Census of Manufactures

MC82-S-4 (Part 2)
SUBJECT SERIES

Fuels and Electric Energy Consumed

Part. 2 States and Standard Metropolitan
Statistical Areas by
Major Industry Groups
 LIBRARY

Fuels and Electric Energy Consumed

Part 2. States and Standard Metropolitan Statistical Areas by Major Industry Groups

U.S. Department of Commerce Malcolm Baldrige, Secretary
Gerald J. Mossinghoff, Acting Deputy Secretary
Robert G. Dederick, Under Secretary for
Economic Affairs

BUREAU OF THE CENSUS Bruce Chapman, Director
 C.L. Kincannon, Deputy Director

Shirley Kallek, Associate Director
for Economic Fields
Michael G. Farrell, Assistant Director for
Economic and Agriculture Censuses

INDUSTRY DIVISION
Gaylord E. Worden, Chief

ACKNOWLEDGMENTS-Many persons participated in the various activities of the 1982 Census of Manufactures. Primary direction of the program was performed by Shirley Kallek, Associate Director for Economic Fields, and Michael G. Farrell, Assistant Director for Economic and Agriculture Censuses.

This report was prepared in the Industry Division under the general direction of Roger H. Bugenhagen, Chief (until April 1983), and Gaylord E. Worden, his successor, and Jacob Silver, Assistant Chief for Mineral Industries and Special Reports. This report has been included as part of the 1982 Census of Manufactures publication series even though the information was collected for the year 1981 as part of the annual survey of manufactures. The 1981 Annual Survey of Manufactures (ASM) was conducted under the general supervision of John P. Govoni, Assistant Chief for Census/ASM.

Responsibility for the ASM was shared by the following individuals who participated importantly in the entire program: Kenneth I. Hansen, Chief, Annual Survey of Manufactures Branch; Dale W. Gordon, Chief, Census/ASM Durables Branch; Michael J. Zampogna, Chief, Census/ASM Nondurables Branch; and John P. McNamee, Chief, Minerals Branch.

The review and analysis of the purchased fuels and electric energy data was performed by Dennis L. Wagner, Joyce Guy, Robert E. Struble, Sam Davis, Victor Susman, Julius Smith, and Eva Snapp under the general supervision of the Chief of the Minerals Branch. Lillie Mae Skinner coordinated the various phases of the publication process.

Within Industry Division, the Chief of the Annual Survey of Manfactures Branch, assisted by Robert A. Rosati, Eric Taylor, Richard Sterner, and Mittie Buchanan, was responsible for the overall management of the survey and was the Industry Division liaison officer with other divisions. Under the direction of Preston Jay Waite, Assistant Chief for Research and Methodology, Stacey Cole and Pam McKee had responsibility for the sample design and measurement of sampling errors as well as certain quality control plans and procedures.

The computer programs for the ASM were developed under the direction of William E. Norfolk, Assistant Chief for Operations. Overall development of the ASM editing programs was accomplished by

Desmond Carron, Mark Kronish, Roy Smith, Gary Sheridan, and Jose Rios under the direction of George Anderson, Chief, ASM Programming Branch. Development of the fuels and electric energy editing and tabulating systems was the responsibility of Alan Seto, assisted by Nestor Baez. The data preparation for the publication tables was accomplished by Albert R. Ginsberg and Michael G. Kavros under the direction of Charles A. Woods, Chief, Current Projects Programming Branch. Processing of the report forms was performed by the Data Preparation Division, Don Adams, Chief. Clerical processing was under the general direction of Patricia Clark, assisted by Joyce Conn and Kathy Falk.

Within the Publications Services Division, many individuals made significant contributions in publication planning and design, editorial review, and printing procurement. Major contributors were John T. Overby, Cynthia G. Brooks, Nicholas Preftakes, and Robert Warunek.

Donald E. Young, Lawrence H. Lyons, and John R. Wikoff, of the office of the Assistant Director for Economic and Agriculture Censuses, participated in overall planning and review of the census operations.

Special acknowledgment is also due the many businesses whose cooperation has contributed to the publication of these data.

Library of Congress Cataloging in Publication Data

United States. Bureau of the Census.
1982 census of manufactures: subject series.

Supt. of Docs. no.: C 3.24/12:

1. United States-Manufactures-Statistics.
I. Title.

HD9724.U52	1983	$338.4^{\prime} 767$	0973

For sale by the Superintendent of Documents, U. S. Government Printing Office, Washington, D.C. 20402.

Fuels and Electric Energy Consumed

Part 2. States and Standard Metropolitan Statistical Areas by Major Industry Groups

CONTENTS

PART 1. (Industry Groups and Industries)*
Page
Tables 1 through 4 4-1 through 4-34
PART 2.[Page numbers listed here omit the prefix numberthat appears as part of the number of each page]
Standard Metropolitan Statistical Areas Map 36
EXPLANATORY TEXT
General 39
Summary Data 39
State Data 41
Standard Metropolitan Statistical Area Data 41
Conversion to BTU's 43
Data Included in This Report 44
1972 and 1977 Revisions to Standard Industrial Classification System 44
Disclosure Rules 44
Abbreviations and Symbols 44
TABLES

1. Fuels and Electric Energy Used for Heat and Power: 1981 and Earlier Years 45
2. Purchased Fuels, by Type, and Electric Energy Used for Heat and Power: 1981 and Selected Earlier Years 45
3. Purchased Fuels, by Type, and Electric Energy Used for Heat and Power by Major Industry Group for States: 1981 and 1980 46
4. Consumption and End-of-Year Stocks of Selected Purchased Fuels by Major Industry Group for States: 1981 72
5. Purchased Fuels, by Type, and Electric Energy Used for Heat and Power by Major Industry Group for Standard Metropolitan Statistical Areas: 1981 and 1980 84
6. Consumption and End-of-Year Stocks of Selected Purchased Fuels by Major Industry Group for Standard Metropolitan Statistical Areas: 1981 154
APPENDIXES
A. Scope and Coverage A-1
B. Explanation of Terms B-1
C. Report Form and Instructions C-1
D. Standard Consolidated Statistical Areas and Standard Metropolitan Statistical Areas D-1Publication Program
*Published earlier as a separate report.

STANDARD METROPOLITAN STATISTICAL

AREAS OF THE UNITED STATES

EXPLANATORY TEXT

GENERAL

This report presents estimates of the quantity and cost of purchased fuels and electric energy consumed by manufacturing plants in 1981. Although this report has been included as part of the overall 1982 Census of Manufactures publication series, the information was collected for the year 1981 as part of the annual survey of manufactures. For a more detailed discussion of scope and coverage, see appendixes. The 1980 data shown in this report may differ from that published in the 1980 report due to revisions carried after that publication was issued.

SUMMARY DATA

In 1981, the United States consumption of purchased fuels and electric energy for heat and power by manufacturing establishments was 11.6 quadrillion British thermal units (Btu's), a decrease of approximately 3 percent from the 1980 level of 11.9 quadrillion Btu's. At the same time, manufacturing production, as measured by the Federal Reserve Board's (FRB) index of manufacturing production, increased by 3 percent for 1981. ${ }^{1}$

Although overall energy consumption by manufactures dropped during 1981, this decline was not reflected in all the major fuel types and electric energy. Consumption of coal and purchased electric energy in 1981 increased by 5 percent and 1 percent respectively, from their corresponding 1980 levels. For the third straight year, significant decreases were recorded in the consumption of distillate and residual fuel oil. Distillate fuel oil, which declined 16 percent during 1981, showed an overall drop of 63 percent from its 1978 level. Residual fuel oil, which decreased 18 percent during 1981, dropped 52 percent since its peak in 1978. Consumption of natural gas, which continues to account for over half of all purchased energy used by manufacturers, registered a 2 percent decline.

Expenditures for fuels and electric energy during 1981 totaled $\$ 55.3$ billion compared to $\$ 48.3$ billion in 1980. Increases in expenditures for natural gas and electric energy accounted for most of this increase. The amount spent for natural gas rose to $\$ 17.4$ billion in 1981 and to $\$ 25.5$ billion for electric energy, compared to $\$ 14.7$ billion and $\$ 21.9$ billion,

[^0]respectively, in 1980. Expenditures for distillate fuel oil increased to $\$ 1.3$ billion, residual fuel oil to $\$ 3.6$ billion, and coal to $\$ 2.2$ billion. The only decrease in expenditures was recorded by coke and breeze, which declined from $\$ 1.7$ billion to $\$ 1.6$ billion. All dollar figures in this report are current dollars, rather than constant dollars, for each year shown.

The average cost per million Btu's of energy consumed in 1981 was $\$ 4.78$, compared to $\$ 4.05$ in 1980 . Increases in unit cost were registered for each of the major fuels and for electric energy in 1981. The largest increases occurred in fuel oil and natural gas. The cost per million Btu's of distillate fuel oil went from $\$ 5.47$ in 1980 to $\$ 6.55$ in 1981, residual fuel oil from $\$ 3.76$ to $\$ 4.74$, and natural gas from $\$ 2.59$ to $\$ 3.14$. Between 1978 and 1981, the price of fuel oil rose dramatically; the unit costs for both distillate fuel oil and residual fuel oil more than doubled. In contrast, coal remained the lowest cost fuel, on a dollar-per-Btu basis, with a unit cost of $\$ 1.58$ per million Btu's in 1981, compared to \$1.25 in 1978.

The most expensive source of energy in 1981, as in the past, was purchased electric energy at $\$ 11.23$ per million Btu's. Electric energy accounted for 46 percent of total expenditures, while at the same time accounting for only 20 percent of total energy consumed. In contrast, natural gas accounted for 32 percent of total energy expenditures, while accounting for 51 percent of total energy consumed.

The total Btu equivalent of fuel stocks (distillate and residual fuel oil, coal, coke, and LPG) on hand at manufacturing establishments at the end of 1981 amounted to 488.6 trillion Btu's or 5 percent of the total purchased fuels in 1981 (not including purchased electric energy).

Current year tables on fuel stocks also include data for Industry 2865, Cyclic Crudes and Intermediates; Industry 2869, Industrial Organic Chemicals, Not Elsewhere Classified; Industry 2895, Carbon Black; and coal and coke stocks for Industry 3312, Blast Furnaces and Steel Mills. The 1978-1980 reports did not include these industries in the tables on stocks, instead the information was supplied separately in a footnote to the stocks tables. Fuel stocks for these industries during 1978-1980 were reported in a separate survey covering hydrocarbon, coal, and coke materials consumption by blast furnaces and steel mills, selected chemical industries, and petroleum refineries.

Table A. Percent of Total Energy Consumed by All Manufacturing Industries for Selected Fuels and Purchased Electric Energy: 1967, 1971, and 1974 to 1981

Fuels and electric energy	1981	1980	1979	1978	1977	1976	1975	1974	1971	1967
Total.............................	100	100	100	100	100	100	100	100	100	100
Residual fuel oil..	7	8	10	13	12	12	10	9	7	7
Bituminous coal, lignite, and anthracite	13	12	11	11	11	10	10	10	13	19
Coke and breeze......	4	4	4	4	4	4	3	3	3	3
Distillate fuel oil..	2	2	3	4	5	4	5	5	5	4
Natural gas...	51	51	50	46	46	49	52	54	56	53
Purchased electric energy.	20	19	18	18	17	17	17	15	13	12
Other fuels (includes liquefied petroleum gases)	4	4	4	4	4	4	4	3	2	1

Note: Detail may not add to total due to rounding.

Table B. Unit Cost and Index of Change of Selected Fuels and Purchased Electric Energy Consumed by All Manufacturing Industries: 1967, 1971, and 1974 to 1981

Table C. Consumption and Cost for the 20 Largest Energy Consuming States, Ranked by 1981 Consumption: 1981 and 1980

The Btu equivalent of fuel stocks at the end of 1980 for these four industries amounted to 65.7 trillion Btu's. Prior year stocks data shown in this report have been revised to include stocks data for these industries. The Btu equivalent of fuel stocks on hand for all industries at the end of 1980 amounted to 597.0 trillion Btu's. Thus, fuel stocks on hand at the end of 1981 (488.6 trillion Btu's) were 18 percent less than fuel stocks on hand at the end of 1980. Many establishments accumulate
stocks of distillate fuel oil, residual fuel oil, or liquefied petroleum gases to offset potential shortages or forced cutbacks in other fuel types they consume. Thus, fuel stocks shown in this report were being used not only to resupply consumption, but also as a backup for possible supply interruptions of other types of fuels.

All stocks information in this report cover fuel stocks to be used for heat and power. No information on distillate or residual
fuel oil stocks was collected for Industry 2911, Petroleum Refining, due to the difficulty in separating stocks of fuel oil for sale as a product from stocks to be used for heat and power.

STATE DATA

Consumption of purchased fuels and electric energy in 1981 increased or remained about the same in 16 States and the District of Columbia, while decreasing in the remaining States. Indiana, with an increase of 8.7 trillion Btu's, and New York, with an increase of 6.1 trillion Btu's, recorded the largest absolute increases in energy consumption (table C). This was in sharp contrast to 1980, when Maine had the largest actual increase in Btu consumption, with 1.5 trillion Btu's. Of the ten States with the largest consumption of Btu's, eight consumed less in 1981 than in 1980. Texas, with a decline of 82.4 trillion Btu's, had the largest absolute decrease in energy consumption, followed by Louisiana, with a decline of 56.9; Pennsylvania, with a decline of 43.6; and California with a decline of 32.9 trillion Btu's.

Each State experienced an increase in the average cost per million Btu's of purchased energy (table D). The States with the largest absolute increases were Rhode Island, with an increase of $\$ 1.78$ per million Btu's, and Connecticut, with an increase of $\$ 1.76$ per million Btu's. Alaska had the smallest absolute increase, $\$ 0.22$ per million Btu's.

As in previous years, manufacturers in Alaska paid the least amount ($\$ 1.70$) per million Btu's of energy in 1981 (table D). South Dakota and Montana were next, with $\$ 2.77$ and $\$ 3.14$, respectively. Manufacturers in the New England States and the District of Columbia had some of the highest costs for energy; with the exception of Maine, each exceeded $\$ 7.00$ per million Btu's.

Ten States accounted for almost 60 percent of the total U.S. purchased fuels and electric energy consumed in the manufacturing sector (table C). Manufacturers in Texas, alone,
accounted for about 13 percent. Texas and Ohio manufacturers led the Nation in electric energy consumption, with 58.1 billion kilowatt-hours (9 percent) and 49.5 billion kilowatt-hours (7 percent), respectively. The largest consumption of fuel oils was by manufacturers in New Jersey, with 15.9 million barrels, or 10 percent of the Nation's consumption of fuel oil. Pennsylvania was second, with 13.7 million barrels, or 9 percent. Natural gas consumption by manufacturers was greatest in Texas, with $1,124.1$ billion cubic feet. Louisiana was second with 609.9 billion cubic feet. These two States consumed 21 percent and 11 percent, respectively, of the total quantity of natural gas consumed by manufacturers in the United States during 1981. Ohio manufacturers consumed the largest share of coal, 5.0 million short tons (9 percent), and Michigan was second, with 4.0 million short tons (8 percent).

STANDARD METROPOLITAN STATISTICAL AREA DATA

Purchased energy consumption by manufacturing establishments in the 277 standard metropolitan statistical areas (SMSA's) ${ }^{2}$ covered by this report declined in 1981 almost 4 percent from what it had been in 1980. The average unit cost per million Btu's of energy consumed by all SMSA's rose from $\$ 4.15$ in 1980 to $\$ 4.90$ in 1981 (table E).

Manufacturing establishments located in the 60 largest energy consuming SMSA's accounted for almost one-half of

[^1]Table D. Cost Per Million Btu's of Purchased Fuels and Electric Energy by State, Ranked by 1981 Cost: 1981 and 1980

Rank	Geographic area	$\begin{gathered} \text { Cost per million Btu's } \\ (\text { dollars }) \end{gathered}$		$\begin{aligned} & \text { 1981/1980 } \\ & \text { relative } \end{aligned}$	Rank	Geographic area	Cost per million Btu's (dollars)		$\begin{gathered} \text { 1981/1980 } \\ \text { relative } \end{gathered}$
		1981	1980				1981	1980	
1	Alaska..	1.70	1.48	1.15	--	United States.........	4.78	4.05	1.18
2	South Dakota. .	2.77	2.18	1.27	27	Wisconsin. .	4.82	4.14	1.16
3	Montana. .	3.14	2.62	1.20	28	New Mexico.	4.87	4.43	1.10
4	Louisiana.	3.16	2.48	1.27	29	South Carolina.	4.91	4.07	1.21
5	North Dakota.	3.28	2.48	1.33	30	Michigan.	4.98	4.34	1.15
6	Wyoming. .	3.29	2.89	1.14	31	Pennsylvania.	4.99	4.28	1.17
7	Washington.	3.61	3.21	1.12	32	Tennessee...	5.06	4.25	1.19
8	0klahoma..	3.69	3.03	1.22	33	Maryland.	5.10	4.46	1.15
9	Nebraska.	3.71	3.13	1.19	34	Georgia..	5.14	4.32	1.19
10	West Virginia..	3.74	3.31	1.13	35	Illinois.	5.16	4.49	1.15
11	Kansas..	3.84	3.22	1.19	36	Alabama.	5.18	4.42	1.17
12	Utah...	3.93	3.32	1.18	37	North Carolina.	5.47	4.60	1.19
13	Texas.	3.94	3.15	1.25	38	Kentucky.	5.69	4.71	1.21
14	Iowa. .	3.99	3.50	1.14	39	New York.	5.78	4.88	1.18
15	Arkansas.	4.04	3.38	1.20	40	Florida.	5.84	4.76	1.23
16	Arizona.	4.07	3.65	1.12	41	Delaware.	5.99	5.20	1.15
17	Colorado.	4.12	3.47	1.19	42	Maine..	6.00	4.75	1.27
18	Nevada. .	4.19	3.88	1.08	43	California	6.47	5.72	1.13
19	Idaho..	4.26	3.72	1.14	44	New Jersey.	6.73	5.70	1.18
20	Indiana.	4.33	3.88	1.12	45	Hawaii........	6.96	5.75	1.21
21	Mississippi..	4.37	3.50	1.25	46	Vermont....	7.18	5.84	1.23
22	Minnesota..	4.49	3.85	1.17	47	New Hampshire.	7.59	5.84	1.30
23	Missouri.	4.54	4.21	1.19	48	Massachusetts.	7.90	6.41	1.23
24	Virginia.	4.54	4.21	1.08	49	District of Columbia.	8.15	7.58	1.08
25	Ohio...	4.59	4.04	1.14	50	Rhode Island.	8.29	6.51	1.27
26	0regon.....................	4.77	4.22	1.13	51	Connecticut.	8.40	6.64	1.27

Table E. Summary of Energy Consumption and Cost for SMSA's: 1981 and 1980

Ceographic area	Purchased fuels and electric energy				Cost per million Btu's (dollars)	
	Btu consumption (trillions)		$\begin{gathered} \text { Total cost } \\ \text { (million dollars) } \end{gathered}$			
	1981	1980	1981	1980	1981	1980
United States...........	11562.7	11946.4	55255.1	48342.7	4.78	4.05
All SMSA's....	7891.1	8209.8	38678.5	34092.9	4.90	4.15
20 largest SMSA's*.	3641.8	3860.6	17304.4	15562.5	4.75	4.03
21 st to 60th largest SMSA's*.	1901.1	1954.9	8965.5	7809.5	4.72	3.99
Other SMSA's (61st to 277th)*.	2348.2	2394.3	12408.6	10720.9	5.28	4.48
Non-SMSA areas.	3671.6	3736.6	16576.6	14249.8	4.51	3.81

*Ranked according to energy consumption.

Table F. Energy Costs in the Largest 60 Energy-Consuming SMSA's, Ranked by 1981 Unit Cost: 1981 and 1980

Rank	Ceographic area	$\begin{gathered} \text { Cost per million Btu's } \\ \text { (dollars) } \end{gathered}$			Rank	Geographic area	Cost per million Btu's (dollars)		
		1981	1980	$\begin{array}{r} \text { 1981/1980 } \\ \text { relative } \end{array}$			1981	1980	$\begin{array}{r} 1981 / 1980 \\ \text { relative } \end{array}$
1	New Orleans, La.	2.08	1.73	1.20	--	United States	4.78	4.05	1.18
2	Johnson City-Kingsport-Bristol, Tenn.-Va	2.30	2.02	1.14	31	Toledo, Ohio, Mich	4.79	4.24	1.13
3	Parkersiurg-Marietta, W. Va.-Ohio.	2.69	2.40	1.12	32	Mobile, Ala..	4.80	3.94	1.22
4	Lake Charles, La.	2.92	2.44	1.20	33	Birmingham, Ala	4.82	4.25	1.14
5	Beaumont-Port Arthur-Orange, Tex............	3.00	2.47	1.21	34	St. Louis, Mo.-Ill	4.87	4.20	1.16
6	Baton Rouge, La.	3.26	2.48	1.32	35	Kansas City, Mo.-Kans.	4.91	4.01	1.22
7	Akron, ohio..........	3.29	3.02	1.09	36	Columbus, ohio..................................	4.93	4.30	1.15
8	Longview, Tex...................................	3.36	. 98	3.43	37	Evansville, Ind.-Ky..............................	4.95	4.38	1.13
9	Calveston-Texas City, Tex....................	3.48	2.73	1.27	38	Dallas-Fort Worth, Tex	4.99	4.00	1.25
10	Tulsa, okla...........	3.53	2.80	1.26	39	Cleveland, Ohio	5.05	4.50	
					40	Albany-Schnectady-Troy, N.Y.	5.08	4.43	1.15
11	Steubenville-Weirton, Ohio-W. Va.	3.58	3.11	1.15	41	Detroit, Mich.	5.10	4.49	1.14
12	Salt Lake City-ogden, Utah.	3.83	3.33	1.15	42	Buffalo, N.Y.	5.11	4.16	1.23
13	Houston, Tex.	4.14	3.38	1.23	43	Riverside-San Bernadino-Ontario, Calif.	5.11	5.07	1.01
14	Hamilton-Middletown, Ohio	4.15	3.70	1.12	44	Minneapolis-St. Paul, Minn.-Wis..	5.12	4.34	1.18
15	Denver-Boulder, Colo.	4.19	3.57	1.17					
					45	Baltimore, Md...................................	5.26	4.53	1.16
16	Corpus Christi, Tex.	4.24	3.43	1.24	46	Allentown-Bethlehem-Easton, Pa	5.29	4.12	1.28
17	Cary-Hammond-East Chicago, Ind.	4.26	3.84	1.11	47	Jacksonville, Fla.....	5.46	4.45	1.23
18	Huntington-Ashland, W. Va.-Ky.-ohio	4.28	3.74	1.14	48	San Francisco-Oakland, Calif	5.70	5.05	1.13
19	Louisville, Ky.-Ind..	4.35	3.73	1.17	49	Chicago, Ill.	5.70	4.92	1.16
20	Seattle-Everett, Wash.	4.36	3.62	1.21					
					50	Milwaukee, Wis.................................	5.72	4.86	1.18
21	Syracuse, N.Y.	4.39	3.67	1.20	51	Creenville-Spartanburg, S.C.	5.81	5.07	1.15
22	Rochester, N.Y.	4.46	3.76	1.19	52	Atlanta, Ca.	5.95	5.08	1.17
23	Augusta, Ca.-S.c.	4.47	3.82	1.17	53	Wilmington, Del.-N.J.-Md	6.00	5.14	1.17
24	Cincinnati, Ohio-Ky.-Ind.	4.50	4.06	1.11	54	Philadelphia, Pa.-N.J.	6.29	5.45	1.16
25	Canton, ohio....................................	4.53	4.16	1.09					
	Pittsburgh, Pa.	4.53	3.83	1.18	55 56	Newark, N.J................................... Los Angeles-Long Beach, Calif..............	6.57 7.20	5.95 6.48	1.11
27	Portland, Ore.-Wash.	4.58	4.21	1.09	57	New Brunswick-Perth Amboy-Sayreville, N.J...	7.61	6.33	1.20
28	Youngstown-Warren, Ohio.	4.64	4.26	1.09	58	San Jose, Calif..	8.22	6.34	1.30
29	Indianapolis, Ind...	4.64	4.11	1.13	59	New York, N.Y.-N.J.	8.29	7.07	1.17
30	Memphis, Tenn.-Ark.-Miss......................	4.68	3.85	1.21	60	Boston, Mass..................................	8.41	6.77	1.24

both the total U.S. consumption of purchased fuels and electric energy and the total cost paid for energy. The average unit cost per million Btu's of the 60 largest SMSA's (\$4.73) is slightly below the U.S. average of $\$ 4.78$. In contrast, the average unit cost of $\$ 5.28$ for the remaining 217 SMSA's is substantially higher than the U.S. average.

The unit cost paid for energy varied substantially among the top 60 SMSA's; establishments in the New Orleans SMSA, for example, paid $\$ 2.08$ per million Btu's as opposed to $\$ 8.41$ in the Boston SMSA (table F). The major reasons for the wide variation were differences in the types of fuels and electric energy consumed and the differential prices between the respective areas. Both SMSA's used sizeable amounts of electric energy and natural gas, but Boston establishments paid \$20.99
per million Btu's of electric energy, while electric energy was a little over half that price in New Orleans, $\$ 11.82$ per million Btu's. Similarly for natural gas, Boston manufacturers paid $\$ 4.95$ per million Btu's, while establishments of New Orleans paid $\$ 0.91$ per million Btu's of natural gas. Those areas where natural gas accounted for a majority of energy consumption paid a much lower average cost per million Btu's than those in which purchased electric energy and fuel oils were predominately used.

Manufacturers in the Houston SMSA, with 635.8 trillion Btu's, were again the largest energy consumers compared to all other SMSA's; followed by those in the Pittsburgh SMSA, with 274.1 trillion Btu's and those in the Chicago SMSA, with 272.5 trillion Btu's (table G).

Table G. Twenty Largest Energy-Consuming SMSA's, Ranked by 1981 Btu Consumption: 1981 and 1980

Rank	Geographic area	Purchased fuels and electric energy				Cost per million Btu's (dollars)		Major industry groups accounting for at least 10% of purchased energy consumption within the SMSA, with percent accounted for in parentheses
		$\begin{aligned} & \text { Btu consumption } \\ & \text { (trillions) } \end{aligned}$		$\begin{aligned} & \text { Total cost } \\ & \text { (million dollars) } \end{aligned}$				
		1981	1980	1981	1980	1981	1980	
1	Houston, Tex.......................	635.8	652.7	2629.2	2203.3	4.14	3.38	```Chemicals, allied products (51%); Petroleum and coal products (31%)```
2	Pittsburgh, P	274.1	310.5	1241.3	1189.4	4.53	3.83	Primary metal industries (83\%)
3	Chicago, Ill.......................	272.5	286.2	1553.0	1408.4	5.70	4.92	Primary metal industries (30%); Food and kindred products (12\%); Chemicals, allied products (10%)
4	Detroit, Mich......................	236.6	275.4	1206.4	1236.0	5.10	4.49	Primary metal industries (54\%); Transportation equipment (16%)
5	Gary-Hammond-East Chicago, Ind....	239.4	225.6	1020.2	865.8	4.26	3.84	Primary metal industries (83\%)
6	Baton Rouge, La.....................	218.2	241.4	711.9	597.7	3.26	2.48	Chemicals, allied products (77%) ; Petroleum and coal products (19\%)
7	Beaumont-Port Arthur-Orange, Tex..	213.6	234.4	639.8	579.9	3.00	2.47	Petroleum and coal products (56%); Chemicals, allied products (38%)
8	Philadelphia, Pa-N.J...............	195.5	197.9	1230.5	1077.6	6.29	5.45	Primary metal industries (26%); Petroleum and coal products (D); Chemicals, allied products (14\%)
9	Los Angeles-Long Beach, Calif.....	194.4	206.5	1400.4	1338.5	7.20	6.48	Petroleum and coal products (27%); Stone, clay, glass products (13%)
10	San Francisco-Oakland, Calif......	138.9	150.8	791.3	762.2	5.70	5.05	Petroleum and coal products (50%); Chemicals, allied products (13%)
11	St. Louis, Mo.-Ill.................	138.8	146.7	676.2	616.4	4.87	4.20	Primary metal industries (39\%); Chemicals, allied products (14%); Petroleum and coal products (11%)
12	Cleveland, Ohio....................	124.1	121.4	627.1	545.9	5.05	4.50	Primary metal industries (61\%)
13	Lake Charles, La...................	113.9	123.8	332.1	301.7	2.92	2.44	Chemicals, allied products (54%); Petroleum and coal products (D)
14	New orleans, La....................	107.1	131.1	222.6	226.3	2.08	1.73	Primary metal industries (D); Chemicals, allied products (34%)
15	Newark, N.J.........................	99.4	96.8	653.5	575.5	6.57	5.95	Chemicals, allied products (31%); Petroleum and coal products (31\%)
16	Galveston-Texas City, Tex.........	98.1	114.1	340.9	311.8	3.48	2.73	Chemicals, allied products (53%); Petroleum and coal products (D)
17	Baltimore, Md........................	90.6	90.6	476.5	410.4	5.26	4.53	Primary metal industries (44%); Stone, clay, glass products (16%); Chemicals, allied products (14%)
18	New York, N.Y.-N.J..................	87.9	92.7	729.0	655.3	8.29	7.07	Food and kindred products (17%); Chemicals, allied products (15%); Paper and allied products (10%)
19	Dallas-Ft. Worth, Tex..............	81.7	83.2	408.0	332.9	4.99	4.00	Stone, clay, glass products (32%); Food and kindred products (10%)
20	Buffalo, N.Y........................	81.2	78.8	414.5	327.7	5.11	4.16	Primary metal industries (40%); Chemicals, allied products (18\%)

Four of the top twenty energy-consuming SMSA's in 1981 were in Texas and three were in Louisiana. With the exception of Dallas-Forth Worth, each of these SMSA's were able to use natural gas to meet over 75 percent of their energy needs. Two major industry groups, chemicals and allied products and petroleum and coal products, accounted for a major portion of the energy usage in these Texas/Louisiana SMSA's.
In order to prevent the disclosure of information for individual companies, it was necessary to delete certain SMSA's from publication tables. The data for these SMSA's, however, are used in the overall statistical tabulations in this report. The deleted SMSA's are:

Flint, Michigan
Fort Myers, Florida
Gadsden, Alabama
Great Falls, Montana
Greeley, Colorado
Lawton, Oklahoma
Monroe, Louisiana
Pine Bluff, Arkansas
Pueblo, Colorado
Santa Rosa, California
Waco, Texas

CONVERSION TO BTU'S

Fuels consumed data were converted to Btu's to provide comparable figures (table H). A Btu is the quantity of heat
required to raise the temperature of 1 pound of water by 1 degree Fahrenheit. Btu factors reflect the energy content of the various fuels with no regard to efficiency of use. Since some fuel applications are considerably more efficient than others (none are 100 percent efficient), the Btu figures must be considered as the maximum amount of available energy.

Prior to 1976, energy consumption was measured in kilowatthour equivalents. Beginning in 1976, the Btu, rather than the kilowatt-hour equivalent, was used as the common unit of measure for this statistical series.

Table H. Conversion to Btu's: 1981

Kind of energy	$\begin{array}{r} \text { Btu's } \\ (1,000) \end{array}$
Electric energy.................................... $1,000 \mathrm{kWh} .$.	3412
Coal..short to. ${ }^{\text {a }}$. ${ }^{\text {a }}$.	26194
Coke...................................... do..	25993
Fuel oil:	
Distillate.............................barrels (42-gal.)..	5824
Residual.................... do. .	6285
Natural gas......................................1, 000 cu. ft..	1020
Liquefied petroleum gases.........................1,000 lbs..	20989
Other fuels... ${ }^{\text {dollars.. }}$	259

Note: For costs of "fuels not specified by kind," conversion factors for 1981 were developed for each two-digit SIC group, based on the relationship of total cost of fuels to the total Btu equivalents for those groups, as published in M80(AS)-4.1, Fuels and Electric Energy Consumed, 1980 Annual Survey of Manufactures.

DATA INCLUDED IN THIS REPORT

This report, although issued as a 1982 census publication, includes data obtained from the 1981 Annual Survey of Manufactures. The information presented only covers the consumption of purchased fuels and electric energy by manufacturing establishments for heat and power. This report does not include data on fuels produced and consumed at the same establishment, such as coke-oven gas, blast furnace gas, still gas, petroleum coke, etc.; data on fuels used as raw materials, such as natural gas used to produce carbon black or ammonia; and data on fuels converted to other fuel types, such as coal converted to coke. These additional components of energy needed by manufacturers are very significant. In 1977, coal used in the production of coke in Industry 3312, Blast Furnaces and Steel Mills, amounted to 77.5 million tons or 2 quadrillion Btu's. A special șurvey covering hydrocarbon, coal, and coke materials consumption by blast furnaces and steel mills, selected chemical industries, and petroleum refineries is available for the years 1978, 1979, and 1980 (see M80(AS)-4.3 for 1980 results). In addition, a question was added to the 1978 Annual Survey of Manufactures form to study the significance of nonpurchased fuels consumption throughout the manufacturing sector (see M78(AS)-4.2 for results).

1972 AND 1977 REVISIONS TO STANDARD INDUSTRIAL CLASSIFICATION SYSTEM

A revised edition of the Standard Industrial Classification Manual was issued in 1972, the first major revision since 1957. In the 1972 version, extensive modifications were made in the manufacturing sector which affect comparability with the historic data in many industries. In 1977, a supplement to the 1972 SIC manual was issued presenting several minor additional changes to the classification system. More detailed descriptions of these changes are found in the 1972 and 1977 Censuses of Manufactures (MC72(1)-1 and MC77-SR-1).

DISCLOSURE RULES

The Bureau of the Census is prohibited by law from publishing any statistics that would disclose information reported by individual companies. Additionally, quantity or cost data may be withheld if the figures do not meet publication standards on the basis of a consistency review. However, the total figures for a State, industry group, or major group include data for all component industries whether or not separate figures are shown for the individual industries included in the total.

ABBREVIATIONS AND SYMBOLS

The following abbreviations and symbols are used in this publication:

- Represents zero.
(A) Indicates relative standard errors of 100 percent or more.
(D) Withheld to avoid disclosing data for individual companies.
(NA) Not available.
(S) Withheld because estimate did not meet publication standards on the basis of either the response rate or a consistency review.
(X) Not applicable.
(Z) Less than half the unit shown.
n.e.c. Not elsewhere classified.
n.s.k. Not specified by kind.
r Revised.
SIC Standard Industrial Classification.
SMSA Standard Metropolitan Statistical Area.
Other abbreviations, such as lb , gal, yd, doz, and bbl, are used in the customary sense. Where the term "tons" only is used, it refers to short tons of 2,000 pounds; where the figures are expressed in tons of 2,240 pounds, the unit of measure is specified as "long tons" or "I. tons."

Table 1. Fuels and Electric Energy Used for Heat and Power: 1981 and Earlier Years
[For meaning of abbreviations and symbols, see introductory text. For explanation of terms, see appendixes]

Year	Cost of purchased fuels and electric energy (million dollars)	Cost of purchased fuels (milliondollars) dollars)	Electric energy			Year		Cost of purchased fuels and electric energy (million dollars)	Cost of purchased fuels (milliondollars)	Electric energy			
			Purchased		$\begin{array}{r} \text { Generated } \\ \text { less } \\ \text { sold } \\ \text { (million } \\ \mathrm{kWh} \text {) } \end{array}$			Purchased		Generated less sold (million kWh)			
			Quantity (million kWh)	$\begin{aligned} & \text { Cost } \\ & \text { (million } \\ & \text { dollars) } \end{aligned}$				Quantity (million kWh)			$\begin{array}{r} \text { Cost } \\ \text { (million } \\ \text { dollars) } \end{array}$		
1981	55255.1	29747.0	665784.4	25508.1	54856.8	1969			8751.4	4456.6	497015.7	4294.8	83351.7
1980	48342.7	26486.7	659464.8	21856.0	58639.0	1968			8272.1	4263.0	458908.4	4009.1	82752.2
1979	42713.6	23651.1	685304.0	19063.1	63603.1	1967		7691.7	3974.9	427465.1	3716.8	78355.8	
1978	37612.6	20618.3	675720.5	16994.6	61631.0	1966		7365.9	3902.3	399390.0	3463.6	80500.0	
1977	33334.9	18817.8	663164.0	14517.3	63195.2	1965		6973.4	3727.3	373428.0	3246.1	80453.0	
1976	28138.5	15959.5	640164.6	12179.1	63843.9	1964		6706.6	3583.9	357292.0	3122.7	79740.0	
1975	23290.7	12977.8	596798.0	10312.9	63275.0	1963		6369.7	3409.0	333512.0	2960.7	72949.0	
1974	19468.3	11003.0	616665.1	8465.3	80932.3	1962		6184.0	3360.7	313961.0	2823.3	74261.0	
1973	13625.5	7012.3	612601.5	6613.2	84864.7	1961		5825.3	3192.6	298325.0	2632.7	68533.0	
1972	11771.7	6055.9	557468.9	5715.8	87185.7	1960		5765.1	3192.9	291949.0	2572.2	70016.0	
1971	10432.1	5360.6	514612.7	5070.6	82828.0	1959		5544.6	3082.7	281301.0	2461.9	69291.0	
1970	9424.7	4845.7	500768.7	4579.2	83327.3	1958		5067.0	2836.2	252909.0	2230.8	66850.0	

Table 2. Purchased Fuels, by Type, and Electric Energy Used for Heat and Power: 1981 and Selected Earlier Years
[For meaning of abbreviations and symbols, see introductory text. For explanation of terms, see appendixes]

[^2]Table 3. Purchased Fuels, by Type, and Electric Energy Used for Heat and Power by Major
[For meaning of abbreviations and symbols, see introductory text. For explanation of terms, see appendixes]

State and SIC code	Geographic area and industry group	1981										
		Purchased fuels and electric energy		Electric energy			Purchased fuels		Fuel oil			
		British thermal units(trillions)	$\begin{aligned} & \text { Cost } \\ & \text { (million } \\ & \text { dollars) } \end{aligned}$	Purchased		Generated less sold (million kWh)	Britishthermal units (trillions)	$\begin{aligned} & \text { Cost } \\ & \text { (million } \\ & \text { dollars) } \end{aligned}$	Distillate		Residual	
				Quantity (million kWh)	Cost (million				$\begin{gathered} \text { Quantity } \\ \text { (1,000 } \\ \text { barrels) } \end{gathered}$	$\begin{aligned} & \text { Cost } \\ & \text { (million } \\ & \text { dollars) } \end{aligned}$	$\begin{gathered} \text { Quantity } \\ (1,000 \\ \text { barrels) } \end{gathered}$	$\begin{aligned} & \text { Cost } \\ & \text { (million } \\ & \text { dollars) } \end{aligned}$
		A	B	C	D	E	F	G	H	1	J	K
	All industries	11562.7	55255.1	665784.4	25508.1	54856.8	9291.0	29747.0	33193.3	1266.5	120754.4	3598.7
Ala.	Alabama	309.5	1602.8	21903.8	827.6	2550.2	234.8	775.2	507.4	19.3	1639.6	41.6
Alaska	Alaska	37.1	63.2	156.7	9.1	481.0	36.6	54.1	442.9	18.0	(D)	(D)
Ariz.	Arizona --	74.1	301.9	3452.3	153.1	503.9	62.4	148.7	80.1	2.9	16.5	. 4
Ark.	Arkansas	159.8	645.8	8344.1	271.0	1461.6	131.3	374.8	141.4	4.8	549.3	16.0
Calif.	California	615.5	3980.7	36694.6	2180.3	1141.8	490.3	1800.4	1056.9	39.5	2585.9	65.3
Colo.	Colorado	69.6	286.6	3656.9	135.5	154.5	57.1	151.1	103.5	3.5	153.7	4.1
Conn.	Connecticut	80.3	674.9	5875.9	370.9	128.8	60.2	304.0	948.5	38.3	3398.6	122.6
Del.	Delaware ------	47.7	285.5	2420.3	121.6	(D)	39.4	163.9	176.0	7.0	1936.5	62.6
D.C.	District of Columbia	1.3 1929	10.6 1127.4	124.0 9	6.9 5488	${ }_{2} 444.4$	158.8	3.7 578.6	19.3	${ }^{.9}{ }^{7}$	$7{ }^{\text {(D) }}$	(D)
Fla.	Florida -----	192.9	1127.4	9990.2	548.8	2444.7	158.8	578.6	726.0	29.0	7278.0	209.9
Ga.	Georgia	254.1	1306.9	15730.3	598.3	2126.7	200.5	708.7	1014.4	37.2	3919.9	115.9
Hawaii	Hawaiil	14.0	97.4	402.8	37.6	292.2	12.6	59.8	(D)	(D)	491.5	14.0
Idaho	Idaho	48.2	205.4	5373.5	104.3 1344.9	(D)	29.8 46.9	101.1 1559	86.0	3.7 29	+309.6	8.5 46.4
III.	Illinois	563.3	2904.3	29429.7	1344.9	400.2	462.9	1559.3	800.0	29.7	1610.6	46.4
Ind.	Indiana	481.4	2085.4	25107.6	885.8	2829.0	395.7	1199.6	1029.2	38.6	4897.9	137.0
lowa	lowa	165.1	659.2	7468.6	282.4	315.2	139.7	376.8	424.7	14.5	216.6	4.4
Kans.	Kansas	120.4	462.8	5466.5	211.2	75.3	101.7	251.6	80.1	2.9	59.1	1.5
Ky.	Kentucky	224.1	1275.5	25300.8	814.5	(D)	137.7	461.0	373.7	13.8	288.7	8.5
La.	Louisiana	779.0	2458.9	25325.6	884.0	7838.3	692.6	1574.9	667.2	25.2	3642.8	105.0
Maine	Maine	85.1	511.0	3268.6	152.2	3265.1	74.0	358.8	506.9	19.0	9524.7	299.4
Md.	Maryland	134.8	687.9	8647.3	304.4	(D)	105.3	383.5	1005.3	39.9	2814.0	93.0
Mass.	Massachusetts	126.6	1000.0	8158.3	542.2	340.0	98.7	457.8	1309.9	50.7	6160.8	192.1
Mich.	Michigan	506.5	2522.9	24451.7	1170.2	2414.6	423.1	1352.7	662.6	24.9	1769.6	45.5
Minn.	Minnesota	119.1	535.2	6659.5	255.7	592.7	96.3	279.5	275.3	10.3	633.8	17.1
Miss.	Mississippi	123.0	537.0	6091.9	258.1	(D)	102.2	278.9	223.4	8.0	247.1	6.7
Mo.	Missouri -	166.8	756.5	10939.9	380.6	156.1	129.5	375.9	235.6	9.6	364.3	8.6
Mont.	Montana	44.4	139.6	4243.6	51.6	(D)	29.9	88.0	58.5	2.4	26.6	. 7
Nebr.	Nebraska	54.6	202.8	2876.7	94.8	(D)	44.8	108.0	75.1	2.8	54.5	1.4
Nev.	Nevada	17.4	72.9	+960.9	32.2	108.8	14.1	40.7	(D)	(D)	138.6	4.2
N.H.	New Hampshire	25.9	196.6	1558.8	99.7	(D)	20.6	96.9	352.6	13.0	1602.8	51.4
N.J.	New Jersey	286.3	1926.2	14148.8	852.2	372.9	238.0	1074.0	3101.4	119.2	12770.1	392.0
N. Mex.	New Mexico	18.1	88.2	841.1	42.3	(D)	15.3	145.9	51.8	2.4	(D)	(D)
N.Y.	New York--	430.4	2487.2	29367.1	1269.8	1532.2	330.2	1217.4	3030.7	116.2	8497.9	257.8
N.C.	North Carolina	298.3	1630.7	23657.5	801.4	1859.8	217.6 13.1	829.2	1309.1	49.7	9533.8	288.5 3.8
N. Dak.	North Dakota	15.5	50.9	701.0	23.6	(D)	13.1	27.3	(D)	(D)	158.7	3.8
Ohio	Ohio	760.6	3490.0	49495.0	1709.0	2278.9	591.7	1781.0	1318.1	50.7	2179.9	62.6
Okla.	Oklahoma	154.0	567.6	6640.2	220.5	503.1	131.3	347.0	150.2	4.2	102.7	2.8
Oreg.	Oregon.	120.5	575.0	14513.9	289.7	137.8	71.0	285.3	459.8	16.9	1766.5	42.9
Pa.	Pennsylvania	787.2	3931.6	36106.9	1585.4	1456.0	664.0	2346.2	3766.6	145.0	9961.8	311.8
R.I.	Rhode Island	22.4	185.7	+ 510.5	102.4	14.2	17.3	83.3	163.3	6.9	1121.1	35.0
S.C.	South Carolina	224.2	1100.5	17262.3	564.2	1217.3				23.9		
S. Dak.	South Dakota	15.1	41.8	497.0	18.3		13.4	23.5	28.7	1.1	(D)	(D)
Tenn.	Tennessee	306.5	1552.1	29660.8	1015.2	1794.6	205.3	536.9	754.9	29.1	583.2	15.8
Tex.	Texas .--	1523.7	6009.0	58080.5	2173.2	7893.8	1325.6	3835.8	935.7	37.0	954.0	23.9
Utah	Utah	60.1	236.4	2874.2	99.5	(D)	50.3	136.9	234.4	8.5	719.2	21.6
Vt.	Vermont	10.3	74.0	907.6	38.5	42.5	7.2	35.5	268.3	10.2	253.5	7.9
Va .	Virginia --	219.3	996.2	10529.6	428.7	2221.4	183.4	567.5	1136.3	44.2	4953.1	147.7
Wash.	Washington	247.0	891.1	36256.0	385.8	(S)	123.3	505.3	607.1	23.8	3192.0	81.2
W. Va.	West Virginia	164.3	614.9	9 462.7	256.2	1017.5	132.0	358.7	126.6	5.0	1769.8	52.1
Wis.	Wisconsin	235.4	1135.3	12650.0	491.3	1459.6	192.3	644.0				25.3
Wyo.	Wyoming --	22.3	73.3	539.0	11.7	40.4	20.5	61.6	(D)	(D)	(D)	(D)
Ala.	Alabama	309.5	1602.8	21903.8	827.6	2550.2	234.8	775.2	507.4	19.3	1639.6	41.6
20	Food and kindred products	9.3	52.0	620.4	27.6	\cdots	7.1	24.4	29.7	1.2	132.0	3.5
22	Textile mill products .-.---	14.5	103.1	1878.3	74.5	(D)	8.1	28.6	27.8	. 9	54.2	1.6
23	Apparel and other textile products	3.4	26.3	392.6	18.7	1.8	2.1	7.6	1.6	. 1	(D)	(D)
24	Lumber and wood products	6.3	43.0	444.6	22.0	(D)	4.8	21.0	103.8	4.3	(D)	(D)
25	Furniture and fixtures .---	. 8	6.6	93.6	4.8		. 5	1.8				
26	Paper and allied products	76.8	300.5	2685.2	94.3	2355.3	67.6	206.2	(D)	(D)	1150.6	28.4
27	Printing and publishing ---	. 4	4.9	92.3	4.5		. 1	. 4	.			
28	Chemicals and allied products	58.9	300.2	5264.4	179.3	(D)	40.9	120.9	43.3	1.7	153.0	4.0
29	Petroleum and coal products	5.1	22.0	140.6	6.0		4.6	16.0	(D)	(D)	(D)	(D)
30	Rubber and miscellaneous plastics products.--	7.5	46.0	663.5	26.4	-	5.3	19.6	4.6	. 2	42.6	1.1
32	Stone, clay, and glass products	21.7	85.1	572.6	23.8	-	19.8	61.3	51.9	1.8	(D)	(D)
33	Primary metal industries .--	89.3	502.2	7369.1	270.2	115.1	64.2	232.0	115.7	4.9	35.9	. 9
34	Fabricated metal products .	5.7	38.2	530.5	24.8		3.9	13.4	3.4	. 1		
35	Machinery, except electrical	2.9	21.5	312.8	14.5		1.8	7.0	(D)	(D)	(D)	(D)
36	Electric and electronic equipment	2.2	19.3	365.3	15.6		1.0	3.7	(D)	(D)	(D)	(D)
37	Transportation equipment ----	3.3	22.6	368.5	15.3	(D)	2.0	7.3	32.0	1.2	(D)	(D)
39	Miscellaneous manufacturing industries	1.2	6.6	62.9	3.0		1.0	3.7				

See footnotes at end of table.

Industry Group for States: 1981 and 1980

1981-Con.										1980 purchased fuels and electric energy		Relative standard error of estimate (percent) for column'-							State and SIC code
Bituminous coal, lignite, and anthracite		Coke and breeze		Natural gas		Liquefied petroleum gases		Other fuels (million dollars)	Fuels not specified by kind (million dollars)	British thermal units (trillions)Cost (million dollars)									
Quantity (1,000 short tons)	Cost (million dollars)	Quantity (1,000 short tons)	Cost (million dollars)	Quantity (billion cubic feet)	Cost (million dollars)	Quantity (million pounds)	$\begin{array}{r} \text { Cost } \\ \text { (million } \\ \text { dollars) } \end{array}$												
L	M	N	0	P	0	R	S	T	u	\checkmark	w	D	G	I	K	M	Q	S	
52944.5	2185.7	14800.1	1618.7	5436.9	17423.4	2399.6	290.1	1459.0	1904.8	11946.4	$48 \quad 342.7$	1	1	2	1	2	1	4	
1643.2	78.3	993.7	105.5	131.4	462.7	33.6 1.9	4.0	25.6	38.3 2.9	321.7 35.7	1422.2	2	12	12 34	(x) ${ }^{2}$	(x)	${ }^{4}$	6	Ala. Alaska
908.7	31.4	-	-	31.1	92.7	5.3	. 7	5.1	15.5	69.5	253.9	5	8	10	15	(1	(4) 3	5	${ }^{\text {Ariz. }}$
325.6	14.9		-	101.9	290.9	12.8	1.5	14.6	32.1	166.9	563.3	2	4	10	1	1	3	14	Ark.
1520.9	74.6	57.5	6.9	334.8	1327.6	125.1	14.7	69.9	202.0	648.4	3706.6	6	2	15	9	17	3	18	Calif.
587.2	16.9	(D)	(D)	29.8 17.1	96.1 88.3	8.1 41.4 1	1.0 5.2	(D) 4.0	25.2	69.1 85.5	239.8 567.8	5 2	8 2	7	5 3	27 (X)	5 1	59	Colo.
(D)	(D)			12.1	48.3	14.2	1.7	(D)	(S)	50.2	261.1	5	4	21	4	(X)	7	4	Del.
(D)	(D)	(D)	(D)	. 2	. 9	(D)	(D)	(D)	1.0	1.2	9.1	9	8	38	(X)	(X)	2	(X)	D.C.
787.3	36.7	(D)	(D)	67.1	224.5	36.5	4.3	57.4	(D)	194.5	925.4	4	5	12	2	46	18	6	Fla.
1126.9	48.1	31.2	5.4	110.7	399.1	105.8 5.4	12.5	37.8 2.6	52.6	257.6 13.3	$\begin{array}{r}1111.7 \\ 76.5 \\ \\ \hline\end{array}$	2	3	15	$\begin{aligned} & 2 \\ & 8 \end{aligned}$	$\begin{gathered} 17 \\ 1 \times 1 \end{gathered}$	$\begin{array}{r} 4 \\ (x) \end{array}$		
			(D)	(D)	(D)	5.4 3.7	.3 .5	2.6 4.0	(D)	13.3 52.7	76.5 196.2	7	3 4 4	$\begin{aligned} & (X) \\ & 18 \end{aligned}$	$\begin{aligned} & 8 \\ & 6 \end{aligned}$	$\begin{aligned} & (X) \\ & (X) \end{aligned}$	$\begin{array}{r} (X) \\ 6 \end{array}$	8	Hawaii Idaho
3040.8	126.1	1934.7	271.1	276.7	959.7	62.7	6.5	35.3	84.6	582.1	2612.3	1	2	7	4	10	1	10	
2735.4	108.4	1057.2	123.7	239.1	729.4	117.1	10.5	31.9	20.2	472.7	1832.6	2	2	2	3	8	1	2	Ind.
1225.7	46.0	59.7	8.2	87.0	261.5	40.2	4.3	10.3	27.6	170.5	597.2	2	3	9	10	2	4	9	lowa
(D)	(D)	7.9	1.3	77.6	198.9	25.3	2.5	12.5	(D)	125.0	402.7	4	5	15	10	(X)	2	19	Kans.
967.5	40.2	(D)	(D)	59.3	193.4	306.8	52.7	16.2	(D)	224.7	1057.9	2	2	8	8	1	2	1	Ky.
(D)	(D)	(D)	(D)	$\begin{array}{r}609.9 \\ \hline\end{array}$	1298.3 4.1	108.1 33.2	10.4 4.1	96.6 11.7	(S) 20.6	835.9 88.7	2072.8 421.0	1 4	1	8 10	5 1	$\left({ }^{(x)}\right.$	1	2	La.
				47.0	189.9	32.5	3.7	7.6				5							
34.9	1.8	5.4	$\stackrel{9}{9}$	24.1	116.8	25.7	3.9	39.2	53.3	131.5	842.9	5	3	5	10 5	36 8	3	${ }^{6}$	Mass.
4041.6	197.8	1814.4	175.0	200.3	725.7	33.7	3.7	99.5	80.7	548.6	2378.8	1	1	5	7	3	18	22	Mich.
790.7	23.8	(D)	(D)	54.0	173.6	71.7	7.6	11.1	(D)	123.3	474.3	2	4	12	3	1	3	10	Minn.
(D)	(D)	9.3	. 6	83.4	218.4	16.4	2.0	20.3	(D)	130.3	456.7	6	4	26	5	(X)	4	14	Miss.
1303.6	48.8	104.2	12.7	73.0	242.0	95.8	11.8	10.1	32.2	180.6	689.8	5	7	11	6	10	11	8	Mo.
	(D)	(D)	(D)	13.9	48.1	5.3	. 7	7.8	7.8	42.8	112.0	5	15	26	5	(X)	6	39	Mont.
(D)	(D)	14.3	1.8	29.4	79.9	10.9	1.1	2.3	(D)	54.5	170.7	6	12	6	24	(${ }^{(1)}$	12	18	Nebr.
(D)	(D)			2.1	9.2	25.8	3.3	4.0	(D)	28.0	163.6	5	5	23	6	(X)	17	5	N.H.
7.2	(D)	72.4	10.7	77.5 5	348.1	90.9	10.3	87.4	106.0	291.0 16.4	1660.1	21	$\begin{array}{r}4 \\ 16 \\ \hline\end{array}$	6 31	$\left(x^{2}\right.$	39 (X)	${ }^{2} 10$	12	N.J.
2331.1	105.8	(D)	(D)	77.5 119.3	18.1 462.5	84.9	(D)	81.6	(D)	464.3		21 4	16 5	31 4	(X)	(X)	10 9	(X) 14	N. Mex. N.Y.
2097.3	97.5	(D)	(D)	73.1	309.0	143.1	17.7	20.6	(D)	294.4	1352.8	3	3	10	3	16	3	11	
(D)	(D)	(D)	(D)	2.2	6.6	7.3	. 8	(D)	7.0	16.4	40.6	45	12	(X)	1	(X)	48	4	N. Dak.
4975.7	187.2	2870.3	275.6	317.9	1060.7	114.2	13.0	42.6	88.5	781.9	3159.3	1	2	5	4	3	2	8	Ohio
258.8	9.4			105.1	280.6	6.6	. 8	14.1	35.3	153.4	464.7	8	3	47	4	1	10	12	Okla.
	(D)	(D)	(D)	33.0	147.1	29.1	3.5	36.5	30.5	122.8	517.7	3	3	15	5	(X)	17	9	Oreg.
3904.6	144.7	(D)	(D)	313.5	1136.1	154.7	18.4	135.0	(D)	830.8	3554.7	2	1	7	3	7	10	10	Pa .
		(D)	(D)	4.2	22.7	18.4	2.2	5.6	(D)	23.9	155.5		8	14	14	(X)	9	31	R.I.
2334.5	106.6	(D)	(D)	73.2	275.5	60.9	6.7	(S)	(D)	227.9	928.3	2	4	9	3	1	7	73	S.C.
3019.9	114.3	83.5	11.9	93.0	296.6	2.4 42.7	5.1	12.2	$\begin{array}{r}\text { 9 } \\ \hline 15\end{array}$	16.3	1335.5	20	35	13	(X)	(X)	26	41	S. Dak.
1760.5	77.5	255.3	34.5	1124.1	3268.0	50.8	5.8	213.7	175.3	1606.1	5059.2	1	3	16	1	16	1	12	Tenn.
64.2	2.1	(D)	(D)	35.8	83.9	6.5	. 6	3.3	(D)	58.9	195.6	5	7	33	24	16	6	27	Utah
($\begin{array}{r}\text { (D) } \\ 3004.6\end{array}$	(136)			1.4	8.1	5.6	. 7	1.8	(D)	11.6	67.8	4	5	15	6	(X)	2	6	Vt.
185.1	18.8	23.4	(D)	41.7 63	153.8	59.6	6.7	19.9	(D)	216.9	912.1	1	2	10	2	1	4	8	V .
1968.2	71.0	(D)	(D)	56.6	197.7	11.6	1.4	6.1	(D)	172.9	872.4 572.2	4	2	31	2	17 1	2	15	W. Va.
1909.7	90.8	66.9	11.4	113.5	436.2	69.5	7.6	30.3	21.5	240.1	994.4	2	4	28	3	3	5	4	Wis.
	(D)	(D)	(D)	17.5	51.3	(D)	(D)	1.0	3.2	19.8	57.2	10	14	(X)	(X)	(X)	13	(X)	Wyo.
1643.2	78.3	993.7	105.5	131.4	462.7	33.6	4.0	25.6	38.3	321.7	1422.2	2	3	12	2	6	4	6	Ala.
(D)	(D)			4.7	15.4	2.3	. 3	(D)	2.9	9.6	45.7	6	5	4	11	(X)	7	8	20
(D)	(D)			5.5	20.1	(D)	(D)	(D)	(S)	15.4	92.6	8	14	7	37	(\times)	5	(X)	22
(D)	(D)			1.2 1.4	4.4 5	4.4	(Z)	(D)	2.5	2.6	21.1	14	14	25	(${ }^{\text {(}}$)	(X)	23	1	23
				. 3	1.0	(D)	(D)	1.6	(D)	$\begin{array}{r}\text { 7. } \\ \hline\end{array}$	4.5	10	18	(${ }^{21}$	(X)	(X)	27	(X)	25
877.8	44.2			32.3	117.7	(D)	(D)	8.3	6.8	78.4	251.2	1	1	(X)	1	1	1	(${ }^{\text {) }}$	26
				(S)	(S)	(D)	(D)	(D)	(S)	5.5	4.4	15	15	(X)		($\mathrm{X}^{\text {) }}$	(X)	(${ }^{\text {(}}$	27
(D)	(D)			23.7 3 4	84.9	1.9	(D)	5.0	(D)	55.3	244.4	2	3	${ }^{6}$	1	(${ }^{\text {() }}$	1	32	28
		-	-	3.0 4.6	10.4 17.5	(D)	(D)	(D)	4.6 .9	4.8 9.0	17.0 44.0	2 3	3 4	(${ }^{(x)}$	(X)	(x)	3 3	(X)	29 30
(D)	(D)	(D)	(D)	13.0															
	(D)	(D)	(D)	35.6	117.7	12.7	(D)	1.2	(S)	30.5 91.8	109.4 450.1	23 2	$\begin{array}{r}33 \\ 1 \\ \\ \hline\end{array}$	28 3	(X)	(X)	37 1	(X)	32 33
		(D)	(D)	3.0	10.2	4.3	. 4	. 2	(D)	5.6	33.5	10	12	13	(X)	(\times)	14	16	34
(D)	(D)	(D)	(D)	. 8	2.8	. 5	. 1	(D)	1.9	2.8	17.1	11	30	(X)	(X)	(x)	14	25	35
		(D)		1.0	3.8	1.0	. 1	-	(S)	2.7	17.2	7	12	(X)	(X)	(X)	12	14	36
(D)	(D)		(D)	.9 .3	3.6 1.1	$\begin{aligned} & 1.2 \\ & \text { (D) } \end{aligned}$	(1	(D) (D)	1.1 .9	3.4	20.8 (D)	15	r 1	(x)	(x) (X)	(X) (X)	r 2	(23	37 39

Table 3. Purchased Fuels, by Type, and Electric Energy Used for Heat and Power by Major
[For meaning of abbreviations and symbols, see introductory text. For explanation of terms, see appendixes]

See footnotes at end of table.

Industry Group for States: 1981 and 1980-Con.

Table 3. Purchased Fuels, by Type, and Electric Energy Used for Heat and Power by Major
[For meaning of abbreviations and symbols, see introductory text. For explanation of terms, see appendixes]

$\begin{aligned} & \text { State } \\ & \text { and SIC } \\ & \text { code } \end{aligned}$	Geographic area and industry group	1981										
		Purchased fuels and electric energy		Electric energy			Purchased fuels		Fuel oil			
		Britishthermal units (trillions)	Cost (million dollars)	Purchased		Generated less sold (million kWh)	British thermal (trillions)	Cost(milliondollars)	Distillate		Residual	
				Quantity (million kWh)	Cost (million dollars)				Quantity (1,000 barrels)	$\begin{aligned} & \text { Cost } \\ & \text { (million } \\ & \text { dollars) } \end{aligned}$	Quantity (1,000 barrels)	Cost (million dollars)
		A	B	c	D	E	F	G	H	1	J	K
Colo.	Colorado-Con.											
34	Fabricated metal products	3.5	19.5	402.8	12.3	(D)	2.1	7.2	(D)	(D)	(D)	(D)
35	Machinery, except electrical -----	1.6	12.9	302.1	10.9		. 6	2.0	(D)	(D)		
36	Electric and electronic equipment	1.1	9.1	176.9	7.4		. 5	1.7	(0)	(0)))
38	Instruments and related products.--	2.9	15.9	289.5	9.9	(D)	1.9	6.0	(D)	(D)	(D)	(D)
39	Miscellaneous manufacturing industries	. 2	1.5	(D)	(D)		(D)	(D)	(D)	(D)	(D)	(D)
Conn.	Connectlcut	80.3	674.9	5875.9	370.9	128.8	60.2	304.0	948.5	38.3	3398.6	122.6
20	Food and kindred products	2.6	20.0	169.7	10.5	\cdot	2.0	9.5	52.6	2.2	42.5	1.5
22	Textile mill products.	4.3	29.8	168.1	10.8	. 3	3.7	18.9	73.1	2.8	129.5	4.8
23	Apparel and other textile products	. 4	3.9	44.1	2.8		. 2	1.1	(D)	(D)	2.7	. 1
24	Lumber and wood products.	. 2	1.5	(D)	(D)		(D)	(D)	(S)	(S)		
25	Furniture and fixtures ...-	. 6	4.3	32.0	2.0		. 5	2.3	(D)	(D)	(D)	(D)
26	Paper and allied products	7.0	51.0	331.4	19.5	(D)	5.8	31.5	(D)	(D)	648.2	22.4
27	Printing and publishing ..	1.9	17.8	178.6	11.9		1.2	5.9	27.4	1.1	14.5	. 5
28	Chemicals and allied products	10.8	73.5	463.8	25.3	(D)	9.3	48.2	43.2	1.7	(D)	(D)
29	Petroleum and coal products	1.0	4.5	21.5	1.3		. 9	3.2	(D)	(D)	(D)	(D)
30	Rubber and miscellaneous plastics products	3.2	29.1	288.1	18.8		2.2	10.3	34.7	1.4	48.5	1.8
32	Stone, clay, and glass products	3.6	19.9	96.5	5.9	(Z)	3.3	14.0	38.2	1.3	87.5	3.2
33	Primary metal industries .-	10.8	93.1	819.9	53.7	(D)	8.0	39.4	102.4	4.1	227.4	8.1
34	Fabricated metal products	8.2	75.9	682.3	45.5		5.9	30.4	154.8	6.6	193.7	6.6
35	Machinery, except electrical	7.0	66.1	662.9	42.5	(D)	4.8	23.6	99.6	4.0	157.4	5.8
36	Electric and electronic equipment	4.0	40.9	460.7	28.9	(D)	2.4	11.9	81.3	3.3	57.7	2.2
37	Transportation equipment --	10.8	104.6	1034.9	64.1	(D)	7.3	40.6	82.0	3.4	658.4	24.3
38	Instruments and related products.	2.4	20.9	240.0	14.4		1.5	6.5	34.5	1.4	27.6	1.0
39	Miscellaneous manufacturing industries	1.4	16.5	162.3	11.6		. 9	4.9	(D)	(D)	36.2	1.4
Del.	Delaware	47.7	285.5	2420.3	121.6	(D)	39.4	163.9	176.0	7.0	1936.5	62.6
20	Food and kindred products	3.7	25.2	216.5	12.7		3.0	12.5	36.4	1.4	224.4	6.1
22	Textile mill products ----	. 5	3.9	23.8	1.7	(D)	. 5	2.2	(D)	(D)	(D)	(D)
26	Paper and allied products	1.3	10.1	(D)	(D)		(D)	(D)	(S)	(S)	(D)	(D)
27	Printing and publishing ---	. 1.	1.0	11.9	. 78		. 1	${ }_{74}{ }^{3}$	(D)	(D)	(D)	(D)
28	Chemicals and allied products	21.4	118.8	950.3	44.0	(D)	18.2	74.7	60.7	2.5	(D)	(D)
30	Rubber and miscellaneous plastics products	1.6	12.1	121.8	6.9	(D)	1.2	5.3	(D)	(D)	(D)	(D)
32 34	Stone, clay, and glass products Fabricated	1.3 .2	4.7 1.3	6.1 13.4	. 8	:	1.3 .1	4.3 .5	(D)	(D)	(D)	(D)
36	Electric and electronic equipment	. 1	1.5	20.0	1.2		. 1	. 3	(D)	(D)	(D)	(D)
D.C.	District of Columbla	1.3	10.6	124.0	6.9	. 4	. 9	3.7	19.3	. 7	(D)	(D)
20 27	Food and kindred products Printing and publishing	. 4	2.4 7.0	19.2 90.9	.9 5.2	-	. 4	1.6 1.8	(D)	(D)	(D)	(D)
Fla.	Florlda	192.9	1127.4	9990.2	548.8	2444.7	158.8	578.6	726.0	29.0	7278.0	209.9
20	Food and kindred products	23.4	151.1	1337.5	79.4	(S)	18.9	71.7	178.1	6.8	908.5	26.2
22	Textile mill products.-	. 7	5.6	(D)	(D)		(D)	2.1			(D)	(D)
23	Apparel and other textile products	1.2	14.9	219.6	13.2		. 5	1.8	(D)	(D)	(D)	(D)
24	Lumber and wood products...-	3.4	26.2	260.4	15.1	(D)	2.5	11.2	38.3	1.6	(D)	(D)
25	Furniture and fixtures .-	. 6	6.1	74.0	4.5	-	. 4	1.6	(D)	(D)		
26	Paper and allied products	51.4	244.9	580.2	34.9	2246.5	49.4	210.1	29.4	1.1	5210.8	150.4
27	Printing and publishing --	1.8	23.9	355.2	21.5		. 6	2.4	(D)	(D)		
28	Chemicals and allied products	54.8	308.4	3282.7	151.1	163.5	43.6	157.3	162.4	6.2	756.4	21.8
30	Rubber and miscellaneous plastics products.	2.8	26.7	(D)	(D)		(D)	(D)	(D)	(D)	(D)	(D)
32	Stone, clay, and glass products	29.8	113.3	825.4	46.9	(D)	27.0	66.4	(S)	(S)	(S)	
33	Primary metal industries .------	5.1	39.0	489.6	26.7	(D)	3.4	12.3	(D)	(D)	(D)	(D)
34	Fabricated metal products -	3.0	28.5	373.8	22.8	(D)	1.7	5.7	4.0	(D) ${ }^{1}$	1.7	(Z)
35	Machinery, except electrical --	1.8	21.6	304.9	18.7	-	. 7	2.9	(D)	(D)	(D)	(D)
36	Electric and electronic equipment .	4.0	57.5	881.4	53.6	(S)	1.0	3.8	2.8	. 1	(D)	(D)
37	Transportation equipment	2.6	25.4	348.0	20.0	(D)	1.4	5.4	24.2	1.0	(D)	(D)
38	Instruments and related products	. 6	8.6	129.6	8.1	-	. 2	. 5	(D)	(D)	(D)	(D)
39	Miscellaneous manufacturing industries .----	1.0	5.6	(D)	(D)	-	(D)	(D)			(D)	(D)
Ga.	Georgla .-	254.1	1306.9	15730.3	598.3	2126.7	200.5	708.7	1014.4	37.2	3919.9	115.9
20	Food and kindred products --	18.5	101.4	1163.7	50.9	(D)	14.5	50.5	98.3	3.6	67.0	1.9
22	Textile mill products .--..--	48.8	266.6	3822.6	139.3	42.1	35.8	127.3	109.2	4.0	483.9	14.1
23	Apparel and other textile products	4.5	33.8	529.6	25.1		2.7	8.7	(D)	(D)	(S)	(S)
24	Lumber and wood products.	8.0	51.3	550.5	23.6	(D)	6.1	27.7	248.3	9.2	10.7	. 3
25	Furniture and fixtures ----	. 5	4.5	63.1	3.4	(D)	. 2	1.1				
26	Paper and allied products	71.6	312.2	2912.1	103.0	2039.6	61.7	209.2	119.2	4.6	2899.5	86.0
27	Printing and publishing ------	1.3	11.8	218.8	9.5	(2)	. ${ }^{6}$	1235				
28	Chemicals and allied products	39.2	192.1	1957.8	68.6	(D)	32.5	123.5	161.6	6.3	333.2	9.7
29 30	Petroleum and coal products -------------	2.6 4.0	11.6 27.4	42.6 472.3	28.2 18.	-	2.4	9.4 8.7	10.5 8.1	. 2	18.4	(D)

[^3]Industry Group for States: 1981 and 1980-Con.

Table 3. Purchased Fuels, by Type, and Electric Energy Used for Heat and Power by Major
[For meaning of abbreviations and symbols, see introductory text. For explanation of terms, see appendixes]

See footnotes at end of table.

Industry Group for States: 1981 and 1980-Con.

Table 3. Purchased Fuels, by Type, and Electric Energy Used for Heat and Power by Major
[For meaning of abbreviations and symbols, see introductory text. For explanation of terms, see appendixes]

State and SIC code	Geographic area and industry group	1981										
		Purchased fuels and electric energy		Electric energy			Purchased fuels		Fuel oil			
		British thermal (trilions)	$\begin{array}{r} \text { Cost } \\ \text { (million } \\ \text { dollars) } \end{array}$	Purchased		$\begin{array}{r} \text { Generated } \\ \text { less } \\ \text { sold } \\ \text { (million } \\ \mathrm{kWh}) \end{array}$		Cost (million dollars)	Distillate		Residual	
				Quantity (million kWh)	$\begin{array}{r} \text { Cost } \\ \text { (million } \\ \text { dollars) } \end{array}$				Quantity (1,000 barrels)	Cost (million dollars)	Quantity (1,000 barrels)	$\begin{array}{r} \text { Cost } \\ \text { (million } \\ \text { dollars) } \end{array}$
		A	B	c	D	E	F	G	H	1	J	K
lowa	lowa	165.1	659.2	7468.6	282.4	315.2	139.7	376.8	424.7	14.5	216.6	4.4
20 22	Food and kindred products Textile mill products .-----	$\begin{array}{r}66.2 \\ .1 \\ \hline 1\end{array}$	233.6	$\begin{array}{r}2158.4 \\ 6.9 \\ \\ \hline\end{array}$	83.6 .3	(D)	58.8	149.9 .2	303.5	9.9	45.4	1.1
23	Apparel and other textile products	. 2	1.3	19.4	. 9	-	. 1	. 4	-	-		
24	Lumber and wood products.	. 7	4.1	35.5	1.8		. 6	2.3	(D)	(D)		
25	Furniture and fixtures .-.-.-		2.3	27.3	1.3		. 3	1.0	(D)	(D)		
26	Paper and allied products	4.2	16.7	162.1	7.1	(D)	3.6	9.6	(D)	(D)	(D)	(D)
27	Printing and publishing --.----	1.2	8.3	142.4	6.1	(D)	25.7	2.2	(D)	(D)	(D)	(D)
28 30	Chemicals and allied products --.....------	30.4 6.5	111.1 29.2	1407.0 424.9	38.2 16.1		25.6	72.9 13.0	8.3	(D)	(D)	(D)
30 32	Rubber and miscellaneous plastics products Stone, clay, and glass products .--------	6.5 18.7	29.2 55.3	424.9 365.9	16.1 14.6	(D)	5.1 17.4	13.0 40.7	(D)	(D)	(D)	(D)
33	Primary metal industries	12.0	59.0	800.9	26.8	-	9.3	32.2	18.7	8		(D)
34	Fabricated metal products.	3.3	19.2	+ 243.3	10.8	(D)	2.4	$\begin{array}{r}8.4 \\ \hline 17\end{array}$	9.8	. 3	(D)	(D)
35	Machinery, except electrical	16.1	84.7	1185.1	53.0	(D)	12.0	31.7	54.6	2.2	(D)	(D)
$\begin{array}{r}36 \\ \hline\end{array}$	Electric and electronic equipment	3.1	20.7 6.4	307.1	$\begin{array}{r}13.5 \\ 3 \\ \hline 19\end{array}$	(D)	2.1	7.2	(D)	(D)	(D)	(D)
38	Instruments and related products.	. 1	. 9	14.1	. 7	-	. 1	. 2	(D)	(D)		
39	Miscellaneous manufacturing industries	. 7	4.5	72.9	3.0	-	. 4	1.6	(D)	(D)		
Kans.	Kansas	120.4	462.8	5466.5	211.2	75.3	101.7	251.6	80.1	2.9	59.1	1.5
20	Food and kindred products	12.9	55.9	763.0	30.4	(D)	10.3	25.4	6.3	. 3	(D)	(D)
23	Apparel and other textile products	. 4	2.9	45.5	2.2)	(2)					
24 26	Lumber and wood products -------	.4 1.7	2.1 7.4	87.4	(D)							
27	Printing and publishing .-.	. 9	8.1	144.6	6.8		. 4	1.3			(D)	(D)
28	Chemicals and allied products	31.0 32.7	111.3 1076	1293.3	42.7 318	18.1 (D)	26.6 29.7	68.7 75.7	(D)	(D)	21.4	(D)
30	Petrobeum and coal products -----------1--	4.4	21.4	291.0	11.1	(D)	3.4	10.2	-	-	(D)	(D)
32	Stone, clay, and glass products ----------	20.7	56.5	582.9	22.5	-	18.7	34.1	33.8	1.3	(D)	(D)
33	Primary metal industries .-..--	2.3	13.0	179.4	7.7		1.7	5.4	2.5	. 1	(D)	(D)
34	Fabricated metal products --	2.0	9.7	95.4	4.9	-	1.7	4.8	(D)	(D)	(D)	(D)
35	Machinery, except electrical .	3.3	22.6	348.2	16.6		2.1	6.0	2.1	. 1		
36 37	Electric and electronic equipment	1.6 5	10.3 30.5	199.5 494.3	8.1 19.2	-	4.9	12.2	(D)	(D)	(D)	(D)
38	Instruments and related products.	. 2	1.6	28.0	1.3	.	. 1	. 3	(D)	(D)	(D)	(D)
Ky.	Kentucky	224.1	1275.5	25300.8	814.5	(D)	137.7	461.0	373.7	13.8	288.7	8.5
20	Food and kindred products	11.7	46.2	445.7	17.1	(D)	10.1	29.1	56.7	1.7	17.6	. 5
21	Tobacco products ----	2.5	12.2	184.0	6.6	-	1.9	5.6	(D)	(D)	(D)	(D)
22 23	Textile mill products -----------	1.6 .6	8.6 6.0 7.4	107.5 129.3	4.4 5.5 5	-	1.3 .1	4.2	(D)	(D)	(D)	(D)
24	Lumber and wood products.-.---	1.0	7.4	118.3	5.2	(D)	. 6	2.2	(S)	(S)	-	
25	Furniture and fixtures	. 5	3.0	41.1	1.7	-	. 3	1.2	(D)	(D)	-	
27	Printing and publishing ------	1.6	10.0	168.0	6.3		1.0	3.7	(D)	(D)	11.4	4
28 30	Chemicals and allied products	68.6 3.7	459.9 24.6	12166.7 426.1	395.3 16.5	-	27.1 2.3	64.6 8.1	112.9 (D)	(D)	22.4	(D)
31	Leather and leather products .------------	. 4	2.1	(D)	(D)	-	(D)	(D)	(D)	(D)	(D)	(D)
32	Stone, clay, and glass products	7.8	32.6	204.9	9.5	(0)	7.1	23.0	32.2	1.2	(D)	(D)
33	Primary metal industries .-.	80.6	419.2	8227.7	235.0	(D)	52.5	184.2	62.3	2.4	(D)	(D)
34	Fabricated metal products	6.2	30.0	360.1	14.4	-	4.9	15.6	4.0	. 1	(D)	(D)
35	Machinery, except electrical ---	6.1	38.4	647.3	26.1	-	3.9	12.3	17.6	(D)	(D)	(D)
36	Electric and electronic equipment ---	5.9	34.3	579.9	23.5	-	3.9	10.8	(D)	(D)		
37	Transportation equipment -----	3.4	18.8	321.4	11.9	-	2.3	6.8	(D)	(D)	(D)	(D)
38 39	Instruments and related products.-.-.--	. 3	2.5 2.6	45.1 45.4	2.0 1.9	:	. 2	. 5	(D)	(D)	-	-
La.	Loulsiana	779.0	2458.9	25325.6	884.0	7838.3	692.6	1574.9	667.2	25.2	3642.8	105.0
20	Food and kindred products .-.-.	19.7	90.3	680.1	26.7	69.5	17.4	63.6	62.0	2.3	(D)	(D)
23	Apparel and other textile products	. 3	2.4	50.4	2.0	-	. 2	${ }^{2} .5$	(D)	(D)	(D)	(D)
24	Lumber and wood products.-	6.6	38.6	389.3	16.6	(D)	5.2	22.1	91.6	5.0	(D)	(D)
25 26	Furniture and fixtures --.--	71.1	.6 309.0	12.9 2600.3	102.3	1858.7	(Z) 62.1	206.7	(D)	(D)	1104.2	35.1
27	Printing and publishing	. 4	3.6	(D)	(D)	- ${ }^{-}$	(D)	(D)	- ${ }^{\text {i }}$	\bigcirc	(D)	(D)
28	Chemicals and allied products	459.4	1190.2	14102.6	473.1	2274.2	411.3	717.1	101.1	3.8	624.3	18.8
29	Petroleum and coal products -------------	146.4	627.8	4747.0	156.2	471.3	130.2	471.7	(D)	(D)	(D)	(D)
30	Rubber and miscellaneous plastics products.	1.7	4.0	105.3	3.0	-	${ }_{12}{ }^{4}$	1.0 35.6				
32	Stone, clay, and glass products ------------	13.2	47.5	293.5	11.9	-	12.2	35.6	(D)	(D)	(D)	(D)
33	Primary metal industries	51.8	85.8		(D)	(D)	(D)	(D)	5.9	. 2	(D)	(D)
34	Fabricated metal products	3.4	17.5	219.5	8.0	(D)	2.6	9.5	(D)	(D)	(D)	(D)
35	Machinery, except electrical -----	1.8	11.5	190.4	7.2	. 1	1.2	4.3	(D)	(D)	(D)	(D)
36 37	Electric and electronic equipment	1.1 2.5	7.6 19.4	172.8 303.8	13.8	(D)	. 1.5	1.9 6.0	20.8	. 7	(D)	(D)

Industry Group for States: 1981 and 1980-Con.

Table 3. Purchased Fuels, by Type, and Electric Energy Used for Heat and Power by Major
[For meaning of abbreviations and symbols, see introductory text. For explanation of terms, see appendixes]

$\begin{aligned} & \text { State } \\ & \text { and SIC } \\ & \text { code } \end{aligned}$	Geographic area and industry group	1981										
		Purchased fuels and electric energy		Electric energy			Purchased fuels		Fuel oil			
		Britishthermal units (trillions)	Cost (million dollars)	Purchased		Generated less sold (million kWh)	Britishthermal units (trillions)	$\begin{aligned} & \text { Cost } \\ & \text { (million } \\ & \text { dollars) } \end{aligned}$	Distillate		Residual	
				Quantity (million kWh) Cost (million dollars)					$\begin{array}{r} \text { Quantity } \\ (1,000 \\ \text { barrels) } \end{array}$	$\begin{aligned} & \text { Cost } \\ & \text { (million } \\ & \text { dollars) } \end{aligned}$	$\begin{gathered} \text { Quantity } \\ \text { (1,000 } \\ \text { barrels) } \end{gathered}$	Cost (million dollars)
		A	B	C	D	E	F	G	H	1	J	K
Maine	Maine	85.1	511.0	3268.6	152.2	3265.1	74.0	358.8	506.9	19.0	9524.7	299.4
20	Food and kindred products	4.3	26.5	200.4	9.9	(D)	3.6	16.6	$\begin{array}{r} 131.6 \\ \text { (D) } \\ \text { (D) } \\ 130.4 \end{array}$	$\begin{aligned} & 4.8 \\ & (\mathrm{D}) \\ & (\mathrm{D}) \\ & 5.0 \end{aligned}$	$\begin{array}{r} 249.6 \\ \text { (S) } \\ \text { (D) } \\ \text { (D) } \end{array}$	7.3(S)(D)(D)
22	Textile mill products ------	2.6	18.9	158.2	8.3	(D)	2.1	10.6				
23	Apparel and other textile products	. 3	1.8	17.6	1.0)	. 2	. 8				
24	Lumber and wood products.-	3.6	23.8	175.2 129	9.9	-	3.0	13.9				
25	Furniture and fixtures .-	. 2	1.1	12.9	. 7	-	(S)	(S)				
26	Paper and allied products	62.7	363.1	1950.1	83.1	3252.1	56.0		29.2	1.1	8479.7	267.6
27	Printing and publishing --.-	. 7	1.4	14.4	8		.1			(S)		
29 30	Petroleum and coal products --3--.-.-.-.--	. 1.0	3.2	7.9 75.7	3.8	-	. 7	$\begin{aligned} & 2.8 \\ & 4.1 \end{aligned}$	37.5	1.4		
31	Leather and leather products --------------	1.8	13.3	118.9	6.4	(D)	1.4	7.0	25.2	1.0	153.2	(D)
32	Stone, clay, and glass products	3.6	12.7	51.7	2.8 2.8	-	3.4	9.9 2.2	${ }_{13}(\mathrm{D})$	(D)		-
34 35	Fabricated metal products ---	. 6	5.0	70.1	2.8 3.5	-	. 5	2.2	$\begin{array}{r}13.7 \\ 9.7 \\ \hline\end{array}$. 6	12.2 8.4	4
36	Electric and electronic equipment	. 7	7.1	105.7	5.4	-	. 3	1.6	13.0	. 5	17.4	. 6
39	Miscellaneous manufacturing industries	. 2	. 8	4.7	. 3		. 2	. 6	(D)	(D)		
Md.	Maryland	134.8	687.9	8647.3	304.4	(D)	105.3	383.5	1005.3	39.9	2814.0	93.0
20	Food and kindred products	11.7.6	$\begin{array}{r}69.3 \\ 3.8 \\ \hline\end{array}$	516.431.0	27.31.8	(D)	9.9.5	42.02.0	90.411.5	3.6.4.8	471.9	13.6(D)
23	Apparel and other textile products											
24	Lumber and wood products	. 7	5.3	43.8	2.6		. 6	2.8	19.8		8.2	(D)
25	Furniture and fixtures --.--	13.9	41.3	$\begin{array}{r} 24.0 \\ 263.1 \end{array}$	1.210.9	(D)	13.0	30.4	104.4	4.5	(D)	
26	Paper and allied products											(D)
27	Printing and publishing ---	$\begin{array}{r} 1.7 \\ 16.1 \\ 2.0 \\ 3.2 \\ .2 \end{array}$	14.682.3	191.4841.2	10.2	(D)	13.013.2	4.4 55.1	15.3	. 7	3.0	${ }^{18} 1$
28	Chemicals and allied products				27.2			55.1	79.4	3.2	538.4	18.1(D)(D)(D)
29	Petroleum and coal products		10.7	37.6	1.7	(D)	1.9	9.0	39.5	1.5	(D)	
30	Rubber and miscellaneous plastics products		17.7	304.7	13.1	(D)	2.2	4.5	39.8	1.4	(D)	
31	Leather and leather products .-.----		1.4	10.9	. 5	(Z)	. 2	. 9	(D)	(D)	(D)	
32	Stone, clay, and glass products	21.0	$\begin{array}{r} 69.0 \\ 273.9 \end{array}$	638.34563.4	$\begin{array}{r} 20.8 \\ 132.9 \end{array}$	(D)	18.834.1	$\begin{array}{r} 48.2 \\ 141.1 \end{array}$	274.0	11.37.6	(D)	(D)
33	Primary metal industries										(D)	
34	Fabricated metal products -	3.1	19.8	200.6	132.9	(D)	2.4	10.4	19.1	. 8	29.4	. 9
35	Machinery, except electrical	3.2	22.2	304.1	13.317.1	-	$\begin{aligned} & 2.2 \\ & 1.8 \end{aligned}$	8.98.0	11.329.5	1.2	39.7	1.2
36 37	Electric and electronic equipment	3.0	25.1	352.9								(D)
38	Instruments and related products	3.4 .2	1.9	249.2 30.5	10.4 1	(D)	2.5 .1	11.5	(D)	(D)	158.4	
Mass.	Massachusetts	126.6	1000.0	8158.3	542.2	340.0	98.7	457.8	1309.9	50.7	6160.8	192.1
20	Food and kindred products	10.3	74.069.1	4887.7384.9	$\begin{aligned} & 33.4 \\ & 26.6 \end{aligned}$		8.69.4	40.6	62.452.1	2.5	741.4	20.7
22	Textile mill products					(D)					451.9	14.2
23	Apparel and other textile products	1.7	15.1	159.6	10.2	(D)	1.1	5.0	29.7	1.1	9.7	. 3
25	Furniture and fixtures	. 7	5.7	34.0	2.6	(D)	. 6	3.2	39.4	1.5	10.9	. 4
26	Paper and allied products	22.6	145.3	871.4	55.4	175.7	19.7	89.9	192.6	6.7	1807.9	57.0
27	Printing and publishing _	3.3	30.8	302.1	20.7	-	2.3	10.1	47.4	1.8	28.7	. 8
28	Chernicals and allied products	12.6	86.4	581.0	35.9	(D)	10.7	50.4	89.5	3.5	826.7	26.4
29	Petroleum and coal products	1.6	9.2	37.7	2.8	(D)	1.5	6.4	16.7	. 7	(D)	(D)
30	Rubber and miscellaneous plastics products	7.5	87.6	1049.9	68.0	(D)	4.0	19.6	60.8	2.3	250.9	8.2
31	Leather and leather products .------	1.9	14.0	87.7	6.3	(D)	1.6	7.6	39.9	1.5	157.2	4.6
32	Stone, clay, and glass products .	5.9	36.4	209.7	13.9		5.1	22.5	107.0	4.4	206.1	6.8
33	Primary metal industries -------	5.6	50.1	458.2	30.5	(S)	4.0	19.6	87.7	3.6	145.0	4.8
34	Fabricated metal products	10.8	81.5	625.5	40.7	(D)	8.7	40.8	233.3	9.2	219.3	6.9
35	Machinery, except electrical	10.2	93.1	945.1	63.0	(D)	7.0	30.1	102.5	4.0	234.6	7.4
36	Electric and electronic equipment	8.8	93.8	987.7	67.8	(D)	5.5	26.0	69.6	2.8	419.6	12.5
38	Instruments and related products.	5.5	54.4	543.0	36.6	(D)	3.6	17.9	22.1	. 9	295.9	10.0
39	Miscellaneous manufacturing industries	2.4	22.7	208.4	14.3	(D)	1.7	8.4	32.8	1.3	51.4	1.7
Mich.	Michlgan --	506.5	2522.9	24451.7	1170.2	2414.6	423.1	1352.7	662.6	24.9	1769.6	45.5
20	Food and kindred products	24.5	119.5	920.7	47.6	27.5	21.4	71.9	47.2	2.0	210.1	6.2
23	Apparel and other textile products.	1.8	11.9	139.7	7.3		1.3	4.6	(D)	(D)	(D)	(D)
24	Lumber and wood products ------	5.0	26.0	245.3	12.5	(D)	4.2	13.5	5.9	(D)		
25	Furniture and fixtures ------	3.7	24.4	274.0	14.4	(D)	2.7	10.0	(D)	(D)		
26	Paper and allied products .-	53.0	205.3	1372.4	62.5	1186.9	48.3	142.8	13.5	. 5	249.5	5.0
27	Printing and publishing .-	2.8	20.9	248.7	13.7	(D)	1.9	7.2	(D)	(D)	-	
28	Chemicals and allied products	56.1	226.8	2136.1	87.3	(D)	48.8	139.5	50.0	1.8	(D)	(D)
29	Petroleum and coal products	6.9	34.3	280.4	12.5	-	5.9	21.8	(D)	(D)	(D)	(D)
30	Rubber and miscellaneous plastics products.	6.1	46.8	601.6	32.8	(D)	4.0	14.0	(D)	(D)		
32	Stone, clay, and glass products ------------	44.5	149.0	901.6	44.0	(D)	41.4	105.0	35.8	1.4	-	
33	Primary metal industries	148.5	695.9	5507.3	251.8	(D)	129.7	444.1	117.1	4.6	272.3	7.7
34	Fabricated metal products	30.6	197.5	2218.4	115.4	9.1	23.0	82.1	48.4	2.0	132.0	4.1
35	Machinery, except electrical	24.2	162.3	1807.1	98.4	(D)	18.0	63.9	(D)	(D)	28.9	. 9
36	Electric and electronic equipment	5.4	35.8	728.2	21.6	-	4.0	14.2	1.7	(1		(D)
37	Transportation equipment ------	90.3	543.4	7099.3	334.2	(D)	66.1	209.2	(D)	(D)	(D)	(D)
38	Instruments and related products	1.2	8.9	106.1	5.9	(D)	8	3.0	(D)	(D)	(D)	(D)
3	Miscellaneous manufacturing industries	1.4	8.8	101.0	4.9	(D)	1.0	3.9			(D)	(D)

See footnotes at end of table.

Industry Group for States: 1981 and 1980-Con.

Table 3. Purchased Fuels, by Type, and Electric Energy Used for Heat and Power by Major
[For meaning of abbreviations and symbols, see introductory text. For explanation of terms, see appendixes]

$\begin{aligned} & \text { State } \\ & \text { and SIC } \\ & \text { code } \end{aligned}$	Geographic area and industry group	1981										
		Purchased fuels and electric energy		Electric energy			Purchased fuels		Fuel oil			
		$\begin{gathered} \text { British } \\ \text { thermal } \\ \text { units } \\ \text { (trilions) } \end{gathered}$	$\begin{aligned} & \text { Cost } \\ & \text { (million } \\ & \text { dollars) } \end{aligned}$	Purchased		Generated sold $\left(\begin{array}{c}\text { (milion } \\ \mathrm{kWh})\end{array}\right.$	$\begin{gathered} \text { British } \\ \text { thernal } \\ \text { units } \\ \text { (trillions) } \end{gathered}$	$\begin{gathered} \text { Cost } \\ \text { (million } \\ \text { dollars) } \end{gathered}$	Distillate		Residual	
				$\begin{gathered} \text { Quantity } \\ \text { (million } \\ \text { kWh) } \end{gathered}$	$\begin{gathered} \text { Cost } \\ \text { (million } \\ \text { dillars) } \end{gathered}$				Quantity (1,000 barrels)	$\begin{aligned} & \text { Cost } \\ & \text { Cillion } \\ & \text { dollars) } \end{aligned}$	Quantity (1,000 barrels)	$\begin{aligned} & \text { Cost } \\ & \text { (million } \\ & \text { dollars) } \end{aligned}$
		A	B	c	D	E	F	G	H	1	J	K
Minn.	Minnesota.-.	119.1	535.2	6659.5	255.7	592.7	96.3	279.5	275.3	10.3	633.8	17.1
$\begin{aligned} & 20 \\ & 22 \\ & 20 \end{aligned}$	Food and kindred products Textile mill products	$\begin{array}{r} 42.9 \\ .5 \\ .7 \\ 4.5 \\ .4 \end{array}$	$\begin{array}{r} 138.2 \\ 2.7 \\ 5.3 \\ 26.3 \\ 26.9 \\ 2.5 \end{array}$	$\begin{array}{r} 1300.9 \\ 33.5 \\ 85.1 \\ 350.6 \\ 30.6 \end{array}$	$\begin{array}{r} 47.5 \\ 1.5 \\ 3.8 \\ 13.3 \\ 1.4 \end{array}$	$\begin{array}{r} 100.7 \\ - \\ \text { (D) } \end{array}$	$\begin{array}{r} 38.5 \\ .4 \\ (S))^{3} \\ 3.3 \\ \hline \end{array}$	$\begin{array}{r} 90.7 \\ 1.3 \\ (\mathrm{~S}) \\ 13.5 \\ 1.5 \end{array}$	78.5 .4	(2.9)	154.4	(D)
23 24	Apparel and other textie products								30.8	1.2	11.8	
25	Furniture and fixtures -.--------								1.5	$\stackrel{1}{.}$	1.8	. 4
26	Paper and allied products	21.7	${ }^{89.8}$	${ }^{856.5}$	$\begin{array}{r}35.4 \\ 10.5 \\ 8.4 \\ \\ \hline 18.4\end{array}$	458.4	$\begin{array}{r}18.7 \\ 1.8 \\ 4.2 \\ 2.7 \\ \hline\end{array}$	54.36.310.9	$\begin{array}{r}11.6 \\ 5.6 \\ 7.8 \\ \hline \text { (1) }\end{array}$	$\begin{array}{r} 5 \\ .2 \\ 3 \\ (0) \end{array}$	$\begin{array}{r} 219.6 \\ (D) \\ \text { (D.0 } \\ \text { (D) } \\ \text { (D) } \end{array}$	5.7(D)((D)
$\begin{array}{r}27 \\ 28 \\ \hline\end{array}$	Printing and publishing -------	2.7 5.0 1		252.5 230.2		(D)						
29 30	Petroleum and coal products ------------ Rubber and miscellaneous plastics products	4.3 1.9	23.4 15.0	473.2 305.5	14.6 12.2	(D)	2.7	8.7 2.8	(D)			
31	Leather and leather products	$\begin{array}{r} .3 \\ 10.5 \\ 4.6 \\ 5.7 \\ 7.4 \end{array}$	1.5	16.7494.9	17.7		. 3	32.9	(D)	(D)	(D)	(D)
32	Stone, clay, and glass producis		49.9				8.8		54.7			
33 34	Primary metal industries --- Fabricated metal products.		25.3 32.0	387.3 422.6	14.4 17.0	(D)	3.2 4.2	10.9 15.0 15	(D)	${ }^{\text {(D) }}$	36.3	.9
35	Machinery, except electrical --		49.8	852.7	34.6	(D)	4.5	15.2	24.5	1.0	26.3	. 8
-36	Electric and electronic equipment	$\begin{aligned} & 2.3 \\ & 1.4 \\ & 1.6 \end{aligned}$	$\begin{array}{r} 15.2 \\ 6.7 \\ 10.8 \\ 4.0 \end{array}$	$\begin{array}{r} 239.0 \\ 5.8 \\ 20.5 \\ 55.4 \end{array}$	$\begin{aligned} & 9.6 \\ & 2.4 \\ & 8.0 \\ & 2.4 \end{aligned}$	(Z)	$\begin{array}{r} 1.5 \\ 1.2 \\ .9 \\ .4 \end{array}$	$\begin{aligned} & 5.6 \\ & 4.3 \\ & 2.9 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 14.8 \\ & \text { (D) } \\ & \text { (D) } \end{aligned}$	$\begin{gathered} 6 \\ (0) \\ (0) \\ (0) \\ (0) \end{gathered}$	$\begin{aligned} & \text { (D) } \\ & (\mathrm{D}) \\ & (\mathrm{D}) \end{aligned}$	(${ }_{\text {(})}^{\text {(D) }}$
38	Instruments and related products----											
39	Miscellaneous manufacturing industries											
Miss.	MIssisslppl ---	123.0	537.0	6091.9	258.1	(D)	102.2	278.9	223.4	8.0	247.1	6.7
20	Food and kindred products .	$\begin{array}{r} 7.8 \\ 1.6 \\ 10.3 \\ 10.7 \end{array}$	$\begin{aligned} & \begin{array}{c} 12.8 \\ 10.6 \\ 11.0 \\ 78.3 \end{array} \end{aligned}$	$\begin{array}{r} 489.5 \\ 147.7 \\ 172.3 \\ 1025.8 \end{array}$	$\begin{array}{r} 22.2 \\ 6.6 \\ 8.5 \\ 48.2 \end{array}$	(D)	${ }_{1}^{6.1}$	4.0	(D)	(D)		(D)(D)(D)
22 23											(D)	
24 25	Lumber and wood products.--					(D)	7.2 .5	30.1 1.9	${ }^{64.3}$	2.9		
26	Paper and allied products	$\begin{array}{r} 27.4 \\ .5 \\ 24.2 \\ 23.3 \\ \hline 1.8 \end{array}$	$\begin{array}{r} 108.0 \\ 3.9 \\ 191.8 \\ 30.4 \\ 14.0 \end{array}$	$\begin{array}{r} \text { (D) } \\ \text { (D) }) \\ 1505.7 \\ 377.1 \\ 222.6 \end{array}$	$\begin{array}{r} \text { (D) } \\ \text { (D) } \\ 55.3 \\ 9.5 \\ 10.5 \end{array}$	(D)	$\begin{array}{r} \text { (D) } \\ \text { (D) } \\ \text { 19.19.0 } \\ 1.1 \end{array}$	$\begin{array}{r} \text { (D) } \\ \text { (D) } \\ 426.5 \\ 20.9 \\ 3.5 \end{array}$	$\begin{aligned} & \text { (D) } \\ & \text { (D) } \\ & \text { (D) } \\ & \text { (D) } \end{aligned}$	(D)(0)(0)(D)	(D)	(D)
27 28	Printing and publishing --------											(D)
29	Petroleum and coal products -------					(D)						
30	Rubber and miscellaneous plastics products.											
32 33	Stone, clay, and glass products Primary metal	$\begin{array}{r} 12.3 \\ 2.8 \\ 2.1 \\ 1.8 \\ 2.2 \\ 1.6 \\ .6 \end{array}$	$\begin{array}{r} 48.2 \\ 15.9 \\ 15.9 \\ 13.3 \\ 16.6 \\ 14.4 \\ 14.4 \\ 4.1 \end{array}$	$\begin{aligned} & 327.2 \\ & 201.7 \\ & 193.2 \\ & 211.5 \\ & 219.5 \\ & 279.6 \\ & 31.0 \\ & 62.4 \end{aligned}$	$\begin{array}{r} 15.4 .4 \\ 9.1 \\ 9.5 \\ 9.7 \\ 92.4 \\ 12.3 \\ 2.7 \end{array}$:	11.12.11.41.11.31.3.5.4	$\begin{array}{r} 32.8 \\ 6.8 \\ 5.5 \\ 3.6 \\ 4.2 \\ 2.1 \\ 1.4 \end{array}$	$\begin{aligned} & \text { (D) } \\ & \text { (D) } \\ & \text { (D.4 } \\ & \text { (D) } \end{aligned}$	$\begin{gathered} (\mathrm{D}) \\ (\mathrm{D}) \\ (\mathrm{D}) \\ \cdot 1 \\ (\mathrm{D}) \end{gathered}$	$\begin{aligned} & (0.1 \\ & 4.1 \\ & 4.1 \\ & \text { (D) } \end{aligned}$	(D)
34	Fabricated metal products-											
35 36	Machinerr, except electrical					(D)						
37	Transportation equipment ----.-					(D)						
39	Miscellaneous manutacturing industries											
Mo.	Mlssouri	166.8	756.5	10939.9	380.6	156.1	129.5	375.9	235.6	9.6	364.3 8.8	
20	Food and kindred products	$\begin{array}{r} 27.7 \\ .3 \\ 1.4 \\ 1.5 \\ .8 \end{array}$	115.71.59.59.59.05.4	$\begin{array}{r} 1029.6 \\ 14.7 \\ 102.5 \\ 90.8 \\ 64.8 \end{array}$	43.2 .7 4.4 4.3 3.1	152.7	$\begin{array}{r}24.2 \\ \text { 1.3 } \\ 1.1 \\ 1.2 \\ \text { \% } \\ \hline 8\end{array}$	$\begin{array}{r} 72.5 \\ 5.8 \\ 5.1 \\ 4.7 \\ 2.3 \end{array}$	$\begin{array}{r} 30.2 \\ \text { (D) } \\ \text { (S) } \\ \text { (D) } \end{array}$	$\begin{aligned} & 1.2 \\ & (\mathrm{D})^{-} \\ & \text {(S) } \\ & \text { (D) } \end{aligned}$		1.6
${ }_{23}$	Apparel and other textie eproducts										(D)	(D)
24	Lumber and wood products ---											
25	Furniture and fixtures --------											
26 27	Paper and allied products	$\begin{array}{r} 3.2 \\ 2.2 \\ 22.4 \\ 22.4 \\ 5.9 \\ 2.9 \end{array}$	$\begin{aligned} & 18.9 .9 \\ & \begin{array}{c} 16.5 \\ 93.9 \\ 19.6 \\ 21.3 \end{array} \end{aligned}$	$\begin{array}{r} 274.9 \\ 274.6 \\ 1103.7 \\ 140.4 \\ 385.8 \end{array}$	$\begin{array}{r} 11.5 \\ 12.3 \\ 37.7 \\ 57.6 \\ 16.0 \end{array}$	(D)	$\begin{array}{r} 2.2 \\ 1.3 \\ 18.7 \\ 5.4 \\ 1.6 \end{array}$	$\begin{array}{r} 7.4 .4 \\ 4.2 \\ 56.2 \\ 14.0 \\ 5.0 \end{array}$	$\begin{array}{r} \text { (D) } \\ \text { (D) } \\ \text { (D) } \\ \text { (D) } \end{array}$	$\begin{aligned} & \text { (D) } \\ & \text { (D) } \\ & \text { (D) } \\ & \text { (D) } \end{aligned}$	(D)(0)(0)(0)	(D)(D)(D)(D)
27 28	Printitg and publishing -------											
$\stackrel{29}{ }$	Petroleum and coal products ----											
30	Rubber and miscellaneous plastics products.											
31	Leather and leather products --	r4323.427.47.83.4	$\begin{array}{r}\text { 6. } \\ \hline 113.8 \\ 153.8 \\ 47.7 \\ 4.4 \\ \hline\end{array}$	101.7880.7883.1.B63.3618.9386.0	4.726.5204.26.416.4		r40.440.214.15.72.2	1.587.349.620.97.9	3.687.515.315.310.811.3	33.7.6.4.4	(0)(0)(0)(0)	(D)(D)(D)(D)(D)
${ }_{33}^{32}$	Stone, clay, and glass producis					(D)						
34	Fabricated metal products											
35	Machinery, except electrical --.		24.4		16.6							
${ }_{37}$	Electric and electronic equipment ---	5.2	35.8 54.6	635.6	25.7	(D)		10.1 22.1	3.2 13.9	. 1	33.4	(D)
38	Transporation equipment --i----	$\begin{array}{r}9.5 \\ \hline 8\end{array}$	54.6 3.9	921.0 61.5	32.5 2.7	(D)	$\begin{array}{r}6.3 \\ \hline\end{array}$	22.1 1.2	13.9	${ }^{6}$	(D)	(D)
39	Miscellaneous manutacturing industries .-----------------------	. 9	5.4	60.1	2.5		. 7	2.8	(D)	(D)	(D)	(D)
Mont.	Montana -	44.4	139.6	4243.6	51.6	(D)	29.9	88.0	58.5	2.4	26.6	. 7
20	Food and kindred products	3.9	${ }_{1}^{13.5}$	${ }^{95.2}{ }_{3}$	2.4	(D)	3.5	${ }^{11.1}$	(D)	(D)	-	
24		3.6	18	343.6	7.8	:	2.4	10.5	53.0	2.2	(D)	(D)
${ }_{28}^{27}$	Printing and publishing -------			13.8	.3			. 2				
28	Chemicals and allied products .-	2.2	9.9	178.7	4.6	-	1.6	5.3				
29	Petroleum and coal products --------------------------			368.2		-		14.3	-		(D)	(D)
${ }^{36}$	Machiner, except electrical -------------------------------------	(z)	. ${ }_{2}$		(i)	-	(2)	(i)	-	-	:	
	\| Transporation equipment ------------------------------------							(z)				

See footnotes at end of table.

Industry Group for States: 1981 and 1980-Con.

1981-Con.										1980 purchased fuels and electric energy		Relative standard error of estimate (percent) for column'-							State and SIC code
Bituminous coal, lignite, and anthracite		Coke and breeze		Natural gas		Liquefied petroleum gases		Otherfuels(milliondollars)		British thermal units (trillions) Cost (million dollars)									
Quantity $(1,000$ shor tons)	$\begin{aligned} & \text { Cost } \\ & \text { (million } \\ & \text { dollars) } \end{aligned}$	$\begin{gathered} \text { Quantity } \\ (1,000 \\ \text { shor } \\ \text { tons) } \end{gathered}$	$\begin{aligned} & \text { Cost } \\ & \text { (million } \\ & \text { dollars) } \end{aligned}$	Quantity $\left.\begin{array}{c}\text { (bilion } \\ \text { cubic } \\ \text { feet) }\end{array}\right)$	Cost (million dollars)	Quantity (million pounds)	Cost (million (million dollars) dollars												
L	M	N	\bigcirc	P	Q	R	S	T	u	v	W	D	G	1	K	M	0	S	
790.7	23.8	(D)	(D)	54.0	173.6	71.7	7.6	11.1	(D)	123.3	474.3	2	4	12	3	1	3	10	Minn.
478.8	10.1	(D)	(D)	21.6 .3	63.2 .9	37.4	$\begin{aligned} & 3.9 \\ & \text { (D) } \end{aligned}$	$\begin{aligned} & 2.8 \\ & \text { (D) } \end{aligned}$	(D)	45.2 .6	122.4 2.6	6 3	7 4	16 27	(x) ${ }^{9}$	$\mathrm{c}^{2}{ }^{2}$	9 6	19	20
			-	(D)	(D)	(D)	(D)	(D)	(S)	.6 .6	2.6 3.9	-38	(${ }^{4}$	27 ($)$	(x)	(x)	(X)	(X)	22 23
				1.9 .2	7.7 .7	2.5 .4	(Z) ${ }^{3}$	(D)	(D)	4.6 .5	21.8 2.4	12 17	13 21	42 51	(X) 21 (X)	(X)	22 28	55 53	24 25
$\begin{array}{r} 267.1 \\ \text { (D) } \end{array}$	11.6			9.9	35.8	1.5	. 2	(D)	(D)	22.4	86.5	3	2	7	2	1	3	25	26
	11.6	-	-	9.9	35.8 2.8	(D)	(D)	(b)	2.2	2.8	14.8	10	11	38	(${ }^{2}$)	(X)	13	(X)	27
	(D)			1.0	3.3	1.3	- 1	(D)	5.0	4.4	15.3	5	5	20	5	(X)	9	49	28
			-	1.9 .5	5.7 1.4	(D)	(D)	(D)	1.6	4.7 2.3	18.2	19	12 18	(X)	(x)	(x) (X) (13 23	(X) 31 31	29 30
(D) (D) (D)				. 3	. 8		-	-	(Z)	. 4	1.4								
	(D)	(D)	(D)	5.2	17.7	(D)	(D)	$-$	2.6	(D)	(D)	10	16	43	(${ }_{\text {(x) }}($	(X)	9 1	(X)	31 32
		(D)	(D)	2.1	6.7	7.9	(1)	. 1	2.9	4.5	21.1	10	11	(x)	(${ }^{\text {(})}$	(x)	7	3	33
	$\begin{aligned} & \text { (D) } \\ & \text { (D) } \end{aligned}$	(D)	(D)	(D)	(D)	(D)	(D)	1.2 .6	4.7 2.4	5.9	29.3 45.5	5 5	12 7	39 15	5 1	(X) (X)	(X)	(X)	34 35
				$\begin{aligned} & 1.1 \\ & \text { (D) } \end{aligned}$	(D)	2.0	(D)	(D)	.3 1.1	2.6 1.6	13.7 6.1	$\begin{array}{r}4 \\ 4 \\ \hline\end{array}$	8	14 (X)	(x) (${ }^{(x)}$)	(X) (${ }^{\text {(}}$ ((X)	$\left(x^{3}\right.$	36 37
				- 9	2.5	(D)	(D)	(D)	(Z)	1.5	8.8	8	13	(X)	(x)	(x)	14	(\times	38
				. 3	1.1	(D)	(D)	(D)		. 7	3.6	32	36				31	(X)	
(D)	(D)	9.3	. 6	83.4	218.4	16.4	2.0	20.3	(D)	130.3	456.7	6	4	26	5	(X)	4	14	Miss.
				3.4 1.0	10.8 3.6	(D)	(D)	3.7	(D)	8.8 1.5	42.3 8.7	23 3	16 4	(X)	$\left(\begin{array}{l}(X) \\ (X)\end{array}\right.$		9 4 1	(${ }^{(x)}$	20 22
				. 3	1.2	. 2	(Z)	(D)	. 9	1.3	8.9	9	11	(X)	(X)	(X)	11	30	23
				4.8	19.6	(D)	(D)	6.0	1.4	11.8	64.5	24	19	65	(x)	(${ }^{(1)}$	11	(X)	24
				. 3	1.0	(D)	(D)	(D)	. 6	1.0	6.5	6	9	(X)	(\times)	(X)	8	(X)	25
(D) 				23.5 (S)	81.9 (S)	(D)	(D)	(D)	(S)	29.0 .5	88.4 3.3	(X)	(X)	(X)	(X) (X)	(X)	(${ }^{7}$	$\left(\begin{array}{l}\text { (}) \\ \text { (}\end{array}\right.$	26 27
	(D)	(D)	(D)	16.6	40.4	(D)	(D)	(D)	(S)	25.1	83.0	3	8	(X)	(x)	(X)	8	(X)	28
				20.9	18.4	(D)	(D)	(D)	1.0	23.8	26.7	6	19	(x)	(x)	(x)	21	(\times	29
				. 8	2.6	. 2	(Z)	(D)	. 6	1.7	11.4	3	10	(X)	(X)	(X)	8	27	30
	(D)	(D)	(D)	6.4	21.2	(D)	(D)		9.2	14.5	47.0	10	10	(X)	(X)	(${ }_{(1)}$	10	(${ }^{\text {(})}$	32
		(1.4 1.0	4.5 3.4	(D)	(D)	(D)	2.2 .2	2.7 2.2	13.4 12.4 1	13 14 14	14 25	(X)	(X)	(${ }^{(x)}$	20 19	(X)	33 34
		(D)	(D)	. 8	3.3 1	1.1	1	(D)	. 8	1.8	11.2	19	21	(1	(x) 1 1	(x)	- 8	1	35
		-		1.2 .5	4.2 1.8	(D)	(D)	(D)	(z)	2.1 1.5	13.4 10.5	5	6	(x)	(x)	(x)	${ }_{6}$	(${ }_{(1)}$	36 37
				. 4	1.8 1.2	(D)	(D)	(D)	$\begin{array}{r}\text { (2) } \\ . \\ \hline\end{array}$	1.5 .6	10.5 3.3	2 3	3	(X)	(X)	(X)	1 4	(${ }^{(x)}$	37 39
	48.8	104.2	12.7	73.0	242.0	95.8	11.8	10.1	32.2	180.6	689.8	5	7	11	6	10	11	8	Mo.
(D)	(D)			15.0	47.6	7.9	1.0	3.1	(D)	32.1 .3	99.0 1.1	6 45	31 41	(40	11 (X)	(X)	24 (X)	38 (X)	20
		-	-	(D)	(D)	(D)	(D)	2	(b)	1.2	6.1	25	41 11	(X)	(x)	(X)	(${ }^{(x)}$	(X)	23
	-	-		(S)	(S)	(D)	(D)	(D)	(S)	1.8	9.5 5.1	21 9	18 12	(X) (X)	(X)	(X)	(X)	(X)	24 25
121.5 (D)																			
		-		1.0	3.6	(D)	(D)	(D)	3.5	3.4	17.9	8	5	(X)	(X)	(X)	11	(${ }^{\text {) }}$	26
	4.4	-		11.6	2.6 39.2	1.4	(D)	2.3	(D)	2.3 27.4	14.8	13	10 7	(${ }^{(x)}$	(X)	(${ }^{\text {(}}$	14	1	27
	(D)	-	-	11.8 5	39.2 15.3	(D)	(D)	(D)	(S)	27.4 6.6	18.5 18.7	30 20 11	20	13 1	(X)	(x^{1}	16	((1) $^{\text {) }}$	28 29
	(D)			1.2	4.1	1.1	$\stackrel{1}{ }$	(D)	$\stackrel{9}{9}$	2.9	18.5	11	10	(X)	(X)	(X)	7	57	30
1026.7	$\begin{array}{r} \text { (D) } \\ 38.8 \end{array}$	(D)	(D)	12.6	.7 43.6	3.2 3.7	.3 .5	(D)	(S)	. 41.6	5.8 98.2	13 21 11	23 13	$\begin{array}{r}4 \\ 15 \\ \hline\end{array}$	(X)	(X) 13	30 7	61 52	31 32
		96.0	11.5	10.2	32.5	27.8	3.3	. 5	(D)	29.2	145.0	14	8	15 27	(x)	(${ }^{(1)}$	10	10	33
		(D)	(D)	4.2	15.4	5.1	. 5	.6	3.9	8.9	43.0	7	6	37	(x)	(X)	7	18	34
				1.5	5.3	5.4	. 6	. 3	(D)	3.8	23.9	13	7	62	(X)	(X)	4	37	35
(D)	(D)	(D)	(D)	(D) 5.0	(D)	7.4	(D)	(${ }^{1}$	1.5	5.0 10.7	29.3 52.0	3 4	2	1 2	(x^{1}	(X)	(X)	(X)	36 37
				(D)	-9	(D)	(D)	(D)	(D)	. 6	3.8	26	22	(X)	(x)	(x)	24	(X)	38
				(D)	(D)	. 7	. 1	(D)	1.3	1.0	5.4	27	34	(X)	(X)	(X)	(X)	41	39
(D)	(D)	(D)	(D)	13.9	48.1	5.3	. 7	7.8	7.8	42.8	112.0	5	15	26	5	(X)	6	39	Mont.
	(D)	(D)	(D)	2.2	7.9	(D)	(D)	(D)	. 6	(D)	(D)	30	7	(X)	(X)	(${ }^{\text {(}}$	9	(X)	20
(D)	-	-	-	(D)	(D)	18	;	(D)	(D)	(Z)	(2)	42	67	(x)	(x)	(x)	(${ }^{\text {(})}$	(X)	22
-	-	-	-	(D)	1.6 (D)	1.8	. 2	(D)	(D)	3.8 .1	16.1 .4	+8889	33 18 18	29	(x) (X) (x)	(${ }_{(1)}^{(x)}$	(24 (X)	(x)	24 27
	-	-	-	(D)	(D)	(D)	(D)	-	1.8	1.7	5.4	19 4	10	(X)	(X)	(X)	(X)	(X)	28
----	-	-	-	4.4	14.3	-	-	-	(D)	4.2	12.4	17	18	(X)	(X)	(X)	18	(X)	29
	-	-	-	(D)	(D)	-	-	-	(D)	. 1	. 2	1	1	(X)	(x)	(${ }^{\text {(})}$	(X)	(${ }^{\text {(})}$	35
				(D)	(D)	-	-	-	(Z)	(D)	(D)	(X)	(X)	(X) (X)	$\left(\begin{array}{l}(X) \\ (X)\end{array}\right.$	$\left(\begin{array}{l}\text { (X) } \\ \text { (X) }\end{array}\right.$	(X)	(X)	36 37

Table 3. Purchased Fuels, by Type, and Electric Energy Used for Heat and Power by Major
[For meaning of abbreviations and symbols, see introductory text. For explanation of terms, see appendixes]

See footnotes at end of table.

Industry Group for States: 1981 and 1980-Con.

\begin{tabular}{|c|}
\hline \multicolumn{10}{|c|}{1981-Con.} \& \multicolumn{2}{|l|}{1980 purchased fuels and electric energy} \& \multicolumn{7}{|l|}{\multirow{3}{*}{Relative standard error of estimate (percent) for column'-}} \& \multirow{4}{*}{State and SIC code} \\
\hline \multicolumn{2}{|l|}{Bituminous coal, lignite, and anthracite} \& \multicolumn{2}{|l|}{Coke and breeze} \& \multicolumn{2}{|l|}{Natural gas} \& \multicolumn{2}{|l|}{Liquefied petroleum gases} \& \multirow[b]{2}{*}{\[
\begin{array}{r}
\text { Other } \\
\text { fuels } \\
\text { (milition } \\
\text { dollars) }
\end{array}
\]} \& \multirow[b]{2}{*}{} \& \multirow[b]{2}{*}{British thermal (trillions)} \& \multirow[b]{2}{*}{Cost (million dollars)} \& \& \& \& \& \& \& \& \\
\hline Quantity
\((1,000\)
short
tons) \& Cost (million dollars) \& Quantity (1,000 tons) \& \[
\begin{array}{r}
\text { Cost } \\
\text { (million } \\
\text { dollars) }
\end{array}
\] \& Quantity (billion cubic
feet fee \& \[
\begin{array}{r}
\text { Cost } \\
\text { (million } \\
\text { dollars) }
\end{array}
\] \& Quantity (million pounds) \& Cost (million dollars) \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline L \& M \& N \& 0 \& P \& 0 \& R \& S \& T \& \(u\) \& \(v\) \& W \& D \& G \& 1 \& K \& M \& 0 \& s \& \\
\hline (D) \& (D) \& 14.3 \& 1.8 \& 29.4 \& 79.9 \& 10.9 \& 1.1 \& 2.3 \& (D) \& 54.5 \& 170.7 \& 6 \& 12 \& 6 \& 24 \& (X) \& 12 \& 18 \& Nebr. \\
\hline (D) \& (D) \& (D) \& (D) \& 13.0
.1 \& 34.2
.1 \& 5.2 \& . 5 \& 1.7 \& 1.5 \& 22.6
.1 \& 63.8 \& 11
25 \& 16
20 \& \(\left({ }^{2}\right)^{2}\) \& (x) \({ }^{1}\) \& (X)
(X)
(\& \begin{tabular}{l}
21 \\
31 \\
\hline 1
\end{tabular} \& (14 \& 20 \\
\hline - \& \& \& - \& (S) \& (\(\mathrm{S}_{5}\)) \& (D) \& (D) \& (D) \& (S) \& . 2 \& 1.0
1.1 \& 11
22
22 \& 16
16
16 \& (x) \& (x) \& (x) \& (\({ }^{\text {(})}\) \& (\({ }^{(4)}\) \& 24 \\
\hline . \& \& \& - \& .2
.3 \& .5
.7 \& (D) \& (D) \& (D) \& (z) \& . 3 \& 1.1
2.8 \& 48
21 \& 37
19 \& (X) \& (x) \& (x) \& 35
36 \& (X) \& 26
27 \\
\hline \& \& \& \& (D) \& (D) \& (D) \& (D) \& - \& 3.3 \& 10.8 \& 33.0 \& 8 \& 16 \& (X) \& (X) \& (X) \& (X) \& (X) \& 28 \\
\hline - \& \& \& - \& (D) \& (D) \& \& \& - \& (Z) \& (Z) \& 33.0 \& 13 \& 6 \& (X) \& (x) \& (\({ }^{(x)}\) \& (X) \& (X) \& 31 \\
\hline - \& \& (D) \& (D) \& 2.0 \& 5.4 \& (D) \& (D) \& (D) \& (S) \& 3.4 \& 17.1 \& 8 \& \({ }_{6}^{6}\) \& (x) \& (x) \& (x) \& 8 \& (x) \& 33 \\
\hline - \& - \& (D) \& (D) \& .7
1.2 \& 1.9
3.2 \& (D) \& (D) \& (D) \& (Z) \& 1.1
2.2 \& 5.3
10.3 \& 7
4 \& 12
6 \& \((X)\)
\((X)\)
(\& (x) \& (X) \& 13
8 \& (X) \& 34
35 \\
\hline - \& - \& - \& - \& . 3 \& 1.3 \& - \& \& (D) \& . 1 \& . 8 \& 4.2 \& 4 \& 4 \& (X) \& (\({ }^{\text {(})}\) \& (X) \& 3 \& (X) \& 36 \\
\hline - \& - \& - \& - \& . 4 \& 1.0
1.0 \& (D) \& (\({ }^{\text {D }}\)) \& (D) \& .1
.1
.1 \& . 78 \& 2.9
3.8 \& \begin{tabular}{l}
4 \\
3 \\
\hline
\end{tabular} \& 4 \& (x) \& (X) \& (X)
(X)
(\& 6
2
2 \& 15
(x)
(x) \& 37
38 \\
\hline \& \& - \& - \& (D) \& (D) \& \& \& \& (D) \& . 2 \& . 9 \& 12 \& 6 \& (X) \& (X) \& (X) \& (X) \& (X) \& \\
\hline (D) \& (D) \& \& - \& 5.9 \& 17.6 \& 5.0 \& . 7 \& (D) \& 7.8 \& 16.4 \& 63.6 \& 10 \& 10 \& (X) \& 43 \& (X) \& 17 \& 24 \& Nev. \\
\hline \& \& - \& \& (D) \& (D) \& (D) \& (D) \& (D) \& (S) \& (D) \({ }^{7}\) \& 3.6
(D) \& 4
1 \& (x) \({ }^{3}\) \& \((X)\)
\((X)\)
\((X)\) \& \(\left(\begin{array}{l}(X) \\ (X)\end{array}\right.\) \& \((X)\)
(X)
(\& \(\left(\begin{array}{l}(x) \\ (x)\end{array}\right.\) \& (X) \& 20
23 \\
\hline \& \& - \& \& (D) \& (D) \& \& \& (D) \& (S) \& (D) \& (D) \& (\({ }_{1}\) \& (X) \& (X) \& (x) \& (x) \& (x) \& (\({ }^{(1)}\) \& 24 \\
\hline - \& - \& - \& \& (D) \& (D) \& (D) \& (D) \& \& (S) \& \(\stackrel{\text { r }}{ }\) \& 1.4 \& 2 \& (X) \& (X) \& (X) \& (X) \& (X) \& (X) \& 26
27 \\
\hline \& \& - \& \& (D) \& (D) \& (D) \& (D) \& (D) \& (D) 9 \& 4.2 \& 15.1
(D) \& 15
1 \& 6
1 \& \(\left(\begin{array}{l}(x) \\ (x) \\ (x)\end{array}\right.\) \& (X) \& \((x)\)
\((x)\)
(x) \& (x) \& (x) \& 28 \\
\hline (D) \& (D) \& - \& \& (D) \& (D) \& - \& - \& (D) \& (D) \& 6.7 \& 25.9 \& 16 \& 20 \& (\({ }^{(x)}\) \& (x) \& (x)
(x) \& (x) \& (\({ }^{(x)}\) \& 29
32 \\
\hline \& \& \& \& (D) \& (D) \& \& \& (D) \& (S) \& \& (D) \({ }^{5}\) \& 4
85 \& (18 \& (X) \& (X) \& (X)
(X) \& (\({ }_{\text {(x) }}\) \& (X) \& 35
37 \\
\hline (D) \& (D) \& - \& - \& 2.1 \& 9.2 \& 25.8 \& 3.3 \& 4.0 \& (D) \& 28.0 \& 163.6 \& 5 \& 5 \& 23 \& 6 \& (X) \& 17 \& 5 \& N.H. \\
\hline \& \& \& \& (D) \& (D) \& (D) \& (D) \& (D) \& 1.1 \& 1.6
1.1
1.1 \& 8.4
6.7 \& 4
48
4 \& 6
65 \& \((X)\)
\((X)\)

(\& (x)
(X)
(\& (x)
(X)
(\& (${ }_{\text {(})}$ \& (X) \& 20
22

\hline (D) \& (D) \& - \& - \& (D) \& (D) \& \& \& (D) \& (S) \& 1.1 \& 7.0 \& 24 \& 26 \& (X) \& (x) \& (X) \& (($^{(1)}$ \& (X) \& 24

\hline \& \& \& \& - \& - \& (D) \& \& \& (S) \& (D) \& (D) \& (X) \& (X) \& (x) \& (${ }^{7}$ \& (${ }^{(x)}$ \& (${ }^{\text {() }}$ \& (X) \& 25

\hline \& \& \& \& . 1 \& . 5 \& (D) \& (D) \& (D) \& 3.5 \& 12.8 \& 62.4 \& 15 \& 8 \& (X) \& 7 \& (X) \& 44 \& (X) \&

\hline \& \& \& \& (S) \& (S) \& (D) \& (D) \& - \& (S) \& (D) 6 \& 4.3 \& (${ }^{7}$ \& 12
(X) \& (x) \& $\left(\begin{array}{l}\text { (X) } \\ \text { (X) }\end{array}\right.$ \& (X)
(X)
(\& (X) \& (X) \& 27
28

\hline - \& \& \& \& (Z) \& $\stackrel{1}{1}$ \& (D) \& (D) \& (D) \& . 5 \& 1.5 \& 13.7 \& 25 \& 12 \& 18 \& ${ }_{8}$ \& (X) \& 64 \& (${ }^{(1)}$ \& 30

\hline \& \& \& \& (D) \& (D) \& (D) \& (D) \& (D) \& 1.3 \& . 9 \& 4.9 \& 7 \& 3 \& 28 \& (x) \& (${ }^{(1)}$ \& (x) \& (x) \& 31

\hline \& \& \& \& (D) \& (D) \& (D) \& (D) \& (D) \& 1.8 \& 1.5 \& 7.6 \& 13 \& 25 \& (X) \& (X) \& (X) \& (X) \& (X) \& 32

\hline \& \& \& - \& \& (D) \& \& \& \& \& \& 6.5 \& 6 \& 8 \& 6 \& \& \& \& (X) \&

\hline (D) \& (D) \& \& - \& .1
.1 \& . 4 \& (D)
3.4 \& (D) \& (D) \& (D) \& 1.6
1.1 \& 4.3
11.3 \& 10 \& ${ }_{11}^{6}$ \& 1
17 \& (X)
5 \& (X) \& $\begin{array}{r}21 \\ 24 \\ \hline\end{array}$ \& (${ }_{1}$ \& 34
35

\hline - \& \& \& \& . 1 \& . 4 \& (D) \& (D) \& (D) \& 2.9 \& 1.5 \& 11.2 \& 10
3 \& 11
36 \& 17 \& (X^{5} \& (X) \& 24
5 \& (x) \& 36

\hline \& \& \& \& (D) \& (D) \& (D) \& (D) \& . 1 \& (Z) \& $\begin{array}{r}.4 \\ .4 \\ \hline\end{array}$ \& 3.1
3.7 \& (X) \& (X)
10 \& (1)
30 \& (X) \& (X)
(X)
(\& (X) \& (X) \& 37
38

\hline \& \& \& \& \& \& \& \& \& (D) \& . 1 \& 1.0 \& \& 28 \& 48 \& (X) \& (X) \& (X) \& (X) \& 39

\hline 7.2 \& . 3 \& 72.4 \& 10.7 \& 77.5 \& 348.1 \& 90.9 \& 10.3 \& 87.4 \& 106.0 \& 291.0 \& 1660.1 \& 3 \& 4 \& 6 \& 2 \& 39 \& 2 \& 12 \& N.J.

\hline (D) \& (D) \& \& \& 6.2 \& 28.2 \& 11.3 \& 1.2 \& 1.1 \& (D) \& 23.8 \& 135.7 \& 5 \& 6 \& 7 \& 3 \& (${ }^{(1)}$ \& 6 \& 4 \& 20

\hline (D) \& \& \& \& 1.6 \& 7.3 \& (D) \& (D) \& (D) \& 5.8 \& 8.1 \& 42.8 \& 11 \& 18 \& 52 \& 26 \& (${ }^{(1)}$ \& 32 \& (${ }^{\text {() }}$ \& 22

\hline (D) \& (D) \& \& - \& (S) \& (S) \& (D) \& (D) \& \& (S) \& 2.3 \& 14.6
5.4 \& 23 \& 12
27 \& (X)
25
25 \& (X) \& (x)
(x) \& (X)
66 \& (X) \& 23
24

\hline - \& - \& \& \& . 2 \& \& (D) \& (D) \& (D) \& $\begin{array}{r}1.1 \\ \hline\end{array}$ \& .8
.9 \& 5.4
5.6 \& 11
14 \& 27
9 \& 25
31 \& (X) \& ($)$
($)$ \& 66
7 \& (X) \& 24
25

\hline - \& \& \& \& 5.2 \& 23.7 \& 4.2 \& . 5 \& (D) \& (D) \& 23.1 \& 122.6 \& 11 \& 10 \& 17 \& 5 \& (${ }^{\text {(}}$ \& 14 \& 18 \& 26

\hline (D) \& \& \& - \& 2.1
16.9 \& 10.2 \& 1.6 \& . 2 \& (D) \& (D) \& 3.7 \& 30.2 \& 10 \& 25 \& 18 \& 15 \& (${ }^{\text {(}}$ \& 29 \& 4 \& 27

\hline (D) \& (D) \& \& \& 16.9
5.3 \& 17.5 \& 10.3 \& (D) \& (D) \& 12.0
9.7 \& 88.8
32.8 \& 471.9
168.7 \& 3
1 \& 3
1 \& 16
17 \& (X^{6} \& (x) \& 3
1 \& (X) \& 28

\hline \& \& \& \& 1.9 \& 7.7 \& 3.1 \& - 3 \& (D) \& (D) \& 10.5 \& 88.5 \& 8 \& 7 \& 12 \& 16
16 \& (${ }^{(x)}$ \& 11 \& 24 \& 30

\hline (D) \& (D) \& 69.2 \& \& 21.1
5.7 \& 96.7
27.3 \& 14.9 \& \& 1.9 \& 16.4 \& 38.0 \& 174.2 \& 3
3 \& 4 \& 7
15 \& 3 \& (X) \& 5
5 \& 18 \& 32

\hline (D) \& \& \& 10.2 \& 5.1
3.3
3.7 \& 27.3
15.2 \& 17.1

10.7 \& 2.2 \& 1.1 \& | (D) |
| :--- |
| 9.0 | \& 15.9

11.7 \& 102.5
81.7 \& 3 \& $\stackrel{3}{8}$ \& 15
16
16 \& 2
9 \& (${ }_{\text {(}}$ (
(\& 5
6 \& 99 \& 33
34

\hline \& \& \& \& 1.7 \& $$
8.2
$$ \& 2.4 \& . 2 \& . 4 \& 5.3 \& 9.5 \& 63.8 \& 7 \& ${ }^{6}$ \& 17 \& 3 \& (x) \& 8 \& 33 \& 35

\hline - \& - \& (D) \& (D) \& 2.0 \& 9.6 \& 3.7 \& . 4 \& . 9 \& (D) \& 8.7 \& 72.1 \& 6 \& 12 \& 6 \& 2 \& (X) \& 6 \& 8 \& 36

\hline : \& - \& - \& - \& 1.5 \& 7.4

3.9 \& (D) \& (D) \& (D) \& 1.0 \& | 4.3 |
| :--- |
| 4.5 |
| 1 | \& 29.8 \& 6

8
8 \& 3 \& 16 \& 311 \& (${ }_{(1)}$ \& 4 \& (X) \& 37

\hline . \& - \& (D) \& (D) \& \& \& (D) \& (D) \& - 3 \& \& \& \& 13 \& 10 \& 18 \& 1 \& (X) \& 16
6 \& (X) \& 39

\hline (D) \& (D) \& (D) \& (D) \& 5.7 \& 18.1 \& (D) \& (D) \& (D) \& (S) \& 16.4 \& 72.6 \& 21 \& 16 \& 31 \& (X) \& (X) \& 10 \& (X) \& N. Mex.

\hline - \& - \& \& - \& (S) \& | (S) |
| :--- |
| (D) | \& (D) \& (D) \& - \& (S) \& 2.3 \& 9.7 \& 40 \& \[

$$
\begin{array}{r}
21 \\
5
\end{array}
$$
\] \& (x) \& $\left(\begin{array}{c}(X) \\ (X) \\ \text { (X) }\end{array}\right.$ \& (${ }_{(x)}^{(x)}$ \& (${ }_{(x)}$ \& (${ }_{(x)}$ \& 20

\hline - \& - \& \& . \& (D) \& (D) \& (D) \& (D) \& - \& (S) \& (D) \& (D) \& | 2 |
| :--- |
| 4 | \& (X) \& (X) \& (X) \& (${ }^{(x)}$ \& (X) \& (${ }^{(x)}$ \& 23

\hline - \& - \& \& \& (S) \& (S) \& - \& \& (D) \& (S) \& . 5 \& 3.8 \& 35 \& 26 \& (X) \& (X) \& (X) \& (X) \& (X) \& 24

\hline \& \& \& \& \& (D) \& \& \& \& (D) \& (D) \& (D) \& (A) \& (A) \& (X) \& (X) \& (X) \& (X) \& (X) \&

\hline
\end{tabular}

Table 3. Purchased Fuels, by Type, and Electric Energy Used for Heat and Power by Major
[For meaning of abbrevlations and symbols, see introductory text. For explanation of terms, see appendixes]

Industry Group for States: 1981 and 1980-Con.

\begin{tabular}{|c|}
\hline \multicolumn{10}{|c|}{1981-Con.} \& \multicolumn{2}{|l|}{1980 purchased fuels and electric energy} \& \multicolumn{7}{|l|}{\multirow{3}{*}{Relative standard error of estimate (percent) for column'-}} \& \multirow{4}{*}{State and SIC code} \\
\hline \multicolumn{2}{|l|}{Bituminous coal, lignite, and anthracite} \& \multicolumn{2}{|l|}{Coke and breeze} \& \multicolumn{2}{|l|}{Natural gas} \& \multicolumn{2}{|l|}{Liquefied petroleum gases} \& \multirow[b]{2}{*}{\[
\begin{gathered}
\text { Other } \\
\text { fuels } \\
\text { (million } \\
\text { dollars) }
\end{gathered}
\]} \& \multirow[b]{2}{*}{\[
\begin{array}{r}
\text { Fuels } \\
\text { not } \\
\text { specified } \\
\text { by kind } \\
\text { (million } \\
\text { dollars) }
\end{array}
\]} \& \multirow[b]{2}{*}{British
thermal units
(trillions)} \& \multirow[b]{2}{*}{Cost (million dollars)} \& \& \& \& \& \& \& \& \\
\hline Quantity
\((1,000\)
shor
tons) \& Cost (million dollars) \& \[
\begin{array}{r}
\text { Quantity } \\
(1,000 \\
\text { shor } \\
\text { tons) }
\end{array}
\] \& Cost
(million
dollars) \& Quantity (billion cubic
feet) \& Cost (million dollars) \& Quantity (million pounds) \& \[
\left|\begin{array}{r}
\text { Cost } \\
\text { (million } \\
\text { dollars) }
\end{array}\right|
\] \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline L. \& M \& N \& 0 \& P \& Q \& A \& S \& T \& U \& v \& w \& D \& G \& 1 \& K \& M \& 0 \& S \& \\
\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& N. Mex. \\
\hline (D) \& (D) \& (D) \& (D) \& (D)
(D)
(S)
(S) \& (D)
(D)
(S)
(S) \& (D) \& (D) \& (D) \& (S)
(S)
.
(
(S)
(S) \& (
(D)
(D)
.1
.2 \& \[
\begin{aligned}
\& 6.2 \\
\& \text { (D) } \\
\& \text { (D) } \\
\& .7 \\
\& 1.4
\end{aligned}
\] \& \[
\begin{array}{r}
(X) \\
1 \\
1 \\
5 \\
31
\end{array}
\] \& \[
\begin{array}{r}
(X) \\
(X) \\
1 \\
4 \\
40
\end{array}
\] \& (X)
(
()
(X)
(X)
(X) \& (X)
(
(\()\)
\((\times)\)
\((\times)\)
(\& (X)
(X)
(X)
(X)
(X) \& (X)
(
(\()\)
(\()\)
(\()\)
(X) \& (X)
()
()
()
(X)
(\& 28
30
33
34
35 \\
\hline - \& \& \& - \& (D)
(D)
(D) \& (D)
(D)
(D) \& (D) \& (D) \& \(:\) \& \[
\begin{aligned}
\& .1 \\
\& (\mathrm{~S}) \\
\& \text { (S) }
\end{aligned}
\] \& (D) \& (D) \& 9
7
25 \& \[
\begin{aligned}
\& 23 \\
\& (X) \\
\& (X)
\end{aligned}
\] \& \[
\begin{aligned}
\& (X) \\
\& (X) \\
\& (X) \\
\& (X)
\end{aligned}
\] \& \((\mathrm{X})\)
\((\mathrm{X})\)
\((\mathrm{X})\) \& (X)
(X)
(X) \& (X)
(X)
(X) \& (X)
\((1)\)
(X) \& \[
\begin{aligned}
\& 36 \\
\& 38 \\
\& 39
\end{aligned}
\] \\
\hline 2331.1 \& 105.8 \& (D) \& (D) \& 119.3 \& 462.5 \& 84.9 \& 9.9 \& 81.6 \& (D) \& 424.3 \& 2069.6 \& 4 \& 5 \& 4 \& 7 \& 1 \& 9 \& 14 \& N.Y. \\
\hline (D) \& (D) \& \& \& 13.0
2.0 \& 56.0
7.7 \& 17.4
(D) \& 1.9 \& 8.1
.6 \& (D) \& 34.8
9.2 \& 188.5
52.9 \& 6
28 \& r 5 \& 12
32 \& 7
17 \& (X) \& 7
25 \& \({ }^{42}\) \& 20 \\
\hline \& \& - \& - \& (S) \& (S) \& (D) \& (D) \& (S) \& (S) \& 9.4 \& 79.8 \& - 9 \& 39 \& (X) \& (\(\times\)) \& (X) \& (X) \& (\({ }^{(1)}\) \& 23 \\
\hline (D) \& (D) \& - \& - \& . 3 \& 1.3 \& (D) \& (D) \& (D) \& 2.0 \& 2.5 \& 15.8
14.7 \& 12 \& 17
12 \& \(\begin{array}{r}39 \\ \hline\end{array}\) \& (\({ }^{(1)}\) \& (X) \& 20 \& (x) \& 24 \\
\hline \& \& - \& - \& . 5 \& 2.0 \& (D) \& (D) \& . 2 \& \& 2.1 \& \& \& \& \& \& (X) \& \& (X) \& \\
\hline 219.1 \& 10.5
(D) \& - \& : \& 9.3
1.2 \& 32.5
5.3 \& 5.0
1.6 \& . 6 \& (D)
2.8 \& (D) \& 43.7
9.1 \& 208.1
75.8 \& 13
7
4 \& 11
12 \& \(\begin{array}{r}19 \\ 8 \\ \hline\end{array}\) \& 14
16 \& (X) \& 28
8 \& 45 \& 26
27 \\
\hline 668.6 \& 29.9 \& - \& - \& 18.8 \& 70.1 \& 4.2 \& . 5 \& 14.0 \& 5.0 \& 63.3 \& 223.2 \& 4 \& 9 \& 13 \& 3 \& \({ }_{2}\) \& 19 \& 47 \& 28 \\
\hline \& \& - \& - \& .\(^{2}\) \& . 9.9 \& (D) \& (D) \& (D) \& 7.6 \& 4.9 \& 28.4 \& 10 \& 20 \& 12 \& (\({ }^{\text {() }}\) \& (x) \& 21 \& (\({ }^{\text {(}}\) \& 29 \\
\hline (D) \& (D) \& \& \& 2.7 \& 10.5 \& 5.1 \& . 6 \& (D) \& 5.7 \& 8.5 \& 59.8 \& 10 \& 6 \& 8 \& 34 \& (X) \& 4 \& 37 \& 30 \\
\hline (D) \& (D) \& - \& - \& (S) \& (S) \& (S) \& (S) \& (D) \& (S) \& 2.5 \& 15.3 \& 21 \& 11 \& (\({ }^{\text {(}}\)) \& (\({ }^{\text {) }}\) \& (X) \& (X) \& (X) \& 31 \\
\hline (D) \& (D) \& (D) \&) \& 14.4 \& 53.1 \& 17.1 \& 1.9 \& 1.4 \& (D) \& 45.0 \& 161.0 \& 13 \& 9 \& 27 \& 14 \& (X) \& 5 \& 19 \& 32 \\
\hline (D) \& (D) \& (D) \& (D) \& 27.2 \& 107.0 \& 13.7 \& 1.8 \& 3.8 \& 8.1 \& 76.6 \& 326.6 \& 20 \& 23 \& 15 \& 32 \& (X) \& 33 \& 51 \& 33 \\
\hline (D) \& (D) \& (D) \& \begin{tabular}{l}
(D) \\
(D)
\end{tabular} \& 5.8
6.1 \& 19.9
24.4 \& 5.7
3.5 \& . 6 \& 1.0 \& 10.6
9.1 \& 15.1
22.1 \& 97.2
130.2 \& \(\begin{array}{r}5 \\ 3 \\ \hline\end{array}\) \& 10
3 \& 5
5 \& 12
3 \& (X)
(X) \& 8 2 \& 15
47 \& 34
35 \\
\hline (D) \& (D) \& (D) \& (D) \& 8.2 \& 33.7 \& 4.2 \& . 5 \& 7.8 \& 5.3 \& 24.0 \& 152.6 \& 2 \& 3 \& 6 \& 3 \& \& 2 \& 13 \& \\
\hline (D) \& (D) \& (D) \& (D) \& 8.2
4.6 \& 18.9 \& (D) \& (D) \& (D) \& 5.3
.4 \& 14.7 \& 102.7 \& 3 \& 3 \& 1 \& 8 \& (X) \& 3 \& (X) \& 37 \\
\hline (D) \& (D) \& \& \& 3.2
1.1 \& 12.5
3.7 \& (D) \& (D) \& 4.5
.1 \& (D) \& 31.6
4.8 \& 98.0
38.2 \& 4
12 \& - \({ }_{14}\) \& 10
14 \& 6
8 \& (X) \& 4
18 \& (X) \& 38
39 \\
\hline 2097.3 \& 97.5 \& (D) \& (D) \& 73.1 \& 309.0 \& 143.1 \& 17.7 \& 20.6 \& (D) \& 294.4 \& 1352.8 \& 3 \& 3 \& 10 \& 3 \& 16 \& 3 \& 11 \& N.C. \\
\hline (D) \& (D) \& - \& - \& 4.2 \& 18.2 \& 22.1 \& 2.7 \& 1.4 \& \& 14.9 \& 67.6 \& 18 \& 22 \& 17 \& 14 \& (\({ }^{(1)}\) \& 6 \& 61 \& 20 \\
\hline (D) \& (D) \& \& \& \({ }^{.8}\) \& 3.5 \& (D) \& (D) \& (D) \& . 5 \& 9.1 \& 35.4 \& 1 \& 1 \& (X) \& 2 \& (X) \& 4 \& (\({ }^{\text {(}}\) \& 21 \\
\hline 320.2 \& 14.7 \& (D) \& (D) \& 21.9 \& 90.7 \& \& 2.8 \& \& \& 76.0 \& 392.5 \& \({ }^{3}\) \& 3 \& 8 \& 6 \& 5 \& 4 \& 3 \& 22 \\
\hline (D) \& (D) \& \& \& . 3 \& 1.4
2.4 \& (D)
5.9 \& (D) \& . 2.8 \& (D) \& 3.6
9.0 \& 24.9
51.7 \& 11
8 \& 5
24 \& 12
39 \& (X)
16 \& (X) \& 19
44 \& (X) \& 23
24 \\
\hline 28.1
(S) \& 1.4 \& \& \& (\({ }_{\text {(}}\)) \& 2.8 \& (S) \& (S) \& (S) \& (S) \& 7.5
50.9 \& 47.4
167.6 \& 5
4 \& 10
1 \& (16 \& (\(\mathrm{X}_{8}^{8}\) \& \(\left({ }^{4}\right)^{4}\) \& 15
(X) \& (21 \& 25
26 \\
\hline \& \& - \& \& . 3 \& 1.2 \& (D) \& (D) \& . 4 \& (9 \& \(\begin{array}{r}1.0 \\ \hline\end{array}\) \& 16.3 \& 28 \& 72 \& (X) \& (X) \& (X) \& 43 \& (X) \& 27 \\
\hline (D) \& (D) \& \& \& 13.3 \& 56.8 \& 9.0 \& 1.4 \& . 4 \& (D) \& 55.6 \& 237.7 \& 3 \& 1 \& 14 \& 1 \& (X) \& 2 \& 8 \& 28 \\
\hline \& \& \& \& (D) \& (D) \& \& \& \& . 5 \& (D) \& (D) \& (X) \& (X) \& (X) \& (X) \& (X) \& (X) \& (X) \& 29 \\
\hline (D) \& (D) \& - \& - \& 2.6 \& 11.3 \& 3.7 \& . 5 \& (D) \& 1.0 \& 8.4 \& 50.8 \& 25 \& 7 \& 12 \& 3 \& (\({ }^{(x)}\) \& 11 \& 5 \& 30 \\
\hline \& \& \& \& (D) \& (D) \& (\({ }_{\text {S }}\)) \& (D) \& (S) \& (S) \& (D) \& (D) \& (\({ }^{\text {c }}\) \& (X) \& (\({ }^{(1)}\) \& \((\mathrm{X})\) \& (X) \& \((\mathrm{X})\) \& (X) \& 31 \\
\hline \& \& (D) \& (D) \& (S) \& 10.2 \& 11.3 \& 1.3 \& (D) \& (D) \& 26.2
10.8 \& 89.9
50.7 \& 26
7 \& 21
8
7 \& (x)
15 \& (X) \& (\({ }_{\text {(})}\) \& \(\begin{array}{r}\text { (x) } \\ 10 \\ \hline\end{array}\) \& (1 \& 33 \\
\hline \& \& (D) \& (D) \& 1.7 \& 7.3 \& 2.9 \& . 3 \& . 6 \& (D) \& 4.2 \& 24.4 \& 8 \& 7 \& 30 \& 71 \& (X) \& 5 \& 23 \& 34 \\
\hline \& \& (D) \& (D) \& 1.2 \& 5.0 \& 9.4 \& 1.1 \& . 4 \& (D) \& 4.3 \& 28.3 \& 9 \& 8 \& 15 \& 8 \& (\({ }_{(1)}\) \& 10 \& 20 \& 35 \\
\hline (D) \& \& \& \& 2.2
.4 \& 10.2
1.6 \& 5.0
2.2 \& . 6 \& (D) \({ }^{1}\) \& (S) \& 6.9
1.4 \& \(\begin{array}{r}42.7 \\ 9.4 \\ \hline\end{array}\) \& 1
3 \& 1
7 \& 1
50 \& (\(\mathrm{X}^{1}\) \& (X) \& 1
5 \& 1
37 \& 36
37 \\
\hline \& \& \& \& \(\begin{array}{r}.4 \\ \hline\end{array}\) \& 1.6
3.4
(S) \& 2.2
2.2 \& . 2 \& (D) \& (S) \& 1.4
2.1
1. \& 9.4
10.4 \& \(\begin{array}{r}3 \\ 8 \\ \hline\end{array}\) \& \(\begin{array}{r}7 \\ 3 \\ \hline\end{array}\) \& (X)
(\({ }^{\text {a }}\) (\& (×) \& (\({ }^{(x)}\) \& 5
1
1 \& 23 \& 38 \\
\hline \& \& \& \& (S) \& (S) \& \& (D) \& (D) \& (S) \& 1.0 \& 6.6 \& 15 \& 35 \& (X) \& (\(\times\)) \& (X) \& (X) \& (X) \& 39 \\
\hline (D) \& (D) \& (D) \& (D) \& 2.2 \& 6.6 \& 7.3 \& . 8 \& (D) \& 7.0 \& 16.4 \& 40.6 \& 45 \& 12 \& (X) \& 1 \& (X) \& 48 \& 4 \& N. Dak. \\
\hline (D) \& (D) \& (D) \& (D) \& (D) \& \[
\stackrel{8}{\text { (D) }}
\] \& \[
\begin{aligned}
\& \text { (D) } \\
\& \text { (D) }
\end{aligned}
\] \& (D) \& (D) \& 1.0 \& 12.3
(Z) \& 24.9
.3 \& \((X)\)
1 \& (X) \& \((\mathrm{X})\) \& (\({ }^{1}\)) \& (X) \& 27
\((X)\) \& \((\mathrm{X})\) \& 20 \\
\hline \& \& \& \& (D) \& \& \& \& \& (S) \& (D) \& (D) \& 11 \& (X) \& (\({ }^{(1)}\) \& (X) \& (X) \& (义) \& (x) \& 24 \\
\hline \& \& \& \& (D) \& (D) \& \& (D) \& - \& (D) \& (D) \& (D) \& (X) \& (X) \& (\({ }_{\text {(}}\)) \& (x) \& (X) \& (x) \& (x) \& \\
\hline \& \& \& - \& (D) \& (D) \& \[
\begin{aligned}
\& \text { (D) } \\
\& 5.7
\end{aligned}
\] \& (D) \& (D) \& 1.1
.4 \& .5
.4 \& 1.6
2.9 \& \(\begin{array}{r}1 \\ 8 \\ \hline\end{array}\) \& 1
10 \& \(\left(\begin{array}{l}\text { (X) } \\ (\mathrm{X}) \\ \end{array}\right.\) \& (X) \& (X)
(X)

(\& (X) \& (X) \& 29
35

\hline \& \& \& \& (D) \& \& \& \& (D) \& (S) \& (Z) \& 2.9
.2 \& 8
5 \& (X) \& (X) \& (X) \& (X) \& (X) \& (X) \&

\hline 4975.7 \& 187.2 \& 2870.3 \& 275.6 \& 317.9 \& 1060.7 \& 114.2 \& 13.0 \& 42.6 \& 88.5 \& 781.9 \& 3159.3 \& 1 \& 2 \& 5 \& 4 \& 3 \& 2 \& 8 \& Ohio

\hline \& $$
13.7
$$ \& (D) \& (D) \& 14.1 \& 49.3 \& \& \& \& \& 38.8 \& 159.7 \& 7 \& \& \& 1 \& ${ }^{2}$ \& 5 \& 5 \&

\hline (D) \& (D) \& \& \& .8
.9 \& 2.7

3.2 \& (D) \& (D) \& (D) \& 1.7 \& 2.2 \& 5.4 \& ${ }^{9} 8$ \& $\begin{array}{r}7 \\ 42 \\ \hline\end{array}$ \& \[
$$
\begin{aligned}
& (x) \\
& (x)
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& (x) \\
& (x)
\end{aligned}
$$
\] \& (X) \& 10

13 \& (${ }_{(1)}$ \& $$
\begin{aligned}
& 22 \\
& 23
\end{aligned}
$$

\hline (D) \& (D) \& \& - \& .9
.5 \& 3.2
1.9 \& (D) \& (D) \& . 5 \& (S) \& 3.9 \& $\begin{array}{r}5.3 \\ 17.4 \\ \hline\end{array}$ \& 18

23 \& \begin{tabular}{l}
42

34

\hline

 \&

(X)

59

\hline
\end{tabular} \& (X) \& (X) \& 13

11
1 \& (X) \& 23
24

\hline (D) \& (D) \& - \& - \& 1.3 \& 4.6 \& 1.4 \& . 2 \& (D) \& 1.2 \& 2.6 \& 13.1 \& 10 \& 8 \& 33 \& (X) \& (X) \& 10 \& 47 \& 25

\hline $$
980.8
$$

(D) \& 40.7 \& \& \& 9.2
2.3 \& 31.7

8.1 \& | 1.6 |
| :--- |
| 2.4 | \& . 2 \& (D) \& 5.5

2.2 \& $\begin{array}{r}43.5 \\ 5.9 \\ \hline 1.9\end{array}$ \& 130.3
37.5 \& 6
11 \& 4
8
4 \& 3
6 \& (X) \& (${ }^{6}$) \& 6
9 \& 16
53 \& 26
27

\hline 1088.2 \& 34.9 \& 38.2 \& . 5 \& 33.0 \& 114.3 \& 2.4
3.4 \& . 4 \& 3.6 \& 4.9 \& 101.5 \& 392.1 \& 11
2 \& 8
4
4 \& 6
15 \& (x) \& (${ }_{1}$ \& 5 \& 21 \& 28

\hline 343.7 \& 10.6 \& \& \& 18.1
10.4 \& 60.6
36.7 \& (D) \& (D) \& (D) \& 3.4
.4 \& 29.7
31.3 \& 116.0
138.2 \& 3
4 \& 7
5 \& 17
8 \& 42 \& (X) \& 5
5 \& (14 \& 29
30

\hline
\end{tabular}

Table 3. Purchased Fuels, by Type, and Electric Energy Used for Heat and Power by Major
[For meaning of abbreviations and symbols, see introductory text. For explanation of terms, see appendixes]

Industry Group for States: 1981 and 1980-Con.

Table 3. Purchased Fuels, by Type, and Electric Energy Used for Heat and Power by Major
[For meaning of abbreviations and symbols, see introductory text. For explanation of terms, see appendixes]

State and SIC code	Geographic area and industry group	1981										
		Purchased fuels and electric energy		Electric energy			Purchased fuels		Fuel oil			
		Britishthermal units (trillions)	Cost (million dollars)	Purchased		Generatedlesssold(million$\mathrm{kWh})$	Britishthermal units (trillions)	$\begin{gathered} \text { Cost } \\ \text { (million } \\ \text { dollars) } \end{gathered}$	Distillate		Residual	
				Quantity (million kWh)	$\begin{aligned} & \text { Cost } \\ & \text { (million } \\ & \text { dollars) } \end{aligned}$				$\begin{gathered} \text { Quantity } \\ (1,000 \\ \text { barrels) } \end{gathered}$	Cost (million dollars)	$\begin{gathered} \text { Quantity } \\ \text { (1,000 } \\ \text { barrels) } \end{gathered}$	$\begin{gathered} \text { Cost } \\ \text { (million } \\ \text { dollars) } \\ \hline \end{gathered}$
		A	B	C	D	E	F	G	H	1	J	K
R.I.	Rhode Island-Con.											
27	Printing and publishing -	. 6	5.4	45.6	3.5		. 4	1.9	(D)	(D)	(D)	
30	Rubber and miscellaneous plastics products.	1.1	10.9	131.5	8.4	(D)	. 6	2.5	(D)	(D)	13.4	(4
32	Stone, clay, and glass products -----------	1.5	10.7	64.5	4.4		1.3	6.3	6.1	. 2	(D)	(D)
33	Primary metal industries ------	3.1	30.0	312.9	19.5		2.0	10.5	4.8	. 2	175.9	6.0
34	Fabricated metal products	2.7	21.6	173.6	12.4	(D)	2.1	9.2	20.2	. 9	33.0	1.2
35	Machinery, except electrical	. 7	8.4	81.2	5.9	(D)	. 4	2.5	(D)	(D)	(D)	(D)
36	Electric and electronic equipment	. 8	9.7	103.8	7.0	. 4	. 5	2.7	(D)	(D)	10.6	. 4
37	Transportation equipment ------	. 3	2.0	17.8	1.2	-	. 2	. 9		-	(D)	(D)
38	Instruments and related products.-.-.	. 6	5.2	42.3	10.2		. 4	2.0	14.5	. 6	14.2	. 5
39	Miscellaneous manufacturing industries	1.8	16.4	150.7	10.0		1.3	6.5	22.6	1.1	30.8	1.1
s.c.	South Carolina	224.2	1100.5	17262.3	564.2	1217.3	165.3	536.4	613.4	23.9	3549.2	106.9
20	Food and kindred products	3.5	24.3	269.0	11.3	$143{ }^{-}$	2.6	13.0	(S)	(S)	(S)	(S)
22	Textile mill products -----	60.7	314.8	6121.6	188.9	143.9	39.9	125.8	87.3	3.3	478.4	14.3
23 24	Apparel and other textile products Lumber and wood products.-----	3.4 4.8	19.4 32.6	313.8 473.2	12.0 18.6	(D)	2.3 3.1	7.5 14.1	21.8 74.4	. 3.2	(D)	(2)
25	Furniture and fixtures .---	. 3	2.6	47.7	2.2	(D)	. 1	. 4			(S)	(S)
26	Paper and allied products	36.7	169.3	1832.1	56.3	651.9	30.5	112.9	40.4	1.5	1990.7	59.6
27 28	Printing and publishing -------	. 59 59.5	3.1 229.0	66.7 369.7	2.7 105.1	(D)	.1 48.3	123.9	150.0	5.9	414.0	12.4
29	Petroleum and coal products	59.7	2.9	15.9	105	(D)	+6. 6	2.2	(D)	(D)	47.9	12.4
30	Rubber and miscellaneous plastics products	8.2	52.2	910.9	29.4	-	5.1	22.8	13.1	. 5	297.6	9.6
32	Stone, clay, and glass products	19.5	79.7	761.4	26.1	(D)	16.9	53.6	(S)	(S)	(D)	(D)
33	Primary metal industries --	14.5	86.5	1589.9	52.8	(D)	9.1	33.7	31.6	1.1	(D)	(D)
34	Fabricated metal products	2.4	18.0	309.7	12.7	-	1.4	5.3	5.8	. 2	5.2	. 2
35	Machinery, except electrical	4.9	33.1	638.9	22.3		2.7	10.8	30.2	1.1	12.1	. 4
36	Electric and electronic equipment	2.9	21.4	436.9	15.6	(D)	1.5	5.8	(D)	(D)	20.5	. 6
37	Transportation equipment	. 3	2.5	45.8	2.0	-	. 1	. 6	(D)	(D)	-	
38	Instruments and related products.	. 9	4.9	88.1	2.9	-	. 6	2.0	15.5	(D)	(D)	(D)
39	Miscellaneous manufacturing industries	. 5	3.5	62.3	2.2		. 3	1.3	(D)	(D)	(D)	(D)
S. Dak.	South Dakota	15.1	41.8	497.0	18.3	-	13.4	23.5	28.7	1.1	(D)	(D)
20	Food and kindred products	3.7	15.7	141.7	5.4	-	3.3	10.2	(D)	(D)	5.2	. 1
23	Apparel and other textile products	. 1	. 4	8.5	. 2	-	(S)	(S)	(D)	(D)		
24	Lumber and wood products --	4	2.8	31.6	1.4	-	(S)	1.4	(D)	(D)		
28	Chemicals and allied products	(3)	(z)	6.1	(z)		(S)	(S)				
31	Leather and leather products	(Z)	(Z)	(Z)	(Z)		(Z)	(Z)				
34	Fabricated metal products	. 1	5	6.0	. 3	-	. 1	. 2	(D)	(D)	-	
35 36	Machinery, except electrical \qquad Electric and electronic equipment	(Z) ${ }^{3}$	2.2	33.9	1.5	-	(Z)	.7	. 5	(Z)	(D)	(D)
36 39	Electric and electronic equipment Miscellaneous manufacturing industries	(Z)	. 5	7.8 3.3	. 4	-	(Z)	. 1			(D)	(D)
Tenn.	Tennessee	306.5	1552.1	29660.8	1015.2	1794.6	205.3	536.9	754.9	29.1	583.2	15.8
20	Food and kindred products	19.7	94.5	1150.7	45.1	. 5	15.7	49.4	31.5	1.2	164.4	4.7
21	Tobacco products ---	. 8	4.2	54.6	2.2	-	. 6	2.0	(D)	(D)		
22	Textile mill products ------	5.2	35.7	680.8	26.1		2.9	9.6	13.1	. 5	28.0 1.3	(Z)
23	Apparel and other textile products	2.7	22.1	432.4	18.8	(D)	1.2	3.4	3.7	. 1	1.3	(Z)
24	Lumber and wood products.-	2.3	17.9	228.9	11.3	(D)	1.5	6.6	36.8	1.4	(D)	(D)
25	Furniture and fixtures	1.8	14.0	207.8	9.9	-	1.1	4.1	2.9	. 1	(D)	(D)
26	Paper and allied products	32.4	148.4	2261.3	78.3	(D)	24.7	70.1	38.3	1.4	194.3	4.8
27	Printing and publishing ----	2.2	15.9	263.3	11.2		1.3	4.7	(D)	(D)	(D)	(D)
28	Chemicals and allied products	142.0	611.8	12264.7	417.0	1265.9	100.2	194.8	203.5	7.3	47.9	1.4
29	Petroleum and coal products.	2.6	12.0	152.5	5.7		2.1	6.3	4.7	. 2	(D)	(D)
30	Rubber and miscellaneous plastics products_	9.3	57.1	844.6	33.4	-	6.4	23.6	23.1	. 8	48.7	1.4
31	Leather and leather products ---	. 9	7.3	128.9	5.7	(D)	. 5	1.6	(D)	(D))
32	Stone, clay, and glass products	20.3	89.1	852.2	31.4	(D)	17.4	57.7	148.9	6.7	(D)	(D)
33	Primary metal industries -----	38.8	249.5	7225.4	200.5	(D)	14.2	49.0	110.3	3.6	(D)	(D)
34	Fabricated metal products .-	6.5	42.0	648.4	27.0	(D)	4.3	15.0	26.6	1.1	(D)	(D)
35	Machinery, except electrical	4.4	31.4	529.2	22.2	-	2.6	9.2	9.4	. 3	9.0	. 3
36	Electric and electronic equipment	9.1	61.2	1122.0	42.3	(D)	5.3	18.8	(D)	(D)	(D)	(D)
37	Transportation equipment ------	3.7	26.6	433.1	18.7	-	2.2	7.8	13.9	(D)	(D)	(D)
38 39	Instruments and related products.------ Miscellaneous manufacturing industries	1.2	2.7 8.6	53.3 126.8	2.2 6.0		. 7	.5 2.6	(D)	(D)	(D)	(D)
Tex.	Texas	1523.7	6009.0	58080.5	2173.2	7893.8	1325.6	3835.8	935.7	37.0	954.0	23.9
20	Food and kindred products .-	41.4	215.4	2631.9	108.8	15.4	32.4	106.6	32.5	1.3	16.2	. 3
22	Textile mill products ------	2.4	15.8	276.7	10.8		1.4	5.0	(D)	(D)	(s)	(S)
23	Apparel and other textile products	3.3	25.8	419.9	19.4	(D)	1.9	6.5			(S)	(S)
24 25	Lumber and wood products ------- Furniture and fixtures	10.0 1.0	58.6 6.9	735.6 92.5	26.8 4.4	(D)	7.5 .7	31.8 2.5	160.2	(D)	(D)	(D)
26	Paper and allied products	54.9	227.7	2027.5	71.1	1710.8	48.0	156.6	. 1	(Z)	(D)	(D)
27	Printing and publishing ---	3.2	30.5	595.7	26.8		1.2	3.7	-	(2)	(D)	(D)
29	Petroleum and coal products	470.2	1689.9	8002.4	309.9	3561.2	442.9	1380.0	(D)	(D)	11.1	. 3
31	Leather and leather products --	9.3	219.5	-56.9	${ }_{87.1}^{2.2}$		82.1	232.1	575.9	22.4	24.6	
32	Stone, clay, and glass products	90.2	39.2	2	87.		-					. 7

See footnotes at end of table.

Industry Group for States: 1981 and 1980-Con.

Table 3. Purchased Fuels, by Type, and Electric Energy Used for Heat and Power by Major
[For meaning of abbreviations and symbols, see introductory text. For explanation of terms, see appendixes]

Industry Group for States： 1981 and 1980－Con．

음．ర．，	． 0.	菊	．．．O⿹丁口O	．		－ơo		，＇	，可．	－	，可．．，O	可，可．	．．．． 0	$\stackrel{8}{8}$	．．		－		咢高荡	
믕，，미	，${ }^{\text {O }}$.	－	．．．	．밈．0	，¢¢．		－		．	－	．	므으，	．．．．${ }^{\text {O}}$	$\stackrel{\sim}{\sim}$	．．		3			
Dob，		N	． 0.	O－			응	，．．		，	．．．．．©	．．．．．	．．．．．	응	．．．．．．		z		$\begin{aligned} & \text { ᄋ} \\ & \frac{0}{\hat{0}} \\ & \text { 僉 } \end{aligned}$	
歌，		$\stackrel{\omega}{\omega}$	，或．	©			믐	，			．．．，－	．	．．．	⿹ㅡㅇ	．．．．．． 0		\bigcirc			
戓Nongos		$\stackrel{8}{0}$		¢0N00	－		$\stackrel{ \pm}{i}$	万⿹丁口⿹丁口欠，，可	으으．${ }^{\text {O }}$	$\stackrel{\rightharpoonup}{\square}$	OTOM inco ${ }^{\text {No }}$	No	す⿹勹口欠⿹\zh26丁心	¢			0		$\underset{\text { \％}}{\substack{\text { ¹ }}}$	$\stackrel{\stackrel{\rightharpoonup}{*}}{\stackrel{1}{1}}$
	式式O¢	$\stackrel{\text { N }}{\text { N }}$		ふ戸它すへ			氙	므으․ ．	O－OD．	$\stackrel{\otimes}{-}$		¢000		¢			\bigcirc		\％	$?$
Nơn，므․		$\stackrel{\rightharpoonup}{0}$	O－Diviv	అ్ర⿹勹巳0	－心1000	คั่	$\stackrel{\text { ¢\％}}{\substack{\circ \\ \hline}}$	万⿹丁口⿹丁口欠，¢	万⿹丁口⿹丁口欠，므	9	，歌家可	可，可，	．，Oto in	$\stackrel{\square}{i}$			D			
¢ذ．	或の，¢	N	可．	అ్రంodo	．\triangle－	in ${ }^{\text {¢ }}$	$\stackrel{9}{7}$		OTOO．	i	，可式	⿹丁口，ㅇ．．	．．	¢			∞			
으으응	$\stackrel{\text { Ofa }}{\text { ¢ }}$	シ	⿹్ర刀口⿹丁口欠：		，Dodoris		$\stackrel{\rightharpoonup}{\circ}$	．$\underbrace{}_{1}$.	으으․	$\stackrel{\rightharpoonup}{\infty}$	．	으，，in	，⿹丁口，可．	$\stackrel{\omega}{\omega}$			\rightarrow			
అ్ర్రぃ	いの号めの	N		可它	＂⿹ㅢ：	문믈 ${ }_{0}^{\infty}$	⿹ㅡㅇ	¢－Wovir	NiN00．3	©	Oiviosem	$\stackrel{\infty}{+10}$		©			C			
$\begin{aligned} & \stackrel{\infty}{\stackrel{\rightharpoonup}{\omega}} \stackrel{\rightharpoonup}{\omega} \stackrel{\rightharpoonup}{\mathrm{N}} \\ & \stackrel{\rightharpoonup}{\omega} \mathrm{o} \\ & \hline \end{aligned}$		$\begin{aligned} & \text { N } \\ & \stackrel{0}{\circ} \\ & \dot{\sigma} \\ & \hline \end{aligned}$	$\operatorname{MnN}_{\rightarrow+\infty}$				\xrightarrow{N}		No ¢ ¢ ¢ O	$\stackrel{\rightharpoonup}{\square}$	$-\stackrel{N}{\omega} \dot{\omega} \dot{0}$	Vōvous		¢			$<$			
	$\stackrel{\sim}{\omega}$	$\stackrel{\infty}{\stackrel{\infty}{\infty}}$	$\stackrel{N}{\sim}$				$\stackrel{\bullet}{\sim}$	A－	$\stackrel{\rightharpoonup}{\omega} \underset{\substack{\omega}}{\substack{\omega \\ \hline}}$	$\underset{\infty}{9}$		$\begin{aligned} & \text { No Nun } \\ & \text { ing } \\ & \hline \end{aligned}$	oviou oo				Σ			
		ω		のヘ0®×	8んあuv	Noncas	－	∞ ¢	NoNTGOM	－	$-\bar{x}_{N} \pm N_{N}$	いささせゃ。		\cdots			\square			
$\infty \stackrel{\rightharpoonup}{\triangle} \bigcirc \stackrel{\rightharpoonup}{\omega}$	$\omega_{\infty}^{\omega} \omega \sim \sim \infty$	ω	V $\omega N \omega$	成 $\infty_{\infty} \widehat{X}_{\infty}$	区NVNG		N	$\Delta \infty \stackrel{\rightharpoonup}{\text { ® }}$	－¢゙っ®\％	\cdots	－ ® $_{\text {いの }}$	NWMNOONO		v			\bigcirc			
，		$=$		区ָNu్రX	$\widehat{\chi} \omega \Delta{ }^{*} \omega$		$\stackrel{\square}{0}$	¢¢XXXN	－xx®x	$\stackrel{\rightharpoonup}{v}$	\XXXX．	¢8xxx	Mxxxx	世	スメルのNべへ		－			
xxxx	$\bar{x}^{-1} \boldsymbol{x}_{\omega}$	N	줒자		ชースーN		N	－\xxxx	－xx®x	の	888888	\x®xx		N	৪xxxx		자			
xxxxx	צx8x	N	¢888x			¢ $\bar{x}-+\bar{x}$	\sim	ㅈxxxxx	8xxxx	지	ชชxヌxx	ชx\xx		ぁ			3			
	Anơxo	－	$\stackrel{\rightharpoonup}{\text { ® }}$ の ${ }_{\text {a }}$	x $\pm \boxed{\text { x }}$		べべーのの	－	88x8x	¢	N		gixnsx	SXXX\％	の	ANVWNun		\bigcirc			
－	ヌலコヌী	$\stackrel{\rightharpoonup}{\omega}$	ХХХХ－			※NW్ర入へ	∞		ㅈx̧8x	の	ช®®®－	8XXXX	ชイXXA	N	XX－－GNNM		0			
む్టNర్రN\％	NイNONO	E 0 0		¢	ONNKN	NNNNTO	\＄		NUNNOS	5		NWOMNN	今NNON	帝						

Table 3. Purchased Fuels, by Type, and Electric Energy Used for Heat and Power by Major
[For meaning of abbreviations and symbols, see introductory text. For explanation of terms, see appendixes]

State and SIC code	Geographic area and industry group	1981										
		Purchased fuels and electric energy		Electric energy			Purchased fuels		Fuel oil			
		British thermal units (trillions)	Cost (million dollars)	Purchased		Generated less sold (million kWh)	British thermal units (trillions)	Cost (million dollars)	Distillate		Residual	
				Quantity (million kWh)	Cost (million dollars)				Quantity (1,000 barrels)	Cost (million dollars)	Quantity (1,000 barrels)	Cost (million dollars)
		A	B	C	D	E	F	G	H	1	J	K
Wash.	Washington-Con.											
34	Fabricated metal products	1.9	10.2	207.9	5.1	-	1.2	5.1	1.8	. 1	-	
35	Machinery, except electrical	1.4	6.8	193.3	3.6	(D)	. 8	3.2	8.3	. 3	1.2	(Z)
36	Electric and electronic equipment	. 5	2.4	78.3	1.7)	. 2	. 7	(D)	(D)	-	-
37	Transportation equipment ------------	10.9	47.9	1056.5	16.8	-	7.3	31.1	(D)	(D)	(D)	(D)
39	Miscellaneous manufacturing industries	. 3	1.8	45.5		-	(S)		-	-	-	-
W. Va.	West Virginia	164.3	614.9	9462.7	256.2	1017.5	132.0	358.7	126.6	5.0	1769.8	52.1
20	Food and kindred products	1.3	7.5	84.3	3.5	-	1.0	4.0	(D)	(D)	(D)	(D)
22	Textile mill products -----	. 1	. 7	7.8	. 3	-	. 1	. 3	(D)	(D)	(D)	(D)
23	Apparel and other textile products	. 2.5	1.7	34.5	1.2	(D)	. 1	. 5	(D)	(D)	(D)	(D)
24	Lumber and wood products.-----	1.5	8.4	80.3	3.5	-	1.2	4.9	(S)	(S)	(D)	(D)
25	Furniture and fixtures ------	. 2	1.0	12.7	. 5	-	. 1	. 5	-	-	((D)
26	Paper and allied products	. 9	5.2	38.6	1.7	(D)	. 8	3.5	(D)	(D)	(D)	(D)
27	Printing and publishing ----	7.4	2.5	36.5	1.5	-	. 3	1.0	(D)	((D)	(D)
28	Chemicals and allied products	73.2	238.6	3949.3	106.8	(D)	59.7	131.8	35.6	1.3	103.4	3.3
32	Stone, clay, and glass products	19.0	69.1	487.2	15.4	(D)	17.3	53.7	(D)	(D)	(D)	(D)
33	Primary metal industries .------	57.1	229.5	4069.1	99.8	(D)	43.2	129.7	10.3	.4	(D)	(D)
34	Fabricated metal products	1.9	10.1	115.4	4.8	-	1.5	5.2	3.3	(1)	-	-
35	Machinery, except electrical -	. 5	3.8	56.5	2.6	-	. 3	1.2	(D)	(D)	-	
36	Electric and electronic equipment	2.7	13.8	302.9	8.0	-	1.7	5.8)	-	-	
37	Transportation equipment	. 2	1.4	23.3	. 9	-	. 2	. 5	-	-	-	
39	Miscellaneous manufacturing industries	. 1	. 3	2.0	. 1	-	(S)	(S)	-	-	-	
Wis.	Wisconsin	235.4	1135.3	12650.0	491.3	1459.6	192.3	644.0	523.2	21.0	964.3	25.3
20	Food and kindred products	40.6	200.0	1708.1	67.4	(D)	34.8	132.6	149.6	5.5	245.0	6.3
22	Textile mill products -----	. 9	5.5	62.9	2.9	(D)	. 7	2.6	-	-	(D)	(D)
23	Apparel and other textile products	. 4	2.4	28.0	1.4	(D)	. 3	1.1	(D)	(D)	(D)	(D)
24	Lumber and wood products	3.9	28.0	288.3	13.2	(D)	2.9	14.8	(D)	(D)	13.3	. 4
25	Furniture and fixtures .-----	1.1	6.8	79.0	3.5	(D)	. 9	3.3	(D)	(D)	-	-
26	Paper and allied products	96.2	345.8	3849.2	122.6	(S)	83.1	223.2	31.1	1.1	521.1	13.9
27	Printing and publishing ---	3.0	21.9	309.7	14.1	(S)	2.0	7.8	(D)	(D)	(D)	(D)
28	Chemicals and allied products	5.7	29.3	459.1	16.5	-	4.1	12.8	9.6	. 4	(D)	(D)
29	Petroleum and coal products	1.4	6.9	75.6	3.0	-	1.1	3.9	(D)	(D)	(D)	(D)
30	Rubber and miscellaneous plastics products	4.2	27.9	508.1	20.2	(D)	2.4	7.7	1.7	. 1	-	-
31	Leather and leather products	1.9	10.7	84.6	4.2	(D)	1.6	6.5	8.5	(3)	(D)	(D)
32	Stone, clay, and glass products	6.2	31.6	153.1	6.7	(D)	5.6	25.0	(S)	(S)	(S)	(S)
33	Primary metal industries .-----	17.1	106.4	1255.2	53.6	(D)	12.8	52.8	19.0	. 7	(D)	(D)
34	Fabricated metal products	17.7	98.2	1006.2	44.0	(Z)	14.3	54.2	22.3	. 9	6.9	. 2
35	Machinery, except electrical	18.2	110.6	1389.9	59.3	(S)	13.5	51.3	47.1	1.9	44.0	1.0
36	Electric and electronic equipment	7.3	46.9	711.8	28.8	(D)	4.9	18.1	8.1	. 3	7.7	(1)
37	Transportation equipment -------	7.6	43.0	517.1	21.8	(D)	5.8	21.2	16.1	. 6	(D)	(D)
38 39	Instruments and related products	1.0	7.0	90.4	4.4	(D)	. 7	2.6	(D)	(D)	-	-
39	Miscellaneous manufacturing industries	1.0	6.4	73.5	3.7	-	. 7	2.7	2.9	. 1	-	-
Wyo.	Wyoming -------	22.3	73.3	539.0	11.7	40.4	20.5	61.6	(D)	(D)	(D)	(D)
20	Food and kindred products	3.2	10.4	(D)	-	-						
24	Lumber and wood products	. 6	3.0	39.7	1.4	.	. 4	1.6	(D)	(D)	-	-
27	Printing and publishing ----	(Z)	. 3	6.1	. 2	-	(S)	(S)	-	-	-	-
29	Petroleum and coal products	14.8	45.3	286.8	5.3	(D)	13.9	40.0	-	-	-	-
35	Machinery, except electrical	. 2	. 9	16.1	. 5	(D)	. 1	. 4	-	-	-	-

 1 important cont.

Industry Group for States: 1981 and 1980-Con.

Table 4. Consumption and End-of-Year Stocks of Selected Purchased Fuels by Major Industry Group for States: 1981
[For meaning of abbreviations and symbols, see introductory text. For explanation of terms, see appendixes]

Table 4. Consumption and End-of-Year Stocks of Selected Purchased Fuels by Major Industry Group for States: 1981-Con.

See footnotes at end of table

Table 4. Consumption and End-of-Year Stocks of Selected Purchased Fuels by Major Industry Group for States: 1981-Con.

See footnotes at end of table.

Table 4. Consumption and End-of-Year Stocks of Selected Purchased Fuels by Major Industry Group for States: 1981-Con.

Table 4. Consumption and End-of-Year Stocks of Selected Purchased Fuels by Major Industry Group for States: 1981-Con.
[For meaning of abbreviations and symbols, see introductory text. For explanation of terms, see appendixes]

Table 4. Consumption and End-of-Year Stocks of Selected Purchased Fuels by Major Industry Group for States: 1981-Con.

$\begin{gathered} \mathrm{SIC} \\ \text { code } \end{gathered}$	Geographic area and industry group	Fuel oil ${ }^{1}$				Bituminous coal, lignite, and anthracite		Coke and breeze		Liquefied petroleum gases	
		Distillate		Residual		Consumption (1,000 shons)	$\begin{gathered} \text { Stocks } \\ \text { (1,000 } \\ \text { short } \\ \text { tons) } \end{gathered}$	$\left.\begin{array}{\|c\|c\|}\text { Consumption } \\ \text { (1.000 } \\ \text { short } \\ \text { tons) }\end{array}\right)$	$\begin{gathered} \text { Stocks } \\ \text { (1,000 } \\ \text { sonor } \\ \text { tons) } \end{gathered}$	Consumption(milionpounds)	$\begin{aligned} & \text { Stocks } \\ & \text { (million } \\ & \text { pounds) } \end{aligned}$
		Consumption (1,000 barrels) barrels	$\begin{array}{r} \text { Stocks } \\ (1,000 \\ \text { barrels) } \end{array}$	Consumption (1,000 barrels)	$\begin{array}{r} \text { Stocks } \\ (1,000 \\ \text { barrels) } \end{array}$						
Md.	Maryland-Con.										
32	Stone, clay, and glass products .--	274.0	55.5	(D)		(D)	(D)				(D)
${ }^{33}$	Primary metal industries ----------	207.4	43.9	(0)	(D)			(D)	(D)	4.5	(D)
34 35	Fabricated metal products -----	19.1 11.3	1.5 2.0	29.4 39.7	4.0					2.7 2.9	
36	Electric and electronic equipment	29.5	(D)	(D)	(D)					(D)	(D)
37 38	Transportation equipment -------------------------------- Instuments and	31.3 (D)	(D)	158.4	(D)						
Masa.	Masachusetts ------	1309.9	194.0	6160.8	532.4	34.9	3.0	5.4	(D)	25.7	2.9
20	Food and kindred products .	62.4	(D)	741.4	76.3					1.3	(D)
22 23	-	52.1 29.7	6.9 10.9	451.9 9.7	25.3)	(D)	(D)			(D)	(D)
	Furniture and fixtures ----------	39.4	4.1	10.9	1.3	(D)	(D)			(D)	
26	Paper and allied products --------------------------	192.6	16.6	1807.9	67.8	(D)	(D)			4.5	
27	Printing and publishing ----------------------------	47.4	4.9	28.7	2.6						
28 29	Chemicals and allied products ------------------------------ Petroleum and coal products	89.5 16.7	$\begin{array}{r}20.5 \\ 1.4 \\ \hline\end{array}$	826.7	94.5					. 8	
30	Rubber and miscellaneous plastics produ	${ }^{60.8}$	5.0	250.9	21.6					1.7	(i)
31	Leather and leather products ---	39.9	3.9	157.2	10.8					.3	(Z)
32	Stone, clay, and glass products	107.0	17.9	206.1	(D)					(D)	(D)
33 34	Primary metal industries ---.--- Fabricated metal products	87.7 233.3	12.9 44.5	145.0 219.3	10.7 41.0	(D)	(D)	(D)	(D)	6.0 2.7	$.7$
35	Machinery, except electrical ------------------------------	102.5	17.2	234.6	19.2	(D)	(D)	(D)	(D)	4.6	3
36 38	Electric and electronic equipment -------------------	62.1 29.1	9.1 3.1	419.6 295.9	72.3 39.7					1.4	(1)
39	Miscellaneous manutacturing industries -----------------	32.8	3.8	51.4	9.6					(D)	(D)
Mich.	Mlchlgan	662.6	177.5	1769.6	512.0	4041.6	1272.8	1814.4	241.2	33.7	5.8
20	Food and kindred products -----------------------	47.2		210.1	112.6			(D)	(D)		
23 24	Apparel and other textie products ----------------------------	(D)	(D)	(D)	(D)	(D)	(D)			(D)	${ }^{\text {(D) }}$
25	Furniture and fixtures -------------------------------------	(D)	(D)				(D)			4	(D)
26	Paper and allied products .----	13.5	9.4	249.5	204.6	584.7	253.5	(D)	(D)	3.6	1.5
27	Printing and publishing ---	(D)	(D)		(D)				-	(D)	(D)
28 29	Chemicals and allied products ---------------------------- Petroleum and coal products -----	(0.0	(0) ${ }^{39}$	(D)	67.9	822.5	277.5			(D)	(D)
30	Rubber and miscellaneous plastics products-----------	(D)	(D)		(D)	(D)	(0)	(D)	(D)	2.0	(2)
32	Stone, clay, and glass products -----------------	35.8	35.7			776.6	170.9	(D)	(D)	1.2	(D)
33	Primary metal industries --	117.1	21.3	272.3	(D)	(D)	164.4	1790.2	(D)		
34 35	Fabricated metal products ------------------------------------	48.4	(5 5	132.0 28.9	${ }_{\text {(D) }}^{15.3}$	(D)	20.9		${ }^{\text {(D) }}$	8.2	(D)
36 37	Electric and electronic equipment --------------------	1.7	1.4			(0)	(0)			(D)	(D)
${ }_{38} 38$	Iransporation equipment ---------------------------------	$\begin{aligned} & \text { (D) } \\ & \text { (D) } \end{aligned}$	$\begin{aligned} & \text { (D) } \\ & \text { (D) } \end{aligned}$	(D)	(${ }^{3}$)						
39	Miscellaneous manutacturing industries -----------------			(D)	(D)						
Minn.	Minnesota--	275.3	109.9	633.8	179.8	790.7	47.7	(D)	(D)	71.7	(D)
20	Food and kindred products	78.5	32.6	154.4	(D)	478.8	35.9	(D)	(D)		10.5
22 23	Textile mill products -----------		(D)	(D)	(D)					(D)	
24	Lumber and wood products.------	30.8	2.0	11.8	1.9					2.5	(D)
25	Furniture and fixtures -------	1.5	. 2							. 4	(D)
26	Paper and allied products ------------	11.6				267.1	(D)				
27 28	Printing and publishing ------------------------------------	7.6	$\begin{array}{r}2.2 \\ 10.3 \\ \hline 1\end{array}$	(D)	(D)		(D)			(D)	(D)
29	Chermicals and alied products ------------------------------	(0)	10.3 2.9	${ }^{16.0}$ (D)	${ }_{\text {(}}(\mathrm{D})$	(D)	(D)				(0)
30	Rubber and miscellaneous plastics products.-	9	3.0	(D)	(D)					${ }^{\text {. }} 2$	(
31	Leather and leather products ---------										
${ }_{3}^{32}$	Stone, clay, and glass products --	54.7	11.5	(D)							
${ }_{34}$	Primary metal industries---.------	7.1	${ }_{3}{ }^{\text {(D) }}$					(D)	(D)	77.9	(1.)
35	Machinery, except electrical -----	24.5	14.2	26.3	(D)	(D)	(D)	(D)	(D)	6.6	3.4
	Electric and electronic equipment .---										
37 38	Transportation equipment ----------------------			(D)	(D)						(D)
$\begin{array}{r}38 \\ \hline\end{array}$	Instruments and related products------------------------ Miscollaneous manutacturing industries		(D)	(D)	(D)					(D)	(D)
Miss.	Mlaalssippl --	223.4	45.3	247.1	62.2	(D)	(D)	9.3	(D)	16.4	2.7
${ }_{2}^{22}$	Textile mill products - Apparel and and	(D)	(D)	(0)	(0)					(D)	(0)
24	Lumber and wood products .--------------	64.3	(D)							(D)	(0)
25	Furniture and fixtures .--------------------	(D)	(D)							(D)	(D)
26 27	Paper and allied products ------------		(D)	(D)	(D)			-		(D)	(D)
28	Printing and publishing -----------------------------------	(D)									
	Petroleum and coal products Perber and miscellaneous plastics products	(D) 1	$\begin{aligned} & \text { (D) } \\ & \text { (D) } \end{aligned}$							$\stackrel{(0)}{\text { (}}$	(售)

Table 4. Consumption and End-of-Year Stocks of Selected Purchased Fuels by Major Industry Group for States: 1981-Con.

$\underset{\text { sIC }}{\text { SIC }}$	Geographic area and industry group	Fuel oil				Bituminous coal, lignite, and anthracite		Coke and breeze		Liquefied petroleum gases	
		Distillate		Residual		Consumption (1,000 short tons)	$\begin{gathered} \text { Stocks } \\ (1,000 \\ \text { short } \\ \text { tons) } \end{gathered}$	Consumption (1,000 short tons)	$\begin{gathered} \text { Stocks } \\ \text { (1,000 } \\ \text { short } \\ \text { tons) } \end{gathered}$	Consumption (million pounds)	$\begin{gathered} \text { Stocks } \\ \text { (million } \\ \text { pounds) } \end{gathered}$
		Consumption (1,000 barrels)	Stocks (1,000 barrels)	Consumption (1,000 barrels)	$\begin{gathered} \text { Stocks } \\ \text { (1,000 } \\ \text { barrels) } \end{gathered}$						
Miss.	Mississippi-Con.										
32	Stone, clay, and glass products .	(D)	(D)	-		(D)	(D)	(D)	(D)	(D)	(D)
33	Primary metal industries .-------	(D)	(D)						(D)	(D)	(D)
34	Fabricated metal products	(D)	(D)	(D)	(D)			-	(D)	5.5	. 4
35	Machinery, except electrical -----------	1.4	(D)	4.1	(D)			(D)	(D)	1.1	. 7
36 37	Electric and electronic equipment ---------	(D)	(D)	(D)	(D)				-	(D)	(D)
39	Miscellaneous manufacturing industries								-	(D)	(D)
Mo.	Mlssouri --	235.6	222.1	364.3	381.1	1303.6	175.7	104.2	16.1	95.8	14.5
20	Food and kindred products .	30.2	15.7	59.7	45.9	(D)	(D)	-	-	7.9	. 8
22 23	Textile mill products -------------	(D)	(D)	(D)	(D)			-	-	(D)	(D)
23 24	Apparel and other textile products	(S)	(S)	(D)	(D)		-	:	:	(D)	(D)
25	Furniture and fixtures .--------	(D)	(D)							(D)	(D)
26	Paper and allied products.	(D)	(D)	(D)	(D)		-	-	-	(D)	(D)
27	Printing and publishing _-.-.--	(D)	(D)				(D)	-	-		(1)
28 29	Chemicals and allied products --- Petroleum and coal products ----	12.0)	9.2	(D)	39.5 (D)	121.5	(D)	-	-	(D)	(D)
30	Rubber and miscellaneous plastics products	(D)	(D)	(D)	(D)	(D)	(D)	-	-	1.1	. 1
31	Leather and leather products -	3.6	(D)	(D)	(D)	(D)	(D)	-	-	3.2	. 3
32	Stone, clay, and glass products .	87.5	62.6	(D)	(D)	1026.7	(D)	(D)		3.7	1.4
33	Primary metal industries .--	15.3	104.7	(D)	(D)		-	96.0	15.9	27.8	4.4
34	Fabricated metal products	10.8	2.1	(D)	(D)	-		(D)	(D)	5.1	2.0
35	Machinery, except electrical	11.3	1.8	(D)	(D)					5.4	1.2
36	Electric and electronic equipment	3.2	(D)	33.4	(D))			(D)	. 3
37	Transportation equipment -------	13.9	3.3	(D)	(D)	(D)	(D)	(D)	(D)	7.4	1.7
38 39	Instruments and related products ------ Miscellaneous manufacturing industries	(D)	(D)	(D)	(D)	-		-	-	(D)	(D)
Mont.	Montana -	58.5	(D)	26.6	(D)	(D)	(D)	(D)	(D)	5.3	. 4
20	Food and kindred products	(D)	(D)	-	-	(D)	(D)	(D)	(D)	(D)	(D)
22 24	Textile mill products --------	53.0	(D)	(D)	1.1			:	-	1.8	. 2
27	Printing and publishing .---		(D)	(D)	1.1	-	-	-	-	1.8	
28	Chemicals and allied products							-	-	(D)	(D)
29	Petroleum and coal products .	-	-	(D)	-	-	-	-	-	-	
35	Machinery, except electrical -----	-	-		-	-	-	-	-		
36 37	Electric and electronic equipment Transportation equipment	-	-			-	-	-	-		
Nebr.	Nebraska	75.1	130.3	54.5	78.4	(D)	(D)	14.3	1.6	10.9	(D)
20	Food and kindred products .-	57.4	35.0	13.7	54.0	(D)	(D)	(D)	(D)	5.2	7.4
23	Apparel and other textile products	(D)	(D)			.		-	-	(D)	
24	Lumber and wood products-----	(D)							-	(D)	(D)
26 27	Paper and allied products Printing and publishing	(D)	(D)			:		-	:	(D)	(D)
28	Chemicals and allied products	(D)	(D)	(D)	-	-	-	-	-	(D)	(D)
31	Leather and leather products	(D)	(D)	-	-			(D)	-		
33	Primary metal industries ----	(D)	(D)	(D)	(D)	-	-	(D)	(D)	(D)	(D)
34	Fabricated metal products	(D)	(D)	(D)	(D)	-	-			(D)	(D)
35	Machinery, except electrical	(E)	(D)	(D)	(D)	-	-	(D)	(D)	. 8	(D)
36 37	Electric and electronic equipment Transportation equipment	(D)	(D)	(D)	(D)	-	-	-	-		1.4
38	Instruments and related products-------		(D)	(D)	(D)	-	-	-	-	(D)	(D)
39	Miscellaneous manufacturing industries .--					-	-		-		
Nev.	Nevada	(D)	(D)	138.6	6.2	(D)	(D)	-	-	5.0	1.3
20	Food and kindred products --------	-	-	(D)	(D)	-	-	-	-	(D)	(D)
23	Apparel and other textile products ----------	-	-		-	:	-	-	-	-	
-24	Lumber and wood products-------------------------		-	-	-	-	-	-	:	-	
27	Printing and publishing -------		-	-	-	-	-	.	.	(D)	(D)
28	Chemicals and allied products	(D)	(D)	(D)	(D)	-	-	-	-	(D)	(D)
29	Petroleum and coal products -----------	(D)	(D)	(D)	(D)	(D)	(D)	:	-	-	
32 35	Stone, clay, and glass products Machinery except electrical	(D)	(D)	(D)	(D)	(D)	(D)	-	-	-	(D)
37	Transportation equipment ------------------		-	-	-	-	-	-	:	-	
N.H.	New Hampshire	352.6	54.4	1602.8	89.3	(D)	(D)	-	-	25.8	2.7
20	Food and kindred products .	(D)	(D)		(D)	\cdot	-	-	-	(D)	(D)
22	Textile mill products ...-.--	(S)	(S)	(S)	(S)	(D)	(D)	-	-	(D)	(D)
24	Lumber and wood products	(S)	(S)	(D)	(D)	(D)	(D)	-	-	.	
25	Furniture and fixiures -----	(D)	(D)			()	-	-	(D)	
26	Paper and allied products -	(D)	(D)	1197.5	23.7	-	-	-	-	(D)	(D)
27	Printing and publishing ----	(S)	(S)		-	-	-	-	-	-	
28		(D)	(D)	(D)	(D)	-	-	-	-	(D)	(D)
30	Rubber and miscellaneous plastics products	26.5	8.7	45.5	(D)	-	-	-	-	(D)	9
31 32	Leather and leather products \qquad Stone, clay, and glass products \qquad	7.8 (D)	(D)	(D)	(D)	-	-	-	:	(D)	(D)

Table 4. Consumption and End-of-Year Stocks of Selected Purchased Fuels by Major Industry Group for States: 1981-Con.

Table 4. Consumption and End-of-Year Stocks of Selected Purchased Fuels by Major Industry Group for States: 1981-Con.
[For meaning of abbreviations and symbols, see introductory text. For explanation of terms, see appendixes]

$\begin{gathered} \text { SIC } \\ \text { code } \end{gathered}$	Geographic area and industry group	Fuel oil ${ }^{\prime}$				Bituminous coal, lignite, and anthracite		Coke and breeze		Liquefied petroleum gases	
		Distillate		Residual		$\begin{array}{r} \text { Consumption } \\ (1,000 \\ \text { short } \\ \text { tons) } \end{array}$	$\begin{gathered} \text { Stocks } \\ (1,000 \\ \text { short } \\ \text { tons } \end{gathered}$	Consumption (1,000 tons)	$\begin{gathered} \text { Stocks } \\ \text { (1,000 } \\ \text { short } \\ \text { tons) } \end{gathered}$	Consumption (million pounds)	$\begin{gathered} \text { Stocks } \\ \text { (million } \\ \text { pounds) } \end{gathered}$
		$\begin{array}{\|r} \text { Consumption } \\ (1,000 \\ \text { barrels }) \end{array}$	$\begin{array}{r} \text { Stocks } \\ \text { (1,000 } \\ \text { barrels } \end{array}$	Consumption (1,000 barrels)	$\begin{array}{r} \text { Stocks } \\ (1,000 \\ \text { barrels) } \end{array}$						
N.C.	North Carolina-Con.										
35	Machinery, except electrical	25.5	(D)	20.2	3.2	-	-	(D)	(D)	9.4	1.8
36	Electric and electronic equipment	35.1	59.1	50.7	8.9					5.0	1.2
37	Transportation equipment -------	7.6	1.0	(D)	(D)	(D)	(D)			2.2	. 5
38	Instruments and related products.	(D)	(D)	(D)	(D)	(D)	(D)			2.2	. 4
39	Miscellaneous manufacturing industries .-.	(S)	(S)	(D)	(D)					(D)	(D)
N. Dak.	North Dakota	(D)	(D)	158.7	3.6	(D)	(D)	(D)	(D)	7.3	. 5
20 23	Food and kindred products ------ Apparel and other textile products	(D)	(D)	158.7	3.6	(D)	(D)	(D)	(D)	(D)	(D)
24	Lumber and wood products.-.---						:-	-			
26	Paper and allied products ...						-	-	-	-	
29	Petroleum and coal products ..						-	-	-	(D)	
$\begin{aligned} & 35 \\ & 37 \end{aligned}$	Machinery, except electrical	(D)	(D)							5.7	(D)
	Transportation equipment	(D)									
Ohio	Ohio -	1318.1	800.5	2179.9	769.7	4975.7	751.2	2870.3	456.4	114.2	33.7
20	Food and kindred products	160.7	53.3	109.8	23.6	315.4	18.3	(D)	(D)	8.7	1.3
22	Textile mill products .----------	(D)	10.4			(D)	(D)			(D)	(D)
23 24	Apparel and other textile products.	23.2	(D)	(D)	(D)	(D)				(D)	(D)
25	Furniture and fixtures ...---	1.9	(D)		(D)	(D)	(D)	-		1.4	(Z)
26	Paper and allied products	111.5	46.5	(D)	7.2	980.8	80.4	-	-	1.6	. 1
27	Printing and publishing .-...	2.0	8.2	(D)	(D)		(D)			2.4	. 3
28	Chemicals and allied products	105.4	92.8	56.3	(D)	1088.2	157.3	38.2	(D)	3.4	(D)
29	Petroleum and coal products	121.6	9.6	94.7	(D)					4.5	(D)
30	Rubber and miscellaneous plastics products	60.9	17.8	226.9	64.7	343.7	35.5			(D)	(D)
32	Stone, clay, and glass products	77.3	96.7	(D)	(D)	608.7	105.8	(D)	(D)	14.2	4.0
33	Primary metal industries	401.0	180.9	1185.2	386.0	970.7	190.1	2771.8	381.8	23.7	6.8
34	Fabricated metal products	67.6	40.1	144.8	36.6	149.5	15.9	(D)	(D)	15.1	7.2
35	Machinery, except electrical	109.0	160.8	40.2	37.1	120.1	28.5	(D)	(D)	13.0	2.7
36	Electric and electronic equipment	8.1	30.5	(D)	14.2	73.6	11.9	(D)	(D)	3.9	5.6
37	Transportation equipment .	56.1	48.0	71.4	27.6	282.0	99.9	-	-	17.6	4.1
38 39	Instruments and related products...---- Miscellaneous manufacturing industries	(D)	2.1	(D)	(D)	(D)				(D)	(D)
Okia.	Oklahoma	150.2	33.1	102.7	54.6	258.8	(D)	-	-	6.6	. 9
20 23	Food and kindred products. \qquad Apparel and other textile products	(D)	3.9	(D)	(D)	-	-			(D)	(D)
25	Furniture and fixtures -----------		.		(D)					-	
26	Paper and allied products	-	.	(D)	(D)	(D)	(D)	-	-	-	
27	Printing and publishing -			(D)	(D)						
28	Chemicals and allied products	(D)	(D)	(D)	(D)	-	-	-		(D)	(D)
29	Petroleum and coal products ------------1.				(D)	(D)	(D)			(D)	(D)
30	Rubber and miscellaneous plastics products.	(D)	(D)	(D)	(D)	(D)	(D)			(D)	(D)
31 32	Leather and leather products Stone, clay,	(D)	(D)	(D)	(D)		:	-	:	(D)	(D)
33	Primary metal industries.				(D)					(D)	
34	Fabricated metal products	(D)	(D)	(D)	(D)	(D)	(D)	-	-	(D)	(1
35	Machinery, except electrical -...	(D)	(D)				-			(D)	(Z)
$\begin{aligned} & 36 \\ & 37 \end{aligned}$	Electric and electronic equipment Transportation equipment	(D)	(D)	(D)	(D)	(D)	(D)			(D)	(D)
Oreg.	Oregon	459.8	61.3	1766.5	292.7	(D)	(D)	(D)	(D)	29.1	4.3
20	Food and kindred products	2.5	(D)	49.6	2.9	(D)	(D)	(D)	(D)	(D)	(D)
22	Textile mill products ---------		(D)	(D)	(D)					(D)	(D)
24	Lumber and wood products...-	238.9	11.5	195.1	18.0		(D)			11.8	2.5
26	Paper and allied products.	(D)	(D)	1387.3	222.8	(D)	(D)	-		1.9	(D)
27	Printing and publishing -	(D)	(D)								
28	Chemicals and allied products .	(D)	(D)	(S)	(D)	-	-	-		(D)	(D)
29	Petroleum and coal products --------------1-1-1	(9	(1)	(D)	(D)		-	-		(D)	
30	Rubber and miscellaneous plastics products.	(D)	(D)		-		(D)	-		(D)	(D)
32	Stone, clay, and glass products .---	(D)	(D))	(D)	(D)	(D))	-	(D)	(D)
33	Primary metal industries--	27.1	(D)								
34	Fabricated metal products	(D)	(D)	(D)	(D)	-	-	-		. 3	(Z)
35	Machinery, except electrical ---	(D)	(D)	4.8	1.7		-	-		1.7	. ${ }^{1}$
36	Electric and electronic equipment	(D)	(D)	(D)	(D)	-	-	-		(D)	(D)
37	Transportation equipment --------.-.-	(D)	(D)	(D)	(D)	-	-	-	-	(D)	(D)
39	Miscellaneous manufacturing industries .	(D)	(D)				-	-	-	-	
Pa.	Pennsyivania --------------------	3766.6	1364.2	9961.8	1205.6	3904.6	644.5	(D)	226.0	154.7	43.1
20	Food and kindred products .	(S)	(S)	(S)	(S)	(D)	(D)	(D)	(D)	(S)	(S)
21	Tobacco products .-	5.3	(D)	(D)	2.5	7		(D)	-	(D)	(D)
22	Textile mill products ---	87.1	16.3	323.4	17.6	7.4	. 1	(D)	-	10.0	(D)
23	Apparel and other textile products	(S)	(S)	(S)	(D)	(S)	(S)	(D)	(D)	(D)	(D)
24	Lumber and wood products----------------	222.2	(D)	97.2	. 9	(D)	(D)	(D)		3.9	(D)
25	Furniture and fixtures	76.2	6.0	33.8	2.0	3.8	. 2	-	\cdots	. 6	. 1
26	Paper and allied products .	228.4	60.8	1536.8	96.8	759.1	115.5	(D)	(D)	4.4	. 5
27	Printing and publishing ------	80.9	12.5	1 61.4	$\begin{array}{r}7.3 \\ \hline 105\end{array}$	(D)	(D)	-	-	(D)	. 9
28	Chemicals and allied products	270.8	58.0	1439.0	105.5	674.8	128.0	-	-	6.6	. 6
29	Petroleum and coal products .	174.5	48.2	83.7	(D)	182.6	12.6	-	-	(D)	(D)

Table 4. Consumption and End-of-Year Stocks of Selected Purchased Fuels by Major Industry Group for States: 1981-Con.

Table 4. Consumption and End-of-Year Stocks of Selected Purchased Fuels by Major Industry Group for States: 1981-Con.
[For meaning of abbreviations and symbols, see introductory text. For explanation of terms, see appendixes]

Table 4. Consumption and End-of-Year Stocks of Selected Purchased Fuels by Major Industry Group for States: 1981-Con.
[For meaning of abbreviations and symbols, see introductory text. For explanation of terms, see appendixes]

$\underset{\text { code }}{\mathrm{SIC}}$	Geographic area and industry group	Fuel oil ${ }^{1}$				Bituminous coal, lignite, and anthracite		Coke and breeze		Liquefled petroleum gases	
		Distillate		Residual		Consumption (1,000 short tons)	$\begin{gathered} \text { Stocks } \\ \text { (1,000 } \\ \text { short } \\ \text { tons) } \end{gathered}$	Consumption Stocks $(1,000$ short (1,000 short tons) tons)		Consumption (million pounds)	$\begin{aligned} & \text { Stocks } \\ & \text { (million } \\ & \text { pounds) } \end{aligned}$
		$\begin{array}{r} \text { Consumption } \\ \text { (1,000 } \\ \text { barrels }) \end{array}$	$\begin{array}{r} \text { Stocks } \\ \text { (1,000 } \\ \text { barrels) } \end{array}$	Consumption $(1,000$ barrels $)$	$\begin{array}{r} \text { Stocks } \\ (1,000 \\ \text { barrels }) \end{array}$						
Wash.	Washington ---------------------------------	607.1	154.3	3192.0	678.8	185.1	(D)	23.4	(D)	18.5	1.9
20	Food and kindred products -------------------------	62.8	4.2	51.6	7.9	-	-	-	-	5.9	. 4
22				${ }_{1}$ (D)	(D)	-	-		-		
24 26		345.4	17.9 (D)	136.3 2582.6	5.9 526.2	(D)	(D)	-	-	5.1 1.3	.4
27		(D)	(D)	(D)	(D)	(D)	(D)	-	-	(D)	(D)
28	Chemicals and allied products .---------------------	(D)	(D)	(D)	(D)	(D)	(D)	-	-		
29 30		(D)	(D)	(D)	(D)	-		-	-	(D)	(D)
32	Stone, clay, and glass products .-------------------	(D)	. 9	1							
33		50.0	107.5		(D)	(D)	(D)	(D)	(D)	2.5	. 6
34	Fabricated metal products -------------------------	1.8	(D)	12^{-}	1	-	-	-	-	. 5	(z)
35 36 36	Machinery, except electrical ---------------------------------	8.3	(D)	1.2	. 1	-	-	-	-	(D)	(D)
37 39	Transportation equipment --------------------------------	(D)	(D)	(D)	(D)	-			-	1.7	. 3
W. Va.	West Virginla --------------------------------	126.6	85.3	1769.8	283.7	1968.2	303.9	(D)	(D)	11.6	2.4
20	Food and kindred products -------------------------	(D)	(D)	(D)	(D)	-	-	-	-	(D)	
22 23		(D)	(D)	(D)	(D)	-	-		-	(D)	(D)
24		(S)	(S)	(D)	(D)	(D)	(D)		-	(D)	(D)
25									-		
26	Paper and allied products --------------------------	(D)	(D)	(D)	(D)	-	-	-	-	(D)	(D)
27	Printing and publishing --------------------------------			(D)	(D)		2039	(D)	(D)		
28 32		35.6	43.7	103.4	84.7	1318.5	203.9	(D)	(D)	(D)	(D)
33	Primary metal industries --------------------------------------	10.3	(D)	(D)	(D)	(D)	(D)		-	. 5	(D)
$\begin{array}{r}34 \\ 35 \\ \hline\end{array}$	Fabricated metal products --------------------------	3.3	(5)	-	-			(D)	(D)	(S)	(8)
35 36	Machinery, except electrical ---------------------------------- Electric and electronic equipment	(D)	(D)	-	-	(D)	(D)	-	-	(D)	(D)
37	Transporation equipment ------------------------	-	-	.	-	(D)	(D)		-	(D)	(D)
39	Miscellaneous manufacturing industries .-----------								-		
Wls.	Wisconsin.-	523.2	319.9	964.3	459.2	1909.7	561.8	66.9	5.4	69.5	26.4
20	Food and kindred products -----------------------	149.6	92.8	245.0	85.0	(D)	(D)	-	-	5.9	3.3
22 23		-	(D)	(D)	(D)		:		-	-	
24		(D)	(D)	13.3	4.7	(D)	(D)		-	1.1	(D)
25		(D)	. 8						-	-	
26	Paper and allied products .-----------------------	31.1	(D)	521.1	166.7	1743.3	504.0	-	-	10.4	(19)
27		(D)	(D)	(D)	(D)		(D)	-	-	(D)	(D)
28		9.6	3.3	(D)	(D)	-			-		
29 30		(D) 1.7	(D)	(D)	(D)	(D)	(D)	-	-	(D)	(D)
31											
32		8.5	2.0	(D)	(D)	-	(D)	-	-	(S)	(D)
33	Primary metal industries -------------------------------------	19.0	11.0	(D)	(D)	-	(D)	(D)	3.7	17.9	4.2
34	Fabricated metal products ------------------------------	22.3		6.9	61.9	(D)	(D)	-)	7.7	5.9
35		47.1	45.0	44.0	29.0	(D)	(D)	(D)	(D)	11.8	7.1
36	Electric and electronic equipment ------------------	8.1	13.3	7.7	(D)			-	-		8
37 38	Transportation equipment -----------------------	16.1	(D)	(D)	(D)	(D)	(D)	-	-	(D)	(D)
38 39	Instruments and related products --------------------------- Miscellaneous manufacturing industries ---	(D)	(D)	(c)	.	(D)	(D)	-	-	(D)	(D)
Wyo.	Wyoming ----------------------------------	(D)	36.8	(D)							
20	Food and kindred products -----------------------	(D)	(D)	-	-	-	-	(D)	(D)	-	
24 27		(D)	(D)	-	-	-	-	$:$	-	-	
29	Petroleum and coal products -----------------------------------	-	-	.	-	-	-	-	-	-	
35		-				-	-		-	(D)	(D)

[^4]Table 5. Purchased Fuels, by Type, and Electric Energy Used for Heat and Power by Major
[For meaning of abbreviations and symbols, see introductory text. For explanation of terms, see appendixes]

SIC code	Geographic area and industry group	1981										
		Purchased fuels and electric energy		Electric energy			Purchased fuels		Fuel oil			
		British thermal units (trilions)	Cost (million dollars)	Purchased		Generated less sold (million kWh)	British thermal units (trillions)	$\begin{aligned} & \text { Cost } \\ & \text { (million } \\ & \text { dollars) } \end{aligned}$	Distillate		Residual	
				Quantity (million kWh)	Cost (million dollars)				Quantity (1,000 barrels)	$\begin{aligned} & \text { Cost } \\ & \text { (million } \\ & \text { dollars) } \end{aligned}$	Quantity (1,000 barrels)	Cost (million dollars)
		A	B	c	D	E	F	G	H	1	J	K
	Abllene, Tex.	3.0	13.7	124.8	5.2	(D)	2.6	8.4	(D)	(D)	-	-
$\begin{aligned} & 20 \\ & 34 \end{aligned}$	Food and kindred products Fabricated metal products	. 6	3.2 .9	$\begin{aligned} & 45.1 \\ & 13.0 \end{aligned}$	1.8 .6	(D)	. 4	1.4 .3	(D)	(D)	-	-
	Akron, Ohio -	34.7	114.0	1363.5	59.1	(D)	30.1	54.9	(D)	(D)	(D)	(D)
20 27	Foord and kindred products Printing and publishing	. 6	4.1 1.2	51.5 17.4	2.4 .9	-	. 5	1.6 .3	-	-	-	-
28	Chemicals and allied products.-	15.1	21.0	143.8	4.8	(D)	14.7	16.2	(D)	(D)	(D)	(D)
29 30	Petroleum and coal products --------------- Rubber and miscellaneous plastics products	10.7	38.7	(D) 485.8	(D)	(D)	(D)	17.6	(D)	(D)	(D)	(D)
32 33	Stone, clay, and glass products Primary metal industries	1.2 .5	5.4 3.1 1	42.7 44.6	2.0 2.0	-	1.0 .3	3.4 1.1	(D)	(D)	-	-
34	Fabricated metal products -----	3.3	19.3	275.8	11.4	-	2.4	7.9	(D)	(D)	(D)	
35	Machinery, except electrical.-..--	1.4	10.1	139.3	7.3	(D)	1.0	2.8	(D)	(D)	(D)	(D)
$\begin{aligned} & 36 \\ & 37 \end{aligned}$	Electric and electronic equipment Transportation equipment	. 7	1.9 3.6	(30.0	(D)	-	(${ }^{1}$	(${ }^{4}$	(D)	(D)	-	-
	Albany, Ga.	6.0	36.4	546.6	18.7	-	4.1	17.7	(D)	(D)	(D)	(D)
	Albany-Schenectady-Troy, N.Y.	42.2	214.5	1858.4	90.2	(D)	35.9	124.2	155.9	6.0	1744.3	55.1
20	Food and kindred producis	1.6	11.4	110.3	6.5	-	1.2	4.9	(D)	(D)	${ }^{-}$	-
22 24	Textile mill products ---.---- Lumber and wood products	. 7	3.6 .7	31.3 9.8	1.6	-	(S)	2.0	(D)	(D)	(D)	(D)
26	Paper and allied products.-	11.0	64.5	455.1	21.1	(D)	9.5	43.4	(D)	(D)	1105.1	35.0
27	Printing and publishing ----	. 2	1.8	25.3	1.3	(D)	. 1	. 5				
28 29	Chemicals and allied products	8.5	46.9	405.1	18.3	(D)	7.1	28.6	22.9	8	(D)	(D)
30	Peiroleum and coal products ---7--.------	. 4	2.4	34.6	1.8	\bigcirc	. 2	2.1 .6	(0)	(D)	(D)	(D)
32	Stone, clay, and glass products --...---	11.9	35.6	343.4	16.3	-	10.7	19.2	(D)	(D)	(D)	(D)
33	Primary metal industries .-.-.-.	2.4	16.7	201.4	10.3	-	1.7	6.5	(D)	(D)		
34 36	Fabricated metal products -....-	. 2	1.1	14.2 70.3	. 7	-	. 1	. 5	(D)	(D)	-	-
34 39	Electric and electronic equipment------ Miscelianeous manufacturing industries	1.4 .2	1.0 1.0	12.6 12.3	3.4 .6	-	1.2 .1	4.6 .4	(D)	(D)	-	
	Albuquerque, N. Mex.	5.5	28.3	(D)	-	-						
20	Food and kindred products -	. 6	3.1	37.7	1.8	(D)	.4	1.3)	(D)	-	
24 27	Lumber and wood products	. 2	2.2 .7	32.7 11.6	1.9 .6	(D)	(Ż)	. 3	(D)	(D)	-	
34	Fabricated metal products	. 1	. 6	8.9	. 4	-	. 1	2	(D)	(D)		
35 36	Machinery, except electrical -.--- Electric and electronic equipment	.3	1.8	21.1 40.6	1.2	-	. 2	.6	-	-	-	
39	Miscellaneous manufacturing industries	. 1	2.3 .6	70.7	2.1 .5	-	(Z)	. 2	-	-	-	
	Alexandria, La.	6.9	21.1	121.1	5.4	(D)	6.5	15.6	(D)	(D)	-	-
$\begin{aligned} & 24 \\ & 28 \end{aligned}$	Lumber and wood products .Chemicals and allied products.	2.9	.9 8.4	9.8 30.1	.4 1.3	(D)	2.8	7.5	(D)	(D)	-	-
	Allentown-Bethlehem-Easton, Pa.-N.J.	56.7	299.8	2795.9	118.3	(D)	47.2	181.5	451.4	17.6	2283.2	75.2
20	Food and kindred products	3.0	20.2	228.2	10.4	(D)	2.2	9.8	$4{ }^{\circ}$	2	129.1	4.2
${ }_{2}^{22}$	Apparel and other textile products	1.7	8.1 8.0	(D)	(D)	-	(D)	(D)	30.5	1.2	94.1 8.2	2.8 .2
24	Lumber and wood products .-.	. 1	. 5	4.7	. 2	-	. 1	. 3	(D)	(D)	-	.
26	Paper and allied products.---	. 7	5.9	72.1	3.8	-	. 4	2.1	(D)	(D)	53.3	1.7
27	Printing and publishing	. 3	2.3	40.7	1.8	\cdot	. 1	. 5	(D)	(D)	(D)	(D)
28		9.9	61.2	635.3	25.0	(D)	7.8	36.2	167.0	6.2	(D)	(D)
30	Rubber and miscellaneous plastics products	1.0	9.3	124.9	6.7	-	. 6	2.6	(D)	(D)	(D)	(D)
32	Stone, clay, and glass products ----------	15.2	52.0	439.6	18.5	(D)	13.7	33.5	(S)	(S)	(D)	(D)
33	Primary metal industries .----	17.4	89.7	(D)	(D)	(D)	(D)	(D)	127.3	5.3	(D)	(D)
34	Fabricated metal products	1.5	9.8	92.8	4.5	-	1.1	5.3	25.5	1.0	(D)	(D)
35	Machinery, except electrical --	. 9	7.2	71.8	4.3	-	. 6	3.0	16.8	. 6	(D)	(D)
36	Electric and electronic equipment.-----	1.9	13.5	246.8	9.2	-	1.0	4.3	11.9	. 4	(D)	(D)
$\begin{aligned} & 38 \\ & 39 \end{aligned}$	Instruments and related products ------ Miscellaneous manufacturing industries	. 1	.8 4.4	14.9 37.6	.8 1.4	-	(Z)	3. ${ }^{\text {. }}$	11.8	. 4	(D)	(D)
	Altoona, Pa.	5.7	21.6	250.7	10.6	(D)	4.8	11.0	(S)	(S)	(D)	(D)
$\begin{aligned} & 20 \\ & 35 \end{aligned}$	Food and kindred products \qquad Machinery, except electrical \qquad	$\text { . } 2$	$\begin{aligned} & 1.2 \\ & 1.2 \end{aligned}$	$\begin{array}{r} 11.0 \\ \text { (D) } \end{array}$	(D)	-	(D)	(D)	(D)	(D)	-	-
	Amarlilo, Tex.-.	8.0	31.5	401.3	15.1	-	6.6	16.4	(D)	(D)	-	-
28	Chemicals and allied products.--	. 6	1.8	13.4	. 5	-	. 5	1.3	-	-	-	-
32 35	Stone, clay, and glass products - Machinery, except electrical.---	2.3 .1	8.6 .6	85.3 9.3	3.3 .4	-	2.0 (Z)	5.3 . 2	:	-	-	

Industry Group for Standard Metropolitan Statistical Areas: 1981 and 1980

Table 5. Purchased Fuels, by Type, and Electric Energy Used for Heat and Power by Major
[For meaning of abbreviations and symbols, see introductory text. For explanation of terms, see appendixes]

Industry Group for Standard Metropolitan Statistical Areas: 1981 and 1980-Con.

Table 5. Purchased Fuels, by Type, and Electric Energy Used for Heat and Power by Major
[For meaning of abbreviations and symbols, see introductory text. For explanation of terms, see appendixes]

[^5]Industry Group for Standard Metropolitan Statistical Areas: 1981 and 1980-Con.

Table 5. Purchased Fuels, by Type, and Electric Energy Used for Heat and Power by Major
[For meaning of abbreviations and symbols, see introductory text. For explanation of terms, see appendixes]

Industry Group for Standard Metropolitan Statlstical Areas: 1981 and 1980-Con.

\begin{tabular}{|c|}
\hline \multicolumn{10}{|c|}{1981-Con.} \& \multicolumn{2}{|l|}{1980 purchased fuels and electric energy} \& \multicolumn{7}{|c|}{\multirow{3}{*}{Relative standard error of estimate (percent) for column'-}} \& \multirow{4}{*}{\[
\underset{\text { code }}{\mathrm{SIC}}
\]} \\
\hline \multicolumn{2}{|l|}{Bituminous coal, lignite, and anthracite} \& \multicolumn{2}{|l|}{Coke and breeze} \& \multicolumn{2}{|l|}{Natural gas} \& \multicolumn{2}{|l|}{Liquefied petroleum gases} \& \multirow[b]{2}{*}{} \& \multirow[b]{2}{*}{Fuels not specified by kind (million
dollars)} \& \multicolumn{2}{|l|}{\multirow[b]{2}{*}{\begin{tabular}{c}
British \\
thermal \\
unlts \\
(trlllions)
\end{tabular} \begin{tabular}{r}
Cost \\
(million \\
dollars)
\end{tabular}}} \& \& \& \& \& \& \& \& \\
\hline \[
\begin{gathered}
\text { Quantity } \\
(1,000 \\
\text { short } \\
\text { tons) }
\end{gathered}
\] \& \[
\begin{array}{r}
\text { Cost } \\
\text { (million } \\
\text { dollars) }
\end{array}
\] \& \[
\begin{array}{r}
\text { Quantity } \\
\text { (1,000 } \\
\text { short } \\
\text { tons) }
\end{array}
\] \& \[
\begin{array}{r}
\text { Cost } \\
\text { (million } \\
\text { dollars) }
\end{array}
\] \& Quantity
(billion
cubic
feet) \& \[
\begin{gathered}
\text { Cost } \\
\text { (million } \\
\text { dollars) }
\end{gathered}
\] \& Quantlty (million pounds) \& \[
\left|\begin{array}{c}
\text { Cost } \\
\text { (million } \\
\text { dollars) }
\end{array}\right|
\] \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline L \& M \& N \& 0 \& P \& Q \& R \& S \& \(T\) \& U \& V \& w \& D \& G \& 1 \& K \& M \& 0 \& S \& \\
\hline - \& \& \begin{tabular}{r|}
(D) \\
\hline \\
\hline \\
(D)
\end{tabular} \& \begin{tabular}{r|}
(D) \\
\hline \\
\hline \\
(D)
\end{tabular} \& 8.1
(D)
(D)
(D)
(6
(D) \& 20.6
(D)
(D)
(D)
2.1
(D) \& (D) \& .2
(D) \& (D) \& 1.3
(4
(D)
(D)
(
(D) \& 9.7
3.8
.1
.4
1.2
(D) \& 44.8
15.2
.6
.6
5.0
5.9
(D) \& 7
1
17
16
4
1 \& 3
1
33
11
4
1 \& 1
\((x)\)
\((x)\)
\((x)\)
\((x)\)
(x) \& (X)
(X)
(X)
(X)
(X)
(X) \& (X)
(
(\()\)
(x)
()
(x)
()
(\()\) \& 3
\((x)\)
(X)
\((X)\)

3
(\& (X)
(${ }^{(1)}$
()

(\& $$
\begin{aligned}
& 20 \\
& 30 \\
& 34 \\
& 35 \\
& 37
\end{aligned}
$$

\hline (D) \& (D) \& (D) \& (D) \& 1.5 \& 4.9 \& (D) \& (D) \& . 1 \& (S) \& 3.2 \& 17.8 \& 9 \& 6 \& (X) \& 14 \& (X) \& 9 \& (X) \&

\hline - \& \& \& \div \& (D) \& (D) \& - \& \& (D) \& (Z) ${ }_{\text {(Z) }}$ \& .2
.1

.1 \& | 1.4 |
| ---: |
| .7 |
| .8 | \& (X)

(X)
(X) \& (X)
(x)
(X) \& (x)
(x)
(x)
($)$ \& (X)
(X)
(X) \& (x)
(x)
(x)
($)$ \& (x)
(X)
(X) \& (x)
(X)
($)$

($)$ \& $$
\begin{aligned}
& 32 \\
& 33 \\
& 35
\end{aligned}
$$

\hline - \& - \& - \& - \& 190.3 \& 476.3 \& (D) \& (D) \& 12.8 \& (S) \& 234.4 \& 579.9 \& 3 \& 1 \& 1 \& (X) \& (X) \& 1 \& (X) \&

\hline - \& - \& - \& - \& (D) \& (D) \& - \& \& (D) \& | .3 |
| :--- |
| . | \& . 2 \& 1.0

2.8 \& 20 \& (x) \& (${ }^{(x)}$ \& (x) \& (x)
(x)
(x) \& (X) \& (${ }_{(x)}^{(X)}$ \& 20
24

\hline - \& - \& - \& - \& 67.6 \& 91.6 \& - \& \& (D) \& . 2 \& 81.7 \& 162.9 \& (1 \& (${ }_{4}$ \& (${ }^{(x)}$ \& (${ }^{(x)}$ \& (x) \& (${ }_{4}$ \& (${ }^{(x)}$ \& 28
28

\hline - \& - \& - \& - \& 115.0 \& 359.0 \& - \& - \& \& (D) \& 140.9 \& 367.1 \& ${ }^{2}$ \& 1 \& (x) \& (x) \& (x) \& ${ }^{1}$ \& (${ }^{(x)}$ \& 29

\hline - \& - \& - \& - \& (D) \& (D) \& - \& \& \& \& \& \& (X) \& (X) \& (X) \& (X) \& (X) \& (X) \& (X) \&

\hline - \& - \& - \& - \& (S) \& (S) \& (D) \& (D) \& (S) \& (S) \& 1.7
.2 \& 6.5
1.0 \& 35
(X) \& 23
(X) \& (X) \& (x) \& (x)
(x)
(\& (x) \& (${ }^{(x)}$ \& 34
35

\hline - \& \& \& - \& (D) \& (D) \& (D) \& (D) \& (D) \& . 1 \& . 4 \& 2.7 \& 12 \& 7 \& (X) \& (X) \& (X) \& (X) \& (X) \& 37

\hline (D) \& (D) \& (D) \& (D) \& 3.8 \& 11.7 \& - \& - \& (D) \& . 9 \& 5.9 \& 14.2 \& 2 \& 1 \& 1 \& (X) \& (X) \& 1 \& (X) \&

\hline \& \& \& \& (D) \& (D) \& - \& - \& - \& - \& (D) \& (D) \& (X) \& 29

\hline (D) \& (D) \& \& - \& 1.5 \& 5.3 \& (D) \& (D) \& . 4 \& . 8 \& 4.0 \& 18.2 \& 4 \& 2 \& (X) \& (X) \& (X) \& 3 \& (X) \&

\hline - \& \& \& $:$ \& (D) \& $$
\begin{aligned}
& \text { (D) } \\
& \text { (D) } \\
& \text { (D) }
\end{aligned}
$$ \& (D) \& (D) \& (D) \& (D)

(
(Z) \& .2
.5
.2 \& 1.1
2.5
1.0 \& ($\left.{ }^{(}\right)$
(X)
($)$ \& (x)
(x)
(x) \& (x)
(X)
($)$ \& (X)
(${ }^{\text {(}}$)
(X) \& (X)
(X)
(X) \& (X)
(X)
(X) \& (x)
(X)
(${ }^{(1)}$ \& 20
24
33

\hline (D) \& (D) \& - \& - \& 2.0 \& 7.4 \& . 9 \& . 1 \& . 4 \& (D) \& 7.2 \& 35.8 \& 3 \& 2 \& 1 \& 1 \& (X) \& 5 \& 1 \&

\hline \& \& \& - \& (D) \& (D) \& (D) \& \& \& . 2 \& . 2 \& \& (${ }^{\text {(}}$ \& \& (x) \& (x) \& (x) \& (x) \& (x) \& 24

\hline \& \& \& - \& (D) \& (D) \& (D) \& (D) \& (D) \& (D) ${ }^{\text {(}}$ \& . 1 \& 1.6 \& 9
7 \& 8
5 \& (x) \& (X) \& (x)
(${ }^{\text {(}}$ (\& (X) \& (${ }^{(x)}$ \& 27
30

\hline - \& \& \& - \& (D) \& (D) \& \& \& (D) \& (1) \& . 1 \& . 6 \& 25 \& 24 \& (x) \& (X) \& (x) \& (x) \& (x) \& 31

\hline \& \& \& \& (D) \& (D) \& \& \& (D) \& (S) \& . 3 \& 1.2 \& 9 \& 7 \& (X) \& (X) \& (X) \& (X) \& (X) \& 33

\hline (D) \& (D) \& \& - \& (D) \& (D) \& (D) \& (D) \& (D) \& .2
.1
(z) \& . 4 \& 2.1
1.4 \& 4 \& 1 \& (${ }^{1}$ (\& (X) \& (x)
(x)
(x) \& (x)
15 \& (${ }_{(x)}$ \& 34
35

\hline (D) \& (D) \& \& \& \& (D) \& (D) \& (D) \& \& (Z) \& (D) \& (D) \& 9 \& 9 \& (X) \& (X) \& (X) \& (X) \& (X) \& 38

\hline (D) \& (D) \& 249.0 \& 31.1 \& 26.2 \& 86.1 \& 8.8 \& 1.0 \& 1.9 \& (D) \& 58.8 \& 240.3 \& 4 \& 7 \& 39 \& 4 \& (X) \& 5 \& 5 \&

\hline \& \& \& \& \& \& (D) \& (D) \& - \& \& \& 7.6 \& \& 13 \& \& \& (x) \& 19 \& \&

\hline \& \& \& \& (D) \& (D) \& \& \& (D) \& (Z) \& .2
.4 \& 1.6
2.5 \& (${ }^{\text {(})}$ \& (${ }_{\text {(})}$ \& (x) \& (X) \& (x) \& (X) \& (${ }^{(x)}$ \& 22
24

\hline - \& \& \& \& (1 \& (5 \& (D) \& (D) \& (D) \& (D) \& . 4 \& 2.5
2.1 \& 19 \& 1
33 \& (x) \& (X) \& (x) \& (x)
52 \& ((x) \& 24
25

\hline \& \& \& \& (D) \& (D) \& \& \& \& (D) \& (D) \& (D) \& 24 \& 12 \& (X) \& (X) \& (x) \& (X) \& (X) \& 26

\hline - \& - \& - \& \& (D) \& (D) \& (D) \& (D) \& (D) \& (S) \& . 2 \& 1.8 \& 14 \& 11 \& (X) \& (x) \& (x) \& (${ }^{\text {(})}$ \& (x) \& 27

\hline - \& \& \& - \& (D) \& 1.5 \& (D) \& (D) \& (D) \& . 1 \& 1.5 \& 11.2 \& 4 \& 28 \& 30 \& (x) \& (${ }^{(x)}$ \& 29 \& (x) \& 28

\hline - \& \& \& \& \& (D) \& \& \& (D) \& 1.1 \& .7
.2 \& 2.4
1.6 \& (X^{1} \& (${ }^{1}$ \& (X) \& (X) \& (X) \& (X) \& (X) \& 29
30

\hline (D) \& (D) \& (D) \& (D) \& 3.1 \& 10.5 \& \& - \& (D) \& 5.2 \& 15.6 \& 50.2 \& 22 \& 29 \& 60 \& (x) \& (x) \& 35 \& (x) \& 32

\hline \& \& (D) \& (D) \& 19.1 \& 62.1 \& (D) \& (D) \& (D) \& (S) \& 30.5 \& 129.5 \& 3 \& 1 \& 4 \& (x) \& (X) \& 2 \& (x) \& 33

\hline - \& - \& (D) \& (D) \& 1.9 \& 6.1 \& 2.0 \& . 2 \& (D) \& (S) \& 2.9 \& 15.4 \& 16 \& 23 \& (x) \& (X $^{\text {(}}$ \& (X) \& 24 \& 20 \& 34

\hline - \& - \& \& \& (D) ${ }^{1}$ \& (2) \& (D) \& (D) \& - \& (D) \& 1.0 \& 5.3 \& 22 \& 60 \& (($^{\text {(}}$ \& (x) \& (${ }^{(1)}$ \& 30 \& (${ }^{(x)}$ \& 35

\hline (D) \& (D) \& - \& - \& (D) \& (D) \& (D) \& (D) \& (D) \& (Z) \& . 4 \& 2.5
4.2 \& 35
8 \& 47
6 \& (X) \& (X) \& (X) \& (X) \& (X) \& 36
37

\hline - \& - \& - \& - \& . 4 \& 1.3 \& (D) \& (D) \& (D) \& . 8 \& . 8 \& 4.2 \& 2 \& 1 \& (X) \& (X) \& (X) \& 2 \& (X) \&

\hline - \& - \& - \& - \& 1.1 \& 3.7 \& (D) \& (D) \& (D) \& . 2 \& 1.7 \& 7.7 \& 9 \& 9 \& (X) \& (X) \& (X) \& 8 \& (X) \&

\hline - \& - \& - \& - \& . 3 \& 1.2 \& - \& - \& (D) \& . 2 \& . 9 \& 3.3 \& (X) \& (X) \& (X) \& (X) \& (X) \& 37 \& (X) \&

\hline (D) \& (D) \& - \& - \& 8.2 \& 41.4 \& 6.2 \& . 8 \& 14.8 \& (D) \& 45.1 \& 305.3 \& 10 \& 4 \& 8 \& 8 \& (X) \& 4 \& 19 \&

\hline : \& - \& - \& - \& 2.1 \& 11.1 \& (D) \& (D) \& . 9 \& (D) \& 5.8 \& 36.6 \& 19 \& 5 \& 15 \& 9 \& (${ }_{(1)}$ \& 5 \& (x) \& 20

\hline - \& - \& - \& - \& .1
.1
(z) \& . 8.8 \& (D) \& (D) \& (D) \& .6
.7 \& $\begin{array}{r}1.7 \\ .6 \\ \hline 8\end{array}$ \& 5.8
4.7 \& (A) \& 29
23
2 \& (1) \& (x) \& (${ }^{(x)}$ \& 55
50 \& (x) \& 22
23

\hline : \& - \& : \& - \& (Z) \& . 1.1 \& (D) \& (D) \& (D) \& (D) 1 \& (D) \& (D) \& 50 \& 38 \& (${ }^{(14)}$ \& (x) \& (x) \& 56 \& (x) \& 25

\hline - \& - \& - \& - \& \& 2.1 \& \& \& (D) \& (D) \& 4.5 \& 26.3 \& 7 \& 18 \& 14 \& 24 \& (X) \& 18 \& (X) \& 26

\hline - \& - \& - \& - \& . 3 \& 1.6 \& (D) \& (D) \& (8) \& 1.8 \& 1.7 \& 14.0 \& 11 \& 12 \& 27 \& 13 \& (${ }^{(1)}$ \& 23 \& (${ }^{\text {(})}$ \& 27

\hline - \& - \& \& \& (8) ${ }_{\text {(}} \times$ \& 4.1 \& (D) \& (D) \& (D) \& (S) \& 5.8
1.1 \& 29.1
6.0 \& 19
20 \& 15
23
23 \& (C) \& 19
($\times 1$ \& (X) \& 8
(${ }^{8}$) \& (x) \& 28
29

\hline - \& - \& \& - \& (D) \& (D) \& (D) \& (D) \& (D) \& 1.4 \& | 1.1 |
| :--- |
| 3.0 |
| 1 | \& 6.0

23.5 \& 20
4 \& 23
7 \& (${ }^{(x)}$ \& (X)
10 \& ((X) \& (x)
14 \& (x) \& 29
30

\hline \& \& \& \& \& (D) \& (D) \& (D) \& (D) \& (Z) \& 1.1 \& 6.4 \& 34 \& 63 \& (X) \& (X) \& (x) \& (X) \& (X) \&

\hline
\end{tabular}

Table 5. Purchased Fuels, by Type, and Electric Energy Used for Heat and Power by Major

[^6]Industry Group for Standard Metropolitan Statistical Areas: 1981 and 1980-Con.

Table 5. Purchased Fuels, by Type, and Electric Energy Used for Heat and Power by Major
[For meaning of abbreviations and symbols, see introductory text. For explanation of terms, see appendixes]

[^7]Industry Group for Standard Metropolitan Statistical Areas: 1981 and 1980-Con.

\begin{tabular}{|c|}
\hline \multicolumn{10}{|c|}{1981-Con.} \& \multicolumn{2}{|l|}{1980 purchased fuels and electric energy} \& \multicolumn{7}{|c|}{\multirow{3}{*}{Relative standard error of estimate (percent) for column' -}} \& \multirow{4}{*}{\[
\underset{\text { code }}{\mathrm{SIC}}
\]} \\
\hline \multicolumn{2}{|l|}{Bituminous coal, lignite, and anthracite} \& \multicolumn{2}{|l|}{Coke and breeze} \& \multicolumn{2}{|l|}{Natural gas} \& \multicolumn{2}{|l|}{Liquefied petroleum gases} \& \multirow[b]{2}{*}{Other
fuels
(million
dollars)} \& \multirow[b]{2}{*}{} \& \multicolumn{2}{|l|}{\multirow[b]{2}{*}{\begin{tabular}{r|r}
\begin{tabular}{r}
British \\
thermal \\
units
\end{tabular} \& \begin{tabular}{r}
Cost \\
(trillions)
\end{tabular}
\end{tabular} \begin{tabular}{r}
(million \\
dollars)
\end{tabular}}} \& \& \& \& \& \& \& \& \\
\hline \[
\begin{array}{r}
\text { Quantity } \\
(1,000 \\
\text { short } \\
\text { tons) }
\end{array}
\] \& \[
\begin{array}{r}
\text { Cost } \\
\text { (million } \\
\text { dollars) }
\end{array}
\] \& Quantity
(1,000
short
tons) \& Cost (million dollars) \& Quantity (billion cubic
feet) \& \[
\begin{gathered}
\text { Cost } \\
\text { (million } \\
\text { dollars) }
\end{gathered}
\] \& Quantity (million pounds) \& \[
\begin{aligned}
\& \text { Cost } \\
\& \text { (million } \\
\& \text { dollars) }
\end{aligned}
\] \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline L \& M \& N \& 0 \& P \& Q \& R \& S \& T \& U \& v \& W \& D \& G \& 1 \& K \& M \& Q \& S \& \\
\hline (D) \& (D) \& \(:\) \& \(:\) \& (D)
16.7
3.3
3.3
2.3 \& (D)
54.6
10.5
7.3 \& \(:\) \& : \& (D) \& (D)
(S)
.1
.2 \& 3.1
21.9
4.8
3.4 \& 9.4
91.8
21.8
11.4 \& 1
2
4
2 \& 1
2
11
1 \& (x)
\(\left(\begin{array}{l}\text { (}) \\ (x) \\ \text { (}\end{array}\right)\) \& \((x)\)
\((x)\)
\((x)\)
\((X)\)
(\& \& (X)
2
2
12
1 \& (X)
(
()
(
(\()\) \& \[
\begin{aligned}
\& 32 \\
\& 33 \\
\& 34 \\
\& 35
\end{aligned}
\] \\
\hline (D) \& (D) \& - \& \& 7.7 \& 26.1 \& . 5 \& . 1 \& 2.6 \& (S) \& 14.3 \& 72.1 \& 4 \& 2 \& (X) \& (X) \& (X) \& 3 \& 16 \& \\
\hline (D) \& (D) \& \(:\) \& \(:\) \& \begin{tabular}{r}
6.5 \\
(D) \\
\hline \\
.4
\end{tabular} \& \begin{tabular}{l}
22.1 \\
(D) \\
1.4
\end{tabular} \& (D) \& (D) \& 2.5
(D)
(D) \& .5
1
(D)
.1 \& 12.1
(D)
(D)
(\& 57.6
(D)
(D)
5.1 \& 5
15
1
1 \& 1
28
1
1 \& \((x)\)
\((x)\)
\((x)\)
(\({ }^{(1)}\) \& \((X)\)
\((X)\)
\((X)\)
(
(\()\) \& (X)
(x)
(x)
(x) \& \(\left(\begin{array}{c}2 \\ (x) \\ \text { (} \\ \\ 1\end{array}\right)\) \& \& 20
26
27
35 \\
\hline \& \& - \& - \& 3.2 \& 10.8 \& (D) \& (D) \& (D) \& (Z) \& 4.2 \& 16.8 \& 10 \& 4 \& (X) \& (X) \& (X) \& 4 \& (X) \& \\
\hline (D) \& (D) \& - \& - \& 10.5 \& 36.6 \& 8.7 \& 1.0 \& 4.0 \& (D) \& 24.6 \& 96.1 \& (X) \& (X) \& 25 \& 5 \& (X) \& 51 \& 74 \& \\
\hline (D) \& (D) \& \& \& \(\begin{array}{r}\text {. } \\ \text { (D) } \\ \text { (} \\ \hline\end{array}\) \& 3.2
(D)
-
(\& (D)
(D)
(D)
(D)
(D) \& \begin{tabular}{c}
(D) \\
(D) \\
(D) \\
(D) \\
(D) \\
\hline
\end{tabular} \& (D) \& .2
.3
(Z)
(Z)
(D)
(D) \& .3
.3
3.7
.5
.5
(D)
.1 \& 1.7
15.7
2.6
3.7
(D)
P
. \& 2
1
8
(
(\({ }^{(1)}\)
(X) \& \& \& \& \& (X)
1
(X)
14
(X)
(X) \& (X)
()
(\()\)
()
(\& 22
28
30
35
37
38 \\
\hline 658.4 \& 26.9 \& (D) \& (D) \& 7.8 \& 22.1 \& (D) \& (D) \& (D) \& 2.4 \& 38.6 \& 106.8 \& 3 \& 4 \& (X) \& (X) \& 1 \& 8 \& (X) \& \\
\hline 658.4 \& 26.9 \& (D) \& (D) \& 7. 1 \& 19.4 \& (D) \& (D) \& (D) \& (D)
(S)
(D) \& .2
36.3
.6 \& 1.0
96.6
3.1 \& 8
1
\((\times)\) \& 10
1
(\(\times 1\) \& (x)
\((\times)\)
(\()\)

(\& (X)
(X)
(X) \& (X)
(
(X$)$ \& 13
3
(\& (X) \& 20
28
32

\hline (D) \& (D) \& (D) \& (D) \& 8.6 \& 38.0 \& 8.9 \& 1.1 \& 2.3 \& 7.1 \& 23.0 \& 120.9 \& 6 \& 6 \& 10 \& 4 \& (X) \& 7 \& 10 \&

\hline \& \& - \& \& 1.3 \& 5.7 \& (D) \& (D) \& (D) \& . 4 \& 2.7 \& 12.7 \& 7 \& 11 \& 3 \& 16 \& (X) \& 14 \& (X) \& 20

\hline (D) \& (D) \& - \& \& \& 8.6 \& (D) \& (Z) \& (D) \& \& 8.2 \& \& 6
36 \& $\begin{array}{r}4 \\ 14\end{array}$ \& (15 \& (x) \& (x) \& (x) \& (x) \& 22

\hline \& \& - \& - \& (Z) \& (D) \& (D) \& (D) \& (D) \& (S) \& . 4 \& 2.9

1.3 \& | 36 |
| :--- |
| 38 | \& 14

35 \& (X) \& (X) \& (X) \& (X) \& (X) \& 23
24

\hline \& \& - \& - \& - 1 \& . 7 \& (D) \& (D) \& (D) \& 1.0 \& . 6 \& 2.9 \& (X) \& (X) \& (X) \& (X) \& (X) \& 33 \& (x) \& 26

\hline - \& \& - \& - \& \& (S) \& (D) \& \& (D) \& \& . 4 \& 3.0 \& 50 \& 23 \& \& (X) \& (x) \& (X) \& \&

\hline \& \& - \& - \& 2.5
.5 \& 11.5
2.2 \& (D) \& (D) \& (D) \& $\begin{array}{r}\text { r } \\ \hline\end{array}$ \& 4.0
1.3 \& 17.4
7.1 \& 6
4 \& + \& (${ }^{9}$ \& (X) \& (x)
(${ }^{(1)}$) \& 8 \& (X) \& 28
30

\hline \& \& - \& - \& . 1 \& 2.5
.5 \& (D) \& (D) \& (D) \& . 2 \& 1.4 \& 2.5 \& 47 \& 56 \& (${ }^{(1)}$ \& (X) \& (x) \& 36 \& (X) \& 34

\hline - \& \& - \& - \& . 2 \& . 9 \& . 3 \& (Z) \& (D) \& . 4 \& 1.1 \& 6.7 \& 11 \& 8 \& 40 \& (X) \& (X) \& 8 \& 39 \& 35

\hline \& \& - \& - \& (D) \& (D) \& (D) \& (D) \& - \& (S) \& . 3 \& 2.1
2.4 \& 1
1 \& 1 \& (X)
(X)
(\& (X) \& (X) \& (${ }_{(X)}^{\text {(})}$ \& (X) \& 36
37

\hline \& \& - \& - \& (S) \& (S) \& (S) \& (S) \& - \& (S) \& . 3 \& 1.4 \& 1 \& 1 \& (x) \& (X) \& (x) \& (X) \& (X) \& 39

\hline 82.3 \& 3.5 \& (D) \& (D) \& 10.3 \& 33.8 \& 3.5 \& . 4 \& 3.3 \& (D) \& 28.2 \& 127.2 \& 8 \& 4 \& 7 \& 48 \& 1 \& 5 \& 9 \&

\hline (D) \& (D) \& - \& - \& 1.8
1.5 \& 5.8
5.1 \& (D) \& (D) \& (D)
1.5 \& .5
3.1 \& 2.5
5.4 \& 10.4
24.8 \& 7 \& 4 \& (X) \& (X) \& (${ }_{\text {(}}(\mathrm{X})$ \& 4 \& (X) \& 20

\hline \& \& - \& - \& (D) \& (D) \& (D) \& (D) \& (D) \& (S) \& . 1 \& - 98 \& 2 \& 3 \& (X) \& (X) \& ($\mathrm{X}^{(1)}$ \& (x) \& (X) \& 23

\hline - \& \& - \& - \& (D) \& (D) \& \& . \& \& (S) \& . 2 \& . 7 \& 1 \& 1 \& (x) \& (x) \& (x) \& (x) \& (x) \& 24

\hline \& \& - \& - \& (D) \& (D) \& \& \& \& (S) \& 2.1 \& 7.6 \& 23 \& 16 \& (X) \& 26

\hline (D) \& (D) \& - \& - \& 2.4 \& 7.8 \& - \& - \& (D) \& 1.8 \& 6.9 \& 29.5 \& 8 \& 13 \& (x) \& (x) \& (x) \& 12 \& (x) \& 28

\hline (D) \& (D) \& (D) \& (D) \& 1.1 \& 3.6
3.3

3.7 \& (D) \& (D) \& (D) \& (D) \& | 3.3 |
| :--- |
| 3.7 | \& 13.3

21.3 \& 6
36 \& 11
4 \& (X) \& (X) \& (X) \& 20 \& (X) \& 32

\hline \& \& \& (D) \& 1.1 \& 3.7 \& (D) \& (D) \& (D) \& (S) \& 1.9 \& 8.9 \& 96
9 \& 4 \& ${ }_{8}$ \& (X) \& (X) \& 6 \& (X) \& 34

\hline \& \& \& - \& . 1 \& .4
.9 \& (D) \& (D) \& (D) \& (D) \& .4
.7 \& 2.3
3.1 \& 16
1 \& 13
2 \& (X) \& (X) \& (x) \& 26
3 \& (X) \& 35
36

\hline 873.1 \& 44.9 \& 927.7 \& 108.8 \& 141.1 \& 511.2 \& 33.0 \& 3.6 \& 13.5 \& 63.9 \& 286.2 \& 1408.4 \& 2 \& 2 \& 9 \& 6 \& 14 \& 2 \& 17 \&

\hline (D) \& (D) \& - \& - \& (D) \& (D) \& (D) \& (D) \& 2.0 \& 12.2 \& 34.1 \& 144.6 \& 4 \& 5 \& (x) \& ${ }^{1}$ \& (x) \& (x) \& (x) \& 20

\hline (D) \& (D) \& - \& : \& (S) \& (S) \& , \& : \& - \& (S) \& . 7 \& 2.9 \& 12 \& 15
18 \& (x) \& (x) \& (x) \& (${ }_{3}($ \& (x) \& 22

\hline \& \& - \& - \& 1.2 \& 4.2 \& (D) \& (D) \& (D) \& 2.1 \& 2.5 \& 13.7 \& 12 \& 18
7 \& (X) \& (X) \& (x) \& 10 \& (X) \& 25

\hline \& \& - \& - \& 6.0 \& 21.6 \& 2.1 \& . 2 \& . 6 \& (D) \& 12.3 \& 63.6 \& 8 \& 11 \& 14 \& (X) \& (X) \& 13 \& 29 \& 26

\hline (D) \& (D) \& - \& - \& \& \& \& \& \& 5.1 \& 8.2 \& 53.3 \& 7 \& 11 \& 14 \& (X) \& (x) \& 16 \& (X) \& 27

\hline \& (D) \& - \& - \& 15.9

(S) \& 57.0 \& $$
\begin{aligned}
& 8.2 \\
& \text { (D) }
\end{aligned}
$$ \& (8) \& (D) \& (D) \& 28.8

9.4 \& 132.0
62.5 \& 5
2
2 \& 7 \& (${ }^{24}$ \& (19 \& (${ }^{(x)}$ \& (${ }^{7}$ \& (x^{5} \& 28
29

\hline - \& \& - \& - \& 3.9
(S) \& 13.6
(S) \& . 8 \& . 1 \& (D) \& (S) \& 7.8
(D) \& 55.1 \& 7

24 \& r ${ }^{6}$ \& (X) \& (41 \& (X) \& (X) \& | 39 |
| :--- |
| (\times) | \& 30

31

\hline (D) \& (D) \& (D) \& (D) \& 6.9 \& \& . 7 \& . 1 \& \& 1.1 \& 16.3 \& 60.6 \& 11 \& 19 \& \& 45 \& \& 6 \& 14 \&

\hline (D) \& (D) \& (D) \& (D) \& 41.2 \& 159.1 \& 2.5 \& . 3 \& (D) \& 7.0 \& 91.6 \& 396.4 \& 4 \& 1 \& ${ }_{8} 8$ \& (X) \& ((x) \& 1 \& + 5 \& 33

\hline - \& \& \& \& 14.2 \& 49.8 \& 3.8 \& . 4 \& 1.7 \& 13.7 \& 25.0 \& 137.8 \& 4 \& 3 \& 11 \& 5 \& (X) \& 3 \& 3 \& 34

\hline $$
\begin{aligned}
& \text { (D) } \\
& \text { (D) }
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \text { (D) } \\
& \text { (D) }
\end{aligned}
$$
\] \& - \& - \& 10.4

9.0 \& 35.1
31.2 \& 3.6
. \& (Z) \& (8) \& (D)
3.9 \& 18.3
17.0 \& 107.7
92.7 \& 4 \& 3
2 \& 15
30 \& 1 \& (X)
(X) \& 2 \& 15 \& 35
36

\hline
\end{tabular}

Table 5. Purchased Fuels, by Type, and Electric Energy Used for Heat and Power by Major
[For meaning of abbreviations and symbols, see introductory text. For explanation of terms, see appendixes]

[^8]Industry Group for Standard Metropolitan Statistical Areas: 1981 and 1980-Con.

1981-Con.										1980 purchased fuels and electric energy		Relative standard error of estimate (percent) for column ${ }^{-}$							$\underset{\text { code }}{\text { SIC }}$	
Bituminous coal, lignite, and anthracite		Coke and breeze		Natural gas		Liquefied petroleum gases		$\begin{aligned} & \text { Other } \\ & \text { fuels } \\ & \text { (million } \\ & \text { dollars) } \end{aligned}$	$\begin{array}{r} \text { Fuels } \\ \text { not } \\ \text { specitied } \\ \text { by kind } \\ \text { (million } \\ \text { dollars) } \end{array}$	British thermal units (trillions)Cost (million dollars)										
$\begin{gathered} \text { Quantity } \\ \text { (1,000} \\ \text { short } \\ \text { tons) } \end{gathered}$	$\begin{aligned} & \text { Cost } \\ & \text { (million } \\ & \text { dollars) } \end{aligned}$	Quantity (1,000 short tons)	$\begin{aligned} & \text { Cost } \\ & \text { (million } \\ & \text { dollars) } \end{aligned}$	Quantity (billion cubic feet)	$\begin{aligned} & \text { Cost } \\ & \text { (million } \\ & \text { dollars) } \end{aligned}$	Quantity (million pounds)	$\begin{array}{r} \text { Cost } \\ \text { (million } \\ \text { dollars) } \end{array}$													
L	M	N	0	P	Q	R	S	T	U	V	W	D	G	1	K	M	Q	s		
(D)	(D)			$\begin{aligned} & 2.0 \\ & 1.8 \\ & 1.4 \end{aligned}$	6.8 6.6 4.5	2.4	$.3$	$\begin{array}{r} .4 \\ .2 \\ \text { (D) } \end{array}$	$\begin{aligned} & \text { (D) } \\ & \text { (D) } \\ & \text { (D) } \end{aligned}$	$\begin{aligned} & 5.7 \\ & 3.8 \\ & 2.6 \end{aligned}$	$\begin{array}{r} 30.6 \\ 23.1 \\ 16.5 \end{array}$	$\begin{array}{r} 6 \\ 4 \\ 13 \end{array}$	$\begin{array}{r}4 \\ 9 \\ 12\end{array}$	$\begin{aligned} & 10 \\ & 11 \\ & 54 \end{aligned}$	1 (x) 6	$\begin{aligned} & (X) \\ & (X) \\ & (X) \\ & (X) \end{aligned}$	6 10 11	(${ }_{(}^{7}{ }^{(1)}$	$\begin{aligned} & 37 \\ & 38 \\ & 39 \end{aligned}$	
626.6	26.9	(D)	(D)	19.2	66.7	10.0	1.1	2.7	(D)	55.0	223.5		3	10	21	7	7	15		
114.1 (D)	$\begin{aligned} & 4.8 \\ & \text { (D) } \end{aligned}$			2.1 (D)	7.1(D)(1.5	. 2	(D)	$\begin{array}{r}3.7 \\ .4 \\ \hline\end{array}$	8.2	27.2 1.8		9 9 26 18	$\begin{aligned} & (X) \\ & (X) \end{aligned}$	(X)	(X^{1}	(X)	(${ }^{1}$	20	
				(1					(D)	. 2	. 6	(X)	(X)	(x)	($\mathrm{X}^{(1)}$	(x)	43	(x)	23	
	(D)	-	-	(D)	(D)	(D)	(D)	(D)	. 1	. 4	1.5	26	29 19	(X)	(X)	(X)	(x) 33	(${ }_{(X)}^{(X)}$	24 25	
(D)	(D)	-	-	1.3	4.4	(D)	(D)	(D)	. 7	5.8	18.4	11	19	(X)	(X)	(X)	25	(X)	26	
(D)	(D)	(D)	(D)	. 5	2.0	(D)	(D)	(D)	. 1	1.5	8.5	27	19	(x)	(x)	(X)	25	(x)	27	
(S)	(S)	(D)	(D)	(S)	(S)	(D)	(D)	(D)	(S)	14.0	49.7	7	14	(x)	(${ }_{(1)}$	(x)	(X)	(X)	28	
(D)	(D)			2.6 .5	7.9 1.7	(D)	(D)	(D)	$\stackrel{.7}{2.5}$	4.3 2.2	13.9 10.6	5	12 3	(X)	$\left(\begin{array}{l}\text { (}) \\ \text { (})\end{array}\right.$	(${ }_{(X)}$	2 4	(X)	29 30	
	-			(D)	(D)	-	-	-	(D)	(Z)		(X)	(${ }^{\text {(}}$	(X)	(x)	(${ }^{(x)}$	(${ }^{\text {(})}$	(${ }^{\text {(})}$		
				(D)	(D)	1.4	. 2		(D)	1.9 2.7	6.3 14.8	16 18	21 41	(${ }^{1}$	(${ }^{(x)}$	(x)	(x) 47	(X)	32 33	
(D)	(D)	-	-	. 8	2.8	. 4	(Z)	(D)	3.4	2.3	14.8 12.7	11	12	(2)	(x)	(${ }^{(x)}$	22	3	34	
(D)	(D)			1.1	3.8	1.4	. 2	. 5	. 4	3.5	20.1	8	19	23	(X)	(X)	16	12	35	
(D)	(D)	-	-	. 5	1.8		(D)	(D)	. 2	1.2	6.2	10	11	(X)	(X)	(${ }^{\text {(}}$)	12	(x)	36	
(D)	(D)			1.4 .1	5.0 .3	(D)	(D)	(D)	(D) 1	5.2 .2		1 26	21	(X)	(${ }_{\text {(})}$	(${ }^{(x)}$	1 35	(X)	37 38	
				. 4	1.1			(D)	$\stackrel{8}{8}$. 6	3.6	20	16	(X)	(X)	(X)	11	(X)		
-	-	-	-	1.1	3.7	3.9	. 5	(Z)	. 3	3.1	19.3	3	7	(X)	(X)	(X)	9	2		
		-	-	(D)	(D)	-	-	(D)	. 1	. 2	. 6	53	67	(X)	(X)	(X)	(X)	(X)	34	
323.8	14.0	(D)	(D)	53.1	169.6	24.4	2.8	4.3	14.5	121.4	545.9	3	2	12	(X)	10	3	24		
				1.3	4.4	1.5 (D)	(D)	(D)		3.1	15.0 1.9	20	21		(X) (${ }^{\text {(}}$)	(X) (X)	(X) ${ }^{9}$	23.20		
				(S)	(S)					. 4	2.3	17	61	(X)	($\mathrm{X}^{(1)}$	(x)	(x)	(X)	23	
				(S)	(S)					.1	. 7	27	(x)	(${ }_{\text {(})}$	(x)	(x)	(x)	(X)	24	
										. 3	1.8	19	15	(X)	(X)	(X)	(X)	(X)		
(D)	(D)	(D)	(D)	$\begin{aligned} & .4 \\ & \text { (D) } \\ & 3.5 \\ & \text { (S) } \\ & \text { (S) } \end{aligned}$	1.4	1.0 (D) (D)	$\begin{array}{r} 1 \\ \text { (D) } \\ \text { (D) } \end{array}$	$\begin{aligned} & \text { (D) } \\ & \text { (D) } \end{aligned}$	$\begin{array}{r} .2 \\ 1.0 \\ \text { (S) } \\ \text { (S) } \\ \text { (S) } \end{array}$	$\begin{array}{r} 1.6 \\ 1.2 \\ 7.5 \\ 1.8 \\ .9 \end{array}$	$\begin{array}{r} 6.3 \\ 8.5 \\ 34.4 \\ 6.9 \\ 4.9 \end{array}$	$\begin{aligned} & 55 \\ & 29 \\ & 7 \\ & (x) \\ & (X) \end{aligned}$	$\begin{gathered} 43 \\ 16 \\ 6 \\ (x) \\ (X) \end{gathered}$	$\begin{aligned} & (X) \\ & (X) \\ & 12 \\ & 12 \\ & (X) \\ & (X) \end{aligned}$	$\begin{aligned} & (x) \\ & (X) \end{aligned}$	$\begin{aligned} & \left(\begin{array}{l} (x) \\ (X) \\ (X) \\ (X) \\ (X) \\ (X) \end{array}\right) \end{aligned}$	$\begin{aligned} & 13 \\ & (x) \\ & (6 \\ & (x) \\ & (x) \end{aligned}$	$\begin{aligned} & (X) \\ & (X) \\ & 62 \\ & (X) \\ & (X) \end{aligned}$	$\begin{aligned} & 26 \\ & 27 \\ & 28 \\ & 29 \\ & 30 \end{aligned}$	
-					12.2															
(D)					(S)															
(D)	(D)				(S)															
$\begin{array}{r} \text { (D) } \\ \text { (D) } \\ \text { (D) } \end{array}$		(D)	(D)	2.0	6.5	(D)	(D)	(D)	. 2	3.6	14.1	243	29	(X)	(X)	(X)	35	$\begin{array}{ll}\text { (X) } & 32 \\ 12 & 33\end{array}$		
	$\begin{aligned} & \text { (D) } \\ & \text { (D) } \\ & 7 \\ & (\mathrm{D}) \end{aligned}$			29.5	90.5	1.1	$\begin{array}{r} 1 \\ .1 \\ .8 \\ .4 \\ \text { (D) } \end{array}$	(D)(Z).	$\begin{aligned} & 3.7 \\ & .8 \\ & 2.8 \\ & 1.3 \end{aligned}$	$\begin{array}{r} 71.0 \\ 11.6 \\ 6.9 \\ 3.2 \end{array}$	$\begin{array}{r} 287.8 \\ 60.3 \\ 40.0 \\ 18.9 \end{array}$		1		(x)	(${ }^{\text {(})}$	1			
				6.6 2.9	21.1 9.8	7.3 3.1						14 4	7	1 42	(x) 14	(X)	8 5	9 9	32343536	
				1.4	4.7	(D)						r ${ }^{4}$	9	(${ }^{42}$	(${ }^{14}$)	(X^{1}	6	(X^{9}		
(D)	(D)			1.6(D)	5.4 .6	(D)	(D)	(D)	$\begin{aligned} & .3 \\ & .4 \end{aligned}$	6.9 .5	36.5 3.8	2	${ }_{13}^{2}$	(X) (x)	(X) (X)	$\left(\begin{array}{l}(X) \\ (X)\end{array}\right.$	3 4	(${ }^{(x)}$	37 38	
					(D)				(D)	. 3	1.9	26	53	(X)	(X)	(\times)	(X)	(X)	39	
-		-	-	. 6	1.8	(D)	(D)	(D)	1.2	2.0	8.9	14	12	(X)	(X)	(X)	11	(X)		
-	-	-		(D)	(D)	-	-	-	(D)	. 1	. 6	38	80	(x)	(X)	(x)	(X)	(X)	20	
-		-	-	(D)	(D)	-		-	(D)	. 1	. 6	7	16	(x)	(X)	(x)	(x)	(x)	27	
-	-	-		(D)	(D)	-	-	-	(D)	. 2	. 5	17	17	(x)	(X)	(X)	(x)	(${ }^{(x)}$	32	
-	-	-	,	(D)	(D)	(D)	(D)	-	(D)	. 2	1.1 1.3 1.1	1 1 1	1	(${ }^{(x)}$	(X)	(X)	(X)	(${ }^{(x)}$	34 35	
-				. 1	. 2		(D)	-	. 1	. 2	1.1	27	41	(X)	(X)	(X)	40	(X)	36	
-		-	-	(D)	(D)	(D)	(D)	-	. 3	. 5	3.4	12	1	(X)	(X)	(X)	(X)	(X)		
(D)	(D)	(D)	(D)	6.1	22.2	8.1	. 9	. 3	(S)	17.1	66.4	4	9	33	36	(X)	12	2		
-	-	-	-	. 3	1.1	(D)	(D)	-	(D)	.9	6.0	11	6	(x)	1	(x)	${ }^{7}$	(x)	22	
-	-	-	-	(D)	(D)	-	$:$	-	(D)	. 1	. 6	1 41	1	(X)	(X)	(X)	(X)	(x)	27	
-		-	-	- 3	1.1	(D)	(D)	(D)	(Z)	. 6	2.4	(X)	(X^{1}	(${ }^{(x)}$	(X)	(X)	(1) 20	(${ }^{(x)}$	27 34	
-	-	-	-	. 1	(2)	(D)	(D)	(D)	(Z)	. 2	1.5	5	13	(x)	(X)	(X)	17	(X)	35	
		-	-	(D)	(D)	(D)	(D)		(S)	. 6	3.9 .6	10 8	1 6	(X)	$\left(\begin{array}{l}\text { (X) } \\ (X)\end{array}\right.$	(X)	(X) (X)	(X)	36 39	

Table 5. Purchased Fuels, by Type, and Electric Energy Used for Heat and Power by Major
[For meaning of abbreviations and symbols, see introductory text. For explanation of terms, see appendixes]

Industry Group for Standard Metropolitan Statistical Areas: 1981 and 1980-Con.

\begin{tabular}{|c|}
\hline \multicolumn{10}{|c|}{1981-Con.} \& \multicolumn{2}{|l|}{1980 purchased fuels and electric energy} \& \multicolumn{7}{|c|}{\multirow{3}{*}{Relative standard error of estimate (percent) for column'-}} \& \multirow{4}{*}{\[
\underset{\text { code }}{\text { SIC }}
\]} \\
\hline \multicolumn{2}{|l|}{Bituminous coal, lignite, and anthracite} \& \multicolumn{2}{|l|}{Coke and breeze} \& \multicolumn{2}{|l|}{Natural gas} \& \multicolumn{2}{|l|}{Liquefied petroleum gases} \& \multirow[b]{2}{*}{Other
fuels
(million
dollars)} \& \multirow[b]{2}{*}{} \& \multirow[b]{2}{*}{} \& \multirow[b]{2}{*}{\[
\begin{array}{r}
\text { Cost } \\
\text { (million } \\
\text { dollars) }
\end{array}
\]} \& \& \& \& \& \& \& \& \\
\hline \[
\begin{array}{r}
\text { Quantity } \\
(1,000 \\
\text { shor } \\
\text { tons) }
\end{array}
\] \& Cost
(million
dollars) \& Quantity short tons) \& \[
\begin{aligned}
\& \text { Cost } \\
\& \text { (million } \\
\& \text { dollars) }
\end{aligned}
\] \& Quantity (billion cubic
feet) \& \[
\begin{array}{r}
\text { Cost } \\
\text { (million } \\
\text { dollars) }
\end{array}
\] \& Quantity (million pounds) \& Cost
(million dollars) \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline L \& M \& N \& 0 \& P \& 0 \& R \& S \& T \& U \& \(v\) \& w \& D \& G \& 1 \& K \& M \& 0 \& S \& \\
\hline (D) \& (D) \& (D) \& (D) \& 5.0 \& 16.6 \& 1.5 \& . 2 \& (D) \& 4.7 \& 11.3 \& 46.6 \& 4 \& 5 \& 46 \& (X) \& (X) \& 1 \& 25 \& \\
\hline (D) \& (D) \& - \& - \& .4
1.7 \& 1.5
6.4 \& (D) \& (D) \& : \& (Z) \& .8
3.4 \& 3.9
17.7 \& 5
1 \& 3 \& (X) \& (X) \& (X)
(\({ }^{\text {(}}\)) \& 3
1
1 \& (x) \& 20 \\
\hline \& \& - \& - \& (D) \& (D) \& \& \& - \& (D) \& (D) \& (D) \& 1 \& 1 \& (x) \& (X) \& (X) \& (x) \& (X) \& 27 \\
\hline \& \& (D) \& (D) \& 2 \& 7 \& (D) \& (D) \& (D) \& (S) \& \(\begin{array}{r}1.3 \\ \hline 8\end{array}\) \& 4.0
4.5 \& \(\xrightarrow{21}\) \& (X) \& (X)
(X) \& \((x)\)
\((x)\)
\((x)\) \& (x)
(X)
(X) \& (X) \& (x) \& 32
33 \\
\hline 174.3 \& 7.1 \& (D) \& (D) \& 16.1 \& 55.5 \& 4.8 \& . 6 \& 3.0 \& (D) \& 35.1 \& 150.8 \& 5 \& 3 \& 25 \& 38 \& 4 \& 2 \& 7 \& \\
\hline (D) \& (D) \& \& - \& 3.1
(S) \& 10.7
(S) \& 1.5 \& . 2 \& . 5 \& (S) \& \begin{tabular}{l}
5.8 \\
3.4 \\
\hline
\end{tabular} \& 23.3
11.6 \& 10
7
7 \& 4 \& (14 \& \((X)\)
(X) \& (\()^{\prime}\))
\((X)\)
(\& \(\left(x^{2}\right)^{2}\) \& (X) \& 20 \\
\hline (D) \& (D) \& \& \& (2 \& . 6 \& \& \& (D) \& . 3 \& . 5 \& 4.1 \& 35 \& 17 \& (X) \& (X) \& (\(\mathrm{X}^{(x)}\) \& 29 \& (\({ }^{(1)}\) \& 27 \\
\hline (D) \& (D) \& (D) \& (D) \& . 8 \& 2.8 \& (D) \& (D) \& (D) \& 1.5 \& 2.7 \& 13.0 \& 39 \& 20 \& (x) \& (x) \& (x) \& 25 \& (x) \& 28 \\
\hline \& \& \& \& . 4 \& 1.3 \& \& \& (D) \& . 1 \& . 7 \& 3.2 \& 25 \& 37 \& (X) \& (X) \& (X) \& 37 \& (X) \& 29 \\
\hline \& \& \& - \& 1.1
6.6 \& 3.9
22.8 \& (D) \& (D) \& (D) \& (S) \& 2.2
9.0 \& 12.4
31.4 \& 14
5 \& 7
3 \& (X)
(X) \& (X)
(X)

(\& (X)
($)$
(X) \& 8
3 \& (${ }^{(x)}$ \& 30
32

\hline - \& \& - \& - \& (D) \& (D) \& (D) \& (D) \& (D) \& 1.6 \& 1.8 \& 9.6 \& 2 \& 3 \& (X) \& (X) \& (X) \& (x) \& (X) \& 33

\hline (D) \& (D) \& - \& - \& . 9 \& 3.0 \& . 4 \& (Z) \& (D) \& . 7 \& 2.4 \& 12.2 \& 7 \& 11 \& 3 \& (X) \& (x) \& $\xrightarrow{7}$ \& 1 \& 34

\hline (D) \& (D) \& \& \& 1.0 \& 3.2 \& . 8 \& . 1 \& (D) \& 1.0 \& 2.4 \& 10.8 \& 6 \& 9 \& 38 \& (X) \& (X) \& 1 \& 37 \& 35

\hline $$
\begin{aligned}
& \text { (D) } \\
& \text { (D) }
\end{aligned}
$$ \& (D) \& - \& - \& . 8 \& 2.8

.9 \& (D) \& (D) \& (D) \& | .1 |
| :--- |
| .3 | \& 2.1

1.5 \& 9.7
4.9 \& 3
2
2 \& 3
2 \& $\left(\begin{array}{l}\text { (}) \\ (X) \\ \text { (}\end{array}\right.$ \& (X)
(X) \& (x)
(X)
(\& 3
3 \& (X) \& 36
37

\hline \& \& - \& - \& . 1 \& . 2 \& \& (D) \& \& (D) \& . 4 \& 2.2 \& 3 \& 2 \& (X) \& (X) \& (X) \& 4 \& (X) \& 38

\hline \& \& \& \& (D) \& (D) \& \& \& \& (D) \& . 1 \& . 8 \& 27 \& 28 \& (X) \& (X) \& \& (X) \& (X) \&

\hline \& \& - \& - \& 58.0 \& 180.9 \& (D) \& (D) \& (D) \& 23.1 \& 86.6 \& 296.9 \& 2 \& 1 \& (X) \& (X) \& (X) \& 1 \& (X) \&

\hline \& \& \& - \& (0) \& \& (D) \& (D) \& (D) \& (D) \& 4 \& 2.2 \& 31 \& 36 \& (x) \& (X) \& (${ }_{(1)}$ \& 46 \& (X) \& 20

\hline \& \& \& - \& (D) \& (D) \& (D) \& (D) \& \& 8.0
10.7 \& 48.8
17.8 \& 169.5
66.9 \& (X)

3 \& (X) \& | (X) |
| :--- |
| (X) | \& (X)

(X) \& (X)
(X) \& (X) \& (X) \& 28
29

\hline \& \& \& \& \& \& \& \& \& (D) \& (D) \& (D) \& (X) \& (X) \& (X) \& (X) \& (X) \& (X) \& (X) \& 37

\hline 646.5 \& 30.0 \& (D) \& (D) \& 33.6 \& 100.9 \& 5.9 \& . 7 \& 3.2 \& (D) \& 83.2 \& 332.9 \& 3 \& 8 \& 58 \& 23 \& 37 \& 5 \& 22 \&

\hline - \& \& \& \& 4.4 \& 13.8 \& (D) \& (D) \& (D) \& 3.5 \& 8.1 \& 36.2 \& 5 \& 5 \& (X) \& (x) \& ($\mathrm{X}^{\text {) }}$ \& 7 \& (X) \& 20

\hline \& \& \& - \& - \& (D) \& \& \& (D) \& (D) \& . 1 \& . 6 \& 27 \& 14 \& (${ }^{\text {(})}$ \& (X) \& (x) \& (x) \& (X) \& 22

\hline - \& \& \& - \& (S) \& (D) \& \& \& \& (D) \& 1.0
.5 \& 6.5
3.0 \& 9
16 \& 26
6 \& (X) \& (x) \& (x)
(${ }^{\text {(}}$) \& (x) \& (X)
(X)

(\& 23
24

\hline \& \& - \& - \& (S) \& \& \& \& \& (S) \& . 5 \& 3.0
2.7 \& 16
23 \& 37 \& (x) \& (x) \& (X) \& (x) \& (X) \& 24
25

\hline - \& - \& - \& - \& 1.7 \& 5.6 \& (D) \& (D) \& (D) \& 1.3 \& 2.6 \& 11.8 \& 24 \& 12 \& (X) \& (X) \& (X) \& 6 \& (X) \& 26

\hline \& \& \& : \& . 3 \& 1.1 \& \& \& (1) \& (D) \& 1.2 \& 9.4 \& 18 \& 14 \& (${ }^{\text {(})}$ \& (X) \& (${ }^{\text {(})}$ \& 16 \& (X) \& 27

\hline - \& \& - \& - \& 2.7 \& 8.4 \& \& \& (D) \& 2.4 \& 5.0 \& 20.6 \& 4 \& 11 \& (${ }^{(1)}$ \& 65 \& (${ }^{(1)}$ \& 14 \& (x) \& 28

\hline \& \& \& - \& 3.8
.4 \& 9.6
1.3 \& \& \& (D) \& (D) \& 3.9
2.5 \& 10.2
14.0 \& 19
14 \& 15
4 \& (X) \& (x) \& (X) \& 14
9 \& (X) \& 30

\hline \& \& - \& - \& (D) \& (D) \& \& \& \& (D) \& (D) \& (D) \& 1 \& 1 \& (X) \& ($\mathrm{X}^{(1)}$ \& (X) \& (X) \& (X) \& 31

\hline 646.5 \& 30.0 \& \&) \& \& 21.4 \& (D) \& (c) \& (D) \& (S) \& 29.2 \& 71.4 \& 16 \& 24 \& (X) \& (x) \& 37 \& 16 \& (X) \& 32

\hline \& \& (D) \& (D) \& 3.7 \& 11.3 \& (D) \& (D) \& \& 1.7 \& 6.6 \& 30.1 \& 4 \& 11 \& \& \& (${ }^{\text {(})}$ \& 14 \& (X) \& 33

\hline - \& \& \& - \& 1.8
2.2 \& 5.9
6.2 \& (D) \& (D) \& (Z) \& (D) \& 4.4 \& 22.4
26.7 \& 13
5 \& 15
11 \& (X)
(X) \& (X)
(X) \& (X)
(X) \& 12
7 \& (X) \& 34
35

\hline - \& \& \& - \& 1.4 \& 4.2 \& (D) \& (D) \& (D) \& 1.3 \& 5.0 \& 31.5 \& 4 \& 7 \& (X) \& (${ }^{\text {(})}$ \& (X) \& 2 \& (X) \& 36

\hline - \& \& \& \& 3.5 \& 10.9 \& . 8 \& . 1 \& (D) \& . 2 \& 6.7 \& 29.9 \& 3 \& 4 \& (${ }^{\text {(})}$ \& (X) \& ($\mathrm{X}^{\text {(}}$ \& 2 \& 1 \& 37

\hline \& \& - \& - \& (Z) \& (Z) \& (D) \& (D) \& (D) \& (D) \& . 4 \& 3.0
2.6 \& 11
15 \& 42
46 \& (X) \& (X)
(X) \& (X) \& 1
39 \& (X) \& 38
39

\hline - \& \& - \& - \& . 3 \& 1.5 \& 12.3 \& 1.5 \& (D) \& (D) \& 3.7 \& 29.2 \& 17 \& 23 \& 26 \& 32 \& (X) \& 22 \& 4 \&

\hline - \& \& - \& - \& (D) \& (D) \& - \& \& \& (S) \& (D) \& (D) \& 45 \& (X) \& (X) \& ($\mathrm{X}^{\text {) }}$ \& (X) \& (X) \& (x) \& 27

\hline - \& \& - \& - \& (D) \& (D) \& (D) \& (D) \& : \& (S) \& (D) \& (D) \& 6 \& 16 \& (${ }^{(x)}$ \& (x) \& (${ }_{(1)}$ \& (${ }^{(x)}$ \& (${ }_{(1)}$ \& 28

\hline $:$ \& - \& - \& - \& \& \& (D) \& (D) \& - \& (S) \& . 1 \& .8
4.0 \& 419 \& (X)
21 \& (X) \& (X) \& (x)
(X) \& (X) \& (X)
(X)

d \& 30
33

\hline - \& \& - \& - \& . 1 \& . 4 \& (D) \& (D) \& - \& . 1 \& . 3 \& 2.2 \& 47 \& 17 \& (X) \& (($) ~_{\text {(}}$ \& (X) \& 31 \& (X) \& 34

\hline - \& \& - \& - \& (D) \& (D) \& (D) \& (D) \& (D) \& (Z) \& . 2 \& 1.9 \& 15 \& 44 \& (X) \& (X) \& (X) \& (X) \& (X) \& 35

\hline - \& \& . \& - \& (Z) \& ${ }^{2}$ \& (D) \& (D) \& (D) \& (1) \& . 5 \& 4.1 \& 8 \& ${ }^{6}$ \& 5 \& (x) \& (${ }^{(1)}$ \& 14 \& (${ }^{(1)}$ \& 36

\hline - \& \& - \& - \& \& \& \& \& - \& (Z) \& (D) \& (D) \& (X^{1} \& (x) \& (X^{1} \& (X) \& $\left(\begin{array}{l}\text { (x) } \\ (\end{array}\right.$ \& (X^{3} \& (${ }^{(x)}$ \& 38
39

\hline 110.4 \& 4.3 \& (D) \& (D) \& 12.1 \& 41.8 \& 7.5 \& . 5 \& (D) \& 11.7 \& 26.5 \& 101.2 \& 7 \& 9 \& 1 \& 24 \& 1 \& 11 \& 1 \&

\hline (D) \& (D) \& \& - \& 2.1 \& 7.1 \& (D) \& (D) \& - \& \& \& \& 38 \& \& \& (X) \& \& 10 \& (${ }^{\text {() }}$ \&

\hline \& \& - \& - \& \& \& \& \& \& (S) \& . 2 \& . 9 \& 5 \& (${ }^{1}$ \& (${ }^{(x)}$ \& (X) \& (${ }^{(1)}$ \& (${ }_{\text {(})}$ \& (${ }_{\text {(})}$ \& 24

\hline - \& - \& - \& - \& (D) \& (D) \& - \& - \& \& (D) \& .1
2.6 \& .8
8.2 \& 1
5 \& 1 \& (X) \& (X)
(X)

(\& (x)
(${ }^{\text {(}}$) \& (${ }_{\text {(})}$ \& (X) \& 27
32

\hline - \& \& (D) \& (D) \& 5.9 \& 20.0 \& (D) \& (D) \& (D) \& (8) \& 9.7 \& 40.4 \& 4 \& 8 \& (X) \& (X) \& (X) \& (1)
9 \& ($\mathrm{X}^{(x)}$ \& 33

\hline \& \& \& \& . 2 \& $$
.6
$$ \& - \& - \& \& (D) \& . 5 \& 2.3 \& 6 \& 10 \& (X) \& (X) \& (${ }^{\text {() }}$ \& 17 \& (X) \& 34

\hline (D) \& (D) \& - \& \& \& \& 6.4 \& . 4 \& (D) \& 1.1 \& 7.7 \& 27.4 \& 1 \& 1 \& 1 \& (X) \& (X) \& 1 \& 1 \& 35

\hline 283.6 \& 13.0 \& (D) \& (D) \& 9.3 \& 33.9 \& 3.4 \& . 3 \& 8.7 \& (D) \& 29.9 \& 137.9 \& 3 \& 4 \& 10 \& 9 \& 7 \& 4 \& 22 \&

\hline (D) \& (D) \& - \& - \& (D) \& (D) \& (D) \& (D) \& (D) \& 2.3 \& 4.4 \& 15.4 \& 4 \& 2 \& (X) \& (X) \& (X) \& (X) \& (X) \& 20

\hline 107. \& \& - \& - \& (D) \& (D) \& (D) \& (D) \& (D) \& (Z) \& . 2 \& . 7 \& (${ }^{4}$) \& (X) \& (\times) \& (X) \& (X) \& (1) \& (x) \& 22

\hline 107.1 \& 5.0 \& - \& - \& 1.0 \& 3.6 \& (D) \& (D) \& (D) \& (S) \& 4.3 \& 14.2 \& 12 \& 13 \& 10 \& (X) \& ${ }^{16}$ \& 15 \& (X) \& 26

\hline \& \& - \& - \& \& 2.0
2.0 \& \& \& . 3 \& (D) \& 1.2
.8 \& 6.7
4.3 \& 14 \& 3
8 \& (X)
(X) \& (X)
(X) \& (X)
(X) \& 1
8 \& (X)
($)$ \& 27
28

\hline
\end{tabular}

Table 5. Purchased Fuels, by Type, and Electric Energy Used for Heat and Power by Major
[For meaning of abbreviations and symbols, see introductory text. For explanation of terms, see appendixes]

See footnotes at end of table

Industry Group for Standard Metropolitan Statistical Areas： 1981 and 1980－Con．

	．．．．\cdot	．	O		믕．．	，므．	－	．⿹丁口．．	O			．$\overline{0}$	－	．．	믕	．．．．	，	．	r			
	，．．＇	．	－	，它，可可	믕．．흐	．．${ }^{\text {O}}$ ．	$\stackrel{9}{0}$	．$\overline{0}$.	O			．	믕		믕	．．．．		，万⿹丁口 ．．	3			
	，．．．	，	⿹ㅡㅁ		©		©	，므．	믕	．．．	©－．	．．．．．	O		，			．．．ㅇ．．．	z		$\begin{aligned} & \text { ᄋo } \\ & \text { 人 } \\ & \text { 咢 } \end{aligned}$	
	．．．．${ }^{\text {，}}$	，	－		D．		O	，⿹丁口．	므	，©－	©		O		，		，	．．므．．	0		$\stackrel{\text { ¢ }}{\text { ¢ }}$	
－\triangle OO	．	$\stackrel{\rightharpoonup}{ \pm}$	0	O．$\stackrel{\rightharpoonup}{\text { a cinco }}$	$\stackrel{\rightharpoonup}{\circ}$	－$\stackrel{\text { ¢ }}{\text { OTOU }}$	$\stackrel{\infty}{\infty}$	ajobobur	$\stackrel{\square}{\square}$	$\rightarrow \omega \omega \overline{0}$	¢	m－inonis	$\stackrel{\stackrel{\rightharpoonup}{\omega}}{\substack{\text { a }}}$	¢	$\stackrel{\rightharpoonup}{\circ}$	．	©		0		碕	$\stackrel{\rightharpoonup}{\otimes}$
$\omega-$ 므	．으，으	$\stackrel{\omega}{6}$	ज				$\stackrel{\text { U }}{\underline{-}}$	$\stackrel{\rightharpoonup}{\infty} \omega \mathrm{O}_{\text {O }}^{\text {O }}$	$\stackrel{\rightharpoonup}{\square}$		$\stackrel{\square}{\circ} \mathrm{O}$		$\stackrel{\text { ¢ }}{\text { ¢ }}$	¢ 0		，	©		0		\％	
． O	．	믕	\cdots	，	v응．므	믕	믕	O	$\stackrel{N}{\omega}$	믐．	in．	DOCO．．${ }_{\text {c }}^{\omega}$	$\stackrel{\circ}{i}$	．	N	으으．	0	．	D			
．，－	，⿹ㅡ，⿹ㅡㅇ	므	ज	，	－	⿹ㅡ．	O	응．0	is	으으，으므	\pm	⿹丁口ত ．．	\checkmark	．	is	⿹్ర刀口．	\cdots	，⿹ㅡ응．므．	0			
． 0.	．． 0	\dot{v}	므				$\stackrel{\rightharpoonup}{v}$	，으．	믕	．	므．． 0_{i}	．	O	DO－O	O	，．．．	O	．	4			
O－is		므	©			$\stackrel{\omega}{\square}$	O	No．	$\stackrel{\rightharpoonup}{\square}$	Nonへor	¢ ¢	－ 0°	©	－	in	OONO	\bigcirc		c			
Livic		$\stackrel{\sim}{-}$	－				$\underset{\sim}{N}$	－${ }_{0}^{0}$	－		©	$\stackrel{\rightharpoonup}{\circ}{ }_{\omega \perp} \stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{i}}$	$\underset{\omega}{\omega}$	－ 9	N	O－¢－－	\％		$<$			
$\stackrel{\rightharpoonup}{\triangle} \dot{\square}$	$\stackrel{\omega}{\infty}$	No	N	NNOMO No		بNOTM M	N		¢		Mosuvo	$\underset{\infty}{\omega} \underset{\sim}{\omega} \dot{\sim}$	$\stackrel{\stackrel{\rightharpoonup}{*}}{-}$	\bigcirc	シ	OVvos	\％		Σ			
¢®®x		\cdots	\pm		NoN区欠		N	$\widehat{X}_{\infty} \stackrel{\rightharpoonup}{\text { a }}$－${ }_{\text {a }}$	∞				∞	즈	N	$\Delta \mathrm{N} \rightarrow$－	os		0			
$\stackrel{\rightharpoonup}{\infty} \times$		v	㐫		－	V ω N゙N	N	区－	0	ব	の区－Nへ	N゙WNOWの	$\stackrel{\rightharpoonup}{\text { a }}$	®®	－	－	∞		\bigcirc			
হ্রৃ㐅	조88	${ }_{\infty}^{\infty}$	区	\xxxxx	区ֻర్రXX	ชヌヌヌx	ω		¢				S	XX	\sim	\}	区	\ᄌxতuxxx	－			
スxx	ㅈxx \times x	A	区	ㅈxx x x	좆ㅈㅈㅏ	ㅈxx	N	ㅈㅈㅈㅈㅈ	ㅊ	ชxヌx®	ㅈxxxx	ㅈxֻ	0	즞	지	ㅈxxxx	ㅈ	ㅈxxxxxx	ㅈ			
¢ைષ	ชைスxx	ㅊ			ব্রৈxxx		－		区		¢ᄌxx x	বxxx	区	8x	®	®イメx		বxxx x x	3			
$\stackrel{\rightharpoonup}{\infty} \downarrow$	ㅈx］	の	즞	区欠－No区	－		a	－¢	の		NXXVUN	心®	\bullet	-8	－				\bigcirc			
ঠঠঠx		지	区			ব$\stackrel{\text { ¢ }}{\text { ¢ }}$	지	বৃヌヌঠ	\pm		－		∞	8®	¢		즞		∞			
心్¢¢	WNNNN				W్రNW్రN్	NNNONT		બֹNNN工		ట్verum	W్రీ్రNN	NONANN		¢ ${ }_{\text {WN }}$		¢¢¢			$\frac{8}{0} \frac{0}{\circ}$			

Table 5. Purchased Fuels, by Type, and Electric Energy Used for Heat and Power by Major
[For meaning of abbreviations and symbols, see introductory text. For explanation of terms, see appendixes]

Industry Group for Standard Metropolitan Statistical Areas: 1981 and 1980-Con.

\begin{tabular}{|c|}
\hline \multicolumn{10}{|c|}{1981-Con.} \& \multicolumn{2}{|l|}{1980 purchased fuels and electric energy} \& \multicolumn{7}{|c|}{\multirow{3}{*}{Relative standard error of estimate (percent) for column'-}} \& \multirow{4}{*}{\[
\underset{\text { code }}{\operatorname{SIC}}
\]} \\
\hline \multicolumn{2}{|l|}{Bituminous coal, lignite, and anthracite} \& \multicolumn{2}{|l|}{Coke and breeze} \& \multicolumn{2}{|l|}{Natural gas} \& \multicolumn{2}{|l|}{Liquefied petroleum gases} \& \multirow[b]{2}{*}{\[
\begin{array}{r}
\text { Other } \\
\text { fuels } \\
\text { (millian } \\
\text { dollars) }
\end{array}
\]} \& \multirow[b]{2}{*}{} \& \multirow[b]{2}{*}{British thermal (trillions)} \& \multirow[b]{2}{*}{\[
\begin{gathered}
\text { Cost } \\
\text { (million } \\
\text { dollars) }
\end{gathered}
\]} \& \& \& \& \& \& \& \& \\
\hline \[
\begin{gathered}
\text { Quantity } \\
(1,000 \\
\text { short } \\
\text { tons) }
\end{gathered}
\] \& Cost (million dollars) \& Quantity short tons) \& \[
\begin{array}{r}
\text { Cost } \\
\text { (million } \\
\text { dollars) }
\end{array}
\] \& Quantity
(billion
cubic
feet) \& \[
\begin{array}{r}
\text { Cost } \\
\text { (million } \\
\text { dollars) }
\end{array}
\] \& Quantity (million pounds) \& \[
\begin{array}{r}
\text { Cost } \\
\text { (million } \\
\text { dollars) }
\end{array}
\] \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline L \& M \& N \& 0 \& P \& Q \& R \& S \& T \& U \& V \& W \& D \& G \& 1 \& K \& M \& 0 \& \(s\) \& \\
\hline (D) \& (D) \& - \& - \& 1.0 \& 3.7 \& 3.6 \& . 5 \& (D) \& 2.0 \& 4.2 \& 17.3 \& 10 \& 9 \& 34 \& (X) \& (X) \& 28 \& 2 \& \\
\hline (D) \& (D) \& - \& - \& (D) \& \[
\begin{aligned}
\& 1.9 \\
\& \text { (D) }
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { (D) } \\
\& \text { (D) }
\end{aligned}
\] \& (D) \& - \& 1.6 \& 1.0
1.4 \& 3.7
5.0 \& 18
1 \& 33
1 \& \[
\begin{aligned}
\& (x) \\
\& (x)
\end{aligned}
\] \& 35
\((X)\) \& (X)
\((X)\)
(\& 55
(X) \& (X) \& 20
26 \\
\hline (D) \& (D) \& (D) \& (D) \& 10.2 \& 31.4 \& (D) \& (D) \& (D) \& 2.9 \& 12.1 \& 51.8 \& 4 \& 7 \& (X) \& (X) \& (X) \& 7 \& (X) \& \\
\hline \& \& \& \& . 4 \& 1.4 \& - \& - \& (D) \& . 6 \& . 9 \& 4.6 \& 35 \& 16 \& (\({ }^{(1)}\) \& (\({ }^{(1)}\) \& (X) \& 13 \& (x) \& 20 \\
\hline - \& - \& - \& - \& (D) \& (D) \& : \& - \& (D) \& (S) \& . 6 \& 5.3
.6 \& 17 \& 10
(X) \& (X) \& (X)
(X)
(x) \& (X)
(X)
(\& (\({ }^{13}\) \& (X) \& 23
24 \\
\hline - \& - \& - \& - \& (D) \& (D) \& - \& - \& (D) \& (D) \& (D) \& (D) \& 1 \& (\({ }_{1}\) \& (X) \& (X) \& (X) \& (\((1)\) \& (x) \& 27 \\
\hline (D) \& (D) \& (D) \& (D) \& 6.3 \& 19.1 \& - \& - \& - \& (S) \& \begin{tabular}{l}
1.3 \\
6.3 \\
\hline
\end{tabular} \& 4.5
22.9 \& 29 \& (X) \& (x) \& (X)
(X) \& (x)
(X)
(\& (X) \& (x) \& 32
33 \\
\hline \& \& \& \& (D) \& (D) \& - \& - \& - \& (D) \& (D) \& (D) \& 4 \& 3 \& (X) \& (X) \& (X) \& (x) \& (X) \& 34 \\
\hline (D) \& (D) \& - \& - \& 2.6 \& 9.7 \& (D) \& (D) \& (D) \& (S) \& 4.4 \& 21.9 \& 12 \& 12 \& (X) \& 1 \& (X) \& 5 \& (X) \& \\
\hline \& \& - \& \& (D) \& (D) \& - \& - \& - \& (D) \& . 1 \& . 9 \& 1 \& 1 \& (X) \& (X) \& (X) \& (X) \& (X) \& 35 \\
\hline (D) \& (D) \& (D) \& (D) \& 6.7 \& 24.1 \& 1.0 \& . 1 \& (D) \& 5.0 \& 19.1 \& 64.7 \& 11 \& 7 \& 7 \& 1 \& (X) \& 6 \& 25 \& \\
\hline \& \& \& \& \& \& (D) \& (D) \& \& (S) \& (D) \& 2.6 \& (x) \& (x) \& (x) \& (\({ }_{\text {(})}\) \& (X) \& 26 \& (x) \& 20 \\
\hline \& \& \& \& (D) \& (D) \& (D) \& (D) \& (D) \& (S) \& (D) \& (D) \& (x)
17 \& (x) \& (x) \& (X) \& (X)
(X) \& (\({ }^{(x)}\) \& (x) \& 24
25 \\
\hline (D) \& - \& - \& - \& (D) \& (D) \& (D) \& (D) \& (D) \& (S) \& . 2 \& 1.4 \& 1 \& 22 \& (X) \& (\({ }^{(x)}\) \& (\({ }^{(x)}\) \& (X) \& (x) \& 28 \\
\hline (D) \& (D) \& \& \& . 2 \& . 6 \& \& \& \& . 9 \& . 9 \& 5.4 \& 39 \& 21 \& (X) \& (X) \& (X) \& 35 \& (X) \& 30 \\
\hline \& \& \& \& (D) \& (D) \& - \& - \& (D) \& (D) \& 1.1
2.9 \& 3.1
13.9 \& 54 \& 70
14 \& (x) \& \((\mathrm{X})\) \& \(\left(\begin{array}{l}\text { (}) \\ (x)\end{array}\right.\) \& (x) \& \((\mathrm{X})\) \& 32 \\
\hline (D) \& (D) \& (D) \& (D) \& 1.9
1.3 \& \begin{tabular}{l}
7.0 \\
4.8 \\
\hline
\end{tabular} \& (D) \& (D) \& (D) \& .4
1.5 \& 2.9
2.0 \& 13.9
10.8 \& 12
42 \& 14
33 \& (X) \& (X)
(X) \& (X)
(X)

(\& 15
17 \& (X) \& 33
34

\hline - \& \& (D) \& (D) \& . 4 \& 1.3 \& (D) \& (D) \& \& . 5 \& $\begin{array}{r}\text {. } \\ \hline\end{array}$ \& 4.3 \& 11 \& 5 \& (x) \& (X) \& (X) \& 7 \& (x) \& 35

\hline - \& - \& \& - \& . 1 \& . 2 \& \& . \& \& (Z) ${ }^{\text {(}}$ \& . 1 \& 1.0
1.7 \& 3
1 \& 10
1 \& (X) \& (X)
(X) \& (X)
(X) \& 14
1 \& (X) \& 36
38

\hline - \& - \& \& \& 2.4 \& 11.1 \& 8.0 \& 1.0 \& 5.3 \& 4.1 \& 10.8 \& 41.5 \& 7 \& 9 \& 27 \& 27 \& (X) \& 6 \& 29 \&

\hline \& - \& \& - \& (D) \& (D) \& (D) \& (D) \& (D) \& . 5 \& . 3 \& 1.3 \& 35 \& 22 \& (x) \& (x) \& (${ }_{(1)}$ \& (${ }^{\text {(})}$ \& (X) \& 20

\hline \& \& \& - \& . 4 \& 2.2

1.1 \& $$
4.7
$$ \& ${ }^{.} 6$ \& 3.4 \& (D) \& 5.1 \& 20.0 \& 11

26 \& 18
20 \& (x) \& (${ }^{(x)}$ \& (${ }_{(1)}$ \& 25
22 \& 10 \& 24

\hline - \& - \& - \& - \& (D) \& (D) \& (D) \& (D) \& (D) \& (Z) \& $\begin{array}{r}.6 \\ .1 \\ \hline\end{array}$ \& 2.1
.4
(b) \& (X) \& (${ }^{20}$) \& (x) \& (${ }^{(x)}$ \& (${ }_{(1)}$ \& (${ }^{2}$) \& (x) \& 28
34

\hline \& \& - \& \& (D) \& (D) \& \& \& (D) \& (S) \& (D) \& (D) \& 19 \& 3 \& (X) \& (X) \& (X) \& (X) \& (X) \& 35

\hline 352.6 \& 11.7 \& - \& - \& 10.5 \& 29.2 \& 2.2 \& . 3 \& (D) \& (D) \& 50.0 \& 219.2 \& 1 \& 5 \& 18 \& 53 \& 2 \& 3 \& 24 \&

\hline 31.8 \& 1.1 \& - \& - \& \& 1.0 \& (D) \& (D) \& (D) \& . 5 \& 1.7 \& 5.9 \& 8 \& 14 \& (x) \& (x) \& 20 \& 31 \& (x) \& 20

\hline \& - \& - \& - \& (D) \& (D) \& \& (D) \& (D) \& (D) \& (D) \& (D) \& 10 \& 14 \& (x) \& (${ }^{(1)}$ \& (${ }^{(1)}$ \& (x) \& (x) \& 24

\hline - \& - \& - \& - \& (S) \& (D) \&) \& - \& - \& (S) \& .1
.1 \& .6
.7 \& 1
4

4 \& | 1 |
| :--- |
| 1 | \& (X) \& \& (X) \& (x) \& (x) \& 25

27

\hline \& \& - \& - \& (S) \& (S) \& (D) \& (D) \& - \& (S) \& . 4 \& 3.7 \& (X) \& (X) \& (X) \& (X) \& (X) \& (X) \& (X) \& 30

\hline | (D) |
| :--- |
| (D) | \& (D) \& - \& - \& | .2 |
| :--- |
| .1 | \& | . |
| :--- |
| . | \& (D) \& (D) \& - \& . 2 \& .4

1.0 \& 1.5
2.5 \& 8
10 \& 18 \& (x)
(x) \& (x)
(${ }^{(1)}$
(X) \& (X)
(${ }^{\text {(}}$ (\& 14
19 \& (X) \& 34
35

\hline \& \& - \& - \& (D) \& (D) \& \& (D) \& - \& (D) \& (D) \& (D) \& 14 \& 14 \& (X) \& (X) \& (X) \& (X) \& (X) \& 39

\hline - \& - \& - \& - \& 1.1 \& 5.9 \& (D) \& (D) \& (D) \& 2.8 \& 3.8 \& 24.5 \& 15 \& 6 \& 38 \& 5 \& (X) \& 3 \& (X) \&

\hline - \& - \& : \& - \& (S) \& 3.3

(S) \& : \& - \& | (D) |
| :--- |
| (D) | \& (S) \& 2.1

.2 \& 12.4
1.7 \& 88888 \& 9
38 \& (x) \& (${ }^{7}$) \& (X)
(X)
(\& (x) \& (X) \& 22
23

\hline - \& - \& - \& - \& (D) \& (D) \& - \& - \& \& .3
. \& . 2 \& 1.0 \& (x) \& (${ }^{(x)}$ \& (x) \& (${ }^{(x)}$ \& (${ }^{(1)}$ \& (x) \& (${ }_{(1)}$ \& 34

\hline \& - \& \& \& (D) \& (D) \& - \& \& \& . 1 \& . 1 \& 1.3 \& (X) \& (X) \& (X) \& (X) \& (X) \& (X) \& (X) \&

\hline (D) \& (D) \& (D) \& (D) \& (z) \& . 2 \& (D) \& (D) \& (D) \& 2.5 \& 5.5 \& 7.6 \& 5 \& 1 \& (X) \& (X) \& (X) \& 2 \& (X) \&

\hline (D) \& (D) \& (D) \& (D) \& (D) \& $$
\begin{aligned}
& \text { (D) } \\
& \text { (D) }
\end{aligned}
$$ \& (D) \& (D) \& (D) \& \[

$$
\begin{aligned}
& .6 \\
& . \\
& \hline
\end{aligned}
$$
\] \& 4.7

.1 \& 4.4
1.0 \& 1

14 \& 1 \& $$
\begin{aligned}
& (x) \\
& (x)
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& (\mathrm{X}) \\
& (\mathrm{X})
\end{aligned}
$$
\] \& $\left(\begin{array}{l}\text { (X) } \\ (X)\end{array}\right.$ \& (X) \& (X) \& 20

35

\hline (D) \& (D) \& - \& - \& 1.2 \& 5.1 \& 3.6 \& . 5 \& (D) \& . 3 \& 5.9 \& 28.4 \& 5 \& 3 \& 5 \& 3 \& (X) \& 7 \& 32 \&

\hline - \& - \& - \& - \& (D) \& (D) \& - \& \& - \& (S) \& . 5 \& 3.0 \& 1 \& 1 \& (X) \& (X) \& (X) \& (X) \& (X) \& 22

\hline - \& - \& - \& - \& 2.7 \& 7.0 \& (D) \& (D) \& (D) \& . 9 \& 4.0 \& 16.2 \& 5 \& 9 \& (X) \& (X) \& (X) \& 9 \& (X) \&

\hline : \& - \& - \& - \& 1.3 \& 3.3 \& - \& - \& (D) \& (D) \& 2.0 \& 7.1 \& 3 \& 4 \& (x) \& (x) \& (x) \& 5 \& (X) \& 20

\hline \& - \& - \& - \& (D) \& (D) \& - \& \& - \& (D) \& | .4 |
| :--- |
| .1 | \& 2.1

.5 \& 1
1 \& 1
1
1 \& (x)
(X) \& (X)
(X)

(\& (x)
(${ }^{\text {(}}$) \& (X) \& (x) \& 30
33

\hline - \& - \& - \& - \& . 6 \& 1.7 \& - \& (D) \& - \& (D) \& . 5 \& 2.0 \& (X) \& (X) \& (x) \& (x) \& (${ }^{(1)}$ \& 26 \& (x) \& 34

\hline \& \& \& \& \& \& \& \& \& (D) \& . 3 \& 1.4 \& \& 2 \& (X) \& (X) \& (X) \& 2 \& (X) \&

\hline
\end{tabular}

Table 5. Purchased Fuels, by Type, and Electric Energy Used for Heat and Power by Major
[For meaning of abbreviations and symbols, see introductory text. For explanation of terms, see appendixes]

Industry Group for Standard Metropolitan Statistical Areas: 1981 and 1980-Con.

Table 5. Purchased Fuels, by Type, and Electric Energy Used for Heat and Power by Major
[For meaning of abbreviations and symbols, see introductory text. For explanation of terms, see appendixes]

Industry Group for Standard Metropolitan Statistical Areas： 1981 and 1980－Con．

．．．．．．．	이．	\％			ㅇ．0．	끙	，D．．	¢	．．．．．．	．	ㅁ．．．	믕	（1）	흐	．．．．． 0	．．，	－	r			
，	O．	$\stackrel{\circ}{\circ}$			可．可．	⿹丁口	，可．可．	©	．．．．．	．．	으．．${ }^{\text {O }}$	－	⿹ㅡ	O	$\ldots . .10$	．．．	$\stackrel{\text { ¢ }}{\text { ¢ }}$	3			
\ldots	．．．0．	⿹ㅡㅇ	． 0.			－				ㅁ．		증	믕	－	．．．．．${ }^{\text {O}}$	．．．．．	믕	z		$\begin{aligned} & \circ \\ & \stackrel{\circ}{0} \\ & \stackrel{1}{\circ} \\ & \stackrel{0}{a} \end{aligned}$	
	．	－	．．，⿹ㅡ，			O				ㅇ．		O	（1）	O	．．．．． 0	．．．	믕	0		¢	
$\omega \omega \mathrm{N}$	¢ ¢OCOin	$\stackrel{\rightharpoonup}{\circ}$	－iviocos	\therefore ，STNE	ก	$\stackrel{\circ}{\circ}$		©		$\stackrel{\rightharpoonup}{\omega} \dot{\omega} \dot{\omega}$		$\stackrel{\rightharpoonup}{\circ}$	\square	i		므으에	$\stackrel{\rightharpoonup}{\circ}$ in	0		吕	$\stackrel{\stackrel{\rightharpoonup}{\circ}}{\stackrel{1}{1}}$
		$\stackrel{\rightharpoonup}{\circ}$			¢प్ర¢్ర¢	$\stackrel{\text { ¢ }}{\omega}$	¢	\％		$\stackrel{\sim}{\omega} \dot{\omega} \dot{ \pm} \dot{\sim}$	¢	$\stackrel{\rightharpoonup}{\text { ¢ }}$	ω	is	A으응	O్రంO.	这	\bigcirc		${ }_{0}^{0}$	
	므．，立	क	．	の．	万6009：0	N	믕．0．	\％	．．		可．．．	¢	O	O	，ㅁ．0．门	므．므．，	$\stackrel{\rightharpoonup}{\infty}$	0			
	므．， 으	ir	．	－，可	万్ర60	$\stackrel{\omega}{0}$	，O్ర．	ธ	．．		［0．	\pm	©	O	，O－D．N	므．므．	is	∞		－	
，⿹ㅡㅁ．．．	Oobog．	끙	，D్ర⿹丁口⿹丁口欠，	可．可．	ingodo	$\stackrel{\rightharpoonup}{\omega}$	，鸟，，O్ర	응	．．이．	O．．	．．．． 0 O	is	．	，	，으，可可	，可．．．	$\stackrel{9}{0}$	-1			
	Na－${ }_{\text {ono }}$	$\stackrel{\infty}{\nu}$	Nิ－Nomin	NW以్ర		$\stackrel{\rightharpoonup}{\sim}$		\％			inowo	－	\pm	¢	ర్రT్రీ．	ర్రOTON	즈	ᄃ			
	Vivin ${ }_{\text {Nos }}$	$\stackrel{\omega}{\infty}$	べせいごき	जiv ciolo	$\stackrel{N}{-\infty}$	$\stackrel{\text { ¢ }}{\text {－}}$	فర్ర-iNo	$\stackrel{N}{\hat{6}}$		$\stackrel{N}{\sim} \dot{\sim}$		¢	$\stackrel{\rightharpoonup}{\circ}$	¢ ¢	$\mathbb{N}_{6}^{N} \tilde{O}_{0} \omega \stackrel{\rightharpoonup}{\circ}$	O\％\％	N ¢	$<$			
	monomotion	$\stackrel{\stackrel{\rightharpoonup}{\Phi}}{\stackrel{\rightharpoonup}{\omega}}$	$\stackrel{\rightharpoonup}{\circ} \stackrel{\square}{-\omega}$			$\stackrel{\rightharpoonup}{\stackrel{*}{\circ}}$	$\stackrel{+}{\circ} \underline{\text { ¢ }}$	$\stackrel{\text { ®̀ }}{\stackrel{\circ}{\infty}}$				$\stackrel{\stackrel{\rightharpoonup}{\dot{\omega}}}{ }$	त	$\stackrel{\rightharpoonup}{N}$		DN:Nin		Σ			
	－ $\overrightarrow{\text { ronucr }}$	N		－6్టNXV¢	VN్MOS	v		∞	∞ ¢	$\stackrel{\text { ¢ }}{\text { ® }}$		－	$\stackrel{\rightharpoonup}{v}$	$\stackrel{\rightharpoonup}{\mathbf{\omega}}$	－－－忒の－		ω	\square			
	$\checkmark \infty \sim \omega$	N	$\chi^{+} \underbrace{\omega}{ }_{00 \infty}$	∞ Х $\omega^{\text {® }}$	NNWW	$\stackrel{\text { a }}{ }$		N			$\stackrel{\rightharpoonup}{\omega}$ さ ${ }_{\text {® }}$	－	\cdots	0	区－H	区メカル－	ω	\bigcirc			
スxヘ®xo	スメヌーヌ	－		∞ ¢		$\stackrel{\rightharpoonup}{v}$	\ᄌxxxxx	즈				N	区	즈ㅈㅡㅔ		বভভভை	ω	－			
スヘヌメヌヌை	®ᄌ®－－区	N			二ᄌᄌ®－N	v		지				N	¢	지	区－®®®－－		－	ᄌ			
ব্রৃভভভভভ		\rightarrow	¢ைxைxை	¢ைைxைx	ㅈxృญைx	지	スヘxxxx	칮	বভைைxைx	スைைxை	スメメメメ	칮	¢	ㅊ	\̧x̧xxx						
x̧xை	v	3																			
		N				ω	NXXXX－M	주		ココナめ®		a	\bullet	コ	区－，	区uxx	N	\bigcirc			
		a			¢ᄌ®®®－®	a	ভメヌメメヌ			বভঠ®®	বভヌヌヌ	\pm	区	지	®®®®®®．		\rightarrow	∞			
	NNNNNO			¢N్రN్入N	NTONNNO					W్టNర్心N్	UNNNN		N			¢్రN్సN		$\frac{8}{6} \frac{0}{0}$			

Table 5. Purchased Fuels, by Type, and Electric Energy Used for Heat and Power by Major
[For meaning of abbreviations and symbols, see introductory text. For explanation of terms, see appendlxes]

Industry Group for Standard Metropolitan Statistical Areas： 1981 and 1980－Con．

．．．．	－	．．．으	－	，．．．．	．．$\stackrel{\text { ¢ }}{\sim}$ ．．	．．．．．	$\stackrel{\sim}{*}$	，．• •	－	．．．．．．	．．．．．	．．．．．	．	．．．	O		$\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$	r			
．．．	믕	．．，⿹丁口	－	．．．．．		．．．．．	$\stackrel{\rightharpoonup}{4}$	．．．．．．	，	．．．．．．	，，，，	，		．．${ }^{\text {O}}$.	©	． $\mathrm{O} . \stackrel{\stackrel{\rightharpoonup}{\omega}}{\substack{\text { a }}}$	$\stackrel{\rightharpoonup}{ \pm}$	3			
．．．．	¢	$\ldots .$.	응	．．．．．		．．．．	$\stackrel{\stackrel{\rightharpoonup}{*}}{\sim}$	．．．．．．		．．．．．．	＇$\cdot \cdot \cdot$	．．．．．	，	．．．．．．	$\stackrel{\rightharpoonup}{2}$	．．．．．．．	，	z		$\begin{aligned} & \frac{\delta}{6} \\ & \stackrel{1}{0} \\ & \stackrel{y}{a} \end{aligned}$	
	©	．．．．	응			．．．．．	N00	，						．．．．．．${ }^{\text {O}}$	is		，	\bigcirc		$\stackrel{\text { ¢ }}{\text { ¢ }}$	
으． O－O $^{\circ}$	$\stackrel{N}{\sim}$	O－00\％	$\stackrel{\rightharpoonup}{\mathbf{0}}$	O－OCOE in	$\stackrel{N}{\circ}$	$\begin{aligned} & \stackrel{N}{0} \\ & \stackrel{N}{N} N i N \\ & \hline \end{aligned}$	）	，，ㅁ．	N	O－TO－iN	－으．므	응odi	$\stackrel{\omega}{0}$	$\pm \pm$ OOOODO	$\stackrel{\circ}{\circ}$	\cdots－，¢0，	－	0		乭	$\stackrel{\rightharpoonup}{@}$
은으유	$\stackrel{\circ}{\infty}$	ర్ర¢్ర：	9 0 0	O－OOCN			寺	，，⿹ㅡ．	¢	O	¢，므，］	이으웅	¢゙	is	$\stackrel{\underset{-}{ \pm}}{ }$	¢ $\stackrel{\rightharpoonup}{\wedge}$ ，	－	0		－	
ㅇ．．．${ }^{\text {O }}$	N	．．ఉО	$\stackrel{\text { N }}{\text { N }}$	ㄷ．．．．$\stackrel{\omega}{\infty}_{\infty}^{\sim}$	$\stackrel{\omega}{\square}$	ㅇ．	$\stackrel{\bigcirc}{-}$	．．	\pm	．．Obobo	D．	．．．	9		$\stackrel{\square}{0}$	可．，O．，	N	0			
©．．©	is	．．- O	\％	드．．．\ddagger	－ 0 ODO	⿹ㅡ．	$\stackrel{\rightharpoonup}{\circ}$	．，O¢O．	¢	．．	－．．．	．．${ }^{\text {® }}$ ．	¢	可0，匂可	i）	ㅁ．．	ఉ	∞		¢0．	
．	증	．．	©		の可；	$\stackrel{\stackrel{\rightharpoonup}{\oplus}}{-1} .$	$\stackrel{\rightharpoonup}{\sim}$	可，可．．	∞	． ．	ㅇ．0．．	，．．．．	ir	，O－O．O．0	$\stackrel{\rightharpoonup}{6}$	．．．	\pm	-1			
	$\stackrel{N}{\circ}$		（3）	－Noioñ	－		$\underset{\sim}{\text { i }}$	¢్ర．	O		¢ ¢0్రీ	のベర్రOD	¢	ర్రీ	O	\cdots－Nown	$\stackrel{N}{\sim}$	c			
	ir	Mr $-\stackrel{\omega}{-}$－	\％	$\pm \text { ivinio } \begin{gathered} \vec{\circ} \\ \hline \end{gathered}$			¢		$\stackrel{\rightharpoonup}{-}$		iricoiriv		$\stackrel{\rightharpoonup}{v}$		$\stackrel{\rightharpoonup}{\oplus}$		N0\％	$<$			$\frac{\stackrel{\rightharpoonup}{0}}{\stackrel{\rightharpoonup}{\circ}} \stackrel{\rightharpoonup}{\circ}$
	会	N	$\stackrel{N}{\text { N }}$				N		$\stackrel{c}{\stackrel{\circ}{\omega}}$	$\stackrel{\sim}{\sim} \stackrel{\omega}{-} \stackrel{\rightharpoonup}{\omega} \stackrel{\rightharpoonup}{N} \underset{\infty}{\infty}$	Wiolono		$\stackrel{\rightharpoonup}{\text { ¢ }}$	NN0．	$\stackrel{0}{\square}$		핯	Σ			
－ $\bar{x}_{\rightarrow-\infty}$	v	－ 8 دu	N	区ᄌర్టNon	コヵد	N区べら	\rightarrow		の		CNHーN	WNN0N．S	ω	へさ（N゙びーの	v	$\overrightarrow{\mathrm{N}}$ ¢ Nocouviv	N	σ		\％	
－	ar	－	－		$\nu \omega \pm$－	$-\bar{x}_{\underline{\nu}} \underline{\omega}_{N}$	\rightarrow	$\stackrel{\rightharpoonup}{\text { vu® }}$	－		v®®－－	UODOMN	ω		v		－	๑			
বx\xxy	$\stackrel{\rightharpoonup}{\square}$	ব্রুষ্র	v		メメ์メx		あ		지제		ผxxxx	ชxxxx	$\stackrel{\rightharpoonup}{0}$	∞ ¢	N	xxxnxxx	の	－			
ชxxxx	N	ㅈxxx	区	ชxxxx	エヌヌスx	スxxxxx	\rightarrow		N	주x®－x	88888		－		$\stackrel{\rightharpoonup}{\omega}$	\xxxxxx	区	ᄌ			
¢xxxx	X	xxxx	区	¢xxxxx	xx，xx	저xx \times	－	8xxxxx	즞	8xx $8 x$	¢			বxtxtxx	짖	¢xx－xxx	N	3		刍足	
¢－	ar		ω		$\pm . \overline{\boxed{X}}$－	－Nへべん。	－														
スヌヌx	$\stackrel{\rightharpoonup}{\omega}$	区い区いON	－	888880	v	N N	N		X	\bigcirc		$\begin{aligned} 1 \\ \stackrel{0}{3} \\ \stackrel{3}{3} \\ \stackrel{\rightharpoonup}{0} \end{aligned}$									
¢ช8x	N	ㅈx－	－	スᄌxxx	N8888	ব্রx \times x	N	¢xxxxx	∞	ㅈxxxxxx	মxxxx	ব্রবx¢x	N	\xxxxxx	$\stackrel{-}{4}$	বx－xx	$\stackrel{\rightharpoonup}{*}$	∞		${ }^{\circ}$	
WNowns		W్ర¢N心		બ్ఱબ్రબ్ర	¢	NNNNN0		NNNNNNNO			ట్టN్రNN	NNONNNO		Wબ్¢ఱట్రNT		ज¢NNNMNN			\％		

Table 5. Purchased Fuels, by Type, and Electric Energy Used for Heat and Power by Major
[For meaning of abbreviations and symbols, see introductory text. For explanation of terms, see appendixes]

Industry Group for Standard Metropolitan Statistical Areas: 1981 and 1980-Con.

Table 5. Purchased Fuels, by Type, and Electric Energy Used for Heat and Power by Major
[For meaning of abbreviations and symbols, see introductory text. For explanation of terms, see appendixes]

Industry Group for Standard Metropolitan Statistical Areas: 1981 and 1980-Con.

Table 5. Purchased Fuels, by Type, and Electric Energy Used for Heat and Power by Major
[For meaning of abbreviations and symbols, see introductory text. For explanation of terms, see appendixes]

Industry Group for Standard Metropolitan Statistical Areas: 1981 and 1980-Con.

Table 5. Purchased Fuels, by Type, and Electric Energy Used for Heat and Power by Major
[For meaning of abbreviations and symbols, see introductory text. For explanation of terms, see appendixes]

Industry Group for Standard Metropolitan Statistical Areas: 1981 and 1980-Con.

Table 5. Purchased Fuels, by Type, and Electric Energy Used for Heat and Power by Major
[For meaning of abbreviations and symbols, see introductory text. For explanation of terms, see appendixes]

Industry Group for Standard Metropolitan Statistical Areas： 1981 and 1980－Con．

．．．．．．	믕	\ldots	믕	．．．．． 0	$\stackrel{\infty}{\omega}$		－	－•		O－0．		응．	¢	．．．．	．．，⿹丁口．	．．．．．	．．．．．	흥	\bigcirc			
．．．	므	．．．．．	끄	．．．．．	$\stackrel{\sim}{\circ}$		，	．．．．．．．	－	Oַ－	© ${ }_{\text {¢ }}^{\text {¢ }}$ ，	［ర్ర］．	N	．．．．	．．	－	$\ldots . .$.	응	3			
\cdots		\cdots	－	！．．．．${ }^{\text {d }}$	으			＇．．．．．${ }^{\text {d }}$		，可	，	．．．．	－	．．．${ }^{\text {，}}$	．． 0.0	！！＇．	，．．．．	¢	z			
＇，，，，，			，	＇\cdot	O	，．．		．．．．．．．		，，므	，．．．		O		，，⿹丁𠃋㇒			$\stackrel{\sim}{\circ}$	\bigcirc		$\stackrel{\text { ¢ }}{\text { ¢ }}$	
	N	或可気晏	क	－	N	으으	$\stackrel{\square}{ \pm}$	O	$\stackrel{\rightharpoonup}{\square}$	ज沱穴			$\stackrel{\rightharpoonup}{ \pm}$					$\stackrel{\rightharpoonup}{\circ}$	0		垕	$\stackrel{\rightharpoonup}{\otimes}$ $\stackrel{1}{1}$
或的可包：	${ }_{\substack{\infty \\ \infty}}$	或可可究	ज	の可可，可可	$\stackrel{\infty}{0}$	万⿹丁口⿹丁口欠	$\stackrel{\leftrightarrow}{-}$	Dodogo	$\stackrel{\text { in }}{\substack{1}}$		可可言河こ	O－¢	$\underset{\infty}{\text { i }}$		AN － $0-\dot{\omega}$	$\stackrel{\stackrel{\rightharpoonup}{\omega}}{\substack{\omega \\ \Delta}}$	TVGMO N		\bigcirc		\％	
．．		．．．	믕	，可可，可	ir	，．．	－	．．．O．．	ㄲ	¢ $\mathrm{v}^{\text {O}}$	응，	歌，歌	$\stackrel{\text { ¢ }}{ }$	Biog		600 0		$\stackrel{\omega}{ \pm}$	ग			
，，可．．可		．．，O－O	믕	，응．．	\pm			D．．	©	픙	，믕．	증．	－	ONOO	$\omega \omega \omega$ ¢		ऊण．\ddagger	$\stackrel{\omega}{i}$	∞		－	
．．．．${ }^{\circ}$		＇＇	끙	． 0.	¢	可．	응	， 0	－	O－0	즈，ㅁ．ర，	ㅁ． O	－	을 它i			ज⿹勹巳－	$\stackrel{N}{\sim}$	-1			
Nㅓ응			๑	กరฺఅก．	ir	i－$-\infty$	$\dot{\square}$		$\stackrel{\sim}{*}$				$\stackrel{\infty}{\circ}$	©－	－		అ్రవ్ర	O	C			
－Dinciviour	0		$\stackrel{\rightharpoonup}{\infty}$	－－	\bigcirc	－	N	\rightarrow 呺	$\stackrel{+}{+}$	Nowo	$\hat{i} \dot{\omega} \stackrel{\rightharpoonup}{\omega}$	$\pm \infty \pm \stackrel{\rightharpoonup}{\text { a }}$	ث̀		ののヲ～゙ のirit		NNNWA 	N	＜			
	$\underset{\substack{\text { N }}}{\substack{\text { N }}}$			Niong	$\stackrel{\stackrel{\rightharpoonup}{\circ}}{\stackrel{1}{6}}$	N000	$\stackrel{\rightharpoonup}{0}$		$\stackrel{\text { ¢ }}{\sim}$	$\begin{aligned} & \overrightarrow{\text { O. }} \stackrel{\rightharpoonup}{\mathrm{A}} \mathrm{O} \\ & \hat{\circ} \mathrm{O} \end{aligned}$		móvin	$\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & \text { ion } \end{aligned}$	$\stackrel{\rightharpoonup}{\omega} \text { जे }$				$\stackrel{\rightharpoonup}{\sim}$	Σ			
	$\stackrel{\rightharpoonup}{\bullet}$		N	$\Delta の \rightarrow- \pm$－	ω	－区．	N	－ 区 $_{6}$	$\stackrel{\square}{0}$	$N \pm \omega$	いいいが	$\rightarrow \infty \rightarrow-0 r$	N	AONW	－V三い ${ }_{\text {a }}$	$\infty \rightarrow \wedge$－$\omega$		N	0			
区	$\stackrel{\rightharpoonup}{*}$	즈﹎ㅡㄱ	N	Now，	－	ज ${ }_{\text {x }}$	N		\bullet	N जै ω		$\rightarrow \stackrel{\text { W }}{\sim}$	ω	¢゙のの守	Nめのべせ	ONA ${ }^{\text {V }}$ W	かへover	ω	\bigcirc			
\xxxxsx	－	区XXXXX	区	SXXXXX	N	BXx	区	হᄌxxxxxx	区	－ $\bar{x} \bar{x}$		짖x์0	$\stackrel{\square}{0}$	좆ㅈㅈㅏ	Mncixx	전ㅉN	スᄌxxxa	¢	－			
	즈제		즈		즈제	区XX	区	エスxx®xx	$\stackrel{\rightharpoonup}{\bullet}$	SXX	8®88®		자	区ᄌᄌ®®	区ᄌᄌㅈㅈㅈ	ㅈxַ	ㅈxַXX ω	N	ᄌ			
ㅈxx x \％	区	スᄌスヘスx	지	88888	－	좆	즞	¢ᄌx \times ¢	지	区Xx	ㅈx．	좆ㅈㅈ	－				®イスxx	지	3			
区ー	$\stackrel{\rightharpoonup}{*}$	スXXXN	즈		$\stackrel{\rightharpoonup}{\sim}$	888	－		∞	$\rightarrow \mathrm{NOH}$	SXッN゚		ω	$\widehat{X}_{\triangle N} \vec{N}$	∞	$\widehat{X}_{\text {NのJ }}$		N	0			
ㅈxx \times ¢	あ	¢ᄌᄌxx8	즈즈N	SXXXXx	－	좆	区		지	$\rightarrow \pm \bar{x}$		지xx．	N	젲ㅈㅈ	预，$\overline{\underline{x}}$		区ᄌᄌx̃ $\stackrel{\text { N }}{ }$	\％	0			
¢్ర్MNW్రNO		WWOCNNO				બ⿴囗⿰丨丨⿹勹冫				W¢¢¢¢		GNNNNO		ట్రఱ్ర心్ర్ర		めN®NNT	MNNNNO		$\stackrel{80}{\circ} \frac{0}{\circ}$			

Table 5. Purchased Fuels, by Type, and Electric Energy Used for Heat and Power by Major

[^9]Industry Group for Standard Metropolitan Statistical Areas: 1981 and 1980-Con.

Table 5. Purchased Fuels, by Type, and Electric Energy Used for Heat and Power by Major
[For meaning of abbreviations and symbols, see introductory text. For explanation of terms, see appendixes]

Industry Group for Standard Metropolitan Statistical Areas: 1981 and 1980-Con.

Table 5. Purchased Fuels, by Type, and Electric Energy Used for Heat and Power by Major
[For meaning of abbreviations and symbols, see introductory text. For explanation of terms, see appendixes]

Industry Group for Standard Metropolitan Statistical Areas: 1981 and 1980-Con.

Table 5. Purchased Fuels, by Type, and Electric Energy Used for Heat and Power by Major
[For meaning of abbreviations and symbols, see introductory text. For explanation of terms, see appendixes]

$\underset{\text { SIC }}{\text { Sode }}$	Geographic area and industry group	1981										
		Purchased fuels and electric energy		Electric energy			Purchased fuels		Fuel oil			
		British thermal units (trillions)	Cost (million dollars)	Purchased		Generated less sold (million $\mathrm{kWh})$	British thermal units (trillions)	Cost (million dollars)	Distillate		Residual	
				Quantity (million kWh)	Cost (million dollars)				Quantity (1,000 barrels)	Cost (million dollars)	Quantity (1,000 barrels)	Cost (million dollars)
		A	B	C	D	E	F	G	H	1	J	K
	New Haven-West Haven, Conn. .-	10.4	85.2	696.4	47.0		8.1	38.2	96.8	3.8 (D)	409.3	14.0
20	Food and kindred products Textile mill products..-.--	. 4	2.4 1.8	19.6 6.0	1.3.3.4	(D)	$\begin{array}{r} .3 \\ (\mathrm{~S}) \\ .2 \\ .1 \\ 1.8 \end{array}$	$\begin{aligned} & 1.1 \\ & \text { (S) } \end{aligned}$	(D)		-	-
25	Furniture and fixtures----	. 2	1.1	6.4				${ }^{\text {. }} 7$	(D)	(D)	(D)	
27	Printing and publishing-	. 2	${ }_{15}^{2.5}$	26.6	1.96.8			. 7	5.3	. 2		(D)
28	Chemicals and allied products	2.2	15.7	109.0				8.8	22.3	. 9	(D)	(D)
30 33	Rubber and miscellaneous plastics products Primary metal industries \qquad	.5 2.3 1.4	4.4 18.9	35.5 182.2 10.2	2.5 11.3	:	.4 1.7	1.8 7.5	(D)	$\begin{array}{r}\text { (D) } \\ \hline\end{array}$	(D)	(D)
34	Fabricated metal products -----------------	1.4	12.4	109.1	7.7		1.0	4.7	7.4	3	(D)	(D)
35	Machinery, except electrical.	3	2.7	27.2	1.8	-	. 2	. 8	(D)	(D)	(D)	(D)
36	Electric and electronic equipment	. 4	4.6	55.8	3.7		. 2	1.0	4.7	, 2	(D)	(D)
39	Instruments and related products ------ Miscellaneous manufacturing industries	. 2	2.1	20.3	1.2		. 1	. 8	(D)	(D)	(D)	(D)
	New London-Norwich, Conn.-R.I.	13.3	94.2	565.9	31.2	(D)	11.4	63.0	71.1	2.9	1510.0	53.0
22	Textile mill products.-	$\begin{array}{r} 1.2 \\ .1 \\ .2 \\ .5 \\ .3 \end{array}$	$\begin{array}{r} 7.4 \\ .9 \\ 1.6 \\ 4.1 \\ 3.0 \end{array}$	$\begin{array}{r} 30.7 \\ 9.3 \\ 13.8 \\ (\mathrm{D}) \\ 33.8 \end{array}$	$\begin{array}{r} 1.9 \\ .6 \\ .8 \\ \text { (D) } \\ 2.0 \end{array}$	(D)	1.1	5.5	(D)	(D)	(D)	(D)
23 27	Apparel and other textile products Printing and publishing .---....-						(D)	.7(D)	(D)	(D)	(D)	
30	Rubber and miscellaneous plastics products											(D)
33	Primary metal industries ---------------					-	. 2	1.0	(D)	(D)	(D)	(D)
34 35 3	Fabricated metal products .Machinery, except electrical.	. 2	$\begin{aligned} & .7 \\ & 2.0 \\ & 1.5 \end{aligned}$	6.716.012.0	$\begin{array}{r} .4 \\ 1.0 \\ .8 \end{array}$	-	$.2$	1.0.7	(D) (D)	(D) (D)	(D)	(D)
36	Electric and electronic equipment.											
	New Orleans, La.	107.1	222.6	3113.5	125.6	(D)	96.5	97.0	41.4	1.5	4.3	. 1
20 23	Food and kindred products ------ Apparel and	4.5 .1	21.4 1.0	160.6 23.1	6.5	(D)	3.9	14.9	(D)	(D) (D)	(D)	(D)
24	Apparel and other texile products	. 1	1.5	23.8 6.8	(D)		(D)	(2)	(D)	(D)	-	(D)
28	Chemicals and allied products.	36.5	47.9	(D)147.8						(D)	(D)	
32	Stone, clay, and glass products	6.6	20.6		7.1		6.1	13.4	(D)	(D)	(D)	(D)
34	Fabricated metal products	.6.21.5	$\begin{array}{r} 3.4 \\ 1.0 \\ 12.2 \end{array}$	$\begin{array}{r} 37.6 \\ 22.3 \\ 213.1 \end{array}$	1.5.88.8	. 1	$\begin{aligned} & .5 \\ & .1 \\ & .8 \end{aligned}$	2.0.33.4	(D)	$\begin{array}{r}\text { (D) } \\ \hline\end{array}$	(D)	(D)
35 37	Machinery, except electrical											
	New York, N.Y.-N.J.	87.9	729.0	4920.9	428.2	194.8	71.1	300.8	1271.1	48.5	1622.8	48.1
20	Food and kindred products	14.8	102.7	473.3	42.5	65.5	13.2	60.2	145.7	(S)	293.5	8.9
22 23	Textile mill products ------------1-1	5.0 7.3	31.9 70.1	174.6 563.7	15.9 50.2	(D)	4.4 5.4	16.0 19.9	(S)	(S)	(S)	(S)
24	Lumber and wood products .-.-.-	. 6	5.8	38.5	3.7		. 4	2.1	(S)	(S)		
25	Furniture and fixtures-...---	1.0	8.6	58.8	5.5		. 8	3.1	(S)	(S)	(S)	(S)
26	Paper and allied products..	8.6	64.5	451.6	33.6	(D)	7.1	30.8	80.6	3.4	447.9	13.4
27	Printing and publishing ----	5.8	63.9	536.3	46.9	(D)	4.0	17.0	47.7	1.8	58.7	1.7
28	Chemicals and allied products.	12.8	76.6	393.0	31.8	(D)	11.5	44.8	192.7	7.4	335.5	9.6
29	Petroleum and coal products	1.1	8.3	(D)	(D)		(D)	(D)	(D)	(D)		
30	Rubber and miscellaneous plastics products	3.0	39.4	341.1	31.0	(D)	1.8	8.4	76.8	2.8	(D)	(D)
31	Leather and leather products.	. 6	8.8	82.1	7.4	-	. 3	1.4	(D)	(D))	
32	Stone, clay, and glass products	4.0	24.3	153.7	11.1)	3.5	13.2	41.7	1.6	(D)	(D)
33	Primary metal industries ----	4.9	41.4	251.8	22.9	(D)	4.0	18.5	62.9	2.5	(D)	(D)
34	Fabricated metal products	4.8	44.3	282.6	26.1	(D)	3.8	18.3	204.1	7.6	38.9	1.2
35	Machinery, except electrical-	3.1	27.7	221.2	18.2		2.4	9.4	49.1	1.9	12.8	. 4
36	Electric and electronic equipment.	3.0	34.4	269.4	25.2	(D)	2.1	9.2	52.1	2.0	80.0	2.3
37	Transportation equipment -------	3.1	35.2	241.5	23.3	(D)	2.2	12.0	(D)	(D)	26.2	8
38	Instruments and related products	1.5	14.5	(D)	(D)	(D)	(D)	(D)	17.8	(${ }^{7}$	33.4	1.0
39	Miscellaneous manufacturing industries	2.9	26.4	216.9	17.8	(D)	2.2	8.6	(S)	(S)	(S)	(S)
	Newark, N.J.	99.4	653.5	4538.9	271.1	(S)	83.9	382.4	1039.8	40.2	6144.3	183.4
20	Food and kindred products -----	5.5	38.4	272.0	16.5	-	4.6	21.9	126.1	4.9	160.3	4.9
23	Apparel and other textile products	.6	4.8	45.4	3.0		. 5	1.9	(S)	(S)		
24	Lumber and wood products.	. 2	1.5	(D)	(D)		(D)	(D)	(7.9	(D)		
26	Furniture and fixtures------	.3 3.7	2.3 25.2	14.9 176.1	1.0 10.9	(D)	3.1	14.3	33.4	1.3	133.9	4.0
27	Printing and publishing	1.4	12.6	136.0	8.4	-	1.0	4.1	20.7	. 8	(D)	(D)
28	Chemicals and allied products..	30.9	193.9	1325.7	75.3	(D)	26.4	118.6	371.1	14.2	1075.7	37.1
30	Rubber and miscellaneous plastics products	3.3	28.7	312.2	19.3	(D)	2.3	9.4	36.0	1.4	(D)	(D)
31	Leather and leather products--------.---	. 3	2.7	(D)								
32	Stone, clay, and glass products .--	3.7	23.5	121.7	8.0	(D)	3.3	15.5	42.8	1.4	(D)	(D)
33	Primary metal industries	4.2	32.0	279.0	17.4	-	3.2	14.7	59.5	2.3	(D)	(D)
34	Fabricated metal products	3.7	28.2	220.6	14.6		3.0	13.6	82.4	3.2	16.6	1.5
35	ivachinery, except electrical----	3.0	27.4	254.3	17.0	(D)	2.1	10.4	67.8	2.8	54.0	1.7
36	Electric and electronic equipment	2.7	28.2	322.1	20.2	(D)	1.6	8.0	77.7	3.1	40.7	1.2
37 38	Transportation equipment .--------- Instruments and related products	2.3 1.3 1.3	16.7 11.2		8.2 7.6		1.8 .9	8.4 3.6	19.6 16.1	. 8	(D)	(D)
38 38	Instruments and related products ------ Miscellaneous manufacturing industries	1.3	11.2 8.9	119.4 57.7	7.6 4.1	-	1.9 1.0	3.6 4.9	16.1 15.5	. 6	(D)	(D)
	Newport News-Hampton, Va.	9.1	60.4	760.3	30.1	(D)	6.5	30.3	(D)	(D)	625.7	18.4

Industry Group for Standard Metropolitan Statistical Areas： 1981 and 1980－Con．

증	．．．．．．		．．．．．	증			．．．．．	．．．．ㅡㅡ	믕	．．．	⿹ㅡ．．．．	－			，	，	．．．．．．	－			
흥	．．．．．． 0		．．．．．	증		．．．．．	．．．	．．．．즈	흥	．．．	⿹ㅡ．．．．	흥		，．．．．	，	，．．．．．．	．．	3			
응	므．．．．．		．．．．．	흥		，O．．	，1．	．．．．	믕						，	，	．．．．．．	2		$\begin{aligned} & \text { ᄋ } \\ & \frac{0}{0} \\ & 0 \\ & \vdots \end{aligned}$	
©	므．．．．，⿹ㅡ			흥		．$\overline{\text { O }}$ ．	．．．．	．．．．	－			，			，	！• ．．．${ }^{\text {a }}$	，	O		＋	
$\stackrel{\sim}{-}$	$\cdots \mathrm{O}$			$\stackrel{N}{0}$	© $\omega \stackrel{\text { V }}{ }$	vvo宁可	ir．$\underbrace{}_{v o \stackrel{\omega}{0}}$	అర్రఅ్ర：	¢	⿹్ర刀口o勺	－	－	OOOO	，	－	©．－Ninco o	のNO，OT	T		${ }_{\text {z }}^{\text {z }}$	$\stackrel{\rightharpoonup}{\circ}$ 1 0
$\stackrel{\infty}{\sim}$	¢ ω	$\stackrel{\rightharpoonup}{\omega}, \underbrace{\omega}_{V} \underset{\sim}{\sim}$	$\stackrel{9}{6}+0 \underline{0}$	$\begin{aligned} & 8 \\ & \stackrel{8}{\circ} \end{aligned}$		Nown $\cos _{0}$	$\stackrel{N}{\omega} . \stackrel{\rightharpoonup}{\text { ara }}$	¢ర్రీへ／		万⿹丁口⿹丁口	ज口⿹丁口OON		O－O	O్రOO．	$\stackrel{\sim}{\sim}$	N．ANTNOOO	N	\bigcirc		\％	
T0	．．	ㅁ． $\mathrm{O}^{\circ} \mathrm{V}$	Oω ，，므		ㅇ．ㅇ．	O్రO으．	으．$\omega+$ O	O．ODOON		ㅁ．ర． 0°	O－OD，．	흥	，	으으，으	$\stackrel{\rightharpoonup}{\Delta}$	．．．，D్ర	\ldots	刀			
－	．．O్రio	므，므응	OT，O		으．$\overline{0}$ ．	으으으．	으，N．T－O	－		ㅇ．ర．	歌．	O	，．	으응，므	$\stackrel{\rightharpoonup}{\infty}$	．．．，O్ర⿹丁口．	\ldots	0		¢0．	
믕	OOOOO．	ㅁ．Doob	，		O－T，			ㅁ．ర．ऊ¢ర	o゙	므．으	므응	$\stackrel{\rightharpoonup}{\Delta}$	．．	，可．		．．므．．．	\ldots ．．．．	\rightarrow			
$\stackrel{\rightharpoonup}{0}$	Weirobobie	© ${ }_{\sim}^{\circ}$	응NOTN	N0	¢－0］${ }^{\circ}$	AOANO	Nolovor	అర్రర్ర¢		NOO		in	¢	－\ddagger－	－	머우 m		C			
$\stackrel{\infty}{\infty}$			VA	$\begin{gathered} \stackrel{\circ}{\circ} \\ \stackrel{\circ}{\circ} \end{gathered}$	¢	wercr． $\Delta \omega \omega \doteq \dot{\omega}$			$\stackrel{\leftrightarrow}{\cup}$	Givig		$\stackrel{\stackrel{\rightharpoonup}{ \pm}}{\stackrel{\rightharpoonup}{-}}$	-iNis	$\omega \pm \dot{\omega} \dot{\mathrm{O}}$	$\stackrel{\stackrel{\omega}{\infty}}{\stackrel{\rightharpoonup}{\omega}}$		$\stackrel{N}{i}_{i \rightarrow i} \stackrel{+}{0}$	$<$			
\％		$\stackrel{\rightharpoonup}{\text { onvin }}$		$\begin{aligned} & \text { un } \\ & \text { in } \end{aligned}$	Nowno				$\stackrel{\text { Min }}{\stackrel{H}{\omega}}$	90		$\begin{aligned} & N \\ & \stackrel{N}{O} \end{aligned}$	$6 \stackrel{0}{\circ}$					Σ			
\triangle		$\stackrel{\rightharpoonup}{\triangle}$－		ω	जै区om	の०oÑO	の区へのか	$\vec{\Delta} \vec{N} \vec{O}_{-\infty}$	9	$N \rightarrow \vec{N}$	ω ¢－un	N	vorw	－$\underline{X}_{\text {Nの穴 }}$	or		$N \pm \rightarrow-\stackrel{\rightharpoonup}{\circ}$	\bigcirc			
N				ω	$N \widehat{X}_{\omega} \stackrel{\rightharpoonup}{\text { a }}$	А気し产へ			$\stackrel{\rightharpoonup}{\omega}$	$N \rightarrow \vec{A}$	$\pm \bar{x}_{\text {cras }}$	ω	ONG	－ 区 $_{\text {の可の }}$	－		の気－可」	\bigcirc			
区		$\stackrel{\rightharpoonup}{\triangle} \times{ }_{\sim}^{\omega}$	$N \vec{\infty}$ ¢ \times N	－	区へ®ヘ			区ᄌᄌx区	の	\checkmark ㅈx	8xxxx	－	®®コ	スᄌXXX	－	区X	N\＆スXX	－			
－			$\stackrel{\text { ¢ }}{\text { ¢ }}$	$\xrightarrow{-}$	区د－』	NぃエXXX	$\overline{\delta V}_{\infty}{ }_{\sim}^{\sim}$	スx\xo	－	¢区Х	¢ᄌㅈㅈx	－	বৃ®	বᄌᄌx®x	－		xxxxx n	ス			
자	エスエヌ®®x	צைx์x	スエスヌை	区	ธைヌヌ	エxxxx	スxヌxx		즞	ভᄌᄌx	ㅈxx 8	区	지x	¢ช8®8	지즈N	র্রx	좆xx	3			
ω			－nさ㐅㐅	0	区 $\stackrel{\rightharpoonup}{\circ} \omega \stackrel{\rightharpoonup}{0}$		N区 \sim_{ω} NA	スxxxu	0	ヌฺヌ	NXXX ω	ω	ヌ®ヌ		a		二র্যx®® o	0			
즈즤		짖®지	잦ㅈㅈㅈ	${ }_{\text {¢ }}$	짖ㅈ	지춪ㅈ	スX犬	¢XXX®	$\stackrel{\text { ¢ }}{ }$	®ᄌx®	ХชXXX	즞	\ᄌᄌx	ХХХХХ	－	ব্রব্বXరXব	বভXXX o	∞			
		W్రW్రNN్V	NONNNO				W్రONNJ	NNNNNO			NNMNN：		ట్ర్ర¢	W్రONNN			NNONN	8			

Table 5. Purchased Fuels, by Type, and Electric Energy Used for Heat and Power by Major
[For meaning of abbreviations and symbols, see introductory text. For explanation of terms, see appendixes]

$\underset{\text { code }}{\text { SIC }}$	Geographic area and industry group	1981										
		Purchased fuels and electric energy		Electric energy			Purchased fuels		Fuel oil			
			Cost (million dollars)	Purchased		Generated less sold (million kWh)	British thermal units (trillions)	Cost(milliondollars)	Distillate		Residual	
				Quantity (million kWh)					Quantity (1,000 barrels)	Cost (million dollars)	$\begin{gathered} \text { Quantity } \\ (1,000 \\ \text { barrels) } \end{gathered}$	$\begin{aligned} & \text { Cost } \\ & \text { (million } \\ & \text { dollars) } \end{aligned}$
		A	B	C	D	E	F	G	H	1	J	K
	Norfolk-Virginia Beach-Portsmouth, Va.-N.C. --.---	8.2	52.8	517.8	25.8	-	6.5	27.1	55.3	2.3	255.9	
20 24	Food and kindred products --	2.5 .6	$\begin{array}{r}14.1 \\ 3.8 \\ \hline\end{array}$	$\begin{array}{r}136.4 \\ 32.4 \\ \hline\end{array}$	6.6 1.9	:	2.1 .5	7.5 1.9		$\begin{aligned} & 3 \\ & (\mathrm{D}) \\ & (\mathrm{D}) \end{aligned}$	(D)	(D)
28		1.8	10.9	91.6	4.1		1.5	6.9	(D)		(D)(D)(D)	(D)(D)(D)
29	Petroleum and coal products --------------------------------	. 1		5.6	.3		(z)	.3				
30	Rubber and miscellaneous plastics products ---------------	. 1	. 7	10.9	. 5		(Z)	. 2	(D)	(D)		
32	Stone, clay, and glass products	. 9	5.4	(D)	(D)	-	(D)	(D)		(D)		(D)
34 37	Fabricated metal products .-- Transportation equipment	1 1.2	.9 8.3	(D) 94.2	(D)	-	(D)	(D) 3.7	(D)		(D)	(D)
	Northeast Pennsylvanla ----------------------------	12.8	78.1	928.3	38.3	(D)	9.7	39.8	118.7	4.9	153.6	4.6
20 21	Food and kindred products Tobacco products	$\begin{array}{r} .7 \\ . \\ .8 \\ 1.0 \\ .1 \end{array}$	4.1 .7	47.5 9.6	2.1 .4	$\begin{aligned} & \text { (D) } \\ & \text { (D) } \\ & \text { (D) } \end{aligned}$	$\begin{array}{r} .6 \\ .5 \\ .5 \\ \text { (D) } \\ .1 \end{array}$	$\begin{array}{r} 2.0 \\ .3 \\ 2.2 \\ \text { (D) } \\ .3 \end{array}$	$\begin{array}{r} 4.9 \\ \text { (D) } \\ \text { 13.4 } \\ \text { (S) } \\ \text { (D) } \end{array}$	$\begin{aligned} & .2 \\ & \text { (D) } \\ & .6 \\ & \text { (S) } \\ & \text { (D) } \end{aligned}$	(D) (D)	(D)
22	Textile mill products.		5.7	93.1	3.5							
23	Apparel and other textile products ---------------------------		5.0	(D)	(D)							
24	Lumber and wood products .----------------------------------		. 6	6.1	. 3							
25	Furniture and fixtures--	$\begin{array}{r}1.8 \\ \hline\end{array}$	11.0	127.0	4.9	-	. 1	. 5	(D)	(D)	(D)	(D)
26	Paper and allied products------------------------------------					-	1.4	6.2				
27	Printing and publishing ---	4	1.7	$\begin{array}{r} 45.9 \\ \text { (D) } \end{array}$	(D)		(D)	(D)	(D)	(D)	(D)	(D)
31	Leather and leather products.-	2.5	1.012.1	11.2136.2	.54.4		2.1	7.5	(D)	(D)	(D)	
32	Stone, clay, and glass products											(D)
33	Primary metal industries.	. 4	1.9	17.9	. 8		.31.1	1.14.6	10.0(D)18.3(D)	-4(D)((D)	$\begin{aligned} & \text { (D) } \\ & \text { (D) } \\ & \text { (D) } \end{aligned}$	(D)(D)(D)
34	Fabricated metal products	1.4	8.5	85.6	3.9							
35	Machinery, except electrical -----	. 5	3.2	43.0	1.9		.3	1.3 4.4				
36 39	Electric and electronic equipment -.-.-- Miscellaneous manufacturing industries	1.5 .2	10.2 1.2	154.7 11.5	5.8 .6		. 9	4.4 .6				
	Norwalk, Conn.	1.8	15.0	157.1	10.1	-	1.3	4.9	17.0	. 7	19.0	. 6
20	Food and kindred products ----	. 1	1.3.8	11.49.8	.7.6.7.1.3	-		.6.2.1.6.2	$\begin{aligned} & \text { (D) } \\ & \text { (D) } \\ & \text { (D) } \\ & \text { (D) } \end{aligned}$	(D) (D) (D) (D)	(D)	(D) (D)
23 27	Apparel and other textile products	. 1										
28	Chemicals and allied products.	. 3	. 8	2.5		-						
30	Rubber and miscellaneous plastics products	. 1	. 5	5.0								
32	Stone, clay, and glass products .---------------------------	.1.1.23(Z)	$\begin{array}{r} .3 \\ .9 \\ 1.5 \\ 4.0 \\ .2 \end{array}$	$\begin{array}{r} 1.4 \\ 6.3 \\ 15.0 \\ 40.1 \\ \text { (D) } \end{array}$.1.4.93.2(D)		$\begin{array}{r} .1 \\ .1 \\ .1 \\ . \\ \text { (D) } \end{array}$.2.5.5(D)	(D)	(D)	(D)	(D) (D)
35	Fabricated metal products - -- Machinery, except electrical.-					-						
36	Electric and electronic equipment.					.						
39	Miscellaneous manufacturing industries											
	Odessa, Tex.	25.4	91.8	899.1	30.8	(D)	22.3	61.0	(D)	(D)	-	
28 35	Chemicals and allied products_ Machinery, except electrical	7.2 .9	30.3 5.2	384.5 63.9	12.6 2.9		5.9 .7	17.8 2.3	(D)	(D)	-	
	Oklahoma Clty, Okla.	13.8	65.3	1058.2	37.8	-	10.2	27.5	12.5	. 5	(D)	(D)
20	Food and kindred products	2.4	10.0	141.9	5.1	-	2.0	4.9	(D)	(D)	(D)	(D)
$\begin{array}{r}27 \\ \hline 8\end{array}$	Printing and publishing -------1	. 5	3.1	55.6	2.1	-	(0)	1.0	-	-	(D)	(D)
29	Chemicals and allied products	. 8	4.3 1.9	(D)	(D)	-	(D)	(D)	-	-	-	
32	Stone, clay, and glass products.	2.3	7.0	24.4	. 9	-	2.2	6.1	(D)	(D)	-	
34	Fabricated metal products ------------------------------------	. 6	3.5	57.8	2.2	-	. 4	1.3	(D)	(D)	(D)	(D)
35 36	Machinery, except electrical	1.0	5.9 4.4	109.8	4.3	-	. 6	1.5	(D)	(D)	(D)	(D)
36 37	Ulactric and elecironic equipment---	2.8	4.4 10.2	91.2 186.6	3.0 6.3	-	1.5	1.4 3.9	-	-	(D)	(D)
	Omaha, Nebr.-lowa --------------------------------	13.0	63.7	1095.4	34.7	-	9.3	29.0	9.4	. 3	(D)	(D)
20	Food and kindred products	4.0	17.4	266.4	8.4	-	3.1	9.0	4.2	. 2	2.1	(Z)
26	Paper and allied products .-.-.-----	. 2	1.1	22.3	. 6	-	. 2	. 4	(D)	(D)	-	-
27	Printing and publishing ------------------	.3	1.7	41.3	1.4	-	.1	. 2	-	-	-	
30	Rubber and miscellaneous plastics products .-----------------	. 1	. 7	9.1	. 3	-	. 1	. 4	-	-	-)
33	Primary metal industries -----------------------------------	2.2	10.5	139.2	4.1	-	1.7	6.4	2.3	. 1	(D)	(D)
34	Fabricated metal products .	. 3	1.2	18.6	. 6	-	. 2	. 6	-	-	(D)	(D)
35	Machinery, except electrical.	. 8	4.5	97.7	2.9	-	. 5	1.6	-	-	-	
37 3	Transportation equipment ------------------------------------	.1	. 7	11.3	4	-	. 1	\cdots	-	-	:	-
39	Miscellaneous manuacturing industries ------------------	. 1	. 6	12.6	. 4		. 1	. 2	-	-	-	
	Orlando, Fla.---	4.9	37.3	450.3	25.5	(D)	3.4	11.8	91.4	3.9	(D)	(D)
20	Food and kindred products	2.6	15.4	139.7	8.0	-	2.1	7.4	25.5	. 9	-	-
26 27	Paper and allied products	.2	1.1	13.7	(8)	(z)	(1)	(8)	-	-	-	-
28		. 4	1.6 1.4	(D)	(D)	(Z)	(D)	(D)	-	-	-	-
30	Rubber and miscellaneous plastics products .-------------	. 2	2.8	47.9	2.6		(Z)	. 2				

Industry Group for Standard Metropolitan Statistical Areas: 1981 and 1980-Con.

Table 5. Purchased Fuels, by Type, and Electric Energy Used for Heat and Power by Major
[For meaning of abbreviations and symbols, see introductory text. For explanation of terms, see appendixes]

Industry Group for Standard Metropolitan Statistical Areas: 1981 and 1980-Con.

Table 5. Purchased Fuels, by Type, and Electric Energy Used for Heat and Power by Major
[For meaning of abbreviations and symbols, see introductory text. For explanation of terms, see appendixes]

[^10]Industry Group for Standard Metropolitan Statistical Areas: 1981 and 1980-Con.

Table 5. Purchased Fuels, by Type, and Electric Energy Used for Heat and Power by Major
[For meaning of abbreviations and symbols, see introductory text. For explanation of terms, see appendixes]

Industry Group for Standard Metropolitan Statistical Areas: 1981 and 1980-Con.

Table 5. Purchased Fuels, by Type, and Electric Energy Used for Heat and Power by Major
[For meaning of abbreviations and symbols, see introductory text. For explanation of terms, see appendixes]

Industry Group for Standard Metropolitan Statistical Areas: 1981 and 1980-Con.

Table 5. Purchased Fuels, by Type, and Electric Energy Used for Heat and Power by Major
[For meaning of abbreviations and symbols, see introductory text. For explanation of terms, see appendixes]

See footnotes at end of table.

Industry Group for Standard Metropolitan Statistical Areas: 1981 and 1980-Con.

Table 5. Purchased Fuels, by Type, and Electric Energy Used for Heat and Power by Major
[For meaning of abbreviations and symbols, see introductory text. For explanation of terms, see appendixes]

Industry Group for Standard Metropolitan Statistical Areas: 1981 and 1980-Con.

\begin{tabular}{|c|}
\hline \multicolumn{10}{|c|}{1981-Con.} \& \multicolumn{2}{|l|}{1980 purchased fuels and electric energy} \& \multicolumn{7}{|c|}{\multirow{3}{*}{Relative standard error of estimate (percent) for column' -}} \& \multirow{4}{*}{\[
\underset{\text { code }}{\operatorname{SIC}}
\]} \\
\hline \multicolumn{2}{|l|}{Bituminous coal, lignite, and anthracite} \& \multicolumn{2}{|l|}{Coke and breeze} \& \multicolumn{2}{|l|}{Natural gas} \& \multicolumn{2}{|l|}{Liquefied petroleum gases} \& \multirow[b]{2}{*}{\[
\begin{gathered}
\text { Other } \\
\text { fuels } \\
\text { (million } \\
\text { dollars) }
\end{gathered}
\]} \& \multirow[b]{2}{*}{} \& \multirow[b]{2}{*}{British
thermal units
(trillions)} \& \multirow[b]{2}{*}{Cost (million dollars)} \& \& \& \& \& \& \& \& \\
\hline Quantity
(1,000
shor
tons) \& Cost
(million
dollars) \& Quantity (1,000 tons) \& \[
\begin{array}{r}
\text { Cost } \\
\text { (million } \\
\text { dollars) }
\end{array}
\] \& Quantity (billion cubic
feet) \& \[
\begin{array}{r}
\text { Cost } \\
\text { (million } \\
\text { dollars) }
\end{array}
\] \& Quantity (million pounds) \& \[
\begin{array}{r}
\text { Cost } \\
\text { (million } \\
\text { dollars) }
\end{array}
\] \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline L \& M \& N \& 0 \& P \& 0 \& R \& S \& T \& U \& V \& W \& D \& G \& 1 \& K \& M \& Q \& s \& \\
\hline (D) \& (D) \& - \& - \& (S) \& (S) \& (S) \& (S) \& (S) \& (S) \& 19.6 \& 75.1 \& 7 \& 10 \& (X) \& (X) \& (X) \& (X) \& (X) \& \\
\hline - \& \& - \& - \& . 9 \& 3.2 \& (D) \& (D) \& (D) \& 2.3 \& 2.4 \& 11.5 \& 5 \& 8 \& (X) \& (\({ }^{(x)}\) \& (X) \& 12 \& (X) \& 20 \\
\hline - \& \& - \& : \& (D) \& (D) \& \& \& \& (D) \& . 4 \& 2.9
2.3 \& 24
17 \& 23
6 \& (X) \& (X)
(\({ }^{\text {(}}\))
(\& (x)
(\({ }^{\text {(}}\))
(\& \begin{tabular}{l}
(X) \\
35 \\
\hline
\end{tabular} \& (x) \& 23
27 \\
\hline - \&) \& - \& - \& (D) \& (D) \& (D) \& - \& (D) \& (S) \& .4
.1
18 \& 2.3
.6 \& 17
26 \& 11 \& (x) \& (x)
\((\) (\()\) \& (x)
(\({ }^{\text {(}}\)) \& (x)
(\({ }^{\text {a }}\)) \& (\((\mathrm{X})\) \& 27
28 \\
\hline (D) \& (D) \& \& \& \& \& (D) \& (D) \& (D) \& \& 12.1 \& 34.7 \& 32 \& 14 \& (X) \& (X) \& (X) \& (X) \& (X) \& \\
\hline - \& \& \& - \& . 8 \& 2.5
.4 \& (D) \& (D) \& (D) \& (S)
.4
.1 \& .2
1.6
.5 \& 1.0
9.7
2.9 \& 12
3
5 \& (X)
4
8
8 \& \[
\begin{aligned}
\& (X) \\
\& (X) \\
\& (X) \\
\& ()
\end{aligned}
\] \& (X)
()
(X) \& (X)
()
(\({ }^{\text {(}}\)) \& (X)
3
9 \& (X) \& 33
34
35 \\
\hline - \& \& \& - \& 2.8 \& 11.5 \& 1.2 \& . 1 \& 1.5 \& (D) \& 9.4 \& 92.7 \& 5 \& 4 \& 18 \& (X) \& (X) \& 6 \& 5 \& \\
\hline - \& \& \& \& (D) \& (D) \& (D) \& (D) \& (D) \& 1.3 \& 1.6
.3 \& 12.3
3.9 \& 38
5 \& 14
5 \& \((X)\)
\((X)\)
(\& \((x)\)
\((x)\) \& (x) \& 22
\((X)\) \& (\({ }^{(x)}\) \& 20
27 \\
\hline . \& - \& \& \& (D) \& (D) \& - \& - \& \& (D) \& . 9 \& 8.3 \& 7 \& 3 \& (X) \& (X) \& (X) \& (X) \& (x) \& 28 \\
\hline - \& \& \& \& (D) \& (D) \& \& \& (D) \& (D) \& . 1 \& 1.0 \& 16 \& (X) \& (x) \& (\({ }^{(x)}\) \& (x) \& (x) \& (x) \& 30 \\
\hline \& \& \& \& (D) \& (D) \& \& \& (D) \& (S) \& . 8 \& 3.1 \& 31 \& 7 \& (X) \& (X) \& (X) \& (X) \& (X) \& 32 \\
\hline - \& \& \& \& (D) \& (D) \& (D) \& (D) \& - \& (D) \& . 2 \& 1.4
2.8 \& 16
6 \& 8
5 \& \((X)\)
\((X)\) \& (X)
\((X)\)
(\& (x)
\((\mathrm{X})\)

(\& (X)
(X) \& (X) \& 33
34

\hline - \& \& \& \& (S) \& (S) \& (D) \& (D) \& (D) \& (S) \& . 7 \& 10.0 \& 9 \& 10 \& (X) \& ($\mathrm{X}^{(1)}$ \& (X) \& (X) \& (x) \& 35

\hline \& \& \& \& . 3 \& 1.3 \& (D) \& (D) \& (Z) \& . 3 \& 1.3 \& 15.6 \& 5 \& 3 \& (x) \& (${ }^{(1)}$ \& (${ }^{(x)}$ \& 3 \& (x) \& 36

\hline - \& \& \& \& ${ }^{6}$ \& 2.4 \& (D) \& (D) \& (D) \& (8) \& 2.0 \& 23.4 \& (X) \& (X) \& (X) \& ($\mathrm{x}^{(1)}$ \& (${ }^{(1)}$ \& 1 \& (x) \& 37

\hline - \& - \& \& \& (D) \& (${ }^{1}$) \& \& \& (D) \& (D) \& . 3 \& 3.4
1.8 \& (X) \& (C (\& (X) \& (X) \& (X)
(X) \& $\left(x^{3}\right)^{3}$ \& (X) \& 38
39

\hline - \& - \& (D) \& (D) \& 100.8 \& 430.7 \& (D) \& (D) \& 23.0 \& 29.2 \& 150.8 \& 762.2 \& 3 \& 2 \& 12 \& 13 \& (X) \& 2 \& (X) \&

\hline - \& \& \& \& $$
\begin{aligned}
& 7.9 \\
& \text { (D) }
\end{aligned}
$$ \& \[

$$
\begin{array}{r}
33.8 \\
\text { (D) }
\end{array}
$$
\] \& 1.2 \& . 1 \& . 3 \& (D) \& 11.8

.4 \& 58.9
2.8 \& r 62 \& (x) \& (X) \& (${ }_{\text {(})}$ (${ }^{\text {(}}$) \& (x)
(X)
(\& (X^{5} \& (21 \& 20
23

\hline - \& \& \& \& (Z) \& . 1 \& - \& - \& (D) \& (b) \& . 3 \& 1.8 \& (X) \& (X) \& (X) \& (x) \& (($) ~_{\text {) }}$ \& 48 \& (X) \& 24

\hline \& \& \& \& (S) \& (S) \& 6 \& 1 \& (D) \& (S) \& . ${ }^{.3}$ \& 2.2 \& 29 \& 42 \& (x) \& (x) \& (x) \& (X) \& (${ }^{1}$) \& 25

\hline \& \& \& \& \& 22.6 \& . 6 \& . 1 \& (D) \& (Z) \& 10.6 \& 46.1 \& 10 \& 5 \& (X) \& (X) \& (X) \& 8 \& 12 \&

\hline - \& - \& - \& - \& (S) \& (S) \& - \& \& (D) \& (D) \& 1.2 \& 8.7 \& 28 \& 19 \& (X) \& (X) \& (X) \& (X) \& (X) \& 27

\hline - \& \& \& \& 12.6 \& 44.2 \& (D) \& (Z) \& (D) \& 5.4 \& 19.2 \& 78.9 \& 11 \& 9 \& 34 \& (${ }^{(x)}$ \& (${ }^{\text {() }}$ \& 9 \& 1 \& 28

\hline \& \& \& \& 59.1 \& 260.3 \& (D) \& (D) \& (D) \& (S) \& 77.1
1.9 \& 386.9
13.5 \& r 1 \& 1

4 \& $$
\begin{aligned}
& (x) \\
& (x)
\end{aligned}
$$ \& (${ }_{\text {(})}$ \& (${ }_{\text {(})}$ \& Ca^{2} \& (X) \& 29

30

\hline \& \& \& \& (D) \& (D) \& (D) \& (D) \& (D) \& 1.7
9.4 \& 1.9
10.4 \& 13.5
49.6 \& 15

6 \& 4 \& $$
\begin{aligned}
& (x) \\
& (x)
\end{aligned}
$$ \& (X) \& (X) \& (X) \& (X) \& 30

32

\hline - \& \& (D) \& (D) \& 3.8 \& 17.3 \& (D) \& (D) \& (D) \& (S) \& 6.7 \& 44.2 \& 17 \& 14 \& (${ }^{(x)}$ \& (X) \& (X) \& 14 \& (X) \& 33

\hline \& \& \& \& 2.4 \& 10.7 \& (D) \& (b) \& (D) \& (D) \& 4.2 \& 19.9 \& 28 \& 10 \& (x) \& (${ }_{\text {(})}$ \& (${ }_{\text {(})}$ \& 12 \& ${ }^{3}$ \& 34

\hline \& \& \& - \& $\begin{array}{r}1.6 \\ . \\ \hline\end{array}$ \& 2.8
2.2 \& (D) \& (D) \& (D) \& 1.6 \& 2.3
1.6 \& 14.4
12.9 \& 17
4 \& 29 \& (X) \& (${ }_{\text {(})}$ \& (${ }_{(x)}$ \& 41
11 \& (X) \& 35
36

\hline - \& \& \& - \& .5
.9 \& 2.2
4.4 \& (D) \& (D) \& (D) \& (D) \& 1.6
2.1 \& 16.5 \& 2 \& 3 \& ${ }_{1}$ \& (X) \& (X) \& 1 \& (${ }^{(x)}$ \& 37

\hline \& - \& \& \& (S) \& (S) \& (D) \& (D) \& \& (D) \& $\begin{array}{r}.4 \\ . \\ \hline\end{array}$ \& 2.5
1.3 \& -8 \& 24
14 \& $\left(\begin{array}{l}(X) \\ (X)\end{array}\right.$ \& (x)
(X) \& (x) \& (X) \& (${ }^{(x)}$ \& 38
39

\hline \& \& \& \& \& (S) \& (D) \& (D) \& \& (D) \& . 2 \& 1.3 \& 26 \& 14 \& (X) \& (X) \& (X) \& (X) \& (X) \&

\hline (D) \& (D) \& \& \& 16.2 \& 75.1 \& 6.0 \& . 8 \& 1.7 \& (D) \& 41.9 \& 265.7 \& 2 \& 7 \& 45 \& 11 \& (X) \& 7 \& 14 \&

\hline - \& \& \& \& 3.7 \& 16.9 \& 2.6 \& . 3 \& . 2 \& (D) \& 6.5 \& 31.9 \& 7 \& 11 \& (X) \& (X) \& (X) \& 12 \& 15 \& 20

\hline - \& \& \& \& (D) \& (D) \& . \& . \& . \& (S) \& (Z) \& (D) 1 \& (${ }^{1}$ \& (X) \& (X) \& (x) \& (X) \& (X) \& (${ }^{(x)}$ \& 23
25

\hline - \& \& \& \& (D) \& (D) \& (D) \& (D) \& (D) \& (Z) \& (D) \& (D) \& (8) \& (1) \& (X) \& (${ }_{(x)}$ \& (x) \& (${ }^{7}$ \& (${ }^{(x)}$ \& 25
27

\hline - \& \& \& \& (D) \& (D) \& \& \& \& (D) \& 2.1 \& 12.6 \& 5 \& 4 \& (X) \& (X) \& (X) \& (X) \& (X) \& 28

\hline - \& \& \& - \& (D) \& (D) \& - \& - \& : \& (D) \& . 2 \& .5
3.4 \& 24 \& 14
1 \& (X)
(X)
(\& $\left(\begin{array}{l}(x) \\ (x)\end{array}\right.$ \& (x) \& (x)
(x) \& (${ }_{(x)}$ \& 29
30

\hline (D) \& (D) \& \& - \& (D) \& (D) \& (D) \& (D) \& (D) \& (S) \& 12.7 \& 3.4
51.9 \& (X) \& (X) \& (x)
54
54 \& (x) \& (x) \& ((1) \& (${ }^{(x)}$ \& 30
32
3

\hline \& \& \& \& (D) \& (D) \& (D) \& (D) \& \& (S) \& . 4 \& ${ }_{7} 2.2$ \& 8 \& 7 \& (X) \& (x) \& (x)
(X) \& (X)
17 \& (X) \& 33
34

\hline \& \& \& \& . 4 \& 2.1 \& (D) \& (D) \& (D) \& . 9 \& 1.2 \& 7.2 \& 19 \& 22 \& (X) \& (X) \& (X) \& 17 \& (X) \& 34

\hline \square \& \& \& \& 1.0 \& 4.6 \& (D) \& (D) \& (Z) \& 1.2 \& 4.5 \& 43.4 \& 2
4
1 \& 7
8 \& $\left(\begin{array}{l}(x) \\ (X) \\ \hline\end{array}\right.$ \& (x)
(x) \& (x)
(x)
(x) \& (x^{1} \& (x) \& 35
36

\hline - \& \& \& - \& . 8 \& 4.0 \& (D) \& (D) \& (D) \& (S) \& 6.4

2.3 \& 56.8 \& | 4 |
| :--- |
| 1 | \& 1 \& (X) \& (x) \& (x) \& (1) \& (X) \& 37

\hline - \& - \& \& \& (S) \& (S) \& \& \& (D) \& (S) \& 1.6
.2 \& 11.8
2.2 \& 7
8 \& 12
6 \& (X)
(X) \& $\left(\begin{array}{l}\text { (X) } \\ \text { (X) }\end{array}\right.$ \& $\left(\begin{array}{l}\text { (X) } \\ (X)\end{array}\right.$ \& 14
(X) \& (X) \& 38
39

\hline - \& \& (S) \& 5.2 \& 24.1 \& 11 \& 20 \& (X) \& (X) \& (X) \& (X) \& (X) \&

\hline - \& - \& \& - \& (D) \& (D) \& - \& - \& - \& (D) \& . 1 \& 1.3
5.1 \& 11
10 \& (X) \& (X) \& (X)
(X) \& $\left(\begin{array}{l}(x) \\ (X)\end{array}\right.$ \& (X) \& (X)
(X)
(x) \& 35
36

\hline - \& , \& - \& - \& (S) \& (S) \& - \& - \& - \& (S) \& . 1 \& . 6 \& 11 \& (X) \& (X) \& (X) \& (X) \& (X) \& (X) \& 38

\hline - \& - \& - \& - \& (S) \& (S) \& (S) \& (S) \& (D) \& (S) \& 3.9 \& 17.8 \& 7 \& 5 \& (X) \& (X) \& (X) \& (X) \& (X) \&

\hline - \& - \& - \& - \& . 4 \& 1.9 \& $$
\begin{aligned}
& \text { (D) } \\
& \text { (S) }
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \text { (D) } \\
& (\mathrm{S})
\end{aligned}
$$

\] \& (D) \& \[

\stackrel{.6}{(\mathrm{~S})}

\] \& (D) \& \[

5.8
\]

(D) \& $$
\begin{array}{r}
4 \\
28
\end{array}
$$ \& \[

$$
\begin{aligned}
& 12 \\
& (X)
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& (X) \\
& (X)
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& (X) \\
& (X)
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& (\mathrm{X}) \\
& (\mathrm{X})
\end{aligned}
$$
\] \& 16

(X) \& (X) \& 20
30

\hline - \& - \& - \& - \& (D) \& (D) \& (D) \& (D) \& (D) \& (S) \& . 4 \& 3.5 \& 20 \& 17 \& (X) \& (X) \& (X) \& (X) \& (X) \&

\hline \& \& \& \& \& \& \& \& \& \& (D) \& (D) \& 1 \& (X) \& (X) \& (X) \& (X) \& (X) \& (X) \& 32

\hline
\end{tabular}

Table 5. Purchased Fuels, by Type, and Electric Energy Used for Heat and Power by Major
[For meaning of abbreviations and symbols, see introductory text. For explanation of terms, see appendixes]

[^11]Industry Group for Standard Metropolitan Statistical Areas: 1981 and 1980-Con.

Table 5. Purchased Fuels, by Type, and Electric Energy Used for Heat and Power by Major
[For meaning of abbreviations and symbols, see introductory text. For explanation of terms, see appendixes]

See footnotes at end of table.

Industry Group for Standard Metropolitan Statistical Areas: 1981 and 1980-Con.

Table 5. Purchased Fuels, by Type, and Electric Energy Used for Heat and Power by Major
[For meaning of abbreviations and symbols, see introductory text. For explanation of terms, see appendixes]

Industry Group for Standard Metropolitan Statistical Areas: 1981 and 1980-Con.

Table 5. Purchased Fuels, by Type, and Electric Energy Used for Heat and Power by Major
[For meaning of abbreviations and symbols, see introductory text. For explanation of terms, see appendixes]

Industry Group for Standard Metropolitan Statistical Areas: 1981 and 1980-Con.

Table 5. Purchased Fuels, by Type, and Electric Energy Used for Heat and Power by Major
[For meaning of abbreviations and symbols, see introductory text. For explanation of terms, see appendixes]

$\underset{\text { code }}{\text { SIC }}$	Geographic area and industry group	1981										
		Purchased fuels and electric energy		Electric energy			Purchased fuels		Fuel oil			
		British thermal units (trillions)	Cost (million dollars)	Purchased		Generatedlesssold(million$\mathrm{kWh})$	British thermal units (trillions)	Cost (million dollars)	Distillate		Residual	
				Quantity (million kWh)					Quantity (1,000 barrels)	Cost (million dollars)	Quantity (1,000 barrels)	Cost (million dollars)
		A	B	C	D	E	F	G	H	1	J	K
$\begin{aligned} & 20 \\ & 27 \end{aligned}$	Waterioo-Cedar Fails, lowa -	9.6	44.7	(D)	-							
	Food and kindred products Printing and publishing	1.6 .1	5.2 .6	33.0 12.9	1.6 .5	(D)	(Z) ${ }^{\text {(Z) }}$	3.6 .2	-	-	-	-
	West Palm Beach-Boca Raton, Fia.	4.8	41.1	396.8	23.7	46.1	3.5	17.5	117.8	4.8	310.1	9.0
$\begin{aligned} & 20 \\ & 36 \end{aligned}$	Food and kindred products Electric and electronic equipment	2.2 .4	11.6 6.2	31.8 93.0	1.9 6.1	(D)	2.1	9.7 .1	(D)	(D)	253.4	7.3
	Wheeling, w. Va.-Ohlo	31.0	105.3	1507.6	45.2	(D)	25.9	60.1	11.9	. 5	(D)	(D)
$\begin{aligned} & 20 \\ & 28 \\ & 33 \\ & 34 \end{aligned}$	Food and kindred products -- Chemicals and allied products. Primary metal industris Fabricated metal products .---	r . 3.8 2.8 2.1 1.7	1.6 80.2 11.5 6.4	$\begin{array}{r}16.0 \\ 1166.4 \\ \text { (D) } \\ \\ \\ \\ \hline 8.5\end{array}$.6 33.8 (D) 3.2	(D)	.3 21.8 (D) 1.3	1.0 46.4 (D) 3.2	(D)	(D)	(D)	(D)
	Wichita, Kans. -	27.9	124.1	1826.6	65.7	-	21.7	58.4	(D)	(D)	(D)	(D)
20	Food and kindred products	1.5	8.2	118.1	5.0	-	1.1	3.2	-	-	(D)	(D)
27	Printing and publishing ---	. 1	1.0	18.4	. 8		(S)	(S)	-		(D)	(D)
29	Petroleum and coal products ------------	15.1	51.1	402.2	14.6	-	13.7	36.5	-	-	-	-
30 30	Rubber and miscellaneous plastics products Primary metal industries .-------------	.1 .2	1.3 1.5	25.7	(D) 1.1	-	(D)	(D)	-	-		
$\begin{aligned} & 34 \\ & 35 \\ & 37 \end{aligned}$	Fabricated metal products Machinery, except electrical Transportation equipment .-.	.2 .9 4.0	1.3 6.7 22.0	20.2 107.7 401.5	1.0 5.0 14.9	-	.1 .6 2.6	.3 1.7 7.1	(D)	(D)	-	-
$\begin{aligned} & 20 \\ & 30 \\ & 35 \end{aligned}$	Wichita Falls, Tex.	5.0	24.2	325.2	11.7	-	3.9	12.5	(D)	(D)	(D)	(D)
	Food and kindred products \qquad Rubber and miscellaneous plastics products	. 2	. 9	11.7 (D)	(D) 5	-	(S)	(D)	-	-	-	-
	Machinery, except electrical ---------------	. 2	1.3	18.9	1.0		. 1	. 3	(D)	(D)		
	Wililamsport, Pa.	3.1	19.2	233.9	10.0	(D)	2.3	9.2	68.2	2.5	15.0	. 4
$\begin{aligned} & 20 \\ & 24 \\ & 25 \\ & 34 \\ & 36 \end{aligned}$			1.6	15.0	. 7	-	. 3	. 9	(D)	(D)	(D)	
	Lumber and wood products	. 2	1.2	10.6	. 5	-	. 1	. 6	(D)	(D)	(D)	(D)
	Furniture and fixtures-...--	. 2	1.7 1.2	12.7 (D)	(${ }^{7}$		(D)	1.0	12.0 (D)	(D)	(D)	(D)
	Electric and electronic equipment	. 2	1.9	29.5	1.2	(D)	$\stackrel{1}{ }$	$\stackrel{.}{ } 7$	(D)	(D)	(D)	(D)
	Wlimington, Del.-N.J.-Md.	54.6	327.6	2615.2	128.4	(D)	45.6	199.2	170.6	7.1	1659.1	55.2
2023272830	Food and kindred products .	. 4	2.5	(D)	(D)	-	(D)	(D)	(D)	(D)	- ${ }^{-}$	
	Apparel and other textile products .	.3	1.3	${ }_{1}^{6.8}$. 4	-	(S)	(S)			(D)	(D)
	Printing and publishing -----------			1 11.0	5.7	(D)		112.3	(D)	(D)	(D)	(D)
	Chemicals and allied products --.---------- Rubber and miscellaneous plastics products	29.3 1.6	170.2 12.0	1269.5 119.5	58.2 6.7	(D)	24.9 1.2	112.0 5.3	77.0	3.3	1038.7 (D)	34.2
$\begin{aligned} & 32 \\ & 33 \\ & 34 \\ & 35 \\ & 36 \\ & 37 \end{aligned}$	Stone, clay, and glass products					-		(D)	(D)	(D)	(D)	(D)
	Primary metal industries .-	3.2	23.1	(D)	(D)	-	(D)	(D)	(D)	(D)	(D)	(D)
	Fabricated metal products	. 2	1.5	15.3	. 9	-	. 1	. 6	(D)	(D)	(D)	(D)
	Machinery, except electrical--.--	. 2	1.7	20.4	1.3	-	. 1	. 5		(D)	(D)	(D)
	Electric and electronic equipment	. 21	1.8 18.0	23.5 179.4	1.4	-	. 1	.4 7	(D)	(D)		
	Transportation equipment	2.1	18.0	179.4	10.0	-	1.5	7.9	20.2	. 9	(D)	(D)
$\begin{aligned} & 24 \\ & 28 \\ & 34 \end{aligned}$	Wilmington, N.C. -	30.2	147.2	1408.5	51.0	-	25.4	96.2	15.3	. 6	2604.1	79.2
	Lumber and wood products	. 1	. 8	9.2	. 4	-	. 1	. 4	(D)	(D)	(D)	(D)
	Chernicals and allied products Fabricated	20.6 .6	119.8 4.9	1105.8 (D)	39.4	-	16.8 (D)	80.4	(D) 3.4	(D)	2500.0 (D)	76.0 (D)
	Worcester, Mass.	10.2	78.1	636.6	41.6	31.3	8.0	36.6	122.8	4.9	367.8	11.5
$\begin{aligned} & 20 \\ & 22 \\ & 23 \\ & 25 \\ & 26 \end{aligned}$	Food and kindred products Textile mill -	.3 1.6	1.9 9.2	15.8 37.6 1.8	1.0 2.5	(D)	.3 1.5	1.0 6.7	(D)	(D)	(D)	(D)
	Apparel and other textile products	. 1	. 8	12.5	. 7	(D)	(S)	(S)		-	-	(D)
	Furniture and fixtures...-......-	. 2	1.2	9.1	. 6	-	. 1	. 6	(D)	(D)	(D)	(D)
	Paper and allied products	. 3	2.2	15.8	1.1		. 2	1.1	(D)	(D)	(D)	(D)
$\begin{aligned} & 30 \\ & 32 \\ & 33 \\ & 34 \\ & 35 \\ & 36 \end{aligned}$	Rubber and miscellaneous plastics products .-	. 5	4.6	49.0	3.2	-	. 3	1.5	4.4	. 2	(D)	(D)
	Stone, clay, and glass products .---------	2.0	13.3	(D)								
	Primary metal industries .-...---	. 8	8.4	82.0	5.4		. 5	3.0	(S)	(S)		
	Fabricated metal products -------	2.6	17.6 8.3 8.3	125.3 88.7	8.1 5.9	(D)	2.2 .5	9.5 2.4	26.7 7.8	1.1 .3	(D)	(D) 1.0
	Machinery, except electrical-...----	. 8	8.3 2.3	88.7 28.0	1.8	$\stackrel{-}{-}$. 1	2.4	7.8	. 3	(D)	(D)
$\begin{aligned} & 20 \\ & 24 \\ & 26 \end{aligned}$	Yaklma, Wash. .-	3.2	16.2	199.3	5.1	-	2.5	11.1	(D)	(D)	(D)	(D)
	Food and kindred products	2.3	11.0	109.1	2.8	-	1.9	8.3	(D)	(D)	-	-
	Lumber and wood products	. 5	2.3 .9	(D)	(D)	-	(D)	(D)	-	-	-	-

Industry Group for Standard Metropolitan Statistical Areas: 1981 and 1980-Con.

Table 5. Purchased Fuels, by Type, and Electric Energy Used for Heat and Power by Major [For meaning of abbreviations and symbols, see introductory text. For explanation of terms, see appendixes]

$\underset{\text { code }}{\text { SIC }}$	Geographic area and industry group	1981										
		Purchased fuels and electric energy		Electric energy			Purchased fuels		Fuel oil			
		British thermal units (trillions)	Cost (million dollars)	Purchased		Generated less sold (million kWh)	British thermal units (trillions)	Cost (million dollars)	Distillate		Residual	
				Quantity (million kWh)					$\begin{array}{r} \text { Quantity } \\ (1,000 \\ \text { barrels) } \end{array}$		Quantity (1,000 barrels)	
		A	B	C	D	E	F	G	H	1	J	K
	York, Pa.	24.3	132.5	1216.6	61.8	(D)	20.2	70.8	117.2	4.6	364.5	11.3
20	Food and kindred products	2.4	13.2	88.0	4.9	(D)	2.1	8.3	28.6	1.1	(D)	(D)
22	Textile mill products .-.---	. 2	2.0	30.4	1.5)	1	. 6	(D)	(D)	(D)	(D)
23	Apparel and other textile products	. 1	. 9	(D)	(D)	-	(D)	(D)	(D)	(D)	(D)	(D)
25	Furniture and fixtures	4	2.7	25.7	1.4)	. 3	1.3	(D)	(D)	(D)	(D)
26	Paper and allied products	7.3	28.7	179.0	8.8	(D)	6.7	19.9	25.7	1.0	(D)	(D)
27	Printing and publishing	. 4	2.9	43.4	1.9	-	. 2	. 9	(D)	(D)	(D)	(D)
28	Chemicals and allied products	. 6	3.5	48.4	2.3	-	. 5	1.1	(D)	(D))	-
30	Rubber and miscellaneous plastics products	. 1	1.3	(D)	(D)	-	(D)	(D)	(D)	(D)	-	-
31	Leather and leather products..-	. 1	1.0	14.8	. 8	-	(Z)	. 2	-	-	-	-
32	Stone, clay, and glass products	6.2	26.3	113.2	5.8	-	5.8	20.4	5.6	. 1	(D)	(D)
33	Primary metal industries	1.2	7.8	77.4	4.3	-	. 9	3.5	(D)	(D)	17.9	5
34	Fabricated metal products	. 7	5.4	54.7	3.1	-	. 5	2.3	(D)	(D)	(D)	(D)
35	Machinery, except electrical	2.7	20.7	289.6	14.6	-	1.7	6.1	(D)	(D)	(D)	(D)
36	Electric and electronic equipment.	. 7	5.8	90.5	4.3	-	. 4	1.6	(D)	(D)	-	-
37	Transportation equipment .-.-	. 8	6.1	89.6	3.9	-	. 5	2.2	(D)	(D)	(D)	(D)
38	Instruments and related products	. 1	. 6	(D)	(D)	-	(D)	(D))	((D)	(D)
	Youngstown-Warren, Ohio	52.5	243.4	2449.3	95.6	(D)	44.2	147.9	63.6	2.6	(D)	(D)
20	Food and kindred products	.4	2.2	25.1	1.1	-	(4	1.1	-	-	-	-
27	Printing and publishing ----	. 1	. 8	11.5	. 6	-	(Z)	. 1	-	-	-	-
30	Rubber and miscellaneous plastics products	4	2.4	(D)	(D)	. 6	(D)	(D)	-	-	-	-
32	Stone, clay, and glass products .-.-.--	1.6	7.0	29.9	2.0	-	1.5	5.0	(D)	(D)	-	-
33	Primary metal industries .-----	38.6	163.8	1335.4	49.6	(D)	34.0	114.2	37.9	1.6	(D)	(D)
34	Fabricated metal products	2.8	15.7	179.6	7.8	-	2.2	7.9	(D)	(D)	(D)	(D)
35	Machinery, except electrical	. 7	5.3	72.9	3.6	-	. 5	1.7	(D)	(D)	-	-
36	Electric and electronic equipment	. 5	3.2	(D)	(D)	-	(D)	(D)	(D)	(D)	-	-

 1 percent.

Industry Group for Standard Metropolitan Statistical Areas: 1981 and 1980-Con.

\begin{tabular}{|c|}
\hline \multicolumn{10}{|c|}{1981-Con.} \& \multicolumn{2}{|l|}{1980 purchased fuels and electric energy} \& \multicolumn{7}{|c|}{\multirow{3}{*}{Relative standard error of estimate (percent) for column'-}} \& \multirow{4}{*}{SiC code} \\
\hline \multicolumn{2}{|l|}{Bituminous coal, lignite, and anthracite} \& \multicolumn{2}{|l|}{Coke and breeze} \& \multicolumn{2}{|l|}{Natural gas} \& \multicolumn{2}{|l|}{Liquefied petroleum gases} \& \multirow[b]{2}{*}{Other fuels (million
dollars)} \& \multirow[b]{2}{*}{} \& \multirow[b]{2}{*}{British thermal (trillions)} \& \multirow[b]{2}{*}{Cost (million dollars)} \& \& \& \& \& \& \& \& \\
\hline \[
\begin{gathered}
\text { Quantity } \\
(1,000 \\
\text { short } \\
\text { tons) }
\end{gathered}
\] \& \[
\begin{array}{r}
\text { Cost } \\
\text { (million } \\
\text { dollars) }
\end{array}
\] \& Quantity shor tons) \& \[
\begin{array}{r}
\text { Cost } \\
\text { (million } \\
\text { dollars) }
\end{array}
\] \& Quantity
(billion
cubic
feet) \& \[
\begin{aligned}
\& \text { Cost } \\
\& \text { (million } \\
\& \text { dollars) }
\end{aligned}
\] \& Quantity (million pounds) \& \[
\begin{array}{r}
\text { Cost } \\
\text { (million } \\
\text { dollars) }
\end{array}
\] \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline L \& M \& N \& 0 \& P \& Q \& R \& S \& T \& U \& \(\checkmark\) \& w \& D \& G \& 1 \& K \& M \& 0 \& 5 \& \\
\hline (D) \& (D) \& (D) \& (D) \& 9.3 \& 36.0 \& 11.6 \& 1.4 \& . 6 \& 7.6 \& 28.5 \& 125.0 \& 5 \& 15 \& 13 \& 8 \& (X) \& 29 \& 30 \& \\
\hline \& \& \& \& \[
1.7
\] \& \[
6.4
\] \& \[
1.2
\] \& (D) \& (D) \& (S) \& 2.5 \& 11.2 \& 16 \& 33 \& 36 \& (\({ }^{(x)}\) \& (X) \& 28 \& 11 \& \\
\hline - \& \& \& \& (D) \& (D) \& (D) \& (D) \& \& \begin{tabular}{l}
.1 \\
. \\
\hline
\end{tabular} \& . 3 \& 2.0
.6 \& 15
(X)
(\& (\(\mathrm{C}^{2}\) \& \[
\begin{aligned}
\& (x) \\
\& (X)
\end{aligned}
\] \& (x) \& (X)
\((\mathrm{X})\)

(\& (X) \& (X) \& 22

\hline - \& (D) \& \& \& . \& . 6 \& (D) \& (D) \& (D) \& (S) \& 4 \& 2.3 \& (1) \& (x)
17 \& (X) \& (x) \& (X) \& 11 \& (${ }^{(x)}$ \& 23
25

\hline \& (D) \& \& \& (D) \& (D) \& (D) \& (D) \& (D) \& (S) \& 7.9 \& 25.2 \& 4 \& 3 \& 20 \& (X) \& (X) \& (X) \& (X) \& 26

\hline \& \& \& \& (S) \& (S) \& \& \& \& \& (8) \& \& \& 33 \& (x) \& (x) \& ($\mathrm{X}^{(1)}$ \& (x) \& (x) \&

\hline \& \& \& \& (D) \& (D) \& (D) \& (D) \& (D) \& (Z) \& (D) \& (D) \& (${ }^{63}$ \& 58
(X) \& (x) \& (X) \& (X) \& (X) \& (X) \& 28
30

\hline - \& - \& \& \& (Z) \& (1 \& - \& \& \& (Z) \& . 1 \& . 8 \& ${ }_{1}$ \& ${ }^{1}$ \& (X) \& (X) \& (X) \& (1 \& (X) \& 31

\hline - \& - \& \& \& (D) \& (D) \& (D) \& (D) \& \& 3.8 \& 8.9 \& 30.1 \& 29 \& 50 \& 33 \& (X) \& (X) \& (X) \& (X) \&

\hline \& \& (D) \& (D) \& 4 \& 1.6
17 \& .5
5 \& (Z) \& (D) \& 1.1 \& 1.2 \& 7.0
4.4 \& $\begin{array}{r}3 \\ 14 \\ \hline\end{array}$ \& 5 \& (x) \& (x) ${ }^{1}$ \& (X) \& r 5 \& 1 \& 33
34

\hline (D) \& (D) \& - \& - \& . 6 \& 2.5 \& (D) \& (D) \& (Z) \& . 1 \& 2.8 \& 18.5 \& 2 \& 2 \& (x) \& (X) \& (X) \& \& (X) \& 35

\hline \& \& - \& - \& . 3 \& 1.3 \& (D) \& (D) \& (Z) \& . 1 \& . 6 \& 4.6 \& 4 \& 3 \& (${ }^{(x)}$ \& (X) \& (X) \& 2 \& (X) \& 36

\hline \& \& \& - \& (D) \& (D) \& (D) \& (D) \& - \& (Z) ${ }^{1}$ \& (D) 8 \& (D) \& (${ }^{1}$) \& (X) ${ }^{1}$ \& (X) \& (x) \& (X) \& (X) \& (X) \& 37
38

\hline \& \& \& - \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& (x) \&

\hline 83.2 \& 2.9 \& (D) \& (D) \& 25.5 \& 85.0 \& 3.6 \& . 4 \& 6.2 \& 1.1 \& 53.5 \& 227.7 \& 3 \& 3 \& 7 \& (X) \& 1 \& 3 \& 38 \&

\hline \& \& \& \& (D) \& (D) \& \& - \& \& (D) \& . 5 \& 2.2 \& 48 \& 70 \& (x) \& (${ }^{(x)}$ \& (${ }_{(1)}$ \& (x) \& (${ }^{(1)}$ \&

\hline (D) \& (D) \& \& - \& (D) \& (D) \& - \& - \& (D) \& (Z) \& . 1 \& 2.8 \& (32 \& 41
(X) \& (X) \& (x)
(x)
(\& (${ }_{\text {(}}(\mathrm{X})$ \& (X) \& (X) \& 27
30

\hline (D) \& (D) \& \& \& (S) \& (S) \& (D) \& (D) \& (D) \& (S) \& 1.8 \& 6.8 \& 52 \& 35 \& (${ }^{(1)}$ \& (x) \& (x) \& (X) \& (X) \& 32

\hline (D) \& (D) \& (D) \& (D) \& 17.0 \& 57.7 \& . 5 \& . 1 \& (D) \& . 8 \& 38.7 \& 154.4 \& 2 \& 1 \& 1 \& (X) \& (X) \& 1 \& 1 \& 33

\hline \& \& \& \& 1.1 \& 3.5 \& (D) \& (D) \& (D) \& \& 3.0 \& 15.1 \& 7 \& 7 \& (X) \& (X) \& \& 12 \& (X) \&

\hline - \& \& - \& - \& (S) \& (S)
1.2 \& (D) \& (D) \& (S) \& (S) \& (D) \& (4.6 \& (X) ${ }^{8}$ \& (X) \& (X) \& (x) \& (X)
(X) \& (X) \& (X) \& 35
36

\hline
\end{tabular}

Table 6. Consumption and End-of-Year Stocks of Selected Purchased Fuels by Major Industry Group for Standard Metropolitan Statistical Areas: 1981

$\underset{\text { code }}{\operatorname{SIC}}$	Geographic area and industry group	Fuel oil				Bituminous coal, lignite, and anthracite		Coke and breeze		Liquefied petroleum gases	
		Distillate		Residual		$\begin{array}{\|r} \hline \text { Consumption } \\ \text { (1,000 } \\ \text { short } \\ \text { tons) } \\ \hline \end{array}$	$\begin{gathered} \text { Stocks } \\ (1,000 \\ \text { short } \\ \text { tons) } \end{gathered}$	Consumption(1,000shorttons)	$\begin{array}{r} \text { Stocks } \\ (1,000 \\ \text { short } \\ \text { tons) } \end{array}$	Consumption(millonpounds)	$\begin{gathered} \text { Stocks } \\ \text { (million } \\ \text { pounds) } \end{gathered}$
		$\begin{array}{\|r\|} \hline \text { Consumption } \\ (1,000 \\ \text { barrels) } \\ \hline \end{array}$	$\begin{array}{r} \text { Stocks } \\ \text { (1,000 } \\ \text { barrels) } \end{array}$	$\begin{array}{\|r\|} \hline \text { Consumption } \\ \text { (a, }, 000 \\ \text { barrels) } \\ \hline \end{array}$	$\begin{array}{r} \text { Stocks } \\ \text { (1,000 } \\ \text { barrels) } \end{array}$						
		(D)	(D)	-	-	-	-	-	-	(D)	(D)
20 34	Food and kindred products Fabricated metal products	(D)	(D)	-	-	-	-	-	-	-	-
	Akron, Ohlo--------------------------------------	(D)	36.6	(D)	40.4	750.5	80.6	-	-	3.8	. 3
20 27		-	-	-	-	-	-	-	-	(D)	(D)
28	Printing and pubishing--	(D) ${ }^{-}$	(D) ${ }^{-}$	(D)	(D) ${ }^{-}$	(D)	(D) ${ }^{-}$	-	-	(D)	(D)
29 30	Petroleum and coal products -------------------------------- Rubber and miscellaneous plastics products	(D)	(D)	(D)	(D)	(D)	(D)	-	-	(D)	(D)
32			(D)	-	-	(D)	(D)	-	-	(D)	(D)
33 34		(D)	(D)		-)	-	-	-		
34 35	Fabricated metal products-- ${ }^{\text {Machinery, }}$ - except electrical	(D)	(D)	(D)	(D)	(D)	(D)	-	-	(D)	(D)
36	Electric and electronic equipment ----------------------------------	(D)	(D)	(D)	(D)	(D)	(D)	-	-		
37	Transportation equipment --------------------------------------	(D)	(D)						-	-	
	Albany, Ga. --------------------------------------	(D)	(D)	(D)	31.5	-	-	-	-	(D)	(D)
	Albany-Schenectady-Troy, N.Y. ----------------	155.9	58.3	1744.3	286.5	(D)	(D)	-	-	2.3	1.3
20	Food and kindred products ------------------------------	(D)	(D)		(D)	-	-	-	-	(D)	(D)
22 24	Textile mill products --	(D)	(D)	(D)	(D)	-	-	-	-	-	
26		(D)	(D)	1105.1	(D)	-	-	-	-	(D)	(1)
27	Printing and publishing---------------------------------								-	(D)	(D)
28	Chemicals and allied products --------------------------	22.9	(D)	(D)	(D)	-	-	-	-	(D)	(D)
29 30	Petroleum and coal products ------------------------- Rubber and miscellaneous plastics products	(D)	(D)	(D)	(D)	-	-	-	-	(D)	(D)
32	Stone, clay, and glass products.----------	(D)	(D)	(D)	8.9	(D)	(D)	-	-	(D)	(D)
33	Primary metal industries---------------------------------	(D)	(D)					-	-		
34	Fabricated metal products_-	(D)	(D)	-	-	-	-	-	-	-	
36 39	Electric and electronic equipment \qquad Miscellaneous manufacturing industries \qquad	(D)	-	-	-	-	-	-	-	-	
	Albuquerque, N. Mex.---------------------------	(D)	1.7	-	(D)	(D)	(D)	-	-	(D)	(D)
20	Food and kindred products-------------------------------	(D)	(D)	-	-	-	-	-	-	-	-
24 27	Lumber and wood products --	(D)	(D)	-	-	-	-	-	-	-	
34		(D)	(D)	-	-	-	-	-	-	-	
35	Machinery, except electrical ---------------------------------	-	(D)	-	-	-	-	-	-	(D)	(D)
36 39	Electric and electronic equipment ---------------------------------	-	(D)	-	-	-	-	-	-	(D)	(D)
	Alexandria, La. -	(D)	(D)	-	(D)	-	-	-	-	(D)	(D)
$\begin{aligned} & 24 \\ & 28 \end{aligned}$	Lumber and wood products \qquad Chemicals and allied products \qquad	(D)	(D)	-	-	-	-	-	-	(D)	(D)
	Allentown-Bethlehem-Easton, Pa.-N.J. --------	451.4	81.9	2283.2	173.7	371.0	72.7	(D)	(D)	18.4	1.1
20	Food and kindred products .----------------------------	-	-	129.1	7.9	-	-		-)	
22 23		4.2 30.5	(D) 3	94.1 8.2	(D)	(D)	(D)	()	(D)	(D)	(D)
24	Lumber and wood products --------------------------------------	(D)	(D)	-	(b)	(D)	(D)	(D)	(D)	(D)	(D)
26	Paper and allied products .-	(D)	(D)	53.3	3.0					(D)	(D)
27 28	Printing and publishing -------------------------------	1670	24989	(D)	(D)	85.0	42.0	-	-	(D) 3.6	(D)
30	Rubber and miscellaneous plastics products ------------------	16.0	(D)	(D)	(D)		42.0	-	-	(D)	(D)
32	Stone, clay, and glass products -----------	(S)	(D)	(S)	(S)						
33	Primary metal industries.-------	127.3	(D)	7.7	(D)						
34 35	Fabricated metal products Machinery, except electrical	25.5 16.8	(D) 3.6	(D)	(D)	(D)	(D) ${ }^{-}$	(D)	(D)	. 78	(Z)
36		11.9	(D)								
38	Instruments and related products --------------------------------	11.8	- 6	(D)	(D)	-	-		-	(D)	-
	Altoona, Pa.	(S)	(S)	(D)	(D)	(D)	(D)	-	-	(S)	(b)
$\begin{aligned} & 20 \\ & 35 \end{aligned}$	Food and kindred products \qquad Machinery, except electrical \qquad	(D)	(D)	-	-	-	-	-	-	(D)	(D)
	Amarlilo, Tex. -------------------------	(D)	5.0	-	-	-	-	(D)	(D)	(D)	(D)
28 32	Chemicals and allied products \qquad Stone, clay, and glass products	-	(D)	-	-	-	-	-	-	(D)	(D)
35	Machinery, except electrical --	-	(D)	-	-	.	-	-	-	(D)	(0)
	Anahelm-Santa Ana-Garden Grove, Callf. -----	14.8	5.9	3.8	. 7	-	-	-	-	13.8	. 7
20		(D)	(D)	(D)	(D)	-	-	-	$:$	(D)	(D)
22 23		-	-	-	(D)	-	-	-	-	(D)	(D)
24 25	Lumber and wood products \qquad Furniture and fixtures \qquad	(D)	(D)	-	:	-	-	:	:	(D)	(D)

Table 6. Consumption and End-of-Year Stocks of Selected Purchased Fuels by Major Industry Group for Standard Metropolitan Statistical Areas: 1981-Con.

Table 6. Consumption and End-of-Year Stocks of Selected Purchased Fuels by Major Industry Group for Standard Metropolitan Statistical Areas: 1981-Con.
[For meaning of abbreviations and symbols, see introductory text. For explanation of terms, see appendixes]

Table 6. Consumption and End-of-Year Stocks of Selected Purchased Fuels by Major Industry Group for Standard Metropolitan Statistical Areas: 1981-Con.

Table 6. Consumption and End-of-Year Stocks of Selected Purchased Fuels by Major Industry Group for Standard Metropolitan Statistical Areas: 1981-Con.

[^12]Table 6. Consumption and End-of-Year Stocks of Selected Purchased Fuels by Major Industry Group for Standard Metropolitan Statistical Areas: 1981-Con.
[For meaning of abbreviations and symbols, see introductory text. For explanation of terms, see appendixes]

$\underset{\text { code }}{\text { SIC }}$	Geographic area and industry group	Fuel oil ${ }^{1}$				Bituminous coal, lignite, and anthracite		Coke and breeze		Liquefied petroleum gases	
		Distillate		Residual		$\begin{array}{r} \text { Consumption } \\ \text { (1,000 } \\ \text { short } \\ \text { tons) } \\ \hline \end{array}$	$\begin{gathered} \text { Stocks } \\ \text { (1,000 } \\ \text { Short } \\ \text { tons) } \end{gathered}$	$\begin{array}{r} \text { Consumption } \\ \text { (1,000 } \\ \text { short } \\ \text { tons) } \end{array}$	$\begin{gathered} \text { Stocks } \\ (1,000 \\ \text { short } \\ \text { tons) } \\ \hline \end{gathered}$	Consumption (million pounds)	Stocks (million pounds)
		$\begin{array}{r} \text { Consumption } \\ (1,000 \\ \text { barrels) } \end{array}$	$\begin{array}{r} \text { Stocks } \\ (1,000 \\ \text { barrels) } \end{array}$	Consumption (1,000 barrels)	$\begin{array}{r} \text { Stocks } \\ (1,000 \\ \text { barrels) } \end{array}$						
	Charleston, W. Va. ---------------	(D)	33.4	(D)	(D)	658.4	98.6	(D)	(D)	(D)	(D)
$\begin{aligned} & 20 \\ & 28 \\ & 32 \end{aligned}$	Food and kindred products \qquad Chemicals and allied products Stone, clay, and glass products. \qquad	(D)	$\begin{aligned} & \text { (D) } \\ & \text { (D) } \end{aligned}$	(D)	(D)	658.4	98.6	(D)	(D)	(D)	(D)
	Charlotte-Gastonla, N.C. -----------	99.7	46.1	316.0	96.9	(D)	(D)	(D)	(D)	8.9	3.2
20	Food and kindred products .	15.1	2.0	80.9	6.0			-	-	(D)	(D)
22	Textile mill products -------	6.4	8.2	103.9	27.8	(D)	(D)	-	-	. 2	(D)
23	Apparel and other textile products			(D)	(D))	-	-	(D)	(D)
24 26	Lumber and wood products .---------	(D)	(D)	(D)	(D)	-	-	.	-	(D)	(D)
27	Printing and publishing .-		(D)			-	-	-	-	(D)	(D)
28	Chemicals and allied products ---	9.0	2.1	(D)	(D)	-	-	-	-	(D)	(D)
30	Rubber and miscellaneous plastics products	(D)	(D)	(D)	(D)	-	-	-	-		
34 35	Fabricated metal products------------------------ ${ }^{\text {Machinery, }}$ - except electrical	(D) 2.4	(D)	(D)	(D)	.	-	-	-	(D)	(D)
36 37	Electric and electronic equipment Transportation equipment \qquad	(D)	(D)	(D)	(D)	-	-	-	-	(D)	(D)
39	Miscellaneous manufacturing industries .---			(S)				-		(S)	
	Chattanooga, Tenn.-Ga.	21.1	9.7	83.7	24.7	82.3	10.3	(D)	(D)	3.5	. 7
20 22	Food and kindred products Textile mill products	(D)	(D)	(D)	(D)	(D)	(D)	-	-	(D)	(D)
23	Apparel and other textile products				(D)	(D)		-	-	(D)	
24	Lumber and wood products ------	(D)	(D)	(D)	(D)	-	-	-	-	-	
26	Paper and allied products .-----	(S)	(D)	(D)	(D)			-	-	-	
28 32	Chemicals and allied products Stone, clay,	(D)	(D)	(D)	(D)	(D)	(D)	-	-	-	
33	Primary metal industries.-.---	(D)	(D)	-	-	(D)	(D)	(D)	(D)	(D)	(D)
34	Fabricated metal products.-	1.4	(D)		-		-			(D)	(D)
36	Electric and electronic equipment	(D)	(D)	8	. 1	-	-	-	-	(D)	(D)
	Chicago, III. ----------	606.6	149.1	833.2	312.7	873.1	239.0	927.7	30.8	33.0	3.4
20	Food and kindred products	(D)	5.9	96.7	27.9	(D)	(D)	-	-	(D)	(D)
22 23	Textile mill products ---------------	(D)	(D)	(D)	(D)	(D)	(D)	-	-	-	
25	Furniture and fixtures --------	(D)	. 2	(D)	(D)	(D)		,		(D)	(D)
26	Paper and allied products --	40.5	4.7	(D)	(D)	-		-		2.1	. 2
27	Printing and publishing	95.1	(D)	(D)	(D)	(D)	(D)	-		(D)	(D)
28 29	Chemicals and allied products	11.5	10.9	95.8	68.3	(D)	(D)		-	8.2	(1)
30	Rubber and miscellaneous plastics products ---	6.1	(D)	16.2	10.4	-		-	:	(D)	(${ }^{\text {. }} 1$
31	Leather and leather products .----.----------					-		-			
32	Stone, clay, and glass products.	(D)	13.7	3.3	4.8	(D)	(D)	(D)	(D)	. 7	. 1
33	Primary metal industries---	115.2	(D)	2.5	2						
34	Fabricated metal products	77.3	12.3	135.3	25.4					3.8	. 3
35	Machinery, except electrical -----	44.7	10.5	104.8	6.2	(D)	(D)	-		3.6	(z)
36	Electric and electronic equipment	15.3	9.7	58.6	18.7	(D)	(D)			. 2	(Z)
37	Transportation equipment -----	71.0	4.7	20.5	(D)	(D)	(D)	-	-	2.4	. 1
38 39	Instruments and related products ----------- Miscellaneous manufacturing industries	[12.6	(D)	(D)	(D)			-	-	-	
	CIncinnati, Ohlo-Ky.-Ind. ----------	86.9	87.0	265.0	48.7	626.6	80.9	(D)	-	10.0	2.3
20	Food and kindred products .------	(D)	(D)	(D)	(D)	114.1	(D)	-	-	1.5	. 2
22 23	Textile mill products --------------	(D)	(D)		-	(D)	(D)	-	-	-	
24	Lumber and wood products .----				-	-	-	-	-	(D)	(Z)
25	Furniture and fixtures ------------	-				(D)	(D)	-	-	(D)	(D)
26	Paper and allied products ----	(D)	7.1	(D)	(D)	(D)	(D)	-	-	(D)	(D)
27	Printing and publishing--.---.-	(D)	(D)	(D)	(D)	(D)	(D))	-	(D)	(D)
28	Chemicals and allied products --------------	(S)	(S)	(S)	(S)	(S)	(S)	(D)	-	(D)	(D)
29 30	Petroleum and coal products ------------- Rubber and miscellaneous plastics products	(D)	(D)	(D)	(D)	(D)	(D)	-	-	(D)	(D)
30	Rubber and miscellaneous plastics products .-	(D)	(D)	(D)	(D)	(D)	(D)		-	(D)	(D)
31	Leather and leather products --				-	-				-	
32	Stone, clay, and glass products --	. 8	3.1)	-	-	-	-	-	-	
33	Primary metal industries ----------	(D)	5.4	$-$	-	-	-	-	-	1.4	(D)
34	Fabricated metal products.-	11.5	. 9	(D)	(D)	(D)	(D)	-	-	. 4	(D)
35	Machinery, except electrical	10.7	8.6	(D)	(D)	(D)	(D)	-	-	1.4	. 3
36	Electric and electronic equipment -------	(D)	1.9	-	-	(D)	(D)	-	-	-)
37	Transportation equipment	(D)	(D)	(D)	(D)	(D)	(D)	-	-	(D)	(D)
38 39	Instruments and related products \qquad Miscellaneous manufacturing industries \qquad	(D)	(D)	(D)	(D)	(D)	(D)	-	-	(D)	(D)
	Clarksville-HopkInsville, Tenn.-Ky.----	(D)	(D)	(D)	(D)	-	-	-	-	3.9	(D)
34	Fabricated metal products----						-	-	-		

Table 6. Consumption and End-of-Year Stocks of Selected Purchased Fuels by Major Industry Group for Standard Metropolitan Statistical Areas: 1981-Con.
[For meaning of abbreviations and symbols, see introductory text. For explanation of terms, see appendixes]

See footnotes at end of table.

Table 6. Consumption and End-of-Year Stocks of Selected Purchased Fuels by Major Industry Group for Standard Metropolitan Statistical Areas: 1981-Con.

Table 6. Consumption and End-of-Year Stocks of Selected Purchased Fuels by Major Industry Group for Standard Metropolitan Statistical Areas: 1981-Con.
[For meaning of abbreviations and symbols, see introductory text. For explanation of terms, see appendixes]

$\underset{\text { Sode }}{\text { SIC }}$	Geographic area and industry group	Fuel oil				Bituminous coal, lignite, and anthracite		Coke and breeze		Liquefied petroleum gases	
		Distillate		Residual		Consumption (1,000 short tons)	Stocks (1,000 short tons)	Consumption $(1,000$ short tons)	Stocks (1,000 short tons)	Consumption (million pounds)	Stocks (million pounds)
		$\begin{array}{r} \text { Consumption } \\ (1,000 \\ \text { barrels) } \end{array}$	Stocks (1,000 barrels)	$\begin{array}{r} \text { Consumption } \\ (1,000 \\ \text { barrels) } \end{array}$	$\begin{array}{r} \text { Stocks } \\ (1,000 \\ \text { barrels) } \end{array}$						
	Detrolt, Mlch. --	437.4	81.0	514.3	92.7	1330.9	338.8	(D)	(D)	(D)	(D)
20	Food and kindred products	(D)	(D)	(D)	(D)		-	-	-	(D)	(D)
23	Apparel and other textile products	(D)	(D)	(D)	(D)	(D)	(D)			(D)	(D)
25	Furniture and fixtures -------.-...	(D)			-					(D)	
26 27	Paper and allied products Printing and publishing----------	(D)	(D)	(D)	(D)	-	-	-		(9	(${ }^{-1}$
28	Chemicals and allied products .--	(D)	(D)	(D)	(D)	(D)	(D)	-	-	(D)	(D)
29 30		(D)	(D)	(D)	(D)	(D)	-	-		(D)	
30 32 3	Rubber and miscellaneous plastics products Stone,	4.4	(D)	-	-	(D)	(D)	-	-	(D)	(D)
33	Primary metal industries-.-----------------------	(D)	$\stackrel{\text { (D) }}{ } .5$	(D)							
34	Fabricated metal products	(D)	3.1	(D)	(D)	(D)	(D)	-	-	(D)	(D)
35 36	Machinery, except electrical ------ Electric and electronic equipment	(D)	(D)	(D)	(D)	(D)	(D)	-		3.6	. 2
37	Transportation equipment ------	(D)	(D)	(D)	(D)	345.4	97.0	-		(D)	(D)
38 39	Insiruments and related products ------ Miscellaneous manufacturing industries	(D)	(D))	-	-	-	-	(D)	(D)
	Dubuque, lowa .	(S)	(S)	-	-	(D)	(D)	(D)	(D)	(S)	(S)
	Duluth-Superior, Minn.-WIs.	39.1	3.7	13.1	(D)	-	-	-	-	(D)	(D)
20	Food and kindred products.	(D)	(D)	(D)	(D)	-	-	-	-	(D)	(D)
24 27	Lumber and wood products	(D)	(D)	(D)	(D)	-	-		-	(D)	
28	Chemicals and allied products	(D)	(D)	(D)	(D)	-	-	-	-	(D)	
32	Stone, clay, and glass products	(D)	(D)			-	-				
33	Primary metal industries..	(D)	(D)	-	-	-	-	*	-	(D)	(D)
34 35	Fabricated metal products-1 Machinery, except electrical	(D)	(D)	-	-	-	-	-	-	-	
	Eau Clalre, WIs.	13.9	5.2	(D)	11.6	(D)	(D)	-	-	3.6	. 3
20 26	Food and kindred products _Paper and allied products	(D)	(D)	(D)	(D)	(D)	(D)	-	-	(D)	(D)
	El Paso, Tex...	(D)	(D)	-	-	(D)	(D)	(D)	(D)	(D)	(D)
20 23	Food and kindred products Apparel and other textile products	(D)	(D)	-	-	-	-	-	-	-	
24	Lumber and wood products .-----	-	-	-	-	-	-	-		-	
27	Printing and publishing ----------	-	-	-	-	-	-				
32 33	Stone, clay, and glass products .-	(D)	(D)	-	-	(D)	(D)	(D)	(D)	-	
34	Fabricated metal products---	(D)	(D)			(D)	(D)	(D)	(D)		
	Elmira, N.Y.	(D)	2.2	89.2	2.5	(D)	(D)	-	-	(D)	(D)
35	Machinery, except electrical	-	-	-	-		-	-	-	-	
	Erle, Pa.	29.9	12.1	37.1	(D)	(D)	(D)	(D)	(D)	1.0	. 2
20	Food and kindred products	(D)	-	(D)	(D)	-	-	-	-	(D)	(D)
24 25	Lumber and wood products -------	(D)	-	-		-	-	-	-	(D) ${ }^{-}$	(D)
28	Chemicals and allied products.	(D)	(D)	-	-))	-		(D)	(D)
30	Rubber and miscellaneous plastics products	(D)	(D)	-	-	(D)	(D)	-)	
32	Stone, clay, and glass products.---)	(D))))	-	- ${ }^{-}$	-	-	
33	Primary metal industries--------	(D)	(D)	(D)	(D)	(D)	-	(D)	(D)	(D)	
34	Fabricated metal products----------	(D)	(D)	(D)	(D)	-	-	(D)	(D)	(D)	(D)
35 36	Machinery, except electrical -------- Electric and electronic equipment	(D)	(D)	-	-	-	-	(D)	(D)	(D)	(D)
38	Instruments and related products -	-	(D)	-	(D)	-	-	-	-	-	
	Eugene-Springfield, Oreg. ---------	30.2	5.0	101.6	17.6	-	-	-	-	8.0	1.4
20 24	Food and kindred products Lumber and wood products	(D) ${ }^{-}$	1.9	(D)	(D) ${ }^{-}$	-	-	-	-	(D)	(D)
28	Chemicals and allied products	(D)	(D)	(D)	(D)	-	-	-	-	-	
34	Fabricated metal products----	-	(D)		(D)	-	-	-	-	(D)	
35	Machinery, except electrical .-		-			-	-	-	-	(D)	
	Evansville, Ind.-Ky.-	34.5	(D)	119.9	14.6	352.6	(D)	-	-	2.2	10.7
20	Food and kindred products --	(D)	(D)	(D)	(D)	31.8	9.6	-	-	(D)	(Z)
24	Lumber and wood products				(-	-	-	-		
25	Furniture and fixtures ----------------------	(D)	(D)	-	-	-	-	-	-	-	
27 30	Printing and publishing--.------------------ Rubber and miscellaneous plastics products	(D)	(D)	-	(D)	-	-	-	-	(D)	(D)
34	Fabricated metal products	-	-	(D)	(D)		(D)	-	-	(D)	(D)
35 39	Machinery, except electrical Miscellaneous manufacturing industries.------		-	(D)	(D)	(D)	(D)	-	-	(D)	(D)

See footnotes at end of table.

Table 6. Consumption and End-of-Year Stocks of Selected Purchased Fuels by Major Industry Group for Standard Metropolitan Statistical Areas: 1981-Con.
[For meaning of abbreviations and symbols, see introductory text. For explanation of terms, see appendixes]

Table 6. Consumption and End-of-Year Stocks of Selected Purchased Fuels by Major Industry Group for Standard Metropolitan Statistical Areas: 1981-Con.
[For meaning of abbreviations and symbols, see introductory text. For explanation of terms, see appendixes]

Table 6. Consumption and End-of-Year Stocks of Selected Purchased Fuels by Major Industry Group for Standard Metropolitan Statistical Areas: 1981-Con.
[For meaning of abbreviations and symbols, see introductory text. For explanation of terms, see appendixes]

Table 6. Consumption and End-of-Year Stocks of Selected Purchased Fuels by Major Industry Group for Standard Metropolitan Statistical Areas: 1981-Con.
[For meaning of abbreviations and symbols, see introductory text. For explanation of terms, see appendixes]

Table 6. Consumption and End-of-Year Stocks of Selected Purchased Fuels by Major Industry Group for Standard Metropolitan Statistical Areas: 1981-Con.

Table 6. Consumption and End-of-Year Stocks of Selected Purchased Fuels by Major Industry Group for Standard Metropolitan Statistical Areas: 1981-Con.
[For meaning of abbreviations and symbols, see introductory text. For explanation of terms, see appendixes]

[^13]Table 6. Consumption and End-of-Year Stocks of Selected Purchased Fuels by Major
Industry Group for Standard Metropolitan Statistical Areas: 1981-Con.

Table 6. Consumption and End-of-Year Stocks of Selected Purchased Fuels by Major Industry Group for Standard Metropolitan Statistical Areas: 1981-Con.
[For meaning of abbreviations and symbols, see Introductory text. For explanation of terms, see appendixes]

Table 6. Consumption and End-of-Year Stocks of Selected Purchased Fuels by Major Industry Group for Standard Metropolitan Statistical Areas: 1981-Con.

Table 6. Consumption and End-of-Year Stocks of Selected Purchased Fuels by Major Industry Group for Standard Metropolitan Statistical Areas: 1981-Con.

$\underset{\text { code }}{\text { SIC }}$	Geographic area and industry group	Fuel oil'				Bituminous coal, lignite, and anthracite		Coke and breeze		Liquefied petroleum gases	
		Distillate		Residual		Consumption (1,000 shor tons)	$\begin{gathered} \text { Stocks } \\ \text { (1,000 } \\ \text { short } \\ \text { tons } \end{gathered}$	$\begin{array}{r} \text { Consumption } \\ \text { (1,000 } \\ \text { short } \\ \text { tons) } \end{array}$	$\begin{gathered} \text { Stocks } \\ \text { (1,000 } \\ \text { short } \\ \text { tons) } \end{gathered}$	Consumption (million pounds)	Stocks (million pounds)
		Consumption (1,000 barrels)	$\begin{array}{r} \text { Stocks } \\ (1,000 \\ \text { barrels) } \end{array}$	Consumption (1,000 barrels)	$\begin{array}{r} \text { Stocks } \\ (1,000 \\ \text { barrels) } \end{array}$						
	Milwaukee, WIs.-Con.										
33	Primary metal industries_-	11.5	6.1	(D)	(D)	-		(D)	(D)	2.1	1.8
34	Fabricated metal products.	2.4	9.5	(D)	13.1		(D)		(D)	1.6	4.1
35	Machinery, except electrical -	(S)	(S)	(S)	(S)		(D)	(D)	(D)	(S)	(S)
36	Electric and electronic equipment -----------------------	(D)	12.4	(D)	(D)					(D)	. 5
37 38	Transportation equipment ---------------------------------------		(D)	(D)	(D)			:		(D)	(D)
39	Miscellaneous manufacturing industries-------------------------	(D)	(D)		-	(D)	(D)	-	-	(D)	(D)
	Minneapolls-St. Paul, MInn.-Wls.---------------	110.7	64.5	378.8	(D)	61.2	(D)	(D)	(D)	36.5	(D)
20	Food and kindred products	20.7	14.1	40.4	(D)	(D)	(D)	-		14.5	5.4
23	Apparel and other textile products ----------------------------------						:	-			
24	Lumber and wood products .-----	4.4	. 5	(D)	(D)					(D)	(D)
25	Furniture and fixtures .-----									(D)	(Z)
26	Paper and allied products -------------------------------	6.8	11.4	(D)	(D)	-	-	-	-	8	(D)
27	Printing and publishing ----------------------------------	(D)	1.8	(D)	(D))	(D)			(D)	
28 30 30	Chemicals and allied products --------------------------	$\begin{array}{r}1.7 \\ 8 \\ \hline 8\end{array}$	2.4 2.4	(D)	(D)	(D)	(D)	-	-	. 5	(D)
32	Stone, clay, and glass products-----------------------------	(D)	(D)	107.8	15.5			.		(D)	(D)
33	Primary metal industries	(D)	(D)	\bigcirc		-	-	(D)	(D)	6.6	1.0
34	Fabricated metal products-	4.7	2.9	33.9	9.3)	(D)		(D)	(D)
35	Machinery, except electrical -------------------------	7.9	12.9	6.5	1.9		(D)	-		3.8	2.2
36 38	Electric and electronic equipment ---------------------------------	9.0	2.1	(D)	(D)	-	-	:	-	1.9	(D)
39	Miscellaneous manufacturing industries------------------------	(D)	(D)		(D)		.	-	-	(D)	(D)
	Mobile, Ala. -	50.0	12.8	320.1	93.0	(D)	(D)	(D)	(D)	1.5	. 3
20 24	Food and kindred products----------------------------	-	-	-	-	-	-	-	-	(D)	(D)
26	Paper and allied products --	-	(D)	(D)	(D)	(D)	(D)	-		(D)	(D)
28	Chemicals and allied products	23.9	9.4	(D)	(D)			-		(D)	(D)
33	Primary metal industries.-.--	(D)	(D)							(D)	(D)
34	Fabricated metal products--------------------------------	-	(i)	-	-	-	-	-	-		
$\begin{aligned} & 35 \\ & 37 \end{aligned}$	Machinery, except electrical -- Transportation equipment	(D)									
	Modesto, Callf.	(D)	(D)	(D)	17.0	-	-	-	-	1.3	(D)
20	Food and kindred products	(D)	(D)	(D)	(D)	-	-	-	-	(D)	(D)
34	Fabricated metal products---					-	-	-	-	(D)	(D)
	Montgomery, Ala.	44.4	(D)	2.2	1.8						
20	Food and kindred products -----------------------------	(D)	(i)	(D)	(D)	-	-	-		(D)	(D)
22 24	Textile mill products ---	(D)	(D)	-	-	-	-	-	-	(D)	(D)
29	Petroleum and coal products --	6.2	(3	(D)	(D)	-	-	-	-	(D)	
34	Fabricated metal products---		.	-	-	-	-	-	-	(D)	(D)
35 37	Machinery, except electrical \qquad Transportation equipment \qquad	(D)	(D)	(D)	(D)	-	:	(D)	(D)	(D)	(D)
	Muncle, Ind.-	6.2	(D)	2.0	. 5						
33 34		(D)	(D)	:	-	-	-	(D)	(D)	(D)	(D)
	Muskegon-Norton Shores-Muskegon Helghts, Mlch.	1.2	(D)								
20	Food and kindred products -----------------------------	-	-	-	-	-	-	-	-	-	
25 28 28	Furniture and fixtures --- Chemicals and allied products	(D)	(D)	:	-	-	-	-	-	:	
33	Primary metal industries	(D)	(D)	-	:	-	-	(D)	(D)	-	
$\begin{array}{r}34 \\ 35 \\ \hline\end{array}$	Fabricated metal products------------------------------		(D)	-	-	-	-	-	-	(D)	(D)
35 37	Machinery, except electrical Transportation equipment	(D)	(D)	:	-	-	-	-	-	(D)	(D)
	Nashua, N.H. ------------------------------------	51.0	17.3	193.8	31.5	-	-	-	-	8.4	. 7
24	Lumber and wood products ---------------------------	(D)	(D)	-	-	-	-	-	-	-	
25	Furniture and fixtures -----------------------------------	(D)	(D)	-	-	-	-	-	-	-	
27	Printing and publishing ---------------------------------		(D)	(i)	(D)	-	-	-	-	(D)	
30 32	Rubber and miscellaneous plastics products -------------------------- Stone,	(D)	(D)	(D)	(D)	-	-	-	:	(D)	(D)
								-			(D)
33 34	Primary metal industries_--	3.4	.3	-	-	-	:	-	-	(D)	(D)
35	Machinery, except electrical ---	(S)	(S)	(D)	(D)	-	-	-	-	(D)	(D)
36		(D)	(D)	(D)	(D)	-	-	-	-		
39	Miscellaneous manufacturing industries -----------------------	(D)	(D)								

[^14]Table 6. Consumption and End-of-Year Stocks of Selected Purchased Fuels by Major Industry Group for Standard Metropolitan Statistical Areas: 1981-Con.

$\underset{\text { SIC }}{\operatorname{code}}$	Geographic area and industry group	Fuel oil ${ }^{\text {l }}$				Bituminous coal, lignite, and anthracite		Coke and breeze		Liquefied petroleum gases	
		Distillate		Residual		$\begin{array}{\|r} \text { Consumption } \\ \text { (1,000 } \\ \text { short } \\ \text { tons) } \\ \hline \end{array}$	$\begin{array}{r} \text { Stocks } \\ \text { (1,000 } \\ \text { short } \\ \text { tons) } \end{array}$	$\begin{array}{r} \text { Consumption } \\ \text { (1,000 } \\ \text { short } \\ \text { tons) } \\ \hline \end{array}$	$\begin{gathered} \text { Stocks } \\ \text { (1,000 } \\ \text { short } \\ \text { tons) } \end{gathered}$	Consumption(millionpounds)	$\begin{array}{r} \text { Stocks } \\ \text { (million } \\ \text { pounds) } \end{array}$
		Consumption (1,000 barrels)	$\begin{array}{r} \text { Stocks } \\ \text { (1,000 } \\ \text { barrels) } \end{array}$	$\begin{array}{r} \text { Consumption } \\ (1,000 \\ \text { barrels) } \end{array}$	$\begin{array}{r} \text { Stocks } \\ \text { (1,000 } \\ \text { barrels) } \end{array}$						
	Nashville-Davidson, Tenn. --------------------	73.4	24.9	46.6	19.7	(D)	(D)	(Z)	(D)	13.9	3.0
20		(D)	(D)	(D)	(D)		-	-	-	1.8	(D)
23	Apparel and other textile products -------------------		(D)		(D)				-	1.5	
25 26		(D)	(D)		(D)				-	1.5	
27		(D)	(D)							(D)	(D)
29	Petroleum and coal products ---------------------------	(D)	(D)						-	-	
30	Rubber and miscellaneous plastics products ----------			(D)	(D)				-	-	
31	Leather and leather products ------------------------						(D)	:	-	(D)	
32 33	Stone, clay, and glass products .--	18.8	1.3	(D)	(D)	(D)	(D)	:	-	(D)	(D)
34	Fabricated metal products------------------------------					-		-	-	(S)	(S)
35		(D)	(D)	(D)	(D)	-		-	-	1.2	(D)
36		2.4	(D)	(D)	(D)	-	-	(z)	(D)	1.2	
37 38	Transportation equipment --------------------------------------- ${ }_{\text {Instruments }}$ Ind	(D)	(D)			,		(Z)	(D)	(D)	(D)
	Nassau-Suffolk, N.Y.---------------------------	292.8	46.7	379.7	28.0	(D)	(D)	-	-	3.8	
20	Food and kindred products	25.1	2.6	(D)	(D)	-	-	-	-	(D)	(D)
23		(D)	(D)	(D)	(D)	.	-		-		
25		(S)	(D)		-	-			-		
26		(D)	(D)	(D)	(D)				-		
27	Printing and publishing ---------------------------------	19.2	1.9	(D)	(D)	-	-	-	-	(D)	(D)
28 29		(S)	(S)	(S)	(D)	,					
30	Rubber and miscellaneous plastics products ---------------	27.4	(D)	(D)	(D)	-	-	-		(D)	(D)
32	Stone, clay, and glass products------------------	(D)	(D)								
33	Primary metal industries-----------------------------	15.0 S	1.1	(D)	(D)	-	-	-		(D)	(D)
34 35		(S)	(S)	(S)	(D)	-	-			(S)	(D)
36	Electric and electronic equipment .--	54.2	5.4	37.1	4.0	(D)	(D)	-		(D)	(D)
38 39	Instruments and related products ---------------------------------	13.9 (S)	1.1 (D)	(D)	(D)		(D)			(D)	(D)
	New Bedford, Mass.	66.4	9.0	160.2	28.9	-	-	-	-	(D)	(D)
20	Food and kindred products .-------------------------	(D)	(D)	(D)	(D)	-	-	-		-	
22 23		(D)	(D)	(D)	(D)						
26	Paper and allied products .-----------------------------------	(D)	(D)	(D)	(D)	-	.				
33		(D)	(D)	10.0	. 8	-	-	-	-	-	
34	Fabricated metal products------	(D)	(D)	(D)	(D)	-	.	-		-	
36	Electric and electronic equipment			(D)	(D)			-			
	New Britaln, Conn. ----------------------------	79.2	8.4	88.2	10.6	-	-	-		(D)	(z)
32	Stone, clay, and glass products .--------------------	-	-	(0)	-	-	-	-		-	
33 34		(D)	(D)	(D)	(D)	-	:	-		,	
35		(D)	(D)	(D)	2.1	-	-	-	-	4	(Z)
36	Electric and electronic equipment .-----						-				
	New Brunswlck-Perth Amboy-Sayreville, N.J. -	426.2	74.0	1777.0	96.3	(D)	(D)	(D)	(D)	11.7	(D)
20	Food and kindred products------------------------------	30.8	2.1	(D)	(D)	-	-	-		(D)	(D)
24 25	Lumber and wood products ---------------------------	(D)	(D)					-		-	
26		29.4	(D)	59.7	(D)		-	-		1.6	(D)
27	Printing and publishing ---	(D)	(D)				-	-		(D)	(D)
28	Chemicals and allied products .-----------------------	(S)	(S)	(S)	(S)	-	-	-		(S)	(S)
29	Petroleum and coal products ------------------------	58.8	(D)				-			(D)	(D)
30	Rubber and miscellaneous plastics products ----------	(D)	(D)	(D)	(D)	-	-	-	-	(D)	(D)
32	Stone, clay, and glass products-----------------------	(D)	(D)	(D)	(D)	-	-	(D)	(D)	- ${ }^{-}$	
33		30.3	2.0	(D)	(D)	-	-	(D)	(D)	1.5	(D)
34	Fabricated metal products-------------------------------	12.2	1.7	(D)	(D)	-	-	-		1.1	(D)
35		(D)	(D)	(D)	(D)	-	-	-		(D)	(D)
36	Electric and electronic equipment ------------------------------	(D)	(9)	(D)	(D)	-	-	-	-	(D)	(D)
38 39	Instruments and related products --------------------	(D)	(D)		(D)	-	-	-	-	(D)	(D)
39	Miscellaneous manufacturing industries .--------------	(D)	(D)	(D)	(D)	-	-	-			
	New Haven-West Haven, Conn. --------------	96.8	9.8	409.3	11.3	-	-	-	-	2.9	
20	Food and kindred products -----------------------------	(D)	(D)	-	-	-	-	-		-	
22 25		-	-	-		-	-	-	-	-	
27	Printing and publishing	(D)	(D)	(D)	(D)	-	:	:	-	:	
28	Chemicals and allied products --------------------------------------	22.3	4.4	(D)	(D)	-	-	:	-	:	
30	Rubber and miscellaneous plastics products .------.--	(D)	(D)	(D)	(D)	-	-	-		-	
33	Primary metal industries-------------------------------	17.8	1.2	35.6	1.2	-	-	-	-	(D)	(D)
34	Fabricated metal products	7.4	(1)	(D)	(D)	-	-	-	-	(D)	(D)
35 36	Machinery, except electrical ----------------------------	(D)	(D)	(D)	(D)	-	-	-	-	-	
36 38	Electric and electronic equipment ---------------------	4.7	(9	(D)	(D)	-	-	-	-	-	
39		(D)	(D)	(D)	(D)				-	-	

Table 6. Consumption and End-of-Year Stocks of Selected Purchased Fuels by Major Industry Group for Standard Metropolitan Statistical Areas: 1981-Con.
[For meaning of abbreviations and symbols, see introductory text. For explanation of terms, see appendixes]

Table 6. Consumption and End-of-Year Stocks of Selected Purchased Fuels by Major Industry Group for Standard Metropolitan Statistical Areas: 1981-Con.

Table 6. Consumption and End-of-Year Stocks of Selected Purchased Fuels by Major Industry Group for Standard Metropolitan Statistical Areas: 1981-Con.
[For meaning of abbreviations and symbols, see introductory text. For explanation of terms, see appendixes]

Table 6. Consumption and End-of-Year Stocks of Selected Purchased Fuels by Major Industry Group for Standard Metropolitan Statistical Areas: 1981-Con.
[For meaning of abbreviations and symbols, see introductory text. For explanation of terms, see appendixes]

Table 6. Consumption and End-of-Year Stocks of Selected Purchased Fuels by Major Industry Group for Standard Metropolitan Statistical Areas: 1981-Con.

Table 6．Consumption and End－of－Year Stocks of Selected Purchased Fuels by Major Industry Group for Standard Metropolitan Statistical Areas：1981－Con．

	\％			ธ＇ธ	क ¢	®「ご	－NTOE	＇	ธ	ธัํ．＇	＇O¢	∞	－$\cdot \cdots$	＇＇ธ．	อ ธ’•	$?$	－＇ธ	■	ธ’ロ	$\stackrel{\sim}{\sim}$	－－ัญ区	－อบอ์
				흥	ธ	¢「あ’	＇¢®ワ	－可	\oplus	－（－）${ }^{\text {a }}$	＇Mo．	\pm	־’○	＇＇o＇	¢ ¢ ${ }^{\text {¢ }}$	$\stackrel{\sim}{\sim}$	－	ธ	＇＇号	$\stackrel{ \pm}{ \pm}$	＇＇－ั－	으ำ
				－• •	－$\overline{0}$	－•	＇ธ＇＇	＇\cdot＇	－	－	－	¢	¢＇${ }^{\text {T }}$	＇${ }^{\prime}$	（드＇	－	\cdots	－	＇\cdot •	ธ	－	－
					－$\overline{0}$		$' \text { ' }$		－	－•	＇＇	¢	O$^{\prime \prime} \cdot$	－＇	¢ ¢＇	－	＇\cdot	－	－	ธ	－\cdot	－•
				＇ธ＇	－	－＇	－••○	＇包	ธ๐	－• •	－＇－－	－	－	＇\cdot	－• \cdot	ธ	$\underline{\square}^{\prime}$	＇		\％	＇＇ธ＇	ธ＇ธัอธ
				＇ธ＇	－	－	＇${ }^{\text {¢ }}$	＇包	ธ	－•••	－•＇	－	，	＇＇	¢ $\cdot \cdots$	ธ	¢＇•	－		$\stackrel{\text { N }}{\underset{N}{\prime}}$	＇＇包	－ํํํ
				＇＇®＇	（¢）	¢！${ }^{\text {¢ }}$	－＇＇ธับ	ํㅡㅁ		＇＇ธ＇	＇可＇＇	\％	อ¢ ${ }^{\text {co }}$	＇${ }^{\prime}$	ธ ¢＇	ธ	$\underline{0}^{\prime}$		－＇	$\stackrel{\infty}{\infty}$	－豕＇	
				＇${ }^{\text {º＇}}$	(¢＇ ¢ $^{\text {¢ }}$	-'号'	－อ－	－i	＇＇${ }^{\text {¢ }}$	＇＇o－b	$\stackrel{\circ}{\mathrm{N}}$	ธั．${ }^{\text {co }}$	＇＇	¢ $\cdot \cdots$	믕	$\underline{\sim}^{\prime \prime}$	ㄷ	－＇	ธ	＇＇它＇	$\stackrel{\text { ® }}{ }^{\prime \prime}$
$\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$				＇ธ＇ธ	あ	ロ＇ธับ	－¢－บํ ${ }^{\infty}$	ธฺ－	¢	＇• •＇	＇${ }^{\text {－}}$	밍	응＇＇		¢ $\cdot \cdots$	밍	－＇•	¢	－ธ．	$\stackrel{\text { ¢ }}{\stackrel{\circ}{\circ}}$	＇包’อ¢	
				＇ロ＇ロ	ㅁ	合' '	－¢－9\％	อออ	\％	＇＇＇＇＇	＇－¢̣o	ธ	区－¢ ${ }^{\text {－}}$	包＇	〇．$\cdot \cdots$	뭉	－＇	ธ¢	－อ＇	$\begin{aligned} & \underset{\infty}{8} \\ & \hline \end{aligned}$	＇ロ＇ロ＇	ハัํ＂
	O.			సల్ల్ల్ల		ำพำ	¢			ㅇNN：	N్లল్లుল్లn		ำกNํ	প্ల్ֵలుల్ల			－Nన్ల్ల		－${ }^{\text {Na }}$		N゙NN゚N	

[^15]Table 6. Consumption and End-of-Year Stocks of Selected Purchased Fuels by Major Industry Group for Standard Metropolitan Statistical Areas: 1981-Con.

See footnotes at end of table.

Table 6. Consumption and End-of-Year Stocks of Selected Purchased Fuels by Major Industry Group for Standard Metropolitan Statistical Areas: 1981-Con.

$\underset{\text { code }}{\text { SIC }}$	Geographic area and industry group	Fuel oil				Bituminous coal, lignite, and anthracite		Coke and breeze		Liquefied petroleum gases	
		Distillate		Residual		Consumption (1,000 short tons)	$\begin{gathered} \text { Stocks } \\ \text { (1,000 } \\ \text { short } \\ \text { tons) } \end{gathered}$	Consumption $(1,000$shorttons)	$\begin{gathered} \text { Stocks } \\ (1,000 \\ \text { short } \\ \text { tons) } \end{gathered}$	Consumption (million pounds)	$\begin{gathered} \text { Stocks } \\ \text { (millior } \\ \text { pounds } \end{gathered}$
		Consumption (1,000 barrels)	$\begin{array}{r} \text { Stocks } \\ \text { (1,000 } \\ \text { barrels) } \end{array}$	Consumption (1,000 barrels)	$\begin{array}{r} \text { Stocks } \\ \text { (1,000 } \\ \text { barrels) } \end{array}$						
	San Francisco-Oakland, Calif.-Con.										
33	Primary metal industries	(D)	(D)		(D)			(D)	(D)		(D)
34	Fabricated metal products.			(D)	(D)	-		(D)	(D)	. 9	(D)
35		(D)	(D)	(D)		-			-	(D)	(D)
$\begin{array}{r}36 \\ 37 \\ \hline\end{array}$:	-					
37 38 38	Transportation equipment --	3.4	(D)		-	-		-	-	(D)	$\begin{aligned} & \text { (D) } \\ & \text { (D) } \end{aligned}$
39	Miscellaneous manufacturing industries -----------------------									(D)	(Z)
	San Jose, Callf. ---------------------------------	157.4	18.5	1.8	(D)	(D)	(D)	-	-	6.0	2.1
20	Food and kindred products	(D)	(D)	-	-	-	-	-	-	2.6	
23 25	Apparel and other textile products ----------------------------------- Furniture and fixtures			-	-	-				-	
27	Printing and publishing ------------	(D)	(D)	-	-	-	-		-	(D)	(D)
28	Chemicals and allied products ---------------------------------------		(D)	-	(D)	-					
29	Petroleum and coal products -----------------------			-	-	-	-	-	-	-	
30	Rubber and miscellaneous plastics products ------------------	(D)	(D)	(D)	(D)	(D)	(D)	-	-	(D)	
32 33		129.0	3.8	(D)	(D)	(D)	(D)		-	(D)	(D)
34	Fabricated metal products--		(D)			-			-	(D)	
35	Machinery, except electrical -------------------------	(D)	(D)	(D)	(D)	-	-	-	-	(D)	(D)
36 37			(D)	(D)	(D)	-	-		-	(D)	(D)
37 38	Transportation equipment -- Instruments	(D)	(D)	-	-	-		-	-	(D)	$\begin{aligned} & \text { (D) } \\ & \text { (D) } \end{aligned}$
39	Miscellaneous manufacturing industries ---------------------------			-	-	-		-	:	-	
	Santa Barbara-Santa Marla-Lompoc, Calif. ----	(S)	-	(D)	(D)	-	-	(S)	(S)	(S)	(D)
35	Machinery, except electrical ----------------------------	-	-	-	-	-	-	-	-	-	
$\begin{aligned} & 36 \\ & 38 \end{aligned}$	Electric and electronic equipment Instruments and related products	-	-	-	-	-	-	-	-	-	
	Santa Cruz, Calif.	(D)	(D)	(D)	(D)	-	-	-	-	(S)	(S)
$\begin{aligned} & 20 \\ & 30 \end{aligned}$	Food and kindred products \qquad Rubber and miscellaneous plastics products \qquad	(D)	(D)	-	-	-	-	-	-	(D)	$\begin{aligned} & \text { (D) } \\ & \text { (D) } \end{aligned}$
	Sarasota, Fla. ------------	(D)	(D)	(D)	(D)	-	-	-	-	(D)	(D)
32	Stone, clay, and glass products ---------------------		-	-	-	-	-	-	-		
	Savannah, Ga.	82.6	25.8	614.0	217.8	(D)	(D)	(D)	(D)	(D)	(D)
20	Food and kindred products ------------------------------	(D)	(D)	(D)	(D)	-	-)	(D)	(D)	(D)
28 29		(D)	(D)	(D)	(D)	-	-	(D)	(D)	(D)	
32		(D)	(D)	(D)	(D)	-	-	-		(D)	(D)
37		(D)	(D)	(D)	(D)	(D)	(D)	-	-	(D)	(D)
	Seattle-Everett, Wash. --------------------------	81.6	40.1	236.3	40.8	(D)	(D)	(D)	(D)	4.2	
20	Food and kindred products ----------------------------	2.5	(D)	(D)	2.5	-	-	-	-	. 6	
22 24	Textile mill products ------------------------------------- ${ }^{\text {Lumber }}$ and wood products		3.	(D)	(D)	-	-	-	-	(D)	(D)
25	Furniture and fixtures .--	46.8	3.2	(D)	(D)	-	:	-	-	(D)	
26	Paper and allied products --		-	(D)	(D)	-	.	-	-	(D)	(D)
27	Printing and publishing ----------------------------------	(D)	(D)	(D)	(D)	-	-	-	-	-	
29 30	Petroleum and coal products ------------------------	(D)	(D)	(-	-	-	-	(D)	
32	Stone, clay, and glass products .------------------------	(D)	(D)	-	-	(D)	(D)	-	-	(D)	(D)
33	Primary metal industries-----------------------------------	(D)	(D)	-	-	(D)	(D)	(D)	(D)	(D)	(D)
34		(S)	(D)	-	-	-	-	-	-	(S)	(S)
35	Machinery, except electrical ----------------------------	1.6	(D)	. 9	(Z)	-	-	-	-	. 2	(Z)
36 37	Electric and electronic equipment ------------------------------------	(D)	(D)		(D)	-	-	:	-	(D)	(D)
39	Miscellaneous manufacturing industries ---------------------------	(D)	(D)	(D)	(D)	-	-	:	-	1.7	
	Sherman-Denison, Tex.-----------------------	2.2	(D)	(D)	(D)	-	-	-	-	(D)	(D)
$\begin{array}{r}20 \\ 23 \\ \hline\end{array}$	Food and kindred products \qquad Apparel and other textile products	(D)	(D)	(D)	(D)	:	-	-	-	(D)	(D)
33	Primary metal industries--		-		-	-	-	-	-	-	
	Shreveport, La. ---------------------------------	(D)	(D)	(D)	(D)	-	-	-	-	(D)	(D)
20	Food and kindred products -----------------------------		-	-	-	-	-	-	-	-	
24 27		(D)	(D))	-	-	-	-	-	(D)	(D)
28		(D)	(D)	(D)	(D)	-	-	-	-	(D)	
32	Stone, clay, and glass products...										

Table 6. Consumption and End-of-Year Stocks of Selected Purchased Fuels by Major Industry Group for Standard Metropolitan Statistical Areas: 1981-Con.
[For meaning of abbreviations and symbols, see introductory text. For explanation of terms, see appendixes]

$\underset{\text { code }}{\mathrm{SIC}}$	Geographic area and industry group	Fuel oil ${ }^{\text {l }}$				Bituminous coal, lignite, and anthracite		Coke and breeze		Liquefied petroleum gases	
		Distillate		Residual		$\begin{array}{r} \text { Consumption } \\ \text { (1,000 } \\ \text { short } \\ \text { tons) } \end{array}$	$\begin{gathered} \text { Stocks } \\ (1,000 \\ \text { short } \\ \text { tons) } \end{gathered}$	Consumption (1,000 tons)	$\begin{gathered} \text { Stocks } \\ \text { (1,000 } \\ \text { short } \\ \text { tons) } \end{gathered}$	Consumption (million pounds	Stocks(millionpounds)
		Consumption (1,000 barrels)	$\begin{array}{r} \text { Stocks } \\ (1,000 \\ \text { barrels) } \end{array}$	Consumption $(1,000$ barrels) barrels)	$\begin{array}{r} \text { Stocks } \\ (1,000 \\ \text { barrels) } \end{array}$						
	Shreveport, La.-Con.										
$\begin{aligned} & 33 \\ & 34 \\ & 35 \\ & 36 \end{aligned}$	Primary metal industries Fabricated metal products \qquad Machinery, except electrical Electric and electronic equipment	(D)	(D) ${ }^{-}$	-	-	-	-	-	-	(D)	(D)
	Sioux City, lowa-Nebr.--------------------------	2.6	10.6	(D)	(D)	-	-	-	-	(D)	(D)
	Sioux Falls, S. Dak.	24.4	1.7	(D)	(D)	(D)	(D)	-	-	. 5	(D)
	South Bend, Ind.	13.3	3.0	42.2	23.8	(D)	(D)	-	-	(D)	(Z)
20	Food and kindred products	(D)	(D)	-	-	-	-	-	-	(D)	(D)
26	Paper and allied products --			-			-	-	-		
27 30			(D)	(D))	(D))	-	-	-	
30 32	Rubber and miscellaneous plastics products -------------------------- Stone, clay,	(D)	(D)	(D)	(D)	(D)	(D)	-	-	-	
33	Primary metal industries_		-	(D)	(D)		-	-	-	-	
34	Fabricated metal products.-	(D)	(D))	(D)	(D)	-	-	(D)	(D)
35	Machinery, except electrical -------------------------	(D)	(D)))	(D)	(D)	-	-	(D)	(D)
36	Electric and electronic equipment --------------------	(D)	(D)	(D)	(D)					(D)	(D)
	Spokane, Wash.	20.0	(D)	(D)	(D)	-	-	-	-	3.5	. 3
$\begin{aligned} & 20 \\ & 27 \end{aligned}$	Food and kindred products Printing and publishing	-	(D)	-	-	-	-	-	-	(D)	(D)
34	Fabricated metal products--------------------------------------	-					-		-		
	Springfield, IIII.	(D)	(D)	(D)	(D)	-	-	-	-	(D)	(D)
	Springfield, Mo.	(D)	. 2	(D)	(D)	-	-	(D)	(D)	(D)	(D)
20	Food and kindred products---------------------------	-	-	(D)	(D)	-	-	-	-	(D)	(D)
27 28	Printing and publishing --	. 2	(D)	-	-	-	-	-	-	-	
32		.	(D)	-	-	-	-	-	-	-	
35 36	Machinery, except electrical -------------------------------------- Electric and electronic equipment	(D)	(D)	-	-	-	-	-	-	(D)	(D)
	Springfield, Ohlo	(D)	2.3	(D)	(D)	(D)	(D)	(D)	(D)	1.7	1.3
20		-	-	-	-	-	-	-	-	-	
30 34	Rubber and miscellaneous plastics products Fabricated metal products	-	(D)	-	-	-	-	-	-	-	
35	Machinery, except electrical ------------------------------------	(D)	1.1	-	-	-	-	(D)	(D)	.7	(D)
	Springfleld-Chicopee-Holyoke, Mass.-Conn. --	280.6	37.3	391.8	44.4	-	-	(D)	(D)	6.6	. 7
22	Textile mill products -----------------------------------	(D)	(D)	(D)	(D)	-	-	-	-	-	
${ }^{23}$	Apparel and other textile products -------------------	(D)		(D)	(D)	-	-	-	-	(D)	
27	Printing and publishing---	(D)	(D)	13.3	(D)	-	-	-	-	(D)	(D)
30	Rubber and miscellaneous plastics products .---------------------	(D)	(D)	(D)	. 6	-	-	-	-		
33	Primary metal industries_---------------------------------	(D)	(D)	(D)	(D)	-	-)	-	(D)	.1
34		69.2	19.8	(D)	(D)	-	-	(D)	(D)	1.0	(1)
35	Machinery, except electrical ---------------------------	10.6	(D)	27.1	1.2	-	-	(1)	-	(D)	(D)
36	Electric and electronic equipment -------------------------	1.4	(D)	-	-	-	-	-	-	-	
37	Transportation equipment ---------------------------		(D)	-	-	-	-	-	-	-	
38 39	Instruments and related products	(D)	(D)	(D)	1.3	-	-	-	-	-	
	Stamford, Conn. --------------------------------	47.6	4.5	(D)	(D)	-	-	-	-	-	
27	Printing and publishing ------------------------------------	(D)	(D)	-	-	-	-	-	-	-	
28 34		(D)	(D)	-	-	-	-	-	-	-	
36	Electric and electronic equipment -----------------------------------	9.8	(3	(D)	(D)	-	-	-	-	-	
37					(D)	-	-	-	-	-	
38	Instruments and related products -----------------------					-	-		-	-	
	Steubenville-Weirton, Ohio-W, Va.--------.---	117.9	(D)	(D)	(D)	(D)	22.6	(D)	(D)	. 2	(Z)
26	Paper and allied products --------------------------------	-	-		-	-		-	-	-	(D)
27 28		-	-	(D)	-	-	(D)	-	-	(D)	(D)
32	Stone, clay, and glass products-------------------------------------	(D)	(D)	(D)	-	(D)	(D)	-	-	(D)	(D)
34	Fabricated metal products--------------------------------	(D)	(D)	-	-		-	-	-	-	
		(S)	(D)	236.8	33.8	-	-	-	-	2.5	(D)
20	Food and kindred products-------------------------------	(D)	(D)	98.7	28.6	-	-	-	-	1.1	(D)
24 25		(D)	(D)	(D)	(D)	-	-	-	-	-	
30	Rubber and miscellaneous plastics products --------------------	-	-	-	-	-	-	-	-	(D)	(D)
33 34	Primary metal industries--------------------------------	-	-	-	-	-	-	-	-	(D)	(D)
34 36		-	-	-	-	-	-	-	-	(D)	(D)

Table 6. Consumption and End-of-Year Stocks of Selected Purchased Fuels by Major Industry Group for Standard Metropolitan Statistical Areas: 1981-Con.

Table 6. Consumption and End-of-Year Stocks of Selected Purchased Fuels by Major Industry Group for Standard Metropolitan Statistical Areas: 1981-Con.
[For meaning of abbreviations and symbols, see introductory text. For explanation of terms, see appendixes]

Table 6. Consumption and End-of-Year Stocks of Selected Purchased Fuels by Major Industry Group for Standard Metropolitan Statistical Areas: 1981-Con.

Table 6. Consumption and End-of-Year Stocks of Selected Purchased Fuels by Major Industry Group for Standard Metropolitan Statistical Areas: 1981-Con.

$\underset{\text { code }}{\operatorname{SIC}}$	Geographic area and industry group	Fuel oil ${ }^{\text {l }}$				Bituminous coal, lignite, and anthracite		Coke and breeze		Liquefied petroleum gases	
		Distillate		Residual		Consumption (1,000 tons)	$\begin{gathered} \text { Stocks } \\ \text { (1,000 } \\ \text { short } \\ \text { tons) } \end{gathered}$	Consumption (1,000 tons)	$\begin{gathered} \text { Socks } \\ (1,000 \\ \text { short } \\ \text { tons } \end{gathered}$	Consumption (million pounds)	$\begin{array}{r} \text { Stocks } \\ \text { (million } \\ \text { pounds) } \end{array}$
		Consumption (1,000 barrels)	$\begin{array}{r} \text { Stocks } \\ (1,000 \\ \text { barrels) } \end{array}$	Consumption (1,000 barrels)	$\begin{array}{r} \text { Stocks } \\ (1,000 \\ \text { barrels }) \end{array}$						
	Worcester, Mass.-Con.										
30	Rubber and miscellaneous plastics products ----------	4.4	. 5	(D)	(D)	-	-			(D)	(D)
32	Stone, clay, and glass products --------------------------	(D)	(D)	(D)	(D)	-			-	(D)	(D)
33		(S)	(S)						-	(D)	(D)
34	Fabricated metal products--------------------------------	${ }^{26.7}$	5.0 3	(D)	(D)	-			-	(D)	(D)
35 36	Machinery, except electrical -- Electric and electronic equipment	7.8	3	(29.6)	(D)	-			-	. 2	(Z)
	Yakima, Wash. ------------------------------------	(D)	(D)	(D)	(D)	-	-	-	-	(D)	(D)
20	Food and kindred products---	(D)	(D)	-	-	-	-	-	-	(D)	(D)
26	Paper and allied products ---								.		
	York, Pa. ---	117.2	22.8	364.5	26.7	(D)	(D)	(D)	(D)	11.6	(D)
20	Food and kindred products ----------------------------	28.6	3.4	(D)	(D)	-	-	-	-	1.2	. 1
23	Apparel and other textile products -----------------------------------	(D)	(D)	(D)	(D)	-	-	-	-		
25	Furniture and fixtures -----------	(D)	(D)	(D)	(D)	-	(D)	-	-	(D)	(D)
26	Paper and allied products -----------------------------	25.7	5.3	(D)	(D)	(D)	(D)	-	-	(D)	(D)
27 28		(D)	(D)	(D)	(D)	-	-	-	-	(D)	(D)
30	Rubber and miscellaneous plastics products -------------------	(D))	-	-	-	-	-	-		
31	Leather and leather products --------------------------		6.7	(D)	(D)	-)		-	(D)	
32		5.6	6.7	(D)	(D)	-	(D)	-	-	(D)	(D)
33	Primary metal industries---------------------------------	(D)	(D)	17.9	(D)	-	-	(D)	(D)	. 5	
34	Fabricated metal products---------------------------------	(D)	(D)	(D)	(D)	(D)	(D)		-	(D)	(2
35	Machinery, except electrical -------------------------	(D)	(D)	(D)	(D)	(D)	(D)	-	-	(D)	(D)
36 37	Electric and electronic equipment -----------------------------	(D)	(D)					-	-	(D)	(D)
38	Transporiation equipmen --	(D)	-	(D)	(D)	-	-	-	-	(D)	(D)
	Youngstown-Warren, Ohio--------------------	63.6	27.6	(D)	(D)	83.2	9.7	(D)	(D)	3.6	. 3
20	Food and kindred products ------------------------------	-	(D)	-	(D)	-	-	-	-	-	-
27 30	Printing and publishing --------------------------------- Rubber and miscellaneous plastics products	-		-		(D)	-	-	-	-	-
32	Stone, clay, and glass products ----------------------------	(D)	(D)	-	-	(D)	(D)	-	-	(D)	(D)
33		37.9	2.0	(D)	(D)	(D)	(D)	(D)	(D)	. 5	(D)
34	Fabricated metal products_-	(D)	(D)	(D)	(D)	-	-		-	(D)	
35	Machinery, except electrical --------------------------------	(D)	1.2	(D)	(D)	-	-	-	-	(D)	(D)
36	Electric and electronic equipment -------------------------	(D)	(D)		-	-	-	-	-		-

 slocks to be used for heat and power.

APPENDIXA.

Scope and Coverage

BACKGROUND

The manufacturing industries in the United States consume a substantial portion of the coal, fuel oil, natural gas, and electric energy produced in this country. These energy inputs are the primary sources of the heat and power used by the manufacturing sector to produce manufactured products. Data on this important aspect of the domestic economy have been collected and published by the Bureau of the Census for more than six decades. This report presents statistics on quantities and costs of specified fuels used for heat and power, quantity and cost of electric energy purchased, and quantity of electric energy generated less that sold by manufacturing plants in the United States during 1981. In addition, quantities of yearend stocks of selected fuels are presented.

Census reports on quantities of fuels important in manufacturing began with the census of manufactures for 1909. This series has continued to be compiled periodically in subsequent censuses of manufactures for 1914, 1919, 1929, 1937, 1939, 1947, 1954, 1958, 1962 (as part of the 1963 Census of Manufactures), 1967, and 1971 (as part of the 1972 Census of Manufactures). Beginning with the ASM for 1974, detailed fuels and electric energy data have been collected annually.

Data on quantities of electric energy purchased by manufacturers were first collected for 1929 and then for the subsequent census years (listed above). Data on cost of fuels and electric energy were first published for 1929, although some data on costs had been collected in prior censuses. Data on quantity of electric energy generated by manufacturing plants were first compiled for 1939. The data for that year also provided, for the first time, statistics on fuels purchased for heat and power separate from those purchased as materials.

For the intercensal years prior to 1974 , which were covered by the annual survey of manufactures, data on the total cost of fuels purchased, the quantity and cost of purchased electric energy, and the quantity of electricity generated appear in the ASM volumes covering the periods 1950 to 1953,1955 to 1957, 1959 to 1962,1964 to 1966 , and 1968 to 1971. The data for 1972 and 1973 appear in the individual ASM report on fuels and electric energy for 1974 (M74(AS)-4.2).

The 1974 report included, for the first time as part of the ASM, detailed data on the total cost of fuels and total quantity consumed by fuel type: distillate and residual fuel oil; bituminous coal, lignite, and anthracite; coke and breeze; and natural gas.

Except for the 1950 to 1953 statistics on electricity generated, which were prepared from Federal Power Commission data, all of the intercensal statistics are estimates. A description of the sample, sampling techniques, coverage, etc., for these years is included in the ASM publications.

SCOPE OF SURVEY

Information on fuels consumed by manufacturing establishments, end-of-year fuel stocks, and electric energy was collected on 1981 Annual Survey of Manufactures Form MA-100.

Fuels Consumed

Form MA-100 requested detailed information on fuels consumed: quantity and cost of coal, coke, distillate fuel oil, residual fuel oil, natural gas, and liquefied petroleum gases. It also requested cost only for other types of fuels consumed.

The cost of fuels refers to direct charges actually paid or payable for fuels consumed during the year, including freight charges and other direct charges incurred by the establishment in acquiring these fuels. Manufacturers included the cost of fuels consumed regardless of whether they were purchased by the individual establishment from other companies, transferred to it from other establishments of the same company, or withdrawn from inventory during the year.

Fuel Stocks

In addition to fuels consumed, Form MA-100 obtained data on end-of-year fuel stocks for coal, coke, distillate fuel oil, residual fuel oil, and liquefied petroleum gases.

Fuel stocks refer to quantities of fuel actually on hand at the establishment on December 31, 1981.

Electric Energy

Data also were obtained on Form MA-100 on the quantity and cost of electric energy purchased from other companies or transferred from other establishments of the same company. In addition, information was collected on the amount of electric energy generated by the establishment and the quantity of electric energy sold or transferred to other plants of the same company. In reporting figures on energy sold, some manufacturing establishments, acting as central distribution stations for several company plants in the same general area, included quantities of purchased electricity which were subsequently transferred to other company plants.

The cost of electric energy represents the amount actually paid during the year for electric energy purchased from other companies or received from other establishments of the same company. It does not include the value of electricity generated and used at the establishment.

DESCRIPTION OF SURVEY SAMPLE

The statistics presented in this report are estimates from a survey which is composed of two components. The mail portion of the survey is a probability sample of about 56,000 manufacturing establishments selected from a total of about 225,000 establishments. These 225,000 establishments represent all manufacturing establishments of multiunit companies and all single-unit manufacturing establishments with five or more employees tabulated in the 1977 Census of Manufactures. This mail portion is supplemented by a Social Security Administration list of new manufacturing establishments opened after 1977. The individual establishments were defined as the sampling unit
for this sample. This represents a change from the previous annual survey sample when companies were used as the sampling unit. The implication of this change is that the probability of selection of any establishment relates only to the size of the establishment itself and is independent of the size of the company with which the establishment is affiliated. The efficiencies associated with the change to an establishment sample have made it possible to reduce the mail sample panel from 70,000 establishments in 1978 to 56,000 establishments in the current panel.

The nonmail portion of the survey includes all single-unit establishments that were tabulated with less than five employees in the 1977 Census of Manufactures. Although this portion contains approximately 125,000 manufacturing establishments, it accounted for less than 2 percent of the census estimate for total value of manufacturers' shipments. This portion was not sampled; rather, the data for each establishment in this group were based on selected information obtained annually from the administrative records of the Internal Revenue Service and the Social Security Administration. This administrative record information, which includes payroll, total employment, industry classification, and physical location of the establishment, was obtained under special conditions which safeguard the confidentiality of both tax and census records. Estimates for data other than payroll and employment for these, small establishments were developed from industry averages.

The corresponding estimates for the mail and nonmail establishments were added together, along with the adjusted base-year differences as defined in the "Description of the Estimating Procedure" section, to produce the figures shown in this publication. The remaining description of the survey sample relates only to the mail portion of the ASM sample.

All establishments with 250 employees or more in the 1977 census were included in the sample panel with certainty. These establishments collectively account for approximately 65 percent of the total value of shipments for manufacturing establishments in the 1977 census. Smaller establishments were sampled with probabilities ranging from 1.000 down to 0.005 in accordance with mathematical theory for optimum allocation of a sample.

The probability of selection assigned to the smaller establishments was proportional to a measure of size determined for each establishment. For establishments included in the 1977 Census of Manufactures, the measures of size depended directly upon each establishment's 1977 product class values and upon the historic variability of the year-to-year value of shipments of each product class. Roughly equivalent measures of size were assigned to post-census birth establishments based on their industry codes and anticipated payroll and employment. This method of assigning measures of size was used in order to maximize the precision (that is minimize the variance of estimates of the year-to-year change) in the value of product class shipments. Implicitly, it also gave weight to differences in employment, value added, and other general statistics, for they are highly correlated with value of shipments. Individual sample selection probabilities were obtained by multiplying each establishment's final measure of size by an overall sampling fraction coefficient calculated to yield a total expected sample size.

The sample selection procedure gave each establishment in the sampling frame an independent chance of selection. This method of independent selection permits the rotation of establishments into and out of a given sample panel without introducing a bias into the survey estimates.

DESCRIPTION OF THE ESTIMATING PROCEDURE

Some of the estimates for 1981 were generated using a modified difference estimation procedure. These modified difference estimates were obtained as follows:

$$
Y_{81}^{\prime \prime}=Y_{81}^{\prime}+I_{81}+\frac{Y_{80}^{\prime}}{Y_{77}^{\prime}}\left(Y_{77}-Y_{77}^{\prime}\right)
$$

Where
Y_{81}^{\prime} is the linear estimate obtained by multiplying each mail sample establishment's 1981 data by the corresponding establishment weight.
Y_{80}^{\prime} and Y_{77}^{\prime} are defined similarly.
I_{81} is the estimate obtained from the nonmail portion of the survey.
($Y_{77}-Y_{77}^{\prime}$) is the difference between the 1977 census published figure for an item and the linear estimate of the 1977 figure from the sample.

This difference was then adjusted by the ratio $\frac{X_{80}^{\prime}}{X_{77}^{\prime}}$ to reflect the estimated growth at the State total level from 1977 to 1980. Ideally, these growth factors should have been for the period from 1977 to 1981; however, due to processing constraints that would have impacted the timing of the publication, they were for the period 1977 to 1980 . This year lag in the growth factors had a negligible effect on the estimates. Estimates developed by this difference procedure usually are far more reliable than comparable linear estimates developed from the current sample data alone.

The ratio-adjusted difference estimate was used for all total cost of fuels and purchased electricity estimates presented in this report. The estimates for specific fuels, however, are simple linear estimates that involve only the 1981 data, that is, the sum of the weighted 1981 costs and quantities for the sample establishments. The ratio-adjusted difference estimate formula was not used for these detailed estimates because the comparable data required were not available from the 1977 Census of Manufactures.

Some small establishments reported total cost of fuels but failed to report the cost and quantity of their specific fuels used. Estimates of their total cost of fuels are included in the tables under the entry "fuels not specified by kind." To the extent that the information on detailed fuels consumed was not obtained, the data shown for individual fuels in this report tend to be understated.

Further limitations apply to the estimates of cost of 'fuels not specified by kind." They are residual balancing figures that were derived by subtracting the sum of the linear estimates for the specified fuels from the total cost of fuels computed by the ratio-adjusted difference estimate formula. They include the cost not allocated by kind because of nonresponse, additional adjustments for unresolved imbalances between the sum of the detail and the total in individual reports, and the statistical deviation resulting from the use of two methods of estimation.

QUALIFICATIONS OF THE DATA

The estimates developed from the ASM sample may differ somewhat from the results of a survey covering all companies in the sampled lists but otherwise conducted under essentially the same conditions as the actual sample survey. The sampling errors-differences between estimates obtained and the results theoretically obtainable from a comparable complete coverage survey-are unknown. Guides to potential size of the sampling errors, however, are provided by standard errors of the estimates.

The particular sample selected for the ASM is one of a large number of similar probability samples that, by chance, might have been selected under the same specifications. Each of the possible samples would yield somewhat different sets of results, and the standard errors are measures of the variation of all the possible sample estimates around the theoretical, comparable complete coverage values.

Estimates of the standard errors have been computed from the sample data for selected statistics in this report. They are presented in the form of relative standard errors, the standard errors divided by the estimated values to which they refer.

In conjunction with its associated estimate, the relative standard error may be used to define confidence intervalsranges that would include the comparable complete coverage value for specified percentages of all the possible samples. The complete coverage value would be included in the range:

1. From one standard error below to one standard error above the derived estimate for about two-thirds of all possible samples.
2. From two standard errors below to two standard errors above the derived estimate for about 19 out of 20 of all possible samples.
3. From three standard errors below to three standard errors above the derived estimate for nearly all samples.

An inference that the comparable complete survey result would be within the indicated ranges would be correct in approximately the relative frequencies shown. Those proportions, therefore, may be interpreted as defining the confidence with which the estimates from a particular sample
would differ from complete coverage results by as much as one, two, or three standard errors.

For example, suppose an estimated total is shown as 50,000 with an associated relative standard error of 2 percent, i.e., a standard error of 1,000 (2 percent of 50,000), then there is approximately 67 percent confidence that the interval 49,000 to 51,000 includes the complete coverage total, about 95 percent confidence that the interval 48,000 to 52,000 includes the complete coverage total, and almost certain confidence that the interval 47,000 to 53,000 includes the complete coverage total.

In addition to the sampling errors, the estimates are subject to various operational errors: errors of collection, reporting, coding, transcription, imputation for nonresponse, etc. These operational errors would also occur if a complete canvass were to be conducted under the same conditions as the survey. Explicit measures of their effects generally are not available. However, it is believed that most of the important operational errors were detected and corrected in the course of the Bureau's review of the data for reasonableness and consistency. When they were detected too late to correct, the data were suppressed or specifically qualified in the tables. The small operational errors usually remain. To some extent, the aggregated totals compensate for them.

As derived, the estimated standard errors include part of the effect of the operational errors. The total error, which depends upon the joint effect of the sampling and operational errors, is usually of the order of size indicated by the standard error or only moderately higher. For some estimates, however, the total error may considerably exceed the standard errors shown.

The concept of complete coverage under the conditions prevailing for the annual surveys of manufactures is not identical to the complete coverage of the censuses of manufactures as the censuses have been conducted. Nearly all types of operational errors that affect the surveys also occur in the censuses. The surveys and the censuses, however, are conducted under quite different conditions, and operational errors can be controlled more tightly in the surveys than in the censuses. As a result, errors in many of the census figures are of the same order of size as the total errors of the corresponding annual survey estimates. The differences between the census and survey operating conditions also disturb, to some degree, the comparability of the ASM and census data.

APPENDIXB. Explanation of Terms

BITUMINOUS COAL, LIGNITE, AND ANTHRACITE

Most coal of metallurgical grade (coking coal) is not included in this survey because it is considered a material for consumption rather than a fuel. Consequently, the average cost of coal purchased by manufacturing establishments is lower than it would be if coking coal were classified as a fuel.

COKE AND BREEZE

The quantity of coke covered by this survey represents only a small fraction of coke consumed in manufacturing. Most metallurgical coke is produced and consumed at the same establishment and is, therefore, excluded from this report. Breeze (coke fines) is included here even though its unit cost is considerably lower than beehive or slot oven coke.

DISTILLATE FUEL OIL

Distillate fuel oil includes grades 1,2 , and 4 fuel oils, light diesel-type fuel oil, light gas-enrichment oil, etc. Quantities are published in barrels (42 gallons).

FUELS NOT SPECIFIED BY KIND

For a complete discussion of fuels not specified by kind, see appendix A under "Description of the Estimating Procedure."

LIQUEFIED PETROLEUM GASES

Liquefied petroleum gases include propane, butane, propanebutane mixtures, and isobutanes. Quantities are published in 1,000 pounds.

NATURAL GAS

Natural gas excludes manufactured gas, mixed gas, blast furnace gas, still gas, coke-oven gas, etc.

OTHER FUELS

Other fuels consists mainly of purchased steam and gasoline. It also includes mixed gases, coke-oven gases, still gases, blast furnace gases, wood, and small amounts of other miscellaneous fuels.

RESIDUAL FUEL OIL

Residual fuel oil includes grades 5 and 6 fuel oils, heavy diesel-type fuel oil, bunker C fuel oils, heavy gas-enrichment oil, etc. Quantities are published in barrels (42 gallons).

DURABLE MANUFACTURING INDUSTRIES

Industries classified in the manufacture of durable goods include the following major industry groups:

SIC
code
Major industry group

> Lumber and wood products
> Furniture and fixtures
> Stone, clay, and glass products
> Primary metal industries
> Fabricated metal products
> Machinery, except electrical equipment
> Electric and electronic equipment
> Transportation equipment
> Instruments and related products
> Miscellaneous manufacturing industries

NONDURABLE MANUFACTURING INDUSTRIES

Industries classified in the manufacture of nondurable goods include the following major industry groups:

SIC

code
Major industry group

Food and kindred products
Tobacco products
Textile mill products
Apparel and other textile products
Paper and allied products
Printing and publishing
Chemicals and allied products
Petroleum and coal products
Rubber and miscellaneous plastics products
Leather and leather products

APPENDIX C. Report Form and Instructions

Instructions for Completing the 1981 Annual Survey of Manufactures Report

Item 5. Cost of Materials and Services Used-If materials, parts, and supplies are received from other establishments of your company, costs should be checked against the values reported for the plant producing and transferring the goods.

The value should be '"economic value," i.e., include in addition to the producing plant's direct cost of production a reasonable proportion of all other costs (company overhead) and profits. Freight and other direct handling charges should be added.

Item 5c. Cost of Fuels Consumed for Heat and PowerReport the total amount actually paid or payable during the year for all fuels consumed for heat, power, or the generation of electricity. Do not include the estimated cost of fuels, such as sawdust or blast furnace gas, produced as a byproduct of your manufacturing activities. Include anthracite and bituminous coal, coke, natural and manufactured gas, fuel oil, liquefied petroleum gas, gasoline, and all other fuels including purchased steam. For selected industries, such as carbon black, blast furnaces, and coke ovens, some of the above fuel types may be used as raw materials as well as being consumed as fuels. In such cases, the cost of these fuel types used as raw materials should be reported in item 5 a. The cost of these fuel types used as fuels should be reported in item 5 c .

NOTE: Form MA-100 includes an inquiry on detailed fuels consumed in item 12. Please make certain the total cost of fuels reported in item 12 agrees with the total reported in item 5 c .

Item 5d. Cost of Purchased Electricity-Report the total amount actually paid or payable for electric energy purch ased during the year from other companies or received from other establishments of your company. Exclude the value of electricity generated and used at this establishment.

Item 6. Quantity of Electricity-All quantities for electricity should be reported in thousands of kilowatt hours.

Item 6a. Purchased Electricity-Report (in thousands of kilowatt hours) the quantity of electricity for which cost is reported in item 5d.

Item 6b. Generated Electricity-Enter the total quantity of electric energy generated in this plant (gross less generating station use) during the year although part of such energy may have been sold or transferred.

When totals are reported on this line, data relating to the activity of the power stations would also be included in other sections of this report. For example, the number of employees assigned to the power station, their wages, and hours should be included in the figures reported in items 2, 3 , and 4 ; and the cost of fuels used to generate electricity, in item 5 c .

Item 6c. Electricity Sold or Transferred to Other Establish-ments-Enter the quantity of electric energy, which was also included in item 6 a or 6 b , but which was sold to other companies or transferred to other manufacturing or nonmanufacturing establishments of your company.

Item 12. Consumption of Purchased Fuels Used for Heat, Power, and Generating Electricity in 1981 and Stocks on Hand at End of Year.

Purchased fuels used during survey year-Report on lines 1 through 8 the quantity and cost of each purchased fuel consumed during the survey year. A purchased fuel is considered to be any substance that was purchased or transferred from outside of the defined boundaries of the establishment in which it was consumed, for the production of heat, power, or generated electricity. Conversely, any fuel substance that is both produced and consumed within the same establishment, such as coal converted to coke, is not considered a purchased fuel, but instead, a raw material to be reported in item 5a.

As examples of the types of fuel expenditures to include in item 12 for the establishment's energy requirements, consider the following: natural gas burned for space heating; coal consumed to fire furnaces, boilers, and driers; purchased steam used to drive turbines or to provide process heat. Be sure to include fuel used to power delivery trucks, fork lifts, or other motor vehicles associated with the establishment; include purchased fuels consumed to generate electricity. Do not include fuel substances consumed as raw materials or feedstocks, (e.g., natural gas and fuel oil used to produce carbon black, crude petroleum used to produce fuels, etc.); report the cost of the these materials in item 5 a.

Report quantities in column (d) in the specified unit of measure and cost in column (e) in thousands of dollars.

Cost is delivered cost, that is, the amount paid or payable after discounts and including freight and other direct charges incurred by the establishment in acquiring the materials. Fuels transferred or received from other establishments of your company should be valued at their "economic value."

Fuel stocks-Report quantities in column (f) for lines 1, $2,3,4$, and 6 in the unit of measure indicated in column (c). The fuel stocks figures should represent the total quantity of unexpended fuel the establishment has on hand, including emergency reserves, at the end of the survey year. Exclude fuels that are to be used as feedstocks or raw materials. Do not include shipments of fuel on order or in transit; include only those fuel stocks physically present at the establishment's location.

Line 1. Coal-Report the quantity (short tons of 2,000 lbs.), delivered cost, and stocks of purchased coal. Include anthracite, bituminous coal, and lignite, but exclude peat (which should be included on line 7 in "Other fuels"). In addition, coal breccia and coal briquettes should be reported on line 1. If quantities are billed in pounds, divide quantity by 2,000 to obtain tons. Important: Do not include coal
converted to coke at the establishment's location; instead, report it as a raw material to be included in item 5 a.

Line 2. Coke-Report the quantity (short tons of 2,000 lbs.), delivered cost, and stocks of purchased coke. Breeze, the fine screenings from crushed coke, should also be reported on line 3; however, petroleum coke (produced from petroleum residues) should be reported on line 7 in "Other fuels." If quantities are billed in pounds, divide quantity by 2,000 to obtain tons. Important: Do not include coke produced and consumed at the establishment's location.

Line 3. Distillate fuel oil-Report the quantity (barrels of 42 gallons), delivered cost, and stocks of distillate fuel oil. Distillate includes grades No. 1, No. 2, and No. 4 fuel oils; kerosene; light diesel-type fuel oil; light gas-enrichment oil; etc. If quantities are billed in gallons, divide quantity by 42 to obtain barrels.

Line 4. Residual fuel oil-Report the quantity (barrels of 42 gallons), delivered cost, and stocks of residual fuel oil. Residual includes grades No. 5 and No. 6 fuel oils; heavy diesel-type oil; bunker C fuel oils; heavy gas-enrichment oil; etc. If quantities are billed in gallons, divide quantity by 42 to obtain barrels.

Line 5. Natural gas-Report the quantity (units of MCF = 1,000 cubic feet) and the cost of purchased natural gas. If quantities are billed in therms, divide quantity by 10 to approximate units of MCF. Carefully estimate the value of natural gas received or transferred from other establishments of your company. Important: Report only purchased natural gas on line 5; report manufactured gases purchased from other
establishments (blast furnace gas, coke oven gas, etc.) on line 7 in "Other fuels."

Line 6. Liquefied petroleum gases (LPG)-Report the quantity (units of $1,000 \mathrm{lbs}$.), delivered cost, and stocks of purchased LPG. Include the following liquefied petroleum gases: propane, butane, propane-butane mixtures, and isobutane. Exclude the cost of tank rental and deposit fee. If quantities are billed in gallons, multiply quantity by 4.5 to obtain pounds. Report all other purchased fuel gases on line 7 in "Other fuels," except natural gas, which appears on line 5.

Line 7. Other fuels-Report the cost of purchased fuels not specified on lines 1 through 6. For example, include the following purchased fuels: gasoline, purchased steam, purchased blast furnace and coke-oven gas, wood, etc. Exclude oxygen, electricity, or any fuel produced and consumed within the same establishment.

Line 8. Total cost of fuels-On line 8 enter the sum of lines 1 through 7 for column (d). This total cost figure should equal the figure reported in item 5 c .

UNIT $V A L U E=(C O S T \div$ QUANTITY $) \times 1,000$

Unit Value Ranges

Line 1. Coal $\$ 20$ to $\$ 75$ per short ton
Line 2. Coke $\$ 75$ to $\$ 200$ per short ton
Line 3. Distillate. $\$ 13$ to $\$ 50$ per barrel
Line 4. Residual $\$ 12$ to $\$ 40$ per barrel
Line 5. Natural gas $\$ 0.60$ to $\$ 7.50$ per MCF
Line 6. LPG $\$ 50$ to $\$ 165$ per thousand lbs.

APPENDIXD.
 Standard Consolidated Statistical Areas and Standard Metropolitan Statistical Areas

(Titles and definitions of the SCSA's and the SMSA's in the United States established by the Department of Commerce, Office of Federal Statistical Policy and Standards, as of December 1977)

Standard Consolidated Statistical Areas

Boston-Lawrence-Lowell, Mass.-N.H.
Chicago-Gary, III.-Ind. ${ }^{1}$.
Cincinnati-Hamilton, Ohio-Ky.-Ind.
Cleveland-Akron-Lorain, Ohio
Detroit-Ann Arbor, Mich.
Houston-Galveston, Tex.
Los Angeles-Long Beach-Anaheim, Calif
Miami-Fort Lauderdale, Fla
Milwaukee-Racine, Wis
New York-Newark Jersey City, N.Y. N.J.-Conn.
Consists of Boston, Mass., SMSA; Lawrence-Haverhill, Mass.-N.H., SMSA; Lowell, Mass.-N.H., SMSA; and Brockton, Mass., SMSA
Consists of Chicago, III., SMSA, and Gary-Hammond-East Chicago, Ind., SMSA
Consists of Cincinnati, Ohio-Ky.Ind., SMSA, and Hamilton-Middletown, Ohio, SMSA
Consists of Cleveland, Ohio, SMSA; Akron, Ohio, SMSA; and Lorain-Elyria, Ohio, SMSA
Consists of Detroit, Mich., SMSA, and Ann Arbor, Mich., SMSA
Consists of Houston, Tex., SMSA, and Galveston-Texas City, Tex., SMSA
Consists of Los Angeles-Long Beach, Calif., SMSA; Anaheim-Santa Ana-Garden Grove, Calif., SMSA; Riverside-San Bernardino-Ontario, Calif., SMSA; and Oxnard-Simi Valley-Ventura, Calif., SMSA
Consists of Miami, Fla., SMSA, and Fort Lauderdale-Hollywood, Fla., SMSA
Consists of Milwaukee, Wis., SMSA, and Racine, Wis., SMSA
Consists of New York, N.Y.-N.J., SMSA; Nassau-Suffolk, N.Y., SMSA; Newark, N.J., SMSA; Jersey City, N.J., SMSA; New Brunswick-Perth Amboy-Sayreville, N.J., SMSA; Paterson-Clifton-Passaic, N.J., SMSA; Long Branch.Asbury Park, N.J., SMSA; Stamford, Conn., SMSA; and Norwalk, Conn., SMSA

Philadelphia-Wilmington-Trenton,

Pa.-Del.-N.J.-Md.

San Francisco-Oakland-San Jose, Calif.
Seattle-Tacoma, Wash.

Standard Metropolitan Statistical Areas

Abilene, Tex
Akron, Ohio
Albany, Ga.
Albany-Schenectady-Troy, N.Y.
Albuquerque, N. Mex.
Alexandria, La.
Allentown-Bethlehem-Easton, Pa.-N.J.
Altoona, Pa .
Amarillo, Tex.
Anaheim-Santa Ana-Garden Grove, Calif.
Anchorage, Alaska
Anderson, Ind.
Ann Arbor, Mich.
Anniston, Ala. ${ }^{3}$.
Appleton-Oshkosh, Wis.
Asheville, N.C.
Atlanta, Ga.

Consists of Philadelphia, Pa.-N.J., SMSA; Wilmington, DeI.-N.J.-Md., SMSA, and Trenton, N. J., SMSA
Consists of San Francisco-Oakland, Calif., SMSA; San Jose, Calif., SMSA, and Vallejo-Fairfield-Napa, Calif., SMSA
Consists of Seattle-Everett, Wash., SMSA, and Tacoma, Wash., SMSA
Consists of Callahan, Jones, and Taylor Counties, Tex.
Consists of Portage and Summit Counties, Ohio
Consists of Dougherty and Lee Counties, Ga.
Consists of Albany, Montgomery, Rensselaer, Saratoga, and Schenectady Counties,
N.Y.
Consists of Bernalillo and Sandoval Counties, N. Mex.
Consists of Grant and Rapides Parishes, La.
Consists of Carbon, Lehigh, and Northampton Counties, Pa.; and Warren County,
N.J.
Coextensive with Blair County, Pa.
Consists of Potter and Randall Counties, Tex.
Coextensive with Orange County, Calif.
Coextensive with Anchorage Division, Alaska
Coextensive with Madison County, Ind.
Coextensive with Washtenaw County, Mich.
Coextensive with Calhoun County, Ala.
Consists of Calumet, Outagamie, and Winnebago Counties, Wis.
Consists of Buncombe and Madison Counties, N.C.
Consists of Butts, Cherokee, Clayton, Cobb, De Kalb, Douglas, Fayette, Forsyth,
Fulton, Gwinnett, Henry, Newton, Paulding, Roskdale, and Walton Counties, Ga.

Consists of Callahan, Jones, and Taylor Counties, Tex.
Consists of Portage and Summit Counties, Ohio
Consists of Dougherty and Lee Counties, Ga.
Consists of Albany, Montgomery, Rensselaer, Saratoga, and Schenectady Counties, N.Y.

Consists of Bernalillo and Sandoval Counties, N. Mex.
Consists of Grant and Rapides Parishes, La.
Consists of Carbon, Lehigh, and Northampton Counties, Pa.; and Warren County, N.J.

Coextensive with Blair County, Pa.
Consists of Potter and Randall Counties, Tex.
Coextensive with Orange County, Calif.
Coextensive with Anchorage Division, Alaska
Coextensive with Madison County, Ind.
Coextensive with Washtenaw County, Mich.
Coextensive with Calhoun County, Ala.
Consists of Calumet, Outagamie, and Winnebago Counties, Wis.
Consists of Buncombe and Madison Counties, N.C.
Consists of Butts, Cherokee, Clayton, Cobb, De Kalb, Douglas, Fayette, Forsyth, Fulton, Gwinnett, Henry, Newton, Paulding, Roskdale, and Walton Counties, Ga.

See footnotes at end of appendix.

SMSA'S-Con.

See footnotes at end of appendix

Chattanooga, Tenn. Ga.	Consists of Hamilton, Marion, and Sequatchie Counties, Tenn.; and Catoosa, Dade and Walker Counties, Ga .
Chicago, III.	Consists of Cook, Du Page, Kane, Lake, McHenry, and Will Counties, III.
Cincinnati, Ohio-Ky.-Ind.	Consists of Clermont, Hamilton, and Warren Counties, Ohio; Boone, Campbell, and Kenton Counties, Ky.; and Dearborn County, Ind.
Clarksville-Hopkinsville, Tenn.-Ky. ${ }^{3}$	Consists of Montgomery County, Tenn. and Christian County, Ky.
Cleveland, Ohio	Consists of Cuyahoga, Geauga, Lake, and Medina Counties, Ohio
Colorado Springs, Colo.	Consists of El Paso and Teller Counties, Colo.
Columbia, Mo.	Coextensive with Boone County, Mo.
Columbia, S.C.	Consists of Lexington and Richland Counties, S.C.
Columbus, Ga.-Ala.	Consists of Chattahoochee County and Columbus ${ }^{5}$ (consolidated government), Ga., and Russell County, Ala.
Columbus, Ohio	Consists of Delaware, Fairfield, Franklin, Madison, and Pickaway Counties, Ohio
Corpus Christi, Tex.	Consists of Nueces and San Patricio Counties, Tex.
Dallas-Fort Worth, Tex.	Consists of Collin, Dallas, Denton, Ellis, Hood, Johnson, Kaufman, Parker Rockwall, Tarrant, and Wise Counties, Tex.
Danbury, Conn.	Consists of Danbury city and Bethel, Brookfield, New Fairfield, Newtown, and Redding towns in Fairfield County; and New Milford town in Litchfield County, Conn.
Davenport-Rock Island-Moline, Iowa-III.	Consists of Scott County, Iowa and Henry and Rock Island Counties, III.
Dayton, Ohio	Consists of Greene, Miami, Montgomery, and Preble Counties, Ohio
Daytona Beach, Fla.	Coextensive with Volusia County, Fla.
Decatur, III.	Coextensive with Macon County, III.
Denver-Boulder, Colo.	Consists of Adams, Arapahoe, Boulder, Denver, Douglas, Gilpin, and Jefferson Counties, Colo.
Des Moines, lowa	Consists of Polk and Warren Counties, Iowa
Detroit, Mich.	Consists of Lapeer, Livingston, Macomb, Oakland, St. Clair, and Wayne Counties, Mich.
Dubuque, lowa	Coextensive with Dubuque County, Iowa
Duluth-Superior, Minn.-Wis. Eau Claire, Wis. ${ }^{3}$	Consists of St. Louis County, Minn. and Douglas County, Wis. Consists of Chippewa and Eau Claire Counties, Wis.
El Paso, Tex.	Coextensive with El Paso County, Tex.
Elmira, N.Y.	Coextensive with Chemung County, N.Y.
Erie, Pa.	Coextensive with Erie County, Pa.
Eugene-Springfield, Oreg.	Coextensive with Lane County, Oreg.
Evansville, Ind.-Ky.	Consists of Gibson, Posey, Vanderburgh, and Warrick Counties, Ind. and Henderson County, Ky.
Fall River, Mass.-R.I.	Consists of Fall River city and Dighton, Somerset, Swansea, and Westport towns in Bristol County, Mass.; and Little Compton, Portsmouth, and Tiverton towns in Newport County, R.I.
Fargo-Moorhead, N. Dak.-Minn.	Consists of Cass County, N. Dak. and Clay County, Minn.
Fayetteville, N.C.	Coextensive with Cumberland County, N.C.
Fayetteville-Springdale, Ark.	Consists of Benton and Washington Counties, Ark.
Fitchburg-Leominster, Mass.	Consists of Shirley and Townsend towns in Middlesex County, and Fitchburg and Leominster cities and Lunenburg and Westminster towns in Worcester County, Mass.
Flint, Mich.	Consists of Genesee and Shiawassee Counties, Mich.
Florence, Ala.	Consists of Colbert and Lauderdale Counties, Ala.
Fort Collins, Colo. ${ }^{3}$	Coextensive with Larimer County, Colo.
Fort Lauderdale-Hollywood, Fla.	Coextensive with Broward County, Fla.
Fort Myers, Fla.	Coextensive with Lee County, Fla,
Fort Smith, Ark. Okla.	Consists of Crawford and Sebastian Counties, Ark. and Le Flore and Sequoyah Counties, Okla.

See footnotes at end of appendix.

Fort Wayne, Ind.	Consists of Adams, Allen, De Kalb, and Wells Counties, Ind.
Fresno, Calif.	Coextensive with Fresno County, Calif.
Gadsden, Ala.	Coextensive with Etowah County, Ala.
Gainesville, Fla.	Coextensive with Alachua County, Fla.
Galveston-Texas City, Tex.	Coextensive with Galveston County, Tex.
Gary-Hammond-East Chicago, Ind.	Consists of Lake and Porter Counties, Ind.
Grand Forks, N. Dak.-Minn. ${ }^{3}$.	Consists of Grand Forks County, N. Dak. and Polk County, Minn.
Grand Rapids, Mich.	Consists of Kent and Ottawa Counties, Mich.
Great Falls, Mont.	Coextensive with Cascade County, Mont.
Greeley, Colo. ${ }^{3}$	Coextensive with Weld County, Colo.
Green Bay, Wis.	Coextensive with Brown County, Wis.
Greensboro-Winston-Salem-High Point, N.C.	Consists of Davidson, Forsyth, Guilford, Randolph, Stokes, and Yadkin Counties, N.C.
Greenville-Spartanburg, S.C.	Consists of Greenville, Pickens, and Spartanburg Counties, S.C.
Hamilton-Middletown, Ohio	Coextensive with Butler County, Ohio
Harrisburg, Pa.	Consists of Cumberland, Dauphin, and Perry Counties, Pa.
Hartford, Conn.	Consists of Hartford city and Avon, Bloomfield, Canton, East Granby, East Hartford, East Windsor, Enfield, Farmington, Glastonbury, Granby, Manchester, Marlborough, Newington, Rocky Hill, Simsbury, South Windsor, Suffield, West Hartford, Wethersfield, Windsor, and Windsor Locks towns in Hartford County; New Hartford town in Litchfield County: Cromwell, East Hampton, and Portlancl towns in Middlesex County; Colchester town in New London County; and Andover, Bolton, Columbia, Coventry, Ellington, Heloron, Stafford, Tolland, Vernon, and Willington towns in Tolland County, Conn.
Honolulu, Hawaii	Coextensive with Honolulu County, Hawaii
Houston, Tex.	Consists of Brazoria, Fort Bend, Harris, Liberty, Montgomery, and Wallel Counties, Tex.
Huntington-Ashland, W. Va.-Ky.-Ohio	Consists of Cabell and Wayne Counties, W. Va.; Boyd and Greenup Counties, Ky.; and Lawrence County, Ohio
Huntsville, Ala.	Consists of Limestone, Madison, and Marshall Counties, Ala.
Indianapolis, Ind.	Consists of Boone, Hamilton, Hancock, Hendricks, Johnson, Marion, Morgan, and Shelby Counties, Ind.
Jackson, Mich.	Coextensive with Jackson County, Mich.
Jackson, Miss.	Consists of Hinds and Rankin Counties, Miss.
Jacksonville, Fla.	Consists of Baker, Clay, Duval, Nassau, and St. Johns Counties, Fla.
Jersey City, N.J.	Coextensive with Hudson County, N.J.
Johnson City-Kingsport-Bristol, Tenn.-Va. ${ }^{7}$	Consists of Carter, Hawkins, Sullivan, Unicoi, and Washington Counties, Tenı., and Bristol ${ }^{5}$ city and Scott and Washington Counties, Va.
Johnstown, Pa.	Consists of Cambria and Somerset Counties, Pa.
Kalamazoo-Portage, Mich.	Consists of Kalamazoo and Van Buren Counties, Mich.
Kankakee, III. ${ }^{3}$	Coextensive with Kankakee County, III.
Kansas City, Mo.-Kans.	Consists of Cass, Clay, Jackson, Platte, and Ray Counties, Mo., and Johnson and Wyandotte Counties, Kans.
Kenosha, Wis.	Coextensive with Kenosha County, Wis.
Killeen-Temple, Tex.	Consists of Bell and Coryell Counties, Tex.
Knoxville, Tenn.	Consists of Anderson, Blount, Knox, and Union Counties, Tenn.
Kokomo, Ind. ${ }^{3}$	Consists of Howard and Tipton Counties, Ind.
La Crosse, Wis.	Coextensive with La Crosse County. Wis.
Lafayette, La.	Coextensive with Lafayette Parish, La.
Lafayette-West Lafayette, Ind.	Coextensive with Tippecanoe County, Ind.
Lake Charles, La.	Coextensive with Calcasieu Parish, La.

See footnotes at end of appendix.

SMSA'S-Con.

Lakeland-Winter Haven, Fla.	Coextensive with Polk County, Fla.
Lancaster, Pa.	Coextensive with Lancaster County, Pa.
Lansing-East Lansing, Mich.	Consists of Clinton, Eaton, Ingham, and Ionia Counties, Mich.
Laredo, Tex.	Coextensive with Webb County, Tex.
Las Vegas, Nev.	Coextensive with Clark County, Nev.
Lawrence, Kans. ${ }^{5}$	Coextensive with Douglas County, Kans.
Lawrence-Haverhill, Mass.-N.H.	Consists of Haverhill and Lawrence cities and Amesbury, Andover, Georgetown, Groveland, Merrimac, Methuen, North Andover, Salisbury, and West Newbury towns in Essex County, Mass. and Atkinson, Hampstead, Kingston, Newton, Plaistow, Salem, and Windham towns in Rockingham County, N.H.
Lawton, Okla.	Coextensive with Comanche County, Okla.
Lewiston-Auburn, Maine	Consists of Auburn and Lewiston cities and Lisbon town in Androscoggin County, Maine
Lexington-Fayette, Ky. ${ }^{8}$	Consists of Bourbon, Clark, Fayette, Jessamine, Scott, and Woodford Counties, Ky.
Lima, Ohio	Consists of Allen, Auglaize, Putnam, and Van Wert Counties, Ohio
Lincoln, Nebr.	Coextensive with Lancaster County, Nebr.
Little Rock-North Little Rock, Ark.	Consists of Pulaski and Saline Counties, Ark.
Long Branch-Asbury Park, N.J.	Coextensive with Monmouth County, N.J.
Longview, Tex. ${ }^{3}$	Consists of Gregg and Harrison Counties, Tex.
Lorain-Elyria, Ohio	Coextensive with Lorain County, Ohio
Los Angeles-Long Beach, Calif.	Coextensive with Los Angeles County, Calif.
Louisville, Ky-Ind.	Consists of Bullitt, Jefferson, and Oldham Countres, Ky. and Clark and Floyd Counties, Ind.
Lowell, Mass.-N.H.	Consists of Lowell city and Billerica, Chelmsford, Dracut, Tewksbury, Tyngsborough, and Westford towns in Middlesex County, Mass.; and Pelham town in Hillsborough County, N.H.
Lubbock, Tex.	Coextensive with Lubbock County, Tex.
Lynchburg, Va.	Consists of Lynchburg ${ }^{\text {s }}$ city and Amherst. Appomattox, and Campbell Counties, Va.
Macon, Ga.	Consists of Bibb, Houston, Jones, and Twiggs Counties, Ga.
Madison, Wis.	Coextensive with Dane County, Wis.
Manchester, N.H.	Consists of Manchester city and Bedford and Goffstown towns in Hillsborough County; Allenstown, Hooksett, and Pembroke towns in Merrimack County; and Derry and Londonderry towns in Rockingham County, N.H.
Mansfield, Ohio	Coextensive with Richland County, Ohio
McAllen-Pharr-Edinburg, Tex.	Coextensive with Hidalgo County, Tex.
Melbourne-Titusville-Cocoa, Fla.	Coextensive with Brevard County, Fla.
Memphis, Tenn.-Ark.-Miss.	Consists of Shelby and Tipton Counties, Tenn.; Crittenden County, Ark.; and De Soto County, Miss.
Meriden, Conn.	Coextensive with Meriden city in New Haven County, Conn.
Miami, Fla.	Coextensive with Dade County, Fla.
Midland, Tex.	Coextensive with Midland County, Tex.
Milwaukee, Wis.	Consists of Milwaukee, Ozaukee, Washington, and Waukesha Counties, Wis.
Minneapolis-St. Paul, Minn. Wis.	Consists of Anoka, Carver, Chisago, Dakota, Hennepin, Ramsey, Scott, Washington, and Wright Counties, Minn. and St. Croix County, Wis.
Mobile, Ala.	Consists of Baldwin and Mobile Counties, Ala.
Modesto, Calif.	Coextensive with Stanislaus County, Calif.
Monroe, La.	Coextensive with Ouachita Parish, La.
Montgomery, Ala.	Consists of Autauga, Elmore, and Montgomery Counties, Ala.
Muncie, Ind.	Coextensive with Delaware County, Ind.
Muskegon-North Shores-Muskegon	
Heights, Mich. ${ }^{9}$	Consists of Muskegon and Oceana Counties, Mich.

See footnotes at end of appendix.

Nashua, N.H.	Consists of Nashua city and Amherst, Hudson, Merrimack, and Milford towns in Hillsborough County, N.H.
Nashville-Davidson, Tenn.	Consists of Cheatham, Davidson, Dickson, Robertson, Rutherford, Sumner, Williamson, and Wilson Counties, Tenn.
Nassau-Suffolk, N.Y.	Consists of Nassau and Suffolk Counties, N.Y.
New Bedford, Mass.	Consists of New Bedford city and Acushnet, Dartmouth, Fairhaven, and Freetown towns in Bristol County; and Lakeville, Marion, and Mattapoisett towns in Plymouth County, Mass.
New Britain, Conn.	Consists of New Britain city and Berlin, Plainville, and Southington towns in Hartford County, Conn.
New Brunswick-Perth Amboy-Sayreville,	Coextensive with Middlesex County, N.J.
New Haven-West Haven, Conn. ${ }^{10}$.	Consists of Clinton town in Middlesex County; and New Haven and West Haven cities and Bethany, Branford, East Haven, Guilford, Hamden, Madison, North Branford, North Haven, Orange, Wallingford, and Woodbridge towns in New Haven County, Conn.
New London-Norwich, Conn.-R.I.	Consists of Old Saybrook town in Middlesex County; New London and Norwich cities and Bozrah, East Lyme, Griswold, Groton, Ledyard, Lisbon, Montville, Old Lyme, Preston, Sprague, Stonington, and Waterford towns in New London County, Conn.; and Hopkinton and Westerly towns in Washington County, R.I.
New Orleans, La.	Consists of Jefferson, Orleans, St. Bernard, and St. Tammany Parishes, La.
New York, N.Y.-N.J.	Consists of Bronx, Kings, New York, Putnam, Queens, Richmond, Rockland, and Westchester Counties, N.Y. and Bergen County, N.J.
Newark, N.J.	Consists of Essex, Morris, Somerset, and Union Counties, N.J.
Newport News-Hampton, Va. ${ }^{11}$	Consists of Hampton, ${ }^{5}$ Newport News, ${ }^{5}$ Poquoson, ${ }^{5}$ and Williamsburg ${ }^{5}$ cities and Gloucester, James City, and York Counties, Va.
Norfolk-Virginia Beach-Portsmouth, Va.-N.C. ${ }^{12}$.	Consists of Chesapeake, ${ }^{\text {s }}$ Norfolk, ${ }^{5}$ Portsmouth, ${ }^{5}$ Suffolk, ${ }^{5}$ and Virginia Beach ${ }^{5}$ cities, Va. and Currituck County, N.C.
Northeast Pennsylvania	Consists of Lackawanna, Luzerne, and Monroe Counties, Pa.
Norwalk, Conn.	Consists of Norwalk city and Weston, Westport, and Wilton towns in Fairfield County, Conn.
Odessa, Tex.	Coextensive with Ector County, Tex.
Oklahoma City, Okla.	Consists of Canadian, Cleveland, McClain, Oklahoma, and Pottawatomie Counties, Okla.
Omaha, Nebr.-Iowa	Consists of Douglas and Sarpy Counties, Nebr. and Pottawattamie County, Iowa
Orlando, Fla.	Consists of Orange, Osceola, and Seminole Counties, Fla.
Owensboro, Ky.	Coextensive with Daviess County, Ky.
Oxnard-Simi Valley-Ventura, Calif.	Coextensive with Ventura County, Calif.
Panama City, Fla. ${ }^{3}$.	Coextensive with Bay County, Fla.
Parkersburg-Marietta, W. Va.-Ohio	Consists of Wirt and Wood Counties, W. Va. and Washington County, Ohio
Pascagoula-Moss Point, Miss. ${ }^{3}$	Coextensive with Jackson County, Miss.
Paterson-Clifton-Passaic, N.J.	Coextensive with Passaic County, N.J.
Pensacola, Fla.	Consists of Escambia and Santa Rosa Counties, Fla.
Peoria, III.	Consists of Peoria, Tazewell, and Woodford Counties,
Petersburg-Colonial Heights-Hopewell, Va.	Consists of Colonial Heights, ${ }^{5}$ Hopewell, ${ }^{5}$ and Petersburg ${ }^{5}$ cities and Dinwiddie and Prince George Counties, Va.
Philadelphia, Pa.N.J.	Consists of Bucks, Chester, Delaware, Montgomery, and Philadelphia Counties, Pa. and Burlington, Camden, and Gloucester Counties, N.J.
Phoenix, Ariz.	Coextensive with Maricopa County, Ariz.
Pine Bluff, Ark.	Coextensive with Jefferson County, Ark.
Pittsburgh, Pa.	Consists of Allegheny, Beaver, Washington, and Westmoreland Counties, Pa.
Pittsfield, Mass.	Consists of Pittsfield city and Adams, Cheshire, Dalton, Lanesborough, Lee, Lenox, and Stockbridge towns in Berkshire County, Mass.

See footnotes at end of appendix.

See footnotes at end of appendix.

Sherman-Denison, Tex.	Coextensive with Grayson County, Tex.
Shreveport, La.	Consists of Bossier, Caddo, and Webster Parishes, La.
Sioux City, lowa-Nebr.	Consists of Woodbury County, lowa and Dakota County, Nebr.
Sioux Falls, S. Dak.	Coextensive with Minnehaha County, S. Dak.
South Bend, Ind.	Consists of Marshall and St. Joseph Counties, Ind.
Spokane, Wash.	Coextensive with Spokane County, Wash.
Springfield, III.	Consists of Menard and Sangamon Counties, III.
Springfield, Mo.	Consists of Christian and Greene Counties, Mo.
Springfield, Ohio	Consists of Champaign and Clark Counties, Ohio
Springfield-Chicopee-Holyoke, Mass.-Conn.	Consists of Chicopee, Holyoke, Springfield, and Westfield cities and Agawam, East Longmeadow, Hampden, Longmeadow, Ludlow, Monson, Palmer, Southwick, West Springfield, and Wilbraham towns in Hampden County; Northampton city and Belchertown, Easthampton, Granby, Hadley, Hatfield, Southampton, and South Hadley towns in Hampshire County; Warren town in Worcester County, Mass.; and Somers town in Tolland County, Conn.
Stamford, Conn.	Consists of Stamford city and Darien, Greenwich, and New Canaan towns in Fairfield County, Conn.
Steubenville-Weirton, Ohio-W. Va.	Consists of Jefferson County, Ohio and Brooke and Hancock Counties, W. Va.
Stockton, Calif.	Coextensive with San Joaquin County, Calif.
Syracuse, N.Y.	Consists of Madison, Onondaga, and Oswego Counties, N.Y.
Tacoma, Wash.	Coextensive with Pierce County, Wash.
Tallahassee, Fla.	Consists of Leon and Wakulla Counties, Fla.
Tampa-St. Petersburg, Fla.	Consists of Hillsborough, Pasco, and Pinellas Counties, Fla.
Terre Haute, Ind.	Consists of Clay, Sullivan, Vermillion, and Vigo Counties, Ind.
Texarkana, Tex.-Texarkana, Ark.	Consists of Bowie County, Tex. and Little River and Miller Counties, Ark.
Toledo, Ohio-Mich.	Consists of Fulton, Lucas, Ottawa, and Wood Counties, Ohio and Monroe County, Mich.
Topeka, Kans.	Consists of Jefferson, Osage, and Shawnee Counties, Kans.
Trenton, N.J.	Coextensive with Mercer County, N.J.
Tucson, Ariz.	Coextensive with Pima County, Ariz.
Tulsa, Okla.	Consists of Creek, Mayes, Osage, Rogers, Tulsa, and Wagoner Counties, Okla.
Tuscaloosa, Ala.	Coextensive with Tuscaloosa County, Ala.
Tyler, Tex.	Coextensive with Smith County, Tex.
Utica-Rome, N. Y.	Consists of Herkimer and Oneida Counties, N.Y.
Vallejo-Fairfield̀-Napa, Calif.	Consists of Napa and Solano Counties, Calif.
Vineland-Millville-Bridgeton, N.J.	Coextensive with Cumberland County, N.J.
Waco, Tex.	Coextensive with McLennan County, Tex.
Washington, D.C.-Md.-Va. ${ }^{14}$	Consists of District of Columbia; Charles, Montgomery, and Prince Georges Counties, Md; and Alexandria, ${ }^{5}$ Fairfax, ${ }^{5}$ Falls Church, ${ }^{5}$ Manassas, ${ }^{5}$ and Manassas Park ${ }^{5}$ cities and Arlington, Fairfax, Loudoun, and Prince William Counties, Va.
Waterbury, Conn.	Consists of Thomaston, Watertown, and Woodbury towns in Litchfield County; and Waterbury city, Naugatuck borough, and Beacon Falls, Cheshire, Middlebury, Prospect, Southbury, and Wolcott towns in New Haven County, Conn.
Waterloo-Cedar Falls, Iowa	Coextensive with Black Hawk County, Iowa
West Palm Beach-Boca Raton, Fla.	Coextensive with Palm Beach County, Fla.
Wheeling, W. Va.-Ohio	Consists of Marshall and Ohio Counties, W. Va. and Belmont County, Ohio
Wichita, Kans.	Consists of Butler and Sedgwick Counties, Kans.
Wichita Falls, Tex.	Consists of Clay and Wichita Counties, Tex.
Williamsport, Pa.	Coextensive with Lycoming County, Pa.
Wilmington, Del.-N.J.-Md.	Consists of New Castle County, Del.: Salem County, N.J.; and Cecil County, Md.
Wilmington, N.C. . . .	Consists of Brunswick and New Hanover Counties, N.C.

[^16]| Worcester, Mass. | Consists of Worcester city and Auburn, Berlin, Boylston, Brookfield, Charlion, East Brookfield, Grafton, Holden, Leicester, Millbury, Northborough, Northbridge, North Brookfield, Oxford, Paxton, Shrewsbury, Spencer, Sterling, Sutton, Upton, Uxbridge, Webster, Westborough, and West Boylston towns in Worcester County, Mass. |
| :---: | :---: |
| Yakima, Wash. | Coextensive with Yakima County, Wash. |
| York, Pa. | Consists of Adams and York Counties, Pa. |
| Youngstown-Warren, Ohio | Consists of Mahoning and Trumbull Counties, Ohio |

'Retitled from Chicago-Northeastern Indiana SCA since 1972 Economic Censuses; but no boundary change.
'Includes New York-Northeastern New Jersey SCA and Long Branch-Asbury Park, N.J., Stamford, Conn., and Norwalk, Conn., SMSA's added since 1972 Economic Censuses.
${ }^{3}$ Newly designated SMSA since 1972 Economic Censuses.
${ }^{4}$ Williamson County, Tex. added since 1972 Economic Censuses.
${ }^{5}$ Independent of anv countv and considered a county equivalent.
${ }^{6}$ Retitled from Charleston, S.C., SMSA since 1972 Economic Censuses.
${ }^{7}$ Retitled from Kingsport-Bristol, Tenn.-Va., SMSA and Carter, Unicorn, and Washington Counties, Tenn., added since 1972 Economic Censuses.
${ }^{8}$ Retitled from Lexington, Ky., SMSA since 1972 Economic Censuses.
${ }^{9}$ Retitled from Muskegon-Muskegon Heights, Mich., SMSA since 1972 Economic Censuses.
${ }^{10}$ Killingworth town in Middlesex County was deleted since 1972 Economic Censuses.
${ }^{1}$ 'Poquoson city was added since 1972 Economic Censuses.
${ }^{1}{ }^{2}$ N ansemond city was deleted since 1972 Economic Censuses.
${ }^{1}$ 'New Kent County added since 1972 Economic Censuses.
${ }^{14}$ Manassas and Manassas Park cities added since 1972 Economic Censuses.

Abbreviations Used for State Names
 (Alaska, Hawaii, Idaho, Iowa, Maine, Ohio and Utah are not abbreviated)

Ala.	Alabama	Ind. Indiana	N.C.	North Carolina	R.I.	Rhode Island
Ariz. Arizona	Kans. Kansas	N. Dak. North Dakota	S.C.	South Carolina		
Ark. Arkansas	Ky.	Kentucky	Nebr.	Nebraska	S. Dak. South Dakota	
Calif. California	La.	Louisiana	Nev.	Nevada	Tenn.	Tennessee
Colo. Colorado	Mass. Massachusetts	N.H.	New Hampshire	Tex.	Texas	
Conn. Connecticut	Md. Maryland	N.J.	New Jersey	Va.	Virginia	
D.C. District of Columbia	Mich. Michigan	N. Mex. New Mexico	Vt.	Vermont		
Del.	Delaware	Minn. Minnesota	N.Y.	New York	Wash. Washington	
Fla. Florida	Miss. Mississippi	Okla.	Oklahoma	Wis.	Wisconsin	
Ga.	Georgia	Mo. Missouri	Oreg.	Oregon	W. Va. West Virginia	
III. Illinois	Mont. Montana	Pa.	Pennsylvania	Wyo. Wyoming		

New Catalog - Tool for Research, Marketing, Other Uses

The Bureau of the Census Catalog, 1981 is a reference tool that planners, marketers, government officials, and other users will want to consult frequently. It has two new important features:

- It's CUMULATIVE - covering products issued in

The Bureau of the Census Catalog, 1981 costs $\$ 6.50$. To order, use the GPO order form below. 1980 and 1981;

- It has a special section on products from the 1977 economic and governments censuses and 1978 agriculture census, regardless of date of issue.

The Catalog can save its readers costly time in -

- Research. Describes data available on Agriculture, Business, Construction and Housing, Foreign Trade, Geography, Governments, Manufacturing and Mineral Industries, Population, and Transportation.
- Searching. Covers all publications, computer tapes and microfiche in a single source.
- Ordering. Gives complete information for ordering each product.
- Obtaining help. Provides addresses and phone numbers of many governmental, academic, and private organizations that can help data users.

PUBLICATION PROGRAM

1982 CENSUS OF MANUFACTURES

Publications of the 1982 Census of Manufactures, containing preliminary and final data on manufacturing establishments in the United States, are described below. Publication order forms for the specific reports may be obtained from any Department of Commerce district office or from Customer Services Branch, Data User Services Division, Bureau of the Census, Washington, D.C. 20233.

Preliminary Reports

Preliminary industry data are issued in 445 separate reports covering 452 industries (or combinations of industries). Preliminary data for States are grouped and released in reports for each of the nine census geographic divisions.

Final Reports

Final detailed statistics are issued in separate paperbound reports.
Industry series-82 reports (MC82-I-20A to -39D)
Each of the 82 reports provides information for a group of related industries (e.g., "dairy products" includes industries for butter, cheese, milk, etc.). Final figures for the United States are shown for each of the 452 manufacturing industries on quantity and value of products shipped and materials consumed, cost of fuels and electric energy, capital expenditures, assets, rents, inventories, employment, payrolls, payroll supplements, hours worked, value added by manufacturing, number of establishments, and number of companies. Comparative statistics for earlier years are provided where available.

For each industry, data on value of shipments, value added by manufacturing, capital expenditures, employment, and payrolls are shown by employment-size class of establishment and degree of primary product specialization. Statistics are given on production of specific products and consumption of energy and various materials by industry.

Geographic Area series-51 reports (MC82-A-1 to -51)

A separate report for each State and the District of Columbia presents data for industry groups and industries on value of shipments, value added by manufacturing, employment, payrolls, hours worked, new capital expenditures, and number of manufacturing establishments. Comparative statistics for earlier years and similar totals for all manufacturing industries are also shown for SMSA's, counties, and cities with significant manufacturing activity. Data are shown by industry groups for SMSA's and larger counties and cities. Detailed statistics-including inventories, assets, rents, and cost of materials and energy-are presented only in statewide totals.

Subject series-10 reports (MC82-S-1 to -10)
Each of the 10 reports contains detailed statistics for an individual subject, such as: selected materials consumed, selected metalworking
operations, manufacturing activity in government establishments, concentration ratios in manufacturing, type of organization, water use in manufacturing, fuels and electric energy consumed (separate publications for industry statistics, and State and SMSA statistics), textile machinery in place, production indexes, and a general National-level summary.

Final Report Volumes

Final paperbound reports are subsequently assembled and reissued in clothbound volumes.

- Volume I. Summary and Subject Statistics-data previously issued in series MC82S.
- Volume II. Industry Statistics-data previously issued in series MC82-I.

Part 1. Major Groups 20 to 26
Part 2. Major Groups 27 to 34
Part 3. Major Groups 35 to 39

- Volume III. Geographic Area Statistics-data previously issued in series MC82-A.

Part 1. Alabama to Montana
Part 2. Nebraska to Wyoming

Microfiche

All published data are also available on microfiche.

Computer Tapes

Public-use computer tapes contain most of the summary data that are found in the published reports. In addition to the published data being on computer tape, one major data series, the location of manufacturing plants, will be available only on computer tape. Public-use computer tapes are available for users who wish to summarize, rearrange, or process large amounts of data. Information concerning these tapes may be obtained from the Customer Services Branch, Data User Services Division, Bureau of the Census, Washington, D.C. 20233.

OTHER ECONOMIC CENSUSES REPORTS

Data on retail trade, wholesale trade, service industries, construction industries, mineral industries, enterprise statistics, minority-owned businesses, women-owned businesses, and transportation also are issued as part of the 1982 Economic Censuses. A separate series of reports covers the censuses of outlying areas-Puerto Rico, Virgin Islands of the United States, Guam, and the Northern Mariana Islands. All published reports and microfiche are sold by the Superintendent of Documents, U. S. Government Printing Office. Appropriate announcements and order forms describing these products are available free of charge from Customer Services Branch, Data User Services Division, Bureau of the Census, Washington, D.C. 20233.

Superintendent of Documents
U.S. Government Printing Office

Washington, D.C. 20402

Official Business
Penalty for Private Use, $\$ 300$

[^0]: ${ }^{1}$ Source: Federal Reserve Bulletin, January and April 1982,: table A48.

[^1]: ${ }^{2}$ A standard metropolitan statistical area (SMSA) is an integrated economic and social unit with a recognized large population nucleus. Each SMSA consists of one or more entire counties which meet standards pertaining to population aṇd metropolitan character. In New England, SMSA's are defined by cities and towns rather than on a county basis. Census divisions are used for defining SMSA's in the State of Alaska. SMSA's are defined by the Department of Commerce, Office of Federal Statistical Policy and Standards. The SMSA's used in this report are defined as of December 1977.

[^2]: 'Figures for residual fuel oil are included with distillate fuel oil.
 Figure includes gas, except natural gas.
 Prior to 1978, figures for liquefied petroleum gases were combined with other fuels.
 Figure includes manufactured, still, blast furnace, and coke-oven gases.

[^3]: See footnotes at end of table.

[^4]: No information on distillate or

[^5]: See footnotes at end of table.

[^6]: See footnotes at end of table.

[^7]: See footnotes at end of table.

[^8]: See footnotes at end of table.

[^9]: See footnotes at end of table.

[^10]: See footnotes at end of table.

[^11]: See footnotes at end of table.

[^12]: Sae footnotes at end of table.

[^13]: See footnotes at end of table.

[^14]: See footnotes at end of table

[^15]: See footnotes at end of table．

[^16]: See footnotes at end of appendix.

