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Cancer cells are known to exhibit unusualmetabolic activity, and
yet few metabolic cancer driver genes are known. Genetic
alterations and epigenetic modifications of cancer cells result in
the abnormal regulation of cellular metabolic pathways that
are different when compared with normal cells. Such a
metabolic reprogramming can be simulated using constraint-
based modelling approaches towards predicting oncogenes.
We introduced the tri-level optimization problem to use the
metabolic reprogramming towards inferring oncogenes. The
algorithm incorporated Recon 2.2 network with the Human
Protein Atlas to reconstruct genome-scale metabolic network
models of the tissue-specific cells at normal and cancer states,
respectively. Such reconstructed models were applied to build
the templates of the metabolic reprogramming between
normal and cancer cell metabolism. The inference optimization
problem was formulated to use the templates as a measure
towards predicting oncogenes. The nested hybrid differential
evolution algorithm was applied to solve the problem to
overcome solving difficulty for transferring the inner
optimization problem into the single one. Head and neck
squamous cells were applied as a case study to evaluate the
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algorithm. We detected 13 of the top-ranked one-hit dysregulations and 17 of the top-ranked two-hit

oncogenes with high similarity ratios to the templates. According to the literature survey, most
inferred oncogenes are consistent with the observation in various tissues. Furthermore, the inferred
oncogenes were highly connected with the TP53/AKT/IGF/MTOR signalling pathway through
PTEN, which is one of the most frequently detected tumour suppressor genes in human cancer.
lishing.org/journal/rsos
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1. Introduction
Metabolic fluxes are altered in cancer cells and differ from the fluxes in the healthy situation. Normal cells
primarily produce energy through mitochondrial oxidative phosphorylation. However, cancer
cells undergo abnormal metabolism and use glucose differently than normal cells [1–4]. Cancer cells
become habituated to certain fuel sources and metabolic pathways (metabolic reprogramming),
profoundly changing how they consume and use nutrients such as glucose. Such flux reprogramming
in cancer metabolism is characterized by high glucose consumption and lactate production, even
under aerobic conditions, as well as increased glutamine catabolism and amino acid metabolism [1,2].
This is also termed as the Warburg effect [1–4]. Many recent studies on cancer metabolism have
focused on the regulation of metabolic enzyme expression by oncogenes and tumour suppressors to
identify multiple cancer-associated genes and pathways.

Human metabolism is complex and specialized in different tissue and cell types. Mapping out
these tissue-specific metabolisms in genome-scale models will provide deeper insights into the
metabolic basis of various physiological and pathological processes. Constraint-based model (CBM)
approaches have been applied to predict oncogenes, essential enzymes and drug targets for
developing novel medical treatments [5–11]. Flux-dependent and pruning methods are applied
to reconstruct tissue-specific genome-scale metabolic models for predicting tissue-specific
behaviours [6,10]. Schultz & Qutub [12] recently introduced cost optimization reaction dependency
assessment (CORDA) to develop concise, but not minimalistic, tissue-specific metabolic models
based on omics data and a generalized human metabolic reconstruction. The development of genome-
scale human metabolic networks, such as Recon 1 [13], Recon 2 [14] and human metabolic reactions
[8,15], has resulted in the emergence of network medicine. The recently updated and extended Recon
2 (i.e. Recon 2.2) and Recon 3D are the most comprehensive human genome-scale network
reconstruction models [16,17]. Recon 3D [16] includes three-dimensional metabolite and protein
structure data and enables the integrated analyses of metabolic functions in humans. Recon 2.2 is
used to balance all reactions and improve the simulation of energy metabolism [17]. Recently, Richelle
et al. [18] built 44 different genome-scale metabolic models from Recon 2.2 [17] and iHsa [19] using
six model extraction methods with RNA-Seq data from NCI-60 cell line. Such an approach provides
guidelines for the development of the next-generation of data contextualization methods. Ryu et al.
[20] presented a systematic framework for the generation of gene-transcript-protein-reaction
associations in the human metabolism and addition of new reactions from Recon 2.2 to build Recon
2M.2 that is biochemically consistent and transcript-level data compatible. Such gene-transcript-
protein-reaction information enabled more accurate simulation of cancer metabolism and prediction of
anticancer targets.

Wu et al. [21] developed a CBM based on the published Recon 2 and the Warburg effects of mouse
hepatocytes deficient in miR-122a, and inferred that DDC is an oncogene. A total of 38 metabolic profiles
obtained using LC/MS from the liver tissues of 10 control mice and 10 Mir122a−/− mice were applied to
CBM for evaluating similarity ratios between the deficient and normal states. However, genome-wide
information is not used in this approach, and the changes in metabolite concentrations may not be
equal to the flux-sum alteration. In the present study, we established an algorithm to incorporate the
Recon 2.2 network [17] with the Human Protein Atlas (HPA) database [22] and used the CORDA to
reconstruct genome-scale metabolic network (GSMN) models of head and neck squamous cells
(HNSCs) at healthy and cancer states. The models were then applied to build templates of flux
alterations between cancer and normal cells.

A tri-level inference optimization framework integrated the templates and CBM was developed
to infer dysregulated enzymes that contribute to inducing head and neck squamous cell
carcinoma (HNSCC). Such framework can also be used to mimic gene screening procedures in wet
laboratory for detecting dysregulated oncogenes. A tri-level optimization problem (TLOP) integrating
splice-isoform expression has been introduced to depict breast cancer metabolism [23]. This study
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Figure 1. Templates of flux-sum alterations. (a) Procedure for survey and collection of information for head and neck squamous cells
from PubMed, HPA and Recon 2.2. (b) Develop cancer (CA), healthy (HT) and basal (BL) specific models using CORDA and SBP
algorithms. (c) The basal (BL) model, a union set of both models in (b), was used to investigate how healthy cells can
smoothly detour the metabolic reprogramming to that of cancer cells. (d ) Constraint-based methods were applied to the flux
distributions for each model. (e) Flux-sum distributions were computed for each model. ( f ) Two templates of flux-sum
alterations for CA related to HT and CA to BL models were generated. (g) Detect oncogenes by solving the oncogene inference
optimization problem using the template similarity as the objective. The up-arrow/down-arrow notation indicates an increasing/
decreasing flux-sum of the ith metabolite in cancer state.
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introduced a similarity measure in the TLOP to decide mutated genes and their corresponding
dysregulated bounds. The similarity between mutant flux patterns and templates of flux
alterations was used as the objective. Duality theory is generally incapable of transforming inner
problems into single-level problems. Solving the tri-level problem is difficult. We introduced a nested
hybrid differential evolution (NHDE) algorithm for solving the TLOP to detect dysregulated
oncogenes. The similarity measure was provided for NHDE to evolve new mutants for achieving
higher ranked oncogenes.
2. Methods
2.1. Templates of flux-sum alterations for normal and cancer cells
This study introduced six steps (figure 1) to establish GSMN models for cancer (CA), healthy (HT)
and basal (BL) models of head and neck squamous cells (HNSC) and to build their corresponding
templates of flux-sum alterations. The BL model refers to the normal model, which represents normal
situations of head and neck squamous tissues. PubMed literature survey, the HPA database [22]
and the Recon 2.2 human metabolic network [17] were used to generate the specific information for
HNSC (figure 1a,b). We first retrieve gene expression using the gene association of Recon 2.2 and
the coding protein expression in normal and tumour tissues from the HPA database. Applying
dependency assessment, the reactions having such expressions are identified into high, medium
and negative confidence groups. The whole metabolic network of Recon 2.2 and the dependence
reactions are provided as the input information for the CORDA algorithm [12] to reconstruct a
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mutant flux patterns to evaluate flux alteration of each mutant. (i) Compare flux template and flux alteration until the pattern
similarity satisfied; otherwise, repeat the computation. ( j ) Obtain the optimal oncogenes.
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tissue-specific metabolic network (figure 1b), which consists of a thousand reactions and species.
We have developed a systems biology program (SBP) tool to automatically build cancer and
healthy stoichiometric models (figure 1c) in the GAMS programming language. The basal model
(union set of CA and HT models) was used to investigate how the healthy cell could smoothly detour
metabolic reprogramming to cancer. CBM approaches were then applied to analyse the structure of
the models and to compute flux distributions for each model (figure 1c,d ). Such flux distributions
were applied to build the templates of flux-sum alterations for CA to HT models and CA to BL
models (figure 1f ). For example, flux-sum alteration of metabolite M1 increased between CA and HT
model, but decreased for metabolite M2 as shown in figure 1f .
2.2. Tri-level optimization for inferring oncogenes
The oncogene inference framework (figure 2) integrated the templates and the TLOP was used
to simulate a wet laboratory to detect dysregulated oncogenes in HNSC. The first, second and
third procedures in figure 2 are discussed in figure 1 to build the flux template, which acts as a
control in the oncogene inference problem. GSMN models of cancerous and normal cells
were reconstructed as shown in figure 2a. Both models were then applied to compute the flux
distribution patterns at the cancer and normal situations (figure 2b). The flux template was built
according to the flux distributions of cancer and normal models (figure 2c). Blue arrows (figure 2d–j )
present the TLOP to mimic mutant schemes in a wet laboratory for oncogene inference. The
outer optimization problem was employed to decide mutation genes and their corresponding
dysregulated bounds. The decision variables were used in the flux balance analysis (FBA) and
uniform flux distribution (UFD) problems to hierarchically compute flux distribution for each mutant.
The fluxes obtained from the decision variables in FBA and UFD problems were then applied to
evaluate the similarity ratios in the outer problem. The evolutionary computation was repeated until
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the optimal result was achieved. The TLOP was defined as follows:

Outer optimization problem:

max
d,zi

(SRT,HT þ SRW ,HT)þ SRT,HTSRW ,HT

max
d,zi

(SRT,BL þ SRW ,BL)þ SRT,BLSRW ,BL

subject to the inner optimization problems,
FBA problem:

max
v f=b

vbiomass

subject to
N(v f � vb) ¼ 0

vLB, MU
f=b,i � v f=b,i � vUB, MU

f=b,i , zi [ VMU

vLBf=b,j � v f=b,j � vUB
f=b,j, z j � VMU

8>>>>>>><
>>>>>>>:

UFD problem:

min
v f=b

P
k[VInt

(v f ,k)
2 þ (vb,k)

2

subject to
N(v f � vb) ¼ 0

vLB, MU
f=b,i � v f=b,i � vUB, MU

f=b,i , zi [ VMU

vLBf=b,j � v f=b,j � vUB
f=b,j, z j � VMU

vbiomass � v�biomass,

8>>>>>>>>>><
>>>>>>>>>>:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(2:1)

where vf and vb are the forward and backward fluxes of reversible reactions, respectively; N is an m×
n stoichiometric matrix, where m is the number of metabolites and n is the number of reactions; vLBf=b,j and

vUB
f=b,j are the positive lower and upper bounds of the jth forward/backward flux, respectively; vLB, MU

f=b,i

and vUB, MU
f=b,i are the lower and upper bounds of the ith upregulation, downregulation, or knockout flux

due to the ith enzyme dysregulation, which is determined using the outer optimization problem; v�biomass

is the objective value obtained from FBA; ΩInt is the set of internal reactions; and ΩMU is the set of
mutated reactions. The objective of the FBA is the maximization of the biomass growth rate for the
cancer and mutant cells. However, normal cells may have different objectives depending on growth
signals [24]; thus, the maximization of ATP synthesis rate vATP was applied in this situation.

The reversible reactions were separated into forward and backward reactions, vf and vb, for
building the constraint-based model of HNSC. This representation could directly compute flux-
sum distributions for each metabolite, and evaluate the choke-point metabolites through
the stoichiometric matrix. We define three categories of choke-point metabolites: a choke-point
metabolite connected with a single-ingoing and multi-outgoing reaction, a choke-point metabolite
connected with a multi-ingoing and single-outgoing reaction, or a choke-point metabolite connected
with a single-ingoing and single-outgoing reaction (electronic supplementary material, S1).

The value for the dysregulated bounds is computed using the following equations:

Upregulation:

(1� d)vbasalf ,i þ dvUB
f ,i � v f ,i � vUB

f ,i

vLBb,i � vb,i � (1� d)vbasalb,i þ dvLBb,i , zi [ VMU

(

Downregulation:

vLBf ,i � v f ,i � (1� d)vbasalf ,i þ dvLBf ,i
(1� d)vbasalb,i þ dvUB

b,i � vb,i � vUB
b,i , zi [ VMU

(

Knockout:

v f ,i ¼ vb,i ¼ 0, zi [ VMU,

(2:2)

where vbasalf=b,i is the basal flux in the normal state; δ determined in the outer optimization problem is the
regulation strength parameter with a value within (0, 1]. The integer variable zi is used to determine the
dysregulated enzyme, so that the bounds of the modulated reactions are restricted to be backward or
forward upregulation, backward or forward downregulation, or knockout reactions, as shown in
equation (2.2).
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The objective function in the outer optimization problem is a similarity measure that compares the

templates of flux-sum alterations for CA with HT and BL models and with the Warburg hypothesis.
Here, SRT,BL/HT and SRW,BL/HT are defined as the similarity ratios for the templates of flux-sum
alterations compared CA with BL/HT models and the Warburg hypothesis obtained from the literature,
respectively, and the similarity ratios (electronic supplementary material, S1) are evaluated as follows:

SRT=W ¼
PNT=W

m¼1
jmT=W

m j
NT=W

, (2:3)

where the similarity indicator (mT=W
m ) for the mth metabolite is defined as follows:

mT=W
m ¼

1, if LFCm . tol and LFCT=W
m . tol

�1, if LFCm , �tol and LFCT=W
m , �tol

0, otherwise,

8><
>: (2:4)

where the logarithmic fold changes in the mth metabolite, LFCT=W
m , for the templates or the Warburg

hypothesis are provided in advance. Here the tolerance is defined as tol = log2(1 + ɛ), and ɛ is a
percentage of flux alteration. The logarithmic fold change (LFCm) between the synthesis rates of the mth
metabolite in cancer/dysregulated (denoted as deficient) and basal/healthy (denoted as normal) states
is computed as follows:

LFCm ¼ log2
rm,deficient

rm,normal

� �
, (2:5)

where the overall synthesis rate (rm) of the mth intracellular compound at deficient and normal states is
evaluated as follows:

rm ¼
X
i[Vc

X
Nij.0,j

Nijv f ,j �
X

Nij,0,j

Nijvb,j

0
@

1
A, m [ Vm: (2:6)

Here Ωc is the set of metabolites located in different compartments, and Ωm is the set of metabolites. The
forward and backward fluxes (vf,j and vb,j) are obtained from the UFD problem.

The TLOP in equation (2.1) consists of FBA and UFD problems in the inner optimization problem.
The objective of FBA is to maximize the biomass formation rate for the cancer model. However,
normal cells may have different objectives depending on growth signals [24]; thus, the maximum ATP
synthesis rate is applied in this situation. The optimal flux distribution of the FBA problem is
generally not unique; a large set of alternative flux distributions with an identical objective value
exists. We minimize the squared sum of all internal fluxes for the UFD to ensure the efficient
channelling of all fluxes through all pathways to eliminate the multiplicity of flux distributions in
equation (2.1). The minimizing Euclidean norm problem is referred to as the UFD problem, which is a
quadratic programming problem that has a unique solution.

2.3. Nested hybrid differential evolution
It is difficult to convert the inner optimizationproblems (FBAandUFD) of the TLOP into constraints byusing
duality transformation. In this study, we extended the NHDE algorithm to solve the TLOP (electronic
supplementary material, S1). The computational concept of NHDE (figure 3) is based on hybrid
differential evolution (HDE), which was extended from the original differential evolution (DE) algorithm
[25–27]. The basic operations of the NHDE algorithm, except for coding representation, selection and
evaluation operations, are similar to those of the DE and HDE algorithms. The NHDE algorithm has been
applied to solve metabolic engineering [28] and biomedical problems [29,30]. The NHDE algorithm is used
to identify integer variables in the outer optimization problem to determine which genes are selected to be
regulated, and the inner optimization problems (FBA and UFD) are then solved using a linear and
quadratic optimization solver. An optimal solution for each candidate individual is achieved when the
FBAproblem is convergent, and the set of these individual solutions comprises a feasible solution to theTLOP.

In this study, the NHDE algorithm was implemented in the General Algebraic Modelling System
(GAMS) environment, and its performance and solution quality depended on three setting factors: the
tolerance ratio used in migration, population size and maximum number of iterations. The crossover
factor and tolerance ratio were set to 0.5 and 0.05, respectively. A population size of 50 was used, and
the maximum number of iterations was 100.
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3. Results and discussion
HNSCC, which accounts for more than 80% of head and neck malignancies, is one of the most common
cancers worldwide. HNSCC is characterized by a high locoregional recurrence rate and includes cancers
of the oral cavity, oropharynx, hypopharynx and larynx. The incidence and mortality rates of HNSCC
vary by geographical location and site. A high incidence of oral cancer (excluding lip cancer) is found
in South and Southeast Asia, parts of Western and Eastern Europe, parts of Latin America, and
Caribbean and Pacific regions. Taiwan has one of the world’s highest incidence rates of oral cancers.
Improving the treatment outcome by identifying predictive targets for HNSCC treatment is an unmet
clinical need. The aim of this study was to develop a computational strategy incorporated with
expression profiles of proteins in head and neck tissue at normal and cancer states to reconstruct
GSMN models.

3.1. Templates of flux-sum alterations
Recon 2.2 is a curated version of Recon 2 and can be used to ensure full elemental balancing, in turn
facilitating constraint-based analyses [17]. It comprises 5324 metabolites, 7785 reactions and 1675
associated genes. To date, Recon 2.2 has not been employed to reconstruct a GSMN model of a tissue-
specific cell. The proposed procedures presented in figure 1 were used to reconstruct GSMN models
of HNSCs at healthy and cancer states. Total 12 865 gene expression profiles for human HNSCs and
normal tissue were obtained from the HPA database. Based on the gene expression data and gene-
protein-reaction (GPR) association, 384 and 411 high-confidence reactions at normal and cancer states
were obtained, respectively, and applied to the CORDA algorithm to reconstruct the HNSC models.
The reconstructed HNSC models comprised 2256 metabolites and 3427 reactions for the healthy (HT)
model and 2147 metabolites and 3253 reactions for the cancer (CA) model. Both models identically
had 82.2% and 75.7% of metabolites and reactions. The two models were combined to form a basal



Table 1. The inferred one-hit and two-hit oncogenes. AOX1, aldehyde oxidase; GFPT1, glutamine-fructose-6-phosphate
aminotransferase [isomerizing] 1; GNPDA1, glucosamine-6-phosphate isomerase 1; IREB2, iron-responsive element-binding protein
2; OPLAH, 5-oxoprolinase; PGAM1, phosphoglycerate mutase 1; PI4KA, phosphatidylinositol 4-kinase alpha; PIK3CA,
phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform; PIKFYVE, 1-phosphatidylinositol 3-phosphate 5-
kinase; PIP5K1, phosphatidylinositol 4-phosphate 5-kinase type-1; RFK, riboflavin kinase; THTPA, thiamine-triphosphatase; TPK1,
thiamin pyrophosphokinase 1.

gene metabolic subsystem Ave. SRa remarkb

TPK1 thiamine metabolism 0.843 vitamin B1/thiamine metabolism

[31,32]

G6PC glycolysis metabolism 0.841 metabolic regulator of glioblastoma [33]

GNPDA1 aminosugar metabolism 0.841 cell migration [34]

PGAM1 glycolysis metabolism 0.841 prognosis of OSCC/cell migration [35]

GFPT1 aminosugar metabolism 0.839 prognosis in patients with pancreatic

cancer [36]

RFK vitamin B2 metabolism 0.839 ROS production/necrotic cell death [37]

THTPA thiamine metabolism 0.839 invasion/metastasis of cancers [38,39]

OPLAH glutathione metabolism 0.838 potential marker in some human

cancers [40]

PTEN inositol phosphate metabolism 0.838 tumour suppressor [41,42]

PI4KA inositol phosphate metabolism 0.837 therapy of HCC [43]

PIKFYVE glycerophospholipid metabolism 0.837 cancer cell migration/invasion [44]

PIP5K1 glycerophospholipid metabolism 0.836 prognosis in prostate cancer [45]

PIK3CA inositol phosphate metabolism 0.835 induce invasion in HNSCC [46]

(IREB2, AOX1) citric acid cycle and vitamin B6 metabolism 0.871 biochemical recurrence of prostate

cancer [47]

(RFK, IREB2) vitamin B2 metabolism and citric acid cycle 0.867 see remark for RFK and IREB2

(PTEN, IREB2) inositol phosphate metabolism and citric

acid cycle

0.865 cellular proliferation [48]

(G6PC, TPK1) glycolysis and thiamine metabolism 0.863 see remark for G6PC and TPK1

(G6PC, PGAM1) glycolysis metabolism 0.857 see remark for G6PC and PGAM1
aAverage similarity ratio of the mutant flux pattern to the template.
bBrief description of gene function and references.

royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.7:191241
8

(BL) model for investigating how a healthy cell can smoothly detour metabolic reprogramming to that of
a cancer cell. The BL model was thus a union set of the HT and CA models and included 2417 metabolites
and 3803 reactions. The three models were first employed in FBA and UFD problems to compute flux-
sum distributions. We next used LFCm to compute the templates of flux-sum alterations for CA to BL and
HT models.
3.2. Detecting one-hit oncogene
The NHDE algorithm was applied to solve the TLOP, and 13 of the top-ranked one-hit oncogenes were
determined; their similarity ratios are shown in table 1. These enzymes participated in seven metabolic
subsystems, namely inositol phosphate, glycerophospholipid, glycolysis, thiamine, amino sugar,
glutathione and vitamin B2 metabolisms. Four genes (PTEN, PIKFYVE, PIK3CA and PI4KA) were
detected in inositol phosphate metabolism, wherein the participating molecules were involved in
cellular growth and proliferation signalling processes. These genes were highly connected with AKT/
TP53/mTOR signalling pathway. Phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase (PTEN),
encoded by PTEN, was dysregulated, which yielded the maximum similarity ratios of SRW,BL = 0.9286
and SRW,HT = 0.8929 (electronic supplementary material, S2) for the Warburg effect related to the
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their synthesis rates decreased, except for three retinoids. The synthesis rates of the cancer template and PTEN dysregulation for S(8)-
glutaryl dihydrolipoamide (HC01712_m) in the mitochondria reduced to zero, thereby significantly reducing the LFC.
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BL and HT models, respectively. PTEN dysregulation yielded the maximum ratios of SRT,BL = 0.7478 and
SRT,HT = 0.783 compared with the templates of flux-sum alterations for the CA model to BL and HT
models, respectively. The NHDE algorithm yielded the optimal average similarity (Ave. SR) ratio of
0.8381. PTEN is one of the most frequently observed tumour suppressor genes in human cancer. This
biological cognition supports above computational results. Because altered AKT/PI3K/mTOR
signalling has been frequently reported to contribute to human disease, researchers have made efforts
to develop small-molecule inhibitors for AKT, PI3K and mTOR. Although the central role of PTEN in
glucose metabolism has been well defined [31,43,46], little is known about how PTEN affects lipid
metabolism [32,38]. The following results show the metabolic alterations by PTEN dysregulation.

Figure 4 shows the flux-sum alterations for 27 choke-point metabolites in lipid metabolism obtained
using dysregulated PTEN. These choke-point metabolites were compartmented in the endoplasmic
reticulum, mitochondrion and cytoplasm. In the endoplasmic reticulum, the flux-sum (LFC>0) of five
cholesterols and their derivatives and four prenol lipids increased because of PTEN dysregulation.
This observation indicated that the metabolite level should increase. The metabolite 20-hydroxy-
leukotriene B4 (leuktrB4woh_r) was classified as a fatty acyl in the endoplasmic reticulum; its
synthesis rates in the templates increased but was inconsistent in dysregulated cases, as shown in
figure 4. The synthesis rates of S(8)-glutaryl dihydrolipoamide (HC01712_m) in the mitochondria in
the cancer template and PTEN dysregulated cases reduced to zero; thus, the LFC was significantly
reduced. The LFC of the template for acryloyl-CoA (prpncoa_m) was inconsistent with the
dysregulation. Fifteen choke-point lipids were located in the cytoplasm, and their synthesis rates
decreased, except for three retinoids that exhibited increased flux rates for dysregulation.
N-acylsphingosine 1-phosphate (crmp_hs_c) was classified as a sphingolipid in the cytoplasm, and its
synthesis rate in the dysregulated cases was consistent with that in the template. Furthermore, the
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computational results that revealed increased cholesterol levels and decreased sphingolipid levels are
consistent with the results for various carcinomas in the literature [49–51].

Genes from the PIKFYVE, PIK3CA and PI4KA families were also detected in inositol phosphate
metabolism. In this study, the maximum similarity ratios of SRW,BL = 0.9286, SRW,HT = 0.8929, SRT,BL =
0.7424 and SRT,HT = 0.783 were yielded through computation in the dysregulated cases. PIKFYVE has
been reported to mediate EGFR trafficking to the nucleus in human bladder cancer tissue [52] and
regulate lung carcinoma cell migration and invasion through RAC1 activation [44]. The similarity
ratios for PIK3CA and PI4KA were nearly equal to those for PTEN. Dysregulation of PIK3CA and
PI4KA is commonly found in HNSCC [46] and hepatocellular carcinoma [43], respectively.

Nine of the top-ranked one-hit oncogenes (table 1) had identical similarity ratios for Warburg effects,
except for glucose-6-phosphatase (G6PC), which had a slightly higher ratio (SRW,HT = 0.8408) than the



Figure 7. Protein–protein interactions of inferred oncogenes. Protein–protein interactions (PPIs) of the inferred oncogenes with
eight additional signalling proteins and their families, namely ACLY, TP53, AKT, IGF, GSK, GLUT, PEPCK and MTOR, k-means
clustering function in STRING database was applied to classify the PPI network into four classes denoted by four colours. The
proteins in the first cluster (green balls) participated in inositol phosphate and glycerophospholipid metabolism, related to
PTEN. The proteins in the second cluster (emerald green balls) were involved in triacylglycerol synthesis. The proteins in the
third cluster ( purple balls) were mainly involved in gluconeogenesis and amino sugar and citric acid cycle metabolisms. The
proteins in the fourth cluster (red balls) were involved in other diversified metabolisms.
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ratios of the other oncogenes. However, the similarity ratios of the templates were slightly different from
those of PTEN. According to a survey of PubMed and cancer databases, each dysregulated enzyme could
cause various cancers and diseases, as shown in table 1 and electronic supplementary material, S2.

Evidence indicates that cancer is the result of accumulated genetic mutations, also known as the
Knudson hypothesis [53]. Following the same procedures (described in above section), the NHDE
algorithm was applied to detect two-hit enzyme deficiencies. A total of 17 of the top-ranked two-hit
enzymes yielded higher similarity ratios than those of one-hit enzymes (table 1; electronic supplementary
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material, S2). They could achieve the optimal Ave. SRs about 0.86, which were approximately 3% higher

than those for the one-hit dysregulation. A survival analysis for the oncogenes can be applied to
investigate the clinical significance of the metabolic alterations. However, such investigations need several
clinical trials. In this study, we surveyed survival analysis from the HPA to explain survival significance
of the inferred oncogenes, and the detailed results were also shown in electronic supplementary material,
S3. We observed that five genes (GNPDA1, PGAM1, GFPT1, RFK and PTEN) are significant for survival.

3.3. Flux variability analysis
The FBA in the TLOP problem was employed to evaluate flux alterations for normal and cancer model.
However, it is a bias method to compute the flux pattern. Flux variability analysis (FVA) can be applied
in a posterior inspection to overcome such a drawback, but required a lot of computation time. We
applied the FVA to compute the minimum and maximum quantities of each metabolite for the normal
model and the mutants, respectively. The flux intervals of each deficient case were compared with the
normal intervals, and classified into seven categories by using the definition presented in the electronic
supplementary material, S1. We evaluated the trends of flux and flux-sum synthesis rate for each
metabolite of the mutants and those of the template, and then counted the number of metabolites with
same flux/flux-sum trends in the flux interval for each mutant and the template to obtain similarity ratios
as shown in figure 5. We found that the flux-sum similarity ratios and flux similarity ratios of all mutants
are greater than 47% and 65%, respectively, so that the average ratio for each mutant is higher than 56%.

3.4. Connection with signal pathway
We also investigated behaviours of lipid metabolism due to one-hit and two-hit deficiencies obtained
from table 1. The LFCs of the choke-point metabolites for the templates and mutants are shown in
figure 6 and electronic supplementary material, S4. For all dysregulations, we observed that the levels
of five cholesterols and four prenol lipids in the endoplasmic reticulum increased, except for
5α-cholest-7-en-3β-ol (lthstrl_r) dysregulated by the (ATP2B1, NNT) pair. Furthermore, sphingolipid
(crmp_hs_c) and HC01712_m levels decreased; the same results were obtained for PTEN. In addition,
the synthesis rates of all dysregulations of HC01712_m reduced to zero, which were consistent with
those for the templates. The choke-point metabolites could be used as potential biomarker candidates
for detecting the metabolic programming between cancer and normal states.

We used the STRING database [54] to investigate protein–protein interactions (PPIs) for the inferred
oncogenes obtained from table 1. Eight signalling proteins and their families, namely ACLY, TP53, AKT,
IGF, GSK, GLUT, PEPCK and MTOR, were included in the survey and were related to cellular quiescence,
proliferation, cancer and longevity in an intracellular signalling pathway. Almost all the proteins were
strongly connected, and only a few others independently existed in the PPI network. We used
k-means clustering to classify the network into four clusters (see figure 7 and electronic
supplementary material S5 for details). The proteins in the first cluster (green balls) participated in
inositol phosphate and glycerophospholipid metabolisms and were linked with the TP53/AKT/IGF/
MTOR signalling pathway through PTEN. The proteins in the second cluster (emerald green balls)
were involved in triacylglycerol synthesis and linked with PIKFYVE and AKT1 in the first cluster
through ACLY. The proteins in the third cluster (purple balls) were mainly involved in
gluconeogenesis and amino sugar and citric acid cycle metabolisms. It also connected with the second
cluster. The proteins in the last cluster (red balls) were involved in other diversified metabolisms.
4. Conclusion
A tri-level inference optimization framework was applied to detect 13 one-hit and 17 two-hit deficient
enzymes that contribute to inducing HNSCC. According to the PubMed survey, each detected one-hit
deficiency participated in carcinogenesis in various tissues. The inferred oncogene PTEN is one of the
most frequently mutated tumour suppressor genes in human cancer. In recent years, the function of
PTEN as a metabolic regulator has attracted considerable research attention. This study also
supported this function. From the literature survey, we found that TPK1 is an oncogene for colon
cancer, and three genes (PTEN, GNPDA1 and PIK3CA) appear in head and neck cancer. Deficiency of
G6PC leads to accelerated hepatic carcinogenesis in glycogen storage disease. In addition, G6PC was
involved in 11 pairs of two-hit oncogenes, as revealed by the computation in this study. Moreover, we
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will conduct wet-laboratory experiment to verify the inferred results in order to discover potential cancer

cell metabolic targets.

Data accessibility. The datasets supporting this article have been uploaded as part of the electronic supplementary
material. The optimization code used during this study is available via the Dryad Digital Repository https://doi.
org/10.5061/dryad.364vk23 (doi:10.5061/dryad.364vk23) [55].
Authors’ contributions. W.-H.W. wrote the modelling software and revised the manuscript; F.-Y.L. and Y.-C.S. collected field
data and carried out the analyses and paper survey; J.-M.L., P.M.-H.C. and C.-Y.F.H. participated in the design of the study
and data analysis; F.-S.W. conceived of the study, designed the study, coordinated the study and drafted the manuscript.
All authors gave final approval for publication and agree to be held accountable for the work performed therein.
Competing interests. The authors declare that they have no competing interests.
Funding. This work was supported by Ministry of Science and Technology of Taiwan (MOST) (grant nos. MOST106-
2221-E-194-049-MY3 and MOST107-2627-M-194-001 to F.-S.W., MOST107-2627-M-030-001 to J.-M.L., MOST107-
2627-M-075-001 to P.M.-H.C., MOST107-2320-B-010-040-MY3 to C.-Y.F.H.).
R.Soc.op
References
en
sci.7:191241
1. Cairns RA, Harris IS, Mak TW. 2011 Regulation
of cancer cell metabolism. Nat. Rev. Cancer 11,
85–95. (doi:10.1038/nrc2981)

2. Hsu PP, Sabatini DM. 2008 Cancer cell
metabolism: Warburg and beyond. Cell 134,
703–707. (doi:10.1016/j.cell.2008.08.021)

3. Tomita M, Kami K. 2012 Systems biology,
metabolomics, and cancer metabolism. Science
336, 990–991. (doi:10.1126/science.1223066)

4. Ward PS, Thompson CB. 2012 Metabolic
reprogramming: a cancer hallmark even
Warburg did not anticipate. Cancer Cell 21,
297–308. (doi:10.1016/j.ccr.2012.02.014)

5. Eyassu F, Angione C. 2017 Modelling pyruvate
dehydrogenase under hypoxia and its role in
cancer metabolism. R. Soc. open sci. 4,
170 360–170 360. (doi:10.1098/rsos.170360)

6. Folger O, Jerby L, Frezza C, Gottlieb E, Ruppin E,
Shlomi T. 2011 Predicting selective drug targets
in cancer through metabolic networks. Mol.
Syst. Biol. 7, 501. (doi:10.1038/msb.2011.35)

7. Gottstein W, Olivier BG, Bruggeman FJ, Teusink
B. 2016 Constraint-based stoichiometric
modelling from single organisms to microbial
communities. J. R. Soc. Interface 13, 20160627.
(doi:10.1098/rsif.2016.0627)

8. Mardinoglu A, Agren R, Kampf C, Asplund A,
Uhlen M, Nielsen J. 2014 Genome-scale
metabolic modelling of hepatocytes reveals
serine deficiency in patients with non-alcoholic
fatty liver disease. Nat. Commun. 5, 3083.
(doi:10.1038/ncomms4083)

9. Sean A, Andrew S, Mitali ST, Soyer Orkun S.
2019 Integrated human-virus metabolic
stoichiometric modelling predicts host-based
antiviral targets against Chikungunya, Dengue
and Zika viruses. J. R. Soc. Interface 15,
20180125. (doi:10.1098/rsif.2018.0125)

10. Wang Y, Eddy JA, Price ND. 2012 Reconstruction
of genome-scale metabolic models for 126
human tissues using mCADRE. BMC Syst. Biol. 6,
153. (doi:10.1186/1752-0509-6-153)

11. Yizhak K, Chaneton B, Gottlieb E, Ruppin E.
2015 Modeling cancer metabolism on a
genome scale. Mol. Syst. Biol. 11, 817. (doi:10.
15252/msb.20145307)

12. Schultz A, Qutub AA. 2016 Reconstruction of
tissue-specific metabolic networks using CORDA.
PLoS Comput. Biol. 12, 1–33. (doi:10.1371/
journal.pcbi.1004808)

13. Duarte NC, Becker SA, Jamshidi N, Thiele I, Mo
ML, Vo TD, Srivas R, Palsson BØ. 2007 Global
reconstruction of the human metabolic network
based on genomic and bibliomic data. Proc. Natl
Acad. Sci. USA 104, 1777–1782. (doi:10.1073/
pnas.0610772104)

14. Thiele I et al. 2013 A community-driven global
reconstruction of human metabolism.
Nat. Biotechnol. 31, 419–425. (doi:10.1038/
nbt.2488)

15. Mardinoglu A et al. 2013 Integration of clinical
data with a genome-scale metabolic model of
the human adipocyte. Mol. Syst. Biol. 9, 649.
(doi:10.1038/msb.2013.5)

16. Brunk E et al. 2018 Recon3D enables a three-
dimensional view of gene variation in human
metabolism. Nat. Biotechnol 36, 272–281.
(doi:10.1038/nbt.4072)

17. Swainston N et al. 2016 Recon 2.2: from
reconstruction to model of human metabolism.
Metabolomics 12, 109. (doi:10.1007/s11306-
016-1051-4)

18. Richelle A, Chiang AWT, Kuo CC, Lewis NE. 2019
Increasing consensus of context-specific
metabolic models by integrating data-inferred
cell functions. PLoS Comput. Biol. 15, e1006867.
(doi:10.1371/journal.pcbi.1006867)

19. Blais EM, Rawls KD, Dougherty BV, Li ZI, Kolling
GL, Ye P, Wallqvist A, Papin JA. 2017 Reconciled
rat and human metabolic networks for
comparative toxicogenomics and biomarker
predictions. Nat. Commun. 8, 14250. (doi:10.
1038/ncomms14250)

20. Ryu JY, Kim HU, Lee SY. 2017 Framework and
resource for more than 11 000 gene-transcript-
protein-reaction associations in human
metabolism. Proc. Natl Acad. Sci. USA 114,
E9740. (doi:10.1073/pnas.1713050114)

21. Wu HQ et al. 2017 Flux balance analysis
predicts Warburg-like effects of mouse
hepatocyte deficient in miR-122a. PLoS Comput.
Biol. 13, 1–22. (doi:10.1371/journal.pcbi.
1005618)

22. Pontén F, Jirström K, Uhlen M. 2008 The human
protein atlas—a tool for pathology. J. Pathol.
216, 387–393. (doi:10.1002/path.2440)
23. Angione C. 2017 Integrating splice-isoform
expression into genome-scale models
characterizes breast cancer metabolism.
Bioinformatics 34, 494–501. (doi:10.1093/
bioinformatics/btx562)

24. Nam H, Campodonico M, Bordbar A, Hyduke
DR, Kim S, Zielinski DC, Palsson BO. 2014 A
systems approach to predict oncometabolites via
context-specific genome-scale metabolic
networks. PLoS Comput. Biol. 10, 1–13. (doi:10.
1371/journal.pcbi.1003837)

25. Chiou JP, Wang FS. 1999 Hybrid method of
evolutionary algorithms for static and dynamic
optimization problems with application to a
fed-batch fermentation process. Comput. Chem.
Eng. 23, 1277–1291. (doi:10.1016/S0098-
1354(99)00290-2)

26. Storn R, Price K. 1997 Differential evolution – a
simple and efficient heuristic for global
optimization over continuous spaces. J. Global
Optim. 11, 341–359. (doi:10.1023/
A:1008202821328)

27. Wang FS, Chiou JP. 1997 Optimal control and
optimal time location problems of differential-
algebraic systems by differential evolution. Ind.
Eng. Chem. Res. 36, 5348–5357. (doi:10.1021/
ie9702486)

28. Wang FS, Wu WH. 2015 Optimal design of
growth-coupled production strains using nested
hybrid differential evolution. J. Taiwan Inst.
Chem. Eng. 54, 57–63. (doi:10.1016/j.jtice.2015.
03.015)

29. Hsu KC, Wang FS. 2017 Detection of minimum
biomarker features via bi-level optimization
framework by nested hybrid differential
evolution. J. Taiwan Inst. Chem. Eng. 81, 31–39.
(doi:10.1016/j.jtice.2017.10.015)

30. Wu WH, Chien CY, Wu YH, Wu HH, Lai JM, Chang
PMH, Huang CYF, Wang FS. 2018 Inferring
oncoenzymes in a genome-scale metabolic
network for hepatocytes using bilevel
optimization framework. J. Taiwan Inst. Chem.
Eng. 91, 97–104. (doi:10.1016/j.jtice.2018.06.002)

31. Kim S et al. 2015 Bioinformatic and
metabolomic analysis reveals miR-155
regulates thiamine level in breast cancer. Cancer
Lett. 357, 488–497. (doi:10.1016/j.canlet.2014.
11.058)

https://doi.org/10.5061/dryad.364vk23
https://doi.org/10.5061/dryad.364vk23
https://doi.org/10.5061/dryad.364vk23
http://dx.doi.org/10.1038/nrc2981
http://dx.doi.org/10.1016/j.cell.2008.08.021
http://dx.doi.org/10.1126/science.1223066
http://dx.doi.org/10.1016/j.ccr.2012.02.014
http://dx.doi.org/10.1098/rsos.170360
http://dx.doi.org/10.1038/msb.2011.35
http://dx.doi.org/10.1098/rsif.2016.0627
http://dx.doi.org/10.1038/ncomms4083
http://dx.doi.org/10.1098/rsif.2018.0125
http://dx.doi.org/10.1186/1752-0509-6-153
http://dx.doi.org/10.15252/msb.20145307
http://dx.doi.org/10.15252/msb.20145307
http://dx.doi.org/10.1371/journal.pcbi.1004808
http://dx.doi.org/10.1371/journal.pcbi.1004808
http://dx.doi.org/10.1073/pnas.0610772104
http://dx.doi.org/10.1073/pnas.0610772104
http://dx.doi.org/10.1038/nbt.2488
http://dx.doi.org/10.1038/nbt.2488
http://dx.doi.org/10.1038/msb.2013.5
http://dx.doi.org/10.1038/nbt.4072
http://dx.doi.org/10.1007/s11306-016-1051-4
http://dx.doi.org/10.1007/s11306-016-1051-4
http://dx.doi.org/10.1371/journal.pcbi.1006867
http://dx.doi.org/10.1038/ncomms14250
http://dx.doi.org/10.1038/ncomms14250
http://dx.doi.org/10.1073/pnas.1713050114
http://dx.doi.org/10.1371/journal.pcbi.1005618
http://dx.doi.org/10.1371/journal.pcbi.1005618
http://dx.doi.org/10.1002/path.2440
http://dx.doi.org/10.1093/bioinformatics/btx562
http://dx.doi.org/10.1093/bioinformatics/btx562
http://dx.doi.org/10.1371/journal.pcbi.1003837
http://dx.doi.org/10.1371/journal.pcbi.1003837
http://dx.doi.org/10.1016/S0098-1354(99)00290-2
http://dx.doi.org/10.1016/S0098-1354(99)00290-2
http://dx.doi.org/10.1023/A:1008202821328
http://dx.doi.org/10.1023/A:1008202821328
http://dx.doi.org/10.1021/ie9702486
http://dx.doi.org/10.1021/ie9702486
http://dx.doi.org/10.1016/j.jtice.2015.03.015
http://dx.doi.org/10.1016/j.jtice.2015.03.015
http://dx.doi.org/10.1016/j.jtice.2017.10.015
http://dx.doi.org/10.1016/j.jtice.2018.06.002
http://dx.doi.org/10.1016/j.canlet.2014.11.058
http://dx.doi.org/10.1016/j.canlet.2014.11.058


royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.7:191241
14
32. Tiwana GS et al. 2015 Identification of vitamin

B1 metabolism as a tumor-specific
radiosensitizing pathway using a high-
throughput colony formation screen. Oncotarget
6, 5978–5989. (doi:10.18632/oncotarget.3468)

33. Cho JH, Kim GY, Mansfield BC, Chou JY. 2018
Hepatic glucose-6-phosphatase-α deficiency
leads to metabolic reprogramming in glycogen
storage disease type Ia. Biochem. Biophys. Res.
Commun. 498, 925–931. (doi:10.1016/j.bbrc.
2018.03.083)

34. Oikari S, Makkonen K, Deen AJ, Tyni I, Karna R,
Tammi RH, Tammi MI. 2016 Hexosamine
biosynthesis in keratinocytes: roles of GFAT and
GNPDA enzymes in the maintenance of UDP-
GlcNAc content and hyaluronan synthesis.
Glycobiology 26, 710–722. (doi:10.1093/glycob/
cww019)

35. Shen S et al. 2017 A seven-gene prognostic
signature for rapid determination of head
and neck squamous cell carcinoma survival.
Oncol. Rep. 38, 3403–3411. (doi:10.3892/or.
2017.6057)

36. Yang C et al. 2016 High expression of GFAT1
predicts poor prognosis in patients with
pancreatic cancer. Sci. Rep. 6, 39044. (doi:10.
1038/srep39044)

37. Yazdanpanah B et al. 2009 Riboflavin kinase
couples TNF receptor 1 to NADPH oxidase.
Nature 460, 1159–1163. (doi:10.1038/
nature08206)

38. Kovacevic Z, Fu D, Richardson DR. 2008 The iron-
regulated metastasis suppressor, Ndrg-1:
identification of novel molecular targets. Biochim.
Biophys. Acta (BBA) – Mol. Cell Res. 1783,
1981–1992. (doi:10.1016/j.bbamcr.2008.05.016)

39. Fang BA, Kovačević Ž, Park KC, Kalinowski DS,
Jansson PJ, Lane DJ, Sahni S, Richardson DR.
2014 Molecular functions of the iron-regulated
metastasis suppressor, NDRG1, and its potential
as a molecular target for cancer therapy.
Biochim. Biophys. Acta 1845, 1–19. (doi:10.
1016/j.bbcan.2013.11.002)

40. Liu Y, Hyde AS, Simpson MA, Barycki JJ. 2014
Emerging regulatory paradigms in glutathione
metabolism. Adv. Cancer Res. 122, 69–101.
(doi:10.1016/B978-0-12-420117-0.00002-5)

41. Li J et al. 1997 PTEN, a putative protein tyrosine
phosphatase gene mutated in human brain, breast,
and prostate cancer. Science 275, 1943–1947.
(doi:10.1126/science.275.5308.1943)

42. Steck PA et al. 1997 Identification of a
candidate tumour suppressor gene, MMAC1, at
chromosome 10q23.3 that is mutated in
multiple advanced cancers. Nat. Genet. 15,
356–362. (doi:10.1038/ng0497-356)

43. Ilboudo A, Nault JC, Dubois-Pot-Schneider H,
Corlu A, Zucman-Rossi J, Samson M, Le Seyec J.
2014 Overexpression of phosphatidylinositol
4-kinase type IIIα is associated with
undifferentiated status and poor prognosis of
human hepatocellular carcinoma. BMC Cancer
14, 7. (doi:10.1186/1471-2407-14-7)

44. Oppelt A, Haugsten EM, Zech T, Danielsen HE,
Sveen A, Lobert VH, Skotheim RI, Wesche J.
2014 PIKfyve, MTMR3 and their product
PtdIns5P regulate cancer cell migration and
invasion through activation of Rac1. Biochem. J.
461, 383–390. (doi:10.1042/BJ20140132)

45. Semenas J et al. 2014 The role of PI3K/AKT-
related PIP5K1α and the discovery of its
selective inhibitor for treatment of advanced
prostate cancer. Proc. Natl Acad. Sci. USA 111,
E3689–E3698. (doi:10.1073/pnas.1405801111)

46. Kidacki M, Lehman HL, Green MV, Warrick JI, Stairs
DB. 2017 p120-catenin downregulation and PIK3CA
mutations cooperate to induce invasion through
MMP1 in HNSCC. Mol. Cancer Res. 15, 1398–1409.
(doi:10.1158/1541-7786.MCR-17-0108)

47. Møller M et al. 2017 Heterogeneous patterns of
DNA methylation-based field effects in
histologically normal prostate tissue from cancer
patients. Sci. Rep. 7, 40636. (doi:10.1038/
srep40636)

48. Khiroya H et al. 2017 IRP2 as a potential
modulator of cell proliferation, apoptosis and
prognosis in nonsmall cell lung cancer. Eur.
Respir. J. 49, 1600711. (doi:10.1183/13993003.
00711-2016)

49. Coant N, Sakamoto W, Mao C, Hannun YA. 2017
Ceramidases, roles in sphingolipid
metabolism and in health and disease. Adv.
Biol. Regul. 63, 122–131. (doi:10.1016/j.jbior.
2016.10.002)

50. Kuzu OF, Noory MA, Robertson GP. 2016
The role of cholesterol in cancer. Cancer Res.
76, 2063–2070. (doi:10.1158/0008-5472.CAN-
15-2613)

51. Lee WK, Kolesnick RN. 2017 Sphingolipid
abnormalities in cancer multidrug resistance:
chicken or egg? Cell Signalling 38, 134–145.
(doi:10.1016/j.cellsig.2017.06.017)

52. Kim J, Jahng WJ, Di Vizio D, Lee JS, Jhaveri R,
Rubin MA, Shisheva A, Freeman MR. 2007 The
phosphoinositide kinase PIKfyve mediates
epidermal growth factor receptor trafficking to
the nucleus. Cancer Res. 67, 9229–9237.
(doi:10.1158/0008-5472.CAN-07-1333)

53. Knudson AG. 2001 Two genetic hits (more or
less) to cancer. Nat. Rev. Cancer 1, 157–162.
(doi:10.1038/35101031)

54. Szklarczyk D et al. 2017 The STRING database in
2017: quality-controlled protein-protein
association networks, made broadly accessible.
Nucleic Acids Res. 45, D362–D368. (doi:10.1093/
nar/gkw937)

55. Wu W-H, Li F-Y, Shu Y-C, Lai J-M, Chang PM-H,
Huang C-YF, Wang F-S. 2020 Data from:
Oncogene inference optimization using
constraint-based modelling incorporated with
protein expression in normal and tumour
tissues. Dryad Digital Repository. (doi:10.5061/
dryad.364vk23)

http://dx.doi.org/10.18632/oncotarget.3468
http://dx.doi.org/10.1016/j.bbrc.2018.03.083
http://dx.doi.org/10.1016/j.bbrc.2018.03.083
http://dx.doi.org/10.1093/glycob/cww019
http://dx.doi.org/10.1093/glycob/cww019
http://dx.doi.org/10.3892/or.2017.6057
http://dx.doi.org/10.3892/or.2017.6057
http://dx.doi.org/10.1038/srep39044
http://dx.doi.org/10.1038/srep39044
http://dx.doi.org/10.1038/nature08206
http://dx.doi.org/10.1038/nature08206
http://dx.doi.org/10.1016/j.bbamcr.2008.05.016
http://dx.doi.org/10.1016/j.bbcan.2013.11.002
http://dx.doi.org/10.1016/j.bbcan.2013.11.002
http://dx.doi.org/10.1016/B978-0-12-420117-0.00002-5
http://dx.doi.org/10.1126/science.275.5308.1943
http://dx.doi.org/10.1038/ng0497-356
http://dx.doi.org/10.1186/1471-2407-14-7
http://dx.doi.org/10.1042/BJ20140132
http://dx.doi.org/10.1073/pnas.1405801111
http://dx.doi.org/10.1158/1541-7786.MCR-17-0108
http://dx.doi.org/10.1038/srep40636
http://dx.doi.org/10.1038/srep40636
http://dx.doi.org/10.1183/13993003.00711-2016
http://dx.doi.org/10.1183/13993003.00711-2016
http://dx.doi.org/10.1016/j.jbior.2016.10.002
http://dx.doi.org/10.1016/j.jbior.2016.10.002
http://dx.doi.org/10.1158/0008-5472.CAN-15-2613
http://dx.doi.org/10.1158/0008-5472.CAN-15-2613
http://dx.doi.org/10.1016/j.cellsig.2017.06.017
http://dx.doi.org/10.1158/0008-5472.CAN-07-1333
http://dx.doi.org/10.1038/35101031
http://dx.doi.org/10.1093/nar/gkw937
http://dx.doi.org/10.1093/nar/gkw937
http://dx.doi.org/10.5061/dryad.364vk23
http://dx.doi.org/10.5061/dryad.364vk23

	Oncogene inference optimization using constraint-based modelling incorporated with protein expression in normal and tumour tissues
	Introduction
	Methods
	Templates of flux-sum alterations for normal and cancer cells
	Tri-level optimization for inferring oncogenes
	Nested hybrid differential evolution

	Results and discussion
	Templates of flux-sum alterations
	Detecting one-hit oncogene
	Flux variability analysis
	Connection with signal pathway

	Conclusion
	Data accessibility
	Authors' contributions
	Competing interests
	Funding
	References


