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A STUDY OF THE LIGHT CURVE

OF

THE VARIABLE STAR U PEGASI

Proressor Pi1ckERING has shown in Harvard College Observatory Circular No. 23, that
U Pegasi no longer deserves the distinction of being considered the variable of shortest known
period. Contrary to the usual form of contestant, in the present instance, the disputant for
pre-eminence in this particular is not a newly discovered variable of shorter period than any
hitherto known, but is the variable  Centauri 19, discovered by Baily some time since and found
to have the period 7" 11™. Manifestly, therefore, U Pegasi, whose period has until recently been
regarded as lying between 3.0 and 5.6, has been turned down the list, not because of the exces-
sive shortness of the period of some other star. The reason for the change lies in the faet that
the inequality of brightness of the alternate minima of U Pegasi escaped detection, until
Professor Piekering’s discussion revealed it last winter. His observations, published in the form
of a light curve and reproduced in substance in Plate I. accompanying this paper, showed
the most probable period based upon all preceding observations to be about 4*.5; but that, in
view of the failure of former observers to recognize the difference of brightness ot the minima,
this period should be doubled. Applying a slight correction to the double value, shown to be
justified by more reeent observations, he states, as the best value for the period-length of this
star 8 59™ 41°. The mecan value of the brightness at the two approximately equal maxima
is 9m.30; at the sccondary minimum, the brightness is 9™.75, and at the primary it is 9™.90.
The plate referred to gives the observations on sueh a seale that one division in the ordinates
corresponds to 0.1 magnitude and, in the abscissas, to half an hour. The above mentioned
circular states that the total number of settings here represented is 2784 and that the time of
observation, including rests, is 30 hours. Each dot in the plate represents 80 settings, the dots
being formed by the method of overlapping means,

The least difference of stellar brightness of whose existence the eye can be certain, being
about 0.1 of a magnitude, and the difference of brightness between the primary and secondary
minima, as stated in the Circular, lying so near this limit, i. e.=0.15 of a magnitude, there would
scem to be just canse for suspicion that this apparent difference has arisen from the rather large
accidental errors always attaching to photometric observations. In view of the almost uniformly
high degree of excellence attained in the past by Professor Pickering’s forms of photometer,
it cannot be denied that the results of photometric measures are on the whole to be aseribed a
far higher measure of accuracy than belongs to photometric estimates. A recent personal study
of 8 Lyrac’s light variation made with one of Professor Pickering’s polarization photometers
removes from the writer’s mind the last vestige of doubt as to the certainty of the existence of
this differenee of brightness at the minima. But whatever doubt may have existed for a time as
to its recality, it would scem that the following statements of Professor Piekering in the Ap. J.
for March of this year, ought to dispel it quite effectnally. «Twelve observations, each consisting
of sixteen settings, were made when the star was within twenty minutes of its primary minimum.
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2 A STUDY OF THE LIGIT CURVE

Deriving from each of these, by means of the light curve, the magnitude of this minimum,
we obtain on Oct. 18, 1897, 9.89, 9.94, and 9.96; on Dece. 30, 9.90, 9.95, and 9.93; on
Jan. 1, 1898, 9.93, 9.86, and 9.85; on Jan. 5, 9.85, and on Jan. 7, 9.86 and 9.88. Mean of
all = 9.90 ; greatest value =9.96; least value = 9.85 and average deviation = £0.035. Similarly,
fourteen observations were taken within twenty minutes of the secondary minimum with the
results on Oct. 18, 1897, 9.756 and 9.71; on Oect. 29, 9.74, 9.69, 9.70 and 9.70; on Decc. 28,
9.78, 9.77, 9.76 and 9.80; on Jan. 3, 1898, 9.77, 9.77, 9.74 and 9.78. Mean of all=9.75;
greatest value = 9.80; least value =9.69, and average deviation = +0.029.” The probable errors
would, of course, be smaller than the ‘average deviations.” Obviously, average deviations,
probable errors, and the like, mean nothing at all here, or they mean that an error in the great-
est value of the primary minimum large enough to make it equal to even the least value at the
secondary cannot be cntertained as a probability, since it would mean the commission of a
systematic error nearly twice as great as the average deviation and more than twice as great as
the probable error. The chances against this would be a little worse than 1 to 5.2. The inter-
nal evidence of the obscrvations is, it would seem, quite conclusive in favor of the reality of the
discrepancy. The statements just quoted shew, morcover, that cspecial attention was directed
to the point in question, and it seems therefore scarcely reasonable to suspect that, under such
circumstances, an error of 0.15 of a magnitude could elude certain detection and confirmation.

Agsuming the reality of this difference, the light curve appears to be susceptible of treatment
by esscntially the same mnethod as that adapted and used by the writer in his recent discussion
of Beta Lyrac’s light curve entitled: UNTERSUCHUNGEN UEBER DEN LICHTWECHSEL DES STERNES
B Lyrak, Muenchen, 1896. It is the purpose of this Bulletin to present the results and an out-
line of the. method used in a recent study of U Pegasi, based essentially upon the observations
of Pickering’s Circular Ne. 23, and by the method 'more fully developed in the foregoing disser-
tation. The fundamental hypothesis underlying the whole discussion is that the light curve of
U Pegasi is capable of being explained on the satellite theory.

ECCENTRICITY.

The uncertainty in the instants of maximum brightness as indicated by the light curve of
Plate I., obviously precludes the possibility of deriving an approximate value of the orbital
eccentricity of the component from the
chief cpochs of light variation, as was done
with 8 Lyrae. One may readily convince
himself by considerations adduced below,
however, that this eccentricity must be
quite small.

Assuming the light fluctuations to be
due to the mutual eclipses of two unequally
bright bodies, we should have the chief
epochs occurring when the relative posi-
tions of the components arc as indicated in
the subjoined figure. That the bodies are
uncqually bright, follows at once from the
consideration that at Min. I. the brightness
of the star is reduced by 41 per cent of its
maximum brightness, and at Min. IL by

ovvimune 31, AxMUmIT. only 31 per cent; unless the orbital eccen-
tricity is assumed quite large. It will now be shown that the latter cannot be the case.

Assuming also provisionally, that both bodies are spheres, a tower limit for the eclipse-
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OF THE VARIABLE STAR U PEGASI. 3

doration at Min. I. can be casily obtained from the observational curve given in Fig. 1. A little
reflcetion will make it elear that the shorter the eclipse-duration be taken, the larger will be the
corresponding distance between centres of the components. If, then, we assume that the eclipso
has not begun until the light curve has fallen quite appreciably and that it has ended shortly
before the curve ceases to risc, we shall obtain a value for the duration of the eclipse, at all
events short enough, — perhaps too short,— and the corresponding value of the distance of cen-
tres must be at all events great cnough — perhaps too great. Procecding thus, I obtain 3%.3 for
the interval shorter than which the eclipse-duration at Min. I. cannot be. The corresponding
value of the distance betwecen centrés may then be regarded as fixing a superior limit for this
orbital element,

Calling the radius of the larger component unity and of the smaller «, the radius vector of
the true orbit, », one-half the distance between the nearest points of the positions of the com-
panions at the beginning and cnd of the eclipse, z, and for this roughly approximate purpose,
assuming e to be zero, we have from the figurc:

CPC 233,=182" (u= 2x[P = 360°/9 = 40°)
Ilence,
CPD = 66° and r < (2 + «) cse 66°

1.0946 (= + )

A TA

But since 2z £ 1 and « £ 1, we shall have » < 2.189 times the radius of the larger com-
panion. So small a distance of centres rclative to the dimensions of the primary, coupled
with a large orbital cccentricity, would be highly improbable theoretically in any case, and
assuming distinet duplicity, would be a physical impossibility on any other hypothesis than
that the cxtent of the secondary is quite inconsiderable compared with that of the primary.
The approximately equal fall of brightness at the minima, together with the similarity of form
of the light curve in the neighborhood of thesc two chief epochs, argues strongly for the view
that the form and dimensions of the companions eannot be widely different, and this latter view
is still further supported by the fact that the relative brightness of the components is found
later, independently of any hypothesis regarding the ratio of the radii, to be about 0.8,

It may therefore be assumed as a first approximation that e = 0, and we shall now proceed
to determine the value of the ratio of the brightness of the companions and to fix the limits
within which the ratio of the radii must be comprised. We shall then undertake to find the
most probable value of this latter ratio by dircct reference to the light eurve of the star.

CircULAR OrBITAL ELEMENTS AND LicuT RaTio OoF TiHE COMPONENTS OF U PEGASI

The chief epochs of the light curve shall be designated in order from left to right in Figure 1
as Min. I, Max. L, Min. II. and Max. II. From the curve Max. I. is seen to have a brightness
of 9.32 magnitude and Max. IL of 9.34 magnitude, so that the mean value 9™.33 has been used
throughout the diseussion for the brightness at both the maxima. For the brightness at Min. 1.,
the value 9.90 magnitude has been used and for Min. II., 9.75 magnitude. Reducing these
differences in stellar magnitudes at the chief cpochs of variability to their equivalent light
ratios, by the aid of Pogson’s scale, we obtain:

" Brightness at Min. II.
Brightness at Min. 1.
Brightness at Mean Max.
Brightness at Min. I.

= ¢ = 1.1480

= m = 1.6004




4 A STUDY OF THE LIGHT CURVE

Retaining the nomenclature of the foregoing paragraph, ealling the light ratio of the com-
ponents X and the portion of the dises eommon to both bodies at the middle of the eclipses a,
the preceding equations give the following:

1 +K")\—al<")\_

1 =
@ 1—ai®+ 22
1+ 20
@ ——K-=m.
1—axk®+ 2A

If it be thought desirable to include the possibility of a flattening of the dises, we may
assume, as a means of making a first approximation to the general effecet of such deformation,
that the bodies are similar ellipsoids of revolution and designate by ¢, the common ratio of the
semi-major to the semi-minor axis, whereupon equation (2) must be replaced by

2
(20) bl sl -
1—a®+ £EA
(Conf. Ap. J. Vol. VIL, p. 18, where a «? should be stricken from the numerator of (e).)
From (1) and (2a) we find readily

ac?A

® T+ (renim
and @ K
@ = m—gm,

whenee, dividing, we get
®) A = (m—cq)/(m—g).

Neglecting the flattening provisionally, i.e., putting ¢ =1, (5) gives, when the foregoing
values of ¢ and m are substituted,

= 0.7865.
From (3) and (1), we obtain
1 m m—c
@ ms e
K m—q m— g
and (4) gives . &
m—qg=m______.
14+ 30

Since now, ax?and 1+ «2\ are essentially positive, being quantities of light, this latter
relation shows that m must be greater than ¢. Consequently,

e

do. m—q’

is also a positive magnitude. (1/k2) and a therefore, increase and decrease together, so that
the maximum value of a corresponds to the maximum value of (1/«2).
If now,
x* £ 1, then o < 1 (from geometrical considerations),

and it follows from (6) that,

°q ,Ol‘K"Zm_q.
m—gq T ocg

A

=

But if,

1
«* 2 1, we may put o < —; (also for geometrical reasons),
3 K
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We have from (6),

Aol =
A

and henee,

@ ez
cq m—cgq
F'rom this, we have also,
st o el
cqg ~— m—cgq
and finally,
m
> :
RS e
Substituting now the former values of m and ¢, we obtain
g = 0.787.

It does not therefore appear to be neeessary to assume the existence of a flattening for U
Pegasi, such as was shown to be necessary in my Dissertation on Beta Lyrae, p. 30, for the
latter star.

Taking again the value of ¢ as unity, and substituting in (7) we find :

0.6014 = «* < 1.845, or 0.77656 < « < 1.358.

The following test values distributed linearly over this interval were, therefore, selected for
eriteria to an approximation to «:

0.80, 085, 100, 115 and 135

and for each of these values a light eurve was computed by the method and with the results
given below. P

Using the portion of the light curve lying within 1.5 hours before and after Min. I., and the
notation (v, Fig. 3) and equations developed in my dissertation and published in the Ap. J. for
Jan., 1898, I have to compute the values of M and H from the data furnished by the light
eurve and then for « < 1, to solve the transeendental equations :

) {M: ¢+ K2 ¢! — ksin (" + ¢)
I = K¢ — ¢ + «ksin (¢ — ¢)

(9) M =d¢+ & P"—ksin (¢ + ¢)
H = ¢ — & ¢!" +«sin (¢ — ¢'")

and for « > 1,

for ¢ and ¢" and when « =1,
(Ya) M =2¢—«ksin2¢ = 2 ¢ —sin 2 ¢ (H being here zero).

These solutions may be made most eonveniently by means of tables giving the values of M
and # for suitably chosen values of ¢ and ¢’, from which approximate values of ¢ and ¢’ may
be interpolated, which may then be eorrected by the following differential formule :

s M S H
a

el 2 e tg ¢/ sin (¢ + ¢) B 2xtg ¢/ (sin ¢’ — )’

for« < 1.
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When « > 1, we shall have to nse instead of the latter,
s I
2 k tg ¢' sin (¢ — ¢')'
If it be desired to assume a value of ¢ a little greater than unity, it will then be nceessary to
compute A from equation (5) above. Ditferentiating (5) with respeet to ¢, I obtain

(11) S =

d AT vlam(lé-)
dg  (m—g?
an essentially negative magnitude.
A and g therefore change against each other, so that an inerease in ¢ will necessitate a decrease
in A. Again designating the maximum value of «% by A2 and the minimum by 4% we have
279 gna Kt = 4

k= :
cq m=—cq

Differentiating these with respect to ¢, we find,

dr? m d K? m
= =~ = and = ;
dq ¢ dg (m—cq)*

The former of these differential coefficients is essentially negative, and the latter is essen-
tially positive. An augmentation of ¢ will therefore depress the minor and elevate the major
limit of #%; and to be able to include a value of ¢ somewhat larger than unity, values of A and
I were also computed for « = 0.70. The table of computed M’s and H’s is given here.

AUXILIARY TABLES FOR INTERPOLATING APPROXIMATE VALUES OF ¢ AND ¢”.

é for k <1 K =0.70 K =0.80 | * =085 k=115 k=135
or

$/7 for k>1 M n M | o " M I M big
o 14
0 00 | 0.0000 | 0.0000 { 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
2 00 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0000 [ 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0000
4 00 | 0.0005 | 0.0001 | 0.0006 | 0.0001 | 0.0005 | 0.0003 | 0.0007 | 0.0001 | 0.0009 | 0.0001
6 00 | 0.0018 | 0.0007 | 0.0017 | 0.0005 | 0.0017 | 0.0003 | 0.0022 | 0.0003 | 0.0031 | 0.0010
8 00 | 0.0043 | 0.0009 | 0.0040 | 0.0006 | 0.0038 | 0.0005 | 0.0051 | 0.0007 | 0.0077 | 0.0014

10 00 | 0.0086 | 0.0013 } 0.0080 | 0.0009 | 0.0077 | 0.0008 | 0.0100 | 0.0008 | 0.0152 | 0.0021
12 00 | 0.0148 | 0.0029 | 0.0137 | 0.0017 | 0.0133 | 0.0014 | 0.0171 | 0.0013 | 0.6261 | 0.0041
14 00 | 0.0319 | 0.0044 | 0.0216 | 0.0025 | 0.0210 | 0.0018 [-0.0274 | 0.0019 | 0.0414 | 0.0068
16 00 | 0.0353 | 0.0065 | 0.0325 | 0.0087 | 0.0314 | 0.0026 | 0.0405 | 0.0026 | 0,0618 | 0.0090
18 00 | 0.0503 | 0.0093 | 0.0461 | 0.0054 | 0.0444 | 0.0038 | 0.0577 | 0.0038 | 0.0880 | 0.0148
20 00 | 0.0690 { 0.0136 { 0.0631 | 0.0076 | 0.0610 | 0.0056 | 0.0792 | 0.0062 | 0.1207 | 0.0201
22 00 | 0.0933 | 0.0202 | 0.0838 | 0.0104 | 0.0805 | 0.0072 | 0.1050 | 0.0082 | 0.1607 | 0.0274
24 00 | 0.1195 | 0.0247 | 0.1087 | 0.0142 | 0.1043 | 0.0096 | 0.1366 | 0.0107 | 0.2086 | 0.0360
26 00 | 0.1522 | 0.0328 | 0.1378 | 0.0184 | 0.1320 | 0.0126 { 0.1735 | 0.0129 | 0.2648 | 0.0473
28 00 | 0.1908 | 0.0422 | 0.1715 | 0.0231 | 0.1644 | 0.0161 | 0.2137 | 0.0175 | 0.3112 | 0.0613
30 00 | 0.2344 | 0.0542 | 0.2104 | 0.0203 | 0.2014 | 0.0280 | 0.2620 | 0.0228 | 0.4079 | 0.0779
32 00 | 0.2876 ; 0.0693 | 0.2549 | 0.0367 | 0.2433 | 0.0251 | 0.3163 | 0.0281 | 0.4959 | 0.0983
34 00 | 0.3307 | 0.0710 | 0.3053 | 0.0458 | 0.2906 | 0.0309 | 0.4022 | 0.0343 | 0.5969 | 0.1240
36 00 | 0.4176 | 0.1120 | 0.3621 | 0.0555 | 0.3436 | 0.0381 | 0.4457 | 0.0425 | 0.7116 | 0.1548
38 00 | 0.4998 | 0.1438 | 0.4055 | 0.0696 | 0.4024 | 0.0465 | 0.5222 | 0.0518 | 0.8447 | 0.1972
40 00 | 0.5977 | 0.1863 | 0.4968 | 0.0853 | 0.4679 | 0.0569 | 0.6059 | 0.0622 | 0.9942 | 0.2446
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¢ for k<1 =070 K =0.80 £ =0.85 K=115 K=135
¢ for x >1 M Vi M big M o AN I ) M H
o s

42 00 | 0.7218 | 0.2508 | 0.5772 | 0.1047 | 0.5397 | 0.0681 | 0.6984 | 0.07562 | 1.1765 | 0.83103
43 00 | 0.8028 | 0.2094 = —_— — — —_ — 1.2694 | 0.3591
43 80 | 0.8460 | 0.3328 = == — —_ - - - —
44 00 | 0.9281 | 0.3818 | 0.6658 0.1296 | 0.6162 | 0.0858 | 0.7996 | 0.0908 | 1.8790 | 0.4010
44 20 | 0.9797 | 0.4388 — — — — — — — —
44 26 | 1.0297 | 0.4783 — == —_ — — — — —
45 00 — — — = == = = = 1.5036 | 0.4638
46 00 — — 0.7666 | 0.1600 | 0.7066 | 0.1002 { 0.9103 | 0.1087 | 1.6499 | 0.5445
47 00 — — 0.8229 | 0.1731 — — — — 1.8417 | 0.6700
47 30 == — — = = — — — 1.0983 | 0.7763
47 48 == - —_ = = —_ — — 2.1843 | 0.9573
48 00 — — 0.8810 | 0.1999 | 0.8028 | 0.1217 | 1.0308 | 0.1303 - =
49 00 - -— 0.9488 | 0.2288 = — — — — -
50 00 — — 1.0215 | 0.2609 | 0.9094 | 0.1490 | 1.1641 | 0.1578 — =
51 00 = —_ 1.1055 | 0.3032 — = i - - —
51 30 —_ —_ 1.1534 | 0.3301 — —_ — — — —_
52 00 — — 1.2082 | 0.3632 | 1.0290 | 0.1842 | 1.3129 | 0.1929 — =
52 30 — -— 1.2726 | 0.4083 — — — - o i
53 00 — — 1.3736 | 0.4847 — — — — — -
53 8.7 — — 1.4531 | 0.5575 — — — - — -
54 00 = = — — 1.1675 | 0.2480 | 1.4749 | 0.2376 == =
56 00 — — - — 1.3320 | 0.3044 | 1.6574 | 0.2991 — =
57 00 — — — _ 1.4389 | 0.3728 — — — —_
57 30 — - — — 1.5066 | 0.4060 — —_ —_ ==
58 00 — — — — 1.5992 | 0.4734 | 1.8764 | 0.3874 —_ ==
68 12.7 —- — — o 1.7040 | 0.5666 — —_ _ ==
58 30 — — - — — — 1.9414 | 0.4192 —_ —
59 00 — — — — - — 2.0187 | 0.4567 — —_
59 30 — — — - — — 2.0970 | 0.5050 —_ =
60 00 — — - - —_ . — 2.2082 | 0.5786 — =
60 25 — — — — — — 2.3976 | 0.7439 — =

. o= , -1l
The table gives the values of M and I, of conrse, only up to ¢ = sin lx, or to ¢ =sin 1;’

according as « S 1.

The expression for M when « =1 is so simple as to render the use of an auxiliary table un-
necessary, and this case has therefore not been included in the foregoing lists,

M and I arc connected with the obscrvations by means of the rclations :

(12) M=#(1+K2A)(1—J-) and .H-=1rK2—7r(1+K2>\)(1—J),

where J is obtained from the light eurve by subtracting the ordinate of the curve for auy
given instant from the mean ordinate for the maxima, calling this difference A G and substituting

in the equation :
log J = 0.04 AG (A & being in tenths of a magnitude).

The values of M and H, on the various hypotheses for « and for the times preceding and
following Min. I. given in the first column, arc tabulated liere. i
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VALUES OF M AND H COMPUTED FROM THE LIGHT CURVE FOR THE EPOCHS ¢

k= 0.80 K =0.85 ® =1.00 k=116 =135

M H M H M H .M H M H

~1.50 0.1624 | 1.8482 | 0.1694 | 2.1004 | 0.1930 | 2.9486 | 0.2203 | 3.9345 | 0.2628 | 5.4628
-1.25 0.3910 | 1.6196 | 0.4077 | 1.8621 | 0.4625 | 2.6771 | 0.5303 | 3.6245 | 0.6325 | 5.0931
—1.00 0.6903 | 1.3203 | 0.7200 | 1.5498 | 0.8201 | 2.3215 | 0.9364 | 3.2184 | 1.1168 | 4.6088
—0.75 1.0671 | 0.9435 | 1.1129 | 0.1569 | 1.2677 | 1.8739 { 1.4476 | 2.7072 | 1.7264 | 3.9992
—-0.50 1.4496 | 0.5610 | 1.5118 | 0.7580 | 1.7221 | 1.4195 [ 1.9664 | 2.1884 | 2.3452 | 3.3804
—0.25 1.8458 | 0.1648 | 1.9250 | 0.3448 | 2.1927 | 0.9489 | 2.5038 | 2.6510 | 2.9861 | 2.7395
—0.124| 1.9067 | 0.1039 | 1.9885 | 0.2813 | 2.2650 | 0.8760 | 2.5864 | 1.5684 | 8.0847 | 2.6409

0.00 1.9326 | 0.0780 | 2.0156 | 0.2542 | 2.2959 | 0.8457 | 2.6216 | 1.5332 | 8.1267 | 2.5989
+0.124( 1.8986 | 0.1120 | 1.9801 | 0.2897 | 2.2555 | 0.8861 | 2.5755 | 1.5793 | 8.0727 | 2.6529
+0.25 1.7192 | 0.2914 | 1.7930 | 0.4768 | 2.0423 | 1.0993 | 2.3321 | 1.8227 [ 2.7814 | 2.9442
+0.50 1.2380 | 0.7726 | 1.2912 | 0.9786 | 1.4708 | 1.6708 | 1.6794 | 2.4754 | 2.0030 | 3.7226
+0.75 0.8358 | 1.1758 | 0.8716 | 1.3982 | 0.9928 | 2.1488 | 1.1337 | 3.0211 | 1.3521 | 4.37385
+1.00 0.5383 | 1.4623 | 0.5614 | 1.7084 | 0.6395 | 2.5021 | 0.7302 | 3.4246 | 0.8708 | 4.8548
+1.25 0.2748 | 1.7258 | 0.2866 | 1.9832 | 0.3265 | 2.8151 | 0.3728 | 3.7820 | 0.4446 | 5.2810
+1.50 [—0.0642 | 1.9464 | 0.0670 | 2.2028 | 0.0763 | 8.06563 | 0.0871 | 4.0677 | 0.1089 | 5.6217

The distance of centres, », is seen from the accompanying fignre to be given by
1 i
(13) p= K—ﬂs—g—-;:qs), where sin ¢ = « sin ¢/ and ¢'+¢” = 180°.

The figure relates only to the case in which # <1 and ¢” <90°, but the modifications
necessary to adapt it to the cases where « >1 and ¢’ 290°, are so obvious, that they may
be left to the reader.

Assuming now a circular orbit, and denoting by a and B+g, the longitude in the
apparent orbit and the true anomaly in the real orbit respectively, both counted from the
node, and calling » and p the radii vectores in the true and apparent orbits, we may write,

pcosa = rsin B and tga = cos ¢ cot G,
whence,

(5]

(14) p? = 7%sin® B+7r? cos? ¢ cos® B.

Calling, for brevity,

(14 a) z =1" and y = r? cos’ i = z cos® 7,

and we then have the following simple relation between the various magnitudes ;
(15) p? = xsin? B+y cos?B. (B = nt = 40° ¢, ¢ in hours from Min. L),

which holds for all cases except when the smaller disc is projected wholly upon the larger
at the epoch of Min. I

The solution of equations (8), (9) and (9a) for the five hypothetical values of x gave
the results here tabnlated.
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TABULATED VALUES OF ¢ AND p.

K = 0.80

K=0.85

& =1.00 k=115

é

P

é

p

4

p Lt

p

—1.50
— 126
—1.00
—0.75
—0.50
—0.25
=0

0.00
+0.12
+0.25
+0.50
+0.75
+1.00
+1.25
+1.50

o 4
27 30.3
36 56.0
44 30.5
50 83.0
53 8.0
46 12.6
41 52.0
39 8.0
42 40.0
50 45.2
52 13.0
47 13.6
41 4.3
32 49.0

1.5403 | 28
1.3276 | 38
1.0987 { 46
0.8440 | 53
0.6012 [ 57
0.3482 | 56
0.3038 | 55
0.2841 [ 54
0.3101 | 55
0.4321 | 58
0.7342 | 55
0.9969 | 49
1.1781 (42
1.4288 130
20

4
18.5
10.4
17.5
16.0
32.1
44.0
28.6
44.0
40.0

1.4
33.3
19.0
34.0
50.2
40.0

1.5440
1.3697
1.1381
0.8813
0.6397
0.3951
0.3577
0.3411
0.3626
0.4745
0.7718
1.0356
1.2512
1.4729
1.7093

o] s
30 40.0
41 46.5
51 25.56
60 45.0
68 43.0
76 8.5
77 14.0
77 42.0
77 5.5
73 50.0
64 26.3
55 16.1
46 544
36 51.0
22 18.1

o 4
1.7202 | 28 17.0
1.4916 | 38 12.5
1.2472 1 46 26.6
0.9774 | 53 43.0
0.7260 | 58 40.3
0.4790 | 45 51.0
0.4420 51 47.3
0.4260 | 53 29.0
0.4474 |51 10.3
0.5568 | 60 21.8
0.8630 | 56 14.0
1.1394 [ 49 33.3
1.3664 |42 39.0
1.6004 | 33 50.0
1.8518 | 20 40.0

1.9909

1.8510 | 25 56.012.0210
1.6066 | 34 39.0]1.7515
1.3449 | 41 15.0 | 1.4710
1.0557 | 46 26.2{1.1379
0.7848 | 36 18.00.5558
0.2360 |47 35.0}0.8292
0.2833 | 47 46.2 | 0.8805
0.3024 | 47 47.210.8897
0.2771 |47 45.40.8726
0.6006 | 46 28.80.7254
0.9326 | 47 33.3 | 0.9982
1.2298 | 43 45.5(1.3331
1.4729 | 88 23.0]1.6037
1.7226 | 30.52.0 | 1.8803
19 1.012.2309

A comparison of the values of p on the last two hypotheses for «, shows at once that
these values of « need not be further considered, since the values of p in both cases fall
for a time, reach a minimum before Min. I., rise to a maximum value about the time ¢ =0,
fall to a second minimum value, and then rise eontinuously ; and since p denotes the radius
vector of the apparent orbit, whieh latter must be an ellipse, obviously such a variation of
it must be impossible. The value of «, i. e., the radius of the darker body cannot, therefore,

have either of these latter values.

Substituting the values of p for the first three assumptions for « in equation (15) above,

we shall have the following 15 observation equations :

OBSERVATION EQUATIONS.

K& = 0.80 k=085 & =100 g S

K =10.80, &=0.85 Kk =1.00
(1) 075002 +0.2500 ¥} =2.3725; | =2.8839; | =2.9588 | 1.4915 | 1.7764 | 2.0207
(2) 0.5868 +0.4132 =1.76256; | =1.8761; { =2.2249 | 1.7561 | 1.8052 | 1.9543
( 3) 0.4132 +0.5868 =1.2071; | =1.2953; | =1.5555 | 1,7281 | 1.7776 | 1.9270
(4) 02500 +0.7500 =0.7128; | =0.7767; | =0.9553 | 1.6411 | 1.6878 | 1.8358
(5) 0.1170 +0.8830 =0.3614; | =0.4092; [ =0.5271 | 1.6746 | 1.7274 | 1.8767
( 6) 0.0802 +0.9698 =0.1213; } =0.1561; | =0.2294 | 1.1693 | 1.1693 | 1.2300
(7) 0.0076 +0.9924 =0.0023; | =0.1279; | =0.1954 | 1.2670 | 1.2825 | 1.4142
( 8) 0.0000 +1.0000 =0.0807; | =0.1163; | =0.1815 | 1.4545 | 1.4554 | 1.6264
(9) 0.0076 +0.9924 =0.0962; | =0.1315; | =0.2002 | 2.0176 | 2.0610 | 2.2410
(10) 0.0302 +0.9698 =0.1867; | =0.2252; | =0.3100 | 2.0303 | 1.0893 | 2.2417
(11) 0.1170 +0.8830 =0.5390; | =0.5957; | =0.7448 | 1.8277 | 1.9303 | 2.1018
(12) 0.2500 +0.7500 =0.9938; | =1.0727; | =1.2082 | 1.6723 | 1.8275 | 1.9780
(13) 0.4132 4 0.5868 =1.3879; | =1.5655; | =1.8670 | 1.8966 | 1.8992 | 2.0524
(14) 0.5868 +0.4132 =2.0415; | =2.1694; | =2.5613 —_— 2.0184 | 2.1772
(15) 0.7500 +0.2500 = — =2OAIFENE =321209




10 A STUDY OF THE LIGHT CURVE

Each pair of these equations furnishes a value for both z and y, and from the results
of their solution the values of r and cos?¢ may be obtained with the help of (14a). The
assumption of a circular form of the orbit requires that the different values of » and of
cos? 7, on the correct hypothesis for &, shall all be approximately equal. The valucs for »
obtained by solving (1) and (2), (2) and (3), (3) and (4), ete., in succession for the varions
values of « are tabulated in the last three columns of the foregoing table. The mecan
values and probable errors for each of the assumptions for « are: for x = 0.80, » = 1.6636 +
0.0485 ; for x = 0.85, r =1.7512 4 0.0494, and for x = 1.00, » = 1.9341 + 0.0535. The indi-
vidual determinations of cos?¢ are not given here, but the corresponding means and probable
errors are, for the respective cases:

cos? 7 = +0.0275 £ 0.0069; = +0.0482 + 0.0072; = +0.0547 £+ 0.0074,

The difference of the probable errors is not great in any case, but both » and cos® ¢ agree in
their testimony favoring the smallest value of « as being the most probable. Assuming this value
of « however, a physical peculiarity, though not an impossibility, is met in the circumstance that
the most probable distance of centres (1.6634) is considerably less than the sum of the radii
(=1.8), i. e., the masses must interpenetrate, and conscquently form a single body (Poincaré’s
apiod).

The probable errors not differing by enough to enable them to pronounce with sufficient
emphasis for any one of the hypotheses, it seemed desirable to approach the problem also in-
directly to sce whether the conclusions will be the same as those given by this direct solution.
That the foregoing discussion, however, indicates conclusively that the correct value of « is
smaller than 0.85, there can be no doubt.

INDIRECT SOLUTION.

The mode of procedure here is to read from the light ecurve for suitably chosen epochs,
the instantancous brightnesses in stellar magnitudes, to form the differences between these
brightnesses and the maximum brightness, to convert these differcnees, by means of the
Pogson scale, into their equivalent light ratios, to compare thesc ratios with the corresponding
ratios, computed from certain assumed elements, and finally, after finding sufficiently close
approximations to the correct values of the elements, to adjust these differences in the scnse
computation minus observation, by the method of Least Squares.

Letting J’ and J" denote the instantaneous brightnesses in the neighborhood of Min. I. and
Min. IL. respectively, and M', H', M", and H", the corresponding values of the M and I defined
by equations (12), it will be seen by referring to my article on Beta Lyrae, in the January
Astrophysical Journal, that
MI l_J/l _ A__]]lll

(16) 1-J = ———— = —
7r(1+)\x2) m (1+X«?%)

and hence, there is an obvious advantage in adjusting 1—J' and 1—J" instead of /' and J".
The former quantities were therefore used throughout the reductions.

The equations for computing M', or M/ are:
((@) B = 40°¢.

) p=rasin?B+cos?icos®B Ifi = 7—; — ¢! is near g, ¢’ is small and

(©p=rasin?B+i?%cos®B. If¢ = 0,p = rsinf.
17 1 [ eE e 2
7 =L
(d) cos ¢ 2
(©) sin ¢/ = Lgin g

\ () M, or M" = ¢+« ! — ksin (¢ + ¢") = ¢+« ¢! — psin ¢.
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These, together with (16), determine 1 — J'and 1—~J" from the light curve. The value
of cos?¢ as found above, was small, and as a first approximation ¢ was taken 7—2r, or ! =90 —¢=0.

To neglect the effeet of orbital eccentricity reqnires Min. II. to fall at the middle point
of the period. Disregarding provisionally the slight displacement of this chief epoch from
the middle point, taking ordinates ecquidistant from Min. I. and Min. II. before and after
these epochs, forming the means for each epoch separately and computing the corresponding
values of 1 — J! and 1 — J", the results here tabulated werc obtained.

Minimnm T. MInimnm J1.
¢ 1—J7% 1—=J77,

Before. After. Mean. Before. After. l Mean.

1.50 9.32 9.34 9.33 0.36 9.35 9.35 | 0.0228 | 0.0000
1.25 9.37 9.37 9.37 9.41 9.40 9.40 | 0.0742 | 0.0362
1.00 9.42 9.44 9.43 9.50 9.47 9.48 | 0.1330 | 0.0896
0.75 9.51 9.53 9.52 0.61 9.55 9.58 | 0.2072 | 0.1606
0.50 9.62 9.64 9.63 9.73 9.67 9.70 | 0.2901 | 0.2380
0.25 9.72 72 9.72 0.84 9.84 9.84 | 0.3749 | 0.3018
0.00 9.75 9.75 9.75 9.90 9.90 9.90 | 0.4084 [ 0.3208

The results of this table are shown graphically on Plate II.

The values of M’ and M" for various assumptions for « hoth greater and less than
the minimum value given above (0.77556) were computed from formula (16). TFor values
of « less than 0.7755, it was of course neeessary to assume a flattening of the dises and

m—c

o q([’ (¢ depending on the flattening). After having
computed a number of light curves for various assumptions for » and «, it became evident

that the dises must liec extremely close together. The attempt was then made to ascertain
what value of x would best satisfy the observations on the hypothesis of contact of disecs.
The residuals M, — M, = A M were formed for the values of ¢ in the above table and
compared, that hypothesis furnishing the smallest mecan residual, A M, being assumed to
lic nearest the truth. A7, was computed from the observed values of J/ and J/ by the aid
of the formulas,

M =0Q+EN) 71 —=J); Jll"=(1+x2>\);(1—J"); M, =1/2 (M'+HM")
and M, by the aid of

to compute A from the formula A =

M, = ¢ + 2! — pl sin ¢, P =J%_p and} = 4/sin? B + ¢* cos? B.

The value « = 0.8, involving a somewlat simpler hypothesis than « = 0.75, viz: ¢ =1,
was taken as a basis for further experimentation, notwithstanding the fact that the latter
value of x gave a somewhat smaller mean residual. If, moreover, as seems now probable,
a part of the light ehange be aseribed to a flattening, the larger value of « will probably be
nearer the truth. The distance of centres, », was then assumed tobe 1 + 1.1 x and 1+ 0.9 «
in turn, and the mean residnals computed on these hypotheses. The results of these six
hypotheses are here tabulated. Unless otherwise explieitly stated, it is to be understood
that » = 1+«, that ¢ = 1, and that the components are similar ellipsoids of revolution.
For the case where x = 0.75, the smallest possible value of ¢ (= 1.0271) was used in
obtaining M,
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VALUES OF M, M, ANDAM ON VARIOI,:S IIYPOTHESES FOR «.

M, M, AM a, M, AM
k=075, ¢ = 1.0271 k=108
0.0514 0.1372 —(0.0858 0.0538 0.1456 —0.0918
0.2728 0.2926 —0.0248 0.2839 0.3303 —0.0464
0.5612 0.5720 —0.0108 0.5732 0.6097 —0.0265
0.9358 0.9189 +0.0169 0.9746 0.9810 —0.0064
1.3486 1.3300 +0.0186 1.3998 1.4274 —0.0276
1.7259 1.7299 —0.0040 1.7915 1.8949 —0.1034
Mean residual  0.0302 Mean residual  0.0503
*=0.9 «  K=095
0.0586 0.1634 —~0.1048 0.0612 0.1690 —0.1078
0.3092 0.3703 —-0.0611 0.3229 0.3911 —0.0682
0.6349 0.6350 —0.0501 0.6632 0.7228 —0.0596
1.0579 1.1051 —0.0472 1.1049 1.0957 —0.0092
1.5242 1.6894 —0.1152 1.5919 1.7098 —-0.1179
1.9509 2.1904 —0.2395 2.0875 2.3206 —0.2831
Mean residual  0.1030 Mean residual  0.1076
Kk=08,r=1+4+09k k=08, r=14 11k
0.0538 0.2116 —0.1578 0.0538 0.0882 —0.0344
0.2839 0.4029 —0.1190 0.2839 0.2672 +0.0167
0.5732 0.6806 —0.1074 0.5732 0.5179 +0.0553
0.9746 1.0313 —0.0567 0.9746 0.8897 +0.0849
1.3998 1.6714 —0.2716 1.3998 1.3835 +0.0163
1.7915 1.9184 —0.1219 1.7915 1.8760 '—0.0845
Mean residual  0.1391 Mean residnal  0.0487

The low value of the mean residual of the first hypothesis, viz.: # = 0.75 and @) =) L0l
renders a further investigation into the general effect of a flattening desirable. The light
curves for ¢ =1.01, 1.02, 1.03, 1.04 and 1.05 were now computed and the residuals, AM,_,
formed with the proper values of A, from A = (m— ¢ ¢) /(m — q), with « = 0.7785 and » = 1.7814.

VALUES OF A M,_. FOR VARIOUS VALUES OF gq.

q=1.01 q=1.02 q=103 g =1.04 q=1.06
—0.0835 —0.0607 —0.0774 —0.0737 —0.0705
—0.0182 —0.0274 —0.0086 —0.0017 +0.0046
—0.0031 +0.0018 +0.0295 +0.0377 +0.0483
+0.0229 +0.0244 +0.0557 +0.0676 +0.0788
+0.0149 +0.0113 +0.0389 +0.0493 +0.0609
—0.0409 —0.0533 —0.0391 —0.0330 —0.0262
filean 0.0306 0.0298 0.0415 0.0438 0.0482
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These latter values of « and 7 resulted from a Loast Square solution of a set of observation
equations connecting d «, dr, and d ¢ (=—d 1), whieh gave d¢ = /—0.0096. This value of d ¢
being imaginary but small, it was put = 0. The residvals for the five hypotheses are eol-
lected in the table last preceding.

For the casc in whieh ¢ = 1.00, the third column for x = 0.8 above may be examined.

Both the run of the individual values of A M,_, and the magnitunde of the mean residual
indieate ¢ = 1.02 to be most approximate.

Differential cquations were now derived in such form as to connect d k, dr, dq, and d?,

with d M=A M,_.. The derivation of these relations was made as follows:
Differentiating M = ¢ + &* ¢ — p’ sin ¢, where p’ = (1/f) p and (1/f) = 4/sin? B + g% cos? B,
A p’2+K2—1 1+p’2'—-K2 p’2-—].-—K2
and reducing by means of eos ¢/ ="——— cos ¢ =———— andcos(¢p+¢)=—T——,
2p' 2 pf 2«
we find,

AM=(_A—p cosd)d¢ + 2dP" + 2" dx —sin ¢ . dp,

/! It 3 i
Dy e S SR L 7 (__°°s¢ ey )dx_—“f‘ b ap
peing plsing pltang o p' sin ¢

whieh give, after some simplifications,
dM=24¢"cdx—2sin ¢dp.

But d¢ = 7 dp+pd (f) where p =7 4/ sin’ 8 + ¢'* cos’8 for small values of ¢ —g—i

Differentiating and substituting we obtain finally,

(A) dM=2«¢"dx— Rdr— Qdq— Idi?
in which
p sin ¢ L
IB =R =s 7 ; Q=2¢gpfcos’Bsing; andI—f51n¢eos2,Bcse,8
Computing the cocfficients 2 « ¢, R, @, and I with the values ¢=1.02,A =0.7748, « =10.7785,
r = 1.7816, and ' = o, for the epoehs used in the foregoing tables, the following six observation
cquations were obtained : —

0.9154 d % —0.7517 d r —0.3403 d ¢ —0.2232d¢* —0.0607 =0
1.2387 —0.8591 —0.6383 —0.5389 —0.0274 = 0
1.6827 —0.8616 —0.9019 —1.0897 +0.0018 = 0
1.9702 —0.7537 —1.0031 —2.0139 +0.0244 = 0 -
2.4611 —0.5420 —0.8119 —3.6442 +0.0113 = 0
3.4477 —0.2205 —0.3762 —6.3170 —0.0633 = 0

These were rendered homogeneons by putting
dk = 02901a; dr = 11606 y; dg = 0.9969z; 4> = 0158310, and v = 0.0607.

The equations then were : —

0.2655 = —0.8724 y —0.3392 2 —0.0353 » —1.0000» =0
0.3593 —0.9971 —0.6363 —0.0855 —04514 =0
0.4591 ~1.0000 —0.8991 ~0.1725 +0.0297 =0
0.5715 ~0.8747 —1.0000 —0.3188 +0.4020 =0
0.7138 —0.6290 —0.8094 —0.5769 +0.1862 =0
1.0000 —0.25629 —0.3750 —1.0000 —08781 =0



14 A STUDY OF THE LIGHT CURVE

These resulted in the following Normal Equations:

+2.2467 « ~2.25608y —~2.2557 2 —1.7133 w —0.9296 v = 0
—2.2508 +3.9800 +3.5081 +1.1835 +1.0462 =0
—2.2557 +3.3081 +3.1241 +1.3822 " +0.3763 =0
—1.7133 +1.1833 +1.3822 +1.4727 +0.7118 =0

The solution of these normals gave

= —0302; y = +0.056; 2 = —0.183; and w = —0.194
and henee,
dx = —0.087; dr = +0.004; dqg = —0.183; and di”? = ¢* = ~0.031.

Inasmuch as an imaginary value of ¢ (= d7') can have no physieal significance, the d i can
only be put equal to zero, and the equations solved on this hypothesis gave,

de = —0.088; dr = —0.1253 and dq = —0.170.

The assumed value of ¢ was 1.02, and eonsequently the maximum allowable negative value
for d ¢ = —0.02, a magnitude eonsiderably smaller than that resulting from the Least Square
solution.

Another important contravention of the physieal eonditions involved in the problem is that
dx and d g should be of unlike signs. This ean be readily shown. We have seen above that

= mc—_qq Taking the least value of «? consistent with physieal eonditions, viz., x”:m___q_,
. . . di? . 3 - e
and differentiating it, we obtain Of- =—3 e -, an essentially negative magnitude. The latter
9 Crq

relationship would be emphasized more strongly by using «* greater than this least value.

While, therefore, a Least Squarc adjustment can add nothing to the aceuracy of the
values obtained experimentally, the magnitudes and signs of the values of d« and dr furnished
by the adjustment indicate that « and » should be correeted toward the valucs of these
quantities derived in the direet solution of the first part of this paper. Inasmuch as the
foregoing results are the best that could be obtained after having computed twenty-five or
thirty differcnt light eurves in which the elements were shifted in almost every conceivable
way, it may be asserted with eonfidence that the following results may be regarded as the
best attainable in the present state of the observational material:

1. The light eurve of U Pegasi given in Harvard College Observatory Cireular, No. 23,
is satisfactorily represented by the satellite theory.

2. The distance of centres does not materially differ from the sum of the radii of the
ecomponents, suggesting the probable conerete existenee of the ¢ apiodal ” form of Poinearé.

8. The smaller companion is about 0.77 as bright as the larger, and the ratio of radii is
approximately 1:0.78.

4. The inclination of the orbit is very nearly 90°, and the dise of one or both bodies, if
separate, is slightly flattened.

5. The aeeuracy of present observations does not suffice to determine the clements of
the “system” ecompletely, sinee the foregoing diseussion shows the residuals to be incapable
of adjustment hy Least Squares.

6. The mamner of rise and fall of the observed curve after and before the minima, which
portions of the curve were determined with especial eare, fails to eonfirm one’s first impres-
sion on examining the curve, viz.: that the components are separated enough to remain apart
for an appreeiable time at the maxima. The differenece between the durations of nmiform
brightness at the maxima, as shown by the curve, would seem to indicate a considerable orbital
eceentrieity, whereas the small distance of centres nullifies the possibility of its existenee. 1,
therefore, seems desirable to direet attention to the importance of a carcful photometric study
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of U Pegasi’s light curve near the maximna, with a view to ascertaining whether or not the
form of this curve near these epochs is real.

The appended plates will assist in forming a quick judgment of the degree of approxima-
tion of the theoretical to the observed curve.

Plate I. gives the points of Pickering’s curve, the continuous curve drawn through these
points and mnsed as the basis of the present discussion, together with the computed points
(marked with circles) of the theoretical curve. The position of the points of the derived
curve would conform much more closely to the curve of observations, by shifting the entire
observed curve before and after Min. 1I. forward by about 1.20 minutes, which, in view of
the short period of time over which the observations on which the constants of the equation
of the light changes depend, would be allowable. Plate II. shows the effect of this slight
shift. This, of course, amounts to assuming that Min. II. lies midway of the period, and
yet, since especial attention was directed to the study of the light change in this vicinity,
it does not scem that the difficulty would be likely to lie here. From private conversation
with Professor Pickering, I learn that the scarcity of observations at commaud and the
shortness of the interval over which his available observations were distributed made a definite
determination of the first constant of the equation of the light variation of this star impossible,
and that ouly the third decimal of a day can be relied on. This suggests the removal of the
difficulty by shifting the entire computed curve forward, or, what amounts to the same thing,
the entire theoretical curve backward by the above mentioned amount, and this gives a wholly
satisfactory accord of theory and observation for the entire curve save at the maxima.

Plate III. accordingly represents the observed curve in full line, the derived curve in dotted
line, and the latter, after the shift referred to,in a long dash followed by two shorter ones. The
computed points, enclosed in circles, are also given in their true (unshifted) positions.

Barring the vicinity of the maxima, for which further observations must be awaited, the rep-
resentation may, the writer thinks, be regarded as provisionally satisfactory, and that U Pegasi
is to be regarded as varying by reason of the mutual occultations of revolving components.

The following table contains for corresponding epochs the grade values of the ordinates
of both the computed and observed curves, together with the residuals in the sense observa-
tion — computation for the final unshifted curve. Aside from the fact that the errors are
systematic, i. e., all of same sign (which are almost wholly gotten rid of by the aforesaid
shift), but little more could be desired, and the exceedingly small values of the average
deviations deprives the residuals of almost all significance. Applying the mean residual as
a correction to the individual residuals, which is the same as adopting the shifted curve as
final, the representation becomes entirely satisfactory.

COMPARISON OF COMPUTED WITH OBSERVED CURVE.

t J, J, aJ,_, To 7 AT,
m. m. m. m. m. m.

1.50 9.35 9.36 —0.01 9.34 9.36 —0.02
1.25 9.41 9.41 0.00 9.37 9.39 —0.02
1.00 9.48 9.48 0.00 9.43 9.45 —0.02
H 9.58 9.58 0.00 9.52 9.52 0.00
.50 9.70 9.72 0.02 9.62 9.62 0.00
25 9.84 9.87 0.08 9.72 9.73 —0.01
.00 9.90 9.90 0.00 9.75 9.75 0.00
Average Deviations = 0.009 =0.01
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Figure 4 illustrates the geometrical relations prevailing in the system, on the hypothesis
of separation of dises. The resemblance to 8 Lyrae is quite apparent, though there is an
essential difference in that, with the latter star, the smaller component is the brighter, while
with U Pegasi the reverse is the case.

Fig. 4, — THE SystEm oF U PrgasL

In conclusion, the writer would thank Dean Ricker of this University and Professor
Piekering of Harvard College Observatory for valuable assistance rendered during the prose-
eution of this inquiry: the former, by the loan of a eomputing machine, without whieh the
laborious computations involved in this paper could hardly have been made during the progress
of regular University work; and the latter, by granting the writer every possible means of
acquainting himself personally with the working methods and of forming an idea of the
attainable accuracy of the polarizing photometer.

CAMBRIDGE, Mass., August, 1898.
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