

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS
TENSOR FORMULATIONS FOR THE

MODELLING OF DISCRETE-TIME NONLINEAR
AND MULTIDIMENSIONAL SYSTEMS

by

Peter John Lenk

September 19S5

Thesis Advisor: S.R. Parker

Approved for public release: distribution is unlimited.

T222866

SECURITY CLASSIFICATION OF THIS RACE (Whit Dmlm Enttr.d)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (mnd Subtltl*)

Tensor Formulations for the

Modelling of Discrete-Time Nonlinear

and Multidimensional Systems

5. TYPE OF REPORT * PERIOD COVERED
Ph.D. Dissertation

September 1985

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR^

Peter John Lenk

8. CONTRACT OR GRANT NUMBERnj

9. PERFORMING ORGANIZATION NAME ANO AODRESS

Naval Postgraduate School

Monterey, California, 93943-5100

10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

11. CONTROLLING OFFICE NAME ANO ADDRESS

Naval Postgraduate School

Monterey, California, 93943-5100

12. REPORT DATE

September 1985

13- NUMBER OF PAGES

196
M. MONITORING AGENCY NAME ft AODRESSf// dlllmront from Controlling Oltict) IS. SECURITY CLASS, (ot thf report)

15«. DECLASSIFICATION' DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of thit Report;

Approved for public release: Distribution is unlimited.

17. DISTRIBUTION STATEMENT (ot thm mbttrmel mntmrmd In Block 30, II dlllmront from Rtport)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on rmvmrtm aldm II nmemaamry mnd tdonllly by block numbar)

Nonlinear system, nonlinear system modelling, \olterra series, tensor form of \<>lterra series.

alternate coordinate systems, moving average, autoregressive. RLS algorithm. LMS algorithm.

multidimensional s\stem modelling, generalized lattice models. Levinson algorithm. Schur algo-

rithm. 2-D lattice models, nonlinear lattice models, systolic arravs.

20. ABSTRACT (Conllnum on rovmr»m mldo II ntemttmry mnd Identity by block number)

The modelling of nonlinear and multidimensional systems from input and or output meas-

urements is considered. Tensor concepts are used to reformulate old results and develop several

new ones. These results are verified through non-trivial computer simulations.

A generalized tensor formulation for the modelling of discrete-time stationary nonlinear sys-

tems is presented. Tensor equivalents of the normal equations are derived and several efficient

methods for their solution are discussed. Conditions are established that ensure a diagonal corre-

lation tensor so that a solution can be obtained directly without matrix inversion.

dd ,;
FORM
AN 73 1473 EDITION OF 1 NOV 8S IS OBSOLETE

S 'N 0102- LF- 014-6601
SECURITY CLASSIFICATION Of THIS PAGE (Whmn Datm Knimrm,

SECURITY CLASSIFICATION OF THIS PA JC (Whan Dmm Bnt*r«0

Using a tensor formulation, a new proof of the Generalized Lattice Theory is obtained.

Tensor extensions of the Levinson and Schur algorithms are presented.

New two-dimensional (2-D) lattice parameter models are derived. Using the tensor form of

the Generalized Lattice Theory the 2-D multi-point error order-updates are decomposed into

0(N 2
) single point updates. 2-D extensions of the Levinson and Schur algorithms are given. The

quarter plane lattice is considered in detail, first in a general form, then in forms which reduce the

computational complexity by assuming shift-invariance.

Based on the 2-D lattice, a new nonlinear lattice model is developed. The model is capable

of updates in the nonlinear as well as time order.

r
- C ' 4 .- 1 ; i

SECURITY CLASSIFICATION OF THIS PAGE(Trhan Dmlm Enftmd)

Approved for public release distribution is unlimited

Tensor Formulations for t hie Modelling of

Discrete-Time Nonlinear and Multidimensional Systems

by

Peter John Lenk

Lieutenant(N), Canadian Armed Forces

B.Eng., Royal Military College of Canada, 1978

Submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

from the

NAVAL POSTGRADUATE SCHOOL
September 1985

c/

ABSTRACT

The modelling of nonlinear and multidimensional systems from input and/or output

measurements is considered. Tensor concepts are used to reformulate old results and develop

several new ones. These results are verified through non-trivial computer simulations.

A generalized tensor formulation for the modelling of discrete-time stationary nonlinear

systems is presented. Tensor equivalents of the normal equations are derived and several efficient

methods for their solution are discussed. Conditions are established that ensure a diagonal

correlation tensor so that a solution can be obtained directly without matrix inversion.

Using a tensor formulation, a new proof of the Generalized Lattice Theory is obtained.

Tensor extensions of the Levinson and Schur algorithms are presented.

New two-dimensional (2-D) lattice parameter models are derived. Using the tensor form of

the Generalized Lattice Theory the 2-D multi-point error order-updates are decomposed into

0(N) single point updates. 2-D extensions of the Levinson and Schur algorithms are given. The

quarter plane lattice is considered in detail, first in a general form, then in forms which reduce the

computational complexity by assuming shift-invariance.

Based on the 2-D lattice, a new nonlinear lattice model is developed. The model is capable

of updates in the nonlinear as well as time order.

TABLE OF CONTENTS

I. INTRODUCTION 11

A. HISTORICAL BACKGROUND 14

B. DISSERTATION OVERVIEW 15

II. MATHEMATICAL BACKGROUND 18

A. LINEAR FUNCTIONALS '.

18

1. Definition 2.1: Linear Functional 19

2. Theorem 2.1 19

3. Theorem 2.2 19

B. TENSORS 23

1. Definition 2.2: Contravariant Vector 23

2. Definition 2.3: Covariant Vector 24

3. Example 2.1 24

4. Definition 2.4: 'Contravariant Tensor of Order 2 26

5. Definition 2.5: Covariant Tensor of Order 2 26

6. Definition 2.6: Contravariant Tensor of Order p 26

7. Definition 2.7: Covariant Tensor of Order p 26

8. Definition 2.8: Mixed Tensor of Order p 27

C. NOTATIONAL CONVENTIONS 28

1. Example 2.2 29

2. Example 2.3 30

D. BILINEAR AND MULTILINEAR FORMS 31

1. Definition 2.9: Bilinear Functional 31

2. Example 2.4 : 32

E. TENSOR OPERATIONS 33

1. Definition 2.10: Tensor Outer Product 33

2. Example 2.5 34

5

3. Definition 2.11: Contraction 34

4. Example 2.6 35

5. Definition 2.12: Tensor Inner Product 35

6. Example 2.7 36

III. NONLINEAR SYSTEMS THEORY 37

A. CONTINUOUS NONLINEAR SYSTEMS MODELS 37

B. DISCRETE-TIME NONLINEAR SYSTEM MODELS 39

1. Tensor Formulation 42

2. Alternate Tensor Formulation 46

3. Example 3.1 47

C. DISCRETE NONLINEAR SYSTEM IDENTIFICATION 48

1. Derivation of Normal Equations 49

2. The Least Mean Square (LMS) Algorithm 52

3. Recursive Least Squares (RLS) Algorithm 54

4. Simulation Results 56

a. Direct Solution of Normal Equations 58

b. Simulation Using LMS Algorithm 60

D. GENERALIZED COORDINATE SYSTEMS 60

1. Choices of Coordinate Systems 64

a. Theorem 3.1 64

b. Proof 65

2. Recursive Models 67

a. Example 3.2 68

3. Simulation Results 71

[V. REVIEW OF LATTICE FILTER STRUCTURES 77

A. 1-D LINEAR AUTOREGRESSIVE LATTICE FILTER 77

1. Levinson-Durbin Algorithm 80

a. Theorem 4.1 Levinson's Algorithm (Durbin's Form) 81

b. Proof (by Induction) 81

2. The 1-D Lattice Structure 84

B. GENERALIZED ORDER UPDATE RECURSIONS 85

1. Definitions and Formulation 85

2. Generalized Levinson Algorithm 90

a. Theorem 4.2: Generalized Levinson Recursion (Regular Form) 90

b. Proof 90

c. Theorem 4.3: Generalized Levinson Recursion (Normalized Form) 94

d. Proof 94

3. Error Order Update Recursions 96

a. Theorem 4.4 ^. 96

b. Proof (Outline) 96

4. The Generalized Schur Algorithm 97

a. Theorem 4.3: Schur Recursions 100

b. Proof 100

5. Synthesis Model 101

6. Stochastic Fourier Series Interpretation 103

V. TWO DIMENSIONAL LATTICE STRUCTURES 107

A. GENERAL FORM OF 2-D LATTICE FILTER 108

1. Normalized 2-D Levinson Algorithm 110

a. Theorem 5.1 110

b. Proof (Outline) Ill

2. Normalized 2-D Error Order Updates Ill

a. Theorem 5.2 Ill

b. Proof (Outline) Ill

3. 2-D Form of Schur Recursion Ill

a. Theorem 5.3 112

b. Proof (Outline) 112

4. 2-D Lattice Structures 112

B. REDUCED COMPLEXITY 2-D LATTICE FILTERS 116

C. SYNTHESIS MODEL 122

D. SYSTOLIC IMPLEMENTATIONS 126

1. SFG Transformation Procedure 127

2. Systolic Implementation of 2-D Lattice Filter 127

3. Additional Remarks 128

E SIMULATION RESULTS 129

1. Example 5.1 129

2. Example 5.2 129

VI. NONLINEAR LATTICE STRUCTURES 142

A. GENERAL NONLINEAR LATTICE MODEL 143

1. Normalized Order Update Recursions 146

a. Theorem 6.1: Normalized Nonlinear Levinson Algorithm 146

b. Theorem 6 2: Normalized Error Order Update Algorithm 147

2. Uniqueness Of Lattice Parameters 148

a. Theorem 6.3 148

b. Proof (Outline) 148

3. Synthesis Models 149

B. SIMULATION RESULTS 149

VII. CONCLUSIONS AND DISCUSSION 152

A. Sl'MMARY OF NEW RESULTS 152

B. FUTURE DIRECTIONS FOR RESEARCH 153

LIST OF REFERENCES 155

APPENDIX A: ALTERNATE PROOF OF THEOREM 4.2 160

A. DEFINITIONS AND FORMULATION 160

B. ERROR ORDER UPDATE RECURSIONS 162

1. Theorem 4.2 162

2. Proof 162

APPENDIX B: FORTRAN PROGRAM LISTINGS 164

INITIAL DISTRIBUTION LIST 195

ACKNOWLEDGEMENT

I owe a great debt to Dr. S.R. Parker. Without his constant encouragement

and remarkable insight this work would not have been completed. I take this

opportunity to acknowledge this debt and to thank him.

I would also like to thank the members of my Doctoral Commitee. In

particular, I wish to express my gratitude to Professor E.C. Crittenden for his

friendship and support, to Professor P.H. Moose for his friendship and the

countless hours which he spent clarifying many of my misconceptions, and to

Professor Ziomek for his careful reading of this thesis.

Doctors Srbijanka Turajlic and Bharat Madan have both added much to my

understanding of Electrical Engineering. I would be remiss if I did not mention

their names.

Professor R.D. Strum has also contributed substantially to my education.

However, more importantly, he gave me his friendship.

I would also like to acknowledge Capt(N) J. Dean for his support of my

proposal to remain in Monterey and persue my Doctorate. In today's modern

Navy a requirement for Officers trained to the Doctorate level exists and I hope

that this training will be made available to others in the future.

Finally. I must thank my wife, Kim, and daughters, Kaarina. Alexis. Teegan.

and Tess. who endured much while I studied. Without this stable home

environment I believe this thesis would not have been possible.

10

I. INTRODUCTION

Linear, time(shift)-invariant systems have been exhaustively studied and

their properties and behaviour are well known. These systems form the

foundation of all engineering and scientific disciplines. However, they represent

only an approximation of reality. This fact, of course, does not diminish their

utility. Mathematical models employing the assumptions of linearity and shift-

invariance often provide results sufficiently accurate to be of practical use. For a

large class of systems, however, these assumptions cannot be justified and so

alternate models must be used. Mathematical models capable of representing

nonlinearities and methods for their identification from system measurements are

the major ^topics explored in this thesis. Due to the particular treatment of

nonlinear models chosen, multidimensional linear system modelling is also

investigated. The assumption of shift-invariance will not be relaxed.

It will be useful to formulate a geometric framework in which to solve the

nonlinear modelling problem. The motivation for this is simple. The transition

from physical problems to geometric ones allows many diverse phenomena to be

handled with a common set of mathematical tools. This relieves the burden of

having to invent new mathematics for each new situation. Instead, the well

understood language of geometry is used to tackle many classes of problems.

Kron [Ref. 1: p. 197] states very clearly the rationale that allows the real

physical problem to be converted to an equivalent geometric one in the following

passage.

A set of n equations with n variables (with time as a parameter) mav represent
either the performance of a dynamical system with n degrees of freedom or the
motion of a point along a curve located in an n-dimensional hypothetical space
and expressed along some frame of reference.

The basic approach taken in this dissertation, with respect to the modelling

of nonlinear systems, is to represent them as a linear combination of nonlinear

functions of the data. This allows linear algorithms to be applied in the solution

of the modelling problem. In the process of solving the nonlinear problem several

11

new multidimensional lattice structures are developed.

The inputs and outputs of the unknown system will be treated as random

signals (not in general gaussian.) The problem of transforming random processes

into geometric quantities has two solutions. These are introduced here in order

to avoid confusion later and also in part to justify the tensor formulation that is

used in the sequel.

A random process X may be defined as the assignment of a function

{x(t.u;), teT}, to every outcome, w in a sample space Q. Of interest in this

dissertation is the case when T is a discrete and finite index set.

One way of geometrically visualizing this random process is to consider a

Hilbert (or inner product) space, S, (in general infinite dimensional) of random

variables, that is the vectors or elements of the space are random variables.

.Fixing t=t x(t u;) is a random variable and so is a vector in S. The random

process, X. a time series of random variables, is a series of vectors in S. or a curve

in S [Ref. 2: p. 27]. The components of the vectors comprising X are indexed by

the parameter w. The required inner product on this space is defined in terms of

the statistical correlation, ie; E{x(tj,u;)x(uw)}. This approach has proved highly

successful in many applications [Ref. 3].

An alternate approach is to consider that the random process X, consists of

vectors in a function space. In this interpretation the random process is an

ensemble of time functions. {x(t,^),t£T}. indexed by u. Each of these time

functions (generally referred to as realizations) is a vector in the function space.

There will exist a large (in general infinite) number of such vectors corresponding

to each possible outcome, wefi. The components of the vectors are indexed by

the parameter t. There is no need to define a metric on this space. Any

expectations that are required must be calculated over the ensemble of vectors.

This second approach will be the one that is followed throughout this work.

It will lead to many interesting and novel interpretations of known algorithms

and also will be used to derive several significant new results.

While vectors are sufficient to provide a complete characterization of

discrete-time, one-dimensional linear systems, general nonlinear systems with

12

memory require the use of higher order geometric objects to obtain convenient

descriptions. It is shown in this dissertation that a particular class of these

geometric objects that extend vector concepts in a natural way and provide an

ability to deal with nonlinearities in an organized fashion are tensors.

The contraversial Sapir-Whorf hypothesis from linguistics [Ref. 4] states

that the constructs of a language define the boundaries of thought.

Mathematics is a legitimate language. It is a well defined set of rules used to

communicate ideas. If the mathematics that is employed in the solution of a

problem is constrained, then it is conceivable that certain solutions may not be

arrived at, or even that the problem may remain unsolved. In Electrical

Engineering, vector calculus and linear algebra are the major mathematical tools.

They are adequate to explain such diverse phenomena as the propagation of

electromagnetic waves or the behaviour of one dimensional linear systems. More

complex problems have also been solved using this theory by forcing them to fit.

but the notation can become awkward. Tensor analysis is a convenient

mathematical framework in which to deal with nonlinear and multidimensional

signal processing problems. It provides an algebra for manipulating objects of

higher dimension than two, which is all that can easily be handled using linear

algebra. Importantly, tensor algebra furnishes a system of notation which is

powerful, yet compact.

The Electrical Engineer's experience is usually limited to ordinary.

Euclidean geometries. Physicists, around the turn of the century, began to

realize that other more complex types of geometries were equally valid and

important. In fact. Einstein showed that the world we live in is neither

Euclidean nor is it simply three dimensional.

The arguments outlined above provide the motivation for this study of the

utility of tensor concepts in Electrical Engineering, specifically in the area of

discrete signal processing. Although this work examines but a fraction of the

possible applications in this field, it proves that tensors can lead to useful results

and that they warrant further consideration, particularly in problems involving

spaces of higher dimensions.

13

A. HISTORICAL BACKGROUND

Tensor analysis has evolved in this century, originating with two Italian

mathematicians in 1900; Ricci and Levi-Civita. Many of the early contributions

are due to Einstein who required tensor concepts in the development of his

general theory of relativity. Recent books on the subject include Golab, Synge

and Schild, and Young [Ref. 5,6,7].

Kron [Ref. l] in the early lOSO's made use of tensor concepts in Electrical

Engineering. He appears to be first to do so. His work was mainly concerned

with the analysis and design of electrical networks and rotating machinery. Since

that time there have been few papers that deal with tensors in the context of

Electrical Engineering.

Volterra [Ref. 8] laid the foundation for nonlinear system analysis in the late

nineteenth century. He studied functionals or functions of functions. He

proposed a series of increasing order functionals as an approximation to any other

functional. Frechet [Ref. 9: p. 517] later showed that this series was a complete

representation and converged uniformly. This series has since become known as

the Volterra series. We shall study this series in detail in Chapter 3.

The first application of the Volterra series to nonlinear systems was done by

Norbert Wiener in the 1930's. Wiener ' also made several other significant

contributions to nonlinear theory, such as the introduction of the Wiener G-

functionals [Ref. 10]. They posses the property of orthogonality when the system

input is white Gaussian noise. The two theories (Volterra and Wiener) form the

basis of almost all significant work to date on nonlinear systems.

One of the first practical methods of system identification was proposed by

Lee and Schetzen [Ref. 11]. Their method takes advantage of the orthogonality of

the Weiner G-functionals by employing a cross-correlation technique to identify

system parameters.

The study of discrete-time nonlinear systems has gained importance with the

advent of the digital computer. It appears that the idea of a discrete Volterra

series first appeared in the mid 1960's (see for example [Ref. 12].) The use of

tensor techniques in the study of nonlinear systems has received little attention.

14

Sandor and Williamson [Ref. 13] made some use of them in the study of

continuous systems. More recently Parker and Thomas [Ref. 14] proposed the

idea of using tensor methods for the analysis of nonlinear discrete-time systems.

Their techniques for system identification involved the use of deterministic input

signals to extract system parameters.

The Volterra series is non-recursive and so a discrete form cannot represent

an infinite memory system. This is equivalent to trying to represent an infinite

memory linear system with a finite length impulse response. This can pose

implementation difficulties for systems with long memories. One possible solution

is the use of a recursive model. There has until very recently been little written

about this because of the difficulty in analysing system stability. Parker and

Perry [Ref. 15] have proposed a discrete nonlinear ARMA (auto-regressive

moving-average) model, however, no stability implications were considered. Also

Parker. Mayoral and Thomas [Ref. 16] proposed an Adaptive Kalman Identifier

or RLS (Recursive Least Square) type algorithm for the identification of non-

linear ARMA systems. Zarzycki and Dewilde [Ref. 17] and Zarzycki [Ref.

18,19,20.21] have proposed a nonlinear lattice structure. Again the stability of the

resulting models is not discussed. Some nonlinear systems are inherently

recursive (eg: the phase locked loop) so that this remains an important area for

research.

Recently, several books dealing exclusively with nonlinear systems theory

have been published. The book by Schetzen [Ref. 9] concerns itself with

continuous systems. It provides a very thorough but readable development of the

classical concepts. Also of interest is a short appendix outlining the history of

nonlinear systems theory. A book by Rugh [Ref. 22]. is an important contribution

as it includes discussions of discrete theory.

B. DISSERTATION OVERVIEW

Because the typical reader of this dissertation will not have a background

which includes tensor calculus it was felt that a chapter covering some

fundamental concepts should be included. This material was considered to be of

15

central importance to the work that followed so it remains as a chapter rather

than being relegated to an appendix. Readers familiar with tensor concepts may

wish to skip most of Chapter 2. although, a cursory look is recommended to

ensure that the notation is clearly understood.

Chapter 3 begins with a review of the traditional Volterra theory of nonlinear

systems. Both continuous and discrete-time systems are discussed. The

discrete-time tensor equivalent of the discrete Volterra series is deduced. An

alternate nonlinear tensor formulation is presented along with a discussion of its

relationship to the Volterra series. This alternate formulation will be used in

most of the work that follows.

Next, methods for the identification of model parameters are examined. A

tensor equivalent of the normal or Weiner-Hopf equations is formulated. Several

recursive in time algorithms are included as examples of the application of

traditional linear modelling methods to the nonlinear tensor formulation.

Nontrivial numerical simulation results are included.

The advantages of using alternate coordinate systems are then investigated.

It is shown that by proper choice of coordinate systems and input signals the

identification process can be significantly simplified. The nonlinear tensor

formulation is extended to include recursive type models. It is shown that the

Yule-Walker equations have a tensor counterpart which can be solved for the

model parameters. Several of the new results of this chapter have already been

published [Ref. 23].

In Chapter 4 a review of modern lattice theory is presented. Although the

results themselves are not new the approach is novel. Tensor concepts are used

to derive the lattice filters presented by considering orthogonalizing coordinate

transformations. Generalized forms of the Levinson and Schur algorithms are

also presented and proven. These important algorithms are well known in linear

matrix theory [Ref. 3] and their generalization in tensor form is a significant

result.

Chapter 5 breaks new ground by applying the lattice theory of Chapter 4 to

the problem of modelling two-dimensional data fields. Simplifications due to an

16

assumption of shift-invariance are studied. Several different configurations are

considered. Simulation results are included to prove the validity of the theory.

Some implementational aspects of the algorithms are considered. In particular a

systolic array is deduced for one of the two-dimensional lattice algorithms

presented. This result demonstrates that the new algortihms are amenable to

implementation in dedicated VLSI hardware.

In Chapter 6 a nonlinear lattice is formulated, again based upon the theory

presented in Chapter 4 and 5. This is a new result. The lattice structure

proposed differs from those of previous researchers in that it is recursive, not only

in time order, but also in nonlinear order. For example, one can obtain the

optimal cubic model from a knowledge of the optimal quadratic model. Once

again nontrivial simulation results are included.

Chapter 7 is a summary of the new results presented in this dissertation. It

draws conclusions about these results and outlines some important unanswered

questions as possible topics of future research.

Two appendices are included.

Appendix A contains an alternate proof of Theorem 4.4. This proof uses the

Hilbert space formulation described in this introduction. It is included for two

reasons; first, to illustrate this alternate formulation and second, to provide

additional insight into this theorem which forms the foundation of Chapters 5

and 6.

Appendix B contains listings of the FORTRAN programs used in the

simulations presented in this thesis.

17

II. MATHEMATICAL BACKGROUND

This chapter presents a brief overview of the mathematical tools that are

used in the dissertation. It begins with a discussion of linear, bilinear and

multilinear functionals, and it is shown that these can be represented by tensors.

Some customary conventions which simplify notation are introduced, and some

useful tensor operations are presented and discussed. This is meant to be an

introduction to the subject of tensor analysis. Only those concepts that will be

used in the remainder of the dissertation are presented. Some proofs are included

to act as examples. Many others are not presented here, since the interested

reader can find them in the references [Ref. 5,6.7]. The discussion assumes a

thorough knowledge of linear algebra.

A. LINEAR FUNCTIONALS

We say that. V, is a vector space over a field of scalars. F. if the operations

of scalar multiplication and vector addition are defined such that the axioms of a

vector space are satisfied (see for example [Ref. 24.25].)

Consider a vector space. V, over a field of scalars. F. The elements of V are

called vectors and will be denoted by use of boldface type, viz T. If we restrict

otlrselves to spaces of finite dimension. N, then we may write a vector T as an

N-tuple of components and denote the vector space by VN
. The components of a

vector T will be denoted by T\ where A =1....N. Writing a vector as a set of

components implies the existence of a basis. We will denote a basis for VN as the

set of vectors A = {a, a N }. Thus an arbitrary vector T in V N can be written

as a linear combination of these basis vectors, viz..

T £T J

a A (2.1)
.\ -

1

In order to maintain generality it is not necessary to commit to any specific

vector space at this point. Likewise we allow the basis to remain arbitrary.

18

The following definitions and theorems are presented essentially without

proof.

1. Definition 2.1: Linear Functional

If VN
is a vector space over a field of scalars F, then, a linear

transformation, H (the reason for the boldface will become apparent shortly, (see

eqn (2.6))), of VN into F, is known as a linear functional or linear form on VN
.

We can indicate this transformation by

H(T) = c where ceF and TeVN
(2.2)

2. Theorem 2.1

The set of all linear functionals on VN forms a vector space of the same

dimension as VN
. This space is known as the dual vector space and is indicated

by VN
.

3. Theorem 2.2

If V N
is a vector space over the field of scalars F, with basis A =

{aj, ..., a N }, then the set of linear functionals A = {b 1
.... bN

}, (defined so that the

A-th functional. b A
. operating on an arbitrary element of VN

. say T. yields the A-

th component of T. namely T*). form a basis for VN
. The defining property can

be expressed mathematically as

bA
(T) = T A

for all A 6 1 N (2.3)

N

where T = J]T a^

A= I

We call the functional bA
the A-th coordinate function since when applied

to a vector T it yields the A-th coordinate, namely T\ The set of these linear

functionals, b\ A e {1 N} comprising A is known as The dual basis of A.

It is interesting to note that this choice of basis for the dual space leads

to the property that

J
] whenA- fj ,<-> < \

b'(aj = S\ = i n . . , I
2 - 4

)
v M/ M 10 whenA^//

To show this we proceed as follows: from (2.1) it follows that

19

/n
bA

(T) = b A £T"a„
V = 1

= i>A

(
T" a

«)

(2.5a)

(2.5b)

Since bA
is a linear functional (2.5b) can be written as,

bA
(T) = £T*bA

(a„) (2.5c)

However, from (2.3) it is known that b A
(T) = TA

. Thus (2.5c) implies (2.4).

The existence of a basis for the dual space implies that any vector (linear

functional) H in VN may be written uniquely as a linear combination of the

elements of the dual basis. Therefore, any linear functional can be represented

uniquely by an N-tuple of components. Thus

H= £H Ab^

A=l

From (2.6) one can write

H(T) = £H,b A
(T)

Using (2.3), (2.7a) becomes

H(T) = 1]HaT a

A=l

Alternatelv. in matrix form, if

H = iH, H- H N

(2.6)

r

2.7a:

(2.7b)

'2.8
1

T _
[T i T2 . . . t n T

(2.9)

then (2.6) can be written as:

H(T) - HT. (2.10)

We notice that the two vectors. H and T. are defined relative to different

basis and that they belong to different vector spaces. The vector H. defined

20

according to the dual basis A is called a covariant vector. The vector T. defined

according to the regular basis. A. is known as a contravariant vector. As a

convention, whenever a subscript is used to index the components of a vector it

is understood that the vector is being expressed according to the dual basis, A, in

the dual vector space VN
, and is a covariant vector. Similarly, when a

superscripted index is used the components are assumed to represent a

contravariant vector in the vector space VN according to the regular basis A.

Equation (2.7b) represents what we normally think of as a vector inner

product. We usually do not think of the two vectors as coming from different

vector spaces. The reason for this is that in the familiar rectangular cartesian

system of coordinates, the regular and dual basis are identical and so there is no

need to differentiate between covariant and contravariant vectors. In other

systems of coordinates the distinction must be made in order that the

relationships have meaning. To perform a vector inner product, one vector must

be covariant and the other must be contravariant. For example consider the

vector T as illustrated in Figure 2.1. It has components l 3
T with respect to

basis {e!,e2 } and components -l 2}
T with respect to basis {er .e 2 -}.

A measure of the length of vector T in the rectangular coordinate system.

{e 1 ,e2}, can be computed from the expression

N

£T AT ;

A= 1

1/ 2

(2.11a)

1/ 2

(2.11b)

10 (2.11c)

The answer i^ correct because in the rectangular ("artesian coordinate system

there is no need to distinguish between covariant and contravariant vectors, ie:

T^ = TA . However, an expression similar to (2.11c) in the oblique coordinate

system, {e
x

e 2 }. does not yield a measure of the length of the vector.

21

Figure 2.1: Vector T expressed according to the two bases {e,.e 2 } and {er .e2 -}.

22

N r ni/2

^ T AT A = (_1)2^ 2
2

(212a)
A = l

L J

5
1 - (2.12b)

The answer is incorrect since both vectors in expression (2.12) are contravariant.

To obtain a correct answer, one of the vectors would have to be made covariant.

This involves introduction of a metric tensor. The interested reader can find a

discussion of this concept in [Ref. 6]. In the case of rectangular coordinate

systems this metric tensor is the identity matrix. Our intent here was only to

indicate that in any system other than rectangular Cartesian, strict attention

must be paid to the character of the vectors.

B. TENSORS

In the previous section the concept of covariant or contravariant vectors has

been established. In this section a more formal definition of these quantities is

presented.

Suppose we have N variables x\ x
2

x
N

. then a set of values of these

variables is called a point. The variables themselves are called coordinates (or

components.) The totality of all points, as each of the variables (coordinates)

x\ A - l N, vary over their entire specified range, constitutes an N-dimensional

space, denoted by V N
.

1. Definition 2.2: Contravariant Vector

A contravariant vector T. is defined on the basis of the transformation of

its components upon transition from one coordinate system to another. For

coordinate system (A) the components of T are an X-tuple of numbers designated

as

T A
(A =] \)

Upon transition to another coordinate 1 system (A'), if the components of T

transform according to the rule

23

TA
' = E^T^ (2.13)

where xA and xA ' define the coordinates of a point in the old (A) and new (a')

coordinate systems, then T is said to be a contravariant vector.

2. Definition 2.3: Covariant Vector

A covariant vector U, is defined on the basis of the transformation of its

components upon transition from one coordinate system to another. For

coordinate system (a) the components of U are an N-tuple of numbers designated

as

U, (A = 1, N)

Upon transition to another coordinate system (A'), if the components of U

transform according to the rule

Ur=E^UA (2.14)
X = i

ox

then U is said to be a covariant vector.

g A '

In equation (2.13) the quantity represents the partial derivative of

the new (primed) coordinates with respect to the old coordinates. Similarly, in

ft
x

equation (2.14) —— represents the partial derivative of the old coordinates with
3x

respect to the new. primed, coordinates. In general these quantities can be

arranged into a two-dimensional matrix of numbers.

3. Example 2.1

Consider the following parametric description of a curve:

x
1 = f,(t) 12. 15a)

x
2 = f2 (t) (2.15b)

x
s
- f,(t) (2.15c)

We consider the three quantities x
1

. x
:

. x\ to be the coordinates of a point or

equivalently the components of a vector in a three dimensional space. We leave

24

the basis arbitrary. Indeed the equations we write will be true regardless of the

choice of basis. This is the inherent advantage of tensor analysis since it allows

expressions to be written which are invariant with respect to the coordinate

system.

We can now define new, primed, coordinates as functions of the old

coordinates. For example, if we arbitrarily choose the following coordinate

transformation

x*' = MxV.x') (2.16a)

x 2 = g 2(x\x
2
.x

3
)

(2.16b)

x" = g 3 (x ,X .X
)

— (2x
3-x 1

]

7T

(2.16c;

then, the quantities — can be written in matrix form as

dx x '

9x'

—

2x / —
7T

2.1

According to equation 2.13 any contravariant vector, say T. with components T ;

can be expressed in the new (primed) coordinate system as

N dx"

A=l OX

or in terms of components

T1
= -v /—

T

1 - 0T-
Tl

OT —

T

(2.18a

->2' OT 1 —T + OT"
7T

2
-l- (2.18b)

25

T3 ' = - x/^-T 1 - OT 2 - 2X /^T 2

X /^2(T 3 -T 1

)
(2.18c)

4. Definition 2.4: Contravariant Tensor of Order 2

A set of N 2 numbers T A
", where A and ^ = 1.....N are said to be the

components of a second order contravariant tensor if, upon transition to another

coordinate system, they transform according to the rule

TA
" = E E TA" °* qx

(2.19)

5. Definition 2.5: Covariant Tensor of Order 2

A set of N 2 numbers U A/1 , where A and //. = 1,....N are said to be the

components of a second order covariant tensor if, upon transition to another

coordinate system, they transform according to the rule

Or,--EE«*!jrr£r (2-2")

Similarly, tensors of higher order can also be defined. In the general

case, it will no longer be possible to use different letters to denote indices. In this

case indices with sub-indices will be utilized, namely A
x , A 2 A N .

6. Definition 2.6: Contravariant Tensor of Order p

A set of V numbers T ' p
. where X

t

= 1, ..., N for i = l,...,p, are said to be

the components of a p-th order contravariant tensor if. upon transition to

another coordinate system, they transform according to the rule

Tv v ,
f.

. £ T>, '^
.
,/»*£

(2 .21)
i, i .'

p
-

1 i)x ' 8x p

7. Definition 2.7: Covariant Tensor of Order p

A set of \' p numbers I . > . where A l N for i l p. are said to be

the components of a p-th order covariant tensor if. upon transition to another

coordinate svstem. thev transform according to the rule

N .. pdx ox
«V v- S •• HV ».fv fv (2-22)

A,= l A =i dx 9x p

26

8. Definition 2.8: Mixed Tensor of Order p

A set of Np numbers S l q
A A where A, = l N for i = 1 p. are said

to be the components of a p-th order mixed tensor, with q contravariant and (p-

q) covariant indices if, upon transition to another coordinate system, they

transform according to the rule

= E •• Ss 1 V,-inr- \ *-
•

•

• -^ (2.23)
x% x^i

q+l p
9x ' ax' ax < +l 3x p

v ;

We have already seen two examples of mixed tensors. The first is the

Kronecker delta

(1
whenA -a ,_ _ „»

2.24
whenA # //

V ;

To see that the Kronecker delta is in fact a mixed tensor we must test to see if it

transforms according to the rule given in equation (2.23). We must prove that

the following relation is true

'''.=SE^'. (2-25)
A=l M =l OX OX

We begin with the right hand side of (2.25)

(2.26a)

2.26b

N N

E E
dx x

'

9x A

9x"

bx M
' *v

N

E
A- 1

9xv

9x A

N 9x"

Bx"'

=
N

E
A = 1

9x A
'

9x A

3x A

9x"'

dx^

A'
- 6* „- (2.26d)

Therefore, we conclude that relation (2.25) holds and so the Kronecker delta is in

fact a second order iensor of mixed character.

27

The other mixed character tensor that we have already worked with is

the one appearing in the formulae of transformation (definitions 2.2 through 2.8).

that is the the partial derivative of the new coordinates with respect to the old

(and the old with respect to the new). We will not prove that this is in fact a

tensor of the type stated although the proof is straight forward. It is instructive

3x A 8xA

to note, however, that the two quantities —— and are inverses of each
8xA 9x^

other.

As a final note, vectors are tensors of order one. Also scalars are

considered to be tensors of order zero. They are sometimes called invariants

since their representation is independent of the coordinate systems used.

C. NOTATIONAL CONVENTIONS

There are two widely accepted conventions that simplify notation and

unquestionably save much writing. The first is known as the summation

convention. Historically, it was first used by Einstein. He noticed that in almost

all cases there is really no need to explicitly write summation symbols.

Summation can be implied whenever an index is repeated in an expression, once

as a superscript and once as a subscript. The repeated index is allowed to take

on all permissible values and the resulting terms are summed together. This type

of index is often referred to as a dummy index. But what are permissible values

for the index? This question leads to the second convention. Normally, the range

of the index will not be explicitly stated. By convention it is understood that all

greek subscripts and superscripts appearing in an expression will take on all

values from 1 to N. where N is the dimension of the vector space in which we are

working. In later chapters we will find it more convenient to allow indices to run

from To N. The dimensionality of the vector space will thus be N-f-1. An

additional convention which we shall find useful is To reserve latin indices to

indicate ThaT we are dealing with a particular component of a quantity. In most

books this is indicated by surrounding the particular index with parenthesis.

However, we will reserve parenthesis to indicate exponentiation. The conventions

adopted here will be used throughout the sequel. In exceptional cases, where

28

some deviation from them is required, we will explicitly state the meaning of the

notation. As an example of the use of these conventions consider the expression

Y A = £ HvT* for A = 1, ..., N (2.27)

It can be written more succinctly as:

Y A = HVT* (2.28)

Another convention which has already been used is now formally introduced.

Every tensor quantity will be given a distinct base letter. Upon a change of

coordinates, the base letter will be maintained in order to indicate that the

quantity has not been modified, only the representation has changed. The

coordinate system used is indicated by the sub- or superscript used to index the

components of the quantity. We therefore, will refer to different coordinate

systems simply by the index letter used to indicate the components. For

example, a vector T has components T A
in the (A) set of coordinates, while it has

components T A
' in the (A') coordinate system. We note that using this

representation, scalars appear identical in all coordinate systems, which is

desirable.

1. Example 2.2

The following example serves not only as an illustration of the

conventions presented in this section, but also as a concrete (and presumably a

somewhat familiar) illustration of the two types of vector. Consider an invariant

function of the coordinates, f = f(x'. x 2
. x s

). The differential of this function is given

by

8f , i Bf
, 2 Bf
dx' --r-dx" (2.29

dx' dx" dx"

We can consider dx -
* to be the components of a contravariant vector representing

an infinitesimal displacement expressed according to some basis A = {a, a 2 *u-

We can write this as:

29

dx= X) dx A
a A (2.30)

We have already shown that components of a contravariant vector transform

according to

dxy = -^-dxA
(2.31)

dx x K
'

The gradient is also a vector whose components are given by:

Vf, = -~ (2.32)

Upon a change of coordinates the values of the new components, yfA -, can be

deduced by application of the chain rule;

It is clear that the components of the gradient transform according to the rule

given in equation (2.14). The gradient must, therefore, be considered to be a

covariant vector.

2. Example 2.3

Although it has already been stated (section 2.1) that linear functionals

can be considered to be covariant vectors, this fact has not been proven. In this

example we will show that any linear functional, say H. with components H A that

transforms an arbitrary contravariant vector, say T. (according to equation

(2.7b)) to yield an invariant, satisfies the definition of a covariant vector

(equation (2.14)). Equation (2.7b). which defines a vector inner product is

repeated here for convenience.

H(T) = H,T A (2.34a)

The quantities T'
;

are the components of an arbitrary contravariant vector.

Because of the assumed invariance we may write

H AT = H A T' (2.34b)

From the definition of a contravariant vector, (equation (2.13))

30

Ty = T A -^— (2.34c)

Equation (2.34b) becomes

H AT
A = H A -T

A -^— (2.34d)
3x

Rearranging yields,

(
H

> - ha- 4nr) T" = °
(
2 -34e

)ox

Equation (2.34e) implies

3x_
A

'

8x'
H,= Hr ^- (2.34f)

since the contravariant vector, T, was arbitrary. A simple change of variables in

this last expression yields

H,.= HA -|4 (2-34g)
ox

which is identical to the equation defining a covariant vector. (2.14). We are

thus justified in calling linear functionals covariant vectors.

D. BILINEAR AND MULTILINEAR FORMS

We next consider higher order functionals. In particular we will start with

the bilinear form or bilinear functional.

1. Definition 2.9: Bilinear Functional

A mapping f of a pair of vectors, say T e UN and S e VM into a field of

scalars. is a bilinear functional or bilinear form if f(T,S) is a linear function of

T and S taken independently. Wr

e will only consider cases when N = M and

UN
- V N

.

Once again choosing an arbitrary basis A = {a, a N } we may express

two arbitrary contravariant vectors as linear combinations of these basis vectors.

T = T A
a A , and S - S"a„

The bilinear functional f can then be written

31

f(S.T) = f(S*aM ,T
AaA)

(2.35a)

= S"f(aM ,T
AaA)

(2.35b)

= S*TA
f(a

M
,a A)

(2.35c)

The bilinear form is thus completely determined by the N2 quantities f(a M ,a A). We

will write these components off as fMA . Using this shorthand, equation (2.35c) can

be written as

f(S,T) = f„ AS"T
A (2.35d)

In matrix notation the bilinear form takes on the familiar appearance

f(S.T) = STFT (2.36)

where F = !fMA]

If the two vectors S and T are equal then the bilinear form reduces to the

well known quadratic form

f(T,T) - f^T*T A
(2.37a)

or in matrix notation

f(T.T) - TTFT (2.37b)

We will be interested in the behaviour of the components. f„ A . of the

bilinear form. f. upon transition from one coordinate system to another. We

establish their tensor character in the following example.

2. Example 2.4

In Example 2.3 we showed that a linear functional satisfied the definition

of a covariant vector. Here we will show that a bilinear functional satisfies the

definition of a covariant tensor of second order. It is necessary for the discussion

that follows in later chapters to establish the tensor character of bilinear

functionals. Since the bilinear functional yields an invariant (scalar), we may

write

f,A^T A
= f„-rS"'T

v (2.38a)

32

= VA-s^ Tir-r (
2 - 38b

)

dxM 3x

= ^— ^ir- f„-rS"T
A

(2.38c)
ax" 8x A M v ;

Rearranging yields

(
f^77 77Vr)S^=0 .

(2.38d)
ox' ox

Since the contravariant vectors S and T are arbitrary the quantity inside the

parenthesis must vanish. This yields the relation

Vr =^Tirirr (2.38e)
ox M ox

This last equation is identical to the definition of a second order covariant tensor

(equation (2.20).) We have thus proven that bilinear functionals are covariant

tensors of order 2.

In general we can have m-linear functionals which map m contravariant

vectors. T(l), T(m), into a scalar and are linear functions of each of the m input

vectors taken separately. They can be written as

f(T(l) T(m))=T" I

(l) •• TAm(m)fv . ^ (2.39)

Using identical arguments to the ones presented for linear and bilinear

functionals. we can show that multilinear functionals are also covariant tensors.

E. TENSOR OPERATIONS

There are a few tensor operations that will be of considerable importance in

later discussions. Although some have already been used we will formally define

them here before proceeding. Only those operations that will be used in the

sequel are presented. Others are possible and are discussed aT length in the

references (see for example [Refs. 1,5,6.7].)

33

1. Definition 2.10: Tensor Outer Product

Given the components of two tensors

'"p] n

'1 ^m

A , A

and S
n + 1 p

,

the N(p+q) numbers RAl x

\ i

.. . M
given by

"l "q ~ "l MmD M m+1 "<,

:2.40]

(2.41)

are components of a tensor of order p + q. The operation implied in the above is

known as the tensor outer product or simply the tensor product.

2. Example 2.5

As an example of the tensor product operation consider two vectors

defined as:

T = [T
A

: and S = [S*]

The tensor product is given by (equation (2.41))

(2.42)

(2.43)

In this case the components of the tensor product can be arranged as a matrix of

N 2 numbers. For simplicity consider the case when N=3. In matrix notation

or

R = TS 1

RA„ = T A
S">

;2.44a)

[2.44b)

T'lci 'T'Q' T'S*

T-S 1 T 2
S

2 T 2
S

;

T'S 1 T'S- T 3
S'

Definition 2.11: Contraction

!.44c

The operation of setting two indices, one lower and the other upper,

equal and summing the result is known as contraction. The result is a tensor

which has the character indicated by the remaining indices. The contraction of a

tensor of order p + 1 over two indices results in a tensor of order p - 1.

34

4. Example 2.6

We may contract the tensor

H^

H
j
H 2 h j

H2 u2 u2
i

±1 2 rl 3

H3 ttS tt3
1 « 2 " 3

(2.45)

over the indices A and /*, resulting in

H\ = H\ + H 2
2 + Hs

s (2.46a)

= Trace|H ;

(2.46b)

a scalar which represents the trace of the matrix.

We can consider a higher order example. Assuming a three dimensional

vector space, consider contracting a tensor U A

^
7 over the indices A and p. The

result will be a vector whose components, IP, are given by

U 1 = UV + UV + U3
,
1

(2.47a)

U 2 = U 1 u2
,
2 + us 2

Us = UV + UV - u3

5. Definition 2.12: Tensor Inner Product

;2.47b)

(2.47c)

Suppose that after we form the outer product of two arbitrary tensors T

and S. with components T ' ' . u and S
nTl p

u „ . we set the indices A.

and |ij equal. This implies a contraction operation. The outer product is

written (according to equation (2.41)) as

R
A

' T*.
s
A-

'2.48a)

The contraction operation yields. (definition 2.11)

R
A

'
A: ,A..l

j l/j-J 1- ,' j-1
2.4S1>

It can be shown that the object. R. given in the last equation is a tensor of the

character shown. If the original tensors. T and S, were of order m-f-n and p+ q-

(m+n) respectively, then the resulting tensor. R. will be of order (p+ q-2). The

35

total operation, consisting of contracting the result of a tensor product over one

(or more) pairs of indices, each member of the pair having come from a different

tensor, is known as a tensor inner product, or simply inner product. This

operation is also sometimes referred to as transvection (see for example [Ref.

5].)

This operation has been used previously in the discussion of linear,

bilinear and multilinear functionals, (see equations (2.7b), (2.35d) and (2.39)

respectively.) It will be particularly valuable in future discussions.

6. Example 2.7

Some insight into the inner product operation may be gained by

explicitly performing the two steps described above for the simple case of the

linear functional (equation (2.7b).)

y = H,T ;

f2.49l

We can first form the outer product by replacing one of the A indices appearing

on the right hand side with a different letter, say fi . We may then write:

!H,T>

H,T' H,T 2 H,T 3

H 2T' H 2T
2 H 2T

3

H,T] H,T2 H,T 3

'2.501

The result is now contracted by equating A and // and performing the implied

summation.

y " H,T A 2.51a

H,T] - H-.T- H.r- 2.51b

It is often useful to perform both these steps (tensor outer product and

contraction) when calculating an inner product, particularly when dealing with

higher order tensors. It may otherwise be difficult to keep track of how terms are

combined or even which terms will be present in the final expression.

36

III. NONLINEAR SYSTEMS THEORY

In this chapter several models of nonlinear systems are described. The

discussion begins with an overview of the classical continuous Volterra series.

Several interesting aspects of the series are examined. Next, a discrete-time

version of the Volterra series is introduced and is used to develop an equivalent

tensor form. Finally, a new discrete-time, nonlinear tensor model is presented

and its relationship to the Volterra series is discussed.

A. CONTINUOUS NONLINEAR SYSTEMS MODELS

Traditionally, non-linear systems have been modelled using the continuous

Volterra series expansion [Ref. 26: p. 1559]. In its most general form this can be

written as:

y(t) = h (t)

OG

-
'fb. l {t,T l

)x[r l)dr 1

J J
h 2 (t,7-

1
.r 2)x(7- 1

)x(r 2)dr]
d7- 2

- • •
• (3.1)

where x(t) is the system input and y(t) is the system output. The parameters

h (t). h,(t.r,). h 2 (t. r,.r 2). are known as the Volterra Kernels. As we will only

be concerned with time-invariant systems, the kernels will only be functions of

the time difference, (t-r). and not the actual time. The kernels then become:

h , hift-rj). h 2(t-r 1,t-T 2).
-. Simple changes of variables then allow the series.

(3.1), to be written in the form

37

y(t) = h

+
J

hi(r iWt-ri)dr,
— 00

00 00

+
J J

h 2 (r !,t 2)x(t-T Jxit-r 2)dr t
dT 2

— 00—00

+ ••• (3.2)

We note several things about the expansion. First, an infinite number of

terms are required to represent the most general case. Second, the kernels

h . h,(7-]
;

h2(r 1 ,r 2),
' correspond to the constant, linear, quadratic, ... terms of

the expansion, respectively. The familiar linear system appears as a special case

of this more general expansion (ie; the case when all kernels except h^r,) are

zero.) The third term:

OC 00

J J
h2 (7",,r 2)x(t-7- 1

)x(t-r 2)dr 1
dr

;
, (3.3)

— oo— oc

is a bilinear term, that is it is linear in each variable x(t-rj) and x(t-r 2) taken

independently (ie; assume the other variable is a constant.) In general, the

(i+l)-st term is i-linear. It is linear in each of the i variables

x(t— rj). x(t— t 2), •••, x(t-ri) taken one at a time. Lastly, notice that the Yolterra

expansion is not orthogonal in the sense that the identification of the n-th order

kernel depends on the values of all the other kernels. They cannot be identified

independently.

The non-linear model represented by equation (3.1) can be visualized as

shown in Figure 3.1. As can be seen it corresponds to a parallel connection of

subsystems of increasing non-linearity. Each of the subsystems is homogeneous

(except for the zeroth order subsystem) in the sense that increasing (multiplying)

the input by a factor k results in the output of the p-th subsystem being

increased by a factor k p
. This can easily be understood by examining the

expression for the p-th term.

38

OC 00

J
•

J\(t- !,..., r
p
)x(t-r,) •• x(t-r

p
)drj • dr

p (3.4)
— 00 —00

Replacing x(t) by kx(t) yields

00 00

j Jhp
(r„ ..., r

p
)kx(t- ri)

• kx(t-r
p
)dr, dr

p
(3.5a)

-00 —00

= k"J • • • Jh p
(r

l5
..., r

p
)x(t-r,) • x(t-r

p
)dr, • dr

p
(3.5b)

— 00 —00

The presence of a constant term in the Volterra expansion should not be

unexpected. Consider, for example, a system whose response is given by:

y{t)=x(t)+h (3.6)

It is easily shown that this system does not obey the principle of superposition

and so cannot be considered linear. This necessitates the inclusion of a constant

term in the Volterra expansion in order to handle the general case. The usual

procedure adopted in linear analysis, if a constant term appears, is to define a

new output function which is the actual output less the constant term. This new

output function is then identified in the usual fashion. The constant term must

be separately identified. If we admit that the system is non-linear then this will

no longer be necessary.

There are many other aspects of continuous-time nonlinear system modelling

that have not been discussed. In the next section discrete-time nonlinear systems

are introduced. Many of the comments that will be made there are equally

applicable to continuous-time nonlinear systems. However, we make them in the

context of discrete-time, since that will make them more applicable to the sequel.

B. DISCRETE-TIME NONLINEAR SYSTEM MODELS

A discrete version of the time-invariant Volterra expansion can be written as:

y(k)

EMA^k-A,)

39

E
L

+»

C
d
+»

c
o
u

eL Ql
d -P
Ql inc 31

Ul

5.

a>

T3 E
t. ai

+»

Ul

_)
+* Ul

a

-p

X

Figure 3.1: Nonlinear Yolterra Series Model

40

- E E hatA^AJxtk -A,)x(k-A2)

(3.7)

where we have assumed that the system is causal.

For a large class of systems the summations can be truncated to N-t-1 terms.

Certainly truncation is required for computer implementation. This truncation

implies that only finite memory nonlinear systems can be represented. Equation

(3.7) is an extension of the linear Moving Average (MA) type model. In fact the

linear model is a special case of equation (3.7). This expansion is non-recursive in

nature, that is. it expands the present output only in terms of the present and

past input. Past outputs are not used.

The representation of the kernels in both the continuous and discrete forms

of the Volterra expansion is not unique. There are. however, several special forms

which are important. Consider a second order kernel for which

MAi,A 2)
= h2(A 2,Ai). This kernel is symmetric with respect to the two parameters A,

and A 2 . It turns out that the kernel can always be symmetrized with no loss of

generality. For the p-th order kernel the procedure for obtaining the symmetric

kernel from an asymmetric one is given by [Ref. 22]:

tsym (Aj A 2)
= —r£ h p(

A *(0' . A„
(p)) (3.8)

n
- r()

where the summation is over all n! possible permutations of the p A 's. Although

the symmetric form may contain more terms than an asymmetric form it is of

importance because it is unique [Ref. 9: p. 43]. There can be many equivalent

asymmetric forms of the kernel which all lead to the same symmetric kernel

(through equation (3.8)). The symmetric kernel thus provides a standard form

which can be used as a reference.

Other forms of interest are also possible. The symmetry of the symmetric

kernel implies redundancy. This redundancy can be eliminated by use of a

triangular kernel. Consider a kernel defined so that h, n (A, A
r) whenever

41

A
9
>A, for s < t. The domain of a second order triangular kernel is illustrated in

Figure 3.2a. For comparison, the equivalent symmetric kernel's domain is

illustrated in Figure 3.2b.

Using the triangular kernel the output of the p-th order nonlinear subsystem

is given by

N

>'(k)= E E •• Eht ri
(A„...,A

p
)x(k-A

1) •x(k-A
p) (3.10)

v°

Notice that the limits of the summations reflect the triangular domain. This

implies that fewer terms are included in the summations resulting in

computational savings. The triangular kernel defined above, and used in

equation (3.10). is not unique. Other triangular kernels can be formed by

choosing alternate triangular domains. For example, the domain illustrated in

Figure 3.3 could equivalently have been used. This choice corresponds to setting

h tn(Ai, .-, A
p)

= whenever A
5
> At , for s > t.

The output of nonrecursive models of the type presented in equation (3.7) is

stable if the input is bounded and if the series is truncated to a finite number of

summations. Consider an input x(n) which is bounded to be less than some

constant M. If the series is truncated to p-fl terms then, in the worst case the

output will be

y(nKh+M£ MA,) - M 2 £ £ i

h,(A,.A 2)
;
+

A,= A,= A
2
=0

• - M P E ••• E M*. A p) (3.11)

So. as long as the summations are bounded (which will generally be the case), the

output will always remain finite. This guaranteed stability makes MA type

models very attractive. As mentioned earlier, their shortcoming is their inability

to accurately model infinite memory systems without using a large number of

terms.

42

a. Second Order Triangular Kernel Domain

b. Second Order Symmetric Kernel Domain

Figure 3.2: Triangular and Symmetric Yolterra Kernel Domains

43

1. Tensor Formulation

In order to adopt a tensor formulation of the problem we notice that

equation (3.7) can be considered to consist of a series of increasing order

functionals. As has been shown, these functionals can be expressed as tensors.

We can therefore rewrite equation (3.7) as a tensor equation.

y(k) = H

+ H
Ai
x
Al

+ Hjj A x 'x

+ • •
•

(3.12)

where we have defined the contravariant input vector as

x = ix(k) x(k-l) •• x(k-A) •• x(k-N)]T (3.13a)

= ;x
A,T (3.13b)

This choice for x has the effect of truncating the series to N+l terms. The

symbols H, H A . H A A . represent the components of covariant tensors of order

0. 1, 2, etc.. respectively.

Examining equation (3.12) we make particular note of the following two

aspects:

(1) The dimension of the vector space is related to the memory order of the

system. The vector x has N+ l components implying that the nonlinear

system contains no more than N delays. This fact is explicit in the way the

input vectors have been defined.

(2) The nonlinearity of the expansion is provided implicitly by the tensor outer

product operation. It is the outer product of the vector x with itself that

makes the higher order (2 and up) terms nonlinear.

44

Figure 3.3: Alternate Second Order Triangular Yolterra Kernel Domain

45

These observations provoke speculation about the possibility of an

alternate formulation where the roles played by the dimensionality of the vector

space and the outer product operation are interchanged.

2. Alternate Tensor Formulation

Consider a parametric description of a curve in Vp+1
, a p+1 dimensional

vector space, given by;

x°(k) = [x(k))<°>

x*(k) = [x(k)p)

x(k) =

xp (k) = [x(k)] (p)

(3-14)

where the superscript in parenthesis indicates exponentiation. Given any x(k).

the components x"*(k), A = 0,...,p define a point in Vp+1
. As x(k) varies with k. the

vector x(k) will describe a curve in Vp+1
. We define the components of another

vector in Vp+1 as

x
Ai
(k-i) = ;x(k-i)]

(Ai)

Similarlv. the N-th such vector can be defined as.

x"
N (k-N) = |x(k-N)!

(AN)

(3.15)

(3.16)

The vectors in equations (3.14). (3.15). and (3.16) will be referred to as

observation vectors. Although, at this point they only depend on past and

present system input values, later, in Section D, they will be generalized to

include past outputs as well. The input and output measurements represent the

system observations, hence the name.

Using the theory developed in Chapter 2. concerning multilinear

functionals, the following mathematical relation is proposed as a model of a finite

order, finite memorv nonlinear svstem:

y(k) - x "(k) x
N(k-N)H Ar (3.17)

46

where HA . A is an (p-l-l)-order covariant tensor representing a (p+l)-linear

functional. This covariant tensor performs a role similar to that of a Volterra

kernel.

This model is equivalent to the p+1 term Volterra series (equation (3.7)

or (3.12)), although it does contain many additional terms. It has the advantage

of notational simplicity. It replaces a p+1 term series with a single term and

requires the specification of only a single composite kernel, H A . . A . As will be

shown in Section D, equation (3.17) is considerably more general than equation

(3.12). It will be shown that Wiener type models can be obtained from equation

(3.17) by a simple coordinate transformation. Other choices of observation

vectors yield Autoregressive (AR) or even Autoregressive-Moving Average

(ARMA) type models.

In order to illustrate the correspondence of equation (3.17) to the

standard Volterra type series expansion of equation (3.12) we present a simple

example.

3. Example 3.1

Consider the truncated Volterra series expansion corresponding to

equation (3.12);

y(k) = H + H A/ 1 - HAiVV 2

where Aj = 0.1 and A 2
= 0,1. and

(3.18)

x(k)

x(k-r

We may explicitly write out all the terms implied in equation (3.18). This yields

y(k) = H

- H x(k) + H,x(k 1)

+ H 00x(k)x(k) ~ H ,x(k)x(k-i;

+ H, x(k-l)x(k) + H,,x(k-l)x(k-l) (3.19)

47

Now consider a model of similar order given by equation (3.17).

y(k)= Hv /°(k)x
Al
(k-l) (3.20)

where A , Aj = 0,1,2 and

x
A
°(k) = [x(k)]

(Ao)

x
Al
(k-l)= |x(k-l)]

(Al)

The tensor product, x °(k)x '(k-1), appearing in equation (3.20) results in a

contravariant tensor of second order. Its elements are

|x
Ao
(k)xV-l)] =

1 x(k-l) x(
2
»(k-l)

x(k) x(k)x(k-l) x(k)x (2,(k-l)

x'
2)
(k) x (2>(k)x(k-l) x (2)(k)x'

2
'(k-l)

(3.21)

We notice that all the elements on or above the southwest- northeast diagonal

are included in equation (3.19). the terms below this diagonal are not. This new

form has- not discarded any terms present in the latter version and so cannot

represent a loss of generality. The extra terms that are included in this new form

do not pose any significant problem. If the system does not contain terms

involving these particular elements then the corresponding term in the kernel will

go to zero during the identification process. Certainly in some classes of systems

these additional elements will be important.

C. DISCRETE NONLINEAR SYSTEM IDENTIFICATION

In Section B a tensor formulation of the discrete nonlinear modelling problem

was introduced. In this section methods for kernel identification are presented.

All the methods that are discussed are statistical in nature and utilize a least-

squares approach of parameter estimation. It will be shown that familiar

methods used in linear systems modelling can be extended to handle the

nonlinear case. In the first section a tensor equivalent of the normal equations.

which can be solved for the unknown system parameters, is derived. Several

recursive (in time) solutions to the problem are then presented. Finally,

simulation results are offered to illustrate the effectiveness of the algorithms.

48

1. Derivation of Normal Equations

In Section B (equation (3.17)). the following tensor model for nonlinear

systems was proposed:

y(k) = x°(k) •• x
N(k-N)Hv An (3.22)

where y(k) represents an estimate of the system output and the x '(k— i) 's are

components of contravariant observation vectors, defined in equations (3.14)

through (3.16).

Consider the analysis model of Figure 3.4. This diagram represents a

conceptualization of the system identification process. The assumption is made

that the unknown system can be represented by an equation identical to the

model equation, (3.22), where the system parameters H A ... x are unknown. The

parameters of the model are adjusted to best match the actual system

parameters. A convenient measure of how well the model represents the actual

system is the mean-square error or MSE. The MSE is a quadratic function of the

model parameters which implies that there exists a unique minimum, or optimal

solution, to the problem. Minimizing the MSE yields a linear set of simultaneous

equations which can be solved for the unknown model parameters. In addition,

the quadratic nature of the MSE allows steepest descent type, adaptive

algorithms to be used.

The error signal, e(k). defined as the difference between the actual

nonlinear system output. y(k). and the output of the model. y(k), is given by

e(k)=y(k)-y(k) (3.23)

The mean-square value of this error signal is given by

EJe-(k) = EJy(k) ->(k) - (3.24a)
|

E/ryjKj-jiKj .

A A,

-N)H Aq x A (3.24b)

49

X

Figure 3.4: System Analysis Model

50

where E{ } indicates expectation. The optimal set of parameters can be found by

minimizing the MSE, E{e 2
(k)}. with respect to the parameters H A A .. The

gradient of the MSE is formed by differentiating with respect to the unknown

parameters.

9E|e2
(k)l

9H AA n ' A*

= 2E|[y(k) - x «(k) x
N (k-N)H

Ao AN][-x
M
°(k) x"

N (k-N)]
j

(3.25a)

Setting this equal to zero yields

2E/;y(k)x'
i0

(k)...x
MN
(k-N) - x

A
°(k)...x

AN
(k-N)x"°(k)...x

MN(k-N)HAo A

= (3.25b)

or.

E|x
A

°(k)...x
AN
(k-N)x'

lo
(k)...x

MN(k-N)|H
Ao

. An
= E|y(k)x

Mo
(k)...X

MN
(k-N)j

(3.25c)

The expression. (3.25c). is a tensor equivalent of the Wiener-Hopf or

normal equations. As will be shown in Section D. these equations ran also be

used to represent the Yule- Walker equations if a different choice is made for the

observation vectors, x(k-i). The Term on the left-hand-side of equation (3.25c) is

a nonlinear extension of the autocorrelation matrix. This contravariant tensor of

order 2(N-fl) includes various higher order correlations as well as the second

order ones which arise in the linear case. The expectation on the right-hand-side

represents a cross correlation between the output and various linear and

nonlinear functions of the input.

The minimum MSE can be determined by substituting (3.25c) into

(3.24b). This yields

51

E|e2
(k)| =

EJy
2
(k)| -

2EJy(k)X
A
°(k) • x^(k- N)HAq A \

^H
Ao AnH, o MNE(x

A

°(k)...x^(k-N)x" (k)...x'
iN
(k-N) (3.26<

= E y
2
(k) - dy(k)x

A
°(k) • • x'

N
(k- N) HAn , (3.26b)

Equation (3.25c) represents (p^l) (N + 1) equations in as many unknowns,

and so can theoretically be solved for the unknown parameters H A . . . A .

However, in practice the number of computations required to perform the matrix

inversion becomes unwieldly. An nxn matrix inversion takes on the order of 0(n 3

)

operations [Ref. 27: p. 58], therefore, 0([p+l]s ^N+1
^) operations will be required in

the solution of (3.25c). In order to make the task manageable, alternate

algorithms that avoid direct matrix inversion, must be employed to solve the

normal equations.

2. The Least Mean Square (LMS) Algorithm

The Least Mean Square (LMS) algorithm has successfully been employed

in the solution of a variety of linear problems [Ref. 28]. It is a recursive

algorithm based on a gradient, steepest descent type of strategy. The mean-

square error is a hyperparaboloid which is concave upward. Steepest descent

algorithms strive to descend down this quadratic surface, towards the minimum,

by making adjustments to the unknown parameters proportional to the gradient.

This can be expressed mathematically as

Hv As.(k-]) = H
Ao AN(k)-/,vv A N

(k) (3.27)

where H s \
(k) is the value of the model parameters at the k-th time instant

and fj is a parameter which controls the convergence of the algorithm. The

symbol. ;A ^
,(k). is used to represent the gradient.

The actual value of the gradient is given, according to equation (3.25a).

by

52

^
o AN(k)= 2E|e(k).x

A

°(k) • V»(k-N)j (3.28)

The LMS algorithm approximates the MSE by the instantaneous value of the

error squared. The approximate value of the gradient is

VA .A N
(k) = - 2e(k)[x

A

°(k) • • • x^k-N)] (3.29)

where the circumflex indicates an estimated value. Using this approximation in

equation (3.25) yields

H,
o AN(k-l) = Hv , N

(k) + 2M e(k)x
A

°(k) • -x^(k-N) (3.30)

Equation (3.30) gives a straight forward method of determining the

system parameters. It involves no matrix inversion nor does it require the

correlation tensor to be known. These two properties make the calculations

required at each iteration very simple, so that it is possible to perform them in

real time. It can be shown that the LMS algorithm converges to the optimal

solution [Ref. 29: p. 578].

For the linear case, the algorithm will converge as long as the parameter.

n . is chosen to satisfy. [Ref. 29: p. 578].

Cx^-.-J—
(331)

A.'max

where A ma „ is the largest eigenvalue of the correlation matrix. Since the

correlation matrix is positive definite, all its eigenvalues are greater than zero.

Therefore, the trace of the correlation matrix will always lie greater than the

largest eigenvalue 1

. The following condition will, therefore, ensure stability.

0<,
Tr; correlation matrix

For the nonlinear case this translates to

l

(K/i

£ •• EE{xA
°(k)...x

AN
(k N)x

A

"(k)...x^(k-.\)
}

53

In practice a value considerably smaller than the maximum permitted by

equation (3.33) is used to give slower, more accurate convergence.

3. Recursive Least Squares (RLS) Algorithm

The recursive least squares, or RLS algorithm, is similar to the well

known Kalman filter except that it is used to estimate model parameters rather

than the system state. The tensor form of the normal equations is not suitable

for RLS implementation. The elements of the correlation tensor must first be

rearranged in a two dimensional matrix. This can be accomplished by replacing

the tensor outer products appearing in equation (3.25c) with matrix Kronecker

products. The Kronecker product of an n>m matrix, A= [a> A], and a p*q

matrix. B = |b
M „ j, is an np mq matrix given by [Ref. 30.31],

^

anB a 12B
a 2]B a22B

anIB a^B

almB
a2mB

a_B

(3.34)

where the symbol : L is used to denote the Kronecker product operation.

In order to rewrite the normal equations. (3.25c). in this matrix form, the

covariant tensor of system parameters, H A x must be put into a vector form

by a lexicographic reordering of the elements. The resulting parameter vector is

denoted H. The normal equations become

El x(k) :<• Qx(k- N) £ x(k) &x(k 1)
T H

- E<v(k) x(k) x(k-N (3.35;

If an assumption of ergodicin i.» mad< then the statistical averages in (3.35) can

be replaced with timi averages.

lini

K-DC K £ x(k)xT (k)

k^

H lini —
K -ex K E>(k)X(k)

k =
(3.36)

54

where X(k) = x(k) ® • • £ x(k N) . For computational purposes equation (3.36)

is approximated as

S X(k)XT (k) = £ y(k)X(k) (3.37)
k=0 k=0

As a further notational convenience, the following two definitions are made,

XT
(0)

XT
(1)

XK =

3f(K]

(3.38)

and.

y(o)

y(i)

y(K)

(3.39)

Using these definitions the normal equations can be written in the

compact form

XK
TXKH = X K

TY (3.40)

This last from of the normal equations is precisely the same as the one used by

Goodwin and Payne [Ref. 32: p. 176] for the derivation of the RLS algorithm.

The derivation involves the use of the matrix inversion lemma |Ref. 33: p.

247] which replaces a matrix inversion at each iterative step by a simple scalar

division. It is this simplification which yields the efficiency of the RLS algorithm.

The RLS equations arc- [Ref. 32: pp. 176-177].

H K ^, H K - QK .,(yiK) X'(K- i)H .41a

!h 1

P KX(K- li

XT (K- 1)P KX(K- 1

(3.41b)

55

Pk + i= [I-Qk^Xt(K-1)P k (3.41c)

= !XI?+1XK+1]- 1 (3.41d)

Equation (3.41a) deserves some comment. The term in the parentheses

is normally known as the innovation. It is a scalar which represents the new

information gained in the latest measurement. The term XT(K+1)HK is an

estimate of the current output given the new input measurement and the old

estimate of the system parameters. The innovation is thus an error signal. The

term in front of the bracket, QK+ i, is a gain vector. It gives an indication of how

much faith is being put in the new information. If the gain is small, then the

new estimate will be essentially the old estimate. Conversely, if the gain is large

then the new estimate will depend to a great degree on the new information.

When the algorithm has converged, the gain will be close to zero. If the system

parameters change for any reason, the algorithm will not detect the change since

it is ignoring the new information. In order to circumvent this problem a

weighting can be applied to the data, so that new data is artificially emphasized.

Exponential and rectangular windows have been successfully employed for this

purpose. The time constant used in the case of the exponential window is often

called a forgetting factor since it ensures that the algorithm's memory is finite.

Use of windows will not be discussed further in this dissertation. The interested

reader should consult reference [Ref. 32: pp. 179-185].

4. Simulation Results

In order To investigate the validity of the Theoretical results, several

computer simulations were performed. Two examples are presented, representing

Two different classes of systems. Many other systems were also tested, however.

tIk results presented are Typical of those obtained from all the simulations. The

FORTRAN programs written allowed nonlinearities of up To fourth order, but

were limited To systems involving only zero or one delay.

The first example was chosen to correspond exactly to the model

equation (3.17). The system was excited by white, zero mean, uniform noise.

56

The problem was to identify the system parameters from only input and output

measurements. The unknown covariant H A > tensor was chosen to be

[

HVi] -

.2 -.4 .03 -.7 0.0

.5 .35 .11 .9 0.0

.01 1.3 -.33 .7 0.0

.43 .81 -.05 .4 0.0

0.0 0.0 0.0 0.0 0.0

(3.42)

Therefore, the output equation consists of 16 nonzero terms, ranging from

2x'
0) (k)x (°)(k-l) up to .4x

(s)
(k)x (3'(k-l). This model will be called System I in the

sequel.

The other type of nonlinearity tested was one that was known to require

an infinite number of terms. The particular example chosen for this was the unit

step function which simulates a saturation type of nonlinearity. It is a convenient

choice since an analytical solution can be calculated.

The unit step function has different H^ A tensors depending on the

order of the model chosen. This is a result of the chosen coordinates not being

orthogonal (this will be clarified in Section D.) The second, third and fourth

order (nonlinearity order) models are given by

H - -
2 4

5 .75 0.0

H .

1.40625 0.0 -1.09375 .431)!

H> 1 _L1
2 32 •>•)

5 1.40625 0.0 -1.09375 0.0 (3.43c;

57

Notice that the unit step function has no memory. The expansion contains only

odd powers of x(k) and a constant term since the unit step function can be

written as a constant plus an odd function (the signum function.) We will refer

to these three models collectively as System II in the sequel.

The direct solution of the normal equations was tested on these two

models as was the LMS algorithm. To date the RLS algorithm has not been

verified.

a. Direct Solution of Normal Equations

To verify the direct (matrix inversion) method of solution of the

normal equations, a FORTRAN program was written which estimated the

correlation tensors, and performed the required matrix inversion. The program

was written so as to allow the number of points used to approximate the

correlations to be varied. The maximum power of x(k) was also made to be

adjustable so that the effect of over or under modelling could be studied. The

final adjustable parameter was the magnitude of the uniform, zero mean, white

noise that was used to excite the system. Adjusting this last parameter affects the

range over which the resultant model is valid. In an actual application,

something about the range of expected system inputs would have to be known in

order to select a good value for this parameter.

The results for System I are given in Table 3.1 for several

combinations of the three variable parameters. The results are remarkably good

even with as few as 30 input samples. Since no measurement noise was

introduced this is perhaps not surprising.

Overmodelling did not present any problems. The additional terms

were identified by the algorithm to be essentially zero. This is evident in Table

3.1c. Undermodelling did introduce some inaccuracy. The coefficients identified

are significantly different from the ones in the unknown system. However, the

coefficients identified should represent the best second order approximation to the

system, which will not in general be the same as the second order coefficients

contained in the third order model.

58

a. 30 data points were used

The maximum power of x(k) was 3

The noise was uniform on (-1,1)

H XgXj

.200 -.400 .030 -.700

.500 .350 .110 .900

.010 1.300 -.330 .700

430 .810 -.050 .400

b. 500 data points were used

The maximum power of x(k) was 3

The noise was uniform on (-10,10)

!H,

.19993 -.39952

.49990 .35014

.010006 1.3000

.030016 -.70001

.11001 .90000

-.33000 .70000

.43000 .81000 -.050000 .40000

500 data points were used

The maximum power of x(k) was 4

The noise was uniform on (-1.1)

[H>

.20000 - .40000 .03000 -.70000

.50000 .35000 .11000 .90000
1

1'
.010000 1.30000 -.33000 .70000

.43000 .81000 -.050000 .40000

-.48140E- 06 -.43483E- 06 .34339E-05 .52571E-06

26356E- 06

.10016E--06

33811E- 05

.83230E -07

.43294E -05

d. 500 data points were used

The maximum power of x(k) was 2

The noise was uniform on (-1,1)

H A ,,A
,

.20616

.75931

.033444

- .80030 .037553

1.5108 .069939

1.6619 .24457

TABLE 3.1: System I Results Using Full Matrix Inversion.

59

The results for System II are shown in Table 3.2. Significantly more

points were required to accurately identify System II than were needed for

System I. The unit step function cannot be represented exactly by a finite

number of polynomials so it is not surprising that the solution is not precise.

There is another factor that contributes to the poor accuracy. The choice of

functions used as coordinates, equation (3.14), leads to ill conditioned equations

(see Strang [Ref. 34: p. 135].) This problem will be corrected in Section D.

b. Simulation Using LMS Algorithm

To verify the LMS algorithm a FORTRAN program was written,

which used equation (3.30), to adaptively identify the covariant tensor H A x .

The program allowed the convergence parameter. //, and the magnitude of the

uniform, white noise to be varied. The results of the simulations are presented in

Table 3.3 and 3.4 for System I and II respectively. Equation (3.33) was used to

bound the convergence parameter, n . The input excitation noise was chosen to

be uniform on (-1,1) resulting in a bound for the convergence parameter of

0</i<0.3558.

In general convergence was slow. The linear and "close to linear"

terms were identified most rapidly. The highly nonlinear terms, involving high

powers of x(k) or x(k-l) and their cross terms, were last to be identified. Their

accuracy never reached that of the lower order terms. The algorithm was very

sensitive to the setting of the convergence parameter, p. A value smaller than

the bound predicted above was used to achieve satisfactory performance.

D. GENERALIZED COORDINATE SYSTEMS

In Section B. a coordinate system was introduced that was closely related to

the Volterra series (equation (3.14).) This system was subsequently used in the

remainder of Section B and in Section C. There- is really little motivation for

choosing this particular set of coordinates. In fact there are very compelling

reasons to search for other sets of coordinates. The set (3.141 can lead to poorly

conditioned sets of equations (see Strang [Ref. 34: p. 135]). a fact that was

mentioned in the last section. In higher order systems this can become a serious

60

a. 1000 data points were used.

The maximum power of x(k) was 3.

The input noise was uniform on (-1,1)

!H>

.49278 1.4301 .000519 -1.1389

-.037083 -.10437 .067337 .18706

A A,1
-

-.025155 -.072552 - .035273 .10310

.084649 .080036 -.13334 -.15251

b. 15000 data points were used.

The maximum power of x(k) was 3.

The input noise was uniform on (-1,1).

H A„A,j -

.50380 1.4131 -.0093646 -1.1029

-.0064558 -.024451 .030395 .026762

-.0016623 -.021414 .0044444 .030779

00015024 .024709 -.029871 -.01854^

c. 500 data points were used.

The maximum power of x(k) was 2.

The input noise was uniform on (-1,1]

H, ,A, -

.47416 .7774" .00063628

0049366 -.0018654 0025596

^020319 -.10698 .076991

d. 5000 data points were used.

The maximum power of x(k) was 2.

The input noise was uniform on (-1.1).

U
.49480 .75558 .0023054

.017591 .0011427 .024714

.(25590 .0019598 032117

TABLE 3.2: Svstem II Results Using. Full Matrix Inversion.

61

The maximum power of x(k) was 3.

The noise was uniform on (-1,1).

The convergence factor, fi. was chosen to be .2.

a. After 100 Iterations

[H,

b. After 300 Iterations

H ;

c. After 500 Iterations

[Ha, A.J -

d. After 1000 Iterations

II
•*[<."

i

e. After 1800 Iterations

H.o,

.21191 -.54901 .23961 -.58084

.49735 .55747 -.22910 .62263

.11778 1.3372 -.42404 .85335

.43573 .41638 -.29008 .45359

.19133 -.45457

.52472 .65421

.032839 1.2483

-.089402 -.69479

.055704 .71551

-.34090 .75055

.44209 .55546 -.086633 .53219

.18995 -.35146

.51438 .55292

.028302 1.2505

.43507 .60299

.20060 -.39481

.50360 .46156

.017045 1.2743

.43879 64136

.088102 -.68228

.047074 66728

.28989 .73386

082106 .56355

.028912 - .70631

.10901 .74664

-.32721 75039

-.070640 .64 572

.19456 -.38962 .030956 .70562

.48923 .43032 .11714 .75506

.0079652 1.2786 -.33206 .7293(1

43295 .67660 -.053381 .61097

TABLE 3.3: System I Results Using LMS Algorithm

62

The Maximum power of x(k) was 3.

The input noise was uniform on (-1,1).

The convergence factor, /*, was chosen to be .15.

a. After 100 Iterations

IH,

27229 .64437 -.029974 -.30266

.021558 -.13134 -.16022 -.10782

.062328 .049563 -.069966 -.17809

26624 -.00231392 -.093028 -.048308

b. After 300 Iterations

(H;

.49886 .96021 -.11685 -.88415

.010596 .10195 -.060408 -.12604

036964 .15373 -.17940 -.32627

.14847 .059296 -.049165 -.10986

c. After 500 Iterations

H ;

.54880 1.3925 .010187

-.091216 .14549 .10978

-.081292 .23020 -.14849

.0091398 .021484 012741

-.88497

- .0030069

-.33871

-.071461

d. After 1000 Iterations

!H ;

.53253 1.5226

.13698 - .060273

.16666 .16941

068181 .018017

-.044331 1.0004

.15947 .036125

-.096854 -.354 39

.084221 .0062654

e. After 1700 Iterations

*o 1

48682 1.3719 - .058312 .95098

13368 .025525 .012328 .037707

.096072 .20474 -.031694 -.21534

.85853 .047710 -.033043 .025036

TABLE 3.4: System II Results Using LMS Algorithm

63

problem. It is shown in this section that proper choices of coordinates lead to

diagonal correlation matrices so that no costly matrix inversions are required to

solve the normal equations. This makes the identification process almost trivial.

It was stated in Section B.3 that the input observation vectors could be

considered to describe a curve in a hypothetical (p+l)-dimensional space. The

system output is estimated based on this curve (equation (3.17).) This chapter

generalizes this idea to include cases where we have two curves, one depending on

present and past inputs, the other depending on past outputs. Finally, the

chapter concludes with several non-trivial numerical simulations.

1. Choices of Coordinate Systems

A point in (p-(-l)-dimensional space is defined by the variables

x°. x
2

, ..., xp . In Section B.3 (equation (3.14)) these variables were chosen to be

parametric functions of the variable x(k), the system input. The particular

choice presented there was chosen to correspond to the Yolterra series. It is

desirable to pick a system of coordinates that ensure a diagonal correlation

tensor, as this allows solution of the normal equations without matrix inversion.

A tensor T is diagonal if its components obey the rule

rp-*0

K> '
or ^0 - ^ N- 1 • ^l-^" 1 . • • ^ N^l .- ^

-2~;] ~_1

(3.44)
otherwise

Note that only tensors of an even order (possessing an even number of indices)

can possibly be diagonal. In general components satisfying the upper condition of

equation (3.44) are called diagonal elements, or diagonal components.

Components that are not diagonal are called off diagonal.

Two conditions are required in order to ensure a diagonal correlation

tensor. The first is a result of the following theorem.

a. Theorem 3.1

If a set of functions { f (x), f,(x) 1n(x)} »re defined with the property

that

64

- (X V

where w(x) is a positive weighting function, then the set of random variables. Z A
.

defined as

Z° = f (X)

Z 1 = f
t
(X)

(3.46)

Z p = f
p
pc)

where X is a random variable with probability distribution

Px(x) = Cw(x) (3.47)

are uneorrelated. In equation (3.47) the constant. C. and weighting function.

w(x). must be chosen so that px (x) satisfies the definition of a probability density

function.

b. Proof

«ZAZM |
= EJf; (X)f,(X) (3.48a)

= JfA (x)fA (x)Px (x)dx (3.48b)
— 00

-- JfA (x)fM (x)Cw(x)dj(
(3.48c)

— oc

DO

- CjffA (x)f„(x)w(x)dx (3.48(1)

— 00

Substituting equation (3.45). yields

e/zaz4 (
K

;, i
orX = " (3.49)

Choosing a set of functions in accordance with equation (3.45) and

ensuring that f (x) is a constant function (ie: is a constant) is the first condition

65

that must be satisfied in order to obtain a diagonal correlation tensor. The

system must be excited with samples drawn from a random process with

probability distribution given by (3.47). In addition, if the random process is

chosen to be zero mean and strictly white (ie. independent which implies

uncorrelated), then the correlation tensor will be diagonal. This last condition is

equivalent to requiring that

E|x(m)x(n)| = <5(m-n) (3.50a)

p(x(n),x(m)) = p(x(n))p(x(m)) (3.50b)

and

E{x(m)i = (3.50c)

where x(m) and x(n) are two input samples taken at times m and n respectively.

It is a straight forward matter to show that if these conditions are met. the

correlation tensor will be diagonal.

The conditions presented above imply that different sets of

coordinate functions should be used depending on the probability distribution of

the noise used to excite the system. Different noise distributions have the effect

of weighting the error differently. Consider that a Gaussian noise will contain

samples of all amplitudes while uniform noise is bounded. If. for example, the

system contains a saturation type of nonlinearity. the uniform noise may not

detect its presence if its maximum amplitude i- not sufficiently large.

Theoretically. Gaussian noise contains sample> of all amplitudes and will excite

all modes. On the other hand it may be known that rh< system input never

fxc<>r-d> a certain maximum value and so h bounded input will 'he >uitable.

If two models of a system are constructed, in two different coordinate

systems but using the same input noise (only one >et can possibly lead to a

diagonal correlation tensor) then the two solutions will be equivalent. One

solution can be transformed into the other by performing a change of coordinates

66

in accordance with equation (2.22). Therefore, it always makes sense to identify

the system using the coordinate system which leads to a diagonal tensor. Other

representations can then be calculated as desired. Solutions obtained by using

different input noise density functions are not equivalent even if the coordinate

systems used were the same. The effect of the different distributions is to weight

the errors differently. A uniform input noise will weight the errors equally, while

a Gaussian noise will emphasize the importance of errors made for small inputs.

In general, transformations between solutions obtained using different excitation

noise distributions cannot be found. Choosing an appropriate distribution

requires knowledge of the expected system input signals.

The Hermite polynomials lead to a diagonal correlation tensor if the

input is white, zero mean, Gaussian noise. Similarly, Legendre polynomials

should be used in the case of uniform noise. It is convenient to normalize the

coordinate functions so that the diagonal components of the correlation tensor are

all ones. To identify the system parameters, only the cross-correlations of the

right-hand-side need to be calculated. This fact was first discovered by Lee and

Schetzen |Ref. 10].

2. Recursive Models

Recursive models have been used very successfully for modelling linear

systems [Ref. 35]. Among their advantages is infinite memory, and the ability to

model a system without knowledge of its input. The latter property allows these

models to be employed in such areas as speech processing where input signal arc

difficult or impossible to measure. The assumption is made that The input i^

white noise.

Recursive discrete-time nonlinear expansions have also been proposed

(see for example 'Ref. 14.15.16]). Recursive models po-ses infinite memory, and so

may require fewer terms to accurately represent long memory systems. However,

nonlinear recursive models also posses infinite uonlinearity. To understand why

this is true, consider the following example.

67

a. Example 3.2

Consider the following recursive, discrete, nonlinear system

y(k) = ay 2 (k-l) - u(k) (3.51)

where u(k) = b<5(k) (where £(k) is a unit sample) and where a and b are arbitrary

constants.

The output (y(k)) of the system for k = 1, ..., K is

y(0) = b (3.52a)

y(l) = ab 2 (3.52b)

y(2) = a(ab 2
)

2 - aV (3.52c)

y(K) = a
2"" 1

b
2 *

(3.52d)

It is clear that the nonlinearity of the system increases with time. Unlike a linear

system, stability in a recursive nonlinear system is determined not only by the

system parameter, a. but also by the input function. It is also difficult, in

general, to predict for what classes of input a particular system will be stable.

By analogy to the linear case we will refer to these types of models as Auto-

Regressive or AR.

It is possible to also expand the output as a combination of both past

and present inputs and past outputs. This type of model was proposed by Parker

and Perry 'Ref. 13]. We will refer to this type of model as an Auto-Regressive.

Moving-Average or ARMA model. It will have the same stability problems as

does the AR model.

Equation (3.17) can be used to model an AR nonlinear system- if the

proper choice is made for the observation vectors. Using the same coordinate

functions as given in equation (3.14) but using y(k - i). i = 1 N, as an input

parameter, yields appropriate observation vectors. That is.

68

y
Ai
(k-L) =, !y(k-i)]

W (3.53)

defines the components of the i-th observation vector. The model equation,

equivalent to equation (3.17), becomes

y(k) = y
Al
(k-l)...y

AN
(k-N)H

Ai
. An (3.54)

where H A .. A is again a (p+l)-th order covariant tensor containing the system

parameters. This model is an extension of the familiar linear autoregressive, or

AR model.

The normal equations derived for the nonrecursive case can be used

to solve for the HA A tensor in this case as well. The identification process is

described in Figure 3.5. The assumption is made that the system is recursive and

driven by a white noise, u(k). Its output can then be described by

y(k) = y
Al
(k-l)...y

AN
(k-N)Hv ^ + u(k

) (3.55)

This output signal is delayed and fed into the analysis model. The error signal

e(k) is given by

e(k) = y(k) - y(k) (3.56a)

= y »(k-l)...y"(k-N)Hv AN
- u (k)-y'(k])...v

N (k-N)H
Ai

. x

(3.56b)

When the model parameters exactly equal the actual system

parameters the error signal will equal the input white noise. For this reason the

analysis model is often called a whitening or bleaching filter. The analysis

model is nonrecursive. It uses past values of the system output to make a

prediction of the present system output. The normal equations (3.25c) apply to

this situation with the observation vectors, x(k-i). replaced by the vectors defined

in equation (3.53). The normal equations for the recursive nonlinear model can

be written as

69

1
r

3 i
o

«

>

X
•

i

i
s •

1

k
31 s

Figure 3.5: Recursive Model Identification

70

Ejy l(k-l)...y
N(k-N)y" l(k-l)-yPN(k-N)|HA] Xy

= E|y(k)y'
Jl
(k-l)...y'

iN
(k-N)| (3-57)

These equations are a tensor equivalent of the Yule-Walker equations. The

corresponding mean-square error is

E|e 2
(k)| = E|y 2

(k)| - E|y (k)y
Al
(k- 1) • y

AN
(k-N)JHv x „

(3.58)

In this case it is not obvious that one set of coordinates will yield

better results than another. The correlation tensor appearing on the left-hand-

side of equation (3.57) cannot be guaranteed to be diagonal since the probability

distribution of y(k) cannot be controlled. Techniques must be devised which

choose the coordinate system "on line" as the statistics of y(k) are determined.

For example, in the linear lattice the coordinate system is chosen by

orthogonalizing the sequence y(k) using a Gram-Schmidt procedure. In this way

the coordinate system is not determined until run time. Extension of these ideas

is left until Chapter 4.

The tensor model presented is also' suitable to represent a nonlinear

ARMA model. This type of model takes into account all available information

(input and output) and so should be more accurate. It may also lead, in some

cases, to a lower order solution than either the AR or MA model. An ARMA

tensor model can be written as

y(k) = x
Au

(k)...x"
M(k-M)y

M,
(k-l)...v

MN(k-N)H
Ao

. , mMi „„ (3.59)

Relations analogous to (3.57) and (3.58) for the normal equations

and the minimum mean-square error for the ARMA model can be obtained in a

straight forward manner.

3. Simulation Results

The concepts developed in Section D of this chapter were verified using

FORTRAN simulations. The coordinate functions were chosen to be the

71

normalized Legendre polynomials because of the ease in generating uniform noise

on a digital computer. By assuming that the correlation matrix was diagonal,

the solution to the normal equations was determined without matrix inversion.

This solution was verified by generating the correlation on the left-hand-side of

the normal equations and performing the required matrix inversion. The LMS

adaptive algorithm was also tested using the Legendre polynomials.

The Legendre polynomials used are given by

fo(x) = 1.0 (3.60a)

f,(x) -v^x (3.60b)

f2 (x) x'
2

) - ±\ (3.60c)

fi(x)
175

;3.60d)

These functions are normalized so that the correlation tensor will have ones along

the diagonal when excited with zero mean white noise which is uniform on (-1,1).

The simulation models used were similar to those used in Section C. The

coefficients for System I were identical to those given in (3.42). although thi-

time they are coefficients of Legendre polynomials so they do not represent the

same system. System II was again a unit step function which has a tensor

representation, in terms of the Legendre polynomials given by [Ref. 26: p. 1526],

HA ,

4

\ 175

80
.61a'

0.5 0.433013 0.0 0.165359 (3.61b

The results of the simulations for System I are presented in Tables 3.5

and 3.G. Results for System II are given in Tables 3.7 and 3.8. In all cases it is

obvious that the simulation results are very good.

72

15000 sample data points were used.

The maximum power of x(k) was 3.

a. Solution Without Using Matrix Inversion

iHV,J

.19158 -.38475 .0041187 -.67056

.49067 .38457 .089293 .93948

.012253 1.2925 -.35452 .71923

.41049 .85202 -.074247 .43011

b. Solution Using Matrix Inversion

HVi

.20000 -.40000 .030000 -.70000

.50000 .35000 .11000 .90000

.01000 1.3000 -.33000 .70000

.4800 .81000 -.050000 .40000

TABLE 3.5: System I Model Parameters Obtained

a. Using No Matrix Inversion, and

b. Using Matrix Inversion.

73

The maximum power of x(k) was 3.

The convergence factor was chosen to be .01.

a. After 200 Iterations

H A Aj

.14678 -.45852

.42720 .25876

-.077103 1.1898

-.036398 -.72277

.018320 .83079

-.45388 .61647

.34264 .68052 -.16955 .30546

b. After 500 Iterations

!H,

.20013 -.40047 .030509 -.70066

.50038 .35077 .11136 .90025

.0099732 1.2996 -.32958 .70026

.43008 .81014 -.050063 .39875

c. After 1000 Iterations

H A„A,
-

.20000 -.40000 .030007 -.70000

.50001 .35000 .11001 .8999

.010008 1 3000 32999 .69999

.43001 .81000 -.049986 .40000

TABLE 3.6: System I Model Parameters Using LMS Algorithma.

74

a. 500 data points were used.

The maximum power of x(k) was 3.

No Matrix Inversion Solution

HAgA,

.52104

-.011098

.0011160

.040052

.43930 .0090070 -.17515

-.0046220 .014464 .020122

-.010606 -.010466 .021310

-.0071009 .058263 .052566

Using Matrix Inversion

'H,

.50157

-.0084508

.0017041

.43054

.0032387

-.0009167

-.0066652 -.0024676

-.011153

- .0000970

.0062532

.012192

-.16530

-.0006363

-.0059126

.0014058

b. 15000 data point were used.

The maximum power of x(k) was 3.

No Matrix Inversion Solution

!H,

.50050

.0015150

-.0071103

.0022021

.43363

.0003272

-.0004279

.0018209

.0043279

-.0012861

.012933

-.0021332

-.16772

.0003738

014358

.0060674

Usins Matrix Inversion

|Ha„a.

..".0089

00)8213

0036401

0003990

-.0005741

.0008143

.0001746

-.0001744

- .0014410

.0043811

- .0003974

.16722

.0000789

-.0008015

.0000407

o.t. System II Model Parameters Obtained

a. Using No Matrix Inversion, and

1). Using Matrix Inversion.

75

The maximum power of x(k) was 3.

The convergence factor, /*, was chosen to be .005.

a. After 300 Iterations

IH,

.46464

.011790

-.010943

.0014149

.41356 .0066999 -.16385

.012146 .0067764 -.0093346

.014180 .020212 .018152

.0065302 .0093879 -.0047952

b. After 500 Iterations

A nA,;

.50556 .43020 -.00098824 -.16796

.015344 -.010684 .020836 .0098449

.0082813 -.0052115 .0090727 -.010251

012877 -.0094530 -.0046525 .0072316

c. After 1000 Iterations

.49868 .44629 .0053940 -.17370

.020577 .0091397 -.010215 .0065185

.012857 .020072 -.0064996 -.010541

.0020197 .0031219 -.0064275 -.0037119

c. After 1800 Iterations

H,
,

' 0' 1

.50115 .43727

.0000129 -.0063172

0065666 .0084999

-0075634 .0058037

.0059911 -.16508

.012713 .010275

.0068103 - .010135

-.15156 .018235

TABLE 3.8: System II Model Parameters Using LMS Algorithm

7G

IV. REVIEW OF LATTICE FILTER STRUCTURES

This chapter reviews lattice filter theory. These filters were first proposed in

connection with the linear prediction of speech by Itakura and Saito [Ref. 36] in

1971. They developed a new approach based on a partial correlation (PARCOR)

coefficient. Since that time the filter structure they proposed has come to be

known as a Lattice (or sometimes also called Ladder) filter. The properties of the

filter have been exhaustively studied by many researchers [Ref. 37]. Lattice

filters have been successfully applied to problems in various disciplines.

The great interest in the lattice approach stems from it's property of

orthogonality. This property allows the filter to be updated in order, without

recalculation of all the previous, lower order, filter coefficients. Orthogonality also

leads to a nice physical structure, a cascade of first order sections, and so is

appropriate for efficient hardware or software implementations. Finally, it has

been shown that the lattice owes its robust numerical behaviour to this property

of orthogonality [Ref. 38: pp. 128-136].

This chapter begins with a derivation of the one-dimensional (1-D) lattice.

The approach taken in the derivation is somewhat novel in that it begins by

expressing the linear prediction in terms of an uncorrected error sequence. This

is regarded a^ a change of coordinate systems and used to develop the Levinson

algorithm and the lattice filter. In the following section generalized forms of the

Levinson algorithm and lattice are derived. It is shown that these also

correspond to coordinate transformation. Next, the Schur algorithm, which is a

method for generating the required filter coefficients (Lattice parameters)

directly, given only a knowledge of the correlation matrix, is reviewed. In the

following chapter the generalized lattice filter is used to develop new.

multidimensional (specifically 2-D) lattice filters. In Chapter G. a new nonlinear

lattice. filter, based upon this generalized lattice formulation, is presented.

77

A. 1-D LINEAR AUTOREGRESSIVE LATTICE FILTER

We define the N-th order forward error sequence of an autoregressive model

as

e
N
(k) = y(k) - £ h A

N
y(k - A) (4.1)

A=l

This can equivalently be written in tensor notation as,

e
N
(k) = h AV (4.2)

where

[y
A

]

T = |y(k) y(k-l) y(k-K)] (4.3)

and

[h A
N

|

= [1 -h,N -h 2
N •• -hN

N
0...0] (4.4a)

where for convenience, we have made all vectors of length K+ l (ie; A = 0. K).

where K is some arbitrary maximum length. Note that,

h
N = 1

"

(4.4b)

The y
; can be considered to comprise a coordinate system in an K+l

dimensional space. The vector ,y
A

;

represents a single realization from a random

process. As mentioned in the Chapter I, there will in general be many such

vectors corresponding to all the possible realizations of the random process.

Because the error. e
N
(k). is a scalar (invariant) it must remain unaltered

regardless of the choice of coordinate system. We may. therefore, write

-
N
(k) = K AV (4.5)

where the v
A are defined as

78

-A':

y(k)

y(k-l)

y(k-2)

y(k-S)

hoV(k-l)

h
1

2y(k-2)h 2
y(k-i;

y(k-K) -hK
K_-

2V(k-K+l) ho
K_,y(k-i)

(4.6)

and

\K?A,y] - [1 -Kj -K 2
•• -KN 0...0] (4.7)

where the Vs are chosen so that the components, y
A

. are uncorrelated. The

stochastic form of the Gram-Schmidt procedure can be used. A discussion of this

method can be found in [Ref. 39: pp. 382-383]. By uncorrelated we mean

EV> I
^ a • for A ' = fi

\0 otherwise
(4.8)

The reader familiar with lattice structures will recognize the components of y
A as

the backward prediction errors. That is they are the errors in predicting y(k-N)

from the next N-l values: y(k-N-f 1). y(k-l).

It is a straight forward matter to solve the prediction problem given by

equation (4.5) (ie; solve for the K's) because of the uncorrelatedness of the chosen

coordinate system. Using an approach similar to that presented in Chapter III.

Section C. a set of normal equations can be formulated for this problem. In this

case, however, the correlation matrix is diagonal so that there is no inversion

necessary to obtain the solution. Minimizing the mean square value of the error.

e
N
(k). given by (4.5). with respect to the K*-"s. yields

K,
N

Kv(k)>' •

E
f'

,m

)

(... S-)
y(k)\ >

4.9]

Having obtained a solution to the orthogonal problem, we wonder if it cannot

be employed to advantage to simplify the calculations required to solve the

79

original autoregressive problem. From pquation (2.13). we know that the

relationship between the old and new components can be expressed as

9
^-v
9y

A (4.10)

where

a y
X'

3y
;

1

K-2

1

h,
2

K-2

_hK-l _"h
K-l

1

K-l
lK-2 1

4.11

Now. since

e
N
(k) = yV = y

v K A
N

yAllL K,N-

9y'

(4.12a)

(4.12b)

then

i n r.- n 9y

dv
4.i:

Equation (4.13) gives the relationship between the autoregressive model

parameters and the K A

N
-'s. This result will be used in the proof of LevinsorTs

algorithm.

1. Levinson-Durbin Algorithm

In 1947 in his classic paper [Ref. -JOl Levirison developed a method for

recursively solving the normal equations. Beginning with a zero order solution

successively higher order solutions are calculated. This algorithm can be used to

exploit the Toeplitz nature of correlation matrices of stationary random processes

in order to reduce the required number of computations. The algorithm as

presented in this work is actually a simplified version of Levinson's original from.

80

It assumes that the equations being solved are the Yule- Walker equations ([Ref.

41], see also Chapter 3. Section D) so that the right-hand-side of the equations

contains only terms that will be present in the correlation matrix (left-hand-side)

of the next higher order model. This simplification is due to Durbin [Ref. 42].

We will refer to this algorithm often simply as the Levinson algorithm, however,

Durbin 's contribution is acknowledged.

a. Theorem 4.1 Levinson's Algorithm (Durbin's Form)

The autoregressive model parameters may be calculated recursively

from the relation

ihr 1

]

= [hA
N

]
- KN .,S!h A

N
]

(4.14a)

where

!h A
N

j
= !-h* -h,N ••• -hN

N
_, 10 • 0] (4.14b)

and

SfhA
N]= 10 -h N

-h,
N ••• -h£_, 1 •• 0] (4.14c)

The operator S has the effect of shifting the components, h/ one position To the

right. Note that

For stationary processes the following simplification applies

h/
1

= *»n-a-] for A - N (4.14d)

b. Proof (by Induction)

Using equation (4.13) for the first order model we have

hi = ho
1

h,
1

•
• • (4.15a)

1 K, • (4.15b)

1 • K, 10-0 (4.15c)

= [hA°j - K.sfh, (4.15d)

81

so that equation (4.14a) holds for N=l. We assume the recursion holds for the

N-th order model

[hA
N

l = ih^-
1

]

- KNSjh
N-l

From equation (4.13) we have

A'— A, A' = 0, ...,Kh> - Kv —

-

3y

Therefore,

,

h A -

-K, + K2h
] + K 3h

2
+...+ KNh

N-l

K 2 + K3h; + K 4h, +...+ KN hi
N-2

KNhNJ2

Now. for the (N + l)-st order model

hi
.N-l

IT
1

K, - K 2h
' - K,h " +...+ K N^h

*

K 2
- K 3h,

a
+ K4h" +...+ KN+1h r

N

K N - K N ,,h N _ ,

(4.16)

(4.17)

(4.18)

'4.19a

82

K, - Kji,,
1 + K8h c

Kvh N-l
N"0

K, K 3hf + K 4h,
3 + ...+ KN h,

JN-l

KN
— KN+]

hn*

V.
N

1

(4.19b)

h A
N

- KN+1 S!hA
N

]

(4.19c)

And so the desired result has been confirmed.

The proof presented does not require that the process be stationary

and so the condition of (4.14c) is not necessary. One is then faced with the

problem of how to determine the h A
N
's. This question is answered in the next

section where a generalized form of the algorithm is derived. We note that the

condition of (4.14c) implies the following

(4.20)h^" K N = h
c

or that the second column of the matrix given in equation (4.11) contains all the

lattice coefficients.

83

The following significant observation about equation (4.14a) is made.

The transpose of the term within the second bracket on the right hand side

corresponds exactly with the rows of the coordinate transformation matrix of

equation (4.11). The Levinson algorithm, therefore, represents a recursive

method for finding an orthogonalizing coordinate transformation.

2. The 1-D Lattice Structure

It has been shown, in the previous section, that the autoregressive model

parameters can be calculated in a recursive manner using the Levinson algorithm.

It was also shown that a model could be built in an orthogonal coordinate system

where the model parameters were given by the KA -'s. The question arises, can a

filter structure be devised which represents y(k) in the orthogonal coordinate

system? The answer is affirmative^ It will be shown in this section that the

Lattice filter is the required structure for the stationary case. A more general

solution is presented in Section B of this chapter.

The desired result is obtained in a straight forward manner by

multiplying both sides of equation (4.14a) by y
A

. This yields

e
N - !

(k) = e
N
(k) - KNV1 r

N (k-N-l) (4.21)

where the quantity r
N (k-N-l) = y

A evaluated at A' - N+l. As was mentioned

earlier in this chapter, the quantity r
N (k-X-l). is generally known as the

backward prediction error since it corresponds to the prediction of the point y(k-

N-l) from the N future points y(k-l) y(k-N).

Assuming stationarity. we can use (4.14c) and (4.14a) to obtain

fhA
N+1

i

- SfhA
N

]

- K N . r h A
N '

(4.22)

which leads directly to the equation

r
N+1 (k-N-l) = r

N (k-N- 1) - K N + 1
e
N
(k) (4.23)

Equations (4.21) and (4.23) define the Lattice form of the whitening filter (see

Chapter 3, Section D). This is also sometimes referred to as the analysis model.

The structure is illustrated in Figure 4.1.

84

In order to develop a synthesis model we need only to solve equation

(4.21) for e
N
(k) since we know that e°(k) is equivalent to v(k). Therefore, the

synthesis equations are

e
N
(k) = e

N+1
(k) + KN+1 r

N (k-N-l) (4.24a)

r
N+1 (k-N-l) = r

N(k-N-l) - KN+1 e
N
(k) (4.24b)

The resulting structure is as illustrated in Figure 4.2. Note that in this model,

y(k) is indeed being expressed as a weighted sum of the backwards errors, which

represent an orthogonal coordinate system.

This concludes the discussion of the classical Lattice formulation.

B. GENERALIZED ORDER UPDATE RECURSIONS

In this section a more general linear prediction problem is considered. No

assumptions are made as to the origin of the data. In fact, the data need not

represent a time series at all, and certainly shift invariance is not required. The

ordering of the data is simply chosen in some convenient fashion. The generality

of this formulation will allow its application to multidimensional and nonlinear

problems.

1. Definitions and Formulation

In this section quantities are defined that will be required to complete

the statements and proofs contained in the remainder of the chapter.

A realization of the random process Y is given by the vector

jy
A

j,
<; A v K.

The error. e k

N
_,. in predicting the element y

k "' from the previous N

elements of Y is given by

e k

N
;, = hA

N(k+lV for A - K (4.25)

where

hA
N
(k+l)j = [0 •• -h£N+1 -hk

N
_N+2 -hk

N
1 •• 0] (4.26)

85

r 3(k-3)

r°(k) r1 (k-1) r 2 (k-2)

Figure 4.1: 1-D Lattice Analysis Model.

r--e 3 (k)

r 3(k-3)

r° (k) r 1 (k-1) r 2 (k-2)

Figure 4.2: 1-D Lattice Synthesis Model.

86

The norm of this prediction error is given by

; k + l i

N \2l
Wrt)

1/ 2

A normalized version of the forward error is given by

« N -
e k + l

ek+i

(4.27)

(4.28a)

aA
N (k+l)y ; (4.28b)

where

aA
N(k+l)

_ N I !

ek + l

h,
N
(k-l) (4.29)

The backwards prediction error, r k1 N , is the error associated with the

prediction of y
k_N given the next N elements of Y. It is given by,

rk
N
- N = h A

N(k-NV (4-30)

where

fhf(k-N)] = [0 • • • 1 -h£N+J -h k

N
N+2 •

• • -h k

N
•

• 0] (4.31)

Again, a normalized version can be defined as

_ N Tk-N
rk-N - £

—

rk- N

(4.32a)

- bA
N (k-N)y A

;4.32b)

w here

b?
hr(k-N)

N
r k _ N j

and

rk-N B[(rk
N
- N)

2

\l 2

(4.33)

(4.34)

87

In order to generalize the results of Section A of this chapter we need to

introduce two different families of coordinate systems. We will refer to members

of these families as either forward or backward local coordinates. The term local

is used because a different coordinate system will be associated with every value

of k and N. We define the (k+ 1) - indexed, N-th order forward coordinate

system as

[y
A '(k+l,N)j =

,k-N

,k-N + l N-l k-N-r2
- K-S^V

N-l ,k
h k y

,k-l

k + 1

l,,k
h kV

(4.35)

The corresponding coordinate transformation from the unprimed coordinate

system to this local forward coordinate system is given by

By-
1

(k-l.N)

Bv A

88

1 -hk-N-
N-l

•2
I N- 1

nk-N + 3
" h k-l

v.
N

'

1
7 N-2_nk-N + 3 -hk-i -hk

1
r n-s- h k-i "hk

-L1

I

(4.36)

where the o's are zero matrices and the I's represent identity matrices.

Similarly, we define the (k-N)-indexed, N-th order backward coordinate

system as

.A"
y
A (k-N.N) =

k-K

k-Ni-J

k-N+2
h

1

k-N+iy
k-N + 1

N-l„k-l
y - n k _, >

l N- 1 , r
k-N + l

"k-N+iy

k-l

(4.37

The corresponding coordinate transformation is given by

dy A
(k- N.N)

civ
A

89

1

- hk_ N +]
1

~hk _ N+1
L 2_nk-N+2 1

N-2L IN —

2

_nk-N + l

i N-l~ nk-N + l

. N-2 i N-2— nk-N+2 _tlk-N+J2

;-N+2
. h

N-l i N-l
fik-N+S
~~

-h N-l
k-1

(4.38)

These definitions are sufficient to state and prove the theorems presented

in the remainder of this chapter.

2. Generalized Levinson Algorithm

The Levinson algorithm (equation (4.14)) can be extended to recursively

compute the forward and backward prediction coefficients defined in equations

(4.26) and (4.31). In this section two forms of the algorithm are presented and

proved. First a non-normalized version is introduced, then using this result a

normalized algorithm is developed.

a. Theorem 4.2: Generalized Levinson Recursion (Regular Form)

The forward and backward prediction coefficients defined in

equations (4.26) and (4.31) can be updated using the following recursive

equations.

(4.39aihA
N+

(k-1); = !hA
N
(k+l)] - ?Nrl M(k-N)j-

1

-N II
<"k-l

N
~k-N i !

r N
1 1

7 N+l
(k-N)] = h A

N
(k-N): k

. h,
N (k-l)-

rk-N
n A \

1

ek-rl ; 1

\\ here

k ri-N -N
Pn + i

- ^1 e k + l
rk-N (4.40)

b. Proof

The forward and backward prediction errors are scalars so their

representation is identical in all frames of reference. Therefore, we can write

90

& = h A
N (k+l)y A (4.41a)

= KA
N'(k+l)y

v(k+l,N) (4.41b)

and

rk
N
-N = hA

N(k-N)y A (4.42a)

= K^-(k-N)y A "(k-N,N) (4.42b)

where

KA
N
(k + l) = h A

N
(k+l)—rr^ (4.43a)" l ; y

'a y
A (k+l,N)

v '

= '0 • -Kk

N
_ N+1 •

•
• -Kk

N
1 •

• • 0] (4.43b)

h A
N (k.l) = K^(k+ l)

9yV

ft
1,N)

(4-44)
dy

and

K A
N
,-(k-N) = h A

N (k-N) —^ (4.45a)
; y

3y
A (k-N.N)

V '

= [0 • •.• 1 -K£ N+1 • • -Kjf •
• oj (4.45b)

h*(k-N) = k Â (k-N)
ayV

>;N '
N

) (4.46)
dy

The normal equations in the primed and unprimed coordinate

systems can be solved for K A
N
-(k-l) and K A

N -(k-\). This is once again (see Section

A of this chapter) a straight forward matter because the correlation matrices.

[E{y
A
'(k-4-i,N)y"'(k+l,N)}] and [E{y A

"(k N.N)y" (k S.S)}}. will contain only

diagonal elements. The solutions are

K A
N
(k^l) =

91

E|y(k-l)yk
-w+1(k+l,N» E<y(k+l)y*(k-l,N)>

•
• • —^-5 r-^- • " • —^-j <~- 1 • • •

E<Wy
k-* + 1

(k+l,N))' E (y
k (k~l.N)) :

KA
N-(k-N) =

(4.47)

Eiy(k-N)y
k - N+1

(k-N,N)f E<y(k-N)y k (k-N,N)

0-01
E<(y k - N " 1 (k-N,N))' E^(y k (k-N,N)) :

o-o

(4.48)

Consider the (k-N)-th term of the (N+ l) order version of (4.47

K£V(k^l)

Eiy(k-l)y
k--^k+l,N)

:|(y
k - N (k-l.N))4

[4.49a)

Ey(k-l)rk%

E<(rk

N
N)

2

;4.49b)

^k^V^N
/

MrJ!k- N

(4.49c)

eft,

N
r k- N

k
(4.49d)

92

Similarly,

K k

N
+V(k-N) =

| ;

r

7; ;
P$+i (4.50)

:

ek+i ! 1

For the N= l model the forward error prediction coefficients are

(from equation (4.44))

[W(k+1)] = KAMk+l)
9 y
V

(
k+ 1

»
N

) (4.51a)
dy

= [0 • • -K,,
1

1 •
• • 0] (4.51b)

I I e |
I

|0 • o '

'

:

Pl
k

1 • • • 0] (4.51c'
1 rk I I

Equation (4.39a) yields

[hjflk+i)] = [bjP(k+l)] -
/>t

k
[h A°(k)j 7~~77 (4.52a)

!
'
rk I I

I I ft. II
= [0 • • 1 • • • 0] - Pi

k—

—

n JO • • • 1 •
• (4.52b)

I I *k I I

= |0 ••• -P,
k

!

.

l

|

ek
°; 1

.

:

,

1

1
•••

:
(4.52c)

! I

rk I I

Therefore, the recursion of equation (4.39a) holds for N=l. We assume it is valid

for N and verify it for N-j-1. From equation (4.44) we have

h A»~>(k-l) = Kr i

(k,l)
&yV(k

;
1 -N|

(4.53a)

93

-Kk
N +

N + l

Sf(k+l)

Kk
n_^+1 (k+l)

Kk
N+1 (k+l) + h^Kjl^k+l) +

hk

N
N+1Kk

N_V(k+l)

+ h.fK^k+l)

(4.53b)

= ih^(k-l): - K^k+lJiO 1 -h k

w
_ N+ i

-kN
(4.53c)

h,
N (k-l)

r
k N

^,h A

N
(k-N)

This completes the proof of equation (4.39a). Vsing similar

arguments the backwards recursion of equation (4.39b) can be verified.

c. Theorem 4.3: Generalized Levinson Recursion (Normalized Form)

The normalized prediction error coefficients defined in equations

(4.30) and (4.34) can be recursively updated using the following recurence

relations;

k-fl)

k N]
= e(p N

k

+1 ;

a'(k-l)

bJ(k-N)
(4.54)

where

®(pLi
Vi I P N +

1

,

k

/'N-l

4.55'

and px +i is given by equation (4.40).

94

d. Proof

The proof follows directly from the non- normalized version of the

generalized Levinson algorithm (equations (4.39)) and the definitions of the

normalized prediction error coefficients (equations (4.29) and (4.33)).

Using (4.29) in (4.39a) we obtain

aA
N+1 (k+l)

ek
N
+1 |

!
aA
N (k^l) - , n

k
+1^ ' ^ '

1 ! I

rk
N
_ N |

|

b A
N (k-N)] (4.56a)

ek + l I
I I

rk-N

N
ek + l I N/ . * k , N
„N + 1

ek-i

aA
N
(k + l) - ^ +1bA

N (k-N)] (4.56b)

Similarly, using (4.33) in (4.39b) we obtain

*»a
N+, (*-N) = ,' ^J

!

[bA
N (k-N) - „N

k
+1 aA

N(k+l)] (4.57
I !

rk-N I i

The proof of the fact that

N
i i

N ,
i

; k + l !
! I

rk-N I 1

e&i 1

I i ^
NV :

: y/r- (p^)
2

(4.58)

is relegated to the next section.

The initial values for forward and backward normalized

autoregressive parameters are obtained by setting N=0 in equations (4.29) and

(4.33). This yields

aA°(k+l) = JO • • •

, |c

1

+]
—- •

• Oj (4.59a)
i

I
y

b A°(k) - •
• • —-i

• o (4.59b)

We note the similarities in the two generalized forms of the Levinson

algorithm presented in this section with that presented earlier in this chapter. A

little reflection will convince that equations (4.14) are simply a special case of

equations (4.39).

95

3. Error Order Update Recursions

a. Theorem 4.4

The (N+1) order errors can be calculated from the N-th order errors

through the recursion

(4.60)

where 0(p^ +1) is defined in equation (4.55).

b. Proof (Outline)

Using the normalized form of the Levinson algorithm (equation

(4.54)) and the following relationships

ek
N
+1 = af(k+l)/ (4.28b)

-N + 1 -N
«k + l Ck + 1

-N + 1

*-N
= ©(PN + l) -N

r k-N

r N + l _ N + 1,

-k + 1 - aA I
k+l)y ;

rk
N
N = bA

N(k-NV (4.32b)

l£$ = bA
N+1(k-NV

equation (4.60) is easily verified.

We now return to the proof of equation (4.58). That is.

I

ek
N
+, ! |

'
I -N -rk-N

i

i „ N +

1

I
ek + l

I
!

rk
N
N

Working with the term on the left-hand side of the equation

1

I eJ*

,

ck + l

«k + l

EUe?

1 2

E(e
k^.' - 1 \ 2 I

(4.58)

(4.61a)

*>
k+,

ek
N
+i)

T7T
k + 1 „ N + 1

k + 1
Ey k+1

e

(4.61b)

96

^N+iMy rk-Nf ;

ek-i i

y
k+1

ek
N
+1

T~1

(4.61c)

\/l - (/>n+i)
:

(4.61d)

Similar arguments can be used to verify the other relationship given in equation

(4.58).

Figure 4.3 symbolizes a single stage of the recursions of equation

(4.60) while Figure 4.4 illustrates a third order analysis model.

The interesting feature of equations (4.60) is that they do not make

any assumptions about the nature of the given data. The data values need not

be delayed versions of each other, as is the case for the autoregressive model.

Any set of data values can be used. This fact will be significant when we deal

with 2-D and nonlinear lattices.

4. The Generalized Schur Algorithm

In this section an algorithm will be presented which allows the

calculation of the partial correlation coefficients in a direct maimer. It will b<

shown that knowledge of the correlation matrix is sufficient to calculate all the

reflection factors and thus solve the normal equations (by use of the Levinson

algorithm). Tin 1 method used has come to be known as the Schur algorithm [Ref.

3]-

In order to obtain the desired result we must introduce two new-

quantities, defined as

97

'k+l

rN
k-N

k ,2,-1/2
{i-[«+J I

;n+i

'k-N

k n 2 , 1/2

N+l U-[«+J I

k t 2 , 1/2-£wu-[««n

ii-t&J
2

!

2 , -1/2
rN+l
k-N

a. Single Stage of Generalized Lattice Filter

;n+irk-N

'k+l

9n+1

e pN+l
^k+1

t;n
1 k-N

b. Alternate Representation

Figure 4.3: Generalized Lattice Filter Sections

98

ri r? r3

\\r\\

eg . Q . e» () e* Q e3

tf" g" g"

r\ n

r
< ^>

&

r? ri

r
l|y*ll

|y°l

rj

Figure 4.4: 3-rd Order Generalized Lattice Filter

99

-N „Aa N̂ (k+l) = E^,y^= a*(k-l)R./iA (4.62)

/9N
A
+1 (k-N) = E<kN_ Ny4 = b„

N (k-N)R m a
(4.63)

where

R" A = EJ
y»y (4.64)

is a correlation matrix.

a. Theorem 4.5: Schur Recursions

The quantities a^(k-l) and /^(k-N) defined in equations (4.62) and

(4.63) can be updated according to

oN
A
+,(k+l)

4i+i(k-N)
9{pLi)

a N
A (k+l)

^N(k-N)
(4.65)

and the partial correlation coefficient. p^+u can be calculated from

a N
kN (k+l)

Pn-i =
ak-N0]T*(k-N)

[4.66)

b. Proof

The proof of equations (4.65) follows directly from equations (4.60)

and the above definitions for a^(k- l) and $N
A (k-N).

Beginning with the definition of the partial correlation coefficient

given in (4.40). the relationship given in (4.66) is verified as follows

L^
I

E|ek

N;,y4bA
N (k-N)

4.67a'

[4.67b

N ,.i<-nLuN
- E^eir+I y

fc
- N ^_ N (k-N) 4.67c)

100

= a N
k - N (k+l)bk%(k-N) (4.67d)

But

bk%(k-N) =
: : yk

1

. N
|

|

=
[R(k

_ w)(

1

h _ N)
j

1/2 (4.68)

and

/?N
k - N (k-N) = [R(x-N)(k-N)]i/2

(4_69)

Therefore,

/?N
k-*(k-N)

V

'

Using the initial conditions given by (4.59) the following initial

values are determined for the Schur algorithm

R< k+1 '
A (4.71a)

[
R(k+i)o R (k + ,)i

. . . R(k + i)K
(4.71b)

(4.72a)

«o ^ , i; -

! y
k+1

l \

n X
1 1 1 V' - i

a
l
K i

l\
-

y
k+1

i
!

a A / k \ _ 1
PPo l

K
J

I ; 1 i

I

'9 A
1 k V - 1

P[Po \
K

I -
k

i

K
y

kA

R k0 R kl R kK
(4.72b)

where the parenthesis used to surround the first indices in equation (4.71) simply

indicate that they are fixed at the value indicated.

The Schur algorithm implies a filter structure identical to that of

Figure 4.4. In this case the input vectors are the rows of the correlation matrix

(normalized by the square root of the diagonal elements).

5. Synthesis Model

The original data. Y. can be synthesised from the model parameters

obtained from the Levinson algorithm, equation (4.54). It is also possible to

regenerate the y
A directly from the lattice parameters. The desired result is

101

obtained by solving equations (4.60) for e^i, and rji"^-

ek^l = V 1 - (Pn+i) ek-l + *>N-l rk-N (4.<oaj

-N+l
rk-N = n/1- (/»N

k
+i)V-N - P N

k

+1 e k

N
+V (4.73b)

Equations (4.73) constitute the synthesis model. They imply a structure

similar to the analysis model of Figure 4.4. but with the direction of flow of the

forward error signals reversed. The processing performed at each stage can be

visualized as in Figure 4.5. A complete third order synthesis model is shown in

Figure 4.6. Each horizontal path in Figure 4.6 represents a separate synthesis

model, synthesising a different component of Y. The coordinate system for each

of these models depends only on values of y
A which appear farther down, that is

they have a smaller value of the index, A.

Compare Figure 4.3b and 4.5b. It is apparent that the behaviour of the

backwards error signals is identical in the two cases. Hence, it is possible to

construct a synthesis model that only reverses the direction of the forward error

corresponding to the point being predicted. This assumes knowledge of the other

inputs (zero order forward errors) to the lattice. Such a configuration is

illustrated in Figure 4.7.

The amount of knowledge possessed about the signals used for the

predictions dictates which form of the synthesis model should be used. If little is

known, then estimates must first be generated which can then be used in the

prediction. This corresponds to the model of Figure 4.6. If complete knowledge

is available (either from initial conditions or previous predictions) then Figure 4.7

can be used. It is also possible to construct models which exploit partial

knowledge of the input signals and thus fall between these two extremes. In this

ease the known signals should be input as zero order forward errors while the

unknown ones must be estimated.

102

6. Stochastic Fourier Series Interpretation

From equations (4.72) and (4.40) we can deduce the following result

ek
°

+1 = e^ 1 + £ eLW-nW-a (4.74a)

N

Ie&t
1 * E I

I ^+il \pm*£-x (4.74b)

where ek
°
+1 is equivalent to y

k+1
. These expressions offer an alternate interpretation

of the lattice filter. Equations (4.74) describe a stochastic Fourier series

expansion of the forward error sequence where the basis functions are given by

the backwards error signals. The Fourier coefficients are related to the partial

correlation coefficients.

This concludes the review of existing lattice formulations. In the next

chapter new. multidimensional extensions of this theory are presented. In

Chapter VI these results are used to derive original nonlinear lattice structures.

103

k „ 2. 1/2

Q»+i

k-N

4
+ 1

^-k-i

- e
k

,+1

, , _ /-\k _ 2. 1/2
r1

,

N+l

k-N

a. Single Stage of Generalized Lattice Synthesis Filter

pjs+i

k-N

eN

k+1

k

9m+ i

eN+l

k + 1

' k-N

b. Alternate Representation

Figure 4.5: Generalized Lattice Synthesis Filter Sections

104

r j ,

ri

Gfa

r.

11711

ilril

I?

ela

n

*0

a

I|y1l

€>— « —-^>— 3 —«-0
«n

rl

•e-
Pia

ri

e

rl

-*- 3

Figure 4.6: 3-rd Order Generalized Lattice Synthesis Filter

105

n ri rt Tt

1L
IMI

3 " O * 3 « Q « e* -^>
<?? g 95 h

ri H ri

y
IM ^>

g
-e
&"

n ri

y
urn

y

ri

Figure 4.7: 3-rd Order Generalized Lattice Synthesis Filter

106

V. TWO DIMENSIONAL LATTICE STRUCTURES

In this chapter a new two-dimensional lattice structure will be derived and

discussed. Lattice modelling of two dimensional fields has recently received

considerable attention [Ref. 43,44,45]. In one dimensional lattice modelling,

updating the order introduces only one new point into the model support. An

order update in a 2-D lattice model must introduce O(N) new points, where N is

the model order. Several different solutions have been suggested to this problem.

The first due to Marzetta [Ref. 43,44], uses a particular ordering of the data to

reduce the problem to one dimension. He proposed a half-plane support which is

infinite in one of the two dimensions. This approach, while maintaining several

of the nice characteristics of 1-D lattices, such as correlation matching arid

producing a minimum phase filter, leads to very long delay filters.

A different approach, proposed by Parker and Kayran [Ref. 45].

simultaneously introduces many points into the support when the model order is

increased. Their filter uses a quarter plane support and introduces three

parameters at each order update. Therefore, it lacks sufficient parameters to

represent all classes of 2-D autoregressive quarter plane filters. More

importantly, it lacks the property of orthogonality so that the cascading of stages

does not lead to an optimum filter (better filters are possible using an equivalent

number of parameters). It's simplicity is attractive and good results have been

reported using this approach [Ref. 46].

The theory presented here maintains features of both previous approaches. It

utilizes the generalized lattice theory presented in Chapter 4 to decompose th(

global O(N) point update into 0(N2
) single point local updates. It maintains the

important property of orthogonality so that the solution at all stage? is optimum.

Although only the quarter plane support case is presented here in detail, the

theory can be used for any shaped support. It is shown that the Levinson and

Schur algorithms (see Chapter 4) can be used to solve the 2-D linear prediction

107

problem. In its most general form the lattice contains 0(N 4

)
parameters while

there are only 0(N 2

)
points in the filter support. Several structures are presented

which take advantage of shift-invariance and reduce this requirement to 0(\ 3
).

A. GENERAL FORM OF 2-D LATTICE FILTER

The theory used is exactly that presented in the previous chapter. The 2-D

structure results from a careful selection of input data. To illustrate the

proposed 2-D lattice structure we will consider a 2-D linear prediction problem

which utilizes a quarter plane support. The 2-D data field is given by

Y=/yV*= y(XuX2)\ (5.1)

where (Ai,A 2)
G 2LK = L K x LK

where LK is an index set given by

LK = {o, ...,K> (5.2)

Points will be used from this data field in a particular, convenient order. We

define an ordered index set

2t k6L K = <UO.O),(l,0),(0.1),(2.0),(0,2)
;

.... (N,0),(0,N)

(1 ; 1),(2.1).(1.2). ..., (\.1),(1.N).....

(K-2,K),(K-1,K- 1),(K,K-1),(K-1,K),(K,K)| (5.3)

Other orderings are possible and equally valid. This one is chosen merely to

illustrate the concepts. The desired ordering of 2
L
K

. to obtain qL k
. can be

accomplished by the following, computationally efficient algorithm

108

k =
for mO = to K

for nO = to 2*m0
if (mod(n0.2) = 0)

then begin

i = mO
j = n0/2

end

else begin

i = n0/2

j = mO
end

o
2L* (k) = 2LK (ij)

k = k + 1

next nO

next mO

In this algorithm qLk (k) has been used to describe the k-th element of the index

set qLk . while 2LK (iJ) has been used to indicate the (ij)-th element of 2LK . The

(K+l) 2 elements of 2LK have been ordered into a one dimensional index set. qLk .

The elements of qLk can be numbered, consecutively, from to (K+l) 2-l. The

notation (k.l) - q will be used to mean: the element of the index set corresponding

to the q-th element prior to the element (k.l). For example. (2,0)-3 would

indicate the element (1.0) (see equation (5.3)). Occasionally this notation will be

abbreviated to simply, kl-q.

Define the (q-1) order, normalized, forward error associated with the

prediction of the point y(k.l) from the previous (in the sense of qLk
) (q-1) points,

as

ekr' = aÂ (k,l)y
V '

(5.4)

where the implied summation over (A,.A 2)
e

2
L
K

. can be carried out in any order,

as long as all components are considered. It is preferred to think of (A,. A.,)

belonging to 2 LK rather than qLk as this maintains the two-dimensional character

of the problem.

The a^fk.l) can be interpreted as the components of a second order

covariant tensor. These components, for a range of indices (A,.A 2)

•' (k.l) q (in the

109

sense of (5.3)), or for indices (Aj.A 2)
">

(
k -l)- are equal to zero. When (A,.A 2)

= (k.l).

the component

ar^k,!)
I

I

ekT
•i

I I

(5.5)

where e^
-1

is an unnormalized version of ekT\

A normalized backward error associated with the prediction of y((k,l)-q) from

the next q-1 points of qLk , is defined by

f£i = b^\((kA)- q)y

X^
(5.6)

As with the forward error prediction coefficients, the b A
qV((k.l)-q) can be

interpreted as components of a second order covariant tensor. The components

b
;\

qV((k-l)-q) equal zero for the range of indices (A 1; A 2) $ ((k.l) — q) or (A,.A 2)
> (k,l).

For the case when the index (A!,A 2)
= ((k,l)-q) the component

l

bk?:i((k.l)-q) =

nUi
(5.7)

where r^lj is an unnormalized version of t^Z\.

1. Normalized 2-D Levinson Algorithm

a. Theorem 5.1

The 2-D prediction error coefficients can be updated in order using

the following recursions

a>V:(U)

K ©(O
a^fk.l)

b^l((k,l)-q)
(5.8)

where

©(/»<

an<

l - (P?)
]

[5.9]

p q

M
- Efer^i] (5.10)

110

b. Proof (Outline)

The proof follows directly if the index (k.l) is replaced by a single

index which runs from to (K-l) 2 -
1 and thus indexes the elements of qLk

. The

equations (5.8) are identical in form to equations (4.54) and the proof presented

there can be applied. This approach is equivalent to reordering the data field

into a vector in the order specified by qLk .

An alternate proof is possible by generalizing the methods of Chapter

4. Alternate coordinate systems could be introduced (similar to (4.35) and

(4.37)). The necessary transformations can be found and all the steps of the

proof of Theorem 4.2 can be generalized to these higher order objects. These

concepts will not be explored further here except to note that they could be

extented to solve problems in any number of dimensions, they are not restricted

to the two dimensional case being studied here.

2. Normalized 2-D Error Order Updates

a. Theorem 5.2

The two-dimensional prediction errors can be updated in order

according to the following equation

Wl

r kl-q

e kT
1

hT-
1

q

6Kkl

) _ q_,
(5-11)

b. Proof (Outline)

The proof follows from equations (5.8). If an inner product is formed

on both sides of the equation (5.8a) with the data field Y equation (5.11a)

results. Similar arguments can be employed in the verification of (5.11b).

3. 2-D Form of Schur Recursion

Define the quantities

vAa
q_V(k.l) = E|ek1 V 2

j
= a.Vjk.lJR-'

"• (5.12a)

<W 2
((k,i)-q) - Etes:Jy

v
j = b AV

4

(w-q)R
W:A ' (5.12b)

111

where

A,A
2
AjA

4
I AjA

2
A

5
A

4 :5.i3

We note that for the 2-D case the correlation is a fourth order tensor.

The Schur recursions for the 2-D case are then given by the following

theorem.

a. Theorem 5.3

The generalized 2-D Schur recursions are given by

*
q

V2
(k.l)

A,
V2

((M-q)
= ©(/><

"c-'hk,!)

V.KMl-q)
(5.14)

and p
kl can be calculated from

A'q =
* q

i
k,I)

5.15
^((k.lj-q)

b. Proof (Outline)

The proof follows identical arguments to those of Theorem 4.5 and so

is not given here.

4. 2-D Lattice Structures

The derivations presented do not assume shift- invariance. Models are

built for each point in the data field starting with the point y(K.K) and ending

with the point y(0.0). All the models are not equivalent, however. In fact, no

two models are identical. The only model that is quarter plane is the first one.

That is the model corresponding to the point y(K.K). A quarter plane model for

any point, y(m.n). in the field can be built by considering an appropriate subset

of the set Y (equation (5.1)). The subset would sTarT with the point y(m-N.n-N)

and continue in a quarter plane manner until the point y(m.n). for an X-th

(global) order model. This support can be written

D

when

y(A,.A 2) :5.16)

112

(Ai,A 2)
6 Lmn — Lm x Ln

*

where

Lm
N = j(m-N),(m-N+l), ml (5.17a)

and

Ln
N = |(n-N),(n-N+l), ..., n| (5.17b)

The (N^l) 2 terms of this index set can be ordered to form

2Lm
N
n
= |(m-N,n-N)

I
(m-N+l

J
n-N),(m-N

J
ii-N+l)

)
...

1

(m-l
J
n-l),(m,n-l),(m-l,n),(m,n)| (5.18)

The subset of Y given by (5.16) and the ordering of (5.18) are illustrated in

Figure 5.1. This could be done for each point in the entire data field Y. yielding

(K-l) 2 models. If the process is shift-invariant, then all the models would be

identical. Other simplifications in the model are possible if shift-invariance can

be assumed. These will be the topic of the next section. In addition, if

ergodicity is assumed the required statistical averages can be replaced by

appropriate spatial ones.

A second order quarter plane 2-D lattice model for generating the

prediction error associated with an arbitrary point y(m.n) is illustrated in Figure

5.2. In this diagram the forward and backward error fields are indicated

pictorially rather than symbolically. The icons used are defined in the legend on

the diagram. The large squares, at each stage, indicate the entire support for the

second order model. The small blank squares indicate the additional support

(besides the error field squares) used to generate the given error fields. For

example, the forward error field in the upper right hand square is generated by

predicting y(m.n) from all the remaining data points in the large square,

including the one indicated as a backward prediction error.

113

/»> s-\
2 2

/—

\

I 1

2 c C
l

» ~ /"\ /—s

a T-l CM 7 2
+ + 1

1

/m*> 2o 7
^ 2
r-t

1

CO
|

a a o 2 c
CM *w

A w a
w

a
w

a
v^ v_^ *>—

'

>> >» >> >>

/—N /">
rH rH

/*> + +
r-(2 2
+

1 1 ^^2 c c rH
1 •-> M /"^ M ^"N
1

c

^ 2
CM |

t 72 »±
CM *7

3 ?2 2
CM "V

a a a
7 £
* a

w a
v_,> \^^/ ^s S

a a a^^ N_/ Nw/

>> >> >» >>

^ s~\
CM CM

z^-\ + +
CM 2 2
+ 1

1

^~\

2 G a CM
1

/*—S »\ O +
C CO rH CM »? 2
«, + + '""N + 1

£> 2 2 2 2 2 • • a £ «
"*

1
CM | ^

1

CDw a w a w
A

w
a

^.^ ^—^ Vw/

>> >% >> >>

e • • a a

• • o
o a a • o

^^ ^^
c c rH

c"> •» •» 1

C /-\ rH ^ CM n
•» pH + Tf + /—

\

/-N 2 1 2 1 2 7 c
2 1 ^ i 2 I

+

5 £cm a ^ a cd a O O

^^ v—

'

N_^ ^^ ^_^ *>—

/

>> >> >> >>

Figure 5.1: Filter Support Ordering (see equation 5.18'

114

C
7Jo +»

u
"S
01

L
L a —

L
5.

<U L 3>Q c
c O in

z:
u u

+»

u
73 A c

-5
I

1

ID
73
«l 75

W
1

c

l,J 0.
a c 73 e E

.J 75
TJ

73 u-
_>> 21

L d L
d 3 a i.

3 y 3
S. u s. s.

—

>

o O L i

i

J3

1

u. a>

i

e
131

•3 S_ —
3 2
b fc f>

/\

/
H

K

\

rm

fij

3
B

1 1 I

ot
E 3

a
Q
a

a

fU
I

E
13*

E
I3>

^ 5

ai
i

E
I3>

131

cu e

c I3>
-*

E
I3<

Figure 5.2: General 2-D Quarter Plane Lattice Filter.

115

The doubly hatched squares, corresponding in this diagram to zero order

errors, are inputs to the filter. In general, (in later diagrams) doubly hatched

squares are considered to be inputs, although, they may not always correspond to

zero order errors.

The ordering chosen for qLk (equation (5.3)) is only one of many that

could have been chosen to implement a quarter plane model. This particular

selection was made for ease of implementation and because it guaranteed that for

every 2N+1 local updates, a global order update would be completed. In Figure

5.2 the filter can be visualized as a cascade of increasing order filter sections. For

every global update. 0(N 3
) local order updates must be completed. This implies a

total of 0(N 4
) updates for an N-th order filter. In general this is too large a

number to allow these filters to be used for any real time applications.

In the next section the problem of reducing the complexity of the 2-D

lattice filter is examined and some solutions are proposed.

B. REDUCED COMPLEXITY 2-D LATTICE FILTERS

The assumption of shift-invariance allows certain of the backward prediction

errors to be considered to be shifted versions of each other. This eliminates some

calculations. Various structures are possible depending on the types of shifts

introduced. We note that no single type of shift (neither z,
-1

, z2
_1

, z,
_1

z2
-1

) will

introduce all the new data elements into the support that are required for a

global order update. Because of this, additional prediction errors will have to be

introduced at each stage. This reduces somewhat the advantage gained by the

shift -invariance assumption.

Two types of delays will be considered in detail. Initially, several models

involving diagonal shifts are examined. Later, a model involving a horizontal

shift is discussed. We begin by introducing a diagonal shift operator. D. This is

equivalent To multiplication by z, 'z 2
' in the bivariate z-transform domain.

Because of the assumed shift invariance the following statements can be

made

116

R(m.n.m-Ln-j) = E<y(m,n)y(m-i,n-j)|' (5.19a)

= B&{y(m
>n)]D[y(m-i,n-j)lJ (5.19b)

= E|y(m-l,n-l)y(m-i-l,n-j-l)| (5.19c)

= R(ij) (5.19d)

where R() is a correlation function. The correlation is only a function of the

relative positions of the two points not their absolute positions. If we adopt for a

moment the Hilbert space formulation (see Appendix A) we conclude that the

diagonal shift operator is an inner-product preserving operator and so the use of

the shifted versions of the backward error signals is justified.

Consider the structure illustrated in Figure 5.3. It represents a third order

quarter plane lattice filter. At each global stage, (2N-l) : -3 lattice coefficients

are introduced. Therefore, an N-th order model requires 0(N 3

)
parameters.

Notice thaT at each stage two new errors are introduced. They each require the

solution of an (N-l) 2 point prediction problem. For small N this is an

insignificant number, however, for large N it becomes overwhelming and the

required number of parameters again becomes 0(N 4
). It is difficult to analyze this

structure analytically, as the index sets for each prediction error are different.

The support for different errors follow different patterns. This, and the

complexity issue make it a structure that is really only of academic interest.

The structure of Figure 5.4 is a True O(v') parameter model. It avoids The

addiTion of The new error signals aT each sTage by introducing them aT The ouT^et.

The structure has a sup)port thaT differs slightly from quarter plane. A more

signifiranT drawback, however, is ThaT the maximum order of The filter must be

fixed at the start. If the maximum order is overestimated then some unnecessary

computations will have been performed. If on the other hand, the maximum

117

Figure 5.3: Reduced Complexity, 2-D Quarter Plane Lattice Filter.

118

required order was underestimated, then a great price must be paid to increase it.

However, this is considered to be a superior structure because of the regularity

and complexity reduction it offers. Therefore, a more detailed analysis of this

model will be performed.

The ordered index set (equivalent to (5.18)) in this case (for N=2) is given

by

oLm
2

n
= |(m-2,n-2),(m-l,n-3),(m-3,n-l),(m-l,n-2),(m-2,n-l),

(m-l.n-l).(m.n-2),(m-2.n).(m,n-l),(m-l,n),(m.n)l (5.20)

The following relations can then be used to advantage to update the backwards

errors

r
(

°
m_x,„-i)= D,r

(
m

,
n) ;

(5.21a

Fi- 2,n-i)= D[r£,-id (
5 - 21b

H
2

m -l.n-2) = Dir^.n-!)] (5.21c

r(m-3.n-i) = D!r
(

s

m_ 2 .n)]

(5.21d

Vm-l.n-S) = D^.n-2); (5-21e

-5 t\ -5
r(m-'.'.n-2) Di,.-,,, (5.2lf

In general, whenever (m-i.n-j) equals (m.n)-q. then

— q
r(m - l- l.n- j- 1)

(5.22

Equation (5.22) is a simple rule for exploiting the shift- invariance of the data

field.

One final reduced complexity lattice model will be introduced. It will serve

to illustrate the variety of structures possible and in particular will yield a model

for which an especially convenient synthesis model can be constructed. The

model incorporates a horizontal (z 2
') shift, rather than the diagonal shift used in

119

3 <- -5
-x o 2
a s. 2>
.0 9) l/l

in

3 o a

U. 01 l/l

i A k A a

9 I I O (> ^

<> (I (8 I) < > ^

(p (i a ii '? M

E

cBi

S
3

s

-OB

C3

«—«-i

D

J w*L
I KTi

e
I 31

i

c
I 31

I3*

E
I 3>

i 3>

Figure 5.4: Reduced Complexity. 0(N S
), 2-D Quarter Plane Lattice Filter

120

the previous models. A horizontal shift also is a inner product preserving

mapping so that its use is permitted.

The ordered index set used for this model is given by (for the second order

case)

2L^n
= |(m-2,n-2),(m-l,n-2),(m,n-2),(m-2,n-l),

(m-l,n-l)
!
(m,n-l),(m-2,n),(m-l,n),(m,n)i (5.23)

Define a horizontal shift operator, H, by the relation

y(m.n-l) - H(y(ra,n>] (5.24)

The following relations hold due the assumed shift- invariance of the given data

field

F
(

°
m,n-i)= Hlr

(

°

m
,
n)]

(5.25a)

r(m -i,n-i) = Hr
(ni ^ ln) (5.25b)

r(m-2.n-l) = HJF(m_ 2ln)
(5.25c)

r"(m-s,n-i) = H[r(m_ SiI1
)

(5.25d)

r(m-4,n-l) = H ,r(m-4.n). (5.25e)

Hm- S.n-1) - Hf|l-5,r,| (5.25f)

In general, whenever, (m-i,n-j) equals (m,n)-q then

Hm-i.n j-1)
: Hr,^,,,,,.

j)
(5.26)

Using these simplifying relations and equations (5.11). the model of Figure

5.5 can be deduced. This model still contains O(N') parameters, however, the

actual number is only about one quarter of that required by the previous

structure (Figure 5.4.)

121

This algorithm shares with the previous algorithm the shortcoming of having

to estimate the maximum order of the filter at the outset. Despite this, it is

believed that this model offers a good compromise (probably the best to date)

between model accuracy and implementation complexity. In the next section it is

demonstrated that the synthesis form of this algorithm has some particularly

desirable properties. In Chapter 7, it will be shown that this algorithm is well

suited for highly parallel VLSI implementation.

C. SYNTHESIS MODEL

The synthesis results of the previous chapter are easily extended to the 2-D

case being considered. The data fields can be regenerated from a knowledge of

the lattice coefficients and the forward error fields, it is not necessary to explicitly

calculate the forward and backward error prediction coefficients.

The desired result is obtained by solving equation (5.11) for e^"
1 and rk1_ q

.

This yields

ekr
2

= n/1- (O'eiH + pfrZll (5.27a)

r^
q = v/i- (/» q

u
)

2

n3=S - p?*u (
5 -27b

)

These equations establish the method for regenerating the original data field.

They describe the processing that must be carried out at each stage of the

synthesis process. As an example of their application, consider the second order

synthesis model pictured in Figure 5.6. It is the synthesis counterpart of the

reduced complexity analysis model of Figure 5.5. In order to regenerate the

original data field processing should be carried out horizontally by rows. For this

second order model, two rows and two columns of initial conditions must be

specified. The required zero order forward error sequences will always be

available from either the given initial conditions or from previous estimates.

It will be shown that for VLSI implementations it will be more convenient to

estimate all the zero order forward error sequences. This necessitates that three

residuals to be input and that all forward error channels be reversed. Such a

structure is illustrated in Figure 5.7.

122

u

t a

5 ujy

/^

u .2
<0 U O
* S 3

•Sun

\

/I 1

I

«
H

< >
ffl

< >
H

<

J < |_fc£3

a,
l

H
c ,
H

J

D * Li£]

) m [73
' * LhD

.
B

,
i *• '

.
H

, I

ffl
c
a

a R >
q

«

1 • "" n - "

1 <m fcj
- —

,R , R ,
a

,Q, ,
° i k

>

il

J

i 3

i

/

i

i

1— N

1

i

Figure 5.5: Alternate. Reduced Complexity, 0(NS
). Quarter Plane Lattice Filter.

123

S w
a o 2

O)

d

3 ui
Cl cu

£ L

"3

3 O <3

(4- a* in

a

a
s
a

s

B
a.

5
j

i

i i

-

t\T f\7

Figure 5.6: 2-D Quarter Plane Lattice Synthesis Model

Involving Only a Single Input Residual

124

3 L ^
_* O «3

_q en in

/"

«»-

J
I3>

3

3 in

Q. cu

50

^>

-O-

B
o-

c
13

Figure 5.7: 2-D Quarter Plane Lattice Synthesis Model

Involving Three Input Residuals

125

A synthesis model corresponding to the analysis model of Figure 5.4 would

have to process the data along diagonals. The required zero order forward error

sequences would not be available at each stage in this case and so only a model

analogous to the one of Figure 5.7 can be used. This would require the provision

of five input residual signals.

D. SYSTOLIC IMPLEMENTATIONS

In the past, most signal processing algorithms were implemented largely in

software due to their high complexity. More recently, with the advent of VLSI

technology, there has been a shift towards specialized hardware implementations.

These offer increased performance at a low per-unit cost. A particularly

promising class of implementations, first suggested by Kung and Leiserson [Ref.

49]. are the so called systolic arrays. These attempt to partition the required

computations in time and space over an array of identical processing elements, in

order to increase throughput.

Kung [Ref. 50: pp. 869] defines a systolic array as a network possessing the

following features:

a)Svnchrony: The data are rhythmically computed (timed by a global clock)
and passed through the network.

b)Regularity (i.e.. Modularity and Local Interconnections): The array should
consist of modular processing units with regular and (spatially) local intercon-
nections. Moreover, the computing network may be extended indefinitely.

c)Ten:poral Locality: There will be at least one unit-time delay allotted so that
signal transactions from one node to the next can be completed.

d) Pipelinabilit\ (i.e.. O(M) Execution-Time Speed-l p): A good measure for the
efficiency of the array is the following

Speed- Up Factor
Processing Time in a Single Processor

Processing Time m the Arra\ Processor

A systolic arrav should exhibit^ a linear-rate pipelinability. i.e.. it should achieve
an O(M) speed-up. in term'- of processing fates, when \"1 is th< number of pro-
cessor elements (PE"s).

Methods have been proposed for transforming algorithms into Systolic

implementations beginning with either an algorithmic description (see

Moldovan [Ref. 51]) or a signal-flow-graph (SFG) description (see Kung [Ref.

50]). In this chapter we shall be using the second of these methods to transform

126

one of the 2-D lattice structures into systolic form. Rather than present a

detailed discussion of the rules used in this method, we shall simply state them

and then apply them to produce the desired systolic array. It is hoped that this

example will clarify the procedures used. If further insight is desired the reader is

referred to the cited reference.

1. SFG Transformation Procedure

The procedure used is based on a cut-set approach. According to Kung

[Ref. 50, pp. 870] a cut-set is defined as:

A cut-set in an SFG is a minimal set of edges which partitions the SFG into two
parts.

He proposes and proves that the following two rules that can be used to

transform any computable SFG into a systolic array:

Rule (i) Time-Scaling: All delays D may be scaled, i.e., D — D'. by a single po-
sitive integer . Correspondingly, the input and output rates also have to be
scaled by a factor (with respect to the new time unit D')

Rule (ii) Delay-Transfer: Given any cut-set of the SFG, we can group the edges
of the cut-set_ into "inbound edges' f and_ "outbound edges", depending upon the
directions assigned to the edges. Rule (ii) allows advancing k (D') time units on
all the outbound edges and delaying k time units on the inbound edges, and vice
versa. It is clear that, for a (time-invariant) SFG. the general system behaviour
is not affected because the effects of the lags and advances cancel each other in
the overall timing. Note that the input-input and input-output timing relation-
ship? will also remain exactly the same only if they are located on the same side.
Otherwise they should be adjusted by a lag of — ktime units or an advance of -k
time units.

2. Systolic Implementation of 2-D Lattice Filter

Using the two rules given in the previous section the 2-D lattice synthesis

model of Figure 5.7 will be mapped into a systolic array. There is some

flexibility in the design, the result not being unique. The first choice that must

be made is that of the operation that is to be performed by the basic PE. In the

case being considered several convenient choices are possible. The simplest

element would be a multiplier-adder. A slightly higher level operation would be

that of the >ingle lattice >ection given by Figure 4.5. A still higher level operation

is conceivable by grouping several of the lattice sections together. We -hall use

the second of these choices as it illustrates the general procedure without the

added complexity inherent in the lower level implementation.

127

The mapping will be done in stages. Initially, the diagram of Figure 5.7

will be redrawn in an SFG format. Rule (i) will be used to scale all the delays

appropriately. Then, by successive application of Rule (ii). the SFG will be

temporally localized (it is already spatially local.) The steps used are outlined as

follows;

(1) In Figure 5.8 the algorithm of Figure 5.7 has been redrawn in a SFG form.

In this and subsequent diagrams delays are indicated by the letter D. The

lattice section of Figure 4.5, as before, is indicated by the circles at the

nodes.

(2) Using rule(i), all delays are scaled by a factor of 6. That is, D — 6D'. This is

indicated in Figure 5.9. The input and output signal rates must also be

scaled by this factor of 6.

(3) Using the cut-sets indicated in Figure 5.10 the delays are redistributed so

that temporal locality is achieved. The resulting SFG is indicated in Figure

5.11. Until now the processing at each node was assumed not to take any

time. The delays going into each node can be combined with the lattice

sections and be used to account for the processing time. In this way. the

structure will appear as in Figure 5.12. In this last figure, the nodes have

been shaded to indicate that the operation being performed within them

consumes one time unit.

3. Additional Remarks

In this section we have shown that the 2-D Lattice structures derived in

this chapter are amenable to a systolic implementation. This is significant as the

processing of 2-D data fields such as images in real-time requires high data rates.

These rates can only be achieved in practice through the use of super-computers

or specialized hardware. Due to the high cost of super-computers the second

alternative is the more practical. With the costs of VLSI production rapidly

decreasing, it is now cost effective to produce dedicated chips even in very small

quantities. For large scale productions the cost can be amortized over a large

number of chips, yielding a low per-unit cost.

128

Although only a single specific implementation has been presented here,

it indicates the ease with which the other algorithms discussed in this thesis may

be transformed into forms which can be efficiently implemented in silicon.

E. SIMULATION RESULTS

The theory has been proven by computer simulation. Two different order

models were excited by a white noise process. Several different order estimates of

each spectrum were generated and compared to the originals.

1. Example 5.1

The first model simulated was described by

y(m,n) = .295y(m-l,n) - .470y(m,n-l) + 0.0y(m-l,n- 1)

- .055y(rn-2,n) + .007y(m,n-2) + .003y(m-2,n- 1)

- .015y(m-l,n-2) + .022y(m-2,n-2) - u(m,n) (5.28)

where u(m,n) was a 2-D .zero-mean white noise process.

The original spectrum is illustrated in Figure 5.13 while the first, second,

third, and fourth order estimates are given in Figure 5.14. Notice that the

original model is only second order so that the third and fourth order estimates

can be used to examine the effects of over modelling. As can be seen from the

figures the estimated spectra correspond very closely to the originals. Over

modelling did not noticeably degrade the accuracy of the estimates.

The actual algorithm used was that of Figure 5.2. Although it is

unnecessarily complex, it is the most straight forward to implement. The

generalized 2-D Schur algorithm was used to generate all the required lattice

parameters. The computer subroutines used to accomplish this simulation are

included in Appendix B.

2. Example 5.2

The second simulation used the following higher order a.utoregressive

equation to generate the data

y(m,n) = -.47y(m-l.n) - .03y(m,n- 1) + .195y(m - l.n -1)

129

75
i-
a
3

U
a
si

^S /^

"3

+.35

Q.Qt
JE'i-

"X

1

a
f u if

9 <

f 1 ' r

9 '
f <

f v
j *- *j

I

| |
j

9]

' 1

:

9 '
f

1

' t

9 '

' 1

i

9
r \

1 *: f

1
1
r

a '

1 \

f <

f

9 ' 1 \
f

3 ? 5

Figure 5.8: 2-D Lattice Filter of Figure 5.7 in SFG Form.

130

5

T
A-
y

~r
V

5
i-

-«

—

(b < u)—<—

©

Figure 5.9: The Delays are Scaled by a Factor of Six.

131

CU

IS. U> u>

00

to

in

«-'*- -r1
o—"^—<»

CO

in

'L-iJ'.
o ^ o «q o

t.-j,---^-^

co

,_„._

(n _...,,.._, -,,.-

_ X

H-
f -T

J_'L

4
T

— »—

y

— i—

t

i

±

CU

00

CO

in

CO

in

CO

in

Figure 5.10: SFG for 2-D Lattice Filter Showing Cut-Sets to be Used

132

»»' r 5\
*

' »»'

" s
a

< »* 1 i

s
s

<
' s

5
' '

i

j * i. * "

i

i" ' »»i ' S
s < '

r ,V r

I*}
! **J' »»< '

j « cJ * <Jj —

i" ' »•' '

9
a

r

a,
r

6 '

r

Figure 5.11: Temporally Local Version of 2-D Lattice Filter

133

*

1

' * 1 ' a

'

i

\ r) ' i
'

\ i l ' i 1

r ' '
i

!

' i r
' ?

!

r
i i ' !

i

j

i

1

X. 1

r ' & \ r

r a < f 5, | r

S i

r & i r

Figure 5.12: Temporally Local 2-D Lattice Filter.

Shaded Nodes Indicate the Inclusion of a Delav

134

Figure 5.13: Original Spectrum For Example 5.1.

135

'^T^^S*

a. First Order Lattice Approximation of Spectrum of Example 5.1.

b. Second Order Lattice Approximation of Spectrum of Example 5.1.

Figure 5.14: Lattice Approximations Of Spectrum of Example 5.1

136

*r**z2&&*~*N^-o*-

c. Third Order Lattice Approximation of Spectrum of Example 5.1.

d. Fourth Order Lattice Approximation of Spectrum of Example 5.1.

137

- .015y(m,n-2) + .055y(m-l,n-2) - .003y(m-2,n-2)

+ .0067y(m-3,n) - .015y(m.n-3) - .022y(m-2.n- 3)

-+ .033y(m,n-4) - .085y(m-l,n-4) - .002y(m-4,n-2)

- .0001y(m-2,n-4) + .0001y(m-4,n-4) + u(m,n) (5.29)

where u(m,n) is a zero-mean white noise process.

The spectrum of this model is shown in Figure 5.15. The first through

fourth order estimates of the spectrum are shown in Figures 5.16. The general

shape of the spectrum is identified in the first order model, although the fine

detail is not introduced until the fourth order model. The position and relative

magnitude of the peaks in the spectra are identified with great accuracy in the

fourth order estimate.

In the next chapter lattice models are applied to the solution of the

autoregressive nonlinear modelling problem.

138

'•H-Ho-*
8
'

Figure 5.15: Original Spectrum For Example 5.2.

139

a. First Order Lattice Approximation of Spectrum 01 Example 5.2.

b. Second Order Lattice Approximation of Spectrum of Example 5.2.

Figure 5.16: Lattice Approximations Of Spectrum of Example 5.2

140

c. Third Order Lattice Approximation of Spectrum of Example 5.2.

d. Fourth Order Lattice Approximation of Spectrum of Example 5.2.

141

VI. NONLINEAR LATTICE STRUCTURES

In the previous two chapters lattice structures have been examined in great

length and have been applied to the problem of 2-D autoregressive modelling. In

this chapter we return to the problem of nonlinear autoregressive modelling with

the hope of solving the problem using a lattice structure.

There have been several attempts in the literature to fit lattice filters to a

Volterra like model. The first was due to Parker and Perry [Ref. 15]. They

proposed a multichannel lattice implementation of an autoregressive-moving

average nonlinear model. Their model was capable of providing an update in time

of some terms of the expansion. It. however, does not introduce all the terms that

are needed to constitute the next higher order model.

A recent proposal by Zarzycki and Dewilde [Ref. 17] is a true generalization

of the Levinson algorithm to the case of the autoregressive Volterra type model.

In their work they considered a non-stationary nonlinear structure and showed

that the stationary and linear models can be treated as special cases. Their

model provides a true update in time order, introducing all the required terms.

They found, as we did with the 2-D model, that not all terms could be

recursively generated and that some would have to be introduced at each stage

by other means. For these non-linear models only one error signal must be

injected at each stage not two as in the 2-D case (if a triangular kernel is used.)

The model proposed in this chapter is based on the alternate tensor form of

the nonlinear model developed in Chapter 3. Recall that the model was based on

interchanging the roles played by time order and nonlinear order. The lattice

model presented here thus becomes recursive in nonlinear order. This means, for

example, that the optimum cubic model is calculated from a knowledge of the

optimum quadratic model. The theory is based on the generalized lattice

concepts of Chapter 4 and the 2-D lattice structures developed in Chapter 5.

142

Although only the nonlinear order update model is discussed, some reflection will

show that a time update can also be performed using the proposed model.

For simplicity in illustrating the concepts only models involving two delays

will be considered in this chapter. The theory is equally valid and easily extended

to more complex situations.

A. GENERAL NONLINEAR LATTICE MODEL

As with the 2-D model of the previous chapter, the theory used is that of the

generalized error order updates given in Chapter 4. A careful choice of the input

data will yield the desired results. We begin by summarizing briefly the

nonlinear model to be used, for the case of two delays.

The estimate of the model output is given by (3.53)

Av,
(6.i;y(k) = y "(k 1) • y

N(k-N)H
Ai

. . ,N

To avoid unnecessarily complex algebra we consider the case when N=2,

y(k) = y
Al
(k-l)y

Aj
(k-2)HV2 (6.2)

The tensor product y '(k- l)y
2(k-2) defines a second order tensor, Y(k), with

components given by

Y(k)= iy
Al
(k-l)y

A2
(k-2)] =

1 y(k-2) y
M (k-2)

y(k-l) y(k-l)y(k-2) y(k- l)y (2) (k- 2)

y
,2) (k-l) y

(2) (k- l)y(k-2) y
,2) (k- 1)y

(2) (k- 2)

y
lp; (k]) y

(Fl
(k l)y(k- 2) y^(k-l)y(2

>(k 2]

yW(k-2)

y(k-l)yW(k-2)

y
(2) (k-l)y (p) (k-2)

(p, (k l)v (pl
(k 2)

(C.3)

This tensor can be considered to be a shift-varying data field and can thus be

modelled using the 2-D lattice model of Figure 5.2. A tensor of the form given in

(6.3) can be formed for each time. k. If the process is time-varying then each of

143

these tensors must be separately modelled. If time-invariance can be assumed,

then only one model need be developed. In that case the required correlations

can be calculated over the ensemble of such tensors.

A shift along the diagonal (or horizontal or vertical) of the Y(k) tensor is not

a inner-product preserving operation. This prevents the application of the

reduced complexity algorithms of Chapter 5 to this nonlinear problem.

The 2-D lattice model of the tensor Y(k) does not offer a complete solution.

Notice that y(k), the sample that is to be estimated, does not appear in equation

(6.3). Two possible solutions to this problem exist. First, the ordered index set.

(5.3), can be extended by one element so that y(k) is included in the model. This

has the effect of adding a channel to the general 2-D lattice structure of Figure

5.2. A conceptually different solution is to first model the tensor Y(k) using the

results of the previous chapter. The backwards error signals that result can be

used as a basis for a Fourier expansion of the the sample y(k) (see equation

(4.73) for details.) Both of these approaches lead to identical models but do

provide alternate interpretations. The second approach will be the one used in

the derivations of this chapter as it allows the results of the previous chapter to

be applied with little modification.

The tensor. Y(k). can be considered to be a two- dimensional data field given

by

Y(k) = y »(k-l)y
:(k-2)j (6.4]

whore (A,.A 2)

2V l p U

where L p is an index set given by

.... pi (6.5)

Points will be used from this data field in a particular, convenient order. We

define an ordered index set

144

& p = |(p,p),(p-l,p),(p,p-l), ..., (0,p).(p.O),

(p-l,p-l),(p-2,p-l),(p-l,p-2). ..., (0.p-l)
;
(p-1.0),

...,(1,1), (0,1),(1,0), (0,0)1 (6.6)

The (p-t-l)
2 elements of 2L P have been ordered into a one dimensional index

set, qLp
. The elements of oL

p can be numbered, consecutively, from to (p^l) 2 -l.

As in Chapter 5. the notation (m,n) - q will be used to mean; the element of

the index set corresponding to the q-th element prior to the element (m,n). For

example. (1.0) - 2 would indicate the element (1,1) (see equation (6.6)). This

notation will often be abbreviated to simply mn-q.

Define the (q-1) order, normalized, forward error associated with the

prediction of the element y
m (k-l)y n (k-2) from the previous (in the sense of qLp

)

(q-1) points, as

e^ 1

ajftfm.njy '(k-l)y
2(k-2) (6.7)

where the implied summation over- (Ai,A 2)
~ 2L P

, can be carried out in any order,

as long as all components are considered. It is preferred to think of (Ai,A 2)

belonging to 2L P rather than £L P as this maintains the multi-dimensional

character of the problem.

The ay^Jjm.n) can be interpreted as the components of a second order

covariant tensor. These components, for a range of indices (Aj,A 2)
' mn-q (in the

sense of (6.6)). or for indices (A,,A 2)
> (m,n) are equal to zero. For the case when

(A,.Ao) = (m.nj. the component

amVfm.n; (6.s;

where e^,,
1

is an unnormalized version of e^n

145

A normalized backward error associated with the prediction of y((m,n)-q)

from the next q-1 points of qL p
. is defined by

rm
q
n- q

= b Â (mn-q)y
Al(k-l)y>-2) (6.9)

As with the forward error prediction coefficients, the b A
q
A

1(mn-q) can be

interpreted as components of a second order covariant tensor. The components

b A
qV(mn-q) equal zero for the range of indices (A^Aj) < (mn-q) or (A

X
,A 2) > (m,n).

For the case when the index (Aj.A^ = (mn-q) the component

1
bm

q
ni q

((m,n)-q) =
I r

q_1
I

(6.10)

where r£~l
q

is an unnormalized version of F^q.

1. Normalized Order Update Recursions

The following two theorems are stated without proof. The proofs are

identical to those of Theorems 5.1 and 5.2 of the previous chapter and so are not

repeated.

a. Theorem 6.1: Normalized Nonlinear Levinson Algorithm

The nonlinear prediction error coefficients can be updated in order

using the following recursions

aA
q
,A,(m

:
n)

l>A
q

1
A,((ni l

n)-q)
- 6(p q

mn
)

aA
q/2

(m,n)

t>AV(m.n)
:e.n

wnere

(r)[p

VT
(6.12)

and

E-ie
q
"

1

r
q_I

r "in * mn q
[

[6.131

146

b. Theorem 6.2: Normalized Error Order Update Algorithm

The nonlinear prediction errors can be updated in order according to

the following equation

mn-(
= ©(/0

q-1

IT
1

mn—

<

(6.14)

In order to introduce the sample y(k) into the model we recognize

the backwards errors as an alternate coordinate system. In particular the

following vector is defined.

\y
y

[

= [f
A'
:o,o)-a-

-0
r(o,o)

— 1

r(0,0)-l

r (0,0)-2

(6.15)

-
r
-(p-i) 2-i

l

(0,0)-(p + l)Kl

Equations (6.14) correspond to a model structure identical with that

given in Figure 6.2. In this diagram, the backwards errors given in equations

(6.15) correspond to those that are shown leaving the uppermost stages of the

filter.

The forward error in predicting y(k) from the Y(k) tensor is given by

(p-i) (6.16)e k
- -' = y(k) - K,V

Because the backward errors are uncorrected it is a straight forward

matter to find the (Fourier) coefficients. K A . They are given by

K Ky(k)r
(
°o.0)

l EJvlklr.U-,} '
' ' E-|y(k>

ip->) 2 -i
j.K

'
r
(0,0)-(p-l)=-l(

The m-th component is

[6.1

147

Km = E|y(k)r
(
^o)-m

|
(6.18a)

= E|e k

m
r^.o)- m

|
(6.18b)

=
| ;

ek
m

| i

Ek-r^J (6.18c)

=
I

!ek
m

|
i

p* (6.18d)

A normalized version of the forward error defined in (6.16) is thus given by

i m— 1

—m * L.M.\ \"^ . k — A '
i i

_A
*? = V

i

fy(k) - £ PyTm-y\
I

e k

A

| |] (6.19)
I I

e k ! I A' =

Recognizing that y(k) is a zero order forward error we can write a

normalized version of the q-th order forward error as

e k
q = ——

q
e

k

«-' - p* r
(?ij.J (6.20)

i

e k
q

This last result follows if (6.19) is iterated, calculating successively

higher order errors or from equation (4.73) where the equivalence of the lattice

model and Fourier series was established.

We conclude that expressing y(k) as a stochastic Fourier series (with

the backward errors as a basis) amounts to nothing more than the addition of a

supplementary channel to the existing lattice structure. Equations (6.11) and

(6.14) hold for thi> additional channel and can thus be used to update the

normalized error signals and model parameters. Figure 6.1 illustrates a quadratic

nonlinear lattice filter.

2. Uniqueness Of Lattice Parameters

a. Theorem 6.3

The lattice parameterization of the sequence y(k) is unique. That is.

the lattice parameters given by (6.13) are unique.

148

b. Proof (Outline)

The truth of this theorem is a consequence of the fact that the lattice

can be interpreted as a Fourier series expansion of the sequence y(k) in terms of

the orthonormal backwards errors (see equation (6.17).) The uniqueness of the

Fourier series is well known [Ref. 47].

3. Synthesis Models

A model analogous to that illustrated in Figure 4.7 can be used to

regenerate the original sequence. This requires knowledge of the forward error

residual sequence. The other inputs (zero order forward errors) required can all

be obtained from past estimates of the sequence or from initial conditions.

The probability distributions of the output forward error sequences must

be known if a synthesis model is to be constructed which accurately reproduces

the original signal statistics. It is not clear that any general statements can be

made about the nature of these distributions. It has been shown [Ref. 48: p. 357]

that in the continuous case they will be gaussian and of the same variance as the

original additive gaussian noise source. In the same reference it is also shown

that for the discrete case the error sequence will not be gaussian although it will

be white. The inaccuracies introduced through the use of gaussian noise need to

be investigated. The stability of these lattice models is also left as an open

question.

B. SIMULATION RESULTS

In order to verify the theory, a computer simulation was performed. Uniform

white noise was used to excite the system. This choice provides a bounded input

so that the response of the system used for the simulation could be guaranteed to

be stable for a suitable choice of system parameters. A sufficient condition for

the AR model to be stable, given a driving signal whose absolute value is

bounded on (-a.a). where < a < 1. is given by

£ ' E Hv V +
I

a
i < l (6.21)

A,=l AN=1

This condition guarantees that the output never exceeds unity and thus remains

149

75
S-

d
3
L
O

L
O
i.

L

d
c
09

/V

d
c
0)

W

L
O

L
1)

73

d
3
X.
U
d
.2

« II ««

«« C) •+

^ O ^

^ O ^

«« C) ««

< () ««

^ O ^

«« o «

31

1 1

wn
±U
P^
&

5

5

_E^

L_a

ES

era

a

E

bffl

I

Ka

5

ETEH

H
o

O

H

1

—

1^
-.

t

31

0J
I

31

21]

E

J

1

ra

Wm

%
ts

CU
!

JC

3>
/^>
»—

i

I

3>

t

oj

cu
I

OJ

OT"

0J
I

3>

CU

CU
1

3^
/-\

I

3"

CU
+>
d
u
75 in

c d
c

W O)

d in

jj Ti
S- CU
CU N
>
o d

£
CU <.

-C O
i— c

t
OJ

OJ

31

OJ

31

Figure 6.1: Quadratic Nonlinear Lattice Filter

150

bounded. This condition is extremely restrictive, however, it does provide a

simple rule for building models which can be used for simulation purposes. (The

issue of the inaccuracy introduced by using uniform noise to drive the system has

been avoided.)

The model tested was

(6.22)

Using the nonlinear form of the Levinson algorithm, equation (6.11) the

following model parameters were estimated for two repetitions of the experiment,

-.1 .22 .02

Ha,aJ - .02 .09 .001

.2 .05 -.03

;h,

H

-.1003 .26038 .04568

AjAj .01402 .10198 .03877

.1998 .03230 -.03965

-.1009 2612 .06213

12
.01151 .09917 .03125

.19020 .04199 -.01432

(6.23)

'6.24

151

VII. CONCLUSIONS AND DISCUSSION

A. SUMMARY OF NEW RESULTS

In this dissertation the use of tensor concepts in the field of signal processing

was investigated. The research was successful in a number of areas, extending

known results and introducing some new ones. In particular, tensors were used

to study nonlinear and multidimensional systems.

The nonlinear modelling problem was formulated using tensors. By

interchanging the roles played by the time order and the nonlinear order a new

form, different from (although equivalent to) the traditional Volterra Series was

developed. Using this new form, tensor equivalents of the discrete-time Wiener-

Hopf and Yule-Walker equations were derived. These equations can be solved for

the unknown system parameters. Conditions for the solution of the Wiener-Hopf

equations, without requiring matrix inversion, were specified. This resulted in a

computational saving of Offp^l)
3^" 1

') operations, where N is the largest time

delay present and p is the highest exponent present in the system model. It was

further shown that linear adaptive algorithms, such as LMS and RLS. can be

applied to solve for the system parameters.

Existing Lattice filter algorithms were reformulated in a tensor framework.

It was shown that they can be considered to be equivalent expansions in

alternate coordinate systems. These results were then applied to the solution of

the 2-D autoregressive modelling problem. Several new 2-D lattice structures

were deduced. These models are not efficient in the sense that an AR model

possessing 0(N'J

)
parameters would require 0(N 4

)
parameters when recast into a

lattice form. It was shown that with proper assumptions of shift-invariance the

complexity of the lattice models can be reduced to 0(N") parameters.

The 2-D lattice models developed were then used to deduce a nonlinear

lattice model. This model differs from that of other researchers in that it allows

updates to be performed in the nonlinear order as well as time order.

152

Finally, it was shown that these lattice models are amenable to systolic array

implementations.

B. FUTURE DIRECTIONS FOR RESEARCH

The multidimensional and nonlinear lattice theories are by no means

complete. So far, several new lattice models have been developed. It now

remains to investigate the properties of the models.

For the 2-D lattice filters, conditions for model stability have yet to be

established. The stability of multidimensional systems is a much more difficult

problem than for the 1-D case because it is usually impossible to factor

multivariate polynomials. However, necessary and sufficient conditions for AR

2-D model stability have been established. It is believed that these can be used

to derive lattice stability conditions.

Another important topic is the synthesis of 2-D transfer functions using

lattice structures. Stated differently, the problem is to design a 2-D lattice

parameter filter that will implement a given 2-D frequency response

characteristic.

For the nonlinear lattice structures similar issues need to be addressed. In

this case, however, the problems are more complex since the stability and

synthesis questions have not been solved for the nonlinear AR models.

Before the synthesis problem for the lattice implementation can be solved

several more basic questions need to be answered. The first is the definition of a

useful and meaningful specification of the desired filter characteristic. The

nonlinear AR filter affects not only the frequency content of the driving signal

but also its probability distribution. The filter will also have different frequency

characteristics for different driving signals. All of these effects should be included

in the specification.

It ha- been shown that for the continuous case, a nonlinear whitening filter

will yield a signal with a gaussian probability distribution [Ref. 48: p. 357j. For

the discrete case it has been shown that this is not true. The inaccuracy

introduced by approximating the input to the synthesis model by a gaussian

153

introduced by approximating the input to the synthesis model by a gaussian

signal is an important question.

Stability of the nonlinear lattices is also an important question. No simple

stability tests exist for the nonlinear AR models. Their recursive nature makes

stability difficult to analize. In general, stability will be a function of the input

as well as the system which significantly complicates the problem.

154

LIST OF REFERENCES

1. Kron, G., Tensor Analysis of Networks, John Wiley and Sons, Inc., 1939.

2. Yaglom, A.M., Introduction to the Theory of Stationary Random Functions,

Prentice-Hall, Inc., Englewood Cliffs, NJ, 1962.

3. Lev-Ari, H., Kailath, T., Cioffi, J., "Least-Squares Adaptive Lattice and

Transversal Filters: A Unified Geometric Theory," IEEE Trans, on Info.

Theory, Vol. IT- 30, No. 2, March 1984, pp. 222-234.

4. MacLennan. B.J., Principles of Programming Languages: Design, Evaluation,

and Implementation, Holt, Rinehart and Winston, 1983, pp. xiii.

5. Golab, S.. Tensor Calculus, Elsevier Scientific Publishing Company. Third

Edition. 1974.

6. Synge. J.L. Schild. A., Tensor Calculus, Dover Publishing Inc., 1978.

7. Young, E.C.. Vector and Tensor Analysis, Marcel Dekker. Inc., Pure and

Applied Mathematics Series, 1978.

8. Yolterra, V., Theory of Functionals and of Integral and Integro- Differential

Equations. Blackie &: Son Limited. 1931.

9. Schetzen, M.. The Volterra and Wiener Theories of Nonlinear Systems. John

Wiley and Sons Inc.. 1980.

10. Wiener. N.. Nonlinear Problems in Random Theory. Technology Press of

MIT and John Wiley & Sons, Inc.. 1958.

11. Lee. Y.W.. Schetzen. M.. "Measurement of the Wiener Kernels of a Non-

linear System by Cross-Correlation." Int. J. Control. Vol. 1. pp 237-254.

19G5.

12. Alper. P.. "A Consideration of the Discrete Yolterra Series." IEEE Trans, on

Automatic Control, Vol. AC-10, July 1965, pp 322-327.

155

13. Sandor, J., Williamson. D.. "Identification and analysis of Non-linear

Systems by Tensor Techniques." Int. J. Control. Vol. 27. No. 6. 1978. pp
853-878.

14. Parker, S.R., Thomas. J. J.. The Modeling and Identification of Discrete

Nonlinear Moving Average Systems by Means of Tensor Convolutions, The
Third Internatinal Symposium on Forecasting, Philadelphia, PA, June 1983.

15. Parker, S.R., Perry, F.A., "A Discrete ARMA Model for Nonlinear System

Identification", IEEE Trans, on CAS, Vol. CAS-28, No. 3, March 1981.

16. Parker, S.R., Mayoral, L.M., Thomas, J. J., An Adaptive Kalman Identifier

and Its Application to Linear and Nonlinear ARMA Modeling, Proc. of the

16th Annual Conf. on Inform. Sciences and Systems, March 17-19 1982.

17. Zarzycki. J., Dewilde, P., Nonlinear Least-Squares Prediction of Higher-

Order Random Sequences, Technical Univ. of Wroclaw Report No.

I28/PRE/020/83. 1983.

18. Zarzycki. J.. Fast Algorithms For Least-Squares Nonlinear Prediction.

Technical Univ. of Wroclaw Report No.I28/P-029/83, June 1984.

19. Zarzycki. J.. Adaptive Properties of Nonlinear Ladder- Filters. Technical Univ

of Wroclaw Report No. I28/P- 013/84. June 1984.

20. Zarzycki, J.. Generalized Ladder-Filters For Nonlinear Prediction of Higher

Order Random Sequences, Technical Univ. of Wroclaw Report No. I28/P-

028/83. June 1984.

21. Zarzycki. J.. Nonlinear Prediction of Higher Order Random Sequences:

Geometric Approach, Technical Univ. of Wroclaw Report No. I28/P-012/84.

June 1984.

22. Rugh. W.J.. Nonlinear Systems Theory. The Johns Hopkins University

Press. Baltimore. Maryland. 1981.

23. Parker. S.R.. Lenk. P. J.. Discrete Time Tensor Formulations For the

Modeling of Nonlinear Systems. IEEE Int. Symp. on (J AS. Kyoto Japan.

1985.

156

24. Nering. E.D.. Linear Algebra and Matrix Theory. Second Edition. John

Wiley and Sons. Inc.. pp. 7-8. 1970.

25. Chen C-T., Linear System Theory and Design, Holt, Rinehart and Winston,

pp. 9-10, 1984.

26. Schetzen, M., "Nonlinear System Modeling Based on the Wiener Theory",

Proceedings of the IEEE, Vol. 69, No. 12, December 1981.

27. Goiub. G.H., Van Loan, C.F., Matrix Computations, Johns Hopkins

University Press. 1983.

28. McCool. J.M.. Widrow. B.. Principles and Applications of Adaptive Filters:

A Tutorial Review. Naval Undersea Centre. NUC TP 530. March 1977.

29. Widrow, B.. Adaptive Filters from Aspects of Network and Systems Theory.

Edited by R.E. Kalman and N. DeClaris, Holt, Rinehart and Winston. 1970.

30. Graham, A.. Kronecker Products and Matrix Calculus: with Applications,

Ellis Horwood Ltd.. Chichester, West Sussex. England, p. 21, 1981.

31. Brewer, J.W., "Kronecker Products and Matrix Calculus in Systems

Theory". IEEE Transactions on CAS, Vol. CAS-25. No. 9. p. 772.

September 1978.

32. Goodwin. G.C.. Payne. R.L.. Dynamic System Identification: Experimental

Design and Data Analysis, Academic Press, Vol. 136. Mathematics in Science

and Engineering. 1977.

33. Meisa. J.L.. Cohn. D.L.. Decision and Estimation Theory. McGraw-Hill Book

Company. 1978.

34. Strang. G.. Linear Algebra. 2d Ed.. Prenticr-Hall Inc. Englewood Cliffs, N.J.

1983.

35. Markel. J.D.. Gray. A.H.. Linear Prediction of Speech. Springer-Verlag.

Berlin. 1976.

157

36. Itakura, F.. Saito. S., Digital Filtering Techniques for Speech Analysis and

Synthesis. 7th Int. Congress Acoustics. Budapest. Hungary, pp. 261-264.

1971.

37. Makhoul, J., "A Class of All-Zero Lattice Digital Filters: Properties and

Applications," IEEE Trans, on ASSP, Vol. ASSP-26, No. 4, 1978 August.

38. Honig, M.L., Messerschmitt, D.G., Adaptive Filters: Structures, Algorithms,

and Applications, Kluwer Academic Press. 1984.

39. Ziemer. R.E., Tranter, W.H., Principles of Communications: Systems,

Modulation, and Noise, Houghton Mifflin Company, Boston, MA. 1976.

40. Levinson, N., "The Wiener RMS (Root Mean Square) Error Criterion in

Filter Design and Prediction," J. Math. Phys., Vol. 25. No. 4. pp. 261-278.

Jan 1947.

41. Yule, G.U.. "On a Method of Investigating Periodicities in Disturbed Series,

With Special Reference to Wolfer's Sunspot Numbers." Phil. Trans. Roy.

Soc. Vol. 226-A, 1927, pp. 267-298.

42. Durbin. J.. "The Fitting of Time Series Models," Rev. Inst. Int. Statist., Vol.

28. No. 3. pp 233-243. 1960.

43. Marzetta. T.M.. A Linear Prediction Approach to Two- Dimensional Spectral

Factorization and Spectral Estimation, Ph.D. Dissertation, Massachusetts

Inst. Technol., Cambridge. MA, 1978.

44. Marzetta, T.M.. "Two-dimensional Linear Prediction: Autocorrelation

Arrays. Minimum Phase Filters, and Reflection Coefficient Arrays". IEEE
Trans. Acoust., Speech. Sig.Proc, Vol. ASSP-28. Dec. 1980. pp. 725-733.

45. Parker. S.R.. Kayran. A.H.. "Lattice Parameter Autore gressivc Modeling of

Two-Dimensional Fields - Part 1: The Quarter-Plane Case." IEEE
Transaction* on ASSP. Vol. ASSP-32. No. 4. August 19S4.

40. Shawcross. C.B.A.. The Use of Two Dimensional Lattice Model* in Isolated

Word Recognition. Engineer's Thesis, Naval Postgraduate School. Monterey.

CA. December 1983.

158

47. Naylor. A.W.. Sell. G.R., Linear Operator Theory in Engineering and

Science, Holt Rinehart and Winston. Inc.. 1971.

48. Kailath, T.. "A General Likelihood-Ratio Formula for Random Signals in

Gaussian Noise," IEEE Trans, on Info. Theory, Vol. IT-15. No. 3, May 1969.

49. Kung, H.T., Leiserson, C.E., Systolic Arrays (for VLSI), Proc, Sparse

Matrix Symp (SIAM), pp. 256-282, April 1978.

50. Kung, S.Y., "On Supercomputing with Systolic/Wavefront Array

Processors," Proc. of the IEEE, Vol. 72, No. 7, July 1984.

51. Moldovan. "On the Design of Algorithms for VLSI Systolic Arrays." Proc. of

the IEEE. Vol. 71, No. 1, Jan 1983.

52. Franks. L.E.. Signal Theory, Prentice-Hall, Inc.. Englewood Cliffs, NJ. 1968.

159

APPENDIX A: ALTERNATE PROOF OF THEOREM 4.2

In this appendix an alternate proof of the generalized error order update

equations (4.40) is provided. The proof presented here relies on geometric

arguments which are possible if an abstract mathematical framework is adopted.

In this appendix, a random process will be considered to consist of a time-series

of random variables. Each of these random variables is thought of as a vector in

an infinite dimensional Hilbert space. For a rigorous discussion of these concepts

see for example [Ref. 51,52].

A. DEFINITIONS AND FORMULATION

A discrete random process Y = w(i): < i < K> can be considered to span a

K+l dimensional subspace S k + 1 of an infinite dimensional Hilbert space S

(assuming completeness and the linear independence of the y(i)). The inner

product on this space is defined to be

<u,v> = e{uv> (A.l)

where u and v are elements of S. This inner product induces a norm

i I
u = <u.u> l; ' (A-2)

The error, e k

N
i,. in predicting the element y(k+ l) from the previous N

elements of Y is given by

e£, = £ hA
N (k-l)y(A) (A.3)

where

hJMk-1) (i h
t

N
N ., h k

N
N . 2

• hk
N

1
•••

0: (A. 4)

A normalized version of the forward error is given by

N

e k

N
_, = ^ (A. 5a)

e

160

£>A
N (k-l)y(A) (A. 5b)

where

aA
N (k+l) =

^
h A
N (k+l) (A.6)

The backwards prediction error, rk̂ .N , is the error associated with the

prediction of y(i) given the next N elements of Y. It is given by,

rk% - £ h A

N
(k-N)y(A) (A. 7)

where

fhjftk-N)] = 10 • • • 1 -h k

N
N+1 -hk

N
_N+2 • • -h k

N
o • (A. 8)

A normalized version of r^. B can be defined as

N

r"k

N
N = ^r—

r

(A. 9a)
rk- N

-N fk-N

K
Ni

= E b A

N (k-N)y(A) (A.9b)
A=0

where

hi"(k-N)
bjf(k-N) =

x

\ ' (A. 10)
Tk-N I !

By orthogonal we mean that given two elements of the space S. u and v. say.

then

(0 for u ^ v , . .

f
A. 11)

u lor u = v

This will be indicated symbolically as

u_v (A. 12)

The expression

161

gM ;a.i3)

implies that u is orthogonal to all elements of the subspace SM .

The symbol ' ©" is used to indicate direct sum. For example

S 3 = S 1 © S 2 (A. 14)

means that the space spanned by S 3
is the the space spanned by the Cartesian

product of the underlying sets of the spaces S 1 and S 2 [Ref. 47: p. 196].

Finally, the symbol 'v ' will be used to mean the span of.

These definitions are sufficient to state and prove the generalized error order

update theorem.

B. ERROR ORDER UPDATE RECURSIONS

1. Theorem 4.2

The (N+ l) order errors can be calculated from the N- th order errors

through the recursion

-N + l
ek^l

—N + l

rk-N \/l - (PN
k

:)
2

i „ k

Pn + i
1

-N
e k + l

-N
rk-N

'A.l,

where

k ^—N —N .

PN-i-1 ~ <ek + l- rk-N > (A. 16]

is called the partial correlation coefficient or reflection factor [Ref. 17: p.

2. Proof

We have that

fk

N
N _ S= * |y(k- N- 1) y(k N-2) >(k) A.l'

but

r k N Sk
w+1

= My(k-N) y(k Ni 1 y(ki A.ll

Therefore.

1G2

Sk
N^ = v |Fk

N
N y(k-N-l) -• y(k)| (A. 19)

which can be written as

Sk
N+1 = Sk

N © v L_\ (A.20)

For the updated forward error, eJVi
1

, the following is true

e^l
1 L Sk

N _ v

|
Fk
N \ (A .21)

Since e^, j_ S k

N we need only orthogonalize it (by a Gram-Schmidt procedure)

with respect to v]rJl N > to obtain e^t 1
- Thus.

•fit' = ek
N
+1 - Crk

N
_ N (A.22)

where

N —

N

<e k'_,,r k _ N >C= — _
k N

(A. 23a)
rk"-N

- P&+i e kV I

(A. 23b)

Therefore.

N
-N+l ek 'l r—

N

k —

N

/ » r> 4 \
ek-l =

~ eK-l " />N-1 rk-N (A. 24)
e k-l

Proof of The fact that

N
k-1

*F-V \/i : (pLu
A.2I

will not be repeaTed here (see Chapter 4. Section B).

Similar arguments can be used to verify The backward error order update

equation given in (A. 15).

JG3

APPENDIX B: FORTRAN PROGRAM LISTINGS

c
C 2DLAT MAIN PROGRAM
C
C PROGRAM TO TEST 2D LATTICE SUBROUTINES
C
C WRITTEN 29 APRIL 1985

C

c
REAL*8 ALPHA(26,26),BETA(26,26),A(26,26),B(26,26),RHO(26,26)

REAL*8 HZ(25).Y(256.256),R(26,26)

REAL*4 GAIN(40,40)

C
C DEFINE THE AR FILTER COEFFICIENTS
C
C DATA HZ/1.0,- 23, .12, 111, 21*0.0/

C DATA HZ '1.0,-. 470, .007,.295,0.0,.015,. 055, .003,.022, 16*0.0/

DATA HZ 1.0. .03.- 015,-.011,.033,-.47.. 195. .055.0.0,-. 085,0.0.0.0,

*. 003. .022. -.0001, .0067, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-. 002, 0.0, .0001/

c
C DEFINE OTHER PARAMETERS
C
C MODEL SIZE
C

N = 5

MN = N*N
C
C ACTUAL SYSTEM SIZE
C

NA = 5

MNA = NA*NA
C
C NUMBER OF POINTS IN THE PLOT IS IP X IP.

C
IP = 40

C
C NUMBER OF DATA POINTS TO ESTIMATE CORRELATIONS IS IYS X IYS.

C
IYS - 128

C

C CALL APPROPRIATE SUBROUTINES
C

CALL TXFCN(HZ.NA.GAIN\IP.0)
CALL PLOT8(GAIN.lP.IP.'ORIGINAL SPECTRUMS')
CALL GENRAT(HZ.NA.Y,IYS)
CALL CORLAT(Y,IYS,R,N)
CALL SCHURfRHO.R. ALPHA, BETA.MN)
CALL LEYSON(A.B.RHO.R.MN)

164

DO 10 I = 1. MN
HZ(I) = A(1.I)/A(I,I)

10 CONTINUE
CALL TXFCN(HZ,N.GAIN.IP.l)
CALL PLOT3(GAIN.IP.IP/4-TH ORDER LATTICE APPROXIMATIONS-
STOP
END

165

C
C SUBROUTINE GENRAT
C
C THIS SUBROUTINE GENERATES A 2D DATA FIELD FROM THE AR
C FILTER COEFFICIENTS. A WHITE NOISE INPUT AND WHITE NOISE
C INITIAL CONDITIONS ARE USED.
C
C WRITTEN 29 APRIL 1985

C

C
SUBROUTINE GENRAT(HZ,N,Y,IYS)
REAL*8 HZ(25),Y(256,256),ADD

C
C FETCH THE RANDOM NUMBER GENERATOR SEED
C UNDER FORTHX. STORE SEED IN FILE 13.

C UNDER DISSPLA ENTER SEED EXPLICITLY.
C
C READ(13.10) IY

CIO FORMAT(IIO)
C REWIND 13

IY = 817346

C
C GENERATE THE RANDOM FIELD
C

MN = N*N
MNM1 = MN-1
DO 40 1 = l.IYS

DO 30 J - l.IYS

Y(I.J) = URAXD(IY) - .5

KI =
KJ -

DO 20 K - 1.MNM1
IF (MOD(K.N) NE.O) GOTO 15

Kl - KI - 1

KJ
GO TO 16

15 KJ - KJ - 1

16 IF (((I-KI).LE.O) OR.(fJ-KJ).LE.O)) GOTO 17

ADD ^ (I-KI.J-KJ)

GO TO 18

17 ADD - URAND(IY) - .5

18 Y(l.J) = Y(I.J) - HZ(K - 1)*ADD
20 CONTINUE
30 CONTINUE
40 CONTINUE
('

(' STORF THE RANDOM NUMBER SEED
C
C WRITE(13.50) IY

C50 FORMAT(IIO)
C

166

c
RETURN
END

167

C
C SUBROUTINE CORLAT
C
C THIS SUBROUTINE PRODUCES A CORRELATION MATRIX FROM
C A 2-D DATA FIELD IN AN ORDER
C WHICH IS COMPATIBLE WITH SUBROUTINE SCHUR
C
C WRITTEN 30 APRIL 1985

C
P** *****************

C
SUBROUTINE CORLAT (Y,IYS,R,N)

REAL*8 Y(256,256),R(26,26),SUM

C
C DEFINE CONSTANTS
C

MN = N*N
IR =

C
C BEGIN OUTER LOOP
C

DO 100 MP1 = l.N

MO = MPl - 1

LLIM = 2*MP1 - 1

DO 90 L = 1,LLIM

L0 = L - 1

II = MO
Jl = L0/2

IF (MOD(L0.2).EQ.O) GO TO 10

II = Jl

Jl = M0
10 JR - IR

IR = IR - 1

KBOT = L

DO 80 NPl = MP1.N
NO = NPl - 1

KLIM - 2* NPl - 1

DO 70 K = KBOT.KLIM
K0 = K-l

I = NO
J = K0/2
IF (MOD(K0.2).EQ.0) GO TO 20

1 - J

J = NO
20 IOFF = 1-11

JOFF = J- J]

K1MAX = IYS

K1MIN = IOFF - 1

IF (IOFF.GT.0) GO TO 30

KlMAX = IYS + IOFF
KlMIN = 1

30 K2MAX = IYS

168

K2MIN = JOFF -r l

IF (JOFF.GT.O) GO TO 40

K2MAX = IYS - JOFF
K2MIN = 1

40 SUM = 0.0

JR = JR + 1

C WRITE(6,44)IR,JR,Il,Jl
)
I,J,IOFF,JOFF

C44 F0RMAT(8(2X,I4))
DO 60 Kl = K1MIN,K1MAX
DO 50 K2 = K2MIN,K2MAX
SUM = SUM + Y(Kl,K2)*Y(Kl-IOFF.K2-JOFF)

50 CONTINUE
60 CONTINUE

R(IR,JR) = SUM/(K1MAX-K1MIN+1)/(K2MAX-K2MIN-1)
70 CONTINUE

KBOT = 1

80 CONTINUE
90 CONTINUE
100 CONTINUE
C
C FILL IN THE SYMMETRIC HALF OF CORRELATION MATRIX
C

DO 120 I - 2.MN
1M1 = 1-1
DO 110 J = 1,IM1

R(l.J) = R(J,I)

110 CONTINUE
120 CONTINUE
C
C

RETURN
END

169

C
C SUBROUTINE TXFCN
C
C GENERATES A 2-D FREQUENCY RESPONSE GIVEN THE TRANSFER
C FUNCTION COEFFICIENTS
C
C WRITTEN BY DR. B. MADAN
C MODIFIED BY P.J. LENK 29 APRIL 1985

C
C PARAMETER KO INDICATES THE ORDERING OF THE COEFFICIENTS
C - KO = 0: PARAMETERS IN ROW-MAJOR ORDER
C - KO = 1: PARAMETERS IN TWIDDLED ORDER
C
p* *** ***************

C
SUBROUTINE TXFCN(HZ,N,GAIN,IP,KO)
REAL*8 HZ(25),CONVRT(5,5)
REAL*4 GAIN(40,40)

COMPLEX CSUM
COMPLEX*8 ARG1.ARG2

C
C DEFINE CONSTANTS
C

PI = 3.14159

C
C DETERMINE ORDER AND REORDER IF NECESSARY THE COEFFICIENTS
C

IF (K0.EQ.0) GO TO 60

JR -
DO 30 MPl - 1,N

MO - MPl - 1

LLIM = 2*MP1 - 1

DO 20 L = l.LLIM

L0 = L - 1

I = MO
J = L0/2

IF (MOD(L0.2).EQ.O) GO TO 10

I = J

J = M0
10 JR -- JR - 1

CONVRT(] - l.J+ 1) - HZ(JR)
20 CONTINUE
30 CONTINUE
(

C TRANSFER THE COEFFICIENTS BACK TO HZ
C

JR =

DO 50 I = l.N

DO 40 J = FN
JR - JR - 1

HZ(JR) = CONVRT(FJ)
WRITE(6.35)HZ(JR)

170

35 F0RMAT(2X.E12.5)
40 CONTINUE
50 CONTINUE
C
C PROCEED WITH TRANSFER FUNCTION EVALUATION
C
60 DW = 2.0*PI/FLOAT(IP-1)

DO 100 IW1 - 1,IP

Wl = DW * (IW1 - 1)- PI

DO 90 JW1 = 1,IP

Al = Wl
W2 = DW * (JW1 - 1)- PI

IZ =
CSUM = CMPLX(0.0,0.0)

DO 80 I = 1,N

ARG1 = CMPLX(0 0,-Al)

Al = Al + Wl
A2 = W2
DO 70 J = l.N

IZ = IZ + 1

ARG2 = CMPLX(0.0,-A2)
A2 = A2 + W2

C WRITE(6,77)I,J,ARG1,ARG2,1Z,HZ(IZ),CSUM
C77 F0RMAT(2(2X

!
I3)

!
4(2X,E12.5),2X,I3,3(2X,E12.5))

CSUM = CSUM + CMPLX(SNGL(HZ(IZ)).0.0)*CEXP(ARGl-ARG2)
70 • CONTINUE
80 CONTINUE

GAIN(IWUWl) - l.O'CABS(CSUM)
GAIN(IWi.JWi) = GAIN(IW1,JW1)*GAIN(IW1,JW1)

C WR1TE(6.78)IW1.JW1.CSUM.GAIN(IW1,JW1)
C78 F0RMAT(2(2X.13).3(2X.E12.5))

90 CONTINUE
C \YRITE(6J8)IWl

:
(GAIN(IWl.I),I= l,IP)

C18 F0RMAT(1X.I3,5(2X.E12.5))
100 CONTINUE

RETURN"
END

171

c
C SUBROUTINE PLOTS
C
C THIS IS A ROUTINE TO USE THE DISSPLA PACKAGE TO
C DRAW A THREE DIMENSIONAL PLOT OF A 2-D FILTER'S
C FREQUENCY RESPONSE.
C
C WRITTEN BY DR. B. MADAN
C MODIFIED BY P.J. LENK 29 APRIL 1985

C
P******************************** ***************************************

C
SUBROUTINE PLOT3(A,IM,JN,LABEL)
DIMENSION A(IM,JN)
INTEGER LABEL(IOO)
CALL TEK618

C
C INITIALIZE THE PLOTTING DEVICE
C

WR1TE(6.51)
51 FORMATf 1 CALL TEK618 OK')

C CALL THE DEVICE
CALL RESET("ALL")
WR1TE(6.52)

52 FORMATf 2 RESET ALL OK')

C CALL SETUP FOR CUBE
Al-FLOAT(IM)
A2=FLOAT(JN)
CALL PAGE(11..9.5)

\YRITE(6.53)

53 FORMATC 3 CALL PAGE OK)
C CALL PAGE(A1,A2)
C CALL PHYSOR(0.,0.)

CALL AREA2D(7. 0.7.0)

WRITE(6.54)
54 FORMATf 4 CALL AREA 2-D OK")

CALL SIMPLX
CALL HEIGHT(.2)
CALL HEADIN(LABEL.lOO.l.l)
CALL HEJGHT(0.14)
CALL VIEW (-10.0.-5 0.15.0)

CALL VOLM3D(12. 0.12.0.12.0)

(CALL X AXIS LABELLING ROUTINE
CAIJ. X3XAMEC W2 8".

3)

C CALL > AXIS LABELLING ROUTINE
CALL Y3NAME(W] S'.SJ

C CALL Z AXIS LABELLING ROUTINE
(ALL Z3NAME("\2)

C CALL THE SURFACE PLOT ROUTINE
C

CALL GRAF3D(-1. 0.0. 2. 1.0.- 1.0. 0.2. 1.0.0. 0.2. 0.16.)

1500 CALL SURMAT(A.l.IM.l.JN.O)

172

CALL ENDPL (1)

CALL DONEPL
RETURN
END

173

^******x****************xx***±*x»x*x*****xx:<:xvlxxx*x**Xx********x****X*xx

c
C SUBROUTINE SCHUR
C
C CALCULATES THE REFLECTION FACTORS FROM THE CORRELATION MATRIX
C
C WRITTEN 29 APRIL 1985

C
P*** *** *********

C
SUBROUTINE SCHUR(RHO,R,ALPHA,BETA.N)
REAL*8 RHO(26,26),R(26,26),ALPHA(26,26),BETA(26,26),RNORM,T

C
C INITIALIZE THE ALPHA AND BETA ARRAYS
C

DO 10 1 = 1,N

DO 5 J = l.N

ALPHA(LJ) = R(I,J)/DSQRT(R(I,I))

BETA(l.J) = ALPHA(IJ)
RHO(I.J) = 0.0

5 CONTINUE
C WRITE(16.7)(ALPHA(1.J),J = 1.N)

C7 F0RMAT(5(2X
:
E12.5))

10 CONTINUE
C
C BEGIN CALCULATING THE REFLECTION FACTORS
C

DO 50 J - 2.N

NJ1 = N - J + 1

DO 40 I = l.NJl

Jll = J + I - 1

IP1 = I ~ 1

RHO(I.JIl) = ALPHA(LJI1)/BETA(IP1.JI1)
RNORM = DSQRTfl.O- RHO(I,JIl)*RHO(I,JIl))

DO 30 K = l.N

T - ALPHA(I.K)
ALPHA(l.K) - (ALPHA(I.K)-RHO(l..II lpBETA(IPl.K)) /RNORM
BETA(I.K) - (BETA(IPl.K)-RHO(I.Jll)*T) RNORM

30 CONTINUE
40 CONTINUE
(' WR1TE(16.42)J,((ALPHA(LK).K-1.N)

;
I l.N)

('42 FORMAT) 2X.I3
:
4(2X.E12.5))

C WR]TE(16.42)J.((BETA(I.K).K=1,N),I=1,N)

50 CONTINUE
C
('

RETURN
END

174

c
C SUBROUTINE LEVINSON
C
C GENERATES THE AUTOREGRESSIVE MODEL COEFFICIENTS GIVEN THE
C REFLECTION FACTORS
C
C WRITTEN 29 APRIL 1985

C
£-!** ** *********

c
SUBROUTINE LEVSON (A,B,RHO,R,N)
REAL*8 A(26,26),B(26

!
26),RHO(26,26),R(26,26),RNORM,T

C
C INITIALIZE THE A AND B MATRICES
C

DO 20 1 = 1,N

DO 10 J = 1,N

A(I,J) - 0.0

B(I,J) = 0.0

10 CONTINUE
A(I,I) = 1.0/DSQRT(R(I,I))

B(LI) = A(LI)

20 CONTINUE
C
C CALCULATE THE AR PARAMETERS USING LEVINSON'S ALGORITHM
C

DO 60 J = 2.N

NJ1 = N - J + 1

DO 50 I = l.NJl

Ul = I -t- J - 1

RN'ORM = DSQRT(1.0- RHO(I,IJl)*RHO(I,IJl))

DO 40 K = I.IJ1

T == A(l.K)

A(I.K) = (A(l.K) - RHO(I.IJl)*B(I+l.K))'RNORM
B(I.K) = (B(l-l.K) - RHO(I.IJl)*T) RNORM

40 CONTINUE
50 CONTINUE
C WRITE(16.77)J.((A(1,K),K=1.N),I=1.N)

C WR1TE(16,77)J,((B(I,K).K=1.N)J-1.N)
C77 F0RMAT(/2X,13.4(2X,E12.5))
60 CONTINUE

DO 66 1 = 1,N

RN'ORM - A (1.1) A(l.l)

C WR1TE(6.65)RN0RM
(' WRITE(17.65)RNORM
C6f. F0RMAT(2X,E12.5)
m CONTINUE
C
c

RETURN
END

175

c
C FUNCTION URAND
C
C TAKEN FROM "COMPUTER METHODS FOR MATHEMATICAL COMPUTATIONS" BY
C G.E. FORSYTHE. M.A. MALCOLM. AND C.B MOLER
C PRENTICE-HALL, ENGLEWOOD CLIFFS, NJ., 1977, P. 246.

C
j-i***

C
REAL FUNCTION URAND (IY)

INTEGER IA,IC,ITWO,M2,M,MIC
C URAND IS A UNIFORM RANDOM NUMBER GENERATOR BASED ON THEORY AND
C SUGGESTIONS GIVEN IN D.E. KNUTH (1969), VOL. 2. THE INTEGER IY

C SHOULD BE INITIALIZED TO AN ARBITRARY INTEGER PRIOR TO THE FIRST
C CALL TO URAND. THE CALLING PROGRAM SHOULD NOT ALTER THE VALUE OF IY

C BETWEEN SUBSEQUENT CALLS TO URAND. VALUES OF URAND WILL BE RETURNED
C IN THE INTERVAL (0,1).

C
DOUBLE PRECISION HALFM
REAL S

DOUBLE PRECISION DATAN,DSQRT
DATA M2/0/.ITWO/2/
IF(M2.NE.O) GO TO 20

C
C IF FIRST ENTRY, COMPUTE MACHINE INTEGER WORD LENGTH
C

M= l

10 M2 =M
M=ITWO*M2
IF(M.GT.M2) GO TO 10

HALFM=M2
C
C COMPUTE MULTIPLIER AND INCREMENT FOR LINEAR CONGRUENTIAL METHOD
C

IA=8*IDINT(HALFM*DATAN(1.D0)/8.D0)^5
IC=--2*IDINT(HALFM*(.5D0-DSQRT(3.D0)/6.D0))+]

MJC-(M2-1C)-M2
C
C S IS THE SCALE FACTOR FOR CONVERTING TO FLOATING POINT
('

S=.5 HALFM
C
C COMPUTE NEXT RANDOM NUMBER
C

20 IY= IY*1A

C
(' THE FOLLOWING STATEMENT IS FOR COMPUTERS WHICH DO NOT ALLOW
C INTEGER OVERFLOW ON ADDITION
C

IF(IY.GT.MIC) IY=(IY-M2)-M2
C

IY IY+IC

176

c
C THE FOLLOWING IS FOR COMPUTERS FOR WHICH THE WORD LENGTH
C FOR ADDITION IS GREATER THAN FOR MULTIPLICATION
C

IF(IY/2.GT.M2)IY=(IY-M2)-M2
C
C THE FOLLOWING STATEMENT IS FOR COMPUTERS WHERE INTEGER OVERFLOW
C AFFECTS THE SIGN BIT
C

IF(IY.LT.0)IY=(IY+M2)+M2
URAND=FLOAT(IY)*S
RETURN
END

177

f1**xxx»*****x:r**>*************

c
C PROGRAM NLMAIN
C
C THIS IS THE PROGRAM TO TEST THE NONLINEAR LATTICE MODEL
C
C WRITTEN 7 MAY 1985

C
p******************************** ********************:,;*** ***************

c
REAL*8 ALPHA(26,26),BETA(26,26),A(26,26),B(26,26),RHO(26,26)

REAL*8 HZ(5,5),Y(10000),R(26,26)

C
C DEFINE SYSTEM PARAMETERS
C

DATA HZ/. 2. .02,-. 1.0. 0,0.0, .05, 0.09,. 22,0.0,0.0,-. 03, .001,0.02,0.0

*,0. 0,10*0.0/

c
C DEFINE SYSTEM CONSTANTS
C

DO 5 1 = 1,5

K - 6- I

WRITE(6,4)(HZ(K,J),J=1,5)

4 F0RMAT(5(2X,E12.5))
5 CONTINUE

IYS = 1000

NA = 3

MNA = NA * NA
MNAPl = MNA + 1

C
C DEFINE MODEL CONSTANTS
C

N = 3

MN = N * N
MNPl = MN + 1

C
C CALL SUBROUTINES
C

CALL NLGEN(Y.N.HZ.IYS)
CALL NLCLAT(Y.IYS.R.N)
DO 30 I l.MNPl

WR1TE(16.20)(R(1,J),J= 1,MNP1)
20 FORMAT! \5(2X.E12.5))

30 CONTINUE
CALL S(HI R(R HO. H. ALPHA.BETA. MNPl)
DO 60 1 = l.MNPl
WRITE(16.20)(RHO(L J),.I = l.MNPl)

6(i CONTINUE
CALL LEVSO\(A.B.RHO.R,MNPl)
DO 70 I = l.MNPl

\VRITE(16.20)(A(I.J),J=1,MNP1)

70 CONTINUE
C

178

STOP
END

179

c
C SUBROUTINE NLGEN
C
C THIS SUBROUTINE GENERATES AN OUTPUT SEQUENCE FROM THE SYSTEM
C DESCRIBED BY THE MODEL PARAMETERS CONTAINED IN H(,). IT

C USES WHITE NOISE UNIFORM ON (-.5, .5) TO EXCITE THE SYSTEM.
C THE INITIAL CONDITIONS ARE ALSO DRAWN FROM THIS DISTRIBUTION.
C
C WRITTEN MAY 7 1985

C

C
SUBROUTINE NLGEN(Y,N,H,IYS)
REAL*8 Y(10000),H(5,5),DSEED

C
C FETCH THE RANDOM SEED
C

READ(13,10) IY

10 FORMAT(llO)
REWIND 13

C DSEED = DFLOAT(IY)
C
C SET UP THE INITIAL CONDITIONS
C

Y(l) = 2.*(URAND(IY) - .5)

Y(2) = 2.*(URAND(IY) - .5)

C CALL GGNML(DSEEDJYS.Y)
C
C CALCULATE THE REMAINING VALUES OF THE SEQUENCE
C

DO 40 I = 3.IYS

C Y(I) = 2.*(URAND(IY) - .5)

C Y(I) = 2*Y(I)

Y(l) = URAND(IY)
C DO 30 J = l.N

C JMl = J - 1

C DO 20 K - l.N

C KMl = K - 1

C Y(I) Y(l) - HIJ.KJ'COORDIYU-lj.JMlpCOORDtYfl^J.KMl)
C20 CONTINUE
C30 CONTINUE
40 CONTINUE
(

(' FINISH
C
C IY - DINT(DSEED)

WRITE(13.50)IY
50 FORMAT(IlO)

REWIND 13

RETURN
END

180

C
C SUBROUTINE NLCLAT
C
C THIS SUBROUTINE PRODUCES A CORRELATION MATRIX FROM NONLINEAR
C TIME SEQUENCE IN AN ORDER WHICH IS COMPATIBLE WITH SUBROUTINE
C SCHUR.
C
C WRITTEN 7 MAY 1985

C

C
SUBROUTINE NLCLAT (Y,IYS,R,N)

REAL*8 Y(10000),R(26,26),SUM,VEC(26)

C
C DEFINE CONSTANTS
C

MN = N*N
MNP1 = MN + 1

IYSM2 = IYS - 2

FIYSM2 = FLOAT(IYSM2)
C
C INITIALIZE R MATRIX TO ZERO
C

DO 20 I - 1.MNP1
DO 10 J = l.MNPl

R(I.J) = 0.0

10 CONTINUE
20 CONTINUE
C
C BEGIN OUTER LOOP
C

DO 80 I = 3. IYS
IR = 1

VEC(IR) = Y(I)

DO 50 MPl = l.N

M0 -- MPl - 1

LLIM -- 2*MPl - 1

DO 40 L -
1 LLIM

L0 L - 1

11 M0
Jl ~- L0 2

IF (MOD(L0.2).EQ.0) GO TO .",0

11 - Jl

Jl = M0
30 IR - IR - 1

VEC(IR) = COORD(Y(I-l).Il)*COORD(Y(I-2),Jl)
40 CONTINUE
50 CONTINUE
C
C CALCULATE THE CORRELATIONS
C

DO 70 J = l.MNPl

181

DO 60 K = J,MNP1
R(J.K) = R(J.K) + VEC(J)*VEC(K)

C WRITE(6.12)VEC(J),VEC(K).R(J.K)

C12 F0RMAT(3(2X,E12.5))
60 CONTINUE
70 CONTINUE
80 CONTINUE
C
C DIVIDE BY THE NUMBER OF DATA ELEMENTS CONSIDERED
C

DO 100 J = 1.MNP1
DO 90 K = J.MNP1

R(J,K) = R(J,K)/FIYSM2
90 CONTINUE
100 CONTINUE
C
C FILL IN THE SYMMETRIC HALF OF CORRELATION MATRIX
C

DO 120 I = 2.MNP1
IM1 = 1 - 1

DO 110 J = 1.IM1

R(l.J) = R(J.I)

110 CONTINUE
120 CONTINUE
C
C

RETURN
END

182

c
C NONLINEAR WIENER MODELLING PROGRAM
C THIS USES FUNCTIONS CONTAINED IN ROUTINE COORD
C
C MODIFIED 1 JAN 85, 14 JAN 85

C

C
DOUBLE PRECISION A(25,26),Z(25),X(15000),Y(15000),VAR,XA,YA,YHAT
DOUBLE PRECISION ZZ(25),XMl,SEED,STORE(25)

C
C INPUT SIMULATION PARAMETERS
C

READ(13,77)IY
REWIND 13

WRITE{6,40)
40 FORMAT(2X,'MAGNITUDE OF NOISE')

READ(5.41)VAR
41 F0RMAT(F12.5)

WRITE(6,42)
42 FORMAT(2X,'NUMBER OF POINTS')

READ(5,43)N
43 F0RMAT(I5)

WRITE(6.44)
44 FORMAT(2X.'MAXIMUM POWER OF X ')

READ(5.45)LW
45 FORMAT(Il)

WRITE(12.46)N
WRITE(6.46)N

46 FORMAT(2X.THE NUMBER OF POINTS WAS ',15)

WRITE(12.47)LW
WRITE(6.47)LW

47 FORMAT(2X.'THE MAXIMUM POWER OF X IS ',11)

WRITE(6 48)VAR.VAR
WR1TE(12 48)YAR.YAR

48 FORM AT(2X.THE NOISE IS UNIFORM FROM -'.F9.5." TO +',F9.5)

L\V = LW - 1

VAR = VAR*2.0
DO 132 I = 1.25

STORE(I) - 0.0

132 CONTINUE
X(l) - VAR*(URAND(IY) - .5)

Y(l) = 1.0

DO 2 1-2.X

X(I) - YAR*(URAND(1Y) - .5)

Y(I) = UNKNOW(X(I),X(I-l))
2 CONTINUE

CALL NCRLAT(X,Y.A.LSQW,LW,N)
C WRITE(6,134)
C WR1TE(12.134)
C134 FORMAT(/2X,'NO INVERSION SOLUTION)

DO 142 I - 1. LSQW

183

ZZ(J) = A(J,LSQW + 1)/A(J.J)

STORE(J) = STORE(J) + ZZ(J)/25.0

142 CONTINUE
C DO 133 J = l.LW
C IMIN = (J-1)*LW f 1

C IMAX = J*LW
C WRITE(6,173) (ZZ(I),I = IMIN,IMAX)
C WRITE(12,173) (ZZ(I),I = IMIN,IMAX)
C173 F0RMAT(5(2X,E12.5))
C133 CONTINUE
C CALL SOLVE(A,Z,LSQW)
C WRITE(6,135)
C WRITE(12,135)

C135 F0RMAT(/2X,'USING FULL MATRIX INVERSION')
C DO 27 J = 1,LW
C IMIN = (J-l)'LW + 1

C IMAX = J*LW
C WRITE(6.11) (Z(I),I = IMINJMAX)
C WRITE(12,11) (Z(I).I = IMINJMAX)
11 F0RMAT(5(2X,E12.5))
C27 CONTINUE
131 CONTINUE

WRITE(6.201)
WRITE(12,201)

201 FORMAT('2X.NO INVERSION SOLUTION AVERAGED OVER 25 RUNS'
DO 200 J = 1,LW
IMIN = (J - lj'LW + 1

IMAX =' J * LW
WRITE(6.11) (STORE(I).I = IMINJMAX)
WRITE(12.11) (STORE(I).I = IMIN.IMAX)

200 CONTINUE
\VRITE(6,22)

WRITE(12,22)

XM1 = VAR*(URAND(IY) - .5)

DO 73 I = 1.10

XA = VAR*(URAND(IY) - .5)

YA = UNKNOW(XA.XMl)
YHAT = 0.0

YYHAT - 0.0

DO 14 J l.LW

JM1 - J - 1

X2 = COORD(XMl.JMl)
DO 15 K = l.LW

KM] K - 1

X! = COORD(XA.KMl)
C WRITE(6.52)Xl.X2
C52 F0RMAT(2(2X.E12.5))

YHAT = YHAT - Xl * X2 * Z((J-1)*LW • K)

WHAT - YYHAT - Xl * X2 * ZZ((J-1)*LW - K)

15 CONTINUE
14 CONTINUE

ERROR = (YA - YHAT) YA
ZERROR (YA - YYHAT) YA

184

XM1 = XA
WRITE(6,17) YA,YHAT,YYHAT,ERROR.ZERROR

17 F0RMAT(5(2X.E12.5))
22 FORMAT(/6X.'YAM2X,'YHAT'10X. !YYHAT'.9X.'ERROR'

1
9X.'ZERROR')

WRITE(12,17) YA.YHAT.YYHAT.ERROR,ZERROR
73 CONTINUE

WRITE(13,77)IY
77 FORMAT(IlO)

STOP
END

185

C
C SUBROUTINE UNKNOW
C
C THIS ROUTINE DEFINES THE UNKNOWN SYSTEM
C

C
DOUBLE PRECISION FUNCTION UNKNOW(X,Xl)
DOUBLE PRECISION H(25),YHAT,XTl,XT2
LW = 5

H(l) = 2

H(2) = -.4

H(3) = .03

H(4) = -.7

H(5) = 0.0

H(6) = .5

H(7) = .35

H(8) = .11

H(9) = .9

H(10) = 0.0

H(ll) = .01

H(12) = 13
H(13) = -.33

H(14) = .7

H(15) = 0.0

H(16) = .43

H(17) = .81

H(18) - -.05

H(19) = 4

H(20) = 0.0

H(21) = 0.0

H(22) = 0.0

H(23) = 0.0

H(24) = 0.0

H(25) = 0.0

VHAT = 0.0

DO 14 J - l.LW
JM1 = J - 1

XT2 = COORD(XUJMl)
DO 15 K - 1,1.W
KM! - K - 1

XTl - COORD(X.KMl)
(' WRITE(6.52)XTl.XT2
C52 F0RMAT(2(2X.E12 ".))

YHAT YHAT • XTl " XT2 ' HfJYirLW
15 CONTINUE
14 CONTINUE

UNKNOW YHAT
RETURN
END

186

p**x*****************x******

c
C FUNCTION COORD
C
C GENERATES OUTPUT OF THE FUNCTIONS BEING USED AS COORDINATES
C
C CREATED 23 AUG 84

C
p*** ***************************** ***************************************

C
DOUBLE PRECISION FUNCTION COORD (X,I)

C
C USE LEGENDRE POLYNOMIALS
C
C IF (I.NE.O) GO TO 1

C Y = 1.0

C GO TO 30

CI IF (I.NE.l) GO TO 2

C Y = 1.732051*X

C GO TO 30

C2 IF (I.NE.2) GO TO 3

C Y = 3.354102*(X*X - 173.)

C GO TO 30

C3 Y= 6.61438*(X*X*X- 3./5.*X)

C
C USE SIMPLE POWER SERIES TYPE POLINOMIALS
C

Y = 1.0

IF (I.EQ.0) GO TO 30

Y = X**I

30 COORD = DBLE(Y)
RETURN
END

187

C
C SUBROUTINE SOLVE
C
C SUBROUTINE TO SOLVE A SYSTEM OF LINEAR EQUATIONS
C USES GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING
C

SUBROUTINE SOLVE(A,Z,K)
DOUBLE PRECISION A(25,26),Z(25),Y,TEMP,LARGE

C
KMl = K - 1

KP1 = K + 1

c
c

DO 10 L = 1,KM1
LP1 = L + 1

DO 11 I = LP1,K
LARGE = DABS(A(L,L))
LROW = L

DO 12 M = LP1.K
IF (DABS(A(M.Lj).LE.LARGE) GO TO 12

LARGE = DABS(A(M,L))
LROW = M

12 CONTINUE
C

IF (L.EQ.LROW) GO TO 13

DO 14 M = L,KP1
TEMP - A(L.M)
A(L.M) = A(LROW.M)

• A(LROW.M) = TEMP
14 CONTINUE
C
13 Y - A(I.L) A(L.L)

C
DO 15 M - l.KPl

A(I.M) = A(I,M) - A(L
:
M)*Y

15 CONTINUE
11 CONTINUE
10 CONTINUE
C
c

Z(K) A(K.KPl) A(K.K)
DO 16 L - l.KMl

I = K - L

Z(l) - A(I.KPl)

KMl = K - I

DO 17 \1 I .KMl
J - K - M - 1

Z(I) = Z(I) - A(1.J)*Z(J)

17 CONTINUE
Z(I) = Z(I) A(I. I)

188

16 CONTINUE
C
C

RETURN
END

189

prr**

c
C NONLINEAR CORRELATION MATRIX CALCULATOR
C
C CREATED 23 AUG 84

C USES FUNCTION UNKNOW TO DETERMINE FUNCTIONS FOR EXPANSION.
C X - INPUT VECTOR
C Y - OUTPUT VECTOR
C PHI - CORRELATION MATRIX
C - LAST COLUMN CONTAINS INPUT/OUTPUT CROSS-CORRELATION
C
P*** *** *************

C

c
c

SUBROUTINE NCRLAT(X,Y,PHI.LSQW,LW,N)
DOUBLE PRECISION PHI(25,26),X(1).Y(1),TX(5,5)

NMl = N - 1

LSQW - LW * LW
LSQWPl = LSQW + 1

c
c

DO 40 1=1.LSQW
DO 39 J = l,LSQWPl

PHI(I.J) = 0.0

39 CONTINUE
40 CONTINUE
C
c

DO 2 M = 2.N

MMl = M-1

DO 3 1=1.LW
IMl = I - 1

X2 = COORD(X(MMl),IMl)
DO 4 J=1,LW
JMl - J - 1

XI = COORD(X(M),JMl)
c WRITE(6.81) XI. X2
C81 F0RMAT(2(2X.E12.5))

TX(l.J) = XI * X2
C VVRITE(6.80) X(K),X(MM1),LJ,TX(I,J)

C80 FORM AT(2X.2(2X.El2.5).2(2X.12).El 2.5

4 CONTINUE
.1 CONTINUE

DO 5 1- l.LW
DO 6 II l.LW
K = (I-1)*LW - II

PH1(K.LSQWPl) = PHI(K.LSQWPl) + Y(M)*TX(1,II]

DO 7 J = 1.LW
DO 8 JJ=1,LW
KK - (J-l)TW - .].]

190

PHI(K,KK) = PHI(K.KK) + TX(1,II)*TX(J.JJ)

8 CONTINUE
7 CONTINUE
6 CONTINUE
5 CONTINUE
2 CONTINUE
C

DO 31 I=1,LSQW
DO 32 J=1,LSQWP1

PHI(I,J) = PHI(I,J)/FLOAT(NMl)
32 CONTINUE
31 CONTINUE
C
C
C D0 17I=1,LSQW
C WRITE(11,16) (PHI(I,J), J = l.LSQW)
C16 F0RMAT(/,9(2X,E12.5))
C17 CONTINUE

WRITE(11.19) (PHI(I,LSQWP1),I = l.LSQW)
19 F0RMAT(/,',9(2X,E12.5))

C
C

RETURN-
END

191

C
C NONLINEAR WIENER MODELLING PROGRAM
C THIS USES THE LMS ADAPTIVE ALGORITHM 14 FEB 84 (VALENTINE'S)
C
C UNKNOWN SYSTEM DEFINED IN FUNCTION UNKNOW
C
*-,******************************** ***************************************

C
DOUBLE PRECISION TX(5,5),H(5,5),VAR,X,XMl,Y,YHAT,SEED
READ(13,77)IY
REWIND 13

WRITE(6,40)
40 FORMAT(2X,'MAGNITUDE OF NOISE')

READ(5,41)VAR
41 F0RMAT(F12.5)

WRITE(6,42)
4? FORMAT(2X,'NUMBER OF POINTS')

READ(5,43)N
43 F0RMAT(I5)

WRITE(6,44)
44 FORMAT(2X,'MAXIMUM POWER OF X ')

READ(5,45)LW
45 FORMAT(Il)

WRITE(6.7)
7 FORMAT(2X. CONVERGENCE FACTOR')

READ(6.8)U
8 FORMAT(Fl25)

WRITE(12,46)N
WRITE(6.46)N

46 FORMAT(2X.THE NUMBER OF POINTS WAS ',15)

WRITE(12,47)LW
WRITE(6.47)LW

47 FORMAT(2X
t
'THE MAXIMUM POWER OF X IS \Il)

WRITE(6.48)VAR.VAR
WR1TE(12.48)VAR.VAR

48 FORMAT(2X.THE NOISE IS UNIFORM FROM -\F9.5.' TO V,F9.5)

WRITE(6.49)U
WRITE(12.49)U

49 FORM AT(2X. THE CONVERGENCE FACTOR WAS \E12.5)

L\\ - l.W - 1

VAR = YAR*2
XMl - VAR*(URAND(1Y) - .5)

('

(IMTI \LIZE THE 11 TENSOR
('

DO 10 I l.LW

DO 9 J l.LW
H(1J) - 0.0

9 CONTINUE
10 CONTINUE
C
C BEGIN THE ITERATION LOOP

192

c
DO 2 K=2,N
X = VAR*(URAND(IY) - .5)

Y = UNKNOW(X.XMl)
C WRITE(6.97)I.X.Y

C97 F0RMAT(2X.I5.2X,E12.5,2X.E12.5)

YHAT = 0.0

C
C CALCULATE THE MEASUREMENT TENSOR AND THE OUPUT ESTIMATE
C

DO 14 I = 1,LW
IM1 = I - 1

X2 = COORD(XMl,IMl)
DO 15 J = 1,LW
JM1 = J - 1

XI = COORD(X,JMl)
C WRITE(6.52)X1,X2
C52 F0RMAT(2(2X,E12.5))

TX(I.J) = Xl*X2
YHAT = YHAT + TX(I,J) * H(I,J)

15 CONTINUE
14 CONTINUE
C
C CALCULATE THE NEW VALUE OF THE TENSOR
C

ERROR = Y - YHAT
DO 5 I = l.LW
DO 4 J - l.LW
H(LJ) - H(IJ) + 2.0*U*ERROR*TX(I,J)

4 CONTINUE
5 CONTINUE

XM1 = X
C
C PRINT THE NEW VALUE OF THE TENSOR
C

KM1 = K - 1

IF (KM1.NE.(KM1 100)*100)GO TO 2

WRITE(6.13)KMl
WRITE(12.13)KM1

13 FORMAT(2X. ITERATION NUMBER M5)
WRITE(G 135)

WRITEf 12.135)

135 FORMATC'X THE NEW VALUE OF THE H TENSOR IS)

DO 27 1 l.LW

WRITE(C.II) |H(I. .])..} - l.LW)
WR1TE(12.11) (H(l.J).J l.LW)

11 F0RMAT(5(2X.E12.5))
27 CONTINUE

WRITE(6.22)
WRITE(12.22)

WRITE(6.17) Y. YHAT.ERROR
17 F0RMAT(5(2X.E12.5))
22 FORMAT(6X. :Y".12X.YHAT'10X. ERROR)

193

WRITE(12,17) Y.YHAT.ERROR
2 CONTINUE

WRITE(13,77)IY
77 FORMAT(IIO)

STOP
END

194

INITIAL DISTRIBUTION LIST

No. Copies

1. Library, Code 0142 2

Naval Postgraduate School

Monterey, California, 93943

2. Defence Technical Information Centre '

Cameron Station

Alexandria, Virginia 22304-6145

3. Department Chairman, Code 62 *

Department of Electrical and

Computer Engineering

Naval Postgradute School

Monterey, California, 93943

4. Dr. S.R. Parker, Code 62Px 15

Department of Electrical and

Computer Engineering

Naval Postgraduate School

Monterey, California, 93943

5. Dr PH. Moose. Code 62Me 1

Department of Electrical and

Computer Engineering

Naval Postgraduate School

Monterey. California, 93943

6. Dr. L.J Ziomek. Code 62Zm 1

Department of Electrical and

Computer Engineering

Naval Postgraduate School

Monterey. California, 93943

7. Dr. E.C. Crittenden. Code 6lCt 1

Department of Physiscs

Naval Postgraduate School

Monterey. California. 93943

8. Dr. U.R. Kodres. Code 52Kr 1

Department of Computer Science

Naval Postgraduate School

Monterey. California. 93943

9. Lt(N) P.J Lenk 6

DMCS 3-2-8

DGMEM (EM. NDHQ
101 Colonel B> Drive.

Ottawa. Ontario

Canada. KlV 0K2

10. Dr. Ahrnet H. Kayran
1

Vanikoy. Cad. No. 17

Istanbul, Turkey

195

11. DMCS
DGMEM. CEM. NDHQ
101 Colonel By Drive.

Ottawa. Ontario

Canada, KlV 0K2

12. Dr. Bharat Madan
Department of Computer Science and

Engineering

IIT Delhi

New Delhi, India

110029

196

,VJ (t^

211+1*02

Thesis 02

H 663 Censor formulations

I

0,1
for the modelling of

discrete-time
nonlinear-s

and multidimensional ^
15 J

SyStem5, 1U5 82 1

21H02
Thesis

151663 Lenk
c.l Tensor formulations

for the modelling of

discrete-time nonlinear
and multidimensional
systems.

