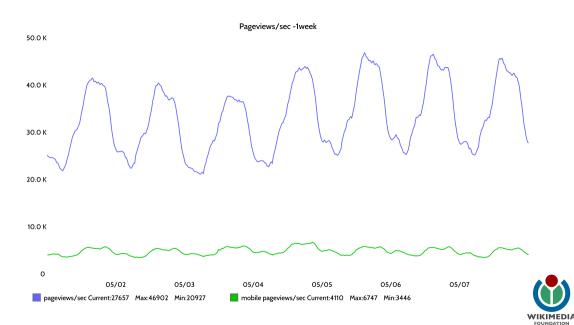
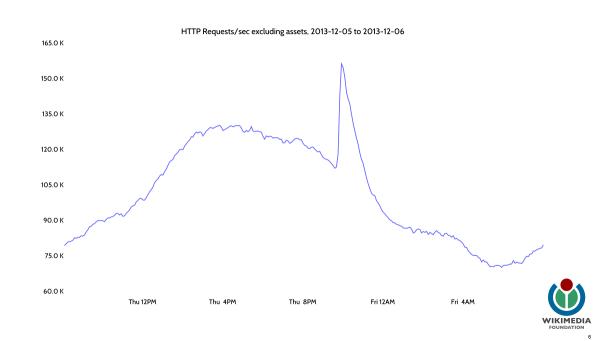

The Wikimedia infrastructure

Faidon Liambotis


faidon@wikimedia.org

Design principles



Operating at scale

- ► Large, popular website
 - ▶ Wikipedia: 5th largest website globally (comScore)
 - ho pprox 500 million uniques, pprox 20 billion pageviews per month
 - ightharpoonup pprox 190.000 HTTP req/s at peak
- Dynamic, collaborative
 - ightharpoonup pprox 80.000 active editors (active = 5+ edits per month)
 - ightharpoonup pprox 40.000 edits/hour
- Massive growth during the early years
- ...but relatively constant traffic nowadays

Operating at scale (cont'd)

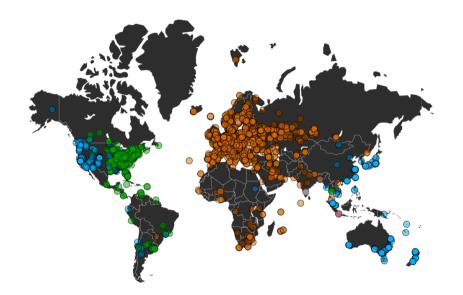
- ► Global in nature
 - No such thing as a 4am maintenance window
- Site needs to always be:
 - ▶ Up.
 - ► Fast!
- ▶ But also delivered **continuously**, using **agile** software practices

Open-source, freedom, community & transparency

- Deeply rooted in the free culture and free software movements
- Infrastructure is being built exclusively with open-source components
- ▶ Design and build *in the open*, together with volunteers
- "Right to fork"
 - Anyone should be able to fork/clone
 - No secret sauce

Limited resources

- ► Nonprofit, charitable organization
- Entirely funded by small donors
- No ads or VC money
- Small number of employees (not counting volunteers)
 - ▶ 2007: < 10</p>
 - ▶ 2010:61
 - 2014: 207 (65 SWE + 17 field ops/netops/SAs/DevOps)


Components

Physical topology

- Not using any third-party CDN or cloud provider
 - Usually involves secret sauces
 - Autonomy, privacy, risk of censorship
- Medium-sized infrastructure, \approx 1.000 servers
- Two "primary" datacenters: Ashburn, VA (2011) & Dallas, TX (2014)
- Caching PoPs for CDN purposes
 - Amsterdam (EMEA) & San Francisco (NA West Coast, Oceania, Asia)

Network architecture

- Own user-facing & backhauling IP network
- ► AS **14907**, AS 43821
- 10G waves or MPLS redundant links between PoPs for backhauling
- Multiple 10Gs with tier-1/2s for transit on each location
- Present in multiple IXPs; peering settlement-free with everyone
- Proprietary network hardware for switches/routers :(

System architecture

- Mostly one server vendor so far
- ► 1U/2U servers; no blades
- All physical; no virtualization (vet)
- Running exclusively **Ubuntu** Linux LTS (10.04, 12.04, 14.04)
- **Puppet** for configuration management
- **Salt** for remote execution/orchestration
- Automation, automation, automation

Production architecture

Load balancing: layer 1

- Mapping users to PoPs: GeoDNS
 - Different responses per region to e.g. en.wikipedia.org
 - Europe resolves to Amsterdam; Oceania/East Asia to San Francisco
 - State/city load-balancing for US & Canada
- Using gdnsd since last year (switched from PowerDNS)
 - ► Highly-scalable, performant, stable, featureful
 - Uses MaxMind's GeoIP databases
- ► Serving ≈ 9.000 DNS req/s at peak

Load balancing: layer 2/3

- Linux IPVS (LVS) for load-balancing
- LVS-DR, no need for big pipes
- Cheap scalability
 - No chokepoints
 - Commodity hardware (low-spec ordinary servers)
 - No expensive load-balancers or licenses
- Availability
 - Pybal: in-house monitoring daemon in Python
 - Health monitoring, pools/depools realservers
 - BGP with routers for IPVS availability failover

Load balancing (& caching): layer 7

- nginx for (optional) SSL termination
- ightharpoonup Multiple tiers of daisy-chained Varnish (pprox 80 in total)
 - ► High performance, generally very stable
 - Powerful but efficient custom DSL (VCL)
 - Based off the 3.0-plus branch, stack of custom patches on top
- Varnish for traffic routing
 - Consistent hashing per URL (custom director)
- Varnish for backend caching
 - Persistent on-disk caching
 - Backed with arrays of SSDs
 - Not as stable or supported anymore :(

Main appserver stack

- LAMP stack on steroids
- Apache/PHP + a few custom PHP C extensions
- MediaWiki
 - Continuously evolving
- memcached
 - aggressive backend caching
 - twemproxy for connection pipelining & fault tolerance
- Redis
 - ▶ Job queue, etc.

Main appserver stack (cont'd)

MariaDB

- Split into fairly static 7 shards, project/language-based
- Beefy masters, multiple read-only slaves per shard
- ▶ 1 master, 5-10 slaves each, < 100 servers in total

▶ ElasticSearch

- ► (in progress)
- Replacing old custom-built search on top of Lucene
- Awesomeness.

Internal services

- ► (Slow) move to SOA
- ► Multiple, smaller RESTful services
 - ▶ New wikitext⇔HTML parser (Parsoid)
 - HTML/RDF to PDF rendering
 - LaTeX/Math processor (Mathoid)
- Mostly in Node.js (so far)
- More to come!

Media storage infrastructure

- Storing mainly images, but also audio & video
- Original uploads & arbitrarily-sized thumbnails
- ightharpoonup pprox 30 million originals, pprox 320 million thumbnails
- ightharpoonup pprox 800 TB of raw storage
- Entirely based on OpenStack Swift
 - ► Horizontally scalable, region-aware, well-defined API, middlewares

Production-like infrastructure

Wikimedia Labs

- Infrastructure for staff & volunteers
- OpenStack private cloud
- VMs running on the production puppet tree (sans passwords)
- Development, experimenting, QA, staging
- Public, participatory, collaborative
- https://wikitech.wikimedia.org/

Thank you! @faidonl

