
Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2019-12

OPTIMIZATION OF MULTI-JUNCTION SOLAR

CELL FOR SPACE APPLICATIONS MODELED

WITH RUBY, MATLAB, AND SILVACO

Allen, Tony Jr.

Monterey, CA; Naval Postgraduate School

http://hdl.handle.net/10945/64137

Downloaded from NPS Archive: Calhoun

NAVAL
POSTGRADUATE

SCHOOL
MONTEREY, CALIFORNIA

THESIS

OPTIMIZATION OF MULTI-JUNCTION SOLAR CELL
FOR SPACE APPLICATIONS MODELED WITH RUBY,

MATLAB, AND SILVACO

by

Tony Allen Jr.

December 2019

Thesis Advisor: Sherif N. Michael
Second Reader: Matthew A. Porter

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington, DC 20503.

1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
December 2019

3. REPORT TYPE AND DATES COVERED
Master's thesis

4. TITLE AND SUBTITLE
OPTIMIZATION OF MULTI-JUNCTION SOLAR CELL FOR SPACE
APPLICATIONS MODELED WITH RUBY, MATLAB, AND SILVACO

5. FUNDING NUMBERS

6. AUTHOR(S) Tony Allen Jr.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
N/A

10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited.

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)
The purpose of this research is to document further research into the optimization techniques

investigated by James Walsh and applied to Multi-junction Solar Cells. Walsh performed his research with
the Near Orthogonal Latin Hypercube (NOLH) in order to optimize the design specifications for each layer
of solar cell thickness and doping concentration. Walsh at the same time evaluated cell performance under
the radiation effects of the space environment. This research performed a similar analysis, except for the
radiation effects, but focused more on producing an algorithm that could be executed from single user
input and significantly reducing the selected design space. This research produced an efficient
program that seamlessly operates between Ruby, MATLAB, and Silvaco ATLAS in order to produce an
optimal designed dual-junction solar cell for space applications, in a much smaller design space than the
technique utilized by Walsh.

14. SUBJECT TERMS
space solar cells, radiation effects, photovoltaic modeling, efficiency, optimization

15. NUMBER OF
PAGES

107
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

OPTIMIZATION OF MULTI-JUNCTION SOLAR CELL FOR SPACE
APPLICATIONS MODELED WITH RUBY, MATLAB, AND SILVACO

Tony Allen Jr.
Captain, United States Marine Corps

BSEE, University of North Florida, 2013

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
December 2019

Approved by: Sherif N. Michael
 Advisor

 Matthew A. Porter
 Second Reader

 Douglas J. Fouts
 Chair, Department of Electrical and Computer Engineering

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

The purpose of this research is to document further research into the optimization

techniques investigated by James Walsh and applied to Multi-junction Solar Cells. Walsh

performed his research with the Near Orthogonal Latin Hypercube (NOLH) in order to

optimize the design specifications for each layer of solar cell thickness and doping

concentration. Walsh at the same time evaluated cell performance under the radiation

effects of the space environment. This research performed a similar analysis, except for

the radiation effects, but focused more on producing an algorithm that could be executed

from single user input and significantly reducing the selected design space. This research

produced an efficient program that seamlessly operates between Ruby, MATLAB, and

Silvaco ATLAS in order to produce an optimal designed dual-junction solar cell for

space applications, in a much smaller design space than the technique utilized by Walsh.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. SOLAR CELLS FOR SPACE APPLICATIONS1
B. PAST WORK AT NPS ..1
C. OBJECTIVE ..2
D. ORGANIZATION ...2

II. BACKGROUND ..3
A. SEMICONDUCTORS ...3

1. Energy Bands and Charge Carriers ...3
2. Semiconductor Materials and Doping Concentrations7
3. PN Junction ..8
4. Generation Rate and Recombination ...11

B. SOLAR CELLS ..12
1. Photodetectors and Photoconductors ...12
2. Solar Cell Operation ..14

C. MULTI-JUNCTION SOLAR CELLS ...15
1. Manufacturing..15
2. Tunnel Junctions ..15

III. METHODOLOGY ..19
A. MODELED CELL ...19
B. SILVACO ATLAS ...21
C. MOBILITY ...23
D. NEARLY ORTHOGONAL LATIN HYPERCUBE23

IV. RESULTS ...25
A. MODELED CELL ...25
B. OPTIMIZATION RESULTS ...26

viii

V. CONCLUSIONS AND FUTURE WORK ...29

APPENDIX A. RUBY DOWNLOAD AND FAMILIARIZATION31

APPENDIX B. INP PARAMETER FUNCTION..35

APPENDIX C. GAP PARAMETER FUNCTION ..37

APPENDIX D. GAAS PARAMETER FUNCTION ...39

APPENDIX E. ALAS PARAMETER FUNCTION ..41

APPENDIX F. ALAS MOBILITY FUNCTION ...43

APPENDIX G. GAAS MOBILITY FUNCTION ..45

APPENDIX H. GAP MOBILITY FUNCTION ...47

APPENDIX I. INP MOBILITY FUNCTION ..49

APPENDIX J. INGAP WINDOW MOBILITY FUNCTION51

APPENDIX K. INGAP EMITTER MOBILITY FUNCTION53

APPENDIX L. INGAP BASE MOBILITY FUNCTION55

APPENDIX M. INALGAP WINDOW MOBILITY FUNCTION57

APPENDIX N. INALGAP BSF MOBILITY FUNCTION.................................59

APPENDIX O. ALGAP WINDOW PARAMETER FUNCTION61

APPENDIX P. ALGAAS MOBILITY FUNCTION ...63

APPENDIX Q. CREATE DESIGN SPACE VECTOR65

APPENDIX R. CREATE DESIGN SPACE FROM RUBY67

APPENDIX S. CREATE DATA VECTORS FROM .LOG FILE69

ix

APPENDIX T. READ DATA FROM .LOG FILE ...71

APPENDIX U. CREATE Η, VOC, JSC, & FF FROM .LOG FILE........................73

APPENDIX V. CREATING DECKBUILD FILES ..75

APPENDIX W. MODEL DECKBUILD FILE ...79

APPENDIX X. MATLAB EXECUTES DECKBUILD81

APPENDIX Y. CURVE FITTING AND PROBABILITY ANALYSIS............83

LIST OF REFERENCES ..85

INITIAL DISTRIBUTION LIST ...87

x

THIS PAGE INTENTIONALLY LEFT BLANK

xi

LIST OF FIGURES

Figure 1. Bandgap structure for a semiconductor material. Source: [1].3

Figure 2. Direct and Indirect electron transitions in semiconductors. Source:
[5]. ..4

Figure 3. Real band diagram for Si and GaAs. Source: [5]. ..5

Figure 4. Intrinsic carrier concentration. Source: [5]. ...5

Figure 5. Filled states and Fermi-levels. Source: [6]. ...6

Figure 6. Intrinsic Si with no impurity. Source: [7]. ...7

Figure 7. Silicon donor doped samples. Source: [7]. ..8

Figure 8. Silicon acceptor doped samples. Source: [7]. ..8

Figure 9. PN junction band diagram. Source: [6]..9

Figure 10. PN junction. Source: [5]. ...10

Figure 11. Light generating electron-hole pairs. Source: [6].11

Figure 12. Electron promoted to conduction band. Source: [1].12

Figure 13. Solar Spectrum for AM0 and AM1.5. Source: [7].....................................13

Figure 14. I-V characteristics for solar cell. ..15

Figure 15. Static I-V characteristics of a tunnel diode. Source: [7].16

Figure 16. Three components of static characteristics. Source: [7].17

Figure 17. Modeled cell profile. Source: [8]. ..19

Figure 18. I-V measurements under AM0 and AM1.5G. Source: [8].........................21

Figure 19. Modeled cell created in Silvaco ...22

Figure 20. Comparison of real and modeled cell. Source: [8].25

Figure 21. Comparison of model and optimization passes ...27

Figure 22. A-1: Find Ruby Download. Source: [10]. ..31

xii

Figure 23. A-2: Identify Ruby download for your device. Source: [10].31

Figure 24. A-3: Ruby installer. Source: [10]. ..32

Figure 25. A-4: NOLHS Commands. Source: [10]. ..32

Figure 26. A-5: Help Command Results for stack_nolhs.rb. Source: [10].33

xiii

LIST OF TABLES

Table 1. Lighted current voltage for GaAs. Source: [8]. ...20

Table 2. NOLH example ..24

Table 3. Performance comparison of real and modeled cells26

Table 4. Optimization results ...27

Table 5. Model vs. optimization improvements ..28

Table 6. Optimal designed dual-junction cell ..28

xiv

THIS PAGE INTENTIONALLY LEFT BLANK

xv

LIST OF ACRONYMS AND ABBREVIATIONS

AlAs aluminum arsenide
AlGaAs aluminum gallium arsenide
AlInP aluminum indium phosphide
AlP aluminum phosphide
GaP gallium phosphide
Ge germanium
GA genetic algorithm
GaAs gallium arsenide
InAlGaP indium aluminum gallium phosphide
InGaP indium gallium phosphate
InP indium phosphide
NOLH nearly orthogonal Latin hypercube
NPS Naval Postgraduate School
NREL National Renewable Energy Laboratory

xvi

THIS PAGE INTENTIONALLY LEFT BLANK

xvii

ACKNOWLEDGMENTS

I would like to show appreciation for the Naval Postgraduate School staff members

who helped me in my research efforts: my thesis advisor, Professor Sherif Michael, my

second reader, Matthew Porter, and Susan Sanchez from the Department of Operations

Research.

I would also like to thank my wife, Latoya, my children, Essence, Elisha, and Tony,

and my mother-in-law, Angela, for their support and patience during this time.

xviii

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. SOLAR CELLS FOR SPACE APPLICATIONS

Power sources for space craft may include batteries, both electric and chemically

fueled engines, and photovoltaic systems onboard the craft. It is necessary for the design

of these systems to be dependable and capable of surviving the harsh environment of space.

Photovoltaic systems, or solar cells, have proven to be dependable in supplying spacecraft

systems with the power they require. The cost of producing state-of-the-art multi-junction

solar cells usually prohibits their use for terrestrial applications; however, multi-junction

solar cells are vital for the survivability and success of space systems. For space

applications, higher-cost multi-junction solar cells are preferred over the cheaper terrestrial

solar cell variants due to their ability to withstand the harsh environment of space.

Additionally, improving the efficiency in solar panel design will result in less of an

electrical load required for solar power generation, a reduced surface area to prevent

collision with orbital debris, and improve the capability to meet higher power demands.

The inspection of solar cell characteristics such as doping concentrations and

material thicknesses make designing optimal cell parameters an immense task. The

utilization of complex computer software that executes numerical approximation in order

to solve nonlinear sets of differential equations while simultaneously modeling solar cell

operation, are fundamental towards simulating the efficiency of theorized solar cell designs

with precise parameters. Design improvements can be achieved by simulating solar cells

with variants of the parameters listed above. Inspecting large numbers of simulation results

provides a better observation of what parameter values result in the highest efficiency of

the respective cell at a fraction of the cost of manufacturing countless solar cells with

different characteristics.

B. PAST WORK AT NPS

Numerous theses have researched solar cell optimization at the Naval Postgraduate

School (NPS). James Walsh [1] successfully modeled and simulated radiation effects on

dual-junction cells under AM0 conditions. Panayiotis Michalopoulos [2] successfully

2

implemented the modeling of several solar cells using Silvaco ATLAS (Silvaco), by

demonstrating the performance of modeled cells and tested cells while studying their

individual solar cell efficiency. Finally, both Raymond Kilway [3] and Silvio Pueschel [4]

continued the work of P. Michalopoulos by researching the ability to optimize solar cell

design by performing either a genetic algorithm (GA) or nearly orthogonal Latin

hypercubes (NOLH), respectively. NOLH proved to be the more efficient method due to

the length of time required to derive an optimized design and remains the method executed

during the conduct of the research described here.

C. OBJECTIVE

The goal of this research is to inspect the solution space derived from the NOLH.

J. Walsh investigated a solution space of more than 2,000 points for thicknesses and doping

concentrations, discussed later in Chapter III. First, the published results of a simulated and

manufactured dual-junction solar cell was utilized to derive the respective thicknesses and

doping concentrations as the model for this research. Next, parameters were precisely

determined to produce a scalable and realistic design space focusing mainly on the

thicknesses and doping concentrations for the respective layers present in the dual-junction

cell. Finally, parameters for binary, ternary, and quaternary materials were heavily utilized

and calculated with MATLAB for use for the final design simulated in Silvaco ATLAS.

To discuss the modeled solar cell researched more in depth, this research will converse a

dual-junction indium gallium phosphate (InGaP)/gallium arsenide (GaAs) cell fabricated

and tested at The Ohio State University [4]. This dual-junction solar cell provides tangible

results to compare the produced simulated results.

D. ORGANIZATION

In Chapter II, the physics of semiconductors, solar cells, and multi-junction solar

cells will be discussed. Chapter III will discuss the methodology of research and

optimization techniques utilized with Silvaco ATLAS, MATLAB, and the NOLH

algorithm. Chapter IV will discuss and list the results of the simulation presented

throughout this research. Finally, Chapter V will discuss the conclusion, areas of future

improvements, and recommended future work.

3

II. BACKGROUND

A. SEMICONDUCTORS

Semiconductor optimal performance is achieved only when the respective material

can be grown with a high fidelity of crystallinity, while at the same time the impurities and

defects can be regulated. In order to maintain exceptional structural attributes in the

semiconductor design, a high-quality substrate must be available. Consequently, this

requires growing crystals in bulk, which are then sliced and polished to allow epitaxial

growth of thin regions within the semiconductor including heterostructures.

1. Energy Bands and Charge Carriers

There are two energy bands for electrons in a semiconductor, the conduction band

and the valence band. The conduction band is the band of energies higher than the bandgap,

and the valence band is the band of energies below the bandgap. Both energy bands possess

particles that enable current flow; the conduction band maintains states of electrons and the

valence band maintains holes. Whenever the conduction band possesses an empty state of

an electron, a hole from the valence band travels to the conduction band to occupy this

empty state. The band gap structure of a semiconductor material is revealed in Figure 1 [1].

Figure 1. Bandgap structure for a semiconductor material. Source: [1].

Momentum, k, defines the shape of both the valence and conduction bands in

respect to the band gap. This shape can depict the characteristic of direct bandgap material

or indirect bandgap material. A direct bandgap material has the characteristic that the

4

lowest energy point of the conduction band apportions momentum with the highest energy

point on the valence band. The indirect bandgap material possesses a less efficient

momentum counteracted between these two energy points. The bandgap materials and their

respective energies are revealed in Figure 2 [5].

Figure 2. Direct and Indirect electron transitions in semiconductors.
Source: [5].

The simple two-dimensional representation shown in Figure 2 is more problematic

than simply described [1]. Figure 3 discloses the characteristic of silicon possessing a

centered bandgap between the valence and conduction bands, versus the germanium

arsenide bandgap. The band structures and energy dependent affinities will be discussed

more in depth in Chapter III, Section C. Referring to Figure 2, the energy band curvature

directly impacts the rate of momentum that also clearly impacts the rest mass of an electron

or hole, and eventually the carrier mobility through a semiconductor [5].

5

Figure 3. Real band diagram for Si and GaAs. Source: [5].

Figure 4. Intrinsic carrier concentration. Source: [5].

Figure 4 exposes the theoretical intrinsic carrier concentration for germanium,

silicon, and gallium arsenide. It should be observed that these concentrations are plotted

6

as a function of inverse temperature and room temperature values are indicated for

reference. The intrinsic concentration can be calculated simply by the product of both the

electron concentration 𝑛𝑛𝑜𝑜, and hole concentration 𝑝𝑝𝑜𝑜, of a material. This is revealed in

Equation (1) [5].

 𝑛𝑛𝑜𝑜 𝑝𝑝𝑜𝑜 = 𝑛𝑛𝑖𝑖2 (1)

Next, the Fermi-level will be discussed and its relation to the generation and

recombination of electron hole pairs. The fermi-level should be understood as either

possessing its location in the upper or lower parts of the bandgap. The differences between

n-type and p-type materials in relation to filled states and their fermi-level are shown in

Figure 5. The n-type material possesses a fermi-level above the bandgap and vice-versa for

p-type material. N-type material is known to be a donor material 𝑁𝑁𝐷𝐷+, and p-type material

is known as an acceptor material 𝑁𝑁𝐴𝐴−. The n-type material possesses filled states, electrons,

in the conduction band 𝐸𝐸𝐶𝐶, and the p-type material possesses filled states, holes, in the

valence band 𝐸𝐸𝑉𝑉.

Figure 5. Filled states and Fermi-levels. Source: [6].

The fermi-function (Equation 2) is tied to Figure 5 for reference [5]. This was

referenced to assist in better understanding the relationship of the fermi-level to the carrier

7

concentrations present in the p-type or n-type specific materials. These n-type and p-type

materials are the building blocks for PN junction semiconductors and will be discussed in

the next paragraph.

 𝑓𝑓(𝐸𝐸) = 1
1+ 𝑒𝑒(𝐸𝐸−𝐸𝐸𝐹𝐹)/𝑘𝑘𝑘𝑘 (2)

 𝑛𝑛 = 𝑁𝑁𝐷𝐷𝑒𝑒(𝐸𝐸𝐹𝐹− 𝐸𝐸𝐶𝐶)/𝑘𝑘𝑘𝑘 (3)

 𝑝𝑝 = 𝑁𝑁𝐴𝐴𝑒𝑒(𝐸𝐸𝑉𝑉− 𝐸𝐸𝐹𝐹)/𝑘𝑘𝑘𝑘 (4)

Equations (3) and (4) reveal the relationships that are shared between the fermi-

levels, electron carrier concentration, and hole concentrations of the material and how the

fermi-level directly impacts both carriers [5].

2. Semiconductor Materials and Doping Concentrations

When selecting elements to utilize for the construction of a semiconductor from the

periodic table, silicon, a Group IV element, is chosen due to its relative purity. Figure 6

reveals the intrinsic silicon that is very pure, and containing a tiny amount of impurities

[7]. Furthermore, every silicon atom is shown sharing its four valence electrons along with

four neighboring atoms.

Figure 6. Intrinsic Si with no impurity. Source: [7].

8

Next, the doping of a semiconductor with either donor or acceptor impurities, also

changes the band gap of the respective material [7]. It was explained that donor impurity

changes donor level while an acceptor impurity changes the acceptor level [7]. Figure 7

reveals the effects of doping silicon with donor (phosphorous), thus making the silicon

more negative and producing an n-type material of Si. Figure 8 reveals the opposite

occurring with silicon when its doped with an acceptor (boron), thus producing a p-type

material of Si. Finally, it must be understood that whenever a semiconductor is doped with

different types of concentrations of impurities this varies the resistivity of the material.

Figure 7. Silicon donor doped samples. Source: [7].

Figure 8. Silicon acceptor doped samples. Source: [7].

3. PN Junction

PN junctions are composed of N-doped semiconductor material and P-doped

semiconductor material which are brought into contact with each other or manufactured in

contact with each other. At the junction, a depletion region naturally forms when the N-

9

doped and P-doped material is brought together, or manufactured together. The

semiconductor material can be silicon, gallium, or a III-V compound semiconductor

material such as GaAs. The key to a PN junction using any semiconductor material is that

one side is doped N type while the other side is doped P type. Figure 9 illustrates the

resulting energy band diagram for a PN semiconductor junction. Notice how the fermi-

level 𝐸𝐸𝐹𝐹 , is shown to possess the same level throughout the material, and the only change

appears to be in the location in relation to either the valence band 𝐸𝐸𝑣𝑣 or the conduction

band 𝐸𝐸𝑐𝑐 of the materials.

Figure 9. PN junction band diagram. Source: [6].

Figure 9 reveals the band structure of the PN junction while at equilibrium with no

external electric field applied. Although no external electric field is applied to the PN

junction, there is an internal electric field that exists between the n-type and p-type material

with a built-in junction potential barrier existing as 𝑉𝑉𝑏𝑏𝑖𝑖, thus producing the slope shown

above. Both materials maintain their individual intrinsic levels, but the fermi level that

exists between the two materials is not drawn to scale and has an approximate distance

that’s relative to the intrinsic level shown above. Finally, the two materials create a

depletion region where both electrons and holes are stationary in equilibrium as pictured

in Figure 10. Take note of the placement of electrons and holes with the depletion region

formed between the two materials. The electrons are positioned in the p-type material in

the depletion region, and the holes are positioned in the n-type material in the depletion

10

region waiting for a bias to initiate the diffusion and drift of carriers throughout the

material.

Figure 10. PN junction. Source: [5].

B.G. Streetman and S.K. Banerjee list the Poisson’s equation (Equation 5) to

provide a better idea of how the electric field distribution is mathematically modeled within

the transition region. This transition region relates the gradient of the electric field in

respect to the local space charge at any point 𝒙𝒙 [5].

 𝑑𝑑 ℰ(𝑥𝑥)
𝑑𝑑𝑥𝑥

= 𝑞𝑞
𝜖𝜖

 (𝑝𝑝 − 𝑛𝑛 + 𝑁𝑁𝑑𝑑+ − 𝑁𝑁𝑎𝑎−) (5)

Poisson’s equation can also be simplified within the transition upon neglecting the

contribution of the carriers (𝑝𝑝 − 𝑛𝑛) in respect to the space charge. The two regions of

constant space charge resolve to the following equations [5].

 𝑑𝑑 ℰ(𝑥𝑥)
𝑑𝑑𝑥𝑥

= 𝑞𝑞
𝜖𝜖

 𝑁𝑁𝑑𝑑 , 0 < 𝑥𝑥 < 𝑥𝑥𝑛𝑛0 (6)

 𝑑𝑑 ℰ(𝑥𝑥)
𝑑𝑑𝑥𝑥

= −𝑞𝑞
𝜖𝜖

 𝑁𝑁𝑎𝑎,−𝑥𝑥𝑝𝑝0 < 𝑥𝑥 < 0 (7)

Additionally, this relationship is only satisfied while assuming complete ionization

of impurities (𝑁𝑁𝑑𝑑+ = 𝑁𝑁𝑑𝑑) and (𝑁𝑁𝑎𝑎− = 𝑁𝑁𝑎𝑎). The relation of the equations above allowed

for the simplicity of relating the electric field to the contact potential 𝑉𝑉𝑜𝑜 [5].

 ℰ(𝑥𝑥) = −𝑑𝑑 𝑉𝑉(𝑥𝑥)
𝑑𝑑𝑥𝑥

 𝑜𝑜𝑜𝑜 − 𝑉𝑉𝑜𝑜 = ∫ ℰ(𝑥𝑥)𝑑𝑑𝑥𝑥𝑥𝑥𝑛𝑛0
−𝑥𝑥𝑝𝑝0

 (8)

Next, Equation (9) relates the contact potential to the width of the depletion region.

 𝑉𝑉𝑜𝑜 = −1
2

 ℰ0 𝑊𝑊 = 1
2

 𝑞𝑞
𝜖𝜖
𝑁𝑁𝑑𝑑𝑥𝑥𝑛𝑛0 𝑊𝑊 = 1

2
𝑞𝑞
𝜀𝜀
𝑁𝑁𝑎𝑎 𝑁𝑁𝑑𝑑
𝑁𝑁𝑎𝑎+ 𝑁𝑁𝑑𝑑

𝑊𝑊2 (9)

11

Finally, Equation (10) reveals the resulting solution for width of the depletion

region in respect to the n-type and p-type materials, individual doping concentrations, and

shared initial contact potential.

 𝑊𝑊 = �2𝜖𝜖𝑉𝑉0
𝑞𝑞

𝑁𝑁𝑎𝑎+ 𝑁𝑁𝑑𝑑
𝑁𝑁𝑎𝑎 𝑁𝑁𝑑𝑑

 (10)

4. Generation Rate and Recombination

B.G. Streetman and S.K. Banerjee explain the process of generation and

recombination of electron-hole pairs within a semiconductor. This effect is achieved by the

material absorbing photons with energy greater than the band gap while balanced by direct

or indirect recombination [5]. Figure 11 illustrates this occurrence more simply. It should

be observed that the energy of the light, or a photon, entering the material is greater than

the bandgap energy that generates electron hole pairs in the existing material. This

phenomenon likewise occurs with similar energies that have the capability of penetrating

the material and having this same effect on the bandgap of the material.

Figure 11. Light generating electron-hole pairs. Source: [6].

Next, the momentum discussed in paragraph 1 will be further discussed with its

effect on the generation and recombination of electron hole pairs in a semiconductor.

In a semiconductor, an intrinsic concentration, 𝑛𝑛𝑖𝑖, of electrons or holes exist, and this

occurs from the thermal generation-recombination between the valence band and

conduction band. Additionally, adding energy to this material creates more of these

particles in its respective material. Energy in the form of increasing temperature, an electric

12

field, or photons can affect the intrinsic concentration of the material. Finally, for every

electron that travels to the conduction band, it leaves behind a hole in its original position

(Figure 12) [1].

Figure 12. Electron promoted to conduction band. Source: [1].

B. SOLAR CELLS

1. Photodetectors and Photoconductors

S. M. Sze and K.K. Ng explain the concept of photodetectors and how they are a

type of semiconductor device capable of detecting optical signals [7]. These authors further

explain the fundamental concepts of a photodetector’s operation and its three basic

manners. However, the main characteristic observed in this research is the ability of the

material to perform carrier generation once it is exposed to light [7]. Next, they further

explain the two classes of photodetectors that exist today, in the form of thermal detectors

and photon detectors. Thermal detectors are used to detect light more towards the far-

infrared wavelength applications. Photon detectors are utilized in the application for use of

absorbing visible light in order to generate a photocurrent. The photoelectric effect is

known as a photon exciting a carrier that produces a photocurrent. The photoelectric effect

is based on the photon energy ℎ𝑣𝑣 and photon flux density and how they are both affected

by the solar spectrum.

 𝜆𝜆 = ℎ𝑐𝑐
Δ𝐸𝐸

= 1.24
ΔΕ (𝑒𝑒𝑉𝑉)

 (𝜇𝜇𝜇𝜇) (11)

13

Equation (11) reveals the relationship between the wavelength 𝜆𝜆, the speed of light

𝑐𝑐, and the transition of energy levels ΔΕ [7]. The photon energy must possess the

characteristic ℎ𝑣𝑣 > ΔΕ in order to cause excitation associated with the minimum

wavelength necessary for detection. Photon energy is also utilized to determine the

quantum efficiency.

 𝜂𝜂 = 𝐼𝐼𝑝𝑝ℎ
𝑞𝑞𝑞𝑞

= 𝐼𝐼𝑝𝑝ℎ
𝑞𝑞

 (ℎ𝑣𝑣
𝑃𝑃𝑜𝑜𝑝𝑝𝑜𝑜

) (12)

Next, the quantum efficiency is defined as the number of carriers produced per

photon. Equation (12) provides the parameters needed to evaluate the quantum efficiency

of a photodetector. Besides observing the photon energy, the photocurrent 𝐼𝐼𝑝𝑝ℎ, photon flux

𝜙𝜙 and the optical power 𝑃𝑃𝑜𝑜𝑝𝑝𝑜𝑜 are considered. S. M. Sze and K.K. Ng further explain with

use of Figure 13 how industry uses the quantities listed in Equation (12) for deriving the

efficiency to observe at different atmospheric conditions how the photon energy,

wavelength, and photon flux are impacted [7]. AM0 are measured observations for space

and AM1.5 is for terrestrial applications.

Figure 13. Solar Spectrum for AM0 and AM1.5. Source: [7].

14

2. Solar Cell Operation

S. M. Sze and K.K. Ng discuss considerations while designing solar cells and the

three factors that exist for the optimal design. They declare high efficiency, inexpensive

costs, and exceptional reliability are suited for an optimal design [7]. For example, crystal

silicon solar cells are widely used with the best reported efficiency reaching higher than

22% [7]. Thin-filmed solar cells are desired for some applications due to their low-cost in

processing and materials used. However, their disadvantages are poor efficiency and

continuing instability. Thin-filmed solar cells have either single-junction or multi-junction

cell structures. Multiple-junction cells have proven to possess higher efficiencies than

single-junction cells, due to their different designs and configurations. Currently, three-

junction cells designed with compound semiconductors of GaAs/InGaAs and

InGaP/InGaAs/Ge have produced efficiencies higher than 30%, the highest of any structure

[7]. M. Lundstrom discuss the concept of measuring efficiency of a solar cell, which can

be simply focused on the short circuit current and the open circuit voltage [6]. He also

explains the importance of the calculated fill factor of the solar cell to find the output power

𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 [6]. Equations (13) and (14) are provided for reference.

 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐼𝐼𝑆𝑆𝐶𝐶𝑉𝑉𝑂𝑂𝐶𝐶𝐹𝐹𝐹𝐹 (13)

 𝜂𝜂 = 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜
𝑃𝑃𝑖𝑖𝑛𝑛

= 𝑉𝑉𝑜𝑜𝑜𝑜𝐽𝐽𝑠𝑠𝑜𝑜𝐹𝐹𝐹𝐹
𝑃𝑃𝑖𝑖𝑛𝑛

 (14)

𝐹𝐹𝐹𝐹 = 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜
𝑉𝑉𝑜𝑜𝑜𝑜𝐽𝐽𝑠𝑠𝑜𝑜

 (15)

The fill factor is determined by the diode characteristic and series resistances. The

fill factor can also be simply analytically found as shown in Equation 15. The short circuit

current is determined while the voltage is zero, the short circuit current is observed when

the voltage is zero, and the fill factor is observed by integrating the area under the I-V curve

in Figure 14, then dividing the result by the product of the short circuit current and the open

circuit voltage [6].

15

Figure 14. I-V characteristics for solar cell.

C. MULTI-JUNCTION SOLAR CELLS

1. Manufacturing

Multi-junction Solar Cells are known for being able to take advantage of the

theoretical maximum efficiency by combining multiple layers of compound

semiconductors together as discussed previously with GaAs/InGaAs and

InGaP/InGaP/InGaAs/Ge. This was achieved by balancing the expected band gap for both

the respective photocurrent and open-circuit voltage of the semiconductor. Additionally,

efficiency is improved with photon absorption due to how the cells are arranged in their

respective design that takes advantage of the lowest band gap present within the entire

multi-junction design. These multi-junction cells are produced as thin-films [7].

2. Tunnel Junctions

S. M. Sze and K.K. Ng explain that tunnel diodes consist of simple p-n junctions

that are heavily doped with impurities [7]. They further explain how tunnel junctions

0 0.2 0.4 0.6 0.8 1

Voltage [V]

18

20

22

24

26

28

30

32

34

36

C
ur

re
nt

 D
en

si
ty

 [m
A/

cm
2

]

I-V Charactersitics of a Solar Cell

16

enable the tunneling process that allows electron tunneling from the valence band to the

conduction band when a reverse bias is applied. Additionally, the tunneling process can

either be direct or indirect.

Figure 15. Static I-V characteristics of a tunnel diode. Source: [7].

Furthermore, they explain the behavior of the static current and voltage behavior of

a tunnel diode in Figure 16. Both the peak and valley voltages and currents are shown for

their static behavior [7].

17

Figure 16. Three components of static characteristics. Source: [7].

Finally, S. M. Sze and K.K. Ng reveal the total static characteristics of the tunnel

diode broken into three current components in Figure 16 [7]. The components are diffusion

current, excess current, and tunneling current. They further explain the static characteristics

at equilibrium. At equilibrium, it was explained that the tunneling current is the current that

moves from the conduction band to an empty state in the valence band. Next, the excess

current is caused by carrier tunneling this effect is caused by energy states that exist within

a forbidden gap that appear in both the valence band and conduction band. Conclusively,

diffusion current for a tunneling diode is what allows the actual current to flow between

both materials present in the p-n junction.

18

THIS PAGE INTENTIONALLY LEFT BLANK

19

III. METHODOLOGY

A. MODELED CELL

The modeled cell simulated in this research is a dual-junction InGaP-GaAs cell

fabricated at The Ohio State University [8]. This dual-junction cell was chosen due to the

properties of each layer thickness, composition, and doping concentration, which is shown

in Figure 17. The cell performance measurements are listed in Table 1 [8]. Although based

partly on assumptions, the model was validated by comparing simulation output against

provided data. The modeled cell overall structure and composition will be discussed next.

The very top of the cell has a contact layer that is made of GaAs, and the buffer

layer is constructed from the same material. The dual junction cell is grown on a

germanium (Ge) buffer and a silicon germanium (SiGe) substrate. Lueck et al. supplied the

structure design shown in Figure 17 that reveals the arrangement of the modeled dual-

junction cell [8].

Figure 17. Modeled cell profile. Source: [8].

Both AM0 and AM1.5 illumination for both GaAs and SiGe are listed for the 𝜂𝜂,

𝑉𝑉𝑂𝑂𝐶𝐶, 𝐽𝐽𝑠𝑠𝑐𝑐, and FF in the paper, and are displayed in Table 1 [8]. However, for the conduct of

this research only AM0 for GaAs will be discussed. These parameters are listed to reveal

20

the overall performance of this modeled dual-junction cell. The total area efficiency for

AM0 was recorded at 18.6% for the cell grown on a GaAs substrate with a 𝑉𝑉𝑂𝑂𝐶𝐶 of 2.34 V,

𝐽𝐽𝑆𝑆𝐶𝐶 of 13.08 𝜇𝜇𝑚𝑚/𝑐𝑐𝜇𝜇2, and a FF of 82.5%. These measured quantities are also listed in

Table 1, and they assisted in predicting favorable results between the modeled cell and any

further simulated cells that were produced during this research.

Table 1. Lighted current voltage for GaAs. Source: [8].

GaAs

AM0 AM1.5G

𝐽𝐽𝑆𝑆𝐶𝐶 (𝜇𝜇𝑚𝑚/𝑐𝑐𝜇𝜇2) 13.08 10.9
𝑉𝑉𝑂𝑂𝐶𝐶(𝑉𝑉) 2.34 2.32
𝐹𝐹𝐹𝐹(%) 82.5 79.0
𝜂𝜂(%) 18.6 20.0

Lueck et al. provided Figure 18 to illustrate the I-V characteristics of the

performance for the modeled cell at both AM0 and AM1.5. The authors also noted that the

measurements performed in Figure 18 were the results of AM0 and AM1.5 illumination of

GaInP/GaAs dual-junction cells on GaAs and SiGe substrates. AM0 measurements were

performed at the NASA Glenn Research Center, and the AM1.5G were performed at the

National Renewable Energy Laboratory (NREL). The baseline performance for the GaAs

substrate will be measurements recorded for AM0.

21

Figure 18. I-V measurements under AM0 and AM1.5G. Source: [8].

B. SILVACO ATLAS

Silvaco ATLAS is primarily used to model and simulate semiconductors in the

semiconductor industry. Silvaco ATLAS was used heavily during this research to simulate

the dual-junction cell. The baseline of the modeled cell depicted in the last section was first

created to ensure accuracy of measurements before any further designs were introduced.

Silvaco ATLAS enables the user to perform simulations for two-dimensional and three-

dimensional semiconductors. Silvaco ATLAS possesses its own scripting language for the

designed semiconductor device to be tested. If Silvaco ATLAS is executed properly, the

result will be as shown in Figure 19.

22

Figure 19. Modeled cell created in Silvaco

In order to ensure the correct and efficient design of any semiconductor, the order

of statements for the mesh definition, structural definition, and solution groups must be

constructed. For the mesh definition that exist within a simulation the user must carefully

allocate mesh nodes at their defined regions, especially at regions of high activity.

The mesh definition ensures that the simulated design space will perform as designed. This

definition also directly affects the generation and recombination of electron-hole pairs

throughout the entirety of the structure. The structural definitions ensure that every layer

of material is precisely placed according the thickness and doping concentration specified

in the design. The top section, tunneling junction, bottom section, and electrodes are

depicted in Figure 19. Finally, the solution groups were important to ensure the necessary

data was available for analysis later in the research in order to determine the performance

of each designed cell. The solutions utilized heavily throughout this research were

solutions of the designed cell under forward biased conditions in order to extract the 𝜂𝜂,

𝑉𝑉𝑂𝑂𝐶𝐶, 𝐽𝐽𝑠𝑠𝑐𝑐, and FF .

23

C. MOBILITY

The ability of electrons and holes to travel through a material is known as electron

mobility 𝜇𝜇𝑛𝑛 and hole mobility 𝜇𝜇𝑝𝑝, respectively. The mobility of either of these carriers is

utilized as a function of doping for binary materials and this function is even more complex

for both ternary and quaternary materials. This is due to the complexities involved with the

various doping concentrations of these materials. Walsh discussed in depth the modeling

constants and mobility parameters for GaAs, GaP, AlAs, and AlP for calculating the

approximate mobilities for use within Silvaco ATLAS [1]. The modeling constants and

mobility parameters were used extensively to ensure the modeling that was previously

utilized by Walsh remained consistent throughout the performance of this research. The

individual MATLAB functions and associated values are listed in the Appendices F

through I, L, and N.

D. NEARLY ORTHOGONAL LATIN HYPERCUBE

The purpose of utilizing NOLH is to ensure designs are produced with minimal

correlations while finding nearly orthogonal designs. The use of NOLH is reinforced by

the user observing the design space not prematurely limited. In addition, an optimal

solution is based on a Latin hypercube design that possesses an orthogonal regression

matrix that includes quadratics and two-way interactions [9].

Next, Table 2 reveals the implementation of a solution from NOLH. This

spreadsheet supplied from the NPS Simulation, Experiments and Efficient Design (SEED)

Center for Data Farming was helpful in understanding how NOLH produces results from

user inputs. The user is required to supply the minimum limits, maximum limits, and

desired decimal placement solution of the resulting matrix. It should be observed that the

resulting solution provides nearly uncorrelated solutions for both thickness and doping

concentration. The spreadsheet utilized in Table 2 was hard coded for 22 factors that

provided up to 262 different results for each column of data.

24

Table 2. NOLH example

Finally, NOLH provided a usable design space that delivered usable thickness and

doping concentration data upon command for multiple designs. However, during this

research another approach was utilized that did not require the use of spreadsheets. The

Ruby program was recommended by the SEED Center and utilized to take full advantage

of the design capabilities provided in NOLH. Ruby proved to be highly useful and accurate

in developing more complicated design spaces on command.

low level 0.02 17 0.04 17 0.53 15 0.03 17
high level 0.04 19 0.05 19 0.56 17 0.05 19
decimals 3 3 3 3 3 3 3 3

factor name thick doping thick doping thick doping thick doping
0.025 17.891 0.044 17.906 0.54 16.375 0.041 18.516
0.038 17.609 0.044 17.922 0.533 15.906 0.038 17.406
0.029 18.516 0.04 17.547 0.542 15.313 0.045 18.297
0.034 18.781 0.043 17.734 0.543 16.516 0.031 17.813
0.02 17.781 0.046 17.469 0.533 16.063 0.037 18.859

0.034 17.859 0.047 17.016 0.542 15.656 0.042 17.078
0.028 19 0.048 17.578 0.535 15.453 0.035 18.875
0.031 18.406 0.049 17.125 0.54 16.844 0.047 17.031
0.02 17.094 0.043 17.406 0.536 16.953 0.045 17.859

25

IV. RESULTS

A. MODELED CELL

After collecting the published thicknesses and doping concentrations from the real

cell, the next step was to produce a reliable model within Silvaco ATLAS. This step was

necessary in order to baseline any further optimization trials. Figure 20 reveals the

performance comparison between the real cell and the modeled cell.

Figure 20. Comparison of real and modeled cell. Source: [8].

After plotting and comparing the real and modeled cell, the 𝜂𝜂, 𝑉𝑉𝑂𝑂𝐶𝐶, 𝐽𝐽𝑠𝑠𝑐𝑐, and FF were

measured and compared to the real cell in Table 3. It was observed upon constructing the

modeled cell that an error of 29% existed between the real cell and the modeled cell. It was

determined that the error was due to how the tunnel junction was modeled for the

simulation. The modeled tunnel junction was built with a high resistance placed in series

0 0.5 1 1.5 2 2.5

Voltage [V]

2

4

6

8

10

12

14

C
ur

re
nt

 D
en

si
ty

 [m
A/

cm
2

]

Real Cell & Model Cell I-V Characteristics

Real Cell

Model Cell

26

with an electrode in the middle of the structure. This was the same procedure Walsh

described in order to increase the speed of individual simulations in Silvaco ATLAS [1].

Table 3. Performance comparison of real and modeled cells

 Real Model Error (%)
𝜂𝜂 (%) 18.6 24.03 29.19
𝑉𝑉𝑂𝑂𝐶𝐶(𝑉𝑉) 2.34 2.39 2.14

𝐽𝐽𝑆𝑆𝐶𝐶 (𝜇𝜇𝑚𝑚/𝑐𝑐𝜇𝜇2) 13.08 13.96 6.73
𝐹𝐹𝐹𝐹(%) 82.5 97.07 17.6

B. OPTIMIZATION RESULTS

The optimization runs consisted of three separate design spaces selected with

NOLH. NOLH was called and executed by various different stack commands that provided

the desired input for minimum and maximum values for Ruby to execute. Ruby also

required specific stack commands to ensure a design space that consisted of 129, 257, and

385 design points. Each design space provided their respective number of designs to be

executed. For example, the design space that consisted of 129 design points provided 129

different designs to be simulated at a time. The 129th design file created to be simulated in

Silvaco ATLAS turned out to be the optimal design created out of the batch. However, the

subsequent 257 and 385 design spaces provided optimal designs well within their

respective design files created. The 205th design produced from the 257 design space was

the most efficient. Likewise, the 216th design produced from the 385 design space was the

most efficient in its respective design space. Figure 21 reveals the comparison of the

modeled cell and all three optimal designs produced from each design space.

27

Figure 21. Comparison of model and optimization passes

Table 4 lists the parameters in terms of the 𝜂𝜂, 𝑉𝑉𝑂𝑂𝐶𝐶, 𝐽𝐽𝑠𝑠𝑐𝑐, and FF for each design space.

It should be seen that even though each design space provided optimal performance for

each of their respective design spaces, the 385th design space provided the first optimal

design that surpassed the modeled cell.

Table 4. Optimization results

 Iteration 𝜼𝜼(%) 𝑽𝑽𝑶𝑶𝑶𝑶(𝑽𝑽) 𝑱𝑱𝑺𝑺𝑶𝑶 (𝒎𝒎𝒎𝒎/𝒄𝒄𝒎𝒎𝟐𝟐) 𝑭𝑭𝑭𝑭(%)

Model n/a 24.03 2.39 13.96 97.07
129 Design Points 129th 22.78 2.29 13.85 96.95
257 Design Points 205th 23.32 2.29 14.17 96.92
385 Design Points 216th 25.80 2.36 15.32 96.45

0 0.5 1 1.5 2 2.5

Voltage [V]

2

4

6

8

10

12

14

16
C

ur
re

nt
 D

en
si

ty
 [m

A/
cm

2
]

Model Cell & Optimum Pass Results

Model Cell

1st Optimum Cell

2nd Optimum Cell

3rd Optimum Cell

28

Table 5 reveals the overall improvements made from each optimization design pass.

As stated earlier, the 385 design space in its 216th design provided the only improvement

over the modeled cell.

Table 5. Model vs. optimization improvements

Design Points 𝜼𝜼 (%) Improvement
Model 24.03 0.00%

129 22.78 -5.21%
257 22.32 -2.96%
385 25.80 7.34%

Table 6 lists the thicknesses and doping concentrations for the optimized design

extracted from the 385 design space that provided a 7.34% improvement over the modeled

cell. In addition to this improved design, this new optimized model would potentially

provide a structure with an efficiency of 19.97%.

Table 6. Optimal designed dual-junction cell

Layer Thickness Doping Concentration
𝐼𝐼𝑛𝑛0.47(𝑚𝑚𝐴𝐴0.7𝐺𝐺𝐺𝐺0.3)0.53𝑃𝑃 (window) p+ 0.02 𝜇𝜇𝜇𝜇 2.8e17 𝑐𝑐𝜇𝜇−3
𝐼𝐼𝑛𝑛0.49𝐺𝐺𝐺𝐺0.51𝑃𝑃 (emitter) p+ 0.02 𝜇𝜇𝜇𝜇 2.2e18 𝑐𝑐𝜇𝜇−3
𝐼𝐼𝑛𝑛0.49𝐺𝐺𝐺𝐺0.51𝑃𝑃 (base) n 0.56 𝜇𝜇𝜇𝜇 7.8e16 𝑐𝑐𝜇𝜇−3
𝐼𝐼𝑛𝑛0.47(𝑚𝑚𝐴𝐴0.7𝐺𝐺𝐺𝐺0.3)0.53𝑃𝑃 (back surface field) n+ 0.01 𝜇𝜇𝜇𝜇 8.1e16 𝑐𝑐𝜇𝜇−3
𝐺𝐺𝐺𝐺𝑚𝑚𝐺𝐺 (TJ) n++ 0.025 𝜇𝜇𝜇𝜇 5e19 𝑐𝑐𝜇𝜇−3
𝐺𝐺𝐺𝐺𝑚𝑚𝐺𝐺 (TJ) p++ 0.025 𝜇𝜇𝜇𝜇 5e19 𝑐𝑐𝜇𝜇−3
𝐼𝐼𝑛𝑛0.49𝐺𝐺𝐺𝐺0.51𝑃𝑃 (window) p+ 0.03 𝜇𝜇𝜇𝜇 2.5e17𝑐𝑐𝜇𝜇−3
𝐺𝐺𝐺𝐺𝑚𝑚𝐺𝐺 (emitter) p+ 0.52 𝜇𝜇𝜇𝜇 1.6e17𝑐𝑐𝜇𝜇−3
𝐺𝐺𝐺𝐺𝑚𝑚𝐺𝐺 (base) n 2.05 𝜇𝜇𝜇𝜇 2.6e17 𝑐𝑐𝜇𝜇−3
𝑚𝑚𝐴𝐴0.7𝐺𝐺𝐺𝐺0.3𝑚𝑚𝐺𝐺 (back surface field) n+ 0.10 𝜇𝜇𝜇𝜇 4.7e18 𝑐𝑐𝜇𝜇−3
𝐺𝐺𝐺𝐺𝑚𝑚𝐺𝐺 (buffer) n+ 0.21 𝜇𝜇𝜇𝜇 2.4e17𝑐𝑐𝜇𝜇−3

29

V. CONCLUSIONS AND FUTURE WORK

In conclusion, instead of performing an analysis for the largest design space Walsh

could create from the spreadsheet he accessed from the SEED Center for Data Farming. It

was theorized that the optimal design could be found from a smaller design space, resulting

in faster optimization passes that could provide the same if not better results. Additionally,

while pursuing this approach, it was determined that a more efficient process existed to

execute NOLH without the necessity of manipulating the spreadsheet. Dr. Susan Sanchez

from the NPS Operation Research department, was an exceptional resource in

understanding how to utilize Ruby and applying the NOLH instructions in order to create

the desired design space. Upon learning how to operate Ruby proficiently, the next task

was to connect Ruby to MATLAB, and then MATLAB to Silvaco ATLAS. It was also pre-

determined that the modeling of the tunnel junction would have to be simplified by placing

a high resistance in series with an electrode in this region. This implementation still

provided acceptable performance. Finally, for the seamless operation between MATLAB,

Ruby, and Silvaco ATLAS, there were several functions that were built within MATLAB.

These functions were the essential building blocks to ensure efficiency of commands that

were easily executable.

Further research may focus on several areas. First, extending the functionality to

optimize cell design by either material or fractional molar composition. Second,

improvement of the tunnel junction modeling of the doping concentration or thickness.

Third, perform a statistical analysis of the thicknesses and doping concentrations to

optimize a single design space by utilizing the model to analyze and produce a new data

set of values for the thicknesses and doping concentrations. There’s already a MATLAB

function built and listed in Appendix Y to implement. Fourth, a further implementation to

attempt to execute automation of the results as they are analyzed for efficiency. Fifth, the

continuation of the investigation into the optimization of solar cells for the radiation

environment of space.

30

THIS PAGE INTENTIONALLY LEFT BLANK

31

APPENDIX A. RUBY DOWNLOAD AND FAMILIARIZATION

First, Google “Ruby download” in order to find the associated web page below in

Figure 22.

Figure 22. A-1: Find Ruby Download. Source: [10].

Next, I downloaded “ Ruby+Devkit 2.5.5-1 (x64)” compatible for my windows

laptop, as shown in Figure 23.

Figure 23. A-2: Identify Ruby download for your device. Source: [10].

32

Figure 24 reveal the ruby downloader file to execute on your associated device.

Figure 24. A-3: Ruby installer. Source: [10].

Next, after the Ruby installation is confirmed the data farming Ruby scripts must

be installed by running the command “gem install datafarming,” assuming you have a

network connection. Figure 25 reveals the commands to execute the stack_nolhs.rb

program from Ruby is different between both PC’s and Linux machines; however, here I

will list the PC commands to make the program execute. Below by typing the command

“stack_nolhs.rb –h” will list all of the associated commands to execute your desired

design space for NOLH.

Figure 25. A-4: NOLHS Commands. Source: [10].

33

Figure 26 reveals the results from calling ruby with the “-h” command in the

command window.

Figure 26. A-5: Help Command Results for stack_nolhs.rb. Source: [10].

Next, to familiarize yourself with the results utilized for the research of this

research, the following commands were used.

stack_nolhs.rb -s 1 -e <results.txt >mydesign3.csv

34

The “-s 1” command call the “stack” function to execute “once” for the

stack_nolhs.rb program that will return the desired least amount of design points for our

design that either returned 129-by-9, without tunnel junctions, or 129-by-11, with tunnel

junctions, results for the design.

stack_nolhs.rb -l 129 -e <results.txt >mydesign3.csv

The “-l 129” commands call the “level” function to execute for “129” levels for the

stack_nolhs.rb program that will return the extended amount of design points for our design

that either returned 2817-by-9, without tunnel junctions, or 2817-by-11, with tunnel

junctions, results for the design.

35

APPENDIX B. INP PARAMETER FUNCTION

function [m_nd,m_ni,eh,el,mp,Egd,Egi]=par_InP
%%This function holds the values and parameters for calculations and
the combined effective mass
%%for use later
m_nd = 0.0795;
m_ni = 0.88;
m_lp = 0.089;
m_hp = 0.6;
eh = 9.61;
el = 12.5;
Egd = 1.4236;
Egi = 2.273;

mp=(m_lp^1.5+m_hp^1.5)^(2/3); %Combined effective mass

end

36

THIS PAGE INTENTIONALLY LEFT BLANK

37

APPENDIX C. GAP PARAMETER FUNCTION

function [m_nd,m_ni,eh,el,mp,Egd,Egi]=par_GaP
%%This function holds the values and parameters for calculations and
the combined effective mass
%%for use later
m_nd = 0.13;
m_ni = 1.12;
m_lp = 0.14;
m_hp = 0.79;
eh = 9.11;
el = 11.1;
Egd = 2.87;
Egi = 2.35;

mp=(m_lp^1.5+m_hp^1.5)^(2/3); %Combined effective mass
end

38

THIS PAGE INTENTIONALLY LEFT BLANK

39

APPENDIX D. GAAS PARAMETER FUNCTION

function [m_nd,m_ni,eh,el,mp,Egd,Egi]=par_GaAs
%%This function holds the values and parameters for calculations and
the combined effective mass
%%for use later
m_nd = 0.067;
m_ni = 0.85;
m_lp = 0.082;
m_hp = 0.51;
eh = 10.89;
el = 13.2;
Egd = 1.1519;
Egi = 1.981;

mp=(m_lp^1.5+m_hp^1.5)^(2/3); %Combined effective mass

end

40

THIS PAGE INTENTIONALLY LEFT BLANK

41

APPENDIX E. ALAS PARAMETER FUNCTION

function [m_nd,m_ni,eh,el,mp,Egd,Egi]=par_AlAs
%%This function holds the values and parameters for calculations and
the combined effective mass
%%for use later
m_nd = 0.15;
m_ni = 0.19;
m_lp = 0.16;
m_hp = 0.81;
eh = 8.16;
el = 12;
Egd = 3.099;
Egi = 2.24;

mp=(m_lp^1.5+m_hp^1.5)^(2/3); %Combined effective mass

end

42

THIS PAGE INTENTIONALLY LEFT BLANK

43

APPENDIX F. ALAS MOBILITY FUNCTION

function [AlAsmu_n,AlAsmu_p,mu_1n,mu_1p,mu_2n,mu_2p] = mobility_AlAs(T,N)
%This function is used to calculate the mobility of e-'s and h+'s for AlAs

mu_1n=10;
mu_1p=10;

mu_2n=400;
mu_2p=200;

alphan=0;
alphap=0;

betan=-2.1;
betap=-2.24;

gaman=-3;
gamap=-1.464;

sigman=1;
sigmap=.488;

Ncritn=5.46e17;
Ncritp=3.48e17;

%Electron mobility
AlAsmu_n=mu_1n*(T/300)^alphan + (mu_2n*(T/300)^betan - mu_1n*(T/300)^alphan)./(1+(T/300)^gaman.*(N./Ncritn).^sigman);
%Hole mobility
AlAsmu_p=mu_1p*(T/300)^alphap + (mu_2p*(T/300)^betap - mu_1p*(T/300)^alphap)./(1+(T/300)^gamap.*(N./Ncritp).^sigmap);

end

44

THIS PAGE INTENTIONALLY LEFT BLANK

45

APPENDIX G. GAAS MOBILITY FUNCTION

%This function is used to calculate the mobility of e-'s and h+'s for GaAs

function [GaAsmu_n,GaAsmu_p] = mobility_GaAs(T,N)

mu_1n=500;
mu_1p=20;

mu_2n=9400;
mu_2p=491.5;

alphan=0;
alphap=0;

betan=-2.1;
betap=-2.2;

gaman=-1.182;
gamap=-1.14;

sigman=0.394;
sigmap=.38;

Ncritn=6e16;
Ncritp=1.48e17;

%Electron mobility
GaAsmu_n=mu_1n*(T/300)^alphan + (mu_2n*(T/300)^betan - mu_1n*(T/300)^alphan)./(1+(T/300)^gaman.*(N./Ncritn).^sigman);
%Hole mobility
GaAsmu_p=mu_1p*(T/300)^alphap + (mu_2p*(T/300)^betap - mu_1p*(T/300)^alphap)./(1+(T/300)^gamap.*(N./Ncritp).^sigmap);

end

46

THIS PAGE INTENTIONALLY LEFT BLANK

47

APPENDIX H. GAP MOBILITY FUNCTION

%This function is used to calculate the mobility of e-'s and h+'s for GaPh
function [GaPhmu_n,GaPhmu_p,mu_1n,mu_1p,mu_2n,mu_2p] = mobility_GaPh(T,N)

mu_1n=10; mu_1p=10;

mu_2n=152; mu_2p=147;

alphan=0; alphap=0;

betan=-1.6; betap=-1.98;

gaman=-0.568; gamap=0;

sigman=0.8; sigmap=0.85;

Ncritn=4.4e18; Ncritp=1e18;

%Electron mobility
GaPhmu_n=mu_1n*(T/300)^alphan + (mu_2n*(T/300)^betan - mu_1n*(T/300)^alphan)./(1+(T/300)^gaman.*(N./Ncritn).^sigman);
%Hole mobility
GaPhmu_p=mu_1p*(T/300)^alphap + (mu_2p*(T/300)^betap - mu_1p*(T/300)^alphap)./(1+(T/300)^gamap.*(N./Ncritp).^sigmap);

end

48

THIS PAGE INTENTIONALLY LEFT BLANK

49

APPENDIX I. INP MOBILITY FUNCTION

%This function is used to calculate the mobility of e-'s and h+'s for InPh
function [InPhmu_n,InPhmu_p,mu_1n,mu_1p,mu_2n,mu_2p] = mobility_InPh(T,N)

mu_1n=400;
mu_1p=10;

mu_2n=5200;
mu_2p=170;

alphan=0;
alphap=0;

betan=-2;
betap=-2;

gaman=-1.5275;
gamap=-1.86;

sigman=0.47;
sigmap=0.62;

Ncritn=5.46e17;
Ncritp=3.48e17;

%Electron mobility
InPhmu_n=mu_1n*(T/300)^alphan + (mu_2n*(T/300)^betan - mu_1n*(T/300)^alphan)./(1+(T/300)^gaman.*(N./Ncritn).^sigman);
%Hole mobility
InPhmu_p=mu_1p*(T/300)^alphap + (mu_2p*(T/300)^betap - mu_1p*(T/300)^alphap)./(1+(T/300)^gamap.*(N./Ncritp).^sigmap);

end

50

THIS PAGE INTENTIONALLY LEFT BLANK

51

APPENDIX J. INGAP WINDOW MOBILITY FUNCTION

function [InGaPwmu_n,InGaPwmu_p]=InGaP_window(N)
%%This function takes in the doping concentrations and performs the
%%necessary mobility calculations necessary to input to the associated
%%deckbuild file for Silvaco to run efficiently.

%% Parameters necessary for this function to run effiiciently

T=300; %Temp set to 300K
k=8.617e-5; %Plank's constant in eV to be used in conversion later

C=[0.51 0.49]; %Molar fractions/percentages utilized for calculations used late

[m_nd,m_ni,eh,el,mp,Egd,Egi]=par_InP; %Parameters obtained for InP
eh1=eh;
el1=el;
e1=eh;
e3=el;
m_nd1=m_nd;
m_ni1=m_ni;
mp1=mp;
Eg1=Egd;
Eg11=Egi;

[m_nd,m_ni,eh,el,mp,Egd,Egi]=par_GaP; %Parameters obtained for GaP
eh2=eh;
el2=el;
e2=eh;
e4=el;
m_nd2=m_nd;
m_ni2=m_ni;
mp2=mp;
Eg2=Egd;
Eg22=Egi;
%% Calculations performed for the following mobilities, while taking into consideration their molar fractional
combinations
[InPhmu_n,InPhmu_p] = mobility_InPh(T,N); %Mobilities determined for InP
mu_1n=InPhmu_n(5);
[GaPhmu_n,GaPhmu_p] = mobility_GaPh(T,N); %Mobilities determined for GaP
mu_2n=GaPhmu_n(5);
mu_2p=GaPhmu_p(5);

for i=1:length(C)
 ehh(i) =(1+2*[C*((e1-1)/(e1+2))+(1-C)*((e2-1)/(e2+2))])/(1-C*((e1-1)/(e1+2))-(1-C)*((e2-1)/(e2+2)));
 ell(i) =(1+2*[C*((e3-1)/(e3+2))+(1-C)*((e4-1)/(e4+2))])/(1-C*((e3-1)/(e3+2))-(1-C)*((e4-1)/(e4+2)));
 mpp(i) =(mp2*mp1)/(C(i)*mp2+(1-C(i))*mp1);
 Egd(i) =(1-C(i))*Eg1+C(i)*Eg2;
 Egi(i) =(1-C(i))*Eg11+C(i)*Eg22;
end

eh=ehh(1); %Sets eh
el=ell(2); %Sets el
Egd=Egd(1); %Sets the direct bandgap from calculations above
Egi=Egi(1); %Sets the indirect bandgap from calculations above
mp=mpp(1); %Sets the combined effective mass from calculations above

mu_d=(mu_2n*m_nd2^1.5*(1/eh2-1/el2))/(m_nd1^1.5*(1/eh-1/el)); %direct mobility
mu_i=(mu_1n*m_ni2^1.5*(1/eh1-1/el1))/(m_ni1^1.5*(1/eh-1/el)); %indirect mobility

Rd=1/(1+(m_ni/m_nd)^1.5*exp((Egd-Egi)/(k*T))); %Ratio calculations

InGaPwmu_n=mu_d*Rd+mu_i*(1-Rd); %e- mobility for InGaP window
InGaPwmu_p=(mu_2p*mp2^1.5*(1/eh2-1/el2))/(mp^1.5*(1/eh-1/el)); %hole mobility for InGaP window
end

52

THIS PAGE INTENTIONALLY LEFT BLANK

53

APPENDIX K. INGAP EMITTER MOBILITY FUNCTION

function [InGaPemu_n,InGaPemu_p]=InGaP_emitter(N)
%%This function takes in the doping concentrations and performs the
%%necessary mobility calculations necessary to input to the associated
%%deckbuild file for Silvaco to run efficiently.

%% Parameters necessary for this function to run effiiciently

T=300; %Temp set to 300K
k=8.617e-5; %Plank's constant in eV to be used in conversion later

C=[0.51 0.49]; %Molar fractions/percentages utilized for calculations used late

[m_nd,m_ni,eh,el,mp,Egd,Egi]=par_InP; %Parameters obtained for InP
eh1=eh;
el1=el;
e1=eh;
e3=el;
m_nd1=m_nd;
m_ni1=m_ni;
mp1=mp;
Eg1=Egd;
Eg11=Egi;

[m_nd,m_ni,eh,el,mp,Egd,Egi]=par_GaP; %Parameters obtained for GaP
eh2=eh;
el2=el;
e2=eh;
e4=el;
m_nd2=m_nd;
m_ni2=m_ni;
mp2=mp;
Eg2=Egd;
Eg22=Egi;

%% Calculations performed for the following mobilities, while taking into consideration their molar fractional
combinations
[InPhmu_n,InPhmu_p] = mobility_InPh(T,N); %Mobilities determined for InP
mu_1n=InPhmu_n(2);
[GaPhmu_n,GaPhmu_p] = mobility_GaPh(T,N); %Mobilities determined for GaP
mu_2n=GaPhmu_n(2);
mu_2p=GaPhmu_p(2);

for i=1:length(C)
 ehh(i) =(1+2*[C*((e1-1)/(e1+2))+(1-C)*((e2-1)/(e2+2))])/(1-C*((e1-1)/(e1+2))-(1-C)*((e2-1)/(e2+2)));
 ell(i) =(1+2*[C*((e3-1)/(e3+2))+(1-C)*((e4-1)/(e4+2))])/(1-C*((e3-1)/(e3+2))-(1-C)*((e4-1)/(e4+2)));
 mpp(i) =(mp2*mp1)/(C(i)*mp2+(1-C(i))*mp1);
 Egd(i) =(1-C(i))*Eg1+C(i)*Eg2;
 Egi(i) =(1-C(i))*Eg11+C(i)*Eg22;
end

eh=ehh(1); %Sets eh
el=ell(2); %Sets el
Egd=Egd(1); %Sets the direct bandgap from calculations above
Egi=Egi(1); %Sets the indirect bandgap from calculations above
mp=mpp(1); %Sets the combined effective mass from calculations above

mu_d=(mu_2n*m_nd2^1.5*(1/eh2-1/el2))/(m_nd1^1.5*(1/eh-1/el)); %direct mobility
mu_i=(mu_1n*m_ni2^1.5*(1/eh1-1/el1))/(m_ni1^1.5*(1/eh-1/el)); %indirect mobility

Rd=1/(1+(m_ni/m_nd)^1.5*exp((Egd-Egi)/(k*T))); %Ratio calculations

InGaPemu_n=mu_d*Rd+mu_i*(1-Rd); %e- mobility for InGaP emitter
InGaPemu_p=(mu_2p*mp2^1.5*(1/eh2-1/el2))/(mp^1.5*(1/eh-1/el));%hole mobility for InGaP emitter
end

54

THIS PAGE INTENTIONALLY LEFT BLANK

55

APPENDIX L. INGAP BASE MOBILITY FUNCTION

function [InGaPbmu_n,InGaPbmu_p]=InGaP_base(N)
%%This function takes in the doping concentrations and performs the
%%necessary mobility calculations necessary to input to the associated
%%deckbuild file for Silvaco to run efficiently.

%% Parameters necessary for this function to run effiiciently

T=300; %Temp set to 300K
k=8.617e-5; %Plank's constant in eV to be used in conversion later

C=[0.51 0.49]; %Molar fractions/percentages utilized for calculations used later

[m_nd,m_ni,eh,el,mp,Egd,Egi]=par_InP; %Parameters obtained for InP
eh1=eh;
el1=el;
e1=eh;
e3=el;
m_nd1=m_nd;
m_ni1=m_ni;
mp1=mp;
Eg1=Egd;
Eg11=Egi;

[m_nd,m_ni,eh,el,mp,Egd,Egi]=par_GaP; %Parameters obtained for GaP
eh2=eh;
el2=el;
e2=eh;
e4=el;
m_nd2=m_nd;
m_ni2=m_ni;
mp2=mp;
Eg2=Egd;
Eg22=Egi;

%% Calculations performed for the following mobilities, while taking into consideration their molar fractional
combinations
[InPhmu_n,InPhmu_p] = mobility_InPh(T,N); %Mobilities determined for InP
mu_1n=InPhmu_n(3);
[GaPhmu_n,GaPhmu_p] = mobility_GaPh(T,N); %Mobilities determined for GaP
mu_2n=GaPhmu_n(3);
mu_2p=GaPhmu_p(3);

for i=1:length(C)
 ehh(i) =(1+2*[C*((e1-1)/(e1+2))+(1-C)*((e2-1)/(e2+2))])/(1-C*((e1-1)/(e1+2))-(1-C)*((e2-1)/(e2+2)));
 ell(i) =(1+2*[C*((e3-1)/(e3+2))+(1-C)*((e4-1)/(e4+2))])/(1-C*((e3-1)/(e3+2))-(1-C)*((e4-1)/(e4+2)));
 mpp(i) =(mp2*mp1)/(C(i)*mp2+(1-C(i))*mp1);
 Egd(i) =(1-C(i))*Eg1+C(i)*Eg2;
 Egi(i) =(1-C(i))*Eg11+C(i)*Eg22;
end

eh=ehh(1); %Sets eh
el=ell(2); %Sets el
Egd=Egd(1); %Sets the direct bandgap from calculations above
Egi=Egi(1); %Sets the indirect bandgap from calculations above
mp=mpp(1); %Sets the combined effective mass from calculations above

mu_d=(mu_2n*m_nd2^1.5*(1/eh2-1/el2))/(m_nd1^1.5*(1/eh-1/el)); %direct mobility
mu_i=(mu_1n*m_ni2^1.5*(1/eh1-1/el1))/(m_ni1^1.5*(1/eh-1/el)); %indirect mobility

Rd=1/(1+(m_ni/m_nd)^1.5*exp((Egd-Egi)/(k*T))); %Ratio calculations

InGaPbmu_n=mu_d*Rd+mu_i*(1-Rd); %e- mobility for InGaP window
InGaPbmu_p=(mu_2p*mp2^1.5*(1/eh2-1/el2))/(mp^1.5*(1/eh-1/el)); %hole mobility for InGaP window
end

56

THIS PAGE INTENTIONALLY LEFT BLANK

57

APPENDIX M. INALGAP WINDOW MOBILITY FUNCTION

function [InAlGaPwmu_n,InAlGaPwmu_p]=InAlGaP_window(N)
%%This function takes in the doping concentrations and performs the
%%necessary mobility calculations necessary to input to the associated
%%deckbuild file for Silvaco to run efficiently.

%% Parameters necessary for this function to run effiiciently

T=300; %Temp set to 300K
k=8.617e-5; %Plank's constant in eV to be used in conversion later

C=[0.53 0.47];%Molar fractions/percentages utilized for calculations used later

[m_nd,m_ni,eh,el,mp,Egd,Egi]=par_AlP; %Parameters obtained for AlP
eh1=eh;
el1=el;
e1=eh;
e3=el;
m_nd1=m_nd;
m_ni1=m_ni;
mp1=mp;
Eg1=Egd;
Eg11=Egi;

[eh,el,Egd,Egi,mp]=AlGaP_window(N); %Parameters obtained for AlGaP
eh2=eh;
el2=el;
e2=eh;
e4=el;
m_nd2=m_nd;
m_ni2=m_ni;
mp2=mp;
Eg2=Egd;
Eg22=Egi;

%% Calculations performed for the following mobilities, while taking into consideration their molar fractional
combinations
[GaPhmu_n,GaPhmu_p] = mobility_GaPh(T,N); %Mobilities determined for GaP
mu_1n=GaPhmu_n(1);
[InPhmu_n,InPhmu_p] = mobility_InPh(T,N); %Mobilities determined for InP
mu_2n=InPhmu_n(1);
mu_2p=InPhmu_p(1);

for i=1:length(C)
 ehh(i) =(1+2*[C*((e1-1)/(e1+2))+(1-C)*((e2-1)/(e2+2))])/(1-C*((e1-1)/(e1+2))-(1-C)*((e2-1)/(e2+2)));
 ell(i) =(1+2*[C*((e3-1)/(e3+2))+(1-C)*((e4-1)/(e4+2))])/(1-C*((e3-1)/(e3+2))-(1-C)*((e4-1)/(e4+2)));
 mpp(i) =(mp2*mp1)/(C(i)*mp2+(1-C(i))*mp1);
 Egd(i) =(1-C(i))*Eg1+C(i)*Eg2;
 Egi(i) =(1-C(i))*Eg11+C(i)*Eg22;
end

eh=ehh(1); %Sets eh
el=ell(2); %Sets el
Egd=Egd(1); %Sets the direct bandgap from calculations above
Egi=Egi(1); %Sets the indirect bandgap from calculations above
mp=mpp(1); %Sets the combined effective mass from calculations above

mu_d=(mu_2n*m_nd2^1.5*(1/eh2-1/el2))/(m_nd1^1.5*(1/eh-1/el)); %direct mobility
mu_i=(mu_1n*m_ni2^1.5*(1/eh1-1/el1))/(m_ni1^1.5*(1/eh-1/el)); %indirect mobility

Rd=1/(1+(m_ni/m_nd)^1.5*exp((Egd-Egi)/(k*T))); %Ratio calculations

InAlGaPwmu_n=mu_d*Rd+mu_i*(1-Rd); %e- mobility for InAlGaP window
InAlGaPwmu_p=(mu_2p*mp2^1.5*(1/eh2-1/el2))/(mp^1.5*(1/eh-1/el)); %hole mobility for InAlGaP window
end

58

THIS PAGE INTENTIONALLY LEFT BLANK

59

APPENDIX N. INALGAP BSF MOBILITY FUNCTION

function [InAlGaPbsfmu_n,InAlGaPbsfmu_p]=InAlGaP_bsf(N)
%%This function takes in the doping concentrations and performs the
%%necessary mobility calculations necessary to input to the associated
%%deckbuild file for Silvaco to run efficiently.

%% Parameters necessary for this function to run effiiciently
T=300; %Temp set to 300K
k=8.617e-5; %Plank's constant in eV to be used in conversion later

C=[0.53 0.47]; %Molar fractions/percentages utilized for calculations used later

[m_nd,m_ni,eh,el,mp,Egd,Egi]=par_AlP; %Parameters obtained for AlP
eh1=eh; el1=el;
e1=eh;
e3=el;
m_nd1=m_nd;
m_ni1=m_ni;
mp1=mp;
Eg1=Egd;
Eg11=Egi;

[eh,el,Egd,Egi,mp]=AlGaP_bsf(N); %Parameters obtained for AlGaP
eh2=eh;
el2=el;
e2=eh;
e4=el;
m_nd2=m_nd;
m_ni2=m_ni;
mp2=mp;
Eg2=Egd;
Eg22=Egi;

%% Calculations performed for the following mobilities, while taking into consideration their molar fractional
combinations
[GaPhmu_n,GaPhmu_p] = mobility_GaPh(T,N); %Mobilities determined for GaP
mu_1n=GaPhmu_n(4);
[InPhmu_n,InPhmu_p] = mobility_InPh(T,N); %Mobilities determined for InP
mu_2n=InPhmu_n(4);
mu_2p=InPhmu_p(4);

for i=1:length(C)
 ehh(i) =(1+2*[C*((e1-1)/(e1+2))+(1-C)*((e2-1)/(e2+2))])/(1-C*((e1-1)/(e1+2))-(1-C)*((e2-1)/(e2+2)));
 ell(i) =(1+2*[C*((e3-1)/(e3+2))+(1-C)*((e4-1)/(e4+2))])/(1-C*((e3-1)/(e3+2))-(1-C)*((e4-1)/(e4+2)));
 mpp(i) =(mp2*mp1)/(C(i)*mp2+(1-C(i))*mp1);
 Egd(i) =(1-C(i))*Eg1+C(i)*Eg2;
 Egi(i) =(1-C(i))*Eg11+C(i)*Eg22;
end

eh=ehh(1); %Sets eh
el=ell(2); %Sets el
Egd=Egd(1); %Sets the direct bandgap from calculations above
Egi=Egi(1); %Sets the indirect bandgap from calculations above
mp=mpp(1); %Sets the combined effective mass from calculations above

mu_d=(mu_2n*m_nd2^1.5*(1/eh2-1/el2))/(m_nd1^1.5*(1/eh-1/el)); %direct mobility
mu_i=(mu_1n*m_ni2^1.5*(1/eh1-1/el1))/(m_ni1^1.5*(1/eh-1/el)); %indirect mobility

Rd=1/(1+(m_ni/m_nd)^1.5*exp((Egd-Egi)/(k*T))); %Ratio calculations

InAlGaPbsfmu_n=mu_d*Rd+mu_i*(1-Rd); %e- mobility for InAlGaP BSF
InAlGaPbsfmu_p=(mu_2p*mp2^1.5*(1/eh2-1/el2))/(mp^1.5*(1/eh-1/el)); %hole mobility for InAlGaP BSF
end

60

THIS PAGE INTENTIONALLY LEFT BLANK

61

APPENDIX O. ALGAP WINDOW PARAMETER FUNCTION

function [eh,el,Egd,Egi,mp]=AlGaP_window(N)

T=300;
k=8.617e-5;

C=[0.7 0.3];

[m_nd,m_ni,eh,el,mp,Egd,Egi]=par_AlP;
eh1=eh;
el1=el;
e1=eh;
e3=el;
m_nd1=m_nd;
m_ni1=m_ni;
mp1=mp;
Eg1=Egd;
Eg11=Egi;

[m_nd,m_ni,eh,el,mp,Egd,Egi]=par_GaP;
eh2=eh;
el2=el;
e2=eh;
e4=el;
m_nd2=m_nd;
m_ni2=m_ni;
mp2=mp;
Eg2=Egd;
Eg22=Egi;

[GaPhmu_n,GaPhmu_p] = mobility_GaPh(T,N);
mu_1n=GaPhmu_n(:,1);
[InPhmu_n,InPhmu_p] = mobility_InPh(T,N);
mu_2n=InPhmu_n(:,1);
mu_2p=InPhmu_p(:,1);

for i=1:length(C)
 ehh(i) =(1+2*[C*((e1-1)/(e1+2))+(1-C)*((e2-1)/(e2+2))])/(1-C*((e1-1)/(e1+2))-(1-C)*((e2-1)/(e2+2)));
 ell(i) =(1+2*[C*((e3-1)/(e3+2))+(1-C)*((e4-1)/(e4+2))])/(1-C*((e3-1)/(e3+2))-(1-C)*((e4-1)/(e4+2)));
 mpp(i) =(mp2*mp1)/(C(i)*mp2+(1-C(i))*mp1);
 Egd(i) =(1-C(i))*Eg1+C(i)*Eg2;
 Egi(i) =(1-C(i))*Eg11+C(i)*Eg22;
end

eh=ehh(1);
el=ell(2);
Egd=Egd(1);
Egi=Egi(1);
mp=mpp(1);

end

62

THIS PAGE INTENTIONALLY LEFT BLANK

63

APPENDIX P. ALGAAS MOBILITY FUNCTION

function [AlGaAsbsfmu_n,AlGaAsbsfmu_p]=AlGaAs_bsf(N)
% clear all; clc;

% [N,design_thickness]=input_decks(1,0,1,1,1);

T=300;
k=8.617e-5;

C=[0.7 0.3];

[m_nd,m_ni,eh,el,mp,Egd,Egi]=par_AlAs;
eh1=eh;
el1=el;
e1=eh;
e3=el;
m_nd1=m_nd;
m_ni1=m_ni;
mp1=mp;
Eg1=Egd;
Eg11=Egi;

[m_nd,m_ni,eh,el,mp,Egd,Egi]=par_GaAs;
eh2=eh;
el2=el;
e2=eh;
e4=el;
m_nd2=m_nd;
m_ni2=m_ni;
mp2=mp;
Eg2=Egd;
Eg22=Egi;

[AlAsmu_n,AlAsmu_p] = mobility_AlAs(T,N);
mu_1n=AlAsmu_n(8);
[GaAsmu_n,GaAsmu_p] = mobility_GaAs(T,N);
mu_2n=GaAsmu_n(8);
mu_2p=GaAsmu_p(8);

for i=1:length(C)
 ehh(i) =(1+2*[C*((e1-1)/(e1+2))+(1-C)*((e2-1)/(e2+2))])/(1-C*((e1-1)/(e1+2))-(1-C)*((e2-1)/(e2+2)));
 ell(i) =(1+2*[C*((e3-1)/(e3+2))+(1-C)*((e4-1)/(e4+2))])/(1-C*((e3-1)/(e3+2))-(1-C)*((e4-1)/(e4+2)));
 mpp(i) =(mp2*mp1)/(C(i)*mp2+(1-C(i))*mp1);
 Egd(i) =(1-C(i))*Eg1+C(i)*Eg2;
 Egi(i) =(1-C(i))*Eg11+C(i)*Eg22;
end

eh=ehh(1);
el=ell(2);
Egd=Egd(1);
Egi=Egi(1);
mp=mpp(1);

mu_d=(mu_2n*m_nd2^1.5*(1/eh2-1/el2))/(m_nd1^1.5*(1/eh-1/el));
mu_i=(mu_1n*m_ni2^1.5*(1/eh1-1/el1))/(m_ni1^1.5*(1/eh-1/el));

Rd=1/(1+(m_ni/m_nd)^1.5*exp((Egd-Egi)/(k*T)));

AlGaAsbsfmu_n=mu_d*Rd+mu_i*(1-Rd);
AlGaAsbsfmu_p=(mu_2p*mp2^1.5*(1/eh2-1/el2))/(mp^1.5*(1/eh-1/el));
end

64

THIS PAGE INTENTIONALLY LEFT BLANK

65

APPENDIX Q. CREATE DESIGN SPACE VECTOR

function [N,design_thickness]=input_decks(TJ,on_off,linux_PC,ruby,model)
%
% [N,design_thickness]=input_decks(TJ,on_off,linux_PC,ruby,model)
%
% This function calls get_designspace with the following inputs
% TJ=0, runs the get_designspace with only 18 factors
% TJ=1, runs the get_designspace with 22 factors including the tunnel
% junction thicknesses
%
% on_off=1, provides command to plot the resulting mobilities from either
% TJ=0/1 results
% on_off=0, provides command not to plot the resulting mobilities from
% either TJ=0/1 results
%
% **Note: Linux execution will only work if the user opens Matlab in the**
% **Public folder, due to that's the current location of the Ruby25x-64***
% **library.**
%
% linux_PC=1, performs command line for PC execution
% linux_PC=0, performs command line for linux execution
%
% ruby=1, runs the stack command that provides 129 design points for 18-22
% factors
% ruby=0, runs the level command that provides 2817 design points for 18-22
% factors
%
% model=0, runs the thicknesses and doping concentratons for for 18-22
% factors derived from the original model
% model=1, runs the thicknesses and doping concentratons (including TJ's)
% from the original model

base=0.55; %orginal base thickness
perc=.50; %percentage difference
% bmin=base - base*perc;
% bmax=base + base*perc;
bmin=0.53;
bmax=0.57;

if TJ==0
factors=18;
t_min = [0.01 0.02 bmin 0.01 0.02 0.48 2.03 0.08 0.18];
t_max = [0.05 0.06 bmax 0.05 0.06 0.52 2.07 0.12 0.22];
N_min = [17 17 15 17 17 17 16 17 17];
N_max = [19 19 17 19 19 19 18 19 19];
else
factors=22;
t_min = [0.01 0.02 bmin 0.01 0.02 0.48 2.03 0.08 0.18 0.005 0.005];
t_max = [0.05 0.06 bmax 0.05 0.06 0.52 2.07 0.12 0.22 0.045 0.045];
N_min = [17 17 15 17 17 17 16 17 17 18 18];
N_max = [19 19 17 19 19 19 18 19 19 20 20];
end

[N,design_thickness]=get_designspace(factors,t_min,t_max,N_min,N_max,on_off,linux_PC,ruby,model);

66

THIS PAGE INTENTIONALLY LEFT BLANK

67

APPENDIX R. CREATE DESIGN SPACE FROM RUBY

function [N,design_thickness]=get_designspace(factors,t_min,t_max,N_min,N_max,on_off,linux_PC,ruby,model)
%
% [N,design_thickness]=get_designspace(factors,t_min,t_max,N_min,N_max,on_off,linux_PC,ruby,model)
%
% Creates the needed .txt file for the desired inputs for NOLH to run and
% returns N (doping concentration) and thicknesses (design_thickness) for
% use in Silvaco
%
% factors should be entered in as a factor of 2, due to this function will
% always need an input for thickness and doping concetrations for each
% experimental run, factors should be atleast 2, but this can perform up to 22 factors
%
% t_min and t_max are inputs for min and max thicknesses expected in microns
%
% N_min and N_max are inputs for min and max doping concentrations interms
% of the exponent desired
%
% on_off=1, performs mobility check,
% on_off=0, turns off mobility check
%
% **Note: Linux execution will only work if the user opens Matlab in the**
% **Public folder, due to that's the current location of the Ruby25x-64***
% **library.**
%
% linux_PC=1, performs command line for PC execution
% linux_PC=0, performs command line for linux execution
%
% ruby=1, runs the stack command that provides 129 design points for 18-22
% factors
% ruby=0, runs the level command that provides 2817 design points for 18-22
% factors
%
% model=0, runs the thicknesses and doping concentratons for for 18-22
% factors derived from the original model
% model=1, runs the thicknesses and doping concentratons (including TJ's)
% from the original model, bypasses NOLH completely

if model==0 %Calls for NOLH to execute

%% Number of factors that're being computed
x1_txt = factors;

%% Min and Max of thicknesses entered

size2 = x1_txt/2; %1/2's the factor for allocation of the thickness array
x2_txt = zeros(size2,1); %creates the array for thickness based on allocation from factors
x2_txt = t_min; %takes input from min thickness for use below

size22 = x1_txt/2; %1/2's the factor for allocation of the thickness array
x22_txt = zeros(size22,1); %creates the array for thickness based on allocation from factors
x22_txt = t_max; %takes input from max thickness for use below

%% Max and Min of doping concentrations entered

size3 = x1_txt/2; %1/2's the factor for allocation of the doping concentration array
x3_txt = zeros(size3,1); %creates the array for doping concentration based on allocation from factors
x3_txt = N_min; %takes input from min doping concentration for use below

size33 = x1_txt/2; %1/2's the factor for allocation of the doping concentration array
x33_txt = zeros(size3,1); %creates the array for doping concentration based on allocation from factors
x33_txt = N_max; %takes input from max doping concentration for use below

%% Combine the results for the min and max entered for assimilation below

LB_thick=zeros(size2,1); %Creates the allocation for the lower bounds for thickness
UB_thick=zeros(size2,1); %Creates the allocation for the upper bounds for thickness

LB_dop=zeros(size2,1); %Creates the allocation for the lower bounds for doping concentration
UB_dop=zeros(size2,1); %Creates the allocation for the upper bounds for doping concentration

dec=zeros(size2,1); %Creates the allocation for the decimal places input needed for Ruby

sizeA=x1_txt; %Creates the value needed for the length of the associated for loops below

for i=1:sizeA/2
 LB_thick(i)=x2_txt(i); %Fills the lower bounds of thickness
 UB_thick(i)=x22_txt(i); %Fills the upper bounds of thickness
 LB_dop(i)=x3_txt(i); %Fills the lower bounds of doping concentrations
 UB_dop(i)=x33_txt(i); %Fills the upper bounds of doping concentrations
end

for i=1:sizeA
 dec(i)=3; %Fills the needed decimal places input for Ruby based on all input factors
end

fid = fopen('results.txt', 'wt'); %Opens/creates the .txt file for fill in below

68

for i=1:length(LB_thick)
 fprintf(fid,"%1d %1d",LB_thick(i),LB_dop(i)); %Fills/prints the min thickness and doping concentrations respectively
 fprintf(fid," ");
end

fprintf(fid,"\n"); %Ensures next line

for i=1:length(UB_thick)
 fprintf(fid,"%1d %1d",UB_thick(i),UB_dop(i)); %Fills/prints the max thickness and doping concentrations respectively
 fprintf(fid," ");
end

fprintf(fid,"\n"); %Ensures next line

for i=1:length(dec)
 fprintf(fid,"%1d",dec(i)); %Fills/prints the decimal input
 fprintf(fid," ");
end

fprintf(fid,"\n"); %Ensures next line

fclose(fid); %Closes the .txt file

%% Execution of Ruby and NOLHS

% if linux_PC==0
% if ruby==1
% command = '/usr/local/bin/ruby stack_nolhs.rb -s 1 -e <results.txt >mydesign3.csv ';
% else
% command = '/usr/local/bin/ruby stack_nolhs.rb -l 129 -e <results.txt >mydesign3.csv ';
% end
% else
if linux_PC==0
 if ruby==1
 command = 'stack_nolhs.rb -s 1 -e <results.txt >mydesign3.csv ';
 elseif ruby==2
 command = 'stack_nolhs.rb -s 2 -e <results.txt >mydesign3.csv ';
 elseif ruby==3
 command = 'stack_nolhs.rb -s 3 -e <results.txt >mydesign3.csv ';
 elseif ruby==4
 command = 'stack_nolhs.rb -s 4 -e <results.txt >mydesign3.csv ';
 elseif ruby==5
 command = 'stack_nolhs.rb -s 5 -e <results.txt >mydesign3.csv ';
 elseif ruby==6
 command = 'stack_nolhs.rb -l 129 -e <results.txt >mydesign3.csv ';
 end
else
 if ruby==1
 command ='CMD /C stack_nolhs.rb -s 1 -e <results.txt >mydesign3.csv '; %Calls the ruby program and uses the
.txt file just created
 else
 command ='CMD /C stack_nolhs.rb -l 129 -e <results.txt >mydesign3.csv ';
 end
end

status=system(command); %actually calls the command implemented above

design=Table2array(readTable('mydesign3.csv')); %converts .csv data into readable data for
Matlab

%% Create individual matrices of resulting NOLH data for thicknesses and doping concentrations

rows=length(design(:,1)); %creates the needed length of rows for the design
array
columns=length(design(1,:)); %creates the needed length of columns for the design
array
thickness=zeros(rows,columns/2); %creates thickness array for data
for i=1:length(columns/2)
 thickness(:,1:end)=design(:,1:2:end); %fills every other element of design array
end %receives every odd column

doping=zeros(rows,columns/2); %creates doping array for data
for i=1:length(columns/2)
 doping(:,1:end)=design(:,2:2:end); %fills every other element of design array
end %receives every odd column
else %cancels NOLH to use the model parameters below with the
 %TJ thicknesses and doping concentrations

doping = [18 18 16 18 18 18 17 18 18 19 19]; %original model doping concentrations
thickness = [.03 .05 .55 .03 .04 .5 2.05 .1 .2 .025 .025]; %original model thicknesses
end
%% Call mobility functions and utilize the doping concebtrations derived from ruby
power=10.^doping; %converts doping data into the form needed for our Silvaco
N=power;
design_thickness=thickness;
if on_off==1
 mob_test(N) %checks results of doping concentrations with mobility plots
else %turns on/off mobility check of doping concentrations
end

69

APPENDIX S. CREATE DATA VECTORS FROM .LOG FILE

function [eff,Voc, Jsc, FF]=get_designEff(N)
% This function retrieves the efficiencies,open circuit voltage, and short
% circuit current of the all designs created and places them into an
% usuable array

% [N,design_thickness]=input_decks(1,0,0,1,0);

eff=[]; %creates array for efficency
Voc=[]; %creates array for open circuit voltage
Jsc=[]; %creates array for short circuit current
FF =[]; %creates array for Fill Factor

for j=1:length(N(:,1))
 command=sprintf('forward_IVSimpleTJ%d.log',j); %generates usable command for a .log file
command to be scripted
% command=command;
 if isfile(command) %checks to see whether or not .log file
exists
 [emitterV,emitterVV,baseC,baseCC]=emitter_baseRead(command); %performs execution to pull
and read data for current and voltage values from the .log file
% disp(j)
% disp(solarCell_eff(emitterV,emitterVV,baseC,baseCC));
 [effout, Vocout, Jscout, FFout] = solarCell_eff(emitterV,emitterVV,baseC,baseCC);
%performs desired calculations for the efficiency for each design
 [eff]=[eff effout]; %creates array for efficiency
 [Voc]=[Voc Vocout]; %creates array for open circuit voltage
 [Jsc]=[Jsc Jscout]; %creates array for short circuit current
 [FF] =[FF FFout]; %creates array for Fill Factor
 else
 eff=[eff 0]; %ensures efficiency array is filled even though .log file may have errorneous
data
 Voc=[Voc 0]; %ensures open circuit voltage array is filled even though .log file may have
errorneous data
 Jsc=[Jsc 0]; %ensures short circuit current array is filled even though .log file may have
errorneous data
 FF =[FF 0]; %ensures Fill Factor array is filled even though .log file may have
errorneous data
 end
 end

end

70

THIS PAGE INTENTIONALLY LEFT BLANK

71

APPENDIX T. READ DATA FROM .LOG FILE

function [emitterV,emitterVV,baseC,baseCC]=emitter_baseRead(command)
%% This function reads .log files produced from Silvaco ATLAS

s = dir(command);

if(s.bytes>0)

 testlogfile = fopen(command); %loads .log file from Silvac

 emitterV = []; %creates array for Emitter Voltage
for plotting
 baseC = []; %creates array for Base Current for
plotting

 emitterVV = []; %creates array for Emitter Voltage
for calculations
 baseCC = []; %creates array for Base Current for
calculations

 tline = fgetl(testlogfile); %reads line from file and discards
newline character
 while ischar(tline) %checks if input is a character
array
 datavals = strsplit(tline); %splts string at the delimiter
 if(datavals{1}=='d') %checks for character 'd' to start
reading from .log file
 if (str2num(datavals{21})>0)
 emitterV = [emitterV str2num(datavals{13})]; %{14} fills array
for Emitter Voltage values
 baseC = [baseC str2num(datavals{21})]; %{18} fills array
for Base Current values
 end
 emitterVV = [emitterVV str2num(datavals{13})]; %{14} fills array
for Emitter Voltage values
 baseCC = [baseCC str2num(datavals{21})]; %{18}fills array
for Base Current values
 end
 tline = fgetl(testlogfile); %ensures lines from .log file are
read and discards newline character
 end

 fclose(testlogfile); %closes .log file from Silvaco

else
 emitterV = [0];
 baseC = [1];
 emitterVV = [0];
 baseCC = [1];
end

72

THIS PAGE INTENTIONALLY LEFT BLANK

73

APPENDIX U. CREATE 𝜼𝜼,𝑽𝑽𝑶𝑶𝑶𝑶, 𝑱𝑱𝑺𝑺𝑶𝑶, & 𝑭𝑭𝑭𝑭 FROM .LOG FILE

function [eff,Voc,Jsc,FF]=solarCell_eff(emitterV,emitterVV,baseC,baseCC)
%% Calculating further parameters necessary for calculations for the
performance of our solar cell
%Constants needed
q=1.61e-19; %charge of one electron
kT_q=0.0259; %Einsten relationship
Pin=135; %Input power efficiency at AM0 in mW/cm^2
% Pin=100; %Input power efficiency at AM1.5 in mW/cm^2
factor=1e11;

%Calculations for the short circuit current
Jsc=baseC(1)*factor; %Calculates the short circuit current density in
mA/cm^2

%Finding the point where the current is approximately zero
loc_neg = find(baseCC<0,1); %locates first negative value
loc_pos = find(baseCC>0,length(baseCC)); %locates positive values

if(~isempty(loc_neg)) %checks whether loc_neg is emtpy
 last_pos=loc_pos(end); %locates last positive value
 y1=baseCC(loc_neg)*factor; %provides the negative value of
the current
 y2=baseCC(last_pos)*factor; %provides the last positive value
of the current
 dy=y2-y1; %change in y
 x1=emitterVV(loc_neg); %provides the value of voltage
respective to current
 x2=emitterVV(last_pos); %provides the value of voltage
respective to current
 dx=x2-x1; %change in x
 m=dy/dx; %calculates slope, m
 b=y1-m*x1; %calculates constant for slope
intercept equation
 Voc=-y1/m+x1; %calculates Voc for the design

 FF=trapz(emitterV,baseC.*factor)/(Jsc*Voc); %Calculates the Fill Factor of
the Solar Cell
 Pout=Jsc*Voc*FF; %Calculates the output power of the solar cell
 eff=Pout/Pin; %Calculates the efficiency of
the solar cell
else %if loc_neg is empty a zero is
applied to the following
 Voc=0;
 FF=0;
 Pout=0;
 eff=0;
end
end

74

THIS PAGE INTENTIONALLY LEFT BLANK

75

APPENDIX V. CREATING DECKBUILD FILES

function creating_inputSimpleTJDecks(N,design_thickness)
%% The purpose of this function is to create deckbuild files for pre-defined design space.

design_thickness=design_thickness;

[InAlGaPwmu_n,InAlGaPwmu_p] = InAlGaP_window(N);
[InGaPemu_n,InGaPemu_p] = InGaP_emitter(N);
[InGaPbmu_n,InGaPbmu_p] = InGaP_base(N);
[InAlGaPbsfmu_n,InAlGaPbsfmu_p] = InAlGaP_bsf(N);

[GaAsTJnmu_n,GaAsTJnmu_p,GaAsTJpmu_n,GaAsTJpmu_p,GaAsenmu_n,GaAsenmu_p,GaAsbnmu_n,GaAsbnmu_p,GaAsbufnmu_n,GaAsbufnmu_p]=GaAs(N);

[InGaPwmu_n,InGaPwmu_p] = InGaP_window(N);
[AlGaAsbsfmu_n,AlGaAsbsfmu_p] = AlGaAs_bsf(N);

for i=1:length(N(:,1))

tp_window =design_thickness(i,1); %replacing line 4
tp_emitter =design_thickness(i,2); %replacing line 5
tp_base =design_thickness(i,3); %replacing line 6
tp_BSF =design_thickness(i,4); %replacing line 7

windowp_d =N(i,1); %replacing line 10
emitterp_d =N(i,2); %replacing line 11
basep_d =N(i,3); %replacing line 12
BSFp_d =N(i,4); %replacing line 13

tp_TJ =design_thickness(i,10); %replacing line 22
TJ_d =N(i,10); %replacing line 23

tb_window =design_thickness(i,5); %replacing line 34
tb_emitter =design_thickness(i,6); %replacing line 35
tb_base =design_thickness(i,7); %replacing line 36
tb_BSF =design_thickness(i,8); %replacing line 37
tb_buffer =design_thickness(i,9);

windowb_d =N(i,5); %replacing line 39
emitterb_d =N(i,6); %replacing line 40
baseb_d =N(i,7); %replacing line 41
BSFb_d =N(i,8); %replacing line 42
bufferb_d =N(i,9);

% fileID = fopen('test5_%dTJ.in','w',i);
fileID = fopen(sprintf('test6_%dTJ.in',i),'w');

fprintf(fileID,'go ATLAS simflags = "-P 2"\n\n');

fprintf(fileID,'#solar top section cell thicknesses set\n');
fprintf(fileID,'set tp_window =');
fprintf(fileID,'%6.2f\n',tp_window);

fprintf(fileID,'set tp_emitter =');
fprintf(fileID,'%6.2f\n',tp_emitter);

fprintf(fileID,'set tp_base =');
fprintf(fileID,'%6.2f\n',tp_base)

fprintf(fileID,'set tp_BSF =');
fprintf(fileID,'%6.2f\n\n',tp_BSF);

fprintf(fileID,'#solar top section cell doping concentrations set\n');
fprintf(fileID,'set windowp_d =');
fprintf(fileID,'%6.2g\n',windowp_d);

fprintf(fileID,'set emitterp_d =');
fprintf(fileID,'%6.2g\n',emitterp_d);

fprintf(fileID,'set basep_d =');
fprintf(fileID,'%6.2g\n',basep_d);

fprintf(fileID,'set BSFp_d =');
fprintf(fileID,'%6.2g\n\n',BSFp_d);

fprintf(fileID,'#Top section mole compositions & affinity settings\n');
fprintf(fileID,'set wp_comp = 0.49\n');
fprintf(fileID,'set bsfp_comp = 0.7\n');
fprintf(fileID,'set InGaP_aff = 3.87\n');
fprintf(fileID,'set AlGaAs_aff = 3.81\n\n');

fprintf(fileID,'#solar cell TJ \n');
fprintf(fileID,'set tp_TJ = 0.025\n');
% fprintf(fileID,'%6.2d\n',0.025);
fprintf(fileID,'set TJ_d = 5e19\n\n');
% fprintf(fileID,'%6.2g\n\n',5e19);

76

fprintf(fileID,'set p_window = $tp_window\n');
fprintf(fileID,'set p_emitter = $p_window+$tp_emitter\n');
fprintf(fileID,'set p_base = $p_emitter+$tp_base\n');
fprintf(fileID,'set p_bsf = p_base+tp_BSF\n\n');

fprintf(fileID,'set p_TJ = p_BSF+tp_TJ\n');
fprintf(fileID,'set n_TJ = p_TJ+tp_TJ\n\n');

fprintf(fileID,'#solar bottom section cell thicknesses set\n');
fprintf(fileID,'set tb_window =');
fprintf(fileID,'%6.2f\n',tb_window);

fprintf(fileID,'set tb_emitter =');
fprintf(fileID,'%6.2f\n',tb_emitter);

fprintf(fileID,'set tb_base =');
fprintf(fileID,'%6.2f\n',tb_base);

fprintf(fileID,'set tb_BSF =');
fprintf(fileID,'%6.2f\n',tb_BSF);

fprintf(fileID,'set tb_buffer =');
fprintf(fileID,'%6.2f\n\n',tb_buffer);

fprintf(fileID,'#solar bottom section cell doping concentrations set\n');
fprintf(fileID,'set windowb_d =');
fprintf(fileID,'%6.2g\n',windowb_d);

fprintf(fileID,'set emitterb_d =');
fprintf(fileID,'%6.2g\n',emitterb_d);

fprintf(fileID,'set baseb_d =');
fprintf(fileID,'%6.2g\n',baseb_d);

fprintf(fileID,'set BSFb_d =');
fprintf(fileID,'%6.2g\n',BSFb_d);

fprintf(fileID,'set bufferb_d =');
fprintf(fileID,'%6.2g\n\n',bufferb_d);

fprintf(fileID,'#Bottom section mole compositions & affinity settings\n');
fprintf(fileID,'set wb_comp = 0.49\n');
fprintf(fileID,'set bsfb_comp = 0.7\n\n');

fprintf(fileID,'set b_window = n_TJ+tb_window\n');
fprintf(fileID,'set b_emitter = $b_window+$tb_emitter\n');
fprintf(fileID,'set b_base = $b_emitter+$tb_base\n');
fprintf(fileID,'set b_bsf = b_base+tb_BSF\n');
fprintf(fileID,'set b_buffer = b_bsf+tb_buffer\n\n');

fprintf(fileID,'mesh\n');
fprintf(fileID,'x.mesh location=0 spacing=1 \n');
fprintf(fileID,'x.mesh location=1 spacing=1\n');
fprintf(fileID,'y.mesh location=0 spacing=$tp_window/20\n');
fprintf(fileID,'y.mesh location=$p_window spacing=$tp_window/20\n');
fprintf(fileID,'y.mesh location=$p_emitter spacing=$tp_emitter/100\n');
fprintf(fileID,'y.mesh location=$p_base spacing=$tp_base/5\n');
fprintf(fileID,'y.mesh location=$p_bsf spacing=$tp_BSF/100\n\n');

fprintf(fileID,'y.mesh location=$p_TJ spacing=$tp_TJ/40\n');
fprintf(fileID,'#y.mesh location=p_TJ+tp_TJ spacing=$tp_TJ/120\n');
fprintf(fileID,'y.mesh location=$n_TJ spacing=$tp_TJ/40\n\n');

fprintf(fileID,'y.mesh location=$b_window spacing=$tb_window/20\n');
fprintf(fileID,'y.mesh location=$b_emitter spacing=$tb_emitter/100\n');
fprintf(fileID,'y.mesh location=$b_base spacing=$tb_base/5\n');
fprintf(fileID,'y.mesh location=$b_bsf spacing=$tb_BSF/100\n');
fprintf(fileID,'y.mesh location=$b_buffer spacing=$tb_buffer/100\n\n');

fprintf(fileID,'#Top Section\n');
fprintf(fileID,'region num=1 material=InAlGaP x.min=0 y.min=0 x.max=1 y.max=$p_window x.comp = 0.371 y.comp =
0.159\n');
fprintf(fileID,'region num=2 material=InGaP x.min=0 y.min=$p_window y.max=$p_emitter x.comp=0.49 \n');
fprintf(fileID,'region num=3 material=InGaP x.min=0 y.min=$p_emitter y.max=$p_base x.comp=0.49\n');
fprintf(fileID,'region num=4 material=InAlGaP x.min=0 y.min=$p_base y.max=$p_bsf x.comp = 0.371 y.comp =
0.159\n\n');

fprintf(fileID,'#tunnel junction\n');
fprintf(fileID,'region num=5 material=GaAs x.min=0 x.max=1 y.min=$p_bsf y.max=$p_TJ\n');
fprintf(fileID,'region num=6 material=GaAs x.min=0 x.max=1 y.min=$p_TJ y.max=$n_TJ\n\n');

fprintf(fileID,'#Bottom Section\n');
fprintf(fileID,'region num=7 material=InGaP x.min=0 y.min=$n_TJ y.max=$b_window x.comp=0.49\n');
fprintf(fileID,'region num=8 material=GaAs x.min=0 y.min=$b_window y.max=$b_emitter\n');
fprintf(fileID,'region num=9 material=GaAs x.min=0 y.min=$b_emitter y.max=$b_base \n');
fprintf(fileID,'region num=10 material=AlGaAs x.min=0 y.min=$b_base y.max=$b_bsf x.comp=0.7\n');
fprintf(fileID,'region num=11 material=GaAs x.min=0 y.min=$b_bsf y.max=$b_buffer\n\n');

fprintf(fileID,'electrode name=Emitter top\n');
fprintf(fileID,'electrode name=tunnel x.min=0 x.max=1 y.min=$p_bsf y.max=$n_TJ material=GaAs\n');
fprintf(fileID,'electrode name=Base bottom \n\n');

fprintf(fileID,'#For the top section\n');

77

fprintf(fileID,'doping p.type uniform concentration=$windowp_d y.min=0 y.max=$p_window\n');
fprintf(fileID,'doping p.type uniform concentration=$emitterp_d y.min=$p_window y.max=$p_emitter\n');
fprintf(fileID,'doping n.type uniform concentration=$basep_d y.min=$p_emitter y.max=$p_base\n');
fprintf(fileID,'doping n.type uniform concentration=$BSFp_d y.min=$p_base y.max=$p_bsf\n\n');

fprintf(fileID,'#For the bottom section\n');
% fprintf(fileID,'doping p.type uniform concentration=$windowb_d y.min=$n_TJ y.max=$b_window\n');
fprintf(fileID,'doping p.type uniform concentration=$windowb_d y.min=$p_bsf y.max=$b_window\n');
fprintf(fileID,'doping p.type uniform concentration=$emitterb_d y.min=$b_window y.max=$b_emitter\n');
fprintf(fileID,'doping n.type uniform concentration=$baseb_d y.min=$b_emitter y.max=$b_base\n');
fprintf(fileID,'doping n.type uniform concentration=$BSFb_d y.min=$b_base y.max=$b_bsf\n');
fprintf(fileID,'doping n.type uniform concentration=$bufferb_d y.min=$b_bsf y.max=$b_buffer\n\n');

fprintf(fileID,'#TJ doping\n');
fprintf(fileID,'doping n.type uniform concentration=$TJ_d y.min=$p_bsf y.max=$p_TJ\n');
fprintf(fileID,'doping p.type uniform concentration=$TJ_d y.min=$p_TJ y.max=$n_TJ\n\n');

fprintf(fileID,'#Mesh for calculation of non-local tunneling current contribution\n');
fprintf(fileID,'#qtx.mesh location=0 spacing=1\n');
fprintf(fileID,'#qtx.mesh location=1 spacing=1\n');
fprintf(fileID,'#qty.mesh location=$p_TJ-0.9*$tp_TJ spacing=$tp_TJ/400\n');
fprintf(fileID,'#qty.mesh location=$p_TJ+0.9*$tp_TJ spacing=$tp_TJ/400\n\n');

fprintf(fileID,'#For the top section\n');
fprintf(fileID,'material mun=%6.2d ',InAlGaPwmu_n);
fprintf(fileID,'mup=%6.2d ',InAlGaPwmu_p);
fprintf(fileID,'region=1 \n');

fprintf(fileID,'material mun=%6.2d ',InGaPemu_n);
fprintf(fileID,'mup=%6.2d ',InGaPemu_p);
fprintf(fileID,'region=2 \n');

fprintf(fileID,'material mun=%6.2d ',InGaPbmu_n);
fprintf(fileID,'mup=%6.2d ',InGaPbmu_p);
fprintf(fileID,'region=3 \n');

fprintf(fileID,'material mun=%6.2d ',InAlGaPbsfmu_n);
fprintf(fileID,'mup=%6.2d ',InAlGaPbsfmu_p);
fprintf(fileID,'region=4 \n\n');

fprintf(fileID,'#For the tunnel junction\n');
fprintf(fileID,'material mun=1.0874e+03 mup=66.5026 region=5\n ');
% fprintf(fileID,'material mun=%6.2d ',1.0874e+03);
% fprintf(fileID,'mup=%6.2d ',66.5026);
% fprintf(fileID,'region=5 \n');

fprintf(fileID,'material mun=1.0874e+03 mup=66.5026 region=6\n\n ');
% fprintf(fileID,'mup=66.5026);
% fprintf(fileID,'region=6 \n\n');

% fprintf(fileID,'material mun=%6.2d ',GaAsTJpmu_n);
% fprintf(fileID,'mup=%6.2d ',GaAsTJpmu_p);
% fprintf(fileID,'region=6 \n\n');

fprintf(fileID,'#For the bottom section\n');
fprintf(fileID,'material mun=%6.2d ',InGaPwmu_n);
fprintf(fileID,'mup=%6.2d ',InGaPwmu_p);
fprintf(fileID,'region=7 \n');

fprintf(fileID,'material mun=%6.2d ',GaAsenmu_n);
fprintf(fileID,'mup=%6.2d ',GaAsenmu_p);
fprintf(fileID,'region=8 \n');

fprintf(fileID,'material mun=%6.2d ',GaAsbnmu_n);
fprintf(fileID,'mup=%6.2d ',GaAsbnmu_p);
fprintf(fileID,'region=9 \n');

fprintf(fileID,'material mun=%6.2d ',AlGaAsbsfmu_n);
fprintf(fileID,'mup=%6.2d ',AlGaAsbsfmu_p);
fprintf(fileID,'region=10 \n');

% fprintf(fileID,'material mun=%6.2d ',GaAsenmu_n);
% fprintf(fileID,'mup=%6.2d ',GaAsenmu_p);
% fprintf(fileID,'region=11 \n\n');

fprintf(fileID,'material mun=%6.2d ',GaAsbufnmu_n);
fprintf(fileID,'mup=%6.2d ',GaAsbufnmu_p);
fprintf(fileID,'region=11 \n\n');

fprintf(fileID,'contact name=tunnel resist=1e15\n\n');

fprintf(fileID,'material mat=InGaP index.file=InGaP_ex.nk \n');
fprintf(fileID,'material mat=AlGaAs index.file=AlGaAs.nk \n');
fprintf(fileID,'material mat=InAlGaP index.file=AlGaInP.nk\n\n');

fprintf(fileID,'material material=InGaP affinity=$InGaP_aff\n');
fprintf(fileID,'material material=AlGaAs affinity=$AlGaAs_aff\n\n');

fprintf(fileID,'models print temperature=300 \n');
fprintf(fileID,'models srh conmob auger optr bgn fermi\n');
fprintf(fileID,'#model bbt.nonlocal bbt.nlderivs\n');

fprintf(fileID,'method newton #maxtraps=50\n');

78

fprintf(fileID,'output con.band val.band charge opt.intens \n\n');

fprintf(fileID,'beam num=1 AM0 x.origin=0.5 y.origin=-1.0 angle=90\n\n');

fprintf(fileID,'solve init\n');
fprintf(fileID,'save outfile=equilibriumSimpleTJ%d.str\n\n',i);

fprintf(fileID,'solve b1=0.9\n\n');

fprintf(fileID,'save outf=shortcircuitSimpleTJ%d.str\n\n',i);

fprintf(fileID,'log outfileTJ=forward_IVSimpleTJ%d.log\n',i);
fprintf(fileID,'solve name=Emitter vEmitter=0.0 vstep=0.05 vfinal=0.2\n\n');

fprintf(fileID,'save outfile=for_02SimpleTJ%d.str\n\n',i);

fprintf(fileID,'solve name=Emitter vEmitter=0.2 vstep=0.01 vfinal=3.5\n');
fprintf(fileID,'log off\n\n');

fprintf(fileID,'save outfile=forSimpleTJ%d.str\n\n',i);

fprintf(fileID,'quit\n\n');

fclose(fileID);

end

79

APPENDIX W. MODEL DECKBUILD FILE

go ATLAS simflags = "-P 2"

#solar top section cell thicknesses set
set tp_window = 0.03
set tp_emitter = 0.05
set tp_base = 0.55
set tp_BSF = 0.03

#solar top section cell doping concentrations set
set windowp_d = 2e+18
set emitterp_d = 2e+18
set basep_d = 7e+16
set BSFp_d = 2e+18

#Top section mole compositions & affinity settings
set wp_comp = 0.49
set bsfp_comp = 0.7
set InGaP_aff = 3.87
set AlGaAs_aff = 3.81

#solar cell TJ
set tp_TJ = 0.03
set TJ_d = 2e+19

set p_window = $tp_window
set p_emitter = $p_window+$tp_emitter
set p_base = $p_emitter+$tp_base
set p_bsf = p_base+tp_BSF

set p_TJ = p_BSF+tp_TJ
set n_TJ = p_TJ+tp_TJ

#solar bottom section cell thicknesses set
set tb_window = 0.04
set tb_emitter = 0.50
set tb_base = 2.05
set tb_BSF = 0.10
set tb_buffer = 0.20

#solar bottom section cell doping concentrations set
set windowb_d = 3e+18
set emitterb_d = 2e+18
set baseb_d = 2e+17
set BSFb_d = 2e+18

set bufferb_d = 2e+18

#Bottom section mole compositions & affinity settings
set wb_comp = 0.49
set bsfb_comp = 0.7

set b_window = n_TJ+tb_window
set b_emitter = $b_window+$tb_emitter
set b_base = $b_emitter+$tb_base
set b_bsf = b_base+tb_BSF
set b_buffer = b_bsf+tb_buffer

mesh
x.mesh location=0 spacing=1
x.mesh location=1 spacing=1
y.mesh location=0 spacing=$tp_window/20
y.mesh location=$p_window spacing=$tp_window/20
y.mesh location=$p_emitter spacing=$tp_emitter/100
y.mesh location=$p_base spacing=$tp_base/5
y.mesh location=$p_bsf spacing=$tp_BSF/100

y.mesh location=$p_TJ spacing=$tp_TJ/20
y.mesh location=$n_TJ spacing=$tp_TJ/20

y.mesh location=$b_window spacing=$tb_window/20
y.mesh location=$b_emitter spacing=$tb_emitter/100
y.mesh location=$b_base spacing=$tb_base/5
y.mesh location=$b_bsf spacing=$tb_BSF/100
y.mesh location=$b_buffer spacing=$tb_buffer/100

#Top Section
region num=1 material=InAlGaP x.min=0 y.min=0 x.max=1 y.max=$p_window x.comp = 0.371 y.comp = 0.159
region num=2 material=InGaP x.min=0 y.min=$p_window y.max=$p_emitter x.comp=0.49
region num=3 material=InGaP x.min=0 y.min=$p_emitter y.max=$p_base x.comp=0.49
region num=4 material=InAlGaP x.min=0 y.min=$p_base y.max=$p_bsf x.comp = 0.371 y.comp = 0.159

#tunnel junction
region num=5 material=GaAs x.min=0 x.max=1 y.min=$p_bsf y.max=$p_TJ
region num=6 material=GaAs x.min=0 x.max=1 y.min=$p_TJ y.max=$n_TJ

#Bottom Section

80

region num=7 material=InGaP x.min=0 y.min=$n_TJ y.max=$b_window x.comp=0.49
region num=8 material=GaAs x.min=0 y.min=$b_window y.max=$b_emitter
region num=9 material=GaAs x.min=0 y.min=$b_emitter y.max=$b_base
region num=10 material=AlGaAs x.min=0 y.min=$b_base y.max=$b_bsf x.comp=0.7
region num=11 material=GaAs x.min=0 y.min=$b_bsf y.max=$b_buffer

electrode name=Emitter top
electrode name=tunnel x.min=0 x.max=1 y.min=$p_bsf y.max=$n_TJ material=GaAs
electrode name=Base bottom

#For the top section
doping p.type uniform concentration=$windowp_d y.min=0 y.max=$p_window
doping p.type uniform concentration=$emitterp_d y.min=$p_window y.max=$p_emitter
doping n.type uniform concentration=$basep_d y.min=$p_emitter y.max=$p_base
doping n.type uniform concentration=$BSFp_d y.min=$p_base y.max=$p_bsf

#For the bottom section
doping p.type uniform concentration=$windowb_d y.min=$p_bsf y.max=$b_window
doping p.type uniform concentration=$emitterb_d y.min=$b_window y.max=$b_emitter
doping n.type uniform concentration=$baseb_d y.min=$b_emitter y.max=$b_base
doping n.type uniform concentration=$BSFb_d y.min=$b_base y.max=$b_bsf
doping n.type uniform concentration=$bufferb_d y.min=$b_bsf y.max=$b_buffer

#TJ doping
doping n.type uniform concentration=$TJ_d y.min=$p_bsf y.max=$p_TJ
doping p.type uniform concentration=$TJ_d y.min=$p_TJ y.max=$n_TJ

#For the top section
material mun=1.06e+02 mup=5.10e+01 region=1
material mun=4.05e+02 mup=6.69e+01 region=2
material mun=6.76e+02 mup=1.52e+02 region=3
material mun=1.06e+02 mup=5.10e+01 region=4

#For the tunnel junction
material mun=1.32e+03 mup=8.33e+01 region=5
material mun=1.32e+03 mup=8.33e+01 region=6

#For the bottom section
material mun=3.64e+02 mup=5.53e+01 region=7
material mun=2.29e+03 mup=1.48e+02 region=8
material mun=3.91e+03 mup=2.42e+02 region=9
material mun=3.98e+02 mup=5.43e+01 region=10
material mun=2.29e+03 mup=1.48e+02 region=11

contact name=tunnel resist=1e15

material mat=InGaP index.file=InGaP_ex.nk
material mat=AlGaAs index.file=AlGaAs.nk
material mat=InAlGaP index.file=AlGaInP.nk

material material=InGaP affinity=$InGaP_aff
material material=AlGaAs affinity=$AlGaAs_aff

models print temperature=300
models srh conmob auger optr bgn fermi
method newton
output con.band val.band charge opt.intens

beam num=1 AM0 x.origin=0.5 y.origin=-1.0 angle=90

solve init
save outfile=equilibrium.str

solve b1=0.9

save outf=shortcircuit.str
tonyplot shortcircuit.str

log outfileTJ=forward_IV.log
solve name=Emitter vEmitter=0.0 vstep=0.05 vfinal=0.2

save outfile=for_02.str

solve name=Emitter vEmitter=0.2 vstep=0.01 vfinal=3.5
log off

save outfile=for.str
tonyplot equilibrium.str for.str for_02.str
tonyplot forward_IV.log

quit

81

APPENDIX X. MATLAB EXECUTES DECKBUILD

function run_deckbuildPC(N)
%The purpose of this function is to execute deckbuild directly from
%MATLAB via the command line syntax for PC. This function makes use of
%the doping concentration vector, N, in order to ensure all designs are
%executed

fprintf('Progress:\n');
fprintf(['\n' repmat('.',1,length(N(:,1))) '\n\n']);

for j=1:length(N(:,1))
% command=sprintf("deckbuild -run -ascii test%dTJ.in",j);
 command=sprintf("deckbuild -run test6_%dTJ.in",j);
 [x,y]=system(command);
 fprintf('\b|\n');

end

function run_deckbuild(N)
%The purpose of this function is to execute deckbuild directly from
%MATLAB via the command line syntax for Linux. This function makes use
%of the doping concentration vector, N, in order to ensure all designs
%are executed

fprintf('Progress:\n');
fprintf(['\n' repmat('.',1,length(N(:,1))) '\n\n']);

parfor j=1:length(N(:,1))
% command=sprintf("deckbuild -run -ascii test%dTJ.in",j);
 command=sprintf("deckbuild -run -ascii test6_%dTJ.in",j);
 [x,y]=system(command);
 fprintf('\b|\n');

end

82

THIS PAGE INTENTIONALLY LEFT BLANK

83

APPENDIX Y. CURVE FITTING AND PROBABILITY ANALYSIS

function [Ex_thick, Ex_doping] = findRange(N,design_thickness,eff)
% The purpose of this function is to produce a usable range for new design
% parameters in respect to thickness and doping
%
% [Ex_thick, Ex_doping] = findRange(N,design_thickness,eff)

N_log=log10(N); %strips the exponential value for the doping concentration
thick_x=design_thickness; %reassigns thickness to a maneagable variable for implementation below
doping_x=N_log; %reassigns doping to a maneagable variable for implementation below

for i=1:length(N(1,:))
 func_thick(:,i) = polyfit(design_thickness(:,i),eff',2); %develops a + bx +cx^2 for thickness
 func_doping(:,i) = polyfit(N_log(:,i),eff',2); %develops a + bx +cx^2 for doping
 max_thick(:,i) = polyval(func_thick(:,i),eff',2); %finds maximums for thickness
 max_doping(:,i) = polyval(func_doping(:,i),eff',2); %finds maximums for doping
 fmax_thick(:,i) = max(max_thick(:,i)); %finds actual maximum for thickness
 fmax_doping(:,i) = max(max_doping(:,i)); %finds actual maximum for doping

 %% Expressions and functions for thickness
 thick_x0_x1(:,i) = thick_x(end,i)-thick_x(1,i); %performs x1 - x0 for thickness
 thick_abc(:,i)=func_thick(1,i)*(thick_x0_x1(i)) + 1/2*func_thick(2,i)*(thick_x0_x1(i)).^2 + 1/3*func_thick(3,i)*(thick_x0_x1(i)).^3;
 %Caculates individual poritons for E(x) for portions 1, 2, and 3 from
 %the hand calculations for thickness
 forT_a(:,i) =1/3*(thick_x0_x1(i)).^3 -(thick_x0_x1(i)).^2.*fmax_thick(i) + (thick_x0_x1(i)).*fmax_thick(i).^2;
 forT_b(:,i) =1/4*(thick_x0_x1(i)).^4 -2/3*(thick_x0_x1(i)).^3.*fmax_thick(i) + 1/2*thick_x0_x1(i).^2.*fmax_thick(i).^2;
 forT_c(:,i) =1/5*(thick_x0_x1(i)).^5 -1/2*thick_x0_x1(i).^4.*fmax_thick(i) + 1/3*(thick_x0_x1(i)).^3.*fmax_thick(i).*2;
 %Calculating the entirety of the portions 1, 2, and 3 with the
 %coefficients a, b, and c for thickness
 thick_exp(:,i) =func_thick(1,i).*forT_a(i) + func_thick(2,i).*forT_b(i) + func_thick(3,i).*forT_c(i);

 %% Expressions and functions for doping
 doping_x0_x1(:,i) = doping_x(end,i)-doping_x(1,i); %performs x1 - x0 for doping
 doping_abc(:,i) = func_doping(1,i).*(doping_x0_x1(i)) + 1/2*func_doping(2,i).*(doping_x0_x1(i)).^2 + 1/3*func_doping(3,i).*(doping_x0_x1(i)).^3;
 %Caculates individual poritons for E(x) for portions 1, 2, and 3 from
 %the hand calculations for doping
 forD_a(:,i) =1/3*(doping_x0_x1(i)).^3 -(doping_x0_x1(i)).^2.*fmax_doping(i) + (doping_x0_x1(i)).*fmax_doping(i).^2;
 forD_b(:,i) =1/4*(doping_x0_x1(i)).^4 -2/3*(doping_x0_x1(i)).^3.*fmax_doping(i) + 1/2*doping_x0_x1(i).^2.*fmax_doping(i).^2;
 forD_c(:,i) =1/5*(doping_x0_x1(i)).^5 -1/2*doping_x0_x1(i).^4.*fmax_doping(i) + 1/3*(doping_x0_x1(i)).^3.*fmax_doping(i).*2;
 %Calculating the entirety of the portions 1, 2, and 3 with the
 %coefficients a, b, and c for doping
 doping_exp(:,i) =func_doping(1,i).*forD_a(i) + func_doping(2,i).*forD_b(i) + func_doping(3,i).*forD_c(i);

 %% Calculates the entirety of E(x) for both thickness and doping
 Ex_thick(:,i) =1./thick_abc(i).*(thick_exp(i));
 Ex_doping(:,i) =1./doping_abc(i).*(doping_exp(i));

end

end

84

THIS PAGE INTENTIONALLY LEFT BLANK

85

LIST OF REFERENCES

[1] J. S. Walsh, “Optimization of multi-junction solar cells for space applications
modeled with Silvaco ATLAS,” M. S. thesis, Dept. Elec. Eng., NPS, Monterey,
CA, USA, 2018. [Online]. Available: http://hdl.handle.net/10945/59615

[2] P. Michalopoulos, “A novel approach for the development and optimization of

state-of-the-art photovoltaic devices using Silvaco,” M. S. thesis, Dept. Elec. Eng,
NPS, Monterey, CA, USA, 2003. [Online]. Available:
https://calhoun.nps.edu/handle/10945/5609

[3] R. Kilway, “Five-junction solar cell optimization using Silvaco ATLAS,” Dept.

Elec. Eng., NPS, Monterey, CA, USA, 2017. [Online]. Available:
https://calhoun.nps.edu/handle/10945/56146

[4] S. Pueschel, “Optimization of an advanced multi-junction solar-cell design for

space environments (AM0) using nearly orthogonal Latin hypercubes,” M. S.
thesis, Dept. Op. Res., NPS, Monterey, CA, USA, 2017. [Online]. Available:
http://hdl.handle.net/10945/55521

[5] B.G. Streetman and S. K. Banerjee, Solid State Electronic Devices, Upper Saddle

River, NJ, USA: Prentice-Hall , 2009.

[6] M. Lundstrom, “Introduction to Photovoltaics,” class notes for NCN Summer

School, Purdue University, West Lafayette, IN, USA , 2011. [Online]. Available
https://nanohub.org/resources/11884/download/2011.07.20-NCN-SC01-
Lundstrom.pdf

[7] S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, Hoboken, NJ, USA:

John Wiley and Sons , 2007.

[8] M. R. Lueck, C. L. Andre, A. J. Pitera, M. L. Lee, A. Fitzgerald, and S. A. Ringel,

“Dual-junction GaInP/GaAs solar cells grown on metamorphic SiGe/Si substrates
with high open circuit voltage,” IEEE Electron Device Letters, vol. 27, no. 3, pp.
142–144, 2006.

[9] A. D. MacCalman, H. Vieira, and T. Lucas, “Second-order nearly orthogonal

Latin hypercubes for exploring stochastic simulations,” Journal of Simulation,
vol. 11, no. 2, pp. 137–150, May 2017.

[10] RubyInstaller. 2019. [Online] Available: https://rubyinstaller.org/

http://hdl.handle.net/10945/59615
https://calhoun.nps.edu/handle/10945/5609
https://calhoun.nps.edu/handle/10945/56146
http://hdl.handle.net/10945/55521
https://nanohub.org/resources/11884/download/2011.07.20-NCN-SC01-Lundstrom.pdf
https://nanohub.org/resources/11884/download/2011.07.20-NCN-SC01-Lundstrom.pdf
https://rubyinstaller.org/

86

THIS PAGE INTENTIONALLY LEFT BLANK

87

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	19Dec_Allen_Tony_First8
	19Dec_Allen_Tony
	I. INTRODUCTION
	A. SOLAR CELLS FOR SPACE APPLICATIONS
	B. PAST WORK AT NPS
	C. OBJECTIVE
	D. ORGANIZATION

	II. BACKGROUND
	A. SEMICONDUCTORS
	1. Energy Bands and Charge Carriers
	2. Semiconductor Materials and Doping Concentrations
	3. PN Junction
	4. Generation Rate and Recombination

	B. SOLAR CELLS
	1. Photodetectors and Photoconductors
	2. Solar Cell Operation

	C. MULTI-JUNCTION SOLAR CELLS
	1. Manufacturing
	2. Tunnel Junctions

	III. METHODOLOGY
	A. MODELED CELL
	B. SILVACO ATLAS
	C. MOBILITY
	D. NEARLY ORTHOGONAL LATIN HYPERCUBE

	IV. RESULTS
	A. MODELED CELL
	B. OPTIMIZATION RESULTS

	V. CONCLUSIONS AND FUTURE WORK
	APPENDIX A. RUBY DOWNLOAD AND FAMILIARIZATION
	APPENDIX B. inp PARAMETER FUNCTION
	APPENDIX C. gap PARAMETER FUNCTION
	APPENDIX D. gaas PARAMETER FUNCTION
	APPENDIX E. alas PARAMETER FUNCTION
	APPENDIX F. alas MOBILITY FUNCTION
	APPENDIX G. gaas MOBILITY FUNCTION
	APPENDIX H. gap MOBILITY FUNCTION
	APPENDIX I. inp MOBILITY FUNCTION
	APPENDIX J. INGAP WINDOW MOBILITY FUNCTION
	APPENDIX K. INGAP EMITTER MOBILITY FUNCTION
	APPENDIX L. INGAP BASE MOBILITY FUNCTION
	APPENDIX M. INALGAP WINDOW MOBILITY FUNCTION
	APPENDIX N. INALGAP BSF MOBILITY FUNCTION
	APPENDIX O. ALGAP WINDOW PARAMETER FUNCTION
	APPENDIX P. ALGAAS MOBILITY FUNCTION
	APPENDIX Q. CREATE DESIGN SPACE VECTOR
	APPENDIX R. CREATE DESIGN SPACE FROM RUBY
	APPENDIX S. CREATE DATA VECTORS FROM .LOG FILE
	APPENDIX T. READ DATA FROM .LOG FILE
	APPENDIX U. CREATE 𝜼,,𝑽-𝑶𝑪.,,𝑱-𝑺𝑪., & 𝑭𝑭 FROM .LOG FILE
	APPENDIX V. CREATING DECKBUILD FILES
	APPENDIX W. model deckbuild file
	APPENDIX X. matlab executes deckbuild
	APPENDIX Y. curve fitting and probability analysis
	LIST OF REFERENCES
	INITIAL DISTRIBUTION LIST

