by a Compendium of the Census of 1880 . Here are given very full particulars of the changes in distribution of population during the last ten years, and of the amount of education still required by its various classes.

As to the former we may mention in passing that the Report calculates that more than half the English-speaking people of the earth live now in the United States, which in size and population has become the fourth nation of the world. Rather more than one-eighth, six and a half out of fifty millions, of its inhabitants are immigrants ; and a singularly similar proportion exists between the coloured and the white population. Emigration is a stream westwards, not only across the Atlantic but across the continent of America. While $1,211,000$ of the population of the State of New York were immigrants to it, 882,000 had emigrated from it. Nearly 10,000,000 out of $43,000,000$ of natives had moved from the States of their birth to other States. It would seem to an Englishman in his own land that this "unsettled " state of the country must loosen all the feeling of attachment to the soil suggested by the word "home"; but it must, as the Report describes, tend immensely to consolidate the widespread territories; and it certainly suggests the fairness of the great work of education being made a national and not a Staie function.
Of the emigrants from Europe there were twice as many from Ireland as from Great Britain, but the Irish were equalled in number by the Germans alone, and the cotal Teutonic immigration in proportion to that of 1rish was as 40 to 18 . "The preponderance, therefore, of Celtic methods and ideas among our inmigrant population is at an ent, at least for the present. The German, Scandinavian, and British elements will exert an everincreasing Teutonic influence, and will form a strong, steady, and sensible influence to counterbalance the volatile and brilliant qualities of the lrish blood. Not the least among the attractions which have drawn to America the Swedes, Danes, and Norwegians whose steady industry and stalwart vigour is felt with immense effect along the northern border States and Territories, are the schools, to which they give their hearty support. In these schools they find less of class education in America even than in Germany, where the children are separated, the high from the low, the rich from the Foor, at the entrance into the school-room ; instead of the social intercourse, the common interest, the mutual enjoyment which may be the result of the American public school." Nor is all the advantage to the immigrant only. "The influence of the Germans has been exercised in behalf of better methods of primary instruction, thorough training, and high standards in the intermediate and higher grades, the introduction of the German language into the schouls, and science training, especially as related to the development of our internal resources." Much do we want more of a similar element in England! Much information is condensed in sixteen diagrams or qutline maps showing at a glance various results of the census.

A list is given of $251^{\text {" }}$ cities," towns, that is, containing over 7500 inhabitants. Belonging to these are-

$$
\begin{aligned}
& 17 \text { per cent. of the population; } \\
& 26 \text { " } \\
& 33 \\
& 49 \\
& \hline \text { " } \\
& \text { " } \\
& \text { " annual school income ; }
\end{aligned}
$$

Nothing can speak more strongly than the above figures of the advantage to education afforded by the concentration of population such as is the case in England. Even in a country where the rural population forms five-sixths of the whole, and is felt to be of vastly greater importance than it is in England, only one-half of the school property and two-thirds of the ncome is devoted to them;
whereas, to secure equal advantage to the scholars, these profortions ought to be more than reversed. As it is, a rural school and an ungraded school are almost synonymcus, and more exact reports from each State of their efficiency and means are strongly urged, and their wast of trained teachers regretted. But even in the cities the population keeps abead of the provision of "sittings," till New York already requires over 50,000, and Brooklyn and Chicago over 30,000 , more than their present supply. The latter has been driven to the certainly unhealihy practice of "double divisions," teaching, that is, one set of children after another within twenty-four hours. Very far, therefore, are these large cities from carrying out the suggestion here guoted from the London School Board, of providing schools beforehand for increasing population.
The excess of female over male teachers has become a national characteristic, and our Report accounts for it not only by the superior attractions of pioneer life for the men, for it is the case even in States where men largeiy preponderate ; but also by the industry and intelligence which have become the inherited tendencies of the women of the Northern States. In the colleges, accordingly, we note that just over ten thousand women are being coeducated with men, and " the experience of these institutions shows that co-education is entirely practicable, and is recommended by their officers upon considerations of economy, its agreement with the conditions of family life, and its practical results." The equal capacity of women with men for higher education, our Report asserts, has been conceded both in Europe and the United States; and it quotes elsewhere the large increase of female pupil-teacbers in England compared with the corresponding increa:e in males. Extra care has been given to the reports on this subject, both on account of the attention directed from other countries upon the United States and also beeause it may well form a standard of social progress. But the "meagre wages " of which the Report speaks are illustrated by the fact that even in Pennsyliania, where excellent provision is made for the examination and appointment of teachers, the average salaries for men were about 40 , for the six months' teaching required in the sear, and 33/. for women, while in Alabama the average was only 20/. A large increase in the number of female students at the normal colleges shows, however, that these wages are not to be spurned, if they do not attract the highest talent desirable. PII Bills introduced into Congress agree in providing that a large part of the national aid proposed shall be applied to the increase of teachers' salaries. It would seem, however, that the difficulty of the thinness and dispersion of the population causing schools to be small, and therefore education per bead costly as well as inefficient, is rather increased by an unwise feeling of independence which objects to be joined with neighbouring district:, even where distance allows it. To gratify this same feeling, also, the State Government, after lasing down wise and complete rules, has left in some cases to the school authorities and to the people themselves in each city or town, the whole practical control of the work. It is like passing an Act of Parliament without making it the duty of any body of men to see that it is enforced. A State supervision is a step towards centralisation, which is, no doubt wisely, recommended strongly by our Report.
The desirability that curriculums should be laid down by the central authority is quo:ed as the experience of the worlf, and of Belgium particularly, where, whenever the schools have followed definite programmes, progress his been marked, while in schools in which the whole matter has been left to the teachers routine has prevented it.

The long recesses, caused in a new country by the scarcity of labour during harvest times, so shorten the educational year that while on the one band it is felt that not enough is provided for in the curriculum of most schools, on the other hand, time is too short to allow the
effective teaching of what is already there. The Report remarks that it is impossible to examine the various courses without being struck with the general neglect of elementary science ; adding that "the rural schools would seem to be favourably situated for the study of nature in some of her varied aspects. The well-known effect of such study upon the mind, its value as a resource to the individual, and its relation to the tendency of modern thought, are so many reasons for its introduction into these courses."
The higher classes, we are told, are working harder at the schools, but the key to the reports from so many States in which population as well as cost and efficiency are said to have increased while attendance has not, evidently is that a class is rapidly increasing in America now who make no demand for education and do not appreciate it. The chief of the four recommendations with which the Report ends is the appropriation of more national land for the purposes of education in impoverished portions of the country. Yet the special reports of New York and Connecticut show that ignorance is not caused by want only: for the reduced attendance is accounted for by commercial prosperity and demand for labour, during which a bard-struggling population is tempted to forsake school in order to earn money.

Maryland reports great illiteracy among both blacks and whites, and shows a decrease in everything except expenditure. North Carolina is much more satisfactory, partly through the help of religious bodies, who are inaking great efforts for the benefit of the negro, whose education remains the difficult question of the United States. More than half as many more black children are uneducated in the whole Union than white ehildren. From the Report it is evident that many of the Northern States feel that they are already heavily taxed for the support of their own schools. Yet their wealth is immense compared with that of the Southern States ; the Report quotes personal property and real estate as two and a half times greater per head in the three States of New York, New Jersey, and Pennsylvania than it is in the south. Again, it is a small class in the north that does not appreciate education, but in the south not only is the negro himself careless about it, but there is often to be found among the whites a bitter hatred of the educated black. It is absurd to leave a difficult and costly matter like his education in the hands of his late masters, and expect them to both do it and pay for it ; and the only practical method is, as our Report recommends, for the nation to establish and maintain good schools in the face even of hostility. In some places where the Peabody Fund is pushing the work on, the negro is better cared for than the white child, but its administrators cannot undertake the education of a whole people.

The endeavour to make elementary science a feature of the higher grade schools has revealed the same difficulty as has been pointed out at home, viz. the lack of teachers prepared to give the instruction. "The lifeless routine of memorised recitations is worse than useless in science. It paralyses the faculties by which the facts of science are apprehended, and renders true progress impossible. This is a matter demanding attention in normal schools." In a few cities special means have been provided for meeting the emergency. In Boston, courses of lectures were given successfully by the professors of the Institute of Technology upon different branches of natural science, designed to meet the want of teachers ; and a similar course before the Teachers' School of Science, on physics, zoology, botany, and geology, were well illustrated by experiments and specimens, and attended by 400 teachers, the entire expense being borne by two ladies. The Lawrence Scientific School, Haryard University, teaches all the principal sciences experimentally, students being assisted also by scholarships. Many women in the normal col-
leges are now giving special attention to them. A branch specially recommended to be taught there is the laws of health. Of all agencies these normal schools can do most to promote the systematic training of the body. A gymnasium, the study of physiology, hygiene, and sanitation are urged as invaluable to teachers, and it is to them that we must look in some measure for the diffusion of knowledge with reference to the laws of health. A quotation from Dr. Schrodt is made, almost equal to saying that every boy when he leaves school "ought to be either a fool or a physician"! The laws of health should be made as familiar to the minds of children as the rudiments of language and numbers. We are glad to note in Prof. Hitchcock's report on college hygiene that he recommends simultaneous care of the digestive organs with relaxation of mental effort, rather than violent exercise, for students. A larger number of the training schools report laboratorie", museums, \&c., and the Bureau urges the usefulness of an educational museum from which it would circulate illustrations of the most improved appliances.
Passing to more specialised education, hardly any schools have increased in every way more than commercial and business colleges; there were one-fourth more establishments and scholars than in the previous year.
Kindergarten schools had more than 60 per cent. more scholars. They may well be supported if they carry out all that their programme lays down, which includes, and indeed places foremost all that ought to be the work of home, and uses the word education in its very widest sense. The training described in the normal kindergarten schools surely must wonderfully assist all the students in their future duties as mothers; and an orphan in the care of one of these schools, many of which are carried on as charities, is hardly to be pitied !
Two fewer colleges, but more property and greater teaching power, with 3000 more students, shows that the multitude of these institutions in the United States is being checked by natural selection, while greater efficiency is found among the surviving fittest. Much interchange of the inhabitants of the various States to the Universities of others takes place. There is happily hardly any local feeling in favour of attending a college in the student's native State, and there could hardly be a more unifying action upon a population like that of the United States than this of students meeting from all points to disperse again and take influential positions in all quarters.
At Harvard College the President remarks that the scientific turn of mind is comparatively rare among the young men who enter the college, a large majority of tbe students preferring languages, metaphysics, history, and political economy to mathematics, physics, zoology, and botany-perhaps the result of the training in the secondary schools. But studies made to a great extent elective have not led to the choice of those requiring least effort. Many more selected scientific subjects in their scnior than in their junior years. At Columbia College geology was elected by every member of the class, and astronomy by all but one. About three-fifths selected chemistry, twofifths philosophy, and one-fifth political economy. Studies are thus selected in harmony with tastes and proclivities, and pursued with interest and satisfaction. "The mental discipline incident to the study of chemistry especially entitles the science to take a place among advanced courses of study, a truth recognised by many collegiate institutions, both by giving the science increased attention in fixed courses, and also by placing it on an equality with classical and mathematical studies when the elective system has been adopted."
Well worthy of the attention of all friends of technical education in England are the numerous efforts to carry out the same desirable ends in the United States. A school of applied science bas been organised at Cleveland, Ohio, or this purpose. "The course of study will
be four years in length. One half the time will be spent in a careful study of mathematics, chemistry, physics, modern languages, and the methods of scientific research, the other half in professional studies in some department of applied science, as mechanics, in which are unfolded the laws of natural forces underlying processes and existing in materials. Mathematics has given the rules of calculation ; drawing, a skill of eye and hand; and shop-practice, familiarity with actual labour accurately performed." Fourteen similar institutions during the last ten or twelve years have been started, but in all of them, as may be expected in a new country like America, the great demand is for knowledge in the arts of working wood and iron; the former is taught from felling the tree to cabinet-making, and since little of such work can be done without the aid of the companion art of working metals up into tools and machinery, they are, in varying proportions, taught together in nearly all. Several schools report that the time-in some cases two afternoons a week-assigned for shop-work did not diminish the intellectual tasks required. Rather less ambitious in its aims, but excellently practical, is the Worcester County Free Institute, founded by some gentlemen of wealth for the training of boys for the duties of an active life, " broader and brighter than the popular method of learning a trade, and more simple and direct than the so-called liberal education." The education there is based on mathematics, living languages, physical sciences, and drawing, but the distinguishing feature is the method and amount of practice in a machine-shop. A manual training school also at Boston and a school for miners and mechanics of a little lower grade still at Drifton, Pa., are schools in each of which an increasing proportion of time is devoted to technical subjects, in the latter entirely free.

On the whole, nevertheless, with seven and a half million dollars bequeathed for educational purposes during ${ }^{1881}$, our Report regretfully remarks this year that the "claims of science do not seem to be sufficiently regarded by the benefactors of learning." While these various schools of science have increased in number slightly, and teachers and pupils by about one-tenth, schools of theology, though similarly increased in number, have lost one-tenth of their pupils.

Like the higher colleges, the schools of law have fallen off in number, but they contain more pupils. The influence of their work as affecting all future legislation in the States, and therefore the importance of their pupils being grounded in the science of legislation and not learning it in offices only by the rule of thumb, is wisely urged. Here it is history which is chiefly required to underlie "technical" training. Still more must every one fcel the necessity for a high moral as well as mental standard in a profession that has in these days gathered such despotic powers to itself.

Many weighty remarks, similar to those we referred to last year, on the insufficiency of the medical course of study, are to be found in this Report. The necessity of elevating the standard of medical education is universally admitted, and a general improvement to some extent is noted. It is evidently entirely in the hands of the Universities, for themselves report that, where the standard has been raised, students have by no means fallen off, but the reverse; and medical men know well that where diplomas differ in standard, the highest are well worth working for. The importance of the degree to this profession is also shown by more being taken in medicine than in anything else, and more in medicine and science together than in letters, law, and all other subjects.

Un no point does England show to such disadvantage by the side of the United States as in the matter of free libraries. It is the more inexplicable because the marvellously, not to say unfairly, cheap literature there, together with the scattered habitations, would each tend
to every man's house being his library ; while in England the exactly reverse conditions of costly books and closely packed population must make free libraries a most convenient arrangement. Yet in the United States seventyone additional libraries with 178,000 volumes were started in 1881, making up nearly 4000 libraries with $13,000,000$ volumes. "The true aim in the admini-tration of these libraries should be to make the books in them accessible and useful to the greatest number of readers. The time has passed when the preservation of a library was the chief end of its economy. Methods of arranging, classifying, numbering, and charging books affect materially the usefulness of any collection." It well deserves consideration what an influence for good or for evil 4000 librarians guiding the tastes of their readers to one or other class of literature may have. A further step also is being taken in many places. Librarians and the trustees of libraries generally are trying to cooperate with teachers and parents both in selecting and supplying literature for the young; the librarian and the schoolmaster together choosing a number of volumes from the main library to be circulated at the discretion of the latter among his scholars.
An interesting matter for discussion is the principle again laid down by this Report in its remarks upon the defective classes, that those deficient in natural powers, as the deaf, the blind, have as good a right to their education as those with a sound mind in a sound body; that it is a duty and not a charity to educate them effectually. The necessity of a "technical" education alsn, in their case, i.e. teaching them a trade as well as "letters" is clearly urged. This is carried also with success in some cases as far as a college education, and the late President Garfield complimented the authorities of the Deaf-mute College at Washington upon their presenting so many more capable men to the State. This is, in bare fact, true of the college's work; but, like the view taken of much benevolent work, it seems to forget that the same amount of power bestowed upon better material would have done much more for the State, and that this better material is never scarce. It is taking much safer ground to base it upon benevolence which, like the "quality of mercy," will bring a blessing also to the giver.
There are fourteen institutions for the benefit of feebleminded youth. Our Report pleads for them that money spent on their education will be more productive than that spent on lunatics. The census of 1880 reports 76,895 idiots and 91,997 insane. Inquiry into the cause of such large numbers in a country where overcrowding ought not to be necessary, and the fact that 14 per cent of them had a weak-minded parent and 20 per cent. a weakminded relative, raises a doubt as to the good in the long run of relaxing the natural check to the survival of the unfit. That 33 per cent. of the parents are addicted to drink is, alas, a too natural explanation to us in England. There can be no doubt that it would be not only wise State economy, but it would bring very valuable scientific evidence upon the most home-reaching of subjects "to attach to all appropriations for charitable purposes an enabling clause that institutions disbursing this charity should contribute to the commonwealth, in as precise a form as possible, statistics of the origin of the evils they affect to relieve."
Reform schools on the excellent plan of the celebrated Michigan one at Coldwater are increasing in number, and one for females also has been opened in this State at Adrian; and while the argument from benevolence is even stronger for their inmates than for the weakminded. the economical objection is far weaker, as the morality of colonies like Botany Bay shows that moral infirmities, when not carefully cultivated in gaols and prisons, are not so deeply set. Again, while natural checks have a tendency to eradicate weak mental powers, they act much more slowly, if at all, in crowded cities against diseased
morality. It is therefore the more necessary to expend money and labour upon the victims of the latter, as is the special aim of the New Jersey State Reform School. The high aim of the Female Industrial School in this State is "to make it such a home that any parent having a wayward daughter may with confidence have her eommitted for reformation with the assurance that her surroundings will be of an elevating character." The risk of putting a premium upon vice is easily guarded against where private feeling is not allowed to rule.
The system of public instruction in Outario (Canada) is so highly approved and has been so successful that a detailed account of its principles and organisation is given here ; and the lucid, concise résume of the work of other countries supplied in this United Siates Report would be valuable to many a reader in Europe who has not the time or the taste to go througb the more lengthy documents published in his own country.
W. ${ }^{1}$.

PATHOLOGICAL ANTHROPOLOGY

ANEW and important departure in anthropological studies is taken by Prof. Klebs of Zurich in a paper "On the transformations of the human race as a result mainly of pathological influences," read at the recent meeting of the Swiss Scientific Association at Freiburg, and of which we give the leading points. Hitherto pathology can scarcely be said to have been seriously considercd at all in the speculations of anthropologists on the evolution of the fundamental humin types. Monogenists especially, deriving all from one primeval stock, have sought an explanation of present varieties mainly in out. ward causes, such as diet, social habits, climate-in a word, the environment. Now the learned Zurich professor attempts to refer existing varieties rather to inucard causes, without of course pretending to deny that these may themselves ultimately to a large extent depend on external conditions.

Prof. Klebs starts with the assumption that the form of the human boty cannot be endowed with greater elements of persistence than other varieties of animal species, which may be modified either naturally or artificially, as, for instance, by stock-breeders. Thus, by the laws of heredity, individual characteristics may be blended together, and give rise to new forms within the several specific groups. The intermingling of races amongst civilised peoples tends in this way, not to universal uniformity, but rather to an endless multiplication of forms. But, besides heredity, these results may be brought about by other influences which make themselves felt, especially during the period of growth, and in a less degree in later years. Such are the deformities associated with certain pursuits, the typical and special characters of certain social circles, the aristocratic, agricultural, and other lypes, familiar examples of which are offere 1 by the lettered, labouring, and criminal classes.
1s may concluded from this decided tendency to var ation t'at the botily furms, like all other । lienomena of the organised world, are subject to continual modificatien. that they are essentially plastic, sensitive to, and perpetuating the traces of all external influences. Thus the Danish anatomist, S chmidt, finds that the numerous crania recovered from the frehistoric graves in Jutland and the neighbouring islands present the most varied anthropological types, ranging from that of the Neanderthal skull to those of forcign races, which can scarcely be supposed to bave had any direct contact with the Danish aborigines.
But amongst the causes producing structural change, none, according to Prof. Klebs, are more effective than pathological affections. It is now well ascertained that the most prevalent ailmente, and especially those of an infeetious charazter, are of a parasitic nature, so that their diffusion takes the character of a struggle for exist-
ence between two organisms. Henceforth it becomes possible to study the action of these phenomena on racial and specific transformation.
But modern anthropology has approached this question only from one point. It recognises that within a given population, limited to a definite territory, typical teatures may be produced, such as those observed by Virchow amongst the Frisians and by Ranke amongs the Bavarians. Yet the former refuses to attribute to rachitis the flat shape of the East Frisian skull, altbough analogous deviations from the normal German skull are elsewhere also produced by rachitis. A whole series, however, of pathological phenomena have been determined which place in the clearest light the connection bet ween structural change and internal affections.
Cretinism at once suggests itself, the domain and nature of which are best defined by describing it as a malady spread over the Central European highlands, and probably connected with the action of certain upland waters on the production of goitre. It has been found that in Bavaria, Switzerland, and Austria these waters contain certain minute infusoria, which, when introduced into the waters of disaffected localities, produce like effects on the inhabitants.

The bodily structure of cretins, resulting from a prema. ture arrest of the growth of bone, recalls in the most vivid manner the descriptions of dwarfs handed down by popular traditions. Hence it seems not improbable that this degeneracy may at a given point have resulted in the formation of a definite, although possibly not permanently fixed, type. A slight general influence of cretinism ma) still be detected in many places, as in Salzburg, and especially in Pinzgau and Yongau, where the natives present a striking contrast to those of their kindred, who have been driven by priestly intolerance to quit their homes and settle in the North German lowlands.

The opposite deformity, that is, excessive growth of structure, is also met in upland regions, where its presence recalls the legends of giants who usually dweh in the same districts as the dwaris. In fact the greatest irregularity in the length of the body occurs in the higblands, although mountaineers are, on the whole, of shorter stature than lowlanders. Thus the natives of Hasle, in the Bernese Oberland, and those of Elm, in the Canton of Glaris, are above the average height. This has suggested the theory of foreign immigration, a theory, however. supported only by a few local geographical terms of somewhat doubtful origin. In reality this deformity ma: also depend on pathological causes. At Elm a case has occurred of gigantic growth setting in at the late age of thirty-six and continuing till the death of the snbject in his forty-second year. Although we may be still ignoran? of the first and true cause of this disorder, the existence of analogous cases in the same localiy, the unusual sire of the inhabitants, and the established fact of gigantic growth in highland regions, all seem to point at some subtle relation between such pathological phenomena anc the nature of the soil. They should perhaps be regardec as due to the action of organisms in the system, as bas been shown to be the case with cretinism.

Another series of pathological sy mptoms is associated with the development of the pigments, which have hitherto been considered as a salient cbaracteristic of races. A distinct relation has already been established between pigmentation under certain pathological conditions, such as the so called "bronze-skin," and a morbid state of tbe supra-renal capsules. Since then special attention has been directed to these organs, which would appear to be the chief centre of pigmentary development. It is no found that in the dark races, as among swarthy individuals of the fair races, the medullar portion of the supra-renal capsules is always pigmented. From this remarkable coincidence it may be concluded that to the functional activity or sluggishness of these vascular
glands are due the cbanges so frequently occurring in the colour of the hair and of the other cutaneous organs. Here also the pathologic action passes step by step from its most aggravated forms to its lightest phases, merging at last in simple physiological functions. The dark races, notably the Negroes, have had their origin in malarious regions, whose influense generates in serious cases a deposit of pigment or melanosis, occasionally manifested under the form of black tumours. The observations made by Prof. Klebs and others in the Pontine Marshes and Roman Campagna, show that the malaria is caused by a certain bacillus developed in the soil of those districts. Hence it may in this case be admitted that pathological actions of a comparatively mild form may exercise a modifying influence on the structural development of man. They should perhaps even be regarded as the true causes of the evolution of human types.

However crude and even unsatisfactory these views, they will doubtless serve a useful purpose by directing attention to a hitherto neglected field of research. They at all events reopen the whole question of the origin of human varieties, a question which cannot be considered as closed until monogenists and polygenist $;$ have reconciled their differences. The author's theory seems so fir to support the monogenist school, inasmuch as it tends to account for present diversity by natural causes, without the necessity of having recourse to several independent centres of human evolution. The weak point of the theory seems to be that these natural causes are themselves confessedly of an exceptional character. It requires us to believe that the human varieties were evolved under morbid, that is, abnormal, conditions. Before that conclusion can be accepted, it will be necessary to show tbat the normal conditions of climate, diet, and so forth, were inadequate for the purpose. Unless this is done, the normal will probably continue to be regarded as, cateris paribus, more efficacious than the abnormal causes.
A. H. Keane

THE GERMAN EXPEDITION TO SOUTH GEORGIA

THE following is an abstract of the report of the German Meteorological Expedition which was despatched under the international scheme to South Georgia Island, in lat. $54^{\circ} \mathrm{S}$. and long. $37^{\circ} \mathrm{W}$.

The Expedition, which was chosen by a Commission appointed by the German Government, consisted of the following members:-Dr. C. Schrader, chief, observer of the Hamburg Observatory; Dr. P. Vogel, sub chief, mathematical instructor in Munich; Dr. C. von der Steinen, physician and zoologist, physician at the Charité Hospital in Berlin; Dr. H. Will, botanist, of the Forest Academy; Dr. O. Claus, mathematician ; Herren E. Mosthoff, engineer, and A. Zschau, assistant ; and a few sailors.

The object of the Expedition was to effect meteorological and magnetic observations, and to study the physical condition and the flora and fauna of the island, as well, as far as permissible, to observe the transit of Venus on December 6, 1882.

The Expedition arrived at Monte Video on July 4, 1882, by one of the Hamburg liners, and left that place on the 23 rd on board the German man-of-war Mollke, after having adjusted their instruments and obtained a few domestic animals.

After twenty days' sailing the island was sighted; on August 20 the ship reached Royal Bay on the east coast. On the shore preparations were at once begun for removing the metre-deep snow, and erecting the dwelling house, 11×8 metres, two smaller houses for the mag. netic observations, an astronomical observatory, and a small tower. A house was also built for the cattle.

All the scientific member , with the exception of those
on the watch for reading the meteorological and magnetic instruments, met daily in the work-room from 9 a.m. to 12 noon, and from 2 to 6 p.m., to execute the scientific labours.

The instruments were read every hour, while the watches of the twenty-four hours were divided so that two members were on duty, the one from 3 to 9 a.m., and from 3 to 9 p.m., and the other from 9 a.m. to 3 p.m., and again from 9 p.m. to 3 a.m., and in this manner each member had two days' watch in the week. On the 1st and 15 th of every month magnetic observations were effected every fifth minute, and for one hour on these days every twentieth second. But the labour was not found to be at all too heavy.

The lowest temperature registered was $-14^{\circ} \mathrm{C}$. , and the bighest on one single occasion $18^{\circ} \mathrm{C}$., but the thermometer varied generally in all seasons between -5° and $+7^{\circ} \mathrm{C}$., so that the difference between winter and summer consisted chiefly in the length of the days. Once during the winter-in August-the phenomenon occurred of the thermometer during, with a heavy westerly gale, to $14^{\circ} \mathrm{C}$. The westerly and partly south-westerly winds were, during the winter, the warmest, which was ascribed to the circumstance that these passed over mountains some 2000 metres in height protecting the station on one side, which made them "Fobn-like."

The barometer readings varied between 715 and 770 mm . The lowest readings were never attended by violent storms ; these occurred always quite unexpectedly when the glass stood at "fair." The force of the storms, which generally lasted twelve to twenty-four hours, and reaching the island seven to eight times a month, was calculated by a splendid Racknagel anemometer. The tide was carefully measured by ebb and flood gauges.
Falls of rain or snow were very rare during the year, and the plateau surrounding Royal Bay was already, in August, free from snow, and became first in April, when the ground was frozen, covered with snow. It snowed, however, several times in the middle of the summer, as, for instance, at Christmas.
The most frequent winds were those from west and south-west ; the northerly ones always brought fog. In the summer the weather was nearly always thick and hazy, which greatly impeded excursions. Such were, nevertheless, undertaken several times, and the highest peaks of the arms-about 700 m .- of the chain of mountains running through the island were ascended. The central mountains range from 2000 m . to 3000 m . The climbing of the slate rocks was very difficult and fatiguing, and in spite of every effort the greatest distance covered was only about a German geographical mile, and the task of exploring the island was impossible of accomplishment, as the glaciers could not be passed by the small force at disposal. The mountains fell often abruptly into the sea, and the highest tops were about 15 km . from the station. The peaks of the above-mentioned arms were free from snow in the summer, and then covered with various kinds of moss.
The only rock found was clay-slate, in some places interspersed with varieties of quartz. Even the blocks carried down by the glaciers from the central part of the island-which was not reached-were of the same nature. No metals were found, but the slate rock contained a little iron; the quantity was, however, so small that it hardly affected the needle.
No land mammalia were found on the island, and ot maritime mammals only the sea-elephant (Phoca pro boscides) and the sea-leopard, the latter in very small numbers. They did not breed in the bay. Of birds there were several. Two kinds of penguins (Konig and Esel) visited the island in great numbers, making their nests there, which always faced the sun. The eggs were very delicious. During the pairing-season large quantities of Procellaria gigantea came to the island, whose eggs were
also very good. Procellaria capensis-the Cape Pigeon -was a summer visitor only, but was found in great numbers, hatching in little holes under the turf. This bird was so persecuted by a kind of gull that it only left its nest after dark. Another specimen of Procellaria also visited the island in the summer. It was named "Equinoxalis." There was only one kind of duck, and this became very scarce through shooting. The number of cormorants was very small, while the albatross (Diomedea) remained during the summer only, when it made its nest banging from the rocks. They had magnificent brown feathers. Of the white albatross only two specimens were seen, but the white Dominican gull was common. Some few of the Chionis alba-the Antarctic Pigeonwhich were eaten, remained during the whole year, as well as a singing-bird of the size of a lark.

The insects found were few, viz. only a species of land-beetle without wings, about one centimetre long, resembling the common German Lauf-käfer, and a waterbeetle of the same size. A kind of red spider was caught under big stones. Of lower maritime invertebrates a good collection was made, which has, however, not yet been classified. The greatest part of this was, however, obtained when the tide was out and no boat was necessary, and the dredging was unsatisfactory.

In the summer two species of fish were caught in calm weather, varying from 5 to 20 cm . in length. But none were caught during the winter. The Expedition collected only about forty species of land and water plants, among the former of which were several varieties of the Tussack grass, two kinds of moss, two kinds of fern, and a little shrub with leaves and red blossoms. The grass was ravenously consumed by the cattle and the goats, but the sheep preferred this littie shrub. Dr. Will is under the impression that he has discovered some new varieties.

The transit of Venus was seen in perfect weather, although a severe storm raged at the time. The ingress and egress were clearly observed, as well as the progress over the sun's disk, but no photographs were taken, as the Expedition was not furnished with suitable apparatus.

The island possessed, in spite of its desolateness, a beautiful Alpine nature, the tranquillity of which was only broken by the constant thunder of avalanches. The dwelling-house was comfortable, although it would have been more so if each member had had a separate room instead of its being shared with another. The provisions furnished to the Expedition left, however, much to be desired. The tinned Australian meat was tasteless, and the vegetables bad. The milk (in tins) only lasted six months, while the salt meat and fish, although good, were not sufficient. No fresh potatoes were furnished, the claret was bad, and the beer was soon consumed. The cook did wonders, however, in the way of culinary achievements. There was no case of scurvy, neither any serious case of illness. Some experiments were made during the summer to cultivate beans, peas, and potatoes, but they failed, as the shoots were destroyed by cold as soon as above the ground.

The Expedition left the island on September 5, 1883, in the German corvette Marie, but all the houses were left intact.

Four of the members of the Expedition returned home, but Dr. Vogel spent a couple of months in travelling in the Argentine Republic, while Messrs. Will and Claus are negotiating with the Argentine Government about taking the command of an expedition for exploring the course of the River Pilcomayo, in which the celebrated explorer Creveaux lost his life. Should their negotiations fail, these gentlemen intend to undertake a journey to the Brazilian province of Matto Grosso, and thence make an exploration of Central Bolivia (Santa Cruz de la Sierra), and eventually follow the watercourses of Mamore and Madeira into the Amazon River, and then the latter to its mouth.

ALLEN THOMSON

BORN in Edinburgh, April 2, 1809, Allen Thomson had nearly completed his severty-fifth year when he died on the evening of Friday last, March 21. He was the son of John Thomson, a distinguished physician, who was the first occupant of the Chairs of Military Surgery and of Pathology in the University of Edinburgh, and it is remarkable that both chairs were founded on his own recommendation. Allen Thomson graduated as M.D. at the University of Edinburgh in 1830 , and in 1831 he became a Fellow of the Royal College of Surgeons of Edinburgh. Soon after graduation he became an extra-mural Lecturer on Anatomy along with William Sharpey. The atmosphere of the Edinburgh school at this time was highly charged. A number of men, afterwards famous, were either students or extra-mural teachers. It is sufficient to mention the names of John Reid, John Goodsir, Martin Barry, Edward Forbes, William B, Carpenter, and John Hughes Bennett. All of these became distinguished in biological science, and amongst them in these days there was the clash of intellect and the rivalry of a noble ambition. None of these remaia except Dr. Carpenter, who must feel that the death of his friend Allen Thomson is the severance of another link connecting him with what was undoubtedly a brilliant epoch in the history of the Edinburgh medical school.

Dr. Thomson filled the Chair of Anatomy in Marischal College, Aberdeen, from 1839 to 1841, when he was appointed to the Chair of Physiology in Edinburgh. He held this office for six years, when he was transplanted to the Anatomical Chair in the University of Glasgow, which he occupied till 1877. Since then he has resided in London. Of his scientific honours it is unnecessary to say more than that they came without stint ; but probably the crowaing honour of this kind was when he filled the Presidential Chair of the British Association a: the Plymouth meeting in 1877.

Allen Thomson had a double career to a greater extent than most scientific men. He was not merely, br his own researches and by his well-known exhaustless stores of knowledge, one of the leading living authorities in the department of embryology, but he was an eminent public man, interested and influential in many matters of socral and scientific politics. In Glasgow for many years he rendered the city and the University invaluable service. By his energy and tact he contributed more than probably any other man to the great work of building the new University on Gilmore Hill.

But with all his public work he was a busy man in his own department. His early work brought him reputation as an embryologist, and he kept it up by many important papers in the same department of science. In addition he wrote on physiological optics, especially on the mechanism of accommodation, and on the sensibility of the skin. His writings were not characterised so much by brilliant originality as by facility of interpretation of the writings of others, and by a running commentary of his own, showing that he had repeated the observations he was narrating with the effect of adding a few facts here and cutting out what he believed to be erroneous there. His method of thought and literary style went both severe. He was always sceptical until convinced, and he strove to get from himself and from other, accuracy in detail. Hence he was inclined to be severe on new discoveries or theories, and whilst ready to listes was rather apt to quench the enthusiasm of a tyro by douche of cold praise. But still his mind was open and receptive, and in not a few instances he changed bis opinions under pressure of argument, which cannot be always asserted even of scientific men. Dr. Thomson always had a greater interest in embryological science than in any other department of biology, and none hailed with more delight the rise of the modern British school, ec
deplored more deeply the loss of its leader, F. M. Balfour. As an embryologist his fame will depend chiefly on the clear interpretation he gave to some of the descriptions of the German school, and to the application he made of these to human embryology. An adept with his pencil as with his pen, he gave expression to his views in diagrams that probably for many a day will help the bewildered reader. Thus, though his name will not be associated with any one great discovery, Dr. Thomson will be recognised as a potent force in bological science during this century. His own work, his judicious criticisms, his personal influence, his encouragement to workers, all had an important part in moulding the present state of scientific thought on biological questions.

As to the man himself, those who knew him can testify to the kindly courtesy, to the simplicity of address, to the indescribable charm of his manner, to the warnth of his friendship. He was wise in counsel and adroit in reconciling differences amongst men. To this he owed much of his social power. His finely-moulded and venerable face will be much missed, but not more so than his wise advice at the council board or to the yonng man who has chosen a scientific career. John G. McKendrick

QUINTINO SELLA

BY the death of Signor Quintino Sella, to which we briefly referred last week, Italian science loses one of her strongest supporters and most earnest students. Although some of the best years of his life were devoted to statesmanship, his early writings on mineralogy were of sufficient solidity to establish for their author a very high reputation. These mineralogical memoirs, contributed chiefly to the Royal Academy of Sciences of Turin, were distinguished by a profound knowledge of crystallography. When the Geological Survey of Italy was about to be established, Signor Sella was commissioned to visit most of the European countries where Surveys were in operation, and in 1861 he presented to Signor Cordova, then Minister of Agriculture, Industry, and Commerce, a valuable report, "Sul Modo di" fare la Carta Geologica del Regno d'Italia." In collecting materials for that report he spent some time in this country, and took the warmest interest in the work of the Geological Survey. Ten years later he prepared an elaborate report on the mineral wealth of Sardinia. When the International Geological Congress was held at Bologna in 1881, Signor Sella, as one of the most representative scientific men in Italy, was selected to act as the president; and those who had the advantage of attending that meeting carried away with them the most pleasant recollections of his courtesy. Signor Sella died at Biella in Piedmont on the 14th inst.

We direct attention to the letter from Prof. Hughes in connection with a memorial to the Italian savant.

NOTES

AT the final meeting, on Saturday last, of the General Committee of the International Fisheries Exhibition, the balance of the funds was disposed of. The surplus amounts to over 15,000 ,, and of this 10,000 . were allotted to alleviate the distress of widows and orphans of sea fishermen, while 3000 . were voted as an endowment to a society which is to be called "The Royal Fisheries Society," whose functions will be somewhat similar to those of the Royal Agricultural Society ; the remaining 2000 , are kept in reserve.
-Professors Martens, Mendeléeff, and Minaieff are to attend the jubilee of Edinburgh University, as delegates from the University of St. Petersburg, and Prof. Rokhmaninoff as delegate from the University of Kieff.

Tite great gold medal of the Paris Geographical Society has been awarded to the Deep-Sea Expeditions of the Talisman and 7 razailleur ; a gold medal to M. Arthur Thouar, for his j yurney across the desert of the Northern Chaco in search of the remains of the Crevaux Expedition ; a gold medal to M. Désiré Charnay, for his Central American explorations, and especially his researches in Yucatan.

A meeting of the Governors of the City and Guilds ot London Intitute for the Advancement of Technical Education was held last week for the purpose of receiving the Annual Report of the Council. The chair was occupied by the Lord Chancellor. The Chairman, in moving the adoption of the Report, said that the Institution had arrived at a critical point of time, at a point of time at which he might remind them of the progress which things had made, but one, nevertheless, at which it became necessary that they should recognise the importance of proceeding energetically. With respect to the Central Institution, the buildings were nearly completed, and it was expected that the pablic opeaing of those buildings might take place in June of this year. It was proposed that four profestors should be appointed to the Central Institution-viz. Professors of Chemistry, of Eagineering, of Mechanics and Mathematics, and of Physics, the whole being superintended by a Board of Studies. There would be laboratories properly fitted up, and workshops and drawing offices, all with a view to supplying instruction which would combine the elements of those fundamental studies which underlay practical art. It was hoped that, as time went on, the number of exhibitions and scholarships, which would enable poor and meritorious students to obtain the benefits of the Institution, might increase. It was estimated that 9000 , a year would be avalable for the maintenance of the Institution, and that the fees of the students would amount to 2000/. That would give 11,000 . as an expected present incoase. When the grant amounted to 10,000 ., and the students numbered from 150 to 200 , paying in fees 50001 ., the income would be $15,0 c 01$., and it was estimated that that amount would be required for maintaining the Institute in full working order. rassing from the Central Institution to Finsbury College, the Chairman said that the progress of that branch had been very satisfactory. During the past year it had instructed 799 persons, of whom 100 had been day students and the rest students attend ing the evening classes. The day students had to pass a preliminary examination in elementary mechanics, and there were six free scholars. The South London School had an attendance of 300 students. The candidates presented for examination this year were 2397, being an increase over the former year of 425 , and the passes were 1498, showing an increase over the forner year of 276. They came from 104 centres, showing an increase of seven centres; and they were examined, as in the former year, in thirty-seven subjects. What was still more remarkable was the rapid extension of the desire to have the benefit of these examinations, for there were now preparing for them 5862 students, being an increase over those who were under similar preparation in the former year of no less than 1814 . He recognised with gratitude the liberality with which they had been supported by the City Guilds and other bodies, and he could not but think that those who had helped them so far would help them still further. Since the report had been written, the Skinners' Company had increased their subseription for the year 188.4 from 500%, to 1000 , , and their donation to the building fund from 2000 , to 3000 l.

A correspondent sends us the following:-"The new scheme for examinations for admission to Sandhurst which has been agreed upon (it appears) by the War Office and the Civil Service Commissioners must, if unmodified, work serious mischief to scientific education in public schools in which any pro-
fortion of the pupils are loohing forward to the army as a profession. This will be seen from the following scale of marks, which has been communicated to the Committee of the Head Masters' Conference :-

	atics				Marks 3000
Obligatory Subjects (Three out of the four to be taken up by every candidate)	Latin				3003
	French ...				3000
	German				3000
Oprional Subjects (Onc only to be taken up)					

A glance at this table is sufficient to show that the authorities a e holding out a diffinct bribe to candidates to eschew the experimental sciences altogether; and whatever their intention may be, the result will be the reduction of scientific knowledge among utnre officers of Her Majesty's army to the lowe t pissible minimum. This is surely a retrograde step in these late decades of the nineteenth century. Nor must it be forgotten that the application of the same scheme to examinations for admission to Woolwich is contemplated. Not only will every candidate be indnced, if he can do so, to take up simply the four subjects in the first category, but, more than this, the scientific subjects (exclusive of mere mathematics) will only hereafter be taken up by those candidates whose performances in the more higaly rewarded subjects are hopeless-the scientific subjects, in other words, will become simply a refuge for mediacrity and incompetency. Men who are spending the best years of their lives in combating the traditional prejodices which exist In this country in favour of the older studies will not only feel that they have to complain of the tardy and grudging recognition which is given to the 'new icaruing'-they will feel now, and justiy 5), that they have been betrayed by those from whom, on every ground, they onght to be able to look for more encouragement."
Tue Worshipful Company of Clothworkers, who have already given 3500 . to the Bradford Technical Schorl, have also promised an annual subscription of $500 /$, towarls the working expenses of the school.

Dr. Doberck writes from Hong Kong Observatory, February 17 :- "The buil ling of the Hong Kong Observatory was begun in June 1883 , but only the foundations had been laid at the end of July, when I arrived. The main building, the arehisectural details of which do credit to the Surveyor-General's department, was so far finished by January I that I could take up my residence there, and tridiurnal eye-observations were commenced. Before the middle of the month the magnetic hut was ready, and I lost no time in making a complete set of magnetic observations. I expect that it will be possible to start the seif-recording apparatns by March 1. I get telegraphic weather information from the Treaty Ports, Nagasaki, Vladivostock, and Manilla, and publish weather reports, which, as you will see from one of the three newspapert which publish them (sent herewith) also indicate winds to be expected from the gradients."

Tue Belgian Royal Academy proposes for public competition the subjoined subjects in the mathematical and physical sciences: -1. To resume and coordinate the researches hitherto made on the integration of linear equations of the second order with two variables, aud to complete this theory, or at least advance it by further original research. 2. To establish by fresh experiments tite theory of the reaction of bodies in the so-called nascent state. 3. Fresh spectroscopic researches with a view to ascertain especially whether the sun contains or not the essential constituent prineiples of organic compounls. 4. A complete exporition of the theory of deviations from the vertical, and verifying
whether it applies to existing observations. 5. Fresh researches on the nutritive deposits in cereals, and especially on the transformations experienced by them during germination. 6. Fre-h researches on the developenent of the Trematodes, from the histogenetic and organogenetic standpoint. 7. A suady of the influence of compressed oxygen ou the vital phenomena. Medals of the intrinsic value of $32 /$, and $24 /$, are offered respectively for the best papers on the first three and last fonr suljects. The papers must be legibly written in French, Flemish, or Latin, and forwarded prepaid to M. Liagre, Permanent Secretary, Palais des Académier, Brussels. They are to be signed by a motto, which is to be repeated in a sealed note containing the authors' names and addresies.
In the American Yournal of Science and Artz, vol. xxiit, 2nd series, p. 276, a letter from Rev, George Jones, U.S.N., to Prof. Silliman, written at Quito, Ecuador, Decemter 13, 1856, describes a fall of ashes from Cotopaxi, which was thirty mile; distant, in which a purple sky was noted. The paragraph in which the mention is made rnns as follows:-" Yesteriay mornIng we noticed that at the south the sky had an unusual appearance, being of a purple colour for about 90° along the horizon, and so up to about 45° in height, the edge of this being mixed up with patches of white. About $12 \mathrm{o}^{\prime}$ clock ashes began to fall, first in small quantities; but by 8 o"clock the fall had got to be so considerable as to powder the clothe; quickly, on our going out ; and people coming into a house would look as we do at home when coming in from a snowstorm."

THE exploring expedition, under the direction of M. Kegel, the naturalist, has again left for Bothara on its way 1, Cbard-hui, Kelif Kabadian, and Baldshuat, whence it will procee 1 via the Pamir platean as far as the Kasbgar frontier. M. Schwartz, the astronomer, accompanies the expedition.

Prof, Osborne Reynolds will give a discourse at the Royal Intitu'ion to-morrow (Friday, March 28) on the Two Manuers of Mo:ion of Water shown by Experiments ; and Prof. T. G. Bonney, the President of the Geological Society, will give a discourse on Friday (April 4) on :he Building of the $\mathrm{Al}_{1}, \mathrm{~s}_{\text {. }}$

On Monday, at 9 p.m., a violent shock of earthquake, accompanied by a loud subterranean rumbling, was felt at Fiuafkirchen, in Southern IIungary. It was also felt in Esserg an ! all over Slavonia. It is reported from Vierno that a shock of earthquake was folt there as well as at Karakul and in the IssykKul district on the $13^{\text {th }}$ inst.

At one of the last meetings of the Russian Chemical Society. Pruf. Mendelceff made the following interesting communicatios nith regard to solutions:-It would be easy to prove, with the data of Gerlach, Marignac, Cremers, and Schiff, that the volume of a given amount of a salt in its solutions (for inttance, of a molecule) varies with the variations of temperature and the degree of concentration of the solutions. It increases as both increase; and it might be concluded therefrom that the forse on which solution depends varies with the degree of concentrativn. Still, another conclusion can be arrived a', if Grassy's meavarements of the decrense of volumes of NaCl and CaCl_{3} be taken into account. Interpolation shows that these solutions are redaced in volume, by pressure, as the amount of the dissolved salt varies; and the reduction of volume which accompanies the solution enables us to calculate the corresponding pres ure. It appears that to each m slecule of NaCl dissolved in 100 parts of water corresponds a nearly pe:manent pressure of abuat 120 atmospheres, whatever be the degree of concentration. For CaCl_{3} the pressure also remias constant, bat is nearly three tiases the above. Thus, if the tendency towards solntion be mearurel by pressure, it results, for the two sales above mentioned, tha: the first amounts of salt dissolved exergise th: sane pressure as
tie last which bring the solution near to saturation. Prof. Mendeléeff points out that researches parsued in the direction just unentioned could throw some light on the internal forces which are active in solutions an i other ehemical compounds.
It appears from the annual report of the Russian Chemical and l'hysical Society that the ebemical section has now 162 members ; its income, including several grants, reached 5734 roubles (about 570 .), and its capital $\mathbf{1 3 , 9 3 2}$ roubles, of which 7894 roubles were devoted to premiums. The physical section has ro3 members; its income reached $\mathbf{8 5 1}$ roubles, and its eapital 16,000 roubles.
AT the annual general meeting of the IIaekney Microseopical and Natural History Society held on Marth 19 at the Morley Hill, Hackney, a valuable microscope was presented to the honorary secretary by the menbers. The p esident, Dr. M. C. Cooke, in presenting the testimonial, made some highly eulogistie remarks upon the energy and unremitting attention given by the honorary secretary during the seven years of the existenee of the society, to which he ascribel its preient flourishing condition. A silver plate bearing the following in cription was attached to the instrument :-" Presented to Collis Willmott, Fsq., by nembers of the Hackney Microscopical and Natural History Society in appreciation of his services as Hon. Secretary, 19th March, 1884."
We have received from the Direction of Schools at Tiffis its annual report, and we are glad to recognise that education in the Caucasus-which is perhaps more independent of the Ministry of Public Instruction than other parts of Russia-is spreading more rapidly than might bave bsen supposed. On January I, 1883 , there were no less than 1168 schools under the supervi-ion of the Ministry, with an aggregate of $80,8_{3} \mathrm{~s}$ scholars, of whom 15,036 are girls. If the 60 Jewish and (923 Mussulman schools at synagogues and mosques be added-however low the degree of education given to their $18,6,47$ seh slars -as also 31 schools of various description, military, theoIngical, and lower medieal, the a tgregate number of scholars would reach 102,723. There is this (excepting the Jewish and Nussulman schools) one school for each 4880 inhabitante, surely s.lll a very low figure; but it is a little higher in the more densely peopled Northern Caucasus (s to 3050 in Kubau). Of the 1168 sehools above mentimed there were to5s primary schools, with $\mathbf{5 2 , 2 5 1}$ scholark, one.ffth of whom are girls; 33 higher primary schools, with 5213 scholars; 5 schools for teachers, with 500 scholars; 8 techuical schoo's, or Realschulcu, with 2312, and to lyceums, or half-lyceums, with 3555 :cholars. We see with pleasure that there were also 6 lyceums and 6 half-lyceums for girls, with the high figure of 3127 acholars. The distribution of education among different uationalities is very intereting. Of the above-mentioned 80,838 scholars, 46 per cent. per cent. were Ru -sians, 25 per cent. Armenians, 17 Georgians, and 5% Tartars and Circasnalus. With regard to the population, the proportion of Armenians receiving in truction is \mathbf{t} to 41 , while it is only 1 (i) 44 with the Russians, I to 75 with the Georgians, I to 350 with the Circassians, 1 to 85 r with the Tartars, 1 to 33 with Jews, and 1 to 7 with the Western Europeans settled in the Caucasas. Even in lyceums the Armenians (8 to 858) come first after the Jews (\mathbf{t} to 210) and before the Russians (1 to 866), while only 1 to 11,237 Circassians, 1 to 9352 Tarlare, and i to) 1246 Georgians, enter the lyeeums. The Russians like the technical schools better, and the daughters of the functionaries take the leal in the lyceums for girls. Altogether the tendency towards education is well felt in Northera Caucasus, and it is agreeable to see that in secondary schools-male and femaleIt to 12 per cent of the scholars are children of peasants anl Cossacks. The number of thee schzols is even too
small, and in 1882 no less than 44 正 boys were refusel admissi in to lyceums on ace runt of want of room. One may be sure that this tendency would be still greater were it not for the want of sympithy displayed throughout Russia with the socilled classical lyceums, where a mechanieal study of Latin takes the place of sound instruction in natural sciences. We must notice also a beautiful educational map of the Caucasus which accompanies the Report for 1880 . Owing to a system ot coloured signs of different shapes, one ser sat a glance the number of schools of different description; male and female, spread throughout the Caucasus, as well as who pays for them-the State, the municipalities, the village communes, or private persons ; while a number of coloured plates on the borders of the map show the tendency towards instraction ia different provinces, the nationalities of the scholars, and so oa.

We are informed that Mr. Kobert Hunt's (the Keeper of Mining Records) large and comprehensive work on the history, di-covery, practical development, and future prospects of metalliferous mines in the United Kingdom, under the title of "British Mining," will be published early next month by Messry. Cro by Lockn ood and Co.

AN IMPROVED THERMOELECTRIC PILE HOR MEASURING SMALL ELECTROMO. TIVE FORCES ${ }^{\prime}$

TIIIS paper eontains a description, illurtrated by sketches, of a uew and convenient form of thermo-electrie apparatus for measuring small electromorive forces by the method of opposition, and of the meth x of constructing and using the apparatus.
The apparatus consists es entially of a series of about $3<0$ pairs of horizon'al, slender, parallel wires of iron and Germ3n silver, the former alone being covered with eotton. The wires are about 8 inches long. fixed side by side in close mutual conanct, though insulated from each other, as a continuous flat layer abont 16 inches long, in a wooden frame, and soldered end to end in single continuous series. About $1 \frac{1}{2}$ inch in length of the opposite ends of the wires are bent downwards to a vertical porition, so as to enmble them to dip into two liquids of different temperatures eontained in two long, narrow troughs. The liquids employed are non-conductors; this was found to be necessary. The one for the hut junctions is melted paraffin kept at a temperature of $120^{\circ} \mathrm{C}$., and the one for the cold ones is non-volatile petroleum, known by the name of "thin machinery oil." The ends of the wires are immersed about one-fourth of an inch in the liquids.

The maximum power of the instrument is of course limited by the amonnt of difference of temperature of the two liquids, and of the two series of ends of wires immersed in them. Any 1)wer degree of electromotive force is obtained by attaching a copper wire to one end of the series, and sliding the free end of the other terminal wire across the middle part of the upper surface of the wires, from that end of the series towards the other; the German silver wires being bare permit metallie contact.
An apparatus as above described, consisting of 295 pairs of wires, had a resistance of $95^{\prime 6}$ ohms at $16^{\circ} \mathrm{C}$., and by a difference of $100^{\circ} \mathrm{C}$. of temperature of the two bathe, gave a current having an electromotive force of " 7729 volt, or with a difference of $130^{\circ} \mathrm{C} . \mathrm{D}^{1} 005$ volt. Each element therefore equalled -0000262 volt for each C. degree difference of temperature.

After having been verified with a standard voltaic cell, such an apparatus (or any fraction (f it) may itself be employed as a standard. It is capable of producing and measuring as small a degree of electromotive force as a 34861 st part of a volt. Wheu the potential of the currents to be measured exceeded one volt, either an additional pile or a standard voltaic cell was employed with it.
Several apparatus of this kind have been eonstructed, and a large nu nber of determinations of electromotive force have been made with them. Fifteen determinations per hour have frequently been made ; the rate of working, however, depends upon the steadiness of the current to be measured.

[^44]THE REVERSAL OF HALL'S PHENOMENON IN a recent commanication to the Physical Society I mentioned among other things that I had succeeded in reversing the direction of the Hall effect in iron. It was, however, found to be so exceedingly difficult to keep the two points where the galvanometer conneetions were made at the same potential, even for a few seconds, that the extent of the deflections due to the Hall effect conld only be roughly guessed at, and the experiment was hardly a satisfactory one. I believe this inconvenience arose from the fact that the iron, being a strongly magnetic metal, was slightly displaced whenever the polarity of the electromagnet was reversed, thus shifting the poin's of contact with the galvanometer wires. I have since repeated the experiment with gold, which turns out to be perfectly easy to work with, and altogether more suitable for the purpose. The following is an account of four experiments:-

Experiment 1.-A piece of nearly pure gold foil $\mathbf{5 c m}$. long and 3.5 cm . broad was cemented to a plate of glass and the whole placed between the flat pole pieces of an electromagnet. The middle points, A, ((see figure) of the longer sides of the foil were connected to a galvanometer, G , and the middle points, C, F, of the shorter sides to a battery. A current was passed throngh the metal from left to right, and the eleetromagnet

excited so that a south pole was beneath the glass and a north pole above it. The galvanometer was immediately deflected, indicating a current flowing in the direction BGA. If either the polarity of the magnet or the direction of the current through the foil was reversed, the transverse current was also reversed and flowed in the direction A GB, This is the ordinary "Hall effect," and the direction of the transverse currents agrees with that mentioned ty Mr. Hall for gold. The extent of the deflections varied from about 50 to 70 scale divisions on each side of zero. Similar but smaller deflections oceurred when the galvanometer was connected with points nearer to the middle of the plate.

Experiment 2.-Two longitudinal slits, F, H, about $\ddagger \mathrm{mm}$. wide, were then cut along the middle of the foil, leaving a connection 4 mm , wide between the two halves of the sheet, and the former experiment was repeated. The following are the details ; and to undertand them it must be remembered that the galvanometer is affected by two causes besides the transverse current : (t) by the direct action of the electromagnet upon the galvanometer needle, though 13 feet away from it ; (2) by a small permanent current due to the fact that, however carefully adjusted, A and B are never (or hardly ever) at exactly the same potential.

The image of the galvanometer wire was brought as nearly as possible to zero of the scale before beginning the experiment, and the connections were made so that a current in the direction AGB caused a deflection to the left (-), and a carrent in the direction b G A caused a deflection to the right (+).

Upper pole of magnet north:-
Galvanometer key, K , raised, deflection +25 divs. 1

$$
\text { depressed, " +102 divs. }{ }^{2}
$$

I Due solely to the action of the magnet apon the galvanometer needle. a Due partly to the action of the magnet on the galvanometer needle, partly to the permanent current above referred to, and partly to the transverse current resulting from magnetisation.

Upper pole of magnet south :-

$$
\begin{aligned}
& \text { Galvanometer key raie ed, deflection }-24 \text { divs. } \\
& \text { " } ", 42 \text { dive }
\end{aligned}
$$

Net deflections due to current (subtracting effect of the magre: on the galvanometer needle) :-

> Upper pole porth $(102-25=)+77$ divs. " south $(-42+24=)-18$ divs.

Sum of opposite deflections due to transverse carrent, (777^{*} $18=$) 95 , or deflection on each side of zero $=47.5$ divs.

The slits therefore had the effect of reducing the amount io the Hall deflections; the direction was unaffected.

Experiment 3.-The galvanometer contacts were now morel from the edges to the point, D, E, about 5 mm . from the middiline, and the experiment was repeated with the followiz: result :-
Upper pole of magnet north :-

$$
\begin{aligned}
& \text { Key raised, deflection + } 18 \text { divs. } \\
& \text { " depressed, " }+165 \text { divs. }
\end{aligned}
$$

Upper pole south:-

$$
\begin{aligned}
& \text { Key raised, deflection - } 35 \text { divs. } \\
& \text { " depressed, ", + } 80 \text { divs. }
\end{aligned}
$$

Net deflections due to current :-
Uper pole north ($165-18=$) +147 divs.

$$
" \quad \text { south }(180+35=)+215 \text { divs. }
$$

Sum of deflections \mathbf{r} ue to transverse current ($\mathbf{2 1 5 - 1 4 7}=168$.
Defiection on each side of zero $=34$ divs,
Thus when the galvanometer contacts were near the midde. the plate the deffections were almost as great as when the g 2 vanometer was connected to the elges. 8ut they ancre in te opposite direction, showing that the Hall effect was reversed.

Experiment 4,-A repetition of the last.
Upper pole rorth :-

$$
\begin{aligned}
& \text { Key raised, deflection }+28 \text { div. } \\
& \text { " depressed, " }+170 \text { divs. }
\end{aligned}
$$

Upper pole south :-

$$
\begin{aligned}
& \text { Key raised, deflection }-24 \text { divs. } \\
& " \text { depressed, }+170 \text { divs. }
\end{aligned}
$$

Net deflections due to current :-
Upper pole north ($170-28=$) 132 divs. south $(170+24=) 194$ divs.
Sum of deflections due to transverse current, ($194-132=162$
Deflection on each side of z ero $=31$ divs.
These results, curions as they are, were of course not unespected, the experiment having betn in fact devised for tive purpose of testing in an absolutely conelusive manner the susciency of the explanation of Hall's phenomenon by strains ame: Peltier effeets which I have recenily proposed (see Natull p. 467).

Suppcsing the magnet and the battery to be so arranged the before the slits were made the points A and D were in stretcho: districts, and B and E in compressed districts of the metali. sheet, then the effect of cutting the slits will be practically t divide the plate into two independent plates, each of wio undergoes strains similar to thore originally existing in the whuls A and B therefore will still be in regions which are re-pectived stretched and compressed, while on the other hand the regios I which D is vill row be compressed, and that in which E is $\mathbf{~ w}$ be stretched. Thus as regards the points D and E the resmit u making the slits is to reverse the strain, and in consequence tic Peltier effects and the galvanometer deflections. If Mr. Ha'iown theory were correct, the existence of the slits should 12 a : no appreciable difference of any kind. That they should bar: the effect of revrsing the action of the magnet upon the curres is altogether inconceivable.

Shelford bidwell

DR. FEUSSNER'S NEW POLARISING PRISX

I N a recent number of the Ziilschrift für Instrumevteriani (iv. 42-50, February 1884), Dr. K. Feussner of Karbreks has given a detailed description of a polarising prism late? devised by him, which presents several points of novelty, as for which certain advantages are claimed. The paper also $\mathrm{c}=$ tains an account, although not an exhaustive one, of the vari: polarising prisms which have from time to time been constrecteby means of different combioations of Iceland spar. The literture of this subject is scattered and somewhat difficult of acce:
and moreover only a small part of it has hitherto been translated into English; and it would appear therefore that a brief abstract of the paper may not be without service to those amongst the readers of Natuke who may be unacquainted with the original mecooirs, or who may not have the necessary references at hand.

Following the order adopted by Dr. Feussner, the subject may be divided into two parts:-

1.-Oider Forms of Polarising Prisms

In comparing the varinus forms of polarising prisms, the main points which need attention are :- the angular extent of the field of view, the direction of the energent polarised ray, whether it is shifted to one side of or remains symmetrieal to the long axis of the prism ; the proportion which the length of the prism bears to its breadth; and lastly, the position of the terminal faces, whether perpendicular or inclined to the long axis. These requirements are fulfilled in different degrees by the following methods of construetion.

1. The Nisol Prism (Edin. New Piil. Fournal, 1828, vi, 83).-This (Fig. 1), as is well known, is eonstructed from a rhombohedron of Iceland spar, the length of which must be fully three times as great as the width. The end faces are cut off in such a manner that the angle of 72° which they originally form with the lateral edge of the rhombohedron, is reduced to 68°. The prism is then cut in two in a plane perpendicular to the new end surfaces, the section being carried obliquely from one obtuse corner of the prism to the other, in the direetion of its length. The snrfaces of this section, after having been carefully polished, are cemented toget lier again by means of Canada balsam. A ray of light, on entering the pri-m, is separated by the double refraction of the cale-spar into an ordinary and an extraordinary ray: the former undergoes total reflection at the layer of baleam at an ineldence which allows the extraordinary ray to be transmitted ; the latter, therefore, passes through unchanged. This principle of obtaining a single polarised ray by means of total reflection of the other is common to all the forms of prism now to be described.

Dr. Feussner gives a mathematical analysis of the paths taken by the two polarised rays within the Nicol prism, and finds that the emergent extraordinary ray can include an angular field of 29°, but that this extreme value holds good only for rays incident upon that portion of the end surface which is near to the obtuse corner, and that from thence it grajually decreases until the field includes an angle of only about half the previous amount. He finds, moreover, that, although of eourse the ray emerges parallel to its direction of incidenee, yet that the zone of polarised light is shifted to one side of the central line. Also that the great length of the Nicol- $3^{\circ 2} 28$ times its breadth-ls not only an inconvenience, but, owing to the large pieces of spar thus required for its construction, prisms of any but small size become very expensive. To this it may be added that there is a considerable loss of light by reflection from the first surface, owing to its inclined position in regard to the.long axis of the prism.

It is with the view of obviating these defects that the modifications represented in Figs. 2 to 6 bave been devised.

Fig. 5.
2. The Shortened Nicel Prism.-This arrangement of the Nieol prism is eonstructed by Dr. Steeg and Reuter of Homburg v. d. H. For the sake of facility of manufacture, the end surfaees are cleavage planes, and the oblique cut, instead of being perpendicular, makes with these an angle of abont 84°. By this alteration the prism becomes shorter, and is now only 2.83 times its breadth; but if Canada balsam is still u-ed as the eement, the field will occupy a very unsymmetrical position in regard to the long axis. If balsam of copaiba is made use of, the index of refraction of whith is 8.50 , a symmetrical field of about 24° will be obtained. A prism of this kind has also been designed by Prof. B. Hasert of Eisenaeh (Pogy. Ann. exiii. 189), but its performance appears to be inferior to the above.
3. The Nicol Prism with Perpendicular Ends.-The terminal surfaces in this prism are perpendicular to the long axis, and the sectional cut makes with them an angle of about 75°. The length of the prism is 3.75 times its breadth, and If the cement has an index of refraction of 1525 , the field is symmetrically disposed, and includes an angle of 27°. Prisms of this kind have been manufaetured by Dr. Steeg, by Mr. C. D. Ahrens, and others.
4. The Fowaull Prism (Comptes Rendur, 1857, xlv, 238).This construction differs from all those hitherto mentioned, in that a film of air is employed between the two cut surfaces as the totally reflecting medium instead of a layer of cement. The two halves of the prism are kept in position, without touching each other, by means of the mounting. The length of the prism is in this way much reduced, and amounts to only $\mathbf{1} 528$ times its breadth. The end surfaces are cleavage planes, and the rectional cut makes with them an angle of 59^{2}. The field, however, includes not more than about δ°, so that this prism can be used only in the case of nearly parallel rays; and in addition to this the pictures which may be seen through it are to some extent veiled and indistinct, owing to repeated internal reflection.
5. The Hartnack Prism (Amn, de Ch. at de Physique, ser. iv. vii. 18i). -This form of prism was devised in 1866 by MM. Hartnack and Prazmowski ; the original memoir is a valuable one; a translation of it, with some additions, has lately been published ('Yourn. of the R. Micrascopical Soc., June, 1883, 428). It is considered by Dr. Feussner to be the most perfect prism capable of being prepared from cale spar. The ends of the prism are perpendicular to its length ; the seetion carried through it is in a plane perpendicular to the principal axis of the crystal. The cementing medium is linseed oil, the index of refraction of whieh is $\mathbf{1 4 8 5}$. This form of prism is certainly not so well known in this country as it deserves to be : a very excellent one supplied to the present writer by Dr. Steeg is of rectangular form throughout, the terminal surfaces are $19 \times 15 \mathrm{~mm}$., and the length 4 I mm . The lateral shifting of the field is searcely perceptible, the prism is perfectly colourless and transparent, and its performance is far superior to that of the ordinary Nicol. The field of view afforded by this construction depends upon
the cementing substance used, and also upon the inclination of the sectional cut in regard to the ends of the prism ; it may vary from 20° to 41°. If the u'most extent of field is not required, the prism may be shortened by leswening the angle of the section, at the expense however of interfering with the symmetrical disposition of the field.
6. The Glan Prism (Carl's "Repertorium," xvi. 570 , and xvii. 195). -This is a molification of the Foucault, and in a similar manner includes a film of air between the sectional surfaces. The end surfaces and also the eut earried through the prism are parallel to the principal axis of the cale spar. The ends are normal to the length, and the field includes about 8°. This prism is very short, and may indeed be even shorter than it is broaf. It is subject to the rame defect as that mentioned in the case of the Foucault, although perhaps not quite to the same extent.

It.-The New Polaristing Prism

This prism differs very con'iderably from the preceding forme, and consistr of a thin plate of a doubly refracting crystal cemented between two wedge-shaped pieces of glass, the terminal faces of whieh are normal to the length. The external form of the prism may thus be similar to the Hartnack, the calc-spar being replaced by glass. The indices of refraction of the glass ant of the cementing medium should correspond with the greater index of refraction of the crystal, and the directions of grealest and least elasticity in the latter must stand in a plane perpendicular ts the direction of the scetion. One of the advantages claimed for the new prism is that it dispenses with the large and valuable pieces of spar hitherto found necessary; a further advantage being that 0° her crystalline sabstances may be u-ed in this prisas instead of calc-spar. The latter advantage, however, occurs only when the difference batween the indices of refraction for the ordinary and extraordinary rays in the particular crystal made use of is greater than in calc-spar. When this is the case, the field becomes enlarged, and the length of the prism is redaced.

The substance which Dr. Feussner has employed as being most suitalile for the separating crystal plate is nitrate of soda (natronsal/peter), in which the above-mentioned values are $\omega=$ 1.587 and $\epsilon=1.336$. It crystallises in similar form to calcite, and in both eases thin plates obtained by cleavage may be used.

As the cementing substance for the nitrate of so la, a mixiure of gum dammar with monobromonaphthalene was used, which afforded an inder of refraction of $1 \cdot 58$. In the case of thin plates of calcte, a solid cementing substance of sufficiently high refractive power was not available, and a fluid medium was therefore employed. For this purpose the whole pri m was inclosed in a short glass tube with air-tight ends, which was filled with monobromonaphthalene. In an experimental prism a mixiure of balsam of tolu was made use of, giving a cement with an index

Fig. 7.

Fif.O.
of refraction of 1.62 , but the low refractive power resulted in a very considerable reduction of the field. The extent and dis. poxition of the field may be varied by altering the nclination at which the crystal lamina is inserted (Fig. 7), and thereby reducing the length of the prism, as in the cace of the Hartnack.

In order to obviate the effects of refiection from the internal side surfaces of the prism, the wedge-shaped blocks of glass of which it is buitt up may be made mach broader than woald
otherwise be necessary; the edges of this extra widh are a obliquely, and suitahly hlackened.

The aceompanying diagram (Fig. 8) repreents a prisa id cylindrieal external form constructed in this mannet, beb be surface being that of the incident light. In this the field tumes to 30°, and the breadih is abont double the length.
Ir. Feu-sner remarks that a prism similar in some reppeas his new arrangement was devised in $\mathbf{1 8 6 9}$ by M. Jamio (Cum R'endus, $1 \times$ viii. 22t), who used a thin plate of cale-ppricher in a cell filted with bisulphide of carbon; and also by D. Zenker, who replaced the liquid in M. Jamin's constration h wedges of flint glas ${ }^{\text {. }}$
A wongst others, the carefully considered modifiestions of te Nicol prism which have recently been devised by Proi. $\$$ I Thompson (Phil. A/ug., November, 1881, 349 ; and Yaun 1 Micros. Soc., August, 1883. 575), and by Mr. R. T. Glantrox (Phil. Mag., May, 1883, 352), do not appear to bave beat bom to Dr. Feu-suer.
The following tabular view of different forms of plenus prisms is taken from the conclu-ion of Dr. Feusser's papa:-

As an analysug pri mm of about 6 mn . clear minth, D ${ }^{1} 3.5 \mathrm{~mm}$. lung, the new prism is stated by its inventor to be the most essential rervice, and it would certainly appert the th arrangement is rather be:ter adapted for small prisms tim ${ }^{\prime}$ t those of considerahle size. Any means by which a besi polarised ligh: of large diameter-say 3 to $3 \frac{1}{1}$ incbe-cevic ? obtained with all the convenience of a Nicol would te at advance, for spar of sufficient size and purity for such a pap, has become so scarce and therefore so valuable that large pos are difficult to procure at all. So far as an analyer in © cerned, the experience of the writer of this notice would lad: the opinion that improvements are to be looked for rabe it: way of the di-covery of an artificial crystal which aboerts ta the polarised rays than by farther modifications depeoding total reflection. The researches of Dr. Herapath on iv sulpha'e of quinine (Phil . Mag.. March, 1852, 161, wit fo vember. 1853,346) are in this direction; but erysula d 4 co-called her pathite require great manipalative skili for prodaction. If these could be readily obtained of ofor size, they would be invaluatle as analysers.
Thi opinion is supported by the existence of an inconrens which attends every form of analysing prism. It is frefued and especially in projecting apparatus, required to be place
the focus of a system of lenses, so that the rays may cross in the interior of the prism. This is an unfavourable position for a prismatie analyser, and in the case of a powerfnl beam of light, such as that from the electrie arc, the crossing of the rays within the prism is not nnattended with danger to the cementing substance, and to the surfaces in contact with it.

Philip R. Sleeman

on various suggestions as to the SOURCE OF A TMOSPHERIC ELECTRICITY ${ }^{2}$

W^{E} have seen that, taking for granted the electrification of (except globe lightning) admit of easy and direct explanation by the known laws of statical electricity. Thus far we are on comparatively sure ground.

But the case is very different when we attempt to look a little farther into the matter, and to seek the source of atmospheric electricity. One cause of the difficulty is easily seen. It is the scale on which meteorological phenomena usually occur; so enormously greater than that of any possible laboratory arrangemuent that effecte, which may pass wholly unnoticed by the most acute experimenter, may in nature rise to paramount importance. I shall content myself with one simple but striking instance.
Few people think of the immense transformations of energy which accompany an ordinary shower. Bat a very easy calcula. t ion leads us to startling resalts. To raise a single pound of water, in the form of vaponr, from the sea or from moist ground, requires an amount of work equal to that of a horse for abont half an hour ! This is given out again, in the form of heat, by the vapour when it condenses ; and the poand of water, falling as rain, would cover a square foot of groand to the depth of rather less than one-fifth of an inch. Thus a fifth of an inch of rain represents a borse-power for half an hour on every square foot ; or, on a square mille, about a million horse-power for lourteen honrs ! A million borses would barely have standing room on a square mile. Considerations like this show that we can account for the most violent hurricanes hy the energy set free by the mere condensation of vapour required for the eoncomitant rain.

Now the modern kinetic theory of gasea shows that the particles of water-vapour are so small that there are some where about three hundred millions of millions of millions of them in a single cubic linch of saturated steam at ordinary atmospheric pressure. This corresponds to $1 / 1600$ or so of a cubie ineh of water, i.e. to about an average raindrop. But if each of the vapour particles had been by any cause electrified to one and the same potential, and all conld be made to unite, the potential of the raindrop formed from them would be fify million million times greater.
Thus it appears that if there be any cause which would give each particle of vapour an electric potential, even if that potential were far smaller than any that can be indicated by our most delicare electrometers, the aggregation of these particles into raindrops would easily explain the charge of the most formidable thundercloud. Many years ago it occurred to me that the mere contact of the particles of vapour with those of air, as they interdiffuse according to the kinetie theory of gases, would suffice to prodnce the excessively small potential requisite. Thus the source of atmospheric electricity would be the same as that of Volta's electrification of dry metals by contaet. My experiments were all made on a small scale, w th ordinary laboratory apptratus. Their general object was, by various piocesses, to pre. cipitate vapour from damp air, and to study either (t) the electrification produced in the body on which the vapour was precipitated; or (2) to find on which of two parallel, polished plates, oppositely electrified and artificially cooled, the more rapid deposition of mois ure would take place. After many trials, some resultesss, others of a more promising character, I saw that experiments on a comparatively large scale would be absolutely necessary in order that a definite answer might be obtained. 1 communicated my views to the Royal Society of Edinburgh in 1875 , in order that some one with the requisite facilities might be induced to take up the inquiry, but I am not a ware that this has been done.
I may briefly mentlon some of the more prominent attempts which have been made to solve this curious and important problem, Some of them are ladicrous enough, but their diversity well illustrates the nature and amount of the difficulty.
${ }^{5}$ By Prof. Tait. Read at the meeting of the Scottish Meteorological Society oa March 17, and communicated by the Society.

The oldest notion seems to have been that the source of atmospheric electricity is acrial friction. Unfortunately for this theory, it is nof usaally in windy weather that the greatest development of electricity takes place.

In the earlier years of this centary Pouillet claimed to have established by experiment that in all cases of combustion or oxidation, in the growth of plants, and in evaporation of salt water, electricity was invariably developed. Bat more recent experiments have thrown doubt on the first two conclasions, and have shown that the third is true only when the salt water is boiling, and that the electrieity then produced is due to frictiun, not to evaporation. Thus Faraday traced the action of Armstrong's hydro-electric machine to friction of the steam against the orifice by which it escaped.

Sanssure and others attributed the production of atmospheric electricity to the condensation of vaponr, the reverse of one of Pouillet's hypotheses. This, however, is a much less plausible guess than that of Pouillet ; for we could understand a particle of vapour carrying positive electricity with it, and leaving an equal charge of negative electricity in the water from which it escaped. But to acconnt far the separation of the two electricities when two particles of vapour unite is a mach less promising task.

Peltier (followed by Lamont) assumed that the earth itself has a permanent charge of negative electricity whose distribution varies from time to time, and from place to place. Air, according to this hypothesis, can neither hold nor conduct electricity, but a cloud can do both; and the cloud is electrified by conduction if it tonch the earth, by induction if it do not. Bnt bere the difficulty is only thrown back one step. How are we to aceount for the earth's permanent charge?

Sir W. Thomson starts from the experimental fact that the layer of air near the ground is often fonnd to be strongly electrified, and accounts for atmosheric electricity by the carrying up of this layer by convection currents. But this process also only shifts the difficulty.

A wild theory has in recent times been proposed by Becquerel. Corpuscles of some kind, electrified by the ourbursts of glowing hydrogen, travel from the sun to the upper strata of the earth:s atmosphere.

Muhry traces the source of electricity to a direct effect of solar radiation falling on the earth's surface.

Liddens has recently attributed it to the friction of aqueous vapour against dry air. Some still more recent assumptions attribute it to capillary surface-tension of water, to the prodnction of hail, \&c.

Blake, Kalischer, \&e., have lately endeavoured to show by experiment that it is not dne to evaporation, or to condensation of water. Their experiments, however, have all been made on too small a scale to insure certain results, What I have just said abont the extraordinary number of vapour particles in a single raindrop, shows that the whole charge in a few cubic feet of moist air may altogether escape detection.

And so the matier will probably stand, until means are found of making these delicate experiments in the only way in which success is likely to be obtained, viz. on a scale far larger than is at the command of any ordinary private purse. It is a question of real importance, not only for pure science but for the people, and ought to be thoroughly sifted by means which only a wealthy nation can provide.

UNIVERSITY AND EDUCATIONAL INTELLIGENCE

Cambridge. - The General Board of Studies propose to appoint, early in Easter Term, a number of Readers and Uni versity Lecturers, incinding the following: a Reader in Comparative Philology, stipend 300\%. per annum; a Reader in Botany, stipend 100l. : University Lecturers in Sanskrit, in Comparative Pbilology, in Mathematics (one in each group of the Tripos, Part 3), in Applied Mechanics, in Botany, in Animal Morphology, in Advanced Physiology (three), in Geology, in History (five), and in Moral Science; all at 5ol., except in Animal Morphology and in Geology, to which 100\%. is assigned. The University Lecturers will for the most part be chosen from such College Lecturers as open their lectures to the University ge .erally; but the Board is not necessarily restricted to snch; nor to persons who may apply. Candidates are to send in their names and testimonials (if any) to the Vice-Chancellor not later than April 25. It is understood that two lectures a week daring
term time shall be the minimum during two terms. for each lecturer receiving 50%. per annum. As far as possible the University Lecturers are to give special personal attention to their pupils, so as to obviate as much as possible the necessity of private tuition in the subject of the lectures ; and the students' fees are to be understood as payment for this personal supervision.

The Special Board for Biology and Geology have published a report showing argent need for a Senior Demonstrator in Elementary Biology and Animal Morphology at 200/. a year; the classes have grown enormously, consequent on recent changes in the M.B. examinations. They recommend that the I.ecturers, by whose aid Mr. Sedgwick carries on the work of the late Prof. Balfour, shall be appointed University Lecturers, Dr. Hans Gadow in the Advanced Morpbology of Vertebrates, and Mr. W. F. R. Weldon in that of Invertebrates, Moreover, they consider an Assistant Demonstrator as well as other occasional demonstrators are required.

Prof. Ilugbes has written a letter on the subject of the proposed Sedgwick Museum, suggesting that educational utility rather than architectural display should be the principal aim in the building, and pleading strongly against possible curtailment of the site available for the new museum to satisfy demands of other departments. The area now proposed, 240 feet by 50 feet, with room behind for future exten ion by annexes, \& $\& c_{\text {. }}$, is not too large. If sufficieat space can be secured for future exteusion, it is best to place the museum entirely on one floor; but if this is not eertain, it would be desirable to have two long rooms one above another, each 20 feet high.

SCIENTIFIC SERIALS

- The Quarterly Fournal of Aficroscopical Science for January, 1884, contains 1 -Notes on Echinoderm morphology, No. vii.: on the apical system of the Ophiurids, by P. Herbert Carpenter, M.A. (plate 1).-On the homologies of the primary larval plates in the test of Brachiate Echinoderas, by W. Percy Sladen (plate 1).-On the origin of metameric segmentation and some other morphological questions, by Adam Sedgwick, M. A. (plates 2 and 3).-On certain abnormalities in the common frog (Niana temporaria) : (1) the occurrence of an ovotestis ; (2) abnormalities of the vertebral column, by A. Gibbs Bourne, B.Sc. (plate 4).-Researches on the intracellular digestion of Invertebrates, by Dr. E. Metschnikoff (translated from Arbeifen Zool. Znstio. Wien, 1883. - On the ancestral history of the inflammatory process, by Dr. E. Metschnikoff.- The structures connected with the ovarian ovam of Marsupialia and Monotremata, by Edward B. Poulton, M.A. (plate 5). -On the skeletotrophic tissues and coxal glands of Limulus, Scorpio, and Mygale, by Prof. E. Ray Lankester, M.A. (plates 6 to 1t).
The Gournal of Physiology, vol. iv., No. 6, February, 1884, contains :-On the electrical phenomena of the excitatory process in the heart of the frog and of the tortoise as investigated photographically, by Dr. J. Burdon-Sanderson and F. J. M. Page (plates 13 to 20).-Experiments on the ears of fishes with reference to the function of equilibrium, by Dr. Henry Sewall.-On the influence of certain drugs on the period of diminished exeitability, by Dr. S. Ringer and Dr. FI. Sainsbury (plate 2r).-On the action of digitalis, by Dr. J. Blake.-On the coagulation of the blood, by L. C. Wooldridge, D.Sc,-An investigation regarding the action of rubidinm and ceesimm salts compared with the action of potasxium salts on the ventricle of the frog's heart, by Dr. S. Ringer (plate 22).-Some notes on the fibrin ferment, by S. Lea, M.A., and J. R. Green, B.Sc.

The Fournal of the Royal Microscopical Society, February, 1884, contains:-On the constituents of sewage in the mad of the Thames, by Lionel S. Beale, F.R.S. (plates 1 to 4), -On the modes of vision with objectives of wide aperture, by Prof. E. Abbe (figures); and the usual summary of current researches relating to zoology and botany.

Morphologisckes Fahrouch, Bd. ix., Heft It, contains :-On the comparative anatomy of the excretory sexual organs of insects, by J. A. Palmen.-Contributions to the comparative anatomy of fishes, No. i.; on the cranium of Amia calva, L., by Dr. M. Sagemehl (plate 10),-A contribution to a knowledge of the pseudobranchiax in osseous fishes, by Dr. F. Maurer (plates if and 12). -On the morphology of the mammalian teat, by Hermand Klaatsch (plates 13 to 17).
Archives Italionmes de Biologic, tome iv., fasc. 11, December 15, 1883, contains:-New researches on the alterations in organs
in diabetes, by Dr. P. Ferraro. - New researches on the normel and pathological anatomy of the human placenta and of that of mammals, being the substance of three letters to Prof. Albe: Kolliker, by Dr. G. B. Ercolani.-On the ciliary muscle reptiles, by Dr. Ferruccio Mercanti.-On the reproduction o: epithelium of the anterior erystalline capsule in adult anitas under normal and pathological conditions, by Dr. F. Falchi,On some dangers from fly's excrement, by Dr. B. Grassi.-0 the course and termination of the optic nerve in the retina of a crocodile (Champsa Incius), by Dr. A. Tafani (with a plate).On the development of the vertebral column in osscons fishe by Dr. B. Grassi.-Notice of the death and writings of Dr, P Burresi, and of the death of Prof. G. B. Ercolani of Bologas,

Rivista Scientifico-Industriale, Florence, January 15.-A de seription, with illustration, of the seismoscopic clock invented be Brassart Brothers, by E. Brassart.-On the harmonic soaed prodaced by a fluid discharged through a tabe, by Tito Martix -Variations in the electrie resistance of solid and pure metalbi wires under varying temperatures; Part i., Historic survey of the works hitherto issued on the influence of temperature on the conductibility and electric resistance of solid and pure metuls by Prof. Angelo Emo.-Accoust of the semi-incandencea electric lamp invented by Tihon.-A practical application o Newton's rings in motion, by Prof, Augusto Righi. On th periodical migrations of the Myosus fits, Gml., by S. Mim-Palutabo.-On the nest of the Geophilus farvos, by Prof. F. Fanzago,-On the mollusks at present inhabiting the provinct of Porto-Maurizio, Maritime Alps, by G. R. Sulliotti.
Rendionti del Reale Istituto Lombardo, February 7.-Obinan notice of Prof. Emilio Cornalia (concluded), by Prof. Leopat Makgi.-A short description of the crystals of barium found Vernasca, by Dr. F. Sansoni,-On the importance of certain symptoms in the diagnosis of sciatica and other affections of the hip, by Dr. G. Fiorani. - Whether women should be permittec to follow the legal profession, by Prof. E. Vidari.

SOCIETIES AND ACADEMIES London

Royal Society, March 13.-" Notes on the Micromerpac Structure of some Rocks from the Andes of Ecuador, collected by Edward Whymper. No. II. Antivana." Hy Prof. T. G Bonney, D.Sc., F.R.S.
The specimens examined consisted of one series gathered by Mr . Whymper and another obtained by him from a collector The latter came from the south-west or west side of the moen tain, at elevations probably not exceeding 13,000 feet. Amons them are pitchstones and augite-andesites, in which a lite hypersthene possibly occurs. Mr. Whymper's own collectia contains specimens of the great lava stream on the west side Antisana, taken at about 12,340 feet above the sea. It is $=$ augite andesite. The remainder represents the rocks forming the upper part of the mountain, collected from a moraine aboc 16,000 feet above the sea, supplied by occasional crags, whic crop out through the snow and are mostly inaccessible. Thes are a series of augite-andesites, in some of which hypersthesc in certainly present.

Linnean Society, March 20.-H. T. Stainton, F.R.E vice-president, in the chair. - The Rev. Canon Jas, Baker, Mr. W. Brockbank, Mr. Robert Mason, and Mr. Ed. A. Heath wer elected Fellows of the Society.-Mr. J. G. Baker showed ant made remarks on a supposed hybrid between the Oxlip (Priwain elatior) and the Cowslip (P. veris). - In illustration of his paper. a coutribution to the knowledge of the genus Amaphe, Walker. Lord Walsingham exhibited a large and remarkable nest cootaining a packed mass of cocoons, also specimens of the iaseets and of the larver of a species of Congregating Moth of this gees from Natal; and he likewise showed a live example of : dipterous parasite which had emerged from the moth's egos when hatched. He further stated that the nest and contents hac been forwarded to him by Col. Bowker of Durban, and the larvee were found alive on its receipt in England in August inar. Many of the larve remained in the nest, but others in compane of twenty to forty oceasionally marched out, moving in eloseif serried rank, much after the manner of the larvee of the Proee sion Moth (Cmethorampa). From December to Febrnary abow 250 moths emerged, but, from the difficulty of obtaining the natural food, all died, though a pair bred and the eggs hatchal.

The mature insect closely resembles the \mathcal{A} wast panda, Boisl., though under the latter name, it would seem, there are several wellmarked local races. The genus is found in West Africa as well as Natal ; and it appears that in the several species the colour, size, shape, and material of the common nest, as well as the individual silky eoeoons, markedly differ. The habits of these moths when still more fully known in their native haunts will yet form a most interesting chapier to the traveller. Of Anaphe four species have bithert; been described, viz. A. vew ata from Old Calahar, A. ambigua from Angola, and A. reticulata and A. fanda from Natal. To these Lord Walsiagham adds A. carteri from the Gold Coait, and A. infrocta from the Cameroons, A piper, on the hairs occurring on the stamens of plants, by Mr. Greenwoot Pim, was read. As to the morphologr of these he sums up the groups thus: (i) simple unicellular, subulate, smooth, M/atva, Camfanula; (2) unieellular, subulate, rugose or papillar, Cupha, Nerium, Evtora; (3) unicellular, flattened, spathulate, rugose or striate, Verbascum, Ce'sia, Antirrhinum ; (4) plaricellular, simple, smooth, Sılvia, Adha tod ; (5) pluricellular, simple, rugose or striate, Anazallis, Thunberia; (6) pluricellular and branche 1, Brovallia and some forms of Salvia; (7) pluricellular with glandular tip, Osalis, Grsnosa; (8) multicellnlar, Contiottn'for, Ipomiza.-A communication was read, "Closure of the Cyclostomatous Bryozoa," by Arthur W. Wa'ers. While admitting that the group possesses few characters available for purposes of scientific determication, he nevertheless points out that the ovicells have a greater imprrtance than that hitherto accorded them ; also that the connecting pores are comparable with the rosette plates of the Chilostomata, and that stres s must be laid on the size of the zooecial tube, and more particularly to the position and variation of its closure. The author states that in the Cyclovtomata (simplest Bryozoa) he has found a calcareous partition cloing the tubular zooccium, thus protecting the colony; whereas in the Chilostomata there is a horny operculum, which, unlike the other, is not a sign of death, but, being movable, protects the living polypide, and through it the colony.-A paper was read on the life-history of Ficidium bellidis, by Mr. C. B. Plowright, in which he gives the results of a series of experiments, noting the infection and appearance of the Uredo. He differs in opinion from most authorities, who regard the Ecidium of the daicy as a variety of \mathbb{E}. compositarum, while he demonstrates it to be a true hetercecismal Uredine.- The last communication read was by Mr. F. Kitton, on some Diatomacex from the Island of Socotra, in which a number of new species are described and figured.

Geological Society, March 5.-Prof. T. G. Bonney, F.R.S., president, in the chair,-FF. N. Maude, John Potts, and Corbet Woodall were elected Fellows, and Dr. Charles Barrois, of Lille, a Foreign Correspondent of the Socicty. -The following communications were read:-On the structure and formation of coal, by E. Wethered, F.G.S., F.C.S. The conclusions on the evidence elicited from the author's investigations were (1) that some coals were practically made up of spores, others were not, these variations often occurring in the beds of the same seam; (2) the so-called bituminous coals were largely made up of the substance whieh the author termed hydrocarbon, to which woodtissue undoubtedly contributed. In appendix to the paper, written by Prof. Harker, Professor of Botany and Geology at the Royal Agrieultural College, Cirencester, dealt with the determination of the spores seen in Mr. Wethered's microscopic sections. The writer concluded that the forms in the coal were from a group of plants having affinities with the modern genus footes, and from this Isoeitoid character he suggests the generic title of /soctoides pending further investigation.-On strain in connection with crystallisation and the development of perlitic structure, by Frank Rutley, F.G.S.-Sketches of SouthA frican geology ; No. 1, a sketch of the high-level coal-field of South Africa, by W. H. Penning, F.G.S. In this paper the author gave a sketch of the high-level coal-field of the Transvaal and the neighbouring region. This coal-field was described as extending 400 miles from north to south, with an average breadth of 140 miles, so that its area is abont 56,000 square wiles. The tract consists of an elevated platean forming the "High Veldts " of the Transvaal and the plains of the Orange Free State. It slopes away to the north-west, and is scarped to the south and east by the beights known as the Stormberg and Irrakensberg Monntains ; nearly all the principal rivers of South A frica take their rise in this tract of land. The coal-bearing beds forming the plateau rest unconformably in the north upon
deposits probably of Upper Palreozsie age, described as the Megalieiberg beds. In the south-west the Lower Karos beds underlie the coal-beds, also unconformably. The beds of the high grounds consist above of sandstones, ealled the "High Veldt beds" by the author, and below of shales, for which the name of "Kimberley beds" is proposed, after the chief town of Griqualand West, in which di,trict they form nearly the whole surface. These two series are conformable, and generally lie horizontally. In the shales coal occurs only in minute patches ; the seams of coal are interstratified with the sandstonen, into which the shales pass up gradually, and which sometimes include thick bedded grits and conglomerates. Both shales and sandstones contain interstratifications and numerous dykes of trap, which have rarely produced much alteration in the sedimentary beds, from which the author concludes that the eruptions were sub-aqueous and contemporaneous, or nearly so. Owing to the persistent horizontality of the rocks, the mountains and valleys are merely carved out of the plateau, so that the thickness of the deposits is easily measured. The author gave 2300 feet as the minimum thickness of each series. Hy a comparative section it was shown that the coal-bearing sandstones ("High Veldt beds") are the "Upper Karoo" of Stow, and the "Stormberg beds" of Dunn. The "Kimberley beds" are the Upper Karoo beds of Dunn. In the latter part of his paper the author noticed briefly the different localities where coal has been found, namely, Newcartle, Lange's Nek, the Lebelelasberg Mountains, near New Seotland, several places on the High Veldt, Wemburg, Brandfote, Cornet Sprait, Burgersdorf, and Indwe, twenty miles east of Dordrecht. The most northerly point of the Transvaal where eoal has been found is on the Letsebo River. West of the Drakensberg coal oecurs at a lower level.

Entomological Society, March 5.-Special General Meet-ing.-Mr. J. W. Danning, president, in the chair.-Prof. J. O. Westwood, hon, life president, proposed, and Mr. H. T. Stainton seconded, a proposition "That it is desirable to obtain for the Societya Royal Charter of Incorporation." After a short di cussion, the resolution was carried nem. con.

Ordinary Meeting. - Prof. Westwood, hon. life president, in the chair.-Two new members were elected.-Mr. E. A. Fitch exhihited a large geodephagous larva said to have been coughed up at Maldon by a young man who was suffering from bronchitis.-Mr. J W. Dunning protested against the irregular manner in which the names of persons had lately been used in entomological nomenclature ; and Mr. II. J. Elwes expressed his disapproval of the use of Hindoo mythological, and other na nes not of Latin or Greek derivation, in the same manner. Mr. E. Saunders read the eoncluding part of his synopsis of the British Ifymenoptera Aculcata, part iii. Apida; and also, further notes on the terminal segments of aculeate Hymewoptera.

Edinburgu

Mathematical Society, March 14-A. J. G. Barclay, vicepresident, in the chair.-Mr. W. J. Macdonald gave an account of Pascal's "Essais pour les Coniques."-Mr. K. E. Allardice read a paper on the geometry of the spherical surface; and Prof. Chrystal gave an additional proof of one of his theorems. -Mr. Thomas Muir, F.K.S.E., contributed a note on the condensation of a special eontinuant.
Royal Physical Society, March 19.-Mr. B. W. Peach, F.R.S.E., F.G.S., president, in the chair.-The following communications were read :-Notes on a second collection of birds and eggs from Central Uruguay (with exbibition of specimens), by Mr. J. J. Dalglei, b. -On a revised list of British Ophiuroidea, hy W. E. Hoyle, M.A., F.R.S.E., of the Challenger Expedition Office.-On the Breadalbane Mines, by Messrs. J. S. Grant Wilson and H. M. Cadell, B.Sc., of H.M. Geological Survey of Scotland (communicated by permission of the Director-General of the Geological Survey). These mines are situated in the basin of the Tay, and the highest-tbose of Tyndrum-were first noticed. The galena veins were partly in a fissure traversing the quartzites in close proximity to a large fanlt which the anthors had observed for the first time at Tyndrum. Another vein existed in the fault fissure itself or in the mica schists which were brought down by it against the quartrites. A difference in inclination brought the two fissures together, and at a certain depth they found a conjoint vein. Below the line of junction the ore almost disappeared, as had been proved by the old workings, and very little ore was visible in the portion of the conjoint vein exposed on the surface. The veins were of quartz with spathic iron and barytes,
and were never more than funr feet in thickness. The ore was dis tribnted in broad rudely parallel diagonal bands, and the veins resembled in this as in other particulars those of the Upper Harz belonging to von Groddeck's "Type Clausthal." Lead ore was discovered at Tyndrum in 1741, and was mined with varying activity till 1862 , when the mines were abandoned, as they had quite ceased to pay expenses. Chrome iron ore was known to occur in considerable quantity in a mass of serpentine at Coirie Charnaig in Glen I.ochaig, but had never been extensively worked. An interesting occurrence of grey and yellow copfer ore was found at Tomnadashan on the southern shore of Loch Tay. The ore was disseminated through a mass of crystalline rock resembling diorite, which had been injected into the schists, hardening and contorting them at its edges. The basic rock was in turn traversed by multitudes of veins of pink granitite, which at some places united and formed a stock-like mass with large pink orthoclase crystals. The ore was found most abundantly at the junction of the two rocks. Molybden glance occurred in the acid rock, but no traces of blende or galena had been discovered at Tomnadashan. At Corrai Bui near Ardeonaig rich argentiferous galena veins traversed the schists on the top of a hill which was capped by a series of calcareous beds. The galena contained from 85 to 600 ounces of silver per ton of ore, but the veins thinned ont on passing down into the non-calcareous beds below, and became quite barren at a depth of 100 feet. There were many other very thin veins of pyrites, blende, galena, \&c., in the Breadalbane district, but none were thick enough to be worked with profit.-Prof. Cossar Ewart, F.R.S E, exhibited, with remarks, the following specimens :-(t) the Tad pole fi-h (Ranicrps (rifurens) ; (2) the Great Fork-beard (Phycis blenniodes) ; (3) the Power Cod (Gados minufus) ; (4) an Albino specimen of the Haddock (Gadus aglefinus).-I'rof. Ewart also exhibited and described a new hatching-box he bad devised for adhesive eggs t.) take the place of the American "Clark" hatching-box. The edvantage of Prof. Ewart's box is that the glasses are arrange i in a horizontal position, so that the embryos, when hatched, pass at once into comparatively still water, instead of having to run over and under a varying number of vertical glass plates. Prof. Ewart also deceribed an easy method of stocking spawning beds capable of being readily used by the fishermen themelves. All that was required was an ordinary wooden tub and a shallow galvanised iron tray about tuenty inches in diameter, with the bottom consisting of two portions each hinged to a central bar so as to open downwards. The object in view is to deposit atones on the spawning bed coated with fertilised ova. To do this the tray is placed in the tub, which is then filled with seawater. Into the tray a number of flat stones are arranged; the water is then fertilised and the stones coated with eggs. This done, the tray is lowered to the bottom by means of four cords -two attached to the rim of the tray, and one to each half of the bottom. When the tray has reached the sea-floor, the cords attached to the false bottom are set frec, and the tray raised by the cords attached to its edge, the result being that the egg-coated stones are left at the bottom. By this method the fishermen, without any trouble or expense, could add 200 or 300 eggs for every berring they removed from the ses, and thus do their best to restore the balance of na'nre which their operations had disturbed.

Paris

Academy of Sciences, March 17.-M. Rolland in the chair. -On the new map of Tunis to the scale of $1: 200,000$, now being prepared in the French War Office, and the first six sheets of which have just appeared, by M. F. Perrier. The map, which will be completed early next year, will comprise twenty sheets altogether, nniform with that of Algeria, of which it forms a natural continuation.- Relative rapidity of combustion of explosive gaseous mixtures, by MM. Berthelot and Vieille. On the solution of a very extended class of equations in quater. nions, by M. Sylvester. - Notice of the labours of the late M. Sella, Corresponding Member of the Section of Mineralogy, by M. Daubrée.-Notice of the second volume of the Emperor of Brazil's " Kecords of the Rio de Janeiro Observatory," by M. Faye- - Remarks on a note by Sir Riehard Owen on the diecovery of a mammal (Tritylodon) in the South African Trias, by M. Albert Gaudry.-A pplication of the incandescent lamp for the lighting of astronomical instraments, by M. G. Towne,-Remarks on the shadows cast by the faculx on the penumbra of the solar spots (one illustration), by M. E. L. Trouvelot.-On some arithmetica applications of the theory of elliptical functions, by M. Stieltjes -On a new generalisation of the Abelian functions, by M. E

Ficard, - On the thru-t of a mass of sand with horizontal epze surface against a vertical or inclined wa!l, by M. J. Boesioses: - Theory and practical formulas of magneto-e'ectric macri-s with alternate currenta, by M. Felix Lucas,-Note on Hall's de tro-magnetic phenomenon, by M. A. Leduc.-On the laws rean lating the decomposition of salts in water, by M. H. Le Cho lier.-Note on the action of chloruretted aldehydes ou benm in the presence of chloride of aluminium, by M. Alph. Come -On the addition of chloride of iodine to monobromerese ethylene, by M. Louis Henry. - Note on the dialysis of the ac of the gastric juice, by M. Ch. Kichet.-Distribution of ti motor ronts in the animal mnsenlar system, by MM. Frew and Lannegráce. - Memoir on the relations between plants := the nitrogen consumed by them, by M. W. O. Atwater.-N on the cultivation of the sedimentary matter brought up fres great depths by the dredgings of the Travaillour and Talime: during the expeditions of $1882-83$, by M. A. Certes is object of these experiments is to show that the absence of plaz or animals in decomposition at the bottom of the sea is probeti due to the presence of microbes analogous to those which, $\mathrm{e}=1$ onr eyes, are daily working a' the transformation of organic is inorganic matter. - On the renal organs of the embryos of He's by M. P. de Meuron - On spermatogenesis a'd the phenosen of fecundation in Ascaris mecalarephala, by M. P. Hallez-is the simcedosaurian, a reptile belonging to the Cernay foran: of the Rheims district, by M. Victor Lemoine. - On the morpl logical value of the cortical libero-lignore masses in the ste as the Calycanthea, by M. Oct. Lignier.

CONTENTS

The Cholera Bacillus
The Science of the Examination-Room
Lefroy's Magnetic Survey in Canada. By Sir F. J Evans, F.R.S.
Excursions of an Evolutionist. By George J Romanes, F.R.S.

Our Book Shelf:-

"The Zoological Record for 1882 "
Potanin's "Sketches of North-Western Mongolia "
Letters to the Editor:-
Quintino Sella.-Prof. Thos. McKenny Hughes, F.R.S.

Electrostatic Measurement of E.M.F.-George M. Minchin
Pons' Comet.-A. S. Atkinson
The Access to Mountains aed Moorlands" Bill-A. Craig.Christie
A Sixth Sense-Henry Faulds; Sir William Thomson, F.R.S.
Earthworms,-James Melvin ; Dr. Hy. F. Walkes The Remarkable Snnsets-J. N. Hayward; B. W. S.
"Curious Habit of a Brazilian Moth."-Rev. R. Baron
Representation of Students. - Another Certificated Student of Girton College
"Suicide" of Black Snakes.-Dr. James Donnet Unconscions Bias in Walking,-J. E. Smith
Recent Weather in North America.-Prof. Samuel Hart
Education in the United States
Pathological Anthropology. By Prof. A. H. Keane The German Expedition to South Georgia
Allen Thomson. By Prof. John G. McKendrick
Quintino Sella

Notes

An Improved Thermo-electric Pile for Measuring Small Electromotive Forces. By Dr. G. Gore, F.R.S.

The Reversal of Hall's Phenomenon. By Shelford Bldwell (With Diograw)
Dr. Feussner's New Polarising Prism. By Rev.
Philip R. Sleeman (With Diagrams)
On Various Suggestions as to the Source of Atmospheric Electricity. By Prof. Tait
University and Educational Intelligence
Scientific Serials
Socleties and Academies

THURSDIY, APRIL 3, 1884

THE " CHALLEVGER" REPORTS Report of the Scientific Results of the Voyage of H.M.S. "Challenger" during the Years 1873-76, under the Command of Capt. George S. Nares, R.N., F.R.S., and Capt. Frank T. Thompson, R.N. Prepared under the Superintendence of the late Sir C. Wyville Thomson, Knt. F.R.S., and now of John Murray, F.R.S.E., one of the Naturalists of the Expedition. Zoology, vol. viii. (London: Published by Order of Her Majesty's Government, 1883.)
" ${ }^{\top}$ HE eighth volume of the Zoological Series of Reports on the Scientific Results of the Expedition of H.M.S. Challenger contains three Reports. That on the Copepoda is the second Report on the Entomostraca, and is by Dr. G. S. Brady. That on the Calcareous Sponges is by Mr. N. Poléjaeff of the University of Odessa; and that on the Cirripedia is by Dr. P. P. C. Hoëk. We learn incidentally from a note by the editor, Mr. John Murray, that the Report on the Foraminifera, by H. B. Brady, F.R S., is now (December 1883) nearly printed, and that it will be issued at once as vol. ix.

Dr. G. S. Brady's Report on the Copepods contains descriptions of 106 species, for 12 of which it has been necessary to establish 11 new genera. These species were taken almost entirely from surface-net gatherings made during the cruise. While in some few of these gatherings no Copepods were found, Mr. Murray feels certain that these forms were rarely if ever absent f:om the tow-net gatherings when these were examined on board ship. It seems now certain that the sea from the Equator to the Poles supports everywhere a profusion of Entomostracan life, chiefly of the order Copepoda. The appearance of these little crustaceans on the surface would seem to depend on conditions not yet well understood. Night seems to call them up in larger numbers than the day, but sometimes even in the day they will appear in multitudes so vast as to colour the surface of the ocean for distances of many miles. The cold waters of the Arctic and Antarctic seas are even more favourable to the increase of the Copepods than the warmer waters of the tropics, and Dr. Brady notes that while individuals of some one or two species seem in the polar seas to predominate, in the equatorial and sub tropical area no one species seems to occur in a very preponderating abundance, but there is a far greater variety of genera and species. While the range of the distribution of the Copepods is extremely wide, still some forms, as Calanus finmarchicus, seem to be characteristic of the Arctic seas, while others, as Undina darwinii and Euchata prestandrea, occupy a like position in the tropical and warmer temperate seas.

Dr. Brady follows the sevenfold division into areas adopted in his Report on the Ostracoda. The only undoubted deep-sea species found is Pontostratiotes abyssicola, a single specimen of which was dredged in a depth of 2200 fathoms. The fish parasites described are remarkably few, and with one exception seem to have occurred on surface-living fish. It would perhaps not be safe to conclude from this that the deep-sea fish are free
from such parasites, but is it not possible that if such forms existed they may have been torn off or destroyed in the transit of the host fishes from the abyssal depths? The single species found was described in manuscript by the late Dr von Willemoës Suhm, whose description and figures are given. It is called Lernaaa abysssicola, and was found on a specim.n of Ceralias uranoscopus, Murray, which was taken at Station 89 , from a depth of 2400 fathoms. It is a strangely attenuated and wonderfully transparent form. The thread-like cephalic region and body portion together only a little exceed 13 mm . in length. This most important Report is accompanied by fifty-five plates, all drawn by the skilled hand of the author.

The Report on the Calcarcous Sponges, by Mr. A. Poléjaeff of Gratz, a graduate of the University of Odessa, and a trusted pupil of Prof. F. E. Schulze, is a most excellent contribution to our knowledge of this highly interesting group, and entitles its author by its comprehensive criticism and by its attention to practical details, to a high place among modern systematic zoologists. The author had much invaluable assistance in his work, and though living in the somewhat out-of-theway, though beautifully situated capital of Styria, he had the immense advantage of being able to consult the collection of Oscar Schmidt. It is with pleasure we fully recognise the good use he has made of all these opportunities, and we heartily congratulate him on the result. The Calcareous Sponges of the Challenger Expedition were found to belong to thirty species, twenty-three of which are described as new. To describe these was a comparatively easy task, and to arrange them in an orderly sequence was there not the splendid essay of Ernst Haeckel, "Die Kalkschwämme"? True; but there was just the difficulty : for the twelve years that had elapsed since the appearance of this most remarkable work had added so much to our knowledge of the morpho'ogy and embryology of this group as to expose the extremely artificial nature of Haeckel's system. Possibly, if the chapter of the history of the Calcareous Sponges had for ever closed on the publication of Haeckel's monograph, the systematic arrangement there adopted, however open to logical attack, might for convenience' sake have stood its ground. But as a natural arrangement it would have ever been open to a destructive criticism. Not the least important part of this Report is the free but generous criticism on Haeckel's classification which will command the attention of every one interested in the group of the Sponges. It should also be read by all working on the details of structure of the lower forms of animal life.

It would be impossible in a general notice of this Report to venture into minute details, but while referring those interested in the facts to the first two dozen pages of the introductory remarks, we may observe that the author concludes that "the peculiarities of the canal system of the sponges, the early development of their mesoderm, the circumstance that it is just the mesoderm which in them gives origin to the generative products, and finally the absence of cnidoblasts and nervous elements, taken altogether, though they do not justify the establishment of a new class for the Sponges, are yet important enough to entitle them to occupy an independent position among the Coelenterata as a sub-class. Within this class the Calcareous Sponges occupy an
essentially isolated position, and as a group these may be divided into two orders: (1) Homoccela, and (2) Heterocoela; the former with the single family Asconidx (Leucosolenia, $\mathrm{B} w \mathrm{bk}$.), the latter with the three families Syconidæ, Leuconidx, and Teichonida. The concluding portion of the introductory chapter we quote as showing that, however destructive may be the author's criticism, he is not unmindful of the merits of the author of "Die Kalkschwämme;" while many of Prof. Haeckel's statements have thus proved to be founded on error, it must never be forgotten that it was his Monograph that called forth and facilitate1 later investigations, and if we are forced to agree to a certain extent with the judgment of M. Barrois upon this great work, that "l'imagination y a trop souvent pris la place de l'observation scientifique et froide," every one will also agree with another judgment of the very same naturalist, that with the appearance of Prof. Haeckel's Monograph " 1 'histoire des Éponges entra dans une phase nouvelle." M. Poléjaeff's Report is accompanied by nine plates, in which all the new forms are figured.

The Report on the Cirripedia is by Dr. P. P. C. Hoëk. Taking Darwin's Monograph as a basis of departure, the authorgives us (1) a sketch of the development of our knowledge with regard to the number of the genera and species known, their geographical and bathymetrical distribution; (2) a summary of what has been added to our knowledge of the anatomy, embryology, \&c., of the group ; and (3) a discussion of the different opinions published with regard to the classification of the group, especially since the discovery of the so-called Cirripedia Suctoria or Rhizocephala. The first of these sketches is, from a faunistic point of view, very interesting and instructive, showing both how much and how little is known as to the forms to be met with on our coasts or in our oceans; and, if properly studied, this section may give a very great impetus to the local study of these forms. We read that all "the Cirripedia of the Baltic belong to the genus Balanus;" but, if we are not mistaken, the extremely curious species Anclasma squalicola has been found on sharks in this sea, and specimens, we believe, from this locality are to be found in the Berlin and Dublin Museums. To the record given of species of fossil forms described since the date of Darwin's Monograph we may add one that has a peculiar interest being from the pen of the late head of the civilian staff of the Challenger Expedition, describing Loricula macadami from the Upper Greensand of the County Antrim.

Out of seventy-eight species of Cirripeds represented in the Challenger collection only nineteen had been previously recorded, and fifty-nine are named and described now for the first time. In 1854 Darwin gave the number of known Cirripedes as 147, and since then only some eighteen new species have been recorded.

Of the thirty-four genera of Cirripedia at present known the species of twenty-eight have never been observed at a depth greater than 150 fathoms. Two have been found from the shore to 400 fathoms (Alepas and Poecilasma). Balanus occurs from the shore down to 510 fathoms. Dichelaspis ranges down to 1000 fathoms; and finally only two genera (Scalpellum and Verruca) have been observed at depths greater than 1000 fathoms. The nccurrence of these two latter genera in the greater
depths of the ocean coincides in a striking manner with their palæontological history, but Dr. Hoëk has not been able to identify any of the recent species with the extinct forms described by Darwin, Bosquet, and Reuss. Of the genus Scalpellum only eleven species were known up to the cruise of the Challenger; over forty species were addef to the list as the result of the cruise. The majority of the species are inhabitants of deep water; indeed Scalpellum appears to be the only genus of the stalked Cirripedia which is to be often met with at great depths. It is also worthy of note that the observation of Darwin made with regard to the number of specimens of Cirripeds during the Cretaceons period may be made for the recent species of Scalpellum : "The number of species is coo-

siderable, the individuals are rare." While the species found during the Challenger cruise amounted to fortrthree, twenty-six of these are represented by a single specimen only; four are represented by two specimens; five by three; two by four; and only six species are represented by more than four specimens. The stady of the complemental males found in some of the species of Scalpellum has given some very interesting results, bet we are promised a more detailed treatment of the organisation of these little creatures in a supplementary memoit. which will deal with the anatomy of the group, and whict will very shortly be published. In the account of S. stroemii, Sars, we find the following:-
"On opening a specimen of this species, dredged is August 1882 by H.M.S. Triton, it was found to contais within the mantle cavity a few large embryos; on microscopic examination these were found to have passea
already the Nauplius-stage and to have arrived at the Cypris-stage. The exuvia of the Nauplius-stage still adhered to the covering of the Cypris ; still it was not easy to make out which parts had developed from the Nauplius-appendages."

The largest species of the genus known has been called S. durwinii. Only a single specimen of this splendid form was dredged during the Challenger's cruise, and of it, through the courtesy of Mr. Murray, we are enabled to give the woodcut illustration on the previous page. This specimen was found as represented attached to a manganese nodule ; these nodules, according to Mr. Murray, are formed by concretionary depositions around shark's teeth, pumice, and other substances at the bottom of the sea; it was dredged at Station 299, December 14, 1875, lat. $33^{\circ} 31^{\prime}$ S., long. $74^{\circ} 43^{\prime} \mathrm{W}$., at a dep h of 2160 fathoms, from a bottom of gray mud. Four large complemental males were found attached between the mantle and the scutum at a short distance from the apex of the valve and close to its occludent margin. Three specimens were on the left and one on the right side.

Of the genus Verruca, ten species, of which six are new, were found. They are among some of the most interesting forms of animal life collected during the Expedition, and prove that the number of recent species is much greater than had been to this supposed to exist, and that the genus has a true worldwide distribution. Of the six stations which yielded Verruca one belongs to the Northern Atlantic, three to the Southern Atlantic, one to the Pacific, and one to the Malay Archipelago. By these discoveries the range in depth has been immensely increased ; the greatest depth known to Darwin for V. strömia, O.F.M, was 90 fathoins, but the six new Challenger species inhabit depihs of from 500 to 1900 fathoms. Of the genus Balanus nine species are referred to, and five described as new ; and of the genus Chthamalus one new species is described. This memoir is accompanied by thirteen plates.

The volume has been edited by Mr. Murray, and is one of the most important to the student of invertebrate forms yet published of these Reports.

GERMAN METEOROLOGY

Repertorium der Deutschen Meteorologic. Leistungen der Deutschen in Schriften, Erfindungen und Beobachtungen auf dem Gebielt der Meteorologie und des Erdmagnetismus von den Ältesten seiten bis sum Schlusse des Yahres 188 r . Von G. Hellmann. (Leipzig: verlag von Wihelm Englemann, 1883.)

IN this goodly octavo volume of 498 pages, presenting an exhaustive catalogue of the meteorological literature of Germany from the earliest to the present time, Dr. Hellmann has done a service to science, the practical value of which it would be difficult to overestimate. The work is divided into three parts. The first part comprises the writings and discoveries, and is in two divisions. The first of these divisions gives the names of authors and the titles of their works; and the fulness and satisfactoriness of detail with which this is gone into may be seen by referring to "Dove," who was the prince of German meteorologists, and "Helmholtz," the latter contributing only one paper-on whirlwinds and thunder-storms-and the former 208 papers, embracing all depart-
ments of the subject. The principal events in the biography of each author are briefly indicated, together with the date of publication of each contribution and the work in which it appeared. The second division is an index of subjects comprised under meteorology, terrestrial magnetism, and atmospheric electricity; and the completeness with which this part of the work is done may be seen by a reference to "Barometer," the various papers relating to which are grouped under thirty heads. The heading " Astro-Meteorologie" shows that even the antiquities of the science have not been overlooked.

The second part gives a catalogue of stations, and is in two divisions-the first comprising stations and the different series of obscrvations made at them; and the second, indexes of subjects and observers. The stations are arranged according to the different States of Germany where they are situated ; and sections are set apart for stations the observations at which have been published in extenso; at which six or more observations have been made daily; stations for investigating forest meteorology, for weather telegraphy, and for international meteorology; high-level stations at heights of 1969 feet and upwards; and stations at which observations have been made for at least fifty years. To these is appended an index of observers' names and their stations.

The third part is historical, presenting an outline of the history of metcorological observations in Germany; a valuable chronological table from the eighth century downwards, detailing the more important facts in the history of meteorology and terrestrial magnetism; and the book closes with interesting statistics showing for the decennial periods beginning with 1480 the progress and extension of meteorological observations over Germany. A map is added showing the meteorological stations in the German Empire at the present time; and on the same sheet a small map showing the stations in Germany in 1781, including those established in connection with the Societas Meteorologica Palatina.

The extreme importance of this undertaking to all workers in meteorology, terrestrial magnetism, and atmospheric electricity, and the ability with which Dr. Hellmann has carried it through, make us regret with a strong feeling of shame the financial difficulty that was allowed to stand in the way of completing a similar catalogue of the meteorological literature of all nations. From Dr. Hellmann's letter to the International Meteorological Committee at Berne, dated July 20, 1880, it appears that all that was required to complete this great work was the raising of a sum not exceeding 1200 . As however there appearcd to be no hope of this small sum being raised or even guaranteed, Dr. Hellmann, in a spirit and with an energy which cannot but call forth the warmest approbation of scientific men, set to work in the autumn of that year, and was in a position in May 1883 to sign the preface of the work now before us. No small praise is also due to Herr Engelmann, for the effective help he has given in its publication.

For want of such catalogues, the workers, not merely in meteorology, but in every department of science, are crippled, and the remark applies with peculiar emphasis in the ease of those who are entering on the work of scientific research. Indeed, the waste of time and brainwork in carrying on stientific work no longer necessary
because it has been already done is so great, and the eonsequent material loss to the nation so serious, that the time cannot be far distant when the Governments of this and other countries will have no choice, but yield to the demands made for a moderate annual grant towards defraying the expenses incurred in preparing and publishing these indispensable aids to all workers in science.

OUR BOOK SHELF

Berly's Electrical Directory. Third Edition, (London and New York, 1884.)
This work consists of three separate directories, separately paged, but bound up together ; the first, of 228 pages, relates to British trades and professions connected with electricity ; the second, of 273 pages, is devoted to similar matters from America; whilst the third is Continental. Of the last, 7 t pages are French and Belgian, 12 German, and 3 relate to other countries, chiefly Russia. This arrangement, though convenient probably to the compilers, strikes us as being bad for many purposes. The American and French sections are particularly full of information. The British section opens with remarks on the progress made in electrical business during the past year, after which come various tables and formulx. These are by no means satisfactory. In the formule for dimensions of units, many of the numbers which should have been printed as powers are given as simple multipliers. Though the table begins with C.G.S. units, and professes to describe those accepted by the British Association and the International Congress of 188 , the ohm is given as equal to 10° absolute units and the volt as 10^{3}, whereas the figures should respectively be 10° and 10°. All this is very misleading. So also is thefollowing statement :-"Calling gravitation the natural unit of force, the absolute unit of force will be $\frac{1}{9.81}$ th part of it." This statement ushers in the following definition :"Unit of Mechanical Effect is the unit of force carried up through one centimetre, or $\frac{1}{9 \cdot 81}$ raised one centimetre." Is it possible that this chapter on formule has been translated literally from the pages of some French writer who was in the habit of using a mixed metre-grammesecond system instead of either the centimetre-grammesecond or the metre-kilogramme-second system? With the exception of the scientific part, the editing appears to have been carefully, and soundly done, and the commercial information is very extensive.

LETTERS TO THE EDITOR

[The Editer does not hold himuelf responsible for opinions expressed by his corrustondents. Neither can he undertake to return, or to correspond woith the weviters of, rejected manuscripts. No notice is taken of anonymons communications.
[The Editor urgently requests correspondents to kapp thair letters as short as possible. The pressure on his space is so great that it is impossible othervise to insure the apparaance avn of communications containiwe interesting and nowd facts.]
"The Unity of Nature"
It was, I think, in the conrse of last year, or of the year preceding, that I ventured to remonstrate against the use sometimes made of your columns by Mr. G. J. Romanes for the purpose of incalcaing his personal belies, and disbeliefs, on subjects which lie outside the boundaries of physical science.
The observations made by him in your paper of March 20 upon the book I have lately published ("Unity of Nature") show that in that remonstrance I committed an offence which Mr. Romanes has not forgotten or forgiven. Nevertheless I muct repeat it ; and this time I have the advantage of his own confession, that "the pages of a scientific journal are not suited
to an examination" of those parts of my book which be bas nevertheless denounced in your pages with unusual violence of language. If your pages are not suited to such an examination, neither ean they be saited to comments which nothing but thet examination could justify. The tone of these comments is a very clear proof of the necessity of our all keeping within the marches when we meet on neutral ground. Scientific facts and scientific hypotheses constilute that nentral ground. On the other hand, the bearing of these facts and of these hypotheses on questions of philosophy and of religion constitutes a separate region in which, if we meet at all, it mast be outside the pages of a pnrely scientific journal. In that separase region it has always been my endeavour to argue without personal passion and witbout contumely towards opponents. I should be ashamed in any argument to display the anmus which has in this case dictated the language of Mr. Romanes on subjects which, by his own confession, he has no right to drag into your pages. He may hold that the highest aim of the human intellect is to prove the mindlessnesy of nature. My book deals, and was intended to deal, with this philosophy; and I did not expect Mr. Romates to like it. How much he dislikes it is remarkable. But be will find no passage in it which descends to the level of some of his comments.

Having dismissed, as Irrelevant in your columns, the criticisms of Mr. Komanes on the " Unity of Nature "which have no coenection with science, I now turn to some of those which have this connection, and are at least perfectly legitimate in their character.

Mr. Romanes is quite right when he says that I object to the "newer philosophy" which makes experience the source of instinct. In my view this theory is, in the strictest meaning of the word, nonsense, because experience is obvioualy "synthesis of intuitions," and not the source of them. It is a plain fact that instinctive movements and Instinctive sensatios are the conditions precedent-the sole materials-of experience. Experience is nothing but the memory in living creatures of thei own previous action on external things, and of the reaction of external things upon themselves. It is the combined conscionsness of both uhich builds up what we call experience. But is every step of this process, whether of action, or of reaction, of of the combined memory of each, not one instinct only, bat several instincts are concerned. Experience therefore is the result of instinet, and not the converse.

With this argument Mr. Romanes does not even attempt to desl.

He does, bowever, sttempt to deal with my contention that instinct is always strictly correlated with organic structure, as that special instincts are always connected with " organs already fitted for and appropriate to the purpose." He zays that my own case of the dipper ought to have taught me better ; "for," he add", "the dipper belongs to a non-zquatic family of birds and therefore has no organs specially adapted to its aquatie instincts."

This argument, as an argument, is a mon sequifur; and as a statement of fact is altogether erroneous, It is quite true that the dipper has not webbed feet. But it is not true that webbe! feet are at all necessary for aquatic habits of a particular kind : nor is it true that the dipper is wanting in other peculiarities of struetnre which are most specially adapted to its peculiar aquati: habits and instincts. There are many birds which swim excel lenily well withont webbed feet, as, for example, all the Gat linules, and some of the Tringids. The dipper does not need webbed feet, because it neither swims nor dives in deep waser and because on the other hand lt positively needs feet free froe web for grasping stones under rapid streame, as well as for grasping rock-surfaces in the places of its nidification. On the other hand, the structnre of its wings, and above all the strat ture and texture of its feathers, are all specially modified asd adspted to its aquatic habits.

It is for Mr . Komanes to prove, if he can, that the dipper once had an ancestor which began to dive in water, whilst as yet is wings had not a shape and a texture adapted to the purpose, anc whilst its plumage was still pervious to water, and so was liakte to be drenched and sodden.

Mr. Romanes protests against my suggestion that radimentary organs may, sometimes at least, be the beginnings of a stracture destined for future use, and not the relics of a structure whos use has been in the past. Yet in the same raper he himselfsuggest. that the dipper may be on the way to having webbed feet, ala only wants them now becanse it has "not get had time to de-
velop" them. But when these webs do begin to appear, they would naturally be small, and would appear to be rudimentary; so that in this stage they would exactly represent the " wholly untenable doctrine" which Mr. Romanes denounces as au "inversion of Mr. Darwin's teaching." As a watter of fact rudimentary organs on the way to future use can he identified in the aquatic larve of the Ephemerze.

The truth evidently is that the theory of the origin of s ecies by transmutation, involves of neces ity a con-tant succession of structures which are on the wane, and another succession of structures which are on the stocks. Whether any particular structure now dissociated from use, belongs to the one or to the other class, is a question of evidence from associated facts. But the idea of some structures being on the rise, is an idea inseparabie from the theory of evolution as taught by Darwin. Fully persuaded, as I am, that there is a very large amount of truth in that theory, I am equally persuaded that, as yet understood, it is incompetent to solve the most important phenomena of creation. In the hands of Mr. Romanes, and of many others, it is almost reduced to the repetitiou of uere verbal formula, under which anything and everything may be brought, only lie. cause they are empty of any definite meaning. The derivation of instinct from experience is an excellent example.

Argyl.l.

Rain-band Spectroscopy Attacked Again

I Have just had the honour of receiving a copy of an essay read before the Philosophical Society, Washingtol, D.C., and printed in the American Fournal of Srience for the present month, wherein I read on P. 209:-
"The results of ohservations with the rain-band spectroscope are now called in question by many prominent meteorologists. In fact the unsativfactory nature of the evidence may be easily shown to the satisfaction of any one possessing an instrument. If the spectroscope is firxt turned to the sky in any direction and afterward to a white wall fifty feet distant, it will be found impossible to distinguish hetween the appearauce of the rain-band as shown by the whole atmosphere and by the layer fifiy feet thick."

If this be the most damaging accusation that can be brought up, after the memorable correspondence in both NATURE and the Times during the autumn of 1882 , there is hope of converting "the prominent meteorologists" yet.

For cannot they, as well as other men, see, that a white wall close to an observer indaylight, necessarily refiects the light, and with that, the spectrum, of the sky which is illumining it, solar liues and telluric lines and all!

Or if the worthy gentlemen still doubt, let them illumine their white wall at midnight with policemen's lanterns or Swan's incande-ceut lamps; and then I can promise them they will get out of it and the "layer of air fifty feet thick" in front of it, neither solar nor telluric spectrum lines in any kind of weather.
C. P1azzt Smyth

15, Royal Terrace, Edinburgh, March 25

The Remarkable Sunsets

In reply to inguiries sent out by me to Prof. John Milne of the University of Tokio, Japan, I am informed that no volcanic dust was known to have fallen in Japan during or after the Krakatoa eruption. He forwards, however, the following extracts, which may be of interest to your readers.

Joitn W. Jund
Science Schools, South Kensington, S.W.
" Japan Gaselte, Friday, $S_{P f t}$ 21, 1883.-Shortly after noon on August 30 the sun seemed to diminish in power, and a uuiform yellow gray haze spread over the sky, gradually becoming more pronounced, and at two hours before sunset its rays were merged into a faint halo emergiug from a globe of light no larger than the full moon. On Friday, August 31, at $8 \mathrm{a} . \mathrm{m}$. , suu the same. At 11 a.m. looked like full moon; could easily observe it with the naked eye. At intervals, faint clouds like puffs of smoke crossed the san's face ; they were enormously high. No wind ; atmosphere dull and heavy, and neither heat nor light. September 1, the same. On Sunday, sun became as usual, and haze passed away. The Japanese were alarmed, and expected earthquakes."

Prof. Milne adds the not :: "If this were due to Krakatoa,
almost 2500 miles away, the speed of the dust must have been thirty miles an hour, assuming the date of the eruption to be 12 p.m. on August 26."

THE coloration of the sky in the neighbourhood of the sun, described by "B. W. S." in NatURE of March 27 (p. 503), has beeu repeatedly observed by myself from Februasy 20 (or thereabouts) up to March 24. My first record of it is on February 24, when 1 describe it as a "rusty-red" tint. On other occasions I have called it "rusty brown" and "pale biich-red." Sometimes it has had a purplish or roseate hue. It has been chiefly seen between 10° and 20° from the sun (at a rough estimate), and only when the sun was hidden by a detached cloud. Frequently, when the sky has been clear, the intervention of a house or other object between the observer and the sun has revealed the presence of a hazy metallic-looking glare arourd the sun-an appearance not perheps very remarhable in itself, but remarkable by its frequent repetition.

If, as seems probable, the explanation of these phenomena is to be fuund in a gradual subsidence of the reflecting matter which occationed the remarkable sunsets, it will be well for ob-ervers to be prepared with suitable arrangements for catching what may fall. I lave myself had in operation for some time past two reparale devices for this purpose, the one intended for dry weather, the other for rain. In dry weather I expose a tray containing a number of glass slides, each with a drop of glycerine in a shallow cell, ready to be covered u ith this glass after suffcient exporure. For rain I use a 12 -inch bell-glass supported in an inverted position on a three-legged stand, the legs partly buried in the earth, and the height such as to raise the receiving area of the glass to 30 inches above the soil. A rain-gauge is less suitable for the purpose, and experience has shown me the uecessity of guarding against the introduction of particles of soil by the rebound of hailstones.

An investigation of this kind is difficult in the neighbourhood of a city, and it is much to be wished that observers living in isolated ritnations may be induced to undertake it.

It may be worth recording that on February 24 , after an interval of several weeks, we had a striking recurrence of the sunset phenomena so often described. It was not perhaps the very finest example, but, as regards the primary glow, there had been nothing equal to it since January 12 . Unfortunately I was not able to watch for the secondary glow. It is singular that at both the beginning and end of this series of phenomena there should have heen outlying examples separated by some weeks from the rest. The first of the peculier sunsets observed in this country appears to have been on November 9 . Then I find no record until November 24. From that date (allowing for interruptiou by weather) they may perhaps be considered to have been continuous until February 2, becoming searcely noticeable towards the last. Then, finally, after an entire absence of fully three weeks there come , on February 24, a sunset which must be ranked amongst the fiuest of the series.

Clifton, March 31
George F. Burder
Referring to the "decidedly unusual pink limge" occasionally observed around the sun " w hen shining in a someu hat hazy sky, the colour beiug hrought out vith great distinctness if a light cloud happens to le pa sing across it " (see NATURE, March 27, p. 503), I would mention that, under the descriled circumstances, 1 have often noticed last winter a peculiar colour, to which I would apply the French term zelure d'oigwon (onion skin), used to describe certain kinds of champagne. I offer this suggestion, as 1 know the value of precize and happily chosen terms, especially in the difficult zratter of the teiminology of colours.
O. S.

Heidelberg, Germany, March 29

Thread-twlsting

THE habit of thread-twisting with the palm of the hard on the thigh is one which may be seen in every part of India at the present day; we think it can hardly be termed a rude method, or a savage art, though the Mohammedans, whose ancestors came not so very long ago from Central Asia, practise lt as much as, or even more than, the Hindoos. As "J. S." observes in Natuke of March 20 (p .478), it may be one of the survivals from a barbarous period which we have lost since the introdnction of machinery. Perhaps some of your correspondents may be able
to tell us whether it is in use in the Orkneys and the Hebrides, or elsewhere, where the people still spin their own wool.

Cosmopolitan

MEASURIN'G HEIGHTS ${ }^{1}$

THE system of barometric hypsometry described in this treatise-first communicated in 1877 to the Philosophical Society of Washington-was suggested by the needs of the geographical surveys conducted by the Goverament of the United States in the mountainous region lying between the Great Plains and the Pacitic Ocean. The systein prozoses a ne. method of observation and computation. It is not of universal application, but the range of work to which it is adapted is large and deserving the attention of the geographer.

The methad of observation is as follows :-Two base stations are established-one bigh, the other low. Their difference in altitude is made as great, and their horizontal distance as small, as praciicable. Each station is furnished with a barometer only, and observations are made at frequent intervals through each day. At each new station a barometer is observed, an I no other instrument. The difference in altitude of the two base stations is determined by spirit level, and forms a vertical base by which all other intermediate altitudes are compulcd as follows:-The readings, being corrected for index error and te nperature of instrument, are collected in groups of three, each observation at a new station being accompanied with the simultaneous observations at the two base stations. The resulting difference of heights of the loser and the new station is then computed by the following formula, in which if L, U, N represent the height of the lower, upper, and new stations respectively, and l, u,n the simultaneous corrected barometric readings at the same stations, and also let $B=U-L, A=N-L$, and $B-A=U-N$; then it is found approximately that -

$$
A=B \log l-\log n+\frac{A(B-A)}{D}
$$

where $D=490.050$, if A and B are rec'coned in feet; or $\mathbf{1}^{\mathbf{1} 99,349}$ if in metres. This formula consists of two terms -the first, or logarithmic term, is the principal one; the second, or thermic term (so calle 1), is always very small in comparison with the first-so that it suffices to substisute for A in the second term the value of the first. The following example of computation further illustrates the formula :-

In Ausust 1872 the simultaneous mean pressures at Sacramenio, Colfax, and at Summit were $29^{\circ} 979,27 \cdot 475$, and 23.336 inches respectively, and the altitude of Summit above Sacramento is 6989 feet. Required the altitude of Colfax above Sacramento. In this case :-

$$
\begin{array}{rlrl}
l=29.879 & \log l & =1.47337 \\
n=27.495 & \log n & =1.43894 \\
n=23.336 & \log u & =1.36803 \\
\log t-\log n & =0.03643 \\
\log t-\log n & =0.10734
\end{array}
$$

$\log (0.03643)=-2.56146$
$\log (0.10734)=-1.03075$
Difference $=-\mathbf{1 * 5 3 0 7 6}$
$\begin{array}{lll}\log B & =3 * * 4441 \quad 6989=B\end{array}$
$\operatorname{sum}=\log ($ first term $)=3.37511 . .2372^{\circ} \mathrm{O}=$ first term $=A$ nearly (mately)
$\log (B-A)=3.6644 \ldots 4617=(B-A)$ (Approxi-
$\operatorname{colog}(490000)=-6.3095 \ldots$

$$
\text { Sum }=13493=\log 224 \text {. .the second ter.n }
$$

Require $!$ difference of altitude $=23944$ feet.

- "A New Method of Measuring Heights by Means of the Barometer." By G. K Gilbert. Extract frum the Annual Keport of the Director of the U.S Geological Survey, rESo-81. (Washington: Goverament Printing Office, r88.)

The author, considering the direct calculation of the second term inconvenient, has calculated a table of double-entry showing the value of this term as a correction of the first term for every 100 feet of B and of the approximate value of A, which is appended. A graphic table is also appended (plate lxii.) for computation of this thermic correction. However, as the table of logarithms must be to hand, the direct calculation does not seem to present any particular inconvenience.
By thus abandoning the thermometer and psychrometer, and employing the barometer alone, the author reverts to elementary principles upon which all barometric measurements depend, and presents in his first chapter a review of the purposes and conditions of barometric hypsometry in general, and although not presenting anything new, is yet very interesting. The principle which underlies the measurement of heights by the barometer is exceedingly simple, but its application is fraught with difficulty. The law of the relation of altitude to atmospheric pressure is consequent on the law of the compressibility of gases, and is simply a certain multiple of the logarithm of the air-pressure. But there are numerous modifying conditions which must be considered in the application of this law. After describing the construction of barometers, of which the mercurial is both the oldes: and the most accurate, the author passes to the consideration of the modifying conditions of the temperature and bumidity of the atmosphere which are ever varying, so that the static order of densities is broken, currents are set in motion, and the circulation and the inequalities of temperature conspire to produce inequalities of moisture. Every element of equilibrium is thus set aside, and the air is rendered heterogeneous in composition, temperature, and density. Moreover, the disturbing factors are so multifarious and complex that there is infinite variety of combination and infinite variety of result. Approximate solutions of the problem are therefore only expected; and the author, after describing the disturbing factors-gradients, temperature, humidityand the various devices for the elimination of the errors due thereto, and other general devices for diminishing hypsometric crrors and the relative importance of different sources of error, arrives at the conclusion that the difficulties which inhere in the use of the barometer for the measurement of heights are so numerous and so baffling that there is no reason to hope they will ever be fully overcome. The best that can be done is to mitigate them, kecping in mind that the barometric method must not be so elaborate that its cost will approach that of the use of the spirit level. The problem, therefore, which occupies the attention of those who have occasion to use the barometer in extended surveys is how to secure the best result from a single observation at a new station combined with a series of observations at one or more bise stations.

The author next proceeds in the second chapter to develop his new method, as explained above, and deterinines a mean value of the thermic constant, D. It Chapter III., on "Co nparative Tests," various tables are given of the comparative results obtained by means of the new method and the ordinary and other empirical methods in use. This comparison shows the advantage of the new method in a reduction of one-half the error of the ordinary method, and one-fourth that of the empiric method. Nevertheless there is a considerable range of special cases in which the ordinary method can never be superseded.
llaving shown that the new methol is theoretically plausible and practically successful, the author considers in the fourth chapter the nature of possible improvements. This clapter, and the following fifth chapter on the limits of utility, and the sixth on the work of others, are more specially addressed to the students of hypsometry. This interesting word closes with a short cbapter, the seventh,
on the use of the table of the values of the thermic term -before-mentioned-and a supplementary note on devices to eliminate the influence of wind-pressure.
It may be stated that of the seven plates referred to as illustrating this work, six are wanting in the copy now under notice.

ON A METHOD OF ESTIMATING THE STEADINESS OF ELONGATED SHOT WHEN FIRED FROM LARGE GUNS

INN Cctober last it was stated in the newspapers that "at the request of Lord Alcester," and in the presence of the Lords of the Admiralty, "comparative trials of a Krupp gun and a 6 -inch breechloader took place greatly to the advantage of the former." . . . "The projectile used in the English weapon was 100 lb . with a 34 lb . charge, and that in the Krupp gun 64 lb . with a 141b. charge, the results from the latter being far in advance of the former." If this statement be exact, the matter calls for the most careful consideration. In such a case the superiority of the Krupp gun must have arisen either from the higher initial velocity, or from the greater steadiness imparted to the shot by the Krupp gun, or probably from both these causes combined. The comparative merits of these or any other guns could be very readily settled by well-known methods of experimenting, at the expense of little more than the cost of 5 to to rounds of ammunition for each gun. There is no necessity for a repetition of the Armstrong and Whitworth competition, said to have cost some 30,0001 .
Numerous experiments were made in this country in $1867-68$ with guns of $3,5,7$, and 9 inches calibre, to determine the resistance of the air to the motion of both round and elongeted projectiles. Coefficients of resistance were then determined for all velocitics between 900 f.s. and 1700 f.s. Additional experiments were made in $1878-79$ with elongated projectiles alone, which gave the coefficient of resistance K corresponding to all velocities between 430 f.s. and 2250 f .s. But after this report had been printed, which contained general tables for both time and space within the above-named limits of velocity, it was decided to have additional experiments made with both lower and higher velocities. The final report of these experiments was published in 1880, which contained general tables for space and time for velocities between 100 f.s. and 2900 f.s. The values of K_{0} corresponding to the velocity v, as given in this report, will be hereafter referred to as the "tabular" values of $\mathrm{K}_{\text {e }}$. The weight of a cubic foot of air was taken to be $534^{\prime 22}$ grains.

In testing any new gun I would proceed, as in the above-named experiments, to measure the times occupied by the shot in passing over a succession of equal distances. These observations would readily give the velocity v of the shot at any point of its path, and also the corresponding coefficient of resistance K_{0}. Then according as the mean value of K, derived from 5 to to rounds, was found to be greater or less than the ta bular value of K_{t}, it would be evident that the gun on its trial gave a less or greater degree of steadiness than the average of the guns used in the experiments of $1867, \& c$.

Let us examine the relative value of these four gons in rounds where the middle velocity was about 1280 f f.s.

Rounds 6-12, 124 and 126 were fired from the 3 -inch gun, with projectiles of 9 lb ., giving for K_{1290} respectively the values $136.5,1107,-114.5,118 \% 2,12 \%$, 119.2 , 1117 , and 111%; the mean of which, 117%, is 89 higher than $10^{\circ}{ }^{\circ}$, the tabular value of K_{1230}. Consequently this gun falls below the average in steadiness very decidedly.

Rounds $16 \not{ }^{-1} 168$ were fired from a 5 -inch gun with projectiles of 47.68 lb ., giving for K_{1230} respectively the values $110^{\circ} 3,98^{\circ} 9,91^{\circ}$, $101^{\circ} 5$, and $97^{\circ} 9$; the mean of which, $99^{\circ} 9$, is therefore $9^{\prime \prime} \mathrm{I}$ below 109°, the tabular value of $\mathrm{K}_{\text {trso. }}$.

Consequenily these solid 5 -inch shot had a very high degree of steadiness.
Rounds 148-153 were fired from the same 5 -inch gun, but with hollow projectiles of $23^{\prime .84} \mathrm{lb}$, giving for K_{1290}, respectively the values $105 \cdot 1,1134,1015,1054,1077$, and 102°; the mean of which, $105^{\circ} \%^{1}$, $3^{\circ} 1$ below 1090°, the tabular value of $K_{\text {1990 }}$. The steadiness of these sho: was above the average, but inferior to that of the solid 5 -inch shot.
Rounds $97-10$ t were fired from a 7 -inch gun, with projectiles of $123^{\circ} 125 \mathrm{lb}$., giving for K_{1300} respectively the values $109.8,118.7,188.6,1176$, and 117.5 ; the mean of which, 114^{44}, is 5^{88} greater than 108.6 , the tabular value of K_{1390}. The 7 -inch projectiles were therefore deficient in steadiness.
Rounds 218.221 and 228 were fired from a 9 -inch gun with projectiles of 250 lb . giving for K_{1280} respectively the values $110^{\circ} 4,104^{\circ} 8,126^{\circ}, 118^{\circ} 9$, and $131^{\prime} 2$; the mean of which, $118^{8} 2$, is $9^{\prime 2}$ above the tabulated value $109^{\circ} 0$ of $\mathrm{K}_{12 s 0}$. The 9 -inch shot were therefore very unstendy.
We thus arrive at the character of each of the experimental guns from the error in K_{0}. In the 3 -inch gun the error was +89 : in the 5 -inch gun (solid shot), -9.1 ; in the 5 -inch gun (hollow shot), -3.1 ; in the 7 -inch gun, +5.8 ; and in the 9 inch gun, +9.2 .
Some experiments were made with projectiles provided with various forms of heads in 1866 . Although the programme was never fully carried out, the rounds fired with hollow ogival-headed shot of one and two diameters were tolerably pumerous. The two forms of shot were fired alternately, and gave the following values of K_{1400}.

Round	One diameter	$\begin{gathered} \text { Error } \\ +0^{\circ} \mathrm{I} \end{gathered}$	Round	Two diameters 108.0	$\begin{gathered} \text { Errar } \\ +4.6 \end{gathered}$
16	113.1	+4.6	17	-	$+46$
18	109.6	$+1.1$	19	-	-
20	108%	-0.5	21	103.5	+0.1
22	105.3	$-3^{*} 2$	23	104.6	$+1 \cdot 2$
24	110.1	+16	25	99.1	-4.3
26	108.1	-0.4	27	ICO 8	-2.6
28	108.4	-0.1	29	1030	-0.4
30	109.6	$+111$	31	104%	+06
32	104%	-4'1	33	104*2	$+0.8$
	10) 1085.2	16.8		8) 827.2	8)146
Means	... $108 \cdot 5$	17	Means	... 103*4	18

The tabular value of K_{1+000} is 1047 , which was derived from experiments made with ogival-headed shot struck with a radius of one diameter and a half. The unit of K in the above cases corresponds to about the 1/50,000 of a second.
M. Krupp has recently circulated some tables which are based on coefficients, a little less than the tabular numbers above referred to, and about such as would have been obtained if I had used those coefficients only which were given by the most steady moving projectiles. Since 1868 there have been great improvements nade in the manufacture of slow-burning powder, \&c., which may have tended to give increased steadiness to the shot, and thus to reduce the resistance of the air slightly. Still I do not think it desirable at present to reduce my coefficients sensibly, because in all my experiments the velocities have been determined during the motion of the shot just after it had left the gun. But when the range of the shot is considerable, the direction of the axis of the shot must become inclined to the direction of the motion of the shot, and this must increase the resistance of the air. If it was thought desirable to reduce the coefficients of resistance throughout any range in a particular case by $\frac{1}{7}$ th or $\frac{1}{6}$ th, ace., this could easily be effected by multiplying $d^{2}+\infty$ by ($1-\frac{1}{1}$), ($1-\frac{1}{1}$), \&c. For heavy shot the range should be extended much beyond 500 yards
The pamphlet alluded to above is entitled "Table de Krupp pour le calcul des vitesses restantes horizontales et des dur'es de trajet des projectiles oblongs. Essen,
1881." M. Krupp does not give any details of the experiments on which he professes to have founded his tables, or acknowledge any kind of assistance from any other author. * He remarks that for a long time the resistance of the air was supposed to vary as v^{3}, then to depend upon two powers of v, and afterwards to vary as v^{3} or v^{4}. Experiments have shown that these so-called laws of resistance are not good for all velocities. "Cette expérience devait le faire paraitre utile de trouver une nouvelle méthod pour le calcul des vitesses restantes" (p. 16). And again, "Un tel tableau pour differences de vitesse de 10 cm . a été établi par l'usine Krupp au commencement de l'anncée 1880" (p. 18):
M. Krupp's tables are precisely the same as those that have been used in England since 1871, except only that French replace English measures, and that a small reduction of the English coefficients of resistance has been made throughout. Taking one of Krupp's examples (last page) $11 / 6 / 79$, where $d=355 \mathrm{~mm}=13.977$ inches; $w=$ 525 kilos. $=1157.43 \mathrm{lbs}$; commencing velocity $490 \mathrm{~m} . \mathrm{s}$. $=1607 \cdot 64$ f.s. ; remaining velocity $415 \mathrm{m.s} .=1361^{\circ} 57$ f.s., at distance $2384 \mathrm{~m} .=7821.6 \mathrm{ft}$. ; weight of 1 cubic metre of air = I'200 kilos., M. Krupp finds from his table 411.8 m s . for the remaining velocity instead of $415 \mathrm{~m} . \mathrm{s}$ given by his experiment. My table gives a remaining velocity of $4057 \mathrm{~m} . \mathrm{s}$. But supposing we reduce the coefficients of resistance in the proportion $99^{\circ 9}$: 1090 given by the experiments made with the 5 -inch gun (solid shot), then we obtain $412 \% \mathrm{~m} . \mathrm{s}$. for the required remaining velocity, which is nearly the same as $411.8 \mathrm{~m} . \mathrm{s}$. obtained by the use of Krupp's table. Again, taking the experiment $6 / 8 / 79$ with a projectile 400 mm . in diameter, commencing with a velocity $533.4 \mathrm{~m} . \mathrm{s}$., M. Krupp finds a remaining velocity of $447^{\circ} \mathrm{m} . \mathrm{s}$. by the use of his table, while I obtain $40^{\circ} 4 \mathrm{~m} . \mathrm{s}$. and $443.8 \mathrm{~m} . \mathrm{s}$. is given as the result of experiment. But if I reduce all my coefficients as before in the ratio $99^{\circ} 9: 1090$, then my table gives 447.4 ms . as the remaining velocity, which agrees with M. Krupp's calculations. Hence it appears that M. Krupp claims by these tables that his guns of 1880 , on the average, give a degree of steadiness about equal to that given by the best of the four English experimental guns used in 1867-68. I have not inuch confidence in the accuracr of velocities measured at a distance of near one mile and a half from the gun by an instrument not specified, but I have used these data as a means of indicating to what extent the tables give different results. As a test of the tables I should much prefer a careful determination of the commencing velocity of the shot, and the time of fight to some known distant point, where all the times were measured by a single instrument.

For further information I beg leave to refer M. Krupp to (i) "Tables of Remaining Velocity, Time of Flight and Energy of various Projectiles, \&c.," 1871 ; (z) to the Proceedings of the Royal Artillery Institution, Woolwich, September 1871, p. 382, \&c.; (3)16., April 1872, p. 1, \&c. ; (4) 16 ., December 1877, P. $250, \& c$. ; (5) "Treatise on the Motion of Projectiles, \&c.," 1873 ; (6) "Principles of Gunnery," by Major Sladen, R.A., 1879 ; (7) "Handbook for Field Service" (R.A.), 1878; (8) "The Construction of Urdnance, \&c.," p. 359, \&c., 1877 ; (9) "Reports on Experiments, \& c., 84/B/2853," 1879; (10) "Final Report on Experiments, \&c., 84/B/2909," 1880 ; and (1i) and (12) "Manual of Gunnery for H. M. Fleet," 1880. And since that date my "General Tables" have been reprinted in four different books.

Since the above was written, I have noticed that the introducer of the Navy Estımates, 1884, remarked:"The old breech-loader had been found to be of no more use than a muzzle-loader, and the Government had adopted a gun twice as long as the old form of breechluader." I always understood that the profitable use of the new sluw-burning powder required a long barrel, and th it the breech-loading arrangement was introduced be-
cause it permitted the use of a longer barrel on shipboard than could be employed with muzzle-loading.

March 22
Francis Bashforth

THIRD NOTE ON THE ELECTRICAL RESIST. ANCE OF THE HUMAN BODY

IN two previous communications last year, I showed that the amount of this important basis of rational electrotherapeutics had been enormously overstated. Since then I find it given in the new edition of Rosenthal's "Elektricitätslehre," published in the current year, as about 5000 ohms, and, to my surprise, so competent an observer as my friend Prof. Dolbear, in Lockwood's "Handbook of Electric Telegraphy," states it vaguely as from 6000 to 10,000 ohms. On the other hand, Count Du Moncel, in his paper on the conductivity of imperfect conductors in the Annales de Chemie et de Physigue, vol. $\mathrm{x}, 1877$, approaches more nearly to the real value in stating it from wrist to wrist to vary from 350 to 220 kilometres. This is probably the Swiss unit given in Clark and Sabine's tables as equal to 1042 ohms or thereabouts. Both Rosenthal and Du Moncel furnish internal evidence that their excessive estimates were due to imperfect contact through the skin: for the former speaks of using fifty chromic acid elements of two volts E.M.F. each; whereas the current from this large battery, with proper contact, would be utterly unbearable to the patient, if not dangerous. The highest current I have seen employed was from twenty-two of these cells through leas than 2000 ohms resistance. It was done against my advice, and produced a large carbuncular boil at the nape of the neck, where the negative pole was applied. I have since then completely modified my method of making the skin contacts, and no similar accident has occurred.

Even with a far smaller current, namely, that of eight Daniell cells and small platinum electrodes, of which the size is accurately given, namely, $4 \frac{1}{2}$ by 3 cm . (roughly, the length of two shillings side by side, and the breadth of a florin), Du Moncel produced a similar though much more serious accident. The current was passed at intervals for an hour and a half from wrist to wrist, the patient being a lady, and afterwards for shorter periods in the opposite direction. "On withdrawing the electrodes," says the writer, " to my great astonishment I found, on the parts of the wrists where my electrodes had been applied, very pronounced scars resembling burns produced by an acid or a caustic. These scars, to the number of three at the negative pole, werc large and deep. At the positive pole they were very small, and thirty-two in number. During the first two days after the experiment no inflammation supervened, but on the third day it began about the negative scars, and it was necessary to have recourse to poultices, which were kept up for a month ; even then the sloughs were not detached." It is satisfactory to find that no permanent harm was done ; but it is evident that the excessive resistance recorded, amounting at times to 3500 ohms, was mainly due to this cause. It is perhaps not to be wondered at that the scientific Count should have relinquished this branch of his investigation.

With hands soaked in strong brine, and then enveloped in a thickness of flannel wetted with the same solution, bandaged surgically over this with a spiral strip of lead at least 30 cm . long and 5 cm . broad, no local accident has ever occurred to me, nor has any local pain been mentioned. But with ten bichromate cells in good order the shock felt at making and breaking circuit has often been considerable. Indeed my tall and athletic clinical clerk. Mr. Shackel, who kindly consented to act as a resistance, noticed that, when being tested from foot tohand (in his case a length of 7 feet) with 1027 ohms resistance, the opposite side of the body was jerked at these instants. In all recent experiments I have never exceeded this E.M.F,
which is at the outside 20 volts, or about 18 volts as the cells run down.

In all cases hitherto named an ordinary battery current has been employed. In a paper read by me before the British Association at Southport, I named a rotating commutator and also one on the plan of a metronome which I had tried for the purpose of diminishing currents of polarisation by regular inversion. 1 preferred, however, the rapid manipulation of an ordinary commutating key with the fingers of the left hand until the "throw" of a damped galvanometer was all but extinguished.

At the Southport meeting, however, my friend, Dr. Oliver Lodge, suggested the use of alsernating currents of induction, and a telephone in place of the galvanometer, and Prof. Lankester, the President of the Section in which my paper was read, kindly suggested that I should apply to the Royal Socicty for a grant in aid to purchase the expensive apparatus requiret for these experiments. The latter suggestion I at once acted on, and met with unconditional refusal on a printed form. Being thus thrown on my own small means, I proceeded to act on the former suggestion, and ordered an induction apparatus of an excellent London maker. But the British workinan, if sure, is decidedly slow, and the instrument, though stated to be in a condition of forwardness, is not yet ready. In the meanwhile, in the pages of the Electrical Revicu for January 12, a diagram, description, and woodcut of a pretty little instrument designed by Prof. Kohlrausch of Wurzburg for the measurement of fluid resistances appeared ; by his kindness I was put in communication with the firm of Hartmann and Co. of that town, the makers. They at once forwarded me the instrument, which proves to be beautifully made, and extremely moderate in price. This acknowledgment I owe to the Professor's courtesy towards a stranger, and their briskness in carrying out his wishes. Upon its details it is needless now to insist, it being practically a small induction-coil united to a metre-bridge of platinum-silver wire, with resistances of $1,10,100$, and 1000 ohms, to be intercalated in the divided circuit. It emits a steady buzz of about 120 vibrations per second, which is reproduced in the telephone by methods well understood. In my first experiments I found the original and the phantom buzz difficult to separate. The former is easily lessened by mounting the apparatus on vulcanised rubber tubing and a solid supporr. The R. is read off the scale by inspection: towards the left hand or middle of the wire with great accuracy; towards the right-hand end the ohms get squeezed together. When I drew the plug of the 1000 R . my willing student-patient gave a jump out of his two brine baths and said he could not stand it. It was therefore necessary to use the 100 ohm plug. Even with this, however, the results were very remarkable. In this early period of my experiments two illustrative cases may be given. A female patient suffering from diabetes, but otherwise in good health, and able to walk about the ward, gave from foot to foot with an E.M.F. of $3^{\prime} 6$ volts, a resistance of 1210 ohms; from right hand to right foot 1350 ohms; and from left hand to left foot exactly the same figure. With the induction current she gave from foot to foot only 473 ohms; from hand to foot 735 ohms on the right, and 750 ohms on the left, side. The difference was so great that at first I suspected instrumental error, but subsequent testings show that such is not the case. The discrepancy of 15 ohms between the two sides was clearly owing to my unfamiliarity with the telephone in place of galvanometer, and has materially lessened with greater experience.

A male patient suffering from dysentery, now perfectly well, gave from right hand to foot with a current of 3.6 volts a R. of 1580 , with 6.2 volts a mean of 1510 , with 18 volts a R. of 1366 . Each observation was taken wice ; the first and last agreeing exactly, the intermediate
only differing from 1520 to 1500 . This is impossible at times to prevent from the unintentional motions of the patient slightly shifting the level of the brine baths. With the same baths and poles the induction current gave only 590 ohms resistance.

In neither of these cases was there any morbid condition of the muscles tested. The distance was in each case from the external malleolus of the foot to the head of the ulna in the corresponding hand. In recording these results, I prefer, as on the former occasion, to give them at once in their rough state before waiting for a plausible explanation, or endeavouring to procure a fallacious agreement between the two methods. It is clearly not, as a writer in the Electrical Journal thought, a case of mere "cable-testing." What I stated then I now reaffirm, that there is some important difference of a physiological eharacter between the human body as a conductor and ordinary fluid electrolytes.

No doubt, as Dr. Lodge suggests, "an alternating current ought to show too low a resistance, because of electro-chemical capacity, which it would treat like conductivity." But the difference is far too great for such an explanation, nor does it occur to this extent in saline solutions. I am at present engaged in testing its amount in physiologieal fluids, such as blood-serum, ascitic and ovarian effusion, and the like.

A beautiful metre-bridge on Prof. Kohlrausch's pattern, with platinum-silver wire of 3 m . long, has just reached me from Hartmann; with this I am using a "sledge" inductoritm of Du Bois Reymond's with three different secondary coils of different lengths and fineness of wire. For the determination of the alternating currents passing 1 am using the small dynamometer with aluminium wire suspended coil which was shown before the Physical Society, and briefly described in Nature.

This 1 shall check by a fine instrument now on is way from Wurzburg, with a single wire suspension and torsion head instead of the more sluggish bifilar method. Ultimately it may be necessary to use a quadrant electrometer.

Even at this stage it is obvious that the fact of the human body being about twice as permeable to induction as it is to low tension continuous currents is of great physiological and therapeutical importance.
W. H. Stone

INTERNATIONAL WEIGHTS AND MEASURES ${ }^{1}$

ALTHOUGH to some it might appear that the work of the Bureau at Sèvres is perhaps proceeding slowly, yet by reference to the two publications which have been issued under the authority of the Comite International it may be seen that the Bureau is doing its work thoroughly. The extent of the questions investigated is well shown in the first publication issued in 1881 (tome i.), which included papers by the director, Dr. Broch, on the force of gravity, the tension of vapour, the boiling point of water, and the weight of a litre of air ; as well as independent investigations by Dr. Benoit on Fizeau's dilatometer ; by Dr. Pernet, on thermometers; and by M. Marek, on weighing apparatus, \&c.

The present publication (tome ii. 1883), to which we would now invite attention, contains accounts by Dr. Benoit of his expansion experiments; by M. Marek, on the methods and results of the weighings made at the Bureau from 1879 to 1881 ; and by Dr. Broch, on the expansion of mercury. In the experiments on the dilatation of standard measures of length, there has been followed a method attributed to General Wrede. It consists in the first instance in adjusting under two micro-meter-microscopes a platinum-iridium bar, on which the

[^45]length of the metre bas been marked by means of two fine lines. The position of the lines at a constant temperature is then determined by the micrometers, the bar being placed for this purpose in a trough of water, the temperature of which is maintained constant by an improved automatic regulator. A second metal bar, whose rate of expansion is to be determined, is placed in a separate trough of water, the temperature of which differs considerably from that in the other trough. This trough is then also brought into position under the microscopes, and the positions of the lines on the second bar determined relatively to those on the first bar. This method has the advantage that the results are independent of any change in the distance between the axes of the two microscopes during the comparison of the two bars. The optical effect of the immersion of the bars in water was investigated by M. Krusper in 1872-73, who found it to affect the comparisons very little.

The comparing apparatus at the Bureau was originally made by M. Sörensen of Stockholm, but was subsequently altered and improved by the Geneva Society for the construction of physical instruments, under the directions of M. Turettini. The lines on the bars were illuminated by light reflected on to a small mirror fixed at an angle of 45° inside the microscore, a little above the object glass. The determinations of the errors of each micrometer-screw throughout its whole length, for even no micrometer-screw has yet been made in which appreciable errors may not be detected in its use, was made in accordance with methods followed by Drs. Foerster and Hirsch, and MM. Starke and Kammerer.

The thermometers used were constructed after the form adopted by the Bureau (tome i. p. B 8), and were made at Paris by M. M. Baudin and M. M. Alvergnat. It is satisfactory to find that to the important question of thermometers the Bureau has given much attention, as in such investigations errors of thermometers are of as great importance as the errors of the micrometer-microscopes, but are not, however, always so carefully attended to as they should be. The thermometers were calibrated after the metho's suggested by Dr. Thiesen and M. J. Marek ("Repertorium der Carl," t. xv. 1879), and were corrected for "exterior pressure" toa baromeiric height of 760 mm . at 0° lat. $=45^{\circ}$, as well as for "interior pressure," or vertical position, the thermometers reading from $\mathrm{o}^{\circ} \circ 2$ to $0^{\circ} \circ 6 \mathrm{C}$. too high when placed in a horizontal position.

During the past years this apparalus has been used in determining the rates of expansion of the platinum-iridium metres deposited at the Bureau, which are intended hereafter to be the universal standards or prototypes of the metric system. The linear coefficient of expansion for $1^{\circ} \mathrm{C}$. of the platinum-iridium was found to vary from 0,000008668 to 0.000008689 , with a probable error of only ± 00000000075.

The high accuracy of the results obtained at the Bureau in the weighings there executed, have been already previously referred to, as they appeared in a separate form in 1881. In the present volume M. Marek gives the particulars of the experiments made by him in redetermining the density of mercury of the kind actually used in barometer tubes, taking the mean density of mercury as being comprised between that of perfectly dry mercury and of mercury exposed to moist air. Illustrations are given of the modes of purifying and of weighing the mercury. The density of four samples of mercury, as determined by weighing in water, was found after many experiments to be as follows :-

$$
\begin{array}{cc}
\text { Mercury } & \mathbf{A}=13.595631 \pm 0^{*} 000 c \cdot 29 \\
" & \mathrm{~B}=13.595633 \pm 0^{\circ} 0 c 0024 \\
" & \mathrm{C}=13.595458 \pm 0^{\circ} \operatorname{coo} 56 \\
" & \mathrm{D}=13.595930 \pm 0^{\circ} 000055
\end{array}
$$

In the paper, "Dilat:tion du Mercure," we find again that painstaking investigat on and high accuracy which
characterised the papers published in 1881 above referred to. The most exact observations on the dilatation of mercury are undoubtedly those of M. Regnault (Memoira de l'Acadímic des Sciences, tome xxi. 1847); and it is to the mathematical reduction of these observations that Dr. Broch has now applied a critical examination, employing as his first coefficient of dilatation the value obtained by M. Wullner ("Lehrbuch der Experimental Physik," t. iii.):-

$$
d_{t}=10^{-9}\left(181168+11^{\circ} 554^{f}+0.021187 f^{\prime}\right)
$$

instead of that of Regnault-

$$
d_{t}=10^{-9}\left(179007+25^{\prime} 232 f\right)
$$

By a reduction by the precise method of least squares, of the original observations to the latitude of 45° at the level of the sea ($B=760 \mathrm{~mm}$.), there is now obtained for the cubic expansion of mercury the following formula, which we would recommend to the attention of those engaged in accurate work :-

$$
\begin{gathered}
1+k t=1+0.000181792 . t+0000,000,000175 \cdot f^{2}+ \\
0000,000,000035116 \cdot t^{3} .
\end{gathered}
$$

We note that for the current year the President of the Bureau is General lbanez (Madrid), the Secretary being Dr. Hirsch (Neuchatel), the Committee including MM. Dumas (Paris), Foerster (Berlin), Gould (Cordoba), Govi (Naples), Herr (Vienna), Hilgard (Washington), Krusper (Budapest), Stas (Brussels), Wild (St. Petersburg), and Wrede (Stockholm). This country is not represented oc the Committee, our Government having decided not to take part in this international project.

LIL.EA ${ }^{1}$

THE genus Lilaa was founded by Humboldt and Bompland for a very curious plant closely allied to our native Triglochin, which was first found by them in New Grenada. The present memoir, which bas apparently only recently reached Europe, is one of the mast elaborate studies probably ever made of the entire morphology, histology, and development of a single flowering plant, and is due to the unexpected discovery of the plant in 1875 in the Argentine Republic. The curioes reductions of structure which are the result of a more of less aquatic mode of life have always made plants of this kind attractive to investigators.

The careful investigation of the structure of the flower throws some light on a point which has been much controverted, whether the stamen is ever an axial structure or not. Lilaa bears its flowers in a spike, and there are no less than thrce kinds:-(1) below, female; (2) in the middle, hermaphrodite ; (3) at the top, male flowers. These latter consist of a single stamen in apparent direct prolongation of the floral axis. It is about these in the similar cases of Naias that discussion has arisen. Now Hieronymus contends that this stamen is really only pseudo terminal, but that it consumes in its development the primitive meristem of the growing point, and so eventually occupies its place. He extends the sume explanation to the cases of Naias, Zannichellia, Casyarina, Brisula, and others which bave been held to support the axial origin of stamens. But as Sacbs remarts ("Textbook" second edition, p. 541), the question cannot be settled wholly on anatomical grounds. And in Lilad there can be no doubt that in the hermaphrodite flowers the stamens are lateral. In the male flowers he some times finds a lateral rudiment of a pistil; and this must be held to clinch the argument that the stamen is not really cauline, but always lateral and only pseudoterminal.
lilad has a fourth class of flowers, the adaptive origit of which is interesting. The whole plant is at first par. tially submerged-perbaps was once wholly so. The
" "Monografia de Iilaz, ,ubulata." Por J. Hicronymus, Aeras \& is Acadomia nalcional de Ciencias en Conloda, (Buepos Aires, isse.)
lowest flowers of the inflorescence are female, and seated in the axils of the sheathing leaves; but the style is enormously elongated so as to carry the stigma to the surface of the water for fertilisation. This recalls the habit of Vallisueria. But, as Mr. Bentham reminds us, the resemblances of Hydrocharidea and of Naiadacea are essentially adaptive, and must not blind us to the real profoundly divergent affinity.
It is worth noting, as a hint to those interested in researches of this fascinating kind, that the investigations of Dr. Heeronymus were mate partly on material preserved in a mixture of two-thirds alcohol and one-third glycerine, partly in an aqueous solution of salicylic acid (no further detail, are given).
W. T. T. D.

PROFESSOR FLOWER

PPROFESSOR FLOWER'S resi, nation of the office of Conservator of the Museum of the Royal College of Surgeons was received at the last meeting of the Council of that body, held on March 13, whereupon it was moved by Sir James Paget, seconded by Mr. Erichsen, and resolved unanimously:-"That the Council hereby desire to express to Mr. William Henry Flower their deep regret at his resignation of the office of Conservator of the Museum of the College.
"That they thank him for the admirable care, judgment, and zeal with which for twenty-two years he has fulfilled the various and responsible dutie; of that office.
"That they are glad to acknowledge that the great increase of the Museum during those years has been very largely due to his exertions and to the influence which he has exercised, not only on all who have worked with him, but amongst all who have been desirous to promote the progress of anatomical science.
"That they know that, whilst he has increased the value and utility of the Museum by enlarging it, by preserving it in perfect order, and by facilitating the study of its contents, he has also maintained the scientific repute of the College by the numerous works which have gained for him a distinguished position amongst the naturalists and biologists of the present time.
"And that, in thus placing on record their high appreciation of the services of Mr. Flower, the Council feel sure that they are expressing the opinion of all the Fellows and Members of the College, and that they will all unite with them in wishing him complete success and happiness in the inportant office to which he has been elected."

The conditions under which the Conservatorship of the Museum of the College will be held in future are at present under discussion, and will probably be decided at the next meeting of the Council on the 1oth inst, when the office will be declared vacant, and candidates invited to send in their applications.

THE DEEP-SEA DREDGINGS OF THE "TALISMAN"-CRUSTACEA

IN a previous article attention was called to some of the more remarkable of the deep-sea fishes taken during the recent cruise of the French frigate the Talisman : not less interesting were the numerous forms of Crustacea dredged during the same cruise, a fine collection of which were also on view at the Jardin des Plantes, Paris, as part of the spoils brought home after the voyage. From a survey of the specimens it is evident that these Crustacea are to be found at all depths of the ocean : some pass their lives floating on its surface, feeding thereon or amid the acres of Sargassum weed; while others live at depths of from 4000 to 5000 metres. The so-called swimming crabs which form a section of the Brachyura would seem to be extremely sare at great
depths. Certain species taken during the Talisman's cruise are remarkable for their very extensive geographical distribution; thus, species of Batynectes which were found at depths of from 450 to 950 metres off the coasts of Morocco and about the Cape Verd Islands, seemed very closely related to the swimming crabs (Portunus) of our own seas, and again to be very nearly connested to species of the same genus collected at the Antilles, in the Mediterranean, and in the Arctic Ccean. Another section of the Brachyura, with sharp triangular bodies (Oxyrrhyncha), contains species which are to be met with at much greater depths; thus Lispognatus thompsoni (A. M. Edw.) was dreiged off the coasts of Morocco from depths of between 600 and 1500 metres, and Scyramalhia carpenteri was taken at the same place from a depth of 1200 metres. The former of these species bas been found in the North Sea, and the latter has been taken off the north of Scotland and in the Mediterranean. The Crustacea intermediate by their forms between the Brachyura and the Macrura were found in abundance at very great depths, and the forms found see ned in great measure to belong to "transition" forms; so one was ofien surprised to find a form, which taken by itself appeared abundantly distinct, quite connected with others by numerous intermediary forms. Thus species of Ethusa, Dorippe, Homola, and Dromia seem to present such numerous shades of gradation as to perplex one completely in the difficult task of classifying these gencra. Some of these forms are also very remarkable for their geographical distribution: a species of Dicranomia, described by Milne-Edwards from the Antilles, was found off Morocco, and Homola curvierii, up to this thought to be peculiar to the Mediterranean, was found at the Azores and the Canaries. But the most remarkable instance of the geographical extension of which some genera are capable is furnished by some species of the family Lithodina. These Crustacea to this bave been known as inhabitants of the Aretic and Antarctic regions, living in the littoral zone, but now they have been found under the tropics; the only difference being that in this latter locality they have contrived to find congenia! conditions of life by abandoning their shallow-water life and betaking themselves to the cool depths of over 1000 metres. A fact like this is not without its interest, inasmuch as it shows how some forms can spread themselves from the frozen seas of the north to the seas of the tropics, and so from the region of one Pole to the other; altering their conditions of life as necessity demanded, and resuming their old habits when the opportunity to do so again occurred.

The Crustacea known as Hermit Crabs were found to extend to a depth of 5000 metres; as is well known, the terminal portions of the bodies of these Hermits are soft, not covered like the head and claws of the crab with a strong calcareous shell, and these animals have the habit of tucking the soft part of their bodies for security into the body-whorl of some empty shell; but at the great depths refcrred to shells suitable for this purpose are not to be found, and the hermit crabs inhabiting these depths must often be in great difficulties for material wherewith to cover themselves. In one specimen taken of Morocco this covering consisted of a living colony of a very pretty species of Epizoanthus.
Species of the family Galatheidea were found in-profusion at all depths; but the colour of their body, generally that of a red or pink hue, was in the forms from the great depths of a uniform white. Some species were found which occupied the interior of those lovely siliceous sponges belonging to the genus Aphrocallistes. One new species, Galathodes antonii, was found at a depth of 4000 metres, and another, from the same depth, with its abdomen coiled twice upon itself, has been also described by A. M. Edwards as new (Plychogaster formosus).

Of the group of Eryonidx a considerable number of both genera and species were dredged. Of these, those
belonging to the genera Polycheles, Wilmoesia, were from depths of from 4000 to 5000 metres, and the wonderful transparency of the forms permitted the whole internal viscera to be distinctly seen. Some species of Pentacheles were evidently allied to the fosiil forms of Eryon.

Of the Crustacea belonging to the group of Macrura, the one to which the craytish and shrimps belong, miny
were taken at very great depths. Off the Cape Verd Islands, from a depth of 500 metres, a thousand isdjviduals of a new species of Pandalus were taken. Among the most remarkable of all of these forms is the one which, through the courtesy of the editor of L_{d} Nalure, from which journal this notice is in part translated, we are enabled to give the accompanying illustra. tion. Named Nemalocarcinus gracilipes by Alphonse

Nematocertikus gracilifs (A. M. Edw.).

Milne-Edwards, it was, when taken fresh from a depth of 850 metres, of a spiendid rose colour. The extreme length of its antennæ will at once attract attention, and tno less remarkable are the wonderfully attenuated feet, of which the third, fourth, and fifth pairs are longer than the first and second. The eyes are large, but the eyestalks are not elongated. In another member of this group, rilyphus marsupisilis, the female had the lateral portions
of the abdominal segments developed so as to form a pouch-like receptacle, in which the eggs were deposited

When trying to draw conclusions from the phenomed presented by the numerous forms of Crustacea collected during the Talisman cruise, one is struck by the stratg diversity in these phenomena. While some of the species are blind, others have well-developed organs of vision; while in some the eye-stalks are flexible, in others they
are immovable; while in some there is a very marked transparency of the integuments and a decided softness of the muscular tissues, in others neither of these facts is at all apparent. Some of the deep-sea Crustacea are beautifully phosphorescent, and in certain species this phosphorescence is not diffused but is limited to some special areas of their bodies, and in a new species, Acanlephyra pellucida (A. M. Edw.), the feet are adorned with phosphorescent bands. We of necessity know so little of the habits of these new, strange forms, that it would be premature to draw scientific conclusions from their structure.

THE SOCIETV FOR THE BIOLOGICAL INVES-

 TIGATION OF THE BRITISH COASTSTHE meeting which we previously announced as about to be held for the purpose of inaugurating a new society baving the above title, took place last Monday in the rooms of the Royal Society, Prof. Huxley being in the chair. The meeting was large and influential. Among those present swere the Duke of Argyll, the Earl of Dalhousie, Lord Arthur Russell, Sir Lyon Playfair, M.P., Dr. W. B. Carpenter, Sir Joseph Hooker, the Hon. Edward Marjoribanks, M.P., Sir John Lubbock, M.P., President of the Linnean Society, Mr. J. Blake, M.P., Sir George Nares, Dr. John Rae, Sir Joseph Fayrer, Capt. Verney, R.N., Prof. Flower, Prof. Ewart, Dr. John Evans, Prof. Bonney, Dr. Spencer Cobbold, Mr. John Murray (of the Challenger Office), Dr. J. Gwyn Jeffreys, Dr. Günther, Prof. Moseley, Mr. G. J. Romanes, Mr. H. C. Sorby, Mr. Francis Galton, Mr. Brady, Prof. Crofton, Mr. Dawson Williams, Prof. St. George Mivart, Mr. Busk, Dr. Sclater, Dr. Dodson (Netley), Mr. Tbisel${ }^{\text {ton }}$ Dyer, Mr. H. C. Burdett, Prof. Donkin, Dr. John Murie, librarian of the Linnean Society, Mr. W. H. Dallinger, Dr. A. Geikie, Mr. E. Forbes Lankester, Mr. Saville Kent, Mr. M'Lachlan, Dr. Herbert Carpenter (of Eton), Prof. Jeffrey Bell, Mr. Frank Crisp, and Prof. Ray Lankester. Letters regretting inability to attend were read from Lord Derby, the Marquis of Hamilton, Sir Thomas Dakin, Mr. Chamberlain, Mr. Burdett-Coutts, Mr. R. W. Duff, M.P., and Dr. Dohrn.

Prof. Huxley, in opening the proceedings, began by observing that the object with which the meeting had to deal was not in his hands, but in those of Prof, Lankester, who had requested that the Royal Society should foster an undertaking which promised well for the progress of science. The establishment of marine biorogical stations had been undertaken during the last few years by most of the civilised countries, and was, indeed, a necessary result of the great change which had taken place in the aims of biological science. The study of development began about half a century ago, and the ramifications of that inquiry, which had been extended to the mode of becoming of all live things by Mr. Darwin, had caused a complete change in the methods of biological research. In order to investigate the living being it was now no longer déemed sufficient, as in the days of our great-grandfathers, to observe its outside, or even, in the days of our grandfathers, to exami.ee its anatomy. We have now to trace its developinental growth from the egg, and we are able to do so with a thoroughness of which no one in his young days could have had any conception. Such was one good reason for founding an institution of this kind from a purely scientific point of view. But there was another reason from another point of view which was practical. We had great fisheries and great fishery interests, and up to within the last thirty years legislation with reference to them was almost entirely haphazard, owing to our ignorance of the habits, modes of life, reproduction, and so on, of marine animals which were economically useful. If we are to have any considerable improvement in our legislation in this respect,
our arguments and reasonings with a view to it must rest upon sound and exact observation. In conclusion, he wished to say with special emphasis that there was no possibility of any rivalry between the society which it was now proposed to found and another society the formation of which was announced a few days ago by H.R.H. the Prince of Wales. That society was, in the ordinary sense of the word, practical. He trusted that when both societies were established, so far from there being any conflict between their aims, they would work in concurrence to a common end.
The Duke of Argyll said the resolution which had been placed in his hands was-"That in the opinion of this meeting there is an urgent want of one or more laboratories on the British coast, similar to those existing in France, Austria, Italy, and America, where accurate researches may be carried on, leading to the improvement of zoological and botanical science, and to an increase in our knowledge as regards the food, life, conditions, and habits of British food fishes and mollusks in particular, and the animal and vegetable resources of the sea in general." The fact of their being called together to form a voluntary society to carry out these objects implied a discovery on the part of those who had taken a leading part in this matter that the work was not likely to be taken up by the Government. He was afraid that in this respect the British Government had always stood rather behind those of other countries, whether monarchical or republican. There were other agencies by which facts about food fishes would be obtained, and he instanced the researches of the President of the Royal Society, and a valuable paper recently contributed by Prof. Ewart upon one of the most important questions connected with food fishes-the spawning of the herring. When further researches of this kind should be forthcoming, it can scarcely admit of doubt that, by making us acquainted with the life-history and habits of the herring, they will serve to improve the herring fisheries. He bad himself good reason to appreciate the importance of acquiring information of this kind, for in the vicinity of his own residence the fishing community was suffering distress on account of the herring having abandoned Loch Fyne without any one being able, in the present state of our knowledge, to assign the cause. Moreover, the opposition which was raised to ground-trawling in Loch Fyne, on the supposition that the practice is destructive of herring spawn, has been shown by such researches to be without any justification-the spawn having been found to adhere closely to the sea-bottom. But great as would be the probable economic nature of a marine biological station in the improvement of our fisheries, he thought that the chief object in promoting this society should be that of promoting the interests of biological science. Enlarging upon the importance of this science, he concluded by observing that the branches of it which would fall to the lot of this society to cultivate would have the advantage of avoiding contact with the question of vivisection; for he supposed that even the most susceptible of antivivisectionists would scarcely have their feelings touched by physiological experiments on jelly-fish.
Sir Lyon Playfair, M.P., in seconding the resolution, dwelt upon the anomaly that a country which depends so much upon its fisheries as Great Britain should hitherto bave been the only Great Power which had not founded a zoological station. He then proceeded to enumerate some of the economic advantages which had been secured by such institutions elsewhere, especially in America.

Lord Dalhousie and Prof. Flower also supported the motion.

Dr. W. B. Carpenter moved :-"That it is desirable to found a society, having for its object the establishment and maintenance of at least one such laboratory at a suitable point on the coast, the resources of the laboratory
its boats, fishermen, working-rooms, \&c., being open to the use of all naturalists under regulations hereafter to be determined."
Sir John Lubbock, as President of the Linnean Society and a trustee of the British Museum, in seconding this motion said he thought they owed their thanks to Prof. Lankester for the efforts he had made to found the proposed society.

Dr. Günther supported the resolution, which was passed.

Sir Joseph Hooker moved:-Tbat this meeting does hereby agree to constitute itself such a society under the titie of "The Society for the Biological Investigation of the Coasts of the United Kingdom." He dilated upon the importance of such a society to the interests of botanical science. The motion was seconded by Prof. Moseley, who appropriately called attention to the fact that most, if not all, life upon this planet was littoral in origin, and afterwards spread on the one hand to the deep sea and on the other to the land.

On the motion of Sir William Bowman, F.R.S., it was resolved that gentlemen whose names follow be requested to act as a provisional council and report to an adjourned meeting to be held on Friday, May 30, as to the constitution and organisation of the society and other matters, and in the meantime have power to admit suitable persons to the membership of the society; further, that Prof. Lankester be asked to act as secretary and Mr. Frank Crisp as treasurer ad interim. Those named were the Duke of Argyll, the Earl of Dalhousie, Lord Arthur Russell, the Lord Mayor, the Prime Warden of the Fishmongers' Company, the President of the Royal Society, the Presidents of the Linnean, Zoological, and Royal Microscopical Societies; Dr. W. B. Carpenter, F.R.S.; Mr. W. S. Caine, M.P., Mr. Frank Crisp, Mr. Thomas Christy, Mr. Thiselton Dyer, F.R.S., Prof. Flower, Mr. John Evans (treasurer of the Royal Society), Dr. Albert Günther, F.R.S., Sir Joseph Hooker, Prof. Michael Foster (secretary of the Royal Society), Prof. Ray Lankester, F.R.S., Prof. M. Marshall, Prof. Moseley, F.R.S. Mr. John Murray, F.R.S.E., the Rev Dr. Norman, Mr. George J. Romanes, F.R.S., Prof. Burdon Sanderson, F.R.S., Dr. Sclater, Mr. Adam Sedgwick, Mr. Percy Sladen, Mr. H. C. Sorby, F.R.S., and Mr. Charles Stewart, F.L_S.

Mr. G. J. Romanes, in seconding the motion, took occasion to observe that in his opinion one of the most important functions of the society when formed would be that of conducting researches upon invertebrateiphysiology. He was sure he would be but carrying with him the assent of all physiologists when he said that it is to the invertebrate forms of life that we must now look for the elucidation of many of the most fundamental problems connected with life-processes. It is in the Invertebrata that we meet with life in its least compounded state, and therefore in the state best suited to observation and experiment directed towards the solution of these fundamental problems. The sea is the great magazine of invertcbrate life, and if the rich stores of material therein presented have been hitherto almost entirely neglected by physiologists, the explanation may be found in the fact that physiological research can only be conducted in well-equipped laboratories, which have been of but comparatively recent institution upon the sea-coasts of Europe and America.

Prof. Ray Lankester then moved a vote of thanks to the President of the Royal Society for taking the chair, and said it had been estimated that from 6000 l. to 10,000 l. would be required to start the project. He invited immediate subscriptions, payable ad interimt to the treasurer, Mr. Frank Crisp, 6, Old Jewry, E.C. Sir Joseph Fayrer seconded the motion, and the President having briefly replied, the proceedings terminated.

NOTES

In the death of the youngest and one of the most accomplished of the Queen's sons the cause of education has sustained a loos The Duke of Albany knew well what science meant, and on several occasions pablicly expressed his sense of its value in respect of the nation's welfare, and the necessity for its introduction into our systems of education. There can be no doabt that had he lived be would have rendered service to the best interests of the country. It is so rarely that princes bave the tastes and leanings of the late Royal Duke that we conld ill afford to lose him.

Thy organising commiltee of Section F (Eeonomic Science and Statistics) bave arranged the following programme of subjects for discussion at the Montreal meeting of the British Association. The subjects will be distributed over the four or five days which will probably be at the disposal of the Section. Group 1. PopoIation : (1) Emigration ; (2) Census results; (3) Distribution of wealth and condition of the poor. Group II. Land : (4) Agricolture ; (5) Land laws ; (6) Forestry. Group III. Trade: (7) Manufactures, shipping, and foreign markets ; (8) Internal communication by land and water. Group IV. Finance: (9) Monetary system ; (10) Public debts (Governmental and Municipal). Writers have been engaged for most of the subjects in the above programm.
We regret to announce the death, at the age of sixty-seveo years, of Mr. Nieolas Tribner, the well-known publisher, who has done so much to place within the rea.h of the English pablic some of the best works in German philosophy, science, and learning. He will be missed by a wide circle of friends, among whom are many men of science, English and foreign.

Tue Prince of Wales has formally urged upon the Corporation and the Livery Companies to lend still further aid to the City and Guilds of London Technical Institute, which is greatly in need of funds; and the Corporation proposes to vote a further sum of 1000 . provided the Livery Companies subscribe the rest of the $20,000 \%$. needed by the Institute.

As u ual there was some pleasant talk at the Civil Engineers' dinner last week; Prof. Huxley in replying to the toast of "Science," said there was one educational aspect which was extremely instructive and important, and that was the insen-ible and almost unconscious education in science which was carried on u ion the masses of the people by the great work of engiaeers and mechanician-. The work of the engineer and all who were applying the teachings of science was surrounding the population with the symb sls of scientific faith.

Mr. W. Saville Kent, F.L.S., F.Z.S., has been appointed Inspector of Fisheries to the Government of Tasmania, and proceeds shortly to the scene of his new duties. The more extensive introduction and distribution of the Salmonidse already acclimatised in Tacmanian waters, and the resuscitation by artificial culture of the once prolific but now greatly depleted oyster fisheries, are among the special subjects that will engage the attention of the newly appointed Inspector. A systematic investigation of the marine fauna, with the view of turning to profitable account those edible, indigenous forms which are as yet but little atilised for economic purposes, will likewise be initiated. It is to be hoped that the Colonial Government will recognise the fitness of the opportunity that now presents itself of establishing in this quarter of the antipodes a well-equipped if small marine observatory for the artificial cultivation and scieutific ob ervation of the habits and developmental phenemena of the many intcresting types peculiar to this region, and of which, as yet, Liologists possess little or no knowledge. Mr.

Saville Kent's reputation as a marine zoologist, and the experience he has already gained as naturalist to various of the large public aquaria of this country, peculiarly qualifies him for the conduct of original investigation in this new field, which could not fail to yield important results for both the interests of science and the fishing industries of Tasmania.

The Institution of Naval Arehitects is meeting this week. The session was opened yesterday under the presidency of the Earl of Ravensworth. The papers down for yesterday were:On the Riachuelo, by J. D'A. Samuda; description of the electrical lannch built last year, by A. F. Yarrow; on the vibration of steam vessels, by Otto Schlick. To-day the following papers will be read :-On cross curves of stability, their uses, and a method of constructing them, obviating the necessity for the usual correction of the differences of the wedges of immersion and emersion, by William Denny, F.R.S.E. ; the use of stability calculations in regulating the loading of steamers, by F. Eigar, Professor of Naval Arebitecture, Univers ty of Glasgow ; on a new meth d for calculating, and some new curves for measuring the stability of ships at all angles of inclination, by M. Daymard; on some points of interest in connection with the construction of metacentric diagrams, and the initial stability of ve sels, by P. Jenklns; on the combustion of fuel in furnaces of steam boilers by natural draught and by air supplied under pressure, by J. Howden ; on the application of hydraulic machinery to the loading, discharging, steering, and working of steamships, by A. B. Brown ; cast steel as a material for crank shafts, \&c., by J. F. Hall ; repairs to steamship machinery, by Andrew K. Hamilton. To-morrow the following are set down for reading :Contribations to the solntion of the problem of stability, by L . Benjamin ; on the nses of Amsler's integrator in naval architecture, by Dr. A. Amsler; on the comparative safety of welldecked vessels, by Thomas Phillips ; the graphic calcula'ion of the data depending on the form of ships required for determining their stability, by J. C. Spence; description of Alexander Taylor's stability indicator, for showing the initial stability and stowage of ships at any displacement, by A. Taylor ; tome considera'ions relating to the riveting of iron ships, by H. H. West ; on the ventilation of merchant steamers, by J. Webb; on water brakes, by Capt. F. J. Heathorn, R.A.; on improvements in apparatus and means for indicating the position of a shlp's helm, by J. E, Liardet.

The Geographical Society of Bremen publivhes in vol. vii. part 1 of its Deutschs Grogmaphische Blatler an interesting paper, by Dr. A. H. Post, on the development of family life among mankind from an original "matriarchal "condition. He brings forward some new evidence collected by Dr. C. A. Wilken in the Dutch East Indies, showing the existence of Malay families consisting of mothers and their children, to which the fathers do not belong as members at all, being in fact only visitors. Dr. Post, tracing the stages of progressive change under the Influence of landholding and the union of individnals in states, which in the course of ages converted matriarchal into patriarchal society, expounds with much clearness the theory which has arisen in the last few ycars out of the works of Bachofen and McLennan. Some of this clearness arises no donbt from ignoring difficulties, but a sketch of this kind does not involve the responsibilitles of a full-grown treatise.

The International Health Exhibition will be opened by the President, the Prince of Wales, on Thursday, May 8, at 3 p.m.

The death is announced of Dr. George Engelmann, the wellknown botanist, who died at St. Louis on March 3. aged seventy-five. Also of Dr. Siegfried Aronhold, formerly Professor of Natural History at the Berlin Technische Hochschule, who died at Berlln on Mareb 13 .

News from the Austrian traveiler, Eduard Giaser, who had fallen dangerously ill, states that he has recovered, and left for Haschid on February 6, a part of Arabia hitherto unexplored by Enropeans.
M. Gabriel de Mortillet, Conservateur of the Museum of National Antiquities at St. Germain, has begun to issue a new monthly joumal, L'Homme, entirely devoted to anthropology.
M. Fremy, Director of the Masenm of Paris, has published a pamphlet defeading the establishment against the Central Administration, which is desirous of appointing a director. Up to the present time the director has been nominated by his fellow professors. This liberal mode of nomination was established by the Nationa! Convention in 1793. It is probable that an effort will be made in the present session to extend this privilege to other establishments, as the Observatory and the Conservatoire des Arts et Métiers.
M. Fremy is desiroas of establishing on the coast a marine laboratory in connection with the Museum of Paris. It is thought the money may be granted for establishing one in Algeria.

THE motion proposed by Admiral Monchez to sell the Paris. Observatory ground, has been defeated before the Academy of Sciences by a large majority. Oniy two members, MM. d'Abbadie and Faye, voted with the Admiral.

A correspondent referred last week to the changes which have been introduced into the examinations for adinis-ion into the Royal Military College, and the subject was brought up in the House of Lords last Thursday by Iord Salisbury. "The change with respect to natural science," he said, "was much to be regretted, because there was no body of men to whom a knowledge of science could be more useful, and conduce more to their happiness, especially when it was considered that they had to pass their time in various parts of the world, often with no adequate employment for their spare hours." The Earl of Morley in reply said that "by the new scheme greater importance was given to modern languages and mathematics, leas importance to science, and the English paper had been excluded from Class I. The object of these changes was to improve the examinations, and to encourage the subjects which must be taught. In drawing up this scheme the War Office had been in constant communication with the Civil Service Commissioners, and with many gentlemen interested in education. The main purpose of these examinations was to test the results of general education, and for that purpose the subjects themselves had, as far as possible, to be of a general nature. That constituted one of the evils of the present system. He did not think it wav necessary, or even deslrable, in framing a scheme of this kind to confine themselves to the curriculum of the public schools. It was, no doubt, a matter of regret that during the last five years the number of successful candidates who came direct from the public institutions to the Royal Military College had diminished rather than increased. He did not wish to speak harshly of the race of private tutors. Some of them were extremely able and ingenious, but as a rule their whole object was mark-making. These tutors did not require their papils to read the books on which they were examined, but by an ingenious process of analysing their contents all the questions that could be put to them could almost be exhausted. But cram did not last, and it was no substitute for education." The Duke of Cambridge sail that "the great object of the examination was to put forward such a syllabus that all young persons edncated at the public schools of the country should be able to cnter Woolwich or Sandhurst direct without going through the hands of the crammer. What was wanted to bring about this result was a general education which they eould say every young gentleman ought to have to fit
him for any sphere in life which he might intend to adopt. It would be time enough to teach military subjects when the candidates for the army got into the military schools. Up to that time their education should be general, and not special. The proposed change was entirely with the view of inducing the publie schools, such as Wellington, Marlborough, and others, berides Eton and Harrow, to co-operate with the authorities in the eadeavour to get rid of eramming." The Marquis of Salisbary believed that '"nothing would ever get rid of eramming so long as there was a system of eompetitive examination. Cramming belonged to competitive examination. He ventured to say that the Government were pursuing their object in rather a dangerous way. If there was a difference between the great pullic authorities and the public schools, the former should lead. With respect to the question of English literature, he did not understand why boys should not be expected to get a general knowledge of it in the same way that they were expected to have a general know. ledge of Latin litcrature. In France and Germany the language, literature, and history of the country were systematically studied, but we seemed to treat them as matters of no importance, or as things which might be learnt in the nursery, or accidentally in conversation after leaving school."
Tue Ninth Annual Meeting of the members of the Sunday Society was held at 9, Conduit Street, W., on Monday last, Prof. W. H. Corfield, M.D., in the chair. The annual report, which was read by Mr. Mark H. Judge, Honorary Seeretary, $s-t$ forth the work of the Society during the past year. It referred at considerable length to the action taken in the House of Lords, and pointed out that the policy embodied in the resolution proposed this year by Lord Thurlow at the request of the National Sunday League differed from that advocated by Lord Dunraven and other representatives of the Sunday Society in both Houses of Parliament. Statistics of the Society's Sunday Art Exhibitions were given. The movement in the provinces had been successful at Newcastle on Tyne, the Public Library there having been opened on Sundays by the Town Council. His Grace the Duke of Westminster was elected President of the Society.
Two shocks of earthquake were felt at San Francisco in the afternoon of March 25. The series of earthquakes which began on the 25 th ult. continues in the south of Hungary. In Vukovar some slight shocks were again felt on March 27 at 11 p.m. On the night of the $2 y t h$ about sunset a pretty severe shock of earth. quake was felt at Sinope ard other places in the neighbourhood. In the town of Costamboul some old buildings fell, but no lives were lo-t.

Tue Easter Monday and Tuesday excursion of the Geologists' As-ociation this year will be to L.incoln; on Saturday, April 26, there will be an excursion to Guildford.
Tus number of high-level meteorological stations has been recently increased by the opening of a station at Poni, on the Suram Pass of the Great Caucasus.
Mr. Charles Smith, Fellow and Tutor of Sidney-Sussex College, Cambridge, to whose valuable treati-e on "Conic Sections" we have already drawn attention, has prepared a new clementary mathematical work which will bear the title, "An E.iementary Treatise on Solid Geometry." It will be published almost imnediately by Messrs. Maemillan and Co.
The additions to the Zoological Society's Gardens during the past week include two Malbrouck Monkeys (Cercopitherus cynosurus \& \&) from West Africa, presented by Messrs. G. Somerford and G. A. Zobel ; an Axis Deer (Cervus axis 8) from India, presented by Mr. L. B. Lewis ; a Bosman'. Potto (Perodicticus potto) from West Africa, preeented by Capt. Grant Ellott ; a Common Squirrel (Sciurus vulgaris), British, pre-
sented by Mr. P. Aug Holst ; three Herring Galls (Larms arga. latus), European, presented by Mr. S. Aloof; a Rose-crestec Cockatoo (Cacatina moluccensis) from Molacens, presented by Geueral Rundall, R.E.; a Grecian Ibex (Capra agagras), South-East European, presented by Mr. Thomas B. Sand $\begin{aligned} & \text { ith; }\end{aligned}$ a Smooth Snake (Coronella levis), Britisb, presented by Mr. W. H. B. Pain; a Greater Sulphar-crested Cockatoo (Cacates galerita) from Australia, a Rose-eoloured Pastor (Pastor racks) from India, deponited; a Leopard Tortoise (Testudo pardalis) from South Africa, an Egyptian Cobra (Naia hoji) from Africe, purchased ; a White-fronted Lemur (Lemur albifroms), a Vulpine I'halanger (Phalangista vwlpina), born in the Gardens.

OUR ASTRONOMICAL COLUMN

The Double-Star a Herculis.-Smyth, in his "Cyele of Celestial Objects," attributes to Sir William Herschel the discovery of the duplicity of this star; but the companion was detected two years earlier than Sir William's first observation, and under somewhat curious cireamstances. It was perceived by Maskelyne while observing the meridian passage on Augus 7, 1777, and only seven days later Christian Mayer, also observing the transit of the star with his mural quadrant, noted it to be double. The particulars are detailed in Mayer's work, "De Novis in Ccelo Sidereo Phenomenis," published at Mannheim in 1779. He had communicated to Maskelyne a number of his results bearing upon the double-st ers; and the Greenwich astronomer, in replying towards the end of 1777, relates that he had observed a simalar phenomenon in a llereulis on the date given above, "et videns valde obstupui," he remarks, since be had so often observed the star on the meridian without perceiving the companion. Maskelyne considered it of the sixth magnttude, the principal star being estimated a third; the latter be judged to be reddish, and the eompanion pale ; Mayer, who discovered the smaller star on August 14, called it a seventh or eighth magnitude.
Adopting Sir George Airy's intervals for the tran-it-wires in Maskelyne's instrument, we find from a number of transits of the two components-

And hence the angle of position $120^{\circ} 8$, and the distance $5^{\circ} 47$. - Mayer's observations extend from August 14, 1777, to Augast 26, 1779. His differences of right ascension vary from 0.75%, to 0.25 ., and thore of declination from $6^{\prime \prime}$ to $\mathrm{I}^{\prime \prime} 8$, while bis estimates of the magnitude of the smaller star vary from 6 m . to 8.

Sir William Herschel's first measures were made on Angse 29, 1779. Taking means of those made between this date and 1783.252, we find-

Position, $1782 \cdot 36$... $116^{\circ} 9$ Distance, $1780^{\circ} 33 \ldots 4^{*}$ SS.
Variable Stars.-Mr. Barnham, in a note to No. 545 of his recently published Catalogue of 748 double-stars, remarks: "The principal star is strangely wanting in many of the sar catalogues." It was observed by Lamont in zone 364, and estimated 5 m. ; it does not occur in Lalande, I'Agelet, or Bessel. On Bremicker's Berlin map it is marked 7 m ., and it is 6 m . in Harding's Atlas. In the Uranometria Argontina it is called 6.3 ; Gould has no note upon it. We have also the following estimates :-

345	BurnhamStone (Cincinnati)	$6 \cdot 5$
-549					
- 575	Burnham		
1880.442	Stone			6.
-520	Burnham		
1881 383	"		
578	"				

The star may perhaps vary from about the fifth to the seventh magnitude, but systematic observation is wanted to decide Its position, brought up from Lamont to $1885^{\circ} \mathrm{O}$ is in K.A. 17h. $8 \mathrm{~m} .4^{\circ} 9 \mathrm{~s} .$, N.P.D. $104^{\circ} 27^{\prime \prime} 4^{\prime \prime}$.
D'Agelet 5057 (a star to which attention has been already called in this column) deserves frequent examination. It wn observed by D'Agelet on July 26, 27, and 29, 1783, being twice noted 6 m . and oace 6.5 . It was not observed either by Lalatde or Bessel, but in the Durchmusterung we find it estimated only
9.4. Its place for 1885° o is in R.A. 19h. $27 \mathrm{~m} .35^{\circ} 5^{\circ} \cdot{ }^{\circ}$ N.P.D. $72^{\circ} 29^{\prime} 54^{\circ}$.

Nos. 2577-78 of the Astronomische Nachrichten contain the Inte Prof. Julius Sehmidt's results of observations of variable stars made at Athens in 1883, which were communicated about a fortnight before his sudden decease.

ON THE AURORA BOREALIS IN ICELAND

A^{s}S considerable doubt has hitherto prevailed as to the form and nature of the aurora borealis in Iceland, I have decided to pass the winter here in Reykjavily, in order to study the phenomenon on principles which I followed during my sojourn at Kautokeino last winter $1882-83$ (Nature, vol4. xxvii. p. 394, and $x x$ viii. p. 397).

I arrived here about the middle of October last, and began my regular observations on November 6; and although the zeries of observations as yet is brief, and, through very unfavourable weather, not so complete as might be desired, I believe that a few preliminary remarks on this phenomenon may not prove without interest, partieularly as the appearance of the aurora borealis here is somewhat different to whnt we might expect and whst is generally assumed.

Weather more nnfavourable than I have encountered since my arrival it is impossible to imagine. A sky nearly always eloudy, rain, snow, and storm following upon storm-such have its ehief characteristics been, A clear sky is quite an exception, and when it oecurs there is a wind blowing so keen and cntting that no human being can walk ont of doors for any length of tume. Iceland is, no donbt, not favoured with very congenial weather, but such a winter as the present must, according to the dwellers here, be considered as quite an exceptional one.

1 have shown in Table I. the average eloud calculations of each evening hoar (the observations begin generally at 5 p.m., and continue antil two or three honrs after midnighi) from November 6 to January 28. Here 5 indicates the hour from 5 h. i. 5 h .59 m. . \&e. The scale is the usual one, viz. fiom o (elear) to 10 (eloady).

Table I.

If an average of the nebulosity on each eveuing be taken, each value of the scale will fall on the number of days shown in Table 11. The former are also calcolated in per cents. of the total days (83).

Table II.

These figures speak so plainly for thenselves that any comment is needless.
Through Iceland being situated in the zone of the terrestrial magnetism, it might be assumed that the aurora borealis attained a high degree of development and splendour here; but this has not been the case this winter, in Reykjavik at all events, even allowing for the unfavourable weather. The aurore here are generally faint and wanting in force; it is only seldom that there is any energy in the movements, and bat rarely that the forms are sharply defined, while the outlines are dim and vague.

There have therefore only been a few occasions on whieh I have been able to effect somewhat satisfactory meavnrements with the auroral theodolite of aximnth and the height. The anrora duubtless often reaches far np on the sky, and even travels far down on the southern horizon, but the force of light is very small. In spite of the circemstance that Reykjavik lies-judging by the appearance of the aurora borealis on the horizon-mueh nearer to the auroral maximum zone than Kautokeino, the appearance of the aurore in the two places cannot be compared. There was activity, foree, and colour; here is vagneness, uncertainty, and want of eharacter. Only once-on January 251 observed an aurora dnring one hour which was a true Arctie one, with defined, elegant ontlines, intense play of colour, and bold movements.

The more extensive anrorse which I saw in Kautokeino generally finished by the bands or streamers changing into lnminous clouds, which again shortly afterwards assumed the wave-like motion I have called "coruscation," and whicb often lasted for honrs, flooding the entire heavens. This form of the aurora borealis I have not observed on a single accasion herr, which appears to me to be a very remarkable eireumstance. Extensive aurore finish here through the simple vanishing of the light or by the ehanging of the forms into faint, luminous elouds consisting of stripes (north-east to south-west), or vague, cloudy bands which by degrees lose in energy and fipally die away.

Any real corona 1 have not seen as yet, and the usual colonrs, viz. red and green, I have only noted on six occasions.

On forty of the eighty-three evenings I have effected observations there have been aurore, whieh is rather a high figure when the nnfavourable weather conditions are taken into consideration. But the aurora is, however, not always present when the sky is elear or nearly so ; on the contrary, it is not nearly as frequent here as in Kautokeino. This will be understood from Table III., whieh has been framed on the assumption that all observations were equally divided over the twelve hours, viz. from 4 h. to 15h., which also shows that in every hour there was observed one hnodred times either aurora or elear sky nithout aurora. The lower figures show in per eents, when the sky was without aurora.

Table III.

In consequence of the great magnetie declination in Iceland, viz abont $40^{\circ} \mathrm{N}$. W., the points of culmination of the ares and bands fall far ontside the astronomical meridian, and their direction is nearly north-east to sonth-west. From the measurement of twenty arcs, partly on the north, partly on the south horizon, I have certainly only obtained an aximuth of $22^{\circ}{ }^{\circ} \mathrm{W}$., but I do not accept this as any definite result before more complete observations are in my hands.

The Intensity of the aurora borcalis here I have defined approximately in Table IV. by four degrees, viz, from one to four. From the total determinations of intensity for every hour when no aurora is visible, in spite of elear sky, being determined by 0 , the following nverage figures are obtained :-

Table IV.

From these figures a decided maximnm of intensity is manifest between 9 h . and 1 oh .

As regards the position of the aurorx on the sky and the relative frequency of the various forms, I append in tabular list of observations. The abbreviations made in the same are these :-
$H N$. Aurorn stands near the northern horizon, i.e, the mag. netie north.
$1 N$.
N.\quad. low in the north.
N. " \quad. in the nurth (to a height of about 45°).

Nh. " ", on the northern horizon (to a height from
$N A-7 . \quad$ the horizon about 70°).
Fnrther, Z indicates through or on both sides of the zenith S, soath ; $S Z$, sonth of xenith ; $S h$, south horizon; t, over the whole sky $; \div$, with the exception of ; $N+S$, aurorse in the north and south (but not in zenith) ; 0 , no aurora. Below $\boldsymbol{N}^{\boldsymbol{j}}$ I have collected the values of $H N, l N, N, N h$, and $N h-Z$; and under S^{\prime} those of $S Z, S h$, and S; and nider t^{\prime} the others, with the exception of O.
Table V. gives percentally, as suming an evenly divided time of observation, a view of the position of the aurore in the sky.

Table VI. shows the relative appearanee of the varions forms calculated percentally on the same basis as in the previous tables. Here $/$ indicates one arc ; $I=$, several arcs ; $I /$, a band ; $I I=$, several bands; j, diffused; s, streaming; j, simultaneously diffused and streaming, or a variety between the two; $11 I$ isolated streamers, or bunches of streanmers ; V_{8} luminons clouds

Table V

Hour	4		6	7	8	9	10	11	12	13	14	15	Average
/f. V	-	0	-	-	-	3	4	83	5	-	-	-	2'3
I.V	-	88	14	14	22	12	25	32	18	11	0	-	$35^{\circ} \mathrm{O}$
N	8	37	31	56	22	19	\% 8	9	17	-	0	33	19^{-8}
NH	8	5	6	2	3	0	7	0	0	0	0	-	${ }^{\circ} 9$
$N H-Z$	8	0	3	23	9	9	7	0	-	5	13	-	6'3
$N / 4-S Z$	8	5	6	12	16	19	4	9	5	13	35	-	10^{13}
	-	0	-	2	6	-	7	0	0	5	13	-	$2 \cdot 6$
52	-	0	3	3	0	3	-	0	0	0	-	0	18
Sh	8	0	-	5	-	0	-	\bigcirc	0	-	0	-	8
5	8	-	-	d	0	3	4	-	5	0	0	-	${ }^{\prime} 8$
$1+(N+5)$	8	0	3	0	3	6	-	0	5	0	0	0	$3{ }^{3}$
+ +15	-	5	0	3	3	9	4	9	5	16	0	-	$4{ }^{3}$
+ +1.2 V	0	0	-	3	0	0	-	-	-	-	0	-	0.4
$N+S$	9	-	6	2	6		4	9	5	\bigcirc	-	-	$4{ }^{\circ}$
t	8	21	6	5	,	6	4	13	18	5	13	0	6'2
0	25	26	33	12	9	3	11	17	37	47	36	67	19.4
N^{\prime},	35	53	34	53	36		64	43	26	16	13	33	$46 \cdot 2$
S^{*}	17	0	3	9	0	6 ,	4	-	5	0	0	0	$4{ }^{\circ}$
!	33	36	20	36	34	44	28	39	37	37	so	-	$30 \cdot 4$
$S^{\prime}+t^{\prime}$	50	16	23.	35	34	50^{\prime}	\#3	39	37	37	90	0	34.4

Table VI.

Howr	$4!56$	7	8	9	10	11	13	${ }^{3} 3$	34	Tetal
\%	$\begin{array}{lll}3 \times 3 & 3 & 3 \\ 0 & 4^{6} \\ 0 & 0 & 0\end{array}$	53	$4^{\circ} \mathrm{O}$	29	29 14	18 17	13	13 0	20	30.8 6.3
18 s		$z^{\prime} \mathrm{O}$	20	$\mathrm{I}^{3} 4$	07	25	72	13	0	$3{ }^{3}$
11%	0 0 0	$1 \cdot 5$	-	-	07	17	$\mathrm{I}^{\prime} \mathrm{t}$	r^{+3}	20.	8.3
1/s	$0 \quad 0108$		\bigcirc	06	14	0	\bigcirc	$5^{*} 3$	\bigcirc	45
flis	000	85	$2 \cdot 7$	17	0	$0 \cdot 8$	11	173	0	86
IT	- 0 of	25	07	0.6	07	33	11	73	\bigcirc	$13^{\circ} \mathrm{O}$
V	- 272 3	$1 \cdot 3$	${ }^{1} 3$	1'2	7	25	3'3	5^{*} c	$2{ }^{\circ}$	23.6
$t=j$		10	$0 \cdot 7$	\%'z	$0 \% 7$	0	-	-	0	7.
$1=8$	0.008	0	07	-	0	08	0	0	-	$2^{*} 3$
$1=j 4$	$\begin{array}{lllll}3.3 & 4 & 4 & 1^{*} 5\end{array}$	3.5	37	7"9	36	$2 \cdot 5$	$3 \cdot 3$	23	0	26.9
II $=1$	O\|lls	15	0	0	$0 \cdot 7$	17	-	0	$4{ }^{\circ}$	9.4
$7=8$	$3{ }^{3} 3000$	0	07	$0^{\circ} 6$	$0 \cdot 7$	0	$1 \cdot 1$ 0	\bigcirc	20	9 9 98
1/=jis	67 4 $\mathbf{2}^{\prime} 3$	$3^{\circ} \mathrm{C}$	40	${ }^{*}{ }^{5}$	a's	08	-	-	-	368
1	$10 \% 100108$	0	10'0	94	93	$8^{3} 3$	7 '3	$3 \cdot 8$	${ }^{\prime}{ }^{\prime}$	$9 \mathrm{I}^{-4}$
11	1004454	7.5	7'3	59.	$5 \cdot 7$	50°	33	${ }^{3} 8$	8%	$66^{\circ} 3$
t		$9 \cdot 5$	47	41	50	4'	$3 \cdot 3$	25	6.	55.5
\%	$3^{3} 3,0,23$			${ }^{\text {\% }}$	3.6	35		${ }^{2} 3$	40	$32 \cdot 8$
\%	$33^{3} 3110054$	8.01	2 I 3	80\%	6.4	67	56	3 \%	0^{\prime}	$80 \cdot 5$

On the valuable isochasme cbart, in which Prof. Fritz has denoted the increa-ing frequency of the aurora borealis northwards, the maximum zone of the phenomenon falls far soutb of Iceland. I must, however, first explain what my definition of the word maximum zone is at present. It is a line passing across the places where the aurora not only appears and is most frequently visible, provided the weather permist, but where it also, as a rule, appears in zenith, or as of ten on the northern as the southern hemisphere. According to this definition the correctness of which I think can neither be di-puted nor doul ted, Iceland lies, at all events this year, as was the case with Kautokeino and Bos ekop last year, considerably south of the maximum zone, which is, in fact, clearly shown in Table V.

I hope to be able to demon-trate this in a more conelusive manner still on a future occasion, when the winter is over and the numerous exact determinations of the southern border of the aurora borealis will be discussed.

The reason why the maximum zone lies so far south on Prof. Fritz's chart may be sought, perhaps, in the circumstance that the climatie conditions of Iceland to a great extent reduce the number of aurore which an ordinary observer, who only casually or on particular occasions looks at the sky, may observe. That the maximum zone of the aurora does not really fall across the part shown in the ehart is also distinctly apparent from what I learnt of its appearance at the Fairoe Islands duing my sojourn there.

It may perraps be snperfluous to state that neither here nor in any other place have I beard the mystic auroral sound. Neither has it ever been heard by any of the Icelanders I have as yet met with.

Shortly before leaving Copenhagen last autumn I spoke with a celebrated Danish sazunt, who had some years ago spent some time in Reykjavik, and , ho told me that he had on several occasions seen aurore decend below and in front of the mountain Esja, alout 2500 feet in height, and lying six to seven Einglish miles away (Nature, vol. xxix. p. 337). I was de-
lighted with the prospect of being able to see a similar pibenomenon, as, although my observations in the plape Boseekep Kautokeino, previously referred to, had greatly contributed to strengthen my belief in the height of the anrora borealis being 100 km , or more above the earth (Naturg, vol, xxix. p. 412), would with pleasure have accepted a proof so tangible pointing in arother direetion. I regret to say that my expectations have not been fulfilled. This is not tecause the aurora has not bees in close proximity to Esja, as, the mounlain lying to the north-east from this place, nearly all arcs and bands rise with their eastern end up behind and run above it, but never haer l bern so fortunate as to see any auroral bight descend to the tof of the mountain or in front of its steep sides. Even the highes:lying clouds are also, in Iceland, below the plane of the auroza borealis.

In connection with this point I may further mention that the faint luminosities referred to by Prof. Lemström above the mountain-tops at Sodankyla, and in otber places (Natumz vol. $x \times v i i$. p. 322), as well as phenomena of a similar nature have, I venture to assert, never been observed here I have continually bad my attention directed to this point, and there are several mountains here, but I have never been able to trace tbe slightest indication of such a phenomenon.
I brought with me the necessary apparatus and appliances fir effecting such experiments as Prof. Lemström pursued on some mountains in Northern Finland for the production of an artificial aurora borealic, and shortly after my arrival I came to the cosclusion that the above-mentioned mountain Esja was the mone advantageous for such. Its great beight steep fall into the sech and short distance from the town, were advantages such as $=0$ other spot in the district offered, but as I only brought with mee 1000 m . of insnlated wire-telegraph-poles with insulaton cannot be employed in consequence of the nature of the gromed -and wished to conduct the wire from the top of the momuin down to the sea at lts foot, I was obliged to wait until I obtained more wire by the stermer at the end of November. Since then the execution of this plan has been attempted a number of time: men, hoats, and horses have been ready, and everything prepared , bat every time the unfortonate weather has frustrated the same. Even in the middle of summer the Esja is a mountain difficult to ancend, and at this time of the year it would be very dangerous to undertake an ascent with the heary wires, inss lators, and poles, without the weather being remarkably quiet for several days.
1 intend, however, very shortly to make another attempt, and should this fail I will select a more distant but much lower abl more unfavourably situated mounlain top. I will only add tha: a few days after my arrival I fixed one of Prof. Lemstrỏm's "utströmnings" apparatus-with 200 points-on the flat roof of a stone tower, 30 to 40 feet in height, and which lies free and isolated on a height in the vicinity of the town ; but the same has up to the present, in spite of numerous trials, given no resh whatever. Any current between the points and the earth cannot be traced, and of any luminous phenomens above them there bas not been the faintest appearance.

Sophus Tromhols
Reykjavik, February

ON THE NATURAL AND ARTIFICIAL FERTILISATION OF HERRING OVA ${ }^{3}$

IN 1862 Prof. Huxley arrived at the conclusion that herrine visit our shores in order to spawn twice a year, some schools arriving dnring the autumn, while others make their appearance during the winter. The herring which spawn during the autami chiefly frequent banks on the east coast, while those which spawn during winter are most abundant on the west coast. A report of the Scottish Fishery Board referring to the east cosst spawning beds was published in Nature on November 29 last. The present paper deals chiefly with the Ballantrae spawning bed, which lies of the coast of Ayrshire.
In 1862 Prof. Allman made some inventigations for the Scottish Fishery Board, and sueceeded in dredging and hatching what was considered herring ova; but since then, although important results have been obtained by the German and American Commissioners of Fisheries, little or nothing has been done in this conntry.

When examining the Ballantrae Bank the anthor of this paper sueceeded in dredging several specimens of herring ova attaehed
${ }^{1}$ Abstraet of a paper read by Prof. J. Cossar Ewart, M.D., at the Rogel Sociely, March 27. Communicated by the Author.
to stones, seaweed, and sea-firs. There stones coated with egge varied from 6 inches t, $1 \frac{1}{2}$ inches 3 ia length, and from 4 inches to 1 inch in breadih, but in all cases the eggs were attached to a comparatively smnoth surface, and they were arranged either in low cones or in comparatively thin layers one or two eggs deep. The eggs on the sea-firs were always attached in small clnsters about half an inch in diameter around the stems. On examining the spawz found on the stones and seaweed, embryos at various stages of development were at once visible, some of them apparently only three days old, while others had distinct eyes, and from their violent movementa and their size seemed almost read y for hatching. Some of the egk-c aated stones we.e taken to the University of Edinbnrgb, where the eggs hatched on March 15, eight days after their removal from the spawning gronnd, and today (March 17) they are three-eighths of an inch in length, extremely active, and swimming freely about in the water.

By taking soundings over the Ballantrae Bank in various directions, it was a.certained that it consisted of rock, stones, shells, and coarse sand, an 1 that the depths varied from 7 to 13 fathoms. The onter edge of the bank shelved at most points rapidly until a depth of 17 fathoms was reached, and at this depth the boltom consisted of fine, soft mud. While on the east coast spawaing grounds examined during the autumn the surface temperature in most cases varied from $53^{\circ} \mathrm{F}$. to $55^{\circ} \mathrm{F}$., and the bottom temperature from $52^{\circ} \mathrm{F}$. to $54^{\circ} \mathrm{F}$., even at a depth of 40 fathons, the temperature at the Ballantrae Bank varied from $42^{\circ} .8$ to $43^{\circ} 8 \mathrm{~F}$. at the surface, and from $43^{\circ} \cdot 5$ to $42^{\circ} \cdot 8 \mathrm{~F}$. at the bittom. The corres ponding surface temperature, however, on the ea-t coast during the week ending March 8 was from 2° to $3^{*} \mathrm{~F}$. lower than at Ballantrac.

According to previous observers -
"When spawning takes place naturally, the eggs fall to the bottom and attach themselves." "But at this time the assembled fish dart wildly about and the water becomes cloudy with the shed fluid of the milt. Tue eggs thus becomefecundated as they fall, and the development of the young withiu the ova sticking to the bottom commences at once."

Mr. Mitchell, in his book on "The Herring, "referring to the once famous spawning bed off Dunbar, states that-
"A Aout August 30 the shoals began to deposit their spawn a short distance from the harbour, and on September 3 the fishermen found that a very large body of herrings remained fixed to the ground in the progress of spawning, the ground being of a rocky or stony nature."

While many fishermen believe that herring spawn on hard ground, some believe that they also spawn on a clayey bottom; and while some think they spawn near the bottom, others affirm that they spawn near the surface. Having secured at Ballantrae a large number of live herring, so ne of the largest and ripest males and females were placed in a large wooden tank into which a number of stones an la quintity of seaweed had been previunsly introduced. After the fish had been about two hours in this tank, the stones and seaweed were examined. Althrugh a few ezgs were attached to both st ones and seaweed, it was quite evident that the eggs had not been deposited in the same way as those found on the stones dredged on the previous day; but we were not surprised that only a few isolated eggs were fonnd on the stones, bscau e the fish had been disturbed every few minutes by the pouring of water into the tank.

On reaching Rothesay the hatching boxes and live herring were at unce transferred from H.M.S. Fackal to the tinks-a tank into which comparatively little liyht entered being selected for the ri,est and m ost vigorons herring. In about half an hour after they were introduced a large full herring was seen moving sl swly about the bottom of the tank with fuur other fish making circles around her at some distance from the bottom. Appetring satisfied with a particular stone which she had evidently been e ramining, she halted over it and remained stationary for a few minutes about half an inch from its surface, the tail being in a straight line witb the tank and the pectoral fins near or resting on the bottom.

While In this position a thin, beaded ribbon was seen to escape from the genital opening and fall in graceful curves on the surface of the stone, so as to form a slightly conical mass alcoost identical with a claster on one of the stones dredged at Ballantrae. As this little heap of e ggs lacreaved-some falling to the left side one moment, while others fell to the right the next, acerding to the carrents in the water-the males eontinued circling round her at various di-tances, while the other females in the tank
remained apart. The males remained from 8 to 10 inches above the bottom of the tank, and formed circles varying from 18 inches to 2 feet 6 inches in diancter. Some of the males were swimming fron right to left, others from left to right; and although there was no darting about, no struggling amongst them elves, there was a peculiar jerking of the tail as they performed their revolutions. Soon the object of this peculiar movement was sufficiently evident. Three or fonr times during each revolation each fish expelled a small white rib'son of milt, whi h varied from half an inch to three-quarters of an inch in length, and was nearly a line in breadth across the cen:re, but pointed at both ends, and somewhat thinner than it was broad. These delieate ribbons slowly fell through the water, somelimes reaching the bottom almost undiminished in size, but in most instances they had alinost completely dispersed before the botiom was reached. In this way the whole of the water about the female became of a very faint milky colour, and practically every drop of it was charged with sperms, as was afterwards ascertained. It will thus be seen that there is n ? attempt whatever on the part of the males to fertilise the eggs as they e.cape from the female. While the female is depositing the egis at the butt sm, the males concern themselves with fertillsing the water in the neighbourhood, and it will be observed that the males are careful to guard against the influence of currents by forming circles around the female and shedding milt on the way. It matters little how the currents are running, they are bound to carry some of the milt towards the eggs, the milt, like the eggs, sinling though not a thering ts the bottom.

This thea is the uatural process of depositing and fertilising the ova of the herring in comparatively still water. When the female had d:posited a certain number of ezgs at any given spot, she moved forward in a somewhat jerky fashion without ri-ing from the bottom, and as she changed her position the males changed theirs, so that the female was always surrounded by a fine rain of short sperm ribbons. A specimen of /Hydrallmanmia sent from Eyemouth seems to indicate that the female moves about awongst sea-firs and seaweeds in exactly the same way as she does amonjest stones. On each stem of the colory there is a clu-ter of ova about the size of a small grape, and all the clusters had reached on arrival the same stage of development as if they had been deposited about the same time and by the same fi-h.

This method of depositing and fertilising the eg ss acconnts, I thi.k, for all the eggs, or at leavt for a very large pereentage of those found attached to sea-firs, seawceds, and stones, containing devel p ping embryos.

When a female was depositing her egrs, she was very easily disturbed; whenever anything was introduced into th: tank she at once darted off. When strong current; were made, she at first seemed to apply herself nearer ts the bottom, to make sure, as it were, that the spawn would get fixed before it could be carried away; but when the currents were further intensified she at once changed her position, and arrested the escape of the spawn. A spawning fe nale was held immediately under the surface of the water so as to caase the spawn to e.cape. When this was done the spawn escaped in Ing ribions consistin z of a single row of eg ts. So firmly do the eggs a lhere to each other that in perfectly still water the ribbon was sometimes over a foot in length before it broke. When it had only about two feet of water to travel through, it fell in wide loops at the bottom, bnt when it had to fall over three feet the chain beake up into numerous segments which formed an irregular pattern on the bottom. From experimants made, it seems the farther the eggs have to fall and the longer they are in contact with the water bef, re they reach the bottom, they are more widely dispersed, and have all the le's adhesive power. When the eg ${ }^{5}$ sare expressed in water moving rapidly in various directions, the chains soon break into short segments, and the individu il eggs and the small groups are often carried a considerable distance before they reach the botton.
A number of flat stones and pieces of se sweed were obtained, and a spawning female held over then at different distances in still water, in water with gentle curre ats, and in water with strong carrents. In this way we obtained gronps of ergs which mimicked in a very striking manner all the arrangements of the eggs on the stones and seaweels dredged on the Ballantrae Bank. When gently pressed, a beaded sibbon consisting of a single row of egys always escaped; when there were no currents, it formed a conical heap; whea in a gentle current, the ribbou fell in irregular loops, the elements of which rearranged the.nselves so as to form a flattened cone; but when strong currents acted on it the rib'ron was boosen int) frag nents
and only a few eggs succeeded in fxing themselves to the objects introduced. When the currents were strong, the miles were seen not only to swim nearer the buttom but to expel longer ribbons of mill, which reached the bottom before getting dispersed and remained visible sometimes for ten minutes. On gently expre-sing a male under the water it was never pos. ible to expel so fine or so short portions of milt as escaped naturally, but it was extremely easy expelling a ribbon from 18 inches to 3 feet in length, measuring 2 lines across and 1 line in thick ness. Snch ribbons fell to the hottom and remained almost unchanged for nearly two hours; they then assumed a segmented appearance, and in about three hours and a half had all but disappeared.
Eggs were allowed to escape into a vessel containing fine sand, and into another containing mud. The eggs after being fertili-ed underwent the early stages of development, but either owing to their moving freely about with she sand particles or owing to their getting coated over with the sand and mud their development was arrested. I have not yet determined finally if the development is arrested when the eggs are detached while development is proceeding, but this seems extremely prolable.

When at Ballantrae I noticed that the trammel nets secured often more males than females. Mr. Wilson, fishery officer at Girvan, informs me that the ripe-t fish are caught in the trammel nets, while mot of the unripe fish are obtained in the drift nets, and that at the end of the fishing season there are about three males taken for every two females, indicating not necessarily that the males are more abundant than the females, but rather that the males remain longer on the spawning gronnd; and Mr. Wilson believes that herring prefer quiet water free from strong currents when spawning, and that when the weather is fine the herring remsin long apon the bank and deposit their spawn leisurely, but when there are strong currents they either hurry the spawning process or disappear into deep water.
As to artificial fertilisation and hatching I found, after many experiments at Ballantrae, that the best results were obtained when both the male and female were beld under water while the milt and ova escaped, i.e. when the natural process of spawning is followed.
An ordinary wooden tub was obtained and filled with seawater. Into this a small qmantity of milt was expressed, the male being held completely under water while the milt escaped. A glass plate was then held abont four inches beneath the surface of the water, and, the female herring being held about one inch beneath the surface, by gentle pressure the eggs readily escaped in the characteristic narrow beaded ribbon, and, by moving the fish over the surface of the glass, either a close or an open network could be formed. Ai first, where one loap crossed another, the eggs were two or more layers thick, but, either owing to the weight of the eggs or the gentle currents set up in the water, before a few minntes had elapsed, the eggs formed a single and almost continuous layer, the network arrangement baving disappeared. The plate was then allowed to rest for two or three minutes at the batom of the tub, and a few short ribboas of milt were again introduced. After moving the plate once or twice across the top of the tnb in order to wash off any scales that were adhering, it was placed either in a hatching or a carrying box. Many thousands of ova treated in this way contain extremely active embryos, which are expected to hatch on March 22 or 23.
Prof. Ewart exhibited a number of specimens showing herring eggs attached to stones, seaweeds, and sea-firs, and some of the herring fry batched on March 24 from the eggs artificially fertilised on March 8 .

UNIVERSITY AND EDUCATIONAL INTELLIGENCE

Oxpord. - The electors have awarded the Radeliffe Travelling Fellowship after examination to Mr. J. E. Blomfield, B.A., late Natural Science Demy of Magdalen College, and now of University College Hospital, London. The Fellowship is of the annual value of 200\%, and tenable for three years provided that the Fellow travels abroad for his improvement in the study of mericine. This is the fourth time in the last five years that this prize Fellowship has been won by a student of Magdalen College.
CAMBridcre. - From the report of the last Local Examina. tions it appenrs that the answers in pure mathematics exhibited
considerable improvement, while in applied mathematics the work was inferior, and much of the teaching in statics was imperfect, and not based on mathematics. In chemistry great inequality was shown, some centres sending uniformly good work, others being very inferior. The practical work is better done than the theoretical. The teaching of experimental physics is still very ineffectual in its results. In the enior paper in electricity and magnetism only two of the candidates showed any proof of accurate knowledge or scientific training.

In biology the answers were, on the whole, not good, yet at some centres candidates did extremely well. In botany vegetable physiology showed improvement, but floral diagrams are not sufficiently used. In zoology the candidater seemed to have no idea of the relative value of facts. In physical geography a marked absence of scientlic method was noticeable in the answers ; great ignorance of meteorological terms used in most daily papers was manifested.

The Cambridge Local Lectures have made good progress in the past session, much good having resulted from the conference of local committees and lecturers held last year. In a number of centres local associations have been formed for putting the lectures on a permanent basis. At Derby an Artisans' Higher Education Society has been formed, the subscription being very low. At the Midland Railway works the large mess-rooms have been utiliaed in giving short lectures to arouse interest among the men, Prof. Teall lecturing on chalk, Mr. Bemrose on the transit of Venus, Mr. Heycock on digestion, respiration, \&c., and the men have always been appreciative. In the Newcastle district much eagerness has been shown by pitmen to attend the lectures, often at great personal cost and inconvenience. The cost, indeed, is s great as to form an obstacle of serious magnitude, and it is fourd that the desire for lectures is such that the overeoming of financial difficulties would lead to an enormous ex. tension of the work. Efforts are being made to get the rales of the Trades Unions altered so as to enable them to contribute towards the cost of the lectures.

It is now proposed to constitute an examination in French or in German as the additional subjects required of candidates for honours degrees, unless the candidates choose rather to pass the General Examination for the B.A. degree. This change woold be welcomed by the large number of stadents to whom the study of works in French and German would be an important aid in their Tripos subjects.

SCIENTIFIC SERIALS

The Fournal of Bovany for March contains the conclusion of Mr. T. Hick's valuable paper on protoplasmic continuity in the Floridere. In quite a number of distinct genera belonging to thin class he has now traced connecting threads between the protoplasm from cell to cell. He regards these threads as permaneat and essential structures, normally present in all parts of the thallas from the oldest to the youngest, not restricted to special localities and special celle--Some details of the life-history of a rare and little-known British plant, filhospermasw porpmon. carnlow, are contributed by Mr. Jas. W. White.

American Yournal of Science, March.- Experimental determination of wave-lengths in the invisible prismatic spectrum, with plate, by S. P. Langley.-The Quaternary gravels of Northers Delaware and Eastern Maryland, with map, by Frederick 1). Chester. From a careful survey of this region the author infes that the peninsula became depressed at least 350 feet towards the close of the Gincial period, when the estnary thus formed received the discharge of the Delaware Kiver, which pushed if way across the present States of Delaware and Maryland to the head of the Cbesapeake. By this current and the subseqneat distributing action of the waves the red gravel was deposited. Later on the land began to rise, the violence of the flood was abated, and the northern glacier gradually broke up. Daring this period the Philadelphia Clay was deposited, and the boulders distributed over the estuary by the icebergs from the glacier. The land continuing to rise, the shoal gravels were piled up by the waves and tides, the river begas to assume its present channel, and the Delaware and Chess peake were finally parted,-On the identity of scovillite wiuh rhabdophane, by G. J. Brush and S. L. Penfield.-A theory of the recent sun-glows, by 11. A. Haren. The author astributes the phenomena to the presence of watery vapour, ice
crystals, or frozen water particles under a peculiar form in a rarefied atmosphere at a low temperature.- On the topaz and associated minerals found at Stoneham, Maine, by George F. Kunz -A contribution to the study of the geology of Rbode Island, with map, by T. Nelson Dale.-On the crysalline form of the supposed herderite from Stoneham, Mains, by Edward S. Dana.

SOCIETIES AND ACADEMIES London

Chemical Society, March 20.-Dr. W. H. Perkin, president, in the chair.-The following gentlemen were elected Fel-lows:-F. W. Brown, H. Cave, F. W. Fleming, E. E. Graves, A. E. Lewis, J. E. London, G. A. Parkinson, S. Smith, G. Tunbridge, T. U. Walton.-The following papers were read :Note on the preparation of marrh gas, by Dr. J. H. Gladstone and Mr. A. Tribe. In 1873 (Chem. Sor. Yourn. xi. 682) the authors described a reaction in whieh pure marsh gas was obtained by the action of the copper-zine couple on methyl iodide in the presence of alcohol. The loss of the methyl iodide was considerable, 23 to 50 per cent. In the present note the authors describe a slight modification by which this loss can be prevented. It consists essentially in passing the gas evolved through a vertical tube twelve inches long filled with the copper-zinc couple. -On the action of dibrom-a-naphthol upon amines, by R. Meldola. The author has investigated the action of dibrom-anapthol apon anilin, orthotoluidin, paratoluidin, and a-naphilhylamin. With anilin a body was obtained whieh proved to be - naphthoquinonedianilide; similar bodies were obtained with toluidin, \&c. This reaction therefore furni-hes a simple metbod of obtaining these quinoneimides in large quantities. The author also di.eu-ses the bearing of this reaction on the constitution of these bodies. - Note on the existence of salicylic acid in the cultivaled varieties of pan-y ard in the Violacex generally, by A. B. Griffiths and E. C. Conrad. The authors state that they have extracted salicylic acid from the leaves, stems, and roots of the pancy; apparently mone exists in the flowers.

Zoological Soclety, March 18.-Prof. W. H. Flower, F.R.S., president, in the chair. - Mr. Tegetmeier exhibited specimens showing a variation in the coloar of the feet of the pink-footed goose (Anser brachyrhynchass).-A communication was read from Sir Richard Owen, K.C.B., on the extinct birds of the genus Dinorwi, forming the twenty-fffth of his series of memoirs on the subject. The present paper gave a description of the sternum of Dinornis elephantopus-Mr. J. B. Sntton, F.Z.S., read an account of the results of bis investigations of the more important diseases which affect the carnivorous animals living in the Society's Gardens.-Mr. J. W. Clark, F.Z.S., cxhibited and read an account of three skulls of a sea-lion from the east coast of Australia. The largest, that of an adult male, bad been exhibited, together with the stuffed skin, at the Fisheries Exhibition last year, where it had been named Arctocephalus cincrews, Gray. The otject of the paper was to trace the history of the species for which the name Otaria cincrea had been suggeted by Péron in 1816, and to show, by comparison with the type shull at Paris, that these speeimens had been rightly referred to.-A communication was read from the Rev. O.P. Cambridge, in whieh he gave descriptions of two new genera of spiders proposed to be called Forbssia and Regillus.
Physical Society, March 22.-Prof. Guthric, president, in the chair.-The President announced that a meeting of the Society would be held on May 10 at Birmingham, by invitation. The next meeting will be on April 26.-Yrof. S. P. Thompson then read a paper by blmself and Mr. C. Starling on Ifall's phenomenon. The authors had not agreed with Hall's explanation of his observed effect, and last year undertook experiments to inventigate its nature. They employed a strip of tinfoil gummed on a mahogany board with vaseline, which, being soft and a non-conductor, answers well for this purpose. A topshaped electromagnet with a pointed pole was used on one side of the strip to try the effeet of a pointed pole. The current was obtained from accumulators. They found that the equipotential lines in the strip, which before magnetisation ran straight across the strip, were slightly curvel on either side of the pointed pole after magnetisation. This curving was interpreted as a reduction of resislance in the strip at the pole, and subsequent tests of the resistance of the strips in a magnetic field confirmed this view. Iron strips, however, showed a slight incrase of re-
sistance. It was also found that an effect similar to Hall's was got by placing the pointed pole so that this change of resistance was not symmetrical with respect to the points in the strip to which the galvanometer was connected. But inasmuch as the effeet was not reversible by reversing the magnetism, it was not Hall's effect, which they failed to obtain with the narrow pointed pole. In tbeir experiments thermo-electric effects were eliminated, and their results, though different, do not clash with those of Mr. Bidwell,-A paper by Mr. Herbert Tomlinson on the sanne subject was read by Prof. Reinold. The author drew attention to a similarity between Hall's table of reults and one of his on the effects of mechanical stress on electrical re istance. -Mr . Shelford Bidwell read a note on Hall's effect in tin, in which he showed that a small extension and a greater extension produeed opposite thermo-electris effects in tin wires.-In answer to Prof. Guthrie and Mr. Walter Baily, Prof. Thompson stated that the ehange of resistance he bad observed was sub-permanent, and died auay in about half an hour. He believed it to be producible on the strip when no eurrent traversed it.-Prof. S. P. Thompson then read a paper on some profositions in electromagnetic, giving a connected series of explanations throwing light on the laws of electromngnetics, and based on a practical experiment.

Royal Microscopical Society, Mareb 12.-Rev. H. W. Dallunger, F.R.S., president, in the chair.-Mr. Glaisber introduced Mr. Dallinger to the meeting on taking his seat for the first t.me as president, and the latter made a short address in acknowledgment - Mr. J. Mayall, jun., described the improved Nelson-Mayall lamp, in which the burner could be brought down very close to the table; also Boecker's improved freering microtome.-Mr. Crisp exhibited Sclieck's microscope with fine adjustment made by tiliting the stage at one end ; also Watson's, ro'ating stage, Collin's set of fish-scales, and a slide of a hydroid polyp with extended tentacles, moanted by Mr. E. Ward.Notes were read : On a multiple eye-piece by Mr. E. H. Griffith, in which eye-lenses of different powers were mounted on a rotating disk ; by Col. O'Hara on some peculiarities in the form of blood-corparcles ; and a communication from a Microscopical Sociely recently formed at San Franeisco, and consisting of ladies.-A paper was read by Mr. T. B. Ros eter describing some pecculiar annular muscles in Stephanoceros; also by Prof. Keinsch, who stated that he bad found bacteria and noh-cellular Alge to exist in considerable numbers on almost all copper and silver coins which bad been for some time in eurrency; also by Mr. G. Massee on the formation and growth of cells in the genus Polysphonia, being a further contribution to the evidence on the continuity of protoplasm through the wails of vegetable cells ; also by Prof. Abbe on the distance of distinct vision, in which he pointed out the erroneous inferences which had arisen from the practice of expressing the amplifying power of a lens by reference to a fixed distance of vision ((0 inches, or 250 mm .). -Some new furms of cells devised by Mr. Wilks and made by Mr. E. Ward for mounting without pressure in balsam were also exhibited and described.
Royal Meteorological Soclety, March 19.-Mr. R. H. Scott, F.K.S., president, in the chair.-Mesrrs. W. B illy, M. A., W. L. Blore, A. L. Ford, 1i. Leupold, A. F. Lindemann, F.R.A.S., and Kev. E. B. Smith were elected Fellows of the Society. - The President read a paper entitled brief notes on the history of thermometers. He stated that the subject had been bandled in a comprehensive manner by M. Renou a few years ago in the Annwairs of the French Meteorological Society, so that he should merely mention some of the leading points. The name of the actual inventor of the in trument is unknown. The earliest mention of it, as an instrument then fifty years old, was in a work by Dr. R. Fludd, published in 16j8. Bacon, who died in 1636 , also mentions it. The earliest thermometers were really sympiezometers, as the end of the tube was open and plunged into water, whieh rose or fell in the tube as the air in the bulb was expanded or contraeted. Such instruments were of course affected by pressure as well as temperature, as Pascal soon discovered. However, simultaneously with such instuuments, thermometers with closed tubes had been made at Florence, and some of these old instiuments were shown at the Loan Colleetion of Sclentifie Apparatus at South Kensington in 1876. They are in the collection of the Florentine Academy, and in general principle of construction they are identical with modern thermometers. Passing on to the instrument as we now have it, Mr. Scott said that most of the improvements in eonstruction in the earliest days of the instrument were due to

Englishmen. Robet Hooke sugge: ted the use of the freezing point, Halley the use of the toiling point, and the employment of mer ury instead of spirit, and Newton uas the fint to mention hlcod heat. Fahrenheit was a German by birth, but was a froteg of James I., and died in England. Kéaumur's thermometer in its final form owes its origin to De Lac, while the centigrade thermometer, almost universally attributed to Celsius, was really invented by Linnxus. Celsius's in-trument had its scale the rever e way, the boiling point being 0°, and the freezing peint 100°. Mr. Seott then gave a brief account of some of the \mid rineipal forms of self-registering and self-recording ther-mometers.-After the reading of this paper the meeting was adjonrned, in order to afford the Fellows and their friends an opportunity of inspeeting the exhibition of thermometers and of instruments recently invented. This exhibition was a most interesting one, and embraced 136 exbibits. The thermometers were clastified as follows: (1) standard, (2) maximum, (3) miniwam, (4) combined naximmm and minimum, (5) metallic, (6) self-recordiig, (7) solar radiation, (8) sea, (9) earth and well, (10) thermometers u ed for special parpwes, (ii) thermometers with varicus forms of bulbs, scales, \&c., and (tz) miscellaneous thermorseters. In addition to these there were also exhibited various fatterns of thermometer screens, as well as several new meteorolggical instruments, together with drawings, photogra phe, \& c .

Anthropological Institute, February 26.-Edward B. Tylor, Esq., F.R.S., vice-pre ident, in the chair - It was announced that Dr. Walter II. C. Coffin, Dr, Emil Riebeck, Miss H. M. Hargreaves, and Miss Helen E. Pearson had been elected Members of the Institate.- The Kev. R. H. Codrington read a paper on the Melanesian lanyuages. In the term Melanesia the anthor included (1) New Caledonia, with the Loyalty I-lands; (2) the New Hebrides; (3) the Banks' and Terre' Islands ; (4) Fiji ; (5) Santa Cruz and the Keef Islands; (6) the Solomen Islands. The objeet of the paper was to set forth the view that the various tongues of Melanesia belong to one common tock, and that this stock is the same as that to which the other Ucean linguages belong-Malayan, Polynesian, the languages of the islands that conneet Melane-ia with the Indian Archipelogo, and Malagasy.-A paper by the Rev. Lorimer Fixon, on the "Nanga," or sacred stone inclosure of Wainimala, Fiji, was read by Dr. Tylor. The author explained the constitation of the Nanga, and described the eeremony of initiation and other rites eonnected with it.

March 18.-Prof. Flower, F.R.S., president, in the ehair. The election of W. Ayshford Sanford was announced.-Mr. A. L. Lewis read a paper on the I.ongstone and other prehistorie remains in the Lse of Wight.-Mr. W. J. Knowles read a paper on the antiquity of man in Ireland. The author exhibited a selies of flinis discovered by him at Larne and other parts of the north-east eoast of lreland, some of which be believed to have been dressed in imitation of eertain pear-shaped nodules or hammer-stones found at the same spot, while others showed more evident signs of human worhmanship. One large chipped implearent was found in what appeared to be true, uudisturbed boulder-clay, and hence the author contended that the implements he exhibited were not only older than the Neolithie Age in Ireland, but older even than those previously known as Palzeolithic, and that they carry the age of man back into the Glacial period,-A paper by Admiral F. S. Tremlett on the Cromlee of Er Lanic was read.-A paper by Mr. Henry Prigg on a portion of a human skull of supposed Palseolithic age from near Bury St. Edmands was read. The author exhibited the fragment, which consisted of portions of the frontal and right and left parietal bones, and also two flint implements found in the same locality.

Dublin

Royal Soeiety, February 18. -Section of Physical and Experimental Science.-G. Johnstone Stoney, F.R.S., in the ehair.-On Mr. J. J. Thomson's theory of electricity, by Prof. G. F. Fitzgerald, F.R.S. After explaining Mr. Thomson's theory, Prof. Fitzgerald pointed out that it seems very unlikely that electrified bodies in vacuo would not attract or repel one another, inasmnch as experiments seemed to show that the only effect of matter between eleetrified bodies was to alter the specific indnctive eapscity of the space, and so Mr. Thomson's theory was more probable as an explanation of how gases had n specifie induetive capacity different from nnity. In a communication on the mechanical theory of Crookes force made
to the Society in 1878 he had shown that a polaristion of Be motions of the molecules in a gas of a particular hind voill produce the same stresses as are required to explain elotho static actions. He explained how a suitable polarisation of the motions or positions of the superficial molecales of a cor dnctor, due to their being on the surface of separation of a cons. stant and variable electric potential, was probably the case d electrostatie attractions. He pointed out tha? the ordinary hypothesis that molecules act on one another by means of the ether, and so transmit mechanical stress across intermolecaler layers of ether was an assumption of precisely the same lad at intermolecular distances as Maxwell's theory of electricty was at molar distances, and expected that a suitable straia of be superficial molecules of a body would transmit a stres throeg the ether. Prof. Fitzgerald explained a particular hypotbos as to the nature of this polarisation of the superficinl molecale on the vortex theory of atoms, which, however, seemed sujugu to the very serions objection that it appeared at fint sight as if two oppositely electrified planes wonld tend to move hoti? in one direction. The bypothesis was founded on the the that when two vortex rings are going in the same dioc tion, and one following the other, they attract ; but if gong it opposite directions they repel one another. The polarisation opp posed was that an electrified surface had the superficial mole enles all tarned in one way, preferably negatively electrificl hodies with the faces of the vortex atoms outwards, and ;errtively electrified bodies with their hacks outwards. He described how contact-electricity, thermo-electricity, and electrochemical actions might be explained on this hyp thesis. This hypothesis was put forward more as an illustration of how 1 polarisation of the saperficial molecules of a body mighe po duce attractions and repulsions than as an hypothesis that relly explained electrostatic actions. - On Prof. Óborne Reynddi, mechanienl illustrations of heat enyines, by Prof. G. F. Prpgerald, F.R.S. After explaining "Prof. Osborne Reyndel beautiful illustrations, he described three arrangements, obe by retting a chain rotating in loops and nodes, one by a balaced eentrifugal pendulum, and the third by a pair of mases roming on a revolving radius, by means of whieh all the operativer a Carnot's eyele might he illustrated, and explained how to arna; that temperature should be represented by the angular velocty d the rotating masses, and how by means of a chain pasing ore a pulley in the second case, and by a chain drawn off a aite in the third case, it was casy to arrange that the manses showi expand when given energy at a constant velocity. He explainal how an arrangement in which the masses when not rolutig would rest in any position represented an ideal gas in which p: internal work is spent in expansion. Prof. Fitzgerald deeribel how by means of a dynamo driven from a battery, a selfecting engine of this kind could be arranged which wonld show what it was absorbing and when giving out energy. He explained that was easier to work these model when promiscuous agiationwent presented by rotatory motion than when it was really proniscoes and that it was for this reason rotatory motion was adopled Mr. Stoney, in some remarks he made on this communiotion explainel how neces ary it was that the energy be really po miscuons, in order that it be subject to the second law of therso dynamice, showing how it would be possible to get a region 3 which all the radiant energy was plane polarived to radiate int a hotter similarly polarised region without allowing the later b lose any heat by radiating any of its original energy. He po posed to do this by means of a plate of quariz that rowared through 90° the plane of polarisation of the radiven enrge that passed through it, and by a doubly refracting prism, to admitting heat encrgy into the second region that was polarive at right angles to that originally there, white the polarised ndaw energy that escaped back again was returned into the region of came from, being bent ont of the path of the entering eners by the doubly refracting prism.-Prof. Fitzgerald exaibied : lecture balance. In this arrangement a beam of light fell pralld to the axis of the balance on a mirmor attached at 45° to th axis, so that the reflected ray turns throagh the same angle 3 the balance. The balance was provided with an arrangenet by which its stability could be altered very much, so as to k suitable for either rough or delieate weighing. As the differewt of weights in the pans of a balance is proportional to the tansem of the angle of deflection, a vertical scale unifombly divded showed by the position of the spot of light the difference of \$ weights in the pans in a manner that could be casily read by 1 large class.

Section of Natural Science. -V. Ball, F.R.S., in the ehair. Gerrard A. Kinahan read a paper entitled "Notes on the Coalfields of the North-West Territories of Canada."

Cambridoe

Philosophical Soeiety, March 10. - Mr. D'Arcy W. Thompson, B.A., Trinity College, was elected a Fellow.-The following papers were conmuuicated :-Continuation of observation 4 on the state of an eye affected with astigmatism, by Sir G. B. Airy. The paper consisted of a continuation of ob ervations already recorded in the publication of the Society. The author gave tables of the distances from the e rrnea of the left eye at whlch a luminous point appears respectlvely as a horiz ntal and a vertical straight line. The observations have extended from the year 8825 to the present time.-Oa the measurement of the electrical resistance between two neighbouring points on a couductor, by Lord Rayleigh. In some experiments described in a recent paper read before the Royal Society, the author had oceasion to arrange a set of resistance coils s) that the difference of potential between two points on a circuit through which a current is flowing shall be exceedingly small and yet known to a high degree of accuracy. In the present conmunication the method is applied to determining the differencs of potential between two neighbouring points on a conductor thron gh 2 which the same curfent is flowing. The resistance coils are adjusted nntil the difference of potential measured by the current prodnced in a galvanometer of comparatively high resistance is the same in the two eases. The method has been applied by Messrs. Ward and Shackle at the Cavendish Laboratory to determine the value of a stnall resistance of absut $1 / 230$ of a B. A: unit, and is capable of very great accuracy.-On dimensioaal equations and change of units, by Mr. W. N. Shaw.

Sydney

Linnean Society of New South Wales, January 30.C. S. Wilkinson, F.G.S., president, in the chair.-The President delivered an address on the progress of science in Australia during the pist year, and concluded by a general account of the gealogy of the country from an economic print of view. -The following papers were read :-Supplement to the Descriptive Catalogue of the Fishes of Anstralia, by William Macleay, F.L.S., \&c. This paper contains references to, or descriptions of, 157 species of fishes not mentioned as Australian in the previonsly printe! catalogue. The species here described for the first time are from the pens of Dr. Klunzinger, Dr. Günther, Messrs.!De Vis, Ramsay, Macleay, and R. M. Johnston. The total number of Australian fishes now amounts to 1291 species. On some new Batrachians from Queensland, by Charles W. De Vis, M.A. This paper contains descriptions of three new species oi frogs, eollected at Mackay, by Mr. H. Ling Roth, and named by the author as follows:-Limnodymaskes lineatus, approaching L. pironii, but distinguished by shorter hind limbs, and continuity of dorsal stripes ; L. olivaccus, a nd Hyla rothii. -On plants indigenous in the immediate neighbourhood of Sydney, by Mr. Haviland. This, the sixth of the series, gives an account of some species of the genus Darzinia, showing the supposed manuer of fertilisation, and explaining, to s me extent, the prevalence of the species D. fascicularis, notwithstanding the great disproportion between the fertilised and the fertilisiug flowers.- Studies on the Elasm 3 branch skeleton, by William A. IIaswell, M.A., B.Sc.

Paris

Academy of Sciences, March 24.-M. Rolland In the chair--Infuence of the density of explosive gaseous mixtures on presaure ; isomerous mixtures, by MM. Berihelot and Vieille.Separation of gallinm from boric acid, by M. Lecoq de Boisbaudran. This coucluies the series of exhaustive experiments conducted by the author for the purpose of obtaining the complete separation of gallium from all other known elemeuts. A final communication is promised on the separation of gallium from tartaric acid, taken as a type of organic substances whose presence might affect several of the reactions indicated during the course of the foregoing studies.-On the eoncordance of some general practical methods, based on apparently opposite principles, for determining the tensi ns in a system of points connected by electrie links and kept in equilibrium under the action of external forces, by General L. F. Menabre3.-Observations of Saturn and Uranus made at the Obvervatory of Nice, by M. Perrotiu. These observations were made under unnsually
favourable conditions by Mescrs. Norman Lockyer, Thollon, and Perrotin on March 16 and 18. The outer ring of Saturu appeared to consist of three distinct rings slightly diminishing in breadth outwardly, and each apparently made up of numerous subdivisions. Uranus, seen on the 18th, presented in some respects the general aspect of Mars, with dark spots towards the eentre, and a white speck like the pole of that planet at the angle of position 380° on the edge of the disk. Mr. Lockyer, who was preseut at the sitting, read a telegram from M. Perrotin announcing a repelition of the observations on March 23 nader equally favourable conditions. - Note on the polar sp x s iu Veuus, observed at the Meudon Observatory, by M. E. L. Trouvelot. These spots seew to be permanent, although varying greatly in brilliancy, and often rendered invisible by the divtance of the planet towards superior eonjunction.-On the thrust of a mass of sand with horizontal upper surface against a vertical wall, in the neighbourhood of which its inner angle of frietiou is assumed tobe slightly inereased according to a definite law, by M. J. Boussinesq.-On the extencion of the theorens of Pa -cal and Brianchon to surfaces of the second o.der, by M. A. Petot.On a probable cause of the discrepancies found to exist between the electrom stor force of voltaic piles and the theoretical resalts of thermochemical observations, by M. G. Chaperon, - Note on the action exercised by polarised light on ceilulose solutions in Sehweizer's fluid, by M. A. Lev.llois.--Remarks on a case of dimrphism observed with the byposulphite of soda ($\mathrm{NaO}, \mathrm{S}_{3} \mathrm{O}_{2}, 5 \mathrm{HO}$), by MM. F. Parmentier and L. Amat, Re searches on the sulphites and bisulphites of soda, by M . de Forcrand. - On the dissymmetrie chloro-ioduretted and bromo-ioduretted ethylenes, by M. L. Henry, - Experimental researelies on the influence of extremely high pressure on living organisms, by M. P. Regnard. These experiments were conducted by means of the press of MM. Cailletet and Ducretet, yielding pressures of 1000 atmospheres and npwards. Soluble ferments were unaflected by extreme pressure; starch at 1000 was changed to sugar; algre at 600 were decomposed, and the carbonic acid liberated; infusoria, leeches, and mollakks at 600 were rendered insensible, but recovered when the pressure was removed; fishes with swimming bladder resisted 103, became Insensible at 200 , and succumbed at 300 . There results show interesting coincidences with the pheuomena ohserved by the naturalists of the Talisman at various oceanic depths.-On the action of cold on mierobes, by MM. R. Pictet and E. Yung. Many inferior organisms resisted temperatures of from -70° to $-130^{\circ} \mathrm{C}$. for several hours. Others were either killed or lost their germinating functions.-On peritoneal transfusion, by M. G. Hayem.-On the medullar mechanism of paralyses of cerebral origin, by M. Couty.-Anatomlcal description of the foctus of a gorilla recently brought from the Gaboin, by M. J. Deniker.-On the anatomy of the Parchia hastata discovered by Gosse in 18;5, by M. Faurot.-On the structure of the anditory organ in Arenicola grubii, Clap., by M. Et. Jour-dan.-Anatomy of the mu-cles in the abiomen of the bee, by M. G. Carlet.-Note on a deposit of gold a a Peñ if ${ }^{2} \mathrm{r}$ in Andalusia, by M. A. F. Nogues, - Oa certain changes in the appearance of the sky recently observed at Nice, by M. L. Thollou.On the crepuscular glows observed at San Salvad or, in Central America, by M. de Montessus.

Berlin

Physiologieal Soclety, February 29.-Dr. Weyl spoke about the secretion in man of nitric acid, which he had analytically proved, and which, by administration of ammovia, he was able quantitatively to increase. After it had been experimentally established that a direct transference of albumen into urine was impossible, it was recognised that the formation of arine was no oxidising process of the albamen, bat was effected eircuitoosly by the formation of amido-compounds, who ie introduction into the animal body increased the quantity of the secreted nrine. The formation of urine took place through alimentation of the simplest amidin ous matters, a mmonia increased the secretion of urea. Similar to the action of ammonia was that of a carbonate of ammonia, as al-o when combined with organic acids, while from hydrochlorate, sulphate, and miueral acid salt, the a nmonia did not become tran formed into urea. On perusing the litera. tare of the subject, Dr. Weyl found that in all experiments the ammonia was never wholly transformed into urea, but that there was always a residue of from 10 to 40 per cent. which was not represented in the urine. This re-idue of armonia, he conjectured, waz consuaned in the animal body, and he therefore
made search in animals to which he bad given ammonla, for the presence of nitric acid. Rabbits not being adapted for precise experiments in connection with the transmutation of matter, he experimented on dogs, but always failed to discover any nitric acid in their urine. Even when he had given these animals nitrates, no nitrates could be found in their nrine. He now tried experiments on men, and soon ascertained that in their case nitric acid was a ferfectly normal product of secretion. The quantiative determinations, even where no nitrate was administered, yielded from 400 to 600 mgr . of nitric acid in the contents of tbe urine. The quantity of nitric acid varied with the neurishment, and by the use of vegetables could be considerably increased. To test the accuracy of his conjecture regarding the fate of the ammonia not converted into urea, he took with a uniform regnlated diet citrated ammonia in doses of from six to eight grammes, and found in two series of experimints a very marked increase of the nitric acid in the urine-in one case, for example, of from about 500 to over $\$ 00 \mathrm{mgr}$. This constant presence in no inconsiderable quantities of nitric acid in the urine of man ought, in experiments connected with the change of matter, to be carefully attended to. Historically, Dr. Weyl observed that more than thirty years ago Bence Jones had made the as ertion that in the animal body an monia was oxidiced into nitric acid. He was, however, unable to substantiate this proposition without raising objections.-Frof. Kronecker reported on the di-covery of a c ordination centre in the movements of the ventricles of the heatt, made by Herr Schmey, a student in his department of the Physiological Institute, and which be (Prof. Kronecker) had repentedly verified. In an examination of the changes in the dimensions of the heart in the process of contraction, needles were thrust in the most varlous directions into the heart of a ding after it had been laid bare, on operation which, as was known by experience, had no influence on the movements of the heart. When in this operation the reedle came upon a certain small spot on the lower border of the upper third of the seprum cordis, the ventricles of the heart at once ceased to beat, and, diastolically dilated, fell into fibrillar convulsions, which were soon followed by the death of the ventricles of the heart. It was not possible by any appliances to restore the ventricles to their normal action. The vestibules continned to beat normally, but the ventricles no longer discharged their blood, and soon, in consequence of the palsy of the heart, general death set in. This instantaneous death of the heart through a prick in a particular part of the septnm-the stoppage thereby produced of each coordinate contraction of the muscles of the heait-was up to the present wholly without analogy. What approached nearest to this fect was the well-known phenomenon that a ecmpression of the coronary artery produced in a short time a cessation of pulsation and fibrillar colvulsions. On with. drawing the compression, however, the pulsations of the ventricle were resumed. In the case of a prick, on the other hand, the effeet followed altogether much more quickly, quite instantaneonsly in fact, and the ventricles, not able again to discharge their functions normally, were for ever motionless. This phenomenon Prof. Kronecker explained in the following manner. By the prick of the needle a coordinating centre in the movements of the ventricles of the heart, having its seat at the spot in question in the septum, was touched and destroyed. The finding of this centre afforded the physiological key to the riddle not unknown in surgery, that many very slight heart-wounds, pricks of needle, for example, which did not even penetrate, produced sudden death. It was now the task of anatomical investigation to demonstrate the existence of this centre now experimentally proved to exist. Prof. Kronecker and IIerr Schmey have demonstrated this important experiment to the satisfaction of the Society.

Vifnna

Imperial Academy of Sciences, January 17.-M. Tüllig, on a new mode of telephonic transmission of sound (sealed packet).-J. Kachler and F. V. Spitzer, on Jackson's and Menke's method of preparing borneol from camphor.

January 31.-W. Biedermann, contributions to general nerve and muscle physlology (xiv. communication), on the heart of Helir pomatia.-G. von Niessl, on the astronomical relations at the meteoric fall of Mocs (Transylvania) on February 3, 1882. -L. Koller, on some general laws relating to knot-combina-tions.-A. Lnstig, on the degeneration of the olfactory epithelium of rabbit after destruction of the olfactory lobes.F. Zehden, attempt to explain the sunspote-J. Hann, on the
results of the meteorological observations made by Mojor ren Machow at Pungo Andongo and Malunge in the interior of tropical South-West Africa in the years 1879-80.

February 7--J. Odstrzil, on the mechanism of gravilation and inertia.-R. Benedikt and K. Hazura, on morin.-E. Goldstein, on the influence of condncting surfaces within the second tratum of the kaibide light of Geissler's inbes.-S. Exner, ou the innervation of the larynx.

February 14.-E. Hering, contributions to general nerve and muscle physiology (xv. communication), on the positive aftervariation (Nachschroankung) of the nerve-current after electrical stimulation.-J. Klemencics, researches on the relation betzeen electrostatic and electromagnetic measure.-F. von Hochstetter, seventh report of the Prehistoric Commis-ion on its work durirg the ycar $1883 .-R$. von Wettstein, on the laws of growih of plant organs.
March 6.-J. Singer, contribution to a hnouledge of the motor functions of the lumbar cord of the pigeon.- - . Redtenbacher, synopsis of the larva of Myrmeleoidear.-J. H. Li-t, on calyx-cells in the vesicle epithelium of the frcg.-K. Zab konsky, on coloured comtinations of phenol with aromatic aldehydes.-F. von Hochstetter, reports of the Prehistoric Com$\mathrm{mi} \cdot \mathrm{sion}$ on the rescarches carried out in Moravia by J. Szombathy and W. Muller.-E, von Marenzeller, contribution to a knowledge of Adriatic annelids (iii. paper).-V. von Ebner, oo the planes of solution of calcareons spar and aragonite.-H. Pitsch, on the value of Fermat's rule for the propagation !of light in double refracting media.-Von Barth and M. Kretschy. on picrotoxin.-J. Herzig, studies on quercetin and its derivatives. -E. Hackel, gramina nova, vel mluus nota.-A. Resoll, contributions to the histochemistry of plants. A. Adamkiew icz, on new stainings of the spinal cord.-F. K. Ginzel, researches on eclipser, esjecially on ascertaining empiric corrections of the orbit of the moon.
March 13.-E. Hering, contributions to general nerve and muscle physiology (xvi. communication), on the variations of nerve-current caused by unipolar stimulation in tetanisation.-C. Pusch), on the secend axiom of mechanical theory of heat axd on the bebaviour of water.-K. Olzewski, on the liquefaction of hydrogen. - On the density of liquid oxygen, by the same. On the point of solidification of some gases and liquids, by the same.-G. Adler, on the energy in the electrostatic field.-C. Goldstein, on the passing of electricity through vacua.

CONTENTS

Page
The "Challenger" Reports (With Ihustration) ... 521 German Meteorology

Our Book Shelf:-

"Berly's Electrical Directory " 54
Letters to the Editor :-
"The Unity of Nature."-Duke of Argyll. ${ }^{24}$
Rain-band Spectroscopy Atlached Again.—Pref. C. Piazzi Smyth

525 F.R.S.; George F. Burder; O. S. W. Judd, Thread tu isting.-Cosmopolitan
Measuring Heights
525
On a Method of Estimating the Stesdiness of 526
Elongated Shot when Fired from Large Guns. By Rev, Francis Bashforth
Third Note on the Electrical Resistance of the 527 Human Body. By Dr. W. H. Stone 523
Internatlonal Weighta and Measurea 529
Lilea 530
Professor Flower
530
The Deep-Sea Dredgings of the "Talisman"Crustacea (With Illustration)53^{1}

The Society for the Biological Investigation of the British Coasts
Notes
533
Our Astronomical Column:--
The Double-Star a Herculis
Variable Stars.
On the Aurora Borealis in iceland. By Dr. Sophu"s Trombolt
On the Natural and "Artificial ${ }^{\circ}$ Fertiliastion" of 537
Herring Ova. By Prof. J. Cossar Ewart, M.D.
University and Educational Intelligence
Scientific Serials 540
Socletlea and Acaderr les540

THURSDAY, APRIL 10, 1884

STOKES ON LIGHT

Burnett lectures. On Light. First Course, On the Nature of Light. By G. G. Stokes. (London: Macmillan, 1884)
" What nature could, but would not, do, And beauty and Canova can."
A dozen, or more, years ago, the scientific world was excited by the announcement that a treatise on Light was to be published by Prof. Stokes, as a companion volume to Clerk-Maxwel's remarkable Theory of Heat. The announcement was, however, ultimately withdrawn. Nature could, but would not, do it.
But Beauty and Canova, in the form of a Conservative Government and its En.lowed Instilutions (Scolland) Act of six years ago, dit it :- and we now have, as a result, the first of a series of three volumes by Prof. Stokes 1
The Burnett foundation, now about a century old, was essentially of a Teleological character. It had been applied, in accordance with the Founder's will, at intervals of 40 years, to the award of prizes for Essays:the competition being perfectly open. Those who know what Teleology was, half-a-century ago or more:-cven at its very best, as in the once-celebrated Bridgewater Treatises:-will probably be of opinion that the Commissioners, under the Act referred to, did real good by their modification of the terms of the Burnett Endowment.
True :-it is still possible that the Trustees may some day appoint to the Burnett Lectureship a rabid Teleologist of the old school. Even this might be defendef on the ground of even-handed justice; though an illinformed, but zealous, champion of such a cause is probably more dangerous to it than is a declared enemy. But the appointment of Prof. Stokes, as the first holder of the new office, augurs well for the future. Beside his scientific qualifications, he is possessed of that calm, judicial, mind which is absolutely required in so delicate a position:--where, indeet, to say too little might involve the charge of luke-warmness, if not of positive unbelief; while to say too much would display that presumption which is usually characteristic of ignorance.

As the title of the work implies, the subject is the nature and extent of the present evidence in favour of the Undulatory Theory of Light. The reader is supposed to have an elementary acquaintance with the simpler facts of geometrical optics, nothing further. Hence the work is, in the true sense, a popular one ; suited to any reader of average intelligence and information. The language is simple and, as far as possible, devoid of technicalities :while it "goes without saying" that the author does not condescendingly patronise the assumed weakness of his reader, nor docs he anywhere attempt to escape from a difficulty by the use of mysterious or indefinite expressions.

As the book will, undoubtedly, find its way into the hands of every one who desires to see an important and difficult subject brought by a Master to the level of the understanding of any ordinary reader, we will content
ourselves with a few selections. These have been made on a very catholic principle, some to exhibit novelties of matter or treatment, some for their historical bearing, and one to show ho whe special difficulty of the Lecturer's position has, so far, been met.

First, we have the two rival theories of Light compared, with the chief arguments for and against each :-
" Prima facie there is much to be said in favour of the theory of emission. It lends itself at once to the explanation of the rectilinear propagation of light, and the existence of rays and shadows. It falls in at once with the law of aberration. The laws of reflection and refraction admit of an easy explanation in accordance with it ; at least if we accept the existence of both reflection and refraction; for ascording to this theory we should rather have expected beforeband that light would have been cither reflected or refracted, according to circumstances, not that incident light should have been divided into a portion reflected and a portion refracted.
"The theory of undulations on the other hand presents at the outset considerable difficulties. In the first place it requires us to suppose that the interplanetary and interstellar spaces are not, strictly speaking, a vacuum but a plenum; that though destitute of ponderable matter they are filled with a substance of some kind, constituting what we call a medium, or vehicle of transmission of the supposed undulations. When I speak of this medium as a substance, or as material, 1 mean that it must possess that distinctive property of matter, inertia; that is to say, a finite time must be required to generate in a finite portion of it a finite velocity."

Then the special difficulty which made Newton abandon the wave-theory :-
"The necessity of assuming the existence of some kind of substance in what we commonly speak of as a vacuum, does not appear to have been a serious preliminary difficulty in the way of the reception of the theory of undulations. A far more formidable difficulty appeared at first to be presented by the existence of rays and shadows. It was this that led Newton to adopt the theory of emission, though even he was led in the course of his researches on light to suppose that there was some sort of medium through which the particles of light moved, and in which they were capable in certain cases of exciting a sort of undulation. But the supposition of particles darted forth seemed to him necessary to account for shadows."

How, mainly by the marvellous insight of Young, this difficulty has been, not merely got over but, converted into one of the strongest arguments in favour of the Undulatory Theory :-
"There is no difference of explanation as regards light and as regards sound, save what depends on the difference of scale entailed by the difference of wave-length. Take as regards light the case of a small circular bole, say the tenth of an inch in diameter, and of distances from the luminous point to the screen in which the hole is pierced, and from that again to the screen on which the light is received, of say 8 feet 4 inches, or 100 inches, each. In this case, regarding the luminous patch on the screen as a whole, there would be no great diffusion of light, but the phenomena of diffraction would nevertheless be fairly pronounced. There ought to be a corresponding case of diffraction for sound; but on what scale ? Take 50 inches as the length of a wave of sound, which would correspond to a musical note of moderate pitch. Taking as before the $1 / 50000$ part of an inch as the wave-length for light, the length of the wave of sound will be two-and-a-half million times as great as the wavelength of light. Consequently to obtain the corresponding cise of diffraction for so ind, our 'small' circular hole
would be obliged to have a diameter of rather more than four miles, say four miles, and the distances from the source of sound to the bole through which it passes, and from that again to the place where the sound is listened to, would have to be 4000 miles each.
" It is remarkable that the existence of rays, which formed the great stumbling-block in the way of the early reception of the theory of undulations, is now shown to $b=l o n g$ to a class of phenomena, those of diffraction, the complete and marvellously simple explanation of which afforded by the theory of undulations no $\begin{gathered}\text { forms }\end{gathered}$ one of the great strongholds of that theory."

In connection with the Lecture on the Senses, by Sir W. Thomson, which has re eently appeared in Nature (vol. xxix. pp. 438, 462) we may take the following passage. [At the same time it may be well to remark, in passing, that Sir W. Thomson omits altogether the Sense of Rotation, which seems to be fully established by the researches of Cruin Brown, De Cyon, Flourens, Mach, \&c. He also distinguishes between the Senses of Touch and of Heat, making the so-called Muscular Sense a case of the former; while it seems more probable that Touch and Heat are the same sense, and the Muscular sense an independent one.]
"As regards the mode of perception, while there are analogies between sound and light there are at the same time notable differences. In sound, the tympanum of the ear is thrown mechanically into vibration, and the nerves of hearing are mechanically affected, as a mechanical disturbance of a point on the surface of the body is made known by the sense of touch. But in light, just as we have seen reason to believe that it is the disturbance of the ultimate molecules, or of their constituent parts, by which the vibratory motion which constitutes light is in the first instance communicated from ponderable matter to the ether, so we have reason to think that when light is absorbed what takes place is that the disturbance of the ether is communicated, not to portions of matter regarded as forming portions of a continuous elastic body, but to the ultimate molecules of which matter consists, or to their constituent parts. It may be that temporary chemical ehanges are thereby produced in the ultimate filaments of the nerves of the retina, in which case the sense of sight would be more analogous to the sense of taste than to that of touch."

As a specimen of the firm, yet cautious, way in which the Lecturer meets the grand difficulty of his position, take the following :-
"In studying this subject, one can hardly fail to be struck with the combination of these two things :-the importance of the ends, the simplicity of the means. When I say the importance of the ends, I use a form of expression which is commonly employed as expressing design. And yet on that very account we must be on our guard against too narrow a view. When we consider the subject of vision in its entirety, the construction of the recipient organ as well as the properties of the external agent which affects it, the evidence of design is such, it seems to me, as must to most minds be irresistible. Yet if I may judge of other men's minds by my own, it is rather in the construction of the recipient organ than in the properties of the agent that affects it that the evidence of design is so strongly perceived. And the reason of this may be that we are here dealing with what more nearly resembles design as we know it in ourselves. Man takes the laws of matter as he finds them; the laws of cohesion, of the conversion of liquid into vapour, of the elasticity of gases and vapours, and so forth; and in subserviency to those laws he constructs a machine, a steamengine for instance, or whatever it may be; but over the
laws themselves he has absolutely no control. Now when we contemplate the structure of the eye we think of it as an organ performing its functions in subserviency to laws definitely laid down, relating to the agent that acts upon it, laws which are not to be interfered with. We can, it is true, go but a little way towards explaining how it is that through the intervention of the eye the external agean acts upon the mind. Still, there are some steps of the process which we are able to follow, and these are sufficient to impress us strongly with the idea of desig. The eye is a bighly specialised organ, admirably adapted for the important function which it fulfils, but, so far as we can see, of no other use ; and this very specialisation tends to make the evidence of design simpler and more apparent. But when we come to the properties of the external agent which affects the eye, we begin to get out of our depth. These more nearly resemble those ultimate laws of matter over which man has no control ; and to say that they were designed for certain importat objects which we perceive to be accomplished in sabserviency to them, seems to savour of presumption. It is but a limited insight that we can get into the system of nature ; and to take the very case of the luminiferous ether, while as its name implies it is all-important as regards vision, the present state of science enables us to say that it serves for one object of still more vital importance; we seem to touch upon another; and thert may be others again of which we have no idea."

At the end of the work we are told that the two volumes, which are to follow this, are to deal with
II. Researches in which Light has been used as a means of investigation, and

II1. Light, considered in relation to its beneficial cffcts.
The former of these we may hope to have in a yer from the present time; for the final volume we must wit a year longer. But in the meantime let us be thankful for the first instalment, which is a masterpiece of simplicity and strength; and be grateful to the Commir sion, and the' Trustees, to whom we are so very directly indebted for it. And, above all, let us lay to beart the valuable lesson which the Author has drawn from the story of the two rival theories of Light, and of their chief supporters, a lesson good for all time :-
"It may be said, If the former theory is nowadays erploded, why dwell on it at all? Yet surely the subject is of more than purely historical interest. It teaches lessons for our future guidance in the pursuit of truth. It shows that we are not to expect to evolve the system of nature out of the depths of our inner consciousness, but to follow the painstaking inductive method of studying the phenomena presented to us, and be content gradually to learn new laws and properties of natural objects. It shons that we are not to be disheartened by some preliminary difficulties from giving a patient hearing to a hypothess of fair promise, assuning of course that those dificulties are not of the nature of contradictions between the resulls of observation or experiment and conclusions certaink deducible from the hypothesis on trial. It shows that we are not to attach undue importance to great names, but to investigate in an unbiased manner the facts which bie open to our examination."

On this it would be impertinent to make any fartber comment.
P. G. Tait

OUR BOOK SHELF

Absolute Measurements in Electricity and Magndion By Andrew Gray, M.A., F.R.S.E. (London: Macmillan and Co., 1884).
THis book, which is mainly a reprint of a series of papers on absolute measuremeot of electric currents and poter-
tials which appeared in these columns a short time agn, but with some additional matter, must, from the clear explanation of the principles involved in the different methods of measurement, take a high position as an educational work, and, from the care with which details of manipulation are in many parts described, form a valuable laboratory guide.

The author begins by explaining Gauss's method of finding the horizontal intensity of the earth's magnetism. Instead of describing an "instrument-maker"s" magnetometer, and showing how with this expensive luxury H may be determined, he gives simple, clear, and full directions for constructing, with such common materials as are to be found in any laboratory, all that is necessary for making this determination with great accuracy.

A description of the tangent galvanometer in some of its forms and an explanation of some of the units naturally follow. Here, by treating each unit separately with many illustrations depending on the aspect from which they are viewed, the author has succceded in giving them a reality which students often find it difficult to believe they possess.

The next two chapters are devoted to a description of the construction and graduation of Sir W. Thomson's "Graded Galvanometers." These instruments possess so great a range, and are, when used carefully in the laboratory, so accurate and convenient, though rather delicate for an engine-room, that an exact description from headquarters of their construction, of the precautions which must be observed in their use, and of the means of graduating them is especially valuable.

The various methods employed in measuring any resistance from that of a thick copper rod to that of a piece of gutta-percha are given, and in many cases explained by numerical examples.

The methods by which the energy due to direct or to alternating currents may be measured is explained-in the latter case on the assumption that the current strength varies harmonically with the time.

The chapter on the measurement of intense magnetic fields is especially interesting, for the methods given, depending on the use of suspended bits of wire attached by threads to pendulum weights, or equally simple and easily contrived devices, show how the experimenter may in many cases be independent of the elaborate work of the instrument-maker.
C. V. B.

Field and Garden Crops of the North-Western Provinces and Owdh. By J. F. Duthie, B.A. F.L.S., Superintendent of the Saharanpur Botanical Gardens, and J. B. Fuller, Director of Agriculture, Central Provinces. Part 2. With Illustrations.
As a work of reference it will be very valuable, for it contains well-arranged details of some of the more important crops under cultivation, and the information is well and systematically arranged. Care has been taken in each case to secure a complete but still a concise statement, which is sufficient to guide the cultivator in all the specialities of management necessary to secure successful results. A good drawing illustrates each crop treated of, and its several cultivated varieties, and with these we have carefully-prepared descriptions of each plant in succession, and its general history. The districts within which the cultivation can be successfully extended are also set forth with great clearness and precision. For accuracy of details, in a very accessible form, this work leaves little to be desired.

Treatise on Higher Trigonomelry. By the Rev. J. B. Lock. (Macmillan, 1884.)
THIS is the promised complement to the same writer's "'Treatise on Elementary Trigonometry," which we noticed very favourably in these pages at the time of its appearance (vol. xxvi. p. 124). It is concerned principally
with series, the errors which arise in practical work, and the use of subsidary angles in nunierical calculations.

A short chapter on the use of imaginaries is justified by the position this subject holds in the London University Examinations, and no apology is needed for the space assigned to an account of, and a collection of exercises upon, the hyperbolic sine and cosine. We have read the text carefully, and though almost of necessity there are numerous typographical mistakes, only one or two (for $2 a \cos 2 \theta, \mathrm{p}$. 127, line 3, read $a \cos 2 \theta$) will inconvenience a student. In addition to the numerous examples in the text, there are fourteen specimen papers from Cambridge and other examinations.

The only article to which we take exception is \& 9 , the proof of which may be, if we mistake not, considerably simplified. The book can be confidently recommended to the use of advanced pupils in our schools, and will meet the wants of most students in our Universities.

LETTERS TO THE EDITOR

EThe Editor does not hold himself responsible for opinions expressed by kis correspondents. Neither can he undertake to return, or to correspond with the writers of, rejected manuscripts. No notice is taken of anonymous commanications.
[The Editor urgently requests conespondents to keep their letter, as short as possible. The pressure on his space is so great that it is impossible otherwise to insure the apparance even of comm, unications containing interesting and nowel facts.]

Teaching Animals to Converse

You did me the honour some weeks ago (January 3, p. 216) to insert a letter of mine, conlaining suggestions as to a method of studying the psychology of animals, and a short account of a beginning I had mycelf made in that direction.

This letter has elicited various replies and suggestions which you will perhaps allow me to answer, and I may alon take the opportunity of stating the progress which my dog "Van" has made, although, owing greatly no doubt to my frequent absences from home, and the little time I can devote to him, this has not been so rapid as I doubt not would otherwise have been the case. Perhaps 1 may just repeat that the essence of my idea was to have various words, such as "food," "bone," "water," "out," \&c., printed on pieces of cardboard, and after some preliminary training, to give the dog anyzhing for which he asked by bringing a card.

I use pieces of cardboard about 10 inches long and 3 inches high, placing a number of them on the floor side by side, so that the dog has several cards to select from, each bearing a different worl.

One correspondent has suggested that it would be better to use variously coloured cards. This might no doult render the first steps rather more easy, but, on the other hand, any temporary advantage gained would be at the expense of subsequent diffculty, since the pupil would very likely begin by associating the olject with the colour rather than with the letters; he would, therefore, as is too often the case with our own children, have the unnecessary labour of unlearning some of his first lessons. At the same time the experiment would have an interest as a test of the condition of the colour-sense in dogs. Another suggestion has been that, instead of worth, pictorial representations should be placed on the cards. This, however, could only loe done with material objects, such as " food," " lione," "water," \&c., and would not be applicable to such words as "out," "pet me," \&e. ; nor even as regards the former class do 1 see that it would present any substantial alvantage.
Again, it has been suggested that "Van" is led by scent rather than by sight. He has no doubt an excellent nose, but in this case he is certainly guided by the eye. The cards are all handled by us, and must emit very nearly the same odour. I do not, however, rely on this, but have in use a number of cards bearing the same word. When, for instance, he has brought a carll with "fool" on it, we do not put down the same identical card, but another with the same word; when he has brought that, a thirl is put down, and so on. For a single meal, therefore, eight or ten cards will have been used, and it scems clear, therefore, that in selecting them "Van" must be guided by the letters.

When I last wrote I had sativfiel myself that he had learnt to regard the bringing of a card as a request, and that he could distinguish a card with the word "food" on it from a plain one, while I believed that he could divtinguish between a card with "food" on it, and one with "out" on it. I have no doubt that he can distinguish between different words. For instance, when he is hungry he will bring a "food" card time after time until he has had enough, and then he lies down quietly for a nap. Again, when I am going for a walk and invite him to come, he gladly responds by picking up the "out "card and running triumphantly with it before me tus the front door. In the same way he knows the " bone" card quite well. As regards water (which I spell phonetically so as not to confuse him unnecessarily), I keep a card always on the floor in my dressing-room, and whenever he is thirsty he goes off there, without any suggestion from me, and brings the carl with perfect gravity. At the same time he is fond of a game, and if he is playful or excited will occasionally run about with any card. If through inadvertence he brings a card for something be does not want, when the corresponding object is shown him he seizes the card, takes it back again, and fetches the right one.

No one who has seen him look along a row of cards and select the right one can, I think, doubt that in bringing a card he feels that he is making a request, and that he can not only perfectly distinguish between one word and another, but also associate the word and the object.

I do not for a moment say that "Van" thus shows more intelligence than has been recorded in the case of other dogs; that is not my point, but it does seem to me that this methot of instruction opens out a means by which dogs and other animals may be enabled to communicate with us more satisfactorily than hitherto.

I am still continuing my observations, and am now considering the best mode of testing bim in very simple arithmetic, but I wish I could induce others to cooperate, for I feel satisfied that the system would well repay more time and attention than I am myself able to give.

High Elms, Down, Kent

"The Unity of Nature"

I regret that the Duke of Argyll should have been led by anything that I have written to make some of the remarks which appear in this week's issue of Nature (p. 524). If a reviewer in a signed review cannot express freely his opinion upon a book without its being suggested that he is actuated by secondary and sinister motives, I fancy that few men of common honesty would care to contioue the work of reviewing. Moreover, in the present instance the imputation of animus seems to me specially unjustifiable. I bad almost forgotten the correspondeace in NATURE to which the Duke alludes, but on now referring to it again I can only see that, if it was provocstive of animus, there was assuredly no reason for the animu* to have ari en on my side (sce Nature, vol. xxiv. pp. 58 I and 604 ; vol. xxv. pp. 6 and 29). But, to ignore so unworthy a charge, and one which I can only suppose to have been made under a sense of irritation, I unust explain that the Duke is unter a wrong impression when he assumes that my objection to hi, advocacy of Theistic belief is due to what he regards as my aversion to Theism. As 1 have never been in the habit of "asing your eclumns for the purpose of inculcating personal beliefs and disbeliefs on subjects which lie outside the boundaries of physical science," I shall not do to now. But in view of the slender grounds on which the Dake has felt himself entitled to infer that I " hold that the highest aim of the human intellect is to prove the mindlessness of nature," I feel it is desirable to correct the inference. For this purpose it is not needful that I should publish my "personal beliefs and disbeliefs." It is only needful to say that my previous remarks will be found to have been directed, not against the cause of Theism, but against its champion in the Duke of Argyll. Had my sympathies been more on the side of the materialists than they happen to be, the Duke of Argyll might not have found so nuch reason to quarrel with my "dillike" of his advocacy.
I may now turn to the Duke's remarks on those of my criticisms which he deems legitimate. Taking first the case of rudimentary organs, I quite agree with the statement that the question whether any particular structure now disociated from use is to be regarded as "on the stocks or on the wane" is "a "uestion of evidence fron a-sociated facts." Therefore it was that I said in my review that n, illustration could be more :nfortunate than the one which was chosen by the Duke as an
example of iudimentary structures possibly on the stocis. For if the rudimentary organs which ocuur in the Cetacea admit heing supposed of doultful interpretation in this matter, it d clear that in no case could the "evidence from associated gacs" of structure and affinity be of any value. But in reality this evidence is nearly alway* so cogent that the difficulty suggeted thy the Duke is of a purely imaginary kind : evolutionist have no need ever to be puzzled in deciding whether a given stractare is on the stocks or on the wane. Thus, for instapee, led us take the cases which are adduced by the Duke himself. No evclutionist could be imane enough to imagine that the papillax on the roof of the mouth of the giraffe are the remmuta of whalebone, seeing that the whole structure and all the afsities of the animal are oppo ed to the inference that its anceton were aquatic mamnualia. Or, if we take the case of webled fee', even if the fipper had begun to develop them, no erol. tionist in his sences would infer that these incipient strectare were remnants of struc'ures once more fully developed, seeing that all the other struc ures and affinities of the bird prove thate belongs to a non-aquatic family. Cases of this kind actully occur in such birds as the grebe and the coot, where erta apart from structure and affinty it is easy to see that the lithe piece of web must be regarded as a growing and nct a dwindling organ, seeing that the birds are so strongly aquatic in their habits.

Considering next the Duke's remarks on instinct, I did axt attempt to deal with the argument to which he refers, becasel could not perceive that there was any argument to bedealt with His view is a mere assumption to the effect that instiocts are divinely implanted intuitions independent of experience; and to deny that experience, in successive generations, is the soarce of instinct is not to meet, by way of argument, the enormoes mas of evidence which goes to prove that such is the ease. Even within the limits of my review I should have thought there was evidence enough to have disposed of this denial.
As for ihe special case of the dipper, I only mentioned it io my review because the Duke lays great stre-s upon it in in book. No doubt better cases nccur of newly-acquired instincto not yet associated with correlated structures, and in all sac cases (whether good, bad, or indifferent), it is not a now sepucho mode of argument to say that, on the ibeory of the transmutaion of instinct, the appropriate organs have not been developed. because, lo sking to the affinities of the animal, we are entitic to infer that time enough has not yet been allowed for ber development. Again, I deny that it is for me, or for any ober evolutionist, to prove that the ancestors of the dipper did od present those lesser modifications of structure which, sccordigy to the Duke, are now correlated with the aquatic instincts. ${ }^{1} B_{I}$ "proof" he no doubt means the display of the ancestral form, and not the stady of allied species. Proof of this kind is ax altainable, but neither is it required. The question ubebre instincts are fixed intuitions or admit of being modifed os accumulative experience with natural selection-i.c. whether they are or are not subject to evolution-is a question that does not require to be settled on the narrow basis of any one particaly case. And if we take a broad view of all the instincts known to us, the combined weight of their testimony to the fact of tras mutation is simply over whelming.

London, A pril 4
George J. Romanes

The Remarkable Sunsets

Tut remarkable red sunsets and after-glows, about which s unuch has been written of late, still continue here, but in a loo intense form. A remarkable one occurred last night, and whe watching it I determined to send you a brief account of yy experiences in the matter. It is of little use going into descriptions of the appearances which are now well known, but the cos: which occurred last evening was unusually fine. It was a stormy wild evening, with black clouds all around, except in the west, where, from about 10° above the horizon to near the zenish it was quite clear, and of a pale orange glow. A quarter of 20 hour after sunset three immense rays through rifts in the cloe bank sprang up almost surldenly, and took quite an intens crimson lake colour, which lasted about ten minutes.

Our brightest displays occurred in October and Novemles last, and frequenly bathed the whole landscape in a deff
${ }^{1}$ I say "according to the Duke," because, according to Mr. Durvit In in the ct st of the watcr-ousel the acutest observer, by examixing in th body, would never have uspected its sub-aquatic babits" ("Ongad Species," 6 (h ed., p. 142).
crimson glow. These skies were often still more gorgeous in the morning, and on some occasions were so wonderfal as to be styled frighfful by some observers. I witnessed one of these sunrises from an altitude of 3000 feet in January, and it was almost an avvful sight. The view to the cast was over about thirty miles of plains to distant mountains ; a low mist hung over the low ground, and the surface appeared slightly rolling as seen from above. The sky half an hour before sunrise was so intensely red, almost to the zenith, that it gave this mist the appearance of a sea of blood. Every object, tree-trunks, ferntrees, bushes, rocks, and the cottages about the hills, was of a similar lurid colour ; still there was not yet sufficient light to read by comfortably. This display reminded me of the wonderfully red aurora witnessed in Australia on April 5, 1870, when the red light was so intense that ordinary newspaper type could be read by it at ten o'clock on a moonless night, the type appearing as if set in a blood-red sheet. This was the first time I recorded the red spoctrum line of the aurora, and I think was one of the earliest observations of this fact.

Some of the recent sunsets have looked very much like an aurora in the west, and faint traces of stratification lent additional similarity ; indeed on one night early in December, the affer-glosv merged into a beautiful aurora, and silver streamers were seen before all the red glow had disappeared.
From all over Australia reports of wonderful sunsets and sunrises have been sent to me. In one case the red glow was reported as mangined by an immense black boto stretching across from north-west to south-west. On several occasions these glows prolonged the twilight considerably, and a correspondent at Urana, in New South Wales, described one occasion where approaching darkness after one of these sunsets at length compelled him to leave off watering his garden, but suddenly the light increased again sufficiently to induce him to resume his work ; and he states that a similar accession of light-each time fainter-occurred on that same evcning.
The season over the south of Australia especially, but all over the continent, has been remarkable, and, so far as this colony is concerned, unprecedented in my thirty-threc years' knowledge of the climate. January, February, and March are usually our dry, hot months; this year they have been wet and cold ones. The average rainfall for January has been I' 60 inches; this year it was 4.75 inches. For February the average is 1.95 inches, and up to this date (the 27th) it has been also 8 ' 95 inches. The mean temperature for January was $3^{\circ} \circ 5$ below the average, and for February 2° below. Stormy, squally, wintry weather has predominated, with now and then a very hot or a tropical day for a change.
Even before the Krakatoa outburst the northern parts of Tasmania had become subject to prolonged narik tramors, with now and then a decided earthquake shock. These disturbances still continue, and appear to be extending northwards, for on the 15 th of this month a shock was felt at Gabo Island, at the sontheast extremity of Australia, and a very severe one again on the 17th, when a curious and sudden barometric disturbance, not unlike that at the time of the Java catastrophe, was shown on our barographs.

While on this subject it may he as well to state that Mr. Barrachi, one of my assistants, while at Port Darwin determining the difference of longitude between that place and Singapore in March 1883, saw sunsets, followed by after-glows, which prolonged the usual short twilights to a very considerable extent. and he states they were equally remarkable with those witnessed here. They only occurred either just before or just after very heavy rains.

Referring to the various hypotheses which have found their way into print explanatory of the unusual phenomena attending sunrise and sunset since August 1883, the belief that they have been in some way brought about by the Krakatoa eruption appears to be generally accepted, and while some doubt may be thrown on this assumption by records of equally remarkable chromatic effects at both sunrise and sunset and about the sun at other times of the day prior to the eruption, it must be admitted at present that the volcanic cruption has strong claims to credence.

There can be no doubt that, whatever the prime cause, the effects are due to the presence in the higher regions of our atmosphere of a form of maltor not usually there, at least to such an extent. Now this matter, or form of matter, may, as far as we know, be due to Krakatoa, to the earth's orbit traversing streams or regions pervaded with extremely fine meteoric dust,
or to any other cause that might either introluce new or alter the form of existing matter.

It is well known in the laboratory that certain chemical combinations and mechanical mixtures will exist as such, but in a most unstable form,-a concussion or sharp sound, an electric spark, \&c., either breaks them up or brings about a change of form so as to present altogether different physical properties. Now it is also well known that at the time of the Krakatoa eruption barometric pressure was spasmodically affected all over the world. Everywhere where barographs have been recorded this fact appears. This atmospheric shudder, undoubtedly originating at Krakatoa, was, I have reason to believe, conveyel rapidly from the centre through the higher and more tenuoas regions of atmosphere, but affected the lower strata in its passage. This would perhaps account for the immense distancethousands of miles-over which, it has been widely reported, explosions were heard about the time of the occurrence of the outburst.
Now if we assume that on the peripheral regions of our atmosphere gases and forms of malter exist in not very stable combinations or mixtures, it requires no great stretch of our imagina. tion to picture the result of this great atmospheric shudder bringing about an alteration in the form or proportion of matter, and consequently such a change in its optical properties as to proluce the unusual and remarkable effects which have been so universal.

Melbourne Observatory, February 27

Uxider date of January 141 named the bark C. Sowthard Hurlburf as having observed the glow on September 3. She was dismasted in a cyclone August 8, and came to Ifonolulu for repairs. On the former date she was in about lat. $17^{\circ} \mathrm{N}$. , long. $125^{\circ} \mathrm{W}$. The captain's wife, Mrs. Davis, described the phenomena to me as extremely brilliant.

Only last week I learned from Hon. H. M. Whitney, Post-master-General, that on Septemler 5 Mrs. Whitney and himself distinctly observed the sun's disk before setting to be green. His residence was an exception to most of ours in Honolulu, from which trees cut off a view of the horizon. My wife spoke much that night of a strange green cumulus, seen by her ten minutes before calling me to observe the portentous masses of colour pouring out all over the sky.

I beg special attention to my former remark of the "earthshadow sharply cutting off" the upper rim of the first glow. This was very manifext in the strong heavy glows of September, showing clearly that the first glow directly reflected the sun's rays, while in the after-glow which had no defined upper rim, but continued much longer, the haze reflects only the light of the first glow. This bears on estimates of the height of the haze.

Observers here are well agreed that during November there was a very great abatement of the glows, amounting almost to a cessation, although the whitish corona was always well developerl through the day. Early in December the glows were renewed, and for six weeks continued quite as brilliant as during Octoher. They are now somewhat alated, although quite uniform nightly, In September and October they were extremely unequal, as well as varying in position of greater colour, south or north of west.

As this revival of our glows closely followed their general diffusion over Europe and the U'nited States, I suggest that thix was the arrival in force by slow marches of the main borly constituting the great cone of vapours, which, falling into the atmosphere in Scptember, covered like a pall the Indian Ocean and Peninsula, down the extended western slope of which cone the light upper vapours were sent by the westward thrust of the earth's rotation, to find speed in their downward slide to carry them at once around the tropical belt as a light advance guart (as set forth in my letter of January 14). As the September haze became gradually dissipated, so the later December arrivals are wasting away.

Honolulu. January 30
At Fanning's Island, long. $159^{\circ} 22^{\prime}$ W., lat. $3^{\circ} 52^{\prime}$ N., on September 4 last, the proprictor. Mr. Greig, states that the sun and sky had an extraordinary appearance; the sun "looked like a copper kettle." Lurid colours covered the sky. Great fears were felt for the safety of his schooner, the Yenwie Walker, which sailed three days before.

From the master of the fonnic Walker I learn that on Sep-
tenser 4 he was in long. $155^{\circ} 28^{\prime} \mathrm{W}$., lat. 8° 20 N., sailed from Fanning's Island three days before. At 5 . p.m. noticed strange appearance in the sun, which was greenish. Strange colours over the west and around the sky at sunset. The sun was green at setting. Thought bad weather was portended. Never saw such appearances before.
Both parties are positive that the schooner was three days out when their fears were thus excited. She sailed September 1 . No entry in ship's log of the above phenomena.
Honolulu, February 20

S. F., B3Suor

ANOTHER note relative to these phenomena:- " August 20, 1861.-Earthquake at Naples. At Castellamare the water is so discoloured, that although the calm has been complete, we fear some subterranean perturbation. The heat is intense. At the same time the atmosphere presented a very peculiar appearance. There are no elouds, and during the whole week a thick mist has enveloped the city and coast, and the sum when sedting is as red as blood."-(Moniecur du 29 Aloút, 1861.)
J. P. O'Reilly

Royal College of Science for Ireland, Stephen's Green, 1)ublin

Meteorological Bibliography

1 REJOICE to see the well-earned tribute which you have paid to Dr. Hellmann's excellent "Repertorium der Deutschen Meteorologic," and as a worker in the same field I trust that you will permit me to and that I agree with every word which your reviewer has said as to its excellence.
My object in writing is merely to point out that, thanks to the liberality of the United States Government, we may hope soon to have, not a perfect catalogue, bat one which will be extremely useful, especially if, as 1 hope, the United States Government adope my suggestion and endeavour to arrange with Dr. Hellmann for the incorporation of the first part of his "Repertorium" with the materials already forwarilef to them.

Your reviewer is perfectly right in urging the absolute necessity of steps being taken to index and classify the mulitudinous publications now appearing. Dr. Hellmann in his "Repertorium" says that 800 publications upon meteorology appear annually, or more than two each day, hence the impossibility of any one keeping abreast of the entire literature.

As regards the catalogue which 1 had the pleasure of sending to the United States last autumn, 1 annex an alstract of the description which 1 gave at the Southport meeting of the British Association in case you may think it of sufficient importance to be worthy of a place in Natere. Dr. Ilellmann's "Repertorium" only reached me just before my catalogue was shipped, hence the absence of reference to it in the annexed paper.

62, Camden Square, N.W., April 4
G. J. Svmons

On the Completion of the Europran Portion of the Prdiminary Meteorological Catalogue, by G. Y. Symons
The author commenced by giving a few illustrations of the large amount of time and energy which has been wasted by meteorologist, owing to their not knowing what had previously been done, sometimes even in their own country, but most frequently in other parts of the world; and he pointed out that with the motern development of meteorological work and of meteorological literature, some effort, upon a large scale, to deal with this evil was imperatively necessary.

Mr. Symons described the catalogue which he had formed during the last twenty or twenty-five years, by extracting (from many thousand catalogues issued by dealers in second-hand books in most of the capitals of Europe) all the titles of works on meteorology or kindred subjects. He also described the important publication, by the Royal Suciety, of its "Catalogue of Scientific Papers,"' and showed wherein the two agreed, and how largely each supplemented deficiencies in the other.

He then explained the stepss which Prof. Cleveland Abbe had taken in prcparing his card catalogue, and the arrangements whereby a copy of Mr. Symons's catalogue was to be prepared and forwarded to the United States for incorporation with Prof. Abbe's.

Mr. Symons then stated the additions which had been made to the original proposal, and that the following catalogues had been sulsequently incorporated, each giving afproximately the number of titles set against it, viz. :-

Of course a great many of these were duplicates, but every catalogue cuntained titles which were not in any of the otbers and altogether they have undoubtedly added very largely to the value of the work; it is impossible to state how largely, not is it material in a case wherein the assistance rendered has been almost as great as the catalogue, and as diverse as the languages dealt with.

The precise number of titles forwarded is not known, but is probably alout 20,000 . Prof. Abbe's catalogue is understood to contain about 10,000 , but probably there will be a few thousand common to both catalogues, and therefore the preliminary catalogue, which the United States Signal Office, under the direction of General Mazen, will proceed to prepare for publication, will probably contain the titles of more than 25,000 books and papers upon meteorology.

Mr. Symons remarked, in conclusion, that the catalogue mes not be regarded as complete. It was impossible to make it per fect-it could not be perfect as regarded the past until ever publie and private library in the world had been searched. It could not be perfect for the present, because every day nea works appeared in different parts of the world, and all couid no be simultaneously inserted. Nor would his part of it bear bibliographical criticism, for he was not a bibliographical expert, and his chief aim had been to give information useful to working meteorologists.

Ice Volcanoes-Mountain Rainbow

The past winter has been unusually cold and stormy in Ontario, and, as a result, an uneven strip of ice 100 to 200 yards wide has accumulated along the lake shore, sometimes forming mounds twenty or thirty feet high. Many of these mounds are conical, and have a crater-like opening communicating with the water. In stormy weather every wave hurls a column of spmy and ice fragments through the opening. The ejecta freeze fast as they fall, and add to the height of the conc. In high wind the coast seems fringed with miniature volcanoes in active crupp tion. After a time the crater becomes clogged with ice, and the volcano may be looked on as extinct. Offen a second crater is formed just to scaward of the first, and growing upon its ruirs.
Mr. J. A. Fleming mentions in your issue for January ${ }^{3}$ (p. 310) a circular rainbow seen from a hill-top against mis. 1 saw the same phenomenon three years ago near the Lofodey Islands, as a fog was breaking. It was noticed and admired by other passengers on the steamer also. Each saw his shadow enlarged upon the mist, and with the head surrounded by ${ }^{\text {a }}$ brightly coloured halo or rainhow. The beautiful sight disappeared after a few minutes as the fog thickened again.
A. P. Colmar

Faraday 11all, Victoria University, Cobourg, Canada

Thread-twisting

In reply to "Cosmopolitan's" question in Nisture (mol. xxix. p. 525), I have been many years in Orkney, but do not remember to have seen the women twisting thread with "ble palm of the hand on the thigh," but the fishermen there wist the short lengths of horsehair line called "snoods," which when united together form fishing lines of different strengths, in this manncr.
The women of the North-American Indians always twist the short threads of sinew with which moccasins and leather dothe are sewn in this way: The sinew is torn up or divided into thin filaments slightly moistened by heing drawn between the lips, then twisted between palm and thigh.
J. RaE

Kensington, April 5
In reply to "Cosmopolitan's" query as to the occurrence of the habit of thread-twisting with the palm of the hand on the
thigh in other lands than India, I may say that I have observed the same mode of operating upon paper in Japan very frequently. The paper used there is tough and fibrous, and a lapanese is never at a loss for card to tie a parcel with if he has paper beside him. I have seen the spindle-whorl in actual use in upland districts, and it was employed even in Tokio very recently. Henry Faulids

Laurel Bank, Shawlanis, Glasgow, April 7

Colony of Cats

IT may interest those of your readers fond of cats to know that a colony of cats live and breed under the woorden platform of the Victoria Station of the District Railway. They may be seen crossing the rails right in front of trains, and considering the enormous traffic, and the consequent noise and vibration, it certainly does seem remarkable that such naturally timid animals as cats should live amidst such unnatural surroundings. It may tend to show the plasticity of the animal creation generally in adapting itself to surrounding conditions. A female cat may have taken refuge there originally, and hence the railway domestication of the animals.

Gizorge Rayleigh Vicars
London

Earthworms

Seeing the correspondence on this subject, I am led to give the following fact, which affords a funther proof of the necessity of a vegetable deposit being furmed previons to the existence of earthworms as stated by Mr. Melvin (vol, xxix. p. 502). A field two years ago was converied into a garden, and on accuunt of bad cultivation, and by reaton of each crop being altogether removed for several years in succession, no worms were there, but after the application of a large quantity of stable manure worms have appeared by hundreds, and their castings after rain afford ample proof of their activity. Trasisformation of vegetable mould combined with animal refuse into available fook for plants is here made evident.
J. Luvell.

Driffield, April 7

"The Axioms of Geometry"

Prof. Henrict, in Natury, vol. xxix. p. 453, considers Hamil. ton's proof of Euclid I. 32 invalid ; and asserts that from his reasoning it would follow that the sum of the three angles of a spherical triangle equals two right angles. I venture to differ frow him for the following reason :- The only thing which Ilamilton requires to be granted is that when a moving s/faight line sludes along a fured straight line its diveetion is unchanged. This axiom will, I suppore, be grantod by every one. Of course it is not true that in every case rotation is independent of trans. lation. But Hamilton's proof does not require it to be true in every case, but only in the case of a straight line. Hence I maintain that Hamilton's reasoning is perfectly correct, and his proof valid.

Elward Geoghegan
Bardsea, March 26

GEOLOGY OF CENTRAL AFRICA

THE following extract from a letter received by Mr . Geikie from Mr. Henry Drummond, who is at present exploring the Lake region, may interest our readers:-
"Maramoura, Central Africa, November 1, 1883
"I have now completed a traverse from the mouth of the Zambesi, by way of the Shire highlands, in a northwest direction, until the line joins Mr. Joseph Thomson's rcute, about half way between Lakes Nyassa and Tanganyika. I have filled in the geology so far as is possible in a single survey, and hope thus to be able to extend the sketch geological map, begun by Thomson, for some distance south and west. I may still further extend this by an expedition to Lake Bangweolo, after the rainy season, but there are circumstances which may make it necessary for me to leave for home in February or March. Perhaps the most interesting thing I have to note is the discovery here of a small but rich bed of fossils. The
strata alluded to consist of light coloured limestones and shales, with beds of fine gray sandstones, and the fossils include plant, fish, and molluscan remains. Plants are the most scarce, but fish-scales and teeth exist in vast numbers. Unfortunately whole fish are extremely rare, and after three or four days' search I have only succeeded in securing two or three indifferent specimens. The mollusks, on the other hand, are obtainable in endless quantity, and are in fine preservation. Indeed there is one small bed of limestone entirely made up of these remains, all, however, belonging to a single spec.es. From the general character of the beds I am inclined to think they are of lacustrine origin. These fossiliferous beds are the only sedimentary rocks I have crossed between the mouth of the Shire-say 130 miles from the coast-and the centre of the Nyassa-Tanganyika plateau. At the point where I crossed them they are not more than a couple of miles in breadth, and are flanked on either side by granite and gneiss. They lie at a short distance from Lake Nyassa, and are probably part of the Mount Waller series. This series stretches for some short distance along the north-west shore of the lake, but is apparently of no great extent. These deposits may possibly throw some light on the problem of the lake.
"As regards the controversy between Mr. Thomson and Mr. Stewart about (1) the Livingstone Mountains, and (2) the bed of iron between the lakes, I should say that on both points both explorers are right from their own point of view.
"Mr. Stewart had only been dead a few days when I reached the north end of Nyassa. It was a great disappointment and blow to me, as I looked forward to much help from him. No one living possesses anything like his knowledge of the physical geography of this part of the interior."

CHINESE PALEONTOLOGY

PALAEONTOLOGY is not a study that commends itself to the attention of Chinamen. With archaology the case is different. That is a pursuit which within historical limits the Chinese follow with enthusiasm. Every one who possesses any pretensions to culture, and who can afford to indulge the inclination, collects all that is old from cracked china to coins. So prevalent is this taste, and so keen is the competition for objects bearing the stamp of age, that a flourishing trade, such as rivals the celebrated traffic in "antiquities" carried on at Jerusalem, exists in fabricated antiques for the benefit of inexperienced native collectors and foreign purchasers. But natural antiquities are, speaking generally, left unnoticed, or if thought of for a moment are hastily explained by random conjectures. Topsy's celebrated explanation of her existence is about on a par with the guesses which are bazarded by the most learned Chinamen to account for palæontological phenomena. Science bas always a borderland of unsolved questions, but in China this borderland exceeds in extent the territory of knowledge in the possession of the people. They have no aptitude for palaontology, and few writers make any reference to it. Among the rare exceptions to this rule is Ch'ên Kwah of the Sung Dynasty (A.D. $960-1127$), who, in an interesting work entitled "Notes from a Dreamy Valley," has collected a number of facts on natural antiquities as well as on other matters. His knowledge is not deep, but when we remember that Voltaire accounted for the presence of marine shells on the top of the Alps by supposing that pilgrims in the Middle Ages had dropped them on their way to Rome, a great deal may be forgiven a Chinese writer of the eleventh century.

The Chinese have so completely lost sight of the possibility of the existence in China of any civilisation but their own that when they meet with traces of earlier man they attribute them either to blind chance or to
supernatural causes. In this way when Cb^{\prime} ên Kwah met in the course of his investigations with flint and bronze implements he at once adopted the common opinion of his countrymen, which is the same as that which was prevalent in Europe a couple of centuries ago, that they were thunderbolts shot down by the God of Thunder in the explosions of his wrath. In confirmation of this theory $\mathrm{Ch}^{\prime} \mathrm{e}$ states that though these implements are found all over the country they are more plentiful in districts, such as Lui-chow in the province of Canton, where thunderstorms are more than usually prevalent. In shape, he tells us, they resemble axes, knives, small hammers several pounds in weight, skewers or nails, and other pointed implements. In colour they vary, some being yellow, some green, and some black. Some of the axeshaped stones are bored with two boles, but the majority are not pierced, and implements of the same shape are found in bronze and iron.

Speaking within his own knowledge he only describes the circumstances of the discovery of two stone axes, both of which he tells us were found beneath trees. In one case, at Sin-chow, in Hupeh, after a severe thunderstorm in which, like Prospero, the God of Thunder had

$$
\begin{aligned}
& \text { "rifted Jove's stout oak, } \\
& \text { With his own bolh," }
\end{aligned}
$$

a stone axe was found at its roots ; and on another occa- ${ }^{-}$ sion at Sui-chow, under precisely similar circumstances, a shepherd-lad found a "fire stone in the shape of an axe." As in the only two cases about which Ch'en speaks from personal knowledye the axes were found beneath trees, it is not unnatural to suppose that they are more frequently found in that position than elsewhere ; and this becomes interesting when we find it stated by Mr. Rivett Carnac in a valuable paper published in vol. lii. of the P'roceedings of the Bengal Branch of the Royal Asiatic Society, that it is the custom in Central India for the finder of a stone axe or other stone implement to place it "under the village pipul tree," and sometimes to sanctify it with a daub of red paint, and thus to constitute it a Mahadco. A somewhat similar practice exists, according to Chinese historians, in a country vaguely described as being to the west of the Yuh Pass in Chinese Turkestan, where "thunder stones" when found are deposited in the temples. Ma; not this Indian practice have also been the custom of some of the aboriginal tribes of China? and may not the fact that in the two instances mentioned above the axes were found at the roots of riven trees be evidence of the antiquity of the custom, as in cases described by Mr. Rivett Carnac, in which the ruots of the trees and the surrounding soil had in course of years so completely grown over the axes that they could only be cut and dug out with difficulty?

Stone arrow-heads do not seem to have come within Ch'ĉn's range of observation, although from historical references we know that they are to be met with in China. In the "Book of History," which is said to have been compiled by Confucius, mention is inade of tribute, consisting of iron, silver, steel, and stone arrow heads, having been presented to the Chinese Court by the tribes on the Yellow River about the year 2200 B.C. The story is told also that on one occasion, as the Prince of Ch'en (495 B.C.) was walking in the palace grounds, a bird fell dead at his feet, pierced through by a stone-headed arrow. As the kind of bird was unknown to the prince and his courtiers, Confucius was called in to give his opinion upon it. The b.rd he pronounced to be a species of sparrow-hawk from Northern Tartary, and be explained t at the stone head which pointed the dart was similar to that which Wu Wang (B.C. 1122) presented to his prince. It appears als, that stone arrow-heads were used in incient times as emblems of authority, and that they have very commonly been presented to sovereigns as objects of curiosity and value.

The biographical dictionaries tell us that in course of his official duties Ch'ên was called upon to direct extensive irrigating works; and no doubt the excavations and cuttings which he then superintended led him to take an interest in the fossil remains with which the country abounds. On this subject he has many notes. In one he tells us that at a certain spot on the Yellow River, the banks having fallen away for a considerable distance, a fossil bamboo grove was disclosed, a fact which excited his surprise, as the district is not one in which bamboos grow at the present day, and he contrasts with this the fossil peach-stones, roots of rushes, snakes and crabs, which are found at the Kin-hwa Mountain, all of which things are still indigenous in the neighbourhood. At Tsich-chow in Shansi, he states, a man, when digging a well, suddenly unearthed a "lizard resembling a dragon." At sight of the monster the man fled in terror, but observing from a distance that it remained motionless, he ventured to return, when, to his relief, he found that it was petrified. Philistine-like, his neighbours broke it to pieces, and only one bit of it was preserved. Another kind of fossil has long been a puzzle to the philosophers, from the great and wise emperor, K'ang-hi (166t-1720), downwards. Adventurous travellers who have braved the northern frosts have from time to time brought back accounts of the mammoths which are found in the frozen cliffs of Siberia. Deceived by a mistaken analogy, the Chinese wiseacres have arrived at the conclusion that these monsters must be huge ivory-producing rats, and, misinterpreting their continued preservation, have formed the opinion that darkness is necessary to their life, and that exposure to the outer air produces instant death. Their ivory is considered to be softer than elephant ivory, and in the bands of skilful chemists their flesh is said 10 make up into a highly invigorating tonic.
Speaking of the neighbourhood of the Loh River, Ch'tn mentions the discovery of ancient Troglodyte dwellings in which were found coins, and in one case a stone chest bearing on :he outside fine tracings of flowers, birds, and other objects. Un the lid were inscribed upwards of twenty characters, which were of such an archaic form that they were undecipherable. But the contents were ea sily understood, and were at once recognised as pieces of pure gold.

Constant mention is made by Ch'ên of meteoric stones, which in popular imagination are said to assume various strange and uncanny forins. Of the descent of one such stone which fell in the province of Kiang-sy in the year 1064, he gives certain particulars on the authority of a Mrs. Heu. This lady, when in her garden one day, was startle I by an explosion like a peal of thunder, and saw a large "star nearly as big as the moon" pass across the sky from south-east to south-west, and eventually fall within a few yards of the place where she was standing. On going to the spot she observed a deep hole, at the bottom of which was the "star shining brightly." By degrees the light died away, and eventually at a depth of three feet she dug up a round stone of the size of a man's fist, and of the weight and appearance of iron. Altogether Ch'ên's work is well worthy of the study of those who can read Chinese and who are interested in the palxontology of China.

Robert K. Douglas

ON THE FOR.MATION OF STARCH IN LEAVES

I^{N}N a recent communication to the Arbeilen des botanisches Instilut in Wurzburg (Bd. iii.), Prof. Sachs gives the results of his work during the past summer in connection with the above subject. The investigations were made with the object of determining the formation and disappearance of starch in the leaves of plants growing in the open, and under normal conditions of vegeta-
tion, and were carried on chiefly during the months of June, July, and August on a large number of Dicotyledons from various families. Some twenty-two years ago Prof. Sachs showed that the presence of starch in chlorophyll grains can readily be dete.ted by means of the now well-known iodine test, a modification of whish was employed in these researches.

If fresh green leaves are plunged into boiling water for ten minutes or so, certain soluble substances are extracted, but the starch and colouring matter of the chlorophyll grains remain in the still unbroken cells of the mesophyll. A short immersion in alcohol now removes the green colouring-matter and certain bodies soluble in alcohol, leaving the starch behind in the colourless tissue. The presence of acids affe-ts the degree of whireness of the decolorised leaf ; and the decolorisation proceeds more rapidly in sunlight or warm alcohol than in the dark and cold. Leaves of Tropaolum may be rendered completely white, like writing paper. in two or three minutes.

If the decolorised leaf be now placed in a strong solusion of iodine in alcohol, the presence or absence of starch inay be demonstrated in a few minutes. If no starch is present, the cellular tissue simply pre-ents the well-known yellow colour ; if a large quantity of starch exist, in the cells, the tissue appears blue-black, the venation appearing as a pale network in the dark ground. Paler colours result if but little starch is present at the time of the experiment.

It will readily be seen how useful the above method is for the purpose of demonstrating the absence of starch from etiolated leaves, the white portions of variegated foliage, \&c, and the sequel shows that the method affords rueans of obtaining far more delicate results, without the trouble of a microscopic examination.

In the first place, the same leaf may be found to contain very different quantities of starch at different periods of the day, or according to the weather ; and secondly, the increase and decrease of the quantities of starch in a given leaf may be very rapid.

Sachs showed long ago that if a plant is placed in the dark, the starch disappears from the leaves; and it has also been known for some time that if a piece of tinfoil is placed on a leaf, the covered portion forms no starch, although the parts exposed to light may become filled with that substance. Moreover, Kraus showed how very rapidly starch can be formed in direct sunlight.

Sachs now demonstrates on a number of plants that the starch formed in the leaves during the day may disappear completely during the night, and that the leaves shown to be full of starch in the evening may be quite empty of starch next morning. This depends upon the temperature and health of the plant, but ozcurs normally during the summer in plants growing in the open. A large number of experiments are given in support of this, and showing how the rapidity and completion of the process depends upon the weather.

The experimental proof is very simple. A leaf is halved longitudinally at night, after a fine sunny day, and the excised half is shown to be filled with starch by the iodine test described; the remaining hulf is tested early next morning, and shows at once if any material diminution has occurred during the night. A simple and obvioas anodification of this experiment gives an idea of the quantity of starch formed between sunrise and sunset. The half leaf tested before sunrise shows no trace of starch : the other balf, left on the plant during the day, is found to become more and more filled with starch cowards the afternoon.

Sume curious results were arrived at as to the effect of growing parts on the rapidity of the emptying of the leaves; some of these matters still require investigatiun.

Differences in the weight of leaves and in the intersity of the colour produced by the iodine test, as well as some other observations, lead to a better understanding of a
fact already known generally, viz. that the starch disappears from the leaves in the form of glucoses, which travel by way of the vascular bundles into the stems, and thus pass to the places where they are used up in growth.

Soine very teiling observations were made in this connection, and the dependence of the processes on temperature again show forth clearly.

These results lead to the conclusion that the process of metamorphosis into glucoses and translocation of the products of assimilation are also going on during daylight, though they are less evident, because more starch is then being formed and accumulated than is abstracted at the time. Moll proved that such is the case by exposing leaves to the sunlight, but in an atinosphere devoid of carbon dioxide ; the starch already in the leaves disappeared, and no more was formed to replace it. Sachs repented Moll's experiments, and proved the correctness of his conclusions by means of the iodine test. Half leaves were shown to be full of starch; the companion halves were put into closed atmospheres, deprived of carbon dioxide by means of putassium hydrate, and exposed to sunlight. In an hour the latter halves were tested, and found to be nearly emptied of starch. Other experiments proved that depletion occurred in a few hours, the tine depending on the temperature.

Further experiments demonstrate that the starch travels in the form of glucoses in all the above cases; but it is not proved whether the metamorphosis is effected by forces in the chlorophyll grains themselves, or by means of diast ttic ferments in the cells of the leaf. A few hinis are here given showing a field for further research.

Perhaps the most ingenious part of the paper is that which now follows. It is well known that Weber's patient and 1 horough researches on the energy of assimilation led to two important results, among others: (1) that the quantity of starch formed by a certain urea of leaf-surface in a certain time may be relatively very large ; and (2) that different plant s probably differ specifically as to the quantities of starch formed in their leaves.
Sachs proposes to apply his method to the solution of this question, i.e. how much starch is produced in, say, one square metre of leaf-surface by assimilation during, say, ten hours' bright sunlight? The great difficulties in Weber's researches were connected with the enormous labour necessary to measure the leaf-surface accurately.

Sachs resolved the matter in a manner which we may summarise thus:-He cut off portions of large leaves found to be empty of starch, measured them laridly by laying them on picces of board cut to the size of one square metre, and killed, dried, and weighed the measured portions very rapidly. Certain precautions as to the area of fibro-vascular bundles, the possibilities of absorbing hygroscopic moisture, \&c., may here be passed over. Sup osing the:e portions of the leaves to be estimated in the morning, a quantity of the same leaves of equal area gathered in the evening was then compared, and the increase in weight gives the quantity of starch forme3 in the interval. By weighing large areas, and frequently, and by payirg attention to the times and other circumstances, a large number of results were obtained, showing that the quantities given by Weber, for instance, are within the mark. If course these results are not absolute. Starch is teing' changed into glucose, and passing away during the cay, and some must be burnt off in respiration; moreover a certain minute quantity of mineral ash should be allowed for. Of course, it is an assumption that equal areas of mesophyll of the same leaves contain approximately the same amount of substance: nevertheless, if a large number of experiments are made, the error is probably small.

Experiments were made to show both the quantities of starch which disappear during the night and the quanti-
ties formed during the day. A few of the numbers may be given. In Helianthus, 964 grms. of starch disappeared in ten hours from one square metre of leafsurface.

In the same plant $9^{\circ} 14$ grms. were formed in the same time by the same area of leaf-surface.

In another case Helianthus was used, but the leaves were removed from the stem to prevent the passage hack of the starch from the mesophyll into the stems.

A square metre was found to produce starch at the rate of 1.648 grms. per hour.

By combining his experimental results and taking note of all the circumstances, Sachs concludes that twenty to twenty-five grms. of starch per day may be produced by one square metre of leaf-surface as an ordinary occurrence; and these numbers are not only not excessive, but experiments show that there are plants which produce much more than those investigated here.
Some remarkably interesting and important results follow from the consideration of these experimental data.

They explain why plants are so vigorous during warm nights following upon hot bright days. The more readily the products of assimilation (formed in large quantities during the day) can pass into the growing organs, the hetter these are nourished, and so forth.

Leaves used for fodder, \&c., must differ in nutritive value to a very great extent if their starchy contents vary so largely during the day and night: it thus becomes of primary importance whether such leaves are gathered in the morning or the evening, in cold or warm weather, \&c. The same applies to Tobacco and Tea, \&c. It must make a vast difference to the smoker whether his tobacco abounds in carbohydrates or is relatively richer in the alkaloids. It appears that tohacco is habitually cropped in the morning in some countries, a fact which suggests that experience has already shown that a difference in the quality exists; it will be interesting to inquire further into these matters.
Sachs's results will also materially affect the physiological value of the analyses of leaves. Some of us know how great are the variations met with in analyses of the ash contents of leaves of the same plant. It is clear that, in addition to the age of the leaf, the soil, manure, sec., it is important to know the amount of starch present. It cannot but happen that the mineral matters ebb and flow as well as the starch. The analyses of leaves will also be more valuable for the purposes of physiology if the numbers are stated, not in simple percentages, but in terms of one square metre of the leaf-surface.
The above brief summary of the results obtained by Prof. Sachs by no means does justice to the beauty of his methods, and the masterly way in which they were carried out : it must be admitted by all who understand the value and importance of this work that it is worthy of the great pioncer of vegetahle physiology. Moreover, it suggests several mattcrs which require further investigation, and would no doubt yield valuable results to those fortunate enough to have a botanical garden at hand.
H. Marshall Ward

Botanical Lahoratory, Owens College
TELEPHONY AND TELEGRAPHY ON THE SAME WIRES STMULTANEOUCSL. Y

FOR the last cighteen months a system has been in active operation in Belgium whercby the ordinary telegraph wires are used to convey telephonic communications at the same time that they are being employed in their ordinary work of transmitting telegraphic messages. This system, the invention of M. Van Rysselberghe, whose previous devices for diminishing the evil effects of induction in the telephone service will be remembered, has lately been described in the Journal Tellggraphique of Berne by M. J. Banneux of the Belgian Telegraph De-
partment. Our information is derived from this article and from others by M. Hospitalier.
The method previously adopted by Van Rysselberghe, to prevent induction from taking place between the telegraph wires and those running parallel to them used for telephone work, was briefly as follows:-The system of sending the dots and dashes of the code-usually done by depressing and raising a key which suddenly turns on the current and then suddenly turns it off-was modified so that the current should rise gradually and fall gradually in its strength by the introduction of suitable resistances These were introduced into the circuit at the moment of

Fig. 1
closing or opening by a simple automatic arrangement worked exactly as before by a key. The result of the gradual opening and gradual closing of the circuit was that the current attained its full strength gradually instead of suddenly, and died away also gradually. And as induction from one wire to another depends not on the strength of the current, but on the rate at which the strength changes, this very simple modification had the effect of suppressing induction. Later Van Rysselberghe changed these arrangements for the still simpler device of introducing permanently into the circuit either condensers or else electromagnets having a high coefficient

of self-induction. These, as is well known to all telegraphic engineers, retard the rise or fall of an electric current ; they fulfil the conditions required for the working of Van Ryssclberghe's method better than any other device.

Having got thus far in his devices for destroying induction from one line to another, Van Rysselberghe saw that, as an immediate consequence, it might be concluded that, if the telegraphic currents were thus modified and graduated so that they produced no induction in a neighbouring telepbone line, they would produce no sound in the telephone if that instrument were itself joined up in the telegraph line. And such was found to be the case.

Why this is so will be more readily comprehended if it be remembered that a telephone is sensitive to the changes in the strength of the current if those changes occur with a frequency of some hundreds or in some cases thousands of times per second. On the other hand, currents vibrating with such rapidity as this are utterly incompetent to affect the moving parts of telegraphic instruments, which cannot at the most be worked so as to give more than 200 to 800 separate signals per minute.
The simplest arrangement for carrying out this method is shown in Fig. 1, which illustrates the arrangements at one end of a line. M is the Morse key for sending

Fig. 3
messages, and is shown as in its position of rest for receiving. The currents arriving from the line pass first through a "graduating" electromagnet, $E_{\text {, }}$, of about 500 ohms resistance, then through the key, thence through the electromagnet R of the receiving Morse instrument, and so to the earth. A condenser, c, of 2 microfarads capacity is also introduced between the key and earth. There is a second "graduating" electromagnet, $\mathrm{E}_{1 \mathrm{l}}$ of 500 ohms resistance introjuced between the sending battery B and the key. When the key M is depressed in order to send a signal, the current from the battery must charge the condenser \mathbf{c}, and must magnetise the cores of
the two electromagnets E_{1} and E_{4}, and is thereby retarded in rising to its full strength. Consequently no sound is heard in a telephone, T, inserted in the line-circuit. Neither the currents which start from one end nor those which start from the other will affect the telephones inserted in the line. And, if these currents do not affeet telephones in the actual line, it is clear that they will not affect telephones in neighbouring lines. Also the telephones so inserted in the main line might be used for speaking to one another, though the arrangement of the telephones in the same actual line would be inconvenient. Accordingly M. Van Rysselberghe has devised a further modification in which a separate branch taken from the telegraph line is made available for the telephone service. To understand this matter one other fact must be explained. Telephonic conversation can be carried on even though the actual metallic communication be severed by the insertion of a condenser. Indeed, in quite the early days of the Bell telephone, an operator in the States used a condenser in the telegraph line to enable him to talk through the wire. If a telephonic set at T_{1} (Fig. 2) communicate through the line to a distant station, T_{2}, through a condenser, c , of a capacity of half a microfarad, conversation is still perfectly audible provided the telephonic system is one that acts by induction currents. And since in this case the interposition of the condenser prevents any continuous flow of current through the line, no perceptible weakening will be felt if a shunt, s, of as high a resistance as 500 ohms and of great electro-magnetic rigidity, that is to say, having a high coefficient of self-induction, be placed across the circuit from line to earth. In this, as well as in the other figures, the telephones indicated are of the Bell pattern, and if set up as shown in Fig. 2, without any battery, would be used both as transmitter and receiver on Bell's original plan. But as a matter of fact any ordinary telephone might be used. In practice the Bell telephone is not advantageous as a transmitter, and has been abandoned except for receiving ; the Blake, Ader, or some other modification of the microphone bsing used in conjunction with a separate battery. To avoid complication in the drawings, however, the simplest case is taken. And it must be understood that instead of the single instrument shown at T_{1} or T_{2} a complete set of telephonic instruments in-

Fig. 4
cluding transmitter, battery, induction-coil, and receiver or receivers, may be substituted. And if a shunt, s, of 500 ohms placed across the circuit makes no difference to the talking in the telephones because of the interposition of the separating condenser c , it will readily be understood that a telegraphic system properly "graduated," and having also a resistance of 500 ohms, will not affect the telephones if interposed in the place of S. This arrangement is shown in Fig. 3, where the "graduated" telegraph-set from Fig. 1 is intercalated into the telephonic system of Fig. 2, so that both work simultaneously, but independently, through a single line. The combined
system at each end of the line will then consist of the telephone-set T_{1}, the telegraph instruments (comprising battery B_{1}, key M_{1}, and Morse receiver R_{1}), the "graduating" electromagnets E_{1} and $E_{i n}$, the "graduating" condenser C_{1}, and the "separating" condenser C_{8}. It was found by actual experiments that the same arrangement was good for lines varying from 28 to 200 miles in length. A single wire between Brussels, Ghent, and Ostend is now regularly employed for transmission by telegraph of the ordinary messages and of the telemeteorographic signals between the two observatories at those places, and by telephone of verbal simultaneous correspondence
for one of the Ghent newspapers. A still more intere 3 ting arrangement is possible, and is indicated in Fi_{h}. 4. Here a separating condenser is introduced at the intermediate station at Ghent between earth and the line, which is thereby cut into two independent sectious for telephonic purposes, whilst remaining for telegraphic purposes a single undivided line between Brussels and Ostend. Brussels can telegraph to Ostend, or Ostend to Brussels, and at the same time the wire can be used to telephone between Ghent and Ostend, or between Ghent and Brussels, or both sections may be simultaneously used.

It would appear then that M. Van Rysselber hhe has made an advance of very extraordiwary merit in devising these combinations. We have seen in recent years how duplex telegraphy supersede 1 single working, only to be in turn superseded by the quadruplex system. Multiplex telegraphy of various kinds has been actively pursued, but chiefly on the other side of the Atlantic rather than in this country, where our fast-speed automatic system has proved quite adequate bitherto. Whether we shall see the adoption in the United Kingdom of Van Rysselberghe's system is, however, by no means certain. The essence of it consists in retarding the telegraphic signals to a degree quite incompatible with the fast-speed automatic transmission of telegraphic messages in which our Post Office system excels. We are not likely to spail our telegraphic system for the sake of simultaneous telephony, unless there is something to be gained of much greater advantage than as yet appears.

NOTES

WE are pleased to be able to announce that Prof. Flower's title is to be "Director" of the Natural History Museum, South Kensington, not "Superimtendent," as Prof. Owen was styled. According to the Civil Service Eistimates for the present financial year his staff consists of four keepers of departments (Botany, Geology, Mineralogy, and Zoology), two assistant keepers (Geology and Zoology), eleven first-class assistants, and fourteen second-class assistants. Large as this number may seem, it is notorious that in the Zoological Department at least a considerable reinforcement is required before the work can be expected to be efficiently performed.

We regret to learn from the Times that M. Dumas, the venerable Stredaive Perprtual of the Academy of Sciences, is lying in a critical state at Cannes.

Pope Leo XIII, has erected at his own expense at CarpinetcRomano, his native city, a meteorological observatory. It has been placed at the top of the castle of the Pecci family. The directorship of this establishment, which will be one of the most important in the whole Italian system, has been given to Count Lodovico.

We are pleased to receive the first official publication issued from the Hong Kong Observatory by Dr. Doberck, giving the results of observations during the month of January. We are sure the establishment of this institution will be of the greatest service both to navigation and to science.

Thefirst International Ornithological Congress ever held was on Monday festively inaugurated at Vienna by its patron, the Crown Prince Rudolph-himself a notel ornithologist. In his opening speech, the Prince dwelt upon the great importance of those studies in natural history which characterise this century, a remark which was doubtless meant as a reply to the vehement attacks on modern science recently made by the Clerical Depaty Greuter in the Austrian Parliament. Germany and Austria have sent hither all their ornithological celebrities; but the Congress also includes delegates from the Russian and French Governments, and members from Switzerland, Holland, and Sweden. Even Siam and Japan are represented, while Eng*
land is conspicuous by her absence. The Congress begas is deliberations with the question of International Protectire lagse lation for Birds.

The sixth Archayological Congress will be hehl at Odesu from August 27 to September 1.

A somewhat novel feature in connection with the laternational Health Exhibition this year will be the establishment of a library and reading-room, a home for which the executive council have assigned in a large double room in the Albert llatil overlooking the conservatory. Steps have been taken to secure a representative collection of works on vital statistics ; of repors and regulations relating to public health; of regulations with reference to injurious trades and of works thereon: and of reports, statistics, and other works on the science of edacation. Foreign powers have been invited to lend their cooperation in this effort to create an international library of works of reference bearing on the two divisions of the Exhilsition, and screal responses have already been received. India and the Colonis have also been asked to contribute towards the same end. Pullishers and authors have likewise been invited to forward copies of their works. In addition to the library of reference, there will be a reading-room, to which the current numbers of periodial publications of a sanitary or ellucational character will be admitted. All books and periodicalssent to the library and reading room will, under certain regulations, be arranged for the ase of visitors, and not merely for exhibition. The books will be sabmitted to the jurons, and a full catalogue will be issued. All parcels for the library and reading-room should be addresel, carriage paid, to the Secretary of the Library Sub-Committe, Royal Albert Hall, London, S.W. The following handbooks are being written in connection with the Exhibition:-"Heality Villages " (illustrated), by H. W. Acland, C.B., M.D., F.R.S: "Healthy Bed-Rooms and Nurseries, including the Lying-ie Room," by Mrs. Gladstone ; " Healthy and U'nhealthy lloas in Town and Country" (illustrated), by Mr. W. Fassie, C.E. with an appendix by Mr. Rogers Field, C.E. ; "Healthy Furniture and Decoration" (illustrated), by Mr. R. W. Edis, F.S.A.: "Healthy Schools," by Mr. Charles Paget, M.R.C.S. : "Heakh in Workshops," by Mr. J. B. Lakeman ; " Manual of Ileuring, Lighting, and Ventilation" (illustrated), by Capt. Dougles Gation, C.B., F.R.S. ; "Food," by Mr. A. W. Blych M.R.C.S. ; "Principles of Cookery," by Mr. Septimus Bentmore ; "Food and Cookery for Infants and Invalids" by Mis Wood, with a preface by R. B. Cheadle, M.D., F.R.C.P.: "Drinks, Alcoholic," by John L. W. Thutichum, M.D." F.R.C.P. ; "Drinks, Non-Alcoholic and Aërated," by Joh Attield, Ph.D., F.R.S.; " Fruits of all Countries " (illustratedh by Mr. W. T. Thiselton Dyer, M.A., C.M.G. ; "Condinents, including Salt," by the Rev. J. J. Manley, M. A. ; " Legal Obfgations in respect to Dwellings of the Poor," by Mr. Harry Duff, M.A., Barrister-at-Jaw, with a preface by Mr. Arbin Cohen, Q.C., M.P.; " Moral Obligations of the Householderv including the Sanitary Care of his House," by G. V. Poore. M.D., F.R.C.P. ; " Laboratory Guide to Public Health Invor tigation" (illustrated), by W. W. Cheyne, F.R.C.S., and W. 11. Corfield, M.D., F.R.C.P., M.A. ; "Physiology of Digo tion and the Digestive Organs," by Prof. Arthur Gamge. F.R.S.; "Fermentation," by Dr. Duclaux, with a preface by M. Louis Pasteur, Membre de I'Institut; "Spread of Infection," by Mr. Shirley F. Murphy; "Fires and Fire Brigades" (illos(rated), by Capt. Eyre M. Shaw, C.B. ; "Scavengering am' other such Work in Large Cities," by Mr. Booth Scot: "Athletics," Part I. (illustrated), by the Rev. E. Warre, M.A.: "Athletics," Part II., by the IIon. F., I.yttleton, M.A., and Mr. Gerard F. Cobb, M.A. ; " Dress in relation to Healh asl Climate" (illustrated), by Mr. E. W. Godwin, F.S.A. ; "The

Ambulance" (illustrated), by Surgeon-Major Evatt, M.I., A.M.D. ; "The Influence of Schools of Art on Manufacturing Industry," by John Sparkes ; "The Homes of the Poor," (author not yet settled).

Lady Siexens has placed at the disposal of the Council of the Society of Arts a sum of 201. , to provide a prize, to be called the Siemens Prize, to be offered for the best application of gas to heating and cooking in dwellings (Class 24 in the International Mealth Exhibition). The prize will consist of a gold medal or $20 /$., and will be awarded under the same conditions as the prizes announced in the Fournal of the Soridy of Arts of the 14th inst.

The Senkenberg Natural History Society at Frankfort has bad a legacy of $\ddagger 0,000$. left to it by the late Countess Bose.

A human skull has ju-t teen discovered in a bed of clay near Todbata in the neighbourhood of Prague. A few days previously a mammoth tuck was found in the same Iocali y. The coloar of the skull proves that it was lying in yellow diluvial loum. It is remarkable on aceount of ins very flat forehead and the thickened eyebrow hones, thus closely approaching the well-known Neanderthal skul.. Its facial angle seeus to be even smaller than that of the latter, although an exact measurement is impossible on account of the absence of part of the jaw.hones. Further details on the subject will be publi hed in the Tran'actions of the Bohcwian Acadimy of Sciences.

The first number has ju-t been iswed of a new Italian quarterly, entitled La N'ucva Sricmea, R'vista dell' Istrwzione Suferiorr, edited lyy Prof. Enrico Caporali of Todi, Umbria. As implied by the title, the aim of this periodical is to popularise scientifie subjects, and to chronicle the progress of disoovery in Italy and ahroad. The editor invites communications in the chief European languages, and declares that his efforts will be mainly directed to promoting the u ification of the sciences with a view to the ultimate constitution of an exact philosophy. To the present number he contributes two spirited and learned papers on "Modern Thought in Italy," and on "The Pythagorical Formula of Cormic Evolution." The app carance of such a publication in a small provincial town is itself a striking illustration of the general revival of serious studies since the establishment of poli ienl unity in fialy.

Tite much discussed question as to the purification of water in rivers " by itself," that is, by the mere fact of its motion, seems to have entered into a new phase. Dr. Pehl, at St. Petersburg, has recently made a series of bactcrioscopic measurements on the waters of the capital, which are summed up in the last issue of the Journal of the Russian Chemical Soricty. The water of the Neva itself appears to be very poor in bacteria, namely, 300 germs in a cubic centimetre. After heavy rains this number rises to 4500 , and to 6500 during the thawing of the river. The canals of St. Petershurg, on the contrary, are infected with bacteria, their number reaching 110,000 in a cubic centimetre, even during good weather. The same is true with regard to the conduits of water for the supply of the city. While its chemical composition hardly differs from that of the Neva (by which they are supplied), the number of bacteria reaches 70,000 , against 300 in the water freely taken from the river; and the worst water was found in the chief conduit, although all details of its construction are the same as in the secondary conduits. Dr. Pehl explains this anomaly by the rapidity of the motion of water, and he has made direct experiments in order to ascertain that. In fact, when water was brought into rapid motion for an hour, by means of a centrifugal machine, the number of developing germs was reduced by 90 per cent. Further experiments will show if this destruction of germs is due to the motion of the mass of water, or to molecular motion. The germs, among
which Dr. Pehl distinguishes eight specics, are not killed by immersion into snow. As the snow begins to fall it brings down a great number of germs, which number rapidly diminishes (from 312 to 52 after a three hours' fall of snow, on January 21, 1884), while their number on the surface of the snow increases, perhaps in consequence of the evaporation of snow or of the condensation of vapour on its surface.

It is proposed, Scicnce states, to establish a monthly American Metcorolozical fowrnal. It will begin with from twenty-four to thirty-two octavo pages, and will be enlarged as rapidly as is justified by the support given it. The first number will probably appear about May 1. It will be published in Detroit by Dr. W. H. Burr, and eelited by Prof. M. W. Harrington of Ann Arbor.

It is stated that the earthquakes of March 25 in Southern Hungary were also severely felt at Fissegg, at Winkowze, and at Fünfkirchen. At Djakovar many houses were injured. Another earthquake was remarked at Ischia on March 28. The shock was but a slight one and of short duration.

From the Report for 1883 of the Glasgow Muscum we see that it had 223,129 visitors during the year. There were large additions to the Natural History Department during the year.

Ws have already noticed M. Erkert's anthropological measurements in the Caucasus. He publishes now in the Isvestia of the Tiffis Geographical Society (vol, viii.) his further measurements and conclusions. The different nationalities appear as follows with regard to their cephalic indexes:-Only the Aderbaijan Tartars are mesocephalic ($79^{\circ} 4$), all others being brachycephalic, the indexes being $80^{\circ} 9$ with the Kalmucks, 81.4 with the Ossets, 81.9 with the Adighe and Chechenes, $83^{\prime 2}$ with the LittleRussians, 83.7 with the Georgians, and 85.6 with the Armenians. A high inlex was found for the lexghines, but the number of measurements was only three. As to the height of the skull the Aderhaijan Tartars have the highest and longest heads; the Armenians the shortest and highest ($71 \cdot 1$) ; the Kalmucks the longest but lowest (62°) ; while the Little-Russians, the Adighe, and the Georgians afford intermediate types, the heights of their skulls varying from 67.6 to 66%. All the above nationalities have relatively low and broad or chamäprosopous faces, there being, however, a number of individuals with long or leptoprosopous faces, especially among the Tartars. In connection with the above it may be worth noticing the measurements of M . Chantre of 1.yons, published in the Bu'lefin sle la Soritit' d'Anthropolozie de 1 yon for 1883 . It results from his measurements made on 137 Kurd men and 21 women, that their cephalic index is 81.4 ; they are thus brachycephalous, and sometimes mesaticephalous. The inlex increases with those Kurds who live close by Armenians, and decreases with those who live close by Bedouins. Altogether the memoir of M. Chantre (" Aperçu sur les caractères ethniques des Ansharí́s et des Kourdes") is an important addition to our knowledge of Kurdistan, as well as his second memoir, published in the same serial, on the Stone andl Bronze Ages in Western Asia, Syria, Mesopotamia, Kurdistan, and the Cancasus.

It appears from the Caucasian Istestia that the Russian Amudaria Expedition has arrived at the following conclu-ions:-Tbe I han branch of the delta of the Amu could be ea-ily made navigable; as to the possibility of bringing the water of the Amu to the Caspian, General Glukhovsky's Commission does ant yet give a definite answer, but it considers it most probable. The immense and deep depression of Sary-kamy-h could be turned by the canal ; the necessary inclination of level exists ; and the immense desert west of Khiva could be irrigated wihhout vifficulty and without loss to the oa-is of Khiva.

In the letter signed "O. S." (last ,week (p. 525), under the heading "Remarkable Sunsets," the French term should be pelure d'oignon and not velure.
The additions to the Zoological Society's Gardens during the past week include a Macaque Monkey (Macacws cymomolgus \&) from India, presented by Mrs. F. Mortimer ; two Secretary Vultures (Serpontarias reptilitionus) from South Africa, presented by the Kev. G. H. R. Fisk, C.M.Z.S. ; a Blue-and-Yellow Macaw (Ana ararawna) from South America, presented by Mr. H. W. Kingdom ; two Common Peafowls (Pavo crista'us 8 \&) from India, presented by Mr. R. F. J. Cobbett Allen; a Common Viper (Vifera berws, black variety) from Hampshire, presented by Lord Londesborough, F.Z.S.; a Yaguarundi Cat (Felis yaguarundi) from South America, a Leuhdorf's Deer (Cervas leukderfi δ) from Amoorland, iwo Jardine's Parrots (Paocephalus gulielmi) from West Africa, three Rhinoceros Hornbills (Buceros rhinoservs \& P i) from the Malay Peninsula, two Nepal Hornbills (.Aceros nefalcusis \& δ), a Green Cochoa (Cochoa viridis), two Nepal Tree Pies (De drocilta nopu/cnsis), a Gray-headed Thrush (Turdus castanea) from Nepal, three Bronze Fruit Pigeons (Carpophaga anca), two White-breasted Gallinules (Gullinmia phenicura) from India, two White-backed Pigeons (Columbas Leuconota) from the Himalayas, seven Waxwings (Ampelis garrulss), two Proteus (Protcus angwinns), European, purchased; a Lucian's Parrakeet (Palcornis luciant) from China, a Geoffroy's Dove (Peristera geaffroii \&) from Brazil, received in exchange.

OUR ASTRONOMICAL COLUMN

Comet ${ }^{188} 8_{4} a$.-The comet notified by telegram from Mr. Ellery as having been discovered in the constellation Grus, appears to have been detected by Mr. Ross, a young amateur astronomer residing at Elsterwick, near Melbourne, on January 7. Observations were commenced at Melbourne on January 12, and were continued to February 4, when the comet had become very faint. The positions, as first communicated to the Asironowische Nachrichten, contained more than one obvious error, and generally (according to a comparivon made by 1)r. Kreutz with an orbit since received from Melbourne) appear to be strangely inaccurate, a circumstance that will prohably have caused useless expenditure of time to computers. We subjoin the Melbourne orbit with one calcnlated by Mr. Hind from the observations on January 12 and 28 and February 4, as they are printed in Astron. Nack., No. 2579 :-

orperihelin ...	125 ís 55	...	124144
", ascending node	2651215	...	26556.5
Inclination	645316	...	6459.7
Log. periletion distance.	9.502384	...	$95^{18} 38$

It is to be remarked that Dr. Kreutz, calculating from the Melbourne orbit, does not reproduce the extreme positions stated to have been employed in its computation.

Vartable Stars.-On comparing the late Prof. Julius Schmidt's determinations of the times of minima of Algol in 1883 with the formula given by Prof. Schönfeld in his second catalugue of variable stars, it will be found that, by a mean of the observations between Angust 14 and December 4 , the formula gives the minimum too late by fifty-eight minutes. The mean annual errons for the period $1876-83$ have shown irregularity, but the separate results within the same year differ considerably.
Mr. Baxendell has worked out new elements for K Arictis from his own observations $\mathbf{1 8 5 9 - 8 \mathrm { t }}$. He finds for-

$$
\begin{array}{lll}
\text { Daysimum } & \ldots & \text { Epoch 1866, Sept. } 1 \cdot 3+186.71 \mathrm{EF} \\
\text { Minimum } & \ldots & \text { Epoch 1870, Jan. } 2.3+186.63 \mathrm{E} .
\end{array}
$$

The mean interval from maximum to minimum is $99^{\circ} \mathrm{O}$ days, and from minimum to maximum 877 days.
The Observatory, Cinctesatt.-The seventh part of the publications of this Oliservatory has appeared. Parts 4, 5, ansl

6 were devoted by Mr. Ormond Stone to the double-star measures made with the 11 -inch refractor in the years $1877-80$. In the new part are given the observations of comets in the years $1880-$ 82, including numerous physical observations as well as observations for position. There is a comparison with theory of the phenomena in the tail of the great comet of $\mathbf{1 8 8 2}$. In a number of plates are illustrated the telescopic and naked-eye appearance of the great comets of 1881 and 1882 and of the finst comet of the latter year.
Mr. 11. C. Wilson is in temporary charge of the Cincinnati Observatory, Mr. Ormond Stone having been appointed Professor of Astronomy in the University of Virginia, and Director of the Leander McCormick Observatory.

Tite "Astronomiscine Gesellschiaft." - The fourth part of the eighteenth volume of the Transactions of this Society is issued. It contains the proceedings at the meeting held in Vienna in September last and the usual critical notices of recent astronomical publications ; also reports on the progress of the zone-observations from thirteen observatories. It was decided to hold the next meeting at Genera in 1885 ; Prof. Auwers was chosen president for the second time, with Prof. Gyldén as vice-president, and Profs. Schönfeld and Seeliger (now at Munich) as secretaries.

PHYSICAL NOTES

The transition-resistance supposed by Poggendorff to exist in electrolytie cells between the surface of the eiectrode and that of the electrolyte in contact with it has lately been investigated with great care by Prof. J. Gordon Macgregor in solntions of very pure zinc sulphate, using electrodes of amalgamated zine. The conclnsion arrived at was that such a transition-resistance, if it exists at all, is less than ool 25 of an ohm.
In another paper whieh appears in the Transactions of the Royal Soriety of Canada Prof, Macgregor describes an ingenions arrangement devised by him for measuring on Wheatstone's bridge the re-istances of electrolytes. He employs alternate currents prodaced by a rotating commutator inserted in the circuit of two Daniell's eells; and in order to use with this arrange nent an ordinary mirror-galvanometer, he recommutes the currents in the galvanometer circuit by means of a second commutator rotating on the same axle as the first.
Tue annual conversazioniof the Société de Physique, of Paris, will be held this year on April 15 and 17 respectively, the former being limited strictly to the members of the Society. These meetings will, by the invitation of Admi'al Mouchez, be held in the Observatoire.
A nots on Hall's effect was reeently read 'at a meeting of the Physical Society of London by Prof. S. P. Thompson and Mr. C. C. Starling. They find that when a large sheet of foil is used, and placed symmetrically in a concentrated field between pointed magnetic pole, so that the junctions and ennnections are quite outside the inflaence of the field, Hall's effect is not projeced. They find, however, an alteration in the equipotential lines of the curreat in the strip where it is magnetised, and have traced this effect to a change in the resistance. Strips of gold and tim show a decrease, strips of iron a slight increase of resistance when subjected to a strong magnetie field.
ANOTHER paper on Hall's effect appears in the current number of the Yournal de Physique from the pen of M. Leduc. In this article M. Leduc draws a diagram of the equipotential lines, as, according to his ideas, they will be found to lie between the two "parasitical" electrodes. It does not appear whether he has verified his views by actual determinations of the position of the lines of equal potential.
ROWLAND's famous experiment demonstrating the magneti action of electric convection has been called in question by Dr . E. Lecher of Vienna. In Rowland's original experiment the electrified rotating disk was horizontal, and the magnetic needle, protected from electrostatic influences by being inclosed in a metallic case, was held over the disk at a point near the circomference. Dr. Lecher, in attempting to repeat the experimest, placed the rotating disk in a vertical plane, its axis being horzontal ; the magnet needle was placed parallel to the plane of the disk and in the axis of its rotation in fact relatively as the coil and needle of a Gaugain galvanometer. Disks of brass and of papier-mach/ covered; with graphite were used, and cbarged
from a Holtz machine to potentials of about 5000 volts as measured on an absolute electrometer. The velocity of rotation was atout 200 revolutions per second. The astatised needle was protected within a metal case, and was observed in the usual way by i milror. No deflection was observed either when the disk was still or when it rotated. Dr. l.echer intends to repeat Rowland's experiment with the original horizontal disposition of the disk.
Dr. Lecher has al o made another experiment of great ioterest. A ray of light was divided, as in many experiments on interference, into two parts, which, after passing through two parallel glass troughs, were caused to reunite, giving the usual interference-bands. The tronghs contained strong solutions of nitrate of silver. By means of electrodes of, ilver an electric current of 6 amperes strength was carried in opposite directionalong the troughs so that in one trough the current flowed wiih the light, and in the other against it. But in no case was any displacement of the fringes observed. Dr. Lecher concludes that the velocity of light is not infinenced by a carrent flowing throogh the medium.

Dr. Lecher has made a third and still more interesting experiment, attended, however, like the preceding, with a negative result. This was an attempt to prove wherher Faraday's famous experiment of rotating the plane of polariation by an electric current conld be inverted. He has attempted to generate currents by rotating the plane of polarisation of light. The arraugement was as follows :-A ray of plane-polarised light was sent through the interior of two powerful helices of wire situated at some distance from one another. Through the first of these a powerful alternate current was sent, which impressed upon the ray a rapid oscillation of its plane of polarisation. The second belix was connected to a sensitive receiving telephone in the hope that sounds might therein be heard, as would be the case if the rapid rotations iu the plane of polarisation of the ray wcre capable of setting up currents in the surrounding wire. AbsoIntely nothing was, however, heard.

BACTERIA

AVERY distinguished andience assembled at the Parkes Mus eum on Thursday evening, Marcb 27 , to witress Mr. Watson Cheyue's demonstration of parhogenic micro organisms. The chair was taken by Sir Joseph Lister, Hart. After stating that the great group commonly called Bacteria might most conveniently be subdivided into four classes-(1) Micrococci (rcund bodies), (2) Bacteria (small oval or rod-shaped bodies), (3) Bacilli (large rod-shaped bodies), and (4) spirochatie and Spirilla (rods spirally twisted), and dwelling on the great variety as u ell as importance of the various parts played by this great group in the economy of nature, Mr. Watson Cheyne demonstrated numerous micro photographs taken by Dr. Kobert Koch, as well as some drawings by means of a limelight apparatus. He observed that great differences existed auong the various bactesia in their behaviour towards the hnman body : some could be injected without causing any injury, others cculd not grow in the living body, but could develop in dead portions of tis sue and the secretions of wounds, giving rise to poisonous products. The true pathogenic organisms were able to attack the living body and multiply in it; they included the organisms which found entrance tbrough some wound, giving ii-e to the tranmatic infective diseases, and others which could obtain entrance without observable wourd. Further, certain organisis, such as the B. anthracis, were eapable of growing outside the body in dead organic substance, while others, such as the B. Auberculosis, were apparently only capable of development in the living organism or under artificial conditions which reproduced to some degree those existing in the tissues of warm-blooded animals, though capable of long retaining their vitality in the dry state. With regard to the traumatic infective diseases, be thought that the most absolute proof had been furnished that the bacteria found in them, and nothing el.e, were the canses of these diseases. To establish such a proposition it was necessary that an organism of a definite form and with definite characteristics thould aluays be fonnd in the blood or in the affected fart. The blood or the affected part when inocalated into another animal of the same species must produce the same disease. When the blood or the affected part was inoculated on a suitable soil outside the body, the microorganisms grew, and must be indefinitely propagated on similar soil. When in this manner the organisms had been sefarated from
the remains of the materials in which they were embedded, their inoculation in aa animal must produce again the same disease, the same organisms being found in the diseaced parts. These conditions had now been fulfilled with regard to anthrax, septicremia of the mouse, erysipelas, tuberculosis, glanders, and acute pneumonia. With regard to typhoid fever, relapsing fever, cholera, and ague, the evidence was very strong, but not conclusive. Mr. Watson Cheyne concluded by dwelling on the importance of surrounding cireumstances, chiefly those summed np in the phrase unhygienic conditions, as concomitant canses of divease by preparing the blood for the attacks of these microorganisms.

The chairman, Sir Joseph Lister, dwelt upon the important fact that the organisms which produced particular diseages were only able to develop under very special conditions, instancing the bacillus which caused septiciemia in the house mouse, but which was unable to prodnce any deleterious effect on the field mouse. He thought this fact, which showed that the very slight difference in the blood of these two animals was sufficient to alter the conditions favourable to the development of the bacteria, might prove of very great interest, as it was possible to conceive that by the administration of some medicines, sufficient alteration might be produced in the blood of the hnman system to kill off or to prevent the development of any special bacteria on the first appearance of the symptoms of the disease in the patient. Sir Joseph Lister concluded by referring at some length to the importance of Pasteur's researches on modified virus.

Prof. Humphry paid an eloqnent tribute to the great work which Sir Joseph Lister had already achieved, and looked forward with a large hope to the future of medicine.

THE STABILITY OF SHIPS

PROFESSOR ELGAR bas recently made two important contributions to this important question; the firse was read before the Royal Sceicty on March 13 last. The main object of the paper was to exhibit the manner in which the stability of a ship varies with changes of load and draught of water snch as merchant steamers are liable to. None of the properties possessed by a ship is more vital to her safety and efficiency than that of stability. At the same time none is dependent for its existence and amount upon so many or such diverse and variable circumstances as it. The stability of a ship, both as regards moment and rspge, is affected not only by the position of ber centre of gravity, which largely depends npon stowage, but also by draught of water. If the centre of gravity be kept fixed in position at various draughts of water, the stability will still vary very considerably with the draught, and often in a manner that contsins elements of darger.
7 he usual practice in investigating a ship's stability is to calculate a curve of metacentres, and one or more curves of statility at certain fixed draughts of water and with given positions of centre of gravity. The cur ve of metacentres gives the beight at all draughts of water above which the centre of gravity caunot be raised without making the ship unstable when upright, and causing her to lie over more or less to one side. The ordinates of the curve of stability represent the lengths of the righting armv, which, multiplied ly the weight of the ship, give the righting moments at all angles of inclination from the upright. The stalitity of numerous vessels, both of the Royal Navy and mercantile marine, have teen inve-tigated in this manner for certain draughts of water, and a great amount of information obtained respecting the variation of stability with inclination at such draughts, and the angle at which the stability vanishes in many classes of ships. The peculiar dangers attaching to low freeboard, e-pecially when associated with a high centre of gravity, have been fully discused ard made known.
Curves of stability have been chiefly constructed for deep and moderate draughts; the character of the stability which is often to be found associated with very light draught, appears to bave hitherto e caped attention. As a matter of fact, light draught is often as unfavourable to stability as low freeboard, and in some cases moreso. The general opinions that have ti.1 recently prevailed upon the subject appear to hive been based npon a vague impres-ion that so long as a vessel has a high side ont of water, and any metacentric height, she will have great righting moments at large angles of inclination and a large range of stability. It was shown at the Daphne inquiry, leld by Sir E. J. Reed in

July last, that these opinions largely prevailed and were erroneous.

Prof. Elgar was calld upon to make some lnvestigati as respecting the stability porsessed by the Daphne at the tume of the disaster which happened to ber, and to give evidence respecting the same. IIe afterwards pointed out, in a letter to the Times of September thast, some of the considerations which obviou-ly apply to light draught stability. The first, which it appears had never before been stated, is that any bomogeneous fluating hody which is symmetrical about the three principal axes at the centre of gravity-such as a rectangular prism or au ellipsoid-will have the same moment of stability at equal angles of inclination, whether floating at a light draught with a s suall volume beiow water, or at a deep draught with a similar volume above water. For instance, if a bom geneous prism of symmetrical crosssection 5 feet bigh flost at a drausbt of 1 foot, it will then have precisely the same moment of stability at equal angles of inclination, and consequently the save curve of stability through out, as If it were loade 1-without altering the position of the centre o? gravity-till it bad 4 feet draught of water, and 1 fo x of free board. Fr in this it follows that, in such elementary forms of flosting bodies, lightness of draught has the same effect upon stability as lownes of freeboard ; and if a liw fieebsard is unfavourable to stability, so also, and precisely to the same extent, is a correspoadingly light drauzht of water. This proposiiion can be made still more general, as it applies to homogeneous lodies of any form of cross-section which revolve a hout an lurizontal axis fixed only in direction. Froun this may be sleduced the results given by Atwood in his papers read belure the Royal Society in 1796 and 1793 respecting the posinions of equilibrium and otber peculiarities connected with the stablity of floating budies.

In considering the sta bility of a ship at various draughts of water, and comparing it with th it of the class of figures above described, modifications require to be made for the departure from symmetry of form, and for the extent to which the vertical p sition of the eentre of gravity differs from what it would be if the external surface inclosed a homogeneous volume. Prof, Elgar has done this with great fullness of detail \ln his paper, and shows, by means of curves, how the stability varies with draught of water at con tant anyles of inclination in various geo vetrical forms of floating bodies, and in a large passenger steamet of ordinary type. She eurve thus dealt with are eurves of righting moments, and not merely cirves of lengths of righting arm. The ordinary curve of stability is u ually made for lengths of righting arm, becau-e the dispiacement is const nt , and the same curve therefore gives upon different scales, either lengths of righting arm or rigbting momenti. In the vertical or eross curves of stability, however, such as are now being dealt with, draught, and therefure displacement, is one of the variable quinlities, and curves of righting moments are of a very different cbaracter from curves of righting arm. Complete cross curves for a ship, from which ordinary curves of stability can immediately be obtained for any draught of water and position of centre of gravity, can be construeted in a few days with the aid of Amsler's mechanical integrator.

Prof. Elgar shows conclusively the nece sity in many caves of regarding the stability of a ship from the point of view of variation of righting moment with draught of water, the angle of inclination being constant, instead of from that of variati n of rigbting moment with angle of inclination, the drauglit being const int, as is usually done ; or rather of convidering the subject from both points of view insteal of alno-t exclusively fron the latter. He also shows that it is necessary to investigate, more fully than has formerly been done, the moinent, and range of stability of ships and other structures that may be intended to fluat at very light dranghts of water.

Prof. Elgar's second paper was read last week at the meeting of the Institute of Naval Architects ; its title was "The Use of Stability Calculations in Regulating the Ioading of Steamers."
The stability of ships, Prof. Elgar went on to say, is a subject that has received a considerable amount of theoretical investigation during recent years. The general character of the stability of certain classes of ships, and the circumstances which affect it, have been largely ascertained and made known; while the methods of performing the requisite calculations-especially when large angles of inclination are being dealt with-have been greatly improved. Curves of stability bave been constructed
and made public for numerous ships of various classes, both for war and mercantile purposes.
The results of the investigations that have thus been made are of great value to naval architects and men of science, and enable them to know nuch more respecting the actual stability often possessed by ships than was possible with the imperfect data available in former years. In the case of ships that are built for purely war and some other sjecial purposes, the ordinary stability calculations enable instructions to be readily framed respecting the stability they possess under ordinary working conditions, or in such critical circumstances as may possibly occur during their career. Any risks of instability that may exist, or arise in certain contingencies, may be ascertained, and the precautionary measures necessary for counteracting them devived and pointed out.
The problem that has to be dealt with in advising thome in charge of war ships how to effectually guard against instability, is well within the grasp of the naval architect. In such vessel the loading is mainly of a permanent character, while that part of it which is subject to variation, such as coals, stores, ammunition, \&c., varics in a manner which can be readily taken into account in the calculations. Curves of stability that are constructed for war ships for three leading conditions, viz (1) the fully-laden condition; (2) the same, but with all the coals consumed; and (3) the light condition with all coals, ammunition, and consumable stores expended, are usually sufficient to enable full instructions to be framed for the prevention of instability. In some war ships there are other critical conditions which may require consideration, such as the possible injury and laying open to the sea, of compartments not protected by armour ; but in all these cases the conditions are comparatively fixed, and may be allowed for in the calculations, When curves of stability have once been constructed for a war ship to represent the various critical conditions to which she may be subjected, they are always applicable, and may be relied upon to furnish, at any time, a safe guide to ber stability.
In the case of mercantile steamers, however, except such as carry no appreciable weight of cargo, the problem of how to apply the results of stability calculations to the guidance of those who have to work and stow them is of an entirely different character. The naval architect cannot control, or even estimate, the amounts and positions of centre of gravity of the various items of weight that make up the loading to anything like the same degree of certainty as in war ships. There are many steamers afioat in which the cargo is nearly or quite twice the total weight of the vessel, together with her machinery and equipment. In such cases the naval architect can only control in the design about one-third of the total weight of the vessel and her cargo, leaving the remaining two-thirds in the hands of the owner, naster, or stevedore. It is obvious, therefore, that whatever may be the qualities of the empty vessel in respect of stability, these may be greatly modified or entirely altered by the manner in which she is loaded. It is the londing to which we must look in the large proportion of cargo-carrying steamers for the due preservation of such stability as is necessary for safety at sea.
It is in this direction also that we have to look for the caase of a great many of those losses which have occurred at sea during recent years, and to which attention was first prominently called by Mr. B. Martell, the Chief Surveyor of Lloyd's Register Society, in a paper read before this Institution in $1 \$ 80$ upon the causes of unseaworthiness in merchant steamers. Mr. Martell attributed, and quite rightly so, a great many of the losses of steamers to instability; and there can be no doubt that this cause of loss still continues to operate very largely. The evidence given at Board of Trade inquiries in cases of missing steamers is constantly pointing to instability as the cause of loss although the full meaning and weight of the evidence may not always be fully and accurately appreciated at these inquiries. It often diverts attention from the main cause of loss to ssy that it occurred because the ship was unstable. The fact is, that the ship has frequently solittle to do with the matter, and the stowage so much, that it is the latier which should be blamed for the instability, and not the ship herself. When a ship is built for a particular trade and for the purpose of carrying certain specific cargoes she may then, of course, be so designed as to be quite stable, in all conditions, while thus employed; but when vesiels are built, as they often are, to dimensions fixed by owners, for general trading purposes, it is seldom possible for the designer to provide against rinstability arising in some possible or con-
ceivable circumstances of loading. The due preservation of stability in such cases requires to be watched and provided for by those who control the loading.
It is erroneous to suppose, as appears to be sometimes done, that a cargo-carrying steamer should be so constructed and proportioned as to run no risk of becoming unstable, however she may be laden. If this idea were acted upon, such a mode of preventing instability, however easy and plausible it may at first sight appear to be, would only defeat the desired object of promoting salety at sea, because it would make many vessels dangerously stiff when laden with some classes of cargo. The true and reasonable mode of procedure is not to attempt to construct a ship so that she will be stable however she may be laden, but to see that any tendency she may have towarls instability-if any such exist-is understood by those in charge of her, and that she is always laden with careful reference to it. There are no steamers afloat, whatever tendency they may have towards instability as sometimes laden, that they may not be kept perfectly safe if treated with full knowledge of what their stab:lity is, and the stowage regulated accordingly. One great problem that the mercanilice naval architect has jutt now to solve is, how any dangerous features of a ship's stability are to be made clearly known to those in charge of her, and in what manner they can be best tanght to regulate the loading in cases where special care may be required.
It is sometimes supposed that owners and masters are not only negligent, but indifferent in this matter ; and that they delibecratcly refrain from any consideration of it. It has been stated that there are no owners who avail themselves of the knowledge of tability now readily obtainable as a guide in the stowage and safe working of their ships. These are views which my experience does not enable me to indorse. I have found, on the contrary, that many of .our leading owners of passenger and cargo steamers are extremely anxious about the matter : and not only anxious, but they adopt all means that lie within their power of dealing practically with it. The great stumbling-block they usually meet with, however, is the intrinsic difficulty of the subject.
Owners and masters have their own modes of thought and their own practical methods of ascertaining, and regulating the stability of their ships, which are offen quite sufficient for the purpose. They can very well comprehend whether a vessel will tand up when light without ballast, and, if not, how much it will require to make her do so. They can also understand if she is too stiff when laden with heavy dead-weight cargocs placed low down in the hold; or if she becomes unduly tender when laden with light cargoes of which more than a certain quantity is placed in the 'tween decks. They have not, however, had the technical training and experience which is requisite to enable them to undertand and deal with metacentres, centres of gravity, and curves of stability ; and to make all those allowances for constant variations in draught of water and position of centre of gravity which the different cargoes they carry render necessary. Some owners have recently obtained curves of metacentres and curves of stability for their ships, constructell for certain draughts of water and descriptions of cargo. These curves, as a rule, are put to no real practical use by them, as they find themselves unable to apply stability information in this highly specialised form to the accurate and reliable treatment of the various questions that arise in loading, or to compare it with the results of heir own judgment and experience.
The above course has lately been taken in many cases because If the opinions which have been expressed that the way to preent ships being lost through want of stability is to supply the nasters with particulars of the metacentric height and a curve or urves of stability. The Wreck Commisioner advocates this ourse, and appeass to entertain no doube as to its desirability nd practical efficacy. His object is a most praiseworlly one, not P do not believe it to be possible to carry it out in the way e suggests. The advice he gives is based upon the belief that hipmasters and others who have to do with the loading of ships an readily be made to understand what curves of stability repre:nt, and to use them correctly in practice. I have during the ist ' wo or three years frequently tried to carry out this view, but ave never yet met with a shipmaster-and I have had to do ith some of the most capable and intelligent of the class-who juld be got to understand curves of stability sufficiently well to : trusted to work with them in practice, or who would even ofess that he could do so.
If mercantile steamers could always be loaded in a uniform anner, it might be possible to represent their statility in all
conditions with sufficient accuracy and completeness for all working requirements by means of a curve or curves; but as regards the vast bulk of merchant shipping there are no curves of stability which eould possibly be constructed, except that for the absolutely light condition, which would be likely to represent the actual sability of the ship except on a very few occasions during the whole of her carecr. The only use to which any curves of stability that might be furnished could, as a rule, be put is to furnish data for enabling the stability under different conditions from those for which they were constructed to be estimated. This is an operation which masters of ships cannot perform, and which would only be likely to confuse and mislead them if they were to attempt it.
The Wreck Commissioner laid great stress upon the use it would have been to the captain of the Aus.traf at the time of the accilent if he had been in possession of curves of stability and calculations which had been constructed for that condition, and laid before the Court. It does not appear to have been seen that, whatever particulars of calculations and curves of stabilitity had been supplied to the captain, he could not by any possibility have had those which related to the condition of the ship at or somewhat prior to the time in question. Her stability on that occasion was determined by the amount of weight she happened to have in her, and the position of its centre of gravity; and this was the result of a chance state of things which only existed at that precise moment, and which may hardly occur again during the existence of the ship. If we assume that this information would have taught the captain more about her stifiness than he already knew through his previous experience of the vessel, still it could not have been supplied to him beforehand by any one. All that could have been done was to supply him with particulars of the stalility at other draughts and with other positions of the centre of gravity, leaving it to him to estimate from these what it would be at the time in question if he thought it desirable to do so.
I need hardly say again that the operation of constructing curves of stability for a particular draught of water, and position of centre of gravity from the results of calculations made in the usual way for certain other draughts of water and positions of centre of gravity, is an operation which requires a well-trained naval architect to perform. No one knowing the subject can suppose that master of veasels have had either the training or the experience to qualify them for performing such an operation, or can help fearing that the result of their attempting it might be miseading. As I have already said, I have never been able to discover a shipmaster who could be safely trusted to do it, or who cared for it to be suppused that he could. It is hopeless, at present, to expect either shipownen or shipmasters to use metacentric heights and curves of stability as a practical guide in stowage ; and it is necessary to put stability information before them in a simpler form, and one which fits in better with their own ideas and modes of procedure, if it is to be utilised in furnishing any real guide towards safety in loading. It is quite unnecessary for us to require such persons to become specialists in the science of naval architecture before applying the results of scientific calculations to safeguarding the stability of their ships. 1 have myself been obliged to give up all attempts to deal satisfactorily with the question by supplying curves of stability and other information of that class.
The method which I have adopted is the following, and I now lay it before the Institution, chiefly for the purpose of eliciting opinions upon the subject, and as a suggestion to others who may be working in the same direction and have experienced similar difficultics with myself. In alvising upon how a steamer should be treated and loaded so as to be kept safe in respect of stability, I state (i) the quantity of ballast, if any, that is required to enable her to stand up when quite empty, without water in boilers or tanks, coal in lunkers, and with a clean-swept hold, and to be stiff enough for all working requirements in dock or river ; (\mathbf{z}) if she is to be employed in carrying homogeneous cargoes, what proportion of the space in the 'tween decks it is safe to fill with such cargo, after the holds are full, and what weight of ballast is required in the bottom to enable the vessel to be loaded to her maximum draught with such cargo ; (3) if required to carry two or more kinds of homogencous cargo, such as grain and cotton, grain and wool, grain, meat, and wool, ic., the best mode of stowage, and whether or not the space in the 'tween deeks can be filled with the lightest of the cargoes, and in what circumstances ballast, and how much of it, will be required ; (4) if not intended for homogeneous cargoes, but for general cargoes, or partly homogencous and partly general, the
average densities of the general goods for various ports is arrived at after a little experience, and the same system adopted. The main point is, to state what space, if any, must be left unfilled in the 'tween deck cargo spaces, with the different descriptions of cargo, and what ballast, if any, is necessary if the vessel is to be loaded to her maximum draught ; (5) if the consumption of the coal diminishes the stability materially, as is often the case in some classes of steamers, to call prominent attention to this fact, in order that the captain may not be misled by finding his ship appear to be rather stiff on commencing a voyage. The possible consumption of coal is, of course, taken into account in fixing upon the limits that should be imposed upon the stowage in all the conditions named ; and (6) if there appear to be any circumstances in which a tendency towards instability may arise they are described, and suitable precautions suggested. I believe that Lloyd's Kegister Society, in fixing a load-line for vessels that may in some conditions be laden so as to have insufficient stability, describe the stowage that is requisite for safety in somewhat similar terms to the above,

General particulars, such as these, respecting the character of a ship's stability in different conditions, may be made to convey all the information that is necessary for the effective prevention of instability, and I find that they are appreciated by owners and masters, and actually used as a guide in the loading of ships. They may be made to fully define all the essential points upon which stability depends, and are expressed in a form and language that is understood by those who have to use them. This is shown by the fact that telegrams are sometimes received from foreign ports respecting ships which are to be laden with cargoes somewhat different from those to which the specific instructions apply, describing the cargoes that are to he carried, and asking whether any different arrangement of ballast or proportion of weight in the 'tween decks from what has been prescribed for some other eargo is necessary. Such inquiries show that intelligent use is being made of the information supplied, and that it is being utilised for practical guidance in loading.

One of the main reasons why it is better to give information in this simple form is that it olviously fits in with a shipmaster's own praetical modes of thought and ideas respecting stability. It is a mistake to suppose, becausc owners and masters cannot express their views respecting the stability of ships in scientifie language, that they therefore have no views that are worth anything. The fact is, that the masters of ships very often have quite correct ideas respecting the stability of their vessels and how to load them. If they see a vessel quite empty in dock, and observe the effect of moving weights in and out when light, they often acquire as much knowledge of her stability in the light condition as is requisite for all purposes of safety and efficient working. They also, by means of experience obtained in loading, frequently get to know as much alout the stability of certain classes of vessels in the laden condition as is necessary for practical purposes, and certainly for all purposes of safety. Whether sufficient knowledge can be gained in this way or not for all possible requirements depends largely upon the type and peculiarities of a vessel. As a rule, it is all that is applied to the purpose, and there can be no doubt that in many cases it may be sufficient. It is in vessels which contain clements of danger that cannot be discovered in this practical manner that a different and more scientific mode of treatment becomes requisite.

The proper use of stability calculations is not to supersede or interfere with that knowledge of a vessel's qualities which may be gained by experience but to supplement and complete it in certain cases where it may be necessary. As an illustration I may refer to the small range of stability sometimes found to be possessed by deep vessels of low freetoard. The discovery of the dangers to which such ships are liable may perlaps be successfully made in some instances by simply ohecrving their behaviour at sea ; but probably it is more often made only when the ship capsizes. Then, again, many ships become unstable at sea through the consumption of their bunker coal, particularly when a large portion of such coal is carried, as it sometimes is, in a reserve bunker under the lower deek. There are cases in which the metacentric heights of cargo-carrying steamers are reduced by $1 \frac{1}{2}$ fect by the mere consumption of the bunker conl. In such eases instability may very readily arise at sea in a manner of which the captain is unable to form any accurate conception when merely juliging by the results of his own experience. This is particularly likely to be the case when alterations are made in bunkers, or when portions of the hold are added as reserve
bunkers for enabling voyages of longer duration to be made than have previously been contemplated. I certainly believe, as the result of an examination of the stability of many mercantile steamers, that a great number of vessels are lost at sea from each of these causes, viz. through capsizing on account of low freeboard and consequent small range of stability, and also through loss of stability by reason of the consumption of coal. In both of these elasses of cases the danger is aggravated if the ships are flush-decked, without any or with but small water-tight erections above the upper deck.

It is very difficult to make a complete analysis of the varioas causes of loss at sea, and to show conclusively what is the relative mortality of vessels of various types and different descriptions of cargo. The difficulty is due to the fact that the Board of Trade returns are not compiled in a manner which enables all the necessary information to be extracted from them. So far as it is possible to judge, however, by the particulars available, it appears that the types of steamers that are least subject to mysterious loses at sea are those which have long ranges of water-tight erections on deck, and are therefore least liable to become unstable. I believe that the comparative immunity again: loss which appears to be possessed by many efficiently built and protectet "well-deck" steamers, is largely due not only to their comparatively low centre of gravity of cargo, but to the righting power furnislied at large angles of inclination by their extensiv deck erections. This is undoubtedly the case, notwithstanding the fact that seas may break into the well, and often fill it with water. It may be somewhat startling to persons familiar with the loading of flush-decked steamers, to find many well-decke' vessels making voyages across the Atlantic with portions of thei: deeks so near to the water as they sometimes carry them; bat a little examination suffices to show that the fact of the water entering a properly constructed and fittel and moderately sizel well cannot do much to enlanger the safety of the ship. Amy effect it may have upon the stability is only at small angles σ inclination.

In order to show how small is the effect of water in the well of an ordinary first-class steamer of this type upon her stability. I have given two curves of stability in Fig. 1 for such a vessel That marked P is for the condition of no water being in the well till the vessel is inclined sufficiently for the edge of the deck to become immersed, and that marked Q for the courdition of the well being filled with water before the inclination commences. Mr. Martell was good enough to have thes curves calculated for me, in order that I might have them it time for the reading of this paper. They are for a ravel quarter-deck vessel 257 feet by 35 feet 6 inches by 18 feet 6 inchex, with a well 60 feet in length, and bulwarks over 5 feet high ; :he freeboard amidships to the main deek being 2 feet 2 inches. Prior to the water entering the well the vessel is assumed to be at ber usual trim of about a foot by the stern, and a correction is madh for the change of trim caused by the filling of the well. Nis allowance is made for the quantity of water that would be throwt out of the well by the movements of the ship, but it is assumel to be possible to completely fill it with water to the height of the rail at the fore end of the bridge, and for no other way of escape to exist for the water but that of pouring over the rail as the vessel inclines, The frecing ports and scuppers are not assumed to have any effect in clearing the deck of water. The weight of water which the well will hold when the vessel is upright is iSb tons, but when she is inclined to 10° it will only hold 98 tons. and when inclined to 20° it becomes reluced to 28 tons. These figures and the curves in Fig. I show that water in the well at such a vessel cannot materially affect her stability after a small angle of inclination has been reached, and that so far as stability is concerned the well cannot be regarded as a serious elemert of danger.

A practical point of great importance in determining the amount of stability a ship) should possess at sea is the minimur metacentric height that may be regarded as sufficient for safecy. Different types of vessels have quite different characteristio in respect of stability. War ships, and some claves or merchant steamers, require large metacentric heights in order t. insure sufficient righting moments at moderate angles of inchins. tion, and a safe range of stability. The curves of stabidity given in Fig. 2 apply to such a case. Those curves belong to : typical three-decked steamer, without any water-tight dect erections, 280 fect by 34 feet 6 inches, hy 24 feet 6 inchex The mean load dranght is 22 feet 6 inches, and displacemes 4400 tons; the freeboard being 5 feet 4 inches. The metacen:n
height is 6 inches for the curve A, and I foot for the curve B. It is obrious that, in judging of the safety of small metacentric height for such a vessel, the range of stability is an important factor to be considered. The range necessary for seaworthiness largely determines and often fixes the limit below which the meticentric height should not be reduced in such a type of vessel and in many others.

But there are very large numbers of steamens, such as passenger liners and cargo steamers, of the spar and awning-deck classes, which generally have very large ranges of stability, and large righting moments at great angles of inclination, whatever the metacentric height may be; and in many cases, even with no metacentric height at all. In such cases the minimum metacentric height which is essential to safety and efficiency has to be determined by entirely different considerations from those which apply to war ships, and those classes of mercantile steamers whose stability is of the character shown by the curves in Fig. 2. When we have to deal with vessels which even with no metacentric height will return to the upright, provided water does not get into the ship, and no large weights shift, whatever angle of inclination may be reachel, the conditions of the problem are entirely changed. The principal object which then has to be

considered is to prevent too easy an inclination from the upright by the action of the wind and other forces which may operate upon her; and the question mainly turns upon what may fairly be considered sufficient for this purpose.

Many persons have been surprised on first learning how little metacentric height many high-sided mercantile steamers are in the habit of working with in safety. There are many steamers of the spar and awning-deck classes employed in carrying homogeneous cargoes, which have been performing their work for years, not only with perfect safety but without showing any signs of what nautical men call tenderness, the metacentric heights of which, during certain periods of their voyages, are frequently not more than 8 inches or even 6 inches. The latter figure may probably be regarded as about the minimum which such vessels approach without indicating to those on board that they are becoming unduly tender: but it is quite certain that many never show any such signs, and appear to be perfectly safe with 8 inches of metacentric height.

Vessels of this class have curves of stability of which those Jown in Figs. 3 and 4 are types. The curves in Fig. 3 are for
a spar-decked steamer 318 feet by 40 feet by 22 feet. The load draught is 23 feet 6 inches, and displacement 5760 tons; the freeboard being 8 feet 6 inches. Those in Fig. 4 are also for a spar-decked steamer 220 feet by 30 feet by 23 feet. The load draught is 16 feet, and displacement 2000 tons; the freeboard being 8 feet 6 inches. The curves marked A in each of these figures are cunstructed for 6 inches of metacentric height, and those marked B for I foot, in order that they may be compared with the corresponding curves in Fig. 2. The metacentric height of 6 inches is about what each of these vessels would have if laden to the draughts named with homogeneous cargoes, such as they frequently carry; and the metacentric heights of Ifoot are obtained by leaving a portion of such cargo out of the 'tween decks, and replacing it by an equal weight of ballast in the bottom.

It will be seen that the increase of righting moment in Figs 3 and 4 continues up to a very large angle of inclination. This increase of righting moment tends to prevent dangerous inclinations being reached, while the smallness of the metacentrie height causes such vessels to be very easy and comfortable in a seaway. Some steamers whose stability is of this character are vessels which carry cargoes liable to shift, such as grain or coals, and it may be thought that with cargoes of this class a small metacentric height is particularly unsafe, and that considerable initial stiffness is necessary to prevent any danger arising through shifting of cargo. Any opinions that may be formed upon this point are necessarily more or less speculative, as we have but little exact information to go by ; but it should be borne in mind, in considering the question of initial stiffiness in connection with shifing cargoes, that, although such stiffiness increases the resistance to inclination, it increases at the same time the tendency to roll, and to displace or shift the cargo.

The question of the minimum metacentric height which may be regarded as consistent with safety in those types of ships where it is not governed in any degree by the necessity of providing range of stability, as shown by Figs. 3 and 4 , is a subject which has never been much discussed, and which, on account of its important and immediate bearing upon the safety of many vessels at sea, is, in my opinion, deserving of the consideration of this Institution. If any of the remarks contained in this paper should serve to elicit opinions, information, or facts bearing upon the subject, my purpose in making them will be answered.

I may add, in conclusion, that the following are the main points which I have desired to lay before the Institution in this paper :-(1) The form in which the results of stability calculations can be put before owners and masters of mercantile steamers, so as to be of the greatest practical use in loading such steamers, and regulating their stability in accordance with the requirements that may arise; (2) the fundamental difference which exists between the relation of righting moments at large angles of inclination and range of stability to metacentric height in the various types of steamers, as shown by Figs. 2, 3, and 4 , such relation making it necessary to fix the minimum metacentric height that should be allowed with due regard to the righting moments at large angles of inclination in some cases and unnecessary to do so in others ; and (3) the minimum metacentric height that may be regarded as consistent with safety in cases where range of stability and the righting moments at large angles of inclination are so ample as not to call for consideration. The two latter points are so intinnately connected with the first that they naturally require to be considered along with it.

THE INSTITUTION OF゙ NAVAL ARCHITECTS

THE Institution of Naval Architects held its twenty-fifth session at the Rooms of the Society of Arts on April 2, 3. and 4, Lord Ravensworth in the chair. Whilst the papers read were of course mainly on technical questions of naval construction, equipment, \&c., some of them possessed points of general scientific interest, of which a bricf account may be given. The President's address dealt mainly with what may be called the economic side of the shipping industry, dwelling on such points as the Merchant Shipping Bill, the length of time occupied in building ships of war, the depression of the carrying trade, \&c. Passing on to the papers contributed, the first read was by Mr. J. D. Samuda on the Riachelo, a steel armour-clad twin screw turret-ship of 6000 tons displacement, and 6000 horse-power, lately built by his firm for the Brazilian Government.

The second paper, by Mr. A. F. Yarrow, was on an Electrical Launch tried last year both on the Thamses and on the Danube,
and already mentioned in these columns. It dealt with the question from a practical and not an electrical point of view, and is so far valuable as presenting a fresh aspect of the question. Un the whole the author's conclusions are satisfactory. He cons.ders that there is even now a field for electrical launches in cises where the conditions are favourable, such as having a supply of cheap motive power for recharging the batteries; and that they are pre-eminently adapted for torpedo boats, owing to their being always ready for action, and their complete noiselessness when in motion. On the whole the advantages and disadvantages as compared with the steam-launch are summed up by Mr. Yarrow as follows, beginning with the former :-

1. Eintire absence of noise.
2. Great cleanliness.
3. The whole of the boat is available for passenger accommodation, the midship or best part of it not being occupied by machinery.
4. When once charged it is ready for use at a moment's notice.

The points against it are :-

1. Difficulty and delay from frequent charging.
2. Greater first cost.
3. Greater cost of working in those cases where an engine has specially to be laid down for the purpose of charging.
The third paper read was on the Vibration of Steam-vessels, by Mr. Otto Schlick, which dealt with the shaking so well known to passengers on screw steamers from the practical and theoretical point of view. It is shown clearly that the phenomenon is merely due to the fact that the ship, considered as an iron girder, has one or more fixed periods of vibration depending on her length, her width, and other dimensions. With regard to the practical means of overcoming such vibrations, it is pointed out that anything which causes the engine to run at a different speed, for instance, the putting in of a new propeller, will probably have a favourable effect. The shifting of the screw to a different angle with regard to the cranks is recommended as often giving a good result, inasmuch as two of the forces causing the vibration may be balanced one against the other. An ingenious apparatus for measuring such vibrations is described by the nuthor.

The morning of April 3 was occupied during the whole period of five hours by the reading and discussion of three papers on the burning question of Stability. One of these, on the Use of Stability Calculations in Regulating the Loading of Steamers, by Prof. Elgar, we print at length. Another, on Cross Curves of Stability, was read by Mr. W. Denny, the well-known shipbuilder of Dumbarton. He observes that stability curves are required for at least four draughts of any steamer, viz, the launching condition, the condition completely finisherl, but without any cargo, coals, \&c., on board, the fully loaded condition, and the condition with the coals consumer. If the stability curve be also calculated for an intermediate draught between the second and third of these, five points will be obtained at each angle, by means of which a cross curve of stahility can be produced. It is therefore of great importance to work out such cross curves and to find a method by which they can be readily constructed from the ordinary curves of stability. A method for doing this with the assistance of Amsler's Integrator has been devised, and when drawn the curves are also represented by means of a solid model. These cross curves are each for a given angle, and have the length of the righting arm varying with the draught or displacement. With such cross curves in number sufficient to cover angles at intervals of $10^{\circ}, 15^{\circ}$, and 20°, and each ranging through all the draughts from the launched to the loaded condition, ordinary curves at any draught and with any height of centre of gravity can be easily obtained, and with great rapidity. The method employed is fully described, as is also another method due to Mr. Couwenberg. Tables are also given showing the results obtained for the same steamer by the two methods, which, though worked out separately, were found to agree very closely.
The third paper was on a New Methorl for Calculating the Stability of Ships, by M. Daymond. This is an elaborate paper of a theoretical character, illustrated with numerous diagrams. It gives the history of the means adopted for calculating stability, especially the method invented by M. Ferranti. The author's own method is an improvement on this. Ilaving made for various ships numerous drawings, which showed on the vertical section of the ship, in length and in direction, the arms of the righting levers, for various draughts and inclinations, he conceived the idea of joining by continuous lines the extremities of these arms corresponding to the same angle of inclination.

Taking such angles at intervals of 10°, he thus obtains a curve which he calls the "pantocarene isocline," and from these curves he ohtains at once with complete accuracy and for all possible cases the usual curves of statical stability. The paper gives the principal properties of these curves, together with the mode of their calculation and various examples of working. The paper had been translated by Sir F.. J. Reed, who may therefore be considered to have lent his authority to the value of the method proposed. The discussion on these papers turned mainly on unimportant and to some extent personal questions, and, though animated, does not need production here.

On Thursday evening, April 3, the most important paper was one by Mr. James Howden on Combustion of Fuel in Furnace and Steam Boilers by Natural Draught and by Supply of Air under Pressure. The object of it was to describe a new boilet on which the author was experimenting, and which, if his account be correct, is likely to realise very important advantages in the way of economy of fuel. The experiments are not concluded, but the author considers them to justify him in claiming a most extraordinary economy as compared with ordinary marine boilers. Taking the instance of the Oregon, the latest-built of the swift Atlantic liners, he professes that the coal consumption might be reduced from 31,000 to 19,000 lbs. per hour, with an equal supply of steam and with a diminution in the fire-grale surface from 1512 to only 641 square feet. In the discussion which ensued very grave doubts were expressed as to the reality of such a saving, and it would probably have been more wise if the author had completed his experiments before claiming so very large a step in advance.
The next paper, by Mr. A. B. Broun, on the Application of Hydraulic Machinery to the Loading, \&c., of Steamships, gave an interesting account of a complete hydraulic system applied to all the work required in an ordinary vessel, but did not raise any theoretical questions. A paper was then read by Mr. J. F. Ilall, on Cast Steel as a Material for Crank Shafts. The author, who belongs to the well known firm of Messrs. Jessop of Sheffield, advocated the making of these important parts of a ship by the ordinary method of casting stecl, without any subsequent hammering or working. His view is that such hammering can never reach the centre of a large mass of steel, such as an ingut : and that even if it did it would not completely weld up and remore the cavities which are not infrequently found in that region. In fact his view was that forging actually did harm by consolidating the outer layers and preventing them from contracting sabsequently, as the hotter interior shrank in its cooling. By using ordinary methods of casting, and taking care to have a sufficien! head or column of metal standing up above the casting itself, be considered that all fear of cavities within the latter was removed. Any unsoundness would be found only within the column, which would of course be cut off when the casting was cool.
The remaining papers, read on Friday, will not require any extended notice. That of Mr. P. Jenkins, on the Construction of Metacentric Diagrams, was a theoretical paper, dealin: with the problem of stability, and chiefly devoted to establishing; the following theorem :-"For any position of the centre of gravity the initial righting moment is either a maximum or a minimum when the water plane is so placed that the centre of curvature of the curve of flotation is at the same height in the vessel as the centre of gravity." Another contribution to the same problem, that of stability, was read by Mr. S. Benjamin, and clescribed a model or apparatus enabling a shipowner to determine the position of the centre of gravity of his vessel for any loading before she is loaded, and also the alteration of its position due to any subsequent change in the loading. Vef another paper, by Mr. A. Amsler, described the application of the integrating apparatus which bears that name to such calcylations as those of the curves already mentioned in Mr. Denny'; paper. Mr. I. E., Spence described a form of diagram exhibiting in a simple shape all the data depending on the form of a shif which are required for determining her stability, and also s simple and direct method of graplhic calculation for attaining these data. Mr. Thomas I'hillips read a paper on the comparative safety of the particular class of vessels known as "well-decked steamers. These were formerly treated with some suspicion by underwriters, but great improvements have lately been made, some of which were described in the paper, and with these the vessel appears to be even safer than what are called "flush ships. Lasely, Mr. A. Taylor described a special instrument invented by him, and called a Stability Indicator, for deter mining the initial stability and stowage of ships at any displace ment.

Mr. H. H. West reall a paper on the Riveting of Iron Ships, giving tables for calculating the plate and rivet area for doubleriveting, treble-riveting, and quadruple-riveting. He referred to the researches of Sir Edward Reed, the Institution of Mechanical Engineers, and others, but did not mention the modification of treble-riveting proposed some years ago, and lately carried into effect by a firm in Holland. (In this system, in the middle row of the three ruws of rivets, the rivets are ypaced only half the distance apart of the two outer rows, the result leeing to increase very largely the proportion of strength. Capt. Ifeathorn described an arranyement called ly him a Water-brake, for stopping the way of a ship in cases of collision or otherwise : and finally, Mr. J. F. I iardet described an apparatu* for indicating the position of a ship's helm.

On the whole the Institution is to be congratulated on the interest and importance of the papers provided for it, and still more on the vigour and ability with which they were discussed by the very eminent engineers and shipbuilders who thronged the rooms of the Society of Arts for the purpose.

SCIENTIFIC SERIALS

Bulletint de I 'Acadkwic R. de Belgime, January 5.-On the existence of a fourth species (B. Gormalis) of the genus Balanoptera in the North Allantic and Arctic Oceans, by M. Guldberg.-On the action of chlorine on combinations of sulphur, and on organic oxysulphurets, third communication, by M. W. Spring.-Researches on spermatogenesis in the Sclacians (Scyl. lium cafulus, Ss. canicula, Raja clavata), the salamander and mammals, by Prof. A. Swaen.-Essays on the political history of the last three centuries, by M. Van Praet.-Biographical notice of the painter Michael Van Cocxyen of Mechlin, by M. Castan.

Alti della R. Accademia dri limrei, January 20.-Letter from King Humbert announcing an additional annual grant of $400 /$. for the promotion of biological studies, to be distrilnted in prizes in any way the Academy may think fit.-Some philological remarks on the 104th Psalm, by Guidi Ignazio.-Notice of an unpublished work of Prince Federico Cesio entitled "De Laserpiteo et Laserpitii pluvia," in the library of the Botanic Institute at Padua, by Prof. A. Favaro.-Note on the antiquities discovered at Ventimiglia, Montefiascone, Naples, Pompeii, and other parts of Italy during the month of December 1883 , by S . F'iorelli.

February 3 and 4-Notice of some unpublished writings of Calileo Galilei in the National I.ibrary of Florence, by Prof. Favaro.-Report on Prof. Bellonci's work "On the Segmentation of the Fge of the Axoloth," by S. Trinchese.-Report on Dr. G. Frattini's work "On Some Propositions in the Theory of Substitutions," by S . Battaglini.-Report on Dr. $\mathrm{I}_{\text {. }}$. Macchiati's work on the chemical nature of ehlorophyll, by S . Cannizzaro.-Observations of the solar spots and facule made at the Observatory of the Collegio Romano during the vear 1883, by Pietro Tacchini. -On the temperature corresponding to the Glacial period, third note, by Pietro Blaserna.-On the extraordinary crepuscular phenomena observed during the last few months, by Lorenzo Respighi.-Contributions to the study of the carhopyrolic acid a, by G. L. Ciamician and Paolo Silber. Kemarks on the Veronese Chelonian (Piotosphargis exronensis) discovered in 1852 in the Upper Chalk near St. Anna di Alfaedo in Valpolicella, by Govanni Capellini.-Geological observations on the islands of the Tuscan Archipelago, by 18 . Lotti.-Reports on the competition for the Royal Prizes for Physics, History, and Geography for the year 1882, by Signors Cantoni and Villari.- Reports on the Ministerial prizes for the Philosophical, Social, and Natural Sciences for the year 1883, by Signors Bonatelli and Trinchese.

February 17.-(Obituary notices of the late Pietro Canal and Edoardo Laboulaye, Members of the Academy, by the President. -On the practice of burying human bones stripped of the flesh in Neolithic times, by Laigi Pigorini,--Note on the antiquities cliscovered at Felonica, Este, Imola, and in other parts of Italy dluring the month of January $\mathbf{1 8 8 4}$,-Remarks on some codices in the Angelica Library connected with patristic theology, by Einrico Narducci,-Note on the parabolic orbit of the comet (e) discovered by Hartwig at Strashurg on August 24, 1879, by E. Millosevich.-On a remarkable disposition of the isogonic lines of terrestrial magnetism observed in the eastern districts of the Valley of the Po (two illustrations), by Ciro Chistoni.

Rivista Scientifico-Imiastiale, February 15 and 29.-Description of a new apparatus for the measurement of electro-motor forces (four illustrations), by E. Reynier.-Mathematical demonstration and value of the angle of least deviation described by a ray of light in its passage through a prism (one illustration), by Giuseppe Vanni.- Practical determination of the metallie resistance and chemical reaction of an electrolytic circuit, by Eugenio Marchese.- On the causes of the remarkiable after-glows witnessed in Italy and elsewhere in $1888_{3} \mathbf{8 4}$, by Prof. Carlo Marangoni. The anthor compares these phenomena with others of an analogous character observed in various parts of Europe in the year 1869. On several grounds he infers that the pink and red glows could not have been produced by moisture disseminated in the atmosphere in the solid, liquid, or gaseous state. He concludes that they are due to the presence of dust or minute particles of sand, which absorb the coloured rays in the central region of the solar spectrum while transmitting the extreme colours-that is, red and violet. The paper, which is to be continued, offers no suggestion as to the possible origin of the particles of dust to which the phenomena are attributed. - Note on the extinet and living mollusks of the Gardone district, by Prof. Strobel.-On the fossil insects of the Carboniferous schists of Commentry, by S. Brongniart.-Note on the limits of diatomaceous regetation in marine basins, by Count A. F. Castracane.
Rendiconti del Keale Istituto Lombardo, February 21.-Biographical notice of Carlo Tenca and his times, by Prof. Giovanni Cantoni.-Some reflections on the results of the recent examinations in the Italian language and literature in the higher schools of the Peninsula, by Prof. C. Baravalle.-Fresh researches on the oxidation of sulphur, with some remarks on the oxidising power of the so-called atomie oxygen and of ozone, by Prof. E. Pollacci.-On some cases of subcutaneous nervous affections caused by the presence of Oscyuris, Trania, Solium, and other parasites, by Prof. A. Scarenzio.-On the relations between the malady known as "bronze skin," and the changes in the suprarenal blood capsules, by Prof. G. Sangalli.-Meteorological observations made in the Brera Observatory, Milan, during the month of February 1884

SOCIETIES AND ACADEMIES London

Royal Soclety, March 27. - "On the Electro-chemical Equivalent of Silver, and on the Absoluic Electromotive Force of Clark Cells." By Lord Kayleigh, D.C. L., F.R.S.
The investigations npon this subject which have been carried on by Mrs. Sidgwick and myself during the last year and a balf, though not yet quite finished, are s) far advancel that no doubt remains as to the general character of the results; and as these results have application in the daily work of practical electricians, it is thought desirable to communicate them without further delay.
The currents are measured by balancing the attrection and repulsion of coaxal coils against known neigh ${ }^{*}$, as described before the Brinish Assceiation in 1882, a method which has fully answered the favourable expectations then expressed. To what was said on that occasion it will be sufficient for the present to add that the readinzs are taken by reversal of the current in the fixed coik, and the difference of weights thus found (abr ut i grm.) represents the double force of attraction free from crrors depending npon the connections of the suspended coil, aid other sources of disturbance.
The difficulties wbich have been experienced, and wl ich have been the cause of so much delay, have related entirely to th. behaviour of the silver voltameters, of which never less than two, and sometimes as many as five, have been included in the circuit of the measured current. In order to render the deposit more eompact, and thas to diminish the danger of loss in the subsequent manipnlations, acelate of silver was added in the earlier experiments to the standard solution of nitrate. Experience, however, has shown that the principal risk is not in the loss of metal, but in the ob-tinate retention of salt within the fine pores of the deposir, leading to an over-estimate of the amount. When the texture is very compact, this danger increa es, and deposits from a solution containing acetate are often decidedly too heavy, even after the mont careful and protracted washings On heating to low redness a portion, at any rate, of the retained salt is decomposed N \overbrace{z} is Lriven off, and a loss of
weight ensues. With / ure nitrate, to which we finally recurred, the risk is much less.

The actual weights of deposited silver were usually from 2 to 3 grms., and, so far as the mere weighings are concerned, should have been correct to $1 / 10,000$. Discrepancies three or four times as great as this are, however, actually met with, whether dne to retention of salt or to loss of metal it is difficult to say. The final number, expressing in C.G.S. measure the electrochemical equivalent of silver, is a little lower than that (1'119 $\times 10^{-7}$) given on a previous occavion (Cambrifge Procedings for November 26, 1883). It approximates clo ely to $1 \cdot 118$ $\times 10^{-3}$, and is thas in precise agreement with the number announced within the last few weeks by Kohlrausch, viz. I'1883 $\times 10^{-3}$. Its substanial correctness can therefore bardly be doubted, more especially as it does not differ very much from the number ($\mathbf{1} \cdot 124$) obsained by Maccart. In terms of practical units, we may say that the ampere current deposits per hour 4.025 grms , of silver.

When we are provided with means for the alsolute meavarement of current*, the determination of electromotive force is a very simple matter if we assume a knowledge of absolute revist ance. A galvanic cell is balanced against the known difference of potentials generated by a known current in travering a hnown resistance. The difficulty relates entirely to the preparation and definition of the standard cells. A considerable number of Clark cells have been set up and testied at interval during the last six months, and their behaviour has been satisfactory, the extreme range after the fint ten days) not much exceeding $1 / 1000$. A modified form of cell, in which the solid zinc is replaced by an amalgam, is at present under trial.

In Mr. Latimer Clark's own determination the B, A. unit is assumed to be correct, and the E.M.F. of the cell at $15^{\circ} \mathrm{C}$. was found to be 1457 volt. On the same assumption we obtain the not greatly differing value 1.453 voll. If we iake the true value of the B.A. unit as ' 9867 ohtn, 1.453 will be replaced by 1.434

Experiments are also in progress to determine in absolute measure the rotation of the plane of polarisation of light in bisulpbide of carbon under the action of magnetic force. Of the results obtained by Gordon a:d Becquerel, differing by about 9 per cent., our preliminary measurements tend rather to confirm the former.

Mathematical Society, April 3.-Prof. Henrici, F.R.S., president, in the chair.-The Kev. A. C. E. Blomfield was admitted into the Society. - The following communications were made :-On double algelra, by Prof. Cayley, F.R.S.-On the homogeneous and other forms of equation of a plane section of a surface, by J. J. Walker, F.R.S.-A direct investigation of the complete primitive of the equation $F(x, y, z, f, q)=0$, with a way of remembering the auxiliary system, by J. W. Kussell.On electrical oncillations and the effects produced by the motion of an electrified sphere, by J. J. Thomson.

Chemical Soclety, March 31.-Anniversary Meeting.-Dr. W. H. Perkin, F.K.S., president, in the chair.-The President read his annual address. The number of Fellows is at present 1324. During the past tweive months the Society has lost by death nineteen Fellows, incluting Sir C. W. Siemens, Messrs. W. Spottiswoode, J. T. Way, and J. Young. After briefly alluding to the more important advances in chemical science. the president drew attention to the fact that the number of original papers read before the Society had steadily decreased since 1881, notwithstanding the steady increase in the number of Fellows, and the greater facilitics for the study of chemistry now offered by the numerous laboratories recenily opened. The Longstaff Medal was awarded to Mr, O'Sullivan. The following Officers and Council were elected:-President: Dr. W. H. Perkin, lh.D., F.K.S.; Vice-Presidents: Sir F. A. Abel, Warren De La Rue, E. Frankland, J. H. Gilbert, J. II. Glad stone, A. W. Hofmann, W. Odling, Sir Lyon Playfair, H. E. Roscoe. A. W. Williamson, P. Giress, G. D. Liveing, E. Schunck, T. E. Thorpe, A. Voelcker, W. Weldon ; Secretaries: H. E. Armstrong, J. Millar Thomson ; Foreign Secretary : H. Müller ; Treasurer: W. J. Russell ; Members of Council: E. Atkinson, H. T. Brown, T. Carnelly, M. Carteighe, R. J. Friswell, W, R. E., Hodgkinson, D. Howard, F. R. Japp, K. Meldola, R. Messel, C. O'Sullivan, C. Schorlemmer.

Geological Society, March 22.-Prof, T. G. Bonney, F.R.S., president, in the chair. - The Rev. Frank Ballard, M.A., was proposed as a Fellow of the Society.-The following communications were read :-On Rhytidosfous cafonsis, Owen, a

Lalyrinthodont Amphitian from the Trias of the Cape of Good Hope, by Sir Kichard Owen, K.C. B., F.R.S. The anthor first noticed the discovery of certain forms of Auphibia below ing to the genera Labyrinthodon, Brachopops, Petreparyme, ad Rhinosaurus, and called attention to certain typical peculimibs in the structure of the teeth, the form of the bony palate, asi the double occipital condyle. An imperfect cranium of the species now described as R'hytidostews captensis was procured by Mr. Heer in the Orange Free State from the Triss of Swatopol Beersheba, and depoited by him in the Bloemfontein Mseam This specimen, which was brought to England and submitad to the author by Dr. Exton, consists of the anterior portion of 位 skull with part of the mandible attached. The general form is batrachoid, and one of the hinder palato-vomerine teeth, on being examined microscopically, exhibited the cbaracterisic labyrinthodont structure. The surface of the skall, and the characters of the premaxillary, na-al, frontal, and prefronal bones were described. The parietals and postfrontals are ie perfect, the hinder part being lost. The rami of the madiale are also imperfect behind, but a broken fragment shows the articular surface. The vomerine bones were also decritoll with the porterior nostril and the teeth befuce and behind tis opening. The breadth of the bony palate at its hinder fractured border is 5 inches; the length of the part freserved $4 \mid$ inches; the mandible, when perfect, was protably from 11 irches to a foot in length. The author also gave an account of the deation wielded by the premaxillary, maxillary, vomerine, palatipe, and mandibular bones. The author pointed out that the type of anbreathing vertebrates to which the present genus belongs reached its highest development in the Triasic period in Britain, Rasin, North America, Hindostan, and South Africa. The ooly knom antecedent form from which the labyrinthodont structure of tooth might have been derived is a genus of fishes pamed Dor drodus, in the Old Ret Sandstone. The Liassic Ichthyoase also show some similarity in tooth-structure; but in them bore is far greater simplicity.-On the occurrence of antelope-remint in Newer Pliocene beds in Britain, with the description of a Dem species, Gazdla anglica, by E. Tulley Newton, F.G.S.comparative and critical revision of the Madreporaria of tie White Lias of the Middle and Westers Counties of England, and of those of the Conglomerate at the base of the Sourb-Wals Lias, by Robert F. Tomes, F.G.S.

Zoological Society, April I. - Prof. W. H. Flower, I.LD., F.R.S., president, in the chair. - Prof. Flower exhibited ad made remarks on a series of skulls of the Bottie-nosed Wha (Hyarroodon rosfrafus), illustrating the various stages presenter by this animal as regards the conformation of its skoll in thr different ages of both sexes. Prof. Flower also exhibited, en behalf of Messrs. Langton and Bicknell, a specimen of spermaed obtained from the head of the HyAcroodon.-Mr. Sclater er hibited and made remarks on specimens of the egs5 of :w species of Testudinata (Tistudo Nophantopus, and Chdyy mit mata) recently laid by animals living in the Society's Gardex -Mr. K. Bowdler Sharpe exhibited and made remarks ona Red-shroated Pipit (Amthus cervinus) caught near Brighos a March last. Mr. Sharpe exhibited at the same time an comple of the true Water-Pipit (Anthus spindelfa) captured al Iancigy in Sussex, in March 1877.-Prof. E. Ray Lankester, F.R.:exhibised and made remarks on a large living Scorpion (Busthe cyancus) from Ceylon.-A communication was read from Prod T. Jeffrey Parker, being the first of a series of studies in Nad Zealand Ichthyology. The present paper gave a descriptione of the skeleton of Regalews argrenteus. The species was foendel on a specimen cast ashore at Moeraki, Otago, in June 1883;A communication was read from Viscount Powerscourt, F.2.S. containing an account of the origin and progress of the bedd d Japanese Deer at Powerscourt.-A communication was rai from Mr. G. A. Boulenger, giving the diagnoses of some ne Reptiles and Batrachians from the Solomon Islands, collecte and presented to the British Museum by Mr. H. B. Gapet. H.M.S. Lark.-A communication was read from Mr. C.e. Waterhouse, containing an account of the coleopterous inec. collected by Mr. H. O. Forbes in the Timor-I_au Islands-W. F. D. Godman, F.R.S., read a paper containing an accomed the Lepidoptera collected by the late Mr. W. A. Forbes on the banks of the Lower Niger, the Rhopalocera being descriked ly Messrs, F. D. Godman and O. Salvin, and the Heterocen 1 . Mr. H. Druce. The species of butterflies were fifty in ambe. and comprised representatives of all the families of Rhoplocon hilherto known from Tropical Africa, except the Erycinita, 1
group but feelly developed in this region.-Mr. R. Bowdler Sharpe read the description of three rare species of Flycatchers, viz. Alseonax minima, Liopsilus abyssinicus, and Liopti/us galinieri. Mr. Sharpe also described an apparently new species of Nuthatch discovered by Mr. John Whitehead in the mountains of Corsica, and propesed to be called Sitta twhitehradi Mr. G. E. Dobson, F.R.S., read a paper on the myology and visceral anatomy of Capromys molanurus, of which rare mammal specimens had been lately obtained for him by Mr. F. W. Kamsden, 11. M.'s Consul at St. Jago de Cuba. The wellknown division of the hepatic lobes into minute lobules in C. pilorides from the same island was shown not to exist in C. melamurus, which otherwise closely resembled the former species, and this character could therefore no longer be considered a generic one.

Ediniugah

Royal Society, Mareh 3.-Sir W. Thomson, hon. viecpresident, in the chair. $-\operatorname{Sir} \mathbf{W}$. Thonison communicated a paper on the efficiency of elothing for maintaining temperature. He showed that if a body be below a certain size, the effect of clothing will be to cool it. In a globular body the temperature will only be kept up if the radius be greater than $\frac{k}{2} e$, where k is the conductivity of the substance and e its emissivity.-Prof. J. Thomson read a paper on the law of inertia, the prineiple of chronometry, and the prineiple of absolute clinural rest and of absoluter rotation. In this paper the author proceeded to discriminate between what men can know, and what men cannot know, as to rest and motion in unmarked space. For example, men bave no means of knowing or imagining whether a ball existing in space is in motion or at rest ; nor have they any means, if it be in motion, of knowing or imagining any one direction, rather than another, as being the direction of the straight line from the place that was occupied by it + eentre at any past instant to the plaee occupied by that centre at present. There is then an essential difficulty as to our forming a distinct coneeption either of rest or of rectilinear motion through unmar'ed space. He discussed, in connection with this, the state. ment set forth by Sir Isaac Newtoa, under the desiznation of the first law of motion, that every body continues in ifs state of resting or of moving unjformly in a straight line, except in so much as, by applied forces, it is compelled to change that state. A most important truth in the nuture of things, perceived with more or less elearness, was, he said, at the root of that enuneiation; but the word*, whether taken by themselves, or in eonnection with Newton's accompanying definitions and illactrations, were inadequate to give exprescion to that great natural truth. He proceeded to explain the eharacter of mutual motion, which can in any sense be regarded as uniform rectilinear mutual motions. He gave, under the title of the law of inertia, an enunciation which he offered as setting forth, by a better expression, all the truth which is either explicitly stated, or is suggested by the first and second laws of motion in Sir Isaac Newton's arrangement. In connection with the law of inertia he gave further statements bringing out expressions of the prineiple of chronometry and the principle of "directional fixedness " or of absolute clinural rest; and of absolute rotation.-Sir W. Thomson described a modification of Gauss's method for determining the horizontal component of terrestrial magnetic force and the mag. netic momeats of bar magnets in absolute measure.-Mr. Thomas Muir gave a paper on the phenomenon of greatest middife in the eycle of a class of periodic entinued fractions.

March 17.-Robert Grey, vice-president, in the chair.Messrs. Peach and Horne, of the Geological Survey of Sentland, communicated a paper on the Old Red Sandstone volcanie rocks of Shetland.-Mr. P. Geddes gave the first two parts, mathematical and physical, of a paper on the prineiples of economics. -Prof. Crum Brown communicated a paper by Prof. Michie Smith on an integrating hygrometer.

Dublin

University Experimental Seience Association, March 18,--On the boiling-points of the haloid ethers, by F. Trouton. -On a new test for gallic aeid, by A. E. Dixon, B.A. The crimson-red colour which Dr. Sidney Young had noticed on adding a solution of cyanide of potassium to a solution of gallic acid, and which a few minutes' rest or gentle warmoth causes completely to disappear, is probably due to oxidation. For although when shaken in contact with the air the colour reap-
jears, it will not do so when shaken in an atm sphere of hydro gen, nitrogen, or carbon dioxide. On re-exposure to the air, with agitation, the eolour may be brought back. The red col sur is not dissolved out by alcohsl, ether, or chloroform; neither dees it afford any eharacteristic absorption-spectrum.-On Ayrton and I'erry's electrometers, by G. F. Fitzgerald, F.R.S.-An electrj-magnet for use in analysis was exhibited by J. Joly, H.F. The electro-magnet i s sealed into a te it-tube to enable it to be dipped into solutions e ont aining perruginous particles.

Paris

Academy of Scienees, March 31.-M. Rolland in the chair. -Remarks on the third volume of the "Annals of the Bureau of Longitudes," presented to the Acalemy by M. Faye.-On a proposed classification of comets according to their direct or retrograde motion, by M. Faye. - Note on the form of the nucleus of the PonsBrooks comet, by M. Faye.-On the specific heat of gaseous elements at very high temperatures, by MM. 13erthelot and Vieille. - Note on the origin of sugar of milk, by M. Paul Bert. From experiments made on goats the author infers that the sugar of milk is protuced by the mammary secretion of the superabundant sugar formed by the organisms after parturition, most probably in the liver.-On a new species of fossil Sirenian found in the Paris Basin, by M. A. Gaudry.-On the correspondence between two different species of functions of two systems of quantities correlated and equal in number, by M. Sylvester.-Separation of gallium ; separation from organie substances, by M. Iecoq de Boishaudran. - On a modified form of lightning-conductor, by M. A. Callaud.-Results of experiments with a new ventilating system worked by centrifugal force, by M. L. Ser.-Observations marle at the Meudon Observatory on the planet Mars, by M. E. L. Trouvelot.-Approximate calculation of the thrust and surface of fracture in a homogeneous horizontal mass of earth supported by a vertical wall, by M. J. Boussinesq.-On Gyldén's differential equation :-

$$
\frac{d^{2} x}{d t^{2}}=\phi_{0}+x \phi_{1}+x^{2} \phi_{2}+\ldots+x^{m} \phi_{n=}+\ldots
$$

in which the ϕ 's are trigonometrical series, by M. Poincare. Distribution of the potential in a rectangular plate traversed by an electric current with permanent nfoime, by M. A. Chervet. On the clectric phenomenon of the transport of ions and its relation to the conductivity of saline solutions, by M. E. Bouty.On the resistance of the carbons employed in the electriclight of the French lighthouses, by M. F. Lucas.-Note on the verification of the laws of transverse vibration in elastic rods, by M. F.. Mercadier. -The general theory of dissociation deduced from the general data furnished by the mechanical theory of heat, by M. Isambert.Note on the measurement of the tension of dissociation in the iodide of mercury, by M. I. Troost.-On the phenomenon of the crystalline superheating of sulphur, by M. D. Gernez.-On the non-existence of the hydrate of ammonium, by M. D. Tommasi. The author's experiments lead him to the conclusion already arrived at by Thomwen, that hydrate of ammonium does not exist in ammoniac water.-On the decomposition by water of the combinations of cupreous chloride with the chloride of potassium and chlorhydric acid, by M. H. Le Chatelier.-On the composition of pitch-blende, by M. Blomstrand. From his analysis the author concludes that this substance is a mixture of uranine, silicates, carbonate of lime, and sulphuret of iron, its formula being :-

$$
2 \mathrm{U}_{7} \mathrm{~Pb}\left(\mathrm{O}_{6} \mathrm{U}_{3}\right)+5\left(\mathrm{R}_{2} \mathrm{O}_{4} \mathrm{Si}_{8} 2 \mathrm{Aq}\right)+7\left(\mathrm{CaO}_{2} \mathrm{CO}\right)+1 \mathrm{Fe}_{7} \mathrm{~S}_{\mathrm{a}}
$$

-Note on the quantitative analysis of the phosphoric acid in arable lands, by M. G. Lechartier.-Ileat of formation of the fluoride of silver, of magnesium, and of lead, by M. Guntz. - Thermnchemical study of hydrofluosiliceous acid, by M. Ch. Truchot.On the glyoxalbisulphide of soda, by M. de Forcrand.- On the influence of cerebral lesions on the temperature of the body, by M. Ch. Richet.-On the special distribution of the motor roots of the brachial plexus in the human system, by MM. Forgue and Iannegrace,-Description of a gigantic Dictyoneura (D. monyi) found in the Carboniferous measures of Commentry (Allier), by M. Ch. Brongniart. This remarkable insect must have been at least fifty centimetres long.- On the origin of the roots in the ferns, by M. fachmann. - On the causes which may modify the effects of the action of light in directing the motion of plants, by M. E. Mer. - On the diffusion of christianite in the ancient lavas of the Puy-de-Dôme and the Loire Basin, by M. F. Gonnard. - Note on the origin of certain phosphates of lime found in mass in the limestones of the Secondary series, and of
certain imon orcs Felonging to the class of globular ores，by M． Dieulafait．－On the solar halos observed at Saint Maur on the morning of March 29，by M．E．Renou．－Note on the presence of manganese in the wines of Girave，by M．E．．rJ．Maumené．

Berlin

Physical Society，March 7．－Prof．Neesen，by means of different glass tubes，demonstrated eertain phenomena of Kundt＇s dust figures produced by experimenting with deep tones．Busied with an examination into the cause，not yet explained，of the trans－ verse ridgings in sounding－tulies，Prof．Neesen bas，instead of the high tones of longitudinally－vibrating tubes，tested deeper tonex， which are kept up in the column of air of the glass tubes by an electric tuning fork．In the course of this investigation he made very heautiful observations in many tubes of dust－whirls roaming bither and thither，now to one side，now to the other． In other tubee，again，the whirls enme to light either with great difficulty or bat imperfectly．It would theref．re appear that the material of the tubular wall exercised some influence on the production of those whirls．The speaker had yet，how－ ever，come to no definite result respecting the cause of the transverse ridges．－Dr．Kornig supplemented the experiments he conmunicated at the last siting of the Society，on the sensi－ tiveness of normal eyes for variations of colour between the wave－lengths of 640 and 430 ．This he had so far done， inasmucb as he hat teved the influence of light－intensity on the sensibility in que－tion．Seeing，as was well known，that light－ intensity，in this part of the spectrum espeeially，mounted very rapidly from the line C to the line D ，and again sank from the maximum beyond D down to F，it would be pos－ible that the differen＇iating sensibility arrived at in the former experi－ ments was in large part conditioned by the differences of intensity．The croperation of intensity was now in the new experiments partly excluded as a factor in this way，that the spectrum was observed through an absorbing medium whose maximum of absrption stood at $\mathrm{D}, \mathrm{s})$ that the curve of light－intensity between C and D rose with much less rapidity，ran borizontally for some distance，and then sank to D．The measurements，being carried out as in the former ex－ periments，yielded the result that the differentiative sensibility under the conditions mentioned had undergone very little alter－ ation，and that，consequently，light－intensily had no influence on the range that had been arrived at．－Prof．von Helmholtz re－ ported on a theoretic treatise he had laid before the Berlin Royal Academy，in which he had taken in hand the tark of ex－ plaining，in accordanee with mechanical principles，thermal movements，and more particularly Carnot＇s law．He attained bis object hy means of the rules bearing on stationary move－ ments，as they were calculated for a vortex revolving without friction and with great velocity，or for a fluid moving without friction in a closed circular canal．The equations for these stationary movements derived from mechanies corresponded with those derived from Ingrange＇s law for thermal movements．
Physiological Society，March 14－－Prof．Lucae gave an address on the subject of subjective auricular sensations and their treatment．He showed by examples that the idea that subjective auricular sensations，and in particular the generally known one of singing in the ears，had a somatic cause，such as stoppage of the external acoustic duct or of the Fustachian tube，was not in accordance with experience．Hoth on himself and on persons of musical culture he had determined the pitch of the singing or whistling sound，and had found it equal to the proper tone of the external acoustic duct．This circumstance，together with sevcral other facts，led him to the conjecture that the singing in the ears was caused by a tetanus of the tensor tympani，which set the air over the membrane of the tympanum in continuous oscillation． In cases of suffering from this distemper，of which the speaker cited a number of examples，the subjective auricular sensations were to be divided into such as were intensified and such as were abated by external sounds．Hoth kinds were to be regarded as phenomena of abnormal resonance，and were accompanied by different degrees of harilness of hearing down to deafness，The treatment of these subjective sensations，so far as they were simple tones and noises，and not the subjective hearing of words or of anything outside the hearer（disturbances psychological and beyond the scope of his address）consisted，in the opinion of the speaker，an opinion based on manifold personal experience， in suljecting the sufferers，for progressively longer periods of time，and for as many as two to three minutes at once，to a certain constant tone of the tuning fork．In such a case Prof．Luca＊
used deep tuning forks with such as heard subjective high tons． and vics tersod．With the cessation of the subjective bosese the deafness also usually disappeared，and the suffierers recoverot？ permanently normal state in this respect．An explaation od this phenomenon the speaker thought might be foond in the analogy of other sensations in which abnormal cxctement ie en part of the sensory nerves was relieved by the excilemat d neighbouring nervous parts．－Prof．Munk reported on a treazix sent for insertion in the l＇erhandlungen by Dr ．Gad，a forim member．Contrary to the opinion on the subject bitherto ewo tained，Dr．Gad in this treatise proved that in the spinal mancr of froge，even under the seventh nerve－foot，there were rkt centres in operation．By cutting through the spinal mama． below this spot，reficx convulsions from the toes apwands ir produced，not only on the same but als，on the opposite she In other experiments on frogs the spinal marrow was cut throg） beneath the medulla ollongata，and the upper part of the spimi marrow as far as the second vertchra carefully prepared and tis on filtering paper saturated with strychnine．On stimultizis the frog at the lower extromities reflex movements were sean ： pervade the whole body，hut in the region of those sectives a the spinal marrow treaterl with strychnine，flexor spaems wo observed，though it is well known to be a special chanactencr of the strychnine spasm that it exclusively attacks the evenv muscles，In this way was demonstrated the existence of co ducting trachs rising from the reflex centres situated in the lowe most part of the spinal marrow up to its topmost parts．If thew latter，again，were electrically stimulated，no flexor morece could be started from the spot which before，under the oper tion of strychnine，had generated exterior reflections．Betwes this part of the spinal marrow and the motory nerves there med therefore lic ganglia．－Following up his communication at it last sitting，on the presence of nitric acid in urine，Dr．We brought before the Society a scries of chemical reactions tenci， to demonstrate that nitric acid could exist and be substanium in an oxidised solution along with urea．

CONTENTS

Stokes on Light．By Prof．P．G．Tait

Our Book Shelf：－

Gray＇s＂Absolute Measurements in Electricity and Magnetism＂
Duthic and Fuller＇s＂Field and Garden Crops of the North－Western Provinces and Guth＂
Lock＇s＂Treatise on 11 igher Trigonometry＂
Letters to the Editor ：－
Teaching A nimals to Converse．－Sir John Lubbock， Bart．，M．P．，F．R．S．
＂The Unity of Nature．＂－George J．Romanes， F．R．S．
The Remarkable Sunsets．－Robt．J．Ellery；S．E． Bishop：Prof．J．P．O＇Reilly
Metebrological Bibliography．－G．J．Symons， F．R．S．
Ice Volcanoes－Mountain Rainlow．－A．P．Colman Thread－twisting．－Dr．J．Rae，F．R．S．；Henry Faulds
Colony of Cats．－George Rayleigh Vicars Earthworms．－J．Lovell
＂The Axioms of Geometry．＂－Edward Geoghegan
Geology of Central Africa．13y Henry Drum－ mond
Chinese Palsontology．By Prof．Robert K．Douglas
On the Formation of Starch in Leaves．By Prof．H． Marshall Ward
Telephony and Telegraphy on the same Wirs Simultaneously（With Diagrams）
Notes

Our Astronomical Column ：－
Comet 1884 a
Variable Stars
The Ohservatory，Cincinnati
The＂Astronomische Gesellschaft＂

Physical Notes

Bacteria
The Stability of Ships．By Prof．Elear（ IVİAD Diagomen） The Institution of Naval Architects
Scientific Serials
Societles ard Academies

THURSDAY, APRIL 17, 1884

SAMOA

Samoa. A Hundred Years ago and long before. By George Turner, LL.D. With Preface by E. B. Tylor, F.R.S. (London : Macmillan and Co, 1884.)

FOR the purposes of comparative ethnology Dr. Turner's new work on Samoa, that group of ten islands in the Pacific which the Frenchman Bougainville named the Navigators' Islands in 1769, is entitled to stand in the same rank with such books as Williams's account of Fiji or Mariner's "Tongan Islands." The careful study of Samoun beliefs ant customs for a period of more than forty years confers unusual authority on the writer's statements, whilst his des rription of their heatben condition derives more than ordinary value fro n the fact of his having been among the earliest missionaries who visited the island. Mr. Tylor, in the short preface he has prefixed to the book, speaks with justice of the peculiar interest which attaches to a work that des aribes Polynesian life as seen in its almost unaltered state before contact with European races had inaugurated a period of rapid change and made what was original and native indistinguishable from what was of foreign importation.

Complete as is the account given by Dr. Turner of Somoan life generally, of the government, social condition, and laws, of the people's food, their houses, or their canoes, the main interest and value of the work lies in the chapters which deal with the religious and mythological ideas of the Samoans. The book in this respect is not only a storehouse of curious myths and legends, but it helps to throw light on the vexed question of the origin of mythology as known in other part; of the world. The whole of Samoan mythology is based on the conception of the male and female nature of all things, such as we still find traces of in the genders of European languages. Thus, according to their cosmogony, from the marriage of the high rocks and the earth rocks sprang the earth, from the marriage of the earth and the high winds sprang the solid clouds, and so on till they come to the gods and chiefs down to the individual who was proclaimed king in the year 1878.

Stories betraying the same rude conception of nature abound. A girl turns into a mountain without difficulty (p. 117) ; a certain stone is a coward who fled in battle (p. 45); certain trees are transformed men (pp. 119, 219). The important thing is that these and similar storiez are spoken of as "seriously believed" by many. "In all these stories the Samoans are rigid literalists and believe in the very words of the tradition" (p. 214).

Samoan ingenuity has its explanation for the origin of most things : of man himself; of the name Samos as well as of that of all the islands and their chief places; of springs (p. to) ; of the sea (p. 12); of pigs (p. 111); and, strangest of all, the story of the origin of cocoa nuts (p. 244).

Dr. Turner reckons the number of Samoan deities that Vol. xxix.-No. 755
had come to his knowledge at 120 , yet there was a time when the Samoans were said to have no religion of any kind. Each individual, each household, each village, had his or its peculiar god, incarnate generally in some creature, but sometimes in a stone, a shell, or even a star. The rules and ceremonies of this fetichistic religion resembled very much those in vogue in America or Africa. A man, while considering it death to cut or injure the incarnation of his own god, would owe no respect to the incarnation of his neighbour's. Illnesses and death were the result of some offence against the gods, and prayers and offerings played in consequence a large part in the daily life of the Samoans.

An ill-defined supremacy among the gods belonged to Tangaloa. He made the heavens and the earth. He was specially prayed to before war, before fishing, or before planting, and thunder was the sign that the prayer was heard (p .53). Like Zeuz, he sometimes was attracted by mortal women, and to obtain the lady who ultimately became his wife he sent down first thunder and storm, then lightning and darkness and deluging rain, and, last of all, a net in which he succeeded in catching ber (p. 232).

The souls of dead Samoans started for Pulotu, the spirit-world, through two circular holes near the beach, the larger hole being for the souls of chiefs, and the lesser for those of commoners. They went under the sea till they came to a land where all things were very much as they had been on earth. Chiefs looked forwar I with pride to the use of their bodies as pillars in the house of the Samoan Pluto (p. 260).

In the Tongan Islands there was the same belief in Boluto as the future world; and Dr. Turner's work is suggestive at every turn of comparisons with the beliefs or customs of remote parts of the world. The Samoan story of the origin of tattooing, turning on a mistake in the delivery of a message (p. 5j), resalls the Kaffir and Hottentot account of the origin of human mortality. The story of the turtle and the fowl (p. 218) points the same moral as the claisizal fable of the tortoise and the hare. The story of the womm and her child who were taken up to the moon, where they may still be seen (p. 203), is precisely similar to the moon myths of European folklore. The custom of artificially flattening the heads of children (p .80) connects the Samoans in habit with the American tribe who, for doing the same thing, were called the Flathead Indians.

With regard to Samoan customs generally the most interesting allusions in Dr. Turner's work are to the mock burnt-offerings, when for some offence against the gods a man would undergo a counterfeit process of baking in a cold oven (pp. 32, 69) ; to the ordeals for the detection of theft (pp. 19, 184) ; to imprecations by taboo, as when the fear of a shark was instilled into a thief by the plaited figure of one (p. 186) ; to the confession of crimes for the purpose of obtaining divine pardon (pp. 34, 40, 141); to purification before battle by sprinkling (p.64). It is perhaps to be regretted that in reference to the rules of marriage the information vouchsafed by Dr. Turner is not so full as on the preceding points: we are not told whether the Samoans were endogamous or exogamous, nor to what extent purchase entered into matrimony.

C C

A modified system of communism prevails with regard to property, every man having claims on the general posseisions of the clan, so that in building a house or a canoe he can always draw on his relations. Dr. Turner says that this system is a sad hindrance to the industrious; but he also points out that it obviates the necessity of poor laws by maklng poverty unknown and inconceivable (p. 160).

We miss in Dr. Turner's book any estimate of the progress made by the Samoans since or in consequence of the arrival of the missionaries in 1830 ; though he makes it clear that before that time they bad made some independent advance in the ways of civilisation. Thus he notices the previous mitigation of their penal code (p. 378) ; and points to tradition as attesting in former times the custom both of cannibalism (pp. 236, 240) and of human sacrifices (p. 201). One would gladly know whether their numbers are increasing or the reverse; whether their wars have stopped; and whether it can still be said of them, as Dr. Turner says of them as heathens, that " few drank to excess."

The last chapter deals with twenty-three islands away from the Samoan group, such as the Gilbert group and the New Hebrides, but in reference to these the writer speaks more on the authority of native teachers than on a prolonged personal residence among them. The most noticeable thing is the frequency of the custom of making infanticide compulsory by law; and the generality of the belief in the original resting of the sky upon the earth and in the necessity of pushing it upwards. Perhaps the most curious custom on these islands is that quoted of the isle P'eru, by which a married woman for years after her marriage was prohibited from looking at or speaking to any one but her husband. When she went out she was covered in a mat with only a small hole in it by which she might see her way, and any man who saw her coming was obliged to hide himself till she had passed (p. 298).

Having touched on the chief points of interest in Dr. Turner's work, we cannot do more than commend it earnestly to the attention of all who take interest in the customs of unadulterated heathenism. We may fairly describe it as one of the most important contributions to the science of anthropology that has been published for many years. In matter and arrangement it is a great improvement on the "Nincteen Years in Polynesia" in which Dr. Turner first gave to the world his experiences of Samoa. There is an entire absence, perhaps too much, of personal missionary narrative ; nor will any one regret in the present work the long chapter which in the former dre $*$ attention to a quantity of more or less trifling resemblances between the customs of the Samoans and the Jews. The similarity is doubtless a real one, but it only shows, as wherever else it appears, not that the people in question had any connection whatever with the Jews, but that the Jews in their evolution from savagery passed through the same stages of thought and custom which still characterise barbarism wherever it exists. The more the customs of remote parts of the world are brought into comparison, the more wonderful in its almost mechanical regularity must appear the history of human development.

J. A. Farrer

VOICE, SONG, AND SPEECH

Voice, Song, and Speech. A Practical Guide for Singers and Speakers, from the Combined View of Vocal Surgeon and Voice Trainer. By Lennox Browne, F.R.C.S. Edin., \&c., and Emil Behnke, \&c. 8vo, pp. 322 (London : Sampson Low, Marston, Searle, and Riving. ton, 1883 .)

TH1S bulky handsome volume of 322 pages seems at first sight to present considerable difficulties to a reviewer, which begin with the very title-page, wherein its contents are said to be derived "from the combined view of vocal surgeon and voice trainer." The latter occupation is fairly definite; but what exactly is the former? It might indeed be thought that the striking photograph, with wide-opened mouth and glaring eyeballs, which faces the title, represents the vocal surgeon in question, seen in the very act of giving tongue. But this explanation turns out to be incorrect; as it is an excellent though not a "combined" view of Mr. Emil Behnke's larynx, taken from nature and untouched by hand. This feature, if indeed the larynx can be correctly called a feature, of the work, is, it may be at once said, the best it contains. The gentleman just named has exhibited remarkable energy and perseverance in obtaining, for the first time, a series of autolaryngoscopic views of the vocal chords in the process of phonation, and in different registers of the voice. Four of these, given on an enlarged scale in the body of the volume, go some way towards settling the long debated question as to the different mechanism of the natural and the artificial or "falsetto" voice. In all other respects the book is very unequal, and contains little that cannot be as well or better obtained elsewhere. It has two prefaces: one of the usual kind, and in the usual place ; the other at the opposite extremity of the work, quaintly termed a Preface to Advertisements, in which it is stated that " the authors have stipulated with the publishers that no advertisemen: whatever should be admitted without their express sanction." The opening chapter is entitled " A Plea for Vocal Physiology," and is followed by others on the laws of sound, the anatomy and physiology of the vocal organ, and on the larynx, which need no special notice except to remark that the nomenclature adopted in the description of the last-named organ, like that employed in another of Mr. Behnke's works, is somewhat un-English and clumsy. The old Greek names thyroid, cricoid, arytenoid, and the like are at least as graceful, and perhaps as easy to retain in the memory as the "ring-shield aperture," the "shield-pyramid muscles," and the "buffer cartilages' In the chapter on vocal hygiene some characteristics fortunately uncommon, begin to show themselves. We are told that " Better than a respirator is the veil invented by Mr. Lennox Browne, and sold by Messrs. Marshali. and Snelgrove." On turning to the selected and expur. gated advertisements, we find one from the latter firm, adorned with a fascinating picture of a lady wearing the said invention, of which the price is " 5 s. , or by post 55. 2d." On Pp. 110 and 118 we meet two old friends, again ladies, one with a natural, another with a deformed, waist; and to our delight they reappear with fartber in ternal detail on pp. 112 and 113 . Four pages having been thus pleasantly got over, we learn with relief on p. 11\%,
that "hygtvair corsets, exactly of the kind we describe, can be obtained froms esr. Pratt (surgical mechanist of Oxford Street)." On turning to tho -dvertisements, we, singularly enough, find Mr. Pratt also among the olect. Hutchinson's well-known spirometric experiments are then largely drawn upon, and freely quoted, by which means we reach p. 132, where we find four pages of illustrative cases, including those of the "Rev. Canon G," who "broke down in voice"; "A. B., Esq., M.P.," who "suffered from impediment in speech"; "C. W. P., Esq, Mus. Bac.," who "spoke in a child's treble"; and "Miss D. M.," who " was rapidly losing the upper and middle notes of her voice from faulty production." All these, and others, to the number of eight, even a Scotch precentor among them, were happily cured.

We next pass to the oft-told history of the laryngoscope and its teachings, to find on pp. 163-169 some really good woodcuts of the five registers of the voice, named, according to Mr. Curwen's system, the lower thick, the upper thick, the lower thin, the upper thin, and the small respectively. Farther on two of these, and the falsetto, are reproduced by photography as above stated.

The chapters on voice cultivation, on breathing, on "attack," and on resonance go rather beyond the scope of a scientific paper. As an exercise, the pupil is recommended 'to repeat the syllable koo four times rapidly, once long; following with oo, oh, ah. The effect, with a large class, would be highly pastoral and pleasing. Indeed, it is a comfort to know that this "will be published very shortly by Messrs. Chappell and Co., of 50, New Bond Street " (vide advertisement). The most original chapter of all is, however, that on "The Daily Life of the Voice-User." He or she is instructed as to residence, "ablutions," "face and neck powders" (see advertisement), dress, and especially as to a " special woven and shaped combination, reaching from neck to ankles and wrists." On turning with feverish haste once more to the advertisements, we find that this boon to human nature can be obtained of E. Ward and Co. of Ilkley, and that the cost is only $12 s .6 \mathrm{~d}$. On the other hand, while treating of diet, the authors, no doubt from a "combined view," say (p. 256), "We decline to give an opinion on cucumber."

The above extracts will show the general tone and style of the work. The writer of these lines wishes to speak with the greatest respect of Mr. Behnke's really valuable photographs, which he exhibited at the Royal Institution about a year ago. He cannot help regretting that that gentleman in bringing his new conception into the world should have called in the obstetrical aid of any surgeon, however "vocal."
W. H. Stone

OUR BOOK SHELF

A Sequel to the First Six Books of the Elements of Euclid. By John Casey, LL.D., F.R.S. (Dublin: Hodges, 1884.)

We have noticed (Nature, vol. xxiv. p. 52, vol. xxvi. p. 219) two previous editions of this book, and are glad to find that our favourable opinion of it has been so convincingly indorsed by teachers and students in general. The novelty of this edition is a supplement of "Additional Propositions and Exercises" (pp. 159-174). This contains an elegant mode of obtaining the circle tangential to three
given cireles by the method of false positions, constructions for a quadrilateral, and a full account, for the first time in a text-book, of the Brocard, triplicate-ratio, and (what the author proposes to call) the cosine eircles. Dr. Casey has collected together very many properties of these civoloc and, as usual with him, has added several beautiful results of his own. He is not so thoroughly well up in the literature of the subject as he might be, but he has done excellent service in introducing the circles to the notice of English students. Again, Question 31, p. 174, to one unacquainted with geometrical results, would appear to make its de'buf here, whereas it figures as a question in the "Reprint from the Educafional Times" (vol. iii. p. 58), ${ }^{1}$ and is discussed there in connection with an envelope which forms the subject of a paper by Steiner (see also pp. 97, \&c., and vol. iv. p. 94).

Many of the trifling errors we previously pointed out have been corrected, but some are still left, as on p. 39, line 15, " $A B$ " should be " $A C$ "; p. 110, reference should be to the "Reprints from the Educational Times" ; p. 74, line 8 up, should be " $B D$, " not " $P D$ "; Question 103, p. 157, is incorrectly printed ; p. 172, the Brocard angle, in all the papers we have seen, is denoted by ω and not by a We think a better place for the "Observation" on p. 172 would be after Question 3 on p. 171. The figure on p. 134 is inverted. In the "Index," Pascal's Theorem should be referred to p. 129 and not to p. 139. We only need say we hope that this edition may meet with as much acceptance as its predecessors: it deserves greater acceptance.

The Ores of Leadville, and their Mode of Occurrence, Suc. By Louis D. Ricketts. 4to. (Princeton, New Jersey, 1883.)

THE author, in accordance with the requirements of the Ward Fellowship in Economic Geology in Princeton University, spent upwards of four months at Leadville in the study of the ores and their mode of occurrence, and more particularly in the Morning and Evening Star Mines. The result of his investigations are presented in a very useful memoir dealing with the minuter phenomena of the two mines investigated, which are admirably placed for this purpose, as, although small, they have yielded an enormous quantity of carbonate of lead associated with silver ore in the form of chloride and bromide, the whole deposit being probably a pseudomorph or substitution-product of a blue limestone of Carboniferous age, by infiltration of metallic minerals from an overlying sheet of gray porphyry. This class of substitution is not unknown in other parts of the world, the famous calamine deposit of Vielle Montagne being one of the most familiar examples, but nowhere else is it illustrated on the great scale obscrved around Leadville, which now produces nearly onehalf of the total quantity of lead raised in the United States. The ore itself varies very considerably in character, consisting of mixtures in every conceivable proportion of hard granular and soft carbonate of lead, often exceedingly pure, with quartzose brown iron ore and silver chloride and chlorobromide, the latter sometimes in lumps of a few ounces or even a pound weight; more generally, however, it is diffused through the mass, which is enriched to from 50 to 100 ounces in the ton of ore. A point of great interest, we believe first noticed by the author, is the occurrence of beds of basic ferric sulphate underlying the lead carbonate, and also containing some silver as chloride and lead as sulphate. This the author considers to be due to the oxidation in silu of a belt of iron pyrites more or less mixed with galena, the change being so complete that no trace of pyrites is ever seen in it. In a second section the author gives much interesting detail as to the working of the mines and their produce, the whole forming a monograph of considerable value.
H. B.

[^46]Elemente der Organographic, Systematik, wnd Biologie der Pfanzen. Von Dr. Juilus Wiesner. (Wien: Alfred Hölder, 1884.)
THIS is the second volume of a more extensive work entitled "Elemente der wissenschaftlichen Botanik," the first volume of which dealt with the anatamy and physiology of plants. The first part of this the second volume is occupied with arganography: the author recognises five fundamental types of vegetative organs, viz. "phylloin, caulom, rhizicom, trichom, thallom," and thus 1g. nores the conclusion of Sachs, that stem, leaf, and root are not coordinate categories, but that the root should rather be coordinated with the shoot, a structure composed jointly of stem and leaf. Further, he cites the sporangi\& of Ferns as examples of trichomes (p. 5), and thus does not adopt the view of Goebel, that the sporangium is an independent organ, and is not referable to the categorics of vegetative organs. These two points are sufficient to show that the book is not abreast of current morphological opinion.
The second part is devoted to the systematic study of plants. The arrangement adopted is that of Eichler's "Syllabus," in which the classification of Angiosperms is different from that in current use in England. This section appears to eonsist chiefly of an enumeration of facts, and the student is left to draw his own comparisons between the plants described.
Then follows a part on "Biology," a very readable treatise on the life of the individual, reproduction, and the origin of species. As an appendix a short history of the development of botany is given, and in a few pages of notes, references are given to the most important works on various branches of the subject. It is surprising under the head of classification of Phanerogams (p. 424) to find no mention of the "Genera Plantarum" of Bentham and Hooker, the most important publication of the sort in recent years. The book is illustrated by numerous woodcuts, many of which are taken from older books, for example Schleiden's "Grundzüge." Looking at the book as a whole, there is nothing sufficiently new either in the material or in the treatment to recommend it above others already before the public.

LETTERS TO THE EDITOR

[The Editor does not hold himsel] responsible for opinions expressed

 by his correspondents. Neither can he undertake to return, or to correspond swith the wrilers of, rejected manascripts. No notice is taken of anony mous communications.[The Editor wrgently requests con espondents to kenp thair letters as short as possible. The pressure on his space is so great that is is impossible otherwise to inswre the afpearance nen of communications containing intersting and novel facts.]

On the Motion of Projectiles

I have read with great interest Mr. Bashforth's article on new method of estimating the steadiness of elongated shot when fired from large guns, and I have no doubt that we should have a much better knowledge of every new gan to be brought into service if we could try it, using the Bashforth chronograph, which is the most perfect for measuring the times occupied by a Nhot in passing over a suecession of equal distances. That would give us at once the coefficient of resistance of the air to the projectiles used in that special gun, and then by very simple formula and tables the calculation of trajectories (which is one of the main points in artillery) would be a very easy task.
Instead, with the present system, viz, knowing only the muzzle velocity, we must rely for these calculations on the coefficients determined with only one sort of projectiles; and of course such coefficients must vary very much (more, perhaps, than is generally thought) with different projectiles, with different shapes of the head, and especially with the different methods of giving rotation.

Lately many improvements have heen made in the form of the projectiles ; many ogival-headed shots of two diameters have
heen introduced, and the use of breechloaders ineata of mauble loaders has allowed the use of better -illans of giving rotation,
Of course the present a-memelents still hold good for comparstively short ranses, and for heavy projectiles, because then the loss of velocity is little on account of the small $\frac{d^{2}}{z a}$. But when the $\frac{d^{2}}{t^{2}}$ is rather large, as in the case of small guns or rities, then the coefficients \mathbf{K}_{r}, are less reliable.
1 have had great experience in calculating with the Bashorth method, and I have been able to calculate trajectories for beary guns, which were not far out from the actual practice; 1 had still leetter results using Prof. Niven's method and table; bot when I had to calculate trajectories for small guns, both thee methoxls failed to give me reliable results.
For instance, in calculating the trajectories for the Nordenfeld one-inch gun, I had with Bashforth's method for an angle of elevation of 9° a range of 2282 yards, and for 12° of elecration a range of 2539 yards: instead by actual practice the elerations reguired were found to be-

$$
\begin{array}{ccccccc}
\text { For } 2200 \text { yards } & \ldots & \ldots & \ldots & \ldots & 7^{\circ} & 1 z^{\prime} \\
", 2400 & \ldots & \ldots & \ldots & \ldots & \ldots & 8^{\circ} \\
20^{\prime} \\
, " & 2600 & , & \ldots & \ldots & \ldots & \ldots \\
9^{\prime} & 36^{\prime}
\end{array}
$$

The bullets have an ogival head struck with a radius of ooc diameter and a half, therefore they are not different in shape from the shots usel by Mr. Bashforth in his experimems Besides I divided the trajectory into many small ares, and I was very careful in applying the correction for the different density of the air, viz, using always the formula $\frac{d^{2}}{{ }^{2}}\left(1 \pm \frac{\Delta}{534^{-22}}\right) \mathrm{K}_{\text {n }}$ in stead of simply $\frac{d^{2}}{v v} K_{\text {t- }} \quad$ I was even rather afraid of overdoing this correction, taking a lighter weight of the air than was necessary; and I was very much astonished when I saw that the trajectories calculated were much too short.
It seems to me also that the correction to be applied when the bullet rises to a great height, requires a little more consideration, and a thorough mathematical investigation.
I think that the problem of a body moving in a medium which becomes less and less resistant as the body advances through it is more complicated than we would think at first, and cannot be dealt with by only considering the density of the medium equal to the mean of the densities at the two terminal points.
E. Ristoal

Christian Conrad Sprengel

Tue interest in my note on Sprengel (Nature, vol. xxix. p. 29) may excuse some additional facts. In the Life of D. E. L Meim (by G. W. Kessler, Leipzig, 1835, Svo) the following in reprinted from Heim's diary, vol. ii. p. 72 :-
" 1 read Rector Sprengel's work with indescribable satistac tion. Since the time when I read Iledwig's system of the fructification of the mosses, fourteen years ago, I never had such a great and thorough pleasure as to-day. 1 cannot admire enough the power of observation, the untiring assiduity, the acutenst and the correct and clear exposition of the facts which be had observed. His work is a masterpiece, an original, which give him honour and of which Germany can be proud.
Mr. Heim, who afterwards became a distinguished physiont in Berlin, Prussia, was an enthusiastic mycologist, who bed made the acquaintance of Sir J. Banks and Solander, bs? studied carefully Dillenius's Herbarium in Oxford, had berr visited Geertner and Koelreuter. He speaks rather enthusiasie ally about this naturalist, who showed and explained to him his experiments. Dr. Heim gave also the first instructions in botas to Alexander von Humboldt.

Mr. Kessler, the editor of Heim's Life, says (vol, i. p. 286):"Heim found in Rector Sprengel, to whom he gave the find instructions in botany, a remarkable student. Sprengel repail largely all pains which 11 cim had spent on him by the fruit of his careful stulies."
The editor wrote this in 1835, and the fact that he selected of: of the diary the above-quoted note proves well how muth Sprengel's work was appreciated and admired even by por scientists.

In Kcenigsberg, Prussia, Prof. C. F. Burdach, in his yeuly lectures on physiology, taught and appreciated highly Sprengd's discoveries. In his large "Physiology," published in 1826 with
the assistance of C. E., von Bacr and H. Kathke, and in the second edition, 1835, with the same assistance, and, besides them, with E. Meyer and J. Valentin, and in a French translation of the same work, \&8 237 gives an account of Sprengel's discoveries. "If he should have gone a little too far in some cases it would be without importance; the same occurs with every scientist who makes a great discovery, and becomes with it enthusiastically excited." I know personally that Burdach's well-reputed assistants were thoroughly acquainted with Sprengel's observations.

Prof. H. Burmeister had studied in Greifswald and in Halle, and published his "Handbuch der Entomologie," 1832; an English translation by F. Shuckard. He speaks (vol, i. p. 303) about Sprengel's and Koelreuter's observations at some length, also as well known and of the highest importance. Prof, Burmeister will be indeed best able to state if he became acquainted with the facts in Prof. Hornschuck's lecture on the physiology of the plants, "nature mysterias nobis aperire expertus est" ("vila" in Prof. Burmeister's dissertation), or in Halle by Prof. Carl Sprengel, the nephew of Rector Sprengel, or somewhere else. I know personally that in Berlin, Link, Lichtenstein, Klug, Erichson were entirely acquainted with Sprengel's discoveries. Prof. Kunth was a very old friend of Heim (L.ife, ii. p. 9), and beyond doubt acquainted with the facts, though he has not brought it forward in his lectures after Dr. F. Muiller's statement. I was assured by scientific friends that Treviranus in Bonn and Nees won Esenbeck in Breslau were well acquainted with Sprengel. I confess that I am entirely at a loss to understand how it happened that Sprengel was unknown to scientists in England, where Kirby and Spence's "1ntroduction," \&c., had seven editions from 1815 to $\mathbf{1 8 6 7}$, the last of 13,000 copies. There would be no difficulty to find in German libraries more publications to corroborate my views, but I believe those quoted are sufficient to prove what I intended to state in my former note.

Cambridge, Mass., March 24

Salt-water Fish-Types in Fresh Water

Mr. Hardman's observations on the occurrence of "sea-fish in fresh-water rivers" (NatURE, vol. xxix. pp. 452-53) are not by any means unique. as he has supposed. On the contrary, cases similar to those he has recorded are so frequent as to justify him in believing that "some caution must be olserved in the classification of strata as fresh-water or marine on the evidence of fish alone." The incursion and confinen ent of the two types specially mentioned-the "sunfish" and "shark"-in fresh water have many parallels. For instance, in Nature, vol, xiii. p. 107, Messrs. W. W. Wood and A. B. Meyer have recorded that "near Manila is the Lacuna de Baij, a large sheet of water " whose "water is quite fresh, and, after settling, perfectly potable," but in which live a sunfish (Pritfis pirathlhi) and a small shark. Further, in Iake Nicaragua, whose mean height above mean tide in the Pacific and Atlantic Oceans is 107.63 feet, are likewise found a sunfish-apparenily Pristis antiquoram -and a peculiar shark-Eulamia (or Carcharias) nicaraguensis, The last have been especially noticed in a "Synopsis of the Fishes of Lake Nicaragua, by Theodore Gill, M.D., and J. F. Bransford, M.D., U.S.N.," in 1877 (Pror. Acad. Naf. Sci. Phila., pp. 175-91). Therein it is also urged that "these instances, supplemented as they are by many others, are sufficient to convey a caution against too extensive generalisation of the physiographical conditions hinted at hy fossil remains of aquatic types."

Tueo, Gill.
Washington, April I

"The Axioms of Geometry"

Mr. Robt. B. Hayward has writen to me that some of the statements in my article, "The Axioms of Geometry," in Nature, March 13 (p. 453), are too sweeping, and that in particular Euclid I. 16 does not necessarily hold for the geometry of the cyc-being, or, to use the more familiar language of spherical geometry, that this theorem does not lold unless the median line of the triangle on the side on which the exterior angle lies is less than a quadrant.
Mr. Hayward has also pointed out that the error lies in the assumption that a terminated straight line " may be produced to any length.
All this is clear enough, and I was conscious of it when I
wrote the article. In fact I meant to add, but somehow omitted to do so, that every figure considered has to be limited to less than a hemisphere, or to less than half the space round the eyebeing. If this is done, and if by the whole figure is understood the given figure together with any addition required for the proof, then my statements will hold, but with one exception. I was wrong in saying that Legendre's proof, given by Mr. Cascy, can be treated in the same manner as Sir W . Hamilton's. For in this proof a series of triangles is constructed with sides which increase till they become infinite. The reasoning is therefore not applicable to the spliere. But neilier is it to the plane. We have no right to reason about infinite figures as we do alout finite ones.
O. Henrtct

Wild Duck laying in Rook's Nest

A wrek ago to-day six wild duck's eggs were taken out of a rook's nest about four miles from here. The rookery is situated on the banks of the River Test. The nest from which these eggs were taken (the bird ficw off as the nest was approached) was in a horse-chestnut tree, and was about thirly feet from the ground; the tree was about twenty-five yards from the river, and was surrounded by others, mostly elm. An instance of so unusual a situation for wild duck's eggs might, I thought, interest some of your readers.

Join H. Willmore
Queenwoor College, near Stockbridge, Hants, April 3
[Our correspondent has sent us one of the eggs referred to. which we have submitted to a well-known oologist, who is of opinion that the egg is most likely a wild duck's.-ED.]

The Remarkable Sunsets

I learn from Mr. Frank Atwater, a teacher in the Native College here, that he observed the "glow" at $5 \mathrm{a} . \mathrm{m}$. on September 5, when landing from the steamer at Maalaca, thirteen miles south-east of this. He had arrived in the islands only two days lefore, and marvelled much if such were the sunrises here. He is the only person I have met who olserved it prior to the evening of that dlay. Mr. Atwater's date is verifiable by the regular movements of the steam-packet.
Lahaiua, IIawaiian Islands, March 14
S. E. Bisiop

Cats on the District Railway

Wittl reference to Mr. Vicar's letter last week (p. 551) alsout the cats at Victoria Station, I beg to state that there are cats all over the District Railway both in and out of the tunnels, and many of them-familiarly called "Stumpy" by the men on the line-can testify by the shortness of their tails to the hairbreadth escapes they have had from passing trains. Those I have scen are mostly full-grown cats, and only once have I seen a kitten walking on the rails, and that was at night after the traffic had ceased. At one signal-box which is built on a platform over the line, and the only access to which is by a steep iron ladder, down which no cat could climb, there are two full-grown tabbies -toms I believe-and I have often scen them asleep behind the signal bells or even on the handrail of the platform, utterly callous to the trains rushing by underneath. As a rule the men are very kind to them, and give them milk, \&c.

I would add that until quite recently there was a small fountain and circular basin near one of the pumping-engine houses wherein were two fish which had been there for ahout twelve years. One died last year, and now I see the basin has been converted into a flower-bed by the man in clarge.
E. de M. Malan

Victoria Station, Iistrict Railway, April 14

THE GEODETIC SURVEV OF THE UNITED STATES ${ }^{1}$

WE would congratulate Prof. J. E. Hilgard, the Superintendent of the Survey, on his first general Report on the work of his department, which gives an account of the Survey for the fiscal year ending June 1882. We are unable to gather why its issue has been deferred until now, but its arrival at the present time is not the less opportune, particularly as the programme of
${ }^{\text {t }}$ "Report of the Superintendent of the Survey." Washington, 888_{3}. 556 pp . ato.
the approaching International Geodetic Conference at Washington is beginning to claim decision.
The Report describes the nature and general procedure of the coast and topographical surveys, with a description of the instruments employed ; full details of the observations and their methods of reduction being given.

Whilst the original leading aim of the Survey, the security of navigation, has been kept in view, other objects incidental to the work of trigonometrical survey, and of the highest scientific interest, have not been lost sight of.

Hydrographic surveys have been prosecuted in the waters and off the coasts of seventeen States and Territories, and topographic surveys for the exact definition and delineation of shore line have been carried on in eleven States and Territories. The triangulations for this work have been advanced in twenty-two States and Terrisories, and included the measurement of the base-line in California ; and also, as is well known, the extension of the trans-continental triangulations urged by the late Prof. Peirce, for connecting the surveys of the Atlantic and Pacific coas:s. In the interior States the work has included the continuation of the triangulations of Kentucky, Tennessee, and other States.

The incidental work has comprised the carrying of lines of precise "leveling" between points far distant (1125 miles) ; the exchange by telegraphic signal of the longitudes of important cities ; the usual observations for latitude and azimuth, and of the magnetic elements; the determination of the force of gravity by pendulum experiinent; and the study of ocean currents, particularly of the Gulf Stream.

For the year ending June 1884 the cost for carrying on the work of the U.S. Coast and Geodetic Survey, by which designation this department has been known since $\mathbf{1} 878$, was estimated at $\$ 773,000$, and it is gratifying to note that on the other side of the Atlantic the value of active scientific inquiry continues to be recognised by the State, provision having been made for further tidal, magnetic, gravity, and other scientific observations.

In a geodetic survey extending over an area so large as that of the United States the question of the size and figure of the earth becomes of great importance. Although, as Prof. Hilgard points out, different opinions are held as to the mode of prosecuting gravity experiments, all geodists agree that widely-distributed pendulum observations will give results valuable to geodesy and geology. It is undoubtedly desirable that opportunity should not be lost of combining the results of pendulum observations taken in different parts of the globe, and we trust that the valuable pendulum work done in India ("Great Trigonometrical Survey," vol. v.), and the discussion at the informal confcrence on gravity determinations between Col. J. Herschel, R.E., Prof. S. Newcomb, and the officers of the Survey Department, which was held at Washington in May 1882, may stimulate the recognition in this country of the necessity of further experiment and inquiry in this direction. Although the conclusions proposed by Prof. Newcomb, as amended and adopted by ihe conference, have been elsewhere discussed, it appears desirable at the present time again to invite attention to them. Generally they are as follows :-

1. The main object of pendulum research is the determination of the figure of the earth.
2. A complete geodetic survey should include detcrminations of the intensity of gravity.
3. A minute gravimetric survey of some limited region is at present of such interest as to justify its execution.
4. Extended gravimetric linear exploration is desirable.
5. Each series of such determinations should be made with the same apparatus.
6. Such determinations ought commonly to be accurate to the $1 / 200,000$ th part.
7. All pendulums should be compared at some central station.
8. Determinations of absolute gravity will probably prove useful in comparing the yard and the metre, and they shouid at any rate be made in order to test the constancy of gravity against the constancy of length of a metallic bar.
9. In the present state of our experience, unchanged pendulums are decidedly to be preferred for ordinury explorations.

In an appendix (No. 21) is given the reduction, with the employment of modern constants, made by the late Dr. C. R. Powalky at the charge of the Bache Fund of the National Academy of Sciences, of the places of 150 stars observed by La Caille at the Cape of Good Hope and at Paris, between 1749 and 1757 . Since all these stars have been re-obscrved in recent years at Melbourne and at the Cape, the comparisons of La Caille's places with these determinations and with those of Dr. B. A. Gould at Cordoba became of scientific value.

An account is also given of the measurement of the primary base-line in Yolo county, Sacramento Valley, begun in 1879 with the new compensating base apparatus designed by Assistant C. A. Schott. The measurement was made under the directions of Assistant George Davidson, but the discussion of its results does not appear in the present Report

The measuring bar of the compensating apparatus is of a construction different from other compensating bars, but involves no new mechanical principle. It is composed of two metals, zinc and steel, so proportioned as to be compensatory for change of temperature, the expansion or contraction of a zinc bar five metres in length being counteracted by the expansion or contraction of the two steel bars between which it is placed.

The determination of the rate of expansion of the subsidiary steel and zinc bars by which the five-metre standard was verified was done by means of two micrometer microscropes securely fixed to stone piers placed a metre apart, the metre bar whose rate of expansion was to be determined being compared when at different temperatures with the distance between the two microscopes as determined at a constant temperature by reference to a second standard metre bar. The distance between the microscopes thus becomes a function of the temperature, and in this respect we cannot but think that the method attributed to Gencral Wrede, by which the variable distance between the microscopes becomes unimportant, has a decided advantage.

The active investigations since 1871 as to the distribution of terrestrial magnetism in North America have beome generally known from the reports of Prof. Hilgard, as well as by the publication of Mr. Schott's paper on the magnetic variation of secular declination. Mr. Schott also now gives an important appendix to the Report on the distribution of the magnetic declination in the United States at the epoch January 1885, together with three isogonic charts in continuation of those issued by the Survey up to the year 1876. The results are also given of the magnetic observations made by Lieut. Very on the north-eastern coast of America, particularly at Labrador, in the remote settlement of Nain (lat. $=56^{\circ} 33^{\prime} \mathrm{N}$., long. $61^{\circ} 44^{\prime} \mathrm{W}$.).

In the exploration of the Gulf Strearn, the facts brought out by the deep-sea soundings of Commander J. R. Bartlett during 1881, with Siemens's admirable electrical deep-sea thermometer, are also refersed to; and the account of the deep-sea soundings taken off the Atlantic coast between 1879 and 1883 by Lieut. J. E. Pillsbury, in connection with the exploration of the Gulf Stream, and the discussion by Prof. Ferrel on the tides of the Pacific coast are now published. The inquiries of Dr. Thos. Craig as to fluid motion, particularly as to the motion of
vessels and of bodies such as pendulums, when totally immersed in fluid, are also adverted to.

Twenty-five useful maps and charts are attached showing the general progress of the survey, particulariy on the coasts of Florida, California, Oregon, and Carolina ; together with illustrations of the apparatus used. As compared for instance with the precise drawings given by General lbanez in his Reports in 1860 and 1865 on the Madrid base-line, there may perhaps be room for improvement in the finish of the illustrations given in this Report.

In the Report of the Superintendent for 1883 we shall look forward with interest to the results of the experimental researches on the force of gravity, by Assistant C. S. Peirce, who is now visiting Europe for the purpose of his inquiries.

In the success with which the Superintendent has been able to deal with the different branches of his department, much is due, as he indicates, to the forethought and systematic trcatment of his eminent predecessors, particularly to Carlile P. Patterson, to whose memory a graceful tribute is rendered in the Report; as well as to the able assistance which the Government have placed at the Superintendent's disposal.

AGRICULTURE IN SUSSEX ${ }^{1}$

THIS Report bears evidence of a considerable amount of careful research bearing upon the agricultural practice of Sussex. The honorary secretary, Major Warden Sergison, must be congratulated upon his zealous administration of the finances, whereby an annual income of about 770l. has been secured for the three successive years of active operations. This Report deals with the results of the third year's work, which completed the period over which it was originally calculated that the work should be extended. We are therefore in a position to form some opinion as to the practical value of the results which have been gained. It appears from this Report that it is intended to extend this inquiry.

These experimental researches have been conducted by Mr. Thomas Jamieson, the Fordyce Lecturer on Agriculture in the Univcrsity of Aberdeen, and it will be interesting to notice the improvements and economics which are claimed in his Report as resulting from this rather costly investigation. He says:-" The results are too numerous to give, . . ." but "an attempt will be made to give in a general way the lessons they seem to teach." He then proceeds to indicate these, placing them in the form of question and answcr. We will take the first of these.
"What food do plants need? Prior to the experiments now recorded, the answer to this question would have been 'Nitrogen, phosphorus, potassium, sulphur, calcium, magnesium, iron.' The results of the experinents warrant us in saying that the latter four substances may be disregarded by farmers. We thus realise the value of experiments. If the farmer of ;00 acres will lay his manure bill before a chemist, and ask him to calculate how much he has paid for those useless-or hurtful-ingredients, he will recognise the direct benefit of such experiments."

Those who have watched the good work which Mr. Jamieson has done in connection with the Aberdeenshire Agricultural Association, and who have recognised the opposition with which he had to contend, cannot but regret the hasty conclusion at which he has arrived. It is a very bold assertion to make that sulphur, calcium, magnesium, and iron are not needed as plant-food. He cautions his friends "not to be led away by opposed statements, however plausible, if unaccompanied by proof.' In this case Mr. Jamieson shall supply his own proof, for which purpose we refer to the Report of the

[^47]Aberdeenshire Agricultural Association, 1875-76, p. 29.
Here Mr. Jamieson reports a very valuable series of experiments which he made. White sand was supplied with all the ingredients found in turnips-except one-and turnip seeds were then sown. He says:-"Precisely the same sand, precisely the same seed, precisely the same watering, precisely the same ingredients added, except onewhich was purposely omitted-calcium. In consequence of this omission, although all the other ingredients were present in abundance, the healthy seed produced healthy young plants, but speedily the whole of them died. Just as in an ordinary chemical experiment the desired substance cannot be formed if one of the essential ingredients is absent.' The lesson derived from this experiment is perfectly consistent with agricultural science, and it is a source of profound surprise to find that this substance-calcium-is one of the four bodies named in the Sussex Report as being unnecessary, and that it should be stated that "farmers will not hurt their crops by omitting these four elements." This is a dangerous lesson to deduce from this valuable series of experiments, and we regard it with the greater regret because the facts do not justify such a conclusion.

Other examples might be selected from this Report, which conflict with other experimental trials conducted with, at least, equal care, which also tend to show the necessity for taking more practical views of the results gained. The opinions expressed upon permanent pasture are also open to severe criticism. If the general series of Sussex experiments be placed in comparison with the investigations carried out for the Aberdeenshire Agricultural Association, they will be found devoid of those great national advantages which must long attach to the Scotch experiments. The value of the Aberdeen Association work has never been as fully appreciated as it deservcs, and the agricultural public would have been highly gratified if the Sussex Association experiments had been equally definite and satisfactory.

SOCOTRA ${ }^{1}$

FOUR years have elapsed since an expedition was semt out from this country by the British Association and the Royal Society to explore the 1sland of Socotra. With the exception of diplomatic visits by the resident at Adenin the two or three preceding years, and of a short exploration in 1847 by the French naturalist Boivin, there is no record of any European having sojourned on the island since the date, forty years ago, of its abandonment by the Indian troops which had occupied it for this country during four years, and Wellsted's account of his survey of the island (in Fourn. Roy. Geog. Soc. v. 1835) made in 1834, has been up till now the most recent and most satisfactory. It is remarkable that an island so long neglected and forgotten should be visited in two successive years by exploring expeditions; yet this has happened. In 1881 a party of German explorers followed the British Expedition. This German Expedition to Socotra formed part of a scheme of scientific exploration of many unknown or but little-known regions of the globe set on foot by Dr. Emil Riebeck, and for which his liberality provided the means, and the results of this portion of his undertaking, some account of which now lies before us, must be grat1fying to him as they are valuable to and welcomed by science. Dr. Riebeck was accompanied to Socotra by the wcll-known traveller Dr. Schweinfurth and two other companions, Drs, Mantay and Rosset-a quartet of observers well qualified to take advantage of every opportunity of extending our knowledge of nature. Many

[^48]difficulties and dangers beset their progress to the island, and their leave-taking appears to have been no less troubled; but eventually it has been their good fortune to bring to Europe a magnificent collection of specimens illustrative of its structure, its profucts, and the character of its inhabitants.
Most of the collections have now been worked out either in this country or on the Continent-Schweinfurth's large herbarium having been, with rare generosity, sent by him to this country to be examined along with that of the British Expedition-and the details regarding them are published in various periodicals. Herr von Martens' paper above mentioned is a supplement to the first part of Godwin-Austen's account (Proc. Zool. Soc. 1881, p. 251) of the shells brought home by the British Expedition, and deals with some new forms collected by the German explorers not mentioned in that account. It appeared, however, when the second part of Godwin-Austen's paper was in the press, and this overlapping of the papers has unfortunately led to some forms being described by both authors and under different specific names.
In the other pamphlets before us Schweinfurth gives us in his usual lucid and vigorous language a general résumé of results so far as they have been at present determined. It is satisfactory to find that his conclusions, drawn from considerations of the physical features and the fauna and fora, are almost entirely in consonance with those deduced by the British objervers (see Bayley Balfour in Rep. Brit. Ass. 1831, and Proc. Roy. Instit. for April 1883). The antiquity of the island, the strong affinities of th: animals and plants with those of the adjucent African and Arabian coasts, the presence in the flora of Mediterranean and general tropical types, as well as of forms related to those found on the highlands of Abyssinia, South Africa, and West Tropical Africa, are features insisted on by both. There is, however. a divergence of opinion regarding the Madagascar affinities. GodwinAusten supposes these point to the conclusion that in Socotra and Madagascar we have remnants of an ancient and more advanced coast-line on the western side of the Indian Ocean, which was probably continuous through Arabia towards the north. Martens questions the identifications upon which this supposition rests, and does not agree with it, and Sch weinfurth, though without advancing any cogent reasons, concurs with him.
The question, who are the Socotrans, and whence have they sprung ? is one to which the German Expedition gave special attention, and Schweinfurth devotes a considerable portion of his address to its discussion. At the present time be estimate; the population at ten to twelve thousand inhabitants. Of these about one-tenth are Arabs, culonists from the adjacent mainland, who live in the coast-villages, and are the merchants of the islands. Along with these are found many negroes, most of them runaway slaves. But the dwellers on the hills are the true Socotrans, and speak a language quite peculiar. Amongst them Schweinfurth recognise 3 , as did Vicenzo in the seventeenth century, two races-a darker with curly hair, and a lighter one with straight hair. In addition he finds an apparently Semitic type, characterised by small head, with long nose and thick lips, straight hair, and lean limbs. The Socotran generally is of average height and size, with a quick, intelligent eyc. The type of the true Socotran is quite different from that of the Somali, Galla, Abyssinian, South Arabian, and Coast Indian. From the little known of the Mahra and (2ara tribes which inhabit the hill regions of middle South Arabia opposite, Schweinfurth is inclined to consider the Socotran resembles them most nearly. Many skulls were obtained from the krave caverns, and these are now in the hands of Prof. Welcker, whose report upon them may be looked forward to with interest.

From a study of the peculiar Socotran language the Germans anticipated much aid in elucidating the problem
of the origin of the people. Unfortunately difficulties with interpreters prevenied their achieving much success in this line. Schweinfurth notes, however, regarding the language two marked features. Firstly, its resemblance with the Mahra dialect, which is quite different from the old and the new Arabic, and is a peculiar element amongst the South Arabian dialects. This is opposed to the statement of Capt. Hunter, who says it in no way resembles Mahra. But Schweinfurth in support of his statement quotes the report of Wellsted, that the Mahras and Qaras could understand the Socotrans whilst coast Arabs could not do so: and further, a comparison of the vocabularies made by Wellsted and by his own expedition with the results of von Maltuhahn's studies on the Mabra dialect show many similaritie, between them. Secondly, it contains many foreign elements, and this is especially noticeable in the names of plants and animals, many of them having a thoroughly Greek sound.

Turning to history for a clue to the origin of the Socotrans of to-day, we find many references to their island in the older writers, and to these Schweinfurth refers. The author of the "Periplus" speaks of the people as a mixture of Arabs, Indians, and Greek merchants ; and the presence of the Greeks is explained by subsequent writers by the story that Alexander the Great on the advice of Aristotle sent a colony of Greeis-some say Syrians-to cultivate the aloe. Cosmas relates that under the Ptolemies many colonists were settled on the island, and Jakut in the thirteenth century tells of the Greeks who had become Christians dying out and thus making room for an incursion of Mahra Arabs from the opposite coast. In these old narratives there is, as Schweinfurth points out, much that is contradictory and conflicting, and unfortunately there is at the present day but little internal evidence confirmatory of the existence in earlier times of a cultured race on the island. The visit of the Wahabees in 1800 , as Wellsted says, may probably account for the disappearance of monuments and temples. Schweinfurth speaks of certain small heaps of ruins as perhaps repreienting old altars - but the only definite relic of this character now known is a series of hieroglyphics upon a wide limestone slab at Eriosch near Kadhab. These have attracted the attention of all who have visited the island in recent times, and Dr. Riebeck has paid especial attention to them. His interpretation has not yet been made public, but Schweinfurih states that in them some rows of Greek cipher are to be recognised. It may be hoped that their explanation may afford some clue which will help the solution of the interesting problem of the derivation of the Socotrans. The evidence existing at present is of so imperfect a cbaracter that it is impossible to determine with certainty their stock. Schweinfurth conjectures that in the Semitic element he observed myy be traced a Greek type, and that the Mahra Arabs have most probably had a great sbare in forming the features of the present people. Future exploration must settle the question.
Altogether these papers by Schweinfurth are of the greatest interest, and his long experience amongst the native tribes of Africa gives to his observations regarding the people of Socotra great value. The material obtained by the two expeditions-British and Germanhas enabled us now to obtain a fair idea of the general character of the people, the natural history and physical features of Sucotra; but the short time for work possible to the members of the expeditions-little more than six weeks in each case-naturally renders their results somewhat fragmentary. What has been done as yet is but preliminary, and from it we learn that there is still a vast field for future explorers - not only in Socotra itself but on the adjacent mainlands of Africa and Arabia. Until such further investigation takes place many most interesting problems-ethnological as well as concerning the distribution of plants and animals-must remain unsolved.

THE THREE HUNDREDTH ANNIVERSARY UF THE UNIVERSITY OF EDINBURGH

THIS week the University of Edinburgh is holding its Tercentenary Festival. An elaborate programme of festivities is being gone through by a collection of guests of literary, scientific, and social eminence such as rarely graces a British or even any foreign University seat. A mere recital of the list of those who are to be present to receive honorary degrees would be interesting, as showing the scope and catholicity of modern University culture. We see Hermite, Helmholtz, Pasteur, Haeckel, Virchow, Browning, Renan, Bishop Lightoot, and Principals Tulloch and Rainy, capped by the same academic hand.

It may not be without interest to our readers to dwell for a moment on certain parts of the history of an organism whose appreciatory functions are so varied and at first sight even contradictory.

Three hundred years, though not an infant's age, is after all no great age for a University. Any uncertainty therefore that surrounds the early history of the University of Edinburgh is more the result of initial obscurity than the glamour of remote antiquity. She is, as some one has said, hopelessly modern. Nevertheless, her history is in some respects a very remarkable one. What has now developed into one of the largest of the Universities of Europe, numbering its students by thousands, began as a college for the "town's bairns," under the patronage of the Town Council, who in fact remained its rulers until 1859. There can be litule doubt that the comparatively modern date of the foundation of the college, and the peculiar ${ }^{1}$ nature of the governing body favoured its growth and development into what has claims to be the most liberally constituted of the Scottish Universities.

A glance at the chronology of science will show that the opening of the new Town's College in Edinburgh in $1 ; 83$ falls at the time when the tide of progress in physical and mathematical science was just beginning to rise over Europe.

Napier of Merchiston was living hard by; Gilbert was probably collecting material for his great work on the magnet; and Galileo and Kepler were doing great things for physical science.

Nevertheless, the progress of the young institution was not at the outset very remarkable. This arose partly from the miserable poverty of its early endowinent and of Scotland itself, partly from the plan of "regenting" on which it was organised, which compelled each of four regents to carry his students in four years through the whole course of the seven liberal arts of the medieval curriculum. This plan, so fatal to special excellence in teaching or learning, continued until 1708, when it was finally abolished, and professors of the separate subjects established. Juring this first century, however, the patrons had already engrafted the germs of the modern University by appointing professors of separate subjects, which were sometimes outside the curriculum of the regents altogether, sometimes auxiliary to it. In this way arose some of the present chairs of the faculty of arts, and in this way originated many of the chairs that now form the separate faculties of theology, law, and medicine.

The powers of the Town Council left them absolutely unfettered in the founding of new chairs, and they proceeded in this work guided by their own views as to the necessities of the times, and aided by the best advice they could obtain inside, or more frequently outside, the University. They were not always quite judicious or wholly unbiased in their procedure, and many of their reforms were carried out in the face of bitter hostility from within the University. Yet it cannot be denied that, on the whole, their action as patrons and founders of
${ }^{2}$ Pecutiar from a University point of view, for she older Universities as a rule were priv, leged corporations independeat of, nay, often antagonistic to,
the manicipalities where they were situated.
chairs was for the good of the University. The sectarian feuds which occasioned the Disruption of the Established Church ultimately led, in 1859 , to the severance of the close tie between the Town Council and the Town's College, long ere then grown into a full-blown University. There is no need here to dwell on the dark side of the picture of the management of the University by the Town Council. Their misdeeds are, we may hope, not likely to be imitated by modern patrons, and their enlightened policy in the foundation of chair after chair as the wants of the institution grew is, after all, the more important part of the story, and well worthy to be read in this day of infant Universities and of experiments on the large scale in the remodelling of older Universities of the kind.

As most of our readers probably know, the strength or weakness of a Scottish University depends wholly on the professoriate, with whom lie the whole of the teaching and disciplinary duties. Within certain limits set him by the Crdinances, and with some restrictions owing to the presence of colleagues in allied departments, a Scottish professor within his own classroom is absolutely free, and may develop into a great success, a mediocrity, or a great failure, according to circumstances; and with him rises or falls the department intrusted to his care. The system has its drawbacks sufficiently obvious; but it has this to say for itself, that it is an economical arrangement, and that it has produced a large body of citizens sufficiently well educated to take rather more than their own share of the higher employments in the British Empire. It will thus be seen that the interest of the educational history of a Scottish University centres mainly in the record of the occupants of its various chairs. We offer a few desultory remarks on this subje:t, chiefly from the scientific point of view, referring those who are interested in the matter generally to the recenily published "Story of the University of Edinburgh," by Principal Sir Alexander Graht.

The earliest foundation of a special scientific chair was that of mathematics, to which the Town Council called James Gregory in 1674 . This distinguished mathematician and physicist, the author of various theorems in pure mathematics and of several great ideas in optics (represented to the mind of the ordinary student by Gregory's "Series" and the Gregorian telescope), came of an Aberdeenshire family (related, by the way, to the notorious Rob Roy Macgregor), which, during the last three hundred years, has furnished something like a score of distinguished profe-sors and men of science to the Scottish and English Universities. Gregory was not the first nominal Professor of Mathematice, but he was the first professor who had more than the name. After his brief but brilliant tenure, the office, with but little intermission, was filled by a line of distinguished followers, among whon we must content ourselves with naming David Gregory, who became Savilian Professer of Astronomy at Oxford, who was appointed on the urgent recommerdation of Newton himself, who was in fact the friend and interpreter of Newton, and was by him reckoned worthy, along with Halley, to continue the great work of the co-ordination of celestial phenomena begun in the "Principia." He has the credit of introducing the Newtonian philosophy into the curriculum of Edinburgh thirty years before it obtained a similar place in the University of its author. Colin Maclaurin is the greatest perhaps of all the men of science tbat Edinburgh has produced; of his wide culture and extended activity we may give some idea when we say that he was a worthy successor :o Newton in pure and applied mathematics, that he was a great teacher of mathematics and physics, a great popular lecturer in his day (one of the first of the scientific tribe of sucb, perhaps), that he was an authority on life assurance, on surveying, on geographical exploration, that he was an excellent classical
scholar, a man of great social qualities, and lastly, that he tried to organise a defence of the town of Edinburgh against the Pretender in 1745, and caught thereby the malady that ended his life. Other occupants of the chair were Matthew Stewart, still remembered for his "Propositiones Geometricx" ; John Playfair, distinguished as a critic and historian of science, introfucer of the Continental methods into the mathematical studies of Edinburgh ; John Leslie, an excellent geometer, but now better remembered for his contributions to the science of heat; and William Wallace, inventor of the eidograph.
At first, natural philozophy, in so far as it was distinct from Aristotelian physics, seems to have been is the province of the Professor of Mathematics. It was so in Maclaurin's time, although a separate professorship for it had been founded in 1708. The first professor that need be mentioned here is John Robinson, whose articles in the third edition of the Encyclopadia Britannica are still worth consulting, and whose "Elements of Mechanical Philosophy" was for a time a standard work on the subject. The original close connection between mathematics and natural philosophy probably led to what at first sight seems a curious succession of professors. It more than once happened-notably in the cases of Playfair and Leslie-that the holder of the Chair of Mathematics was transferred to that of Natural Philosophy ; in fact, it was in the latter subject that both these professors attained their greatest distinction, the former by his account of the Huttonian Theory of the Earth, the latter by his wellknown researches on heat. But the greatest of all the past Professors of Natural Philosophy was undoubtedly James David Forbes; he, along with David Brewster, at first his patron, and for a long time his rival, are to be reckoned among the greatest ornaments of the University of Edinburgh during the generation that has passed away. Both were students of the University and both were candidates for the Natural Philosophy Chair ; Brewster, failing probably for political reasons, was reserved for the higher honour of the principaliship. The works of these two great men are so fresh in the recollection of our readers that no words need be wasted here in emphasising them. It is worthy of mention, however, that the late James Clerk Maxwell and Prof. Balfour Stewart, whose fame shefs undying luztre on their Scottish alma mater, were trained in practical physics under Forbes.

The Chair of Chemistry, founded in 1713, was at first essentially a medical chair; its first oscupant, James Crawford, was a remarkable man in every way, a pupil of Boerhaave, and well versed in what little chemical knowledge then existed. It is noteworthy, as showing the small extent of medical and chemical knowledge at that time, that he was also Professor of Hebrew! His immediate successors call for no remark until we reach Cullen (1755), who, though better known as a great physician, was also distinguished as a great teacher of chemistry; he was, in fact, the first to establish that science as a study separate and distinct from medicine. His two immediate successors, Black and Hope, followed his lead, and were very successful teachers; in fact, in Hope's time the class reached the astonishing number of 500 . Besides being a good teacher, Black was a man of genius. His results regarding carbonic acid, embodied in his graduation thesis "De humore acido a cibis orto, et magnesia alba," and his discovery of latent heat form cornerstones in the structure of modern chemical and physical science. Perhaps the greatest praise is that Lavoisier regarded him as his master. Hope will be remembered for his experiments on the maximum density point of water, and for his discovery of strontia as a separate alkaline earth. In 1844 the chair became a chair of pure chemistry. Among the past professors since then we may mention Sir Lyon Playfair, whose scientific reputation is now overshadowed
by his fame as an educational organiser, and an able political champion of the interests of science.

The Chair of Natural History was a later foundation (1770?), and at first was a sinecure. Since the beginning of the century, however, it has not wanted for distinguished occupants. Jameson (1804) was an excellent mineralogist ; he founded the splendid museum now absorbed in the Muscum of Science and Art, and must have been a great teacher to judge by the number of distinguished pupils that he trained, among whom were Edward Forbes, John and Harry Goodsir, Macgillivray, Nicol, and Darwin. The first of these succeeded him, but was cut off after a brief but brilliant career too well known to need description. The last of the past occupants of this chair, Wyville Thomson, has done the University of Edinburgh enduring honour by connecting it with that most fascinating of all the walks of modern natural science-the exploration of the deep sea.
The history of the Chair of Astronomy has been little but a record of misfortune, as far as the University is concerned. The first professor, Robert Blair, wasendowed with a fair salary, but no Observatory was given him, and he never lectured or took any part in the work of the University. He is remembered chiefly for his researches on achromatic telescopes, which he brought to great perfection by means of fluid lenses of his own invention. The second professor, Thomas Henderson, was invested with the dignity and duties of Astronomer Royal for Scotland, and was provided with the present Observatory on the Calton Hill. He devoted himself ardently to his duties as an observer, and will be remembered as the first to determine the parallax of a fixed star (a Centauri). He never lectured. Where the blame of the unsatisfactory position of the Astronomy Chair and of the Edinburgh Observatory rests, and how the matter is to be remedied, is one of the vexed questions to be settled by the coming University Commission for Scotland.

The Chair of Technology was inaugurated with great promise of success by George Wilson, whose brilliant lectures and important services in connection with what is now the Museum of Science and Art showed how important such a chair might under favourable circumstances become. The chair was, however, abolished in 1859, under circumstances that do not appear to reflect much credit either on those who then acted for the Senatus, or on the Government department which was concerned in the transaction. It may be hoped that, now the importance of technical education is being recognised, the mistake then committed will be remedied. This is all the more to be desired because Edinburgh already possesses the rudiments of a technical faculty in the Chairs of Engineering and Agriculture.

There remains but one more Chair of Natural Science to be mentioned, viz. Geology. It numbers but one past professor, Archibald Geikie, concerning whom we need only express the wish that his followers may be worthy of him.

Although the subject scarcely belongs to these pages, yet no notice of the scientific side of the University of Edinburgh would be complete without at least an allusion to the glories of its medical school, which have attracted the admiration, if not occasionally the envy, of similar institutions. It may seem curious, but it began by the institution of a botanical, or, as it was properly then called, a physic garden. The keeper of this garden (originally it is believed a member of the characteristically Scotch Guild of Gardeners), was after a time constituted (1676) the first Professor of Botany, and in fact the first medical professor.

If it were needful to insist farther upon the important place which the University of Edinburgh occupies among the educational bodies of Great Britain, we might point to the number of her students that now hold professorial chairs all over the United Kingdom, and indeed through-
out the British Empire; and to the work which her alumni have done, and are doing, in science both pure and applied.

It might be profitable also to dwell on her defects, which she has in plenty, like other institutions guided by human brains, and endued with her own share of human inertia. But, as she has no want of candid critics, and is by and by to be put into the refining crucible, along with the other Scottish Universities, to emerge, let us hope, purified and strengthened, we may content ourselves with offering her, and asking of readers to join us therein, a hearty wish that she may prosper during the next hundred years as she has done during the present century.
G. Chrystal

THE CONGO

A^{L}LTHOUGH claiming to be little more than the record of a passing visit paid to the Lower Congo Basin towards the end of the year 1882, this is really a work of permanent interest to the naturalist and ethnologist. The author, a young and ardent student of biology in its widest sense, here conveys his impressions of

West African life and scenery in a series of graphic pictures, which owe much of their freshness and vigour to the circumstance that they are always drawn at first hand from nature, and are often an exact reproduction of jottings made with pen and brush in the midst of the scenes described. His skill as a draughtsman he turns to good account by illustrating the text with numerous drawings of plants, animals, and human types, many of which are absolute fac-similes executed by the Typographic Etching Company.

But Mr. Johnston does much more than merely describe in striking language the varied aspects of tropical nature revealed to his wondering gaze as he ascended from the low-lying marshy coastlands along the great
" "The River Congo, from its Mouth to Boloso," by H. H. Johast on, F.Z.S. (Sampson Low, selt.)
artery from terrace to terrace to the grassy steppes and park-like uplands of the interior. Informed by the quickening influences of the new philosophy now accepted by all intelligent students of nature, he compares as he describes, carefully observes, and in apparently trifling incidents endlessly recurring throughout long ages he discovers the causes of mighty revolutions in the organic world. In Stanley Pool and elsewhere on the Congo he meets with numerous floating islands, tangled masses of aquatic vegetation, firmly matted together by their roots and fibres, and strong enough to bear the

Fig. 2.-Lissockilus sigantras.
weight of a man (see Fig. 1). These, like the huge snags and trunks of trees borne along by the swift current, are thickly peopled with all forms of animal and vegetable life, which are thus carried a long way from their original homes. Hence the inference that "on many rivers these floating trees must serve as a great means for the diffusion of species" (p. 283). So also in his recent work on the "Indians of British Guiana," Mr. Im Thurn notices the presence of turtles on the logs and stems swept down the rivers of that region.

Another inference is that the Congo cannot possibly form a true parting-line or natural boundary in the distribution of the West African flora and fauna. "I have read in many works on Africa that the Congo was the southern boundary of the habitat of the gray parrot, the anthropoid apes, and the oil-palm (Elais guineinsis). Now the gray parrot reaches, perhapz, its great development in Malanje, a distri:t of Angola nearly 300 miles south of the Congo, and, togerher with the oil palm, continues to be found as far as the tenth degree smuth of the equator, while the anthropoid apes can hardly be said to be limited southward in their distribution by the lower course of the Congo, for they do not reach even to its northern bank, or approach it nearer than Landana, 100 miles away. . . . There are, besides, many West African plants which stretch right away from the Gambia, across the Congo, into Angola on the south. In short, I have never seen any difference between the fauna and flora of the northern and southern banks of this great river ; nor do I believe that it acts in any way as a limitation in the range of species" (p. 318).

On another point also our explorer differs from some distinguished botanists, who hold that tropical vegetation is inferior in brightness and fragrance to that of the temperate zone. "Alihough the Congo offers nothing, as we yet know, that is unique as genus or family, yet probably nowhere in Africa are there such magnificent displays of colour formed by the conspicuous flowering trees and plants. Here, at any rate, no one can maintain that the lemferate zone can offer anything equal in the way of flower-shows. Many of the blossoms also exbale strong odours, sometimes very offensive, but also in many cases fri grant and delicious. Few perfumes are more pleasing than the clove like smell of the Camoensia or the balmy scent of the Baphias" (p. 324).
His botanical descriptions and sketches are generally admirable, as, for instance, of the Lissochilus gigantizs (see Fig 2), "a splendid orchid that shoots up often to the height of six feet from the ground, bearing such a head of red-mauve, golden-centred blossoms as scarcely any flower in the world can equal for beauty and delicacy of form. These orchids, with their light-green, spear-like

leaves, and their tall swaying flower-stalks, grow in groups of forty or fifty together, often reflected in the thallow pools of stagnant water round their bases, and filling up the foreground of the high purple-green forest with a blaze of tender peach-like colour, upon which no European could gaze unmoved" (p. 35).

There is a decply interesting chapter on the "People of the Congo," who, with the doubtful exception of some dwarfish or Bushman tribes, are all grouped in "that great Bantu family which, when seen in its purest exemplars. the Ova-héréro and Ova-mpo of the south-west, the tribes of the Zambesi, the people of the great lakes of Tanganyika and Nyassa, and the western shores of Victoria Nyanzs, and finally of the Upper Congo, is so distinct, physically and linguistically, from the divers Negro, Negroid, and Hamitic populations to the north of it, and from the Hottentot-Bushman group to the south" (p. 396). Here we find the Bantus as a 1acs distinguished by a good observer, not only from the Hottentots, Hamites, and Negroes proper, but even from the surrounding Negroid populations Further on the Bantus
themselves are said to vary considerably in physical appearance, a statement fully borne out by the accompanying typical heads of a Mu-yansi, a Mu-téké, and a Mu-shi-Kongo (see Fig. 3). "The Congo tribes," we are told, " on nearing the coast, begin to lose their distinctive Bantu character, either through the degradation the coast climate seems to entail, or because on their migration westward from the north-east Bantu focus, they originally met and mixed with, in the low lying coastlands, an earlier Negro population. This latter supposition sometimes strikes me as being the true one, for the reason that, in such a littoral tribe as the Kabinda or Loango people, there are distinctly two types of race. C ne-the Bantu-a fine, tall, upright man, with delicately small hands, and well-shafed icet, a fine face, high thin nose, beard, moustache, and a plentiful crop of hair ; the other an ill-shaped loosely-made figure, with splay feet, high calves, a retreating chin, blubber lips, no hair about the face, and the wool on his head close and crisply curled. The farther you go into the interior the finer the type becomes, and two points about them contrast very
favourably with most of the coast races, namely, their lighter colour-generally a warm chocolate-and their freedom from that offensive smell which is supposed, wrongly, to characterise most Africans" (p. 397).

In this instructive passage all the facts are stated with tolerable accuracy. Yet the general inference cannot be accepted. There is, strictly speaking, no Bantu type at all, and the expression, correct in a linguistic sense, has no definite anthropological meaning. But for the fact that most of the peoples occupying the southern half of the continent speak dialects of a common mother-tongue. no ethnologist would ever have thought of grouping them together as forming a separate branch of mankind. Physically they must be regarded as distinctly Negroid, that is, an essentially mixed race presenting every possible shade of transition from the true Negro of Sudan and the West Coast to the true Hamite of the north-cast coast. Between these two extremes they oscillate in endless variety, presenting nowhere any stable type distinct from either, and bound together only by the single element of their common Bantu speech. On the other hand, this Bantu speech itself is not Hamitic, but Negro, as clearly shown by the absence of grammatical gender. There appears to be also present a more or less distinct substratum of Negro blood in all the Bantu-speaking tribes, from the Mpongwés of the Gaboon to the Ama-Khosas of the extreme south-east, and from the Wa-Swahili on the East to the Ba Congo on the West Coast. Hence these peoples should apparently be regarded rather as Negroes affected by Hamitic tban as Hamites affected by Negro elements. In other words they are Negroid rather than Hamitoid.
The spread of a single organic speech of an extremely delicate structure over such a vast area, unaided by the prestige of letters, or by far-reaching political influences, is certainly a surprising phenomenon. But it is not without its analogues in other quarters of the globe, where we find an equal and even wider diffusion, for instance, of the Malajo-Polynesian, Ursl-Altaï:, Aryan, Athabascan, and Guarani-Tupi forms of speech, also before the rise of literatures and great empires. And as no sound anthropologist regards the Aryan or the Malayo-Polynesianspeaking peoples as belonging to one physical type, neither can they regard the Bantu-speaking tribes as constituting a single ethnical group. All these terms, Aryan, Malayo-Polynesian, Bantu, are essentially linguistic, and as such have a definite meaning. Ethnologically they have little or no scientific value. It is noteworthy that, when not advozating theories, Mr. Jobnston himself speaks of the Bantus of the Congo Basin as Negroes. Thus at p. 298, where be contrasts them unfavourably with the half-caste Wa-Swahili of Zanzibar, he writes:-" The mixture of Arab blood and Arab culture gives a statility and manliness to the Wa-Swahili which is lacking even in the finest race of pure Negro origin. The Congo peoples, for instance, are usually amiable and soft-mannered, but at heart they are seldom to be depended on. There is something so eminently childish in the Negro's character. . . . All these traits are found in the black races of Africa that are of purely Negro or Bantu stock; but in the Semiticised people of Zanzibar you find men of thought and reflection, whom you may use as counsellors and confidants; men who are really capable of zealous service, of disinterested affection, and to whom gratitude is a concept nether foreign to their intelligence nor their tonguc." This is true and well put, and is the common experience of all travellers who have had dealings with the natives of South Central Africa. It shows at the same time that "even the finest" Bantu peoples must ultimately be affiliated to the Negro stock.

Besides the numerous illustrations, two useful maps and a copious index, this handsome volume is furnished with comparative linguistic tables of the chief Bantu
languages current in the Congo basin, as well as full lists of the plants, birds, and mammals occurring in the same region.
A. H. Keane

NOTES

European science has sustained a terrible loss during the past week. Monsieur Dumas, the venerable Perpetual Secretary of the French Academy of Sciences, died at Cannes on the 1 1th inst. at exactly the age of the century. Old as the great chemist was, his death will be felt as a real and serions loss to French science, for up to the last he took an active interest in all its doings. We gave in vol. xxi. so full a biography from the masterly pen of Prof. Hofmann of Berlin, that it is unnecessary to go over the ground again. We may, however, attempt in a future number to appreciate to some extent the position of Dumas in the chemistry of the past sixty years. The funeral took place at Mont Parnasse Cemetery on Tueslay, when MM. Bertrand, D'Haussonville, and others delivered addresses at the grave. The sitting of the French Academy of Sciences on Monday was postponed after the reading of an address by M. Rolland, the president, who praised M. Dumas for the talent and impartiality he exhibited as Perpetual Secretary of the Academy.

The Museums of Economic Botany at Kew are second in importance to none in the world, and, except perhaps as to the size and splendour of the buildings, they are in every way worthy of a nation which has trade relations with every part of the glolve. The foumlation of these museums was laid by Sir W. J. Hooker in 1847, when he obtained leave to fit up an old fruit store with cases suitable for the exhibition of important vegetable products. Ten years later the house now known as Museum No. I was opened to the public, and in 1881 this was added to and the approaches greatly improved. It will be remembered that these builling were not originally designed for museum purposes, and yet such is the arrangement of the cases and so well are the objects displayed and illuminated that we know of no muscum buile for the purpose that we would prefer to No. I Museum at Kew. The collections are contained in Museum No. 1, which is directly opposite the Palm IIouse, on the other side of the Ornamental Water, in Museum No. 2, which is close to No. I, at the northern end of the Herbaceous Garden, while Museum No. 3 occupies the old Orangery. At the north end of the Broad Walk the last Museum contains specimens of large timber, while the monocotyledons and flowerless plants are arranged in No. 2, and the dicotyledons in No. 1 Museum. An official guide to the contents of the latter Museum has just been published. As nearly every object exhibited is fully labelled, this guide-book does not cnumerate a tithe of these, but a certain number of important oljects are marked with a conspicuous number, and these numbers are referred to in the catalogue. In the 130 pages of this guide there is compressed a vast amount of information, a great deal of which is easily understood, even apart from the interesting collection on which it is founded; and if the student, as he walks through the Gardens, is struck at the beauty of the vegetable kingdom, he will, as lie studies the products of that kinglom within these museum walls, be more struck at the extreme indebtedness of mankind to this kingdom for the necessaries and luxurics of life.

We regret to learn that Sir Sillney Smith Saunders, C.M.G., for many years British Consul in various Mediterrancan ports, and a distinguished entonologist, died suddenly on Tueslay evening (15 th) at an advanced age. He was one of the original members of the Fintomological Society of London, and was a vice-president of the society at the time of his death. He devoted special attention to the singular bee-parasites known as Stylopidia.

Ture following are the arrangements for the lectures at the Royal Institution after Easter:-Dr. Klein, two lectures on the Anatomy of Nerve and Muscle, on Tuesdays, April 22 and 29 ; Prof. Gamgee, five lectures on the Physiology of Nerve and Muscle, on Tuesdays, May 6 to June 3; Prof. Dewar, seven lectures on Flame and Oxidation, on Thursdays, April 24 to June 5 ; Mr. Hodder M. Westropp, three lectures on Recent Discoveries in Roman Archeology, on Saturdays, April 26 to May to ; and Prof. T. G. Bonney, four lectures on the Bearing of Microscopical Research upon some Large Geological Problems, on Saturdays, May 17 to June 7. The following is a list of the Friday evening lectures :-A April 25, the Art of Fiction, hy Walter Besant; May 2, Krakntoa, by Prof. Judd ; May 9, Mohammedan Mahdis, by Prof. Robertson Smith ; May 16, the Dissolved Oxygen of Water, by Prof. W. Odling; May 23, Sidereal Astronomy, by Dr. David Gill; May 30, Sur les Couleurs (in French), by Prof. E. Mascart ; June 6, Prof, Dewar.

Besibes subjects of general anthropological interest, the following specially American topics, as to several of which Canada affords important evidence, are suggested for papers to be read in the Anthropological Section at the Montreal meeting of the British Association. The papers on each subject will, as far as possible, be grouped for reading on the same day, so as to insure ${ }^{a}$ general discussion. (1) The native races of America: their physical characters and origin; (2) Civilisation of America before the time of Columbus, with particular reference to earlier intercourse with the Old World ; (3) Archeology of North America, ancient mounds and earth-works, eliff-dwellings and villagehouses, stone architecture of Mexico and Central America, \&c. ; (4) Native languages of America ; (5) European colonisation and its effects on the native tribes of America. It is requested that all papers may be sent to the office of the Association, 22, Albemarle Street, Londion, W., on or before July I.
The International Ornithological Congress at Vienna was brought to a conclusion on Friday last by an appropriate speech from its patron, the Crown Prince Rudolph, who, among other things, warmly thanked the scientific men from nbroad for their appearance in Vienna. The next Congress will not take place till three years hence, and will be held in Switzerland. The Crown Prince has accepted the honorary office of Patron of the Permanent International Committee for the Establishment of Ornithological Observatories, or stations for the olservation of the habits of birds, especially those of the migratory species. Prof. Blasius, the president of the third section, to whose sphere the subject belongs, explained the nature, object, and importance of such ornithological stations of observation. M. Rodde proposed that the meteorological stations should be used as ornithological ones. Dr. Schier of Prague afterwards gave an account of his efforts to secure a regular system of observation. He had received from some hundreds of correspondents many valuable notices in regard to the line of passage of migratory birds.

Tur Academy of the Lincei have elected Prof. Francesco llrioschi, a senator, to fill their presidential chair recently left vacant by the death of Signor Quintino Sella, electing at the same time Commendatore Fiorelli, who so long directed the excavations at Pompeii, to fill the office of vice-president. The new president, Signor Brioschi, is a distinguished mathematician.

An interesting litte volume appears this week in Edinburgh containing an annotated list of the illustrious dead who have been in any way connected with Fdinburgh University. The names are classified according to the departments with which they are connected, " Zoologists and Botanists," for example, beginning with Erasmus Darwin and ending with Charles Darwin. The brief
notes attached to the names have, we believe, been compiled by various specialists.

The Anthropological Institute will hold its first meeting in its new premises, No. 3, Hanover Square, on the 22nd instant.

The next Ordinary General Meeting of the Institution of Mechanical Engineers will be held on Thursday, May 1, and Friday, May 2, at 15, Great George Street, Westminster. The Chair will be taken by the President, Mr. I. Lowthian Bell, F.R.S., at half-past seven p.m. on each evening. The following papers will be read and discussed as far as time will admit:On Thursday, May 1, on the consumption of fael in locomotives, by M. Georges Marić, of Paris; on portable railways, by M. Paul Decauville, of Petit-Bourg, Paris; on the Moscrop engine recorder, and the Knowles supplementary governor, by Mr. Michael Longridge, of Manchester. On Friday, May 2, description of the automatic and exhaust-steam injector, by Mr. A. Slater Savill, of Manchester; description of the apparatus used for testing current-meters, at the Admiralty Works at Torquay for experimenting on models of ships, by Mr Robert Gordon, of Burmah ; description of the Francke "Tina " or vat process for the amalgamation of silver ores, by Mr. Edgas P. Rathbone, of London.

The Report of the U.S. Solar Eclipse Expedition, Science states, has just been ordered to be printed by Congress. Among its contents are :-Meteorology of Caroline Island, by Mr Winslow Upton!; Botany of Caroline Island, collections by Dr. W. S. Dixon, U.S.N., and identifications by Prof. W. Trelease; Notes on the zoology of Caroline Island, by Dr. W. S. Dixon, U.S.N. ; Memorandum on the butterflies, \&ec., of Caroline Island, collections by Dr. J. Palisa, identifications by Messrs. Herman Strecker and Arthur G. Hutler ; Chemical constituents of the sea-water of the lagoon of Caroline Island, determined by Messrs. Stillwell and Gladding; Observations of twenty-three new double stars, by Prof. E.. S. Holden and Prof. C. S. Ifastings; Plans for work on the day of the eelipse, by Prof. E. S. Ifolden.

Frox Science we learn that at the request of the Navy Department, the Fish Commission steamer Albatross, Capt. Tanner commanding, was fitted out during the winter for the purpose of carrying on a series of deep-sea soundings and dredgings in the Caribbean Sea, a region very little known in respect to its depths, The vessel left Washington on January 1, and reached St. Thomar on the 17 hh , and, after coaling, proceeded on her voyage. making the following ports:-Curaçoa, Trinidad, the I vand of Oruba, Alta Vela, Jacmel, Gonaives, Santiago de Cuba, Navasse, and Kingston (Jamaica), where she arrived March 1. She lek Kingston March 11, and arrived at Aspinwall, via Saranilla, March 25. On her return from Aspinwall she will proceed $\approx \underset{3}{ }$ Cape San Antonio to Key West, expecting to arrive at the Washington navy-yard about the middle of May. The expedition has been a great success in all respects, numerous satisfactory series of soundings and temperatures having been taken. and large numbers of marine animals obtained. In the colletions incidentally obtained during the stay of the steamer as Trinidad were two specimens of the guacharo hind, Steatornis cariponsis, which is such a rarity in museums, and two of the great fishing bat.
Ox Easter Monday the Essex Field Club held a meeting a: Saffron Walden, about sixty members and visitors being present. Alighting at Audley End Station, the party drove to Lord Braybrooke's mansion, where they had an opportunity of inspecting the fine collection of birls and prehistoric and Roman antiquitie contained in the museum. The Club was then conducted to a neighbouring hill, known as Ring Hill, where an ancient circular entrenchment is to be seen, and from there proceedel to a woud
known as Peverels, where the true oxlip (Primula elatior) grows in profusion, the ground being in parts carpeted with the flowers of this interesting species. After luncheon a visit was paid to Mr. Joshua Clarke, F.I_S., at his residence, Fairycroft, and the visitors viewed the magnificent collection of humming-birds and birds of Paradise formed by this gentleman. The Club next assembled in the grounds of Mrs. Gibson, and inspected the site of the ancient Saxon cemetery and the collection of skulls and relics found therein during the excavations undertaken by the late Mr. G. S. Gibson, a full description of which has been published in a recent number of the Transactions of the Essex Archeological Sacidy. The splendid library of scientific and other works belonging to the late Mr. Gibson having been hastily viewed, and the party having partaken of the hospitality offered by Mrs. Gibson, they were next conducted to the Saffron Walden Museum, where the various collections were greatly admired, and the curator, Mr. Maynard, much complimented upon the ability and zeal which he had displayed in their organisation and arrangement. In the ruins of the ancient castle adjoining the Museum Mr. Maynard read a paper on the history of these remains, and the party then proceeded to view the church, under the guidance of the Rev. Mr. Stevens. After tea an ordinary meeting of the Club was held, the president, Prof. Boulger, being in the chair. A paper, on the cultivation of the saffron in connection with the old town of Saffron Walden, was read by Mr. Joseph Clarke. With the object of promoting the extension of natural history science throughout the county, the Club proposes to evtablish local centres in the chief towns of Essex, and arrangements will shortly be made to commence operations at Saffron Walden, where so much interest was shown in the visit of the Club.

ON Saturday next, April 19, at three o'clock, a meeting of the Essex Field Club will be held at the British Museum of Natural History, South Kensington, under the direction of Dr. Henry Woodward, F.R.S. Dr. Woodward will deliver an address in the lecture-room on "Wingless Birds," and afterwards give a demonstration of the species, extinct and recent, in the geological and zoological gallerics.

TuE Council of the Linnean Society of Now South Wales have been presented by a member of the Society with tool., accompanied with a request that it should be offered as a prize for an essay on "The Life History of the Bacillus of Typhoid Fever." The Council has assented to the proposal, and adver tisements to that effect will be immediately inserted in the most prominent scientific publications throughout the world. The essay will be received by the Society not later than December 31, 1884. The intention and wishes of the donor of the prize will be best given in his own words. "The questions chiefly to be solved in the investigation of the life history of the Bacillus of typhoid fever, are-1. What are the specific characters of the organism, as distinguished from other Bacteria? 2. What are the changes, if any, which the organism undergoes in the human body? 3. What are its modes of development and reproduction in the human body? 4. What changes or metamorphoses, if any, does the organism undergo after ejection from the human body, or in any other condition of its existence? 5. What fluids or other substances seem best adapted for the growth and multiplication of the organism? 6. Can the organism live or be cultivated in pure or distilled water? 7. What are its limits of endurance of heat, cold, dryness, or humidity? As far as these points are concerned the author should confine himself entirely to facts which come under his own observation, and those should be given in detail, with a full explanation of the method of investigation. But in dealing with the results obtained by these investigations, and the consideration of the means whereby a knowledge of the life history of this most dangerous organism may help towards its eradication, the theories and observations
of others may appropriately be referred to, but in every such case the authority must be correctly cited. The chief points to be ascertained in this branch of the subject are-1. How, and under what conditions, does the organism get access to the human body? 2. How can its growth be impeded, or its vitality destroyed in the human body without serious injury to the individual affected? 3. How can it be eradicated or rendered innocuous in wells, water-holes, drains, \&c."

Among the superabundant "Universities" of the United States Harvard is unquestionably taking its place as a national institution on a par with British establishments which hold a similar designation. The last quarterly Bulletin of its proceedings is before us, which has to acknowledge during that short time nine legacies or donations in money, varying from 200 to 100,000 dollars, and amounting to 168,000 dollars. One of these is 10,000 dollars subscribed for the purchase of meteorites, and another is 2000 dollars from the Massachusetts Society for Promoting Agriculture, to assist in the establishment of a veterinary hospital, to which institution also a collection of pathological models is presented. Other donations are, a new building for the law schools, two portraits of eminent divines, and the anatomical collection of a doctor who had previously founded a museum there. The Bulletin is edited by the well-known Harvard librarian, Mr. Justin Winsor, and a very carefully printed catalogue of the chief accessions to the University library in English, French. German, Italian, Spanish, Danish, Russian, Polish, and IIindustani, forms the bulk of it. Many of these addlitions are treasures which few libraries can acquire possession of, a few only of which have been printed, chiefly for private circulation, others, nevertheless, being both important and familiar books published a year or two ago. The books are divided into ten subjects, and it shows how different technical experience sometimes is from theoretical ideas, when so experienced a lilrarian finds it convenient to class together "History and Geography," while "Antiquities" are under a separate heading. We doubt, however, whether Izaak Walton or any one else would have looked for "The American Angler's Guide ; or the Complete Fisher's Manual for the United States," under the head of "Law and Sociology," even if "Caxton's Game and Play of the Chesse " may in some sense belong to the latter. The advantages possessed by the librarian of such an institution as this are being fully utilised by Mr. Justin Winsor who is issuing in cach number of the Bulldin most carefully written results of his researches into the bibliography of various subjects-in this January number, of "Ptolemy's Geography" and "The Kohl Collection of Early Maps," specially noting the gradual and irregular spread of the knowledge of America.

A stalactite cavern was recently discovered by accident near Cerdon in the Ain Department (France). It is situated near the old high road connecting Lyons with Geneva. Some country people who ventured into it state that it extends about 300 metres underground, and that its height varies considerably. Lyons and Gencea naturalists are now making a more minute investigation of the cave.
A strong shock of earthquake was felt at Urbino at a few minutes before $8 \mathrm{a} . \mathrm{m}$. on the gth inst. Its duration was five seconds. A shock was also felt at Belpasso, near Catania, at $10 \mathrm{a} . \mathrm{m}$. on the toth. It occasioned no damage.

Owisg to the frequent earthquakes that have recently occurred in Slavonia, Prof. Pillar has been sent to observe these occurrences by the Hungarian Government, and will shortly present a detailed report to the Government on the subject.

Accordtag to Herr Jxger of Rinde, on the Sogne Fjord, who, since 185 S , has noted the number of earthquake shocks that have been felt in the district, there have been appreciable shocks from that period till 1879. Since the latter year no shock
has been felt. It is worthy of record that on two occasions, viz, in 1860 and 1865, the shocks were perceived on the south side of the ford, the districts on the northern coast being wholly undisturbed.
Tue last number of the Transactions of the Scismological Society of Yapan (Yokohama, 1884) contains various papers on seismology. The first is by Prof. Milne, on earth pulsations; the next is by Mr. Alexander, on the interpretation of a diagram described by a particular form of earthquake instrument. The object of the writer is to calculate not only the maximum velocity, but also the maximum rate at which the velocity changes, " which is a measure of the effect which an earthquake exerts in overturning and fracturing brolies placed on the earth's surface." Prof. Ewing describes the construction of a pendulum which shall be without a tendency to swing when the point from which it is suspended suffers displacement. Mr. Gergens gives a note on ripple-like marks found on the surface of an iron casting supposed to have been shaken while solidifying, which marks are picturestuely described as "a note in a congealed earthquake." The remainder of the volume is occupied by *uggestions for new types of seimmgraphs, a list of earthquakes in Tokio, and a report on systematic earthquake observations.

A correspondent in Naturcu has drawn attention to the great differences of climate observable last winter between Christiania and Stavanger. While in the former place there was a depth of from ten to twelve inches of ice during the month of January, vegetation had never been wholly arrested in the latter region at the same periol. The grass plots in the various gardens at and near Stavanger were as green as in summer: daisies, snowdrops, pansies, violets, and primroses had their blossoms well set ; peonics had appeared above the ground, and many roses hat thrown out vigorous shoots. The thermometer fell only once in January to freezing point.
MM. Mignon and Touard, who established the refrigerating service at the Paris morgue, have made experiments with their system on hams infected by trichine, and are stated to have proved that these are renderel wholly innocuous by exposure during ant hour to a cold of $-20^{\circ} \mathrm{C}$. It will be proposed for the protection of consumers from trichinusis to render exposure obligatory in the case of importations from America or Germany

The great work of lighting the Paris Opera by incandescent light has already begun. The whole house will require 6000 lamps; at present 400 lamps are used.

THE additions to the Zoological Socicty's Gardens during the past week include a Pig-tailed Monkey (Maracus nemestrimus 8) from Java, presented by Dr. Wenthall ; a Weeper Capuchin (Cebus capuctnus 8) from Brazil, presented by Miss Vincent; a Short-eared Owl (Asio brashyolws), British, presented by Mr. Uscar Burrows ; a Smooth Snake (Corondla lirvis), a Common Viper (Vifera berus), a Common snake (Tropifonolus uatris), a Slow-worm (Ansuis fragilis) from llampshire, presented ly Mr. W. I1. 13. Pain ; an Alligator (Alligator mississifpiensis) from the Mississippi; a llorrid Kattlesnake (Crotalus horridus) from Florida, presented by Mr. N. Begg ; a Philantomba Antelope (Crphalophus maxwelli) from South Africa, deposited; a Moose (Alces machlis) from North America, two Mute Swans (Cygmus olor), European, a Common Viper (Vifora berus), 13ritish, purchased; six Long-frunted (Gerbilles (Gerbillus lonsifroms), born in the Gardens.

GEOGRAPHICAL NOTES

We much regret to learn of the death, at Loanda, on March 17, of Dr. Panl Pogge, the succevful African explorer. Dr. Pogge, since 1880, was the companion of Lieut. Wissmann in the exploration of the region inland from the Portuguese possessions,
and around the kingdom of Muata Janvo. Ile accompanied Wissmann as far as Nyangwe in the journey of the latter across Africa, and in May 1882 set out to return to the station at Mukenge. Doubtless the hardships to which he has been subjece, combined with fever, have told on Dr. Pogge's health. In i874 he was a member of the German African Expedition which was sent out to explore the same region, and with only native companions succeeded in penetrating as far as the capital of Muata Janvo.

THE announcement that Mr. Stanley intends to proceed from the Middle Congo north-east to the Mombuttu country, partly, no doubt, to setlie the question of the course of the Aruwimi, the great north-east tributary of the Congo, renders Dr. Junker's discoveries in the Welle region of special interest. In the map sent home and published in the new number of Patrmann's Mitthilumern we find in the northern part the Wellé, after receiving the Gadda, proceeding west-north-west, and on the north it is joined by the Mbriöle, and not much further westwards by the Gurba-both considerable rivers rising in the southern A^{*} Sandeh kingdom. After taking up the waters of the Gúrba, the Welle curves sharply round, at first southwards, making many windings in its course, and describing a large semicircle round the land of A-Madi, a semicircle variegated by a series of islands. Later on it resumes its west and west-north-west direction. With the exception of the two langer tributaries from the north just mentioned, the Welle along the whole extent of the sketch receives no considerable waters either from north or south. As far as the southern territory is concerned, this fact is explained by the circumstance that the most important tributary of the Welle-Makun, the Bomokandi or Majo (Nemajo of schweinfurth) flows in an extremely long course from east to west and north-west, approximately parallel to the Wellé Ilut. an interval of hardly two days' journey. F'urther to the west. however, it discharges into the Welle River. The Bomokandh, showing almost half the breadth of the Welle, rises far in the east, and may also have its source in the mountainous country hordering the Albert Nyanza in the west. In consequence of this approach to each othcr of the two streams, no other tributaries are developed in the long tongue-shaped peninsula formed by the junction of the Wellé and Bomokandi. Except innumerable little rivulets, few rivers of any size run either northwards to the Welle or southwards to the Romokandi from the plateau of this peninsula. It is otherwise, however, with the rivers discharging into the Bomokandi from the south. The watershed whence flow its southern tributaries lying considerably further to the south, there is ample scope here for the formation of larger accessory, streams. l'roceeding from west to east, we come upon three rivers of almost equal rank with the Mbriole and the Gürba-the Makongo, Pokko, and 'Telli. A river no longer paying tribute to the Bonsokándi, but discharging further to the west directly into the Welle, is, according to information, the Mbe'lima, the source of which is not far from that of the Makongo to the east. With these partly indirect tributaries to the Wellé through the medium of the Bomokándi and the direct tributary, the Mbe'lima, the river-system of the Welle to the south comes to an end. Further south, and flowing from east to west, is the Nawa, belonging, according to information reccived, to a more southern river-system, forming indeed a northern tributary to the Neposo. Dr. Junker made his way south to the Népoko, four days' journey from the Bomokíndi, and reached it in the middle of its course, where it holds the same longitude with the Bumokándi. He evidently travelled a loag way from the region in which lie the sources of the N'poko, the Bomokandi, and the Kibuli, that is, the Kibbi (Welle)-rivers which collectively deseend from the mountain and table-lands west of Albert Nyanza; the water-parting must be sought in a line running approximately from south-south-west to north-north-east. That the Nepoko, from the point at which he met it, and where probably it describes a northern carve, bends in its further course in an approximately south-west direction, may be inferred froc the fact that though indeed known in the western territories, it is yet transferred far to the south beyond the Nawa, which rixes in the west, not far from his line of roate to the Népolo. In the region between Bomokandi and Népoko traversed by Dr. Junker, the watershed of the two river-systems is hardly perceptible, yct the country of the Nepoko tributaries from the north is highly characteristic. Instead of the high trees which every where else clothe the banks of the streams, you here meet broad, flat, treeless swamps. A floating vegetation, very like the Ssett in the Nile, forms a bridge by which to cross these swamps,
though it is unavailable for riding and for beasts of burden. Dr. Junker closes his remarks on the hydrography of this region with the observation that he feels entitled to identify this Népoko, which does not belong to the Wellé system, with the Aruwimi of Stanley. Proof that the Welle is the upper course of the Shari he hopes to be able to adduce later on.

Is Petcrmann's Mittheilungen, 1884 , lieft iii., is a map of the Amambara Creek of the lower Niger region, which we owe to the indefatigable African explorer Eduard Rolert Flegel. Just as by way of preparation for his Adamawa expedition he executed maps of the route from Eggan to the Akoko Mountains, and of the Niger tract, till then unknown, from Bussa up the river as far as Gomba, and finally explored the route from Bidda by way of Keffi Abd-es-Senga to Loko on the Benue; so now as preparatory to his third African exploration he has executed a map of the Amambara which discharges into the lower course of the Niger. While Flegel was waiting at Lagos for a remittance from Germany to enable him to prosecute his travels, the representative of the Marseilles "" Compagnie du Sénégal et de la Cóte occidentale d'Afrique," J. Zweifel, the well-known discoverer of the sources of the Niger, undertook in July 1883, for trading purposes, an expedition up the Amambara, on the banks of which are planted a series of old commercial establishments, but which, nevertheless, had never yet been mapped ont. To this expedition Flegel at once gladly joined himself, and hence the map in question. This must be reckoned as another valuable contribution towards clearing up the geography of the Lower Niger, so complicated by tributaries, arms, deltas, crecks, \&c. In an article in the Mittheilungen commenting on the map of the Amambara Creek, an interesting sketch is given of the progress of geographical knowledge of the Niger for the last 300 years, or rather of the misconeeption and vacancy that prevailed up till quite recently regarding that region, our knowledge of which is still so very defective. Since the discovery of the rich produce in palm-oil yielded by the lanks of the Niger and Iower Benue, trade has rapidly developed there, and is now so lively that Flegel, in 1883 , counted as many as twenty-three large ships, mostly steamers, constantly plying on their waters, besides a series of flat barges.

We find in the last issue ot the Caucasian Izvesfia the following new information on the Merv oasis, due to M. Alikhanoff:Its surface is about 2150 square miles, which area could be increased by irrigation, the whole of the oasis having its origin due to the irrigation of the sands by canals drawn from the Murgab. This river, being dug at Kaushut-khan-bend, two canals, subelivided into numerous aryks (smaller canals), issue from it, taking in nearly all the water of the river which does not flow beneath the dam. Notwithstanding the southern position of the casis, it has a cold winter, and there falls every year some snow, sometimes two feet deep; it soon disappears, however, as the temperature rises rapidly, and reaches occasionally 30° Celsius in February. During the summer, strong hot winds, which bring masses of hot sand, blow, mostly from the south-west. Still the climate is healthy enough, and healthier than that of Akhaltekke; but the mortality is very great, owing to the poverty of the inhabitants and the dirtiness of their hahits : the Kara-massa, or black disease, a kind of pestilence, and the merghi, a kind of cholera, are endemic. The population is estimated at 32,700 kibirkas, which M. Alikhanoff considers to represent no less than 194,000 or 200,000 inhabitants. This population is, however, too numerous for the oasis, the average area of irrigated land being only six acres per inhabitant. M. Alkihanoff considers the Mervis as the least attractive of the Turcomans, and discovers in them only one good feature-their hospitality.

At the annual meeting of the Bremen Geographical Society it was stated that a young German naturalist intencis to start on an exploring expedition to Ovambo-land and further into the interior of Equatorial Africa, accompanied by Dr. Hoepfner. A member of the Society has presented him with good astronomical instruments, and the traveller will report to the Society from time to time, and his cartographic results will belong to the society. The Socicty is also preparing a geographical and natural history expedition to the Bonin Islands, lying south of and belonging to Japan. Dr. Gottsche of Kiel, an eminent geologist, who is now in Japan, will be the leader of this expedition.

The Russian Imperial Geographical Society has received the following telegram from Col. Prjevalsky, who is for the fourth time attempting to penetrate into Thibet :-" Alashan, January 8.-

We have traversed the desert of Gobi without mishap. In the northern part the cold exceeded the freczing point of mercury. We are all well, and start to-morrow for Koukou-nor. It is said that hitherto the Thibetans pray heaven to shower down stones on our heads."
The Melbourne Age 2 has despatched to New Guinea a second exploring party, the members of which include a naturalist and an artist.
Onk result of Mr. Colquhoun's recent journeys in Indo-China has been the appointment of an English official to reside at Cheng-mai, or Zimmé, on the borders of the Shan States, and an officer of our consular service in Siam has been selected for that purpose, and is now at the post. This town, it may be recollected, forms the centre of the railway communication which Mr. Colquhoun proposes between British Burmah and SouthWestern China, and it can be reached either from Rangoon or from Bangkok. Mr. Bock travelled from the latter towa up the Meinam. With the example of the exploration of the English consuls who have resided at Chung-king on the Yangtsze before him, it is to be hoped that the consul at Zimmé will be able to add largely to our knowledge of the regions, especially of the Shan States, lying between China and Siam. His appointment is certainly another step in the prolonged efforts to obtain a trade route into South-Western China, and he will serve, on the south of the frontier line, the same purpose as the officer at Chung-king on the north.

VOLCANIC ASHES AND COSMIC DUST:

I^{-}the session of $1876, \mathrm{Mr}$. John Murray communicated to this Society a paper on the distribution of volcanic debris over the floor of the ocean, ${ }^{2}$ and in it announced the discovery of cosmic dust in deep-sea deposits. It was shown that at points where neither the action of waves, rivers, or currents can transport the debris of continents, volcanie materials play the most important rife in the formation of the mineral constituents of the deep-sea deposits. It was pointed out that pumice, on account of its structure, was able to float to great distances, but in time became waterlogged and sank to the bottom, there to decompose. On the other hand, incoherent volcanic matters, ejected in the form of lapilli, sand, and ashes, into the higher regions of the atmosphere, may, cuteris paribus, be conveyed, in consequence of their smail dimensions and structure, to greater distances than other mineral particles derived from the continents. The possibility was also admitted that submarine volcanic eruptions might also contribute to the accumulation of those silicates and pyrogencous minerals and rocks whose microscopic characters and distribution at the bottom of the sea we shall presently point out.

During the past few years we have added greatly to the observations which were the subject of Mr. Murray's communication. The present paper has been suggested by the striking analogy which exists between the volcanic products we have found in all deep-sea sediments, and the ashes and incoherent products of a recent celebrated cruption,-that of Krakatoa, The remarkable meteorological phenomena we have recently witnessed have been attributed by some to the presence in the atmosphere of mineral particles derived from this volcanic eruption, and by others to that of cosmic dust. It is said that in several places in America, and even in Europe, matters have been collectel which must be regarded as the ashes from Krakatoa, which have been suspended for several months in the upper currents of the atmosphere. The importance of this matter has been recog. nised by the Royal Society of London, which has appointed a committee of its members to collect all the documents and observations relative to the distribution of these ashes. The present state of the question induces us to make known some results of the detaitel researches which we have undertaken upon similar subjects. We desire to make known, to those who wish to study atmospheric dust, the distinctive microscopic characters by the aid of which we have been able to establish the volcanic or cosmic nature of certain particles found in deep-sea deposits, and to show at the same time the enormous area of the ocean over which we have been able to detect their distribution.
We believe that no better example could be found in support
${ }^{1}$ "On the Microscopic Characiers of Vulcanic Asbes and Cosmic Dust, and their Distribution in the Deep-sea Deposits." A paper read before and their Distribution in the Deepesca Meposit., A paper read before
the Rnyal Society of Edinburgh by Mr. John Surray en M. A. Renard.
"Proc. Rey. Sac. Edin., 1876-77.
of our interpretations than the microscopic study of the ashes from Krakatoa, whose mineralogical and chemical composition M. Renard ${ }^{1}$ was the first to make known, and whose observations on this subject have been amply confirmed by the later researches of other mineralogists. On the other hand, the conditions under which floating pumice was found after that eruption agree perfectly with the interpretation given eight years ago by Mr. Murray relative to the mode of transport of these viereous matters and of the accumulation of their triturated debris on the bottom of the ocean. We shall also see how the sorting which takes place in the transport of the ashes of a volcano has its analogy in what we find in the deep-sea deposits.

In the first part of this communication we shall give the mineralogical description of the fragmentary products of Krakatoa, and consider generally the observations relative to these ashes. We shall also give the diagnostic characters of this volcanic dust, and of all similar particles which we find in deep-sea deposits. In the second part we will treat of the cosmic matters found in the abysmal regions of the ocean, to which Mr. Murray was the first to draw attention, and discuss their origin and distribution.

First Part

It is unnecessary to refer to the abundance of floating pumice, to its various degrees of alteration, to its conveyance by means of rivers, waves, and currents, and to its universal presence in deep-sea deposits, which have been pointed out in some detail in Mr. Murray's paper above referred to : but we will briefly recapitulate the characters of these volcanic matters, in accordance with the examination we have made of a large number of soundings and dredgings. We need not describe in detail the special characters of the lapilli which have been brought up in the dredge and sounding-rod from great depths. These fragments of more or less scoriaceous rocks belong to the same lithoIogical varieties as those derived from terrestrial volcanoes. They consist of fragments of trachyte of various dimensions, of basalt, and, above all, of augite-andesite ; the most remarkable, beyond all question, loing lapilli of sideromelan, which are often entirely transformed into palagonite, and pass into the clay which is found so widely distrihuted, especially in the Pacific.

We do not propose here to take up in detail the wide distribution of the materials ejected from Krakatoa; we are engaged in collecting these, and will place the observations on maps along with those of Mr. Buchan on the upper currents of the atmosphere, which will be published in the Challengor Reports.

Before, however, passing to the description of the ashes themselves, we will briefly refer to some points touched upon by Mr . Murray in his paper. It is there pointed out that, in regions far removed from coasts, rounded fragments of pumice were collected on the surface of the sea by means of the tow-net, and that, at certain points on the bottom of the ocean. the greater part of the deposit is composed of vitreous splinters derived from the trituration of pumice-stones. The description of the phenomena connected with the Krakator eruption gives us a complete explanation of these olservations. The specimens of pumice from Krakatoa, which have been collecterl floating on the sea and which we have examined, are in like manner rounded. The angular surfaces are all worn away just as in pebbles ; the only asperities to be observed consist of crystals and fragments of crystals, which project beyond the general surface of the vitreous matter, which last, on account of its structure, presents less resistance to wear and tear than the minerals which are emberdled in it.
We may recall the fact that the Bay of Lampong, in the Straits of Sunda, was blocked by the vast accumulation of pumice, formed in a few hours by the eruption of Krakatoa, which completely filled the bay. This floating bar of pumicestones was about 30 km . long, 1 km . broad, and 3 m . to 4 m . in depth, 2 m . or 3 m . of which were below the surface of the water, and 1 m . above. These numbers give abont 150 millions of cubic metres of ejected matter. This moving elastic wall rose and fell with the waves and tide, ${ }^{2}$ and was carried by currents thousands of miles from the point of eruption over the surface of the ocean. The rounded form of blocks of pumice met with everywhere floating on the surface of the sea, as well as of those samples which, after having floated some time, became waterlogged and sank to the bottom, may be perfectly explained if we remember the friability of this rock, and, at the same time,

[^49]the agitation to which it is submitted by the waves, through which the pieces are continually being knocked against each other. We understand also how this wear and tear gives rise to an immense quantity of pulverulent pumice fragments, which contribute in a great measure to the formation of oceanic deposits As a matter of fact, rounded fragments of pumice have been met with floating on the surface of every ocean, and during the last few years many samples have been sent to us by captains of ships and missionaries. As has been already pointed out, they are universally distributed in oceanic deposits, although frequently highly altered.

If it be easy to pronounce upon the volcanic nature of these langer fragments, it becomes, on the other hand, exceedingly difficult when we have to deal with particles reduced to powder, and when recourse must be had to the microscope. Let us see what are the microscopic characters by which we recognise the particles of this dust.

We may here point out that it is not so much the presence of volcanic minerals which enables us in a marine sediment, as well as in an atmospheric dust like the ashes of Krakatoa, to recognise that the small fragments have an eruptive origin, as the microscopic structure of the small vitreous particles. It is well known that minerals reduced to small dimensions and irregularly fractured, as in the case of volcanic ashes, often lose their distinctive characters. Their size does not allow us to judge of their optical properties ; their form, irregular and fragmentary, renders it difficult to determine the characteristic extinction of the species ; the phenomena of coloration, of pleochroism, and the tint peculiar to the mineral, all lose so much of their intensity that they no longer serve for the identification of isolated minerals like those of the volcanic ashes which we have to study. As a result of our observations, we believe that in most cases where a mineral, under the conditions we have just deseribed, reaches dimensions less than 0 o 05 mm ., its determination with certainty is no longer possible, and consequently its origin can no longer be established; whilat a vitreous fragment, like those of volcanic ashes or triturated pumice, continues to be discernible when its dimensions are less than o'005 mm. A reason for showing that the absence or rarity of crystals, or of fragments of volcanic crystals, ought not to be taken as a proof that a sedimentary matter, either from the atmosphere or from the deep sea, is not of volcanic origin, is the sorting process to which these matters are subjected in the air and in the water, a phenomenon to which we shall presently recur.

The most reliable distinctive character is always found in the structure of the small vitreous particles which are derived from the trituration of pumice or have an analogous origin, inasmoch as they have been ejected from the volcano in the state of ash. The structure peculiar to these materials is seen in their fracture, which leaves its impress upon the smallest fragments of debri, in which the microscope can decipher no characteristic properties except such as have relation to form. In order to assure ourselves that these characters of pumice remain constant to the extreme limits of pulverisation, such as are employed in the preparation of silicates for chemical analysis, we pounded in an agate mortar several varieties of pumice, and the powder thus produced clearly showed itself to be composed of particles in which were recognisable, with little trouble, the characters of the pumice-like material which is constantly met with in the sediments, and of which the ashes of Krakatoa give us beautifal examples. The diagnostic character to which we here make allusion rests on the distinctive peculiarities of incoherent volcanic products. What distinguishes them from lavas is not merely the extraordinary abundance of vitreous matters, bat also the prodigious number of gas-bubbles which are inclosed by the pumice and vitreous volcanic sands and ashes. These bubtiles are due to the expansion of the gases dissolved in the magma. which also determine the eruption. If we admit, as everything seems to show, that these incoherent volcanic matters are the products of the pulverisation of a fluid magma, we can under stand that these particles, on cooling rapidly, will remain in the vitreous state, and, on the other hand, that the dissolved gases yielding to the expansion, will form numerous pores which wi: become clongated owing to the mode of projection. It is the existence of these bubbles, or of such a filamentous structure. which points out to us the vitreous volcanie materials in spite c the great fineness of sublivision. It is also this structure which allows these bodies to be carried to such great distances from the scene of eruption.

The examination of the Krakatoa ashes, and of the dust re sulting from the pulverisation of the pumice of that volcano.
shows markedly the peculiarity due to the bullous structure. If this gray-green pulverulent matter be placed under the microscope, it is seen to be composed of almost impalpable grains, with a mean diameter of 0.1 mm ., which are almost exclusively colourless or brownish vitreous particles permeated by bubbles. The bubbles are rarely globular, but often elongated, as we have just pointed out, and they give a drawn-out appearance to the fragments. As often happens, several "bubbles are elongated parallel to each other, and in this case the pore becomes a simple streak ; the fragment then assumes a fibrous texture, which may cause it to resemble at first sight a striated felspar or an organic remnant ; but an examination of the outline will never allow of this confusion. If we examine the terminal contours and lines of these bubble-containing fragments, we never find that they are straight lines, but that they show a ragged appearance, all the sinuosities being curvilinear. This mode of fracture is in correspondence with the vacuolated structure, and, just as in the porous pumice, the vitreous volcanic ashes are permeated by vacuoles ; besides, everything goes to show that the fragmentary condition and the fresh fractures are due to a tension phenomenon which affects these vitreous matters in a manner analogous n what is observed in the "Rupert's drops."

Fitc. r.-Vitreous particles of the ashes of Krakaton, which fell al Batavia, Auzust a7, 183_{3} (910).
We have pointed out that brown vitreous fragments are rare in the ashes of Krakatoa. These, however, contain skelctons of magnetic iron, and are devitrified by microliths. ${ }^{1}$ It is scarcely necessary to add that the particles, whose form we have indicated, are isotropic. If under crossed nicols we sometimes see the field illuminated, this is due to crystals in the vitreous matter, or to phenomena of tension, which are sometimes observed in the neighbourhood of the bubbles.
These details on the micro-structure of the vitreous particles from Krakatoa can be applied with moxt perfect exactitude to the volcanic dusts, which we have determined as such, in the cleep-sea deposits. In virtue of their bullous structure, their dimensions, and their mode of projection, they are capable of being widely transportel from the point of eruption by aerial currents. It must be admittel, however, that in the deep-sca sediments a very large part of these vitreous splinters has not lreen derived from the pulverised ejections from a volcano, but from the trituration of floating pumice, of which we have given above a striking example. It will be unclerstood that it is scarcely possible to trace the difference between voleanic ashes, properly so called, and the products resulting from the pulverisation of floating pumice which we have jnst indicated. As in the incoherent proxlucts of Krakatoa, so we find spread out on the trottom of the sea many more vitreous particles, similar to those we have just described, than of true volcanic mincrals. This is easily explained, however, when we remember how the distribution of volcanic dust takes place.
l.et us now point out the minerals which can be determined with certainty in the ashes of this great eruption; and we may nt once remark that they are the same which we have almost always found atsociated in the deposits with the splinters of glass. In general all the crystals are fractured, except those which are still embedded in a vitreous layer; this vitreous coating is often crackled and bullous. In the ashes of Krakatoa,

- Just as we can divide pramice microscopically accordiogg as it is acid or basic. so the products of its trituration may be recognised under the microscupe, inacmuch as the former often give colourless and more elongaled particles, while the fragments of basie pumice have a more pronounced unt and more rounded pores.
however, we have not remarked the globules of glass which are often described as glued to the minerals of volcanic ashes, nor have we seen the drawn-out vitreous filaments resembling Peles hair. The minerals of the Krakatoa ashes which are susceptible of a rigorous determination belong to plagioclase, augite, rhombic pyroxene, and magnetite. ${ }^{1}$ We shall presently see the peculiarity which distinguishes each of these species in the ashes.
Among the most frequent minerals, but poorly represented in comparison with the vitreous matter, plagioclase felspar comes first. This mineral has about the same dimensions as the vitreous fragments, and, with the exception of the crystals, entircly inclosed in the pumice matter, is in the form of debris. Sometimes twins on the albite plan can be distinguished, and the results of analysis clearly indicate that it is triclinic felspar which should almost exclusively be found in this ash. But the most interesting crystals of plagioclase, and the most characteristic of this ash, although represented very rarely, are in the form of rhombic tables, extremely thin, and covered with a fine lacework of vitreous matter. We know that the crystals described by Penck ${ }^{2}$ in a great number of lapilli and of volcanic ashes, upon the nature of which doubts have been expressed, belong incontestably to the plagiocalases, and represent an isomorphic mixture analogous to that of bytownite. It is to Mr. Max Schuster ${ }^{3}$ that we owe this specific determination. Having found in numerous sediments of the Pacific these same crystals in the form of rhombic tables, and possessing preparations which would be of great interest to him in his remarkable optical stuclies on the felspars, we submitted them to this ingenious mineralogist in order to confirm our determination. We believe it will be interesting to give a rhamd' here of the results of the ohservations of Mr. Schuster, which are perfectly applicable to the characteristic crystals of felspar from Krakatoa, as well as to those which we have discovered in a great number of deepsea soundings.

This plagioclase occurs for the most part in flat talnular crystals with the clinopinacoid especially developed. Individuals of the columnar type, elongated in the direction of the edge \mathbf{P} / \mathbf{M}, are rare. These tabular crystals consist essentially of a combination of the clinopinacoid with P and \boldsymbol{x}, more rarely with P, u, and y, and occasionally x and y appear together. In the first case the crystals have the form of a rhomb, in the second case they are elongated through the predominance of either x or P. The dimensions of those crystals which were examined and measured lie between the line $0^{\prime} 61 \mathrm{~mm}$. broad and 1 mm . long as maximum, and ool 5 mm . broad and $0 \times 42 \mathrm{~mm}$. long as minimum. The extinction of the plagioclase is negative. Its value was found to vary between 22° and 32° on the clinopinacoid, and between 8° and 16° on the basal plane. The average values of many measurements made on good crystals are as follows :- $24^{\circ} 12^{\prime}, 25^{\circ} 6^{\prime}$, and $29^{\circ} 6^{\prime}$ on the climpincaoid, $10^{\circ} 42^{\prime}$ on the one side, and $10^{\circ} 18^{\prime}$ on the other side of the twinning line, as this is shown on the basal plane. Polysynthetic individuals, made up of repeated twins on the albite plan, were very rarcly observed. The felpar in its optical properties is thus seen to lic between labradorite and bytownite. The twin growths are particularly frequent and interesting on account of the structure of the individuals. In addition to thes of the albite type, others were olservel in which the edges P / M and P / K could be definitely determined as the axes of twinning, whilst P and K formed the twinning planes, The plane of composition was principally either P or M when penetration twins were not observed.

These fragments and erystals of plagioclase contain inclusions of vitrcons matter, and sometimes grains of magnetite. Perhaps a small number of felsparhic grains may belong to sanidine, the presence of which is insinuated by the percentage of potass indicated by the analysis which follow ($\mathrm{K}_{2} \mathrm{O}=0.97$ per cent.).
We have said that the pyroxenic minerals of the ash are augite and a rhombic pyroxene; we distinguish them by the microscope sometimes in the form of fragments-and this is usually the case -sometimes in the form of crystals, which we can isolate from the volcanic glass covering them by treating them with hydrofluoric acid. In the crystals of augite we clistinguish the faces of

[^50]a prism, of the brachypinacoid, and indications of the faces of a pyramid. This augite is pleochroic and has a greenish tint, and extinguishes in certain cases obliquely to the prismatic edges. It is this character which often permits it to be distinguished from rhombic pyroxene with which the augite is associated. The crystals of hypersthene are transparent, of a deep brown colour, strongly dichroic, with green and brown tints. They are in rectangular prisms terminated by a pyramid, and extinguish between crossed nicols parallel to their longitudinal edges. Magnetic iron, which is rather abundlant in the ashes, is recognised in the form of grains and octahedrons. We have not been able to detect with certainty either homblende or olivine. The largest grains of this ash are truc microscopic lapilli, where we distinguish in a vitreous mass microlithic crystals of felspar, of magnetite, and more rarely of pyroxene. Finally, we olserve with the microscope particles of an organic origin, which are easily recognisable by their fibrous and reticulated structure. These impurities may have been transported by winds, or may have come from the ground where the ashes were collected.

In spite of all the uncertainties which the exact diagnoses of volcanic dust present, we can consider them often, from the point of view of their mineralogical composition, as analogons with the augite-andesites. We know, besides, that it is to these rocks that the lavas of the volcano of Krakatoa should be referred.

The ashes which fell at Batavia on Angust 27, 1883, and samples of which were sent to Holland by M. Wolf, resident on that island, have been analysed with the following results :-
I. 1.ti9 grm. of substance dried at $110^{\circ} \mathrm{C}$, , and fused with carbonate of soda and potash, gave 0.7799 grm . of silica, 0.1754 grm . of alumina, 0.0911 grm . of peroxide of iron, 0.0401 grm . of lime, 0.398 grm . of pyrophosphate of magnesia, answering to 0.01434 grm . of magnesia. A recent determination of titanic acid has given 0.62 per cent. $\mathrm{TiO}_{\mathrm{p}}$.
$11,1.222 \mathrm{grm}$. of substance dried at $110^{\circ} \mathrm{C}$, gave 0.0335 grm . of loss on ignition (water, organic snbstances, chloride of sodium) ; the same substance treated with hydrofluoric and sulphuric acids gave 0.116 g grm . of chloride of sodium and potassium, and 0.0118 grm . of chloroplatinate of potassium, answering to o, 0118 grm . of potash and to 0.0 t $\$ 8 \mathrm{grm}$. of chloride of potassium ; ly difference $=0.0973 \mathrm{grm}$. of chloride of sodium, answering to 005163 of soda.
111. 1.7287 grm . of substance dried at $t 10^{\circ} \mathrm{C}$. was treated in a closed tube with hydroftuoric and sulphuric acid. The oxidation required 2.3 cc , of permanganate of potash ($1 \mathrm{cc} .=0.0212$ grm. Fef $)$, answering to 0.047876 grm . of peroxide of iron.

	1.	11.	111.	
SiO_{2}	65.04	-	-	65.04
$\mathrm{Al}_{2} \mathrm{CH}_{3}$	14.63	-	-	$14^{\circ} 63$
$\mathrm{Fe}_{3} \mathrm{O}_{3}$	447	-	-	4.47
FeO	,	-	2.32	2.82
MnO	traces	-	*	traces
$\mathrm{Mg}^{(1)}$	1.20	-	-	$1 \cdot 20$
CaO)	3.34	-	-	$3 \cdot 34$
$\mathrm{K}_{2} \mathrm{O}$		0.97	-	$0 \cdot 97$
$\mathrm{Na}_{2} \mathrm{O}$	-	$4^{*} 23$	-	$4 \cdot 23$
I.oss	-	274	-	274
				90'44

It will be underatood that it is basely possible to submit this analysis to discussion. The abundance of vitreous particles in the ashes renders illusory the calculation of the values obtained, and the distribution of the substances among the different species of constituent minerals. This vitreous matter can indeed contain an indeterminate quantity of the different bases. On the other hand, the difficultes of the calculation are all the greater, as the constituent minerals of the ashes may contain, as isomorphis, the bases which the analywis suggesis. It is none the less true, however, that the percentage composition expressell by the analysis supports the preceling mineralogical determinations, without permitting the species to be precisely deternined. It agrees with the interpretation that the magma from which the ashes were formed belongs to the augite-andesitcs.

The vitreous and mincral fragments we have just described rom the Krakatoa eruption being identical with those which we encounter in deep-sea sediments, we may conclude that looth have a similar origin. In certain cases, however, we have in place of augite a predominance of hornblende, and sometimes black mica is abundant. Again, we find more or less fragment-
ary crystals of peridote, of magnetite, of sanidine, and, more rarely, of leucite and of hauine. We can easily understabd this variation in composition, following the nature of the magma from which the ashes collected in different regions of the sea were derived. But in all cases it is the predominance of vitreoss particles, with their special stracture, which indicates mod clearly the volcanic nature of the inorganic constituents of a sediment.

If now we consider the conditions which govern the distribution of ashes in the atmosphere or at the bottom of the sea, we shall be able to show how it is that there is generally a predominance of vitreous particles in these ashes. In the firs: place, these are vitreous matters rather than mincrals, properly so called, from the moment of ejection from the crater. Moreover we should, in a general way, not expect to find that incoherent eruptive matters, which are spread out at a distance from the volcano, present a perfectly identical composition with those other loose products, such as lapilli, volcanic hombs, and scoris., which are projected only a short distance from the focus of eruption. Even where there exists a perfect chemical and mineralogical identity, in the crater itself, between the lavas and the pulverulent materials of the same eruption (the supposition leing that the ashes arise simply from the trituration of the lavas), we can easily understand that these latter, being carried far and wide by the winds, must undergo a true sorting in their pausage through the atmosphere, according to the specific gravity of the amorphous elements or crystalline constituents. It results from this that, according to the points where they are collected, vulcanic ashes may, although belonging to the same cruption, pre vent differences not only with respect to the sire of the grains, but also with respect to the minerals.

In this mode of transport it is evident that the vitrencs particles, other things being equal, will be transported farthest frum the centre. In the first place, they are more abundant than the other particles, and again they possess in their chemical natare and in their structure conditions which permit the acrial curren:to take them up and carry them to great distances; they cons-1 of a silicate in which the heavy bases are poorly represented as compared with the other constituent elements; they are filled with gascous bubbles which lower their specific gravity. and at the same time are capable of being broken up into the minutese particles. The minerals with which they are associated at the moment of ejection frmm the crater are not, like them. filkel with gaseous hubbles ; they do not break up so easily into impalpable powder, for they are not porous, and are not in the same state of tension as the rapidly-ccoled vitreous dus:. Finalls, many of these spectes are precisely those whose spec:fic gravity is very high, on acconnt of the hases entering into their compor sition. These minerals will not then he carried so far from the centre of eruption, and in all cases the vitreous particlen are th: essential ones in the atmoopheric dusts derived from volenic aslies.

We have a beautiful illustration of this in the ashes of Kiras toa. In proportion as the ashes are collected at a Ereater ditance from a volcano, so are they less rich in minerals, and the quantity of vitreous matter predominates. Accorling to $=$ yerbal communication from Prof. Judd, the ashes collected 2: Japan contain only a relatively small proportion of pyrex:ne an magnetite.

If we wish to assure ourselves of the nature of an atmery bee: dust, and, as has lately been frequently attempted in Furope, s.: show that the dust is really from the Krakntoa eruption. it). important above all to seek for the presence of vitreous fragmen:The characters which we have indicated permit any one t. recognise them eacily under the microscope. We woukl remari, however. that the presence of crystals, either of hypersthene. 1 . anyitc, or of particles of magnetite in an atmospheric duse oislectel in Europe, does not prove in a certain mariner that th: dust lelongs to the ashes from Krakatoa; for, besiles the divtcultics of an exact mineralogical determination of the fragroer: ary clements, it is difficult to understand how these heavy mine rals shonld have lieen carried by the nerial currents, while i! viteons dust is absent. As we have just shown, it is the or. trary which shonld have taken place.
It resules as a corollary from these considerations that the chemical composition of an ash may vary according to the pois: at which it has been collected, and it tends also, other thers leing equal, to hecome more acid the further it is removell froc the centre of eruption. If we admit, for example, thal th: magma which gave lirth to the ashes of Krakatoa is an augite endesite, as everything seems to indicate, the percentige on
silica (65 per cent.) which our analysis shows appears too high, but if we remember, what we have just said, that the ashes become deprived, during their passage through the atmosphere, of the heavier and more basic elements, it will be understood that the vitreous and felspathic materials, which have a lower specific gravity, and are at the same time more acid, will accumulate at points farthest from the volcano. It will be sufficient to have directed the attention to this fact to show how the percentage of silica in the ashes from the same eruption may vary according as they are collected at a variable distance from the crater.
The predominance of vitreous splinters in deep-sea sediments far removed from coasts is even more pronounced than in vol canie ashes collected on land. This arises, as we indicated at the commencement, from the large quantity of pumice carricd or projected into the occan, whose trituration, which takes place so casily, gives origin to vitreous fragments difficult to distinguish from those projected from a volcano in the form of impalpable dust. In addition, we may state that, in the distribution of volcanic materials on the bottom of the sea, the ashes are subjected to a mode of sorting having some analogy to that which takes place during transport through the atmosphere. When these ashes fall into the sea a separation takes place in the water; the heaviest particles reach the bottom first, and then the lighter and smaller ones, descending more slowly, are deposited upon the larger and heavier fragments and crystals from the same eruption. We have a fine example of this stratification of submarine tufa in the centre of the South Pacific, lat. $22^{\circ} \mathbf{2 1}$ 'S., long. 150° 17 W . This specimen is entirely covered with peroxide of manganese, and at the base of the fragment we see the large crystals of hornblende and particles of magnetite. This lower layer is covered by a deposit in which these minerals and coarser grains are observed to pass gradually into a layer composed of small crystals of felspar, debris of pumice, and more or less fine material.

We do not propose to occupy ourselves here with the mode of formation of volcanic ashes, and with those of Krakatoa in particular. It will suffice to indicate that in the dust of a volcano we find all the characters supporting the interpretation which regards volcanic ashes as formed by the pulverisation of an igneous fluid mass in which float crystals already formed, and from which, when projected by gases, the pulverised vitreous particles undergo a rapid cooling and decrepitation during their passage through the atmosphere. It is not only the microscopic examination of these volcanic matters that leads us to this conclusion, but the prodigious quantity of ashes formed during the cruption of this volcano, which do not agree with the interpretation that regards these ashes as the result of a pulverisation of a rock already solidified in the crater. Indeed one cannot understand how in two or three days the immense quantity of ashes ejected from Krakatoa could be formed by this process, as, for instance, on August 26, 1883, and in the May eruption, which was the prelude to that catastrophe.

Second Pakt

The recent brilliant sunsets have been attributed to the presence in the atmosphere of minute particles of an extra-terrestrial origin, as well as to volcanic dust. This induces us to conclude this brief absitract of our observations by a description of the cosmie particles which we have found, along with volcanic ashes and pumice, in those regions of the decp sea far from land, where the sediment accumulates with extreme slowness. In another memoir ${ }^{1}$ we have pointed out the distribution of these partieles on the floor of the ocean, and indicated the conclusions which we believe are justified by their relative abundance in the red elay areas of the Central Pacific.

It is known that the atmosphere holds in suspension an immense number of microscopic particles which are of organic and inorganic origin, and are either dust taken up by aerial currents from the ground, or are extra-terrestrial bodies. A large number of scientific men, headed by Ehrenberg, Daubrée, Reichenbach, Nordenskjold, and Tissandier, have studied this interesting problem, and have brought forward many facts in support of the cosmic origin of some of the metallic particles found in atmospherie precipitations, It is eertain that serious objections may be raised against the origin of a large number of so-called cosmic dusts.

In a great many cases it can be shown that these dusts are composed of the same minerals as the terrestrial rocks which are

- Proc. Koy. Su: Edin
to be met with at short distances from the spot where the dust has been collected, and we ean attribute a cosmic origin only to the metallic iron in these dusts. It is somewhat astonishing, however, that no trace is ever found in these dusts of metcoric silicates, although in a great many meteorites it might be said that the iron is only accidentally present, while the silicates predominate. On the other hand, having regard to the mineralogical composition of meteorites, it appears strange that the so-called cosmic dusts should present characters so variable, from the point of view of their mineralogical eomposition, in the different regions where they have been collected. It might also be objected that even the iron, nickel, and cobalt would eome from volcanic rocks in decomposition in which these bodies are sometimes present, and this objection would seem quite natural, especially in our particular case, when we remember the numerous volcanic fragments in decomposition on the bottom of the sea. Again, according to numerous researches, native iron is found, although rarely, in various rocks and sedimentary layers of the globe, A reduction of the oxide of iron into metal might also be admitted under the influence of organic substances. It might still further be objected in opposition to the cosmic origin of the fine particles of native iron that they might be carried by acrial currents from our furnaces, locomotives, the ashes of our grates, and in the case of the ocean, from steamers. All our materials of combustion furnish considerable quantities of iron dust, and it would not be astonishing to find that this, after having been transported by the winds, should again fall on the surface of the earth at great distances from its source.

Such are the objections which present themselves when it is proposed to pronounce upon the origin of particles which we are inclined to regard as cosmic, and of which we propose here to give a short description. We shall see that many of these doubts are at once removed by a statement of the circumstances under which cosmic spherules are found in deep-sea deposits, and it will be found also that all the objections are disposed of when we show the association of metallic spherules with the most characteristic bodies of undoubted metcorites.

In the fint place, the considerable distance from land at which we find cosmic particles in greatest abundance in deep-sea deposits, eliminates at once objections which might be raised with respect to metallic particles found in the neighbourhood of inhabited countries. On the other hand, the form and character of the spherules of extra-terrestrial origin are essentially diffcrent from those collected near manufacturing eentres. These magnetie spherules have never elongated necks or a cracked surface like those derived from furnaces with which we have carefully compared them. Neither are the magnetic spherules with a metallic centre comparable either in their form or structure to those particles of native iron which have been described in the eruptive rocks, especially in the basaltic rocks of the north of Ireland, of Iceland, \&c.

Having referred to the objections, let us now see on what we must rely in support of the hypothesis that many of the magnetic particles from the bottom of the sea which are specially abundant in those regions where the rate of accumulation of the deposit is exceedingly slow are of cosmic origin. If we plunge a magnet into an oceanic deposit, specially a red clay from the central parts of the Pacific, we extract partieles, some of which are magnetite from volcanic rocks, and to which vitreous matters are often attached; others again are quite isolated, and differ in most of their properties from the former. The latter are generally round, measuring hardly 0.2 mm ., generally they are smaller, their surface is quite covered with a brilliant black conting having all the properties of magnetic oxide of iron ; often there may be noticed upon them cup-like depressions clearly marked. If we break down these spherules in an agate motar, the brilliant black coating easily falls away and reveals white or gray metallic malleable nuclei, which may be beaten out by the pestle into thin lamelle. This metallic centre, when treated with an acidulated solution of sulphate of copper, immediately assumes a coppery coat, thus showing that it consists of native iron. But there are some malleable metallic nuclei extracted from the spherules which do not give this reaction, they do not take the copper coating. Chemical reaction shows that they contain cobalt and nickel ; very probably they eonstitute an alloy of iron and these two metals, such as is often found in meteorites, and whose presence in large quantities hinders the production of the coppery coating on the iron. G. Rose has shown that this coating of black oxide of iron is found on the periphery of meteorites of native iron, and its presence is readily understood when we admit their cosmic origin. Indeed these meteoric
particles of native iron, in their transit through the air, must undergo combustion, and, like small portions of iron from a smith's anvil, be transformetl cither entirely or at the surface only into magnetic oxide, and in this latter case the nucleus is protected from further oxidation by the coating which thus covers it.

One may suppose that meteorites in their passage through the atmosphere break into numerous frapments, that incandescent particles of iron are thrown off all round them, and that these eventually fall to the surface of the globe as almost impalpable dust, in the form of magnetic oxide of iron more or less completely fused. The luminous trains of falling stars are probably due to the cominstion of these innumerable particles, resembling

Fic. 3.

Fic. 3.

Fig. 2.-Black spherule with metallic nacleus (fo: i). This spherule, covered with a coating of black shining magnetite, represents the m ist trequent shape. The depreasion bere shown is of ten f.,und at the surface of thene apherales. From 3375 fathoms South Pacific.
Fig. 3- BLack spherule with metalic nucleus (60 : 1). The black external coating of masyetic oride has been broken away to show the metallic centre, represented by the cleas part at the centre. From 3 s so fathoms
Atlantic.
the sparks which fly from a ribion of iron burnt in oxygen, or the particles of the same metal thrown off when striking a flint. It is eary to show that these particles in hurning take a spherical form, and are surrounded by a layer of black magnetic oxide.

Among the magnetic grains found in the same conditions as thesc we have just described are other spherules, which we refer to the chondres, so that if the interpretation of a conmic origin for the magnetic spherules with a metallic centre was not established in a manner aboolutely beyond question, it almost hecomes so when we take into account their association with the silicate spherules, of which we have now to speak. It will be seen by the microscopic details that these spherules have quite the constitution and structure of chonifres so freyuent in meterrites of the most ordinary type, and on the other hand they have never been found, as far as we know, in rocks of a terrestrial origin; in short, the presence of these spherules in the tleepresea deposits, and their association with the metallic spherules, is a matter of prime importance. Let us see how we distinguish these silicate spherules, and the points upon which we rely in attributing to them a cosmic origin.

Among the fragments attracted by the magnet in deep-sea deposits we distinguish granules slightly larger than the spherules with the shining black coating ahove described. These are ycllowish-brown, with a bronze-like lustre, and under the microscope it is noticed that the surface, instead of being quite smooth, is grooved by thin lamella. In size they never exceed a millimetre, generally they are about o 5 mm . in diameter; they are never perfect spheres, as in the case of the black spherules with a metallic centre; and sometimes a depression more or less marked is to be observed in the periphery. When examined by the inicruscope we observe that the lamellae which compene them are applied the one against the other, and have a radial eccenaric disposinion. It is the leafy radial structure (radialblattrik), like that of the chondres of bronzite, which predominates in our preparations. We have observed much less rarely the serial structure of the chondres with olivine, and indeed there is some doubt about the indications of this last type of structure. Fig. 4 shows the characters and texture of one of thescspherules magnified 25 diameters. On account of their small dimensions, as well as of their friability due to their lamellar structure, it is difficult to polish one of these spherules, and we have been obliged to study them with reflected light, or to limit our observations to the study of the broken fragments.

These spherules break up following the lamella, which latter are seen to be extremely fine and perfectly transparent. In rotating between crossed nicols they have the extinctions of the
rhombic system, and in making use of the condenser it is seen that they have one optic axis. It is observed also that when several of these lamellix are attached, they extinguish exactly at the same time, so that everything induces us to believe that they form a single individual.

In studying these transparent and very thin fragments with the aid of a high magnifying power, it is observed that they are dotted with brown-black inclusions, disposed with a certain symmetry, and showing somewhat regular contours; we refer these inclusions to magnetic iron, and their presence explains how these spherules of bronzite are extracted by the magnet. We would observe, however, that they are not so strongly maguetic as those with a metallic nucleus.

We designate them under the name of bronzite rather than of enstatite, because of the somewhat deep tint which they present : they are insoluble in hydrochlorie acid. Owing to the small quantity of substance at our disposal, we were obliged to limit curselves to a qualitative analysis. We have found in them silica, magnesia, and iron.

We have limited our remarks at this time to these succinct details, Int we believe that we have naid enough to show that these spherules in their essential characters are related to the chonstres of meteorites, and have the same mode of formation. In conclusion, we may state that when the coating of manganese depositions, which surround sharks' teeth, ear-bones of Cetaceans and other muclei, is broken off and pounded in a mortar to

Fig. 4. - Spherule of bonaite (25 ; 1) from 3500 fathoms in the Central South Pacific, Nowing many of the geculiaritics belonging to chasino of bronrice of enstalite.
fine dust, and the magnetic particles then extracted by means of a magnet, we find these lutter to be composed of silicate spherales. spherules with a metallie centre, and magnetic iron, in all respects similar to those found in the deposits in which the nodules were embedded.

We have recently examined the dust collected by melting the snow at the Observatory on Ben Nevis, in order to see whether. in that elevated and isolated region, we should be able to find volcanic ashes or cosmic spherules analogous to those we have described. This atmospheric dust, which we have examined microscopically, has not shown any particles which could with certainty be regarder as identical with those substances whic: are the subject of this paper. Particles of coal, fragments of ashes, and grains of quartz predominated. Besides these, there were fragments of calcite, augite, mica, and grains of rock of all forms and of variable dimensions. These were associated wich fibres of cotton, of vegetables, splinters of limonite and of tioin short, everything indicating a terrestrial origin.

In order to give an idea of the facility with which the windmay carry these matters even to the summit of the mountain. wi may add that Mr. Omond has sent to us fragments of crysealliz. rocks, some having a diameter of two centimetres, which, be states, were collected on the surface of the snow at the sumpuit after the stom of January 26,1884 -

Arrangements are being made to collect the dust at the top of Ben Nevis during calms with great care.

UNIVERSITY AND EDUCATIONAL INTELLIGENCE

College of Agrictlture, Downton, Salisbury.-A: the close of the winter session on Wednesday, 16 th inst., the
certificate of membership and the certificate of proficiency in practical agriculture were granted to Mr. R. A. Benson, F.H.A.S., 11, Caledonia Place, Clifion ; Mr. W. de lloghton Birch, I, Bathwick Street, Bath; and Mr. C. W. Lincoln Hardy, F.H.A.S., Gittishant, Honiton, Ievon; and the certificate of proficiency alone to Mr. B. S. Dunning, 2, Warwick square, S.W.
THE authorities of University College, L.iverpool, have asked that that institution be incorporated with Victoria University.

SOCIETIES AND ACADEMIES London

Linnean Society, Aprill 3 --Sir J. Lubbock, Barl., president, in the chair.-Mr. W. Broekbank exhibited a series of clouble daffodils, wild forms of Narcissus psendo Narcisus, which were gathered in a Welsh meadow from amnong many of both the single and double forms occurring there in every stage of growth. Sections invariably revealed stamens and pistils, and in two of the most double furms ovaries filled with seeds were present. With this evidence he thercfore contended against the current notion of cultivation and roct-growths having produced a heterogeneous multiplication of the periauth segments, pylilit-up ctown, and conversion of stamens into petal-growths, his belief leing that the plants in question were propagated in the ordinary veed-bearing manner. - Mr. K. M. Middleto showed a jackclaw with albinism of the wing feathers, causing considerable resemblance in the bird to a magpie.-Prof. P. M. Duncan gave a revision of the familices and genera of the Sclerodermie Zooanuharia, the Rugosa excepted. Since MM. Milne-Edwarils and Haimes' work, $1857-60$, no systematic revision of the Madreporaria has appeared, while since then a great number of new tenera have been founded; hence the necessity for a revision has arisen, and more especially in consequence of the morphohegical rexarches of Dana, Agassiz, Verrill, and Moseley. Prof. Duncan explained that the old sections of the Zwoantharix re!uired molification and addition. In his present revision the wettions Aporoxa and Perforata remain shorn of some gencra, the old family Fungidx becomes a section with three families, iwo of which are transitional between the sections just mentionecl. The section Tabulata disappears, some genera being placed in the Aporosa, and the others are relegated to the Hydrozoa according to Mosicley. The Tubulowa ceave to be Madreporarian. Mence the sections treatel are Madreporia1porosa, M.-Fungida, and M.-Perforata. The nature of the liard and soff parts of these forms is considered in reclation to classification, and an appeal is made to naturalists to agree to the abolition of many genera, the author having sacrificed many If his own founding. The criticism of 467 gencra permits 336 to remain good, and as a moderate number (36) of sul-genera are allowed to continue, the diminution is altogether alonit 100 . The genera are grouped in alliances, the numbers in familics being unequal. Simplicity is aimed at, andl old arififial dividions dispensed with. There is a great destruction of genera amongst the simple forms of Aporosa, and a most important arldition to the Fungida. The genera Siderastrue and Thammas. tra are types of the family Plesiofungidx, as are Microsolenia and Cyclodices of the family Plesioporitidxe. The families Fungidae and Lophoseridxe add many genera to the great section Fungida. There is not much alteration in respect of the Madreporaria-Perforata, but the sub-family Eusammine are promoted to a family position as the Eusammide. - Mr. Chas. F. White thereafice read a note on some pollen from funereal garlands found in an Egyptian tomb circa A.c. 1ooo. It appears that from among the dried flowers of Papater theras the pollen obtained freely absorbed water, hecame swollen, and in other respeets the grains were barely able to be differentiated by the microseope from the pollen grains of the recent poppy. - A paper was read by Mr. F. J. Briant, on the anatomy and functions of the tongue of the honey bee. Authorities, it seems, are yet divided in opinion as to how the organ in question aets, Kirly and Spence, Newport and lluxley, aver the bee laps its food; while Hermann Muller and others attrilute a full share to the terminal whorl of hairs to which the honey adheres, and therefrom is withdrawn. Mr. Briant, on the other hand, from experiment and study of the structures, is inclined to the view that the honey is drawn into the mouth through the inside of the tongue by means of a complicated pumping action of the organ, aided by the closely contiguous paris.

Chemical Society, April 3.-Dr. W. H. Perkin, president, in the ehair. - The following papers were read :-On the influence of certain phosphates upon vinous fermentation, by A. G. Salamon and W. de Vere Mathew. It has been suggested that the addition of phosphates to beerworts stimulates the growth of the yeast-plant and increases the rapidity of attenuation of the wort. The authors find that ordinary English wort contains an excess of phosphorie acid over that which is proved by their experiments to be most favourable to fermentation; hence it Collows that the addition of phosphates to wort is not advisable. Wn the occurrence of rhabdophane in the United States, by W. N. Hartey. The author shows that a new mineral, scovillite, described by Brush and Penfield in the Amer. Yourn. Sci., xxv. 459, is butt a variety of rhabdophane. In a subsequent number of the journal, March 1884, the identity of the two minerals is recognised by the above authors.

Geological Society, April 2.-Prof. T. G. Bonney, F.R.S., president, in the chair.-Frank (Gotto and George Varty Smith were elceted Fellows, and Dr. E. Mojnisovics von Mojsvar, of Vienna, a Foreign Correspondent of the Society.-The following communications wore read:-The rocks of Guernsey, by the Rev. E. IIill, M. A. ; with an appendix on the microscopic structure of some of the rocks, by Prof. T. G. Bonncy, F. R.S. The southern part of the island is a high plateau convisting entirely of gneiss. This is very eoarne, and the bedding is seldom well marked. The bedding, when visible, coincides with the foliation, and the author hopes that hereafter an order of succession may be establishecl. At Rocquaine Castle occur a few slaty beds intercalated in the gneiss, the origin of which is somewhat difficult to understand. The northern part, low ground with hummocks, consists principally of a group of crystalline or suberystalline rocks, in constitution diorites or syenites. They are described by Ansted as sedimentary rocks metamorphosed into syenites; but they show no bedding either in the many quarrics, or, in general, in the shore outcrops, nor do their varicties occur in any manner indicating an order of succession. They appear at Castle Cornet to meet the gneiss intrusively, and their microscopie structure is igneous. A remarkable appearance of bedded structure at Fort Doyle is the only strong argument for a metamorphic origin, and this may be explained as a caught-up mass in conjunction with crushing-planes. The author therefore regards them as igneous. An oval area between St. Sampson's and St. Peter's Port is occupied by homblendie rocks, locally called "birdseye," which may be described as hornblendegabbros. These also have been called metamorphic. They too, at Hoguc-à-la-Perre and another point, present appearances of bedding; but on the same general grounds as for the preceding group these also are regarded as igneouts. Two granitic masses are described: the coarse pink granite of Cobo, on the west coast, and the finer-grained gray granite weathering pink of Lancresse, on the north. Fach is seen to intrude: the Cobo granite into gneiss at Ilommet Barracks, the Lancresse granite into diorite at Fort Le Marchant. Besides these are some smaller masses. Dykes are remarkably abundant and various. Granites and elvans are plentiful everywhere; felsites very rare. The majority of the dykes are diorites, varying in eoarsencss and often of enormous size ; there is also mica-trap. In some of these dykes a cleavage has been developed, so that some resemble slates. Infiltration-veins are abundant. In relative age the gnciss appears to be the oldest rock, the hornblende-gabbro to be next, then comes the diorite group, while the granites are newer still. Of the dykes the newest are the compactest diorites, As to the absolute geologieal age of the rocks no satisfactory evidence at present is known ; it will have to be sought for in the other islands and in France.-On a new specimen of Mradichshys from the Vorkshire coalfield, by Prof. L. C. Miall.Studies on some Japanese rocks, by Dr. Bundjiro Kotô. Communicated ly Frank Rutley. The author has studied series of Japanese rocks from the collection of the Tokio University and the Geological Survey of Japan. The microscopical investigation was carried on at the Mineralogical Institute at Leiprig, under the direction of P'rof. Zirkel, and the chemical analyses were made in the lahoratory of Prof. Knop. The most abundant rocks are the pyroxene-andesites, which are not of a glassy texture, but for the most part holocrystalline. The most abundant mineral in these rocks is a plagioclose felspar with twinned and zonal structure, which is proved, by its extinction-angles and by the chemical analysis of its isolated fragments, to be labradorite. Sanadine is present in small quantities. The augites of these rocks present many peculiarities; they are all decidedly
pleochroic ; and they exhibit the oblique extinction in basal sections first pointed out by Mr. Whitman Cross, aml which is characteristic of triclinic and not of monoclinic crystals, A careful examination of the question has led the author to conclude that the mineral which has lately been regarded as a rhombic pyroxene (probably hypersthene) is really only ordinary angite cut parallel to the optic axis. He does not regard the property of pleochroism as distinctive of hypersthene, while the absence of a brachypinacoidal cleavage and the presence of 10 per cent. of lime in the mineral forbids our referring it to that species. The other abundant minerals in these augiteandesites are magnetite, which is always present, and quartz, which occurs in some of them, both as a primary and a secondary constituent. Hornblende is very rare in these rocks, and when present the periplieral portions of the crystals are seen to be converted into augite, probably ly the action of the caustic magma upon them. Enstatite is rare in these rocks, but apatite is always found in them, while tridymite occurs not unfrequently. The author described a number of structural variations in the augite-andesite from different localities. Among the most interesting is a variety containing as much as 69 per eent. of silica. Among the less abundant rocks are the enstatite-andesite, the quartz-augite-andesite, and the horn-blende-andesites. The plagioclase-basalts of Japan can only be distinguished from the augite-andesites by the presence in them of olivine. Magma-basalts are rare, most of the varieties being of the dolerite type ; but under the name of "basaltInvas" the author describes varieties with a glassy base. In an appendix some account is given of a number of pre-Tertiary rocks, including granite, one variety of which contains the new mineral, reinite, of Fritsch (the tetragonal form of the ferrous-tungstate), quartz-mica-diorite, diorite-porphyry, and diabase.

Vietoria Instltute, April 7.-A paper was read by the Rev. J. M. Mello, F.G.S., on the prehistoric flint implements at Speinnes, implements used by man before the mainmoth and rhinoceros had disappeared in Europe. The author described the works at Speinnes, and afterwards said there was one question, namely, were these early men of Europe always in the condition in which they appear to have been living, or were they offshonts of the parent stems of humanity, and had their ancestors no higher civilisation?

Eidinburgh

Mathematical Society, April 10.-Mr. Thomas Muir, F.R.S.E., president, in the chair.-Dr. Alexander Macfarlane, F.R.S.E., submitted a note on simple, combination, and cumulative voting, after which Mr. A. J. G. Barclay read a paper on the teaching of geometry. - Mr. Muir gave an explanation of an algebraical theorem communicated by Prof. Tait to the January meeting of the Society.

Manchfster

Literary and Philosophical Society, February' 5.-Charles Bailey, F.L.S., in the chair. - On the introduction of coffee into Arabia, by C. Schorlemmer, F.R.S.

February 19.-H. E. Roscoe, Ph. D., I.L.D., F.R.S., \&e., president, in the ehair.-Notiee of the geology of the IIaddon district, eight miles smuh-west of Ballarat, Victoria, by F. M. Krausé, Ptofessor of Ge logy in the School of Mines, Ballarat. Communicated by the President.

PARIS

Academy of Sciences, April 7.-M. Rolland in the chair. -An exact or highly approximate calculation of the thrust of sandy masses against their retaining walls, by M. de Saint-Venant.-On the specific heats of water and of carbonic acid at very high temperatures, by MM. Berthelot and Vieille.-Niote on Brioschi's theorem respecting symmetrical functions, by M. Sylvester.-Documents relating to the liquid air condensers for several years employed in the piercing of the Mount Cenis Tunnel, by M. A. de Caligny.-I labulated results of the various circumstances attending electric discharges during the thunderstorms that occurred in France during the second half of the year 1883. communicated by the Minister of the Posts and Tele-graphs,-Telegraphic determinations of the differences of longitude in South America, by M. de Bernardicres,-Charts of the atmospheric movements passing over Europe in the various refsimpes; remarks on their application to the prediction of storms, by M. A. I'oincaré--Note on the influence of luni-solar attraction on the action of pendulums, by M. A. Gaillot.-On
the solar spots observed in Rome during the first three momts of the year 1884 , by M. P. Tacchini,-Note on the halos of diffused light ohserved round the sun on March 31 at Auteuil, by M. Ch. Moussette. - On the aspect presented by the PonsBrooks comet on January 13, 1884, by M. L. Cruls.-Note on an error committed in determining the exact moment of the chief eruption at Krakatoa last year, by M. A. A. Buijskes This disturbance, generally stated to have occurred a few minutes before noon on August 27, really took place exactly at eight o'clock in the morning of that day. Hence the calculations of the velocities of marine and atmospheric currents based on the former date must be rectified accordingly.-On the principle of the prism of greatest thrust laid down by Coulomb in the theory of the equilibrium of sandy masses, by M. J. Boussinesq, - On the quaternary quadratic formulns, and on the corresponding hyperabelian groups, ly M. E.. l'icarl. - On the theory of quaternions in coenection with Prof. Sylvester's recent solution of equations in which all the given quaternions aie found on the same side as the quaternion sought for, by M. F.d. Weyr.-Note on the applicstion of Faraday's law to the study of the conductivity of salix solutions, by M. E. Bouty.-Note on the verification of the law. of transverse vibrations in elastic rods, by M. E. Mercadier.Fresh experiments in the liquefaction of hydrogen ; solidificatics and critical point of pressure for nitrogen, by M. K. Ofszew, k. - On the chief circumstances attending the transformation of superheated octahedral sulphur into prismatic sulphur, by M. D. Gerrez? -Quantitative analysis of the phosphoric acid jound in arabie lands and in rocks, by M. Ad. Carnot. - On the artificial prodaction of fayalite, by M. Alex Corgeu. The author's experimett show that the protochloride of iron, fused with silica, produce fayalite under conditions in which the chloride of manganer yields tephroite. It appears incapable of producing a bisilicast corresponding to rhodonite, and yields chlorosilicate of iron with difficulty. Highly crystallised magnetite and hausmannite m: be obtained under analogous conditions by the fusion of their $x-$ spective chlorides in contact with the air.-Claim of priority af discovery in connection with recent communications on ibe vitality of virus and of the yeast of beer ; letter addressed to the President by M. Melsens, - Researches on the incubation o: hens' eggs in confined air, and on the part played by ventiation in the development of the embryo, by M. C. Dareste. - Op the variations of electric excitability and of the period of laters: excitement in the brain, by M. H. C. de Varigny. - Note on 2 Siberian pseudo-meteorite, by M. Stan. Meunier.

CONTENTS

Paga
Samoa. By J. A. Farrer . By Dr w H S Stone - 560 Volce, Song, and Speech. By Dr. W. H. Stone - 570 Our Book Shelf:-

Casey's "Sequel to the First Six Books of the Flements of Fuclid "
Ricketts"s "Ores of Leadville, and their Mode of Occurrence, \&c."
Wiesner's "Elemente der Organographie, Systematik, und Biologie der Pflanzen
Letters to the Editor:-
On the Motion of Projectiles,-E. Ristori
Christian Conrad Sprengel.-Dr. H. A. Hagen
Salt-water Fish-Types in Fresh Water.-Prof. Theo. Gill
"The Axioms of Geometry."-Prof. ©. Henrici, F.R.S.

Wild Duck laying in Rook's Nest.-John H. Willmore
The Remarkable Sunsets,-S. E. Bishop
Cats on the District Railway.-E. de M. Malan
The Geodetie Survey of the United States
Agrieulture in Sussex
Socotra
The Three Hundredth Anniversary of the University of Edinburgh. $13 y$ Prof. G. Chrystal
The Congo. By Prof. A. H. Keane (With "niustrafiows)

Notes

Geographical Notes
Volcanic Ashes and Cosmic Dust. By John Murray and A. Renard (W'Wh Illustrations)
University and Educational Intelligenee
Societies and Academies

THURSDAY, APRIL 24, 1884

THE EDINBURGH UNIVERSITY FESTIVAI.

T[HE brilliant celebration of its three hundredth anniversary by the University of Edinburgh last week suggests some reflections on the connection between University progress and the growth of Science. One of thejmost remarkable features in these festive proceedings has been the preponderance given to the recognition of the claims of scientific research to University distinction. A hundred years ago and less, had such a gathering been thought of, the great men who would have been invited to receive the highest academic honours would have been learned scholars, eminent professors of the mediaval branches of education, with ferhaps a few distinguished medical men and doubileis a good many candidates whose only clain would have been the possession of a hereditary title of nobility. But now a new host of competitori has arisen, and upon them have the laurels of the University been mainly bestowed. Physicists, chemists, physiologists, botanists, geologists, and other representatives of modern science have almost elbowed the older philosophics out of the field. In the prean sung at every meeting of the festival the brilliance of scientific discovery, the prowess of scientific discoverers, and the glory shed on the University by its connection with both have been the chief themes.

This great change in the objects of University recognition has been silently in progress for several generations. But it has never been so openly and strikingly proclaimed as during these recent meetings at Edinburgh. It is not that any formal alteration has there been made in the curriculum of study. On the contrary, the same subjects are still required for degrees in Arts as were demanded eenturies ago. Outside the conservative government of the University there has, however, been a steady growth of modern ideas, modern life, and modern science. To he Medical School, in the first place, must the credit be issigned of fostering this wider culture. Its professors lave thrown open their old monopoly of teaching, and vork harmoniously with their competitors outside the valls of the University. They have cast aside the ancient nefficient system of mere prelections, and have introduced ractical teaching into every branch of their science. To lass from the state of things in the youth of these eachers to what they have now made it is to cross a gulf uch as might be thought to mark an interval of some enturies. Everywhere we see practical scientific reearch taking the place of musty lecture-notes and dry nproductive text-books. Not only have the professors imed at being successful teachers, but many of them ave themselves led the way in original dis sovery. They ave likewise kept themselves and their students abreast f the progress of research all over the world. Hence the ames of Continental men of science have become houseold words among the rising generation. We can readily nderstand and sympathise with the uncontrollable outurst of enthusiasm with which the students greeted the ctual appearance among them of a Pasteur, a Helmholiz, od a Virchow.

Vot. $\mathbf{x x i x}$.-No. 756

Siiently and unconsciously perhaps the Universities are passing from the exclusive domination of the older learning. At Edinburgh the emancipation is far advanced, but has yet to take shape in a definite rearrangement of the curriculum of stuly. No thoughtful scientific man would advocate a merely scientific education. The foundations of every man's culture should be laid broad and deep in those humanising departments of thought which the experience of centuries has proved to be admirably fitted for the mental and moral discipline of youth. But the day is not far distant when it will be acknowledged that modern science must be admitted to a place with ancient philosophy and literature in the scheme of a liberal education, when in all our Universities provision will be made for practical instruction in scientific methods, and when at least as much encouragement will be given by fellowships and scholarships to the prosecution of original scientific research as has hitherto been awarded to classical study or learned indolence.

To those who hopefully look forward to the widening and broadening of University culture the Edinburgh festival is full of encouragement. Such a gathering of representative intellect has probably never before been assembled. Delegates from the oldest and youngest Universities of the world, from scientific societies and other learned bodies, brought their congratulations to their northern sister. But they felicitated her not so much because she had been a successful educational centre for three hundred years, as because she had held up the torch of scientific discovery, because her professors and graduates had widened the boundaries of knowledge and deciphered new pages in the great book of Nature. If such has been the result of the trammelled past with all its hampering traditions and vested interests, its obstructions and jealousies, what may we not anticipate for the liberated future! After the lapse of another century, what new conquests will there not be to chronicle, what new realms of discovery to celebrate 1 In this everadvancing progress, the University of Edinburgh, which has done so much in bygone years, will doubtless more than hold her own. No centre of ellucation and researchhas greater advantages in its favour. The comparatively small size of the city, the proximity of its lecture-rooms, laboratories and libraries to each other; its vicinity to the sea on the one hand and to a varied and picturesque country on the other, combine to offer exceptional advantages to the student. Not the least of its attractions is its own unchanging beauty, which never ceases to appeal to the eye and to stimulate the imagination. Long may Edinburgh remain a beacon of light in educational advancement, in the cultivation of scientific methods, and in the march of scientific discovery.

PRJEVALSKY'S TRAVELS IN CENTRAL ASIA Third Journey in Central Asia. From Zaisan through Khami to Thibet and the Sources of the Yellow River. By N. M. Prjevalsky. Russian. (St. Petersburg, 1883.)

THIS large work is the complete account of the third *journey of Col. Prjevalsky to Thibet, notices of the progress of which from time to time appeared in our pages during the year 1880 . The first journey, it will be
remembered, was performed during the years 1870-73, when this distinguished traveller reached as far as the Lama monastery of Cheibsen near Lake Koko-Nor, and t) Tsaidam, but was forced to abindon his intention of going to Lhassa, and so retraced his step; to Alashan. From thence be went to Pekin, and returned to Siberia across the Desert of Gobi. The second journey was undertaken from Kuldja to the lake Lob Nor across the Tian-shan Mountains. On the third journey Col. Prjevalsky started from Zaisan, passing through Barkul Khami, Sa-tzhei, and Tsaidam, where he reached the country he had explored on his first journey. He now proceeded to carry out his former intention of going to Lhassa, and he struggled over the great plateau of Tan-la till he reached the town of Boomtza. At Nap-chu, in the neighbourbood of this town, he was informed that he would be allowed to proceed no further in the direction of the capital of the Dalai Lama. He was then a little more than 160 miles from Lhassa. Negotiations were useless: he was not allowed to proceed. Contenting himself with taking a portrait of the messengers from the Dalai Lama, he turned northwards and retraced the long and wearisome march across the Tan-la plateau. The winter of 187980 was occupied with this march and with the observations upon the manners and customs of the people, as well as investigations into the flora and fauna of the district he was passing through. Prjevalsky possesses in an eminent degree the buoyant spirit of the traveller which enables him to observe calmly and critically the surroundings in which he finds bimself, even thougb he is overcome with hardship or pressed by the weight of disappointment. Returning to Tsaidam, he set out on his way to Lake Koko-Nor, where he had been in the year 1873. He remained in this neighbourbood for some time, and he followed the course of the Hoang-ho for about 150 miles, This part of his journey took him over new ground, and his explorations of these upper waters of the Yellow River or Hoang-ho are of the utmost value. He followed the course of the river as far as Gui-dui, which forms an oasis amidst great arid mountain-chains. It was so difficult to advance and forage was so scarce that Prjevalsky turned back from the Hoang-ho and directed his steps towards Take Koko-Nor. The rain, which had stopped for a time, recommenced, and was often accompanied with severe cold, which added materially to the discomforts of the jo rney. The monastery of Cheibsen was revisited after the lapse of about seven years, and there Prjevalsky was well received by the priests, whose acquaintance he had made on his former visit. The journey was continued through Nan-shan and Alashan amidst the wildest mountain scenery, till a descent was made upon the great Desert of Gobi. The change was great from the high mountains of Pan-cu to the waterless expanse of the desert, but Prjevalsky was always ready with his notebook as well as with his gun; and the result is that this volume contains a mass of information for the ethnologist as well as for the naturalist. The return was made in safety through the desert to Urga and Kiakhta. This is a brief outline of the journey recorded in these pages, and the only regret one has is that so few amongst us can read the language in which it is written. It is to be hoped that the volume will ere long be translated into our own language.

The simplicity of the style, the novelty of the subject, the interest of the narrative, and the personality of the writer, who has reached such a high position amongst adventurous travellers, combine to make this a most invaluable acquisition for the library of the naturalist as well as of the geographer. Very many new species have been obtained of both plants and animals, and one of the most important of the discoveries recorded is that of a new species of horse. Polyakoff has proposed to call this new species (of which a specimen is to be found is the museum of the Academy of Sciences in St. Petersburg) after the discoverer-Equus Prjeralskiz. But the new species of plants and animals are so numerous that it has been proposed to apply a special name to the flora and fauna of the district, which are found to differ considerably from those of Western China.

OUR BOOK SHELF

Deutsche Kiolonien. Ein Beitrag sur Besser Kenntnios des Lebens und W'irkens unserer Landleute in allon Eirdtcilcr. Von Karl Emil Jung. (Leipzig: Freytag. 1884.)

Dr. Jung is well known as an accomplished writer, both on the scientific and economical aspects of the Australias colonies, in which he spent some years His presem: brochure is one of much interest, though its immediate subject is beyond our scope. It is a curious fact that though the Germans have no colonies, they are probabis. next to the English, the greatest colonisers of any European nation. Even according to the census returns, the German population of the United States is very great, and as Dr. Jung shows, it is much greater than it seems. for many of the earlier colonists have Anglicised thei names, and been absorbed in the general population. Ic the culture of the States, and indeed to the intellectuas side of all the colonies in which they have settled, the Germans have largely contributed. Dr. Jung gives interesting details of German migrations into Englanc Russia, Australia, South Africa, as well as the States, anc from the ethnological standpoint his little work deserve the attention of the scientific student.

Catalogue de la Bibliotheque Japonaise de Nordensesjö's Coordonné, revu, annoté, et publié par Léon de Rosny. (Paris, 1883.)
THiS collection of Japanese works in all departments of literature, which appears to have been collected by Baroe Nordenskjold while in Japan, has been presented by hire to the B:bliotheque Royale at Stockholm. The editor the veteran Japanese scholar, M. de Rosny of Paris, hys not been satisfied with a bald catalogue, but has in matw instances added descriptivs and analytic notes of the coa tents, the character of the work, and its place in Japanese literature ; and although the collection can hardly equi in extent and value those of several European librants we are not aware that such an excellent catalogue exist? in any European language. The whole contains aboz $t 000$ works in over 5000 volumes, and is divided and snldivided by M. de Rosny with much nicety. The scientio works are not very numerous. On the exact sciences (arithmetic, geo netry, algebra, astronomy, \&c.) there as only 104 volumes, and on the natural sciences 445 . $B=$ most of thesc are dated prior to the opening of the country to foreigners, and to the student who coesi examine them they would present an interesting F: ture of the state of scientific knowledge at vanio. periods.

LETTERS TO THE EDITOR

The Editor does not hold himself responsiblc for opinions expressed by his correspondents. Neither can he undertake to return, or to correspond with the writers of, rejected manwscripts. No notice is taken of anonymous communications.
The Editor wrgently requests correspondents to keap their letters as short as possible. The pressure on his space is so greal that it is impossible otherwise to insure the afprarance even of comm, unications containing interesting and novel fach.]

The Dust of Krakatoa

In the interesting paper by Mr. John Murray and the Abbé zenard, which appears in your last number (p .585), there is an rroneous reference which it may be well to correct without elay. I am made responsible for a verbal statement concerning Grakatoa dust which fell in Japan. In your issue of the 3rd 2st. (p. 525) a letter from myself will be found, stating, on the uthority of Prof. John Milne of Tokio, that, contrary to the riginal statements made on the subject, no dust of Krakatoa is nown to have fallen in Japan. My friend M. Renard must ave misunderstood the communication which I made to him, thich was to the following effect:-I have had the opportunity f examining a great number of specimens of the dust of Krakana which fell at different distances from the volcano, ranging om 50 to nearly 1000 miles. The dust collected at the greatest istance from Krakatoa, with which I am acquainted, is that hich fell on board the Arabella in lat. $5^{\circ} 37^{\circ} \mathrm{S}$, and lat. $88^{\prime \prime} 58^{\prime}$,, Java Head bearing E. $\frac{1}{2}$ S. about 970 miles. It is certainly ne that the dust which has fallen at the greater distances from ie volcano contains less magnetite, augite, and hypersthene than tat descending nearer to the source of eruption ; and the obvious :planation of this is found in the greater density and compactass of the particles of those minerals as compared with the sociated glassy fragments. At the same time it must be reembered that this is not the only explanation of the high silicatreentage in these ashes. The prevailing rock in the islands id on the shores of the Sunda Strait appears to be a hyper-bene-augite-andesite, containing an unusually large proportion of brown, glassy base. This base contains a far higher proportion silica than the included minerals ; and hence, as shown by srbeek and Fennema, these rocks have a percentage of silica nging up $t 0$, and even exceeding, 70 per cent. The same is true the pumices formed from the glassy andesite rocks, including at of Krakatoa itself.

JOHS W. JUDD
Hurstleigh, Kew

ON Jantary 13 I collected a sample of snow from an open Id, and examined under the microscope the residue left by its sporation. This residue showed a number of objects which : not usually found in atmospheric dust. Great precautions re taken to prevent the entrance of dust during evaporation, : vessel being kept covered with filter-paper. Crystals of nmon salt were very abundant. There were numbers of her large prismatic crystals, colourless, insoluble in water, 1 doubly refracting. But the most characteristic objects were oute granules, transparent, colourless, and scattered in thouids all over the field of the microscope. These were insoluble water. Many black particles were visible and some of se were attracted by the magnet. In fact, when the magwas swept slowly over the residue, its poles became covered h Gine black crystalline particles, evidently magnetic oxide of a. However, there are large iron-works in this vicinity, ich may account for the presence of the magnetic dust. To ermine this and other interesting points, it is my intention to mine the snow and minfall regularly during the next twelve nths at least.
I specimen of snow, freshly fallen on March 10 showed none he prismatic crystals referred to above. With a high power y small crystals of similar shape and properties were observed. - small granules were, however, to be seen along with crystals ommon salt and ammonic nitrate. No magnetic dust was ad in this specimen.
These results are, in my opinion, in favour of the dust theory he remarkable sunset phenomena of the past winter.
W. L. Goodwin
?ueen's University, Kingston, Canada, March 31
..S.-Snow fell torday (April 1), and a sample was examined
for dust. The insoluble prisms have completely disappearel, and the minute dust is present in much smaller proportion.
W. L. G.

"Earthquakes and Buildings"

Prof. John Milne, of Tokio, refers in an article under this heading (Nature, vol. xxix. p. 290) to buildings in Caracar, which are low, slightly pyramidal, have flat roofs, and are bownd alcu" their facts toth tron. Being for more than twenty years a resident of this city, I hope I may be credited with knowing something of its architecture, and as such I must say that certainly the houses are generally one-story buildings, but all the remainder of the foregoing description is quite erroncous. However, I do not wirh to make Mr. Milne answerable for its inaccuracies, as it appears to be taken from a ridiculous article published by one Horace I). Warner in the Atlantic Month/y, March 1883. This article is a most audacious fiction from beginning to end, and in none of the statements it pretends to give with graphic seriousness is there any shadow of truth, as 1 have pointed out in the Americun Fournal of Science, July 1883, with respect to the principal assertion of an earthquake said to have been witnessed by the author on September 7, 1882, in Caracas.

House-building in our good city is of the most ordinary type, and certainly not what it ought to be in a place which already once was ruined by an earthquake (1812): the walls are built of brick and mortar ; the roofs are very seldom flat, but have a very slight inclination, say 15 to 20 degrees. They are, however, made too heavy by a thick stratum of loamy mud, spread over the closely-joined laths (generally the stems of the arborescent grass, Arwndo saccharoides), on which the tiles are set in alternately convex and concave rows.

The earthquake of Cua(NATURE, vol. xviii. p. 130) is an instance of the remarkable influence of the soil on the intensity of destruction : all the houses built on the rocky lill in the middle of the town were ruined, whilst those on the surrounding alluvial plain suffered scarcely any damage. The same happened in $\mathbf{1 8 1 2}$ in Caracas: the northern part of the city, where the stratum of detritus is less deep, was almost completely laid waste; but the southern part, built on a far deeper deposit of loose matter, experienced comparatively small destruction.
A. Exinst

Caracas, March 16

On the Transmission of Organic Germs through Cosmical Space by Meteoric Stones

In his addendum to his well-known lecture on "The Origin of the Planetary Systcm " Prof. Helmholtz uses the following remarkable sentence, to which so far as I am aware, attention has not hitherto been directed:-
"But even those germs which were collected on the surface when they reached the highest and most attenuated layer of the atmosphere would long before have been blown away by the powerful draught of air, before the stone reached the denser parts of the gaseous mass, where the compression would be sufficient to produce an appreciable heat."

Ilclmholtz is contending in favour of the possible transmission of germs from one heavenly body to another, and his point here is that the germs, owing to their being small and light, will he more rapidly retarded (blown back) on reaching the first traces of our atmosphere than the stones on which they reside, and will thus escape the great rise in temperature to which the stones are subject in consequence of friction and air compression.

Now when a germ just leaves its meteorite its velocity is equal to that of the meteorite. If m be the mass of the germ, $\frac{m v^{3}}{2 /}$ will be the heat developed in destroying its velocity. Were all this heat to go to raise the temperature of the germ, the rise in temperature would be $t=\frac{v^{2}}{2 / s}$, being the thermal capacity of the germ. This shows that the rise in temperature is independent of the mass of the body brought to comparative rest by the atmosphere. In reality, since the germ experiences a greater retarding acceleration than the stone, its temperature must rise much more rapidly and consequently higher than that of the stone. Further, the terminal velocity of the germ will be less than that of the stone, which will conduce to further raise the temperature of the former. Of course neither the stone nor the germ will get all the heat generated, but this cannot materially affect the question.
J. H. Stewart

Physical Laboratory, Royal College of Science for Ireland

Instinct of Magpies

I have read in Nature (p. 428) your correspondent's letter relative to the instinct shown by magpies in Scotland as to the time for commencing their nest-building, which goes so far as to assume that this particularly cunning bird is capable of fixing a certain day in March (the Sunday after the 16th as I remember) as the invariable time to start the nest. And the writer observes that it would be well to ascertain if difference of latitude made any difference in the magpies' calculation. Now 1 live in the south-east of Ireland, a goorl many degrees south of your correspondent's Scotch magpies' locality, and it so happens that I have for the last twenty years observed the nest-building of magpies, who have enjoyed undisturbed possession, and who invariably build in the trees close to my house. It is curious that this colony (if a single pair may so be called) never in-creases-four young "mags" are brought out every year-but though I have observed congregations of ten or fourteen at times, the breeding birds never exceed two. The young birds never, like rooks, join a colony near their paternal nests, but are shipped off to new localities. I could mention many traits of ny magpies' instinct-"their tricks and their manners"-but will confine myself to the nest-building. They never repair or reoccupy an old nest. A new one is constructed every year, and always, each year, in a different tree. Their nest-building is a scrious labour, and takes a long time. So they begin early in February, selecting the sites ofien with much deliberation. The work is entered on very early in the morning, and the "mags" seldom work in the daytime. About the end of March this domed nest with its two openings is finished, and the laying of eggs commenced. I am quite certain that the middle of March is not the time of beginning the nest, and this is important, as the claim set up for the magpies instinctive knowledge of dates therefore falls to the ground. I do not conceive it possible to prove that in this particular magpies have a more highly developed instinct than most other birds; all have their normal time of nesting, although there may be cases of abnormally late or early building; but as to the magpies or any other bird being able to fix dates exactly to the day. it is unproved and incredible.
Inisnag, Stonyford, Co. Kilkenny
James Graves

Cats at Victoria Station

That the cats should repose comfortably amidst all the noise and vibration of a busy railway is not, after all, to be much wondered at. Animals much more defenceless and timid have found out that they need not be afraid of either the vibration or the trains, although they do not seem to have discovered that if they get in the way of the trains they are either maimed or killed. For instance, along the London rand North-Western Railway hetween Manchester and Liverpool, which carries an enormously heavy traffic, rabbits burrow almost immediately beneath the ballast forming the permanent way, and I have often seen them sitting nearer to the train than most human beings would like to stand. It is strange, however. that along this line of railway, which is one of the oldest in England, neither the rabbits nor the grouse and partridges have learnt that, though the train is not to be dreaded as a man is dreaded, it is usually fatal to those who are struck by it. All these creatures, as well as hares, pheasants, \&c., are constantly being run over by passing trains. A hen grouse or partridge will frequently take her brood on to the railway, no doubt for the purpose of dusting themselves, and meet with this fate. The survivons, however, do not seem to take warning by the occurrence. The same may be said of the telegraph-wires, against which the birds are constantly flying. The number killed in this way is considerable. This is the more remarkable because along this line wild animals have had such a lengthened experience of rail and wire that one would suppose it might have taught them wisdom.

Rooke Pennington

Wild Duck laying in Rook's Nest

With reference to Mr. Willmore's note in Naturl (p. 573), 1:have met with several instances in Lincolnshire of willd ducks nesting at a considerable height above the ground-once in an oak in a plantation in the old nest of a carrion crow-in ivy on a ruined wall, and on the top of a straw stack: once alts on the roof of an old bean stack in the murches, I have known a wild duck nest on the ground amongst brambles and
rough grass in the centre of a plantation a mile or more frum pond or running stream.

Jons Cordeatix
Junior Athenceum Club, April 21

Science and the Public Service

Tiis public are greatly indebted to your correspondent for drawing attention in Nature of March 27 (p. 511) to the astounding proposal of the War Office to adopt the scheme of examination described by Lord Morley in the House of Lords on March 27-a scheme so absolutely retrogressive, and opposed lip the recommendations of the Public School Commission of $1 \$ 62$ and of the Commission on Scientific Instruction in 1872 (composed of many eminent men and presided over by the Duke of Devonshire), and to the rapidly strengthening opinion in favour of education in science. The Government must be asked to withdraw the scheme.

Whittington, Chesterfield, April 16

THE HONG KOONG OBSERVATORY

I. ${ }^{1}$T was found to be impossible to select a suitable site for the new Observatory near the city of Victoria, as the mountains shut off from view a large section of the southern sky, extending up to 25° of altitude. It is for the same reason impossible to determine the direction and velocity of the wind accurately near the town. Besides it is likely that the ferruginous rocks would deviate the plumb-line, not to mention the magnetic needles.
2. The Observatory was therefore built on the peninsula of Kaulung opposite. It stands on the top of Mount Elgin, a small hill built up of decomposed granite, rising abruptly on all sides from the surrounding level ground, and culminating in two humps distant over 300 feet from each other. The top of one of these is flat, and forms, roughly speaking, a circle of about 200 feet in diameter, and 110 feet above mean sea-level. Here the main building is situated, about 75 feet south-west of which the stands for the meteorological instruments, including the self-recording rain-gauge, are placed. It commands an unobstructed view of the sky, the tops of the hills rising only about seven degrees above the horizon. The mag. netic hut is erected on the other prominence, the top of which was levelled, and forms a rectangle 36 feet by 30 feet.
3. The situation of the Observatory is rather secluded. It is surrounded by villas and summer residences; and the picturesque town rising opposite on the side of the steep mountain at a distance of a couple of miles, and the harbour, filled with the most bewildering mixture of men-of-war and merchant ships belonging to nearly all nationalities, and literally swarming with boats and sampans, make up a charming view from the verandas of the Observatory, which, on the other hand, forms a prominent object as seen from the town and harbour.
4. I was appointed to take charge of the Observatory on March 2 last year, and when I arrived in the colony on July 28, the foundations of the building had been already laid. It was then erected under my superintendence, and I was allowed to arrange every detail to suit the requirements. By January I the main building was so far finished that I could take up my residence there, and start tri-diurnal meteorological observations, and issue a daily weather report, containing also information concerning the direction and force of wind indicated by the gradients, based on telegrams received from the Treaty Ports, Manilla, and Nagasaki. I receive a telegram from Wladivostock in addition. The observations are made at to a.m. and at 4 p.m. on the previous day.
5. The main building of the Observatory is a rectangular block, 83 feet long and 45 feet wide (not including the transit-room), the architecture of which does credit to the Surveyor-General's department. The upper floor is devoted entirely to my quarters. The ground floor com-
prises four rooms, each 20 feet long, 6 feet wide, and 14 feet bigh. In the entrance hall is placed the telegraphic apparatus; to the right is my private office, where the library is placed, contained in glazed teak-wood bookcases, to protect the books from insects in the summer. I have already received extensive donations from scientific institutions in all parts of the world. The room next to this contains the clocks, which are fixed to brick piers neatly coveref with teak wood. The piers, which rest on cement concrete, are carried down 6 feet below the ground in holes lined with bricks. Behind this is a small room in which the galvanic batteries are placed.
6. The mean-time clock, which is to discbarge the timeball automatically, is furnished with a magnetic apparatus for setting to correct time without touching any fart of the clock. The time ball will be dropped at Tsim-sh'at-sui Point, opposite the harbour, about a mile from the Observatory. It is 6 feet in diameter. Opposite the meantime clock is the sidereal standard clock, which is of the most finished construction. It communicates by wire with a sympathetic dial placed in the transit-room. The face of the latter is black, and the hands and the figures are white, which 1 found very convenient at Markree Observatory, but unforiunately, Messrs. Dent and Co., who made all the horologisal apparatus, have omitted a second every minute. For marking a chronograph such an arrangement is most desirable, but it is rather awkward in observing with eje and ear. The clock-room contains the relays, and also one sidereal and two mean time chronometers.
7. The transit instrument, by Troughton and Simms, is placed in a wing room painted dark gray, 14 feet square and 14 feet high, next the clock-room The meritian opening is I foot wide. The transit instrument has also a delicate level for observing zenith distances according to Talcott's method. The pivots are made of chilled bellmetal, a material which, 1 believe, was intrnduced to astronomical instrument-makers by Brinkley of Dublin, whose instruments remain serviceable up to this dar, while the pivots of transit instruments of much later date are corroded, being made of steel-a material that should not be used except where unavoidably necessary. An adjustable meridian mark is placed on a pier 66 feet north of the transit instrument. It is observed through a lens of that focal length, which is fixed in the meridian o: ening of the transit-room.
8. To the left of the entrance hall is the general office ind computing room, next to which is the room where he barometers, as well as the self-recording thermograph ind barograph, are placed. Behind this is a small room hat serves as a photographic laboratory. Every part of hese two rooms, including ceilings, foors, and furniture s painted dark red, and there are only a few panes of blass in the windows, which are glazed with double red llass. The thermograph is supported by massive blocks If wood fixed on solid masonry, but the barograph is slaced on a stand merely screwed to the floor. The icrew that holds the self registering thermograph is made of zinc.
9. Over the upper story of the building a turret rises ifet above the flat roof, This holds the self-recording larts of the anemometer, which is erected on top of it. The cups are 45 feet above the ground. The roof forms a :onvenient platform for making obsetrations. The sun-hine-recorder is placed in a groove in the coping-stone in the parapet, 34 feet above the kround. Lightning :onductors are placed on the two chimneys. They rise a ew feet higher than the anemometer,
10. A one-storied block of outbuldings, containing ervants' quarters and store-rooms, communicates with he main building by a covered passage.
11. The magnet'c hut is 17 feet long, 13 feet broad, and he roof rises 11 fect high. It is made of wood, painted ure white outside and inside. Bamboo chips instead of
nails were used in its construction, as well as in that of the furniure. It has double doors, louvered and glazed, to the north and south, and two windows on either side, as well as two windows in the roof, which is convenient for reading the verniers. (n top of massive teak-wood block's sunk $3 \frac{1}{2}$ feet in the ground and rising 4 feet above the floor are placed the dip-circle and the unifilar magnetometer. All the instruments were brought out safely, except the dipping needle ${ }^{s}$, which appear not to have been sufficiently cleaned before packing. The hut is very comfortable, and forms therefore, in my opinion, a contrast to other structures used for making magnetic observations, in arranging which the importance of attending to the comfort of the observer in the hut is but too often lost sight of. The deviation is only 47 minutes easterly. The dip is 32 degrees (north end dipping). A broad road leads from the main building to the magnetic hut. This road is broken in the middle by a depression, across which a bridge will shortly be built.
12. Beside this road, at a distance of about 75 feet from the main building, it is intended to build a small house for the assistants, and near this has been selected the site for the refractor of 6 inches aperture, the loan of which I was promised by the Astronomer-Royal. That will complete the outfit.
W. DOberck

Government Astronomer
Hong Kong Observatory, March 11

THE CEDAR FOREST OF CYPRUS

IN 1879 Sir Joseph Hooker communicated to the Linnean Society ${ }^{2}$ the unexpected discovery of a form of the cedar of Lebanon (Cedrus libani var. brevifolia, Hook. f.) by Sir Samue! Baker in Cyprus

The following extract from a letter lately received by the Director of the Royal Gardens, Kew, from Sir Robert Biddulph, K.C.M.G., C.B., the High Commissioner, gives a more detailed account of the forest, and will no doubt be interesting to many readers of NATURE :-

"Cyprus, March 25

"With regard to the cedare, I went last summer all through the thickest part of the forests, including the cedar forest, and I am able to give you some of the particulars you ask for, having noted them at the time. The cedar forest occupies a ridge on the principal watershed of the southern range, and about fitteen miles west of Mount Troodos The length of the forest is about three miles, its breadth very much less. A few outlying cedartrees were visible on neighbouring hills, but on the ridge they were quite thick, and probably many thousands in number. I took the height above the sea by an aneroid barometer, and found it to be 4300 fect. The trees are very handsome and in good condition, but comparatively young. The smallest scemed to be from ten to fifteen years old ; the largest, I am told by the principal forest officer, are probably not over sixty or seventy years. The worst feature is that thrre were no seedlings or young trees under ten years; and indeed this is the same with regard to the pine forests. It would seem as if the great influx of goats has been comparatively recent. I made a tour through the heart of the forest last August. 1 starte 1 from a point on the west coast, and from thence ascended to the main watershed, and kept along the top till I reached Mount Troodos, taking three days to do it. The country through which we pa-sed on the first day was perfectly uninbabited, and a mass of hills and forest, chicfly Pinus maritima [P. halepensis] and the Ilex. The trees were in very great number, but there was a scarcity of young trees, and most of the old ones had been tapped for resin. On the sccond day we passed through the cedir forest, and the same sort of country as before, the /'inus Laricio beginning at an altitude of 4000
${ }^{t}$ Jowrm. Linn. Sor. Bof, xvii pr 517 -19.
feet. We got as far as the monastery of Kikko that day, and the next day I continued along the watershed to the camp at Troodos. Our road as far as Kikko was a mere track on the side of the hill, in some parts rather dangerous, and we had to lead our ponies on foot, in many parts very steep. The difficulty on the road is the want of water at that elevation. We halted the first night at a beautiful spring, but we had to carry with us food for man and beast for the whole party, muleteers, \&c. The scenery was wild and romantic. This spot is the centre of the 'mouffon' ground; three of them were at the spring when we approached it. It gave me a clearer idea of the forests of Cyprus than I ever had before.
"We have had a great deal of rain this winter, and the country is clothed with vegetation."

MINERAL RESOURCES OF THE UNITED STATES ${ }^{1}$

THIS volume, published by the United States Geological Survey, is the first statistical report upon the condition of the mining industries of the United States, and contains much valuable information concerning the great and ever-increasing production of metals, especially in the States west of the Missouri and the Rocky Mountains.

In addition to the columns of figures of weights and values constituting the statistical matter proper, the author, or rather his coadjutors, for the volume is the work of many contributors, have furnished notices and descriptions of processes, especially in the metallurgical section ; and a review of the course of the markets for the preceding eight years (to 1875) is given for each important inetal. By a curious provision in the Act of Congress providing for the publication of these statistics, the held is rextricted to mineral products other than gold and silver, but, in order to present as complete a view of the total output as possible, the best available figures of the production of precious metals are given in a concise form. This, though valuable, is rather disappointing, as we miss the interesting accessory descriptions which are given in other parts of the volume. How important the production of these metals has been during the last quarter of a century is seen in the statement that the aggregate yield up to the middle of last year has been 2707 tons of gold and 15,68 o tons of silver, and of these enormous quantities less than 1 per cent. of the gold, and none of the silver was raised before 1858 At the present time the annual production varies from 12 to 16 millions sterling coinage value, divided about equally between gold and silver, the latter being usually a little in excess.

The coal raised in the different States is a little over 87 million tons, of which $29,120,000$ tons were anthracite and the remainder bituminous coal and lignite of all kinds, and some anthracite mined "outside" of Pennsylvania, the recorded value being 29,326,000 . The above totals represent 1.8 ton per head per annum of the population, which is, however, somewhat less than the consumption, in addition to enormous quantities of wood and charcoal. Among the most interesting recent developments are the l'ertiary and Cretaceous coal-basins which extend along t'ie base of the Rocky Mountains and are also seen at different points on the Pacific Coast, the total area of these being reported as greater than those of the Carhoniferous formations proper in the Eastern States. These areas are, however, marked as doubtful by the author. At Crested Butte and Irwin, in the very heart of the Rocky Mountains, both anthracite and good coking coals are found in these newer formations, the quality of the latter especially being comparable with the coal of Connellsville or the best coking coal in Pennsylvania.
" "Mineral Resources of the United States." By Albert Wiliams, jun. 8vo. (Washington, ${ }^{8883}$.)

The iron industry of the United States is now of first-rate importance, and the subject is well treated in a paper contributed by Mr. J. M. Swank, the well-known secretary of the American Iron and Steel Association. The iron ore raised is in round numbers 9 million tons, and the pig iron made from it $4,623,000$ tons. The value of the latter is given at $21,267,0001$., which is oaly a few pounds less than that of the gold, silver, copper, and lead taken together. The largest production of iron ore is in the district producing the richest quality, namely Lake Superior, whose yield of $2,948,000$ tons is comparable with those 0 the other great hematite districts of the world, Furness, Whitehaven, and Bilbao.

The United States are now among the largest producers of copper, and here we are met by the peculiarity of the unequal distribution of the producing centrcs. Thus, of a total product of 40,903 tons, 25,439 tons were from single district, namely, Lake Superior, and of this again the larger proportion, 14,309 tons, was from a singie mine, the "phenomenal" Hecla and Calumet of Houghtoe, Michigan. The Lake copper is entirely produced fros the native metal, and is of the highest degree of purity Latterly, however, a competitor of some importance has arisen in the south, in the barren desert country of Ar: zona, where masses of carbonates and oxides have been discovered in considerable quantity under conditions resembling some of the famous mines of South Australa The handling of these ores is not, however, easy. The smelting must be done on the spot, and when the furnaces are at a distance from railways, the coke used may cost fro10l. to $15 l$. per ton. The most remarkable mine in this district, the Copper Queen, has already paid 203,000 , is profits, and produces copper at a cost of $4 \frac{1}{2} d$. to $5 d$. per pound.
Lead is another metal in which the United States hare taken a prominent position during the last few years, tbe product being now 132,890 tons, while in 8870 it was or? 17,830 tons. This great increase is due to the developere: of several important groups of mines in the Western States but more particularly in Utah, Nevada, and Colorads the latter State alone producing 58,642 tons, or nearb half the total production of the country; while 1873 the State was credited with only 56 tons. Th enormous increase is due to the development on the carbonate deposits of Leadville, in the Rost Mountains, where ores containing only 10 to 20 per cec: of lead are smelted in enormous quantities to obtain th silver and gold contained, which are relatively high i proportion; the pig lead or "base bullion" produce being sent eastward by railway to the refineries at Omakr Chicago, St. Louis, Pittsburg, and even New York. IV information given in the volume concerning this imports branch of industry is so full that it will be a welcome oo to the library; of every metallurgist.

Another important and almost specially America mineral industry is that of petroleum, the production being restricted to the States of Pennsylvania, New Yare California, West Virginia, Ohio, and Kentucky, the four being, however, insignificant as compared with th first three. Here again there is a considerable dispari? the States of Pennsylvania and New York yielding $6 \mathrm{~L} 2 \times$ barrels daily, while in California the annual total is oel 70,000 barrels. The barrel contains 42 gallons ['] measure, which is the same as the old English win gallon of 231 cubic inches. The consuming power of th world scems in this article to have been passed by th supply, the average price of $4 \mathrm{ts.2d}$. per barrel in 1 Ns having fallen to 3 s .4 d . in 1883 . Notwithstanding ${ }^{2}$ great fall in price the total produce of the year is valuo at $£ 4,740,000$, or about one-half more than that of copper.

The minor metallic and other minerals are of less. portance, but their statistics are set forth in considerab) detail in other parts of the volume, which we bope to
reprinted, if not annually, at least at short intervals of years, as furnishing one of the most valuable contributions to economic geology.
H. B.

THE LATE DR. ENGELMANN

S0 many years have elapsed since Dr. Engelmann, whose death was recently announced in your columns, wrote his academic dissertation "De Antholysi Prodromus, $1832, "$ that it is no matter for surprise if many among the younger generation of botanists have forgoten this little treatise, or have failed to associate its author with the historian of American conifers and other selected orders. This is the less surprising as, although in Dr. Engelmann's systematic memoirs there are frequent traces of his early morphological studies and of the interest he felt in them, he, so far as I know, wrote no treatise specially devoted to teratology other than the one already mentioned. A few words on this little book may therefore not be unacceptable to those who honour Engelmann's memory. It would be an interesting and not an unprofitable task to trace out the connection between teratology and the modern views of evolution, which is much closer than is generally imagined, albeit the ideas of natural sclection and survival of the fittest find no place in the older teratological literature. For such a task I have neither the requisite ability nor the necessary leisure. My object in alluding to the matter is to call to mind the light in which Engelmann considered the subject, influenced as he was by the writings of his jreat fellow-countryman Goethe, whose views, originally published in 1790 , were by no means universally accepted, sven in 1832. Schimper and Alexander Braun were tmong those who appreciated the value of Goethe's heory, and those two learned men and acute morphoogists were Engelmann's teachers, and as we learn from timself, exerted great sway over him.

It is curious to contrast the modest pamphlet "De Intholysi Prodromus," written in Latin, which I at least lo not find very easy to construe, with the more elaborate "Êlémens de Tératologie Végétale" of Moquin-Tandon, ublisted nearly ten years later ((844). Moquin's work ; written in a style which even a foreigner can read with leasure. Its method, too, is clear and symmetrical, ut when we compare the two works from a philosophical oint of view, and consider that the one was a mere coltge essay, while the other was the work of a professed otanist, we must admit that Engelmann's treatise, so far s it goes, affords evidence of deeper insight into the nature nd causes of the deviations from the ordinary conformaon of plants than does that of Moquin. A few illustraons will suffice to make this clear. Speaking of proressive development, or as be calls it "cvolutionis rogressus," Engelnann says that while it is only pscurely indicated in celestial bodies, and with difficulty udied in animals, "clarissime apparet in plantis." lant-history is for Engelmann the narrative of the proess of evolution-" evolutio progredicns"-and variaons from the ordinary course are to be accounted for, ex nimio motu, et ex nimio impeditione," or, as we ould now say, from excess or from arrest of developent.
The main end of a plant is to produce seed, and e morphology of the plant appears to have been nsidered by Engelmann as the result of a compromise tween this tendency (nisns) and the progressive devement of each individual part. The morpho!ogical unit - him, as for Goethe, from whom he derived the notion, is the leaf-" unitas autem in foliis posita est"-and the riations from the leaf-type were, as we have seen, attrited to arrest of development, to reversion (regressus), to progression. But these changes were looked upon in chiefly in relation to the greater or less development
and specialisation of individual parts with little or no reference to their possible genealogical significance as elements in a general pedigree of plants, or at any rate as suggestive of such elements. Hereditary influence, however, was not wholly overlooked ; on the contrary, Engelmann speaks of it as "magni momenti," and goes on to show how woody plants frequently show, year after year, the same malformations, how perennial plants less frequently do so, and how such repetition is much less frequently observable in annuals and plants propagated wholly by seed. Only "antholyses epiphytica hereditaria esse possunt" (\$69), says our author, by which he means that partial changes are not perpetuated by descent, but only those in which "omnes plurimive flores morbosi sunt." It is not necessary to stop to consider what amount of truth there is in this assertion, but it is interesting to see the use then made of the word "epiphyte." Engelmann, influenced by his medical studies, spoke of "local," "epiphytical," "sporadic," "enchoric," and "enchronic" affections; enchoric changes being limited to certain localities, enchronic alterations occurring at definite times. These terms have not been generally adopted, while the signification now attached to the word "epiphyte" is widely different from that which Engelmann intended. He, at least, had not the right of priority in this matter, for Bischoff, in his "Botanische Terminologie" (1830), speaks of epiphytes as external parasites (citing as examples Cuscuta and Viscum), in contradistinction to entophytes. It would seem from this that in matters of terminology custom overrides priority. But this by the way. Our present concern is with the fact that certain changes, or certain degrees of change, are more likely to be perpetuated than others. Similarly we find Engelmann calling attention to certain "critical" regions of the plant, -spots, that is, more subject than others to teratological change, -the apex of the stem in definite inflorescences for instance (567), a point subsequently dwelt on by Darwin at some length, though he does not seem to have been aware of what Engelmann had previously written on the subject.
Lastly, reference may be made to the assertion made by Engelmann that plants of a high state of relative structural perfection "structurd magis svolutd et typo magis composito," are specially liable to retrograde metamorphis. This is a statement that from the nature of things seems so reasonable that it is generally accepted without question. Nevertheless, it is one which requires qualification and further investigation. To take one case which occurs at the moment. Let any observer call to mind the number of instances in which he has seen the carpels the subjects of rctrograde metamorphosis, and he will probably find that such ehanges are far more common in cases where the carpels are free and superior, than in those in which they are in union one with another and with the thalamus, as in the so-called inferior ovaries, which are considered to represent a higher type of structure than do the free carpels.
But the object of this note is not to discuss any particular view that Engelmann may have held, but merely to call attention to his claims as a morphologist, claims which are overlooked by reason of his greater-numerically greater-claims as a systematist.

Maxwell T. Masters

SIWALIK CARNIVORA ${ }^{1}$

B Y the publication of the present memoir on the Siwalik and Narbada Carnivora, Mr. I.ydekker completes the second volume of the series of the "Palxontologia Indica" devoted to the Indian Tertiary and Post-Tertiary

[^51]Vertebrat: Both these volumes, it may be remarked, treat of mammalian forms, and, with the exception of a memoir on Rhinoceros deccanensis, by Mr. R. B. Foote, are fr m the pen of Mr. Lydekker. Each volume contains about 300 pages and forty-five plates.

No traces of mammals have yet, it would appear, been detected below the Eozene in India, and even in this for nation only some very fragmentary bones have been obtained from the Punjab. From the Miocene the rem tins of a rhinoceros have been found. In the Pliocene mammalian remains begin to be pretty numerous. Thirtythree species of Carnivora from Siwalik are described in the present memoir ; they belong to the following families: Mustelidx, Ursidx, Viverridx, Hyænide, Felidx, and Hyanodontidx. Of the first of these families, two species of the genus Mellivora are described; one of these, M. sivalensis, was first noticed in the supplemental plates of the "Fauna Antiqua Sivalensis," and the original is in the British Museum. A second skull and the ramus of a mandible are in the Science and Art Museum, Dublin. The annexed woodcut shows the right side (Fig. 1, a) of the pal ite of this latter. The original describers of these

Fic. s.-Melimora sircalcusis (F , and C). The right half co the palate (a) and the left ramus of the mandible ($(\mathbf{)}$. Satural site.
specimens, Colonels Sir W. Baker and Sir H. Durand, remark on their close affinity to the recent M/cliziora indica, and Mr. Lydekker says that in most respects the forms of the recent and fossil jaws are exceedingly alike. In the fossils the $p m .2$ and $p m .3$ are slightly larger in the upper jaw than in the recent form, and the true molar $(m, 1)$ of the former differs from that of the latter by being much less expanded at its inner extremity. In the min lible (Fig. $1, b$) there is not much difference between the fossil and recent forms. The difference, however, between the extinct and recent Indian ratel may be summed up as being about the same in degree as between the recent Indian and African forms, leaving it probable that India may have been the original home of the genus. A second species is described as new, M. punjabiensis. A new genus (Mellivorodon) is formed for a form intermediate in size between the ratel and the glutton, while the form and relative proportions of its teeth indicate that it was more nearly allied to the former than to the latter. Two species of Lutra, L. polaindica, F. and C., and L. ivalcnsis, F . and C ., are described from the region of he typical Siwalik Hills in the neighbourhood of the

Ganges and Jumna Valleys, and one, L. bathygnathus, Lyd , from the Siwaliks of the Punjab; this last is of extreme interest, as, while presenting no sort of affinity to any of the existing Indian species, it is most closely allied to the recent South African otter (L. lalandi), and thus affords another well-marked example of the intimate connection of the Tertiary mammalian fauna of India with the present African fauna.

The evidence of the close relationship of the bears and the dogs appears to Mr . Lydekker too strong to refer them, at all events for palæontological purposes, to separate families. We therefore have the Ursidx comprehending the two modern families Urs.dx and Canidx, these being formed into groups as Ursinae and Caninz The author does not, however, attempt to form a definition of the family as thus extended, nor is he even quite certain as to the limits of the sub-groups. Cf the species described, one, U. namadicus, F. and C., is from the Pleis tocene Narbada beds; the other, U. theobaldi, Lyd., was obtained by Mr. Theobald from the Siwaliks of the Kangra district. It would seem to be nearly related to the recent U. labia/us, which itself seems to stand quite isolated from all the other recent bears, its strangely

Fic. 2.-Canis cawtlcyi (Bose). Part of the left ramus of the mandible (o. and the left side of the palate (B).
modified molar dentition being the result of the nature a its food. Three species of Hyanaretos are mentioned: H sivalensis, F. and C., H. punjabiensis, Lyd., and $/ X$. pals indicus, Lyd. The line of descent of the genus is though to be from the bears, through Dinocyon, to the true doss Amphicyon palaindicus, Lid, is redescribed and re figured; it approaches A. intermedius, Myr., describe from the Miocene of Bohemia on the eastern side C Europe. Of the genus Canis the following are ct scribed :-C: wurvipalatus, Bose, and C. cautleyz, Bost The occurrence of this latter species in the Siwaliks is c a " of extreme importance in regard to the Pliocene age t at least a large portion of those deposits, for in th Tertiaries of Europe, with which the Siwaliks are i many respects closely allied, true wolves are unkno\# before the Pliocene." Among the Siwalik fossils in th Science and Art Museum, Dublin, there is an associatt portion of the skull and two fragments of the mandible 6 this wolf, portions of which are represented in the wood cut (Fig. 2). In A are shown $m .1$ and $m .2$ in a very pet fect and almost unworn condition, and also the broke fang of $m .3$. In B the left side of the palate shows \Rightarrow canine and the earlier premolars.

Of the Viverride we find the following:-Viverra bakeri, Bose, and V. durandi, Lyd. Of the Hyaenida four species of Hyzna are described, based on specimens in the collections of the British, Indian, and Dublin Museums, and thereare not wanting evidences of a fifth form. It is remarkable to find so many species of hyaena existing contemporaneously in India; but, when the large number of Proboscidia and other ungulate forms that existed at the same time is recalled to memory, to fini the genera of Carnivora equally strongly represented in species is perhaps only what might have been expected. The earliest notice of the remains of Hyena from the Siwaliks appeare 1 in 1835 in the Journal of the Asiatic Society of Benzal, where Sir W. L. Baker described a specimen as "the most perfect fossil we have yet been so fortunate as to meet with." This specimen is figured in the annexed woodcut (Fig. 3), and is at present in the Dublin Muscum. The species has been described by Mr. Bose as H. fclina. Its affinities are towards the recent H. crocata
of Sounh Africa, a species common in Europe during the Pleistocene period; and this fact points, Mr. Lydekker thinks, to the conclusion that Asia rather than Africa may be regarded as the cradle of the race of hyænas. H. colvini, Lyd., H. macristoma, Lyd, the latter a species that seems to constitute an important link betwee? the more typical members of the genus and the viverroid and canoid Carnivora. H. sivalensis, Bose, is redescribed and figured. A new genus, Lepthyarna, is made for a species previously recorded as Ictifherium sivalense.
The Siwalik Felidx embrace $A / / u:$ opsis annechans, Lyd., a new genus and species of which but little is known; Eluregale sivalensis, Lyd., for a carnivore intermediate in size between the Thibetan lynx and the leopard. Six species of Felis are either described or indicated; of those described are F. crisfafa, F . and C ., F. brachygnathus, Lyd., and F. subhimalayana, Bronn. Of the genus Machærodus two species are included in the list of Siwalik forms. If. sivalensis, F. and C. : a

Fise 3--/Iyurna fcliva (Losc) A, oblique view of right side of cranium: 3 , froat visw.
nearly complete left ra nu 3 of the mandible of this species is in the Dublin Museu:n, and is represented in Fig. 4 ; posteriorly it is complete, with the exception of the coronoid process, while anteriorly it is broken through the symphysis ; it shows part of the alveolus of the canine and the greater portion of the descending expansion. The three cheek teeth are preserved, but in a more or less broken condition; a large part of the outer surfaces of fm. 4 and $m . i$ have been chipped away. These teeth agree with the type specimen in the British Museum, with the exception that pm.3, though still small, is inserted by two distinct fangs. The la:t family, that of H)anodontidx, is one conidered by Prof. Huxley as occupying a position connecting the Carnivora with the Insectivora. Only one species belonging to the genus Hyanodon has been found. This genus has hitherto only been recorded from Europe and Ncr.h America. The species H. indicus, Lyd., is rep resented by teeth from the Siwaliks of Kushalghar and the Punjab.

Perhaps the most striking feature in this list of extinct
forms is the fact that by the side of ratels, bears, jackals, and civets, some hardly to be distinguished from living specie ${ }^{\text {a }}$, there are to be found essentially primitive forms,

Fis. 4-Mackernios siposlensis (F, R C.). Cuter view of left ramus of mandible (f a male.
proving the survival in India of oid types long after they had disappeared from other parts of the world. Equally noteworthy is the apparently contemporaneous existence
of specialised and generalised forms of the same genus; this is well seen in the hyma. It will also be seen that the Siwalik carnivorous fauna fill up many gaps in the chains of relationship, such as that between the bears and dogs, the viverroids and hyxnas, and these latter and the cats.
The rock series in which these fossils occur is therefore one of very great interest. From the Brahmaputra to the Jhelum, for a distance of 500 miles along the base of the Himalayas, there extends with varying width a succession of ridges or ranges which are known as the sub-Himalayan hills. Physically and constitutionally they are readily distinguished from the ranges belonging to the mass of the Himalayas proper. The rocks forming them are all of Tertiary age, and they are divisible into an upper (the Siwalik) and a lower (the Sirmur) series; these again are further divisible respectively into upper, middle, and lower groups. This is the principal and classic area of these rocks, but they occur also in Burmah, Perim Island, and in Sind.
With the Sirmur serics, which in part consists of marine (Nummulitic) strata, we have no special concern at present. It is from the rocks of the Siwalik series alone that the vast harvest of remains of fossil vertebrates has been collected in the sub-Himalayan region during the past fifty years. The fossil-bearing beds are principally conglomerates of undoubtedly fresh-water origin, indeed, owing to their local development at the gorges of the existing great rivers, where they emerge from the Himalayas, it is clear that they were deposited at a time when, so far, the configuration had been established; but, as the very highest beds exhibit signs of intense disturbance and crusbing, it is no less apparent that, although the main drainage lines have not altered, there has been much movement and upheaval, which, however, appears to have been effected, not by sudden, but rather by slow and gradual action.

After much discussion as to the corrclation of the se fossiliferous conglomerates with the established order of sequence in Europe, it would appear to have been finally adopted that, in spite of a certain Miocene facies in the fauna, the general characteristics are such as to indicate a Pliocene age. Fossil-bearing beds of Post-Pliocene age occur, it may be here remarked, in other parts of India.

Numerous and varied as the fossils from these rocks are which are now preserved in the muscums of Calcutta, London, Dublin, and elsewhere, they do not appear to be found anywhere concentrated in great quantitics, the specimens having for the most part been found at widely separated intervals, where they lay more or le is weathered out of the enveloping matrix. Though naturally mineralised, and with but a small percentage of residual animal matter, they are often beautifully preserved, but occasionally, owing to the hardness and tenacity of the matrix, it has required the utmost patience and skill to chisel out the details of structure, while sometimes it lias been found impossible to do so.

Mr. Lydekker is to be warmly corgratulated on the completion of this important volume, and we are glad to know that he is busy with volume iii., which is to include an account of the Siwalik Suina and Birds.

AN EARTHQUAK'E $/ N$ ENGLAND

AT last the people of these islands have been enabled to realise the meaning of the term " carthquake," so terrible in its significance in many ot her parts of the globe. On Tuesday morning, at a time variously given from 9.15 to 9.30 , a shock which was really alarming and did considerable damage was felt over the Eastern Counties and as far west as London and even Rugby. The centre of disturbance seems to have been at Colchester, and the wave apparently travelled from south-east
to north-west, though impressions vary on this point. At Colchester, in addition to the undulations of the earth, subterranean rumblings were heard, buildings rocked to and fro, the streets were strewn with debris of fallen chimneys, a chapel spire was thrown to the ground, and other signs of seismic disturbance were evident, familiar enough to those who have been in countries where such phenomena are common occurrences. The shock, when it was most intense, commenced with a rumbling sound, increasing in intensity for about twenty seconds, and then suddenly stopped. It extended to Chelmsford, Cambridge, Northampton, Ipswich, Sudbury, Rugby, Leicestershire ; it included London and the surrounding district in its sweep, and even caused some alarm in the Strand. At Woolwich it was so strong that some persons attributed the shock and noise to the bursting of a heavy gun.
We have received the following communications with reference to the earthquake :-
One of the most severe earthquake shocks which has occurred in England for many years took place this (Tuesday) morning in the Eastern Counties. The area of its chief operation lay over South Suffolk and North Essex, and the principal focus of the disturbance seems to have been the neighbourhood of Colchester. A great deal of harm has been done to property there : houses are partially unroofed, many chimneys and gable-ends of the very old houses in Colchester have been demolished, part of the spire of the Lion Walk Congregational Chapel (a well-known building), to the amount of twenty feet from the apex, was thrown down, and other details of mischief done are fast coming in. Langenhoe Church, about thenty-four miles from Colchester, is said to be all but demolished, the entire eastern end being shaken down. The Rectory also severely suffered, so that little more than the walls are standing. At Wyvenhoe, near Colchester, the church steeple is thrown down and many houses are much damaged. Other villages around Colchester have more or less suffered: Lexden, Abberton, Greenstead, Hythe, \&c., all show evidences of the disturbance in their more or less shattered buildings. The shock was severely felt here at Ipswich. I was sitting down at $9.18 \mathrm{a} . \mathrm{m}$. when the first shock occurred, and it nearly overbalanced me. I felt it must be an earthquake oscillation, although I had never experienced anything llike it before, and accordingly waited and watched for the next. The oscillations followed each other for about three seconds, and apparently travelled in a north-north-easterly direction. I underwent quite a new experience, so vivid that 1 am not likely to forget it. The sensation approached that of nausea. In the town of Ipswich many people were alarmed, for the bells were set ringing, the pictures on the walls shaking, \&.c. The occurrence is too recent, however, to carefully note the direction of the oscillations. The London Clay in Suffolk and North Essex, when cut into, abounds with small faults and creeps, and this shock may be leaving another such token behind it.
J. E. Tayler

Museum, Ipswich, April 22
AT about 9.20 this morning I distinctly felt a slight earthquake. The motion though slight was unmistakable, the claiair on which 1 sat, and the whole house, seemed to move to and fro for the space of, as near as 1 could judge, ten seconds. I regret 1 cannot give the exact time when I felt the shock, as I had omitted to put my watch in my pocket.
A. Percy Smith

Rugby, Tuesday, April 22
This morning the earthquake was very perceptible here at exactly 9.22 . It was travelling from north to south in short rapid undulations. It lasted for thirty-three seconds. My chief object in writing is to draw attention to the fact that this is the second earthquake which has shaken

London this year. On Sunday afternoon, January 13, about 4.5 p.m., while sitting in my rooms here along with my wife and my brother, 1 was suddenly sensible of a severe earthquake; I pulled out my watch to take the exact time, and while I was in the act of drawing their attention to thephenomenon, my wife, who has experienced with myself, numerous shocks in the Malay Archipelago, exclaimed also that an earthquake was occurring. My brother distinctly felt the shock, but was unaware what it was. It was composed of two severe shocks, with an interval of short duration between them. The house was quite still, and nothing was passing in the street, nor for more than twenty minutes did any carriage come along it. Being accustomed for several years to observing earthquake movements, I am perfectly confident of the occurrence of an earthquake at that time ; and in the hope that some other observer has noted the fact, I have sent this note to Nature.

Henry O. Forbes
87, Queen's Crescent, Haverstock Hill, N. W., April 22
Mr. E. B. Knobel, F.R.A S., F.G.S., writes to the Times from Bocking, near Braintree:-"A sharp shock of earthquake was experienced here at about $9.18 \mathrm{a} . \mathrm{m}$. this morning. A slight trembling was first felt, followed by an oscillation sufficient to make one stagger and cause some alarm. Among the incidents which resulted, house bells were set ringing, one or two doors of cottages burst open, and clocks stopped. The safety-valve of a boiler was lifted and steam blown off for an instant. The phenomenon lasted from two to three seconds, though perhaps the latter estimate is slightly in excess of the true duration of the oscillation. The following facts may be useful in determining the direction of the wave. Three pendulum clocks in different houses stopped, the line at right angles to the plane of oscillation of the pendulum being in all cases north-west and south-east. Pendent gaslights in a factory were caused to sway in the same direction, northwest and south-east. A door was burst open, the position of which when closed was north by west and south by east. These facts would indicate a south-easterly origin of the earthquake wave."

A CORrespondent at Southend states that the wave seemed to travel from north to south, while in the neighbourhood of Oxford Street the direction seemed east to west, and so also at Gray's Inn, where a correspondent felt as if the bed were slipping from under him. Doubtless by next week we shall have fuller and more precise details.

NOTES

Tue final meeting of electricians to deternine the practical units of electricity and light assembles in Paris on the 28th inst., when England will be represented by Sir William Thomson, Messrs. Preece, Hughes, Adams, Jenkin, Foster, Graves, and Hopkinson, and Capt. Abney. The Congress is expeeted to last for several days.
Dr. Kocit and the members of the German Commission sent last autumn to Egypt and India to investigate the cause of cholera have left Alexandria on their return to Europe.
The Senate of Glasgow University have resolved to confer the degree of LLL.D. on Prof. Osborne Reynolds, Victoria University, and Mr. Thomas Muir, High School, Glasgow.
At Ekhmeem, a large provincial town of Upper Egypt, situate about half way between Assiout and Thebes, Prof. Maspero, returning from his annual trip of inspection up the Nile, has just found a hitherto undiscovered and unplundered necropolis of immense extent. As far as has been yet ascertained, the necropolis dates from the Ptolemaic period; but as the work of exploration proceeds, it will probably be found that it contains more ancient quarters. The riches of this new burial field would
meanwhile seem to be almost incxhaustible. Five great tombs or catacombs already opened have yielded 120 mummies, and within the short space of three hours Prof. Maspero verified the sites of over 100 more similar catacombs, all absolutely intact. The necropolis of Ekhmeem, at a rough estimate, cannot contain fewer than five or six thousand embalmed dead. Of these perhaps not more than 20 per cent. will turn out to be of archeeological or historical value ; but the harvest of papyri, jewels, and other funcral treasures cannot fail to be of unprecedented extent. Ekhmeem is the ancient Khemnis-the Panopolis of the Greeks. Its architectural remains are insignificant.

The Granton Zoological Station was formally opened last week; the ceremony was to have been performed by Prof. Ernst Haeckel, but illness prevented him from coming to Edinburgh, as he had intended, to be present at the tercentenary celebration.

The annual meeting of the Iron and Steel Institute will be held on Wednesday, April 30, and May 1 and 2, at the Institution of Civil Engineers, 25, Great George Street, commencing each day at 10.30 a.m. The list of papers and subjects for discussion is as follows: -Adjourned discussions : (1) On the tin plate industry, by Mr. E. Trubshaw, Llanelly ; (2) on the coal-washing machinery used by the Bochumer Verein, by Mr. F. Baare, Bochum ; (3) on the manufacture of anthracite pig iron, by Mr. J. Hartman, Philadelphia, U.S.A. Adjourned papers: : (I) On recent results with gas puddling furnaces, by Mr. R. Smith-Casson, Brierly Hill ; (2) on a new form of gas sampler, by Mr. J. E. Stead, F.C.S., Middlesborough. New papers: (3) On the use of raw coal in the blast furnace, by Mr. I. Lowthian Bell, F.R.S., \&c., Rounton Grange, Northallerton ; (4) on the behaviour of armour of different kinds under fire, by Capt. C. Orde-Browne, Lecturer on Armour at Woolwich ; (5) on recent progress in iron and steel shipbuilding, by Mr. William John, Barrow-in-Furness; (6) on the most recent results obtained in the application and utilisation of gaseous fuel, by Mr. W. S. Sutherland, Birmingham. In addition we believe that a paper may be expected on the important subject of iron or steel sleepers, as now used largely in Germany, in place of the timber sleepers with which we are all familiar ; and possibly papers on other subjects may be at the last moment forthcoming. It will le seen that the programme presents several features of interest. Mr. Lowthian Bell, we have every reason to believe, will exhibit the conditions attending the use of raw coal instead of coke in the blast-furnace in a clearer and more satisfactory form than has ever before been achieved. Again, the great duel being fought out between armour and guns is always a matter of keen interest, and Capt. Orde-Browne's position as a skilled and yet independent observer of the struggle gives him a special right to speak upon it. He will be able to give the last results obtained with the compound or steel-faced armour now coming so much into fashion. The ordinary business of the meeting includes the election of members, reading of the Council's report, and the presentation of the Bessemer gold medals to Mr. E. P. Martin, late of Blaenavon, but now General Manager of the great works at Dowlais, and to Mr. E. Windsor Richards, General Manager to Messrs. Bolckow, Vaughan, and Co., Middlesborough, to whom we are indebted for the practical realisation of the basie process of stecl-making.

Col. Kiscaid, Political Agent, Bhopal, writes to us under date March $30:$-"We have had a renewal of the after-glow here lately, but not nearly so intense as we had in September October, November, and part of December. The natives of the country have naturally been much exercised by the prolonged phenomenon, and still believe it portends war and tumult." Col. Kincaill also sends us an extract from Malcolm's "History of Persia," referring to an "extraordinary change in the appearance of the sun" in the year 1721, which greatly alarmed the Persians of the period.

Mr. Sydney Hodges, of Ealing, sends us a letter he has received from Mr. C. St. Barbe, of Wellington, New Zealand, dated February 17, on the green moon. "The phenomenon of a green moon," Mr. St. Barbe writes, "has been distinctly visible here during the last week or two. The colour was sufficiently decided to attract the attention of many people, and the local journals took notice of it. The moon at the time was east of north (though very little), while the crimson after-glow was in the south west, and consequently at the back of an observer looking at the strange colouring of the moon. I am not aware whether these positions would have anything to do with the question of complementary eolours, as I know nothing about such matters, and I am unfortunately unable to say whether the green tint appeared on the moon before the crimson after-glow appeared, as the latter has become such a commonplace occurrence here as hardly to be noticed." Mr. Hodges has also received a letter from his son, who reached New Zealand from Calcutta on February 13 . In it he says: "I don't know whether you heard of the volcanic cruptions in Java last September. To show what a quantity of stuff was thrown up, we were sailing for tweike days through a sea of pumice-stone. You could see nothing else as far as the horizon on every side, and this four months after the eruption."

Dr. L. Waldo, Science states, has just completed the erection of a normal clock at the Yale College Observatory, to be used as a mean-time standard in the horological work of that institution. The movement and pendulum are parts of the gravity escapement clock built by Richard Bond (No. 367), and which had a phenomenal record under Mr. Hartnup at Liverpool, and later under Prof. W. A. Rogers of Cambridge. The case, from Dr. Waldo's designs, is built of cast-iron, with planed back and front, to which are clamped the plate-glass doors. The entire case rests upon two brick piers, which rise to the height of the movement, and insure stability to the pendulum suspension. Thermometers, a barometer, and a cup of calcic chloride are placed within the case, which can be exhausted to any larometric pressure desired by an air-pump attached to its side. The escapement and arc of vibration can be observed and adjusted with the greatest accuracy. The clock is erected in the clockroom of the Observatory, which was specially built to secure uniformity of temperature.

Captain Blakiston, who has been resident in Japan for more than twenty years, has recently issued an amended list of the birds of that country, with the ornithology of which he certainly possesses a better practical acquaintance than any living man. The list is founded on a previous catalogue, published in 1882 by Capt. Blakiston and Mr. 11. Pryer, but the species are now arranged geographically, so as to show the distribution of lirds through the different islands of Japan. The author draws attention to the natural division in the fauna of Japan, which is marked by the Strait of Tsungaru, to the southward of which the true Japanese avifauna is emphasised, while north of this strait the avifauna is Siberian in character.

The following meetings of the Society of Arts have been arranged :-Ordinary meetings (on Wednesday evenings)April 30, "The New Iegislation as to Freshwater Fisheries," by J. W. Willis-Bund. May 7, "Bicycles and Tricycles," by C. V. Boys. May 14, "Telpherage," by Prof. Fleeming Jenkin, F.R.S. May 2I, "Telegraph Tariff," by Lieut. Col. Webber, R.E. May 28, "Primary Ratteries for Electric Lighting," by I. Probert. In the Foreign and Colonial Section the following paper will be read on April 29, "The Transvaal Gold Fields; their Past, Present, and Future," by W. Henry Penning. In the Applied Chemistry and Physics Section on May 8 a paper will be read on "Cupro-Ammonium Solution and its Use in Waterproofing Paper and Vegetable Tissues," ly C. R. Alder

Wright, F.R.S., D.Sc. ; and on subsequent evenings in the Indian Section the following papers will be read:-"EOrnomic Applications of Seaweed," by Edward C. Stanfonl, F.C.S. May 9, "Indigenous Education in India," by Dr. teitner. May 30, "Street Architecture in India," by C. Purdun Clarke, C.I.E. This paper will be illustrated by means of the oxy-hydrogen light.
DUring the next few weeks the following Penny Lectures will be delivered on Tuesday evenings at the Royal Victoria Coffec Hall, Waterloo Road:-April 22, "Camping out on the Thames," by the Rev. P. H. Wicksteed. April 29, "A Visit in the Sunbeam to the West Indies," by Sir Thomas Brassey, M.P. May 6, "lce, and its Work in Earth-shaping," by Dr. W. B. Carpenter. May 13, "Fire, Electricity, and other Forms of Power," by Mr. Vernon Boys. May 20, "A Working Man's Dinner," by Prof. 11. G. Seeley. May 27, "The Recent Eruption of Krakatã," by Mr. J. Norman Lockyer.

We have received two pamphlets on the vivisection question, viz. "Vivisection in its Scientific, Religious, and Moral Aspects," by E. P. Girdlestone (Simpkin, Marshall, and Co., pp. 68, price one shilling), and "The Utility and Morality of Vivisection," by G. Gore, LL.D., F.R.S. (F. W. Kolkmann, 2, Langham Place, W., Pp. 32, price sixpence). These pamphlets are alike in that their authors argue the question on general grounds of common sense. The essay by Mr, Gore is issued by the Association for the Advancement of Medicine by Kevearch, and is an admirable contribution to the subject of which it treats. Not being himself a physiologist, Mr. Gore's pleading is of all the more force from its non-professional character; while the fact of his being so busy a worker in other departments of science, as well as a man who has made a special study of the methodology of research, or "the art of discovery," enables him to speak not only with authority, but with unusual lucidisy. The calmly forcible style in which he writes contrasts favourably with the hysterical vituperation which he quotes from the other side. This pamphlet ought to be read by every one who desires to obtain a rational as well as a truly moral view of the subject.

TUE fourth edition of Ilenfrey's "Elementary Course of Botany" will be published by Van Voorst early in May. The morphology of flowering plants has lieen revised and added to by Ir. Maxwell Masters, who has also made great addlitions to the physiological portions, while Mr. A. W. Pennett has rewritten the sections relating to Cryptogamia. This new edition will be still further enriched by numerous additional illustration
Hartleben of Vienna has issued the first part of a work on the oceans and their life, entitled "Von Ocean zu Ocean, eine Schilderung des Weltmeeres und Seines Lebens," by A. von Schweiger-Leichenfeld.
AT a recent meeting of the Asiatic Society of Japan (reported in the Jap in Winkly Mai), Mr. O. Kurschelt read a paper on "The Chemistry of Japanese Lacquer." The paper opened with a brief account of the source and preparation of the lacquer, and of the conditions under which it hardens to the best advantage. The interest of the paper lay, however, in the very complete discussion of the chemical constituents of the substance. and the synthetie determination of which of these were mos: essential. The summary of results was given in these terms :1. The raw lacquer juice is an emulsion which contains-(a) a peculiar acid called urushic acid (urushi, the native name for lacqucr), (b) a gum, (f) a nitrogenous body, (d) water, and (f) a volatile acill in traces. 2. The hariening of the laequer juice. which takes place when the latter is exposed in a thin lager of moist air of 20° to $27^{\circ} \mathrm{C}$., is due to the oxidation of urushic acid into oxyurushic acid. 3. This oxidation is caused by the nitrogenous boly, which is an albuminoid and acts as a fermenc.
4. The oxidation is not accompanied by hydration. The water must be present only to keep the ferment in solntion, which else would not act. 5. The oxidation takes place within narrow limits of temperature, ranging from about zero Centigrade to that of the coagulation of albumen. 6. The gum seems to have a favourable influence in keeping the other substances in emulsion; but in the hardened lacquer its presence is injurions, causing it, when in contact with water, to rise in blisters. 7. By a mixture of the raw juice with urushic acid, the quantity of gum present is diminished, and the dried lacquer is enabled better to resist the injurious influence of water, besides obtaining a greater transparency. 8. The admixture of more than five parts urushic acid with one part juice weakens the action of the ferment, and so deteriorates the quality of the lacquer. 9. The gum is very similar to gum-arabic, but gives a sugar with two-thirds only of the reducing power of arabinose. 10. The ferment has the composition of albumen, except that it contains much less nitrogen. II. Diastase and the ferment in the saliva cannot replace the lacquer ferment. 12. The difference between good and bad lacquers seems to depend mainly on the relative quantities of urushic acid and water present, the inferior lacquer having less acid and more water than the superior kind. 13. The durable quality of lacquer is a property of the oxyurushic acid, which is singularly negative in its actions, resisting all solvents tried, and affected by strong nitric acid only. In the course of the discussion which followed it was observed that probably the direct effect of the investigations would be the improvement of the lacquer process, which was peculiarly a Japanese art ; also that lacquer poisoning was duc to the urushic acid, which only gradually disappeared during the hardening process, the best and oldest lacquers having none at all. Sugar of lead was mentioned as the best antidote for the poison.

The last number of Nuturen contains an interesting report by 1 Ierr L. Stejneger of the result of his last summer's exploration of Ostrof Mednij, or Copper Island, the smallest of the Komandorski group (Commodore Islands). On his arrival the chief town was found to be nearly empty, its numerous roomy and gaudily painted houses and church having been deserted while the inhabitants had gone for the fishing season to the "Lesjbitscha," or fur-seal fishing-grounds, on the other side of a rocky promontory. The dense mists which never fail at that season interfered with the naturalist's field work, but he was so fortunate as to discover a new species of Anorthura, differing equally both in form and colouring from the earlier described A. alascensis of of Prof. Baird, and from the Japanese A. fumigata, which is believed to belong also to the Aleutian Islands. Herr Stejneger, who has given this new form the name of Troglodyles (Anorthura) Aullescens, considers that, although essentially the same as its Norwegian representative, it is still more closely allied to the Eastern Central Asian forms. Since his visit to Copper Island Herr Stejneger has found on Behring's Island another Anorthura, which differs widely from A. pallescens, and which he believes may prove to be the same as A. fumigata, common in Kamchatka. A. pallescens is of frequent occurrence on Copper Island. It builds its nest in the clefts of rocks at inaccessible points, and in the sound of its note, as well as in its general habits, it resembles its European kindred. The rosy finch (Leucosticle sricinucha), supposed to be American, was found on the Aleutian Islands, and has not been observed, as far as we know, in any other part of the Old World. Its brilliant colouring, hoarse, unmelodious song, and its preference for steep, inaccessible, rocky peaks which abound on Copper Island, make it one of the most characteristic of the local birds. Herr Stejneger has largely availed himself of the opportunities opened to him of studying the various representatives of Otariidle and Phocidae, which abound on the Aleutian shores, and in his paper on Collorhinus wrsinus (the Kolik, sea-cat of the

Russians, and well known as the fur-seal of the American and English traders), he has given the readers of Naturen an extremely interesting and comprehensive description of the appearance, habits, and commercial importance of these valuable animals. He graphically describes the forcible tactics employed by the older seals, "Sichatchi" (Russ, husbands), in keeping the juniors, "Cholustjaki" (bachelors), within their allotted grounds, and supplies many hitherto unknown detuils concerning distinctive characteristics dependent upon differences of age, \&c.

The last number (thirtieth) of the Nittheilungen der deutsetion Ges-llschaft für Natur und Volkerkunde Ostasions (Yokohama) commences with an article on mines and mining in Japan, by Herr Metzger-the third important work on this subject pulblished by Germans. The writer, who has been for five years at the copper mines at Ani, professes merely to supplement the previous writings of his countrymen. Herr Metzger's account of Japanese practical mining is somewhat melancholy reading ; on all hands he finds ignorance, incompetence, waste. There is a total absence of technical officials, everything appears to be in the hands of contractors, the mining law is in a most unsatisfactory condition, and the position of the foreign mining engineer is such that he can do little to remedy evils which he secs plainly. In this respect the complaint is everywhere the same'The scope of the foreigner is much less than might be expected under the circumstances. It seems at present to be the full intention of the Japanese to do everything themselves; and at the most to use their Europeans as advisers, although their contracts call them engineers, \&c. It not unfrequently occurs that foreigners get the impression that the advice of Japanese of the lowest rank, with or without technical training, is of equal weight with their own." Herr Metzger further alleges that since Europeans have been withdrawn the production of the gold mines of Sada has considerably diminished. He asserts that by avoiding the extraordinary waste caused by ignorance and mismanagement, the mineral production of the whole country con'd be increased by at least fifty per cent. Herr Lehmann writes on the indoor games of the Japanese. From the reports of the meetings it appears that the capital of Japan had its Fisherics Exhibition last year. There were 15,205 exhibitors-an unexpectedly large number ; and, as a consequence, the Exhibition was divided into forty-seven separate exhibitions, corresponding to the various administrative divisions. This method rendered a journey through the Exhibition wearisome by constant repetition, and added greatly to the difficulties of a systematic study of the exhibits, which were not lessened by the absence of a catalogue. The number of articles connected with fishing amounted to 3967 , while the various goods made from fish and water plants reached 6474. The fishing population of Japan is given at $\mathbf{x}, 601,406$. Some interesting information respecting the rearing of fish in Japan is also given.

The Tifis levestoa contains an interesting paper on the population of the Caucasus, a new census having been made in the course of the year 1882 in several of the larger provinces of the country. It appears from this census, although incomplete, that the population has much increased since the last census of $\mathbf{1 8 7 7}$. In 1867 the whole population of the Caucasus was reckoned at 4,661,800; it rose to $\mathbf{5 , 3 9 1 , 7 0 0}$ in 1876-77. It is now more than $6,500,000$-the total being reckoned at $6,449,850$-which figure is still considered below the reality. This large increase of more than $t, 200,000$ in five or six years is partly due to the recent annexations (162,980 in the province of Kars, and 92,450 in the district of Batoum), to immigration, to natural increase, and to the incompleteness of the former census. As to the natural increase, due to the surplus of birthe over deaths, it is estimated at an average of 13 per thousand every year in the Government of Tiflis (1875 to $\mathbf{1 8 8 0}$), and at 12 per thousand in
the Government of Erivan. Altogether, the mortality is, however, very great, and it is compensated only by a great number of births. As to the density of population, the 224,221 square kilometres occupied by the Northern Caucasus have 10 ' 3 inhabitants per square kilometre, which figure reaches as much as $13^{.6}$ in Transcaucasia (248,445 square kilometres), where the density of population is the same as in European Russia. The Governments of Kutais (the valley of the Rion), Erivan, and Tiflis have respectively $33.6,20 \%$, and 17.8 inhabitants per square kilometre.

Among the recent additions to Chinese scientific literature are translations of Margutti's "Elementary". Chemistry" and Fresenius's "Chemical Analysis." These works have been translated into Chinese by M. Billequin, one of the professors of the Jung Wên Kwan, or Foreign College, at Pekin.

The Secretary of State for India in Council has appointed Mr. David Hooper, F.C.S., of Birmingham, to the Nilgiri (iovernment Cinchona Plantations in the Madras Presidency.
The additions to the Zoological Society's Gardens during the past week include a Ludio Monkey (Cercopiticeus ludio) from West Africa, presented by Mr. F. W. Robinson; a Macaque Monkey (Macacus cynomolgus δ) from India, presented by Mr. E. Drew ; a Vulpine Phalanger (Phalangista vulpina) from Australia, presented by Mr. J. C. Martin ; a Central American Agouti (Dasyprosta isthmica) from Central America, presented by Mr. Hugh Wilson; a Herring Gull (Larws argentatus), European, presented by Mr. Thomas Daws ; a Common Viper (Vipera berus), British, presented by Mr. 11. German; a Burchell's Zebra (Equus burchelli 8) from South Africa, three Michie's Tufted Deer (Elaphodus michianus \& 88), four Darwin's Pucras (Pucrasia darwini \& \& \& 8), an Elliot's Pheasant (Phasianus Allioti 8) from China, deposited; three Corn Buntings (Emberiza milharia), British, purchasech.

OU'R ASTRONOMICAL COLUMN

Southern Comets.-Dr. Oppenheim of Berlin has published elements of the comet discovered by Mr. Ross of Elsternwick, Victoria, on January 7, founded upon the Melbourne observations in Astron. Nach., No. 2579, though, as he remarks, they were calculated with difficulty, owing to the existence of three oversights in the seven positions there given; hence their connection for an orbit would involve a troublesome tentative process. The position for January 17 is in error nearly two degrees.
Mr. Tebbutt has also computed elements from his own observations at Windsor, New South Wales, on January 19, 23, and 28, which represent closely the observation on February 2, the last he was able to obtain, the comet having become very faint; on January 19 he had considered it just beyond naked-eye vision. He remarks upon the discordance of his elements with those calculated by M. Barachi of the Melbourne Observatory, and observes: "I cannot account for these discrepancies, unless there be some error in the Melbourne data." We subjoin both orbits :-

$$
\text { Perihelion Pastage, } 358_{3} \text {. Dec. } \begin{gathered}
\text { Tebburt } \\
\text { T } 50038
\end{gathered}
$$

${ }^{6}$ Oppenheim Dec. 35 '30a7 Iongitude of perihelion$\quad 125 \quad 44$ is \quad.. 1254612

Inclination"	$\ldots . .$.	\ldots	\ldots	\ldots.	65	0	55	\ldots	64

Motion retrograde.
The time of perihelion passage is for the meridian of Greenwich, and the longitudes are referred to the mean eyurinox of $1884^{\circ} 0$. It will be seen from the close agreement of the two orbits how completely Dr. Oppenheim succected in eliminating the Melbourne errors from his work.
In a communication to the Obserzatory of the present month Mr. Tebbutt refers to a notice in the Sydney journals copied from a Tasmanian newspaper, reporting that a bright comet had been seen at New Norfolk at $4 \mathrm{a} . \mathrm{m}$. on December 27, hearing about oast, and a few degrees above the horizon ; he had searched for
it in the morning sky without success. In the Sydney Morning /lerald of March 5, Mr. Tebbutt writes:-" Within the past few days I have received, through Commander J. Short, R.N., the Meteorological Observer at Hobart Town, communications respecting a fine comet which was seen in Tasmania on Decemsber 25 and 27 in the morning sky. It is described as rising above the eastern horizon a few minutes before the sun ; and 1 am strongly inclined to the opinion that this is no other than the comet whose elements I have just communicated" (the comet found by Mr. Ross). There are difficulties, however, in the way of accepting this identification, judging from such information as we have to hand. The great increase of light near perihelion passage is not explained by the elements of the comet of January 7, which by theory would only have possessed five times the intensity of light that it had at the first Melbourne observation on the evening of January 12.

Tue Gbseryatory of Palermo.-In Pubblicazioni dd Real Osservalorio di Palermo, anni 1882-83. Prof. Cacciatore, the director, has collected a large number of interesting observations made chiefly in the year 1882. Prof. Ricco's astro-physical observations of the planet Jupiter extend from December 1881 to June 1883 , and his descriptions of the appearance of the disk are accompanied by eighteen well-executed tinted lithographs. An extensive series of observations of the great comet of 1882 , also illustrated, follows; it was last perceived with difficulty on April 7, 1883. After the conjunction of the comet with the sun it was again sought for; with a power of 110 on the refractor. and in the best condition of atmosphere, the search was unsuccessful on three evenings in September. There are other cometary and planetary observations and an appendix with the meteorological results obtained at the auxiliary station of Valverde.

GEOGRAPHICAL NOTES

TuE meetings of the International Polar Conference began in Vienna last week under the presidency of Herr Heinrich Wild, the Director of the Physical Central Observatory of St. Petersburg. In his address the I'resident praised the great merits of Count Wilczek with regard to Polar research, referred to the lamented death, since the last conference, of the Secretary of the Polar Commission, Capt. Hoffmeyer of Copenhagen, and finally gave an outline of the work done since the St. Petersburg meeting by the various expeditions and observing stations. Herr R. Müller, Director of the Hydrographic Office at Pola, was elected secretary in the place of Capt. Hoffineyer, deceased. The principal subject discussed at the first meeting was the determination of the minimum extent to which each expedition party is bound to work out and publish its own observations at its own expense, and the establishment of a universal form of publication of results for their easier comparison. First of all the meteorological ohservations were discussed in this regard. The debate turned on the uniform way of noting down the obligatory observations at each station, i.e. the observations of temperature, atmospheric pressure, humidity, wind, clouds, hydrometeors, rainfall, and temperature of the ground, snow and ice. Among those who have arrived at Vienna are the following:MM. R. Lenz (Professor at the St. Petersburg Technological Institute), 11. Mohn (Director of the Christiania Meteorological Institute), K. H. Scott (Director of the London Meteorological Office), I.ieut. P. H. Ray of Washington, Lieut. E. von Wohlgemuth (Vienna), Herr Wijkander, Prof. Guido Cora (Turin University), Capt. Dawson (Chief of the Fort Rac Expedition), Dr. Giese of Ilamburg (Chief of the German Antarctic Fxpedition), 1I. P'aulsen of Copenhagen (Chief of the Danish Polar Station at Godthaab), Lieut. Payen (Paris), Dr. Snellen (Director of the Utrecht Meteorological Observatory), Aksel S. Steen (of the Christiania Meteorological Institute), Count llanns Wilczek (Vienna). The following wcre expected to arrive shortly:-ProE. G. Neumayer of Hamhurg (Director of the German Seewarte), Prof. E. Mascart (Director of the Paris Meteorological Central Burean), Dr. Borger (of the Kiel Marine Observatory), Prof. Lemstrom (IIelsingfors), E. Riese (Chief of the Finnish Polar Station at Sodankyla).

The St. Petersiouger Zeitung contains the following details concerning the expedition which Col. Prjevalsky is now leading in Thibet. The points of departure of the expedition were Kiakhes and Ourga. From thence it was to go to Tsaidam by Alashap and Koko-Nor. In Tsaidam, at the foot of Burkhan Buds, it
was the intention to establish a camp, and leave behind a section of the party and of the escort. Col. Prjevalsky, with his companions, will posh forward to the sources of the Yellow River, and even to the towns of Chambo and Batanon. If the circumstances are propitious, the expedition will devote the spring and summer of 1884 to the exploration of the region of Sifanei, between Koko-Nor and Batanou, where it will surely find abundant natural riches to explore. In antumn the expedition will return to its encampment. A part of the haggage will be sent to Gast, in Tsaidam, where they will establish a second camp. From Gast the expedition will traverse Northern Thibet in the direction of Lhassa, and will try to penetrate as far as the Lake Tenegri-Pora, to reach afterwards, if circumstances permit, either the province of Dsang, or to the Brahmaputra. If not successful, however, the expedition will return part of the way and then go northwards to Ladak and to Lake Daigro-Jum-Tcho. From thence it will return to Gast, and try afterwards to go across the plateau of Thibet in another direction. From Gast, which they expect to reach in the spring of 1885 , a part of the expedition will go towards Lob-Nor, and the other part towards Keria, that they also may reach Lob-Nor by way of Tcherkin. The two sections of the expedition will afterwards go together to Karakorum, and along the Khoton, and then return by Alsa to Asiatic Russia, near the Lake Issak-kul. Col. Prjevalsky left St. Petersburg on August 3, 1883, accompanied by Sub-Lieutenant Roborovsky, his assistant, and a voluntecr, Kozloff. At Ourga they were joined by twenty soldiers for an escort, and on November 8 they left Ourga to cross the Desert of Gobi. The telegram just received from Alashan (dated January 20) tells of the safe arrival there of the expedition.
Geographerss will be glad to find in the last volnme of the Investia of the Caucasus Geographical Society a number of astronomical determinations of positions of places in the Transcaspian region, by M. Cladysheff. We find in the list a nnmber of points in the oases of Akhal-tckke and Merv, and in Khorassan, and notice that the exact position of Sarakhs (western corner of the citadel) is $36^{\circ} 32^{\prime} 14^{\prime \prime \prime} 5 \mathrm{~N}$. lat. and $61^{\circ} 10^{\prime} 10^{\prime \prime} \mathrm{E}$. long., 860 feet above the sea; that of Merv (garlen at Kaushut-khan-kala) $37^{\circ} 35^{\prime} 18^{\prime \prime} \cdot 3 \mathrm{~N}$. lat. and $60^{\circ} 47^{\prime} 16^{\prime \prime}$ E. long., 900 feet above the sea ; and that of Meshed (cupola of Imam Kiza) $36^{\circ} 17^{\prime \prime} 25^{\prime \prime} 6$ N . lat. and $59^{\circ} 37^{\prime} 27^{\prime \prime} \mathrm{E}$. long. The same volume contains a great number of heights measured in Asia Minor by Russian officers.

Tue last issue of the ${ }^{-1}$ Isesstia of the Russian Geographical Society contains a preliminary report of a journey made by MM. Adrianoff and Klementz in the still little-known islands to the south-west of Minusinsk; a note by MM. Hedroitz and Lessar, being a reply to M. Kunshin's paper on the Kara-kum sands and the former bed of the Amu; a note, by M. Malakhoff on the remains of prehistoric man on the Nycman, close by Druskeniki ; the necrology of Admiral Putyatin, by llaron Osten-Sacken ; and a note by M. Pillchikoff, on a magnetic anomaly between Kursk and Kharkuff.

ON THE PROGRESS OF GEOLOGY ${ }^{2}$

IN addressing you to-night at the opening of the session 1883 of Canterbury College, may I be alloned to appeal firt to your kind indalgence? On an occasion like this you have a right to expect that only the best and most refined English should reach your ear ; and if this to night is not the cave, yuu will, I trust, be lenient with nie, as only very few foreigners have ever been able to master the benutiful and expressive English language so thorougbly that they would not now and then offend the ear of an edncated audience.

When I look round me in this fine hall, and see before me such a large audience, of which a number consists of graduates of Canterbury College, it appears almost like a dream and not a reality-a reality of which we bave every reason to be proud.

It is about sixteen years ago that a few earnest men, having the intellectual advancement of Canterbury at heart, met and proposed to found a university in Christcharch; but they were told by a not inconsiderable number of our citizens, some in high positions, that we were abcut a hundred years in advance of the wants of the colony. However, ne pereevered, and at
${ }^{1}$ An opening address delivered to the students of Canterbury College in March 28, 1883. by Julius von Hanst, Ph D., F.R.S., Profestor of Ceology Mad Palmonoulogy in Canterbury College (N.Z. Universiit).
lat succeeded; and the best proof of the correctness of our views is the number of the graduates of the New Zealand University, of nhom there are now twenty-one Masters of Arts and forty-nine Bachelors of Arts, together seventy; of whom Canterbury College can claim twenty nine of its own, many of whom woald be an ornament to any univerity of the home country.

And although the greater portion of our graduates mostly apply the hnow ledge gained to the education of others, they continue their studies for their further intellectual progress long after they have gained their well-earned degrees.

To my mind no more ennobling or higher sphere can te selected by anybody than that of the teacher. What mental energy, what moral devotion are required in the teacher, who can only be successful if he has his whole heart in the work, so that the chain of human sympathy, the most powerful tie in mankind, unites him with his pupil. In a young country, where wealth is generally considered to give power, position, and influence, and the "auri sacra fames" is much developed, only a refined mind can gladly and willingly turn away from those prosuits by which wealth is more easily obtained, in order to devote himself entirely to the education of the young.

Moreover, nothing shows us more clearly than teaching that we have only put our foot on the first step of the ladder leading to knowledge. We remain students our whole life ; and I trust that none of our graduates will ever overrate the step gained, but that they will consider that the degree obtained bas only given them an insight into the dominion of Knowledge, and has shown them how much they bave still to learn; and that in fact they have become masters of the art how to learn to the advantage of themselves as well as of others.

Before entering into the subject I have chosen for to-night's address, I wish to make only a few remarks upon the development the Univer ity of New Zealand ought to take, so as to satisfy the present and future wants of our population, It was only to be expected that in the beginning its founders should have been guided by the curriculum of the great centres of learning in Great Britain, altbough even then some of the newer improvements were not adopted; but I may point out that under the different circumstances in which we live in a colony, weought to have more cosmopolitan views, and profit by the experience of those States and comounities which our conditions reemble most. In fact, the University of New Zealand onght to be eclectic, and to select for assimulation in its constitntion the best as to manner and matter of teaching from all parts of the world.

According to my views it ought not to be at present the highest ain of a university course to offer a mais of knowledge of a chaotic character in a number of subjects, but to make the stadent acquainted with the general principles of the stock of knowled ce possessed by the world and its application to life ; to know in what direction that gen ral stock is mont deficient, and in what manner it can be augmented and made more useful both intellectu. lly and practically.
The study of philosophy, in the highest and most general acceptance of the term, is one of the greatest wants for any university that intends to educate thinkers, men and women who not only wish to we their aequired knowledge for earning their daily bread, but to advance the human understanding.
Advancing to the subject upon which I wish to address you to-night, I have thought that some remarks on the progress geology has made and is daily making would not be inappropriate. I should also like to show, though owing to the short trme assigned to me this can only be done in a fragmentary manner, how from an empirical science it has gradually been raisel to be an inductive science fully de-erving, as far as actual observations go, to claim the position of an exact science.
If we consult "The Cyclopoedia, or an Universal Dictionary of Arts and Sciences," by E. Chambers, F.R.S., London, four lurge f.nio volumes, of which the first appeared in 1779 and the fourth in 1783, an excellent work, for which sume of the most eminent men of the last century wrote, we find that the word geology, or geogncsy, did not exist at that time, the principal information upon the formation and constitution of our earth being contained in the articles on basalte", earth, fossils, geography, lithology, marine remains, mineralogy, mountain, rock", stone, and volcano.
The explaration of the formation of "stones" is in many instances exceedingly errorevus, and appears ludicrous to us; whilst the explanation of the nature and occurrence of fossils is given quite correctly, althongh the theory of Tournefort, pro-
posed in 1702 to the Royal Academy of France, that all stones, fossils ineluded, were derived from liquid stone seeds, is gravely considered and rejected.

The description of volcanocs, both active and extinet, is also given in a lucid manner; but the opinions as to the cause of vulcanicity are sometimes very peculiar, including the theory of Dr. Lister-that they are originated by an inflammable mineral called pyrites.

The origin of basslt (basaltes) is currectly given, according to the researches of Desmarest in Auvergne, and Ra-pe in Germany, so that before Werner no erroneons views on that subject were held.

But it is a most remarkable fact that there was not even an attempt made to give an explanation of stratigraphical geology, and how the different rocks were formed, or to connect eertain sets of fossils with certain rocks in which they occur; so that in many respects we ean elaim that geology is a child of the last hundred years.

Abraham Gottlob Werner, the great teacher of the Freiberg Academy of Mining, may be considered one of the founders of modern geology. In 1785 he delivered the first course of geognosy, as distinct from mineralogy, and by his great knowledge of all matters connected with the latter science and mining, and his excellent method of teachiny, he had an enormous influence npon the advancement of geology. Therefore, as far as I am aware, the word ge gnosy was first used two years after the last volume of Chambers" "Cyclopadia " appeared.

A great retrograde step was, however, made by Werner when be brought out his famous theory of the aqueous origin of basalt, nsually named the theory of Neptunism. After the war between the Neptuuists and the Plutonists (those who maintained the igueuns origin of basali) had been raging for some years, most of the disciples of Werner-acting as partisans, and instead of trying to elucidate the truth, were only tent upon mahing by all means in their fower the cause advocated by them victoriousfor a tione managed to get the upper hand. Those scientific men, who knew from their own experience that Werner's ductrines on the subject were incorrect, preferred to retire from the contest, and refused to fight with the same unfair weapous.

Of equal, if not of greater importance, are the labours of James Iftaton, who in $\mathbf{1 7 8 8}$, publinhed his "Theory of the Earch," in which, for the first time, the eomplicated strnctare of the surface of the earth is explained by the agency of natural furces, still at work at the present day. With this the foundation of modern geology was securely established, and though in some respects the great Scotch 1 hilosopher went too far, his sy-tem was, nevertheles", the only true one on which his succes. sors eould build that branch of knowlelge now claiming a prominent rank amongst its sisters as an inductive science. And when William Smith, the modest English land surveyrs, in 1790 published his "Tabular View of the British Strata," in which the first attempt was made to connect certain fossils with certain strata, an attempt turning oat a masterpiece of patient research and skill, a further great step was made in advance, and instead of merely theori ing on disconnected facts, the greater portion of geological students began to rely more upon the facts collected by them and others, than upon speculative views, however fascinating they might be.

In entering upon a short review of the physics relating to the great system of which our earth is only a very incousiderable speck, we find that although wen of the highest scientific merit had tried to explain the origia and nature of the Cosmos, and the laws by which it is governed, not one speculation had been adopted at the time of the publication of the " Cyclopxedia " of Chambers, as posaessing all the necessary precision for the entire satisfaction of induetive reasoning.

It was only at the end of last century that Pierre Simon Laplace published bis two great works, "Exposition du Système du Monde" in 1796, and "La Mécanique céleste" in 1799. This cosmogony, usually called the "Nebular Hypothesis," has hitherto stood the test of inquiry nearly a whole century ; all the facts-and they are innnmerable-tending invariably to testify at least to the great probability of its general correctness. In justice I onght here to mention that Immanuel Kant published in 1755 his cosmical theories in his work "Allgemeine Naturgeschichte nod Theorie des Himmels," in which the great Königsberg philosopher came to the same conclusions afterwards so convincingly demons!rated by the French mathematician.

But when we leave the Cosmos and confine our:elves to our small planet, we find ourselves surrounded by such difficulties that we appear just as far now from a true conception of the constitution of the earth's interior as our predecessors were at the beginning of this century.

Numerous theories, based upon careful calculations, as to the thickness of the crust of the earth bave been advanced. Some physicists give to onr earth so thin a cru-t that it has been compared to the rind of an orange, the frnit inclosed in it repre:enting the molten matter of the globe; others affirm that the crust is of much greater thickness, while there are some who maintain that our planet has cooled so thoroughly that it now forms a mass of rock of various density from the surface to the very centre. Other theories (or, better stated, hypotheses) giving to our globe a crust of more or less thiekness, with a hand metallic nucleus in the centre, and matter in a high state of fusion filling the space between both, have been adrocated by other scientific men, and mathematical proofs in support bave not been wanting. However, objections apparently fatal to them all have been brought forward at one time or another by physicists, astronomers, or geologists, according to their particular line of study, and we can therefore only wait patiently and follow attentively the careful researches continued in all civilised countrie ${ }^{\text {a }}$, applying at the same time every new discovery to the elncidation of a problem, the more tantalising as its solution has for many years appeared to be within our grasp.

The great hopes that the deep borings lately obtained in artesian wells, or careful temperature observations in deep mines, would supply us with some material for advancing this question, by offering important and reliable data of a uniform charaeter, have not been fulfilled. It appears, on the contrary, from the deep borings at Sperenberg, in Germany, reaching nearly to $\mathbf{4 2 0 0}$ feet, that the increase of heat exhibits a remarkable retardation of its rate the deeper we descend. And even if we take convection and conductivity of the rocks into account, there are scarcely two localities where the same ratio of increase in the temperature has been observed, in some that ratio being more than treble that of others. There may once have been a uniform eooling of the original crust of the earth, now almost entirely removed or remodelled, but there is no doubt that this difference in the increase of temperatnre depends now either up on local generation of heat by hydro-chemical action or mechanical agencies of enormous power still at work. Thus in localising the variable increase of temperature, the vern causa both for the crumpling and metamorphism of rocks, for the formation of mountain chains, as well as for the origin of volcanic action, might be traced with more reliance than to seek to establish a general law that most probably no longer existed when the strata acce sible to our examination were formed.

Leaving the domini in of theory and returning to the actual work of the geologit in the field, 1 need scarcely say that the task already accomplished has been truly gigantic. P'atient research in the civilsed eountries of Lurope, in the United States of North Anerica, and mo-t of the English colonies, as well as the work of travellers to alnost every part of the globe-of the latter I wish ouly to allude to Baron von Richthofen's excellent late researches in China-have made us acquainted with sweh remarkable and innumerable data that it is impossible for any man, however studious he may be, to gain more than an imperfect knowledge of the material already accumalated.

The relations of the platonic, metamorphic, sedineatary, and volcanic rocks to each other have been clearly defined, and most valuable facts have been brought together, from which the past history of our globe is being constructed, while the palsontologist has done his work equally well in classifying the wonderfully complex animal and vegetable life, always in harmony with the conditions if the earth's surface, gradually and during untold ages reaching, by evolution, the present stage of existence and perfection.

It would lead me too far to enter into a discussion of all the theories advanced as to the cause or eauses by which monntaia chains and seas have been formed, and volcanoes and earth-quakes-because in mu t instances the two latter are intimately connected with each other-have been originated. Elie de Beazmont's theory of the sudden upheaval of parallel mountain chaine, first publi-hed in 1833, although at one time finding great favour on the continent of Europe, was never adopted by any geologist of note, the teachings of Hutton and Lyell leaving no room for the doetrines of the paroxysmal school. Moreover, when the size and direction of mountain chains were taken into
account, and the rochs composing them were carefolly examined, it was found that the explanations offered by the eminent French geologist could not be adopted.
Many valuable publications have been issued upon these subjects, of which those of Robert Mallet may in many respects claim our greatest attention. Another work of great value is that of Prof. E. Sness, the eminent Professor of Geology in the University of Vienna, "Die Entstehung der Alpen," the formation of the Alps, in which this difficult que tion is treated in a masterly manner. Prof, Green's "Thysical Geology" contains also an exhaustive rdumd of the physics of the carth's crust, in which all the newest researches and theories are thoroughly examined and siffed by an excellent obeerver and practical geologit. However, there is another distinguished geologist and physicist, Constant Prevost, whom I shonld not omit to mention, be having elready explained, in 1822, the elevation of mountain chains by tangeutial and lateral pressure, now mostly adopted as the correct theory. The deep-sea dredgings have al o offered us considerable material to elucidate the former history of cur globe, both from a stratigraphical and palieontological point of view.

The oscillation of land and sea is another subject of great importance that bas hardly received that attention it deerves, whether we take the so-called glacial pericd into account or not. There may be with many gevlogists the fear of appearing heterodox if they state their belief that the bydrosphere is, like the lithosphere, subjected to considerable oscillations, by which great changes in the climate of the globe may have been brought about in past geological ages. For years I have held and stated this opinion.

However, I find that lately a great deal of attention has been paid to shis subject. Thus, for instance, Ph. Ficcher, Heinrich Bruns, and others, in discussing pendulum observationf, have come to the conclusion that the sea.lcvel is nut a regular spheroid, but may vary many hundreds of feet even along the same parallel of latitude. Dr. Penck will also explain raised beaches and other signs of the glacial period by the oscillation of the sea-level. Penck's views in this respect are different from those of Adhemar and Croll.
A nother factor for explaining great changes on the earth's surface, brought about in geological periods long past, has lately been put furward under the name of Tidal Evolution, a very ingenious theory, first worked out in its entirety by G. H. Darwin. It is based upon the action of the moon, once a part of our planet, on the earth, producing the tides and retarding its motion, as well as upon the reaction of the earth upon its satellite. Gradually the moon was driven away from our planet, and the length of day has thus at the same rate become more considerable.
However, when Prof, Robert Ball, in Dublin, and others attempt to make out that the former much larger tides, when the moon uas cioser to the earth, formed a powerful agent for the destruction of rocks existing at that time, and for the formation of newer beds from them, by which the thickness of the older sedinientary and fossiliferous strata can be explained, I think we bave to pause befure we can accept such a seqnence.
Moreover, according to Sir William Thomson, there has not been any great change in the ellipticity of the earth's figure since its consolidation, consequently Mr. Darwin's views as to hi, her tides have to be modified, as he presupposes a more considerable ellip:icity for his calculatious. However, even assuming Prof. Ball's calculation, that when the moon was only 40,000 miles distant from the earth the tides at that time woald rise and fall between 600 and 700 fect twice in twenty-four hours, to be correct, I have no doubt that it was long before the Cambrian or lowest fossiliferous rocks with which we are acquainted were deposited. The occurrence of numerous fossils in the oldest beds, belonging to animals that could live only in clear water, and minnte ripple marks on the roiks, speak clearly against Prof, Ball's hypothesis.

This speculation in physical geography has already been tested by various geologists to account for the so-called marine denadation. This expression was first introduced by Sir Andrew Ram-ay for the higher portions of ridges over large arear, that, if laid down on an imaginary plane, appear to have once formed one surface with a very gradual slope in one direction.

However, this peculiar appearance ean, as I have repeatedly suggested in former publications, be easily explained by the fact that when the land gradually rose above the sea-level, abrasion
on a gigantic scale must have taken place, by which, in the case of our Southern Alps, the whole had the appearance of a shallow dome, of which the western side was mnch steeper than the eastern, till the subaecrial erosion by atmospheric agencies, or, as I called it, ridge making, took place.

Before leaving this subject, to which I have devoted more time than perhaps I ought to have done, I may add that many speculations have heen built upon it. Thns, Mr. O. Finher attempts to prove that the ocean basin represents the scar whence the mass forming the moon separated from the earth.

Another cause of gradaal retardation in the rotation of our planet, and to which, as far as I am aware, very little attention has hitherto been paid, is the increase of the bulk of our planet by meteorites and cosmic dust.

There is not the least doubt in my nind that matter, even in the most diffused state, cannot leave the outermost or gaseous portion of our plane', but that an enormous amount of matter in the form of meteorites must have been accumulated year by year. If we acd to this the cosmic du-t falling npon the surface of the earth, which, according to a calculation by Nordenskjold, may amount to half a million tons yearly, the size of our planet must have been gaining in dimensions aud weight to an almost inconceivable degree, even since a rich and diversified flora and faana inhalited it. Hut even assuuing that Nordenskjold's estimate is far too high, and reducing it to a tenth, or to 50,0co tons yearly, the result of any calculation upon this basis is most astounding. Thus, if we take only a period of twenty millions of years, a short interval in the life-history of our planet, the co:mic dust falling dnring that time would add not less than $1,0,0,000,000,000$ or one billion of tons.

And this resolt is obtained without accounting in any way for the further addition by the fall of meteorites, without doubt of very ennsiderable magnitnde. Such a factor, as Prof, von Nordenskjold forcibly points out in his last work, ought certainly not to be overlooked if we wish to account for vatious changes in the form, poition, and rate of rotation of our planet since it began to consolidate.

1 am n ell aware that several scientific men, who have carefully examined some of the cosmic dust, have come to the conclusion that it is in most cases of terrestrial origin; but the fact remains that some of the dust collected shows its cosmic crigin by its constituent parts, and that all the meteorites reach us from far beyond the atmosphere of our carth.
The importance of the great doctrine of evolution as first fully established by Darwin cannot te overestimated by the palacontologint. Applying the leading facts of the origin and distribuion of animal and vegetable life, as at present existing, to the numberles post generations preeerved in the marvellous stone-book of Nature, he is able to unravel more fully their history, to account for the missing leaves, and to estimate at their ju:t value shose few remaining, and of wbich he now and then is privileged to decipher a small portion. Darwin himself, in his classical chapter "On the imperfection of the geological record," in his "Origin of Species," has pointed out tous in his usual masterly manner how to avail ourselves of the scant material at our command, and how fature discoverie, adding to the palreontological stock, will open out new vistas in the past history of our globe.
I need scarcely add that every nen addition to our knowledge will assist us to gain more fully day by day an insight into the harmonious unity of the whole.
It is not yet a quarter of a century (1859) since the "Origin of Species " appeared, but if we compare our knowledge of palzontology at that time with that obtained at present, we find that striking progress has been made. Instead of a collection of facts, more or less loosely connected, we now possess a system of remarkable strength and harmony, a powerful aid to an inductive science like geology.

Evolution might be compared to an architect, who succeeds in raising an edifice of 1 ,ure and noble proportions, placed upon a stable and firm forrdation, from a large accumulated material of finely and ingeniously wrought building stones stored up promiscuously without any apparent plan er order.
Since the appearance of the "Origin of Species" I have always held this opinion; and I may be allowed to mention that as far back as 1862, in my opening address as first president of the Philosophical Institute, I spoke of this incomparable book as "the great nork of the age."

The researches of the palxontologist have shown alread, eonvincingly that there are innumerable intermediate links
between present species and those which lived in past ages. I may bere, to give only one instance, refer to Huxley's important researches into the relations of the members of the family Equidx, the Anchitherium, Hipparion, and Equus. At the same time the gulf between the different classes of vertebrates is being gradually bridged over by carcful research. Thus Prof. O. C. Marsh has shown that the jurassic bird Archeopteryx from Solenhofen is closely connected with the Dinosaurs, generally considered to be most nearly allied to birds. Archaeopteryx has besides true teeth in sockets, bi concave vertebra, the pelvic bones are separate, and the metatarsals either separate or at least imperfectly united. American fossil birde, such as Ichthyornis, have also bi concave vertebrex (like fishes and some Saurians), and teeth in sockets. The skull of Otontopteryx coliapicus, found in the Isle of Sheppey, in the London Clay, has also true teeth in sockets.
There i, however, in palxobotany still a great deal that is in many respects unsatisfactory and inconclusive. This is mainly owing to the fragmentary material at our comman.d, consisting mostly of leaves, the determination of which in many instances may lead us to wrong inferences. To give only one instance, I wish to refer to O . Feistmantel's latest researches on the palaeozoic and mesozoic flora of Australia, with which our own fossil flora is closely connected.
The eminent paleontologist of the Indian Geological Survey comes to the conclusion that Phyllotheca, in Europe and Siberia of jurassic age, is palaeozoic in New South Wales, and upper mesozoic in Victoria; Glossopteris, palreozoic in Australia, is jurassic in India and Russia, Noeggerathiopsis, beginning to appear in palazozoic beds in Australa, is represented by the iuras ic Rhiptozamites in Siberia.
It is unquentionable that such conclusions, before they can be adopted, have to be confirmed by evidence of a still more reliable character than the present material for comparison can have afforled.
Returning to the physical conditions under which the surface of our globe has been formed and is still forming, I may here point out that since evolution has been adopted by moxt scientific men as a beacon to guide them to truth, the greater portion of the so-called uniformitarian school of geologists, following in the footsteps of Lyell, has become somewhat modified in its views, and may now be called the evolutional school. But let me hasten to add that Lyell bimself, with his great love for truth, may be claimed as one of its first disciples, he having reviewed his own writings by the light Darwin held up to us, which is sure to advance geology even more than we can at present realise.

There is one question of great importance, in the solving of which buth the geologist and the palceontologist have to go hand in hand with the archaologist. There is no doubt that the human race existed already in pliocene times; and if we can trust the reports of discoveries in Portugal and other portions of Southern Eusope, man may have lived as early as the miocene age.

However, we want further and clearer evidence before this latter view can be adopted. If we consider the enormous space of time that separates us from our first ancestors, the oldest historical facts preserved seem to us as of to-day; and taking into account the wonderful progress the human race has made from the condition of the cave-dwellers, with their rade stone implements, to our present state of civilisation, we ought to look ;roudly upon the position mankind has attained. And we can therefore scarcely conceive the high degree of perfection, both physically and mentally, the human race may reach in future.

Althougb, as far as our researches go, the autochthones of New Zealand cannot boast of great antiquity when coropared with the inhabitants of the Northern Hemisphere or of the tropical regions, there is nevertheless strong reason to believe that this country has been inhabited for a much longer time than was formerly generally assumed.

It is, however, possible, that some of the traces we have bitherto found of the oldest occapancy of these islands may have been left behind by occasional visitory, adventurers in search of new countries, or by crews of wrecked ships coming from distant shores.

But we have only began to examine these questions; and although, as is always the cace, the wiseacres will first shake their heads, if our researches are only continued without fear and without preconceived conclusions, we may be certain that valaable results will be in store for us.

The existence of loess beds, often of conviderable thickness, in numerous parts of New Zealand, of which many have begun to be deposited before the beginning of our great glacier period, nill be of great use, and offer us an excellent field for research in this direction. These beds being of subaërial origin, not only the remains of land animals are preserved in them, but we shall find in them also the traces of man. I may here mention the atrange fact that the true nature of these beds has for a long time been misunderstocd and misinterpreted by mot English geologists. Even in the last edition of Lyell's "Elements of Geology," the loess cf the Rhine is described as flaviatile loam, whilst the author himself shows that only the remains of land shells and land vertebrates are embedded in it. It has always been inconceivable to me how such an error should have remained so long uncorrected ; the moreso as, as far back as 1847 , Alex. Braun, in "I eonhard and Bronn's Neaes Jahrbuch," has shown the true state of things, and German geol $\operatorname{gisists}$ have repeatedly furnished new facts in illu-tration and given analyses of loess and of recetut and older fluviatile deposits of the Rhine for comparison.
But, as I have previously pointed out, the peculiar nature of the loess deposits-the minute vertical capillary structure caused by the empty spaces once filled by the rootlets of innumerable generations of grasses-is a sure guide even to a tyro in geology. This structure amongst these localities is well exhibited in the fresh cuttings near Lyttelton.
I fear that the time allotted to me will not allow me to enter more fuily into a review of what has already been accomplished to mahe geology an inductive science, and what remains still th be done, but I may be permitted to allude to one of the principal causes that retarded geology from taking its present position. This was the fear of the student to enter into antagonism with the established religious cosmogony. It is unnecessary to allude to the middle ages, because the stake or disappearance in the dungeons of the holy inqui-ition were the rewards of fearless phyyical research, and men like Galileo and Descartes were obliged to use often evasive language, unworthy of such great thinkers, in order to 1 reserve their lives or freedom, and therefore my remarks will ouly ap; ly to our own times. In proof of this I wish only to quote one wcrk, "Vextiges of the Natural History of Creation," of which the first edition a! peared io 1844. If we read this book at the present tinie, we can scarcely understand how it could have created such intense indignation amongst a large portion of the community, or that so much could have been written against it Lyell himself, when publishing his "Principles of Geology," a work of a true philosopher, wae, judging from sume letters in his biography, very careful not to hurt too much the prejudices of his time, not wishing to mar the usefulness of his work. Even at the precent time are there not thousands and thow ands of well-meaning but narrow-minded per-ons, at once entering int.strenuous opposition when there is any reference marde to scientific cosmogony differing from that they bave been accutomed to from their youth, and that cannot stard before the light of modern research ?

However, the great principle of litherty for the teacher, so well expressed Ly the German word "Lehrfreiheit," cherinhed by the whole T-utonic race, a pinciple even preerved in the German universities during the darkest day* of absolatism, is a safeguard of inestimable walue, possessed i..rtunately also by our New Zealand University, the Alma Mater for whose advance ment to the highest atuainable position and general utility we ought willingly to devote our whole strength and best energies.

DUST-FREE SPACES ${ }^{2}$

WITHIN the last few years a singular interest has arisen in the subject of dust, smoke, and fog, and several scientific researches into the nature and properties of these phenomena have been recently conducted. It so happened that at the time I received a request from the Secretary of this Society to lecture here this afternoon I was in the middle of a research connected with dust, which I had been carrying on for some months in conjunction with Mr. J. W. Clark, Demonstrator of Physics in University College, Liverpool, and which had led us to some interesting results. It struck me that possibly some sort of account of this investigation might not be unacceptable to a learned body such as this, and accordingly I telegraphed off to

[^52]Mr. Moss the title of this afternoon's lecture. But now that the time has come for me to approach the subject before you I find myself conscious of some misgivings, and the misgivings are founded upon this ground : that the subject is not one that lends itself easily to experimental demonstration before an audience. Many of the experiments can only be made on a small scale and require to be watched closely. However, by help of diagrams and ly not confining myself too closely to our special investigation but dealing somewhat with the wider subject of dust in general, I may hope to render myself and my subject intelligible if not very entertaining.

First of all, I draw no distinction between "dust" and "smoke." It would be possible to draw such a distinction, but it would hardly be in accordance with usage. Dust might be clefined as smoke which had settled, and the term smoke applied to solid particles still suspended in the air. But at present the term "smoke" is applied to solid particles produced by combustion only, and "dust" to particles owing their floating existence to some other cause. This is evidently an unessential clistinction, and for the present I shall use either term without distinction, meaning, by dust or smoke, solid particles floating in the air. Then "fog": this differs from smoke only in the fact that the particles are liquid instead of solid. And the three terms, dust, smoke, and fog, come to much the same thing, only that the latter term is applied when the suspended particles are liquid. I do not think, however, that we usually apply the term " fog" when the liquid particles are pure water: we call it then mostly either mist or cloud. The name "fog," at any rate in towns, carries with it the idea of a hideous, greasy compound, consisting of smoke and mist and sulphur and filth, as unlike the mists on a Ilighland mountain as a country meadow is unlike a city slum. Nevertheless the finest cloud or mist that ever existed consists simply of little globules of water suspended in air, and thus for our present purpose differs in no important respect from fog, dust, and smoke. A cloud or mist is, in fact, fine water-dust. Kain is coarse water-dust formed by the aggregation of smaller globules, and varying in fineness from the Scotch mist to the tropical deluge. It has often been avked how it is that clouds and mists are able to float about when water is so much heavier (800 times heavier) than air. The answer to this is easy. It depends on the resistance or viscosity of fluids, and on the smailness of the particles concorned. Bodies falling far through fluids acquire a "terminal velocity," at which they are in stable equilibrium-their weight heing exactly equal to the resistance-and this terminal velocity is greater for large particles than for small; consequently we have all sorts of rain velocity, depending on the size of the drops; and large particles of dust settle more quickly than small. Cloud-spherules are falling therefore, but falling very slowly.

To recognise the presence of dust in air there are two principal tests: the first is the obvious one of looking at it with jlenty of light, the way one is accustomed to look for anything else ; the other is a method of Mr. John Aitken's, viz. to observe the condensation of water vapour.

Take these in order. When a sunbeam enters a darkened room through a chink, it is commonly said to be rendered visible by the motes or dust particles dancing in it ; but of course really it is not the motes which make the sunbeam visible, but the sunbeam the motes. A dust particle is illuminated like any other solid screen, and is able to send a sufficient fraction of light to our eyes to render itself visible. If there are no such particles in the beam-nothing but clear, invisible air-then of course nothing is seen, and the beam plunges on its way quite invisible to us unless we place our eyes in its course. In other words, to le visible, light must enter the eyc. [A concentrated beam was passed through an empty tube, and then ordinary air let in.]

The other test, that of Mr. Aitken, depends on the condensation of steam. When a jet of steam finds itself in dusty air, it condenses round eaeh dust particle as a nucleus, and forms the white visible cloud popularly called steam. In the absence of nuclei Mr. Aitken has shown that the stcam cannot condense until it is highly supersaturated, and that when it does it condenses straight into rain-that is, into large drops which fall. The condensation of steam is a more delicate test for dust than is a beam of light. A curious illustration of the action of nuclei in condensing moisture has just occurred to me, in the experiment-well known to children-of writing on a reasonably clean window-pane, with, say, a blunt wooden point, and then breathing on the glass : the condensation of the breath renders the writing legible. No doubt the nuclei are partially wiped away by the writing, and the
moisture will condense into larger drops with less lightscattering power along the written lines than over the general surface of the pane where the nuclei are plentiful and the drops therefore numerous and minute. Mr. Aitken points out that if the air were ever quite dustless, vapour could not condense, but the air would gradually get into a horribly supersaturated condition, soaking all our walls and clothes, dripping from every leaf, and penctrating everywhere, instead of falling in an honest shower, against which umbrellas and slate roofs are some protection. But let us understand what sort of dust it is which is necessary for this condensing process, It is not the dust and smoke of towns, it is not the dust of a country road; all such particles as these are gross and large compared with those which are able to act as condensers of moisture. The fine dust of Mr. Aitken exists everywhere, even in the upper regions of the atmosphere ; many of its particles are of ultra-microscopic fineness; one of them must exist in every raindrop, nay, even in every spherule of a mist or cloud, but it is only occasionally that one can find them with the microscope. It is to such particles as these that we owe the blue of the sky, and yet they are sufficiently gross and tangible to the capable of being filtered out of the air by a packed mass of cotton-wool. Such dust as this, then, we need never be afraid of being without. Without it there could be no rain, and existence would be insupportable, perhaps impossible ; but it is not manufactured in towns; the sea makes it ; trees and wind make it ; but the kind of dust made in towns rises only a few hundred yards or so into the atmosphere, floating as a canopy or pall over those unfortunate regions, and sinks and settles most of it as soon as the air is quiet, but scarcely any of it ever rises into the upper regions of the atmosphere at all.

Dust, then, being so universally prevalent, what do 1 mean by dust-free spaces? how are such things possible? and where are they to be found? $\ln 1870$ Ir. Tyndall was examining dusty air by means of a beam of light in which a spirit-lamp happened to be burning, when he noticed that from the flame there poured up torrents of apparently thick black smoke. He could not think the flame was really smoky, but to make sure he tried first a Bunsen gas-flame and then a hydrogen flame. They all showed the same effect, and smoke was out of the question. Ile then used a red-hot poker, a platinum wire ignited by an electric current, and ultimately a flask of hot water, and he found that from all warm bodies examined in dusty air by a beam of light the up-streaming convection-currents were dark. Now of course smoke would behave very differently. Dusty air itself is only a kind of smoke, and it looks bright, and the thicker the smoke the brighter it looks; the blackness is simply the utter absence of smoke ; there is nothing at all for the light to illuminate, and accordingly we have the blankness of sheer invisibility. Here is a flame burning under the beam, and, to show what real smoke looks like, I will burn also this spirit-lamp filled with turpentine instead of alcohol. Why the convection-currents were free from dust was unknown: Tyndall thought the dust was burnt and consumed: Dr. Frankland thought it was simply evaporated.

In 188r Lord Rayleigh took the matter up, not fecling satisfied with these explanations, and repeated the experiment very carefully. He noted several new points, and hit on the capital idea of seeing what a cold body did. From the cold body the descending current was just as dark and dust-frec as from a warm body. Combustion and evaporation explanations suffered their death-blow. But he was unable to suggest any other explanation in their room, and so the phenomenon remained curious and unexplained.

In this state Mr. Clark and I took the matterup last summer, and critically examined all sorts of hypotheses that suggested themselves, Mr. Clark following up the phenomena experimentally with great ingenuity and perseverance. One hypothesis after another suggested itself, seemed hopeful for a time, but ultimately had to be discarded. Some died quickly, others lingered long. In the examination of one electrical hypothesis which suggested itself we came across various curious phenomena which we hope still to follow up. ${ }^{1}$ It was some months before what we now believe to be the true explanation began to dawn upon us. Meanwhile we had acquired varions new facts, and first and foremost we found that the dark plane rising from a warm body was only the upstreaming portion of a dust-frce coat perpetually being renewed

For instance, the electric pry perties of erystals ean be readily examined in illumnated duaty air; the dus gruws on them in lithe bushes and marks ous their poles and neutral regione, withous any need for an electrometer. Magnesia smonke answers capitally.
on the surface of the body. Let me describe the appearance and mode of seeing it by help of a diagram. [For full description see Philosophical Magazime for March 1884.]
Surrounding all bodies warmer than the air is a thin region free from dust which shows itself as a dark space when examined by looking along a cylinder illuminated transversely, and with a dark background. At high temperatures the coat is thick ; at very low temperatures it is absent, and dust then rapidly collects on the rod. On a warm surface only the heavy particles are able to settle-there is evidently some action tending to drive small bodies away. An excess of temperature of a degree or two is sufficient to establish this dust-free coat, and it is casy to see the dust-free plane rising from it. The appearances may also be examined by looking along a cylinder towards the source of light, when the dust-free spaces will appear brighter than the rest. A rod of electric-light carbon warmed and fixed horizontally across a bell-jar full of dense smoke is very suitable for this experiment, and by means of a lens the dust-free regions may be thus projected on to a screen. Diminished pressure makes the coat thicker. Increased pressure makes it thinner. In hydrogen it is thicker, and in carbonic acid thinner, than in air. We have also succeeded in olserving it in liquids-for instance, in water holding fine rouge in suspension, the solid body being a metal steam tube. Quantitative determinations are now in progress.

FIg. 2
Fig. 1 shows the appearance when looking along a copper or carbon rod laterally illuminated: the paths of the dust particles are roughly indicated. Fig. 2 shows the coat on a semi-cylinder of sheet copper with the concive side turned towards the light.
It is difficult to give the full explanation of the dust-free spaces in a few words, but we may say roughly that there is a molecular bombardment from all warm surfaces by means of which small suspended bodies get driven outwards and kept away from the surface. It is a sort of differential bombardment of the gas molecules on the two faces of a dust particle somewhat analogous to the action on Mr. Cmokes' radiometer vanes. Near cold surfaces the bombardment is very feeble, and if they are cold enough it nppears to act towards the body, driving the dust in-ward-at any rate there is no outward bombardment sufficient to keep the dust away, and bodies colder than the atmospliere surrounding them soon get dusty. Thus if 1 hold this piece of glass in a magnesium flame, or in a turpentine or camphor flame, it quickly gets covered with smoke - white in the one case, black in the other. 1 take two conical flasks with their surfaces blackened with camphor black, and filling one with ice, the other with
boiling water, I cork them and put a bell-jar over them, nnde1 which 1 burn some magnesium wire ; in a quarter of an hour or so we find that the cold one is white and hoary, the hot one has only a few larger specks of dust on it, these being of such size that the bombardment was unable to sustain their weight, and they have settled by gravitation. We thns see that when the air in a room is warmer than the solids in it-as will be the case when stoves, gas-burners, \&ic, are used-things will get very dusty ; whereas when walls and objects are warmer than the arr -as will be the case in sunshine or when open fireplaces are used, things will tend to keep themselves more free from dust. Mr. Aitken points out that soot in a chimney is an illustration of this kind of deposition of dust ; and as another illustration it strikes me as just possible that the dirtiness of snow during a thaw may be partly due to the bombardment on to the cold surface of dust out of the warmer air above. Mr. Aitken has indeed suggested a sort of practical dust or smoke filter on this principle, passing air between two surfaces-one hot and one cold-so as to vigorously bombard the particles on to the cold surface and leave the air free.

But we have found another and apparently much more effectual mode of clcaring air than this. ${ }^{1}$ We do it by discharging electricity into it. It is easily possible to electrify air by nieans of a point or flame, and an electrified body has this curious property, that the dust near it at once aggregates together into larger particles. It is not difficult to understand why this happens : each of the particles becomes polarised by induction, and they then cling together end to end, just like iron filings near a mag. net. A feeble charge is often sufficient to start this coagulating action. And when the particles have grown into big ones they easily and quickly fall. A stronger charge forcibly drives them on to all electrified surfaces, where they cling. A tine water-fog in a bell-jar, electrified, turns first into a coarse fog or Scotch mist, and then into rain. Smoke also has its particles coagulated, and a space can thus be cleared of it. I will illustrate this action by making some artificial fogs in a bell-jar furnished with a metal point. First burn some magnesium wire, electrify it by a few turns of this small Voss machine, and the smoke has become snow ; the particles are elongated, and by pointing to the charged rod indicate the lines of electrostatic force very beantifully: electrify further, and the air is perfectly clear. Next burn turpentine and electrify gently : the dense black smoke coagulates into black masses over an inch long ; electrify further, and the glass is covered with soot, but the air is clear. Turpentine smoke acts very well, and can be tried on a larger scale: a room filled with turpentine smoke, so dense that a gas-light is invisible inside it, begins to clear in a minute or two after the machine begins to turn, and in a quarter of an hour one can go in and find the walls thickly covered with stringy blacks, notably on the gas-pipes and everything most easily charged by induction. Next fill a bell-jar full of steam, and electrify, paying attention to insulation of the supply point in this case. In a few seconds the air looks clear, and turning on a beam of light we see the globules of water dancing about, no longer fine and impalpable, but separately visible and rapidly falling. Finally make a London fog by burning turpentine and sulphur, adding a little sulphuric acid, either directly as vapour or indirectly by a trace of nitric oxide, and then blow ing in steam. F.lectrify and it soon becomes clear, although it takes a hitte longer than before; and on removing the bell-jar we find that even the smell of SO_{2} has disappeared, and only a little vapour of turpentine remains. Similarly we can make a Widnes fog by sulphuretted hydrogen, chlorine, sulphuric acid, and a little steam. Probably the steam assists the clearing when gases have to be dealt with. It may be possible to clear the air of tunnels by simply discharging electricity into the air-the electricity being supplied by Holtz machimes, driven say by small turbines-a very handy fonn of power, difficult to get out of order. Or possibly some hydroelectric arrangement might be devised for the locomotive steam to do the work. I even hope to make some impression on a London fog, discharging from lighening-conductors or captive balloons carrying flames, but it is premature to say anything abont this matter yet. I have, however, cleared a room of smoke very quickly with a small hand machine.
It will naturally strike you how closely allied these phenomena must be to the fact of popular science that "thunder clears the air." Ozone is undoubtedly generated by the flashes, and may have a beneficial effect, but the dust-coagulating and expelling power of the electricity has a much more rapid effect, though it

[^53]may not act till the cloud is discharged. Consider a cloud electrified slighsly; the mists and clouds in its vicinity begin to coagulate, and go on till large drops are formed, which may be held up by electrical action, the drops dancing from one cloud to another and thus forming the very dense thunder-cloud. The coagulation of charged drops increases the potential, as Prof. Tait points out, until at length-flasb-the cloud is discharged and the large drops fall in a violent shower. Moreover, the rapid excursion to and fro of the drops may casily have caused them to evaporate so fast as to freeze, and hence we may get hail.

While the cloud was electrified, it acted inductivcly on the earth underneath, drawing up an opposite charge from all points, and thus electrifying the atmosphere. When the discharge occurs this atmospheric electrification engages with the earth, clearing the air between, and driving the dust and germs on to all exposed surfaces. In some such way also it may be that "thunder turns milk sour," and exerts other putrefactive influences on the bodies which receive the germs and dust from the air.

But we are now no longer on safe and thoroughly explored territory. I have allowed myself to found upon a basis of experimental fact a superstructure of practical application to the explanation of the phenomena of nature and to the uses of man. The basis seems to me strong enough to bear most of the superstructure, but before being sure it will be necessary actually to put the methods into operation and to experiment on a very large scale. I hope to do this when I can get to a suitable place of operation. Liverpool fogs are poor affairs, and not worth clearing off. Manchester fogs are much better and more frequent, but there is nothing to beat the real article as found in London, and in London if possible I intend to rig up some large machines and to see what happens. The underground railway also offers its suffocating murkiness as a most tempting field for experiment, and I wish I were able already to tell you the actual result instead of being only in a position to indicate possibilities. Whether anything comes of it practically or not, it is an instructive example of how the smallest and most unpromising beginnings may, if only followed up long enough, lead to suggestions for large practical application. When we began the investigation into the dust-free spaces found above warm bodies we were not only without expectation, but without hope or idea of any sort, that anything practical was likely to come of it : the phenomenon itself possessed its own interest and charm.

And so it must ever be. The devotee of pure science never has practical developments as his primary aim ; often he not only does not know, but does not in the least care, whether his researches will ever icad to any beneficial result. In some minds this passive ignoring of the practical goes so far as to become active repulsion; so that some singularly biased minds will not engage in anything which scems likely to lead to practical use. I regard this as an error, and as the sign of a warped judgment, for after all man is to us the most important part of Nature ; hut the system works well nevertheless, and the division of labour accomplishes its object. One man investigates Nature impelled simply by his own genius and because he feels he cannot help it : it never occurs to him to give a reason for or to justify his pursuits. Another subsequently utilises his results, and applies them to the benefit of the race. Meanwhile, however, it may happen that the yet unapplied and unfruitful results evoke a sneer, and the question, "Cui bono ?" the only answer to which question seems to be: No one is wise enough to tell beforehand what gigantic developments may not spring from the most insignificant fact.

UNIVERSITY AND EDUCATIONAL /NTELLIGENCE

OXFORD.-The following are the University and College lectures in natural science for the summer term :-

In the Physical Department of the Museum Prof. Clifton lec. tures on the instruments and methods of measurement employed in optics; Mr. Heaton lectures on prohlems in elementary physics; and practical instruction is given by the Professor and Messrs, IIcaton and Walker. At Christ Church Mr. Baynes lectures on conduction of heat, and gives practical instruction on the measurements of electricity and magnetism; at Balliol Mr. Dixon lectures on elementary electricity and magnetism.

In the Chemical Department of the Museum Dr. Odling will hold an informal discussion on chemical constitution, Mr. Fisher lectures on inorganic and Dr. Watts on organic
chemistry. At Christ Church Mr. Harcourt lectures on quantitative analysis and Mr. Veley on the relation between the physical properties and the constitution of organic compounds.

In the Morphological Department of the Museum Prof. Museley lectures on the relations of the anthropoid apes and man, Mr. S. Hickson on the embryology of the chick, Mr. Jackson on Osteological Types, Mr. Poulton on Descriptive Mistology, Mr, Morgan on Odontography, and Mr. BarclayThompson on the Anatomy of the Sauropsida.
In the Physiological Department Prof. Burdon-Sanderson lectures on the Chemical 'rocesses of the Animal Body; at Magdalen Mr. Yule lectures on Practical Physiology.

Prof. Prestwich lectures on the Strata in the Neighbourhood of Oxford, and gives practical instruction in the field on the days following his lectures.

Prof. Gilbert will give an introductory lecture on May 6, on the Sources of the Constituents of Plants-the Soil, the Atmosphere. Dr. Tylor lectures on the Development of Arts and Sciences.

Prof. Pritchard concludes his course on the Planetary Theory, and will give a public lecture on his recent journey to Egypt in order to measure the absorptive power of the atmosphere on the light of the stars.

SCIENTIFIC SERIALS

American fournal of Science, April.-Recent explorations in the Wappinger Valley limestone of Duchess County, New York, by Pror. William B. Dwight. To the paper is appended a plate of the Wappinger Valley fossils.-Description of the KettleHoles near Wood's Hall, Massachusetts, with map of the district showing the positions and direction of the larger diameter of the Holes, by Prof. B. F. Koons.-Examination of Mr. Alfred R. Wallace's modification of the physical theory of secular changes of climate (second paper), by Dr. James Croll. Here the question is studied from the physical standpoint, and it is argued that a geographical change in the erust of the earth is not necessary to remove the Antarctic ice.- \mathbf{A} contribution to the gcology of Rhode Island (continued), by T. Nelson Dale.On Mesozoic Dicotyledons (Angiosperms), by Lester F. Ward. - Oat the tourmaline and associated minerals of Auburn, Maine, by George F. Kunz. - On andalusite from Gorham, Maine, by the same author.-On the white garnet from Wakefield, Canada, by the same anthor. - Horizontal motions of small floating bodies in relation to the validity of the postulates of the theory of capillarity, by John Le Conte. - The principal characters of American Jurassic Dinosaurs; Part vii., the order Theropod (with plates 8 to 14), by Prof. O. C. Marsh.-A new order of extinct Jurassic reptiles (Macelogwatha), (one illustration, M. vagams), by the same author.

THE first article in the \mathcal{F} curnal of Botany for A pril is a monograph, by Dr. Masters, on the singular "umbrella pine" of Japan, Sriadopitys verticillata. The most important points which he lrings out are that the true leaves of Sciadopitys are the homologues of the true or primordial leaves of Pinus; that the socalled " needles" of Siadofitys, although occupying the same relative position as the leaves of Pinus, are not necessarily morphologically homologous with them ; and that the bracts of :he cone of Sriadopitys are homologous with the true leaves of that plant, and also with the bracts of Abietincz generally.

THE most important article in the Nwovo Giornale Bolanico Lhaliane for January 1884 is one by Sig. A. Borzi, on a | arasitic organism of a very low type which he finds in the crdinary cells of Spinggra crassa, and to which he gives tle name Protochytrium Spirogyra. In its systematic positicn it dis. plays, on the one hand, affinities with the Myxomycetes, on the other hand, with such gencra of Chytridiaceas as Wuronima, Rozilla, and Oipiliopsis. The entire absence of a cell-nucleus identifies it, according to the author, with Klein's family of Hydromyxacers, along with Monas, Vampyrella, Monadopsis, and Protomyxa, Its ordinary condition is that of a naked mass of protoplasm, endowed with amceboid movements, and living on the chlorophyllaceous contents of the cells of the host, these plasmodia having the power of coalescing like myxamoebse ; but it also has an encysted state, and in certain conditions propagates itself by the production of uniflagellate zoospores.
5 Rendiconti del Reale lstituto Lombavdo, March 6.-Observations made at Milan on the passage of the atmospherie waves produced by the Krakatoa eruption, by E. G. Schiaparelli.-On
a sensible deviation observed in the plumb-line between Milan and Genoa, by E. (\%. Celoria. - On a hitherto neglected sulcus or depression frequently occurring in the frontal bone of the human skull between the boss and the temporal eminence, by Prof. G. Zoja.

March 20.-Obituary notice of the late Quintino Sella, by Prof. T. Taramelli.-Memoir on Antonio Angeloni Barbiani and his literary productions, by E. B. Prina.-Biological notice of Alosa zwlpuris and Salmo carfio, inhabiting the ltalian and subAlpine lakes, by Prof. P. Pavesi, -On the complete integers of some classes of partially derived equations of any order with two independent variants, by Prof. G. Pennacchietti-Note on the quantitative determination of alogenous bodies, by P. Ritter-Zihony.-On tbe two human parasites Anguillula intestinalis and A. stersoralis, by E. C. Golgi and A. Monti,-Absolute values of the magnetic elements in Milan for the year 1883, by Dr. Ciro Chistoni.

Rivista Scientifico-/ndustriale, March 15.-Note on Wroblewski's experimental studies on the liquidation of hydrogen.On the variation in the electric resistance of solid and pure metallic wires according to tbe temperature, by Prof. Angelo Emo. -On the pretended spontaneous combination of oxygen and bydrogen without increase of temperature effected by the exclusion of ligbt, by L. Ricciardi.- On the migration of Fuligula rufind and Erismalura lrucorephala, Scop., by Dante Roster.

Atti della K'. Accademia dei Lincei, March 2.-Report on Alfredo Capelli's monograpb on the composition of the groups of substitutions, by S. Battaglini.-Report on Prof. G. Bellonci's memoir on blastopore and the primitive line of the vertebrates, by S. Todaro.-Remarks on a group of curves of the fourth order, by Francesco Brioschi.-An experimental refutation of the hypothesis that every double link between carbon and carbon causes an increase of molecular refraction by a constant quantity, by Rodolfo Nasini.-On the stratification of the serpentine rocks in the Apennines, part i., by Torquato Taramelli.-Note on barometric hypsometry, by Aurelio Lugli.

March 16. - Obituary notice of the late Quintino Sella, by S. Maggiorani,-Meteorological observations at the Observatory of the Campidoglio during the months of January and February.

March 23,-On some uupublished and unknown works of Bartolomeo Marliani, by Enrico Narducci.-A chemical analysis of some brass and bronze objects found at the lacustrine station of Benaco, in Lombardy, by Luigi Pigorini. - Report on the antiquities discovered in various parts of Italy during the month of February 1884, by S. Fiorelli.-On barometric hypsometry, second note, by S. Tacchini. - Absolute values of the magnetic elements in Rome for the year $\mathbf{1 8 8 3}$, by S. Tacchini. - On the stratification of the serpentine rocks in the Apennines, part ii., by Torquato Taramelli.

societies and academies London

Royal Society, April 3.-"Spectroscopic Studies on Gascous Explosions." By Professors Liveing and Dewar.
Having occasion to observe the spectrum of the flash of a mixture of hydrogen and oxygen fired in a Cavendish eudiometer, the authors were struck by the brightness, not only of the ubiquitous yellow sodium line, but of the blue calcium line and tbe orange and green bands of lime, as well as of other limes wbich were not identified. The eudiometer being at first clean and dry, the calcium must be derived cither from the glass or from some spray of the water over which the gases with which the eudiometer was filled had been confined. It seemed incredible that the momentary flash should detach and light up lime from the glass, but subsequent observations have pointed to that conclusion. Experiments were subsequently made on the flash of the combining gases inclosed in an iron tube, half an inch in diameter and about three feet long, closed at one end witb a plate of quartz, held in its place by a screw-cap and made tight by leaden washers.

The tube was placed so that its axis might be in line with the axis of the collimator of a spectroscope, and the flash observed as it travelled along the tube.

It was seen at once that more lines made their appearance in the iron tube than in the glass vessel, and one conspicuous line in the green was identified in position with the E line of the solar spectrum. Several other lines were identified witb lines of iron by comparison with an electricspark between iron electrodes.

There could be no doubt that the flash in an iron tube gave several of the spectral lines of iron. The authors supposed that this must be due to particles of oxide shaken off the iron by the explosion, and proceeded to try the effect of introducing various substances in tine powder, and compounds, such as oxalates, which would give fine powders by their decomposition in the heat of the flame. Several interesting observations were made in this way. When some lithium carbonate was introduced, not only were the red, orange, and blue lines of lithium very brilliant, but the green line hardly less so, After the lithium had once been introduced into the tube, the lithium lines continued to make their appearance even after the tube had been repeatedly washed. When the lithium had been freshly put in, the red line was observed to be much expanded, very much broader than the line given by lithium in a Bunsen burner reflected into the slit for comparison. The light was dazzling unless the slit was very narrow ; and it was noticed that if the spark by wbich the gav was Gred was at the distant end of the tube, so that the flame travelled along the tube towards the slit, there was a reversal of the red line; a fine dark line was plainly visible in the middle of the band. When the spark was at the end of the tube next the slit, no reversal was, in general, seen. Later observations showed that some other metallic lines might be reversed in this way, and photographs taken of the reversals. These observations with the eye on the reversal of the red lithium line were made with a diffraction grating, and were repeated many times. They show that there are gradations of temperature in the flame, and that the front of the advancing wave of explosion is somewhat cooler than the following part. The combination of the gases is not so instantaneous that the maximum temperature is reached at once. When some magnesia was put into the tube the continuous spectrum was very bright, but the iron lines were still brighter. No line which could be identified as due to magnesium was observed with certainty ; there was only a doubtful appearance of 6 . Witb sodium, potassium, and barium carbonates, only the lines usually seen when salts of those metals are introduced into a flame were noticed; but eye observations of this kind are extremely trying, on account of the suddenness of tbe flash and the shortness of its duration. Thallium gave the usual green line.

Subsequently the interior of the tube was bored out so as to present a smooth bright surface of iron, and the-iron lines which were conspicuous in the flash were noted.

For the purpose of identification the pointer in the eye-piece was first placed on one of the strong iron lines given by the electric discharge between iron electrodes, and then, the discharge being stopped but the field sufficiently illuminated, the eye was fixed steadily on the pointer while the gas in tbe tube was exploded. In this way it was not difficult to see whether any given line was very bright in the flash. The lines thus identified were those having the wave-lengths about 5455, 5446, 5403, 5396, $5371,5327,5269$ (E), 5167 (64). These lines were all many times observed in the way described, and as a rule were always present in the flash. Lines with wave-lengths about 5139 and 4352 were seen, and may possibly have been due to tron, and several more lines were seen occasionally, but were not so regularly seen that they could be well identified. The lines A 4923 and $\lambda 4919$ were specially looked for, but neither of them could be seen. A group of blue lines were noticed, and were afterwards identified by photograpby, a method much less trying than observations by eye. To give intensity to the photographs ten oritwelve flashes were usually taken in succession without any shift of the instrument, so as to accumulate their effects in one photograph. For ideptification the spark between iron electrodes was also photographed, but with a shutter over the lower part of the slit, so that the image of the spark should occupy only the upper part of the field.
Sume sixty of the iron lines in the indigo, violet, and ultraviolet were thus photographed.

As a rule no iron lines above O make their appearance; in a few plates T is visible, and it is possible that other lines may be obscured by the water spectrum, which always comes out and extends from near s to below R. Above T no line at all is visible in uny of the photographs, though the spark lines come out strongly enough, and several of the strongest groups of iron lines, both of spark and are lines, are in the region beyond T.

Other experiments were made with explosions of carbonic oxide and oxygen, and with coal-gas and oxygen. The explosions of these gases were attended with much more continnous spectrum. and the metallic lines were not always as well developed as they
were with hydrogen and oxygen, but on the whole there were as many metallic lines photographed fiom the flashes of carbonic oxide as from those of hydrogen.

When the iron tube was lined with copper foil, only one copper line in the visible spectrum, A 5105 , was seen, and in the ultraviolet two lines, A 3272 and A $3245^{\circ} 5$. All three lines were very strong, and the two ultra-violet lines were in some cases reversed. These lines were also frequently developed when no copper lining was in the tube, probably from the brass of the small side tubes.

Copper also gave a line in the indigo, $\lambda 4281$ about, decidedly less refrangible than the copper line, $\lambda 4275$, coincident apparently with the strong edge of one of the bands developed when a copper salt is held in a Bunsen burner.

A lining of copper which had been electro-plated with nickel developed only one nickel line, $\lambda 5476$, in the visible part of the spectrum, but gave by photography twenty-five lines in the ultraviolet.

When copper wire electro-plated with cobalt was put into the tube twenty-two cobalt lines in the violet and beyond were photographed.

No other metal gave anything like the number of lines that were given by iron, nickel, and cobalt.

A lining of lead gave the lines $\lambda 4058,3683$, and 3639 strongly, and these lines were frequently developed, though less strongly, when there was no lead lining; the metal being without doubt derived from the leaden washers used to make the ends of the tube air-tight.

A strip of silver gave the lines $\lambda 3381.5$ and 3278 , and these lines were sometimes reversed. No trace of the channelled spectrum of silver was developed even when silver oxalate was put into the tube, and furnished plenty of silver dust after the first explosion.

A magnesium wire about 2 millims. thick and two-thirds the length of the tube gave the b lines very well; that is to say b_{1} and b_{2} were well dcveloped, and b_{4} was also seen, but as the iron and magnesium components of b_{4} are very close together, and the iron line had been observed before the introduction of the magnesium, it was not possible to say with certainty whether or not the magnesium line were present too. No other magnesium line could be detected. The blue flame line was earefully looked for, lut could not be seen. The photographs showed none of the magnesium triplets in the ultra-violet, nor any trace of the strong line $\lambda .2852$, which appears in the flame of burning magnesium, and is yet more conspicuous in the arc when that metal is present.

Metallic manganese, introduced into the tube in coarse powder, gave the group at wave length about 4029 with much intensity, but no other manganesc line with certainty. In the visible part of the spectrum the channellings in the green due to the oxide were visible.

A lining of zinc produced no zinc line, and zinc-lust gave only a very doubtfu Iphotographic impression of the. line λ 3342. A strip of cadmium gave no line of that metal either in the visible or in the ultra-violet part of the spectrum.

Tin, aluminium, bismuth, and antimony, also failed to produce a line of any of those substances, and so did mercury which was spread over copper foil made to line the tube.

Thallium spread as amalgam over the copper lining gave the lines $\lambda 3775 \cdot 6,3538 \cdot 3$ and 3517.8 .

Chromium was introduced as ammonium bichromate, which of course left the oxide after the first explosion. "This gave the chromium lines with wave-lengths about 5208, 5205, 5204, 4289, $4274^{\circ} 5,4253 * 5$. very well and persistently, also the lines with wave-lengths about $3605,3592^{\prime} 5,3578^{\prime \prime} 5$.
Solium salts (carbonatc, chloride) developed the ultra-violet line $\lambda 3301$; and potassiums salts give the pair of lines about wavelength 3445 ; but no more refrangible line of either metal was depicted on the photographs. Lithium carbonate gave, besides the lines in the red, orange, green, and blue, the violet line, A 4135 ' 5 ; but no more refrangible line.

Photographs of a flame of mixed coal-gas and oxygen, in which an iron wire was burnt, show, as might be expected, the same iron lines as are developed in the flash of the detonating gases, and of the same relative intensities. These intensities are not quite the same relatively as they are in the arc spectrum. Thus the lines A $3859,3745,3737,3735$, and 3719 come out in great strength, much stronger than the lines $\lambda 3647,3631,3618$, which are remarkably strong in the are.

German-silver wire, burnt in the flame of coal-gas and oxygen,
gave the same nickel lines as were given by nickel in the detonating gases, as well as those of copper and lead.

Copper wire gave, besides the lines $\lambda 3272,3245^{\prime} 5$, a set of bands in the bluc, which correspond with those given by copper salts in flames, and are prohably due to the oxide.

The greater part of the lines olserved in the flames of the exploding gases have been observed by the authors to be reversed when the several metals were introduced into the arc in a crucible of lime or magnesia; which is quite in accord with the supposition that the metals experimented on are volatile, and emit as well as absorb these particular rays, at temperatures lower than that of the are.

That iron is volatilc at a temperature below the fusing point of platinum, which is about 1700° C., has been pointed out by Watts (Phil, M/as., vol. xlv. p. 86), who observed in the flame of a liessemer converter almont all the green and blue lines of iron which we have seen in the exploding gases, besides one or two lines which we have not observed or identified. Having regard to this volatility of iron, it does not seem so surprising that iron lines should be observed accompanying those of hydrogen to great heights in the sun's atmosphere as that they should not he always seen there.

Copeland (Copernicus, December, 1882) observed in the spectrum of the great comet of 1882 four lines nearly identical with four of the green lines of iron seen in the detonating gas.

It is remarkable that such volatile metals as mercury, zinc, and cadmium should give no lines in the flame of the exploding gases.

The absence of any metallic lines more refrangible than T' in the flame of the exploding gases may be in part due to a falling off in the sensibility of the photographic plates for light of shorter wave-lengths; but as the spark lines of iron secm to be quite as strongly depicted on the plates in regions of the spectrum far aloove T as they are in the regions below, want of sensitiveness in the plates cannot be the only, reason for the absence of higher lines, but probably the emissive power of the metals for these lines is feeble at the comparatively low temperature of the flame.

Gouy (Comp. R., 1877, 1. 232), using a modification of Bunsen's burner fed with gas mixed with spray of metallic salts, observed at the point of the inner green flame three or four iron lines which have not been observed in the flame of the detonating gas, the lincs b_{1} and b_{2} of magnesjum, two cobalt lines in the blue which are not seen in the detonating gas, one line of zinc, and one of cadmium, and the two strong green rays of silver. Can the appearance of these rays under these circumstances imply that the temperature of the inner green cone of a Bunsen burner, when the proportion of air to coal-gas is near the exploding point, is higher than that of the explosion of hydrogen and oxygen?

The interesting theoretical questions which are suggested by the facts recorded in this paper the authors leave for further discussion.
Linnean Society, April 17.-Alfred W. Bennctt, M. A., in the chair.-Messrs, R. Lloyd Patterson and Renjamin Lomax were elected Fellows.-Dr. J. Poland exhibited under the microscope a serics of preparations, stained by reagents, illustrating the Bacillus of anthrax of man. He remarked on the severely fatal character of the malady, not only in this country but on the Continent and certain places abroad. The Bacillus-spores were in many instances douthless conveyed in the dried skins and hides imported from abroad, and under favourable conditions inoculated those handling the dried hides, \&c., the germs deveveloping in the usual manner of the low vegetable or Tanisms, -Dr. R. C. A. Prior drew attention to specimens of Drata areoides obtained from Pennard Castle, Swansea, said to be the only locality where this plant grows wild in England. The ninth contribution to the ornithology of New Cuinea, by Mr. R. Bowdler Sharpe, was read, and it dealt with some few birds ohtained by Mr. A. Goldie in the Astrolabe Mountains.-A paper was read by the Rev, J. M. Crombic on the algo-lichen-fungal hypothesis. The author gave a Irrief sketch of the hypothesis as enunciated by Schwendener, Bornet, and others, noticing the various arguments and illustrations which had been adduced in its support. He then discussed the result which had been obtained from experiments in lichen-culture, whether from the spore or by synthesis-observing that in both cases these were confessedly but small, owing to the very great difficulty of cultivating beyond a rudimentary stage except under the same atmospherical conditions in which they grow in
nature．Two fatal objections he said might be taken to the ${ }^{\mathrm{e}}$ theory：＇（1）the one having reference to the very peculiar nature of the parasitism it assumed，and the other（2）to the fact that notwithstanding a similarity of appearance there were in reality no truc fungal－mycelia nor true algal－colonies in lichens．As to any direct genetic or any indirect parasitical connection between the gonidia of lichens and the hyphal filament，it was further pointed out that none such existed，but that on tracing the cvolution of the thallus from the germinating spore，it is scen that the gonidia originate in the cellules of the first parenchymatons tissue formed upon the hypothallus，and th at subsequently through the resorption of the lower portion of the cortical stramum they became free，and constituted the thin teonidial stratum．Where seen lying amongst the medullary hyphac they are often attached to these，not as the result of any copulation，but by means of the lichenin which permeates the whole thallus．The origin of the gonidia and their relation to the rest of the lichen thallus，the nuthor stated in conclusion， thus belonged to the very clements of morpholugical lintany．－ There followed a note on a remarkable variation in the leaf of Aianksia marginata observed ly Mr．J．（i．（ito＂Tepper in South Australia；and he questions whether this might not le regarled as the spontaneous produetion of a new varicty or species or the remnant of an extinct form．－Mr．R．A．Rolfe then discourserl on I／yalcralyx，a new genus of Turneracere from Madagascar． Accordirg to Dr．J．U＇rian（the latest authority）the order con－ sists of five genera and eighty－three species distributed in A merica from North Carolina and Mexico to the Argentine Republic，and in Africa from Ahyssinia to Mozamlaique and the Cape of Goorl Hope，while outliers are found in the islanks of Vanzibar and Rodriguez．The unique example now added was ohnained by Dr．C．Kutenberg on Nossi－be，a small island on the north－west of Madagascar．Its peculiarities incline Mr．Rolfe to regard it as the type of a yew genus with a position between A／athuriwa and Turnera；its most remarkable character being its glassy transparent calyx totally destitute of chloropliyll．

Chemical Society，April 17．－1）r．Perkin，F．R．S．，pre－ sident，in the chair．－A ballot was held，and the following gentlemen were elected Fellows：－W．D．Borland，J．C．Bose， W．D．Crumbic，A．F．Dimmock，H．G．Gireenish，W．J．（irey， J．（iaskell，J．W．Pratt，A．G．Perkin，W．H．Perkin（jun．）， G．H．Wainwright．－The following papers were read ：－On the influence of incombustible diluents on the illuminating power of ethylene，by P．F．Frankland．Nixture of ethylene with car－ bonic anhydride，nitrogen，aqueous vaponr，and air，have a lower illuminating power than pure ethylene．Mixtures with oxygen have a greater illuminating power than pure ethylene；carbonic anhydride is the most and air the least prejudicial to the illumi－ nating power．－On trichloropyrogallol，by C．S．S．Webster． The author has prepared mairogallol by the method of Stenhouse and Groves．He finds that the reaction can be separated into two stages，in the first of which trichloropyrogallol is formed． Its reactions are identical with tribromopyrogallol．The author confirms the statements of Stenhouse and Groves in almost every particular．－The synthesis of galena by means of thiocarbamide， by J．Emerson Reynolds．The author has succeeded in coating glaws vessels，brass tubes，\＆c．，with a nitrous galenoid coating， by the decomposition of an alkaline solution of lead tartrate with sulphur urea．－On the analysis of Woodall Spa，by W．T． Wright．This spring contains a large amount of bromine（ $49^{\prime} 7$ parts per mlllion）and iodine（ $5^{\circ} 21$ per million）；it is much richer in these clements than any other spring in this country．－On the critical temperature of heptane，by T．E．Thorpe and A．W． Rückc：By calculation it is found to be about 281° ．

Sydnev

Linnean Society of New South Wales，Felruary 27，－ The following papers were read ：－Monograph of the Australian sponges，by R．son Lendenfeld，Ph．D．，part I．This paper is introductory to a monograph upon the Australian sponges，large materials for which have already becn accumulated by the author， partly from his own collections，and partly from those in the Muscums of Christchurch and Dunedin，New Zealand，and of Adelaide，South Australia．The real investigation of this branch of the Coelenterata may be said to begin with the work of Grant， 1826：to have risen to a new and much higher level under Schulze， $1875-188 \mathrm{r}$ ，and to have been continued by Lollas， Keller，Vosmaer，Marshall，the author，and others，with con－ tinually increasing success up to the present time．A sufficient
account of the bibliography of the Spongida is presented in this paper to enable those interested to find any desired information upon the subject，a matter of no small difficulty at present．－The ．Scyphomedusaz of the southern hemisphere，by R．von lendenfeld， Ph．D．，part 1．The Sipphomeduse or＂jelly－fish＂appear t＂ be more numerous in the southern than in the northern hemi－ sphere．Uf the 210 known species， 104 have already been founs in the former，and as the animals of that hemisphere are p ： ： nearly so well known as those of the northern，the number of southern species must doubtless be mueh greater than that men－ tionerl．Only twenty－six of the 104 sorthern species are Aus－ tralian．but this apparent poverty of the Merlusic of our shores is due to the limited investigation that has been made．In this paper all the species of this hemisphere are described．－Notice of some new fishes by William Macleay，F．1．S．Foun apecies are here described．Two of them，IVufyrephalus low； spon＇s and Urolophos bncoulentus were taken in the trawl in deç water outvide the Ileads of Port Jackwn．＇The third，Pefrosrirfes zui＇spor，was found by Mr．J．1）．Wilson at the North Shore： and the fourth，Athiromosomat jomiesoni，was a small freshwater fish from the Bemer，one of the head waters of the Brishane Kiver．－On the improvement effected by the Australian climate， soil，and culture on the Merino sheep，by P．X．Trebeck．In this paper Mr．＇Treloek traces the changes and improvement which weol has umicegone in Australia since the first intmoluc． tion of（ierman and Silesian sheep．Samples of the wool of all the periods and flocks alluded to were cxhibited．Mr．Treheck conclutes his paper by stating his opinion that the whole of the country on our western watershed was eminently suitable for the Merino sheep，and that we only required the fostering assistance of an intelligent Government to keep in the front ranks of the wool－protlucing conntries of the world．
CONTENTS Page
The Edinburgh University Festival 593
Prjevalsky＇s Travels in Central Asia 593
Our Book Shelf：－
Jung＇s＂Deutsche Kolonien＂ 594
＂Catalogue de la Bibliotheque Japonaise de Norden－
＂Catalogue de la Bibliotheque Japonaise de Norden－ skjöld＂ 594
Letters to the Editor：－
The Dunt of Krakatoa，－Prof．John W．Judd，
F．R．S．；Prof，W．L．Goodwin ．
＂Earthquakes and Buildings．＂－Dr．A．Ernst 595
On the Transmission of Organic Germs throughCosmical Space hy Meteoric Stones－J．H．Stewart
595
Instinct of Magpies－Rev．James Graves 596
Cats at Victoria Station．－Rooke Pennington 596
Wild Duck laying in Rook＇s Nest．－John Cordeaux 596
Science and the Public Service．－S． 596
The Hong Kong Observatory．By Dr．W，Doberck 596
The Cedar Forest of Cyprus．By Sir Robert Biddulph，K．C．M．G．，C．B．
Mineral Resources of the United States 597 597 598
The Late Dr．Engelmann．By Dr．Maxwell T．
Masters，F．R．S． 599
Siwalik Carnivora（Wifh Illustrations） 599
An Earthquake In England．By Dr．J．E．Taylor；
A．Percy Smith ；Henry O．Forbes 602
Notes 603
Our Astronomical Column ：－
Southern Comets 606
The Observatory of Palcrmo 606
Geographical Notes 606
On the Progress of Geology．By Prof．Julius vonHaast，Ph．D．，F．R．S．
Dust－free Spaces．Hy Dr．Oliver J．Lodge（Hï\＆ Illustrations） 610
University and Educational Intelligence 6.3
Scientific Serials 613
Societies and Academies 614

SCIENCE CENTER LIBRARY

[^0]: ${ }^{4}$ The alhitudes were ascertained by comparing three aneroid barometers while observation was simultaneously made at Figedesminde with a splendid sea barometer I had left there for that purnose. As the figures bave, however, not yet been verified. they may be slightly altered. They seem on the

[^1]: ${ }^{1}$ The earliest telegrams spoke of a volcano Sungepan, which had been aplit into five craters. This appears to have been a mistake: there never wan a volcano of this name in this place, not is there now. It is only an tsland.
 ${ }^{2}$ See the Dutch Natisar, September 18, 1883, p. 96 r.

[^2]: ${ }^{1}$ This deserves particular notice. Herr Metiger ascended several of the volcanoes of Java, and often mayed days and woeks together upon them and in their immediate vieinity without ever once finding what was, strictly peaking, lava.
 ${ }_{2}$ It is now stated that waves, but of no extroordinary beight, were observed at 6 p.rm. on August a6.

[^3]: ${ }^{1}$ From Lat Natwre.

[^4]: Continued from p. ${ }^{13}$.
 ${ }^{1}$ Lately described by Prof. V. Wittrock. "Ong Snobas och Ineas Mora, Sirakuldt i Arktiska Trakterna." Ur."A. E. Nordenskjold, Studier och Forkkningar forranledda af misa resor i hoga Norden. ${ }^{*}$ (Stockholm, 188_{3}) See Nattue, vol. xevil. p. 304 -

[^5]: ${ }^{2}$ [The Swedish " skidor" and Norwegisn " Ski," are long strips of pinewood stightly bent at the top, polished and as elastic as if they were of the finent steel, with a strap for the feet in the centre. on which the Lapps and Scandinavians run on the snow with remarkahle agility at a tremendous pace- - Ed.]

[^6]: ${ }^{1}$ I have as yet been umable to verify the barometer calculations, and the Gigures stated here may maffer some modification.

 Nature, vol. xaviil. p. 34 .

[^7]: ${ }^{1}$ Nature, xol. xuviii. p. 37.

[^8]: ${ }^{4}$ Continued from vol, $\mathbf{x x v i i}$. p. Go4.

[^9]: I These accompaniments are characteristic of the spring rainfall both on the hills and the plans, not of the monsoon rains, and indicate demonstrably in most caves the existence of a dry upper current.

 - Contirumat fonmon

[^10]: ${ }^{1}$ " Agricultural. Botanical, and Chemical Results of Fsperiments on the Mised Arerbage of Permanent Meadow. oonducted for more than twenty years in succession on the same land." P'art ii., the Hotanical Results, By SirJ. B. Lawes, Bart, F.R.S., Dr. J. H. Gilbert. F. R.S., and Ir. M. T. Masters, F.R.S. PhiL. T'rans., Part iv., 185a. Pp. abuut ago.

[^11]: ${ }^{4}$ In a letiet to A. Tylur, November 6, ISB_{3}.

[^12]: 1 Paper read at the British Association by Lord Rayleigh, F.R.S.

[^13]: - Translated from a notice, by Dr. J. von Kennel of Worrsburg; in the
 legischer Awariger for October $\mathrm{S}_{4} \mathrm{~s} 88_{3}$.
 alss

[^14]: The Steel Engraving, which was put in hand some time ago while the Hife which has now passed away was rich in promise as well as achievement, is not yet finahed. It will be istued mih a futurt namber.-ED.

[^15]: * Preliminary Report of the Investigation Committee of the Fishery Board for Scothand.

[^16]: -The narrative containing Prof. Dana's observations on cural reetirna published among the Repons of the Expedition. In 189 he pubbibed volume on "Coral and Coral-Reeft," where he again gave the weighs of his authority to the the ry of subadence.

[^17]: T Zritarh. Wiseewach. Zaologit . 3863 , xiti. p. sst. Reprinted in 8869 in
 " Die Philippinen und ihre Bewobner, with additional notes. " Die Philippinen und ihre Bewobner, with additional notes
 ${ }^{2368 .}$
 " Die Philippinen und ihre Bewohner." W0rsburg, 1869, pp. 100-109. A brief account of the coral-retfs of the Philiprine Islands wall be found at
 PP. 19033.
 4 Eersith. Senchenkerg. Natwrforsh Gesellech., 3869-79, p. 137.

[^18]: ${ }^{1}$ Proc, Rop. Sec, Edim. (1879-80), x. p. 505 -
 *"Ccral Islands," exd edus. p. Ing.

[^19]: \therefore C ntinued from p. ato.
 "Oa the Tortugas and Florida Reefs." Trans, Amer. Acad, ni. (1883).

[^20]: ${ }^{1}$ Bulletin Mus Compl. Zaol, v. No. a.

[^21]: ${ }^{1}$ Corals and Coral Islands. ${ }^{\text {a }}$ and edit. p. $3^{8} 4$.

[^22]: " Natuag, November 12 , ${ }^{1880}$, pp. 45-46, and see correction on p po.

 - Read before the Birminghara Philonophical Society, October 27 .

[^23]: " "An Investigation of the Composition of American Wheat and Corn."* By Clifford Richardson, Assistant Cheanist. (Washington Printung Office, 386.)

[^24]: I have not the copy of the Zritschrifl by me just now, and am only guoting from memory. I cannot therefore be sure whether it is volumes or frequeacies. For the purpose in hand either would do equally well.

[^25]: ${ }^{1}$ Abstract of a paper taken as read at a meeting of the Otago In atitute, September 12,188, , and to be published in the next ($t 6 t h$) wolume of the Tremsactions of the Nrw Zealisnd Insitimits.
 "Leach, " Malacostraca podophthalmata Britanaize" : Mobbias, Archev fibr Natwerrehichte, s867: T. J. Parker. Prac, Zool. Soc., 1878, p. 442.

[^26]: To Macrurus are here added the following zenera: Bathynectes, Coryphenoldes. Malacocephalus, Bathygadus Argyropelecus, Chauhodus, Bathypterers Stownias. Malacosteus, Alepoceqhaloa

[^27]: ${ }^{1}$ Ginafhopaswia goliath, new speciss.

[^28]: , Thmsen always wries the in lices above the elenentory symbols when

[^29]: A lecture by Prof. E. D. Cope of Philadelphic, given in genera session before the American Association for Advancement of Science at Minneapolis, August 20, 1883. Stenographically reported for Science.

[^30]: ${ }^{2}$ "Separat-Abdrôck aus den Sitrungsberichen der Jenaischen Gesellachaft

[^31]: A paper by Mr. Im Thurn, embodying much of this research, will be found ta the frarmat of the denfhrupologrial /usfifiske, vol, xit, and remarks of mine on it in a lecture on anthr pology printed in Natune, May 3

[^32]: ${ }^{5}$ Thus, for example, only flowers ef Srshaniat egyphiaca with half of the calyx cut off were used.
 "Hooker, "F1. Brit Ind.," iii. p. 389, in his diagnosis of the species has " basal areole bearded."

[^33]: ${ }^{2}$ According to Prof. P. Ascherson in Zcilachrift fiar Elfologit, is. Jahrg, ${ }^{18}{ }^{87}$, and Dr. W. Pleyte in a liylage tot de $3 y^{\text {ste }}$ Jaarver-gadering der Ned-Hat. Vereeniging. 29 Juli, 1882.
 "Boisrier, in his "Flowa I rientalis." 3ii. p. 740, reduces this species to Crepis radiala ($\equiv C$. terwecloides, Dri.), ar.d this is done by many other authors. Pícris (yvala. Del., and P. pilosa, Dell, can only be regarded as varieties of P. coromopifolia, Asch. (Leontodon cerenofifoliam, Desf.).

[^34]: 'They belong, according to Dr. Pleyte, to a mummy of the time of Osorkon (twenty-sec ad dynaity). See ali, De Cuadolle, "Physiolgie," P. 6

 In this musum is also pexserved a bow ecntaining broken ears of barky of the tume of the fifih dynaty (3300 to 3500 yearn I C) wh ch was found near $\mathrm{Sa} \cdot \mathrm{hara}$

[^35]: p. Gror. theere porss be employs the data tublated in Natcar, vol. xsviii p. 676.

[^36]: ${ }^{4}$ Abstract of the third of a course of lectures given at the Royal Inatitution February 29 , by Arehibald Geikie, F.R.S., Director-Geseral of the Geo logical Survey. Contzued from p. 388.

[^37]: ${ }^{1}$ There are exceptions: sme few species retain both form and colour

[^38]: " "Recherches sur les Ancidies Compordes on Synascidies " (Archors de Zeologie exArrindentalo et Gintrale, i i 2873)
 "Die "yna•c.dien der Bucht von Kovigno." Ein Beitrag rup Fauna der Adria, von Dr. Richard von Drasche (Wien, i88).
 ${ }^{3}$ 4. M emoires sur les Anim. surs Vert.
 4 The class Tunicate was established by Lamarck in the year foll swing 186
 5.1
 5 "Obnervations sur les Avcidies Componees des Cotes de la Man:he " (M / m. . /nstil. Fntmer, vol, xvid.)

[^39]: 4 Arch de Zaol. ex/Nr*t.i.
 Zowlegiviter Anarizer for 189 s , p. 695.
 3^{4} Die Synascidicn der Bucht von Rovigns" (Wien, 388))

[^40]: ${ }^{5}$ Tiraboschi tells us that this title was ad opted " per che, gli accademici prenero a lor siabolo un lince, a spiegar I^{*} acutezza coo cui si erano prefissi di osservare e di studiar la natura " (viit. p. 72),
 "Quicumpue,* sals Boerhaave, "\$ hivtoriam antiquitatis plantarum scire vule, legat opera Fabii Columan, qui iix halet similers, sed quidem imitatores "* ("Method. discend. Medic." pars 4. \$8). Colonna, who was b ra in Naples in 1567 , and died an octogenarian in 4647 , was also the in vent- $₹$ of the musical instrument by him name 1 the "sambuco linceo," in honour of the Academy.

[^41]: " ${ }^{4 E} \mathrm{E}$ benche il principal loro ogyetto fosser le scienze matematicbe e filosofiche, not irascuravono peró Famena latteratura e gli studi poetici* (viii p. 73).
 *As finally mndified in the new articles, the clause affecting foreign members runs thus:-" $\boldsymbol{1}$, soci strawieri sono equiparati ai nasiopali allor-

[^42]: ${ }_{3}$ Cape. Cullie's account.
 ${ }^{3}$ Abtract of fifth and concludiag lecture ly Archibald Geikie, F.R.S., Director-General of the Geological Survey, given at the Royal Jantitution, March 3. Continued from p. 420.

[^43]: ${ }^{1}$ Abstract of a paper read at the Cambridge Philosophical Society．

[^44]: Abstract of a paper read before the Birmingham Philosophical Society Pebruary ${ }^{\text {34, by Dr. G. Gore, F.R.S. }}$

[^45]: " "Burean International des Poids et Mesures." Tramanar at Mimoirrs. tome ii., 400 pp . Paris, 1835 .

[^46]: It was proponed in the Edncafional Times for February 1065.

[^47]: ${ }^{1}$ "The Annual Report of the Proceedings of the Sussex Association for he Improvement of Agr.culture in Suswex. Season 1853."

[^48]: " "Ein Besuch auf Socotra mit der Riebeck'schen Expedition." Vortrag von Profeswor Dr. Sichweinfurth. (Freiburg, 188 ${ }_{4}$)
 "Allgemeine Betractungen über die Flora von Sccotra," von G. Schweinfurth. Sep. Abd aus Ein fer's botanfichen Jahnthchern, v. (1883).
 "Land-Schnecken von Sokotra," von E, von Martens, aus Nachrichtsh. d. dentack. Malakel. Gesellschaft, No. 10 (1851).

[^49]: " "Les cendres vulcaniques de réruption du Krakalau" (Bwll. Acad.

 Comples nowdus de CAcadimie des Scirnces, November 19, $\mathbf{1 8 8 3}$,

[^50]: " 1,ately the works on these same ashes have made known as accidental elements pyrites, apatite, and perhaps hictite (?). It is 10 be remarked, however, that these muscrals must be extreasely rape in comparion with the vitrepus matkers and mineral species above-mentioned.
 "Penck, "Studien uber lockere vulkanische Auswurlinge," Zritsstr, d. denfech. gnol Gesellochta 8878 .
 phisme des feldapaths tricliniquen, dec." din. petr. Miffh., v, 1882, p. 1;8.

[^51]: " "Palnoontol ygia Ind"ca," Series x. Indian Tertiary and Post-Tertiary Vertebrata, V.L. Pi. Part 6. Siwal.k and Narbada Carnivora- By R, Lydekker, 8.A., E.G.S., Y.Z.S. Pubhshed by order of His Excellency the Governer-General of India in Council. (Calcutta, 1884.)

[^52]: ${ }^{2}$ Lecture to the Royal Dublin Society by Dr. Oliver J. Lodge, April a.

[^53]: ${ }^{1}$ Sce Natume, July 26, 198, (p. 297).

