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ABSTRACT 

The purpose of this research is to document further research into the optimization 

techniques investigated by James Walsh and applied to Multi-junction Solar Cells. Walsh 

performed his research with the Near Orthogonal Latin Hypercube (NOLH) in order to 

optimize the design specifications for each layer of solar cell thickness and doping 

concentration. Walsh at the same time evaluated cell performance under the radiation 

effects of the space environment. This research performed a similar analysis, except for 

the radiation effects, but focused more on producing an algorithm that could be executed 

from single user input and significantly reducing the selected design space. This research 

produced an efficient program that seamlessly operates between Ruby, MATLAB, and 

Silvaco ATLAS in order to produce an optimal designed dual-junction solar cell for 

space applications, in a much smaller design space than the technique utilized by Walsh. 
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I. INTRODUCTION 

A. SOLAR CELLS FOR SPACE APPLICATIONS  

Power sources for space craft may include batteries, both electric and chemically 

fueled engines, and photovoltaic systems onboard the craft. It is necessary for the design 

of these systems to be dependable and capable of surviving the harsh environment of space. 

Photovoltaic systems, or solar cells, have proven to be dependable in supplying spacecraft 

systems with the power they require. The cost of producing state-of-the-art multi-junction 

solar cells usually prohibits their use for terrestrial applications; however, multi-junction 

solar cells are vital for the survivability and success of space systems. For space 

applications, higher-cost multi-junction solar cells are preferred over the cheaper terrestrial 

solar cell variants due to their ability to withstand the harsh environment of space. 

Additionally, improving the efficiency in solar panel design will result in less of an 

electrical load required for solar power generation, a reduced surface area to prevent 

collision with orbital debris, and improve the capability to meet higher power demands.  

The inspection of solar cell characteristics such as doping concentrations and 

material thicknesses make designing optimal cell parameters an immense task. The 

utilization of complex computer software that executes numerical approximation in order 

to solve nonlinear sets of differential equations while simultaneously modeling solar cell 

operation, are fundamental towards simulating the efficiency of theorized solar cell designs 

with precise parameters. Design improvements can be achieved by simulating solar cells 

with variants of the parameters listed above. Inspecting large numbers of simulation results 

provides a better observation of what parameter values result in the highest efficiency of 

the respective cell at a fraction of the cost of manufacturing countless solar cells with 

different characteristics.  

B. PAST WORK AT NPS  

Numerous theses have researched solar cell optimization at the Naval Postgraduate 

School (NPS). James Walsh [1] successfully modeled and simulated radiation effects on 

dual-junction cells under AM0 conditions. Panayiotis Michalopoulos [2] successfully 
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implemented the modeling of several solar cells using Silvaco ATLAS (Silvaco), by 

demonstrating the performance of modeled cells and tested cells while studying their 

individual solar cell efficiency. Finally, both Raymond Kilway [3] and Silvio Pueschel [4] 

continued the work of P. Michalopoulos by researching the ability to optimize solar cell 

design by performing either a genetic algorithm (GA) or nearly orthogonal Latin 

hypercubes (NOLH), respectively. NOLH proved to be the more efficient method due to 

the length of time required to derive an optimized design and remains the method executed 

during the conduct of the research described here. 

C. OBJECTIVE  

The goal of this research is to inspect the solution space derived from the NOLH. 

J. Walsh investigated a solution space of more than 2,000 points for thicknesses and doping 

concentrations, discussed later in Chapter III. First, the published results of a simulated and 

manufactured dual-junction solar cell was utilized to derive the respective thicknesses and 

doping concentrations as the model for this research. Next, parameters were precisely 

determined to produce a scalable and realistic design space focusing mainly on the 

thicknesses and doping concentrations for the respective layers present in the dual-junction 

cell. Finally, parameters for binary, ternary, and quaternary materials were heavily utilized 

and calculated with MATLAB for use for the final design simulated in Silvaco ATLAS. 

To discuss the modeled solar cell researched more in depth, this research will converse a 

dual-junction indium gallium phosphate (InGaP)/gallium arsenide (GaAs) cell fabricated 

and tested at The Ohio State University [4]. This dual-junction solar cell provides tangible 

results to compare the produced simulated results.  

D. ORGANIZATION  

In Chapter II, the physics of semiconductors, solar cells, and multi-junction solar 

cells will be discussed. Chapter III will discuss the methodology of research and 

optimization techniques utilized with Silvaco ATLAS, MATLAB, and the NOLH 

algorithm. Chapter IV will discuss and list the results of the simulation presented 

throughout this research. Finally, Chapter V will discuss the conclusion, areas of future 

improvements, and recommended future work.  
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II. BACKGROUND 

A. SEMICONDUCTORS 

Semiconductor optimal performance is achieved only when the respective material 

can be grown with a high fidelity of crystallinity, while at the same time the impurities and 

defects can be regulated. In order to maintain exceptional structural attributes in the 

semiconductor design, a high-quality substrate must be available. Consequently, this 

requires growing crystals in bulk, which are then sliced and polished to allow epitaxial 

growth of thin regions within the semiconductor including heterostructures.  

1. Energy Bands and Charge Carriers  

There are two energy bands for electrons in a semiconductor, the conduction band 

and the valence band. The conduction band is the band of energies higher than the bandgap, 

and the valence band is the band of energies below the bandgap. Both energy bands possess 

particles that enable current flow; the conduction band maintains states of electrons and the 

valence band maintains holes. Whenever the conduction band possesses an empty state of 

an electron, a hole from the valence band travels to the conduction band to occupy this 

empty state. The band gap structure of a semiconductor material is revealed in Figure 1 [1]. 

 

Figure 1. Bandgap structure for a semiconductor material. Source: [1]. 

Momentum, k, defines the shape of both the valence and conduction bands in 

respect to the band gap. This shape can depict the characteristic of direct bandgap material 

or indirect bandgap material. A direct bandgap material has the characteristic that the 
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lowest energy point of the conduction band apportions momentum with the highest energy 

point on the valence band. The indirect bandgap material possesses a less efficient 

momentum counteracted between these two energy points. The bandgap materials and their 

respective energies are revealed in Figure 2 [5].  

 

Figure 2. Direct and Indirect electron transitions in semiconductors.  
Source: [5].  

The simple two-dimensional representation shown in Figure 2 is more problematic 

than simply described [1]. Figure 3 discloses the characteristic of silicon possessing a 

centered bandgap between the valence and conduction bands, versus the germanium 

arsenide bandgap. The band structures and energy dependent affinities will be discussed 

more in depth in Chapter III, Section C. Referring to Figure 2, the energy band curvature 

directly impacts the rate of momentum that also clearly impacts the rest mass of an electron 

or hole, and eventually the carrier mobility through a semiconductor [5].  
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Figure 3. Real band diagram for Si and GaAs. Source: [5].  

 

Figure 4. Intrinsic carrier concentration. Source: [5].  

Figure 4 exposes the theoretical intrinsic carrier concentration for germanium, 

silicon, and gallium arsenide. It should be observed that these concentrations are plotted  
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as a function of inverse temperature and room temperature values are indicated for 

reference. The intrinsic concentration can be calculated simply by the product of both the 

electron concentration 𝑛𝑛𝑜𝑜, and hole concentration 𝑝𝑝𝑜𝑜, of a material. This is revealed in 

Equation (1) [5].    

 𝑛𝑛𝑜𝑜 𝑝𝑝𝑜𝑜 =  𝑛𝑛𝑖𝑖2  (1) 

Next, the Fermi-level will be discussed and its relation to the generation and 

recombination of electron hole pairs. The fermi-level should be understood as either 

possessing its location in the upper or lower parts of the bandgap. The differences between 

n-type and p-type materials in relation to filled states and their fermi-level are shown in 

Figure 5. The n-type material possesses a fermi-level above the bandgap and vice-versa for 

p-type material. N-type material is known to be a donor material 𝑁𝑁𝐷𝐷+, and p-type material 

is known as an acceptor material 𝑁𝑁𝐴𝐴−. The n-type material possesses filled states, electrons, 

in the conduction band 𝐸𝐸𝐶𝐶, and the p-type material possesses filled states, holes, in the 

valence band 𝐸𝐸𝑉𝑉.  

 

Figure 5. Filled states and Fermi-levels. Source: [6]. 

The fermi-function (Equation 2) is tied to Figure 5 for reference [5]. This was 

referenced to assist in better understanding the relationship of the fermi-level to the carrier 
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concentrations present in the p-type or n-type specific materials. These n-type and p-type 

materials are the building blocks for PN junction semiconductors and will be discussed in 

the next paragraph. 

 𝑓𝑓(𝐸𝐸) =  1
1+ 𝑒𝑒(𝐸𝐸−𝐸𝐸𝐹𝐹)/𝑘𝑘𝑘𝑘  (2) 

 𝑛𝑛 =  𝑁𝑁𝐷𝐷𝑒𝑒(𝐸𝐸𝐹𝐹− 𝐸𝐸𝐶𝐶)/𝑘𝑘𝑘𝑘   (3) 

 𝑝𝑝 =  𝑁𝑁𝐴𝐴𝑒𝑒(𝐸𝐸𝑉𝑉− 𝐸𝐸𝐹𝐹)/𝑘𝑘𝑘𝑘   (4) 

Equations (3) and (4) reveal the relationships that are shared between the fermi-

levels, electron carrier concentration, and hole concentrations of the material and how the 

fermi-level directly impacts both carriers [5]. 

2. Semiconductor Materials and Doping Concentrations 

When selecting elements to utilize for the construction of a semiconductor from the 

periodic table, silicon, a Group IV element, is chosen due to its relative purity. Figure 6 

reveals the intrinsic silicon that is very pure, and containing a tiny amount of impurities 

[7].  Furthermore, every silicon atom is shown sharing its four valence electrons along with 

four neighboring atoms.  

 

Figure 6. Intrinsic Si with no impurity. Source: [7]. 
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Next, the doping of a semiconductor with either donor or acceptor impurities, also 

changes the band gap of the respective material [7]. It was explained that donor impurity 

changes donor level while an acceptor impurity changes the acceptor level [7]. Figure 7 

reveals the effects of doping silicon with donor (phosphorous), thus making the silicon 

more negative and producing an n-type material of Si. Figure 8 reveals the opposite 

occurring with silicon when its doped with an acceptor (boron), thus producing a p-type 

material of Si. Finally, it must be understood that whenever a semiconductor is doped with 

different types of concentrations of impurities this varies the resistivity of the material.   

 

Figure 7. Silicon donor doped samples. Source: [7].  

 

Figure 8.  Silicon acceptor doped samples. Source: [7]. 

3. PN Junction 

PN junctions are composed of N-doped semiconductor material and P-doped 

semiconductor material which are brought into contact with each other or manufactured in 

contact with each other. At the junction, a depletion region naturally forms when the N-
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doped and P-doped material is brought together, or manufactured together. The 

semiconductor material can be silicon, gallium, or a III-V compound semiconductor 

material such as GaAs. The key to a PN junction using any semiconductor material is that 

one side is doped N type while the other side is doped P type. Figure 9 illustrates the 

resulting energy band diagram for a PN semiconductor junction. Notice how the fermi-

level 𝐸𝐸𝐹𝐹 , is shown to possess the same level throughout the material, and the only change 

appears to be in the location in relation to either the valence band 𝐸𝐸𝑣𝑣 or the conduction 

band 𝐸𝐸𝑐𝑐 of the materials.  

 

Figure 9. PN junction band diagram. Source: [6]. 

Figure 9 reveals the band structure of the PN junction while at equilibrium with no 

external electric field applied. Although no external electric field is applied to the PN 

junction, there is an internal electric field that exists between the n-type and p-type material 

with a built-in junction potential barrier existing as 𝑉𝑉𝑏𝑏𝑖𝑖, thus producing the slope shown 

above. Both materials maintain their individual intrinsic levels, but the fermi level that 

exists between the two materials is not drawn to scale and has an approximate distance 

that’s relative to the intrinsic level shown above. Finally, the two materials create a 

depletion region where both electrons and holes are stationary in equilibrium as pictured 

in Figure 10. Take note of the placement of electrons and holes with the depletion region 

formed between the two materials. The electrons are positioned in the p-type material in 

the depletion region, and the holes are positioned in the n-type material in the depletion 
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region waiting for a bias to initiate the diffusion and drift of carriers throughout the 

material.  

 

Figure 10. PN junction. Source: [5]. 

B.G. Streetman and S.K. Banerjee list the Poisson’s equation (Equation 5) to 

provide a better idea of how the electric field distribution is mathematically modeled within 

the transition region. This transition region relates the gradient of the electric field in 

respect to the local space charge at any point 𝒙𝒙 [5].  

 𝑑𝑑 ℰ(𝑥𝑥)
𝑑𝑑𝑥𝑥

=  𝑞𝑞
𝜖𝜖

 (𝑝𝑝 − 𝑛𝑛 +  𝑁𝑁𝑑𝑑+ −  𝑁𝑁𝑎𝑎−)  (5) 

Poisson’s equation can also be simplified within the transition upon neglecting the 

contribution of the carriers (𝑝𝑝 − 𝑛𝑛) in respect to the space charge. The two regions of 

constant space charge resolve to the following equations [5]. 

 𝑑𝑑 ℰ(𝑥𝑥)
𝑑𝑑𝑥𝑥

=  𝑞𝑞
𝜖𝜖

 𝑁𝑁𝑑𝑑 , 0 < 𝑥𝑥 <  𝑥𝑥𝑛𝑛0  (6) 

 𝑑𝑑 ℰ(𝑥𝑥)
𝑑𝑑𝑥𝑥

=  −𝑞𝑞
𝜖𝜖

 𝑁𝑁𝑎𝑎,−𝑥𝑥𝑝𝑝0 < 𝑥𝑥 < 0  (7) 

Additionally, this relationship is only satisfied while assuming complete ionization 

of impurities (𝑁𝑁𝑑𝑑+ =  𝑁𝑁𝑑𝑑) and (𝑁𝑁𝑎𝑎− =  𝑁𝑁𝑎𝑎). The relation of the equations above allowed 

for the simplicity of relating the electric field to the contact potential 𝑉𝑉𝑜𝑜 [5]. 

 ℰ(𝑥𝑥) =  −𝑑𝑑 𝑉𝑉(𝑥𝑥)
𝑑𝑑𝑥𝑥

 𝑜𝑜𝑜𝑜 − 𝑉𝑉𝑜𝑜 =  ∫ ℰ(𝑥𝑥)𝑑𝑑𝑥𝑥𝑥𝑥𝑛𝑛0
−𝑥𝑥𝑝𝑝0

  (8) 

Next, Equation (9) relates the contact potential to the width of the depletion region.  

 𝑉𝑉𝑜𝑜 =  −1
2

 ℰ0 𝑊𝑊 =  1
2

 𝑞𝑞
𝜖𝜖
𝑁𝑁𝑑𝑑𝑥𝑥𝑛𝑛0 𝑊𝑊 = 1

2
𝑞𝑞
𝜀𝜀
𝑁𝑁𝑎𝑎 𝑁𝑁𝑑𝑑
𝑁𝑁𝑎𝑎+ 𝑁𝑁𝑑𝑑

𝑊𝑊2 (9) 
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Finally, Equation (10) reveals the resulting solution for width of the depletion 

region in respect to the n-type and p-type materials, individual doping concentrations, and 

shared initial contact potential. 

 𝑊𝑊 = �2𝜖𝜖𝑉𝑉0
𝑞𝑞

𝑁𝑁𝑎𝑎+ 𝑁𝑁𝑑𝑑
𝑁𝑁𝑎𝑎 𝑁𝑁𝑑𝑑

   (10) 

4. Generation Rate and Recombination  

B.G. Streetman and S.K. Banerjee explain the process of generation and 

recombination of electron-hole pairs within a semiconductor. This effect is achieved by the 

material absorbing photons with energy greater than the band gap while balanced by direct 

or indirect recombination [5]. Figure 11 illustrates this occurrence more simply. It should 

be observed that the energy of the light, or a photon, entering the material is greater than 

the bandgap energy that generates electron hole pairs in the existing material. This 

phenomenon likewise occurs with similar energies that have the capability of penetrating 

the material and having this same effect on the bandgap of the material. 

 

Figure 11. Light generating electron-hole pairs. Source: [6]. 

Next, the momentum discussed in paragraph 1 will be further discussed with its 

effect on the generation and recombination of electron hole pairs in a semiconductor.  

In a semiconductor, an intrinsic concentration, 𝑛𝑛𝑖𝑖, of electrons or holes exist, and this  

 

occurs from the thermal generation-recombination between the valence band and 

conduction band. Additionally, adding energy to this material creates more of these 

particles in its respective material. Energy in the form of increasing temperature, an electric 
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field, or photons can affect the intrinsic concentration of the material. Finally, for every 

electron that travels to the conduction band, it leaves behind a hole in its original position 

(Figure 12) [1]. 

 

Figure 12. Electron promoted to conduction band. Source: [1]. 

B. SOLAR CELLS 

1. Photodetectors and Photoconductors 

S. M. Sze and K.K. Ng explain the concept of photodetectors and how they are a 

type of semiconductor device capable of detecting optical signals [7]. These authors further 

explain the fundamental concepts of a photodetector’s operation and its three basic 

manners. However, the main characteristic observed in this research is the ability of the 

material to perform carrier generation once it is exposed to light [7]. Next, they further 

explain the two classes of photodetectors that exist today, in the form of thermal detectors 

and photon detectors. Thermal detectors are used to detect light more towards the far-

infrared wavelength applications. Photon detectors are utilized in the application for use of 

absorbing visible light in order to generate a photocurrent. The photoelectric effect is 

known as a photon exciting a carrier that produces a photocurrent. The photoelectric effect 

is based on the photon energy ℎ𝑣𝑣 and photon flux density and how they are both affected 

by the solar spectrum.  

 𝜆𝜆 =  ℎ𝑐𝑐
Δ𝐸𝐸

=  1.24
ΔΕ (𝑒𝑒𝑉𝑉)

 (𝜇𝜇𝜇𝜇)  (11)  
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Equation (11) reveals the relationship between the wavelength 𝜆𝜆, the speed of light 

𝑐𝑐, and the transition of energy levels ΔΕ [7]. The photon energy must possess the 

characteristic ℎ𝑣𝑣 >  ΔΕ in order to cause excitation associated with the minimum 

wavelength necessary for detection. Photon energy is also utilized to determine the 

quantum efficiency. 

 𝜂𝜂 =  𝐼𝐼𝑝𝑝ℎ
𝑞𝑞𝑞𝑞

=  𝐼𝐼𝑝𝑝ℎ
𝑞𝑞

 ( ℎ𝑣𝑣
𝑃𝑃𝑜𝑜𝑝𝑝𝑜𝑜

)  (12) 

Next, the quantum efficiency is defined as the number of carriers produced per 

photon. Equation (12) provides the parameters needed to evaluate the quantum efficiency 

of a photodetector. Besides observing the photon energy, the photocurrent 𝐼𝐼𝑝𝑝ℎ, photon flux 

𝜙𝜙 and the optical power 𝑃𝑃𝑜𝑜𝑝𝑝𝑜𝑜 are considered. S. M. Sze and K.K. Ng further explain with 

use of Figure 13 how industry uses the quantities listed in Equation (12) for deriving the 

efficiency to observe at different atmospheric conditions how the photon energy, 

wavelength, and photon flux are impacted [7]. AM0 are measured observations for space 

and AM1.5 is for terrestrial applications. 

 

Figure 13. Solar Spectrum for AM0 and AM1.5. Source: [7]. 
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2. Solar Cell Operation 

S. M. Sze and K.K. Ng discuss considerations while designing solar cells and the 

three factors that exist for the optimal design. They declare high efficiency, inexpensive 

costs, and exceptional reliability are suited for an optimal design [7]. For example, crystal 

silicon solar cells are widely used with the best reported efficiency reaching higher than 

22% [7]. Thin-filmed solar cells are desired for some applications due to their low-cost in 

processing and materials used. However, their disadvantages are poor efficiency and 

continuing instability. Thin-filmed solar cells have either single-junction or multi-junction 

cell structures. Multiple-junction cells have proven to possess higher efficiencies than 

single-junction cells, due to their different designs and configurations. Currently, three-

junction cells designed with compound semiconductors of GaAs/InGaAs and 

InGaP/InGaAs/Ge have produced efficiencies higher than 30%, the highest of any structure 

[7]. M. Lundstrom discuss the concept of measuring efficiency of a solar cell, which can 

be simply focused on the short circuit current and the open circuit voltage [6]. He also 

explains the importance of the calculated fill factor of the solar cell to find the output power 

𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 [6]. Equations (13) and (14) are provided for reference. 

 

 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 =  𝐼𝐼𝑆𝑆𝐶𝐶𝑉𝑉𝑂𝑂𝐶𝐶𝐹𝐹𝐹𝐹  (13) 

 𝜂𝜂 =  𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜
𝑃𝑃𝑖𝑖𝑛𝑛

=  𝑉𝑉𝑜𝑜𝑜𝑜𝐽𝐽𝑠𝑠𝑜𝑜𝐹𝐹𝐹𝐹
𝑃𝑃𝑖𝑖𝑛𝑛

  (14) 

𝐹𝐹𝐹𝐹 =  𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜
𝑉𝑉𝑜𝑜𝑜𝑜𝐽𝐽𝑠𝑠𝑜𝑜

                                                    (15) 

The fill factor is determined by the diode characteristic and series resistances. The 

fill factor can also be simply analytically found as shown in Equation 15. The short circuit 

current is determined while the voltage is zero, the short circuit current is observed when 

the voltage is zero, and the fill factor is observed by integrating the area under the I-V curve 

in Figure 14, then dividing the result by the product of the short circuit current and the open 

circuit voltage [6]. 
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Figure 14. I-V characteristics for solar cell. 

C. MULTI-JUNCTION SOLAR CELLS 

1. Manufacturing

Multi-junction Solar Cells are known for being able to take advantage of the 

theoretical maximum efficiency by combining multiple layers of compound 

semiconductors together as discussed previously with GaAs/InGaAs and 

InGaP/InGaP/InGaAs/Ge. This was achieved by balancing the expected band gap for both 

the respective photocurrent and open-circuit voltage of the semiconductor. Additionally, 

efficiency is improved with photon absorption due to how the cells are arranged in their 

respective design that takes advantage of the lowest band gap present within the entire 

multi-junction design. These multi-junction cells are produced as thin-films [7]. 

2. Tunnel Junctions

S. M. Sze and K.K. Ng explain that tunnel diodes consist of simple p-n junctions 

that are heavily doped with impurities [7]. They further explain how tunnel junctions 
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enable the tunneling process that allows electron tunneling from the valence band to the 

conduction band when a reverse bias is applied. Additionally, the tunneling process can 

either be direct or indirect. 

Figure 15. Static I-V characteristics of a tunnel diode. Source: [7]. 

Furthermore, they explain the behavior of the static current and voltage behavior of 

a tunnel diode in Figure 16. Both the peak and valley voltages and currents are shown for 

their static behavior [7]. 
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Figure 16. Three components of static characteristics. Source: [7]. 

Finally, S. M. Sze and K.K. Ng reveal the total static characteristics of the tunnel 

diode broken into three current components in Figure 16 [7]. The components are diffusion 

current, excess current, and tunneling current. They further explain the static characteristics 

at equilibrium. At equilibrium, it was explained that the tunneling current is the current that 

moves from the conduction band to an empty state in the valence band. Next, the excess 

current is caused by carrier tunneling this effect is caused by energy states that exist within 

a forbidden gap that appear in both the valence band and conduction band. Conclusively, 

diffusion current for a tunneling diode is what allows the actual current to flow between 

both materials present in the p-n junction. 
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III. METHODOLOGY 

A. MODELED CELL 

The modeled cell simulated in this research is a dual-junction InGaP-GaAs cell 

fabricated at The Ohio State University [8]. This dual-junction cell was chosen due to the 

properties of each layer thickness, composition, and doping concentration, which is shown 

in Figure 17. The cell performance measurements are listed in Table 1 [8]. Although based 

partly on assumptions, the model was validated by comparing simulation output against 

provided data. The modeled cell overall structure and composition will be discussed next.  

The very top of the cell has a contact layer that is made of GaAs, and the buffer 

layer is constructed from the same material. The dual junction cell is grown on a 

germanium (Ge) buffer and a silicon germanium (SiGe) substrate. Lueck et al. supplied the 

structure design shown in Figure 17 that reveals the arrangement of the modeled dual-

junction cell [8]. 

 

Figure 17. Modeled cell profile. Source: [8]. 

Both AM0 and AM1.5 illumination for both GaAs and SiGe are listed for the 𝜂𝜂, 

𝑉𝑉𝑂𝑂𝐶𝐶, 𝐽𝐽𝑠𝑠𝑐𝑐, and FF in the paper, and are displayed in Table 1 [8]. However, for the conduct of 

this research only AM0 for GaAs will be discussed. These parameters are listed to reveal 
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the overall performance of this modeled dual-junction cell. The total area efficiency for 

AM0 was recorded at 18.6% for the cell grown on a GaAs substrate with a 𝑉𝑉𝑂𝑂𝐶𝐶 of 2.34 V, 

𝐽𝐽𝑆𝑆𝐶𝐶  of 13.08 𝜇𝜇𝑚𝑚/𝑐𝑐𝜇𝜇2, and a FF of 82.5%. These measured quantities are also listed in 

Table 1, and they assisted in predicting favorable results between the modeled cell and any 

further simulated cells that were produced during this research. 

Table 1. Lighted current voltage for GaAs. Source: [8]. 

 
GaAs 

AM0 AM1.5G 

𝐽𝐽𝑆𝑆𝐶𝐶  (𝜇𝜇𝑚𝑚/𝑐𝑐𝜇𝜇2) 13.08 10.9 
𝑉𝑉𝑂𝑂𝐶𝐶(𝑉𝑉) 2.34 2.32 
𝐹𝐹𝐹𝐹(%) 82.5 79.0 
𝜂𝜂(%) 18.6 20.0 

 
Lueck et al. provided Figure 18 to illustrate the I-V characteristics of the 

performance for the modeled cell at both AM0 and AM1.5. The authors also noted that the 

measurements performed in Figure 18 were the results of AM0 and AM1.5 illumination of 

GaInP/GaAs dual-junction cells on GaAs and SiGe substrates. AM0 measurements were 

performed at the NASA Glenn Research Center, and the AM1.5G were performed at the 

National Renewable Energy Laboratory (NREL). The baseline performance for the GaAs 

substrate will be measurements recorded for AM0. 
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Figure 18. I-V measurements under AM0 and AM1.5G. Source: [8]. 

B. SILVACO ATLAS 

Silvaco ATLAS is primarily used to model and simulate semiconductors in the 

semiconductor industry. Silvaco ATLAS was used heavily during this research to simulate 

the dual-junction cell. The baseline of the modeled cell depicted in the last section was first 

created to ensure accuracy of measurements before any further designs were introduced. 

Silvaco ATLAS enables the user to perform simulations for two-dimensional and three-

dimensional semiconductors. Silvaco ATLAS possesses its own scripting language for the 

designed semiconductor device to be tested. If Silvaco ATLAS is executed properly, the 

result will be as shown in Figure 19.    
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Figure 19. Modeled cell created in Silvaco 

In order to ensure the correct and efficient design of any semiconductor, the order 

of statements for the mesh definition, structural definition, and solution groups must be 

constructed. For the mesh definition that exist within a simulation the user must carefully 

allocate mesh nodes at their defined regions, especially at regions of high activity.  

The mesh definition ensures that the simulated design space will perform as designed. This 

definition also directly affects the generation and recombination of electron-hole pairs 

throughout the entirety of the structure. The structural definitions ensure that every layer 

of material is precisely placed according the thickness and doping concentration specified 

in the design. The top section, tunneling junction, bottom section, and electrodes are 

depicted in Figure 19. Finally, the solution groups were important to ensure the necessary 

data was available for analysis later in the research in order to determine the performance 

of each designed cell. The solutions utilized heavily throughout this research were  

solutions of the designed cell under forward biased conditions in order to extract the 𝜂𝜂, 

𝑉𝑉𝑂𝑂𝐶𝐶, 𝐽𝐽𝑠𝑠𝑐𝑐, and FF . 
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C. MOBILITY 

The ability of electrons and holes to travel through a material is known as electron 

mobility 𝜇𝜇𝑛𝑛 and hole mobility 𝜇𝜇𝑝𝑝, respectively. The mobility of either of these carriers is 

utilized as a function of doping for binary materials and this function is even more complex 

for both ternary and quaternary materials. This is due to the complexities involved with the 

various doping concentrations of these materials. Walsh discussed in depth the modeling 

constants and mobility parameters for GaAs, GaP, AlAs, and AlP for calculating the 

approximate mobilities for use within Silvaco ATLAS [1]. The modeling constants and 

mobility parameters were used extensively to ensure the modeling that was previously 

utilized by Walsh remained consistent throughout the performance of this research. The 

individual MATLAB functions and associated values are listed in the Appendices F 

through I, L, and N. 

D. NEARLY ORTHOGONAL LATIN HYPERCUBE 

The purpose of utilizing NOLH is to ensure designs are produced with minimal 

correlations while finding nearly orthogonal designs. The use of NOLH is reinforced by 

the user observing the design space not prematurely limited. In addition, an optimal 

solution is based on a Latin hypercube design that possesses an orthogonal regression 

matrix that includes quadratics and two-way interactions [9]. 

Next, Table 2 reveals the implementation of a solution from NOLH. This 

spreadsheet supplied from the NPS Simulation, Experiments and Efficient Design (SEED) 

Center for Data Farming was helpful in understanding how NOLH produces results from 

user inputs. The user is required to supply the minimum limits, maximum limits, and 

desired decimal placement solution of the resulting matrix. It should be observed that the 

resulting solution provides nearly uncorrelated solutions for both thickness and doping 

concentration. The spreadsheet utilized in Table 2 was hard coded for 22 factors that 

provided up to 262 different results for each column of data.     
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Table 2. NOLH example  

 

 

Finally, NOLH provided a usable design space that delivered usable thickness and 

doping concentration data upon command for multiple designs. However, during this 

research another approach was utilized that did not require the use of spreadsheets. The 

Ruby program was recommended by the SEED Center and utilized to take full advantage 

of the design capabilities provided in NOLH. Ruby proved to be highly useful and accurate 

in developing more complicated design spaces on command. 

 
 

low level 0.02 17 0.04 17 0.53 15 0.03 17
high level 0.04 19 0.05 19 0.56 17 0.05 19
decimals 3 3 3 3 3 3 3 3

factor name thick doping thick doping thick doping thick doping
0.025 17.891 0.044 17.906 0.54 16.375 0.041 18.516
0.038 17.609 0.044 17.922 0.533 15.906 0.038 17.406
0.029 18.516 0.04 17.547 0.542 15.313 0.045 18.297
0.034 18.781 0.043 17.734 0.543 16.516 0.031 17.813
0.02 17.781 0.046 17.469 0.533 16.063 0.037 18.859

0.034 17.859 0.047 17.016 0.542 15.656 0.042 17.078
0.028 19 0.048 17.578 0.535 15.453 0.035 18.875
0.031 18.406 0.049 17.125 0.54 16.844 0.047 17.031
0.02 17.094 0.043 17.406 0.536 16.953 0.045 17.859
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IV. RESULTS 

A. MODELED CELL 

After collecting the published thicknesses and doping concentrations from the real 

cell, the next step was to produce a reliable model within Silvaco ATLAS. This step was 

necessary in order to baseline any further optimization trials. Figure 20 reveals the 

performance comparison between the real cell and the modeled cell. 

 

Figure 20. Comparison of real and modeled cell. Source: [8]. 

After plotting and comparing the real and modeled cell, the 𝜂𝜂, 𝑉𝑉𝑂𝑂𝐶𝐶, 𝐽𝐽𝑠𝑠𝑐𝑐, and FF were 

measured and compared to the real cell in Table 3. It was observed upon constructing the 

modeled cell that an error of 29% existed between the real cell and the modeled cell. It was 

determined that the error was due to how the tunnel junction was modeled for the 

simulation. The modeled tunnel junction was built with a high resistance placed in series 
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with an electrode in the middle of the structure. This was the same procedure Walsh 

described in order to increase the speed of individual simulations in Silvaco ATLAS [1].   

Table 3. Performance comparison of real and modeled cells 

 Real Model Error (%) 
𝜂𝜂 (%) 18.6 24.03 29.19 
𝑉𝑉𝑂𝑂𝐶𝐶(𝑉𝑉) 2.34 2.39 2.14 

𝐽𝐽𝑆𝑆𝐶𝐶  (𝜇𝜇𝑚𝑚/𝑐𝑐𝜇𝜇2) 13.08 13.96 6.73 
𝐹𝐹𝐹𝐹(%) 82.5 97.07 17.6 

 

B. OPTIMIZATION RESULTS 

The optimization runs consisted of three separate design spaces selected with 

NOLH. NOLH was called and executed by various different stack commands that provided 

the desired input for minimum and maximum values for Ruby to execute. Ruby also 

required specific stack commands to ensure a design space that consisted of 129, 257, and 

385 design points. Each design space provided their respective number of designs to be 

executed. For example, the design space that consisted of 129 design points provided 129 

different designs to be simulated at a time. The 129th design file created to be simulated in 

Silvaco ATLAS turned out to be the optimal design created out of the batch. However, the 

subsequent 257 and 385 design spaces provided optimal designs well within their 

respective design files created. The 205th design produced from the 257 design space was 

the most efficient. Likewise, the 216th design produced from the 385 design space was the 

most efficient in its respective design space. Figure 21 reveals the comparison of the 

modeled cell and all three optimal designs produced from each design space. 
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Figure 21. Comparison of model and optimization passes 

Table 4 lists the parameters in terms of the 𝜂𝜂, 𝑉𝑉𝑂𝑂𝐶𝐶, 𝐽𝐽𝑠𝑠𝑐𝑐, and FF for each design space. 

It should be seen that even though each design space provided optimal performance for 

each of their respective design spaces, the 385th design space provided the first optimal 

design that surpassed the modeled cell. 

Table 4. Optimization results 

 Iteration 𝜼𝜼(%) 𝑽𝑽𝑶𝑶𝑶𝑶(𝑽𝑽) 𝑱𝑱𝑺𝑺𝑶𝑶 (𝒎𝒎𝒎𝒎/𝒄𝒄𝒎𝒎𝟐𝟐)  𝑭𝑭𝑭𝑭(%) 

Model n/a 24.03 2.39 13.96 97.07 
129 Design Points 129th  22.78 2.29 13.85 96.95 
257 Design Points 205th  23.32 2.29 14.17 96.92 
385 Design Points 216th  25.80 2.36 15.32 96.45 
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Table 5 reveals the overall improvements made from each optimization design pass. 

As stated earlier, the 385 design space in its 216th design provided the only improvement 

over the modeled cell.  

Table 5. Model vs. optimization improvements 

Design Points 𝜼𝜼 (%) Improvement 
Model 24.03 0.00% 

129 22.78 -5.21% 
257 22.32 -2.96% 
385 25.80 7.34% 

 

Table 6 lists the thicknesses and doping concentrations for the optimized design 

extracted from the 385 design space that provided a 7.34% improvement over the modeled 

cell. In addition to this improved design, this new optimized model would potentially 

provide a structure with an efficiency of 19.97%. 

Table 6. Optimal designed dual-junction cell 

Layer Thickness Doping Concentration 
𝐼𝐼𝑛𝑛0.47(𝑚𝑚𝐴𝐴0.7𝐺𝐺𝐺𝐺0.3)0.53𝑃𝑃 (window) p+ 0.02 𝜇𝜇𝜇𝜇 2.8e17 𝑐𝑐𝜇𝜇−3 
𝐼𝐼𝑛𝑛0.49𝐺𝐺𝐺𝐺0.51𝑃𝑃 (emitter) p+  0.02 𝜇𝜇𝜇𝜇 2.2e18 𝑐𝑐𝜇𝜇−3 
𝐼𝐼𝑛𝑛0.49𝐺𝐺𝐺𝐺0.51𝑃𝑃 (base) n 0.56 𝜇𝜇𝜇𝜇 7.8e16 𝑐𝑐𝜇𝜇−3 
𝐼𝐼𝑛𝑛0.47(𝑚𝑚𝐴𝐴0.7𝐺𝐺𝐺𝐺0.3)0.53𝑃𝑃 (back surface field) n+ 0.01 𝜇𝜇𝜇𝜇 8.1e16 𝑐𝑐𝜇𝜇−3 
𝐺𝐺𝐺𝐺𝑚𝑚𝐺𝐺 (TJ) n++ 0.025 𝜇𝜇𝜇𝜇 5e19 𝑐𝑐𝜇𝜇−3 
𝐺𝐺𝐺𝐺𝑚𝑚𝐺𝐺 (TJ) p++ 0.025 𝜇𝜇𝜇𝜇 5e19 𝑐𝑐𝜇𝜇−3 
𝐼𝐼𝑛𝑛0.49𝐺𝐺𝐺𝐺0.51𝑃𝑃 (window) p+ 0.03 𝜇𝜇𝜇𝜇 2.5e17𝑐𝑐𝜇𝜇−3 
𝐺𝐺𝐺𝐺𝑚𝑚𝐺𝐺 (emitter) p+ 0.52 𝜇𝜇𝜇𝜇 1.6e17𝑐𝑐𝜇𝜇−3 
𝐺𝐺𝐺𝐺𝑚𝑚𝐺𝐺 (base) n 2.05 𝜇𝜇𝜇𝜇 2.6e17 𝑐𝑐𝜇𝜇−3 
𝑚𝑚𝐴𝐴0.7𝐺𝐺𝐺𝐺0.3𝑚𝑚𝐺𝐺 (back surface field) n+ 0.10 𝜇𝜇𝜇𝜇 4.7e18 𝑐𝑐𝜇𝜇−3 
𝐺𝐺𝐺𝐺𝑚𝑚𝐺𝐺 (buffer) n+ 0.21 𝜇𝜇𝜇𝜇 2.4e17𝑐𝑐𝜇𝜇−3 
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V. CONCLUSIONS AND FUTURE WORK  

In conclusion, instead of performing an analysis for the largest design space Walsh 

could create from the spreadsheet he accessed from the SEED Center for Data Farming. It 

was theorized that the optimal design could be found from a smaller design space, resulting 

in faster optimization passes that could provide the same if not better results. Additionally, 

while pursuing this approach, it was determined that a more efficient process existed to 

execute NOLH without the necessity of manipulating the spreadsheet. Dr. Susan Sanchez 

from the NPS Operation Research department, was an exceptional resource in 

understanding how to utilize Ruby and applying the NOLH instructions in order to create 

the desired design space. Upon learning how to operate Ruby proficiently, the next task 

was to connect Ruby to MATLAB, and then MATLAB to Silvaco ATLAS. It was also pre-

determined that the modeling of the tunnel junction would have to be simplified by placing 

a high resistance in series with an electrode in this region. This implementation still 

provided acceptable performance. Finally, for the seamless operation between MATLAB, 

Ruby, and Silvaco ATLAS, there were several functions that were built within MATLAB. 

These functions were the essential building blocks to ensure efficiency of commands that 

were easily executable.  

Further research may focus on several areas. First, extending the functionality to 

optimize cell design by either material or fractional molar composition. Second, 

improvement of the tunnel junction modeling of the doping concentration or thickness. 

Third, perform a statistical analysis of the thicknesses and doping concentrations to 

optimize a single design space by utilizing the model to analyze and produce a new data 

set of values for the thicknesses and doping concentrations. There’s already a MATLAB 

function built and listed in Appendix Y to implement. Fourth, a further implementation to 

attempt to execute automation of the results as they are analyzed for efficiency. Fifth, the 

continuation of the investigation into the optimization of solar cells for the radiation 

environment of space. 
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APPENDIX A. RUBY DOWNLOAD AND FAMILIARIZATION 

First, Google “Ruby download” in order to find the associated web page below in 

Figure 22. 

Figure 22. A-1: Find Ruby Download. Source: [10]. 

Next, I downloaded “ Ruby+Devkit 2.5.5-1 (x64)” compatible for my windows 

laptop, as shown in Figure 23. 

Figure 23. A-2: Identify Ruby download for your device. Source: [10]. 
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Figure 24 reveal the ruby downloader file to execute on your associated device. 

 

Figure 24. A-3: Ruby installer. Source: [10]. 

Next, after the Ruby installation is confirmed the data farming Ruby scripts must 

be installed by running the command “gem install datafarming,” assuming you have a 

network connection.  Figure 25 reveals the commands to execute the stack_nolhs.rb 

program from Ruby is different between both PC’s and Linux machines; however, here I 

will list the PC commands to make the program execute. Below by typing the command 

“stack_nolhs.rb –h” will list all of the associated commands to execute your desired 

design space for NOLH. 

 

Figure 25. A-4: NOLHS Commands. Source: [10]. 
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Figure 26 reveals the results from calling ruby with the “-h” command in the 

command window. 

 

Figure 26. A-5: Help Command Results for stack_nolhs.rb. Source: [10]. 

Next, to familiarize yourself with the results utilized for the research of this 

research, the following commands were used. 

 
stack_nolhs.rb -s 1 -e <results.txt >mydesign3.csv 
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The “-s 1” command call the “stack” function to execute “once” for the 

stack_nolhs.rb program that will return the desired least amount of design points for our 

design that either returned 129-by-9, without tunnel junctions, or 129-by-11, with tunnel 

junctions, results for the design. 

 
stack_nolhs.rb -l 129 -e <results.txt >mydesign3.csv 

 
The “-l 129” commands call the “level” function to execute for “129” levels for the 

stack_nolhs.rb program that will return the extended amount of design points for our design 

that either returned 2817-by-9, without tunnel junctions, or 2817-by-11, with tunnel 

junctions, results for the design. 
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APPENDIX B. INP PARAMETER FUNCTION 

function [m_nd,m_ni,eh,el,mp,Egd,Egi]=par_InP 
%%This function holds the values and parameters for calculations and 
the combined effective mass  
%%for use later  
m_nd = 0.0795; 
m_ni = 0.88; 
m_lp = 0.089; 
m_hp = 0.6; 
eh   = 9.61; 
el   = 12.5; 
Egd  = 1.4236; 
Egi  = 2.273; 
  
mp=(m_lp^1.5+m_hp^1.5)^(2/3);                %Combined effective mass 
  
end 
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APPENDIX C. GAP PARAMETER FUNCTION 

function [m_nd,m_ni,eh,el,mp,Egd,Egi]=par_GaP 
%%This function holds the values and parameters for calculations and 
the combined effective mass  
%%for use later  
m_nd = 0.13; 
m_ni = 1.12; 
m_lp = 0.14; 
m_hp = 0.79; 
eh   = 9.11; 
el   = 11.1; 
Egd  = 2.87; 
Egi  = 2.35; 
  
mp=(m_lp^1.5+m_hp^1.5)^(2/3);    %Combined effective mass 
end 
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APPENDIX D. GAAS PARAMETER FUNCTION 

function [m_nd,m_ni,eh,el,mp,Egd,Egi]=par_GaAs 
%%This function holds the values and parameters for calculations and 
the combined effective mass  
%%for use later  
m_nd = 0.067; 
m_ni = 0.85; 
m_lp = 0.082; 
m_hp = 0.51; 
eh   = 10.89; 
el   = 13.2; 
Egd  = 1.1519; 
Egi  = 1.981; 
  
mp=(m_lp^1.5+m_hp^1.5)^(2/3);  %Combined effective mass 
  
end 
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APPENDIX E. ALAS PARAMETER FUNCTION 

function [m_nd,m_ni,eh,el,mp,Egd,Egi]=par_AlAs 
%%This function holds the values and parameters for calculations and 
the combined effective mass  
%%for use later  
m_nd = 0.15; 
m_ni = 0.19; 
m_lp = 0.16; 
m_hp = 0.81; 
eh   = 8.16; 
el   = 12; 
Egd  = 3.099; 
Egi  = 2.24; 
  
mp=(m_lp^1.5+m_hp^1.5)^(2/3); %Combined effective mass 
  
end 
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APPENDIX F. ALAS MOBILITY FUNCTION 

function [AlAsmu_n,AlAsmu_p,mu_1n,mu_1p,mu_2n,mu_2p] = mobility_AlAs(T,N) 
%This function is used to calculate the mobility of e-'s and h+'s for AlAs 
  
mu_1n=10; 
mu_1p=10; 
  
mu_2n=400; 
mu_2p=200; 
  
alphan=0; 
alphap=0; 
  
betan=-2.1; 
betap=-2.24; 
  
gaman=-3; 
gamap=-1.464; 
  
sigman=1; 
sigmap=.488; 
  
Ncritn=5.46e17; 
Ncritp=3.48e17; 
  
%Electron mobility 
AlAsmu_n=mu_1n*(T/300)^alphan + (mu_2n*(T/300)^betan - mu_1n*(T/300)^alphan)./(1+(T/300)^gaman.*(N./Ncritn).^sigman); 
%Hole mobility  
AlAsmu_p=mu_1p*(T/300)^alphap + (mu_2p*(T/300)^betap - mu_1p*(T/300)^alphap)./(1+(T/300)^gamap.*(N./Ncritp).^sigmap); 
  
  
end 
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APPENDIX G. GAAS MOBILITY FUNCTION 

%This function is used to calculate the mobility of e-'s and h+'s for GaAs 
  
function [GaAsmu_n,GaAsmu_p] = mobility_GaAs(T,N) 
  
mu_1n=500; 
mu_1p=20; 
  
mu_2n=9400; 
mu_2p=491.5; 
  
alphan=0; 
alphap=0; 
  
betan=-2.1; 
betap=-2.2; 
  
gaman=-1.182; 
gamap=-1.14; 
  
sigman=0.394; 
sigmap=.38; 
  
Ncritn=6e16; 
Ncritp=1.48e17; 
  
%Electron mobility 
GaAsmu_n=mu_1n*(T/300)^alphan + (mu_2n*(T/300)^betan - mu_1n*(T/300)^alphan)./(1+(T/300)^gaman.*(N./Ncritn).^sigman); 
%Hole mobility  
GaAsmu_p=mu_1p*(T/300)^alphap + (mu_2p*(T/300)^betap - mu_1p*(T/300)^alphap)./(1+(T/300)^gamap.*(N./Ncritp).^sigmap); 
  
end 
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APPENDIX H. GAP MOBILITY FUNCTION 

 
%This function is used to calculate the mobility of e-'s and h+'s for GaPh 
function [GaPhmu_n,GaPhmu_p,mu_1n,mu_1p,mu_2n,mu_2p] = mobility_GaPh(T,N) 
  
mu_1n=10; mu_1p=10; 
  
mu_2n=152; mu_2p=147; 
  
alphan=0; alphap=0; 
  
betan=-1.6; betap=-1.98; 
  
gaman=-0.568; gamap=0; 
  
sigman=0.8; sigmap=0.85; 
  
Ncritn=4.4e18; Ncritp=1e18; 
  
%Electron mobility 
GaPhmu_n=mu_1n*(T/300)^alphan + (mu_2n*(T/300)^betan - mu_1n*(T/300)^alphan)./(1+(T/300)^gaman.*(N./Ncritn).^sigman); 
%Hole mobility  
GaPhmu_p=mu_1p*(T/300)^alphap + (mu_2p*(T/300)^betap - mu_1p*(T/300)^alphap)./(1+(T/300)^gamap.*(N./Ncritp).^sigmap); 
  
end 
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APPENDIX I. INP MOBILITY FUNCTION 

%This function is used to calculate the mobility of e-'s and h+'s for InPh 
function [InPhmu_n,InPhmu_p,mu_1n,mu_1p,mu_2n,mu_2p] = mobility_InPh(T,N) 
  
mu_1n=400; 
mu_1p=10; 
  
mu_2n=5200; 
mu_2p=170; 
  
alphan=0; 
alphap=0; 
  
betan=-2; 
betap=-2; 
  
gaman=-1.5275; 
gamap=-1.86; 
  
sigman=0.47; 
sigmap=0.62; 
  
Ncritn=5.46e17; 
Ncritp=3.48e17; 
  
%Electron mobility 
InPhmu_n=mu_1n*(T/300)^alphan + (mu_2n*(T/300)^betan - mu_1n*(T/300)^alphan)./(1+(T/300)^gaman.*(N./Ncritn).^sigman); 
%Hole mobility  
InPhmu_p=mu_1p*(T/300)^alphap + (mu_2p*(T/300)^betap - mu_1p*(T/300)^alphap)./(1+(T/300)^gamap.*(N./Ncritp).^sigmap); 
  
end 
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APPENDIX J. INGAP WINDOW MOBILITY FUNCTION 

function [InGaPwmu_n,InGaPwmu_p]=InGaP_window(N) 
%%This function takes in the doping concentrations and performs the 
%%necessary mobility calculations necessary to input to the associated 
%%deckbuild file for Silvaco to run efficiently. 
  
%% Parameters necessary for this function to run effiiciently 
  
T=300;               %Temp set to 300K 
k=8.617e-5;          %Plank's constant in eV to be used in conversion later  
  
C=[0.51 0.49];       %Molar fractions/percentages utilized for calculations used late 
  
[m_nd,m_ni,eh,el,mp,Egd,Egi]=par_InP;          %Parameters obtained for InP 
eh1=eh; 
el1=el; 
e1=eh; 
e3=el; 
m_nd1=m_nd; 
m_ni1=m_ni; 
mp1=mp; 
Eg1=Egd; 
Eg11=Egi; 
  
[m_nd,m_ni,eh,el,mp,Egd,Egi]=par_GaP;          %Parameters obtained for GaP 
eh2=eh; 
el2=el; 
e2=eh; 
e4=el; 
m_nd2=m_nd; 
m_ni2=m_ni; 
mp2=mp; 
Eg2=Egd; 
Eg22=Egi; 
%% Calculations performed for the following mobilities, while taking into consideration their molar fractional 
combinations  
[InPhmu_n,InPhmu_p] = mobility_InPh(T,N);       %Mobilities determined for InP 
mu_1n=InPhmu_n(5); 
[GaPhmu_n,GaPhmu_p] = mobility_GaPh(T,N);       %Mobilities determined for GaP 
mu_2n=GaPhmu_n(5); 
mu_2p=GaPhmu_p(5); 
  
for i=1:length(C) 
    ehh(i)  =(1+2*[C*((e1-1)/(e1+2))+(1-C)*((e2-1)/(e2+2))])/(1-C*((e1-1)/(e1+2))-(1-C)*((e2-1)/(e2+2))); 
    ell(i)  =(1+2*[C*((e3-1)/(e3+2))+(1-C)*((e4-1)/(e4+2))])/(1-C*((e3-1)/(e3+2))-(1-C)*((e4-1)/(e4+2))); 
    mpp(i)  =(mp2*mp1)/(C(i)*mp2+(1-C(i))*mp1); 
    Egd(i)  =(1-C(i))*Eg1+C(i)*Eg2; 
    Egi(i)  =(1-C(i))*Eg11+C(i)*Eg22; 
end 
     
eh=ehh(1);      %Sets eh  
el=ell(2);      %Sets el 
Egd=Egd(1);     %Sets the direct bandgap from calculations above 
Egi=Egi(1);     %Sets the indirect bandgap from calculations above 
mp=mpp(1);      %Sets the combined effective mass from calculations above 
  
mu_d=(mu_2n*m_nd2^1.5*(1/eh2-1/el2))/(m_nd1^1.5*(1/eh-1/el));  %direct mobility 
mu_i=(mu_1n*m_ni2^1.5*(1/eh1-1/el1))/(m_ni1^1.5*(1/eh-1/el));  %indirect mobility 
  
Rd=1/(1+(m_ni/m_nd)^1.5*exp((Egd-Egi)/(k*T)));                 %Ratio calculations  
  
InGaPwmu_n=mu_d*Rd+mu_i*(1-Rd);                                %e- mobility for InGaP window 
InGaPwmu_p=(mu_2p*mp2^1.5*(1/eh2-1/el2))/(mp^1.5*(1/eh-1/el)); %hole mobility for InGaP window 
end 
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APPENDIX K. INGAP EMITTER MOBILITY FUNCTION 

function [InGaPemu_n,InGaPemu_p]=InGaP_emitter(N) 
%%This function takes in the doping concentrations and performs the 
%%necessary mobility calculations necessary to input to the associated 
%%deckbuild file for Silvaco to run efficiently. 
  
%% Parameters necessary for this function to run effiiciently 
  
T=300;               %Temp set to 300K 
k=8.617e-5;          %Plank's constant in eV to be used in conversion later  
  
C=[0.51 0.49];       %Molar fractions/percentages utilized for calculations used late 
  
[m_nd,m_ni,eh,el,mp,Egd,Egi]=par_InP;          %Parameters obtained for InP 
eh1=eh; 
el1=el; 
e1=eh; 
e3=el; 
m_nd1=m_nd; 
m_ni1=m_ni; 
mp1=mp; 
Eg1=Egd; 
Eg11=Egi; 
  
[m_nd,m_ni,eh,el,mp,Egd,Egi]=par_GaP;          %Parameters obtained for GaP 
eh2=eh; 
el2=el; 
e2=eh; 
e4=el; 
m_nd2=m_nd; 
m_ni2=m_ni; 
mp2=mp; 
Eg2=Egd; 
Eg22=Egi; 
  
%% Calculations performed for the following mobilities, while taking into consideration their molar fractional 
combinations  
[InPhmu_n,InPhmu_p] = mobility_InPh(T,N);    %Mobilities determined for InP 
mu_1n=InPhmu_n(2); 
[GaPhmu_n,GaPhmu_p] = mobility_GaPh(T,N);    %Mobilities determined for GaP 
mu_2n=GaPhmu_n(2); 
mu_2p=GaPhmu_p(2); 
  
for i=1:length(C) 
    ehh(i)  =(1+2*[C*((e1-1)/(e1+2))+(1-C)*((e2-1)/(e2+2))])/(1-C*((e1-1)/(e1+2))-(1-C)*((e2-1)/(e2+2))); 
    ell(i)  =(1+2*[C*((e3-1)/(e3+2))+(1-C)*((e4-1)/(e4+2))])/(1-C*((e3-1)/(e3+2))-(1-C)*((e4-1)/(e4+2))); 
    mpp(i)  =(mp2*mp1)/(C(i)*mp2+(1-C(i))*mp1); 
    Egd(i)  =(1-C(i))*Eg1+C(i)*Eg2; 
    Egi(i)  =(1-C(i))*Eg11+C(i)*Eg22; 
end 
     
eh=ehh(1);  %Sets eh  
el=ell(2);  %Sets el 
Egd=Egd(1); %Sets the direct bandgap from calculations above 
Egi=Egi(1); %Sets the indirect bandgap from calculations above 
mp=mpp(1);  %Sets the combined effective mass from calculations above 
  
mu_d=(mu_2n*m_nd2^1.5*(1/eh2-1/el2))/(m_nd1^1.5*(1/eh-1/el)); %direct mobility 
mu_i=(mu_1n*m_ni2^1.5*(1/eh1-1/el1))/(m_ni1^1.5*(1/eh-1/el)); %indirect mobility 
  
Rd=1/(1+(m_ni/m_nd)^1.5*exp((Egd-Egi)/(k*T)));                %Ratio calculations  
  
InGaPemu_n=mu_d*Rd+mu_i*(1-Rd);                               %e- mobility for InGaP emitter 
InGaPemu_p=(mu_2p*mp2^1.5*(1/eh2-1/el2))/(mp^1.5*(1/eh-1/el));%hole mobility for InGaP emitter 
end 
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APPENDIX L. INGAP BASE MOBILITY FUNCTION 

function [InGaPbmu_n,InGaPbmu_p]=InGaP_base(N) 
%%This function takes in the doping concentrations and performs the 
%%necessary mobility calculations necessary to input to the associated 
%%deckbuild file for Silvaco to run efficiently. 
  
%% Parameters necessary for this function to run effiiciently 
  
T=300;               %Temp set to 300K 
k=8.617e-5;          %Plank's constant in eV to be used in conversion later  
  
C=[0.51 0.49];       %Molar fractions/percentages utilized for calculations used later  
  
[m_nd,m_ni,eh,el,mp,Egd,Egi]=par_InP;          %Parameters obtained for InP 
eh1=eh; 
el1=el; 
e1=eh; 
e3=el; 
m_nd1=m_nd; 
m_ni1=m_ni; 
mp1=mp; 
Eg1=Egd; 
Eg11=Egi; 
  
[m_nd,m_ni,eh,el,mp,Egd,Egi]=par_GaP;          %Parameters obtained for GaP 
eh2=eh; 
el2=el; 
e2=eh; 
e4=el; 
m_nd2=m_nd; 
m_ni2=m_ni; 
mp2=mp; 
Eg2=Egd; 
Eg22=Egi; 
  
%% Calculations performed for the following mobilities, while taking into consideration their molar fractional 
combinations  
[InPhmu_n,InPhmu_p] = mobility_InPh(T,N);    %Mobilities determined for InP 
mu_1n=InPhmu_n(3); 
[GaPhmu_n,GaPhmu_p] = mobility_GaPh(T,N);    %Mobilities determined for GaP 
mu_2n=GaPhmu_n(3); 
mu_2p=GaPhmu_p(3); 
  
for i=1:length(C) 
    ehh(i)  =(1+2*[C*((e1-1)/(e1+2))+(1-C)*((e2-1)/(e2+2))])/(1-C*((e1-1)/(e1+2))-(1-C)*((e2-1)/(e2+2))); 
    ell(i)  =(1+2*[C*((e3-1)/(e3+2))+(1-C)*((e4-1)/(e4+2))])/(1-C*((e3-1)/(e3+2))-(1-C)*((e4-1)/(e4+2))); 
    mpp(i)  =(mp2*mp1)/(C(i)*mp2+(1-C(i))*mp1); 
    Egd(i)  =(1-C(i))*Eg1+C(i)*Eg2; 
    Egi(i)  =(1-C(i))*Eg11+C(i)*Eg22; 
end 
     
eh=ehh(1);             %Sets eh  
el=ell(2);             %Sets el 
Egd=Egd(1);            %Sets the direct bandgap from calculations above 
Egi=Egi(1);            %Sets the indirect bandgap from calculations above 
mp=mpp(1);             %Sets the combined effective mass from calculations above 
  
  
mu_d=(mu_2n*m_nd2^1.5*(1/eh2-1/el2))/(m_nd1^1.5*(1/eh-1/el)); %direct mobility 
mu_i=(mu_1n*m_ni2^1.5*(1/eh1-1/el1))/(m_ni1^1.5*(1/eh-1/el)); %indirect mobility 
  
Rd=1/(1+(m_ni/m_nd)^1.5*exp((Egd-Egi)/(k*T)));                 %Ratio calculations  
  
InGaPbmu_n=mu_d*Rd+mu_i*(1-Rd);                                %e- mobility for InGaP window 
InGaPbmu_p=(mu_2p*mp2^1.5*(1/eh2-1/el2))/(mp^1.5*(1/eh-1/el)); %hole mobility for InGaP window 
end 
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APPENDIX M. INALGAP WINDOW MOBILITY FUNCTION 

function [InAlGaPwmu_n,InAlGaPwmu_p]=InAlGaP_window(N) 
%%This function takes in the doping concentrations and performs the 
%%necessary mobility calculations necessary to input to the associated 
%%deckbuild file for Silvaco to run efficiently. 
  
%% Parameters necessary for this function to run effiiciently 
  
T=300;               %Temp set to 300K 
k=8.617e-5;          %Plank's constant in eV to be used in conversion later  
  
C=[0.53 0.47];%Molar fractions/percentages utilized for calculations used later  
  
[m_nd,m_ni,eh,el,mp,Egd,Egi]=par_AlP;         %Parameters obtained for AlP 
eh1=eh; 
el1=el; 
e1=eh; 
e3=el; 
m_nd1=m_nd; 
m_ni1=m_ni; 
mp1=mp; 
Eg1=Egd; 
Eg11=Egi; 
  
[eh,el,Egd,Egi,mp]=AlGaP_window(N);         %Parameters obtained for AlGaP  
eh2=eh; 
el2=el; 
e2=eh; 
e4=el; 
m_nd2=m_nd; 
m_ni2=m_ni; 
mp2=mp; 
Eg2=Egd; 
Eg22=Egi; 
  
%% Calculations performed for the following mobilities, while taking into consideration their molar fractional 
combinations  
[GaPhmu_n,GaPhmu_p] = mobility_GaPh(T,N);     %Mobilities determined for GaP 
mu_1n=GaPhmu_n(1); 
[InPhmu_n,InPhmu_p] = mobility_InPh(T,N);     %Mobilities determined for InP 
mu_2n=InPhmu_n(1); 
mu_2p=InPhmu_p(1); 
  
for i=1:length(C) 
    ehh(i)  =(1+2*[C*((e1-1)/(e1+2))+(1-C)*((e2-1)/(e2+2))])/(1-C*((e1-1)/(e1+2))-(1-C)*((e2-1)/(e2+2))); 
    ell(i)  =(1+2*[C*((e3-1)/(e3+2))+(1-C)*((e4-1)/(e4+2))])/(1-C*((e3-1)/(e3+2))-(1-C)*((e4-1)/(e4+2))); 
    mpp(i)  =(mp2*mp1)/(C(i)*mp2+(1-C(i))*mp1); 
    Egd(i)  =(1-C(i))*Eg1+C(i)*Eg2; 
    Egi(i)  =(1-C(i))*Eg11+C(i)*Eg22; 
end 
     
eh=ehh(1);         %Sets eh  
el=ell(2);         %Sets el 
Egd=Egd(1);        %Sets the direct bandgap from calculations above 
Egi=Egi(1);        %Sets the indirect bandgap from calculations above 
mp=mpp(1);         %Sets the combined effective mass from calculations above 
  
mu_d=(mu_2n*m_nd2^1.5*(1/eh2-1/el2))/(m_nd1^1.5*(1/eh-1/el)); %direct mobility 
mu_i=(mu_1n*m_ni2^1.5*(1/eh1-1/el1))/(m_ni1^1.5*(1/eh-1/el)); %indirect mobility 
  
Rd=1/(1+(m_ni/m_nd)^1.5*exp((Egd-Egi)/(k*T)));                %Ratio calculations  
  
InAlGaPwmu_n=mu_d*Rd+mu_i*(1-Rd);                                %e- mobility for InAlGaP window 
InAlGaPwmu_p=(mu_2p*mp2^1.5*(1/eh2-1/el2))/(mp^1.5*(1/eh-1/el)); %hole mobility for InAlGaP window 
end 
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APPENDIX N. INALGAP BSF MOBILITY FUNCTION 

function [InAlGaPbsfmu_n,InAlGaPbsfmu_p]=InAlGaP_bsf(N) 
%%This function takes in the doping concentrations and performs the 
%%necessary mobility calculations necessary to input to the associated 
%%deckbuild file for Silvaco to run efficiently. 
  
%% Parameters necessary for this function to run effiiciently 
T=300;                  %Temp set to 300K 
k=8.617e-5;             %Plank's constant in eV to be used in conversion later  
  
C=[0.53 0.47];          %Molar fractions/percentages utilized for calculations used later  
  
  
[m_nd,m_ni,eh,el,mp,Egd,Egi]=par_AlP;  %Parameters obtained for AlP 
eh1=eh; el1=el; 
e1=eh; 
e3=el; 
m_nd1=m_nd; 
m_ni1=m_ni; 
mp1=mp; 
Eg1=Egd; 
Eg11=Egi; 
  
[eh,el,Egd,Egi,mp]=AlGaP_bsf(N);       %Parameters obtained for AlGaP  
eh2=eh; 
el2=el; 
e2=eh; 
e4=el; 
m_nd2=m_nd; 
m_ni2=m_ni; 
mp2=mp; 
Eg2=Egd; 
Eg22=Egi; 
  
%% Calculations performed for the following mobilities, while taking into consideration their molar fractional 
combinations  
[GaPhmu_n,GaPhmu_p] = mobility_GaPh(T,N);  %Mobilities determined for GaP 
mu_1n=GaPhmu_n(4); 
[InPhmu_n,InPhmu_p] = mobility_InPh(T,N);  %Mobilities determined for InP 
mu_2n=InPhmu_n(4); 
mu_2p=InPhmu_p(4); 
  
for i=1:length(C) 
    ehh(i)  =(1+2*[C*((e1-1)/(e1+2))+(1-C)*((e2-1)/(e2+2))])/(1-C*((e1-1)/(e1+2))-(1-C)*((e2-1)/(e2+2))); 
    ell(i)  =(1+2*[C*((e3-1)/(e3+2))+(1-C)*((e4-1)/(e4+2))])/(1-C*((e3-1)/(e3+2))-(1-C)*((e4-1)/(e4+2))); 
    mpp(i)  =(mp2*mp1)/(C(i)*mp2+(1-C(i))*mp1); 
    Egd(i)  =(1-C(i))*Eg1+C(i)*Eg2; 
    Egi(i)  =(1-C(i))*Eg11+C(i)*Eg22; 
end 
     
eh=ehh(1);           %Sets eh  
el=ell(2);           %Sets el 
Egd=Egd(1);          %Sets the direct bandgap from calculations above 
Egi=Egi(1);          %Sets the indirect bandgap from calculations above 
mp=mpp(1);           %Sets the combined effective mass from calculations above 
  
mu_d=(mu_2n*m_nd2^1.5*(1/eh2-1/el2))/(m_nd1^1.5*(1/eh-1/el)); %direct mobility 
mu_i=(mu_1n*m_ni2^1.5*(1/eh1-1/el1))/(m_ni1^1.5*(1/eh-1/el)); %indirect mobility 
  
Rd=1/(1+(m_ni/m_nd)^1.5*exp((Egd-Egi)/(k*T)));                %Ratio calculations  
  
InAlGaPbsfmu_n=mu_d*Rd+mu_i*(1-Rd);                                %e- mobility for InAlGaP BSF 
InAlGaPbsfmu_p=(mu_2p*mp2^1.5*(1/eh2-1/el2))/(mp^1.5*(1/eh-1/el)); %hole mobility for InAlGaP BSF 
end 
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APPENDIX O. ALGAP WINDOW PARAMETER FUNCTION 

function [eh,el,Egd,Egi,mp]=AlGaP_window(N) 
 
T=300; 
k=8.617e-5; 
  
C=[0.7 0.3]; 
  
[m_nd,m_ni,eh,el,mp,Egd,Egi]=par_AlP; 
eh1=eh; 
el1=el; 
e1=eh; 
e3=el; 
m_nd1=m_nd; 
m_ni1=m_ni; 
mp1=mp; 
Eg1=Egd; 
Eg11=Egi; 
  
[m_nd,m_ni,eh,el,mp,Egd,Egi]=par_GaP; 
eh2=eh; 
el2=el; 
e2=eh; 
e4=el; 
m_nd2=m_nd; 
m_ni2=m_ni; 
mp2=mp; 
Eg2=Egd; 
Eg22=Egi; 
  
[GaPhmu_n,GaPhmu_p] = mobility_GaPh(T,N); 
mu_1n=GaPhmu_n(:,1); 
[InPhmu_n,InPhmu_p] = mobility_InPh(T,N); 
mu_2n=InPhmu_n(:,1); 
mu_2p=InPhmu_p(:,1); 
  
for i=1:length(C) 
    ehh(i)  =(1+2*[C*((e1-1)/(e1+2))+(1-C)*((e2-1)/(e2+2))])/(1-C*((e1-1)/(e1+2))-(1-C)*((e2-1)/(e2+2))); 
    ell(i)  =(1+2*[C*((e3-1)/(e3+2))+(1-C)*((e4-1)/(e4+2))])/(1-C*((e3-1)/(e3+2))-(1-C)*((e4-1)/(e4+2))); 
    mpp(i)  =(mp2*mp1)/(C(i)*mp2+(1-C(i))*mp1); 
    Egd(i)  =(1-C(i))*Eg1+C(i)*Eg2; 
    Egi(i)  =(1-C(i))*Eg11+C(i)*Eg22; 
end 
     
eh=ehh(1); 
el=ell(2); 
Egd=Egd(1); 
Egi=Egi(1); 
mp=mpp(1); 
  
end 
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APPENDIX P. ALGAAS MOBILITY FUNCTION 

 
function [AlGaAsbsfmu_n,AlGaAsbsfmu_p]=AlGaAs_bsf(N) 
% clear all; clc; 
  
% [N,design_thickness]=input_decks(1,0,1,1,1); 
  
T=300; 
k=8.617e-5; 
  
C=[0.7 0.3]; 
  
[m_nd,m_ni,eh,el,mp,Egd,Egi]=par_AlAs; 
eh1=eh; 
el1=el; 
e1=eh; 
e3=el; 
m_nd1=m_nd; 
m_ni1=m_ni; 
mp1=mp; 
Eg1=Egd; 
Eg11=Egi; 
  
[m_nd,m_ni,eh,el,mp,Egd,Egi]=par_GaAs; 
eh2=eh; 
el2=el; 
e2=eh; 
e4=el; 
m_nd2=m_nd; 
m_ni2=m_ni; 
mp2=mp; 
Eg2=Egd; 
Eg22=Egi; 
  
[AlAsmu_n,AlAsmu_p] = mobility_AlAs(T,N); 
mu_1n=AlAsmu_n(8); 
[GaAsmu_n,GaAsmu_p] = mobility_GaAs(T,N); 
mu_2n=GaAsmu_n(8); 
mu_2p=GaAsmu_p(8); 
  
for i=1:length(C) 
    ehh(i)  =(1+2*[C*((e1-1)/(e1+2))+(1-C)*((e2-1)/(e2+2))])/(1-C*((e1-1)/(e1+2))-(1-C)*((e2-1)/(e2+2))); 
    ell(i)  =(1+2*[C*((e3-1)/(e3+2))+(1-C)*((e4-1)/(e4+2))])/(1-C*((e3-1)/(e3+2))-(1-C)*((e4-1)/(e4+2))); 
    mpp(i)  =(mp2*mp1)/(C(i)*mp2+(1-C(i))*mp1); 
    Egd(i)  =(1-C(i))*Eg1+C(i)*Eg2; 
    Egi(i)  =(1-C(i))*Eg11+C(i)*Eg22; 
end 
     
eh=ehh(1); 
el=ell(2); 
Egd=Egd(1); 
Egi=Egi(1); 
mp=mpp(1); 
  
mu_d=(mu_2n*m_nd2^1.5*(1/eh2-1/el2))/(m_nd1^1.5*(1/eh-1/el)); 
mu_i=(mu_1n*m_ni2^1.5*(1/eh1-1/el1))/(m_ni1^1.5*(1/eh-1/el)); 
  
Rd=1/(1+(m_ni/m_nd)^1.5*exp((Egd-Egi)/(k*T))); 
  
AlGaAsbsfmu_n=mu_d*Rd+mu_i*(1-Rd); 
AlGaAsbsfmu_p=(mu_2p*mp2^1.5*(1/eh2-1/el2))/(mp^1.5*(1/eh-1/el)); 
end 
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APPENDIX Q. CREATE DESIGN SPACE VECTOR 

function [N,design_thickness]=input_decks(TJ,on_off,linux_PC,ruby,model)  
% 
%      [N,design_thickness]=input_decks(TJ,on_off,linux_PC,ruby,model)  
% 
% This function calls get_designspace with the following inputs 
% TJ=0, runs the get_designspace with only 18 factors 
% TJ=1, runs the get_designspace with 22 factors including the tunnel 
% junction thicknesses  
% 
% on_off=1, provides command to plot the resulting mobilities from either 
% TJ=0/1 results 
% on_off=0, provides command not to plot the resulting mobilities from 
% either TJ=0/1 results 
% 
%  **Note: Linux execution will only work if the user opens Matlab in the** 
%  **Public folder, due to that's the current location of the Ruby25x-64*** 
%  **library.************************************************************** 
% 
% linux_PC=1, performs command line for PC execution 
% linux_PC=0, performs command line for linux execution 
% 
% ruby=1, runs the stack command that provides 129 design points for 18-22 
% factors  
% ruby=0, runs the level command that provides 2817 design points for 18-22 
% factors 
% 
% model=0, runs the thicknesses and doping concentratons for for 18-22 
% factors derived from the original model  
% model=1, runs the thicknesses and doping concentratons (including TJ's)  
% from the original model  
  
base=0.55; %orginal base thickness 
perc=.50;  %percentage difference 
% bmin=base - base*perc; 
% bmax=base + base*perc; 
bmin=0.53; 
bmax=0.57; 
  
if TJ==0 
factors=18; 
t_min = [0.01 0.02 bmin 0.01 0.02 0.48 2.03 0.08 0.18]; 
t_max = [0.05 0.06 bmax 0.05 0.06 0.52 2.07 0.12 0.22]; 
N_min = [17   17    15    17     17    17    16     17    17]; 
N_max = [19   19    17    19     19    19    18     19    19]; 
else  
factors=22; 
t_min = [0.01 0.02 bmin 0.01 0.02 0.48 2.03 0.08 0.18 0.005 0.005]; 
t_max = [0.05 0.06 bmax 0.05 0.06 0.52 2.07 0.12 0.22 0.045 0.045]; 
N_min = [17   17    15    17    17    17    16    17    17   18   18]; 
N_max = [19   19    17    19    19    19    18    19    19   20   20];   
end 
 
  
[N,design_thickness]=get_designspace(factors,t_min,t_max,N_min,N_max,on_off,linux_PC,ruby,model); 
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APPENDIX R. CREATE DESIGN SPACE FROM RUBY  

function [N,design_thickness]=get_designspace(factors,t_min,t_max,N_min,N_max,on_off,linux_PC,ruby,model) 
% 
% [N,design_thickness]=get_designspace(factors,t_min,t_max,N_min,N_max,on_off,linux_PC,ruby,model) 
% 
% Creates the needed .txt file for the desired inputs for NOLH to run and 
% returns N (doping concentration) and thicknesses (design_thickness) for 
% use in Silvaco 
% 
% factors should be entered in as a factor of 2, due to this function will 
% always need an input for thickness and doping concetrations for each 
% experimental run, factors should be atleast 2, but this can perform up to 22 factors  
% 
% t_min and t_max are inputs for min and max thicknesses expected in microns 
% 
% N_min and N_max are inputs for min and max doping concentrations interms 
%          of the exponent desired  
% 
% on_off=1, performs mobility check,  
% on_off=0, turns off mobility check 
% 
%  **Note: Linux execution will only work if the user opens Matlab in the** 
%  **Public folder, due to that's the current location of the Ruby25x-64*** 
%  **library.************************************************************** 
% 
% linux_PC=1, performs command line for PC execution 
% linux_PC=0, performs command line for linux execution 
% 
% ruby=1, runs the stack command that provides 129 design points for 18-22 
%  factors  
% ruby=0, runs the level command that provides 2817 design points for 18-22 
%  factors 
% 
% model=0, runs the thicknesses and doping concentratons for for 18-22 
%   factors derived from the original model  
% model=1, runs the thicknesses and doping concentratons (including TJ's)  
%   from the original model, bypasses NOLH completely   
  
if model==0 %Calls for NOLH to execute  
     
%% Number of factors that're being computed 
x1_txt = factors; 
  
%% Min and Max of thicknesses entered 
  
size2  = x1_txt/2;         %1/2's the factor for allocation of the thickness array 
x2_txt = zeros(size2,1);   %creates the array for thickness based on allocation from factors 
x2_txt = t_min;            %takes input from min thickness for use below 
  
size22  = x1_txt/2;        %1/2's the factor for allocation of the thickness array 
x22_txt = zeros(size22,1); %creates the array for thickness based on allocation from factors 
x22_txt = t_max;           %takes input from max thickness for use below 
  
%% Max and Min of doping concentrations entered 
  
size3  = x1_txt/2;         %1/2's the factor for allocation of the doping concentration array 
x3_txt = zeros(size3,1);   %creates the array for doping concentration based on allocation from factors 
x3_txt = N_min;            %takes input from min doping concentration for use below 
  
size33  = x1_txt/2;        %1/2's the factor for allocation of the doping concentration array 
x33_txt = zeros(size3,1);  %creates the array for doping concentration based on allocation from factors 
x33_txt = N_max;           %takes input from max doping concentration for use below 
  
%% Combine the results for the min and max entered for assimilation below 
  
LB_thick=zeros(size2,1);   %Creates the allocation for the lower bounds for thickness 
UB_thick=zeros(size2,1);   %Creates the allocation for the upper bounds for thickness 
  
LB_dop=zeros(size2,1);     %Creates the allocation for the lower bounds for doping concentration 
UB_dop=zeros(size2,1);     %Creates the allocation for the upper bounds for doping concentration 
  
dec=zeros(size2,1);        %Creates the allocation for the decimal places input needed for Ruby 
  
sizeA=x1_txt;              %Creates the value needed for the length of the associated for loops below 
  
for i=1:sizeA/2 
    LB_thick(i)=x2_txt(i);  %Fills the lower bounds of thickness 
    UB_thick(i)=x22_txt(i); %Fills the upper bounds of thickness 
    LB_dop(i)=x3_txt(i);    %Fills the lower bounds of doping concentrations 
    UB_dop(i)=x33_txt(i);   %Fills the upper bounds of doping concentrations 
end 
  
for i=1:sizeA 
    dec(i)=3;               %Fills the needed decimal places input for Ruby based on all input factors 
end 
  
fid = fopen('results.txt', 'wt' );  %Opens/creates the .txt file for fill in below 
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for i=1:length(LB_thick) 
   fprintf(fid,"%1d %1d",LB_thick(i),LB_dop(i)); %Fills/prints the min thickness and doping concentrations respectively 
   fprintf(fid," ");                              
end 
  
fprintf(fid,"\n");                               %Ensures next line 
  
for i=1:length(UB_thick) 
   fprintf(fid,"%1d %1d",UB_thick(i),UB_dop(i)); %Fills/prints the max thickness and doping concentrations respectively 
   fprintf(fid," "); 
end 
  
fprintf(fid,"\n");                               %Ensures next line 
  
for i=1:length(dec) 
   fprintf(fid,"%1d",dec(i));                    %Fills/prints the decimal input 
   fprintf(fid," "); 
end 
  
fprintf(fid,"\n");                               %Ensures next line 
  
fclose(fid);                                     %Closes the .txt file 
  
%% Execution of Ruby and NOLHS 
  
% if linux_PC==0 
%     if ruby==1 
%         command = '/usr/local/bin/ruby stack_nolhs.rb -s 1 -e <results.txt >mydesign3.csv '; 
%     else 
%         command = '/usr/local/bin/ruby stack_nolhs.rb -l 129 -e <results.txt >mydesign3.csv '; 
%     end 
% else  
if linux_PC==0 
    if ruby==1 
        command = 'stack_nolhs.rb -s 1 -e <results.txt >mydesign3.csv '; 
    elseif ruby==2 
        command = 'stack_nolhs.rb -s 2 -e <results.txt >mydesign3.csv '; 
    elseif ruby==3 
        command = 'stack_nolhs.rb -s 3 -e <results.txt >mydesign3.csv '; 
    elseif ruby==4 
        command = 'stack_nolhs.rb -s 4 -e <results.txt >mydesign3.csv '; 
    elseif ruby==5 
        command = 'stack_nolhs.rb -s 5 -e <results.txt >mydesign3.csv '; 
    elseif ruby==6 
        command = 'stack_nolhs.rb -l 129 -e <results.txt >mydesign3.csv '; 
    end 
else  
    if ruby==1 
        command ='CMD /C stack_nolhs.rb -s 1 -e <results.txt >mydesign3.csv ';  %Calls the ruby program and uses the 
.txt file just created  
    else 
        command ='CMD /C stack_nolhs.rb -l 129 -e <results.txt >mydesign3.csv ';    
    end 
end 
  
status=system(command);                                                 %actually calls the command implemented above 
  
  
design=Table2array(readTable('mydesign3.csv'));                         %converts .csv data into readable data for 
Matlab 
  
%% Create individual matrices of resulting NOLH data for thicknesses and doping concentrations 
  
rows=length(design(:,1));                                        %creates the needed length of rows for the design 
array 
columns=length(design(1,:));                                     %creates the needed length of columns for the design 
array 
thickness=zeros(rows,columns/2);                                 %creates thickness array for data  
for i=1:length(columns/2) 
    thickness(:,1:end)=design(:,1:2:end);                        %fills every other element of design array 
end                                                              %receives every odd column 
 
doping=zeros(rows,columns/2);                                    %creates doping array for data 
for i=1:length(columns/2) 
    doping(:,1:end)=design(:,2:2:end);                            %fills every other element of design array 
end                                                               %receives every odd column 
else                                  %cancels NOLH to use the model parameters below with the  
                                      %TJ thicknesses and doping concentrations 
          
doping    = [18   18  16  18  18 18   17 18 18   19   19]; %original model doping concentrations 
thickness = [.03 .05 .55 .03 .04 .5 2.05 .1 .2 .025 .025]; %original model thicknesses  
end 
%% Call mobility functions and utilize the doping concebtrations derived from ruby  
power=10.^doping;                  %converts doping data into the form needed for our Silvaco 
N=power; 
design_thickness=thickness; 
if on_off==1 
     mob_test(N)                                %checks results of doping concentrations with mobility plots 
else                                            %turns on/off mobility check of doping concentrations 
end 
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APPENDIX S.   CREATE DATA VECTORS FROM .LOG FILE 

function [eff,Voc, Jsc, FF]=get_designEff(N) 
% This function retrieves the efficiencies,open circuit voltage, and  short  
% circuit current of the all designs created and places them into an 
% usuable array 
  
% [N,design_thickness]=input_decks(1,0,0,1,0); 
  
eff=[];     %creates array for efficency  
Voc=[];     %creates array for open circuit voltage 
Jsc=[];     %creates array for short circuit current 
FF =[];     %creates array for Fill Factor 
  
for j=1:length(N(:,1)) 
        command=sprintf('forward_IVSimpleTJ%d.log',j);    %generates usable command for a .log file 
command to be scripted 
%         command=command; 
        if isfile(command)                                %checks to see whether or not .log file 
exists 
           [emitterV,emitterVV,baseC,baseCC]=emitter_baseRead(command); %performs execution to pull 
and read data for current and voltage values from the .log file 
%                disp(j)                   
%                disp(solarCell_eff(emitterV,emitterVV,baseC,baseCC));            
           [effout, Vocout, Jscout, FFout] = solarCell_eff(emitterV,emitterVV,baseC,baseCC);  
%performs desired calculations for the efficiency for each design 
           [eff]=[eff effout];                           %creates array for efficiency 
           [Voc]=[Voc Vocout];                           %creates array for open circuit voltage 
           [Jsc]=[Jsc Jscout];                           %creates array for short circuit current 
           [FF] =[FF FFout];                             %creates array for Fill Factor  
        else 
           eff=[eff 0];  %ensures efficiency array is filled even though .log file may have errorneous 
data  
           Voc=[Voc 0];  %ensures open circuit voltage array is filled even though .log file may have 
errorneous data  
           Jsc=[Jsc 0];  %ensures short circuit current array is filled even though .log file may have 
errorneous data  
           FF =[FF  0];  %ensures Fill Factor array is filled even though .log file may have 
errorneous data  
        end 
    end 
  
end 
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APPENDIX T. READ DATA FROM .LOG FILE  

function [emitterV,emitterVV,baseC,baseCC]=emitter_baseRead(command) 
%% This function reads .log files produced from Silvaco ATLAS 
  
s = dir(command); 
  
if(s.bytes>0) 
  
    testlogfile = fopen(command); %loads .log file from Silvac 
  
    emitterV = [];                          %creates array for Emitter Voltage 
for plotting 
    baseC = [];                             %creates array for Base Current for 
plotting 
  
    emitterVV = [];                         %creates array for Emitter Voltage 
for calculations 
    baseCC = [];                            %creates array for Base Current for 
calculations  
  
    tline = fgetl(testlogfile);            %reads line from file and discards 
newline character 
    while ischar(tline)                    %checks if input is a character 
array 
        datavals = strsplit(tline);        %splts string at the delimiter  
        if(datavals{1}=='d')               %checks for character 'd' to start 
reading from .log file 
            if (str2num(datavals{21})>0) 
            emitterV  = [emitterV str2num(datavals{13})];  %{14} fills array 
for Emitter Voltage values 
            baseC     = [baseC    str2num(datavals{21})];  %{18} fills array 
for Base Current values  
            end 
            emitterVV  = [emitterVV str2num(datavals{13})];  %{14} fills array 
for Emitter Voltage values 
            baseCC     = [baseCC    str2num(datavals{21})];  %{18}fills array 
for Base Current values  
        end 
        tline = fgetl(testlogfile);        %ensures lines from .log file are 
read and discards newline character 
    end 
  
    fclose(testlogfile);                   %closes .log file from Silvaco 
  
else 
    emitterV = [0]; 
    baseC = [1]; 
    emitterVV = [0]; 
    baseCC = [1]; 
end 
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APPENDIX U. CREATE 𝜼𝜼,𝑽𝑽𝑶𝑶𝑶𝑶, 𝑱𝑱𝑺𝑺𝑶𝑶, & 𝑭𝑭𝑭𝑭 FROM .LOG FILE 

function [eff,Voc,Jsc,FF]=solarCell_eff(emitterV,emitterVV,baseC,baseCC) 
%% Calculating further parameters necessary for calculations for the 
performance of our solar cell 
%Constants needed 
q=1.61e-19;                %charge of one electron 
kT_q=0.0259;               %Einsten relationship 
Pin=135;                   %Input power efficiency at AM0 in mW/cm^2 
% Pin=100;                 %Input power efficiency at AM1.5 in mW/cm^2 
factor=1e11; 
  
%Calculations for the short circuit current 
Jsc=baseC(1)*factor;       %Calculates the short circuit current density in 
mA/cm^2 
  
%Finding the point where the current is approximately zero 
loc_neg = find(baseCC<0,1);              %locates first negative value 
loc_pos = find(baseCC>0,length(baseCC)); %locates positive values 
  
if(~isempty(loc_neg))                        %checks whether loc_neg is emtpy 
    last_pos=loc_pos(end);                   %locates last positive value 
    y1=baseCC(loc_neg)*factor;               %provides the negative value of 
the current  
    y2=baseCC(last_pos)*factor;              %provides the last positive value 
of the current  
    dy=y2-y1;                                %change in y 
    x1=emitterVV(loc_neg);                   %provides the value of voltage 
respective to current  
    x2=emitterVV(last_pos);                  %provides the value of voltage 
respective to current  
    dx=x2-x1;                                %change in x 
    m=dy/dx;                                 %calculates slope, m 
    b=y1-m*x1;                               %calculates constant for slope 
intercept equation 
    Voc=-y1/m+x1;                    %calculates Voc for the design 
         
    FF=trapz(emitterV,baseC.*factor)/(Jsc*Voc);  %Calculates the Fill Factor of 
the Solar Cell 
    Pout=Jsc*Voc*FF;    %Calculates the output power of the solar cell  
    eff=Pout/Pin;                                %Calculates the efficiency of 
the solar cell 
else                                         %if loc_neg is empty a zero is 
applied to the following 
    Voc=0; 
    FF=0; 
    Pout=0; 
    eff=0; 
end 
end 
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APPENDIX V. CREATING DECKBUILD FILES 

function creating_inputSimpleTJDecks(N,design_thickness) 
%% The purpose of this function is to create deckbuild files for pre-defined design space. 
  
design_thickness=design_thickness; 
  
[InAlGaPwmu_n,InAlGaPwmu_p]     = InAlGaP_window(N); 
[InGaPemu_n,InGaPemu_p]         = InGaP_emitter(N); 
[InGaPbmu_n,InGaPbmu_p]         = InGaP_base(N); 
[InAlGaPbsfmu_n,InAlGaPbsfmu_p] = InAlGaP_bsf(N); 
  
[GaAsTJnmu_n,GaAsTJnmu_p,GaAsTJpmu_n,GaAsTJpmu_p,GaAsenmu_n,GaAsenmu_p,GaAsbnmu_n,GaAsbnmu_p,GaAsbufnmu_n,GaAsbufnmu_p]=GaAs(N); 
  
[InGaPwmu_n,InGaPwmu_p]         = InGaP_window(N); 
[AlGaAsbsfmu_n,AlGaAsbsfmu_p]   = AlGaAs_bsf(N); 
  
  
for i=1:length(N(:,1)) 
     
tp_window  =design_thickness(i,1); %replacing line 4 
tp_emitter =design_thickness(i,2); %replacing line 5 
tp_base    =design_thickness(i,3); %replacing line 6 
tp_BSF     =design_thickness(i,4); %replacing line 7 
  
windowp_d  =N(i,1);                %replacing line 10 
emitterp_d =N(i,2);                %replacing line 11 
basep_d    =N(i,3);                %replacing line 12 
BSFp_d     =N(i,4);                %replacing line 13 
  
tp_TJ      =design_thickness(i,10); %replacing line 22 
TJ_d       =N(i,10);                %replacing line 23 
  
tb_window  =design_thickness(i,5); %replacing line 34 
tb_emitter =design_thickness(i,6); %replacing line 35 
tb_base    =design_thickness(i,7); %replacing line 36 
tb_BSF     =design_thickness(i,8); %replacing line 37 
tb_buffer  =design_thickness(i,9); 
  
windowb_d  =N(i,5);                %replacing line 39 
emitterb_d =N(i,6);                %replacing line 40 
baseb_d    =N(i,7);                %replacing line 41 
BSFb_d     =N(i,8);                %replacing line 42 
bufferb_d  =N(i,9); 
  
% fileID = fopen('test5_%dTJ.in','w',i); 
fileID = fopen(sprintf('test6_%dTJ.in',i),'w'); 
  
fprintf(fileID,'go ATLAS simflags = "-P 2"\n\n'); 
  
fprintf(fileID,'#solar top section cell thicknesses set\n'); 
fprintf(fileID,'set tp_window  ='); 
fprintf(fileID,'%6.2f\n',tp_window); 
  
fprintf(fileID,'set tp_emitter ='); 
fprintf(fileID,'%6.2f\n',tp_emitter); 
  
fprintf(fileID,'set tp_base    ='); 
fprintf(fileID,'%6.2f\n',tp_base) 
  
fprintf(fileID,'set tp_BSF     ='); 
fprintf(fileID,'%6.2f\n\n',tp_BSF); 
  
fprintf(fileID,'#solar top section cell doping concentrations set\n'); 
fprintf(fileID,'set windowp_d  ='); 
fprintf(fileID,'%6.2g\n',windowp_d); 
  
fprintf(fileID,'set emitterp_d ='); 
fprintf(fileID,'%6.2g\n',emitterp_d); 
  
fprintf(fileID,'set basep_d    ='); 
fprintf(fileID,'%6.2g\n',basep_d); 
  
fprintf(fileID,'set BSFp_d     ='); 
fprintf(fileID,'%6.2g\n\n',BSFp_d); 
  
fprintf(fileID,'#Top section mole compositions & affinity settings\n'); 
fprintf(fileID,'set wp_comp    = 0.49\n'); 
fprintf(fileID,'set bsfp_comp  = 0.7\n'); 
fprintf(fileID,'set InGaP_aff  = 3.87\n'); 
fprintf(fileID,'set AlGaAs_aff = 3.81\n\n'); 
  
fprintf(fileID,'#solar cell TJ \n'); 
fprintf(fileID,'set tp_TJ      = 0.025\n'); 
% fprintf(fileID,'%6.2d\n',0.025); 
fprintf(fileID,'set TJ_d       = 5e19\n\n'); 
% fprintf(fileID,'%6.2g\n\n',5e19); 
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fprintf(fileID,'set p_window   = $tp_window\n'); 
fprintf(fileID,'set p_emitter  = $p_window+$tp_emitter\n'); 
fprintf(fileID,'set p_base     = $p_emitter+$tp_base\n'); 
fprintf(fileID,'set p_bsf      = $p_base+$tp_BSF\n\n'); 
  
fprintf(fileID,'set p_TJ       = $p_BSF+$tp_TJ\n'); 
fprintf(fileID,'set n_TJ       = $p_TJ+$tp_TJ\n\n'); 
  
fprintf(fileID,'#solar bottom section cell thicknesses set\n'); 
fprintf(fileID,'set tb_window  ='); 
fprintf(fileID,'%6.2f\n',tb_window); 
  
fprintf(fileID,'set tb_emitter ='); 
fprintf(fileID,'%6.2f\n',tb_emitter); 
  
fprintf(fileID,'set tb_base    ='); 
fprintf(fileID,'%6.2f\n',tb_base); 
  
fprintf(fileID,'set tb_BSF     ='); 
fprintf(fileID,'%6.2f\n',tb_BSF); 
  
fprintf(fileID,'set tb_buffer  ='); 
fprintf(fileID,'%6.2f\n\n',tb_buffer); 
  
fprintf(fileID,'#solar bottom section cell doping concentrations set\n'); 
fprintf(fileID,'set windowb_d  ='); 
fprintf(fileID,'%6.2g\n',windowb_d); 
  
fprintf(fileID,'set emitterb_d ='); 
fprintf(fileID,'%6.2g\n',emitterb_d); 
  
fprintf(fileID,'set baseb_d    ='); 
fprintf(fileID,'%6.2g\n',baseb_d); 
  
fprintf(fileID,'set BSFb_d     ='); 
fprintf(fileID,'%6.2g\n',BSFb_d); 
  
fprintf(fileID,'set bufferb_d  ='); 
fprintf(fileID,'%6.2g\n\n',bufferb_d); 
  
fprintf(fileID,'#Bottom section mole compositions & affinity settings\n'); 
fprintf(fileID,'set wb_comp    = 0.49\n'); 
fprintf(fileID,'set bsfb_comp  = 0.7\n\n'); 
  
fprintf(fileID,'set b_window   = $n_TJ+$tb_window\n'); 
fprintf(fileID,'set b_emitter  = $b_window+$tb_emitter\n'); 
fprintf(fileID,'set b_base     = $b_emitter+$tb_base\n'); 
fprintf(fileID,'set b_bsf      = $b_base+$tb_BSF\n'); 
fprintf(fileID,'set b_buffer   = $b_bsf+$tb_buffer\n\n'); 
  
fprintf(fileID,'mesh\n'); 
fprintf(fileID,'x.mesh location=0               spacing=1 \n'); 
fprintf(fileID,'x.mesh location=1               spacing=1\n'); 
fprintf(fileID,'y.mesh location=0               spacing=$tp_window/20\n'); 
fprintf(fileID,'y.mesh location=$p_window       spacing=$tp_window/20\n'); 
fprintf(fileID,'y.mesh location=$p_emitter      spacing=$tp_emitter/100\n'); 
fprintf(fileID,'y.mesh location=$p_base         spacing=$tp_base/5\n'); 
fprintf(fileID,'y.mesh location=$p_bsf          spacing=$tp_BSF/100\n\n'); 
  
fprintf(fileID,'y.mesh location=$p_TJ           spacing=$tp_TJ/40\n'); 
fprintf(fileID,'#y.mesh location=$p_TJ+$tp_TJ    spacing=$tp_TJ/120\n'); 
fprintf(fileID,'y.mesh location=$n_TJ           spacing=$tp_TJ/40\n\n'); 
  
fprintf(fileID,'y.mesh location=$b_window       spacing=$tb_window/20\n'); 
fprintf(fileID,'y.mesh location=$b_emitter      spacing=$tb_emitter/100\n'); 
fprintf(fileID,'y.mesh location=$b_base         spacing=$tb_base/5\n'); 
fprintf(fileID,'y.mesh location=$b_bsf          spacing=$tb_BSF/100\n'); 
fprintf(fileID,'y.mesh location=$b_buffer       spacing=$tb_buffer/100\n\n'); 
  
fprintf(fileID,'#Top Section\n'); 
fprintf(fileID,'region num=1 material=InAlGaP x.min=0 y.min=0 x.max=1    y.max=$p_window   x.comp = 0.371 y.comp = 
0.159\n'); 
fprintf(fileID,'region num=2 material=InGaP   x.min=0 y.min=$p_window    y.max=$p_emitter  x.comp=0.49 \n'); 
fprintf(fileID,'region num=3 material=InGaP   x.min=0 y.min=$p_emitter   y.max=$p_base     x.comp=0.49\n'); 
fprintf(fileID,'region num=4 material=InAlGaP x.min=0 y.min=$p_base      y.max=$p_bsf      x.comp = 0.371 y.comp = 
0.159\n\n'); 
  
fprintf(fileID,'#tunnel junction\n'); 
fprintf(fileID,'region num=5 material=GaAs x.min=0 x.max=1 y.min=$p_bsf y.max=$p_TJ\n'); 
fprintf(fileID,'region num=6 material=GaAs x.min=0 x.max=1 y.min=$p_TJ  y.max=$n_TJ\n\n'); 
  
fprintf(fileID,'#Bottom Section\n'); 
fprintf(fileID,'region num=7  material=InGaP  x.min=0  y.min=$n_TJ       y.max=$b_window x.comp=0.49\n'); 
fprintf(fileID,'region num=8  material=GaAs   x.min=0  y.min=$b_window   y.max=$b_emitter\n'); 
fprintf(fileID,'region num=9  material=GaAs   x.min=0  y.min=$b_emitter  y.max=$b_base \n'); 
fprintf(fileID,'region num=10 material=AlGaAs x.min=0  y.min=$b_base     y.max=$b_bsf    x.comp=0.7\n'); 
fprintf(fileID,'region num=11 material=GaAs   x.min=0  y.min=$b_bsf      y.max=$b_buffer\n\n'); 
  
fprintf(fileID,'electrode name=Emitter  top\n'); 
fprintf(fileID,'electrode name=tunnel   x.min=0 x.max=1 y.min=$p_bsf y.max=$n_TJ material=GaAs\n'); 
fprintf(fileID,'electrode name=Base     bottom \n\n'); 
  
fprintf(fileID,'#For the top section\n'); 
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fprintf(fileID,'doping p.type uniform concentration=$windowp_d   y.min=0               y.max=$p_window\n'); 
fprintf(fileID,'doping p.type uniform concentration=$emitterp_d  y.min=$p_window       y.max=$p_emitter\n'); 
fprintf(fileID,'doping n.type uniform concentration=$basep_d     y.min=$p_emitter      y.max=$p_base\n'); 
fprintf(fileID,'doping n.type uniform concentration=$BSFp_d      y.min=$p_base         y.max=$p_bsf\n\n'); 
  
fprintf(fileID,'#For the bottom section\n'); 
% fprintf(fileID,'doping p.type uniform concentration=$windowb_d   y.min=$n_TJ           y.max=$b_window\n'); 
fprintf(fileID,'doping p.type uniform concentration=$windowb_d   y.min=$p_bsf          y.max=$b_window\n'); 
fprintf(fileID,'doping p.type uniform concentration=$emitterb_d  y.min=$b_window       y.max=$b_emitter\n'); 
fprintf(fileID,'doping n.type uniform concentration=$baseb_d     y.min=$b_emitter      y.max=$b_base\n'); 
fprintf(fileID,'doping n.type uniform concentration=$BSFb_d      y.min=$b_base         y.max=$b_bsf\n'); 
fprintf(fileID,'doping n.type uniform concentration=$bufferb_d   y.min=$b_bsf          y.max=$b_buffer\n\n'); 
  
fprintf(fileID,'#TJ doping\n'); 
fprintf(fileID,'doping n.type uniform concentration=$TJ_d        y.min=$p_bsf          y.max=$p_TJ\n'); 
fprintf(fileID,'doping p.type uniform concentration=$TJ_d        y.min=$p_TJ           y.max=$n_TJ\n\n'); 
  
fprintf(fileID,'#Mesh for calculation of non-local tunneling current contribution\n'); 
fprintf(fileID,'#qtx.mesh location=0 spacing=1\n'); 
fprintf(fileID,'#qtx.mesh location=1 spacing=1\n'); 
fprintf(fileID,'#qty.mesh location=$p_TJ-0.9*$tp_TJ spacing=$tp_TJ/400\n'); 
fprintf(fileID,'#qty.mesh location=$p_TJ+0.9*$tp_TJ spacing=$tp_TJ/400\n\n'); 
  
fprintf(fileID,'#For the top section\n'); 
fprintf(fileID,'material mun=%6.2d ',InAlGaPwmu_n); 
fprintf(fileID,'mup=%6.2d ',InAlGaPwmu_p); 
fprintf(fileID,'region=1 \n'); 
  
fprintf(fileID,'material mun=%6.2d ',InGaPemu_n); 
fprintf(fileID,'mup=%6.2d ',InGaPemu_p); 
fprintf(fileID,'region=2 \n'); 
  
fprintf(fileID,'material mun=%6.2d ',InGaPbmu_n); 
fprintf(fileID,'mup=%6.2d ',InGaPbmu_p); 
fprintf(fileID,'region=3 \n'); 
  
fprintf(fileID,'material mun=%6.2d ',InAlGaPbsfmu_n); 
fprintf(fileID,'mup=%6.2d ',InAlGaPbsfmu_p); 
fprintf(fileID,'region=4 \n\n'); 
  
fprintf(fileID,'#For the tunnel junction\n'); 
fprintf(fileID,'material mun=1.0874e+03  mup=66.5026 region=5\n '); 
% fprintf(fileID,'material mun=%6.2d ',1.0874e+03); 
% fprintf(fileID,'mup=%6.2d ',66.5026); 
% fprintf(fileID,'region=5 \n'); 
  
fprintf(fileID,'material mun=1.0874e+03  mup=66.5026 region=6\n\n '); 
% fprintf(fileID,'mup=66.5026); 
% fprintf(fileID,'region=6 \n\n'); 
  
% fprintf(fileID,'material mun=%6.2d ',GaAsTJpmu_n); 
% fprintf(fileID,'mup=%6.2d ',GaAsTJpmu_p); 
% fprintf(fileID,'region=6 \n\n'); 
  
fprintf(fileID,'#For the bottom section\n'); 
fprintf(fileID,'material mun=%6.2d ',InGaPwmu_n); 
fprintf(fileID,'mup=%6.2d ',InGaPwmu_p); 
fprintf(fileID,'region=7 \n'); 
  
fprintf(fileID,'material mun=%6.2d ',GaAsenmu_n); 
fprintf(fileID,'mup=%6.2d ',GaAsenmu_p); 
fprintf(fileID,'region=8 \n'); 
  
fprintf(fileID,'material mun=%6.2d ',GaAsbnmu_n); 
fprintf(fileID,'mup=%6.2d ',GaAsbnmu_p); 
fprintf(fileID,'region=9 \n'); 
  
fprintf(fileID,'material mun=%6.2d ',AlGaAsbsfmu_n); 
fprintf(fileID,'mup=%6.2d ',AlGaAsbsfmu_p); 
fprintf(fileID,'region=10 \n'); 
  
% fprintf(fileID,'material mun=%6.2d ',GaAsenmu_n); 
% fprintf(fileID,'mup=%6.2d ',GaAsenmu_p); 
% fprintf(fileID,'region=11 \n\n'); 
  
fprintf(fileID,'material mun=%6.2d ',GaAsbufnmu_n); 
fprintf(fileID,'mup=%6.2d ',GaAsbufnmu_p); 
fprintf(fileID,'region=11 \n\n'); 
  
fprintf(fileID,'contact name=tunnel resist=1e15\n\n'); 
  
fprintf(fileID,'material mat=InGaP   index.file=InGaP_ex.nk   \n'); 
fprintf(fileID,'material mat=AlGaAs  index.file=AlGaAs.nk     \n'); 
fprintf(fileID,'material mat=InAlGaP index.file=AlGaInP.nk\n\n'); 
  
fprintf(fileID,'material material=InGaP  affinity=$InGaP_aff\n'); 
fprintf(fileID,'material material=AlGaAs affinity=$AlGaAs_aff\n\n'); 
  
fprintf(fileID,'models print temperature=300 \n'); 
fprintf(fileID,'models srh conmob auger optr bgn fermi\n'); 
fprintf(fileID,'#model bbt.nonlocal bbt.nlderivs\n'); 
  
fprintf(fileID,'method newton #maxtraps=50\n'); 
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fprintf(fileID,'output con.band val.band charge opt.intens \n\n'); 
  
fprintf(fileID,'beam num=1 AM0 x.origin=0.5 y.origin=-1.0 angle=90\n\n'); 
  
fprintf(fileID,'solve init\n'); 
fprintf(fileID,'save outfile=equilibriumSimpleTJ%d.str\n\n',i); 
  
fprintf(fileID,'solve b1=0.9\n\n'); 
  
fprintf(fileID,'save outf=shortcircuitSimpleTJ%d.str\n\n',i); 
  
fprintf(fileID,'log outfileTJ=forward_IVSimpleTJ%d.log\n',i); 
fprintf(fileID,'solve name=Emitter vEmitter=0.0 vstep=0.05 vfinal=0.2\n\n'); 
  
fprintf(fileID,'save outfile=for_02SimpleTJ%d.str\n\n',i); 
  
fprintf(fileID,'solve name=Emitter vEmitter=0.2 vstep=0.01 vfinal=3.5\n'); 
fprintf(fileID,'log off\n\n'); 
  
fprintf(fileID,'save outfile=forSimpleTJ%d.str\n\n',i); 
  
fprintf(fileID,'quit\n\n'); 
  
fclose(fileID); 
  
end 
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APPENDIX W.  MODEL DECKBUILD FILE 

go ATLAS simflags = "-P 2" 
  
#solar top section cell thicknesses set 
set tp_window  =  0.03 
set tp_emitter =  0.05 
set tp_base    =  0.55 
set tp_BSF     =  0.03 
  
#solar top section cell doping concentrations set 
set windowp_d  = 2e+18 
set emitterp_d = 2e+18 
set basep_d    = 7e+16 
set BSFp_d     = 2e+18 
  
#Top section mole compositions & affinity settings 
set wp_comp    = 0.49 
set bsfp_comp  = 0.7 
set InGaP_aff  = 3.87 
set AlGaAs_aff = 3.81 
  
#solar cell TJ  
set tp_TJ =  0.03 
set TJ_d  = 2e+19 
  
set p_window   = $tp_window 
set p_emitter  = $p_window+$tp_emitter 
set p_base     = $p_emitter+$tp_base 
set p_bsf      = $p_base+$tp_BSF 
  
set p_TJ       = $p_BSF+$tp_TJ 
set n_TJ       = $p_TJ+$tp_TJ 
  
#solar bottom section cell thicknesses set 
set tb_window  =  0.04 
set tb_emitter =  0.50 
set tb_base    =  2.05 
set tb_BSF     =  0.10 
set tb_buffer  =  0.20 
  
#solar bottom section cell doping concentrations set 
set windowb_d  = 3e+18 
set emitterb_d = 2e+18 
set baseb_d    = 2e+17 
set BSFb_d     = 2e+18 
  
set bufferb_d  = 2e+18 
  
#Bottom section mole compositions & affinity settings 
set wb_comp    = 0.49 
set bsfb_comp  = 0.7 
  
set b_window   = $n_TJ+$tb_window 
set b_emitter  = $b_window+$tb_emitter 
set b_base     = $b_emitter+$tb_base 
set b_bsf      = $b_base+$tb_BSF 
set b_buffer   = $b_bsf+$tb_buffer 
  
mesh 
x.mesh location=0               spacing=1  
x.mesh location=1               spacing=1 
y.mesh location=0               spacing=$tp_window/20 
y.mesh location=$p_window       spacing=$tp_window/20 
y.mesh location=$p_emitter      spacing=$tp_emitter/100 
y.mesh location=$p_base         spacing=$tp_base/5 
y.mesh location=$p_bsf          spacing=$tp_BSF/100 
  
y.mesh location=$p_TJ           spacing=$tp_TJ/20 
y.mesh location=$n_TJ           spacing=$tp_TJ/20 
  
y.mesh location=$b_window       spacing=$tb_window/20 
y.mesh location=$b_emitter      spacing=$tb_emitter/100 
y.mesh location=$b_base         spacing=$tb_base/5 
y.mesh location=$b_bsf          spacing=$tb_BSF/100 
y.mesh location=$b_buffer       spacing=$tb_buffer/100 
  
#Top Section 
region num=1 material=InAlGaP x.min=0 y.min=0 x.max=1    y.max=$p_window   x.comp = 0.371 y.comp = 0.159 
region num=2 material=InGaP   x.min=0 y.min=$p_window    y.max=$p_emitter  x.comp=0.49  
region num=3 material=InGaP   x.min=0 y.min=$p_emitter   y.max=$p_base     x.comp=0.49 
region num=4 material=InAlGaP x.min=0 y.min=$p_base      y.max=$p_bsf      x.comp = 0.371 y.comp = 0.159 
  
#tunnel junction 
region num=5 material=GaAs x.min=0 x.max=1 y.min=$p_bsf y.max=$p_TJ 
region num=6 material=GaAs x.min=0 x.max=1 y.min=$p_TJ  y.max=$n_TJ 
  
#Bottom Section 
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region num=7  material=InGaP  x.min=0  y.min=$n_TJ       y.max=$b_window x.comp=0.49 
region num=8  material=GaAs   x.min=0  y.min=$b_window   y.max=$b_emitter 
region num=9  material=GaAs   x.min=0  y.min=$b_emitter  y.max=$b_base  
region num=10 material=AlGaAs x.min=0  y.min=$b_base     y.max=$b_bsf    x.comp=0.7 
region num=11 material=GaAs   x.min=0  y.min=$b_bsf      y.max=$b_buffer 
  
electrode name=Emitter  top 
electrode name=tunnel   x.min=0 x.max=1 y.min=$p_bsf y.max=$n_TJ material=GaAs 
electrode name=Base     bottom  
  
#For the top section 
doping p.type uniform concentration=$windowp_d   y.min=0               y.max=$p_window 
doping p.type uniform concentration=$emitterp_d  y.min=$p_window       y.max=$p_emitter 
doping n.type uniform concentration=$basep_d     y.min=$p_emitter      y.max=$p_base 
doping n.type uniform concentration=$BSFp_d      y.min=$p_base         y.max=$p_bsf 
  
#For the bottom section 
doping p.type uniform concentration=$windowb_d   y.min=$p_bsf          y.max=$b_window 
doping p.type uniform concentration=$emitterb_d  y.min=$b_window       y.max=$b_emitter 
doping n.type uniform concentration=$baseb_d     y.min=$b_emitter      y.max=$b_base 
doping n.type uniform concentration=$BSFb_d      y.min=$b_base         y.max=$b_bsf 
doping n.type uniform concentration=$bufferb_d   y.min=$b_bsf          y.max=$b_buffer 
  
#TJ doping 
doping n.type uniform concentration=$TJ_d        y.min=$p_bsf          y.max=$p_TJ 
doping p.type uniform concentration=$TJ_d        y.min=$p_TJ           y.max=$n_TJ 
  
#For the top section 
material mun=1.06e+02 mup=5.10e+01 region=1  
material mun=4.05e+02 mup=6.69e+01 region=2  
material mun=6.76e+02 mup=1.52e+02 region=3  
material mun=1.06e+02 mup=5.10e+01 region=4  
  
#For the tunnel junction 
material mun=1.32e+03 mup=8.33e+01 region=5  
material mun=1.32e+03 mup=8.33e+01 region=6  
  
#For the bottom section 
material mun=3.64e+02 mup=5.53e+01 region=7  
material mun=2.29e+03 mup=1.48e+02 region=8  
material mun=3.91e+03 mup=2.42e+02 region=9  
material mun=3.98e+02 mup=5.43e+01 region=10  
material mun=2.29e+03 mup=1.48e+02 region=11  
  
contact name=tunnel resist=1e15 
  
material mat=InGaP   index.file=InGaP_ex.nk    
material mat=AlGaAs  index.file=AlGaAs.nk      
material mat=InAlGaP index.file=AlGaInP.nk 
  
material material=InGaP  affinity=$InGaP_aff 
material material=AlGaAs affinity=$AlGaAs_aff 
  
models print temperature=300  
models srh conmob auger optr bgn fermi 
method newton  
output con.band val.band charge opt.intens  
  
beam num=1 AM0 x.origin=0.5 y.origin=-1.0 angle=90 
  
solve init 
save outfile=equilibrium.str 
  
solve b1=0.9 
  
save outf=shortcircuit.str 
tonyplot shortcircuit.str 
  
log outfileTJ=forward_IV.log 
solve name=Emitter vEmitter=0.0 vstep=0.05 vfinal=0.2 
  
save outfile=for_02.str 
  
solve name=Emitter vEmitter=0.2 vstep=0.01 vfinal=3.5 
log off 
  
save outfile=for.str 
tonyplot equilibrium.str for.str for_02.str 
tonyplot forward_IV.log  
  
quit 
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APPENDIX X. MATLAB EXECUTES DECKBUILD 

function run_deckbuildPC(N) 
%The purpose of this function is to execute deckbuild directly from 
%MATLAB via the command line syntax for PC.  This function makes use of 
%the doping concentration vector, N, in order to ensure all designs are 
%executed 
  
fprintf('Progress:\n'); 
fprintf(['\n' repmat('.',1,length(N(:,1))) '\n\n']); 
  
for j=1:length(N(:,1)) 
%     command=sprintf("deckbuild -run -ascii test%dTJ.in",j); 
    command=sprintf("deckbuild -run test6_%dTJ.in",j); 
    [x,y]=system(command); 
    fprintf('\b|\n'); 
  
end 
 
*********************************************************** 
 
function run_deckbuild(N) 
%The purpose of this function is to execute deckbuild directly from 
%MATLAB via the command line syntax for Linux.  This function makes use 
%of the doping concentration vector, N, in order to ensure all designs 
%are executed 
  
fprintf('Progress:\n'); 
fprintf(['\n' repmat('.',1,length(N(:,1))) '\n\n']); 
  
parfor j=1:length(N(:,1)) 
%     command=sprintf("deckbuild -run -ascii test%dTJ.in",j); 
    command=sprintf("deckbuild -run -ascii test6_%dTJ.in",j); 
    [x,y]=system(command); 
    fprintf('\b|\n'); 
  
end 
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APPENDIX Y. CURVE FITTING AND PROBABILITY ANALYSIS 

function [Ex_thick, Ex_doping] = findRange(N,design_thickness,eff) 
% The purpose of this function is to produce a usable range for new design 
% parameters in respect to thickness and doping 
% 
%  [Ex_thick, Ex_doping] = findRange(N,design_thickness,eff) 
  
N_log=log10(N);           %strips the exponential value for the doping concentration  
thick_x=design_thickness; %reassigns thickness to a maneagable variable for implementation below 
doping_x=N_log;           %reassigns doping to a maneagable variable for implementation below 
  
for i=1:length(N(1,:)) 
   func_thick(:,i)    = polyfit(design_thickness(:,i),eff',2);  %develops a + bx +cx^2 for thickness 
   func_doping(:,i)   = polyfit(N_log(:,i),eff',2);             %develops a + bx +cx^2 for doping 
   max_thick(:,i)     = polyval(func_thick(:,i),eff',2);        %finds maximums for thickness  
   max_doping(:,i)    = polyval(func_doping(:,i),eff',2);       %finds maximums for doping 
   fmax_thick(:,i)    = max(max_thick(:,i));                    %finds actual maximum for thickness 
   fmax_doping(:,i)   = max(max_doping(:,i));                   %finds actual maximum for doping 
    
   %% Expressions and functions for thickness 
   thick_x0_x1(:,i) = thick_x(end,i)-thick_x(1,i);              %performs x1 - x0 for thickness 
   thick_abc(:,i)=func_thick(1,i)*(thick_x0_x1(i)) + 1/2*func_thick(2,i)*(thick_x0_x1(i)).^2 + 1/3*func_thick(3,i)*(thick_x0_x1(i)).^3; 
   %Caculates individual poritons for E(x) for portions 1, 2, and 3 from 
   %the hand calculations for thickness 
   forT_a(:,i)      =1/3*(thick_x0_x1(i)).^3 -(thick_x0_x1(i)).^2.*fmax_thick(i) + (thick_x0_x1(i)).*fmax_thick(i).^2; 
   forT_b(:,i)      =1/4*(thick_x0_x1(i)).^4 -2/3*(thick_x0_x1(i)).^3.*fmax_thick(i) + 1/2*thick_x0_x1(i).^2.*fmax_thick(i).^2; 
   forT_c(:,i)      =1/5*(thick_x0_x1(i)).^5 -1/2*thick_x0_x1(i).^4.*fmax_thick(i) + 1/3*(thick_x0_x1(i)).^3.*fmax_thick(i).*2; 
   %Calculating the entirety of the portions 1, 2, and 3 with the 
   %coefficients a, b, and c for thickness 
   thick_exp(:,i)    =func_thick(1,i).*forT_a(i) + func_thick(2,i).*forT_b(i) + func_thick(3,i).*forT_c(i); 
   
   %% Expressions and functions for doping 
   doping_x0_x1(:,i) = doping_x(end,i)-doping_x(1,i);           %performs x1 - x0 for doping  
   doping_abc(:,i)   = func_doping(1,i).*(doping_x0_x1(i)) + 1/2*func_doping(2,i).*(doping_x0_x1(i)).^2 + 1/3*func_doping(3,i).*(doping_x0_x1(i)).^3; 
   %Caculates individual poritons for E(x) for portions 1, 2, and 3 from 
   %the hand calculations for doping 
   forD_a(:,i)      =1/3*(doping_x0_x1(i)).^3 -(doping_x0_x1(i)).^2.*fmax_doping(i) + (doping_x0_x1(i)).*fmax_doping(i).^2; 
   forD_b(:,i)      =1/4*(doping_x0_x1(i)).^4 -2/3*(doping_x0_x1(i)).^3.*fmax_doping(i) + 1/2*doping_x0_x1(i).^2.*fmax_doping(i).^2; 
   forD_c(:,i)      =1/5*(doping_x0_x1(i)).^5 -1/2*doping_x0_x1(i).^4.*fmax_doping(i) + 1/3*(doping_x0_x1(i)).^3.*fmax_doping(i).*2; 
   %Calculating the entirety of the portions 1, 2, and 3 with the 
   %coefficients a, b, and c for doping 
   doping_exp(:,i)  =func_doping(1,i).*forD_a(i) + func_doping(2,i).*forD_b(i) + func_doping(3,i).*forD_c(i); 
    
   %% Calculates the entirety of E(x) for both thickness and doping 
   Ex_thick(:,i)    =1./thick_abc(i).*(thick_exp(i)); 
   Ex_doping(:,i)   =1./doping_abc(i).*(doping_exp(i)); 
  
end 
  
end 
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