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Abstract Aiming at evaluating the lifetime of the neu-
tron, we introduce a novel statistical method to analyse the
updated compilation of precise measurements including the
2022 dataset of Particle Data Group (PDG). Based on the
minimization for the information loss principle, unlike the
median statistics method, we apply the most frequent value
(MFV) procedure to estimate the neutron lifetime, irrespec-
tive of the Gaussian or non-Gaussian distributions. Provid-
ing a more robust way, the calculated result of the MFV is
τn = 881.16+2.25

−2.35 s with statistical bootstrap errors, while

the result of median statistics is τn = 881.5+5.5
−3 s according

to the binomial distribution. Using the different central esti-
mates, we also construct the error distributions of neutron
lifetime measurements and find the non-Gaussianity, which
is still meaningful.

1 Introduction

It is well-known that the decay of a free neutron related to
the weak interaction is the most important β-decay process
producing a proton, an electron, and an antineutrino with
a lifetime of about 880 seconds. Furthermore, the neutron
lifetime plays a fundamental role not only in particle physics
but also astrophysics, such as solar physics and cosmology.
Obviously, a more accurate value of neutron lifetime will
improve our understanding of related fields [1,2].

On account of the great significance of the β-decay of the
free neutron, there are three different experimental methods
to measure the free neutron lifetime over the last 60 years
[1]. For the first method, the neutron lifetime in ’beam’
experiments can be evaluated on the neutron decay rate from
the number of decay particles [3]. For the second method,
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the neutron lifetime in ’bottle’ experiments can be deter-
mined by measuring the remaining number of ultra-cold neu-
trons stored in the container [4–6]. Because the magnetic
trap technique can overcome the disadvantages of the tradi-
tional material wall, recently several studies have utilized a
magneto-gravitational trap technique to determine a neutron
lifetime with increasing precision [7,8]. The third method
applies the space-based technique to determine the neutron
lifetime using the neutron spectrometer on NASA’s lunar
prospector mission [9]. It is noteworthy that over the past
decades, many more precise measurements of neutron life-
time are obtained, which prompted the research on theoreti-
cal physics. However, there is still a significant discrepancy
(∼ 4σ [8,10]) among the above methods, which has long
been a puzzling problem involving particle physics, nuclear
physics, and astrophysics.

The conventional median technique is one of the most
widely used statistical procedures to estimate the character-
istics of different observational quantities in many statistical
applications because it is not sensitive to outliers [11]. There
have been a number of known examples of non-Gaussian
data [12] to apply the median statistics, involving Hubble
constant [13,14], 7Li abundance [15,16], LMC and SMC dis-
tance [17], deuterium abundance and spatial curvature con-
straints [18], the distance to the Galactic center [19], galac-
tic rotational velocity [20,21] and Newton’s constants [22].
Recently, Rajan and Desai [23] investigated the measure-
ments of neutron lifetime tabulated by Tanabashi et al. from
Particle Data Group (PDG, hereafter, the 2019 edition) [24]
based on a meta analysis. Furthermore, the results demon-
strated that the error distribution of neutron lifetime mea-
surements is not a Gaussian feature. Especially, the contri-
butions of unidentified systematic effects and uncertainties
are proposed to explain the anomalous discrepancy between
different methods of neutron lifetime, which might imply the
existence of new physics.
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Obviously, from the standpoint of robust statistics, it is
very important to estimate the true value of neutron life-
time considering the holistic characteristic of all observa-
tions. Despite a great deal of research on data analysis and
uncertainty in physics and technology over the past sev-
eral decades, the current status of discrepancy among dif-
ferent measurements still needs a novel statistical method to
enhance the robustness of the model, which has motivated
us to apply the MFV procedure [25–28] to reanalyze this
tension. Besides the conventional statistical algorithms, as a
robust and resistant procedure, the MFV statistics have been
used widely to seek the robust estimate in different natural
science problems [29–33], such as the lithium abundances
problem and Hubble constant tension [16,34].

In the next section we describe the latest compilation of
neutron lifetime in PDG. Section 3 utilizes the MFV method
to estimate the neutron lifetime value. To compare with past
traditional results, we also calculate the confidence intervals
and illustrate its advantage of MFV. In Sect. 4 we describe
our analysis of error distributions around the different central
estimates (the weighted mean, median, and MFV). Conclu-
sions are given in Sect. 5.

2 Neutron lifetime data

Up to now, many measured values of neutron lifetime using
different techniques have been published, e.g., Ezhov et al.
[35] with τn = 878.3 ± 1.6stat ± 1.0sys s, Serebrov et al. [6]
with τn = 881.5 ± 0.7stat ± 0.6sys s, Pattie et al. [7] with
τn = 877.7±0.7stat ±0.4/−0.2sys s, Leung et al. [36] with
τn = 887±39 s, Arzumanov et al. [37] with τn = 880.2±1.2
s, Yue et al. [3] with τn = 887.7±1.2stat ±1.9sys , Steyerl et
al. [38] with τn = 882.5 ± 2.1 s, Pichlmaier et al. [39] with
τn = 880.7 ± 1.3 ± 1.2 (also see Rajan and Desai [23] and
Tanabashi et al. [24]). In our analysis, we use the updated
compilation from Rajan and Desai [23] and the latest results
of PDG, including Gonzalez et al. 2021 [8] and Wilson et
al. 2021 [9] (see https://pdglive.lbl.gov/DataBlock.action?
node=S017T, the 2022 edition of PDG [40]). Moreover, we
adopt descriptive statistics methods to analyze the used mea-
surements of neutron lifetime and plot the histogram of the
number of all data, as shown in Fig. 1. Following graphical
depictions of the observed data as a function of publication
data [41,42], Fig. 2 illustrates a summary of neutron lifetime
experimental results used for analysis since 1972, including
measurements listed in/not_in PDG and results unused in
PDG following the taxonomic approach of Rajan and Desai
[23]. Moreover, the marginal panels associated with the main
panel show the distribution of neutron lifetime contributing
to the published years. As summarized in Fig. 3, we give
a graphical representation of neutron lifetime data based on
beam, bottle, and space-based methods provided by different

authors. Then it becomes apparent that the highly frequent
data focus on bottle experiments, and many more space-based
measurements are required [9]. Besides, it is possible to con-
strain neutron lifetime from cosmological Yp values and Big
Bang nucleosynthesis [43], which is model-dependent. Fol-
lowing Rajan and Desai [23], we also do not consider cos-
mological parameter estimation in our calculation. Finally,
we present all neutron lifetime measurements from PDG and
Rajan and Desai in Table 1.

3 Analysis

In nuclear physics fields, the estimation of neutron lifetime
from the observed measurements is one of the vital prob-
lems [23]. For decades, a considerable amount of statistical
methods have been widely used, such as median statistics
[11,14,55], maximum likelihood estimation, and Bayesian
statistics [56]. Naturally, there is no motive for researchers to
permanently suppose that the prior distribution of a physical
quantity is always normal. In many cases, Gaussian distri-
bution is not the only way even considering the larger sam-
ple. For example, it is the most common situation that if the
dataset produces from Cauchy distribution, the sampling dis-
tribution is non-Gaussian, regardless of the size of the sample
space.

In general, χ2 analyses, least square method (LSM) and
median statistics are utilized to obtain the key information
from the measurement data [11,23]. Moreover, provided that
the feature of prior distributions is non-Gaussian, differences
in the prior distributions need to be taken into account in the
calculation of more precise results. On the other hand, as is
known to all that George E. P. Box gave the famous quote
“all models are wrong, but some are useful”. Every compu-
tational statistical model may have some additional potential
hypotheses. Obviously, we should ruminate the normality of
distribution, including the error distribution and prior distri-
bution before statistical computation [16,27,34]. In addition,
the heteroscedastic analysis is always a big problem for the
conventional procedures. Thus, it is necessary to uncover
the significant details about distributions of neutron lifetime
measurements, shown in Figs. 4 and 5. These figures present
the violin plot and kernel density plot for different meth-
ods, which is especially useful for analyzing summary and
descriptive statistics. Furthermore, we can directly compare
the median and MFV values, and intuitively see the distri-
butions of different subgroups implying the non-Gaussian
errors in neutron lifetime data of different approaches.

On the base of central limit theorem, the distribution of
measurement data should be normal in most cases. Even so,
the error distributions of measurement data are still proba-
bly non-Gaussian. For instance, it is possible that the mea-
surement data may not originate from a random sample of
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Fig. 1 Histogram and
probability density (red line) of
neutron lifetime measurements
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Fig. 2 Published neutron
lifetime as a function of
publication date. The taxonomic
approach of Not_in_PDG, PDG
and PDG_not_used for analysis
is similar to Rajan and Desai
[23]
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independent, identically distributed random variables, which
should be proved. Another non-negligible point is the heavy-
tailed problem of the observed distribution. Essentially, no
one can be accurately aware whether or not the normality fea-
ture is intrinsic for the measurement data [12,16,55,57,58].
In short, these difficulties also motivate us to apply the novel
robust MFV method to evaluate the true value of neutron
lifetime.

Because of the ideal condition of pure mathematics, it is
on the ground of expediency that some plausible hypothe-
ses have to be accepted temporarily. According to the mea-

surement data of neutron lifetime, physicists expect to esti-
mate accurately the real value from different prior distribu-
tions. For the sake of a better implementation of this purpose,
Steiner [26,27] proposed a more robust statistical algorithm
— MFV method, based on the minimization for the infor-
mation loss principle. Nearly regardless of considering the
normality of the prior distribution, the MFV is not only highly
robust efficiency but also dispose of the deficiency, for exam-
ple, high sensitivity for outliers of some data [16,34].

In order to elucidate the effect of prior distribution and
error distributions, we utilize the MFV procedure to assess
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Fig. 3 A summary of the
experimental results used for the
analysis from different authors Beam
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Table 1 21 neutron lifetime measurements from PDG. The taxonomic approach of Not_in_PDG, PDG and PDG_not_used for analysis is similar
to Rajan and Desai [23]

Neutron lifetime (s) References Type Comment

878.3 ± 1.6 ± 1.0 Ezhov 2018 [35] Bottle PDG

881.5 ± 0.7 ± 0.6 Serebrov 2018 [6] Bottle PDG

877.7 ± 0.7 + 0.4/ − 0.2 Pattie 2018 [7] Bottle PDG

887 ± 39 Leung 2016 [36] Bottle Not in PDG

880.2 ± 1.2 Arzumanov 2015 [37] Bottle PDG

887.7 ± 1.2 ± 1.9 Yue 2013 [3] Beam PDG

882.5 ± 1.4 ± 1.5 Steyerl 2012 [38] Bottle PDG

880.7 ± 1.3 ± 1.2 Pichlmaier 2010 [39] Bottle PDG

878.5 ± 0.7 ± 0.3 Serebrov 2005 [44] Bottle PDG

889.2 ± 3.0 ± 3.8 Byrne 1996 [45] Beam PDG

882.6 ± 2.7 Mampe 1993 [46] Bottle PDG

888.4 ± 2.9 Alfikmenov 1990 [47] Bottle PDG_not_used

878 ± 27 ± 14 Kossakowski 1989 [48] Beam PDG_not_used

877 ± 10 Paul 1989 [49] Bottle PDG_not_used

876 ± 10 ± 19 Last 1988 [50] Beam PDG_not_used

891 ± 9 Spivak 1988 [51] Beam PDG_not_used

903 ± 13 Kosvintsev 1986 [52] Bottle PDG_not_used

875 ± 95 Kosvintsev 1980 [53] Bottle PDG_not_used

918 ± 14 Christensen 1972 [54] Beam PDG_not_used

877.75 ± 0.28 + 0.22/ − 0.16 Gonzalez 2021 [8] Bottle PDG

887 ± 14 + 7/ − 3 Wilson 2021 [9] Space PDG_not_used
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the characteristics of datasets of neutron lifetime. Unlike the
traditional methods such as Maximum likelihood estimation
or LSM, Steiner put forward the maximum reciprocals prin-
ciple,
∑

i

1

X2
i + S2

= max, (1)

where Xi is the residuals or deviations, i.e., Xi = Tmeasured
i −

T computed
i , and S is the parameter of scale characterizing the

measurement error, denoted by ε (called dihesion). Accord-
ing to the minimization of the information divergence (rela-
tive entropy) demonstrating the measure of information loss
[26,27,59], Steiner suggested the MFV method and the scal-
ing factor ε, i.e., dihesion, for the sake of evaluating the
parameter of scale to some extent to reduce the informa-
tion loss. Furthermore, using the iteratively re-weighted least
squares procedure, we can calculate the MFV and the dihe-
sion via iterations [27,28,30]. Especially, Steiner had proved
the MFV procedure has the advantages of resistance and
robustness [26,27]. After the (j+1)-th step of the MFV proce-
dure, the relative equation of iterations for the most frequent
value M is as follows:

Mj+1 =
∑n

i=1
ε2
j xi

ε2
j+(xi−Mj )

2

∑n
i=1

ε2
j

ε2
j+(xi−Mj )

2

, (2)

where xi is a series of the measurements and the dihesion ε j

can be calculated by

ε2
k+1 =

3
∑n

i=1
ε4
k (xi−Mj )

2

[ε2
k+(xi−Mj )

2]2

∑n
i=1

ε4
k

[ε2
k+(xi−Mj )

2]2

. (3)

Where the iterative initial value M0 is chosen as the aver-
age value of the measurements, and the initial value of ε is
obtained as

ε0 =
√

3

2
(xmax − xmin). (4)

In addition, we take the fixed threshold criterion to restrain the
precision in iterations. Through a series of iterations, the most
frequent value M and dihesion ε can be obtained when the
dihesion is smaller than threshold value (e.g. 10−5). Appar-
ently, the dihesion ε is not like the standard deviation in LSM,
which is sensitive to the outliers. Using all data listed in col-
umn 1 of Table 1, we obtain the result of MFV calculations
is τn = 881.16 s, which agrees with the recent experimental
data. Similarly, the calculated MFV using beam and bottle-
based measurements are 888.83 s and 879.85 s shown in
Fig. 4, respectively.

According to the fact that the experimental data reflect
the nature of physical quantities, some statistics can be used
to characterize the data, such as the MFV of the sample. To

estimate the uncertainty of physical quantities, the bootstrap
method is one of the most effective methods and is signif-
icant to assess the rationality of the calculated results [60].
The basic process of the bootstrap method to calculate the
confidence interval is as follows. Suppose that the experi-
mental data set of neutron lifetime is (t1,…,ti ) chosen from
the distribution of true values of neutron lifetime with the
corresponding statistic θ (t1,…,ti ), i.e. MFV. First, we pro-
duce a bootstrap sample (t∗1 ,…,t∗i ) from the initial experi-
mental data with replacement. Next, the important statistic,
i.e. MFV, is used for the bootstrap sample. Finally, repeating
this process B times (usually 1000-3000 times) generates
the distribution of the MFV. Therefore, these distributions
can be used to evaluate confidence intervals (usually 68.27%
or 95.45%) of the MFV for different measuring methods of
neutron lifetime. The 68.27% confidence interval for all mea-
surements is [878.81, 883.41], involving statistical bootstrap
errors, while the 95.45% confidence interval for all data is
[877.72, 885.61].

The second technique to estimate confidence intervals is
the median statistics [11,19]. Based on the binomial test and
estimation in non-parametric statistics [61], the probability
of the median between values x (r) and x (s) is

p(x (r) � med � x (s)) = p(med � x (s)) − p(med < x (r))

=
s∑

i=r

(
n

i

)
/2n, (5)

where x (i) is the order statistic. By application of this for-
mula, the median for all measurements is 881.5 and the cal-
culated 68.27% confidence interval is [878.5, 887.0], while
the 95.45% confidence interval for all data is [878.0 887.7].

4 Error distribution for PDG dataset

It is worthwhile to investigate the distributions of devia-
tions of the neutron lifetime measurements mentioned in
PDG 2022 from the central estimate. Among all the mea-
sured data, asymmetric systematic uncertainties should be
treated in a clear and consistent manner. Especially, the
asymmetric errors of 877.7 ± 0.7 + 0.4/ − 0.2 [7], and
877.75 ± 0.28 + 0.22/ − 0.16 [8] are widely used. Nev-
ertheless, the effect of asymmetric uncertainties are diffi-
cult to assess exactly [62,63]. There are several ways to
evaluate the asymmetric errors, including maximum abso-
lute error, average error, piecewise linear error, quadratic
error, and Fechner distribution methods [23,62–66]. Based
on these methods, we have calculated the variance, and find
a tiny dispersion using the central value to be in the middle
between the upper and lower uncertainties. For example as
proposed by Audi et al. [65, Appendix A], we apply the for-
mulaVar = (1−2/π)(a−b)2+a∗b to obtain σ = 0.307 for
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Fig. 4 Violin plot of neutron
lifetime measurements. The
MFV and average values from
different methods are indicated
by the inverted triangles and
circles, respectively, while the
horizontal solid lines in boxes
illustrate the median
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Pattie et al. [7], while the average value of asymmetric sys-
tematic errors is 0.3. Furthermore, for experimental neutron
lifetime measurements, the symmetrization of asymmetric
uncertainties lead to a tiny bias (generally very small in rel-
ative error) in the estimate of combined values, which can
be neglected. Therefore, for simplicity, here we choose the
measured midpoint and average value of asymmetric uncer-
tainties motivated by Audi et al. [67] and Barlow [68].

There are three statistical central estimates: weighted
mean [69], median, and MFV. The weighted mean is given

by

Twm =
∑N

i=1 Ti/σ
2
i∑N

i=1 1/σ 2
i

, (6)

where Ti is the measurement of neutron lifetime and σi is the
one standard deviation error, i.e. the quadrature sum of the
statistical and systematic uncertainties. The weighted mean
standard deviation is

σwm = 1√∑N
i=1 1/σ 2

i

. (7)
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Fig. 6 Histograms of the number of standard deviations in half bins
away from the weighted mean, median, and MFV listed in the top,
middle, and bottom rows. The left (right) column illustrates the signed

(absolute) deviation, where the smooth curves in panels represent the
best-fit Gaussian. The Nσ of positive and negative cases indicate greater
and less than the weighted mean, median, and MFV

The goodness of fit χ2 is

χ2 = 1

N − 1

N∑

i=1

(Ti − Twm)2/σ 2
i . (8)

The number of standard deviations that χ deviates from unity
[17,70,71] is described by

Nσ =| χ − 1 | √
2(N − 1). (9)

We can also use the median and MFV statistics approaches
to construct the error distributions. Similar to the median
statistics to hypothesize statistical independence of all mea-
surements, the MFV statistics does not utilize the individ-
ual measurement uncertainties leading to a wider interval
of errors on the central value in comparison to the weighted
mean technique. Under the conditions of the specified central
estimate of all measurements, the error distribution associ-

ated with standard deviations [17,19] is defined as

Nσi = Ti − TCE√
σ 2
i + σ 2

CE

, (10)

where TCE is the central estimate of neutron lifetime mea-
surements, either the median Tmed or MFV TMFV , and σCE

is the uncertainty of TCE , either σmed or σMFV . These differ-
ent combinations of central estimates and uncertainties are
given by

Nwm
σi

= Ti − Twm√
σ 2
i + σ 2

wm

, (11)

Nmed
σi

= Ti − Tmed√
σ 2
i + σ 2

med

, (12)

NMFV
σi

= Ti − TMFV√
σ 2
i + σ 2

MFV

. (13)
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Fig. 7 Histogram of the error
distribution in | Nσ |= 0.1. The
solid black line indicates the
expected Gaussian probabilities
for all data and the dash-dotted,
dash, and dot lines denote the
numbers of | Nσ | values for the
weighted mean, MFV, and
median, respectively

Applying weighted mean statistics, the neutron lifetime
measurements produce a central estimate of τn = 878.69 ±
0.25 s, while the PDG average is τn = 878.4±0.5 s including
scale factor of 1.8 [40]. We also obtain χ2 = 3.64 and the
number of standard deviations is N = 5.75. Based on the
median statistics, we have obtained a central estimate of τn =
881.5+5.5

−3 s with a 1σ range of [878.5, 887.0]. The MFV

estimate is given by τn = 881.16+2.25
−2.35 s with uncertainty

corresponding to 68.27% confidence intervals.
We now apply these statistical methods to plot the error

distributions of neutron lifetime measurements illustrated as
a function of Nσ [17], Eqs. (11)–(13), in Fig. 6, which demon-
strates the Nσ and symmetrical | Nσ | histograms using the
weighted mean, median, and MFV. The histogram of error
distributions of the measurements is shown in Fig. 7 with
| Nσ |= 0.1 bin size for a more specific viewpoint. As can
be seen from these figures, the weighted mean case is wider
than the expected Gaussian, which should generate a sin-
gle value with | Nσ |≥ 2 and none value with | Nσ |≥ 3.
But there are 6 values with | Nσ |≥ 2, 2 with | Nσ |≥ 3,
and none with | Nσ |≥ 4. Remarkably, 68.3% of the Nσwm

error distribution lies within −1.24 ≤ Nσ ≤ 1.87 while
95.4% falls within −2.22 ≤ Nσ ≤ 3.99 . The observed
Nσwm error distribution has constraints of | Nσ |≤ 1.87 and
| Nσ |≤ 3.99 respectively, and 38.1% and 71.4% of the val-
ues lie within | Nσ |≤ 1 and | Nσ |≤ 2, respectively. For
the median case, the distribution has a narrower tail than the
expected Gaussian distribution, with 1 value of | Nσ |≥ 2
and none with | Nσ |≥ 3. For signed Nσ , 68.3% of the data

lie within −0.69 ≤ Nσ ≤ 1.29 , while 95.4% fall within
−0.88 ≤ Nσ ≤ 2.50. The absolute | Nσ | error distribution
has constraints of | Nσ |≤ 0.88 and | Nσ |≤ 2.50, respec-
tively. Moreover, 76.2% and 95.2% of the values lie within
| Nσ |≤ 1 and | Nσ |≤ 2 , respectively.

On the other hand, for the MFV case, we gain a central
estimate of τn = 881.16 s, see Fig. 8, and also find a non-
Gaussian error distribution with 2 values of | Nσ |≥ 2 and
none with | Nσ |≥ 3. 68.3% of the data falls within −0.97 ≤
Nσ ≤ 1.66 , while 95.4% lie within −1.47 ≤ Nσ ≤ 2.60.
The | Nσ | error distribution has constraints of | Nσ |≤ 1.43
and | Nσ |≤ 2.60, respectively, and 57.1% and 90.5% of the
values fall within | Nσ |≤ 1 and | Nσ |≤ 2 , respectively.
These data highlight that the error distribution for the MFV
case is broader than that of the median case and narrower than
that of the weighted mean case. The incrementally narrow-
ing distributions of the weighted mean, MFV, and median
might be related to unaccounted-for systematic uncertain-
ties or correlations among measurements of neutron lifetime
[17,41,72]. Obviously, these detailed statistical descriptions
represent that the error distributions of the weighted mean,
median, and MFV are non-Gaussian, and the MFV tech-
nique is appropriate for a robust analysis of neutron lifetime
measurements. In Fig. 8 we show all neutron lifetime mea-
surements of bottle, beam, and space-based methods in the
top panel, while the calculated residuals �τ/τMFV from the
MFV are demonstrated in the bottom panel. This provides a
strong evidence for the non-Normality of error distributions,
further confirming the effectiveness and rationality of MFV
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Fig. 8 (Top) Neutron lifetime measurements as a function of publi-
cation date. The points are the measured data using bottle, beam, and
space-based methods, while the triangle, diamond, and inverted triangle

depict the weighted mean, MFV, and median, respectively. (Bottom) We
show the residuals of fit or data with respect to the MFV as a function of
publication date, i.e. �τ/τMFV . Data set key: PDG 2022 edition [40]

statistics. The data of neutron lifetime and codes to repro-
duce above results are available in the following repository:
https://gitee.com/zhangphysics/neutron-lifetime.

5 Conclusion

In summary, the problem of the long-standing tension in neu-
tron lifetime measurements is one of the important challenges
of astrophysics and particle physics. In this paper, from the
perspective of robust statistics of the observed data, we have
applied the MFV statistics technique to explore a detailed sta-
tistical analysis for the updated PDG dataset of neutron life-
time measurements that extend from beam to bottle methods.
The MFV estimate is given by τn = 881.16+2.25

−2.35 s with uncer-
tainty corresponding to 68.27% confidence interval, while
the result of median statistics is τn = 881.5+5.5

−3 s. Addition-
ally, we have investigated the error distributions of neutron
lifetime measurements compiled by PDG. Due to the non-

Gaussian error distributions, the weighted mean technique
is more inappropriate than the median and MFV statistics.
Similar to median statistics, the MFV statistics error distri-
butions are clearly different from Gaussian, which implies
that it might be caused by unaccounted-for systematic uncer-
tainties or correlations among all data. As can be seen, the
MFV technique is a powerful tool and appropriate for analy-
sis of non-Gaussian distributions. Using the MFV statistics,
we can gain insight into the details of how error distributions
construct. Moreover, the consistent results demonstrated the
usage and robustness of MFV statistics, which will inspire
further uncertainty research into the application of the MFV
method in some similar situations.

Acknowledgements We greatly appreciate the anonymous referee for
a careful reading and valuable comments that improve the paper. We are
grateful to Z.-W Han, B. Zhang and E. Feigelson for valuable discus-
sions. This work was supported by the National Natural Science Founda-
tion of China (Grant Nos. 11547041, 11403007, 11701135, 11673007),

123

https://gitee.com/zhangphysics/neutron-lifetime


 1106 Page 10 of 12 Eur. Phys. J. C          (2022) 82:1106 

the Natural Science Foundation of Hebei Province (A2017403025,
A2021403002).

Data Availability Statement This manuscript has associated data in a
data repository. [Authors’ comment:The data are available in the Review
of Particle Physics. R. L. Workman et al. (Particle Data Group), Prog.
Theor. Exp. Phys. 2022, 083C01 (2022).]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International
Year of Basic Sciences for Sustainable Development.

References

1. F.E. Wietfeldt, G.L. Greene, Colloquium: the neutron lifetime. Rev.
Mod. Phys. 83(4), 1173–1192 (2011). https://doi.org/10.1103/
RevModPhys.83.1173

2. F. Wietfeldt, Measurements of the neutron lifetime. Atoms 6(4),
70 (2018). https://doi.org/10.3390/atoms6040070

3. A.T. Yue, M.S. Dewey, D.M. Gilliam, G.L. Greene, A.B. Laptev,
J.S. Nico, W.M. Snow, F.E. Wietfeldt, Improved determination of
the neutron lifetime. PRL 111(22), 222501 (2013). https://doi.org/
10.1103/PhysRevLett.111.222501. arXiv:1309.2623 [nucl-ex]

4. P.R. Huffman, C.R. Brome, J.S. Butterworth, K.J. Coakley, M.S.
Dewey, S.N. Dzhosyuk, R. Golub, G.L. Greene, K. Habicht, S.K.
Lamoreaux, C.E.H. Mattoni, D.N. McKinsey, F.E. Wietfeldt, J.M.
Doyle, Magnetic trapping of neutrons. Nature 403(6765), 62–
64 (2000). https://doi.org/10.1038/47444. arXiv:nucl-ex/0001003
[nucl-ex]

5. J. Byrne, D.L. Worcester, The neutron lifetime anomaly and charge
exchange collisions of trapped protons. J. Phys. G Nucl. Phys.
46(8), 085001 (2019). https://doi.org/10.1088/1361-6471/ab256b

6. A.P. Serebrov, E.A. Kolomensky, A.K. Fomin, I.A. Kras-
noshchekova, A.V. Vassiljev, D.M. Prudnikov, I.V. Shoka, A.V.
Chechkin, M.E. Chaikovskiy, V.E. Varlamov, Neutron lifetime
measurements with a large gravitational trap for ultracold neutrons.
PRC 97(5), 055503 (2018). https://doi.org/10.1103/PhysRevC.97.
055503

7. R.W. Pattie, N.B. Callahan, C. Cude-Woods, E.R. Adamek,
L.J. Broussard, S.M. Clayton, S.A. Currie, E.B. Dees, X.
Ding, E.M. Engel, Measurement of the neutron lifetime
using a magneto-gravitational trap and in situ detection. Sci-
ence 360(6389), 627–632 (2018). https://doi.org/10.1126/science.
aan8895. arXiv:1707.01817 [nucl-ex]

8. F.M. Gonzalez, E.M. Fries, C. Cude-Woods, T. Bailey, M. Blat-
nik, L.J. Broussard, N.B. Callahan, J.H. Choi, S.M. Clayton, S.A.
Currie, M. Dawid, E.B. Dees, B.W. Filippone, W. Fox, P. Gel-
tenbort, E. George, L. Hayen, K.P. Hickerson, M.A. Hoffbauer,
K. Hoffman, A.T. Holley, T.M. Ito, A. Komives, C.-Y. Liu, M.
Makela, C.L. Morris, R. Musedinovic, C. O’Shaughnessy, R.W.
Pattie, J. Ramsey, D.J. Salvat, A. Saunders, E.I. Sharapov, S.
Slutsky, V. Su, X. Sun, C. Swank, Z. Tang, W. Uhrich, J. Van-

derwerp, P. Walstrom, Z. Wang, W. Wei, A.R. Young, UCN
τ Collaboration: improved neutron lifetime measurement with
UCN τ . PRL 127(16), 162501 (2021). https://doi.org/10.1103/
PhysRevLett.127.162501. arXiv:2106.10375 [nucl-ex]

9. J.T. Wilson, D.J. Lawrence, P.N. Peplowski, V.R. Eke, J.A.
Kegerreis, Measurement of the free neutron lifetime using the
neutron spectrometer on NASA’s Lunar Prospector mission. PRC
104(4), 045501 (2021). https://doi.org/10.1103/PhysRevC.104.
045501. arXiv:2011.07061 [nucl-ex]

10. B. Fornal, B. Grinstein, Dark matter interpretation of the neutron
decay anomaly. PRL 120(19), 191801 (2018). https://doi.org/10.
1103/PhysRevLett.120.191801. arXiv:1811.03086 [hep-ph]

11. I.J.R. Gott, M.S. Vogeley, S. Podariu, B. Ratra, Median statistics,
H0, and the accelerating universe. ApJ 549(1), 1–17 (2001). https://
doi.org/10.1086/319055. arXiv:astro-ph/0006103 [astro-ph]

12. D.C. Bailey, Not normal: the uncertainties of scientific measure-
ments. R. Soc. Open Sci. 4(1), 160600 (2017). https://doi.org/10.
1098/rsos.160600. arXiv:1612.00778 [stat.AP]

13. G. Chen, B. Ratra, Median statistics and the mass density of the
universe. PASP 115, 1143–1149 (2003). https://doi.org/10.1086/
377112. arXiv:astro-ph/0302002

14. G. Chen, B. Ratra, Median statistics and the Hubble constant.
PASP 123(907), 1127 (2011). https://doi.org/10.1086/662131.
arXiv:1105.5206 [astro-ph.CO]

15. S. Crandall, S. Houston, B. Ratra, Non-Gaussian error distribu-
tion of 7Li abundance measurements. Mod. Phys. Lett. A 30(25),
1550123 (2015). https://doi.org/10.1142/S0217732315501230.
arXiv:1409.7332 [astro-ph.CO]

16. J. Zhang, Most frequent value statistics and distribution of 7Li
abundance observations. MNRAS 468, 5014–5019 (2017). https://
doi.org/10.1093/mnras/stx627

17. S. Crandall, B. Ratra, Non-Gaussian error distributions of LMC
distance moduli measurements. ApJ 815(2), 87 (2015). https://
doi.org/10.1088/0004-637X/815/2/87. arXiv:1507.07940 [astro-
ph.CO]

18. J. Penton, J. Peyton, A. Zahoor, B. Ratra, Median statistics analysis
of deuterium abundance measurements and spatial curvature con-
straints. PASP 130(993), 114001 (2018). https://doi.org/10.1088/
1538-3873/aadf75. arXiv:1808.01490 [astro-ph.CO]

19. T. Camarillo, V. Mathur, T. Mitchell, B. Ratra, Median statis-
tics estimate of the distance to the galactic center. PASP
130(984), 024101 (2018). https://doi.org/10.1088/1538-3873/
aa9b26. arXiv:1708.01310 [astro-ph.GA]

20. T. Camarillo, P. Dredger, B. Ratra, Median statistics estimate of
the galactic rotational velocity. ApSS 363(12), 268 (2018). https://
doi.org/10.1007/s10509-018-3486-8. arXiv:1805.01917 [astro-
ph.GA]

21. A. Rajan, S. Desai, Non-Gaussian error distributions of
galactic rotation speed measurements. Eur. Phys. J. Plus
133(3), 107 (2018). https://doi.org/10.1140/epjp/i2018-11946-7.
arXiv:1710.06624 [astro-ph.IM]

22. S. Bethapudi, S. Desai, Median statistics estimates of Hubble and
Newton’s constants. Eur. Phys. J. Plus 132, 78 (2017). https://doi.
org/10.1140/epjp/i2017-11390-3. arXiv:1701.01789

23. A. Rajan, S. Desai, A meta-analysis of neutron lifetime measure-
ments. Prog. Theor. Exp. Phys. 2020(1), 013–01 (2020). https://
doi.org/10.1093/ptep/ptz153. arXiv:1812.09671 [hep-ph]

24. M. Tanabashi, K. Hagiwara, K. Hikasa, K. Nakamura, Y. Sumino,
F. Takahashi, J. Tanaka, K. Agashe, G. Aielli, C. Amsler, Review
of particle physics∗. PRD 98(3), 030001 (2018). https://doi.org/10.
1103/PhysRevD.98.030001

25. F. Steiner, Most frequent value procedures. Geophys. Trans. 34(2–
3), 139–260 (1988)

26. F. Steiner (ed.), The Most Frequent Value. Introduction to Modern
Conception Statistics (Akademia Kiado, Budapest, 1991)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/RevModPhys.83.1173
https://doi.org/10.1103/RevModPhys.83.1173
https://doi.org/10.3390/atoms6040070
https://doi.org/10.1103/PhysRevLett.111.222501
https://doi.org/10.1103/PhysRevLett.111.222501
http://arxiv.org/abs/1309.2623
https://doi.org/10.1038/47444
http://arxiv.org/abs/nucl-ex/0001003
https://doi.org/10.1088/1361-6471/ab256b
https://doi.org/10.1103/PhysRevC.97.055503
https://doi.org/10.1103/PhysRevC.97.055503
https://doi.org/10.1126/science.aan8895
https://doi.org/10.1126/science.aan8895
http://arxiv.org/abs/1707.01817
https://doi.org/10.1103/PhysRevLett.127.162501
https://doi.org/10.1103/PhysRevLett.127.162501
http://arxiv.org/abs/2106.10375
https://doi.org/10.1103/PhysRevC.104.045501
https://doi.org/10.1103/PhysRevC.104.045501
http://arxiv.org/abs/2011.07061
https://doi.org/10.1103/PhysRevLett.120.191801
https://doi.org/10.1103/PhysRevLett.120.191801
http://arxiv.org/abs/1811.03086
https://doi.org/10.1086/319055
https://doi.org/10.1086/319055
http://arxiv.org/abs/astro-ph/0006103
https://doi.org/10.1098/rsos.160600
https://doi.org/10.1098/rsos.160600
http://arxiv.org/abs/1612.00778
https://doi.org/10.1086/377112
https://doi.org/10.1086/377112
http://arxiv.org/abs/astro-ph/0302002
https://doi.org/10.1086/662131
http://arxiv.org/abs/1105.5206
https://doi.org/10.1142/S0217732315501230
http://arxiv.org/abs/1409.7332
https://doi.org/10.1093/mnras/stx627
https://doi.org/10.1093/mnras/stx627
https://doi.org/10.1088/0004-637X/815/2/87
https://doi.org/10.1088/0004-637X/815/2/87
http://arxiv.org/abs/1507.07940
https://doi.org/10.1088/1538-3873/aadf75
https://doi.org/10.1088/1538-3873/aadf75
http://arxiv.org/abs/1808.01490
https://doi.org/10.1088/1538-3873/aa9b26
https://doi.org/10.1088/1538-3873/aa9b26
http://arxiv.org/abs/1708.01310
https://doi.org/10.1007/s10509-018-3486-8
https://doi.org/10.1007/s10509-018-3486-8
http://arxiv.org/abs/1805.01917
https://doi.org/10.1140/epjp/i2018-11946-7
http://arxiv.org/abs/1710.06624
https://doi.org/10.1140/epjp/i2017-11390-3
https://doi.org/10.1140/epjp/i2017-11390-3
http://arxiv.org/abs/1701.01789
https://doi.org/10.1093/ptep/ptz153
https://doi.org/10.1093/ptep/ptz153
http://arxiv.org/abs/1812.09671
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevD.98.030001


Eur. Phys. J. C          (2022) 82:1106 Page 11 of 12  1106 

27. F. Steiner (ed.), Optimum Methods in Statistics (Akademia Kiado,
Budapest, 1997)

28. F. Steiner, B. Hajagos, Acta Geod. Geophys. Hung. 36, 327 (2001)
29. A.W. Kemp, Steiner’s Most Frequent Value. Encyclopedia of Sta-

tistical Sciences, vol. 12 (Wiley, New York, 2006)
30. P. Szucs, F. Civan, M. Virag, Applicability of the most frequent

value method in groundwater modeling. Hydrogeol. J. 14(1), 31–
43 (2006)

31. H. Szegedi, Geosci. Eng. 2(4), 102–115 (2013)
32. H. Szegedi, M. Dobroka, On the use of Steiner’s weights in

inversion-based Fourier transformation: robustification of a pre-
viously published algorithm. Acta Geod. Geophys. 49, 95–104
(2014)

33. N.P. Szabó, G.P. Balogh, J. Stickel, Most frequent value-based fac-
tor analysis of direct-push logging data. Geophys. Prospect. 66(3),
530–548 (2018). https://doi.org/10.1111/1365-2478.12573

34. J. Zhang, Most frequent value statistics and the Hubble con-
stant. PASP 130(990), 084502 (2018). https://doi.org/10.1088/
1538-3873/aac767

35. V.F. Ezhov, A.Z. Andreev, G. Ban, B.A. Bazarov, P. Geltenbort,
A.G. Glushkov, V.A. Knyazkov, N.A. Kovrizhnykh, G.B. Kry-
gin, O. Naviliat-Cuncic, Measurement of the neutron lifetime with
ultracold neutrons stored in a magneto-gravitational trap. Sov. J.
Exp. Theor. Phys. Lett. 107(11), 671–675 (2018). https://doi.org/
10.1134/S0021364018110024

36. K.K.H. Leung, P. Geltenbort, S. Ivanov, F. Rosenau, O. Zimmer,
Neutron lifetime measurements and effective spectral cleaning with
an ultracold neutron trap using a vertical Halbach octupole perma-
nent magnet array. PRC 94(4), 045502 (2016). https://doi.org/10.
1103/PhysRevC.94.045502. arXiv:1606.00929 [nucl-ex]

37. S. Arzumanov, L. Bondarenko, S. Chernyavsky, P. Geltenbort,
V. Morozov, V.V. Nesvizhevsky, Y. Panin, A. Strepetov, A mea-
surement of the neutron lifetime using the method of storage of
ultracold neutrons and detection of inelastically up-scattered neu-
trons. Phys. Lett. B 745, 79–89 (2015). https://doi.org/10.1016/j.
physletb.2015.04.021

38. A. Steyerl, J.M. Pendlebury, C. Kaufman, S.S. Malik, A.M. Desai,
Quasielastic scattering in the interaction of ultracold neutrons with
a liquid wall and application in a reanalysis of the Mambo I neutron-
lifetime experiment. PRC 85(6), 065503 (2012). https://doi.org/10.
1103/PhysRevC.85.065503

39. A. Pichlmaier, V. Varlamov, K. Schreckenbach, P. Geltenbort, Neu-
tron lifetime measurement with the UCN trap-in-trap MAMBO II.
Phys. Lett. B 693(3), 221–226 (2010). https://doi.org/10.1016/j.
physletb.2010.08.032

40. R.L. Workman, V.D. Burkert, V. Crede, E. Klempt, U. Thoma,
L. Tiator, K. Agashe, G. Aielli, B.C. Allanach, C. Amsler, M.
Antonelli, E.C. Aschenauer, D.M. Asner, H. Baer, S. Banerjee,
R.M. Barnett, L. Baudis, C.W. Bauer, J.J. Beatty, V.I. Belousov, J.
Beringer, A. Bettini, O. Biebel, K.M. Black, E. Blucher, R. Bon-
ventre, V.V. Bryzgalov, O. Buchmuller, M.A. Bychkov, R.N. Cahn,
M. Carena, A. Ceccucci, A. Cerri, R.S. Chivukula, G. Cowan, K.
Cranmer, O. Cremonesi, G. D’Ambrosio, T. Damour, D. de Florian,
A. de Gouvêa, T. DeGrand, P. de Jong, S. Demers, B.A. Dobrescu,
M. D’Onofrio, M. Doser, H.K. Dreiner, P. Eerola, U. Egede, S.
Eidelman, A.X. El-Khadra, J. Ellis, S.C. Eno, J. Erler, V.V. Ezhela,
W. Fetscher, B.D. Fields, A. Freitas, H. Gallagher, Y. Gershtein,
T. Gherghetta, M.C. Gonzalez-Garcia, M. Goodman, C. Grab,
A.V. Gritsan, C. Grojean, D.E. Groom, M. Grünewald, A. Gurtu,
T. Gutsche, H.E. Haber, M. Hamel, C. Hanhart, S. Hashimoto,
Y. Hayato, A. Hebecker, S. Heinemeyer, J.J. Hernández-Rey, K.
Hikasa, J. Hisano, A. Höcker, J. Holder, L. Hsu, J. Huston, T.
Hyodo, A. Ianni, M. Kado, M. Karliner, U.F. Katz, M. Kenzie, V.A.
Khoze, S.R. Klein, F. Krauss, M. Kreps, P. Križan, B. Krusche, Y.
Kwon, O. Lahav, J. Laiho, L.P. Lellouch, J. Lesgourgues, A.R.
Liddle, Z. Ligeti, C.-J. Lin, C. Lippmann, T.M. Liss, L. Litten-

berg, C. Lourenço, K.S. Lugovsky, S.B. Lugovsky, A. Lusiani, Y.
Makida, F. Maltoni, T. Mannel, A.V. Manohar, W.J. Marciano, A.
Masoni, J. Matthews, U.-G. Meißner, I.-A. Melzer-Pellmann, M.
Mikhasenko, D.J. Miller, D. Milstead, R.E. Mitchell, K. Mönig, P.
Molaro, F. Moortgat, M. Moskovic, K. Nakamura, M. Narain, P.
Nason, S. Navas, A. Nelles, M. Neubert, P. Nevski, Y. Nir, K.A.
Olive, C. Patrignani, J.A. Peacock, V.A. Petrov, E., Pianori, A.
Pich, A. Piepke, F. Pietropaolo, A. Pomarol, S. Pordes, S. Profumo,
A. Quadt, K. Rabbertz, J. Rademacker, G. Raffelt, M. Ramsey-
Musolf, B.N. Ratcliff, P. Richardson, A. Ringwald, D.J. Robinson,
S. Roesler, S. Rolli, A. Romaniouk, L.J. Rosenberg, J.J. Rosner, G.
Rybka, M.G. Ryskin, R.A. Ryutin, Y. Sakai, S. Sarkar, F. Sauli, O.
Schneider, S. Schönert, K. Scholberg, A.J. Schwartz, J. Schwien-
ing, D. Scott, F. Sefkow, U. Seljak, V. Sharma, S.R. Sharpe, V. Shilt-
sev, G. Signorelli, M. Silari, F. Simon, T. Sjöstrand, P. Skands, T.
Skwarnicki, G.F. Smoot, A. Soffer, M.S. Sozzi, S. Spanier, C. Spier-
ing, A. Stahl, S.L. Stone, Y. Sumino, M.J. Syphers, F. Takahashi, M.
Tanabashi, J. Tanaka, M. Taševský, K. Terao, K. Terashi, J. Terning,
R.S. Thorne, M. Titov, N.P. Tkachenko, D.R. Tovey, K. Trabelsi, P.
Urquijo, G. Valencia, R. Van de Water, N. Varelas, G. Venanzoni,
L. Verde, I. Vivarelli, P. Vogel, W. Vogelsang, V. Vorobyev, S.P.
Wakely, W. Walkowiak, C.W. Walter, D. Wands, D.H. Weinberg,
E.J. Weinberg, N. Wermes, M. White, L.R. Wiencke, S. Willocq,
C.G. Wohl, C.L. Woody, W.-M. Yao, M. Yokoyama, R. Yoshida,
G. Zanderighi, G.P. Zeller, O.V. Zenin, R.-Y. Zhu, S.-L. Zhu, F.
Zimmermann, P.A. Zyla, Review of Particle Physics. Prog. Theor.
Exp. Phys. 2022(8), 083C01 (2022). https://doi.org/10.1093/
ptep/ptac097. https://academic.oup.com/ptep/article-pdf/2022/8/
083C01/45434166/ptac097.pdf

41. R. de Grijs, J.E. Wicker, G. Bono, Clustering of local group dis-
tances: publication bias or correlated measurements? I. The large
magellanic cloud. AJ 147, 122 (2014). https://doi.org/10.1088/
0004-6256/147/5/122. arXiv:1403.3141

42. R. de Grijs, G. Bono, Clustering of local group distances: publica-
tion bias or correlated measurements? VII. A distance framework
out to 100 Mpc. ApJS 248(1), 6 (2020). https://doi.org/10.3847/
1538-4365/ab8562. arXiv:2004.00114 [astro-ph.GA]

43. L. Salvati, L. Pagano, R. Consiglio, A. Melchiorri, Cosmological
constraints on the neutron lifetime. J. Cosmol. Astro-part. Phys.
2016(3), 055 (2016). https://doi.org/10.1088/1475-7516/2016/03/
055. arXiv:1507.07243 [astro-ph.CO]

44. A. Serebrov, V. Varlamov, A. Kharitonov, A. Fomin, Y.
Pokotilovski, P. Geltenbort, J. Butterworth, I. Krasnoschekova, M.
Lasakov, R. Tal’daev, Measurement of the neutron lifetime using
a gravitational trap and a low-temperature Fomblin coating. Phys.
Lett. B 605(1–2), 72–78 (2005). https://doi.org/10.1016/j.physletb.
2004.11.013. arXiv:nucl-ex/0408009 [nucl-ex]

45. J. Byrne, P.G. Dawber, C.G. Habeck, S.J. Smidt, J.A. Spain, A.P.
Williams, A revised value for the neutron lifetime measured using
a Penning trap. Europhys. Lett. 33(3), 187–192 (1996). https://doi.
org/10.1209/epl/i1996-00319-x

46. W. Mampe, L.N. Bondarenko, V.I. Morozov, Y.N. Panin, A.I.
Fomin, Measuring neutron lifetime by storing ultracold neutrons
and detecting inelastically scattered neutrons. Sov. J. Exp. Theor.
Phys. Lett. 57, 82 (1993)

47. V.P. Alfimenkov, V.E. Varlamov, A.V. Vasil’Ev, V.P. Gudkov, V.I.
Lushchikov, V.V. Nesvizhevskiı̌, A.P. Serebrov, A.V. Strelkov, S.O.
Sumbaev, R.R. Tal’Daev, Measurement of neutron lifetime with a
gravitational trap for ultracold neutrons. Sov. J. Exp. Theor. Phys.
Lett. 52, 373 (1990)

48. R. Kossakowski, P. Grivot, P. Liaud, K. Schreckenbach, G. Azuelos,
Neutron lifetime measurement with a helium-filled time projection
chamber. Nucl. Phys. A 503(2), 473–500 (1989). https://doi.org/
10.1016/0375-9474(89)90246-7

123

https://doi.org/10.1111/1365-2478.12573
https://doi.org/10.1088/1538-3873/aac767
https://doi.org/10.1088/1538-3873/aac767
https://doi.org/10.1134/S0021364018110024
https://doi.org/10.1134/S0021364018110024
https://doi.org/10.1103/PhysRevC.94.045502
https://doi.org/10.1103/PhysRevC.94.045502
http://arxiv.org/abs/1606.00929
https://doi.org/10.1016/j.physletb.2015.04.021
https://doi.org/10.1016/j.physletb.2015.04.021
https://doi.org/10.1103/PhysRevC.85.065503
https://doi.org/10.1103/PhysRevC.85.065503
https://doi.org/10.1016/j.physletb.2010.08.032
https://doi.org/10.1016/j.physletb.2010.08.032
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1093/ptep/ptac097
https://academic.oup.com/ptep/article-pdf/2022/8/083C01/45434166/ptac097.pdf
https://academic.oup.com/ptep/article-pdf/2022/8/083C01/45434166/ptac097.pdf
https://doi.org/10.1088/0004-6256/147/5/122
https://doi.org/10.1088/0004-6256/147/5/122
http://arxiv.org/abs/1403.3141
https://doi.org/10.3847/1538-4365/ab8562
https://doi.org/10.3847/1538-4365/ab8562
http://arxiv.org/abs/2004.00114
https://doi.org/10.1088/1475-7516/2016/03/055
https://doi.org/10.1088/1475-7516/2016/03/055
http://arxiv.org/abs/1507.07243
https://doi.org/10.1016/j.physletb.2004.11.013
https://doi.org/10.1016/j.physletb.2004.11.013
http://arxiv.org/abs/nucl-ex/0408009
https://doi.org/10.1209/epl/i1996-00319-x
https://doi.org/10.1209/epl/i1996-00319-x
https://doi.org/10.1016/0375-9474(89)90246-7
https://doi.org/10.1016/0375-9474(89)90246-7


 1106 Page 12 of 12 Eur. Phys. J. C          (2022) 82:1106 

49. W. Paul, F. Anton, W. Mampe, L. Paul, S. Paul, Measurement of
the neutron lifetime in a magnetic storage ring. Z. Phys. C 45, 25
(1989). https://doi.org/10.1007/BF01556667

50. J. Last, M. Arnold, J. Döhner, D. Dubbers, S.J. Freedman, Pulsed-
beam neutron-lifetime measurement. PRL 60(11), 995–998 (1988).
https://doi.org/10.1103/PhysRevLett.60.995

51. P.E. Spivak, Neutron lifetime from atomic-energy-institute exper-
iment. Sov. Phys. JETP 67, 1735–1740 (1988)

52. Y.Y. Kosvintsev, V.I. Morozov, G.I. Terekhov, Measurement of neu-
tron lifetime through storage of ultracold neutrons. Sov. J. Exp.
Theor. Phys. Lett. 44, 571 (1986)

53. Y.Y. Kosvintsev, Y.A. Kushnir, V.I. Morozov, G.I. Terekhov, Appli-
cation of ultracold neutrons for neutron lifetime measurement (in
Russian). JETP Lett. 31, 236 (1980)

54. C.J. Christensen, A. Nielsen, A. Bahnsen, W.K. Brown, B.M.
Rustad, Free-neutron beta-decay half-life. PRD 5(7), 1628–1640
(1972). https://doi.org/10.1103/PhysRevD.5.1628

55. S. Crandall, S. Houston, B. Ratra, Non-Gaussian error distribu-
tion of 7Li abundance measurements. Mod. Phys. Lett. A 30,
1550123 (2015). https://doi.org/10.1142/S0217732315501230.
arXiv:1409.7332

56. J. Erler, R. Ferro-Hernández, Alternative to the application of PDG
scale factors. Eur. Phys. J. C 80(6), 541 (2020). https://doi.org/10.
1140/epjc/s10052-020-8115-3. arXiv:2004.01219 [physics.data-
an]

57. G.G. Chen, I. J. Richard. Gott, B. Ratra, Non-Gaussian
error distribution of Hubble constant measurements. PASP
115(813), 1269–1279 (2003). https://doi.org/10.1086/379219.
arXiv:astro-ph/0308099 [astro-ph]

58. M. Singh, S. Gupta, A. Pandey, S. Sharma, Measurement of Hub-
ble constant: non-Gaussian errors in HST Key Project data. JCAP
8, 026 (2016). https://doi.org/10.1088/1475-7516/2016/08/026.
arXiv:1506.06212

59. P. Huber, Robust Statistics (Wiley, New York, 1981)
60. B. Efron, R. Tibshirani,An Introduction to the Bootstrap (Chapman

and Hall, London, 1994)
61. W.J. Conover, Practical Nonparametric Statistics, vol. 350 (Wiley,

New York, 1999)

62. R. Barlow, Asymmetric Systematic Errors. arXiv e-prints, 0306138
(2003). arXiv:physics/0306138 [physics.data-an]

63. R. Barlow, Asymmetric statistical errors. arXiv e-prints, 0406120
(2004). arXiv:physics/0406120 [physics.data-an]

64. L. Lista, Statistical Methods for Data Analysis in Particle Physics,
vol. 941 (Springer, Berlin, 2017)

65. G. Audi, F.G. Kondev, M. Wang, W.J. Huang, S. Naimi, The
NUBASE2016 evaluation of nuclear properties. Chin. Phys. C
41(3), 030001 (2017). https://doi.org/10.1088/1674-1137/41/3/
030001

66. A. Possolo, C. Merkatas, O. Bodnar, Asymmetrical uncertain-
ties. Metrologia 56(4), 045009 (2019). https://doi.org/10.1088/
1681-7575/ab2a8d

67. G. Audi, M. Wang, A.H. Wapstra, F.G. Kondev, M. MacCormick,
X. Xu, B. Pfeiffer, The Ame2012 atomic mass evaluation. Chin.
Phys. C 36(12), 002 (2012). https://doi.org/10.1088/1674-1137/
36/12/002

68. R.J. Barlow, Practical statistics for particle physics. arXiv e-prints,
1905–12362 (2019) arXiv:1905.12362 [physics.data-an]

69. S. Podariu, T. Souradeep, J.R. Gott III., B. Ratra, M.S. Vogeley,
Binned cosmic microwave background anisotropy power spec-
tra: peak location. ApJ 559, 9–22 (2001). https://doi.org/10.1086/
322409. arXiv:astro-ph/0102264

70. O. Farooq, S. Crandall, B. Ratra, Binned Hubble parameter mea-
surements and the cosmological deceleration-acceleration tran-
sition. Phys. Lett. B 726(1–3), 72–82 (2013). https://doi.org/10.
1016/j.physletb.2013.08.078. arXiv:1305.1957 [astro-ph.CO]

71. S. Crandall, B. Ratra, Median statistics cosmological parameter
values. Phys. Lett. B 732, 330–334 (2014). https://doi.org/10.1016/
j.physletb.2014.03.059. arXiv:1311.0840

72. G. Cowan, Statistical models with uncertain error parameters.
Eur. Phys. J. C 79(2), 133 (2019). https://doi.org/10.1140/epjc/
s10052-019-6644-4. arXiv:1809.05778 [physics.data-an]

123

https://doi.org/10.1007/BF01556667
https://doi.org/10.1103/PhysRevLett.60.995
https://doi.org/10.1103/PhysRevD.5.1628
https://doi.org/10.1142/S0217732315501230
http://arxiv.org/abs/1409.7332
https://doi.org/10.1140/epjc/s10052-020-8115-3
https://doi.org/10.1140/epjc/s10052-020-8115-3
http://arxiv.org/abs/2004.01219
https://doi.org/10.1086/379219
http://arxiv.org/abs/astro-ph/0308099
https://doi.org/10.1088/1475-7516/2016/08/026
http://arxiv.org/abs/1506.06212
http://arxiv.org/abs/physics.data-an/0306138
http://arxiv.org/abs/physics.data-an/0406120
https://doi.org/10.1088/1674-1137/41/3/030001
https://doi.org/10.1088/1674-1137/41/3/030001
https://doi.org/10.1088/1681-7575/ab2a8d
https://doi.org/10.1088/1681-7575/ab2a8d
https://doi.org/10.1088/1674-1137/36/12/002
https://doi.org/10.1088/1674-1137/36/12/002
http://arxiv.org/abs/1905.12362
https://doi.org/10.1086/322409
https://doi.org/10.1086/322409
http://arxiv.org/abs/astro-ph/0102264
https://doi.org/10.1016/j.physletb.2013.08.078
https://doi.org/10.1016/j.physletb.2013.08.078
http://arxiv.org/abs/1305.1957
https://doi.org/10.1016/j.physletb.2014.03.059
https://doi.org/10.1016/j.physletb.2014.03.059
http://arxiv.org/abs/1311.0840
https://doi.org/10.1140/epjc/s10052-019-6644-4
https://doi.org/10.1140/epjc/s10052-019-6644-4
http://arxiv.org/abs/1809.05778

	MFV approach to robust estimate of neutron lifetime
	Abstract 
	1 Introduction
	2 Neutron lifetime data
	3 Analysis
	4 Error distribution for PDG dataset
	5 Conclusion
	Acknowledgements
	References




