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Abstract

Sarahsaurus aurifontanalis, from the Kayenta Formation of Arizona, is one of only three

sauropodomorph dinosaurs known from the Early Jurassic of North America. It joins Anchi-

saurus polyzelus, from the older Portland Formation of the Hartford Basin, and Seitaad

reussi, from the younger Navajo Sandstone of Utah, in representing the oldest North Ameri-

can sauropodomorphs. If it is true that sauropodomorphs were absent from North America

during the Late Triassic, the relationship among these three dinosaurs offers a test of the

mechanisms that drove recovery in North American biodiversity following the end-Triassic

extinction event. Here we provide the first thorough description of Sarahsaurus aurifontana-

lis based on completed preparation and computed tomographic imaging of the holotype and

referred specimens. With new anatomical data, our phylogenetic analysis supports the con-

clusion that Sarahsaurus aurifontanalis is nested within the primarily Gondwanan clade

Massospondylidae, while agreeing with previous analyses that the three North American

sauropodomorphs do not themselves form an exclusive clade. A revised diagnosis and

more thorough understanding of the anatomy of Sarahsaurus aurifontanalis support the

view that independent dispersal events were at least partly responsible for the recovery in

North American vertebrate diversity following a major extinction event.

Introduction

In the late 19th Century O. C. Marsh of the Yale Peabody Museum described the first remains

of North American early sauropodomorph dinosaurs, from the Early Jurassic Portland Forma-

tion of Massachusetts and Connecticut [1–6]. Several names were coined for these specimens,

but most recent authors consider all this material to represent a single taxon, and most (but

not all) recognize Anchisaurus (Ammosaurus) polyzelus as its valid name [7–10]. We follow

this convention below.

Several decades would pass before additional early sauropodomorph specimens were found

in North America, and nearly a century before informative new specimens were recovered.
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The next sauropodmorph to be described was a fragmentary postcranial skeleton collected by

Lionel F. Brady of the Museum of Northern Arizona. It was found in northern Arizona in the

uppermost formation of the Glen Canyon Group, the Early Jurassic Navajo Sandstone. Brady

referred this material to Anchisaurus (Ammosaurus) [11, 12], believing this taxon to be a thero-

pod dinosaur. Galton [7, 13] later correctly interpreted Anchisaurus (Ammosaurus) as an early

sauropodomorph, to which he referred Brady’s material plus a second fragmentary specimen

from the Navajo Sandstone of Arizona that was collected by Charles L. Camp for the Univer-

sity of California Museum of Paleontology. Yates [8] subsequently argued that the two Navajo

Sandstone specimens represented a single taxon and that it was distinct from Anchisaurus
(Ammosaurus). He thought it was possibly related to Massospondylus carinatus [14] from

southern Africa, but he deemed the material too incomplete for a definitive referral.

Between 1976 and 1978, a joint expedition from the Museum of Northern Arizona and

Harvard’s Museum of Comparative Zoology (MCZ) explored another part of the Glen Canyon

Group in northern Arizona, the so-called ‘Silty Facies’ of the Early Jurassic Kayenta Formation,

which underlies and interfingers with the Navajo Sandstone. They collected a single broken

sauropodomorph skull and associated postcranial fragments from the base of a geographic fea-

ture known as ‘Rock Head.’ Owing to the questionable taxonomic identity (below), we infor-

maly designate this as the ‘Rock Head specimen.’ The specimen was reposited in the MCZ

(MCZ 8893).

In the initial description [15], the Rock Head specimen was referred to Massospondylus sp.,

a well-known taxon represented by numerous relatively complete skeletons from multiple

localities in southern Africa [14]. Its identification as Massospondylus sp. was taken as evidence

further supporting the concept that a cosmopolitan dinosaur fauna of low taxonomic diversity

occupied Pangaea in the Late Triassic and Early Jurassic [9, 10, 16–18]. Subsequent workers

expressed doubts about its referral to Massospondylus sp., and it became known as ‘the

unnamed Kayenta prosauropod’ (e.g., [19] p. 27, [20]). Uncertainty about its identity also

raised some of the first doubts to be cast over the prevailing view of cosmopolitan dinosaur

faunas of low taxonomic diversity across Pangaea in the Late Triassic and Early Jurassic.

In 2006, the sauropodomorph “Fendusaurus eldoni” from the Early Jurassic McCoy Brook

Formation of Nova Scotia was named on a very poorly preserved specimen and given prelimi-

nary description in an unpublished dissertation [21]. A formal description and diagnosis has

yet to be published.

In 2010, preliminary descriptions of two new early sauropodomorphs from the Glen Can-

yon Group of the Colorado Plateau were published. The first was Seitaad ruessi, described by

Sertich and Loewen [22] based on a single, partial skeleton lacking the skull. It was the third

sauropodomorph specimen reported from the Navajo Sandstone; it was collected in southern

Utah by the Utah Museum of Natural History [22, 23]. Seitaad ruessi was postulated to have

affinities either to plateosaurid or to massospondylid sauropodomorphs, but its incomplete-

ness left a measure of phylogenetic uncertainty that was compounded by more general uncer-

tainty and poor phylogenetic resolution for this early history of the sauropodomorph lineage

[24, 25]. The two specimens previously reported from the Navajo Sandstone were found to

compare favorably to Seitaad ruessi, but they were considered too fragmentary for a confident

referral [22].

Next to be described was Sarahsaurus aurifontanalis, based on two partial skeletons [25].

Both individuals were collected from a single quarry in the Silty Facies of the Kayenta Forma-

tion during a collaborative survey by The University of Texas Vertebrate Paleontology Labora-

tory and the Navajo Nation EcoScouts that took place between 1997–2000. In the initial

diagnosis and description of Sarahsaurus aurifontanalis, the holotype was designated as the

more mature and complete of the two skeletons and the only one that included parts of a

Anatomy and systematics of Sarahsaurus aurifontanalis

PLOS ONE | https://doi.org/10.1371/journal.pone.0204007 October 10, 2018 2 / 108

Funding: This research was funded by the Jackson

School of Geosciences and the National Science

Foundation (NSF EAR 1258878, EAR 1561622,

EAR 1160721, EAR 0948842, and IIS-0531767) to

TBR. Andrew Milner and the St. George Dinosaur

Discovery Site at Johnson Farm funded Brian

Engh’s art of the Kayenta fauna. The funders had

no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

Abbreviations: BP, Evolutionary Studies Institute

(formerly the Bernard Price Institiute for

Paleontological Research), Johannesburg, South

Africa; BSP, Bayerische Staatssammlung für
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disarticuated skull; the less-mature and less-complete skeleton was designated the paratype

[25]. In this initial description, the Rock Head skull was provisionally referred to Sarahsaurus
aurifontanalis.

Below, we present a more detailed description of the holotype and paratype specimens of

Sarahsaurus aurifontanalis and a revised description of the Rock Head specimen. These are

based on more fully prepared specimens and on high-resolution X-ray computed tomographic

(CT) and micro-computed tomography (μCT) data from cranial elements of both the holotype

and the Rock Head specimens. Additionally, we discuss aspects of the referral of the Rock

Head specimen to Sarahsaurus aurifontanalis that are typical problems that paleontologists

commonly confront when using multiple specimens to score a single operational taxonomic

unit (OTU). We explored this issue by performing a series of tests designed to evaluate the

phylogenetic effects of restricting the matrix scores for Sarahsaurus to the holotype and com-

pared those results to a composite score that includes the holotype, paratype, and Rock Head

specimens.

We also note that since the initial description of Sarahsaurus aurifontanalis, a number of

new Late Triassic and Jurassic sauropodomorphs have been described or re-described (e.g.,

[26–41]). Hence, a richer comparative context invites a reassessment of its initial diagnosis

and systematic position.

Lastly, based on these new data and enriched comparative basis, we reexamine the question

of whether the Early Jurassic North American sauropodomorphs comprise a unique clade

unto themselves, or if they represent independent dispersals of early sauropodomorphs into

North America. The answer to this question offers insights into general patterns and mecha-

nisms that previous authors have postulated as mechanisms driving the early diversification of

dinosaurs and Mesozoic terrestrial faunas in general, from a time spanning when Pangaea was

intact through its early break-up in the Jurassic [9, 10, 16, 17].

Systematic paleontology

Dinosauria Owen, 1842 [42] sensu Sereno, 2005 [43]

Saurischia Seeley, 1887 [44] sensu Sereno, 2005 [43]

Sauropodomorpha Huene, 1932 [45] sensu Sereno, 2005 [43]

Sarahsaurus aurifontanalis Rowe, Sues, and Reisz, 2010 [25]

Etymology

Named in honor of Mrs. Sarah and Dr. Ernest Butler, whose vision, generosity, and broad

interests in the arts, science, and medicine have enriched Texas in many ways; specific epithet

from ‘aurum’ (L., gold) and ‘fontanalis’ (L., of the spring), in reference to Gold Spring, Ari-

zona, where the holotype was discovered [25].

Holotype

TMM 43646–2 partially articulated skeleton including a basicranium, quadrate, frontal, pre-

frontal, and maxilla, articulated pre-caudal vertebral column, partially articulated and nearly

complete tail, complete left pectoral girdle, both humeri, articulated left forelimb including

articulated manus, complete sacrum, both femora, articulated left tibia, fibula, tarsus, and pes.

Referred specimens

Paratype, TMM 43646–3, partial skeleton including separated centra and neural arches, an

uncrushed scapulae and right coracoid, left ilium and ischium, both pubes, right femur, left
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tibia and fibula, and right tarsus and pes; MCZ 8893, articulated skull with fragmentary post-

cranial elements, including atlantal neural arches, partial cervical neural arch, three partial cau-

dal centra, partial distal humerus, incomplete femoral shaft, and fragments of gastralia. The

two referred specimens differ in skeletal maturity at their times of death from the holotype

(detailed below), and these differences introduce a measure of uncertainty regarding their sys-

tematic identity. As explained below, we performed a series of tests to identify and constrain

this uncertainty with respect to their taxonomic identity and effects on phylogenetic analyses.

Horizon and locality

Silty Facies of the Kayenta Formation, Glen Canyon Group, Pliensbachian [46]; TMM 43646

(holotype locality), Gold Spring, Coconino County, Navajo Nation, Arizona; MCZ field num-

ber 20/78AR (referred locality), Rock Head, Coconino County, Navajo Nation, Arizona.

Detailed locality information is on file at the Vertebrate Paleontology Laboratory in Austin,

TX as well as the Navajo Nation Minerals Department in Window Rock, AZ and is available to

qualified researchers. All necessary permits were obtained for the described study, which com-

plied with all relevant regulations.

Materials and methods

Geological setting of the specimens

All three of the specimens in question were collected from the Silty Facies of the Kayenta For-

mation near its southwestern-most exposure (Fig 1). The Silty Facies is broadly exposed in

Moenkopi Wash and to the south over a distance of roughly 60 kilometers. North of Moenkopi

Wash, the Silty Facies grades into the sandier Typical Facies of the Kayenta Formation, which

forms the towering Vermillion Cliffs that extend northwards into Utah. The sandier sediments

of the Typical Facies are poorly fossiliferous, with the exception of the Comb Ridge locality,

near the type section of the Kayenta Formation at the town of Kayenta, Arizona [47, 48].

Productive exposures of the Silty Facies are mostly confined to Moenkopi Wash, and to a

line of cliffs extending to the south that is formed by the Navajo Sandstone and Kayenta For-

mation. This escarpment bears various names, including ‘Adeii Eechii Cliffs’ [49, 50], the ‘Tloi

Eechii Cliffs’ (e.g., [51]), and the Echo Cliffs (e.g., [52]), names alluding to the red escarpment

formed by the prominent cliff-forming Dinosaur Canyon Member of the Moenave Formation

along this portion of Ward’s Terrace. South of Moenkopi Wash, the Adeii Eechii escarpment

delineates both the eastern flank of the Little Colorado River valley and the western edge of the

Moenkopi Plateau. Below the Adeii Eechii Cliffs is Ward Terrace, a physiographic feature

made famous for extensive deposits of Triassic vertebrates recovered from the Moenkopi For-

mation, Chinle Formation, and Moenave Formation (e.g., [53]). From Moenkopi Wash south-

wards, exposure of the Silty Facies of the Kayenta is rather steep and offers relatively little

surface area for prospecting, although a few fossils have been recovered from these exposures

(e.g., [54]). However, expansive, and heavily-dissected badlands of the Silty Facies of the

Kayenta Formation are exposed along the southern-most extent of the Adeii Eechii Cliffs on a

broad bench formed by the thickening of the underlying Dinosaur Canyon Member of the

Moenave Formation, which broadens Ward’s Terrace considerably to the west. Since the time

of the joint MNA-MCZ expeditions in the 1970s, this has been the most productive part of the

Kayenta Formation [18, 55, 56, 57].

This study is based on three specimens collected from lands of the Navajo Nation in north-

eastern Arizona, under permits granted by the Navajo Nation Minerals Division to the MNA

and to the Vertebrate Paleontology Laboratory of the University of Texas (VPL) in collabora-

tion with the Navajo EcoScouts program. Of primary importance herein are the holotype and
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paratype specimens of Sarahsaurus aurifontanalis that were collected from a single quarry

(locality TMM 43646; Fig 1) that also included a partial skeleton of an immature individual of

Dilophosaurus wetherilli [58, 59]. The stratigraphy of the quarry and partial disarticulation of

each individual complicated identification and association of the individual elements. The

Dilophosaurus bones were mostly situated above the holotype skeleton of Sarahsaurus aurifon-
tanalis, which in turn lay above the paratype. However, it became evident during the excava-

tion that some mixing of the elements had occurred post-mortem, perhaps as a result of

scavenging as evidenced by bite marks on many of the bones (see below). Further mixing of

the elements may have occurred during post-mortem transport, although partial articulation

of the Dilophosaurus and holotype skeleton of Sarahsaurus suggest that the transport distance

was short. There is no unequivocal evidence that the holotype quarry contained more than

these three individuals, however we acknowledge that about two-dozen of the recovered bones

remain unidentified, and we cannot exclude the possibility that one or more additional indi-

viduals and/or taxa were buried at this site. Appendix A (S1 Text) itemizes all the individual

bones recognized as the holotype and paratype of Sarahsaurus aurifontanalis.
A third specimen potentially referable to Sarahsaurus aurifontanalis (MCZ 8893) [8, 15]

was found near the base of a physiographic feature known as Rock Head. The Rock Head spec-

imen was discovered in 1978 by TBR and collected by Farish A. Jenkins, Jr. and William

Amaral. The skull was found in association with a smalll number of postcranial fragments that

had weathered onto the surface. They include possible atlantal neural arch fragments, a partial

cervical neural arch with small epipophysis that extends to back (but not beyond) the post

zygapophyseal facets. This neural arch resembles that of the holotype of Sarahsaurus aurifonta-
nalis. Also present is a neural spine possibly from the second cervical vertebra; an elongate

Fig 1. Geographic distribution of the holotype (TMM 43646–2), paratype (TMM 43646–3), and referred specimen

(MCZ 8893) of Sarahsaurus aurifontanalis within the Glen Canyon Group (green) and Kayenta Formation (black)

of northern Arizona and southern Utah. The stratigraphic column to the right is an idealized representation of the

units from which each specimen was recovered (modified from [22]).

https://doi.org/10.1371/journal.pone.0204007.g001
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cervical prezygapophysis that also resembles the holotype cervicals of Sarahsaurus aurifontana-
lis; and two or possibly three partial distal caudal centra. A heavily weathered distal end of a

humerus and a partial femoral shaft were also recovered, along with a number of fragmented

gastralia. These were all that could be located of the postcranium during excavation of the

Rock Head specimen in 1978; no other fragments were found when the site was revisited in

2007.

The Rock Head skull was found less than a kilometer from the holotype locality of the

ornithischian Scutellosaurus lawleri [55], 1.5 kilometers from the type locality of the theropod

Syntarsus kayentakatae [56, 60], and 8.5 kilometers to the south of the type locality of Sarah-
saurus aurifontanalis (TMM 43646). The Rock Head specimen was preserved lower in section

than the holotypes of Sarahsaurus aurifontanalis, Scutellosaurus lawleri, and Syntarsus
kayentakatae.

All three of the sauropodomorph specimens discussed herein were collected from the

broad bench of the silty Kayenta Formation along the Adeii Eechii Cliffs. The Sarahsaurus aur-
ifontanalis holotype quarry is located in the stratigraphic middle-third of the Kayenta Forma-

tion, along the northern-most flank of the Gold Spring drainage basin (Fig 2). Detrital zircon

crystals were recovered from the matrix of the holotype and paratype during preparation.

Unpublished U-Pb dates based on these detrital zircon crystals corroborate a late Pliensba-

chian age for the holotype quarry [46]. Figs 1 and 2 depict the geographic and stratigraphic

relationships of the localities with respect to the other sauropodomorph remains discovered in

the Glen Canyon Group of the Colorado Plateau.

Specimen excavation and preparation

All three specimens were collected with hand tools and consolidated using Glyptol (MCZ

8893), Butvar, and cyanoacrylate (TMM 43636–2 and 43646–3). They were manually prepared

using both hand tools and pneumatic tools. Many of the bones were encrusted with a resilient,

red-purple-black oxide coating that we informally referred to as ‘hematite’ although we did

not analyze its composition (but see [61]). This secondary crust, possibly biogenic in it origin

[62], was harder than the bone, and to some degree it was responsible for the fine surficial

detail preserved on many of the elements. However, removal of this crust was necessary to

study the material and this was an exceedingly slow and laborious procedure. In many cases,

elements were removed from field jackets and then prepared with delicate pneumatic percus-

sion hammers beneath a microscope.

Fig 3 displays the main field jacket surrounding most of the semi-articulated postcranial

skeleton of the holotype specimen of Sarahsaurus aurifontanalis. Possible tooth marks scat-

tered throughout the skeleton suggest that the effects of post-mortem scavenging were exacer-

bated by post-burial crushing. The anterior half of the presacral vertebral column is

lateromedially flattened, and the femora are also flattened. Details regarding the deformation

of specific skeletal elements are provided in the following description.

Computed tomography

High-resolution X-ray computed tomographic (HRXCT) datasets were generated for the hand

and braincase of the holotype as part of its initial description [25]. More recently, we scanned

the Rock Head skull and three possible palatal teeth to augment the present analyses. All data-

sets were generrated at The University of Texas High-Resolution X-ray Computed Tomogra-

phy Facility (UTCT) and are archived there. Scanning specifications for each dataset are

presented in Appendix B (S2 Text), and full-resolution datasets in 8bit JPEG format are avail-

able for download at: http://digimorph.org/specimens/Sarahsaurus_aurifontanalis/.
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Fig 2. Stratigraphic section of the Kayenta Formation at Gold Spring, AZ. Vertical increments are 5 meters.

https://doi.org/10.1371/journal.pone.0204007.g002
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Fig 3. Main block from TMM 43646 containing much of the holotype specimen of Sarahsaurus aurifontanalis. Abbreviations: caudal vertebra (cdv), cervical rib (cr),

cervical vertebra (cv), dorsal rib (dr), dorsal vertebra (dv), left astragalus (l. as), left fibula (l. fi), left humerus (l. hu), left pes (l. p), left radius (l. ra), left tibia (l. ti), left

ulna (l. u), right ilium (r. il), sacral vertebra (sv). Scale bar in photograph is 10 cm.

https://doi.org/10.1371/journal.pone.0204007.g003
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In addition, movies made from these datasets are included here as supplemental data (S1 to

S21 Animations, see Appendix B, S2 Text). They include three movies of the holotype brain-

case and inner ear, seven movies of the holotype hand and wrist, five movies of the referred

Rock Head skull and jaws, and six movies of the possible palatal teeth that were recpovered

from the Rock Head skull. All were generated using VG StudioMax, version 2.1.

Comparative framework

In the following description, we compare the anatomy of Sarahsaurus aurifontanalis with that

of many archosauriform taxa. We observed first-hand fossils of Anchisaurus polyzelus, Burio-
lestes schultzi, Coelophysis bauri, Dilophosaurus wetherilli, Eoraptor lunensis, Euparkeria capen-
sis, Herrerasaurus ischigualastensis, Massospondylus carinatus, Plateosaurus engelhardti,
Psittacosaurus mongoliensis, Saturnalia tupiniquim, Staurikosaurus pricei, and Syntarsus kayen-
takatae. We also consulted photographs of Adeopapposaurus mognai, Coloradisaurus brevis,
Guaibasaurus candalarensis, Mussaurus patagonicus, Pampadromaeus barbarenai, and Seitaad
ruessi. All other comparisons and character scorings were made from the literature. Certain

elements of the holotype and paratype specimens of Sarahsaurus aurifontanalis were deter-

mined to be relatively uncrushed and were used to take linear measurements using Pittsburg

digital calipers (Appendix C, S3 Text).

Phylogenetic analyses

We rescored the holotype specimen of Sarahsaurus aurifontanalis from the CT data and more

fully-prepared holotype skeleton (TMM 43646–2) using versions of the Yates [63] and

Upchurch et al. [64] taxon-character matrices for early sauropodomorphs, as further modified

by Yates et al. [33] and Apaldetti et al. [27, 28]. We did not change character scores for any

taxon other than Sarahsaurus aurifontanalis. One character was added to both matrices: Num-

ber of foramina in proximal portion of pubis; one (0), two (1). The final matrices derived from

Yates [63] and Upchurch et al. [64] have 52 taxa and 363 characters, and 39 taxa and 302 char-

acters, respectively. The matrices were constructed in Mesquite [65] and the phylogenetic anal-

yses were conducted in TNT [66, 67]. We also scored the holotype specimen of Sarahsaurus
aurifontanalis in a more recent phylogenetic matrix constructed by McPhee et al. [37] and

modified by McPhee and Choiniere [38]; the same character was added to this matrix as the

other matrices described above. That matrix contains 61 taxa and 365 characters.

Heuristic searches in TNT utilized 1000 replications, tree bisection and reconnection, and

random sequence additions while keeping ten trees per replication and collapsing zero-length

branches. Bremer support and bootstrap resampling of 1000 replications were also conducted

in TNT. Outgroup constraints were not enforced but the trees were rooted on Euperkeria
capensis (Yates matrix and McPhee and Choiniere matrix) and Marasuchus lilloensis
(Upchurch et al. matrix). All characters were treated as unordered in the Yates and Upchurch

et al. matrices to closely replicate the initial analyses [25]. Characters 8, 13, 19, 23, 40, 57, 69,

92, 102, 117, 121, 131, 134, 145, 148, 150, 151, 158, 163, 168, 171, 178, 185, 208, 211, 218, 226,

231, 238, 246, 254, 257, 270, 282, 303, 309, 317, 337, 350, 353, 355, 360, and 364 were ordered

in the McPhee and Choiniere matrix [38]. Complete character descriptions are found in

Appendix D (S4 Text) and matrices are available as TNT files in Appendix E (S1 Files).

Separate sensitivity analyses were conducted using the Yates and Upchurch et al. matrices

[63, 64] as well as the McPhee and Choiniere matrix [38]. One analysis followed a long-stand-

ing but little-tested practice in paleontology of combining multiple specimens into a single

operational taxonomic unit (OTU), in order to gain the most complete characte-state scores

for each taxon in an analysis. In generating composite OTUs, the basis for referral of
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specimens is rarely described. Gauthier et al. [68] acknowledged the potential of mistaken

association. They also cited problematic instances where tree toppology changes depending on

whether or not potentially separate OTUs are combined. Details of each sensitivity analysis are

described below.

Testing referral of the Rock Head specimen (MCZ 8893) to Sarahsaurus aurifontana-
lis. The initial publication on the Rock Head specimen described only the skull and identified

it as Massospondylus sp. [15]. Subsequent researchers questioned this identification and the

specimen came to be known as the ‘undescribed Kayenta prosauropod’ [19, 20]. This specimen

was provisionally referred to Sarahsaurus aurifontanalis in its initial description [25], and it

was used to substantially augment the cranial description and matrix score for Sarahsaurus
aurifontanalis in the initial phylogenetic analyses.

We note that the Rock Head specimen represents an individual skeletally less mature at

time of death than the holotype specimen. In its terminal maturity, the Rock Head specimen is

probably closer to the paratype than to the holotype, but because the papratype completely

lacks cranial remains a direct comparison between the two cannot be made.

Compared to the holotype, immaturity at time of death in the Rock Head skull is indicated

by separation of the exoccipitals from the basioccipital along their sutural contacts. In the holo-

type braincase these elements externally seem co-ossified to one another, however CT imagery

shows that complete internal fusion had yet to occur. The Rock Head braincase is also slightly

smaller than the holotype. Additional features pointing to immaturity of the Rock Head speci-

men include separation of distinct right and left centers of ossification of the supraoccipital;

the presence of an open fontanelle on the dorsal midline between the supraoccipitals and pari-

etals; and lack of fusion of between the parietals. CT imagery also shows the right and left fron-

tals to abut on the midline in a flat plane, and that the interdigitating sutural relations

observed between more mature frontals had not yet begun at time of death. In skeletally

mature specimens, all of these elements suture tightly and can coossify in a familiar pattern

reported in other dinosaurs [69].

Circumstantial evidence supporting referral of the Rock Head specimen to Sarahsaurus
aurifontanalis includes the narrow stratigraphic and geographic ranges where they occur in

the southern exposures of the Silty Facies of the Kayenta Formation. Moreover, insofar as they

can be compared, every element of the local faunas from the Rock Head and Gold Spring col-

lecting fields are taxonomically identical, although the fine-grained mudstones of the latter

preserve a greater diversity of taxa.

In referring the Rock Head specimen to Sarahsaurus aurifontanalis, the initial study [25]

used the lists of character-states compiled by Yates [63] and by Upchurch et al. [64] as a basis

for comparison with the holotype. The two specimens compared favorably in all observable

character states, apart from bone-to-bone fusions attributable to their differential maturities at

time of death. However, the initial description also found that all but one of these many points

of favorable comparison represented plesiomorphic character states. The one autapomorphy

found at that time in common between the Rock Head specimen and the holotype was a

unique configuration in the low wall between the basitubera in which there is a central anterior

fossa. The analyses presented below suggest that this feature is more widely distributed and,

considering what is now known of systematically significant variation among early sauropodo-

morphs, there there are no preserved autapomorphies linking the Rock Head specimen to the

holotype. However, it is equally significant that none of these analsyes have found character

discordances which might suggest that they are different taxa.

For these reasons, and for others discused below, in the present study we chose to test the

effects of referal of the Rock Head specimen to Sarahsaurus aurifontanalis on tree topology.

We performed separate analyses in which we 1) scored only the holotype; 2) treated the Rock
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Head skull and the holotype specimen as separate OTUs; and 3) combined the scorings such

that the Rock Head skull was used to augment the holotype. The results are discussed below.

Description of TMM 43646–2

Skull

Isolated cranial elements recovered from the type quarry of Sarahsaurus aurifontanalis were

assigned to the holotype specimen of Sarahsaurus aurifontanalis based on their size, shape,

and association with other elements from the holotype. Most notably, a basicranium was

recovered next to the articulated cervical vertebrae of the holotype specimen (Fig 3). A single

isolated tooth was recovered from the quarry is probably part of the holotpye. It is subconical,

recurved, and resembles those of other early saurischians such as Eoraptor lunensis [70], Burio-
lestes shultzi [71], and Pampadromaeus barberenai [72]; however, it is unlike the subsymmetri-

cal, leaf-shaped teeth of sauropodomorphs found in Arcusaurus pereirabdalorum [73],

Pulanesaurus eocollum [37, 38], and Xingxiulong chengi [36].

Maxilla. A single left maxilla was found associated with the holotype specimen of Sarah-
saurus aurifontanalis (Fig 4A–4C). This small bone is missing its anterior and posterior mar-

gins as well as the top of its ascending process. Viewed from above, the main body of the bone

is thickest posteriorly near its articulation with the jugal. A foramen perforates the anterolat-

eral surface of the maxilla where the ascending process meets the maxillary body. Only four

maxillary alveoli are preserved; owing to its incompleteness the total number of maxillary

teeth is unknown. The medial surface is flat. A rounded, inverted L-shaped groove extends

along the medial surface from the base of the ascending process to just above the posterior

margin of the second alveolus. A longer, straight strip of thin bone was found associated with

the maxilla and may represent part of the vomer, but the incompleteness of the bone prevents

conclusive identification.

Frontal. The left holotype frontal is incomplete along its posterior, posterolateral, and

anterior margins (Fig 4D and 4E). The midline articular surface is serrated along the broken

interdigitating suture with the other frontal. The supratemporal fossa occupies the dorsal sur-

face of the frontal in saurischian dinosaurs [74] and its absence here is probably due to incom-

pleteness of the posterior margin of the frontal [74, 75]. The supratemporal fossa extends onto

the frontal in the Rock Head specimen. Anterolaterally, a shallow round notch accommodates

the posterior articular surface of the prefrontal. Ventrally, a sharply defined semicircular ridge

curves inward and approaches the midline along the length of the frontal, where it circum-

scribes the dorsomedial margins of the orbit.

Prefrontal. Only the bulbous anterior end of the left prefrontal is preserved in the holo-

type specimen (Fig 4F and 4G). The curved bone is arched slightly dorsally where it partici-

pated extensively in the anterior margin of the orbit. A short rostral process is directed

anteroventrally.

Jugal. The only cranial element known from the right side of the holotype specimen of

Sarahsaurus aurifontanalis is a fragmentary right jugal (Fig 4H and 4I). This thin, subtriangu-

lar bone preserves a postorbital ramus that is oriented posterodorsally, where it contributes to

the anteroventral margin of the infratemporal fenestra, and the posteroventral margin of the

orbit. The preserved portion of the jugal is lateromedially flat and is thickest medially at its

articulation with the postorbital.

Quadrate. Only the left quadrate was preserved in the holotype specimen (Fig 5). It was

buried close to the basicranium and anterior cervical vertebrae. The quadrate is dorsoventrally

long and curves anteriorly near the ventral constriction of the shaft above its two condyles.

The pterygoid and lateral flanges are visible in dorsal view. The two flanges come together at
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Fig 4. Holotype left maxilla (A-C), left frontal (D-E), left prefrontal (F-G), and right jugal (H-I) of Sarahsaurus
aurifontanalis. A, F, H- lateral view; B, G, I- medial view; C, E- ventral view; D- dorsal view. Abbreviations: ascending

process (asc), alveolus (av), foramen (for), groove (g), lateral condyle (lc), orbital margin (om), articulation with

postorbital (po), articulation with prefrontal (prf).

https://doi.org/10.1371/journal.pone.0204007.g004
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the top of the bone in a rugose articular surface for the squamosal. The lateral flange is broken

along most of its length, but judging from its thickness at its base, it was not as prominent as

the anteromedially-projecting pterygoid flange. The pterygoid flange is subtriangular in lateral

view but is broken anteriorly. The pterygoid flange meets the ventral portion of the quadrate

80% down the length of the quadrate, where its margin is subcircular and hook-shaped. The

quadrate foramen enters the main body of the quadrate near the ventral margin of the lateral

flange. Distally, the quadrate of Sarahsaurus aurifontanalis expands mediolaterally into two

distinct condyles that articulate with the lower jaw. The medial condyle is larger than the lat-

eral condyle and projects further ventrally.

Basicranium and bony labyrinth. The braincase of the holotype specimen of Sarahsaurus
aurifontanalis preserves the parasphenoid, basisphenoid, basioccipital, supraoccipital, prootics,

opisthotics, and exoccipitals. Externally, with the exception of the exoccipital-basioccipital

contact, these elements appear to be completely fused. However, sutures between most these

Fig 5. Holotype left quadrate of Sarahsaurus aurifontanalis. A- medial view; B- lateral view; C- posterior view; D-

anterior view; E- dorsal view; F- ventral view. Abbreviations: lateral condyle (lc), lateral flange (lf), medial condyle

(mc), pterygoid flange (pf), quadrate foramen (qf), articulation with squamosal (sq).

https://doi.org/10.1371/journal.pone.0204007.g005
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elements can be distinguished in CT cross-sections. The braincase is missing the anterior ros-

trum of the parasphenoid, both laterosphenoids, the anterior half of the supraoccipital, and the

anterior margin of the left prootic. Figs 6, 7 and 8 display external features of the braincase in

color and CT images.

The supraoccipital lies dorsal to the paroccipital processes where it is arched dorsally and

inclined at approximately 45˚ to the horizontal plane. With the lateral semicircular canal ori-

ented horizontally (Fig 9), the paroccipital processes have a slight ventral deflection in occipital

view, similar to the dinosauromorph Silesaurus opolensis [76]. Lateral to the foramen magnum,

the paroccipital processes become constricted and thier distal ends expand into terminal flat

paddles. At the dorsal rim of the foramen magnum, the supraoccipital is thin, but the lateral

rim of the foramen thickens laterally in the exoccipitals and opisthotics. A U-shaped midline

channel for the spinal cord incises the dorsal surface of the basioccipital. It is bordered on

either side by the exoccipitals, and all three bones contribute to the occipital condyle.

In lateral view, the basal tubera and the basipterygoid processes are aligned horizontally

and the posterior portion of the parasphenoid rostrum is only slightly dorsal to that alignment.

This condition is more like that of Anchisaurus polyzelus [7,8, 32], Adeopapposaurus mognai
[77], Lufengosaurus hueni [78, 79], and Massospondylus carinatus [20, 80], than to Saturnalia
tupiniquim [81], Plateosaurus engelhardti [31] and Coloradisaurus brevis [28] where the basal

tubera are in a more dorsal position relative to the basipterygoid processes. The basipterygoid

processes are not as long as the height of the braincase from the parasphenoid to the supraocci-

pital. The basipterygoid processes are long and thin in Sarahsaurus aurifontanalis and do not

expand distally as in Adeopapposaurus mognai [77].

A subcylindrical groove separates the occipital condyle from the basal tubera. The basal

tubera are well-developed and form a broad, transverse ridge on the ventral margin of the

braincase. These tubera are subrectangular and are separated on the midline by a thin groove

that opens anteriorly into a subtriangular rostral fossa. The ventral surface of the braincase

thins medially behind this fossa at the inter-basipterygoidal space, houses a smooth, subellipti-

cal depression before expanding into the paired basipterygoid processes. A thin web of bone

connects the basipterygoid processes at their bases. This web of bone is roofed by the posterior

portion of the parasphenoid rostrum anteriorly. A subelliptical pituitary fossa indents the dor-

sal surface of the basisphenoid. The internal carotid foramina penetrate the floor of the pitui-

tary fossa on either side of the midline. The carotid canal extends through the basipterygoid

process and exits laterally behind the crista prootica and extends up half the length of the para-

occipital process (Figs 8 and 9D).

A smooth rostral notch on the right prootic marks the more posterior opening for the tri-

geminal nerve (CN V). The abducens nerve (CN VI) exits the braincase near the floor of the

braincase anterolateral to the pituitary fossa (Fig 8). Cranial nerve VII exits through an oblong

foramen dorsal to the posterior internal carotid foramen, and behind the crista prootica on the

lateral surface of the braincase (Fig 9C). The foramen ovale is subelliptical and is sandwiched

between the crista prootica and the more posterior crista interfenestralis. Behind this is the

elongate, rounded metotic fissure, and opening that is plesiomorphic for dinosaurs [75, 76, 82]

and provides the exits for cranial nerves IX, X, and XI (Figs 8 and 9B). A low crista tuberalis

separates the metotic fissure from the two hypoglossal foramina. The two branches of cranial

nerve XII exit the interior wall of the braincase through these foramina. The larger of the two

hypoglossal foramina is dorsal and posterior to the smaller foramen. The right hypoglossal

foramina are much closer together (Fig 8D). This appears to be a natural case of bilateral asym-

metry. Distortion of the right crista interfenestralis, crista prootica, and paroccipital process,

appears to represent post-mortem deformation (Fig 8A and 8B).
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Fig 6. Color photographs of holotype braincase of Sarahsaurus aurifontanalis. A- anterior view; B- posterior view; C- left lateral view; D- right lateral view;

E- ventral view. Abbreviations: basioccipital (bo), basipterygoid process (bpt), basal tuber (bt), crista interfenestralis (ci), crista prootica (cp), foramen

magnum (fm), foramen ovale (fo), pituitary fossa (pit), paroccipital process (pop), parasphenoid rostrum (psh), supraoccipital (so).

https://doi.org/10.1371/journal.pone.0204007.g006
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Fig 7. CT-volume-rendered images of the major structural features of holotype braincase of Sarahsaurus aurifontanalis. A-

anterior view; B- posterior view; C- dorsal view; D- ventral view; E- right lateral view; F- left lateral view. Abbreviations:

basipterygoid process (bpt), basal tuber (bt), crista prootica (cp), passage for internal carotid (icf), foramen magnum (fm),

foramen ovale (fo), occipital condyle (oc), pituitary fossa (pit), paroccipital process (pop), parasphenoid rostrum (psh),

supraoccipital (so).

https://doi.org/10.1371/journal.pone.0204007.g007
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The bony inner ear labyrinths are preserved in both sides of the braincase, although the left

labyrinth is incomplete where the prootic is broken (Fig 9B). The internal auditory meatus (for

CN VIII) connects the vestibule with the endocranial cavity (Fig 9C). Additionally, the bony

labyrinth opens laterally through the side of the braincase via the foramen ovale. Of the three

semicircular canals, the lateral canal is the shortest and curves the least (Fig 10). The lateral

semicircular canal of Sarahsaurus aurifontanalis does not create a straight tube like that of Spi-
nophorosaurus nigerensis [83], but curves laterally as in Massospondylus carinatus [80] and Sat-
urnalia tupiniquim [81]. The anterior semicircular canal is the tallest and bows strongly

anterolaterally. The posterior semicircular canal meets the anterior canal dorsally, and only the

Fig 8. CT-volume-rendered images of the major openings for the cranial nerves and blood vessels of the holotype braincase of

Sarahsaurus aurifontanalis. A- left posterolateral view; B- right posterolateral view; C- anterodorsal view; D- posterodorsal view (with

occipital condyle, basal tubera, and roof of the foramen magnum removed to show the asymmetry in cranial nerve XII). Abbreviations:

crista interfenestralis (ci), crista prootica (cp), crista tuberalis (ct), foramen magnum (fm), foramen ovale (fo), passage for internal

carotid (icf), metotic fissure (mf), cranial nerves (V, VII, IX, X, XI, XII).

https://doi.org/10.1371/journal.pone.0204007.g008
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Fig 9. CT-cross-sections of four horizontal planes through the holotype braincase of Sarahsaurus aurifontanalis. A-

Through the paroccipital processes; B- Through the major cristae and foramina of the braincase; C- Through the prootics and

basioccipital; D- Through the basipterygoid processes. The top line drawing reconstructs the parasphenoid rostrum and

laterosphenoid. Abbreviations: anterior semicircular canal (ASC), basioccipital (bo), basipterygoid process (bpt), basal tuber (bt),

common crus (cc), crista interfenestralis (ci), crista prootica (cp), crista tuberalis (ct), passage for internal carotid (icf), foramen

ovale (fo), laterosphenoid (ls), metotic fissure (mf), pituitary fossa (pit), prootic (po), paroccipital process (pop), posterior

semicircular canal (PSC), parasphenoid rostrum (psh), vestibule (ve), cranial nerves (VII, VIII, IX, X, XI, XII).

https://doi.org/10.1371/journal.pone.0204007.g009
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Fig 10. CT-volume-rendered images of the right inner ear labyrinth within the holotype braincase of Sarahsaurus
aurifontanalis. A- anterior view; B- posterior view; C- right lateral view; D- dorsal view; E- Inner ear labyrinth in-situ

within the braincase. Abbreviations: anterior semicircular canal (ASC), basilar papilla (bp), common crus (cc), fenestra

pseudorotunda (fp), fenestra ovalis (fv), lateral semicircular canal (LSC), posterior semicircular canal (PSC), vestibule

(ve).

https://doi.org/10.1371/journal.pone.0204007.g010
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anterior canal continues dorsally beyond this point before turning ventrally. The base of the

common crus forms a triangle where it enters the vestibule. The basilar papilla is small and

subconical like that of Massospondylus carinatus [80, 83] and Saturnalia tupiniquim [81] unlike

the longer basillar papilla of sauropods [29].

Vertebral column

The holotype skeleton preserves every vertebra between the axis and the first caudal vertebra

in articulation. A few other anterior caudal vertebrae were found associated with the posterior

region of the sacrum, but most of the tail is articulated and separated from the rest of the verte-

bral column. We estimate that 10–12 caudal vertebrae were not preserved with the rest of the

holotype owing to perimortem scavenging. The cervical and anterior dorsal vertebrae have

undergone plastic deformation post-mortem. Pathological spondyloarthropy affected several

of the vertebrae [25]. In the holotype, every centrum is fused to its neural arch, and the sutures

between these elements are not visible externally. Mostly complete cervical and dorsal ribs

were found in articulation on both sides of the body and in some cases are severely distorted.

A few disarticulated anterior haemal arches were recovered, but most of the middle and poste-

rior haemal arches remain in articulation with the caudal vertebrae. Finally, gastralia were

found in nearly every block recovered from the quarry, but none seem to have been in articula-

tion. The paratype individual also preserves disarticulated vertebral elements, but centra, neu-

ral arches, and sacral ribs are not fused to one another. Elements of the atlas either are fused to

the anterior part of the axis or were found in association with the basicranium of the holotype

individual. Including the atlas, Sarahsaurus aurifontanalis is estimated to have ten cervical, 14

dorsal, three sacral, and approximately 50 caudal vertebrae. The total length of the vertebral

column exceeds 3.1 m.

Atlas-axis. The proatlas of Sarahsaurus aurifontanalis is unknown. A single left atlantal

neural arch is preserved in the holotype specimen (Fig 11A–11C). The atlantal intercentrum is

missing. The atlantal centrum, or odontoid process, is articulated to the anterodorsal surface

of the axial centrum, whose constituemnt parts are thoroughly fused (Fig 11D and 11E). Cervi-

cal ribs are missing from the first four vertebrae, but parapophyses on these centra indicate

that ribs were present in life.

The atlantal neural arch closely resembles that of Adeopapposaurus mognai [77] and Leye-
saurus marayensis [26] (Fig 11A–11C). Laterally, the neural arch clearly is made up of three

major features: a posterior process, an anteroventral process, and a medially-directed antero-

dorsal flange. The subcylindrical posterior process tapers posteriorly and is fairly straight. The

ventral margin of the posterior process becomes increasingly concave anteriorly, forming a

broad subrectangular process that projects posteroventrally and articulates with the atlantal

intercentrum. The lateral surface of this process is broad and convex and points anterolater-

ally. The thickest portion of the atlantal neural arch is its anteroventral process, which thins

towards the dorsomedial flange and the posterior process.

The atlantal centrum is a subcircular bone with a slightly concave dorsal surface (Fig 11D).

Ventrally, a transverse M-shaped groove divides the atlantal centrum into an anterior ridge

and a wider bulbous posterior portion. This ventral groove travels dorsally slightly as it extends

posterolaterally but does not reach the dorsal surface.

The axis comprises the fused axial centrum and neural arch, as well as a coossified axial

intercentrum. That element is fused to the bottom of the front edge of the axial centrum and is

lateromedially narrower than the axial centrum (Fig 11G). The intercentrum is wedge-shaped

laterally with a concave ventral surface. The axial centrum is transversely concave ventrally

and is dorsoventrally thinnest just posterior to the parapophysis at a level one-third along the
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length of the bone (Fig 11D–11G). A low keel extends longitudinally along the ventral midline.

The axial centrum is at least three times as long as it is tall. The posterior margin of the cen-

trum extends farther posteriorly than the postzygapophyses. The parapophyses are anteropos-

teriorly elongate tuberosities on the anteroventral margin of the centrum that abut the

posterior rim of the axial intercentrum.

The synostosis between the axial centrum and intercentrum is a sharp, transverse ridge.

The prezygapophyses are subelliptical and face dorsolaterally. In dorsal view, they expand

Fig 11. Holotype left atlantal neural arch (A-C) and atlantal centrum, axial intercentrum, and axial centrum

(D-G) of Sarahsaurus aurifontanalis. A- lateral view; B- ventral view; C- medial view; D- left lateral view; E- right

lateral view; F- ventral view; G- dorsal view. Hatched areas represent overlapping bone from preceding and/or

succeeding elements. Abbreviations: atlantal centrum (ac), anterodorsal flange (adf), anteroventral process (avp), axial

intercentrum (ai), epipophysis (ep), keel (k), neural spine (ns), parapophysis (par), postzygapophysis (poz), posterior

process (pp), prezygapophysis (prz).

https://doi.org/10.1371/journal.pone.0204007.g011
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laterally, and the neural arch thins just behind each of them. The neural arch expands gradually

dorsolaterally, terminating in broad posterolaterally-facing postzygapophyses. Epipophyses

projecting from the postzygapophyses form low, round processes. The axial neural spine

extends from the anterior margins of the prezygapophysis and terminates anterior to the pos-

terior end of the postzygapophysis. Posteriorly, the neural spine bifurcates as it transitions into

the epipophyses. In lateral view, the neural spine is low, subrectangular, and slightly convex.

Post-axial cervical vertebrae. The cervical vertebrae are largely unbroken but were

crushed mediolaterally, with the right and left sides offset from one another in dorsal view.

The prezygapophyses and postzygapophyses are tightly articulated (Fig 12). Every post-axial

cervical vertebra is longer than the axis and every centrum is slightly amphicoelous, with the

articular faces becoming more concave down the neck. The anterior face of the centrum is

always dorsoventrally shorter than the posterior face. Aside from the crushing, the cervical ver-

tebrae are compressed laterally with anteroposteriorly concave ventral margins that are out-

lined by a strong ventral keel. The concavity forming the ventral surface in altearl view is

deepest in the anterior third of the vertebrae but becomes shallower moving posteriorly. The

anterior cervical vertebrae are approximately 125% higher than they are wide, a feature found

in the sauropods Shunosaurus lii [84, 85] and Mamenchisaurus [86–89]. This resemblance may

be an artifact of the oblique post-mortem crushing in this region of the skeleton. Laterally, the

anterior cervical vertebrae are subrectangular with an anterior margin that faces anteroven-

trally. This angle of the articular face disappears posteriorly down the neck. The third vertebra

is 1.4 times longer than the axis, but not twice as long like as it is in Adeopapposaurus mognai
[77]. The cervical centra lengthen from second to sixth; reaching a length of almost 100 mm.

The longest cervical vertebra (vertebra six) is twice as anteroposteriorly long as it is dorsoven-

trally high. Centra seven through ten decrease in length, a trend maintained until the sixth dor-

sal vertebra. Similarly, the distance between the prezygapophyses and postzygapophses

increases down the cervical series and is longest at the sixth vertebra.

In every cervical vertebra, the prezygapophyses overhang the centrum by a considerable

margin, but the postzygapophyses remain flush with the rear face of the centrum (Figs 12A,

13A and 14A). The cervical prezygapophyses are spoon-shaped and broad, projecting anteri-

orly from the neural arch on laterally-directed stalks. In dorsal view, the prezygapophyses

expand farther laterally than the postzygapophyses on the same vertebra. On each cervical ver-

tebra, a table-like shelf connects the prezygapophyses and postzygapophyses to form the ven-

tral margin of the neural arch. No laminae are found beneath this table in the anterior and

mid-cervical vertebrae. The postzygapophyses are rounded and project posterolaterally on

short stalks. All the epipophyses are low and are tightly joined to the postzygapophyses (Fig

12B), instead of the plesiomorphic condition of terminating in a free, pointed tip. Lufengo-
saurus hueni [78, 79], Shunosaurus lii [84, 85], and Omeisaurus [90, 91] share these low epipo-

physes with Sarahsaurus aurifontanalis.
The structure of the cervical neural spines of Sarahsaurus aurifontanalis is unique among

early sauropodomorphs. The height of the neural spine of the third vertebra is shorter than

that of the axis, but its anteroposterior length is subequal. The neural spines increase in height

throughout the cervical series, but not as much as those of Leonerasaurus taquetrensis [30] and

Pulanesaura eocollum [37, 38]. After the eighth cervical vertebra, the combined height of the

neural arch and spine is more than the total height of the centrum, constituting at least half of

the total height of the vertebra (Appendix C, S3 Text). This condition is similar to other early

sauropodomorphs that have relatively low neural spines on the cervical vertebrae such as

Adeopapposaurus mognai [77] and Mussaurus patagonicus [41]. The dorsoventrally longest

neural spine occurs on the fifth vertebra. The convexity of the dorsal margin of the neural

spine also reduces posteriorly. Beginning at vertebra four, short hooks are present on the
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anterior and posterior dorsal margins of the neural spines. In lateral view, these hooks form

pinched corners create deep concavities on the anterior and posterior margins of the neural

spine (Fig 14C). The fourth neural spine marks the beginning of a series of laterally-projecting

table-like spurs in the extreme dorsal margin of the spine. On vertebra four, this is manifested

as a lateral bulge one-third of the way down the spine. Posterior to that, each sequential neural

spine has a more expanded table, so that by vertebra seven, the table is subrectangular in dorsal

view and has small accessory lateral bumps. The spine table becomes thickens dorsally, as well.

Fig 12. Articulated holotype cervical vertebrae 3, 4, and 5 of Sarahsaurus aurifontanalis in left lateral (A), dorsal (B), and right

lateral (C) views. Stippled areas represent overlapping bone from preceding and/or succeeding elements. Abbreviations: cervical rib

(cr), cervical vertebra (cv), epipophysis (epo), keel (k), neural spine (ns), parapophysis (par), postzygapophysis (poz), prezygapophysis

(prz), spine table (sp).

https://doi.org/10.1371/journal.pone.0204007.g012
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The hooks and laterally-expanded spine tables are most recognizable in the mid-cervical verte-

brae (Fig 13B and 13C).

On every cervical vertebra, the parapophysis is represented by a subelliptical protuberance

on the lateral surface of the centrum, located near the anteroventral margin. Posterior to the

fourth vertebra, a clear distinction between the diapophyses and parapophyses can be made;

Fig 13. Articulated holotype cervical vertebrae 6, 7, and 8 of Sarahsaurus aurifontanalis in left lateral (A), dorsal

(B), and right lateral (C) views. Hatched areas represent overlapping bone from preceding and/or succeeding

elements. Abbreviations: cervical vertebra (cv), left and right cervical rib (l. cv, r. cv), diapophysis (dia), hook (hk), keel

(k), neural spine (ns), parapophysis (par), postzygapophysis (poz), prezygapophysis (prz), spine table (sp).

https://doi.org/10.1371/journal.pone.0204007.g013
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Fig 14. Articulated holotype cervical vertebrae 9 and 10 of Sarahsaurus aurifontanalis in left lateral (A), dorsal

(B), and right lateral (C) views. Hatched areas represent overlapping bone from preceding and/or succeeding

elements. Abbreviations: anterior centrodiapophyseal lamina (acdl), cervical rib (cr), cervical vertebra (cv),

diapophysis (dia), hook (hk), parapophysis (par), posterior centrodiapophyseal lamina (pcdl), postzygadiapophyseal

lamina (podl), postzygapophysis (poz), prezygadiapophyseal lamina (prdl), prezygapophysis (prz), spine table (sp).

https://doi.org/10.1371/journal.pone.0204007.g014
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where the parapophyses remain in the anteroventral margin of the centrum and the diapo-

physes shift posterodorsally up the side of the centrum (Figs 12A, 13A and 14A). When pres-

ent, the diapophyseal facet is situated at the anterior portion of a short longitudinal ridge

extending from the centrum body. In more posterior cervical vertebrae that ridge transitions

into ventrolaterally-extending transverse processes. Starting at cervical eight, distinct trans-

verse processes are formed by low, concave laminae extending from the prezygapophyses and

postzygapophyses to the diapophyses. On the tenth vertebra, the transverse process is subtrian-

gular and overhangs the prezygadiapophyseal, postzygadiapophyseal, anterior centrodiapo-

physeal, and posterior centrodiapophyseal laminae (Fig 14A) [92].

Cervical ribs. Many of the post-axial cervical ribs were articulated to the holotype cervical

series. At least one rib is preserved in articulation with cervical vertebrae four through ten. All

of the ribs are elongate, formed by a triradiate head and a long, tapering, subcylindrical shaft.

The rib shafts are long and overlap two succeeding vertebrae (Fig 13A). Additionally, as pre-

served the cervical rib shafts are all positioned above the ventral margin of their respective cen-

trum, and they overlap one another moving down the neck. The shape of the head of these ribs

is transitional through the cervical series. The anterior process, capitulum, and tuberculum are

weakly developed. In more posterior ribs, the rib head expands distally and the anterior pro-

cess forms a hook-like projection that is larger than that of Massospondylus carinatus [14]. The

dorsal margin of the anterior process is concave and transitions into the subcircular tubercu-

lum. The ventral margin is straight but directed medially, forming the capitular process and a

round capitulum. The two articular processes of the rib head are longer in the posterior cervi-

cal vertebrae, and they move apart from one another as the parapophysis and diapophysis sep-

arate along the vertebral column. A broadly concave web of bone connects the capitulum and

tuberculum of the tenth cervical rib, and there is no trace of the anterior process.

Dorsal vertebrae. The fourteen dorsal vertebrae are similar in structure to one another,

differing mostly in the shape of the neural spines, the positions of the parapophyses and diapo-

physes, and in overall dimensions (Figs 15, 16 and 17). Again, these are tightly articulated with

one another in the holotype specimen of Sarahsaurus aurifontanalis.
The anterior dorsal centra are slightly shorter than the posterior centra, and the inter-zyga-

pophyseal distance and total vertebral height increase posteriorly. Overall, the centra are

shorter and taller in the dorsal series than the cervical series, and the neural spines and arches

contribute to much more of the total height of the vertebrae. The anterior and posterior articu-

lar surfaces of the dorsal centra are not inclined. The ventral margins of the centra are strongly

concave and resemble a half-ellipse in lateral view. The first two centra of the dorsal series, ver-

tebrae 11 and 12, also have a ventral keel, but the keel is much more reduced than in the cervi-

cal series.

The subelliptical prezygapophyses also assume a smaller, less rounded shape posterior to

dorsal vertebra 4 (Fig 15A). Notably, it is at dorsal vertebra 4 that the prezygapophyses and

postzygapophyses enlarge ventrally to form articular surfaces for secondary hyposphene-

hypantrum articulations that persist at least as far as the last pre-sacral vertebra. Because the

vertebral column is articulated, it is difficult to interpret details of their anatomy (dv10 in Fig

16). However, in comparing isolated neural arches of the paratype individual, the hyposphene-

hypantrum articular surfaces resemble the condition found in the early saurischian Herrera-
saurus ischigualastensis [93–96] as well as the early sauropodomorphs Saturnalia tupiniquim
[97], Massospondylus carinatus [14], and Adeopapposaurus mognai [77], in that the hypo-

sphenes are dorsoventrally shorter than the neural canal.

The elaborate laterally-projecting neural spine tables found along the cervical series

persist up to the second dorsal vertebra (Fig 15B). This feature also is present in Plateosaurus
engelhardti [98, 99], Adeopapposaurus mognai [77], Massosponylus carinuatus [14], and
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Lufengosaurus hueni [78, 79] but not in Thecodontosaurus antiquus [19, 100, 101] and Saturna-
lia tupiniquim [97]. The sauropodomorphs Xingxiulong chengi [36] and Buriolestes schultzi
[71] possess laterally-projecting tables on the tops of the neural spines on the most posterior

dorsal vertebrae. Such spine tables are lost in later-diverging sauropodomorphs like

Fig 15. Articulated holotype dorsal vertebrae 1–5 of Sarahsaurus aurifontanalis in left lateral (A), dorsal (B), and right

lateral (C) views. Stippled areas represent overlapping bone from preceding and/or succeeding elements. Abbreviations:

anterior centrodiapophyseal lamina (acdl), diapophysis (dia), dorsal rib (dr), dorsal vertebra (dv), parapophysis (pap), neural

spine (ns), posterior centrodiapophyseal lamina (pcdl), postzygadiapophyseal lamina (podl), prezygadiapophyseal lamina

(prdl), spine table (sp), transverse process (tpr).

https://doi.org/10.1371/journal.pone.0204007.g015
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Barapasaurus tagorei [102], Cetiosaurus oxoniensis [103, 104], Omeisaurus [90, 91], Mamenchi-
saurus [86–89]. The anterior hook of the anterodorsal edge of the neural spine also disappears

posterior to the second dorsal vertebra in Sarahsaurus aurifontanalis, but the posterior hook

and the concave posterior margin of the neural spine is maintained on all through dorsal

Fig 16. Articulated holotype dorsal vertebrae 6–10 of Sarahsaurus aurifontanalis in left lateral (A), dorsal (B), and right

lateral (C) views. Stippled areas represent overlapping bone from preceding and/or succeeding elements. Abbreviations: anterior

centrodiapophyseal lamina (acdl), dorsal rib (dr), dorsal vertebra (dv), hyposphene (hyo), neural spine (ns), posterior

centrodiapophyseal lamina (pcdl), postzygadiapophyseal lamina (podl), postzygapophysis (poz), prezygadiapophyseal lamina

(prdl), transverse process (tpr).

https://doi.org/10.1371/journal.pone.0204007.g016
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Fig 17. Articulated holotype dorsal vertebrae 11–14 of Sarahsaurus aurifontanalis in left lateral (A), dorsal (B), and

right lateral (C) views. Not the pathological co-ossified centra of dorsals 12, 13, and 14. Stippled areas represent

overlapping bone from preceding and/or succeeding elements. Abbreviations: dorsal rib (dr), dorsal vertebra (dv),

hypantrum (hya).

https://doi.org/10.1371/journal.pone.0204007.g017
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vertebra 12. The neural spines of dorsal vertebrae 5 to 11 are subrectangular and inclined pos-

teriorly (Figs 15A and 16A). Throughout the dorsal series, the length of the neural spine gradu-

ally increases posteriorly until dorsal vertebra 12, which transitions into a shorter spine more

closely resembling those of the sacral vertebrae from anterior to posterior trunk vertebrae

along the remaining of the dorsal series (Fig 17A)(Appendix C, S2 Text). The dorsoventral

height:anteroposterior length ratio of the 12th neural spine is 0.74 and that of the last dorsal

neural spine is 1.3.

The parapophyses of the dorsal vertebrae shift from the anteroventral margin of the cen-

trum to the ventral margin of the neural arch behind the prezygapophysis by dorsal vertebra 3.

This condition is unlike some sauropodomorphs such as Sefapanosaurus zastroensis [40] and

Antetonitrus ingipes [39], in which the parapophysis of the anterior dorsal vertebrae is found in

the middle of the lateral side of the neural arch. Along this course, the parapophyses transition

from subcircular to subelliptical in shape; they are only raised facets on the side of the centrum

and do not project laterally. Posterior to vertebra 3, the parapophyses transition from the neu-

ral arch to the lateral extent of the transverse process. The diapophyses, however, mostly

remain towards the center of the vertebrae just dorsal to the junction of the neural arch and

the centrum (Figs 15B, 16A and 17A). The diapophyseal facets are subcircular in the anterior

dorsals, but are modified into roughly triangular shapes by the laminae that join them. The

transverse processes project outwards and slightly back but not upwards like in sauropods

such as Shunosaurus lii [84, 85], Cetiosaurus oxoniensis [103, 104], and Omeisaurus [90, 91].

Four major diapophyseal laminae are found on dorsal vertebra 1 and demarcate three sharp

triangular fossae around the diapophysis and transverse process (observed best in dv5 of Fig

15A). The associated fossae do not excavate extensively into the bone. The prezygadiapophy-

seal and postzygadiapophyseal laminae are present on the dorsal series, but become succes-

sively lower, moving posteriorly after the midpoint of the trunk. This feature is highly variable

in early sauropodomorphs; it is difficult to determine where the prezygadiapophyseal lamina

disappears in Sarahsaurus aurifontanalis because it is obscured by the articulated dorsal ribs.

Spinodiapophyseal and suprapostzygapophyseal laminae are absent in Sarahsaurus but are

found in some sauropods (e.g., Barapasaurus tagorei [102] and Omeisaurus [90, 91]).

No excavations that may represent pleurocoels are found on the lateral wall of any of the

vertebrae of Sarahsaurus aurifontanalis. The centra of dorsal vertebrae 12 and 13 are patholog-

ical, being joined by a spondylarthropy, or overgrowth of rugose bone on both sides of the

holotype individual (Fig 17A and 17B). This kind of pathology is not uncommon in fossil

dinosaur bones, especially vertebrae [105–108]. This appears to have resulted from an injury

sustained during life that the animal survived. The zygapophyseal articulation between the ver-

tebrae does not appear to be aberrant, so the pathology is restricted to the two centra. In the

last two pre-sacral vertebrae, the parapophyses shift posteriorly and the diapophyses move

anteriorly enough that they share an articular facet for the ribs.

Dorsal ribs. The rib structure of Sarahsaurus aurifontanalis is unremarkable and similar

to that of many other early sauropodomorphs. Many of the proximal portions of the dorsal

ribs remain affixed to their respective vertebra in the holotype specimen (Figs 15A and 15B,

16A and 16B and 17B). The first dorsal rib is considerably longer than the last cervical rib. The

last two-thirds of the rib shafts are fairly straight and subelliptical in cross-section. Proximally,

the shaft bows outward before reaching the rib head. The capitular processes of the dorsal ribs

are never long and terminate in a flat capitular surface. The tubercular processes become more

prominant until the mid-dorsal vertebrae, rising from the rib head at an angle to accommodate

the changing position of the diapophysis compared to the parapophysis. Just distal to the split

between these two processes, the rib is subtriangular in cross-section. The dorsal surface is flat-

tened somewhat as it bows outwards, and a shallow groove extends from the base of the
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tubercular process down the posterior side of the rib shaft. The capitulum and tuberculum

approach one another in the posterior dorsal ribs until they merge at dorsal vertebrae 13 and

14 (Fig 17B). Depending on the skeletal maturity of the individual at the time of death, these

last two ribs may have been fused to their vertebrae [106].

Sacral vertebrae. The sacrum is a solid block of three vertebrae and their fused transverse

processes and ribs that articulate tightly with the medial walls of the paired ilia (Fig 18). The

lateral profile of these fused transverse processes forms a longitudinal sacricostal yoke which

articulates with the inside surface of each corresponding ilium. The holotype specimen of Sar-
ahsaurus aurifontanalis preserves the sacrum in articulation, and the left ilium was removed to

see the lateral surfaces of the sacral ribs. The sacral block is anteroposteriorly distorted post-

mortem; the left side was pushed anteriorly and the right side moved posteriorly. The anterior

two neural spines are broken but remain attached by matrix to the small block containing the

left crus, tarsus, metatarsus, and a few caudal vertebrae. The neural spine of the third sacral

vertebra is unbroken. The sacral elements of the paratype specimen include the isolated centra

of the first and third sacral vertebrae, as well as two isolated sacral ribs, one from the first and

the other dubiously assigned to the second vertebra.

As discussed by Nesbitt [75], numbering the sacral vertebrae has been conducted in one of

two ways. Under one system, each vertebra can be numbered sequentially, starting with the

first vertebra to attach laterally to the ilium via transverse processes or sacral ribs [74, 109].

Under the second system, the vertebrae can be numbered according to their relationship to

hypothesized primordial sacral vertebrae [110, 111]. The plesiomorphic state for dinosaurs

(and all archosauriforms) is the presence of two primordial sacral vertebrae, to which thero-

pods, sauropodomorphs, and ornithischians add additional vertebrae homoplastically [111–

113]. We follow Nesbitt’s [75] diagnosis of the two primordial sacral vertebrae based upon

shape and orientation of the sacral ribs of these elements. To clarify terminology, we refer to

the sacral vertebrae in series as sacral vertebrae one, two, and three, while acknowledging that

primordial sacral vertebrae one and two are sacrals one and three, respectively.

The first vertebra in the sacrum of Sarahsaurus aurifontanalis is interpreted here as the first

primordial sacral vertebra, not as a dorsosacral addition as originally described [25]. It lies

behind the 24th pre-sacral vertebrae and their centra are not co-ossified. The first sacral rib

projects dorsolaterally from the anterodorsal quarter of the centrum. Laterally, the rib is made

up of two parts, a ventral subcircular articular surface and a smaller anterodorsal articular (Fig

18A). The main ventral articular surface of the rib is connected to this anterodorsal articula-

tion by a thin sheet of bone that does not touch the ilium laterally. In lateral view, these features

create a C-shape that is posteriorly concave. The first sacral rib is broad and subrectangular in

anterior view excepting the dorsolateral concavity of bone that does not reach the ilium. The

ventral margin of the anterior surface is also concave and slopes upward. The neural arch of

the first sacral vertebra is obscured by matrix. Its neural spine is more rounded in lateral view

than the subrectangular spine of dorsal vertebra 14, and thickens posteriorly. The ilium bears

attachment scars on the anterior margin of the medial surface of the bone, just beneath the

preacetabular process where the pubic peduncle begins its anteroventral descent. The antero-

dorsal margin of the inner surface of the blade also is roughened for the anterodorsal articula-

tion of the first sacral rib.

The second vertebra in the sacral series is hypothesized to have been ‘inserted’ between the

two primordial sacral vertebrae [75], although developmental experiments are needed to sup-

port the possibility of this occurring. Matrix covers the dorsal surface of the neural arch. The

sacral rib of the second sacral vertebra is fused to the posterior margin of the first sacral rib

and to the anterior margin of the third sacral rib. This forms a longitudinal sacricostal yoke

that resembles an ‘L’ rotated 90˚ counterclockwise (Fig 18A) spanning all three sacral
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vertebrae. This co-ossification only occurs along the dorsal articular margin with the ilium; in

ventral view, subelliptical spaces separate each sacral rib and their respective centra medially.

The inserted second vertebra also articulates with the ilium at a T-shaped articular surface of

the sacral rib that lies above the sacricostal yoke (Fig 18A). These articular surfaces are

Fig 18. Articulated holotype sacrum of Sarahsaurus aurifontanalis with left ilium removed in left lateral (A),

dorsal (B), and ventral (C) views. Abbreviations: accessory articulation (aa), dorsal vertebra (dv), right ilium (r. il),

sacricostal yolk (scy), sacral vertebra (sv).

https://doi.org/10.1371/journal.pone.0204007.g018
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separated by a non-articulating gap like those of the first sacral rib. Because the ventral margin

of the sacral verterbrae lies above the dorsal margin of the acetabulum, no portion of the sacral

vertebrae contribute to the dorsal margin of the acetabulum. The exclusion of the sacral ribs

from the acetabular margin is found in early sauropodomorphs but not in sauropods, in which

the sacral ribs make a contribution to the dorsal margin of the acetabulum.

The second primordial sacral vertebra is interpreted to be the third vertebra in the sacrum

and closely matches the anatomy described for the third sacral in Massospondylus carinatus
[14, 75], Adeopapposaurus mognai [77], Leonerosaurus taquetrensis [30] and Mussaurus pata-
gonicus [41]. The sacral rib projects posterolaterally as a broad, transversely-wide platform.

The rib sits along the anterior half of the centrum, starting at the anteroventral margin and

sloping posterodorsally. There is one long, subelliptical articular surface that tapers upwards

but is quite robust along its entire length. Dorsally, the third sacral rib projects farther laterally

than the first, and it is approximately twice as wide anteroposteriorly at its articulation with

the ilium. In posterior view, the third sacral rib is strongly flared dorsoventrally extending lat-

erally. A roughened strip of bone on the medial surface of the ilium also inclines posterodor-

sally and corresponds to the lateral expansion of the third sacral rib. This articular surface

extends parallel and adjacent to the posterior margin of the dorsal third of the ilium, just ven-

tral to the small brevis fossa. The prezygapophyses and postzygapophyses of this vertebra are

relatively short, and accessory hyposphene-hypantrum articulations are absent. The last neural

spine in the sacrum is slightly taller than the first and is more rounded dorsally in lateral view

and thicker dorsally.

The three sacral centra are not completely co-ossified to one another. The lipped margins

of the first and second sacral centra are clearly separate along the dorsal half of their articula-

tion. However, those margins come together and may be co-ossified above this demarcation.

The second and third sacral centra are completely co-ossified, but the bodies of the centra are

distinguishable from one another (Fig 18C).

Based upon the two specimens of Sarahsaurus aurifontanalis, it seems that the sacrum fuses

in stages. The first elements to fuse are the centra to the neural arches and the sacral ribs to the

centra. Next, the sacral ribs fuse to one another forming the sacricostal yoke. The sacral centra

fuse to one another, starting posteriorly. It is not clear when the sacral ribs begin to co-ossify

with the ilium. The paratype specimen hardly exhibits any bone-on-bone rugose scars on the

medial surface of the ilium, and the holotype ilium was only marginally co-ossified to the ribs

and it was easily removed during preparation. In addition to the lack of co-ossification

between the scapula and coracoid, this may suggest that the holotype specimen represents an

individual that closely approached but did not reach terminal skeletal maturity at the time of

death.

Caudal vertebrae. We estimate that Sarahsaurus aurifontanalis had approximately 50

caudal vertebrae. The holotype specimen preserves 40 of these vertebrae; a few may be missing

from the distal end of the tail, and two to four are missing from behind the fifth caudal verte-

bra. The proximal caudal vertebrae are distorted like the sacrum, being compressed mediolat-

erally post-mortem. Additionally, those centra exhibit pathological rims along their outer

margins (Fig 19A). Caudal vertebrae 4 and 5 are co-ossified, especially on their left side (Fig

19A). The two centra are highly overgrown by bone, and bony tissue also spreads over the

right prezygapophyseal and postzygapophyseal articulations and the haemal arch between the

two vertebrae. This paleopathology is not unlike that which was described by Butler et al. [105]

for articulated distal caudal vertebrae of Massospondylus carinatus [14]. The posterior two-

thirds of the tail remain in articulation and have been mediolaterally flattened post-mortem in

the middle caudal region. Little material from the tail was recovered from the paratype speci-

men, which only preserves a few caudal centra.

Anatomy and systematics of Sarahsaurus aurifontanalis

PLOS ONE | https://doi.org/10.1371/journal.pone.0204007 October 10, 2018 33 / 108

https://doi.org/10.1371/journal.pone.0204007


The anterior and posterior ventral corners of cauda centra contain facets that articulate

with haemal arches. This results in a lateral outline that is sloped upwards at the anterior and

posterior ventral margins of the centra. The anterior caudal centra are subelliptical in anterior

outline, with the long axis of the ellipses oriented dorsoventrally. Mid-caudal centra are

Fig 19. Holotype caudal vertebrae of Sarahsaurus aurifontanalis in right lateral view. A- caudal vertebrae 1–5 with

three more distal vertebrae; B- 31 most distal caudal vertebrae. Note the pathological bone growth covering much of

the proximal caudal centra. Abbreviations: caudal vertebra (cdv), left fibula (fi), haemal arch (ha), left metatarsal (mt),

neural spine (ns), pathology (pth), postzygapophysis (poz), prezygapophysis (prz), left tibia (ti), transverse process

(tpr).

https://doi.org/10.1371/journal.pone.0204007.g019
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subcircular in anterior view, and the distal caudal vertebrae also are rounded but are slightly

concave ventrally. A longitudinal sulcus, paralleled on each side by round ridges, is present on

the ventral surface of every centrum of the caudal vertebrae except the proximal two. The pres-

ence of the sulcus is highly variable among early sauropodomorphs. It is present at least as pos-

terior as the middle caudal vertebrae in Anchisaurus polyzelus [7,8, 32], Adeopapposaurus
mognai [77], Massospondylus carinatus [14], and Plateosaurus engelhardti [98, 99], but it is not

present in Thecodontosaurus antiquus [19, 100, 101] or Riojasaurus incertus [114, 115].

The transverse process of the caudal vertebrae are subtrapezoidal in cross-section towards

the base of the process, and thin considerably into horizontal plate-like spines laterally. The

base of the process lies solely on the neural arch and does not extend onto the centrum. The

transverse processes of the most proximal tail vertebrae of Sarahsaurus aurifontanalis are

inclined almost 30˚ dorsally. Those processes point ventrally in Adeopapposaurus mognai [77].

The lengths of the transverse processes diminish in the posterior vertebrae and their shape

transitions from a flat process into a subtriangular, pointed knob. Along the same vertebrae,

their inclination decreases until the small transverse processes of the third quarter of the tail

point directly laterally. Transverse processes are absent on the last 20 vertebrae (Fig 19B). The

most distal vertebrae are subrectangular in posterior view and have flattened lateral and ventral

surfaces; these are similar in shape to those of Anchisaurus polyzelus [7,8, 32], Aardonyx celes-
tae [33], and Camelotia borealis [116].

All of the neural spines on the caudal vertebrae are inclined posterodorsally. In anterior

view, these are subrectangular in outline. The shape changes in more posterior caudal verte-

brae into a subtriangular spine that decreases in relative height. Neural spines are absent on

the distal quarter of the tail (Fig 19B). Both the prezygapophyses and postzygapophyses over-

hang the centrum for the entire caudal series. The prezygapophyses project anterolaterally

along small stalks that originate behind the anterodorsal margin of the centrum. The postzyga-

pophyses are situated on the posteroventral margin of the neural spines in the anterior- and

mid-caudal vertebrae, but they migrate off the spine and form their own short posterodorsal

projections originating on the distal half of the tail. In more proximal vertebrae the postzyga-

pophyses are separated by a small notch that can be seen in dorsal view. The prezygapophyses

and postzygapophyses of more distal vertebrae form short two-pronged processes in dorsal

view. There are no hyposphene-hypantrum articulations along the caudal series.

Haemal arches. Isolated haemal arches (chevrons) were recovered from the type locality

but cannot always be assigned with confidence to one or the other specimen of Sarahsaurus
aurifontanalis. A few of these arches are preserved in articulation at the midpoint of the tail of

the holotype individual. Regardless, enough of the elements are known that they can be

described as closely resembling haemal arches of other early saurischians. They are Y-shaped

in anterior view and individual haemal arches diminish in size posteriorly down the tail. Any

given chevron is less than twice the length of the preceding chevron. The dorsal arms of the

arches appear to meet, forming a half-circle articular surface along the entire series. That dor-

sal expansion is dorsoventrally convex but is divided proximally by a transverse ridge. The

anterior articular surface is slightly anteroposteriorly wider than the posterior surface, and the

articular surfaces fit snugly into the ventral notch between the caudal vertebrae.

Mediolaterally, the chevrons taper considerably distal to the junction of the proximal arms.

This results in a long, flat strip of bone jutting posteroventrally which supported the hypaxial

musculature of the tail (Fig 19B). The haemal canal is almost a perfect oval. Underneath the

canal is a long median groove on the anterior and posterior surfaces of the bone. Rounded

ridges frame this groove for its length down the haemal spine. In lateral view, the spine has

subparallel anterior and posterior margins and is round at its termination. There is no marked

anterodorsal expansion at the distal end of the haemal spines, and none of the chevrons
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contain a ventral slit. Small triangular chips of bone may represent the remains of haemal

arches and are present as far down the tail as the 35th preserved caudal vertebra.

Pectoral girdle

The left scapula and coracoid are preserved and undistorted in the holotype, as are the right

scapula and coracoid of the paratype specimen. The scapulocoracoid is not co-ossified in either

individual. The co-ossification of these elements may occur late in ontogeny, but their sutures

may never be entirely erased [106]. That lack of fusion can be seen in most early sauropodo-

morph taxa, such as Saturnalia (MCP 3844-PV), Plateosaurus engelhardti (SMNS 13200 and

BSP 1962 I 153), and Jingshanosaurus xinwaensis (LV003) [117]. The scapula and coracoid are

described as if they are articulated and oriented such that the long axis is vertical. These ele-

ments would be slanted backwards in life such that the glenoid fossa faced posteroventrally.

Only the left sternal plate was recovered from the holotype specimen of Sarahsaurus aurifonta-
nalis, and it was found in association with the distal tips of the anterior dorsal ribs, along with

the left clavicle. Left clavicles were found in both specimens of Sarahsaurus aurifontanalis. The

paratype clavicle is incomplete on both ends and is smaller than that of the holotype. The holo-

type clavicle is complete.

Scapula. The scapula is shaped like an hourglass that arches laterally, conforming to the

shape of the ribcage (Fig 20). The dorsal and ventral expansions of the scapula are separated by

a narrowed strap-like shaft that is subelliptical in cross-section. The ventral expansion, com-

prising the acromion process anteriorly and the glenoid region posteriorly, is broader antero-

posteriorly than the dorsal expansion. This feature is plesiomorphic for sauropodomorphs.

The posterodorsal corner of the blade extends further dorsally relative to the anterodorsal cor-

ner. There is an oval depression on the dorsolateral surface of the left holotype scapula that

may represent a tooth mark of a scavenging theropod such as Dilophosaurus, but it is too large

to have been produced by the contemporaneous coelophysoid ‘Syntarsus’ kayentakatae. The

dorsal rim of the scapula is formed by a squared edge that is mediolaterally thicker posteriorly

than anteriorly. The shaft is constricted and forms a blade, the smallest width of which is

found halfway down the bone. The greatest dorsoventral length of the scapula is seven times

the thinniest anterioposterior width of the blade. The posterior margin is long and slightly

concave, extending from the posterodorsal edge to the posteroventral glenoid facet. Ventrally,

the shaft meets the glenoid region at a steeper angle than it meets the posterodorsal corner of

the blade. Just below mid-shaft, there is a pronounced tuberosity on the posterolateral surface

of the scapula (Fig 20A–20C). That feature is more prominent in the holotype specimen, and

only exists as a small, low convexity in the paratype specimen. Additionally, a small, round

depression lies just dorsal to the glenoid on the posterolateral surface of the scapula (Fig 21A

and 21B). The anterior margin is much more concave and is shorter than the posterior margin,

terminating ventrally at the anteroventral margin of the acromion, which is a thin margin of

bone.

The ventral margin of the acromion portion of the scapula makes a 60˚ angle with the long

axis of the scapular blade like that seen in other early sauropodomorphs (e.g., Plateosaurus
engelhardti [98, 99], Seitaad ruessi [22], and Thecodontosaurus antiquus [19, 100, 101). A ridge

extends along the lateral surface of the scapula where the blade expands anteroposteriorly to

delimit the acromion region from the glenoid region. That ridge traverses a circular path cir-

cumscribing a pre-glenoid fossa that is deepest anteriorly. Medially, a longitudinal ridge

extends from the posteroventral edge of the glenoid facet to the pinched midshaft of the blade.

Anterior to the ridge is a triangular depression that makes up most of the acromion region of
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Fig 20. Holotype left scapula and coracoid (A-C), paratype left scapula (D-F), and paratype right scapula and coracoid (G-I)

of Sarahsaurus aurifontanalis. A, D, G- lateral view; B, E, H- anterior view; C, F, I- medial view. Abbreviations: acromion (acr),

blade (b), coracoid foramen (cof), coracoid tubercle (cot), depression (d), groove (g), glenoid (gl), ridge (r), rugosity (ru), tuberosity

(tu).

https://doi.org/10.1371/journal.pone.0204007.g020
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the proximal portion of the scapula (Fig 20C). A small foramen exits the medial surface of the

scapula in this depression, where the scapular blade meets the acromion.

The glenoid region is the mediolaterally thickest portion of the ventral region of the scapula.

The scapular contribution of the glenoid fossa is subtrapezoidal in posterior outline, is taller

than it is wide, and has a dorsomedial margin that is higher than the dorsolateral margin. The

ventral margin of the glenoid facet is concave. Viewed ventrally, the base of the scapula is

curved. Small striations extend perpendicular to the ventral articular surface on both the lateral

Fig 21. Holotype left clavicle (A-D), paratype left clavicle (E-F), and holotype left sternal plate (G-I) of

Sarahsaurus aurifontanalis. A, G- external view; B, E- dorsal view; C, F, I- internal view; D- ventral view; H- lateral

view. Abbreviations: articular facet (af), midline expansion (me), prongs (pr), rugosity (ru).

https://doi.org/10.1371/journal.pone.0204007.g021
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and medial margins. The glenoid region is clearly divided into the glenoid facet of the scapula

and the larger articular surface for the coracoid, which is pitted and rugose. In ventral view,

the acromion tapers and articulates with a corresponding thin margin of the coracoid. The seg-

ments of the articular surface for the coracoid are convex in lateral and medial views and are

separated by a small concave slot that articulates with a knob on the dorsal margin of the cora-

coid. This knob and slot is not as apparent in the paratype specimen (Fig 20G and 20I). This

may either represent differential growth between the individuals or may represent the begin-

ning of the suturing of these two elements as the individual approached skeletal maturity.

Coracoid. The coracoid is subelliptical in lateral view. The coracoid is more concave

medially than it is convex laterally owing to the thicker posterior glenoid portion of the cora-

coid. The dorsal margin articulating with the scapula is separated into two concave portions

delimited by the dorsal knob (see the description of the scapula). In dorsal outline, the curva-

ture of the bone is evident, and the thicker articular surface is rugose. The coracoid portion of

the glenoid is immediately adjacent to this surface posteriorly and is separated from it by a

ridge. The glenoid facet of the coracoid is suboval in posterior outline, wherein the slightly

convex dorsal margin articulated into the slightly concave ventral margin of the scapular facet

of the glenoid. A small, flat, subrectangular area lies immediately ventral to the glenoid in pos-

terior view, which forms to straight margins between the glenoid and coracoid tubercle in lat-

eral and medial view. This rectangular area is slightly depressed in the holotype, but is flat in

the paratype. Posteriorly, the medial edge of the squared surface is more pronounced and juts

farther posteriorly, allowing the surface to be viewed obliquely in lateral view. Posteroventral

to the squared area on the lateral surface is the coracoid (= biceps) tubercle, which is quite

prominent in the holotype specimen, but seems to be incomplete in the paratype (Fig 20B).

The presence of a coracoid tubercle is plesiomorphic for Dinosauria and is found in the non-

dinosaur dinosauriforms Silesaurus opolensis [118] and Marasuchus lilloensis [119], but the

tubercle is lost in sauropods. The coracoid tubercle is subtriangular in posterior view and is

separated into a larger lateral and smaller medial surface by a low ridge terminating in a point

that merges with the prominent posteroventral margin of the coracoid. Laterally, the coracoid

tubercle is subelliptical and is inclined, extending subparallel to the glenoid facet of the

coracoid.

The posterior margin of the coracoid begins ventral to the coracoid tubercle and proceeds

from the prominent, thick posteroventral edge of the bone to the anterior tip of the thin articu-

lation with the scapula. The posterior two-thirds of the posterior margin is thick and forms a

hard, squared edge. Anteriorly, the margin thins into sheet-like bone. The large, round cora-

coid foramen enters the lateral surface of the coracoid almost halfway between the anterodor-

sal margin and posteroventral margin of the bone (Fig 20A and 20C). The coracoid foramen

passes obliquely through the bone, traversing a posteroventral path. Medially, the coracoid

foramen is not nearly as round, but it may have been crushed post-mortem. The medial aper-

ture of the canal also does not lie as close to the middle of the dorsal surface of the coracoid as

it does laterally, and instead is more anterior and is closer to the articular surface of the scap-

ula. Similar striations to those found along the articular surface of the scapula punctuate the

corresponding lateral and medial dorsal margins of the coracoid.

Clavicle. This element is elongate and separated into a longer medial arm and lateral

shorter arm by an oval, flat articular facet on the internal or dorsal surface (Fig 21A–21D).

This bone is thickest around the region of this facet. The medial arm is more dorsoventrally

compressed than the lateral arm, which is subcylindrical in cross-section. Both ends taper dis-

tally and the entire element is arched ventrally. The lateral end of the clavicle is rugose sur-

rounding a flattened internal surface. The medial arm of the clavicle taper medially and end in

an expanded region that probably articulates with the clavicle from the opposite side.
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Posteroventrally, the medial expanded tip forms two small prongs (Fig 21D). The most dorsal

of those prongs is slightly larger and projects farther medially.

Sternal plate. The sternal plate is subrhombohedral in ventral outline, and the posterior

half is more elongate and pointed than the anterior half (Fig 21G and 21I). The overall shape

of the sternal plate in Sarahsaurus aurifontanalis is very similar to that of Yunnanosaurus
huangi [120], but not those of Lufengosaurus hueni [78, 79] or Massospondylus carinatus [14],

whose sternal plate is more squared in outline. The internal surface of the sternal plate of Sar-
ahsaurus is flat and featureless. The external surface is only weakly convex and does not have a

longitudinal ridge extending down its length like that found in the sauropods Cetiosaurus oxo-
niensis [103, 104], Shunosaurus lii [84, 85], and Mamenchisaurus [86–89]. The anterior apex of

the sternal plate is rugose and thickened near its association with the coracoid. The medial

margin of the sternal plate also is thickened slightly, presumably where the paired sternal plates

meet at the midline. Most of the bone is thin, especially approaching the lateral margin.

Reconstruction of the pectoral girdle

There is some disagreement regarding the orientation and articulation of elements within the

pectoral girdle in early sauropodomorph dinosaurs. Most of that confusion is owing to the

absence of specimens that preserve articulated scapulocoracoids, sternal plates, and clavicles.

Often, those elements are known from later-diverging taxa within major dinosaurian groups,

but early dinosaur skeletons historically have not contained those elements.

Ossified sternal elements are plesiomorphic for dinosaurs [75], and sternal plates are

known in ornithischians (stegosaurs, ceratopsians, and ornithopods) and saurischians, includ-

ing many early sauropodomorphs and sauropods [121]. Clavicles are rarer, in part because

they are small, thin, and superficially resemble gastralia (Fig 21A–21F). Clavicles are present in

non-archosaurian archosauriforms and early crocodylian-line archosaurs, lost in multiple line-

ages, incorporated into a heavily ossified sternum, or even fused with one another within

Archosauria [75] Among dinosaurs, clavicles are known primarily from saurischians, but they

are reported in the ornithischian Psittacosaurus mongoliensis [122, 123]. The presence of a fur-

cula formed by the co-ossification of paired clavicles at the midline may be plesiomorphic for

theropods [124].

The interclavicle is plesiomorphically present in archosauriforms [125] but this element is

lost in dinosaurs. Because fossils of early dinosauriforms like Silesaurus opolensis [118] and

Marasuchus lilloensis [119] do not preserve this region of the pectoral girdle, it cannot be deter-

mined if the absence of the interclavicle in dinosaurs is plesiomorphic [75]. An interclavicle

was reported from Massospondylus carinatus [14], but was later re-identified as a clavicle

[125]. More recently, putative interclavicles were reported from a sauropod quarry in the Mor-

rison Formation, but these elements were not found in articulation and could just as easily rep-

resent sternal ribs or gastralia that were also found in great abundance in that locality [126].

Some well-preserved specimens of Plateosaurus engelhardti [98, 99] and Massospondylus
carinatus [14] include clavicles closely associated with the pectoral girdle. Previous reconstruc-

tions place the clavicles on the anterodorsal margin of the acromion process of the scapulae in

either a bracing or non-bracing model (Fig 22). In the non-bracing model, the clavicles are

positioned parallel to the main body of the scapula and do not meet at the midline, contacting

instead the coracoid only (Fig 22A) [127]. However, later authors re-evaluated well-preserved

and articulated specimens of Plateosaurus engelhardti (SMNS 58958) and Massospondylus cari-
natus (BP/1/5241), and concluded that the bracing model of clavicular articulation was more

plausible [128]. In that model, the proximal tips of the clavicles contact the acromion process

of the corresponding scapula, but then both clavicles proceed towards the midline where their
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spatulate ends overlap medially (Fig 22B). The overlapped, V-shaped arrangement (also found

in theropods with furculae) braced the pectoral girdle and kept it functionally immobile [128].

The pectoral girdle of Sarahsaurus aurifontanalis is well-preserved. Although the holotype

elements were not articulated, the entire left side of the girdle was found in association. Obvi-

ously, the scapula and coracoid articulate along a tight, immobile joint at the glenoid region.

The subelliptical facet on the clavicle corresponds to a smooth, thickened articular surface on

the acromion, whereas the rest of the flattened, internal lateral surface of the clavicle extends

transversely across the scapula just above the subcircular ridge near the acromion. This

arrangement differs from previous reconstructions in placing more of the lateral half of the

clavicle along the acromion of the scapula (Fig 22E).

In this case, the fact that these elements were disarticulated was fortunate because this seem-

ingly seamless articulation cannot be discounted as an artifact of the clavicle being crushed

against the scapula. The expanded medial tips of the clavicles probably overlap one another as

shown in Fig 22B and 22C [128]. As exhibited by mounted and digitally reconstructed skele-

tons of Plateosaurus engelhardti [98, 99], the scapulae and coracoids were not held subparallel

Fig 22. Past and recent reconstructions of the pectoral girdle of sauropodomorph dinosaurs. A- Non-bracing model of Plateosaurus
engelhardti in anterior view. Asterisk denotes episternal bones for which no evidence is known; B- Bracing model of Massospondylus
carinatus (BP/1/5241) in anterior view; C- Proposed bracing model of holotype specimen of Sarahsaurus aurifontanalis (TMM 43646–

2) in anterior view; D; Proposed bracing model of Sarahsaurus in left lateral view; E- Color photograph of articulated holotype left

clavicle, scapula, and coracoid of Sarahsaurus aurifontanalis. Modified from [127] and [128]. A-D not to scale. Abbreviations: clavicle

(cl), coracoid (cor), scapula (sc), sternal plate (st).

https://doi.org/10.1371/journal.pone.0204007.g022
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to the trunk vertebrae, but instead wrapped around the rib cage and are angled between 45˚

and 65˚ with respect to the horizontal [129, 130]. The orientation does not push the pectoral

girdle too far forward and also agrees with the plesiomorphic bauplan of archosaurs, as exem-

plified by Euparkeria capensis [131–132], in which the coracoids almost touch at the midline

restricting the position of the sternal plates to immediately posterior to the coracoids [133,

134]. The thickened anterior apex of the sternal plate of Sarahsaurus aurifontanalis most likely

touches or is closely associated with the coracoid, and the linear medial margins of each sternal

plate meets one another along the midline (Fig 22).

Forelimb

Both humeri are preserved in the holotype of Sarahsaurus aurifontanalis, although owing to

post-mortem alteration, various structures are compressed or elongated depending on their

orientation in the skeleton. The right humerus was not crushed, but the proximal end of the

bone, including the head, appears to be pathologically thickened by secondary bone growth.

The left humerus is elongated and compressed anteroposteriorly at both ends, and the delto-

pectoral crest is flattened closer to the humeral shaft. The left radius and ulna were found asso-

ciated with the distal end of the left humerus, and are part of a complete and articulated left

antebrachium and manus. The left radius was rotated over the ulna post-mortem, and no lon-

ger represents the in-vivo arrangement of the forearm elements between the elbow and the

wrist. Only the holotype specimen preserves an ulna. Three radii were found; the right from

the paratype and the right and left pair from the holotype. The humerus, radius, and ulna are

described with their long axes oriented vertically. Carpals, metacarpals, and phalanges are ori-

ented such that the palmar surface is ventral.

Humerus. The length of the humerus is 61% of the length of the femur. The proximal out-

line of the humerus resembles an asymmetrical chevron with its apex pointing posteriorly, and

the lateral limb of the chevron is longer and more robust than the medial limb (Fig 23K). The

humeral head makes up much of the central and medial portions of the proximal margin of

the humerus, forming a subtrapezoidal structure in anterior view. The elongate deltopectoral

crest is not continuous with the proximal surface of the bone, but instead first rises a few centi-

meters distally down the shaft, continuing for approximately 57% the length of the humerus.

The deltopectoral crest is inclined 40˚ away from the long axis of the shaft proximally before

becoming parallel with the shaft halfway through its length. It then inclines toward the shaft

making another angle of approximately 50˚. In lateral outline, the deltopectoral crest is more

subrectangular than subtriangular, and more resembles other sauropodomorphs like Massos-
pondylus carinatus [14], Adeopapposaurus mognai [77], and Plateosaurus engelhardti [98, 99]

than the archosauriform Euparkeria capensis [131, 132] (Fig 23C and 23G). Proximally, the

deltopectoral crest leans slightly posterolaterally and is slightly sigmoidal in anterior profile,

but it transitions to being more or less straight and perpendicular to the humeral shaft along

its length. The anteroproximal margin of the deltopectoral crest also is rugose, which probably

represents the insertion point of the supracoracoideus muscle [135]. Unlike the proximal

notch of Seitaad ruessi [22], the distal ‘hook’ of Saturnalia tupiniquim [97, 136], and the para-

marginal sulcus of Antetonitrus ingenipes [39], the deltopectoral crest of the humerus of Sarah-
saurus aurifontanalis does not have any embayment crest in lateral view.

The humeral shaft is thinnest at the distal termination of the deltopectoral crest. The entire

shaft is roughly sigmoidal in lateral profile, with the proximal half bowing anteriorly and the

distal half bowing posteriorly (Fig 23A). A shallow and wide triangular groove (= cuboid fossa

[136]) occurs on the anterior surface of the distal end of the bone that deepens and flares out

between the distal condyles. Anteroposterior crushing exaggerated this feature in both humeri
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Fig 23. Holotype right humerus (A-F) and left humerus (G-L) of Sarahsaurus aurifontanalis. A, G- medial view; B, H- anterior

view; C, I- lateral view; D, J- posterior view; E, K- proximal view; F, L- distal view. Stippled areas indicate matrix and bone not

belonging to the humerus. Abbreviations: cuboid fossa (cf), deltopectoral crest (dpc), ectepicondyle (ect), entepicondyle (ent), head

(h), olecranon fossa (of), pathology (pth), radial condyle (rc), tuberosity (tu), ulnar condyle (uc).

https://doi.org/10.1371/journal.pone.0204007.g023
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of Sarahsaurus aurifontanalis. The olecranon fossa on the distal posterior surface is shallow,

but little detail is preserved.

The distal end of the humerus is expanded and the condyles and epicondyles are pro-

nounced (Fig 23). The distal and proximal articular surfaces are twisted 30–40˚ from one

another. The ulnar condyle has a pronounced process on the posteromedial margin in distal

view. The entepicondyle extends farther than the ectepicondyle in anterior view, but both epi-

condyles are formed by a roughly triangular expansion of bone that widens anteroposteriorly

in lateral and medial views. Like that of Sarahsaurus aurifontanalis, the entepicondyle is round

in Euparkeria capensis [131, 132], the dinosauriforms Marasuchus lilloensis [119] and Sile-
saurus opolensis [113], the saurischian Herrerasaurus ischigualastensis [93–96], and early sauro-

podomorphs like Saturnalia tupiniquim [97, 136] and Thecodontosaurus antiquus [19, 100,

101], suggesting that this is plesiomorphic for sauropodomorphs and dinosaurs in general. In

both humeri, the margins of the proximal articular surface and the distal condyles are rough

and resemble the rugose patterning found between sauropod joint surfaces that suggest the

presence of cartilaginous caps. The mediolateral width of the distal end of the humerus is 30%

of the total length of the element.

Radius. The radius is relatively short and structurally simple (Figs 24 and 25). Its length is

60% of the length of the humerus. Proximally, the articular surface is subtrapezoidal in outline

and the shaft transitions into an elliptical cross-section along its length, terminating in an oval

distal articular surface. The proximal head is expanded anteroposteriorly with the anterior

margin jutting out prominently. The lateral ulnar articulation surface is slightly convex and

rests in the medial concavity on the proximal end of the ulna. The shaft does not twist relative

to either end of the bone. The distal end is bulbous at its lateral articulation with the ulna,

which may represent the attachment site of ligamentous tissue or may even represent a co-ossi-

fied radiale, because this region is also in close association with distal carpal 1 (Fig 24). The dis-

tal end of the radius also is expanded, but not to the extent of the proximal end. There is a

slight kink at the distal end like that found in Saturnalia tupiniquim [136], but the overall

shape of the radius is most similar to that of Massospondylus carinatus [14] and Adeopappo-
saurus mognai [77].

Ulna. The ulna also is relatively short; it is 67% of the humeral length. In outline, the prox-

imal end is subtriangular (Figs 24 and 25). The proximal end of the ulna comprises two pro-

cesses and a smaller ridge. The first is the anteromedial process, a mediolaterally-compressed

feature found in saurischians and theropods such as Herrerasaurus ischigualastensis [93–96]

and Dilophosaurus wetherilli [58, 59]. Sarahsaurus aurifontanalis also has a ridge extending up

the lateral surfaceof the proximal end of the ulna that can be seen as a low anterolateral process

proximally. The proximal medial surface of the ulna is in close articulation with the radius; in

proximal view, a very shallow fossa lies between the anteromedial process and the short antero-

lateral ridge, into which the radius articulates. Sauropods and later-diverging sauropodo-

morphs like Sefapanosaurus zastroensis [40], Pulanesaurus eocollum [37, 38], and

Melanorosaurus readi [38, 137] have well-developed anterolateral processes delimiting an asso-

ciated radial fossa, but the early sauropodomorphs Plateosaurus engelhardti [98, 99] and Mas-
sospondylus carinatus [14] do not have that feature. The olecranon process is expanded

posteriorly but does not extend far proximally past the humeral articulation surface on the

ulna. This may represent the attachment site of a largely cartilaginous olecranon process like

that described in some specimens of Plateosaurus engelhardti [98]. Presence of the olecranon

process as in Sarahsaurus aurifontanalis is plesiomorphic in sauropodomorphs and its absence

in sauropods is apomorphic for that group. A broad subtriangular depression makes up the

posterolateral surface of the proximal end of the bone and is delimited by the olecranon
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Fig 24. Holotype articulated left antebrachium and manus of Sarahsaurus aurifontanalis in color photographs (A

and C) and CT-volume-rendered images (B and D). A, B- medial view; C, D- lateral view. Abbreviations: distal

carpal (dc), metacarpal (mc), left radius (ra), left ulna (u), digits one to five (I-V).

https://doi.org/10.1371/journal.pone.0204007.g024
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Fig 25. Holotype left radius and ulna (A-E), holotype right radius (E-J), and paratype right radius (K-P) of

Sarahsaurus aurifontanalis. A, E, K- anterior view; B, F, L- lateral view; C, G, M- posterior view; D, H, N- medial view; E,

I, O- proximal view; J, P- distal view. Stippled areas indicate matrix and bone not belonging to the radius or ulna.

Abbreviations: anterolateral process (alp), anteromedial process (amc), olecranon (o), radius (ra), ulna (u).

https://doi.org/10.1371/journal.pone.0204007.g025
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process, the anterolateral ridge, and a short posterior ridge that extends along the lateral sur-

face from the olecranon process distally to halfway down the shaft.

The ulnar shaft itself is bowed anteriorly, unlike the radius which bows slightly posteriorly

along its length. The shaft twists distally so that the mediolateral axes of each end are almost

90˚ from one another. The distal end of the ulna is subrectangular and rugose, especially along

the medial articulation surface with the radius. The rugosity may represent ligament attach-

ment sites or may be the result of the co-ossification of the ulnare to the distal end of the ulna.

The ulna is most closely associated with the second and third distal carpals, but also shares an

association with distal carpal 1 medially.

Carpus. The carpus of Sarahsaurus aurifontanalis was preserved in close articulation with

the distal end of the radius and ulna and the proximal metacarpus (Fig 26). Three distal carpals

Fig 26. CT-volume-rendered images of left holotype carpus of Sarahsaurus aurifontanalis shown articulated with

the distal radius and ulna in dorsal view (A) and in articulated distal view (B). Distal carpals 1–3 were digitally

disarticulated and are shown in distal view (C). The arrow in B and C points dorsally. Abbreviations: distal carpal (dc),

left radius (ra), left ulna (u).

https://doi.org/10.1371/journal.pone.0204007.g026
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are ossified. The radiale and ulnare are absent in Sarahsaurus aurifontanalis, but are present in

early theropods like Herrerasaurus ischigualastensis [93–96]. They either failed to ossify or are

co-ossified with the distal margin of the radius and ulna, respectively. The distal ends of the

radius and ulna are extensively crushed, making interpretations difficult. Because of the

extremely close articulation of the ulna, radius, and three distal carpals, and the metacarpus, it

seems unlikely that any proximal carpals that may have ossified were lost post-mortem (Fig

26B and 26D). A fair degree of overlap is present in the three carpal elements and this is almost

identical to the arrangement of the distal carpals of Massospondylus carinatus [14].

Distal carpal 1 is the largest of the three carpal elements and is a robust bone with a subtra-

pezoidal distal outline. It is thickest at its ventral and medial margins and thins towards its

articulations with the distal carpals 2 and 3. The proximal surface is gently convex but it flat-

tened at its association with the radius on its proximoventral surface. The medial half of its dis-

tal surface is smooth and slightly convex for the articulation with metacarpal I (Fig 26B).

Unlike Riojasaurus incertus [114, 115], no sulcus is observed along the medial half of distal car-

pal 1 in Sarahsaurus aurifontanalis. The lateral half of the distal articular surface transitions

into a concave surface to articulate with distal carpal 2, and thins at its most lateral margin to

articulate with distal carpal 3.

Distal carpal II articulates with the distal surface of distal carpal 1 (Fig 26A and 26B). The

second distal carpal is significantly smaller than the first. Its distal outline is subrhombohedral

and the rounded proximal surface fits into the distolateral concavity of distal carpal 1. The dor-

sal surface of distal carpal 2 thickens proximodistally and mediolaterally into a knob-like distal

projection that articulates with the proximoventral margin of metacarpal II as well as the prox-

imomedial surface of metacarpal III. Only the most lateral and ventral edge of the second distal

carpal is associated with distal carpal 3 and metacarpal IV.

The third distal carpal is significantly smaller than distal carpal 2. This wedge-shaped bone

is thickest dorsally and laterally, and thins significantly laterally and towards its ventral edge

(Fig 26B). The medial surface is slightly concave where it articulates with distal carpal 1. Only

the most distal edge of this surface articulates with distal carpal 2. Some amount of post-mor-

tem displacement of these elements may have occurred, resulting in the extreme lateral posi-

tion of distal carpal 3 within the carpus such that it only weakly associates with the fifth

metacarpal along its most lateral surface.

Metacarpus. The left metacarpus of the holotype specimen is preserved in close articula-

tion, but the elements were shifted in relation to one another during or after burial. The articu-

lated left manus of the holotype was crushed and distorted post-mortem. CT imaging greatly

enhanced our ability to interpret the position and articular surfaces of these elements (Figs 27

and 28). The position of metacarpal I was altered most dramatically, crushing all of digit I

medially and ventrally beneath the other metacarpals. The holotype specimen also includes

manual elements from the right side, including partial digits II and III and complete, articu-

lated digits IV and V. Appendix C (S3 Text) displays the lengths of the metacarpals from the

paratype and holotype specimens.

Reconstructions based upon CT images of the left metacarpus and elements preserved from

the right metacarpus show that the metacarpus curves gently outwards, and the metacarpals of

Sarahsaurus aurifontanalis were spread much more than the metacarpals of sauropod dino-

saurs (Fig 24D). Sarahsaurus aurifontanalis also held the first three metacarpals in line with

one another, but the fourth and fifth metacarpals were angled downwards. This overall shape

is identical to that of the manus found in well-preserved, articulated specimens of Massospon-
dylus carinatus [14], Plateosaurus engelhardti [98, 99], and Anchisaurus polyzelus [7, 8, 32].

Metacarpal I is distinctive and is similar in structure to that of most early sauropodomorphs

(Fig 28). Its greatest transverse width is only slightly less than the length of metacarpal II,
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which is the longest element in the metacarpus. Metacarpal I and the rest of digit I are robust.

The first metacarpal is aligned with the rest of the metacarpals proximally, and is not inset into

the carpus as in other early sauropodomorphs like Adeopapposaurus mognai [77], Anchisaurus
polyzelus [7,8, 32], Lufengosaurus hueni [78, 79], Plateosaurus engelhardti [98, 99], and Massos-
pondylus carinatus [14]. However, in Sarahsaurus aurifontanalis that is probably a result of

post-mortem reorientation of digit I with respect to the rest of the manus. Digit I was rotated

ventromedially, causing the digit to become displaced towards the ventral surface (Fig 27C).

Fig 27. CT-volume-rendered images of the articulated holotype left metacarpus of Sarahsaurus aurifontanalis in lateral

(A), proximal (B), and medial (C) view. Metacarpal I (along with the ulna and the rest of digit I) was crushed medially toward

the ventral surface post-mortem (see arrow in C). D displays the proximal outlines of the left metacarpus reconstructed from

the elements from the left and right manus. Abbreviations: metacarpal (mc).

https://doi.org/10.1371/journal.pone.0204007.g027
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Metacarpal I articulates along its concave proximal surface closely with distal carpal 1. The

proximal outline is subtrapezoidal and tapers medially (Fig 28A). The proximolateral process

of metacarpal I is expanded broadly along its lateral margin, creating a subtriangular surface

that is inset by a shallow fossa into which metacarpal II articulates.

The proximal width of the first metacarpal is 60% of the total length of the element. The

width of the shaft of metacarpal I is thinnest at its mid-length and then expands distally into

Fig 28. Digitally disarticulated CT-volume-rendered images of the holotype left metacarpals of Sarahsaurus
aurifontanalis. A- proximal view; B- dorsal view; C- lateral view; D- distal view; E- ventral view; F- medial view.

Abbreviations: metacarpal (mc).

https://doi.org/10.1371/journal.pone.0204007.g028
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asymmetrical distal condyles, which are separated by a shallow groove on the dorsal surface.

The medial distal condyle houses a broad medial ligament fossa and is shorter and rounder

than the lateral distal condyle, which extends more distally and is larger than the medial distal

condyle. No such fossa is preserved on the lateral surface of the lateral distal condyle, but that

may be an artifact of digital preparation and the lack of contrast in density in the CT data

between matrix and bone in that region. The strong asymmetry of the distal condyles of meta-

carpal I in Sarahsaurus aurifontanalis is plesiomorphically present in Sauropodomorpha and

Sauropoda, but is lost in neosauropods like Giraffatitan brancai [138] and Apatosaurus excelsus
[139] (Fig 28D). The axis through the distal condyles is twisted 25˚ medially relative to the

proximal lateral and medial processes.

Metacarpal II is the longest element in the metacarpus (Fig 28B). The bone is subtriangular

in proximal outline, with its apex pointed laterally. The ventral surface is divided unequally by

a ridge extending distally from the proximal articulation. This creates a recessed platform or

fossa on the proximolateral margin of the ventral surface of metacarpal II that can be seen in

lateral view. The dorsal surface also has such a ridge that creates a similar slope lower on its

proximolateral margin (Fig 29A). In lateral view, metacarpal II is fairly robust, and slims only

slightly towards its distal end. The shaft is subelliptical in cross-section. The distal condyles are

both excavated by collateral ligament pits, the medial of which is more pronounced. The sec-

ond metacarpal has a larger medial distal condyle than its lateral counterpart. The distal con-

dyles are separated along their dorsal and ventral surfaces by a shallow groove. The distal

condyles are twisted approximately 50˚ relative to the proximal end of the bone.

The third metacarpal is slightly shorter than metacarpal II, and is slightly longer than the

longest transverse length of metacarpal I (Fig 28B). The distal end of the element is badly com-

pressed and flattened in the left side of the holotype, but is less compressed on the right side.

Metacarpal III is not as tall dorsoventrally as metacarpal II, although its proximal end is slightly

taller than its distal end and has a subtrapezoidal proximal outline that is pinched medially. In

dorsal view, the proximal end of metacarpal III is broad and flat and thins distally until it

expands at the distal condyles. The ventral surface of metacarpal III is fairly flat, except for a

very shallow fossa directly underneath the raised knob on the proximal dorsal surface. The

dorsal surface of the third metacarpal is divided on its proximal half by a longitudinal ridge

that forms a raised medial border to a small inclined lower shelf on the lateral edge of the bone

(Fig 29A). The distal condyles are subymmetrical and lack the dividing groove between them

seen in metacarpal II, which also results in a subtrapezoidal distal outline. Both distal condyles

have shallow collateral ligament pits that are wider than they are tall, suggesting that this ele-

ment underwent mild compression. The axis through both distal condyles is twisted 15˚ from

the main proximal articular axis.

The length of metacarpal IV is approximately 65% of the length of metacarpal II (Fig 28).

The fourth metacarpal is severely compressed dorsoventrally in the left holotype, but is unal-

tered on the right side. In proximal view, metacarpal IV is subtrapezoidal, with a medial edge

that is taller than the lateral edge. Viewing the ventral surface, the medial margin of the proxi-

mal end of metacarpal IV expands medially and proximally beyond the proximal extent of the

lateral margin. Moving distally, the bone thins only slightly before expanding again at the distal

condyles. Viewed laterally, the bone is pinched at a quarter of its length after a broad, flat sur-

face and continues to thin slightly before reaching the distal condyles (Fig 29B). The distal con-

dyles themselves are inclined slightly medially and host a shallow dividing groove. The distal

outline of metacarpal IV is very similar to that of metacarpal II, except for the inclined distal

condyles. A lateral ligament fossa is present, but a medial fossa can only be presumed as it is

not preserved or exposed in either specimen.
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Fig 29. Holotype right metacarpals and manual phalanges of Sarahsaurus aurifontanalis. A- dorsal view; B- medial

view. Abbreviations: metacarpal (mc), digits one through five (I = V).

https://doi.org/10.1371/journal.pone.0204007.g029
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The fifth metacarpal is the smallest in the manus, being roughly half the size of metacarpal

IV (Figs 28 and 29). It closely resembles the fifth metacarpal of Plateosaurus engelhardti [98,

99] and Massospondylus carinatus [14], but is not as long and gracile as that of Seitaad ruessi
[22] and Adeopapposaurus mognai [77]. The distal end of metacarpal V is crushed in the left

side of the holotype but is preserved on the right side. In dorsal view, the proximal end of the

element is wider than the distal end, but the bone flares again mediolaterally at the distal end.

The proximal end is broadly convex and subtriangular in proximal outline, associated with dis-

tal carpal 1 along its ventral and medial margin and the third distal carpal on its extreme proxi-

mal edge. The distal end is more round and highly convex where the asymmetric distal

condyles articulate with the first phalanx of digit V. Only a trace of a collateral ligament fossa

is discernible on the larger medial distal condyle.

Manual phalanges. All the manual phalanges are present in the left manus of the holotype

specimen, however the distal phalanges of digits IV and V are difficult to interpret. Fortu-

nately, those elements are preserved in the right manus of the holotype (Fig 24). Thus, every

element in the manus is known for Sarahsaurus aurifontanalis. The phalangeal count is 2-3-4-

2-2, and having two phalanges on digit V is unique among early sauropodomorphs (Figs 24,

29 and 30). Fig 30 displays digitally disarticulated manual phalanges from the left manus of the

holotype and Fig 29 displays elements from the right holotype manus.

The first phalanx of digit I (I-1) is a prominent bone in the manus. Proximally, phalanx I-1

is subrectangular in outline, and a small ridge divides the proximal surface into medial and lat-

eral concave facets (Fig 30C). Those two regions are approximately equal in area. The ridge

corresponds to the groove between the distal condyles of metacarpal I, which articulate into

the concave regions of the proximal surface of the first phalanx. The distal condyles of that

phalanx are twisted almost 80˚ relative to the proximal surface (Fig 30D) similar to massos-

pondylids and unlike the relatively more robust and less-twisted first phalanx of Antetonitrus
ingenipes [39] and Lessemsaurus sauropoides [140]. This arrangement of metacarpal I and the

first phalanx of digit I is common in early sauropodomorphs, where the entire digit is reflected

medially. A broad depression makes up a significant portion of the lateral side of I-1, but this

is due to its being crushed against the articulation of metacarpal II and the first phalanx of

digit II. The distal condyles of I-1 flare out along their ventral margins, and the medial condyle

extends slightly further distally and ventrally than the lateral condyle. Collateral ligament fos-

sae are well established on the lateral and medial surfaces of the distal condyles and while

they are not very deep, both are broad and oblong proximodistally (Fig 30A). A deep groove

divides the distal and ventral ends of the distal condyles of I-1, articulating with a ridge on pha-

lanx I-2.

Phalanx 2 of digit I is a large, trenchant ungual claw and the largest ungual in the manus

(Fig 30A); it is 150% longer than the first metacarpal. A ridge separates the proximal articula-

tion surface into medial and lateral facets, of which the medial is larger and makes up more of

the articular surface. The ridge and the articular surfaces slot into the distal condyles of I-1. A

strong flexor tubercle is present on the ventral edge of the proximal surface of I-2 (Fig 30C). A

longitudinal groove extends proximodistally from the distal tip of the claw along its medial

and lateral surfaces, terminating their arcs at the base of the flexor tubercle. On the medial

side, the groove bifurcates, and a shallower dorsal portion extends for a short length dorsally

towards the extensor tubercle. Again, a shallow depression is found on the lateral side distal to

the flexor tubercle, but that results from compression against the articulation of II-2 and II-3

during burial.

Phalanges 1 and 2 of digit II are similar in form, with II-2 being slightly shorter in than II-1

(Fig 30). The proximal outlines of these phalanges are subtriangular, with the dorsal apex of

the triangle leaning medially and extending proximally (Fig 30C). This surface itself is divided
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into two regions that articulate with the distal condyles of the preceding element. In dorsal

view, the medial lean of the proximally-extending dorsal process exposes the lateral articular

facet. The shaft remains subtriangular in II-1 and II-2 until the distal condyles broaden the dis-

tal end of the bones. Round distal condyles form the distal ends of both elements and the con-

dyles are inclined medially in distal view (Fig 30D). Well-developed collateral ligament fossae

are found on the lateral and medial distal condyles of II-1. However, owing to post-mortem

cracks in the bone, only the lateral distal condyle of II-2 exhibits such a fossa.

As in digit I, digit II terminates in an ungual claw but the length of II-3 is less than half that

of I-2, and the claw is not nearly as recurved along its length (Fig 30A). II-3 is subconical in

shape and differs greatly from I-2 in overall morphology. There is a trace of a ridge dividing

the proximal surface into two articular facets that articulate with the distal condyles of II-2. A

shallow groove divides the lateral and medial sides of phalanx 3 of digit II into dorsal and ven-

tral regions. A strong flexor tubercle is absent in this ungual, but is weakly established along

the extreme distal and ventral margin.

Fig 30. Digitally disarticulated CT-volume-rendered images of the holotype left manual phalanges of Sarahsaurus aurifontanalis.

A- medial view; B- dorsal view; C- proximal view; D- distal view. Abbreviations: digits one through five (I-V).

https://doi.org/10.1371/journal.pone.0204007.g030
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The first three phalanges of digit III are similar, only decreasing in size sequentially (Fig

30). Unlike digit II, phalanges III-1, III-2, and III-3 have a suboval proximal articular outline,

and the ventral edge of that surface slightly extends proximally past the dorsal edge. The ridge

dividing the proximal medial and lateral articular facets, if present, is extremely low. These

three phalanges pinch slightly at mid-shaft, but do exhibit prominent distal condyles, separated

dorsally by a shallow groove that articulates into a doubly-concave proximal surface of the

next bone. Collateral ligament fossae are found in the medial and lateral distal condyles of III-

1, III-2, and III-3. As is the case for II-2, any absence of a fossa in the distal condyles of those

elements is probably an artifact of poor preservation.

Phalanx III-4 caps the fourth digit and is a blunt, slightly curved ungual that is roughly one-

third of the length of the ungual of digit II (Fig 30A). This element is quite different in shape

than the larger ungual of digit III of Plateosaurus engelhardti [98, 99], Adeopapposaurus mognai
[77], and Massospondylus carinatus [14], but is most similar to the small, blunt ungual of Mela-
norosaurus readi (NMQR 3314) [137]. Its proximal articular surface is like that of I-2 and II-3,

and a trace of a longitudinal groove on the medial surface is preserved.

The phalanges of digit IV are poorly preserved in the left holotype manus, but are complete

and in articulation from the right side (Fig 29). Phalanx 1 of digit IV is similar in form to the

second phalanx of digit III, but is slightly larger. The distal condyles do not seem to be sepa-

rated by a depression, but are excavated by circular collateral ligament fossae. Phalanx IV-2 is

a claw slightly smaller than that of the third digit and resembles a rounded thumb-tack in over-

all shape, like that of Plateosaurus engelhardti [98, 99]. The proximal articular surface of IV-2 is

slightly concave, but is not divided into two sloping surfaces.

The two phalanges of digit V are preserved in articulation in the right side of the holotype

(Fig 29). Phalanx V-1 is subrectangular in lateral view, with a dorsal process that articulates

with the small groove in between the distal condyles of metacarpal V. In dorsal view, the proxi-

mal end of V-1 is the widest region of the bone. The distal end of the first phalanx of digit V is

semicircular in lateral view, and articulates with a small, round ungual phalanx comparable in

size to that of digit IV.

Pelvic girdle

Every element of the pelvic girdle is well represented in the two specimens of Sarahsaurus auri-
fontanalis. The holotype comprises complete pairs of ilia, pubes, and ischia. Only the pubic

aprons and ischial obturator plates are incomplete. The ilia were articulated with the sacralver-

tebrae in the quarry. Although the sacral ribs are fused to one another, they were not

completely fused to the medial surface of the ilia. The right ilium remains in its original posi-

tion within the sacrum, but the other elements of the holotype are disarticulated. The paratype

specimen includes the complete left side, except for the missing proximoventral corner of the

pubis. A partial right pubis of the paratype is also preserved. There is no major difference in

relative length or shape between the elements of the two individuals.

Ilium. The ilium resembles that of most early plateosaurian sauropodomorphs and com-

prises elongate pubic and ischiadic peduncles, a short preacetabular process of the iliac blade,

and a longer, more robust postacetabular process (Figs 31 and 32A–32D). The long dorsal

edge of the blade is thin and only weakly convex in lateral view, unlike the strongly curved

ilium found in later-diverging sauropodomorphs such as Meroktenos thabanensis [24] and

Antetonitrus ingenipes [39], and sauropods [84, 85]. In dorsal view, the blade is S-shaped; the

anterior half bows inward and the posterior half arches laterally (Fig 31B and 31F). The dorsal

margin of the ilium thickens towards the posterior end. A shallow, semielliptical depression is

visible on the lateral surface of the anterior two-thirds of the blade of the ilium, but it does not
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project below the ventral margin of the preacetabular process. The preacetabular process is

mediolaterally thin and tapers to a round point anterolaterally. The process is relatively short

and does not extend as far anteriorly as the pubic peduncle. The preacetabular process of the

ilium of Mussaurus patagonicus [41], Leonerasaurus taquetrensis [30], and other later-diverg-

ing sauropodomorphs such as Tazoudasaurus naimi [141] is much longer and extends as far

Fig 31. Left (A-D) and right (E-G) holotype ilia of Sarahsaurus aurifontanalis. A, E- lateral view; B, F- dorsal view; C- medial view; D,

G- ventral view. Dashed line in C surrounds medial scars made by the sacricostal yoke. The distal outlines of the pubic and ishial

peduncles are provided in D. Abbreviations: acetabular margin (atm), blade (b), brevis fossa (brv), dorsal vertebra (dv), ischiac peduncle

(isp), preacetabular process (pap), postacetabular process (poap), pubic peduncle (pup), supraacetabular crest (sac), sacral rib (sr), sacral

vertebra (sv).

https://doi.org/10.1371/journal.pone.0204007.g031
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Fig 32. Left paratype ilium (A-D), left paratype pubis (E-H), left paratype ischium (I-L), and right paratype pubis (M-P) of

Sarahsaurus aurifontanalis. A- dorsal view; D- ventral view; B, E, L, M- medial view; C, G, J, O- lateral view; F, K, N- posterior

view; H, I, P- anterior view. Abbreviations: acetabular margin (atm), blade (b), brevis fossa (brv), groove (g), ischiac plate (ip), iliac

pedicel (ipd), ischiac peduncle (isp), obturator foramen (obf), preacetabular process (pap), postacetabular process (poap), pubic

plate (pp), pubic pedicel (ppd), pubic apron (pua), pubic foramen (puf), pubic peduncle (pup), supraacetabular crest (sac).

https://doi.org/10.1371/journal.pone.0204007.g032
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or farther anteriorly as the pubic peduncle of the ilium. The preacetabular process joins the

main body of the ilium dorsal to the acetabulum (Fig 31A and 31E). The postacetabular pro-

cess is not blunt and rectangular in lateral view, but instead comes to a rounded point in the

posteroventral corner below its convex dorsal margin. The postacetabular process does not

project very far backwards unlike that of Leonerosaurus taquetrensis [30].

In the left holotype ilium of Sarahsaurus aurifontanalis, a rough circular patch of bone lies

on the lateral surface of the postacetabular process and is probably pathological. A small

depression beneath the posteroventral corner of this process faces medioventrally and repre-

sents the area occupied by the brevis fossa, which serves as the insertion of the muscle caudofe-
moralis brevis that originates at the front end of the tail [75]. In Sarahsaurus aurifontanalis, the

flat area that might be homologous to the brevis fossa only extends for a few centimeters ante-

roposteriorly along the ventral margin of the postacetabular process and is bounded laterally

by a short ventrolateral ridge. The ventral margin of the postacetabular process slopes seam-

lessly into the posteroventral margin of the ilium and the dorsal margin of the posterior edge

of the ischiadic peduncle.

The ventral half of the ilium is much thicker, owing to the mediolateral expansions of the

pubic and ischiadic peduncles and roof of the acetabulum (Fig 31D and 31G). The pubic

peduncle is longer than the ischiadic peduncle. It extends anteroventrally at an angle of 45˚

from the body of the ilium, whereas the ischiadic peduncle points straight downwards. A

prominent supra-acetabular crest projects laterally from the pubic peduncle (Fig 31A). It

begins 2 cm from the base of the peduncle and arches over the acetabulum posteriorly onto the

body of the ilium, receding before it reaches the ischiadic peduncle. In all, the supra-acetabular

crest delimits one-quarter of a circle. It does not connect to the ventrolateral ridge bounding

the brevis fossa. The tallest point along the crest is at its midpoint, where the pubic peduncle

meets the body of the ilium.

The acetabulum of Sarahsaurus aurifontanalis is semicircular and completely open like

most early sauropodomorphs and all sauropods (Fig 31A). The medial and lateral margins of

the acetabulum approximate one another and are confluent with the ventral margin of the

supra-acetabular crest, forming a broad, concave flat shelf that faces posterolaterally. A subrec-

tangular depression can be observed on the posterior surface of the distal pubic peduncle

bounded laterally and medially by short ridges. In distal view, the pubic peduncle is subtrian-

gular in outline and contains a sharp projection on the posteromedial corner, which marks the

ventral extent of the sharp ridge forming the medial margin of the acetabulum (Fig 31D). A

similar projection can be found on the ischiadic peduncle in Coloradisaurus brevis [27, 142],

Lufengosaurus hueni [78, 79], Plateosaurus engelhardti [98, 99], and Riojasaurus incertus [114,

115]. The ischiadic peduncle of Sarahsaurus aurifontanalis is subcircular in outline and is

approximately as wide mediolaterally as it is anteroposteriorly (Fig 31D). In lateral view there

is a round, concave notch between the posteroventral corner of the ischiadic peduncle and the

posterior margin of postacetabular process of the ilium.

Medially, the ilium is fairly simple in structure. The most obvious features are found along

the anteroposterior midline. That region bears rugose scars where the ilium made contact with

the three ribs of the sacrum. The holotype left ilium is especially rugose, indicating a greater

degree of contact and possible beginning of co-ossification of those elements (Fig 31C). The

sacral rib scars are a winding shallow groove of rough bone that mirrors the distal shape of the

sacral ribs. Above that long groove lies the thinner section of the iliac blade, which is covered

in long striations spanning the transverse distance between the dorsal margin of the ilium and

the dorsal extent of the sacral rib scars. The medial surface of the pubic peduncle is slightly

concave dorsally and flattens ventrally. The entire ischiadic peduncle has a flat medial surface.
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Pubis. The pubis is an elongate bone composed of a triangular proximal acetabular

region, a long shaft tapering medioventrally into a thin apron of bone, and a distal expansion

(Figs 32E–32H and 32M–32P and 33). Proximally, the iliac and ischiadic pedicels are subequal

in length. The iliac pedicel is anteroposteriorly thicker and is reniform in outline, forming a

concave margin (Fig 33D and 33H). The medial margin of the iliac pedicel and lateral margin

of the ischiadic pedicel share a sharp transverse ridge that distinctly connects those two areas.

The ischiadic pedicel is subtriangular and thins as it proceeds distally, eventually transitioning

into the pubic plate and pubic apron (Fig 33A and 33E). The ischiadic pedicel is curved into an

anteriorly-facing concave surface. The front edge of the iliac pedicel almost forms a right angle

between the proximal surface of the pedicel and the lateral surface of the main body of the

pubis. The lateral surface of the iliac pedicel is convex anteriorly before transitioning to con-

cave posteriorly. That anterior concavity extends posteriorly into the semicircular bowl-like

depression of the pubic plate and is bounded proximally by the two pedicels (Fig 33). The cur-

vature of the proximal lateral margin of the pubis is found in sauropodomorphs and sauro-

pods, but not in dinosauriforms and early dinosaurs, which have a straight margin [75].

In Sarahsaurus aurifontanalis, the pubic plate surrounds the obturator foramen, which is

subcircular and forms the exit of a subcylindrical groove extending up the anterolateral surface

of the iliac pedicel (Fig 33D and 33H). A subelliptical “pubic foramen” is found posteroventral

to the obturator foramen (e.g., [25] p. 1049]. The pubic foramen is unique to Sarahsaurus auri-
fontanalis among sauropodomorphs. This accessory foramen appears to be a natural feature,

as it is found on both pubes of the holotype. The proximal paratype pubes are too incomplete

to observe those foramina (Fig 32F and 32N). Additionally, bone growth around the foramina

follows their contour, indicating that the foramina are natural openings and not artifacts of

preparation or preservation. Both foramina can be seen in lateral view (Fig 33C and 33G). The

rest of the bone is concave down-shaft from to the cupped pubic plate, and also twists so that

anterior margin of the proximal part turns laterally as it extends distally.

The cross-section of the pubis is subelliptical and tapered at its midshaft. The pubic apron

is planar lengthwise but was broken post-mortem in both specimens of Sarahsaurus aurifonta-
nalis (Figs 32E–32H and 33). The pubic apron is more complete in the paratype specimen (Fig

32H and 32P). The lateral surface of the pubic shaft is smooth and featureless, unlike the pos-

teromedial surface which contains a low, rounded ridge just beneath the pubic plate (Fig 33B

and 33E). Distally, the pubis is expanded mediolaterally. In distal outline, the pubis is subtrian-

gular and it only has as slight anteroposterior expansion at its distal end.

Ischium. The ischium does not exhibit the same bowl-shaped proximal region as the

pubis (Figs 32I–32L and 34). The pubic pedicel of the ischium has the same proximal outline

as the corresponding ischiadic pedicel of the pubis (Fig 34A and 34E). The iliac pedicel of the

ischium is subrhombohedral in outline and is divided into two regions by a short mediolateral

ridge (Fig 34C and 34G). The posterior of those two regions is larger. In lateral view, the pubic

pedicel and ischiadic plate project anterolaterally.

The pubic and iliac pedicels of the ischium are separated along the proximal margin of the

ischiadic plate by a semicircular concavity that contributes to the acetabulum (Fig 34). The

plate is slightly concave medially and laterally convex. In lateral view, the thin sheet of bone

that forms the ischiadic plate circumscribes half of an ellipse along the posterior margin of the

bone (Fig 34B and 34F). That thin sheet transitions after the midpoint of the shaft into a flatter

triangular medial surface that articulates with the opposite ischium along the midline. The pre-

vious interpretation of a gap between the ischia was probably a misinterpretation of the miss-

ing portions of the ischiadic plate on the left holotype ischium [25]. Similarly, there is no notch

separating the margin of the ischiadic plate from the shaft [143]. Instead, the plate and shaft

transition smoothly into one another (Fig 34B and 34D). A longitudinal groove extends along
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Fig 33. Left (A-D) and right (E-H) holotype pubes of Sarahsaurus aurifontanalis. A, E- medial view; B, F- posterior view;

C, G- lateral view; D, H- anterior view. The proximal outlines of the ischiadic and iliac pedicels are provided in A and E, and

C and G, respectively. Abbreviations: acetabular margin (atm), depression (d), groove (g), iliac pedicel (ipd), ischiac pedicel

(isd), obturator foramen (obf), pubic plate (pp), pubic apron (pua), pubic foramen (puf), ridge (r).

https://doi.org/10.1371/journal.pone.0204007.g033
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Fig 34. Left (A-D) and right (E-H) holotype ischia of Sarahsaurus aurifontanalis. A, E- anterior view; B, F- lateral view;

C, G- posterior view; D, H- medial view. The proximal outlines of the pubic and iliac pedicels are provided in A and E, and

C and G, respectively. Abbreviations: acetabular margin (atm), groove (g), ischiac plate (ip), iliac pedicel (ipd), pubic

pedicel (ppd).

https://doi.org/10.1371/journal.pone.0204007.g034
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the dorsolateral surface of the ischium, originating at the ischiadic plate and expanding at its

distal end to transition posteriorly into the smooth dorsal surface of the bone (Fig 34B and

34C). This groove is also present in most early sauropodomorphs, but not sauropods. The

ischial shaft of Sarahsaurus aurifontanalis is strongly triangular in cross-section owing to the

smooth dorsal surface and flat medial articular surface. The distal ischium is expanded slightly

anteroposteriorly and terminates in a bulbous, rounded end that is subtriangular in outline.

Reconstruction of the pelvic girdle

Many elements that make up the pelvic girdle of Sarahsaurus aurifontanalis are preserved and

re-articulate well with one another. The most incomplete elements are the distal pubes, which

do not preserve much of the aprons that would articulate with one another along the midline

as in other related sauropodomorphs. However, the paired holotype pubes and ischia are com-

plete enough that come together when articulated, and form a complete pubo-ischiadic plate

that appears to be continuous and lacking a midline fontanelle (Fig 35). Because the bone is so

thin in that region, the midline articulation is probably not preserved in many

sauropodomorphs.

Hindlimb

The holotype specimen of Sarahsaurus aurifontanalis preserves a complete, semi-articulated

left hindlimb that includes every tarsal, metatarsal, and phalanx. The tibia, fibula, and pes were

compressed against a series of caudal vertebrae and were not removed during preparation.

Associated with the left hindlimb were the right femur, fibula, partial distal tibia, astragalus

and calcaneum, metatarsals II and IV, and approximately half of the pedal phalanges. The

holotype preserves an undistorted right tibia of which the proximal quarter is missing. Pedal

elements from the right side are largely undistorted. The paratype specimen includes a com-

plete right femur, left tibia and fibula, right astragalus and calcaneum, complete and disarticu-

lated right metatarsals I-V, and numerous pedal phalanges. The femur, tibia, and fibula are

described with their long axes oriented vertically. The astragalus and calcaneum are described

as if in articulation with the tibia and fibula. Metatarsals and phalanges are oriented such that

each plantar surface faces ventrally.

Femur. Both of the holotype femora were flattened anteroposteriorly post-mortem owing

to their position in the quarry, which makes it difficult to assess the degree of curvature of the

femoral shaft in lateral view (Fig 36C and 36I). There is a slight sigmoidal curve in the femur;

the proximal half of the femur bows posteriorly and the distal half arches anteriorly. The exact

angle of total curvature is impossible to recreate from the crushed elements, but the femora are

definitely not straight like those found in sauropod dinosaurs. The right paratype femur has

been crushed obliquely such that the lateral curvature is manifested mostly in anterior view

(Fig 36O and 36P). In anterior view, the femoral shaft is slightly curved (Fig 36A, 36G and

36M). There is a slight degree of offset between the transverse axis of the distal condyles and

the longitudinal axis of the femoral head that doesn’t exceed 30˚ in any of the femora available

for study. Both of these observations differ from the features described previously [25].

The proximal part of the femoral head is reniform (Fig 36E, 36K and 36Q). The surface of

the head is round and rugose, especially in the holotype. This surface would have been covered

by articular cartilage in life. Proximally, the posterior surface of the femoral head and neck are

anteroposteriorly flat. All three femora are crushed inwards halfway down the shaft on the

anterior surface. Because it is in multiple pieces, the paratype femur shows that this crushing is

the result of the hollow medullary cavity being pushed inward post-mortem. The femoral shaft

is subelliptical in cross-section above and below the crushed midsection.
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The dorsolateral trochanter (= ‘greater trochanter’) forms a thin, low ridge projecting lat-

erally from the proximal anterolateral surface of the shaft adjacent to the femoral head (Fig

36D). That ridge follows the subtle curvature of the lateral margin of the top of the femur and

terminates distally before the transition into the femoral shaft. As the dorsolateral trochanter

Fig 35. Line drawing reconstruction of pelvic girdle of Sarahsaurus aurifontanalis based upon the complete pelvic

girdle of the holotype specimen. A- Articulated pairs of ischia, ilia, and pubes in ventral view; B- Ventral view of

articulated pelvic girdle; C- Left lateral view of articulated pelvic girdle and sacral vertebrae. Asterisks in A, B, and C

indicate articulation along the midline between the paired ischia and pubes. No evidence of a fontanelle is present in this

region. Abbreviations: ilium (il), iliac pedicel (ipd), ischium (is), ischiac pedicel (isd), ischiac peduncle (isp), pubic pedicel

(ppd), pubis (pu), pubic peduncle (pup), sacral vertebra (sv).

https://doi.org/10.1371/journal.pone.0204007.g035
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Fig 36. Holotype left (A-F), holotype right (G-L), and paratype right (M-R) femur of Sarahsaurus aurifontanalis. A,G, M- anterior

view; B, H, N- medial view; C, I, O- posterior view; D, J, P- lateral view; E, K, Q- proximal view; F, L, R- distal view. Abbreviations:

anterior trochanter (atr), crista tibiofibularis (ctf), fourth trochanter (ft), greater trochanter (gtr), head (h), lateral condyle (lc), medial

condyle (mc), ridge (r).

https://doi.org/10.1371/journal.pone.0204007.g036
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diminishes distolaterally, the anterior trochanter begins to rise on the anterior surface of the

proximal part of the femoral shaft. The anterior trochanter is a tall, elongate rugosity that is

undistorted in the paratype but pinched mediolaterally and crushed against the anterior sur-

face of the holotype specimen (Fig 36A and 36M). The anterior trochanter is oriented on the

anterior surface of the femur such that the distal end lies close to the anterolateral margin of

the bone and the proximal end is just lateral to the midpoint of the anterior surface. That tro-

chanter bows slightly proximolaterally, and becomes thicker distally. The anterior trochanter

does not form a transverse shelf unlike that of Pampadromaeus barberenai [72], Buriolestes
schultzi [71, 144], and some early theropods [56, 58, 145]. The anterior trochanter is not visible

in posterior view.

The fourth trochanter is a ridge that lies just proximal to the midpoint of the femoral shaft,

situated close to the medial margin on the posterior surface of the femur (Fig 36C and 36O). It

is roughly parallel to the long axis of the femur, unlike the obliquely-oriented fourth trochanter

found on the femora of Eucnemosaurus entaxonis [37] and Morektonus thabanensis [35]. The

fourth trochanter of Sarahsaurus aurifontanalis forms a slanted trapezoid in lateral view, with

distinct proximal and distal slopes and a flat apex that is subparallel to the femoral shaft. The

proximal slope is longer and low, rising at 20˚ from the proximal femur, approximately level

with the distal termination of the anterior trochanter. The distal slope of the fourth trochanter

is shorter and steeper, making a 45˚ angle with the shaft. The asymmetrical lateral profile of

that structure is plesiomorphic for sauropodomorphs, but it becomes symmetrical in sauro-

pods. In Sarahsaurus aurifontanalis, the crest of the trochanter is slightly concave medially,

roughly paralleling the longitudinal contour of the femoral shaft.

The lateral and medial margins of the femur expand slightly distal to the fourth trochanter

until they flare out at the distal condyles. The mediolateral width exceeds the anteroposterior

width. Medial and lateral condyles are apparent in distal view, but those features are differen-

tially crushed in the three femora (Fig 36F, 36L and 36R). Posteriorly, a slanting ridge extends

along the distal quarter of the length of the femur, towards the condyles.

The medial condyle is subrectangular and is more rounded on the posterior corners (Fig

36F and 36L). Viewed distally, the anteromedial corner approximates a 90˚ angle. The round

articular surface of the medial condyle slopes significantly towards the posterolateral corner in

distal view. A very shallow depression is found on the anterior surface of the femur in between

the condyles, which is found in most early sauropodomorphs (except Saturnalia tupiniquim
[146, 147], and Thecodontosaurus antiquus [19, 100, 101]). A triangular concavity separates the

medial condyle from the lateral condyle plus the crista tibiofibularis in posterior view. The lat-

eral condyle and crista tibiofibularis form a larger complex that is roughly triradiate in distal

outline (Fig 36F and 36L). The posteromedial arm of that triangle is composed of the lateral

condyle and is inclined facing posteriorly and only slightly laterally. The crista tibiofibularis

forms the posterolateral corner of the triangle. Viewed distally, the lateral condyle faces lat-

erally and very slightly anteriorly and projects slightly more distally than the rest of the distal

condyle complex in posterior view. The crista tibiofibularis and lateral condyle are demarcated

by a shallow depression on the distal surface of the femur, which can only be observed on the

holotype right femur. The medial condyle is smaller than the entire region incorporated by the

lateral condyle and the crista tibiofibularis. In sauropods, the medial condyle is larger than the

lateral condyle plus the crista tibiofibularis. The crista tibiofibularis is greatly diminished prox-

imally in the holotype femora, but is more pronounced (and crushed anterolaterally) in the

right paratype femur (Fig 36M and 36O). In Sarahsaurus aurifontanalis, the entire articular

surface is rugose and contains areas with rather large pits that would be covered by articular

cartilage (Fig 36F).
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Tibia. The only bone that preserves the entire proximal head of the tibia is the left para-

type tibia, although that region has been compressed both mediolaterally and anteroposteriorly

(Fig 37). The total length of the tibia is 61% of that of the femur. Proximally, the anteroposter-

ior width is greater than the mediolateral width. The proximal outline exhibits medial and lat-

eral articular condyles that are separated by a shallow, broad groove extending anteriorly from

the posterior margin of the proximal articular surfaces to the beginning of the cnemial crest

(Fig 37J). The proximal medial surface displays short striations extending parallel to the long

axis of the bone. The medial surface of the bone curves anterolaterally as its proximalb part,

merging seamlessly with the medial surface of the cnemial crest.

Viewed laterally, the cnemial crest is triangular (Fig 37I). This crest emerges from the bone

pointing anteriorly and slightly laterally. The anterolateral orientation of the cnemial crest is

exaggerated in the distorted paratype tibia. However, the distal-most origination of the crest is

observable in proximal view of the incomplete holotype right tibia, in which the crest projects

more anteriorly than laterally. The anterolateral orientation of the cnemial crest in Sarahsaurus
aurifontanalis is plesiomorphic for dinosaurs, and the crest only projects strictly laterally

within Sauropodomorpha among the sauropods. Similarly, the tallest point of the cnemial

crest of Sarahsaurus aurifontanalis lies near the proximal end of the tibia and not halfway

down the bone as in sauropods (Fig 37G and 37I).

Distally, the tibia of Sarahsaurus aurifontanalis becomes subcircular towards the distal end.

The distal half of the bone contains a low but distinct anterolateral ridge. The ridge recedes dis-

tally before reaching the distal anterolateral process (Fig 37D and 37I). Viewed laterally, the

distal margin of the anterolateral process ends abruptly in a smooth, sloping surface that faces

posteriorly and slightly medially (Fig 37C, 37D and 37E). That surface corresponds to the flat,

sloping surface of the ascending process of the astragalus. A triangular cavity receives more of

the ventral portion of the ascending process of the astragalus. The posterolateral process

extends laterally to obscure the distal anterolateral process and the concavity for the astragalus

in posterior view (Fig 37C and 37H). The posterolateral process does not extend laterally and

contact the fibula, similar to that of Herrerasaurus ischigualastensis [93–96], Staurikosaurus pri-
cei [147–149], and most sauropodomorphs.

In distal view, the outline of the tibia of Sarahsaurus aurifontanalis is similar to that of early

sauropodomorphs (Fig 37E and 37K). The anteromedial corner of the distal end of the tibia

forms a right angle in Marasuchus lilloensis [119], Herrerasaurus ischigualastensis [93–96],

Staurikosaurus pricei [147–149], Eoraptor lunensis [70, 150, 151], and Saturnalia tupiniquim
[97, 146], but most early sauropodomorphs share the acute angle found in Sarahsaurus auri-
fontanalis. The distal-most end of the holotype right tibia contains a large hole anteriorly that

is not present in the paratype. It is probably the result of scavenging or some other post-mor-

tem alteration rather than a natural foramen (Fig 37A). However, an elliptical area of rough,

raised bone lies just proximal to that hole on the distal anterior surface and is present in both

individuals.

Fibula. The fibula is long and thin, bowing slightly laterally in anterior view and anteriorly

in lateral view (Fig 38). The proximal end is expanded anteroposteriorly more than the distal

end, and both are connected by a subcircular shaft that thins distally. The proximal and distal

long axes are twisted by approximately 35˚. The proximal expansion is flat on its medial sur-

face and marked with small longitudinal striations. The articular surface for the tibia is slightly

convex and smooth. The proximal lateral surface is convex before tapering to follow the fibular

shaft. One-third down the anterolateral length of the fibula is a low longitudinal ridge (= fibu-

lar trochanter) onto which the muscle iliofibularis inserted (Fig 38A, 38B, 38G and 38H) [137].

A very small foramen is present on the midpoint of the shaft of the fibula. The distal end of

the fibula is inclined posteromedially. The incline contains a small keel along its anterior
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Fig 37. Holotype right (A-E) and paratype left (F-K) tibia of Sarahsaurus aurifontanalis. A,F- anterior view; B, G- medial view;

C, H- posterior view; D, I- lateral view; E, K- distal view; J- proximal view. Abbreviations: anterolateral process (alp), cnemial crest

(cn), hole (h), lateral condyle (lc), medial condyle (mc), posterolateral process (plp), rugosity (ru), triangular concavity (tc).

https://doi.org/10.1371/journal.pone.0204007.g037
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Fig 38. Holotype right (A-F) and paratype left (G-L) fibula of Sarahsaurus aurifontanalis. A,G- lateral view; B, H-

anterior view; C, I- medial view; D, J- posterior view; E, K- proximal view; F, L- distal view. Abbreviations: foramen (f),

fossa (fos), ridge (r).

https://doi.org/10.1371/journal.pone.0204007.g038
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corner. The holotype right fibula preserves a small, circular fossa at that keel which resembles

that found in Massospondylus carinatus [14] (Fig 38A and 38B). The paratype left fibula does

not preserve that area very well. Because the tibia is poorly preserved, it is impossible to deter-

mine the exact articular position of the fibula or its relationship to the astragalus. More than

likely, the calcaneum was located just beneath the fibula, but it was not found in articulation.

Astragalus. The basic shape of the astragalus is plesiomorphic for early sauropodomorphs

(Fig 39). In proximal outline, the astragalus is subtrapezoidal, in which the lateral margin is

shorter than the medial margin. Both of those margins are straight and slanted posterolaterally.

The anterior margin is wider than the posterior margin. The front of the bone is fairly straight

laterally but is convex medially and the back is straight and inclined anterolaterally. The ante-

romedial corner is the most acute corner of the bone in proximal view. Most of the distal sur-

face is broadly convex in medial view, resembling half of a cylinder (Fig 39E and 39I).

However, the lateral third of the distal surface is more pronounced and is strongly convex,

forming a low subrectangular process directly underneath the ascending process of the

astragalus.

Proximally, the medial edge is proximodistally thick, especially at the anteromedial corner

(Fig 39B). A pyramidal process is found on the dorsal surface of the anteromedial corner here

a pyramidal process rises proximally, but it is not nearly as high as that of Adeopapposaurus
mognai [77]. Laterally, the articular surface for the calcaneum is slightly convex. In lateral out-

line, the astragalus is roughly triangular, and the ascending process forms a tall apex (Fig 39A).

A sharp ridge extends along the proximolateral margin of the astragalus from the ascending

process to the posterolateral corner of the element.

The ascending process of the astragalus is subrectangular in proximal outline, but is more

rounded laterally. The subelliptical articular surface is flat and inclined anteromedially, slotting

onto the complementary surface of the tibia (Fig 39D and 39H). The base of the ascending pro-

cess of the astragalus is slightly concave anteriorly and flares posterolaterally onto the main

body of the astragalus near the middle of the bone. Because of this, the ascending process takes

up the anterolateral quarter of the astragalus in proximal view. Plesiomorphic for early sauro-

podomorphs, the posterior extent of the ascending process in Sarahsaurus aurifontanalis does

not get anywhere near the posterior margin of the main body of the astragalus as it does in

sauropods.

The anteromedial margin of the articular facet of the ascending process is a sharp lip,

underneath which is a concave area that wraps around to the posterior margin of the bone. A

transverse groove lies behind the lip that accepts the distal edge of the posterolateral process of

the tibia. Underneath the anterior lip of the articular facet is a subtrapezoidal fossa that is

inclined proximolaterally. A foramen penetrates the mediodistal corner of that fossa (Fig 39C

and 39G).

Calcaneum. The subtriangular calcaneum articulates tightly with the lateral face of the

astragalus in a simple curved joint (Fig 39). The articulation with the astragalus is facilitated by

a slight concavity on the calcaneum that slots over a corresponding convexity on the astraga-

lus. The anteromedial corner of the calcaneum is somewhat taller proximally than the rest of

the bone, which maintains a slight concavity for much of the proximal surface that articulates

with the distal fibula. The anterolateral margin of the calcaneum houses a depression on the

anterior surface. Similarly, a groove extends along the posterolateral margin, possibly perfo-

rated by a few small foramina (Fig 39F and 39J). The calcaneum is proximodistally thicken-

ened in the middle of the bone, forming a thick middle section that slopes towards all three

corners of the bone.

Distal tarsals. The only two identifiable distal tarsals known for Sarahsaurus aurifontana-
lis are preserved in articulation with the left tibia and fibula, proximal tarsals, and pes of the
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holotype individual (Fig 40B). Those two elements are most closely associated with metatarsals

III and IV, and probably represent distal tarsals 3 and 4, which are present plesiomorphically

in dinosaurs (Fig 40B) [75]. Distal tarsal 3 does not appear to have been displaced, but distal

tarsal 4 was rotated slightly to the posterolateral surface of the pes. Those elements are

Fig 39. Holotype right (A-F) and paratype right (G-J) astragalus and calcaneum of Sarahsaurus aurifontanalis. A- lateral view

(astragalus only); B- medial view (astragalus only); C, G- anterior view; D, H- proxima view l; E, I- distal view; F, J- posterior view.

Abbreviations: astragalus (as), anteromedial corner (amc), ascending process (asc), calcaneum (ca), foramen (for).

https://doi.org/10.1371/journal.pone.0204007.g039
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Fig 40. Articulated holotype left tibia, fibula, tarsus, and pes of Sarahsaurus aurifontanalis. A- proximal view of

tibia and fibula; B- posterior view. Anterior view of the tibia, fibula, and astragalus is obstructed by articulated distal

caudal vertebrae (see Fig 19B). Abbreviations: left astragalus (as), left calcaneum (ca), caudal vertebra (cdv), cnemial

crest (cn), distal tarsal (dt), left fibula (fi), lateral condyle (lc), medial condyle (mc), metatarsal (mt), sacral vertebra

(sv), left tibia (ti), digits one through five (I-V).

https://doi.org/10.1371/journal.pone.0204007.g040
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obstructed by the proximal tarsals, metatarsals, and vertebrae articulated in that region, but

distal tarsal 3 can be seen in anterior view and distal tarsal 4 can be seen in posterior view.

Distal tarsal 3 is subrhombohedral in anterior outline. Its medial margin is wider than the

pointed lateral margin. The medial margin is convex. The proximal margin is straight for most

of its length and curves upwards at the proximomedial corner. The proximal and medial sur-

faces are flat and meet the anterior surface almost at a right angle, forming a hard edge. A sin-

gle subelliptical foramen lies on the extreme distal surface, lying on the medial third of the

straight margin that abuts metatarsal III (Fig 40B). The entire distal margin of the bone is in

close articulation with metatarsal III. The bulging medial margin articulates with the lateral

concavity of metatarsal II, which was displaced proximally post-mortem. Distal tarsal 3 articu-

lates closely with the distal surface of the astragalus.

The fourth distal tarsal is subrectangular in posterior view (Fig 40B). Most of its margins

are subequal in length, except for the margin articulating with metatarsals IV and V. That mar-

gin is ‘stepped’ such that the distolateral half is thinner than the proximolateral half. The bone

thickens distally. A small distal concavity can be seen in posterior view, and houses a small

foramen that lies closer to the medial margin of the bone. Proximally, distal tarsal 4 is associ-

ated, but not closely articulated with the calcaneum.

Metatarsus. The metatarsus is arranged in a semi-columnar fashion in which the proxi-

mal surfaces of the metatarsals are aligned, but the distal ends are only slightly spread (Figs

40B and 41). Viewed proximally, the metatarsals form a gentle arch that bows outward (Fig

41C). The ventrolateral surface of each bone overlaps the dorsomedial surface of its lateral

neighbor. The third metatarsal is the longest, followed by the fourth, second, first, and fifth.

Most of the elements known from the metatarsus are slightly crushed.

Metatarsal I is a flat bone with expanded proximal and distal ends, and is mediolaterally

thinnest just before the distal expansion (Fig 42A–42D). The maximum proximal width is 55%

of the proximodistal length of the bone. In proximal outline, the bone is subelliptical, but it

bulges more ventrally and thins to a pinched point laterally. This point corresponds to a broad,

but short process on the proximolateral corner projecting just past the lateral extent of the dis-

tal end. Raised striations extend perpendicular to the articular surface on the proximal dorsal

and ventral surfaces. Ventrally, a short ridge extends along the medial edge of the proximal

quarter of the first metatarsal. The distal end expands mediolaterally and dorsoventrally. The

lateral distal condyle is larger than the medial condyle, and projects further distally. The dorsal

margin of the distal end is convex, but the two distal condyles are separated by a shallow

groove on the ventral margin. Both condyles house oblong collateral ligament fossae. The

proximal and distal transverse axes of metatarsal I are not twisted relative to one another.

The proximal mediolateral width of metatarsal II exceeds that of metatarsal I (Figs 42E–

42H and 43A–43F). The proximal end of the second metatarsal is slightly less than two times

the maximum width of the distal end. The long axes of each of these ends are twisted 33˚ from

one another. Proximally, the outline of metatarsal II is hourglass-shaped. The width of the ven-

tral margin of the proximal outline is slightly larger than the width of the dorsal margin. The

proximal articular surface for metatarsal III is covered by longitudinal raised ridges. Sharp-

rimmed subelliptical fossae can be seen on the proximal dorsal and ventral surfaces of the

metatarsal II, but those fossae are artifacts of crushing. Viewed dorsally, the ventromedial

proximal corner is larger and more rounded than the dorsolateral corner.

Unlike metatarsal I, the thinnest portion of the shaft of metatarsal II is at its midsection. A

triangular tuberosity lies on the lateral edge of the bone approximately halfway down its length.

After that point, the bone expands mediolaterally to form the distal end. The medial distal con-

dyle is larger and more pronounced than the lateral condyle. However, the lateral ligament

fossa is much more shallow and round than the flattened, deep medial fossae.
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Fig 41. Articulated paratype right metacarpus of Sarahsaurus aurifontanalis. A- distal view; B- dorsal view; C-

proximal view. Abbreviations: metatarsal (mt).

https://doi.org/10.1371/journal.pone.0204007.g041
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Metatarsal III is the longest element in the pes, and is greater than 40% of the length of the

tibia (Figs 42I–42L and 43G–43L). This bone is straight, and the mediolaterally-expanded

proximal and distal ends are twisted 25˚ from one another. The proximal outline is subtrian-

gular, with the ventral margin longer than the two other margins. Ventrally, the bone is flat.

Fig 42. Paratype right metatarsals of Sarahsaurus aurifontanalis. A, E, I, M, Q- dorsal view; B, F, J, N, R- medial view; C, G, K, O,

S- ventral view; D, H, L, P, T- lateral view. Dashed lines indicate missing areas. Abbreviations: metatarsal (mt), ridge (r).

https://doi.org/10.1371/journal.pone.0204007.g042
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However, the apex of the proximal triangular outline forms a ridge that extends medially from

the transverse midpoint of the proximal articular surface to the longitudinal midpoint of the

shaft of the bone. The ridge also contains two smaller parallel bumps that are associated with

the lateral triangular bump of metatarsal II when in articulation. More longitudinal ridges

Fig 43. Holotype right metatarsals of Sarahsaurus aurifontanalis. A, G, M- dorsal view; B, H, N- medial view; C, I,

O- ventral view; D, J, P- lateral view; E, K, Q- distal view; F, L, R- proximal view.

https://doi.org/10.1371/journal.pone.0204007.g043
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extend parallel to the long axis of the bone along the outer surface of the proximal part of the

bone. Proximally, the shaft is subtriangular in cross-section, but it transitions into a subellipti-

cal shape moving distally. The distal outline is also subtriangular due to the distal end expand-

ing more dorsomedially. Similar to the second metatarsal, the medial distal condyle is larger

and projects farther distally than the lateral condyle, but the lateral collateral ligament fossa is

more flattened and deeper.

The fourth metatarsal is flat (Figs 42M–42P and 43M–43R). In dorsal view, the entire bone

bows medially, but is more concave along its lateral surface. The element has a sublenticular

proximal outline and is much wider mediolaterally than dorsoventrally. Proximally, the ventral

margin is concave. Laterally, the bone pinches to a point. A dorsal ridge of bone is seen along

the medial third of the bone. Medial to that ridge, there is a triangular fossa that articulates

with metatarsal III. Proximally, the lateral two-thirds of the dorsal margin is convex, but flat-

tens more distally along that surface. A pronounced tuberosity is present along the medial

edge of the dorsal surface of metatarsal IV. The transverse width of the shaft is the thinnest at

the midpoint of the bone. At the distal expansion, the lateral and medial distal condyles are

pronounced. The medial condyle is the larger of the two, and both house collateral ligament

fossae. The lateral edge of the shaft is rugose just proximal to the lateral distal condyle. In dor-

sal view, the lateral ligament fossa can be seen, but the medial fossa is obscured by a medial

expansion of the distal end.

The paddle shape of metatarsal V is plesiomorphic for early sauropodomorphs (Fig 42Q–

42T). The proximal half of this bone is subtriangular and covered in longitudinal raised ridges.

The bone is thin medially but thickens to form a flat lateral surface. The proximal half is con-

vex medially and concave laterally, and its ventral surface is entirely concave. The distal half of

metatarsal V is subcylindrical and terminates in a subcircular outline. The ventral surface of

this cylinder is rugose and expanded and almost makes a flat surface on the most distal ventral

margin. Viewed medially, the dorsal margin of metatarsal V is concave. Digit V was probably

not weight-bearing in Sarahsaurus aurifontanalis or in other early sauropodomorph taxa like

Anchisaurus polyzelus [7,8, 32], Seitaad ruessi [22], Massospondylus carinatus [14], Plateosaurus
engelhardti [98, 99], Lufengosaurus hueni [78, 79], Jingshanosaurus xinwaensis [117], and Col-
oradisaurus brevis [27, 142]. These taxa also have a similar structure but were incorrectly

scored in the modified Yates matrix of Rowe et al. [25, 63]. Because the metatarsus was not

splayed in these dinosaurs, it is doubtful that digit V ever touched the ground [129].

Pedal phalanges. The complete left pes of the holotype specimen was mostly found in

articulation and it was disarticulated during preparation (Fig 44). The complete pedal phalan-

geal count is 2-3-4-5-1, which is also found in many early sauropodomorphs including Anchi-
saurus polyzelus [7,8, 32], Adeopapposaurus mognai [77], Plateosaurus engelhardti [98, 99], and

Massospondylus carinatus [14]. All non-terminal phalanges are longer than they are wide. Sim-

ilarly, the proximal articulation surfaces of these phalanges are all wider than they are tall. The

first four digits of the pes include at least one non-terminal phalanx and a long, pointed

ungual. Phalanges from digits II and III are all wider proximally than they are deep. When

articulated, the unguals were not directed medially like those of sauropods.

Phalanx 1 of pedal digit I is slightly shorter than the curved ungual that follows it (Figs 44

and 45). The bone is semielliptical in proximal outline and thins halfway down the shaft. The

mediolateral expansion of the proximal end is slightly longer than that of the distal end. The

distal condyles are well-developed and are subequal in size. Those condyles are separated dor-

sally and ventrally by a groove. Large, well-developed collateral ligament fossae can be seen in

dorsal view and are reniform in lateral and medial views.

The ungual of digit I (I-2) is long and slender, but it is not longer than the first metatarsal

(Figs 44 and 45). Proximally, the outline resembles a triangle with a tall, laterally-directed
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Fig 44. Articulated holotype left pes of Sarahsaurus aurifontanalis. A- dorsal view; B- ventral view; C- lateral view.

Abbreviations: astragalus (as), caudal vertebra (cdv), left fibula (fi), metatarsal (mt), sacral vertebra (sv), left tibia (ti), digits one

through five (I-V).

https://doi.org/10.1371/journal.pone.0204007.g044
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dorsal process that makes the articular surface taller than wide, unlike the rounder proximal

outline present in later-divererging sauropodomorphs such as Antetonitrus ingenipes [39] and

Mussaurus patagonicus [41]. This surface is separated into distinct medial and lateral concavi-

ties that articulate with the distal condyles of I-1. In dorsal view, the ungual is subtriangular

and long, tapering to a sharp point distally along convex side margins. The medial and lateral

margins are formed into sharp edges by the concave flat ventral surface. A longitudinal groove

extends parallel to the ventral margin of the ungual along both sides, and at least three small

foramina can be seen in the medial of the two grooves. The medial groove terminates just

before the sharp tip of the claw, but the lateral groove stops at the two-third mark along the

bone.

Phalanx 1 of digit II is subequal in length to its counterpart on the first digit (Figs 44 and

45). The proximal articular surface is cup-shaped and lacks a dorsal process. The bone is thin-

nest at midshaft. The distal end is almost identical to that of I-1, except that the ventral margin

Fig 45. Holotype right (A and B) and paratype right (C) pedal phalanges of Sarahsaurus aurifontanalis. A, C- dorsal view; B-

lateral view. Abbreviations: digits one through five (I-V).

https://doi.org/10.1371/journal.pone.0204007.g045
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of the distal condyles underneath the ligament fossae is slightly thicker. Phalanx II-2 is slightly

shorter than the preceding phalanx. The bone is thinnest just proximal to the distal end. Addi-

tionally, the proximal surface of this bone is divided into two concave surfaces by a dorsoven-

tral ridge extending up to a dorsal process that points laterally. In dorsal view, the distal

condyles are symmetrical, and when viewed distally, the condyles lean laterally at the same

angle as the proximal dorsal process. Shallower collateral ligament fossae are present, and

these are rounder than those of the previous phalanx. The ungual of digit II is subequal in

length to its first phalanx. It resembles ungual I-2 in overall shape, but is shorter and has a

more rounded proximal outline. The dorsal proximal process also leans laterally, and the lat-

eral proximal articular surface is smaller than the medial articular surface.

The first phalanx of digit III is only slightly shorter than ungual I-1 and is the longest non-

terminal phalanx in the pes (Figs 44 and 45). The element is constricted at midshaft and

strongly resembles I-1 in overall form. Unlike I-1 and II-1, the proximal and distal mediolat-

eral expansions are subequal in width. Phalanges III-2 and III-3 strongly resemble one another

in shape, but the third phalanx is sequentially shorter than the second. In III-2 and III-3, the

subtriangular proximal outline is more rounded, and the dorsal process only hints towards a

lateral lean. Viewed dorsally, the dorsal process is round proximally and does not entirely

cover the proximal articular surface, which is divided again into subequal medial and lateral

halves. These bones are thinnest below the mid-shaft, just proximal to the distal condyles. The

medial condyles are slightly taller, but the lateral condyles project more laterally and distally.

Those condyles are separated by a groove and house collateral ligament fossae. The distal con-

dyles of III-2 lean laterally in distal view, but those of III-3 lean medially. The medial incline of

the distal condyles of the penultimate phalanx of digit III corresponds to a medial incline of

the proximal dorsal process of ungual III-4. That claw is subequal in length with phalanx III-2,

shorter than the ungual of digit II, and is identical in shape to the previous unguals except that

the lateral longitudinal groove reaches the same distal extent as the medial groove (Figs 44 and

45).

Phalanx IV-1 is subequal in length to I-1 (Figs 44 and 45). Its proximal articular surface is

subelliptical and smooth. The shaft thins at midlength before expanding into asymmetrical dis-

tal condyles. The medial condyle is larger, but both house collateral ligament fossae, the lateral

of which is very shallow. No dorsal groove separates the distal condyles, but they are separated

by a small distal concavity. These condyles are directed medially. Phalanges 2, 3 and 4 of digit

IV are sequentially shorter, but share the same morphology. Each has a proximal articular sur-

face divided into lateral and medial surfaces subequal in area. The dorsal processes of them all

point medially and the thinnest cross-section of the shaft can be found immediately proximal

to the distal end. The distal condyles are subsymmetrical and spool-shaped and contain round

collateral ligament fossae. The ungual tipping this digit is the shortest claw in the pes, and its

proximal dorsal process leans medially.

The only phalanx found distal to metatarsal V is a subtriangular wedge of bone that is thick-

ened proximally and tapers to a point (Fig 44). Its lateral margin is slightly more pronounced

than the medial margin, but that region has been significantly compressed in the only pes that

preserves V-1.

Description of MCZ 8893

Skull and mandible

This skull is mostly complete and is only moderately distorted. As a result of cyclic swelling

and shrinkage of clay in the enclosing sediment it was split horizontally at the time of discov-

ery, separating the skull roof from the palate with commensurate damage. The specimen was
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briefly described and was first referred to Massospondylus sp., and this identification was

advanced as evidence of a uniform cosmopolitan dinosaur fauna across much of Pangaea [15].

It was later provisionally referred to Sarahsaurus aurifontanalis [25]. The referred skull is from

an individual that was less mature at time of death than the holotype (above). We provide digi-

tal animations based on high-resolution X-ray CT imagery of the skull (Fig 46; Appendix B, S2

Text).

The palatal shelves of the premaxillae are narrow. A large subnarial foramen penetrates the

descending segment of the premaxillary-maxillary suture above the tooth row and a small neu-

rovascular foramen lies above the alveolar margin behind the first tooth on the right premax-

illa. The diameter of the naris is less than 50% the maximum diameter of the orbit. The

external narial margin is largely formed by the premaxilla and nasal, with only a small contri-

bution from the maxilla. Above the alveolar ramus of the maxilla projects a short facial process

that tapers dorsally, inserting for a short distance between the premaxilla and nasal at the pos-

teroventral margin of the naris. The posterior rim of the naris lies above and behind the first

maxillary alveolus, and rostral to the rostral margin of the antorbital fenestra. A line of five to

six large foramina of equal size open posteriorly on the lateral surface of the maxilla. The

medial shelves of the maxillae were probably in contact anteriorly, but the palate is too dam-

aged to confirm this. The jugal process of the ectopterygoid is strongly recurved and hooked.

The medial process of pterygoid is flat and blunt.

The maxilla bears a concave, sharp-rimmed antorbital fossa. The fossa fails to extend onto

the lacrimal, and there is evidence of a neurovascular canal opening in the fossa. The lateral

margin of the nasal overhangs the antorbital fossa and forms its dorsal margin. The maxilla

partially surrounds a short antorbital fenestra that is shorter than the length of the orbit.

Beneath the antorbital fenestra is a long lateral maxillary lamina that is twice as long as it is

high. The contact between the maxilla and lacrimal above the antorbital fenestra is visible lat-

erally, and the lacrimal is exposed on the dorsal surface of the skull. The length of the anterior

process of the lacrimal is less than half the length of its ventral process. There is no ridge on

the dorsolateral surface of the lacrimal and no associated knob on the lateral aspect of the pre-

frontal. The jugal fails to contribute to the margin of the antorbital fenestra. The prefrontal is

more extensively exposed on the skull roof than the lacrimal.

There appears to be a shallow median nasal depression, but this may be the result of post-

mortem damage to the rostrum. The nasal has a posterior process lying between the frontal

and prefrontal. The nasal contributes to the lateral edge of the antorbital fossa dorsally but

does not form a deep recess over the dorsal apex of the fossa.

The prefrontal is less than 75% the length of the frontal, but it has a long ventral process

that extends down the medial side of the lacrimal. In forming the anterior border of the subcir-

cular orbit, the lacrimal slopes anterodorsally and the jugal overlaps the lacrimal laterally. The

frontal is longer than it is wide and makes a broad contribution to the orbital rim. It is gently

concave in the interorbital region, which is constricted at mid-length. The frontal does not

enter into the anterior margin of the supratemporal fenestra, but the caudolateral corner of the

frontal contributes slightly to the supratemporal fossa just behind the articulation with the

postorbital. The anterior process of the postorbital is forked at its medial contact with the fron-

tal, and the supratemporal fossa extends onto its posterodorsal surface (this part of the frontal

is not preserved in the holotype). The supratemporal fenestra is longer than it is wide. The ros-

tral margin of the infratemporal fenestra lies behind to the orbit, but level with its dorsal mar-

gin. A suture remains widely open between the parietals, which probably reflects relative

skeletal immaturity at time of death.

The ventral process of the postorbital overlaps the dorsal process of the jugal anterolaterally,

whereas its posterior process overlaps the anterior process of the squamosal posterolaterally.
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Fig 46. Skull (MCZ 8893) provisionally referred to Sarahsaurus aurifontanalis, reconstructed from CT data. A- ventral view; B- dorsal view; C-

right lateral view; D- left lateral view; E- anterior view; F- posterior view; G- CT cross-sections of palatal teeth associated with the skull; H- Life

reconstruction of the head of Sarahsaurus by Brian Engh, used with permission (http://dontmesswithdinosaurs.com/). Covered areas represent

matrix on the specimen. Light and dark blue represent the skull roof and basicranium, respectively. The orange bones comprise the right mandible,

maxilla, and premaxilla. Red areas indicate the left mandible. Abbreviations: basioccipital (bo), basal tuber (bt), basipterygoid process (bpt), dentary

(d), foramen (for), lateral condyle (lc), maxilla (mx), pterygoid flange (pf), premaxilla (pmx), postorbital (po), paroccipital process (pop), prefrontal

(prf), supraoccipital (so), squamosal (sq), supratemporal fossa (stf).

https://doi.org/10.1371/journal.pone.0204007.g046
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The posterolateral process of the parietal is deflected ventrolaterally and contacts the medial

process of the squamosal slightly below the level of the dorsal surface of the skull roof. The ven-

tral process of the squamosal is strap-like and four times longer than its distal width. The quad-

rate foramen lies on the quadrate-quadratojugal suture. The angle between the rostral and

dorsal rami of the quadratojugal is acute (~ 60˚).

The braincase corresponds in detail to the holotype. There is a large postparietal fenestra

between the parietal and supraoccipital. The supraoccipital is diamond-shaped and inclined at

45˚ so that its rostral tip lies above the basipterygoid process. The basipterygoid processes are

distinct, and connected by only a narrow transverse ridge. The floor of the braincase is rela-

tively straight with the basal tubera, basipterygoid processes, and parasphenoid rostrum

aligned horizontally. A ridge is formed along the junction of the parabasisphenoid and the

basioccipital, between the basal tubera and has a smooth rostral face. Co-ossification at the

extremity of the basal tubera is complete such that the basioccipital and parabasisphenoid

form a single rugose ridge, as in the holotype. The basal tubera are knob-like, with the basi-

sphenoid component protruding anterior to the lateral basioccipital components, and the

transverse wall between the basipterygoid processes has an indentation on its front.

The dentary has a ventral curve towards its anterior tip, typical of sauropodomorphs. The

dentition is moderately heterodont, with the upper tooth row extending beyond the back of

the dentary teeth. There are four premaxillary teeth, sixteen maxillary teeth, and twenty den-

tary teeth. The first dentary tooth is inset a short distance from the rostral tip of the dentary

and is slightly procumbent. Individual tooth crowns are labiolingually compressed, taller api-

cobasally than wide, and convex to varying degrees mesiodistally, straight rather than

recurved, and subsymmetrical in labial view. The tooth crown and root are separated by a

slight constriction. The mesial and distal carinae are coarsely serrated with denticles that proj-

ect apically at an angle of about 45˚ relative to the carina, as in other early sauropodomorphs.

There are up to 20 denticles per tooth crown. The crowns are angled posteriorly relative to the

long axis of the jaw and imbricate slightly, such that each tooth has its mesial margin lying lin-

gual to the distal margin of the crown immediately in front.

MCZ 8893 contains pieces of siltstone matrix associated with the palate of the skull that

supposedly include ‘palatal teeth’ that were proposed to have been embedded in the epithelium

of the roof of the mouth [15]. The palatal elements of the skull lack alveoli or broken tooth

bases. In cross-section, CT images indicate that these may in fact be teeth that have an

extremely thin layer of exterior enamel (Fig 46). If this is the case, these elements represent pal-

atal teeth like those found on the pterygoids of Eoraptor lunensis [70] and Pampadromaeus bar-
berenai [72].

Postcrania. A few fragments of the postcranial skeleton of MCZ 8893 were also recovered

as surface float, including possible atlantal neural arches, a partial cervical neural arch with

small epipophyses that extend back, but not beyond, the articular faces of the postzygapo-

physes. There are three partial caudal centra, a partial distal humerus, an incomplete femoral

shaft, and fragments of gastralia. They compare favorably in both size and anatomy with the

holotype, but little more can be said of them owing to their highly fragmentary nature.

Phylogenetic analyses

Nomenclature

Phylogenetic definitions of relevant taxonomic names are based on the following citations:

Sauropodomorpha [43], Plateosauria [152], Plateosauridae [152], Massopoda [63], Massos-

pondylidae [153], Anchisauria [152], Sauropoda [63], Eusauropoda [154]. We prefer to use the

definition of Sauropoda given by Yates [63] over that of Sereno [64] because the latter specifies
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Mussaurus, a taxon not included in one of our three data matrices. We also note that Melanor-
osaurus readi and Riojasaurus incertus are scored on multiple specimens of more than one

taxon in the analyses of Yates [63] and Upchurch et al. [64] as discussed by McPhee and Choi-

niere [38]. Melanorosaurus and Riojasaurus retain retain historical character scorings in those

two modified analyses in our study in order to facilitate direct comparability to the similar

analyses of Rowe et al. [25] and because we have not viewed those specimens personally, but

not in the modified McPhee and Choiniere matrix described below.

Results

The initial phylogenetic study of Sarahsaurus aurifontanalis [25] was conducted with revised

data matrices for Sauropodomorpha based on those compiled by Yates [63] and Upchurch

et al. [64]. Its two primary goals were to test whether Sarahsaurus aurifontanalis was diagnos-

able as a new taxon, and to test whether Early Jurassic sauropodomorphs of North America

formed their own exclusive clade. Parsimony analyses included all the taxa in each data matrix

and generated strict consensus, Adams consensus, and 50% majority rules consensus trees for

the revised Yates and Upchurch et al. matrices.

Our present analysis further revised character scores, added new characters, and filled in

missing data thanks to more complete preparation of the paratype skeleton and CT scanning

of additional material (see above). In addition, we tested the phylogenetic effects of assuming

that the holotype specimen and the referred MCZ skull belong to a single taxon; we also tested

the phylogenetic effects of the contrary assumption, which is that they represent separate taxa.

Regardless of which assumption one makes, or which matrix one employs, our current analsy-

sis corroborates the main point of the initial analysis [25] which is that the Early Jurassic sauro-

podomorphs of North America do not form a clade unto themselves.

Yates, 2007 [63] (Fig 47). The heuristic search recovered 24 most parsimonious trees

(MPTs) of 1212 steps (CI = 0.351, RI = 0.670). Even though our updated matrix only has two

additional characters and one more taxon [25], we found 106 fewer MPTs with lengths shorter

by 22 steps. Our findings on relationships among the early sauropodomorphs (Saturnalia tupi-
niquim, Pantydraco caducus, Thecodontosaurus antiquus, Efraasia minor, and Plateosauravus
cullingworthi) are identical to those recovered in the initial analysis [25]. Ruehelia bedheimensis
was excluded from Plateosauria (Fig 47). Riojasaurus incertus + Eucnemosaurus form the sister

clade to all other massopodans, a sister taxon relationship found previously that was poorly

resolved with respect to other plateosaurs. We also recovered a large Massospondylidae clade

that includes two primary branches (found next to nodes 15 and 17 in Fig 47). In one, Lufengo-
saurus hueni and Glacialisaurus form the sister clade to Coloradisaurus brevis (including node

15). The second main branch of Massospondylidae (including node 17) includes the South

American sister taxa Adeopapposaurus mognai and Leyesaurus marayensis, with Sarahsaurus
aurifontanalis as its sister taxon. Massospondylus carinatus is the sister taxon to the clade

including Adeopapposaurus mognai, Leyesaurus marayensis, and Sarahsaurus aurifontanalis.
The inclusion of Leyesaurus marayensis helped to resolve the position of Massospondylidae

within Plateosauria and pulled Seitaad ruessi up the tree to lie just outside of Anchisauria. The

taxic composition of Anchisauria is identical in our analysis to that of the initial study [25].

The Adams consensus tree recovered the same topology as the strict consensus tree (Fig 47).

Bremer support values for the internal nodes within Sauropodomorpha are either 1 or 2,

with the exception of Riojasaurus incertus + Eucnemosaurus, which is 3 (Table 1). Bootstrap

resampling shows variable node support (Appendix F, S1 Figures). The bootstrap value of

unnamed node 4 is 0.61, but most of the bootstrap values along the backbone of the tree are

below 0.50. Leyesaurus marayensis + Adeopapposaurus mognai (node 19) had a bootstrap value
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Fig 47. Phylogenetic hypotheses based on the revised data set of Yates [63] recovered in this study as Adams and strict consensus trees estimated from the

most parsimonious trees produced by the analysis. Only the holotype of Sarahsaurus aurifontanalis (TMM 43646–2) was scored in this analysis. Node

numbers are used in Table 1.

https://doi.org/10.1371/journal.pone.0204007.g047
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of 0.42 and node 19 + Sarahsaurus aurifontanalis (node 18) has a bootstrap value of 0.19.

Despite these low scores, however, Massosponylidae is supported by five unambiguous synap-

omorphies (characters 20, 99, 131, 294, 318) and one ambiguous synapomorphy (character

264).

Upchurch et al., 2007 [64] (Fig 48). We added an additional taxon and ten additional

characters to the version used in the initial analysis [25]. Analysis of the revised matrix recov-

ered 487 MPTs of 817 steps (CI = 0.398, RI = 0.651), and it yielded 3,098 fewer MPTs that are

shorter by three steps. Compared to the initial results [25], Saturnalia tupiniquim is not unam-

biguously part of the ingroup (Sauropodomorpha) in the strict consensus tree (Fig 48). Much

of the large polytomy at the node Plateosauria was unresolved, although we recovered a mono-

phyletic Massospondylidae with Adeopapposaurus mognai + Leyesaurus marayensis as the sis-

ter to Massospondylus carinatus. Sarahsaurus aurifontanalis was not included in

Massosponylidae in this result, and it fell in the polytomy at node 3 (Fig 48). Melanorosaurus
readi (scored from multiple taxa in this analysis) fell within the polytomy at Plateosauria, forc-

ing ambiguity in positions of the stem-based groups Massopoda and Sauropoda. The relation-

ships of Eusauropoda and stem-eusauropods were the same as those recovered in the initial

analysis of this matrix [25] (Fig 48).

The Adams consensus tree recovered more fully resovled relationships than the strict con-

sensus tree (Fig 48). Most notably, it recovered Saturnalia tupiniquim as the sister taxon to all

other sauropodomorphs, and a monophyletic Plateosauria that includes Massospondylidae

plus an unnamed clade that includes Sarahsaurus. In effect, Sarahsaurus aurifontanalis acted

as a wildcard taxon with Seitaad ruessi and a clade that includes the groups Gyposaurus +

Lufengosaurus hueni and Glacialisaurus + Coloradisaurus brevis as sister taxa. Anchisaurus
polyzelus and Ammosaurus major are sister taxa in the Adams consensus tree, and more resolu-

tion was recovered among non-sauropod massopods.

Because much of the strict consensus tree is unresolved, Bremer support values are 1 along

the backbone nodes, with the exception of nodes 7 and higher (Bremer scores between 2 and

4; Table 2; Appendix F, S1 Figures). As expected, bootstrap support values were also low in the

nodes close to Eusauropoda. The clade Leyesaurus marayensis + Adeopapposaurus mognai had

a bootstrap score of 0.48. One unambiguous synapomorphy (character 218) and ten ambigu-

ous synapomorphies (characters 14, 20, 29, 79, 94, 126, 157, 205, 215, and 257) supported a

monophyletic Massospondylidae.

McPhee and Choiniere [38] (Fig 49). Our heuristic search recovered four MPTs of 1318

steps (CI = 0.330, RI = 0.696). Our analysis recovered the same relationships found by McPhee

and Choiniere among non-plateosaur sauropodomorph. These included the Saturnalia tupini-
qium + Chromogisaurus novasi clade, the Pantydraco caducus + Thecodontosaurus antiquus
clade, and the Plateosaurus + Unaysaurus tolentinoi clade. In the original analysis [25], Xing-
xiulong chengi and Sarahsaurus aurifontanalis fell into a polytomy with all other massopods. In

Table 1. Group support for results of phylogenetic analyses from the modified Yates matrix [63].

Node Bremer/GC bootstrap % Node Bremer/GC bootstrap %

2 Sauropodomorpha 1/22 7 Plateosauria 1/-

8 Plateosauridae 1/16 11 Massopoda 1/-

14 Massospondylidae 1/- 21 Anchisauria 1/5

23 Sauropoda 1/22 29 Eusauropoda 1/12

Node numbers are taken from strict consensus tree in Fig 47. Values marked by a ‘-‘ are found at nodes that were not recovered in the Bremer or bootstrap analyses.

Appendix F (S1 Figures) includes the full results of the statistical analyses.

https://doi.org/10.1371/journal.pone.0204007.t001
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this analysis, Sarahsaurus aurifontanalis was sister taxon to the clade Leyesaurus marayensis +

Adeopapposaurus mognai within a monophyletic Massospondylidae (Fig 49). Unlike the modi-

fied Yates analysis above, Massospondylus carinatus was more closely related to Coloradisaurus
brevis, Glacialisaurus hammeri, and Lufengosaurus hueni (node 21) than Adeopapposaurus
mognai, Leyesaurus marayensis, and Sarahsaurus aurifontanalis (node 19). Seitaad ruessi and

Fig 48. Phylogenetic hypotheses based on the revised data set of Upchurch et al. [64] recovered in this study as Adams and strict consensus trees estimated from

the most parsimonious trees produced by the analysis. Only the holotype of Sarahsaurus aurifontanalis (TMM 43646–2) was scored in this analysis. Node numbers

are used in Table 2.

https://doi.org/10.1371/journal.pone.0204007.g048

Anatomy and systematics of Sarahsaurus aurifontanalis

PLOS ONE | https://doi.org/10.1371/journal.pone.0204007 October 10, 2018 86 / 108

https://doi.org/10.1371/journal.pone.0204007.g048
https://doi.org/10.1371/journal.pone.0204007


Jingshanosaurus xinwaensis formed a clade with Yunnanosaurus huangi which collectively are

the most derived non-anchisaur massopods. In contrast to the initial analysis, the two species

of Eucnemosaurus were not recovered as sister taxa. Instead E. fortis formed a basal branch

within Massopoda, while E. entaxonis was a basal branch within Anchisauria. The Adams con-

sensus tree recovered the same topology as the strict consensus tree with the polytomy in basal

anchisaurs being more resolved.

Bremer support values for the internal nodes within Sauropodomorpha fell between 1 and 3,

with the exception of higher values for Efraasia minor plus all other Sauropodomorpha (9) and

Plateosauria (7; Table 3; Appendix F, S1 Figures). Bootstrap resampling showdemonstrated low

support for non-sauropod massopods (Appendix F, S1 Figures). Within Sauropodomorpha, the

highest bootstrap values were found for Efraasia minor +all other sauropodomorphs (0.79) and

for Plateosauria (0.61). Leyesaurus marayensis + Adeopapposaurus mognai (node 20) had a boot-

strap value of 0.37 and node 20 + Sarahsaurus aurifontanalis (node 19) a bootstrap value of

0.31. Despite these low scores, Massosponylidae was supported by seven unambiguous synapo-

morphies (characters 67, 73, 99, 131, 139, 322, and 337).

Sensitivity analyses

Yates, 2007 [63] (Fig 50). Scored as separate OTUs, the Rock Head skull (MCZ 8893) and

the holotype of Sarahsaurus aurifontanalis occupied different positions on the strict consensus

tree. The holotype of Sarahsaurus remained nested within Massospondylidae as the sister

taxon of Leyesaurus marayensis + Adeopapposaurus mognai. However, the Rock Head skull fell

out as the sister taxon to Massospondylidae.

When Sarahsaurus aurifontanalis and the Rock Head skull were scored as a single OTU

(the ‘combined analysis’ Fig 50C), overall resolution decreased and the number of MPTs

increased. In the combined analysis, Sarahsaurus aurifontanalis was recovered in a strict con-

sensus tree as the sister taxon to Coloradisaurus brevis. Most of the surrounding clades, includ-

ing Massospondylidae collapsed in this analysis. Our analysis of the holotype alone (Fig 50A)

returned same number of MPTs as the combined analysis (Fig 50B), but it was 18 steps longer.

Upchurch et al., 2007 [64] (Fig 51). Scoring the Rock Head and holotype specimens as

separate OTUs (Fig 51B) as opposed to combining them as a single OTU (Fig 51C) decreased

the number of MPTs by 61 while it increased tree length by 14 steps. Massospondylidae was

recovered in both analyses but it excluded both the holotype of Sarahsaurus aurifontanalis and

Rock Head specimens. When the holotype and Rock Head skull were scored as a single taxon,

Sarahsaurus aurifontanalis (Fig 51C), became the sister taxon to Massospondylidae. This anal-

ysis resulted in the fewest number of MPTs.

McPhee and Choiniere, 2017 [38] (Fig 52). When the holotype specimen and MCZ 8893

were scored as a combined OTU (Fig 52C) as opposed to separate OTUs (Fig 52B) the analyses

resulted in eight times as many MPTs and an increase in length from 1333 to 1339 (15 to 21

steps longer than if only the holotype was included; Fig 52A). As separate OTUs in the same

Table 2. Group support for results of phylogenetic analyses from the modified Upchurch et al. matrix [64].

Node Bremer/GC bootstrap % Node Bremer/GC bootstrap %

2Sauropodomorpha 1/6 3 Anchisauria/Plateosauria -/6

4 Massospondylidae 1/5 6 Sauropoda/Massopoda -/1

8 Eusauropoda 3/77

Node numbers are taken from strict consensus tree in Fig 48. Values marked by a ‘-‘ are found at nodes that were not recovered in the Bremer or bootstrap analyses.

Appendix F (S1 Figures) includes the full results of the statistical analyses.

https://doi.org/10.1371/journal.pone.0204007.t002
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Fig 49. Phylogenetic hypotheses based on the revised data set of McPhee and Choiniere [38] recovered in this study as a strict consensus tree estimated from

the most parsimonious trees of this analysis. Only the holotype of Sarahsaurus aurifontanalis (TMM 43646–2) was scored in this analysis. Node numbers are used

in Table 3.

https://doi.org/10.1371/journal.pone.0204007.g049
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analysis (Fig 52B) the holotype specimen was found in the same position as the holotype-only

analysis (sister taxon to Adeopapposaurus mognai + Leyesaurus marayensis within Massospon-

dylidae) and MCZ 8893 was found in a basal position as the sister taxon to Plateosauridae + all

other sauropodomorphs. The relationships of anchisaurians are more unresolved in that anal-

ysis. In the combined analysis (Fig 52C), Sarahsaurus aurifontalis is found outside of Massos-

pondylidae and Massopoda is largely unresolved.

Results of the sensitivity analyses. Under the three matrices analyzed above, the phyloge-

netic placement of Sarahsaurus aurifontanalis was sensitive to whether or not the Rock Head

specimen was included in scoring it. The sensitivity analysis using the Yates matrix raised the

possibility that Rock Head specimen represents a taxon lying just outside of Massospondyli-

dae, one that is separate from Sarahsaurus aurifontanalis. However, we note that it has no

unique diagnostic apomorphies that would justify naming it as a separate taxon, nor is its phy-

logenetic position far from that of the holotype.

Under the Upchurch et al. matrix, the results of the sensitivity analysis were equivocal.

With the holotype and Rock Head skull falling together into a larger polytomy, the possibility

remains open that they represent a single (if unresolved) taxon, and that combining them into

a single OTU can be neither accepted or rejected out of hand.

The sensitivity analyses conducted using the McPhee and Choiniere matrix supports the

hypothesis that the holotype specimen of Sarahsaurus aurifontanalis is that of a massospondy-

lid, even if the MCZ skull is included as a separate OTU. The more basal position of Sarah-
saurus aurifontalis using the combined scoring in the McPhee and Choiniere matrix suggests

that many of the characters found in the Rock Head skull are plesiomorphic and drag the

taxon down the tree.

In light of the high degree of homolasy that was recovered in these analyses matrix the

effects of differential incompleteness may explain the separation of the two specimens on the

given trees. The holotype preserves realively few cranial characters but a relatively complete

postcranium, while the Rock Head specimen preserves a far more complete skull but virtually

no postcranial characters. Thus, differential incompleteness in the face of abundant homoplasy

can equally account for the separation of the two specimens on the tree when they are included

as separate OTUs. This is not surprising because those character states that are shared by the

holotype and the Rock Head specimen are plesiomorphic.

Diagnosis of Sarahsaurus aurifontanalis
Sarahsaurus aurifontanalis is represented by an exceptionally complete and semi-articulated

holotype specimen that preserves autapomorphies, a combination of plesiomorphic and apo-

morphic features, and anatomical associations that previously were unknown or uncertain for

early sauropodomorphs. An extended diagnosis for Sarahsaurus aurifontanalis was difficult to

ascertain previously owing to the disparate topologies and character optimizations from the

Table 3. Group support for results of phylogenetic analyses from the modified McPhee and Choiniere [38].

Node Bremer/GC bootstrap Node Bremer/GC bootstrap

2 Sauropodomorpha 3/37 9 Plateosauridae 4/47

8 Plateosauria 7/61 11 Massopoda 1/8

18 Massospondylidae 3/6 26 Anchisauria 2/-

30 Sauropoda 1/- 35 Eusauropoda 1/42

Node numbers are taken from strict consensus tree in Fig 49. Values marked by a ‘-‘ are found at nodes that were not recovered in the Bremer or bootstrap analyses.

Appendix F (S1 Figures) includes the full results of the statistical analyses.

https://doi.org/10.1371/journal.pone.0204007.t003
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Fig 50. Results of the sensitivity analyses using the Yates, 2007 [63] data set. A- using only character scores from the holotype specimen of Sarahsaurus
aurifontanalis (TMM 43646–2); B- scoring TMM 43646–2 and MCZ 8893 as separate OTUs; C- combining the character scores of TMM 43646–2 and

MCZ 8893 as a single OTU.

https://doi.org/10.1371/journal.pone.0204007.g050
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Fig 51. Results of the sensitivity analyses using the Upchurch et al., 2007 [64] data set. A- using only character scores from the holotype specimen of

Sarahsaurus aurifontanalis (TMM 43646–2); B- scoring TMM 43646–2 and MCZ 8893 as separate OTUs; C- combining the character scores of TMM

43646–2 and MCZ 8893 as a single OTU.

https://doi.org/10.1371/journal.pone.0204007.g051
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Fig 52. Results of the sensitivity analyses using the McPhee and Choiniere, 2017 [38] data set. A- using only character scores from the holotype

specimen of Sarahsaurus aurifontanalis (TMM 43646–2); B- scoring TMM 43646–2 and MCZ 8893 as separate OTUs; C- combining the character scores of

TMM 43646–2 and MCZ 8893 as a single OTU.

https://doi.org/10.1371/journal.pone.0204007.g052
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two data sets used in previous analyses [25] (Figs 47 and 48). Whereas many of the relation-

ships among early sauropodomorphs remain unclear (especially those estimated from the

Upchurch et al. matrix [64]), our results suggest that the position of Sarahsaurus aurifontanalis
within Massospondylidae is supported between two different matrices. These results also offer

data for an amended diagnosis for Sarahsaurus aurifontanalis.
There are 23 unambiguous apomorphies that diagnose Sarahsaurus in the modified Yates

[63] matrix. Seven unambiguous and thirteen ambiguous apomorphies diagnose the taxon in

the modified Upchurch et al. [64] matrix, and 20 unambiguous apomorphies diagnose the

taxon in the modified McPhee and Choiniere matrix [38] (Appendix D, S4 Text). In order to

not favor one phylogenetic hypothesis over the other in our analyses, we diagnose Sarahsaurus
aurifontanalis only on the autapomorphies found in common between the three matrices. Sar-
ahsaurus aurifontanalis is the only sauropodomorph dinosaur to have two foramina in the

proximal region of the pubis (Fig 33). It is the only sauropodomorph dinosaur to have trans-

versely-expanded, elaborate dorsal processes on the neural spines of the posterior cervical and

anterior dorsal vertebrae (= ‘spine tables’; Figs 13–15), and a metacarpal I that is flush with the

rest of the metacarpals proximally (Fig 27). In addition to these unambiguous autapomorphies,

Sarahsaurus aurifontanalis is also diagnosed by a combination of characters; the proximal

width of metacarpal I is between 65–80% of the length of the bone (Fig 28), and metacarpals II

and III have deep distal extensor pits (Figs 28 and 29). While it was not borne out in the analy-

ses, the 2-3-4-2-2 manual phalangeal count of Sarahsaurus aurifontanalis, specifically the two

phalanges on digit V, also seems unique among sauropodomorphs (Fig 24).

Discussion

Our analyses of Sarahsaurus aurifontanalis highlight some of the many systemic problems that

are confronted in differing ways by the large community now working to map the phyloge-

netic relationships of early sauropodomorphs and other early dinosaurs. Selecting the OTUs

for an analysis is among the most basic operations, and yet it is also among the most problem-

atic operations in those cases where multiple specimens are candidates for inclusion in a com-

posite OTU. Because the holotype and paratype of Sarahsaurus aurifontanalis were

intermingled in the same quarry, they shared apomorphic resemblances in the cervical verte-

brae and pubis, and the absence of character conflict gave us no reason to doubt their conspe-

cificity and to treat them as as single OTU

Referral of the Rock Head specimen, found a few kilometers away from the type quarry,

was more problematic. Differences between it and the holotype in maturity at time of death

complicated comparisons. More tenacious is the problem of incompleteness. The Rock Head

specimen consists of a fairly complete skull that was found with almost none of the postcra-

nium, whereas the holotype and paratype consist mostly of postcranial elements. All of the fea-

tures comparable favorably between the two specimens proved to be plesiomorphic in the

three data matrices used in our analyses (25).

Combining the two specimens into a single OTU served to increase the matrix complete-

ness of Sarahsaurus aurifontanalis from 70.5% to 92.6% in the Yates matrix [63], from 68.8%

to 91.4% in the Upchurch et al. matrix [64], and 69.6% to 92.3% in the McPhee and Choiniere

matrix [38]. The effects of greater completeness on tree resolution and support are well-known

[68, 155], and this is the source of motivation in assembling the most complete OTUs that can

be justified, ideally, by the criterion of apomorphy.

The effects of incompleteness on both tree topology and taxon diagnoses were compounded

by the high degree of homoplasy found in all three matrices in which we analysed Sarahsaurus
aurifontanalis. Our analysis found some of the homoplasy to be a result of differnt views on
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character conceptualization, different conclusions on the polarity of character transforma-

tions, conflicting views on the ordering of multi-state characters, and differential attention to

maturity at time of death of the specimens scored.

Whether or not one adheres strictly to the criterion of apomorphy, the rationale for com-

bining or for separating the holotype and Rock Head specimens appear to be equally balanced.

Whereas ccurrent knowledges of these specimens offers no unique apomorphies that link

them, the two specimens do share many corresponding, albeit plesiomorphic features that

offer some measure of justification in combining them. Moreover, there are no character con-

flicts to separate them that are not reflections of differential maturity at time of death. And

finally, there is the circumstantial evidence of their temporal and geographic correspondence

that paleontologists have scrutinized for generations while weighing the identitites of different

specimens found in close proxiomity.

The phylogenetic analyses conducted here suggest that Sarahsaurus aurifontanalis is a

member of Massospondylidae, a largely Gondwanan clade of Late Triassic and Early Jurassic

bipedal plateosaurian sauropodomorphs (Fig 53). Other members of this group include Mas-
sospondylus carinatus from southern Africa, Adeopapposaurus mognai, Leyesaurus marayensis,
and Coloradisaurus brevis from South America, Glacialisaurus hammeri from Antarctica, and

Lufengosaurus huenei from China.

Biogeographic implications

One robust result of this study corroborates the initial analysis of Sarahsaurus aurifontanalis in

finding that the Early Jurassic sauropodomorphs of North America do not constitiute a unique

clade unto themesleves. Despite the many other uncertainties facing our understanding of

early sauropodomorph evolution, this unequivocal phylogenetic result offeres a basis to infer

certain local biogeographic pattens that affected the diversity of North American sauropodo-

morphs, and a basis to critique proposed driving mechanisms behind their early evolution. A

lack of resolution in early sauropodomorph phylogeny presents impediments to charting their

precisee center of origin, and many details of their subsequent dispersal routes during the Late

Triassic and Jurassic remain uncertain. However, the new information on the age and relation-

ships among the earliest North American sauropodomorphs offers a few new details about

these events as well as insights into broad evolutionary mechanisms that have been hypothe-

sized as driving early dinosaur diversification.

The initial recognition of the supercontinent Pangaea and the of plate tectonic theory in the

1970s led to a popular view in which there were two broad episodes in Mesozoic dinosaur evo-

lution [16]. The first episode played out in the Late Triassic, as dinosaurs originated and diver-

sified into their three major clades, Ornithischia, Sauropodomorpha, and Theropoda. All three

major clades were believed to have rapidly spread across Pangaea during the Late Triassic to

establish a uniform, low-diversity, and cosmopolitan community. Ease of terrestrial dispersal

across Pangaea was postulated to have limited faunal differentiation that might otherwise have

arisen in response to geographical isolation, explaining the broad range and uniformity of this

community [9, 10, 17, 18].

Under this model, a second episode in dinosaur evolution occured as Pangaea fragmented

and drifted apart during the Middle to Late Jurassic and the Cretaceous. Vicariance was

hypothesized to have accelerated diversification through increased faunal isolation and provin-

cialism, by regional extinction, and with episodic intercontinental ‘sweepstakes’ arrivals. Thus,

three processes were believed to govern the early pattern of Mesozoic dinosaur diversification:

vicariance, regional extinction, and dispersal. Vicariance and regional extinction were believed

to generally enhance diversity while dispersal served to reduce it [9, 10, 17, 18].
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Fig 53. Life restoration of Sarahsaurus aurifontanalis showing the bipedal bauplan shared by Sarahsaurus and

other massospondylid sauropodomorphs. Art by Brian Engh, used with permission (http://dontmesswithdinosaurs.

com/).

https://doi.org/10.1371/journal.pone.0204007.g053
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The proposition of an apparent uniformity in Late Triassic terrestrial vertebrate faunas

soon faced two important challenges. The first was the age the Glen Canyon Group and its

global correlation. For many years, the Glen Canyon Group and its vertebrate fauna were

thought to be Late Triassic in age (e.g., [47, 52, 55]). However, radiometric dating [46] recently

confirmed widely-held suspicions based on biostratigraphy that the Kayenta and Navajo for-

mations, if not the entire Glen Canyon Group, are Early Jurassic in age [56, 156, 157].

The refined dating of the Glen Canyon Group also suggests that neither ornithischian nor

sauropodomorph dinosaurs were present in North America before the end-Triassic extinction

event [158–161]. If there was ever a wide-spread cosmopolitan Late Triassic dinosaur commu-

nity, current evidence suggests that it did not extend into North America. While this hypothe-

sis is based on negative evidence, it is also based on careful inspection of large collections

assembled from vast exposures of Late Triassic sediments over more than a century of study

by many different paleontologists. To date, not one Triassic specimen has been found that pre-

serves unequivocal apomorphies diagnostic of either Ornithischia or Sauropodomorpha,

although theropod dinosaurs were indeed present in the North American Late Triassic (e.g.,

[161–163]).

A second challenge to the early global model of dinosaur evolution emerged from the refer-

ral of the fragmentary Glen Canyon Group vertebrates to bettter-known Gondwanan taxa. In

particular, referral of the fragementary sauropodomorph specimens to Massospondylus sp.

became questionable in the light of phylogenetic systematic methods and application of the

criterion of apomorphy. The phenetic taxonomic methods used up until that that time tended

to lump taxa, whereas the increased systematic rigor introduced by cladistic methods has con-

siderably increased the taxonomic diversity now recognized among early dinosaurs [75].

If it is true that sauropodomorphs were primitively absent in the Late Triassic of North

America, then Anchisaurus polyzelus, Seitaad ruessi, and Sarahsaurus aurifontanalis represent

the earliest evidence yet discovered of the arrival of this clade in North America. It follows that

the interrelationships of the North American sauropodomorphs offer a test of competing pat-

terns of diversification. Our analysis supports the conclusion [25] that the North American

sauropodomorphs do not form an exclusive clade, and it points to the likelihood of their inde-

pendent dispersal into North America from different parts of Pangaea following the end-Trias-

sic event [25]. In this case, the diversity of Early Jurassic North American sauropodomorphs is

associated with dispersal, and with a process that has been referred to as ‘adaptive endmism’

[164] in which new taxa originate in response to the new local environments into which they

(or their immediate ancestors) dispersed. Hence, in the case of North American sauropodo-

morphs, diversity was not constrained by dispersal, but rather dispersal seems more likely to

have driven endemism and diversification, at least during this interval of time in which they

first entered North America. With Sarahsaurus aurifontanalis recovered as a massospondylid,

its lineage most likely originated and dispersed from Gondwana between the end of the Norian

and the Pliensbachian.

Our phylogenetic analyses corroborate earlier findings [25] that the pattern of ‘foreign-rela-

tionships’ among Early Jurassic North American sauropodomorphs is not predicted by vicari-

ance models (nor was tectonic vicariance an active phenomena in North America at this time

[165]). Dispersal patterns in the face of relative tectonic stability are more difficult to predict

and test. However, the multiple independent arrivals of sauropodomorphs in North America

are consistent with an ‘area coalescence’ model in which taxa from separate geographic areas

come together by dispersing into a newly accessible area [164, 166]. Like vicariance, this allows

a large number of taxonomically diverse groups to all achieve similar changes in range [166–

168]. The ‘coalescence event’ in this case was not a colliding tectonic plate. Perhaps it was the

elimination of some barrier related to the end-Triassic event, or it may simply have been a
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matter of time in which the occupation of Pangaea by dinosaurs took longer than previously

believed. In any event, current phylogenetic resolution suggests that the Early Jurassic sauro-

podomorphs dispersed into North America from the adjoining lands of South America and

Africa, where their more ancient phylogenetic affinities lie [169].

It is worth noting that a similar pattern is seen in other Early Jurassic North American ver-

tebrates. Current evidence suggests that ornithischians were also primitively absent in the Late

Triassic in North American [158, 160], and that their oldest representatives appear simulta-

neously with Sarahsaurus aurifontanalis in the Kayenta Formation and include Scutellosaurus
lawleri [55], ‘Scelidosaurus’ sp. [157] and an undescribed ‘heterodontosaurid’ [15]. Based on

some recent ornithischian phylogenies [123, 170] all three taxa from the Kayenta Formation

are related more closely to non-North American ornithischians than to one another. Taken

collectively, it appears that all the earliest North American sauropodomorphs and ornithischi-

ans originated elsewhere in Europe, Africa, or South America and dispersed onto the conti-

nent in separate events during the Early Jurassic. The tritylodontids [171, 172] and the one

known goniopholid [60] from the Kayenta Formation also repeat this pattern.

The Central Atlantic Magmatic Province (CAMP) is strongly implicated in shaping these

events based on its timing and geographic position [173]. CAMP activity is represented by tho-

leiitic dikes, sills, and lava flows in eastern North America, northern South America, north-

western Africa, and western Europe in a broad band separating the North American interior

from most of the rest of Pangaea [174]. High-precision geochronology indicates CAMP activ-

ity as manifesting in a single brief magmatic episode all along the pre-Atlantic rift zone

approximately 201.5 million years ago, and is temporally coincident with end-Triassic extinc-

tions in marine faunas [173]. CAMP volcanism may have surpassed even the end-Permian

Siberian flood basalts in volume and extent, profoundly altering climate, and disrupting Pan-

gaea by opening the proto-Atlantic Ocean [172–178].

The timing of events suggests that, at least in North America, the end-Triassic mass extinc-

tion on land was not driven by competitive invasion of foreign taxa, nor is there faunal evidence

of such an invasion. Theropods were present during most if not all of the Late Triassic, but only

as rare faunal elements. It was not until after the end-Triassic extinctions, cessation of CAMP

volcanism, and following an early Hettangian ‘recovery period’ of up to two million years [175],

that sauropodomorphs and larger theropods dispersed into North America into a void left by

earlier events [169]. This local snapshot is consistent with the broader picture of dinosaurs as

opportunistically occupying niches left vacant by prior extinction [9, 10, 17, 179–181].

Finally, this common biogeographic pattern contradicts the assertion that dispersal reduces

diversity [9, 10, 17] and was less influential than vicariance in shaping early dinosaur diversity.

High-resolution phylogenetic analyses of all three clades of early dinosaurs reflect high degrees

of endemism that contest the notion of a uniform cosmopolitan dinosaur community in the

Late Triassic and Early Jurassic. Moreover, it suggests that the notion of a ‘cosmopolitan dino-

saur fauna’ is merely an artifact of poor taxonomic resolution, and a result of confusing the

evolutionary process of divergence with the historical result of accumulated morphological

novelty. Late Jurassic and Cretaceous dinosaur faunas are sharply differentiated in the frag-

mented landmasses they occupy and are easily recognizable by more than 100 million years of

accumulated novelty and divergence [25]. The Triassic and Early Jurassic patterns are subtler

but are present nevertheless. For example, Sarahsaurus aurifontanalis is almost 40 million

years removed from the earliest sauropodomorphs it is distinguishable from all other non-sau-

ropod sauropodomorphs in its autapomorphies and a unique suite comprising dozens of char-

acter states.

The earliest North American sauropodomorphs support the view that early dinosaur diver-

sification was driven by dispersal and adaptation over the vast and ecologically heterogeneous
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environs of Pangaea, and opportunistically amplified by the end-Triassic extinctions. Only

later in the Jurassic, as Pangaea fragmented, was vicariance introduced as a secondary diversifi-

cation factor. In light of local adaptive radiations throughout the Mesozoic, such as the Creta-

ceous diversification of ceratopsians in North America, dispersal across the ecologically

heterogeneous continents continued to shape dinosaur diversity [164].

The relative importance of competition, vicariance, extinction, and dispersal typically is an

essentialist debate seeking a single dominant cause throughout dinosaur history. However, it

seems clear that these factors did not operate uniformly over time or under uniform condi-

tions, and only in narrowed time slices and bounded regions can their roles be assessed

accurately.

Conclusion

Given its completeness, Sarahsaurus aurifontanalis represents the most significant increase in

our knowledge of the earliest North American sauropodomorphs in a century. To estimate its

phylogenetic position, we undertook phylogenetic analyses that used modified versions of

matrices published by Yates [63], by Upchurch et al. [64], and by McPhee and Choiniere [38].

Given that the Yates and Upchurch et al. datasets are 42% different in character scoring [24], it

was not surprising that they recovered rather different hypotheses of early sauropodomorph

phylogeny. Nevertheless, all three matrices recovered a monophyletic Massospondylidae that

included, minimally, (Massospondylus carinatus + (Adeopapposaurus mognai + Leyesaurus
marayensis)).

Sarahsaurus aurifontanalis was nested within Plateosauria by all three matrices. Using the

matrices published by Yates [63] and by McPhee and Choiniere [38], Sarahsaurus aurifontana-
lis was nested within Massospondylidae. Owing to character conflict the resolution was lower

in the Upchurch el al. [64] matrix, where a large basal polytomy among plateosaurians

reflected greater uncrtainty in early sauropodomorph relationships. Sarahsaurus aurifontanalis
fell into that polytomy, and was not nested within Massospondylidae. However, when the

holotype and Rock Head skull were scored as a single taxon, Sarahsaurus aurifontanalis
became the sister taxon to Massospondylidae. Collectively, these results support the hypothesis

that the holotype specimen of Sarahsaurus aurifontanalis is most likely a member of Massos-

pondylidae. Whether the taxon is considered to be a massospondylid or the sister taxon of that

group is sensitive to whether or not one assumes the holotype and the Rock Head skull repre-

sent a single taxon. However, one important result was that in every case North American

Early Jurassic sauropodomorphs failed to form a unique clade unto themselves. This result

agrees with the initial phylogenetic conclusions [25] that three different dispersals brought

sauropodomorphs into North America after the end-Triassic mass extinction.
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149. Galton P. M. 2000. Are Spondylosoma and Staurikosaurus (Santa Maria Formation, Middle-Upper Tri-

assic, Brazil) the oldest saurischian dinosaurs? Palaeontol Z. 74(3): 393–423.

150. Sereno PC, Forster CA, Rogers RR, Monetta AM. Primitive dinosaur skeleton from Argentina and the

early evolution of Dinosauria. Nature. 1993; 361: 64–66.

151. Martinez RN, Sereno PC, Alcobar OA, Colombi CE, Renne RP, Montañez IP, Currie BS. A basal dino-

saur from the dawn of the dinosaur era in southwestern Pangaea. Science. 2011; 331: 206–210.

https://doi.org/10.1126/science.1198467 PMID: 21233386

152. Galton PM, Upchurch P. 2004. Prosauropoda. In Weishampel DB, Dodson P, Osmólska H, editors.

The Dinosauria, Second Edition. Berkeley: University of California Press. pp. 232–258.

153. Sereno PC. A rationale for phylogenetic definitions, with application to the higher-level taxonomy of

Dinosauria. Neues Jahrb Geol P-A. 1998; 210: 41–83.

154. Upchurch P. The evolutionary history of sauropod dinosaurs. Philos T Roy Soc B. 1995; 349: 365–

390.

155. Donoghue MJ, Doyle JA, Gauthier J, Kluge AG, Rowe T. The importance of fossils in phylogeny

reconstruction. Annu Rev Ecol Evol Syst. 1989; 20: 431–460.

156. Olsen PE, Sues HD. Correlation of continental Late Triassic and Early Jurassic sediments, and pat-

terns of the Triassic–Jurassic tetrapod transition. In Padian K, editor. The Beginning of the Age of

Dinosaurs: Faunal Change Across the Triassic-Jurassic Boundary. Cambridge: Cambridge Univer-

sity Press; 1986. pp. 321–351.

157. Padian K. Presence of the dinosaur Scelidosaurus indicates Jurassic age for the Kayenta Formation

(Glen Canyon Group, northern Arizona). Geology. 1989; 17: 438–441.

158. Parker WG, Irmis RB, Nesbitt SJ, Martz JW, Browne LS. The Late Triassic pseudosuchian Revuelto-

saurus callenderi and its implications for the diversity of early ornithischian dinosaurs. Proc R Soc

Lond B Biol Sci. 2005; 272: 963–969.

159. Irmis RB, Parker WG, Nesbitt SJ, Liu J. Early ornithischian dinosaurs: the Triassic record. Hist Biol.

2007; 19: 3–22.

160. Nesbitt SJ, Irmis RB, Parker WG. A critical re-evaluation of the Late Triassic dinosaur taxa of North

America. J Syst Palaeontol. 2007; 5: 209–243.

161. Nesbitt SJ, Smith ND, Irmis RB, Turner AH, Downs A, Norell MA. A complete skeleton of a Late Trias-

sic saurischian and the early evolution of dinosaurs. Science. 2009; 326: 1530–1533. https://doi.org/

10.1126/science.1180350 PMID: 20007898

162. Colbert EH. The Triassic dinosaur Coelophysis. Mus North Ariz Bull. 1989; 57: 1–160.

163. Long RL, Murry PA. Late Triassic (Carnian and Norian) tetrapods from the southwestern United

States. New Mexico Museum of Natural History and Science Bulletin. 1995; 4: 1–254.

164. Turner AH. Crocodyliform biogeography during the Cretaceous: evidence of Gondwanan vicariance

from biogeographical analysis. Proc R Soc Lond B Biol. 2004; 271: 2003–2009.

165. Chatterjee S, Scotese C. The wandering Indian plate and its changing biogeography during the Late

Cretaceous-Early Tertiary period. In Bandyopadhyay S, editor. New Aspects of Mesozoic Biodiversity.

Berlin: Springer; 2010. pp. 105–126.

166. Upchurch P, Hunn CA, Norman DB. An analysis of dinosaurian biogeography: evidence for the exis-

tence of vicariance and dispersal patterns caused by geological events. Proc R Soc Lond B Biol.

2002; 269: 613–621.

Anatomy and systematics of Sarahsaurus aurifontanalis

PLOS ONE | https://doi.org/10.1371/journal.pone.0204007 October 10, 2018 107 / 108

https://doi.org/10.1080/08912963.2017.1395421
https://doi.org/10.1111/joa.12775
http://www.ncbi.nlm.nih.gov/pubmed/29363129
https://doi.org/10.1126/science.1198467
http://www.ncbi.nlm.nih.gov/pubmed/21233386
https://doi.org/10.1126/science.1180350
https://doi.org/10.1126/science.1180350
http://www.ncbi.nlm.nih.gov/pubmed/20007898
https://doi.org/10.1371/journal.pone.0204007


167. Lieberman BS. Early Cambrian paleogeography and tectonic history: a biogeographic approach.

Geology. 1997; 25: 1039–1042.

168. Hunn CA, Upchurch P. The importance of time/space in diagnosing the causality of phylogenetic

events: towards a ‘chronobiogeographical’ paradigm? Syst Biol. 2001; 50: 391–407. PMID: 12116582

169. Whiteside JH, Lindström S, Irmis RB, Glasspool IJ, Schaller MF, Dunlavey M, et al. Extreme ecosys-

tem instability suppressed tropical dinosaur dominance for 30 million years. P Natl Acad Sci USA.

2015; 112: 7909–7913.

170. Baron MG, Norman DB, Barrett PM. Postcranial anatomy of Lesothosaurus diagnosticus (Dinosauria:

Ornithischia) from the Lower Jurassic of southern Africa: implications for basal ornithischian taxonomy

and systematics. Zool J Linn Soc. 2016; 179: 125–168.

171. Sues H-D. First record of the tritylodontid Oligokyphus (Synapsida) from the Lower Jurassic of western

North America. J Vertebr Paleontol. 1985; 5: 328–335.

172. Sues H-D. Relationships and biostratigraphic significance of the Tritylodontidae (Synapsida) from the

Kayenta Formation or northeastern Arizona. In Padian K, editor. The Beginning of the Age of Dino-

saurs: Faunal Change Across the Triassic-Jurassic Boundary. Cambridge: Cambridge University

Press; 1986. pp. 279–284.

173. Blackburn TJ, Olsen PE, Bowring SA, McLean NM, Kent D, Puffer J, et al. Zircon U-Pb geochronology

links the end-Triassic extinction with the Central Atlantic Magmatic Province. Science. 2013; 340:

941–945. https://doi.org/10.1126/science.1234204 PMID: 23519213

174. Marzoli A, Renne PR, Piccirillo EM, Ernesto M, Bellieni G, De Min A. Extensive 200-million-year-old

continental flood basalts of the Central Atlantic Magmatic Province. Science. 1999; 284: 616–618.

PMID: 10213679

175. Schaltegger U, Guex J, Bartolini A, Schoene B, Ovtcharova M. Precise U–Pb age constraints for end-

Triassic mass extinction, its correlation to volcanism and Hettangian post-extinction recovery. Earth

Planet Sci Lett. 2008; 267: 266–275.

176. Archibald JD, Clemens WA, Padian K, Rowe T, MacLeod N, Barrett PM, et al. Multiple causes, not a

single cause for the terminal Cretaceous extinctions. Science. 2010; 328: 973.

177. Kent DV, Olsen PE. Early Jurassic magnetostratigraphy and paleolatitudes from the Hartford conti-

nental rift basin (eastern North America): testing for polarity bias and abrupt polar wander in associa-

tion with the Central Atlantic Magmatic Province. J Geophys Res. 2008; 113: 6101–6124.

178. Scotese CR. PALEOMAP Project. Arlington, TX: University of Texas at Arlington. 2010. www.scotese.

com.

179. Benton MJ. Progress and competition in macroevolution. Biol Rev. 1987; 62: 305–338.

180. Brusatte SL, Nesbitt SJ, Irmis RB, Butler RJ, Benton MJ, Norell A. The origin and early radiation of

dinosaurs. Earth Sci Rev. 2010; 10: 68–100.

181. Holtz TR, Chapman RE, Lamanna MC. Mesozoic biogeography of Dinosauria. In Weishampel FB,

Dodson P, Osmólska H, editors. The Dinosauria, Second Edition. Berkeley: University of California

Press; 2004. pp. 627–642.

Anatomy and systematics of Sarahsaurus aurifontanalis

PLOS ONE | https://doi.org/10.1371/journal.pone.0204007 October 10, 2018 108 / 108

http://www.ncbi.nlm.nih.gov/pubmed/12116582
https://doi.org/10.1126/science.1234204
http://www.ncbi.nlm.nih.gov/pubmed/23519213
http://www.ncbi.nlm.nih.gov/pubmed/10213679
http://www.scotese.com
http://www.scotese.com
https://doi.org/10.1371/journal.pone.0204007

