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PREFACE.

f I^HIS memoir " On the Sub-Mechanics of the Universe
"

was com-

municated to the Royal Society on February 3, 1902, for publication

in the Philosophical Transactions
;

it was read in abstract before the Society

on February 13. It was under criticism by the referees of the Royal Society

some five months. I was then informed by the Secretaries that it had

been accepted for publication in full. At the same time the Secretaries

asked me if I should be willing, on account of the size and character

of the memoir, which seemed to demand a separate volume, to consent to

what appeared to be an opportunity of making a substantial reduction

in what would otherwise be the expense. The Cambridge University Press

had already published two volumes of my Scientific Papers and were willing

to share in the cost of publishing this as a separate volume to range

with the other two, special copies being distributed by the Royal Society

as in the case of the Philosophical Transactions. To this proposal I

readily agreed.

OSBORNE REYNOLDS.

January 23, 1903.



EKRATUM.

p. 5, line 22: for 2 read q.
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SECTION I.

INTRODUCTION.

1. BY this research it is shown that there is one, and only one,

conceivable purely mechanical system capable of accounting for all the

physical evidence, as we know it, in the Universe.

The system is neither more nor less than an arrangement, of indefinite

extent, of uniform spherical grains generally in normal piling so close that

the grains cannot change their neighbours, although continually in relative

motion with each other
;
the grains being of changeless shape and size

;
thus

constituting, to a first approximation, an elastic medium with six axes of

elasticity symmetrically placed.

The diameter of a grain, in C.G.S. units, is

5-534 x 10-18 = a:

The mean relative velocities of the grains are

6-777x10 = 0".

The mean path of the grains is

8-612xlO~28 = X.

These three quantities completely define the state of the medium in

spaces where the piling is normal
; they also define the mean density of

the medium as compared with the density of water as

104 = 22fl

The mean pressure in the medium, equal in all directions, is

1172 xlO14

=2?.

The coefficient of the transverse elasticity resulting from the gearing of

the grains, where the piling is normal, is

9-03 x 1024 = n.

The rate of propagation of the transverse wave is

3-004 xl010=r or Vn/j.

^R. 1
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The rate of propagation of the normal wave is

7-161 x!010 = 2-387 XT.

The rate of degradation of the transverse waves, i.e. the dissipation

resulting from the angular redistribution of the energy, or viscosity, is

5-603 x 10-16 =
tt

or such as would require fifty-six million years to reduce the total energy in

the wave in the ratio 1/e
2
,
or to one-eighth ;

thus accounting, by mechanical

considerations, for the blackness of the sky on a clear dark night ;
while the

degradation of the normal wave, i.e. the dissipation resulting from the linear

redistribution of energy, is such that the initial energy would be reduced

to one-eighth in the (3'923 x l()~6)th part of a second, or before it had

traversed 2200 metres
;
and thus would account by mechanical considerations

for the absence of any physical evidence of normal waves, except such

evidence as might be obtained within some metres of the origin of the

wave; as in the case of Rontgen rays.

2. In spaces in which there are local inequalities in the medium about

local centres, owing to the absence or presence of a number of grains, in

deficiency or excess of the number necessary to render the piling normal,

such local inequalities are permanent ;
and are attended with inward or

outward displacements and strains, as the case may be, extending indefinitely

throughout the medium, causing dilatation equal everywhere to the strains

but of opposite sign, i.e. dilatation equal to the volume of the grains, the

presence or absence of which cause the inequality.

When the arrangement of the grains about the centres is that of a nucleus

of grains in normal piling on which grains in the strained, normal piling rest,

the nucleus in normal piling cannot gear with the grains outside, in strained

normal piling; so that there is a singular surface of misfit between the

nucleus and the grains in strained normal piling.

Such singular surfaces are surfaces of weakness and may be surfaces of

freedom or surfaces of limited stability with the neighbouring grains.

These singular surfaces, when their limited stability is overcome, are free

to maintain their motion through the medium, by a process of propagation,
in any direction

;
the number of grains entering the surface on the one side

being exactly the same as the number leaving on the other side; so that

when the inequalities are the result of the absence of grains they correspond
to the molecules of matter.

If the singular surface of a negative inequality is propagating through
a medium which is at rest, the grains forming the nucleus will have no
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motion, whatever may be the motion of the singular surface : but the strained

normal piling, which surrounds the singular surface and moves by propa-

gation with the singular surface, being of less density than the mean density
of the medium, represents a displacement of the negative mass of the

inequality, i.e. of the grains absent. And in whatever direction the singular
surface is propagated the motion of the medium outside is such as represents

equal and opposite momentum ;
as when a bubble is rising in water.

In exactly the same way, for inequalities resulting from an excess of

grains, the momentum resulting from the displacement of the medium
would be positive.

The principal stresses in the medium outside the singular surface of

a negative inequality are to a first approximation two equal tangential

pressures equal in all directions
;

and a normal pressure pr
= %p,

the mean of these pressures being everywhere the mean pressure of the

medium p equal in all directions.

Efforts, proportional to the inverse square of the distance, to cause two

negative inequalities at finite distances to approach are the result of those

components of the dilatation (taken to a first approximation only) which

are caused by the variation of those components of the inward strain which

cause curvature in the normal piling of the medium. The other components
of the strain being parallel, distortions which satisfy the condition of

geometrical similarity do not affect the effort. If the grains were inde-

finitely small there would be no effort. Thus the diameter of a grain is

the parameter of the effort
;
and multiplying this diameter by the curvature

of the medium and again by the mean pressure of the medium the product
measures the intensity of the effort.

The dilatation diminishes as the centres of the negative inequalities

approach, and work is done by the pressure in the medium, outside the

singular surfaces, to bring the negative inequalities together.

The efforts to cause the negative inequalities to approach correspond,

exactly, to gravitation, if matter represents negative mass.

Taking the mean density of the earth as 5*67, as compared with water

(-!)>

the reciprocal of the density of the medium being 10"4
,

the mean pressure of the medium 1'172 x 10 14
,

a the diameter of the grain 5*534 x 10~18
,

the mean radius of the earth 6'3709 x 108
;

12
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the effort to cause approach between the earth and a unit of matter on the

surface ( 1) is the product of these quantities multiplied by 47T/3, or

pa- x 10-4 x f TT x 5-67 x 6-3709 x 108 = 9'81 x 102
.

The inversion is thus complete. Matter is an absence of mass, and the

effort to bring the negative inequalities together is also an effort on the mass

to recede. And since the actions are those of positive pressure there is no

attraction involved
;
the efforts being the result of the virtual diminution of

the pressure inwards.

3. If instead of the negative inequalities, as in the last article, the

inequalities are positive, the efforts would be reversed, tending to separate

the positive inequalities, and the analysis would be the same, except that the

curvature would be negative. And it is important to notice that if such

positive inequalities exist, the fact that they repel each other i.e. they would

tend to scatter through space together with the evidence that the number

of inequalities either positive or negative occupy an indefinitely small space
as compared to the total volume of the medium, places any importance such

positive inequalities might have on a footing of indefinitely less importance
than that of the negative inequalities which are caused to accumulate by

gravitation ;
and thus we have an explanation of the lack of evidence of any

positive inequalities, even if such exist.

4. Besides the positive and negative inequalities there is another

inequality which may be easily conceived, and this is of fundamental im-

portance whatever may be the cause, it is possible to conceive that a

number of grains may be removed from some position in the otherwise

uniform medium, to another position. Thus instituting a complex in-

equality, as between two inequalities, one positive and the other negative ;

the number of grains in excess in the one being exactly the same as the

number deficient in the other.

The complex inequalities differ fundamentally from the gravitating

inequalities, inasmuch as the former involve an absolute displacement of

mass while the latter have no effect on the mean position of the mass

in the medium
;
and in respect of involving absolute displacement of mass

the complex inequalities correspond with electricity.

Apart from the displacement of mass the complex inequalities differ

from the gravitating inequalities. In the complex inequalities the para-

meter of the dilatation is not the diameter of a grain but one half the

linear dimension of the- volume occupied by the grains displaced, taken

as spherical.

The effort to revert in the case of the complex inequality is the product

of the pressure multiplied by the product of the volumes of the positive
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and negative inequalities and again by the parameter r . This is ex-

pressed when the positive and negative inequalities are at finite distance

apart by

R being essentially negative and the dimensions of the effort ( R) are

mtt~2 which express an effort to the displacement of mass.

The complex inequality which corresponds to the separation of the

positive and negative inequalities is one displacement, not two. This

fact admits of no question and might have been recognised long ago had

it not been for the general assumption that positive electricity repels

positive electricity, the fact being that the apparent repulsion of the positive

electricities is the result of their respective efforts to approach their re-

spective negative inequalities. By the assumption it became apparently

possible to express the potential V, and the electricity q as rational quantities,

when, as it now appears, the potential V and the electricity q are re-

spectively (- e
2

)*
- and (&*)%, which are both irrational. Their product

being the rational quantity

which, differentiated with respect to the distance, is

- e--R? mjb

and the mechanical explanation of these is,

I

and for the effort to revert, we have

Then for the electrostatic unit we have, since r = l, and R = l,

and from the known value of p the number of grains displaced through
unit distance necessary to cause the unit effort is

1-615 x 1048
,

and r = G'493 x W~3
,
from which we have the ratio of the effort to reinstate

the normal piling, to the effort of gravitation, from the same number of



6 ON THE SUB-MECHANICS OF THE UNIVERSE. [5

grains absent in each inequality as are displaced in the complex inequality,

the distances being the same,

1-2 x 1015
,

so that the effort of attraction between two inequalities, the grains absent

about each of which is the same as the grains displaced in instituting the

complex inequality, is eighty-one thousand billions less than that of the

electric effort.

5. Cohesion between the singular surfaces of the negative inequalities

results from the terms which were not taken into account in the first approxi-

mation which correspond to gravitation. These secondary terms involve

the inverse distance to the sixth power, and therefore have a very short

range, and so correspond to efforts of cohesion of the singular surfaces as

well as surface tensions having no effect unless the singular surfaces, or

molecules, are within a distance very small compared with the diameter

of the singular surface.

6. Transverse undulations in the medium, corresponding to the waves

of light, are instituted by the disruptive reversion of the complex in-

equalities. The recoil sets up a vibration which is exhausted in initiating

light.

7. Thus far the sketch of the results has included only those for which

there exists sufficient evidence to admit of definite quantitative analysis.

Nevertheless these quantitative results show that the granular medium,

as already defined, accounts by purely mechanical considerations for the

evidence, and affords the only purely mechanical explanation possible. If

then the substructure of the universe is mechanical, all the evidence, not

already adduced, is such as may be accounted for by an extension of the

analysis, and this is found to be the case.

The results of the further analysis afford proof:

Of the existence of coincidence between the periods of vibration of

the molecules and the periods of the waves;

that dissociation of compound molecules proves the previous state to

have been one of limited stability;

that the reassociation of compound molecules results from the reversion

of complex molecules
;

of the absorption of the energy of light by inequalities ;

that negative inequalities affect the waves passing through ;
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that refraction is caused by the vibration of inequalities having the

same periods as the waves;

that dispersion results from the greater number of coincidences as

the waves get shorter
;

that the polarization by reflection is caused only by that component
of the transverse motion in the medium which is in the plane of

incidence and results from the passage of the light from a space

without, or with few, inequalities, through a surface into a space

in which there are more inequalities;

that the metallic reflection results from the relative smallness of the

dimensions of the molecules compared with the length of the

wave and the closeness of their piling when the waves pass from

a space without inequalities across the surface beyond which the

inequalities are in closest order
;

that the aberration of light results from the absence of any appreciable

resistance to the motion of the medium when passing through
matter.

8. It may be somewhat out of the usual course to describe the results

of a research before any account has been given of the method by which

these results have been obtained
;
but in this case the foregoing sketch

of the purely mechanical explanation of the physical evidence in the universe

by the granular medium has seemed the only introduction possible, and

even so it is not with any idea that this introduction can afford any pre-

liminary insight as to the methods by which these results have been

obtained.

Certain steps, as it now appears, were taken for objects quite apart

from any idea that they would be steps towards the mechanical solution

of the problem of the universe.

The first of these steps was taken with the object of finding a mechanical

explanation of the sudden change in the rate of flow of the gas in the tube

of a boiler when the velocity reached a certain limit perhaps this would

be better described as a step towards a step*.

The second step was the discovery of the thermal transpiration of

gas together with the analytical proof of the dimensional properties of

matter f.

The third step was the discovery of the criterion of the two manners

of motion of fluids}.

* Manchester Lit. and Phil. Soc. 18745, p. 7.

t Royal Soc. Phil. Trans. 1879.

Royal Soc. Phil. Trans. 1883.
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And it was only on taking the fourth step, namely, the study of the

action of sand, which revealed dilatancy as the ruling property of all

granular media*, which directed attention to the possibility of a mechanical

explanation of gravitation. In spite of the apparent possibility, all attempts
to effect the necessary analysis failed at the time.

There was however a fifth step ;
the effecting of the analysis for viscous

fluids, and the determination of the criterion!, which led to the recognition

of the possibility of the analytical separation of the general motion of a

fluid into mean varying motion, displacing momentum, and relative motion
;

and this suggested the possibility that the medium of space might be

granular, the grains being in relative motion and at the same time being

subject to varying mean motion. And this has proved to be the case.

At the same time it became evident that it was not to be attacked by

any method short of the general equations of a conservative system starting

from the very first principles; and it is from such study that this purely
mechanical account of the physical evidence has been obtained.

*
Phil. Mag. 1885.

t Boyal Soc. Phil. Trans. 1895, A.



SECTION II.

THE GENERAL EQUATIONS OF MOTION OF ANY ENTITY.

9. AXIOM I. Any change whatsoever in the quantity of any entity within

a closed surface can only be effected in one or other of two distinct ways :

(1) it may be effected by the production or destruction of the entity

within the surface, or

(2) by the passage of the entity across the surface.

To express this general axiom in symbols I put ; Q for the quantity

required to occupy unit volume, as an indefinitely small element of volume,

8S, at any point within the surface is occupied. Q is thus the density of the

entity at the point, and however it may vary from point to point is a single

valued function of the position of the point :

S (QBS)= llQdxdydz is put for the quantity within a space $ enclosed

by the surface s at the instant considered,

S (oQBS) is the quantity enclosed at a previous instant.

2 (pQBS) is the quantity which has been produced within s during the

interval, and

2 (cQBS) is the quantity which has crossed the surface inwards during

the interval.

Then 2 (Q&Sf)
= 2 ( QBS) + 2 (PQSS) + 2 (CQ8S)

is a complete expression for the Axiom.

Using B [ ] to express any change effected in the time St this may be

written

8R(gSS)]**[S(,a/8)]-fS[S<aQ&^3 ............... (1).

And this equation (1) is the general equation of motion of any entity as

founded on Axiom (I.).

10. General equation of Continuity.

AXIOM II. When the entity considered is some particular form or mode

of an entity which, like matter, momentum, or energy, can neither be
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produced or destroyed, any production or destruction of a particular form of

the entity at a particular place and instant of time involves the destruction

or production, at the same place and time, of an equal quantity of the same

entity in some other form or mode.

To express this in symbols let Q refer to the general entity without

distinction of form or mode and Q1} Q2 >
&c. respectively refer to the several

particular forms or modes of the entity.

Then since

(2),

which is a general expression for the law of conservation, and is the general

equation of continuity in terms of the several distinct actions of exchange
between the different modes of the entity.

11. Transformation of the Equations of Motion and continuity for a

steady surface.

Equations (1) and (2) hold however large or small the space S and the

interval Bt may be and whatever may be the motion of the surface s enclosing

the space S ;
for the S covers the S ( ).

If however the surface s be steady or fixed in space the S may be covered

by the 2 ( ) and the equations written

............ (3),

(4).

Since these equations hold for indefinitely small spaces and indefinitely

small intervals of time in the limit, when dx, dy, dz and dt are severally

zero :

(5),

and 2[S(QSS)] = -

t
(Q)dtdxdydz ..................... (6).

In cases where Q is not a continuous function of t the meaning of such

differential coefficients as that in the right member of equation (6) become

unintelligible without further definition, and it seems desirable here to point

out, once for all, in what sense they are used in this paper.

12. Discontinuity.

If Q is any function of xyz and t, which is single valued at every point of

space at every instant, but which at a particular time t is discontinuous at a

surface which is expressed by

</>
=

</> (x, y, z, t)=0.
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Where
</>

has positive values on one side of the surface and negative

values on the other, then putting Qj for the continuously varying value of

Q where
<f>

is negative and Q2 for Q where < is positive, Q is at all times

expressed by the limiting value of the function

when n is infinite*.

For any finite value of n F is a continuous function of the variables, as

are also the derivatives of F; and substituting F for Q, the limiting values,

when n is infinite, of any functions derived from F by any mathematical

process are taken as the values of the function expressed by the same mathe-

matical process performed on Q"f"-

13. Having regard to the foregoing definition of the interpretation to

be put upon the meaning of the differential coefficients in cases of discon-

tinuity, the expressions obtained by equations (5) and (6) for the rates of

convection into and production in such indefinitely small spaces may be

treated as continuous functions of the coordinates.

Thus taking u, v, w for the component velocities of the entity, to which

Q refers, passing a point x, y, z, relative to the surface of the elementary

space docdydz at rest or in steady motion, since u, v, w are single valued at

each point at any instant of time the convection into the space in the

interval dt is expressed by

dt ^ (,Q) dxdydz =-dt \^ (uQ) + J- (vQ) + ^ (wQ)\ dxdydz \

v. O

or at a point the rate of change by convection is
y

...... (V),

M> a.
dM) ,

d (w \

dx dy dz
}

*
Electricity and Magnetism, Maxwell, 8.

t Electricity and Magnetism, Maxwell 8.

,

dF dt dt

_ . dF dQ, dF dOnFrom which, taking n infinite, when is negative = -~
,
when <p is positive - =

dt dt dt dt

and when =

dF_ dt

dt~

which is infinite, but which, integrated, from
<f> negative to positive over an interval St, indefi-

nitely small, gives
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whence substituting in equations (1) and (2) for the indefinitely small

element dxdydz and the indefinitely small interval of time dt, these

become :

dt^ dxdydz = dt \~
t
(PQ)

-
(uQ)

- ~
(vQ)

-
(W

Q)|
dxdydz ...... (8),

^ ~r+(pQi)dxdydz= dt\-j.( pQ2 + &c.)> dxdydz ......... (9),
dt \jdt J

or at a point the rate of change is

(11).

Equation (10) expresses the rate of change in the density Q at a point in

terms of the densities of the actions of production and convection at that

point. While equation (11) expresses the relation which holds between the

densities of the several actions of exchange between the different modes

of Q.

14. Moving Surface.
i

In the equations (5) to (11) the surfaces of the element of space (BS or

dxdydz) are steady, and in equations (3) and (4) the closed surface over

which the summation is taken is also steady the 8 being covered by the 2.

If, however, the motion of every point of the surface be taken into account

it is possible to sum the results of equations (7), (8), (9) over the space
enclosed by a surface in any manner of continuous motion.

Putting u, v, w for the component velocities of the surface at the point

x, y, z, then the component motions of the entity represented by Q relative

to the surface at this point are respectively

u u, v v, w w,

and although u, v, w are only defined at the surface, since the motion of this

surface is continuous, u, v, w may be taken as continuous function of x, y, z

throughout the enclosed space. Then the rate of convection across the

surface is expressed by

as K -">]+! K -

+ f [(w- w)Q]\ dxdydz ............(12).
CtZ )
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The instantaneous rate of production within the surface is not altered by
the continuous motion of the surface. Therefore equation (1) becomes

and integrating equation (10) over the surface, the rate of change in the space

instantaneously enclosed as by a fixed surface is

dt

whence substituting in equation (13) for

4s!
from equation (14),

or as it may be written



SECTION III.

THE GENERAL EQUATIONS OF MOTION, IN A PURELY-
MECHANICAL-MEDIUM, OF MASS, MOMENTUM AND ENERGY.

15. THESE equations are obtained by taking Q in equations (1) to (16) to

refer successively to the density of mass, the density of the component, in

a particular direction, of the momentum, and the density of the energy.

The forms of the equations so obtained, as well as the circumstances to

which they are applicable, depend on the definition given, respectively, to the

three entities.

If this definition is limited, strictly, to that afforded by the laws of motion

as distinct from any physical or kinematical properties of matter, the equations
will be the most general possible and applicable to all mechanical systems.

In which case by introducing separately and step by step farther definition

of the entities the effect of each such definition on the form of the equations
and of the expressions for the resulting actions, to be obtained by integration

of the equations, will be apparent ;
so that the individual effects of the several

particular physical properties of matter may be analysed. While on the other

hand if the definition is, in the first instance, such as that on which the

equations of motion for fluids and elastic solids have been founded the

equations so obtained will be essentially the same. And, although the

significance of the several expressions in the equations as relating to accu-

mulation, convection and production will be more clearly brought out they
will afford no opportunity of analysing the several effects resulting from

particular physical definition.

In this investigation the object sought, in the first instance, has been to

render the equations the most general possible. Only introducing restrictive

definition where the effect, of such definition, on the form of the expressions

which enter into the equations and define the limiting circumstances to

which the equations are applicable, becomes clearly defined.

16. A mechanical-system implies the existence, in the space occupied by
the system, of an entity which possesses properties which distinguish the

space so occupied from that which is unoccupied. If this entity includes

everything that can occupy space, within the space occupied by the system,

it is the mechanical-medium in which the system exists.
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The sense in which mechanical-medium is here used is not that in which

the term ' medium '

or ' medium of space
'

is generally used in mechanical-

philosophy, nor yet that for which "matter" is used. For although that

which is recognised as matter is the only entity included in the equations of

motion which has the property of occupying position in space, it is found

necessary in order to account for experience to attribute to matter properties

extending through spaces which are not occupied by matter, and to reconcile

such extension with the absence of any mechanical properties as belonging to

space itself it has been recognised that there exists in space some other

entity, besides matter, which has the property of occupying position and is

recognised in mechanical philsophy as the medium of space or the ether.

To the ether are attributed such mechanical properties, whatsoever these

may be, as are necessary to account for the observed properties of matter which

are not defined by implication in the laws of motion, as well as to account

for all the properties extending outside the space occupied by the matter.

This amounts to an admission that these physical or extended properties are

not inherent in the matter nor yet in the ether, or in other words that they
are not the properties of the entity which occupies position in space, but are

the consequence of the mechanical actions and of the arrangement of the

mechanical system of the Universe.

If then everything that occupies position in space is included by definition

in the mechanical-medium, experience affords no reason for attributing to

such medium inherent properties other than those required by the laws of

motion and the law of conservation of energy, and so defined, the medium is

here designated a Purely-Mechanical-Medium.

17. The properties of a purely-mechanical-medium necessitated by the

laws of motion are

(1) The property of occupying definite position in space ;

(2) The continuity or continuance in space and time
;

(3) The property of definite capacity for momentum, i.e. definite

mass;

(4) The property of receiving and communicating momentum in

accordance with the laws of conservation of momentum and energy.

Since the mass of any particular portion of the medium measures the

quantity of that portion of the medium and has identically the same position
in space as that portion of the medium, this mass is identified with the

particular portion of the medium. The density of the mass at every point
in space is thus a measure of the density of the medium at every point ;

and

the equations of motion and continuance in time and space of the mass are

the equations of motion and continuance of the medium.
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18. The equations of continuity of mass.

Putting pSS

for the capacity for momentum or mass in the indefinitely small space SS

and substituting p for Q in equation (2) the equation for conservation of

mass becomes

S[2(rf&Sf)]-0 ...............................(17);

and by equations (1) and (17) the equation of motion of mass becomes

(18).

Whence for the indefinitely small element of space dxdydz and the inde-

finitely small interval of time dt it follows by equations (7) that

dp dpu dpv dpw _ , .

~j7 T--7 P T I

--
j
- v .......................... \ li'/>

at dx ay dz

which is the general equation for density of mass or medium at a point.

19. Position of mass.

Taking x, y, z as defining the position of the indefinitely small steady

space Bs, and putting px, py, pz successively for Q in equation (2), the equa-
tions for the conservation of the position of the mass become respectively

The equations for the rate of change of position of the mass within

space over which the summation extends, become by equations (1) and

(20)

&}}, &c., &c...................(21).

Since x, y, z are not functions of the time, it follows by equation (19),

if x, y, z define the position of the centre of gravity of the mass in the

steady space over which the summation is taken, that

f([
JJJ

_
) (
& + H + !?) dxdydz'\dx dy^dz) y

, &C., &C..........(22).-TT r 7 j -,

dt $j)pdxdydz

For in a fixed space,

Also S (pds)
=-+&c- dxdydz.
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For a space moving with the mass by (15)

y...(22A).

whence since x is not a function of t,

/ ax ~ \ v / \ p o
2, i p -j os I

= 2t (puos), &G., sue.

\ l&v /

20. Before proceeding to the consideration of momentum and energy
it will be found convenient to express certain general mathematical relations

betiueen the various expressions which enter into the equations for quantities

into which p enters as a linear factor.

When Q is put for pq, where q is a factor which has only one value at

each instant for each point in mass, but which value for the point in mass

is a function of the time, then the derivatives of discontinuous functions

having the meaning ascribed in Art. 12,

dt

And since by equation (17)

dt dt
.(23).

dt

Also

dt

dQ_ dp dq
dt
~ q

dt +p dt

^ P

.(24).

dt

and
d

dx

whence subtracting and having regard to equation (19)

.(25);

dt dt (dt dx
)

therefore by equation (8) } (26).
i

d(pQ) _ (dq , u dq
dt (dt dx

Again, if Q = pq = pq^ and Q1
= pql} Q2

= pqz , by equations (26),

d(pQ)_ (dqty dq^z ) \

p ^ J4 + u j^ + <xc.
J-

(dq, dq,. nf
--(27) '

'

^2 1 -JT + u -T~ + &c - M*
.(dt dx }])

B. 2

dt dx
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and putting q^ and q2 respectively for q in equations (26) and substituting

in the right member of the equations (27),

dQ _ d(eQ) = /dQk _ d(cQ,)\ fd^ _ d(M\
dt dt \dt dt J \ dt dt !

(28).

dt dt dt

21. In the equations (25) to (28) p is subject to the condition of

conservation of mass, equations (17) and (19). If instead of p we take p"

as an abstraction of the density we obtain a corresponding but more general

theorem, by putting

dp" \dp"u dp"v dp"w\ d(j,p") ,

-fr = -{j 1 _ H j r H T; v^-jA),
dt

{
dx dy dz

}
dt

where the last term on the right expresses an arbitrary density ;
then

dt dt

dQ _ dp" ,, dq
dt q dt P dt

^25 A).

Equating by (23 A, 24 A, 25 A),

"* _ " ^~* ' _ n
" vyr / " i -i , . ~i ,

^

dt dt
~ q ~dT +p

(dt
H u

dx^
.(26A).

And putting q = qlq.2
and Q l

= p'Q^ Q^ = p"Q2 ,
we have

dQ2 d(cQ:>\ d( pp")

t

dt dt dt

dQ_d (CQ) _
dt ~W~~

From which it appears

Vd

2+u
d*

+ &c

*Stdas

dq,qz
l
' '

.(27 A).

dQ d(cQ) _
dt dt

d(M =
dt

dQ,
dt

dt

dt J
+

dt dt

+
dt dt

.(28 A).
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22. Momentum.

The definition of momentum afforded or required by the laws of motion

is, that the momentum in any particular direction is the product of the mass

multiplied by the rate of displacement, in the particular direction, of the

mass in which it resides. Since at each instant mass has position and

capacity for momentum, and the rate of the displacement at the instant

has magnitude and direction, momentum has position, magnitude, and

direction.

Taking ns before u, v, iv to represent the component velocities of the

mass passing a point at any instant, and p for the density of the mass at

the same instant, the densities of the respective components of momentum
are respectively

Mx = pu, My
=

pv, Mz
=
pw.

Substituting Mx for Q in equation (1) it becomes

S[2(MXSS)] = S[2( PMX SS)] + 2[(CMX 8S)], &c., &c.......(29).

By equation (2) substituting PMX for PQ1 ,

,&Sf + &c.)], .fee., &c.............(30),

where 8 [2, ( PQ2BS + &c.)] expresses the rate of destruction of momentum
in direction x, in all other modes than that represented by MXSS within the

space of S.

23. Conduction of momentum by the mechanical medium.

As 2 (MX 88) represents the sum of all the momentum in direction x

within the space 8, there is difficulty in realising how momentum in direction

a; can be produced or destroyed in any other mode. If, as in this research,

p&S is defined as including the total capacity for momentum within the in-

definitely small space, 8$, the production or destruction of momentum in

direction x in any other mode than MX 8S, at a point within the space SS,

requires that momentum should have entered the space without having been

conveyed by the motion of the mass across the surrounding space. The

difficulty thus presented naturally raises the question as to whether such

production or destruction is necessarily implied in the laws of motion ? as to

whether the entire exchanges of momentum cannot be accounted for as the

result of convections by the moving mass ?

That it is possible for momentum to be conveyed across a finite space by
the mass within the space, and at the same time the momentum of the mass

within the space to be zero, has long been recognised, and follows directly as

a geometrical consequence of the fact that momentum possesses the property

of being negative in exactly equal degree with that of being positive ; just as

does electricity ;
so that a stream of negative momentum in any direction,

22
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crossing a surface in a negative direction, has exactly the same geometrical

significance as an equal stream of positive momentum crossing the same

surface in a positive direction. The result being the convection by both

streams of positive momentum in the positive direction and negative

momentum in the negative direction at equal rates, while the sum of the

momenta of the masses in the two streams taken together within the space

is zero.

In such streams of momentum the action at a surface is, though purely

kinematical, that of exchange of momentum between the spaces on the

opposite sides of the surface, such exchange proceeding at a definite rate,

which rate has a definite intensity at each point of the surface, and the

direction of the momentum exchanged is the direction of the motion of the

mass at each point. The condition that action and reaction are equal and

opposite is thus completely satisfied that is to say, not only is the action

one of exchange of momentum, but it is also one of exchange of moment of

momentum about every axis. Hence, where the boundary conditions of the

medium admit of such opposite streams of momentum in different directions

through the same space in the same interval of time, exchanges of momentum

in any direction across any surface may be effected while the aggregate

momentum is zero.

In this way, in the kinetic theory, the stresses in gases at any instant are

completely accounted for, as the result of the convection of momentum

conveyed by the molecules amongst which the motion is distributed uni-

formly in all directions. But even in the case of gas such convection does

not account for the maintenance of the distribution of velocities amongst the

molecules. This requires that the molecules should exchange momentum,
and such exchange as appears by equation (13) cannot be accounted for as

the result of kinetic convection by moving mass, but requires mechanical

action between the molecules. In the kinetic theory, therefore, it is assumed

that
'

forces
'

exist between the molecules, when within certain distances of

each other, either as the result of varying stresses in the matter, or as exerted

through intervening space.

From these and like considerations it appears that, to whatever extent

the transmission of momentum from one portion of space to another may be

accounted for as tlie result of convection by moving mass, the communication

of momentum from one portion of mass to another requires either that it be

transmitted through space occupied by mass otherwise than as moving mass,

or that it be destroyed in one place and produced in another.

Unless, therefore, it is assumed that, while mass has continuous existence

in time and space, momentum can cease to exist in one place and, at the

same time, come into existence, in the same quantity, at another place, that is
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unless we accept action at a distance, and thereby preclude all further

definition and explanation, it is necessary that the purely-mechanical-

medium, in addition to the properties of occupying position, and having

capacity for momentum, should have the property of transmitting or con-

ducting momentum through the space it occupies otherwise than by the

convection consequent upon the motion of the mass
; and, to completely satisfy

the condition that the direction in which the exchange is effected is the

direction of the momentum exchanged, it is necessary that the direction of

conduction should everywhere be the same as, or the opposite to, that of

the momentum conducted that the conduction should be by streams, real

or imaginary streams, of real or imaginary momentum in the same direction

as that of the momentum, just as in the case of convection, except that in

the latter case the streams and the momentum are real; so that if I, m, n

refer to the direction in which h is measured, which is that of such a stream,

of which p is the intensity, positive or negative, of the rate of exchange
across a surface normal to h, the intensities of the rates of exchange of

momentum, in direction h, across the surfaces yz, zx, xy are respectively

pi, pm, pn, and the intensities of the rates of exchange of the components of

momentum, in the direction of x, y, z, respectively, are

across yz pi
2
, plm, pin,

zx pml, pm"*, pmn,

xy pnl, pnm, pn
2
.

This property of conducting momentum (on which all mechanical action

depends), necessitated by the laws of motion as inherent in a purely-

mechanical-medium, must be continuous in time and space if the medium

is continuous in time and space. As possessed by the medium, therefore,

the property differs from the property of strength or that of resisting stress

possessed in various degrees by matter in respect to the limits to the

strength, which limits depend on the physical condition of the matter and

have no existence in the medium. This difference as regards limits, however,

does not affect the correspondence, in character, between the property of

conduction of momentum by the medium and the property of sustaining

stress in matter.

The magnitude of stress being nothing more nor less than a measure of

the intensity of the flux of the component of momentum, in the direction

of the stress across the surface on which the stress acts, if the intensity of

stress at a point on a surface is defined to be the intensity of the flux of

momentum conducted, as distinct from that conveyed by the motion of the

mass across the surface, the notation used for the expression of the stresses

in matter becomes applicable for the expression of the components of
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momentum conducted, as distinct from that conveyed, in a purely-mechanical-

medium. Thus

PXX> Pyx> PZX> Pxyt Pyy> Pzy> PXZ> Pyz> PZZ)

the expressions, used by Rankine for the component intensities of the stress,

in which the exchange of momentum is in the direction indicated by the

second suffix and is across the surface perpendicular to the direction indicated

by the first suffix, may be defined to express the intensities of the rates of

conduction of the components of momentum in which the momentum is in

the direction indicated by the second suffix and is conducted in the direction

indicated by the first suffix.

Whence, at any instant, the rates of conduction of the component of

momentum from the outside into the indefinitely small steady element

dxdydz are respectively expressed by the left members of the equations

(30 A),

-{^ +
-df

+
%r}

********

dpxy y_ = Fydxdydz
doc dy dz

}

.(30 A),

>o* dpyz dpzz \ ,77+ --.,-- -f -^ } dxdydz =
.

/> fiii fi v \
\AJ \J(j II \J(j4/ I

Fx ,
Fy ,

Fz being merely contractions for the expressions in the left member.

24. Since, in order to satisfy the condition that action and reaction are

equal, accumulation of momentum in the mode in which it is conducted is

impossible, the expressions for the rate of conduction into the mass in the

space dxdydz must also express the rates at which momentum in the mode

in which it is conducted, is produced in the mass in the .space outside the

element and destroyed within the element. Whence it follows that Fx , &c.,

respectively represent the rates at which the densities of the respective

components of momentum, in other mode than that ofMx , &c., are destroyed
within the element, and as these are the only rates at which momentum
within the element is destroyed Fx ,

&c. define the values of (pQ.2 + &c.) in

equations (30), and the equations of continuity of the densities of the

respective components of momentum in a purely-mechanical-medium be-

come by equation (11)

*=-?- = Fx , &c., &c (31),

and substituting in equations (29) we have by equation (10)

d

Jj^ = Fx+^(cMx), &c., &c (32),

which are the equations of density of momentum in a purely-mechanical-
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medium expressed in terms of general symbols expressing the separate effects

of the distinct actions of conduction and convection.

Substituting for Fx equations (30 A) and d (cMx)ldt from (7) we have

the full detailed expressions for the equations of the densities of the com-

ponents of momentum at a point

dMx ( d d d
j =

i ~j~ \P%x ~^~ P'My) ~l~ ~r~ (Pyx ~^~ pii'v) ~f~ ~r (PZX
at \dx dy dz

The equations (32) and (33) are the equations of conservation of mo-

mentum in a purely-mechanical-medium, at a point, iu which the first terms

in the brackets on the right of (33) express the rates of change by con-

duction, and the second the rates of change by convection.

The integrals of the right members of these equations transform into

surface integrals, and thus they express the condition that the change of

momentum within any space S is solely the result of the passage of

momentum across the surface of 8.

25. The conservation of the position of momentum.

It appears from the previous article that the condition of conservation

of momentum requires that action and reaction should be equal and opposite,

but this is all
;
so far pxx , pyx ,

&c. may be independent of each other, and

there is no indication that exchange must take place in the direction of

the momentum exchanged. This is however expressed by the equations of

conservation of the position of momentum.

Taking x, y, z and pu, &c. as referring to a fixed point. Then multiplying

each of the equations (33) by x, y, z, successively, we have

\ j~ (Pxx + Puu) + &c.
[, &c., &c (34),

\Ci*Xs \

'

dt

or transforming, since x, y, z are not functions of t,

-j- (xpu) pxx puu = \
-j-

x (pxx + puu) + &c. [

-^- (ypu) pux puv = \ -j- y ( pxx + puu) 4- &c. 1- 1 (35),
jj -f \*7 1 / JL a* I

J /V/y 7 \ JT *"*- t '
,

CVV ( \JuJif

-jjr (zpu)
-
p.x

-
puw = -

\~r-
z (pxx + puu) + &c. I

at (ax )

and corresponding equations, for xpv, &c. and xpw, &c.

The right members of these equations integrated over any space S repre-

sent surface integrals.

The integrals of pxx ,
&c. on the left of the equations represent the

respective rates of the displacement by conduction of the respective com-
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ponents of momentum within 8, while those of puu, &c. represent the rates

of displacement of momentum by connection within 8.

Hence what these equations express is that the whole rate of displace-

ment of momentum in S, less the internal rate of displacement, is equal to

the rate of displacement of the momentum across the surface.

This, it appears, follows directly from the condition that action and

reaction are equal i.e. the equations of motion and implies no relation

between the components of conduction. Such conditions however follow

from the further condition that the direction of exchange is the direction of

the momentum exchanged.

26. Conservation of moments of momentum.

Subtracting equation (35) for ypw from that for ypv,

-
ypw)

-
(Pzy

-

\Tx

whence in order that the rate of change in the moment of momentum about

the axis of x may be expressed by a surface integral we have the condition,

as previously obtained (Art. 23),

Pzv=Pvz, and similarly, i,h&tpxz = pzx &ndpyx =pxy ............(36A).

27. Boundary Surfaces.

The conditions at the bounding surfaces of spaces continuously occupied

by the medium may be of two kinds, according to whether the surface

divides the medium from unoccupied space, or separates two continuous

portions of the medium which are in contact at the surface.

Taking r, s, t for distances measured from a point in the surface in direc-

tions at right angles to each other, that in which r is measured being normal

to the surface and lr ,
mr ,

nr ,
ls ,
ms ,

n g ,
l
t ,
mt ,

nt for the direction cosines of

r, s, t respectively, then since Pxy
=pyx, &c., &c.,

irnr + 2pzxnrlr + 2pxylrmr

+ 2pzxnsls + 2pxylsms

Ptt p*J<t + Pyyint + Pzznf + 2pyZm tnt + 2pexnt

pst =pxxlslt +>j/3/wsmt -f pzznsnt -f pyz (msnt + nsmt)

+PKC (nglt + lsnt) + Pxy (ls>nt + mk)

ptr =pMr + pyymtmr+pzzntnr +pyz (mtnr + ntmr)

+Pzx (ntlr + It^r} +Pxy

Prs =pxJ>rl>s +pyymrmg + pzznrns +pyz (mrns + nrms)



28] GENERAL EQUATIONS OF MOTION IN A PURELY-MECHANICAL-MEDIUM. 25

Where the surface separates the medium from unoccupied space the

stresses p^ &c., are all zero at the surface, but where the surface divides two

portions of the medium in contact, then the intensity of the flux across the

surface at a point is the intensity of the rate at which such momentum is

received by the one portion and lost by the other across the surface at the

point, and by the foregoing notation p^, prg , prt respectively express the

intensities of the rates of flux across the surface of the components of

momentum in the direction in which r, s, t are respectively measured.

These rates are the limiting values at the surface of the respective com-

ponents of flux within the medium on either side of the surface in the

directions in which r, s, t are measured, and are thus the limiting values, at

the surface, of the expressions on the right side of the equations (1).

28. Energy.

Although the half of the vis-viva (that is half the rate of the displace-

ment of the momentum, or half the product of the momentum multiplied

by the rate of displacement of the mass) now called kinetic energy, has long
been recognised as the general measure of the mechanical-effect of mechani-

cal-action through space, the recognition of energy as a physical entity has

resulted from the discovery of the reversibility of actions by which

mechanical-action produces physical effects, and of the linear relations which

exist between the physical measures of the physical effects so produced, and

the kinetic energy which has been expended in producing them.

The discovery of these relations and the reversibility of the actions

having led to the recognition of the existence in the Universe of physical
entities which could be changed to and from the mechanical entity kinetic-

energy, these physical entities, although not otherwise mechanically definable,

have become recognised as modes of the general physical entity of which

kinetic-energy is one mode and the only mode which is subject to strict

mechanical definition
;
and hence followed the recognition of the law of con-

servation of energy.

Taking pxx ,
&c. to have the significance ascribed to them in Art. 23, the

intensities of the components of mechanical action that is the intensities

of the components of the flux of momentum, by conduction, from the

negative to the positive side across a surface of which the direction of the

normal is defined by I, m, n are respectively expressed by

Pxxl + PyxM + PzxK, &C., &C.

These are the expressions for the time-measures of the intensities of the

components of mechanical action, in the directions of the perpendicular axes

of reference, of the mass on the negative side of the surface, on the mass on

the positive side of the surface, at a point in the surface.
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Multiplying these time-measures respectively by u, v, w, the component
velocities of the mass at the point, we obtain

u (pxxl + pyxm + pzxn), &c., &c.,

which are the corresponding space-measures of the respective components of

the intensity of mechanical action at the point.

Adding these and multiplying by Ss, the element of a closed surface, the

integral over the surface is expressed by

JJ
[(up u + wpxz) I + (upyx + vpyy + wpyz) m + (upzx + vpzy + wpzz) n]

which is the space-measure of the mechanical action of the mass outside the

closed surface on that within.

This (if there are no purely physical exchanges) is by the law of conser-

vation of energy equal to the rate of change of energy in all its modes,

within the surface that is if there is no change by convection across the

surface, Avhich will be the case if the surface is everywhere moving with the

mass.

The changes of energy may be partly in kinetic-energy and partly in

other physical modes, according to the expression which is obtained by

transforming the equations of momentum (33) by equation (26) ; multiplying

respectively by u, v, w, integrating over the surface and adding, the equation

becomes, when transformed by equation (15), taking U = u, &c., and assuming
the actions continuous in space and time,

f 1 ri C C C

-r llnp (u? + v" + w2

)} dxdydzA dt J J J
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energy in other or physical modes within the surface as resulting from the

mechanical action on the surface.

29. In a purely-mechanical-medium (including everything that has

position in space and possessing no physical properties other tlian are required

by the laws of motion) the kinetic-energy must include all the energy in the

space over which the integration extends, hence as applied to such medium
the second term on the left of equation (38) must be zero, however large or

small the space over which the integration extends. Whence putting
<2E = p(u* + v2 + w'2) and transforming equation (38) by equation (15), the

equation of energy for a fixed space becomes

rdf ~\ r r

-^-
&S =

1 1 [(up + vpxy + wpxz + uE) I

+ (upyx + vpyy + wpyz + vE) m + (up^ + vpzy + wpzz + wE) n} dS . . . (39).

Whence since this holds whatsoever may be the size of the space en-

closed, we have for the rate of change of the density of energy at a point,

by differentiating the left member of equation (3.9) with respect to the

limits

dE d ,
. d , . d ,

~dt

=
''~dx ^Upxx + Vpxy + Wpxz'

~
dy

- Pyx + Vpyy Wpyz'
~
dz

d(uE) d(vE) d(wE)
dx dy dz .(40).

30. In order to simplify the expressions N may be put for the rate at

which density of the energy, in whatsoever mode, is produced by the

mechanical action at any fixed point in space, and Nx , Ny ,
Nz for the

densities of the energies which have been produced by the components in

the directions in which x, y, z are measured respectively, so that

Then

Whence substituting in equation (40) it becomes

dE dN d ,
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which may be obtained from (1) and (2) together with the condition that E
is continuous and is the equation for the density of energy in terms of

genera] symbols expressing the densities of the distinct actions of conduction

and convection at a point.

31. The condition of a purely-mechanical-medium.

Equations (40) and (43) are the equations of continuity of energy in a

purely-mechanical-medium in which the relation between the stresses and

strains is continuously, that the second term in the left member of equation

(38) is everywhere and continuously zero. Transposing the expression under

the integral in the second term in the left member of equation (38) by (36A)

and equating to zero we have

du dv dw /dv dw\ /dw du

Then, for convenience, expressing equation (44) as dR/dt = 0, equation

(44) defines the action in the medium as being purely kinematical.

From the definition of pxx , &c., &c. as components of intensity of a flux

of momentum it follows geometrically that the value of the expression

which forms the left member of equation (44) is independent of the direction

in which the axes are taken. Hence, if i, j, k, are measured in the directions

of the principal axes either of the rates of distortion or of the stresses at a

point p and u, v, w are the components of the velocity in these directions,

respectively, transforming to these axes we have by equation (44); since

either
;

^ +^ = 0, &c., &c.; or pjk
= 0, &c., &c.............. (45),

Ctfo CLj

du dv dw

From these three conditions it appears that no energy is transformed in

distorting the medium. And we have as the three possible conditions in a

purely-mechanical-medium

Pn = Pjj
= Pkk

= ^\ which is the condition of empty space (40 A),

, du dv dw . a .,

pa = PJJ =pkk > and -T- + -j- + -j-
=

; perfect fluid.
di dj djf

du dv dw dw dv du dw dv du . . ..^

-j^ + -r + j-
=

;
or ^- + j-

= j- + T-=j--fj- = 0; perfect rigidity.
di dj die dy dz dz dx dx dy

32. The transformations of the directions of the energy, and angular
redistribution.
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Kinetic energy has direction at every point, although not a vector, and

the equations obtained by multiplying equations (33), respectively, by u, v, w
are, respectively, the equations of energy in the directions of x, y, z.

For an element in a closed surface within the mass

Tx
+ *

Ty
+ V

+
dy

(pyxU^ + dz

&c., &c.

In these equations the members on the right represent work, in the

directions x, y, z, respectively, done on the surface within which the in-

tegration extends. And as these efforts are all in the direction of x, y
or z, respectively, they involve no change from one direction to another.

But the second terms on the left of each of the equations represent

production of energy in the directions x, y, z respectively, at the expense
of the energy in the other directions.

It is thus shown by condition (44) which is that the sum of these

terms, from the three equations, is zero that, putting Rx , &c., &c. for the

densities of the rates of angular dispersions at a point, from the directions

a?, y, z respectively, these are

dRx ( du du du\du\

Tz)
'
&C"

It is to be noticed that in a medium such that u, v, w do not represent

the velocities of points in mass, Rx does not represent angular dispersion

only, unless equations (44) are satisfied
;
and if not so satisfied dRx/dt would

represent the work done against the apparently physical actions in the

medium, as well as the angular dispersion.

The analytical separation of this action is obtained by transforming the

general equation, which becomes

dR 1 , /' du dv dw

du dv\ /du dw
P-(dz--dx

fdu dv dw
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From the member on the right of equation (47) it at once appears
that the two first terms express angular dispersion only, while the second

two terms express distortional motions only, which, by the conditions (45),

are zero.

33. The continuity of the position of energy.

Kinetic energy has position ;
and hence, putting x, y, z for the point

at which the density of energy is E, by equation (1)

S [2 {JMSf}] = 8 &{c(Ex)SS}] + S &{ p(Ex) SS}], &c, &c. ...(48),

in which x, y, z are not functions of time. And if x, y, z are put for the

centre of energy, u, v, w for the component velocities of the surface, as in

equations (12) to (16), Art. 14, we have at any instant,

x2{E8S} = 2{Ex&S], &c., &c......................(49),

whence, differentiating with respect to time,

~ 2 (ESS}=-x[2{ESS}'] + [2{EasSS}], &c., &c....... (50).

Then, by equation (15), these equations become

f 2 (08) = -
at L(dt dx dy dz

2 +
> d(Exv) d (Easwy

dt dx dy dz

- S -
dx dy dz

+ Z(EuSS),&c.,&c........................................ (51).

Whence, for a fixed surface, since u = v = w =
0,

dx
,<-, (, _.dE sc<\2 \(ae

-
x) -j- SS\dt }

^7 V/F^OX ' -> ................... -

dt 2 (ESS)

For a surface moving everywhere with the mass so that u=u, &c.,

equation (51) becomes

, 2
{(*

- x)l ( PE) SS\ + 2 {EuSS}, &c., &c.
^_ _1__)_ /K0\
dt 2 {ESS}

or, [i{(Jfo)&8}]
= 2 ar (,^) Sflf + S(tfte&Sf) .........(54),

where, as in equation (42), differentiating with respect to the limits

^- (PE) = -
|^-

(^^M + j^y + p^w) + &c. + &c. . . .

J

...... (55),

dN= ~-
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34. Discontinuity in the medium.

It is to be noticed that the expressions in equations (37) to (55) are

adapted to the cases in which the medium is continuous, so that for the

complete expression of the actions where the medium is continuous within

closed surfaces, only, it is necessary to express the conditions at the bounding
surfaces by using the expressions in equations (37).

These complete expressions might very properly be introduced at this

stage. But as the necessity for the definite use of these does not arise

until a much later stage in this research, and then arises in a comparatively

simple case which has already been much studied in some of its aspects,

it is convenient to proceed as if the medium were continuous until this

stage is reached. See equation (132), Section IX.



SECTION IV.

THE EQUATIONS OF CONTINUITY FOE, COMPONENT
SYSTEMS OF MOTION.

35. Component systems may be distinguished by definition of their com-

ponent velocities or their density.

By a component system of motion distinguished by velocity is here

understood a system of motion, howsoever defined, in which the velocity at

any point is not necessarily the velocity of the mass at that point either in

direction or magnitude.

Taking, as before, u, v, w, to express the components of the actual

velocities of the mass at the point ac, y, z and time t, and p for the density
of the mass, and u", v", w" as expressing the components, with respect to the

same axes, of the velocity of a component system, there exist at each point

the residual components

u'=u u", v' = v v", w' = w w" (56).

The sums of these components u" + u, &c. satisfy the equations (33)

Section III., and the following equation, for the resultant system, and if one

of these systems is subject to any definition, actual or conditional, the

equation for the resultant system becomes the equation for the residual

system.

It is a very general method in mechanical analysis to separate the motion

of the mass at each point into two component systems, whenever the condi-

tions are such that the independence of these systems is obvious. As, for

instance, the motion of the mass at each point at any instant is considered

as consisting of the motion of the centre of gravity of the whole mass at

the instant together with another component system which is the motion at

the point relative to the motion of the centre of gravity. But such instances

have hitherto been considered as depending on special theorems, and do not

appear to have suggested the study of the method which they involve as a

general system of analysis apart from the existence of conditions which

render the component systems completely independent,
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It appears, however, that the manner in which the rates of increase of

the momentum and kinetic energy of the one component system depend on

convection by and transformations from the other may be subjected to

general analytical expression, even when the definition is arbitrary and only

conditional.

This is accomplished by equating the expressions for the rates of increase

of u"
', &c. at a point moving with the mass to arbitrary functions which,

multiplied by p, express the rates at which density of momentum is trans-

formed from the system pu' into the system pu" and represent the only rates

of production of momentum in that system, so that the equations of motion

of either of the component systems may then be obtained from equations

(1) and (2) or (10) and (11) Section II. The equations so obtained will

differ in form from the equations of the resultant system in five particulars.

(1) The equations for the component system will differ from that of the

resultant system from the fact that u", v", w" do not represent the whole

causes of convection, which are u, v, w: so that the rate of increase of Q by
convection is not

d , lir.. d , . d , ,,~J , (duQ dvQ dwQ]

sW>-|0" + 5&ftc................... (57)-

where the pre-suffix c" indicates convections by u" and c indicates the con-

vections by u', inwards across the bounding surface of the element.

(2) A difference in the form of the equations also results from the fact

that pu", pv", pw" are not the only modes in which densities of momentum
in the directions x, y, z exist at a point in the medium. The rates of increase

of density in the modes pu", &c. by conduction, into the steady element of

space dxdydz are not the only increases other than by convection
;
since there

are the further possibilities of exchanges of densities of momentum between

the modes pu", and pu', &c. existing at the same point in the same mass.

That such abstract exchanges, without mechanical action, must result

from the definition by which the component systems are distinguished is at

once seen, for to this definition u", v", w" are subject at each point and each

instant. And therefore the rates of increase of u", v", w", the defined com-

ponents of acceleration of the moving mass, expressed by

du" du" du" du"
-rr + U -j + V -j + W -j- , &C. &C.
dt dx dy dz

are subject to arbitrary definition independent of the actual accelerations of

the mass. And

dp idem dpv dpw\ _
, (dp\ , , fdpu \ Aw"- + w' (4-+ J- + HJ )

= u
(- }

+u J +&c. =0.
dt \ das dy dz J \dtj \dx J

R. 3
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Taking ^/, &c., &c.

as arbitrary expressions for these defined rates of increase and multiplying

by p we have as the equations of continuity for the components of momentum

pu", &c., &c. by equation (28) Section III.

= ""> + ^">> &C" &C................ (58)'

and again by the equations for the resultant system

jt
(pu" + pu')

=
jt

(cpu" + cpu)+Fx ,

Subtracting equation (58) we have for the other system

(u" + pu')
=

(cpu" + cpu)+Fx , &c., &c............. (59).

(60).

It thus appears that

p
-fa
(X0 &c->

&c->

express rates of transformation of density of momentum from the component

system pu' to the system pu" , &c., &c., consequent on the geometrical conditions

by which u", v", w" are defined.

The arbitrary rates of increase of density of momentum represented by
these transformations may be considered as variations either in an arbitrary

system of stresses or an arbitrary system of convections to be determined by
the actual definition.

(3) The equations of the component systems differ from that of the

resultant system on account of the expression for the transformation of

energy to and from each of the component systems in consequence of the

definition to which they are subjected. The densities of each of these rates

of transformation of energy are by equation (28), putting u" for qlt &c.

respectively, the sums of the products of the densities of the component
ratios of transformation of momentum to the particular component systems

(dppu'/dt, &c.) respectively multiplied by the component velocity (u", &c.) of

the same system.

Thus expressing the density of energy so transformed at a point as

p T (E"), &c., respectively, since there is no transformation of mass,
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From these equations it will be seen, at once, that the sum of the trans-

formations to the two component systems is not necessarily zero or that the

transformation is not wholly between E" and E'.

(4) The equations of energy for the component systems differ in form

from that of the resultant system in consequence of the fact that the sum of

the densities of the energies of the component systems, at a point, is not

equal to the density of energy of the resultant system at that point,
or that :

v-

{u"
2 + v"2 + w"2 + u 2 + v'

2 + w'2 + 2 (w'V + v"v + w"w')}

whence p (E E" E') = p (u'u
1

+ v"v' + w"w')

Whence it appears that the transformation of energy is not simply
between the systems E" and E', but also between each of these and the

system (u"u' + &c.); so that besides the equations of energy of the component

systems there is the equation of energy of the residual system to be

considered.

The density of the rate of transformation to the residual system is by
definition equal in value and opposite in sign to the sum of the rates of

transformation to the energies of the component systems

Another expression for the transformation to the residual system is

obtained by multiplying each of the rates of transformation of component
of momentum to the component system, by the corresponding component of

velocity of the other system and adding, as in equations (28).

The density of the rate of production into residual energy may be

obtained in the same way by equation (28); then by equations (10) we obtain

expressions for

4("'-*') and |(
(,V').

(5) In the equation of motion for the resultant system of motion in a

purely-mechanical-medium, d (R)/dt, the density of the rate at which energy

is produced in other modes than E, is defined as zero; and hence the

expression for this production disappears from the equation of energy. It

does not however follow as a geometrical consequence that the expressions

for d (R')jdt and d(R R')/dt, obtained from the equations of momentum by

equation (28), are respectively zero. But it does follow that whatever these

32
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values may be, they are pure abstractions resulting from the definition of

the systems of motion, and are therefore transferences of such energy from

the one system to the other. Therefore while it is necessary to retain

these expressions in the equations of energy for the three systems, it is

convenient to indicate that they express a transference by a pre-suffix T as

d(TR')/dt.

36. -Component systems distinguished by distribution of mass.

Taking, as before, p for the density of the mass at xyzt and p" for

any defined density of mass at the same point, there exists the residual

mass

P=P-P" (63).

The sum p" + p' satisfies equations (33) Section III. for the resultant

system, also equations (58) and (60), Section IV., for the component systems

distinguished by the distribution of velocity, and if p" is subjected to any

definition, actual or conditional, the equation for the resultant density defines

the equation for residual density of mass.

The equations so obtained will differ in form from the equations for the

resultant mass in one particular.

The fact that the integrals of p" and p' do not, either of them, taken by

themselves, represent the only mass included in the space over which the

integrals extend, entails a difference in the form of the equations from that

of the resultant system.

The rate of increase by convection of p" is not necessarily the only rate

of increase, since there are possibilities of exchanges between the densities

p' and p" at the same point.

That such exchanges must result from the definition is at once seen, for

dp'Jdt is subject to these exchanges at each point at each instant, and there-

fore the defined rate of increase of the component density p" at a point

moving with the mass is subject to arbitrary definition independent of the

rate of increase of the actual density.

Taking as in equations (24 A) Section III.

dTp" = <W_ +
dp"u +

dp"v +
dP"w /63 A)

dt dt dx dy dz

as the arbitrary expression for this defined rate of increase, we have the

equation of continuity for the component density

dp" de (p") _dT(p")

dt
~

dt dt
( >
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And by the equation for the resultant system

dt dt

'

dp dep'^
dTp"

dt dt dt

Then, since by equation (24), dp (pu)/dt
= pdp u/dt, substituting in equation

(32), the equation at a point for the resultant system is

du du du du dpu .

-f~ + u -= I- v-j h w -7-
=

j (oo).
dt dx dy dz dt

Then multiplying by p" and adding u -~ u ~~- to the left member

and the equivalent udpp"jdt to the right member, we have for the equation
of momentum of the defined density :

dp'u dc(p"u) __ dpU dTp"\
dt dt dt dt / HTX

j / // \
f

(67 )'

P

dt }

and in precisely the same manner

dp'u dcp'u __ , dp (u) dTp'
dt dt dt dt

, ^
dt

37. Component systems of motion distinguished by density and velocity.

Again substituting u" and u successively for u in equations (67) and (68)

we have the four equations

dp"u" dc (p"u") _ dp (p"u") = ,,dTu" d^p"

dt dt dt dt dt

> (69),

dp'u" dc (p'u"} _ dp (p'u"} , dTu" d 'P
"

^~. T". 7": t . i~ U ^ .

dt dt dt dt dt

dp"u dc (p"u') _ dp (p"u) dTu" , dc'p" p"Fx
-

dt dt dt
~
p

dt dt p"

dp'u' dc (p'u'} _ dp (P'u') _ , dTu" , drf p^_Fx
-

dt dt dt
p dt dt p"

together with corresponding equations for v", w", v', w.

Adding the last three of equations (69) together, it appears that

d (pu
-
p"u") dc (pu

-
p"u") = dp (pu

-
p"u")

dt dt dt

dT p"u"
dt

(70),
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whence putting Mx
"

for p"u", Mx
'

for pu p"u" , &c., &c., we have

dMx
"

dcMx
"

^dpM*" = ,,dTu" dTp"
dt dt dt

P dt
'

dt

dMx
' dcMx dpMx

'

_ dTu"

~dt dt ~dT x
dt

It is to be noticed, however, that these last equations might be obtained

by the simple definition of (pu)", so that they do not express all the definition

which results from the separate definition of p", u". The importance of

this appears at once on proceeding to derive the corresponding equations

of energy by multiplying the equations respectively by u" and u, and trans-

forming, which process since u", v" have defined values, gives definite

results, whereas the mere definition of the product (pu}" which leaves the

definition of either factor incomplete would not admit of such derivation.

38. Distribution of momentum in a component system.

The condition imposed by the laws of motion, as the result of experience

of physical actions, that action and reaction are equal and opposite, and

that the exchanges of momentum take place in the direction of the

momentum exchanged, will not of necessity be fulfilled by an arbitrarily

defined component system. But should this not be so within all sensible

spaces and times, the effects of one component system on the other will not

accord with any physical action
;
so that for purposes of analysis the general

expression for this condition in a component system is of the first im-

portance.

It has already been shown that the first of the conditions requires that

the integral rate of increase in each component of momentum, in a resultant

system, shall be a surface integral, however small may be the limits (Section III,

Art. 24). The same holds for a component system within defined limits
;
so

that we must have, within such limits,

+ -j- (pMx")\ dxdydzdt
Cut J

o&c -

where so far qxx , qyx ,
&c. are arbitrary.

As in a resultant system it is necessary, in order to satisfy the second

condition, that the integrals of the rates of increase of the moments of

momentum should be surface integrals and that this may be the case within

defined limits, it follows, as in Art. 26, that

(qzy qyz) dxdydzdt = 0, &c., &c.................. (73),
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which is the general condition to be satisfied by the component system pu", &c.

if the analysis is confined to physical properties.

If this condition is satisfied by the system p"u", &c. it follows that since it

is satisfied in the resultant system the same condition will be satisfied by the

residual system pu p"u".

39. The component equations of energy of the component systems as

distinguished by density and velocity.

Multiplying the first of equations (69) by u" and transforming by

equations (28 A), Section III., and putting p"Ex
"

for p" (ii")
2
/2, we have

d(p"Ex '} dc (p"Ex ') _ dp (p"Ex ') _ ,,dTu"
,

u"2 dTp" , s
Jj.

~~ ""

J.t ~J
^ P Jj. ~* ~n ~7* "^ Ofc'C.

at at dt at 2 at

Also multiplying the third of equations (69) by u' and trans-

forming (28 A) we have

dp Ex dc (p E%) dp {p EX)
dt dt dt

p dt J
'

dt dt

Then multiplying the first by u' and the third by u" and

adding, &c.

d (p"Ex) dc (p"Ex) _ dp (p"Ex) _ dTp"u'u" , ,, p"F
1 , 7 , 7, T7 T P w T OtC.

= uu + p" (u'
-

u")
at at p

Again, multiplying the second by u", &c.

dp'Ex dc (p'Ex") _ dp (p'Ex") _ ,
dTu" u"* dTp

dt ~~dt~ ~dT Up ~dT"2~dT'

Multiplying the fourth by u, &c.

dp'S. dc (p'Ex')_dp (p'Ex}

&c.

dt dt dt

dt 2 dt

Then multiplying the second by u and the fourth by u" and

adding, &c.

dp'Ex
dt

pu
dt dt dt

+ &c.

dt dt

,...(74).
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The first of these equations is the equation of the component system

p", u".

Then adding together the several corresponding terms of the five

equations following the first, we have

d(PE- P"E") _ dc (PE-p"E"} = d^pE-^ET) ?
dt dt dt

for the energy of the system of momentum pu p"u"

dp(pE
~f

E"
} = uFx + vFy + wFz

-^P .................. (76).

40. Generality of the equations for the component systems.

As the actions which are respectively expressed by the several terms in the

equations (68) to (72) (remembering -TJ-*
=

~^T~^ H j )
are mechanically

\ at at dt J

distinct, these equations are perfectly general and may be applied to the

analysis of any resultant system of motion existing in a purely-mechanical-

medium, into any two component systems which are geometrically distinguish-

able.

The motions in the two systems are not necessarily independent but the

effects of the one on the other are generally expressed in the equations.

Thus it may be that neither of the component systems is a conservative

system, since one system may be subject to displacement of momentum by
and may receive energy from the other system, although they both exist in

a purely-mechanical-medium. And it thus appears that there may exist

a non-conservative system of motion in a purely-mechanical-medium; that

is to say, it appears that, so far as one abstract system of motion is concerned,

a purely-mechanical-medium may be possessed of physical properties in

consequence of the simultaneous existence of another system of motion.

Thus where the only motion apparent to our senses is that of a component

system, (the other component system being latent,) although this exists

in a purely-mechanical-medium, the apparent system will not of necessity

follow the laws of a conservative system, but is expressed by equations

involving terms expressing the effects of the latent system on the apparent

system, which apparent effects depend on certain physical properties in the

medium. Such apparent physical properties however receive mechanical

explanation when the complete motion of it is known; or, on the other

hand, the experimental determination of these properties may serve to

define the latent component motion so as to account, in the equations of the

recognised system, for the terms expressing its effect; as for instance the

potential energy.
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41. Further extension of the system of analysis.

So far the complete expression of the equations of motion has been

confined to the case of two component systems of motion. But by a precisely

similar method either of the two component systems of motion may by
further definitions be again abstracted into two or more component systems
of motion which in virtue of the definition are geometrically distinguishable

from each other and from the remaining component system.

If instead of taking u", v", w" to express the defined components of the

motion after the abstraction of the residual motion, we take

and for CQ put ^Q + C-Q + ^"Q + &c., for TM' put PM" + PM'" + &c., and so on

for the other functions, expressions are obtained for the equations of as many
component systems of motion as are distinguishable by definition.



SECTION V.

THE MEAN AND RELATIVE MOTIONS OF A MEDIUM.

42. Kinematical definition of mean motion and relative motion.

By the mean motion of the medium is here understood an abstract

component system of motion of which the mass and the components of the

velocity respectively satisfy certain conditions as to distribution
;

(1) The condition of continuous velocity, that the mean component
velocities are continuous functions of x, y, z and t, however discontinuous

the mass may be, Art. 12.

(2) The condition of being mean velocities, that the quadruple

integrals, with respect to the four variables, of the respective densities of

the mean-components of the momentum (the components of the mean

velocity multiplied by the density of the mass at each point) taken over

spaces and times, the measures of which exceed certain defined limits, shall

be the same as the corresponding integrals of respective components of the

density of the resultant momentum.

(3) The condition of momentum in space and time of the components
of momentum of mean-velocities, that the integrals of the momentum of

the mean velocities taken over the same limits as in (2) shall be respectively

the same as in the resultant system.

(4) The condition of relative energy, that the quadruple integrals

with respect to the four variables, taken over limits, of the products of the

differences of the respective components of the actual, or resultant, and mean

velocities, each multiplied by the density of the corresponding components
of momentum of mean velocities, as defined in (2) shall be zero.

By the relative velocity of the medium is here understood the velocity

which remains in the medium after the mean-velocity is abstracted from

the resultant motion when this velocity satisfies certain conditions besides

those entailed by the abstraction of the mean-velocity.

The conditions entailed by the abstraction of the momentum of mean-

velocities are, besides the condition (4)
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(5) The condition of the momentum of relative-velocity, that the

mean densities of the components of momentum of relative velocity are zero.

(6) The condition of distribution in space and time of the momentum
of relative velocity, that, taken over the same limits as the mean velocity,

the means of the products of the respective components of the momentum
of the relative velocities multiplied by any one of the measures of the

variables are all zero.

The further condition that must be satisfied by the velocity left after

abstracting the mean motion in order that this may be relative-velocity is:

(7) The condition of position of energy of mean and relative velocities,

that the mean values of the products of relative energies, as denned in (4),

multiplied by measures of any one of the variables, shall be zero, or that the

mean position of the energies of the mean-velocity, together with the energy

of relative-velocity, shall be the mean position in time and space of energy
of the resultant system.

By the mean density of mass is here understood an abstract system of

mass which satisfies certain conditions as to distribution.

(8) The condition of continuous density, that the mean density is a

continuous function of the variables.

(9) The condition of mean density, that the quadruple integrals witli

respect to the four variables of the mean-density taken over spaces and

times which exceed certain defined limits shall be the same as the corre-

sponding integrals of the actual density.

(10) The condition of distribution of mean-density, that mean position

in time and space of the mean-mass shall be the same as the mean position

of the resultant mass.

By the relative density of the medium is here understood the density

(positive or negative) which remains in the medium afterithe mean-density
has been abstracted, when this residual density satisfies certain conditions

besides those entailed by the abstraction of the mean-density.

The conditions entailed by the abstraction of the relative density are":

(11) The condition of relative density, that the mean of the relative

density is zero.

(12) The condition of distribution of relative mass, that the product
of relative density multiplied by the measure of any one of the variables

has no mean value when taken over the defined limits.

The further conditions which have to be satisfied by the relative density
of mass are :
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(13) The condition of momentum of relative mass, that the products

of the components of mean velocity multiplied by the relative density of

mass have no mean values over the defined limits.

(14) The condition of distribution of momentum of relative mass,

that the products of the components of mean velocity multiplied by the

relative density of mass and again by the measure of any one of the variables

have no mean values over the defined limits.

(15) The condition of energy of relative mass, that the products of

the squares of the components of mean velocity multiplied by the relative

density have no mean values when taken over limits.

(16) The condition of position of energy of relative mass, that the

products of the squares of the components of mean velocity multiplied by the

relative density and again by the measure of any one of the variables have

no mean values.

By the mean motion of the medium is here understood the product of

the mean-velocity multiplied by the mean density, which is also the density

of the mean momentum. And by the relative motion of the medium is

understood the density of the resultant momentum less the mean mo-

mentum.

In the same way by the density of energy of mean-motion is understood

the product of the square of mean-velocity multiplied by the mean-density
of mass

;
and by the density of energy of relative motion is understood the

density of energy of resultant motion less the density of energy of mean-

motion.

43. The independence of the mean and relative motions.

It will be observed, that according to the foregoing definitions, in any
resultant system which consists of component systems of mean- and relative-

motion, satisfying all the conditions, all the motion which has any part in

the mean momentum or in the mean-moments of momentum is, by integra-

tion, separated from the relative-motion in such a manner that the motion

of each component system is subject to the laws of motion. Action and

reaction being equal and opposite and the exchanges of momentum taking

place in the direction of the momentum exchanged. And that the relative

motion, separated out by integration, is confined to motions of linear and

angular dispersion of momentum the effects of which on the mean-motion

are such as correspond to the effect of observed physical properties of matter.

It also appears that all the conditions must be satisfied in the resultant

motion in order that such separation may be effected.
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44. Component systems of mean- and relative-motion are not a geo-

metrical necessity of resultant motion. A very general process in Mechanical

Analysis is to consider motion in a mechanical system for a definite interval

of time as consisting, at each point of space at any instant of time, of com-

ponent velocities which are the mean-component velocities of the whole mass

over the whole time, together with components which are the differences

between the actual components at the point and instant, and the mean-

components. These systems respectively satisfy the conditions as to con-

tinuous and mean-velocity (1) und (2). Also the condition of relative-velocity

(5), and that of relative-energy (4), but they do not satisfy the conditions as

to distribution of mean-momentum or any of the other conditions
;
and hence

are not mean and relative, except for particular classes of motion, in the

sense in which these terms have been defined.

Such component systems of constant mean-motion in a defined space and

time are a geometrical necessity in any resultant system. And, although
I am not aware that it has been previously noticed, it appears that con-

sidering the number of geometrical conditions to be satisfied by the momentum
of mean-velocity and of relative-velocity ((1), (2), (3), and as a consequence

(5) and (6)), and the opportunities of satisfying them, the latter are sufficient

for the former
;
so that every resultant system of motion existing in a defined

space and time consists of two component systems which satisfy the con-

ditions (1), (2), (3), (4), (5) and (6), although they do not, as a geometrical

necessity, satisfy all the further conditions required for mean and relative

motion as here defined.

45. THEOREM A.

Every resultant system of motion consists of a component system of mean

motion which satisfies all the conditions of mean-velocity (I, 2, 3), and the

condition of relative energy (4), but not, of necessity, that of position of relative

energy (7); together with another system which satisfies the conditions of

relative velocity (5) and (6), but not of necessity (7), the condition of distribu

tion of relative energy.

Taking the mean-velocity at a point x, y, z at the time t within the

defined limits, to be expressed by

u" = A+(x-x)Ax + (y-y)A y + (z-z)A z + (t-t)A t , &c., &c....(77),

where the barred symbols refer to the mean-position of the mass within the

limits, whether time or space, thus

jjjjxpdxdydzdt~
'

the limits being assumed
;
the conditions to be satisfied by the component

velocity u" are :
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(1),(2),(5); that

If I IP (u
~ w") dxdydzdt = 0,

(3), (6)

1111
xp (u

-
u") dydxdzdt = 0, &c., &c., &c (79).

(4)

nnp (u
-

u") u"dxdydzdt = 0.

The last of these conditions will be identically satisfied if the others are

satisfied. Hence there are only five conditions to be satisfied, while in the

expression for u" there are five arbitrary constants, which are determined by

putting

_ffff(pu) dxdydzdt

ff!f(p) dxdydzdt"

then integrating the four equations of position and obtaining the values of

Ax , A y ,
A z ,

A t by elimination from the resulting equations. These values

must be real since the Ax ,
&c. enter into the equations in the first degree

only. The same reasoning applies to the component velocities v" and w"
;
so

that the first part of the theorem is proved.

To prove the second part all that is necessary is to observe that the con-

dition (7) requires that

r/ff

(81),

when it is at once seen that this condition is not satisfied as a geometrical

consequence of the definition of u", since the terms involve products of the

variables a; (y y) pA y , &c., which do not necessarily vanish on integration :

so that the second part of the theorem is proved.

46. THEOREM B.

In a similar manner it appears that every resultant system of mass

consists of a component-system of mean-mass which satisfies all the conditions

(8), (9) of mean density, and the conditions of relative density (11) and position

of relative density (12), also the condition of momentum of relative mass (13) ;

but does not satisfy, of necessity, the condition of distribution of momentum,

of relative-mass, or of mean-mass (10), (14), nor the conditions of energy of

relative mass, (15) and (16).

Taking the mean-density of mass at x, y, z and t to be

p =J) + (X-^Dx + (y-.y) Dy+ (Z -Z)J)2 + (t-t)Dt (82),

where, as before, the barred symbols refer to the mean position of mass

between limits of time and space. And putting t1} xli yl ,
&c

,
as referring to
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the mean position in time and space, not of the mass, but of the time and

space between limits. Since the mean value of p" between limits is not the

mean value at the centre of gravity or epoch, the conditions to be satisfied

are:

(8), (9), (11)

...(83),

which five conditions determine D, DX) Dy ,
Dz and Dt whatever may be

the distribution of mass, so that putting p = p p" the conditions (11)

and (12),

ffflp'da:dydz
=

(10), (12)

x(p p") dxdydzdt = 0, &c., &c., &c.

rrrr

\\\\xp dxdydz = Q, &c., &c., &c.

are satisfied.

Again, since the constants A and D in the equations (77 and 83) for u"

and p" are respectively the values of u", p", at the mean position of mass

respectively, and the constants Ax ,
&c. and Dx , &c., are the differential

coefficients of u" and p", respectively, the equations may be written

u" = u" + u, &c., S

(85).

p" = p
" + p, &c

., &c.J
w

Then multiplying the corresponding members,

pu = p 'u" + p'u" + pu, &c., &c...................... (86),

whence it appears, since the integrals of the last three terms on the right

are by definition of necessity zero, that

(87),

so that condition (13) is of necessity satisfied, which concludes the proof of

the first part of the theorem.

To prove the second part. Multiplying the equation respectively by x,

&c., then, since the integrals of xpu, &c. are zero while those of x2

p' are not

of necessity zero, and the expression of xpu, &c. includes the terms

du"
x^p -j , &c., it appears that the product p"u" does not of necessity satisfy

CLOG

the condition of position of mean-momentum for every distribution of mass,

which proves the second part of the theorem.
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It has thus been proved that in order that a resultant-system of motion

may satisfy the condition of consisting of a component system of mean-

momentum which is a linear function of any one or more of the variables

together with a component-system of relative-motion which satisfies all the

conditions (1) to (15), the relative motion and the relative-mass must, what-

ever may be the mechanical cause, be subject to certain geometrical

restrictions relative to the dimensions of the limits over which the mean

motion is taken. With a view to studying the mechanical circumstances

which cause such restrictions, where they are shown to exist by the existence

of systems of mean and relative motion, it becomes important to generalise,

as far as possible, the geometry of these restrictions.

47. General conditions to be satisfied by relative-velocity and relative-

density.

The general condition to be satisfied by relative-velocity is that, in

addition to the conditions which follow from the definition of mean-velocity,

the integrals of the products of the density of relative component energy,

pu"u, multiplied by the measure of any variable, are zero, or

IJIJz;pu"u'dxdydzdt
= 0, &c., &c., &c (88).

Hence as u" is a linear function of the variables these conditions will be

satisfied if pu, multiplied by any variable, and again by the squares of any

power of this variable, all vanish on integration with respect to all four

variables, so that the general condition is at once seen to be that pu', &c., the

components of momentum of relative velocity, integrated between limits

with respect to any two independent variables independent of the variable

in whicli u" varies, must have no mean value
;
and in the same way for v",

w", since v", w" are not necessarily functions of the same one variable, in

order to generally satisfy the conditions pu, pv', pw must vanish when

integrated with respect to any two variables.

Again when the previous condition of relative velocity is satisfied, it

appears that the general condition of position of mean-momentum,

1 1 1 \xp"u"dxdydzdt = 1 1 1 \xpudxdydzdt, &c., &c.

requires that the products x2

p', &c. shall vanish when integrated between

limits with respect to all four variables. Whence we have for the condition

of relative mass that the integrals of p taken between limits with respect

to any two independent variables which are independent of the variable in

which u" varies &c. must be zero.

If both the previous conditions are satisfied it appears that the conditions

(15) and (16) will be satisfied for

pu-p"u" = p'u" + pu' (89),
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and since u" is a linear function of the variables

(pu- p"u")u"=pu"
2 + pu'u" ..................... (90),

whence the integrals of both the terms on the right vanish by the previous
conditions.

And further, the conditions

(ftfa; (pu
-

p"u") = 0, &c., &c., &c.................... (91)

are satisfied
;
for by taking u" constant in equation (77), by the definition of

u" we have one relation between four independent variables, so that there

are three independent variables with respect to which u" is constant. And
in exactly the same way there are three independent variables with respect
to which p" is constant. Therefore u"z and p" are each functions of one

independent variable only. Hence in the expressions

xp'u"
2 + xpu'u", &c., &c.,

since v", w" are not functions of the same variable as u", p'x, &c. must vanish

when integrated with respect to any two variables, or u", v", w", must be

constant. The factors of p and pu are each functions of two independent
variables only, and hence these terms vanish on integration between limits

with respect to all four variables by the previous conditions of relative density
and relative velocity.

Whence it appears that the general conditions, besides those which follow

from the definitions of mean velocity and mean density, that must be

satisfied by the momentum of relative motion and by relative density, are

that these must have no mean values when integrated between limits with

respect to any two independent variables independent of the variable with

respect to which u" varies, &c. And it is only resultant systems in which

these conditions are satisfied that strictly consist of dynamical systems of

mean- and relative-motion.

That these conditions can be strictly satisfied by any system within finite

limits seems to be impossible ;
as for this it would require that, in a purely

mechanical medium, there should be, in the same space and time, two masses

moving in opposite directions, such that at each point the density of the

momentum of the one was equal and opposite that of the other. It is how-

ever possible to conceive masses with equal and opposite momenta at any

finite distance from each other, and in such cases the conditions may be con-

ceived to be satisfied to any degree of approximation.

R, 4
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48. Continuous states of mean- and relative-motion.

The abstract systems of relative velocity and relative density as denned

in the previous article must, as a geometrical necessity, be of an alternating
character in respect of some of the variables, such that the respective means

of the positive and negative masses of relative densities, and the positive

and negative momentum of relative velocity, taken over the limits as to any
two variables, balance. And as a consequence the distribution of such

relative-masses and relative-velocities, whether regularly periodic, as in the

case of waves of light or sound, or such as the so-called motions of agitation

among the molecules of a gas, involves a geometrical scale of distribution

defined by the dimensions of the variables over which the alternations

balance.

Such scales of relative-density and velocity, clearly, define the inferior

limits of the spaces and times over which the resultant system can consist

of systems of mean- and relative-motion. But there is no necessity that the

defined space and time over which the system of mean-motion extends should

be confined to the dimensions of such scales. That is to say the defined

space and time, over which the mean-system may be a linear function of the

variables, may be in any degree larger than the minimum necessary for the

satisfaction of the conditions of relative-density and relative-velocity, since

these conditions will be satisfied for the whole space if they are continuously

satisfied in every element of dimensions defined by these conditions.

49. Under such circumstances the expressions for the mean-motion

admit of another interpretation, one which has already been discussed in a

paper on " The Theory of Viscous Fluids*."

In this expression the mean-velocity at any point x, y, z, t is defined as

the mean taken over an elementary space and time, of dimensions defined by
the scales of the relative-velocity and density, so placed that the mean

position of the mass within the element is defined by x, y, z, t.

Then, since by definition the relative-velocity and relative-density, as

defined by integration over the whole space and time, have no mean value in

the element, the mean velocity at x, y, z, t (the mean position of mass)
obtained by integration over the element will be the same as that at the

same point obtained by integration over the whole space and time, as in the

first of equations (79) ;
and since, by definition, not only the relative density,

but also the variations of relative density, with respect to any variable, have

no mean values in the element, the mean-density at the mean position

x, y, z, t, obtained by integration over the element as in equations (87) will

be the same as that obtained (as in the second equation (89)) by integration

over the whole space and time.

*
Royal Soc. Phil. Trans. 1894, pp. 123164.



51] THE MEAN AND RELATIVE MOTIONS OF A MEDIUM. 51

It thus appears that p", u", in equations (89) to (91) may be taken to

represent the values of the mean-density and mean-velocity at x, y, z, t, as

defined by integrations with respect to two variables over an element having
dimensions defined by the scales of relative-velocity and relative-density,
so placed that the mean position of the density in space and time is at

x, y, z, t.

50. The instruments for analysis of mean- and relative-motion.

It further appears that, since in the method of Arts. 43 and 44 u' may be

taken to represent any entity, quantities consisting of the squares and

products of u, u", u', FJp may by the theorems of those articles be separated
into mean- and relative-components which satisfy the conditions Art. 42, (1),

(2), (3), (4), (5) and (6), respectively, the mean components being linear

functions of the variables, and the relative components having no mean
value when integrated with respect to any three independent variables over

dimensions determined by the scales of relative-velocities and relative-

density. And in the case of the quantities p, pu', &c., subject to the further

definition Art. 48, but only in the case where the relative components will

have no mean values when integrated with respect to any two independent
variables over the same scales. But in either case, if Q expresses the density

of any function, integrating over definite limits about any point x, y, z, t as

mean position of mass at that point we have

MQdxdydzdt Q>
,

ffffdxdydzdt
and

ffffdxdydzdt

and putting h and k for any two variables, r \ ,

fjTJA (Q
-

Q") dxdydzdt = 0,

l\\\hk (Q - Q") dxdydzdt = 0,

Equations (92) are thus the general instruments of mean and relative

analysis.

51. Approximate systems of mean- and relative-motion.

The interpretation of the expressions for mean- and relative-motion con-

sidered in the last article is adapted to the consideration of systems in which

the mean motion, taken over spaces and times which are defined by the

scales of relative-density and relative-velocity, is everywhere approximately

a linear function of the variables measured from the mean position and mean

42
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time. Thus if p" and u" are any continuous functions of the four variables

x, y, z, t, taking x y Z(,t as referring to a particular point and time, then at

any other point x, y, z, t,

(93),

where the differential coefficients are all finite. Therefore as (x #
),

&c.

approach zero all terms on the right except the first approximate to zero, and

the terms of higher order which involve as factors multiples of the variables

of degrees higher than the first become indefinitely small compared with the

linear terms. It is therefore possible to conceive periodic or alternating
functions of which the differential coefficients, continuous or discontinuous,

are so much greater as to admit alternations to any finite number being
included between such values of (x a? ), &c., as would leave the terms of

the second and higher orders indefinitely small as compared with those of

the first order, and those of the first indefinitely small as compared with the

constant term. Therefore as long as p" and u" are finite and continuously

varying functions of the variables it is always possible to conceive systems
of relative-density and relative-motion which together with their differential

coefficients satisfy the conditions of having approximately no mean values

over the limits, and thus to any degree of approximation satisfy the con-

ditions necessary to be relative-component systems to the mean system

p"uo" + &c- within the limits defined by the scale of relative motion.

The method of approximation therefore consists in obtaining

p", u", p"u", &c., &c.,

and the variations of these, Q", when Q is any function of

// // // ' / '

p u
, p , p, pu,

by integrating over the element taken about x, y, z, t, as the mean position,

then using these quantities as determined for x, y, z, t, td express by

expansion

p"u", &c., &c.,

for any other point within the limits of integration as in equation (93)
so as to obtain the mean values of these terms in the equations by integration
over the elements, neglecting the integrals of all terms which involve as

factors functions of the increments of the variables of degrees higher than

the first : and in this way may be obtained any necessary transformations of

products of mean inequalities and rates of variation, as

u"dp"u" = dp"u"*
-

u"p"du", &c.
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It thus appears that the only motions neglected are those which are

defined as small by the conditions, being of the second degree of the dimension

of the scale of relative motion, while those retained may have any values at

a point, and are, within the limits of approximation, linear functions of the

variables
;
so that within the same limits p, pu', &c., &c., satisfy by the

special definition the conditions of having no mean values over the limits of

any two variables; and generally Q' has no mean value over three independent
variables.

As has already been pointed out the maintenance of such a system must

depend on the distribution and constraints, and the process of analysis

consists in assuming such a condition to exist at any instant, and then from

the equations of motion ascertaining what circumstances, as to distribution

and properties of conduction, the actions of convection and transformation by
and to the relative-motion on the variations of the mean-motions will be to

increase or to diminish these variations of the first and second -orders.

52. Relation between the scales of mean- and relative-motion.

From the previous article it is clear that the absolute dimensions of the

scale of mean-motion, as determined by the comparative values of the terms

of higher orders as compared with those of the lower, do not enter into the

degree of approximation to which the conditions of relative-mass and

velocity are satisfied, except as compared with the scale of the relative-

motion. But it does appear that the degree of approximation depends on

the comparative values of these scales. And hence it is only under circum-

stances (whatever these may be) which maintain distributions of mass and

velocity which admit of complete abstraction into two systems widely
distinct as to relative scales, that systems of mean and relative motion can

exist.

Thus, as we have previously pointed out, it is not sufficient that the

relative motion, or one class of motions such as the motion of the molecules of

a gas in equilibrium, should be subject to superior limits by the scale of

distribution. It is equally necessary that the scale of variation of mean

motions, such as the mean motions of a gas, should be subject to superior

limits (whatever may be the cause) which prevent the scale of these mean-

motions approaching that of the molecules. And it is the existence of

circumstances which secure both these effects, which is indicated by resultant

systems which satisfy the conditions of mean- and relative-motion as defined.

It has been already proved that the existence of component systems
which satisfy the conditions of mean position of density and of relative

energy, as well as those of mean-density and mean-position of momentum
of mean-velocity, is not a geometrical necessity of the definition of mean-

motion as is the existence of component systems which satisfy the latter
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conditions only. Were it not so there would be no point in the analysis, for

then the existence of such component systems would reveal no special

circumstances as to the geometrical distribution of the medium, or the motion

in the medium, whereas it has now been shown that the existence in such

systems of mean- and relative-motion, as indicated by the observed mean-

motion and the apparent
"
physical" properties of the medium or matter,

depends (if in a purely mechanical medium) upon circumstances which

constrain the geometrical distribution of the motion of the medium. Thus

the application of this method of analysis affords a general means of studying
the conditions of the medium, either intermediate or fundamental, which

would admit of such relative or latent motion as is necessary to account,

as a mechanical consequence, for the apparently physical properties of matter

and the medium of space.



SECTION VI.

THE APPROXIMATE EQUATIONS OF COMPONENT SYSTEMS OF
MEAN- AND RELATIVE-MOTION.

53. THESE equations must conform to the general equations of component

systems as expressed in the equations (61) to (76), Section IV.

Thus if in equations (69), (70), (71), together with equations (74), (75), (76),

p", u" and p'u' are at any time subject to the respective definitions for mean-

and relative-motions, these suffice, for the instant, to determine the rates of

transformation (as expressed by arbitrary functions) in terms of the several

defined rates of convection and production.

Then these rates of transformation, as expressed in the defined symbols,

having been substituted in the equations, these equations express the

approximate rates of change of the mean and relative component systems
at the instant.

These equations express, in terms of the so far defined mean and relative

quantities, the initial approximate rates of change in the defined quantities

and thus afford the means of studying whatever further conditions must hold

in the distribution of the medium in order that these rates of change may
tend to maintain or increase the degree of approximation to which the

conditions of mean- and relative-motion are initially subject. This study of

the further definition, however, must of necessity follow the complete

expression of the initial equations, to which this section is devoted.

54. Initial conditions.

The initial conditions for approximate component systems of mean- and

relative-motion, as defined in Arts. 50 and 51, Section V., define all mean

quantities as continuous functions of the variables, such that within the

limits over which the means are taken they are constant to a first approxi-

mation, whether they are the means of density, means of velocity, or means

of component momentum
;
also the means of any products or derivatives of

products, of velocity, or density, the means of any products of mean and

relative quantities, while the products of the relative quantities, correspond-

ing, multiplied by the density, are such that their means taken over the same

limits are zero.
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Thus if Q be any term expressing increase of density of mass, momentum,
or of energy for the resultant system, or for either of the component systems

at a point, x, y, z, t, at distance 8x, By, Sz, 8t,

jjjjdxdydzdt dx
}

.(94),

Q' = Q-Q"

satisfy the conditions (1), (2), (3), (4), (5) and (6), Art. 42, of being respectively

mean and relative, approximately, that is to say Q" is, approximately, a

linear function of the variable, and Q' has approximately no mean value

when integrated over any three independent variables.

Also if -~- is a derivative of any quantity

--
dx)

-
dx

and
doc dx dx

55. The rate of transformation, at a point, from mean-velocity, per unit

of mass.

From equation (58) or the first two of equations (69) transforming by

equation (19),

du" du" du" du"

dt dx dy dz

, du' , du" , du" d . p p
-j ~j- -j- ^IP -

dx dy dz dt v

The first four terms in this are all mean accelerations, while the last

three terms on the left are such that multiplied by p have no mean values-

are entirely relative-accelerations whence by definition it follows that since

du"/dt is a mean-acceleration the right member must contain terms which

exactly cancel the last three terms on the right, and that these form the only
relative terms it can contain. These terms which represent the acceleration

at a point per unit mass, due to convection of mean velocity by relative

velocity, are the only transformation from mean velocity at a point.

Since after abstracting these terms the right member remains wholly

mean, we have
"

<97)-

56. The rate of transformation at a point from relative velocity, per unit

of mass.

From equations (60), or the last two of equations (69),
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In this the term on the left is, by definition, such as has no mean value,

hence taking a mean by equation (92), Section V.

, &c., &c.;

or dividing by p" it appears that the transformation from relative-velocity to

mean-velocity, at a point, is expressed by

1 \dc (pu)

p" \ dt

that is the mean accelerations due to the mean convections of the relative-

velocity by the relative-velocity, plus the mean acceleration due to con-

duction.

Substituting from equation (97) the expression dpu"/dt in equations (58)

and (60), Section IV.

, du"
-j-
dy

, du"

dpu" , du"
-5 = u -j-dt dx

,du^_
I dc (pu')" Fx

"

dz p" dt
r

p"
'

d
77
dt

, du".' _ _ n\ _
7 "?dx dy

,M' 1 de (pu) Fx
"

'

dz p" dt
~

p"
'

(100).

A7TIXC.

57. The rates of transformation of the energy of mean-velocity.

As already pointed out, Art. 35, Section IV. equation (61), the rates of

transformations of energies per unit of mass, of mean-velocity and relative-

velocity, are respectively obtained by multiplying the rates of transformation

of mean- and relative-velocity, u" and u', &c., &c. respectively ;
thus

^

fee., &c.
1 dT (u'J
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any one of these quantities, the rate of increase of which is expressed by
one of the equations, may, by definition, be further abstracted into two

component systems.

The component systems of the energies of the mean- and relative-velocity

per unit mass may, therefore, be separately abstracted into mean arid relative

component systems. And the importance of this at once appears, since the

process of analysis is solely between the mean and relative, and while (u")
2

is mean and (w'V) is relative, (u)
2
, although positive, is not continuously

distributed as a continuous function of the variables.

The rate of transformation from the mean rate of increase of energy of

relative-velocities to relative-energy of relative velocity. Adding the second

and fifth of the equations (74) as they stand, and substituting the expression

for the transformation-function from the second of equations (101), we have

1 dp (uj = ld[e (puj + u'Fx]
2 dt 2 dt

dx dt
.(102).

Then putting
(103),

where ((w')
2

)" is obtained after the same manner as u"
; putting d( T((u'y

2

)")/dt

for the total rate of transformation, we have as in equations (97) and (98),

substituting ((u')
2

)" for u" and the three last terms in equations (102) for Fx

in equations (100), since the last term has no mean values,

(d\_dcp((uj}'}

dt
+

and
2 dt 2 dt

Then since -~ =
0,

(104);

dp (u
2)_dT (u'J dT ((uJ}"

~dT ~dT ~~dT

i dp [*
-w] i

+ &e.-'JV

u^ (1 dcpuf
f 7 12 ~dT

+ / ts

"

...(105).
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The expressions for the production of mean energy of relative motion

which form the left members of equations (104) are not transformations from

energy of mean motion only. They include the relative parts of the rates of

convection and production of energy of relative motion which are being
transformed to the system of relative energy. These rates of convection and

production of relative-energy are expressed by the first two terms in the

equations (104), while the last term expresses the only rates of trans-

formation from energy of mean-motion.

Whence the only transformations from energy of the component mean

motions are

-P
{ , , du" , , du" , , du"\
< u u , h v u -= h w u -f >

, &c., &c.
(

ax dy dz )

59. The rate of transformation from mean to relative energy.

From equation (64), at a point,

dTp" dp" dp"u" dp"v" dp"w" dp"u dp"v dp"w
j. TT -1

--
-j
--

1

--
-j
--

1

--
j
--

1

--
-j
---

1

--
-.
--

1

---
-7-

at at dx dy dz dx dy dz

where the first four terms on the right are all mean, and the last three may
be in part mean and in part relative. Hence the relative part of the

convection of mean-density by the relative-velocity is the transformation

to the relative density at a point, and this must form the only relative of

the left member, and

dTp" d^p" /de'p"\" t (dTp/ e'p\

V dt Jdt dt \ dt J \ dt

Also from the last of equations (65)

dr = d_ dp'u" dp'v" dp'w"

.(107).

_ _

dt dt dx dy dz dt

In the last of the equations (107) the first four terms on the right are

relative, and therefore the mean rate of transformation is

dTp _
dt dt

Then adding the mean and relative parts ;
since

dt dt

and (pu + &c.)" = 0,

dTp" dc-p"
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60. The transformations for mean and relative momentum.

TTT 1 ^T\P W J // CvrpU .. a/^P . .We have -^ - = p -^ u -
(HO).

dt dt

Then substituting from the first of equations (101) and (109), and trans-

forming,

and we have

61. The rates of transformation of mean- energy of the components of
mean- avid relative-velocity.

From equations (74), (100) and (109) we have

dt

dt

2 dt

"2

dt
*'

dt

+u'Fx [
-

.// \ //

..(112).

In the second of equations (112) it is the last term only that expresses

transformation from energy of mean motion.

The last terms of equation (112) admit of different expression, by substi-

tuting for

dt

(dpu'u' dpv'u dpw'u'}
"

its equivalent
-

|^ +
-^ +-^-| ,

or

and we have

u
dt

'dp" (u'u
1

)" dp" (v'u)" dp" (w'u'y

dx dy dz

= -
|

(P (UU) U ) &c
I

^u
,

uy,
_

{
dx ) (

r
da;

also
dpyx dp2X

dx dy dz
'
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so that by equation (95), Fx
"
may be expressed by

doc
\.

Then we have

w^/ =^ + &c._y>_
also (u'Fx)" = (uFx -u"Fx)" ......................................(115),

and this may be expressed as
'

dx

du"

Then substituting in the first of equations (112) we have for the rates

of transformation to the energy of mean motion

ld[ T (p" (u'J}} _ ld[e (p" (u'J}} \d Q" (?" (uu)"}}
}

2
"

dt 2
" "

dt
{

dx
j

\d(u"p"xx)
) f

r
, , , ,du"

|
\ ,

- + &c.|-4--{[p (uu) +Pxx\-j h&cl ...(lib),
{

dx
) ( dx )

and again substituting in the second of equations (112) we have for the rates

of transformation to the energy of relative motion

2~ dt ~2~ dt

Wl" (J
(upxx)"

j + &C,
d

du"
J-dx

The purpose of this transformation is easily seen on adding the equations.

The two last terms in each equation cancel, showing that they represent

a transformation between the rate of increase of the mean-energies of

relative- and mean-velocities
;
while changing the sign of the right members

of the resulting equation, which then represent the rate of transformation to
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the energy of residual motion, or of relative energy, these become

1 dT [pu*
-

p" ()"] = 1 d

^...(118);

dt
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dispersion from the energy of the other components of mean-motion, as well

as the rate at which the energy of the component of mean-motion is being
increased by transformation from the energy of the corresponding com-

ponent of relative-motion. The second of these expressions includes both

the rates at which energy of the component of mean-motion and the energy
of the component of relative-motion are increasing, by angular dispersion, at

the expense of the other components in their respective systems, together

with the rate at which energy of the component of the resultant system is

being increased by transformation from energy in some other mode which

latter rate does not exist if u, v, w are the motions of points in mass.

In the expressions

&c., &c.,

du o o
and pxx -= |- &c. , &c., &c.,-=

dx

the analysis necessary to separate out the expressions for the separate

actions in either system is furnished by equations (47 A), Section III., the

symbols for the mean and the relative motions being substituted for those of

the resultant system.

Putting p ?= ^p t-
t
the first two terms in these equations (47 A)

o

which express the rates of angular dispersion in the directions of x, y, z

respectively on the square of the components of the mean and the resultant

system, become respectively

du" dv" dw"'
riv/2
[3

P
\ dx dy dz

du dv\ (du dw g- &c"

The corresponding expressions for the rate of increase of the resilience

are

[1 (du" L dv" . dw"\ ^ . du"~
o P -j- + j~ + TT- )

+ (P xx ~P }~j-
|_3

r
V dx dy dz J

' dx

du dv dw\ , .du

1 f fdu . dv\ . (du .
dw^

2
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Substituting these for
( p"xx j + &c.

)
and

(pxx -7- + &c.
)

as they enter
\ dx / \ dx f

into equations (116) and (117), these equations become

1 dT [p" (u'J] I dc
'

[p" (u'J] $dj,[p(u'u')"] , s_{ \du"p"xx }
o ~jl

~ ~
o ~jl i j ^ &c -

1

~
\ r~ ^ o^c- r2 dt 2 dt

[
dx

} (
dx

du" _ dv" _ dw"\ If,/ /dtt" dw"\ /dw" dw"
da; dy

&c., &c

1 d [Tp" (u'u')"] = 1 d l' P
"
(u'u)"]

,

1 d [C
'

P (uV)T fd (^>x.)
r/

,
p

)

2 rf 2 d x "*~2 rf ( da? j

[p^
/ ^/ _ ^/ _ dw'\" If /dw _ M\" ldu_ du/\"

+

[p" fdu' dv dw'\" (. .du\"-
"o (^r-+ J- + -J- +H/>B-P) j-r
[_3 \^ rf^ tw/ ( da;]

If /dtt' <frA" x/ /dw' dw'
+ +P zx + ~

. , &C., &C

In these equations the first three terms in the members on the right

express rates of linear redistribution of the energy of components of motion

of the respective systems, while the fourth terms express, respectively, rates

of energy received from the other components of the same system by angular

dispersion, and the fifth and the last terms express the direct exchanges
between the two systems, of mean density of energy, by transformation.

This last statement however is only true when, as in the case of the

resultant system, in a purely mechanical medium, there is no resilience in the

resultant system, for the fifth term in the last equation expresses rates of

decrease of the resilience in the resultant system less that of the abstract

resilience in the mean-system ;
so that, if the former is not zero, this term,

besides the exchange by transformation, expresses the total rate of increase

of the resilience of the resultant system.

In a granular medium when u, v, w are the component velocities at points

in mass, and there is no resilience in the resultant system, the sum of the
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resilience of the mean and relative systems is zero, and the fourth term in

equation (117) has the identical value, under opposite sign, as the fourth

term in equation (116), which expresses rate of decrease of abstract resilience

in the mean system.

The first term in the brackets represents the angular dispersion by
distortion under mean strains, equal in all directions, and the second re-

presents the rates of angular dispersion by rotational motion of the mass.

63. The equations for the rates of change of density of mean- and

relative-mass.

By equations (64) and (109) we have for mean density

dt
~

dt

and by equations (65) and (109) we have for the equation of relative mass

dp _d(t-p) d(C'p)~ ~
~dt~ ~d

64. The equation for mean momentum.

By equation (58) and the first of equations (100) we have for the equation
of mean momentum

at at
&c ............

and by equations (60) and the second of equations (100) we have the equation
of relative momentum

65. The equations for the rate of change of the density of mean-energy of

the components of mean-motion and of the mean-energy of the components of

relative-velocity.

Substituting for the transformation function in the first of equations (74)

from equation (116), the equation for mean density of energy of mean motion

becomes

1 d [p" (u'J} = I dQ (p" (u'J)] {d [u" Q/VtQ" + #")]
fcc fcc

I

2 <ft 2 (ft
I

da; j

R.
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and the equations for the mean density of energies of relative-velocity

become

i d [P
"
((toy] id [C

"
(P" (('))")] id[< (P((ujy)Y (d (uPxx)"

]

2~ dt
+

2 dt 2 dt \ dx }

du"
**

-
\[p"(u'u'y+pxx"]
I

"

cw;
.

, &c., .fee.......... (123).

66. The equation for density of relative-energy.

Proceeding in the same manner as in equations (74) and substituting the

rate of transformation to relative-energy equation (118), the equation for

relative-energy of component velocities becomes

dt
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dt dt

dt

*

.>> +

+ I 7>z* -r-

.(126).

d [p (w
2 + v2 + ^2

)
- p" ((u*)" + (v*)" + (w

2
)")]

(ft

i d o (p (w
2 + v2 + w2

))
-
p" (o2

)" + (v
2
)" + (w
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The equations (119) to (127) are the equations for mean and relative

component systems of any resultant system in which the conditions are

satisfied, irrespective of the medium being a purely mechanical medium
;
that

is to say, irrespective of whether or not in the resultant system (p, u, v, w, pxx ,

&c.) are related to the actual, mechanical-medium, or represent the densities,

motions and stresses of a component system of mean-motion of the resultant

system.

It has already been pointed out (Art. 52) that the absolute scale of the

variations of the mean motion has no part in determining the degree of

approximation, but only the relative magnitude as compared with the scale

of variations of the relative motion. So that any component of mean-motion

may be a resultant system if the conditions exist which ensure its satisfying

the conditions of mean and relative motion. There is however this difference

according to whether the unqualified symbols refer to the purely mechanical

medium or not. If they do refer to the mechanical medium, then the last

terms in equation (124) and the last but two in (123) represent angular

dispersion of energy only, and the last term in equation (127) and the last

but one in (126) are zero
;

if not, they represent changes of energy.



SECTION VII.

THE GENERAL CONDITIONS FOR THE CONTINUANCE OF COM-
PONENT SYSTEMS OF MEAN- AND RELATIVE-MOTION.

68. THE general conditions for the existence of mean-, and relative-

motion, as defined in Art. 47, Section V., are that the components of momen-
tum of relative-velocity, as well as the relative density, must respectively be

such that their integrals with respect to any two independent variables,

taken over limits defined by the scale of relative-motion, have no mean values.

By equation (1), Section II., it follows that for the continuance of such

states the respective rates of increment of these quantities by all causes,

convection and production, must satisfy the same conditions. Therefore as

the necessary and sufficient conditions we have, that

f'dj^) iHg) r'd^f) rgJ o at J o at Jo at Jo at

where the limit t may have any value, when integrated between the limits,

as initially defined by the relative scales, with respect to any two indepen-
dent variables shall be zero within the limits of approximation.

The satisfaction of these conditions does not follow as a geometrical

consequence of the initial condition.

The rate of change in the density of relative-momentum is a consequence
of the space rates of the variation of the convections and conductions

existing at the instant. And initially the mean- and relative-motions are

subject to definition, from which, as a geometrical consequence, their varia-

tions, in space, are also subject to definition, which although less complete
has been already fully defined, Art. 45, Section V.

It therefore follows that the general conditions to which the initial rates

of increase, by convections and conductions, are subjected, are defined. And
this at once appears on considering the equations of motion for the momen-

tum of relative-velocity, which are obtained by substituting in equations (98)

the expressions for the rates of transformation from equations (100), Section VI.
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/ . du" , dv ,
dw \ ,

plu -j h v j I- w j
dtr

\ dx dy dz )

d , d .
d

t, &c., &c (128).
P

In these equations, according to the method of approximation, all the

terms in the member on the right are such as have no mean values when

integrated over any three variables, as a geometrical consequence of the

definition.

It therefore appears that it does not follow as a geometrical consequence

that

, &c., &c.,7,

should satisfy the condition of having no mean values when integrated

with respect to any two variables, to the same degree of approximation as do

the initial values of pu', pv', pw'. And this applies to both rates of increment

by convection and rates of increment by relative accelerations.

If, then, this condition is to be continuously satisfied it must be as the

result of some redistributing effects of the actions of conduction on the

convections. For the rates of increase by convection are a geometrical

consequence of the initial motions which are subject to the definition as to

scale and relative-motion
;
while on the other hand, the rates of increase by

conduction depend on the conducting properties of the medium, as well as

on the distribution of the medium in space and time.

69. The fourth property of mass, necessitated by the laws of motion, is

that of exchanging momentum with other mass, Art. 17, Section II., and it

now appears that this is the fundamental property on which the existence

of systems of mean- and relative-motion depends.

For if there were no conduction, that is, if mass were completely pene-
trable by mass; so that two continuous masses could pass through each

other without affecting each other's motion
;
then the only rates of increase

would be those by convection, each point of mass preserving its course with

no interruption, with constant velocity, and there could be no redistribution.

Hence :

Certain properties of conduction are necessary for the maintenance of

systems of approximately mean- and relative-motion.
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70. Notwithstanding the extremely abstract reasoning on which the

foregoing conclusion is based it is definite. And it appears possible to carry
this reasoning further and so obtain conclusive evidence as to what the

general properties of conduction and the general distributions of the medium
must be for the maintenance of the mean- and relative-systems, when the

resultant system is purely mechanical.

71. The general laws of conduction of momentum by a purely mechan-

ical medium, as denned by the laws of motion, have already been deduced

(Section III. Art. 24), and the effects of conduction in displacing momentum
and in angular dispersion of vis viva have been proved (Section III.

Arts. 31 2), and also the effect of conduction on the resilience, if any.

However, since there is no resilience in a purely mechanical medium,
it at once follows that the medium must be perfectly free to change its

shape without changing its volume, or it must consist of mass or masses,

whether infinite, finite, or indefinitely small, each of which absolutely

maintains its shape and volume
;
that is to say, each of which is a perfect

conductor of momentum.

Thus the class of media in which the general conducting properties

satisfy, as a resultant system, the condition of being a purely mechanical

system is not large ; being confined to

(1) The "perfect fluid";

(2) The perfect solid ;

(3) Perfect discontinuous solids
;

(4) Perfect discontinuous solids with perfect fluid within their inter-

stices.

This class of media all satisfy the conditions for purely mechanical media

as resultant systems. But it does not follow, as a geometrical necessity,

that they all satisfy the conditions of consisting of mean and relative com-

ponent systems.

For although any medium which satisfies the conditions of consisting of

component systems of mean and relative motion must of necessity satisfy

the conditions as a resultant system, the converse of this is not a necessity.

It therefore remains to obtain from the previous definition the further

limitations imposed, as a geometrical necessity, by the conditions of consisting

of component systems of approximately mean- and relative-motion.

72. Evidence as to the properties of conduction for component systems.

(1) From the equations (128) it appears, as already pointed out, that in

order that

f
Jo
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may satisfy the condition of having no mean values, when integrated

between the limits of the scale, in time and space, of relative motion, over

any two independent variables to any defined degree of approximation, the

time integrals of the members on the right must satisfy the same condition.

Whence it follows that the condition for the maintenance of the

inequalities steady requires that the rate of increment, as expressed

by all terms on the right, in each of the equations (128), shall be such as

has absolutely no mean value when integrated over limits, with respect

to any two independent variables.

This condition, although it applies only in a somewhat particular case,

is such as must be satisfied for the maintenance of mean and relative systems
to be general, and hence any evidence that may be derived from it must be

perfectly general.

To apprehend the importance of this evidence we have only to consider,

what has already been pointed out, that the first four terms in the right

members in each of the equations (128) require, as a geometrical necessity,

integration between limits over three independent variables in order that

they may have no mean values. Whence it follows that in order to

maintain the inequalities steady the fifth term, which expresses relative rates

of increment of momentum by conduction, must be such when integrated,

over limits, with respect to any two variables, as will exactly cancel the

integrals of the other four terms when they are taken over the same limits

with respect to the same two variables.

Thus we have for a particular case, which however must occur in all

general systems consisting of component systems of mean- and relative-

motion, an inexorable condition as to the necessary properties of conduction.

It will be readily granted that the satisfaction of this condition involves

the absolute dependence of the functions Fx', &c., on the condition of the

medium and its relative-motion.

(2) Evidence as to the necessary properties of the medium is also

obtained from the condition that the inequalities must be maintained small.

The satisfaction of the condition of equality between the rates of opposite
actions resulting from transformation, convection, and conduction, does not

define the magnitudes of the inequalities which may be maintained, but

only the fact that they remain steady.

It therefore appears that the definition of the relative values of the

inequalities which are maintained depends on a balance of rates of institu-

tion and decrement. And in order that such a balance should institute

itself and remain steady, it is necessary that the state of the medium shall

be such that integrals of Fx', &c., taken over limits with respect to any two

independent variables, shall be such functions of the inequalities that they
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increase with the inequalities and are of opposite sign, whereby the in-

equalities are subject to logarithmic rates of decrement.

Then, whatever might be the rates of institution of inequalities resulting

from all the other actions, the inequalities would increase, increasing the

rates of decrement by conduction until these balanced the rates of increment,

that is until the other actions were cancelled by the actions expressed by
Fx', &c., after which the inequalities would remain steady as long as the rate

of institution remained steady.

(3) Evidence as to the necessary properties is also obtained from the

conditions that define the scales of relative motion.

Where mean motion is everywhere uniform this condition requires that

the scale of relative velocities and relative mass shall approximate to some

finite scale at which it will remain as long as the mean motion is everywhere
uniform. This does not follow as a geometrical necessity of the initial

definition, for if constraining limits were absent from the mass, the actions

which insure the logarithmic rates of decrement would continue to diminish

the scale indefinitely ;
hence inferior limits of relative-mass and relative-

motion define the properties of the medium as regards limiting constraints.

73. This evidence, together with the definitions of mean-velocity and

mass, suffices to differentiate the four general states of media, which, as

resultant systems, satisfy the conditions of being purely mechanical, from

those which also satisfy the conditions of consisting of component systems of

approximately mean and relative motion.

Since continuous mass cannot pass through continuous mass without

exchanging momentum, the reciprocal actions between the masses in relative

motion will be to cause continual diversions of the paths of points in mass.

And by definition of relative motion, if there is no mean motion, the

mean component momentum in any positive direction is exactly equal to the

mean of the negative momentum in the same direction. Therefore the

mean rate of increase of component momentum in the positive direction, by
the components of the reciprocal relative accelerations, is exactly equal
to the mean rate of increase by the component reciprocal accelerations

of the component momentum in the negative direction. The mean motions

being uniform, the reciprocal accelerations have no effect on energy of

relative motion in all three independent directions. Whence the effects of

the component reciprocal accelerations are rates of change in the positive

and negative component momenta, in one direction, with the positive and

negative momenta in other directions. Such exchanges of positive and

negative momenta from one direction to another are possible only when the

component accelerations of relative motion are, not resultant accelerations,
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but, are the means of the components of resultant reciprocal accelerations

with various degrees of divergence from the direction of the previous motion.

And it is thus shown that any angular redistribution of positive and

negative components of momenta, or, which is the same thing, of the vis

viva of the component velocities, results solely from the impenetrability of

the medium.

74. From the foregoing reasoning it might be inferred that the impene-

trability of mass together with the definition of relative motion must secure

logarithmic rates of decrement of all inequalities provided that the medium
were sufficiently mobile. That this is not the case is however at once seen

from the theory of a "
perfect fluid."

(a) For in such media every point in mass is in complete normal con-

straint by the surrounding medium, with lateral freedom. So that, while no

point can move without affecting the motion of every other point in some

degree, there is no lateral action. Thus the continuous finite accelerations

do not cause finite diversions of the paths of points in mass from the

previous directions at any point of their courses, but cause finite curvature

of these paths. And thus the paths of adjacent points are ultimately

parallel. There being no finite lateral deviation, there is no lateral exchange
of momentum in the direction of motion at any point.

Whence such lateral exchange of momentum being necessary in order

that there may be general rates of logarithmic decrement of inequalities,

it follows that in a perfect fluid there cannot exist logarithmic rates of

decrement of all inequalities of relative motion.

It thus appears, since, as has already been pointed out, general logar-

ithmic rates of decrement of all angular inequalities are necessary for the

maintenance of approximate systems of mean and relative motion, that

a perfect fluid, although satisfying the condition of a purely mechanical

medium as a resultant system, cannot satisfy, generally, the condition of

consisting of component systems of approximately mean and relative motion.

(6) A perfect continuous solid, that is a continuous mass which conducts

momentum perfectly, whether direct or lateral, can only move as one piece,

and therefore cannot consist of component systems of mean and relative

motion.

(c) It thus appears that of the class of media that satisfy the conditions

of a purely mechanical medium, neither the perfect fluid nor the perfect

solid satisfies the condition of consisting of component systems of approxi-

mately mean and relative motion. And as these are the only two continuous

media in the class we have the conclusion : that no continuous medium can

satisfy the condition of consisting of component systems of mean and

relative motion.
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(d) If then the conditions for mean and relative systems are to be

satisfied it can only be by discontinuous media.

These all include perfectly conducting parts and are capable of

separation into two classes according to whether or not these parts are or

are not in such constraint with each other that each part is in complete
constraint with the neighbouring parts ;

lateral as well as normal.

(e) In media in which the perfectly conducting parts are each in

complete lateral as well as normal constraint with their neighbours, there

can be no logarithmic rates of decrement. Whence, as in the case of

a perfect fluid, such discontinuous media cannot generally consist of com-

ponent systems of approximately mean and relative motion.

It thus appears that no purely mechanical medium can satisfy the condi-

tion of consisting of approximate systems of mean and relative motion unless

it includes discontinuous perfectly conducting parts, each of which has

certain degrees of freedom with its neighbours.

(/) If, therefore, it could be shown that, as in the other purely
mechanical media, these discontinuous media, with degrees of freedom, do

not admit of logarithmic rates of decrement of the inequalities of relative

motion, it would follow that component systems of approximately mean and

relative motion are impossible.

As it is, however, it can be shown that these discontinuous media, with

or without perfect fluid occupying the interstices, as long as the perfectly

conducting parts have any degrees of freedom with their neighbours, do

admit of, and not only admit of, but entail, logarithmic rates of decrement of

all inequalities of relative-momentum.

This will be fully proved in the following sections. But it is sufficient at

this stage to show how this comes about.

(g) The actions between perfectly conducting masses are instantaneous

finite exchanges of momentum in the direction of the common normal to

the surfaces at contact. The direction of this normal has no necessary

connection with the direction of the relative motion of the masses before

contact
;

therefore the direction of relative motion after contact has no

necessary connection with the direction before contact. And thus the

actions will be to render the path of the centre of each mass a rectilinear

polygon in space, with angles which may be anything from to TT according

to the freedoms.

Such action entails that mean component, positive or negative, accelera-

tion of the relative motion in any direction is not a resultant acceleration,

but the mean of the component resultant impulses in all directions, thus
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securing continued angular redistribution in direction and magnitude of the

relative momentum of each of the perfectly conducting masses
;
so that any

mean inequality in the relative motion is subjected to rates of decrement

proportional to the inequality, and to the mean of the positive or negative

components of relative velocity, divided by the scale of relative motion to a

logarithmic rate of decrement.

(h) The evidence furnished by the necessity of the maintenance of the

scales of relative mass and relative motion has not been drawn upon in the

foregoing reasoning, and therefore may now be brought forward as confirming
the conclusion already arrived at; that the only media that satisfy the

conditions of mean and relative component systems are those which involve

discontinuous perfectly conducting parts, since such media are the only

media in which limits to the scales of relative mass and relative motion

are of necessity maintained.

75. Having thus arrived, for reasons shown, at the conclusions that the

only purely mechanical media which can consist of component systems of

approximately mean- and relative-motion are those which consist of perfectly

conducting members which have certain degrees of independent movement,
and that such media of necessity satisfy the condition of securing logarith-

mic rates of decrement of all mean inequalities in the positive or negative

components of relative-momentum in every direction, the further analysis

may be confined to this class of media only.

It is still a class of media and not a single medium.

Such media may be distinguished according as the interstices between

the grains are occupied by perfect fluid or are empty of mass. But this is

by no means the only distinction. For the perfectly conducting members

may have any shapes, and hence may include any possible kinematical

arrangement or trains of mechanism, provided that there is always a certain

amount of freedom or backlash, as it is called in mechanism; or they may
consist of parts of any similar shape but of different sizes or of parts the

same in size and shape, as for instance, spheres of equal size and mass. Nor

is this all, for the relative extent of the freedom as compared with the size

of the members may introduce fundamental distinctions in the properties

of media consisting of similar members.

76. This last source of distinction, arising from the relative extent of

the freedoms as compared with the dimensions of the grains, being perfectly

general however the media may otherwise be distinguished, is a subject for

general treatment, the outlines of which may with advantage be drawn at

this stage from the evidence, already adduced, as to the conducting properties

of the media consisting of component systems of approximately mean- and

relative-motion.
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In this preliminary discussion of the effect of the extent of the freedoms,

relative to the dimensions of the perfectly conducting members, the latter

may be considered as being spherical grains of equal size and mass.

In the first place it must be noticed that, so far, in this section, no

account has been taken of any transformation of mass or of the displacement
of momentum by conduction, so that the logarithmic rates of decrement

by accelerations refer only to changes in the direction of the vis viva, leaving

out of account the fact that there is displacement of momentum by con-

duction at each encounter, and, thus, the reasoning, so far, does not touch

on the possibility of redistribution of inequalities of rates of conduction

of component momenta.

It has, however, been shown that, owing to the fact that the directions

of the normals at contact are independent of the directions of relative motion

before contact, in a granular medium, there must exist rates of redistribution

of all mean angular inequalities in vis viva of the components of relative

motion, whatever may be the inequalities in rates of conduction of momentum
in different directions.

Thus far, then, for anything- that has been shown in the previous reason-

ing, the actions which determine the rates of displacement of momentum by
conduction may be independent of any effect of the independence of the

direction of the normals at contact, and the direction of the relative motion

of the grains before contact, which, as shown, secures angular dispersion

of the momentum of relative motion.

77. In the simple case of uniform spherical grains, which may be

conceived to be smooth, without rotation, whatever may be the relative

paths of the grains as compared with their diameters, if the state of the

relative-motion is without angular inequalities, since this state is maintained

by the continual finite exchanges of momentum lateral to their paths, the

mean component of the aggregate momentum in an interval of time, deter-

mined by the time scale of relative motion, must be the same in all

directions, as also must be the aggregate component paths traversed in a

positive direction, and also those traversed in a negative direction.

But it in nowise follows as a necessity of complete angular dispersion of

components of momentum, within the limits of relative motion, that the mean

length of the component paths traversed in one direction shall be the same

as the mean of those in another direction.

The clear apprehension of this fact is of extreme importance, when we

come to consider the rates of displacement by conduction of momentum
;

this is easily seen :

If each grain traverses the same aggregate, positive and negative, com-

ponent paths in the same time, but their mean component paths in one
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direction differ from those in another, since the paths are limited by en-

counters, and the displacement, by conduction, of momentum in the direction

of the component is the mean of the product of the diameter of the grain

multiplied by the component of the relative momentum
; then, if the mean

component conductions are the same in all directions, the number of the

conductions in any direction must be inversely proportional to the component
mean path in that direction. And thus the rate of displacement of momen-

tum in any direction must be inversely proportional to the mean component

path in any direction.

78. In order to secure that the rates of displacement of the momentum
shall be approximately equal in all directions, it is not sufficient that there

should be logarithmic rates of decrement of the mean inequalities of the

relative components of momentum, positive or negative, but requires in

addition that there should be logarithmic rates of decrement of mean

inequalities in the mean component paths of the grains.

The length of the path of a grain in any direction depends only on the

positions of the surrounding grains ;
and if the mean distance between the

grains is such that the probable length will carry its centre through several

surfaces set out by the centres of these other grains, then, since all possible

arrangements of the grains would be probable, all directions of the normal

at encounter would be equally probable, whatever might be the directions of

the paths. And hence continual encounters would lead to such distribution

of the grains that the probable length of the path would be equal in all

directions; and, so, there would be logarithmic rates of decrement of

inequalities in the lengths of the mean paths in different directions.

78 A. Evidence of the necessity of such logarithmic rates of decrement

of inequalities in the arrangement of the mass is furnished by the equations
of relative-mass; in a manner similar to that furnished by the equations
of relative-motion as to the necessity of logarithmic decrement of the

inequalities of vis viva.

This at once appears from the equations of relative-mass (119), which

may be expressed :

d (p') (d (p'u) ) (d (pu')
j.

=
\ -j h &c. f {

; f- &c.
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(
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In this equation, according to the limits of approximation, the terms in

the right member are such as have no mean values when integrated over the

denned limits with respect to three independent variables.

Therefore it does not follow as a geometrical consequence of the definition

of relative mass that

dp'

~dt
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should satisfy the condition of having no mean value, when integrated over

definite limits with respect to any two independent variables, to the same

degree of approximation as do the initial values of p ;
and this applies both

to the rates by convection and the rates by transformation.

If then the conditions are to be continuously satisfied, it must be as the

result of the redistributing actions on the rates of convection by the mean-

velocity, which alone institutes inequalities.

78 B. Inequalities in the integrals of relative mass, over defined limits,

with respect to any two independent variables, correspond to inequalities in

the products and moments of relative mass. And it thus appears that these

inequalities have no connection with inequalities in the mean-mass, which is

a mean over all four variables.

Therefore these inequalities are inequalities in the symmetry or angular

arrangement of the relative mass.

This significance of the inequalities becomes apparent on multiplying
both members of the equation of relative mass by the square of any variable,

as a?, or by the product of two variables, as yz, and taking the mean over

all four variables
;
as

ft/ j a/ -\ .

ait
(

ote

Then if a?p integrated over all four variables satisfies the conditions to

any degree of approximation, the maintenance of the same degree of approxi-
mation requires that

~dt

should satisfy the identical conditions to the same degree of approximation.

Hence we have the necessity, in order to maintain the inequalities

steady, that, whatever may be the rate of institution, resulting from distor-

tional mean motions, as expressed by the first term in the right member,
the rate of rearrangement resulting from the transformation expressed by
the second term must be such as exactly counteracts the rate of institution.

78 c. It thus appears, as in the case of Art. 72, that this condition of

equality between the rates of institution and rearrangement can be satisfied

only when the rate of rearrangement, as expressed by the second term,

depends on, and is proportional to, the inequality instituted.

78 D. From this evidence it appears that the logarithmic rate of decre-

ment of inequalities in the mean arrangement of the grains, which has been

shown (Art. 7 8 A) to follow as the result of diffusion in granular media, is

a necessity for the maintenance of systems of mean and relative motion.
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And thus it appears that granular media may satisfy the condition of

consisting of component-systems which are mean and relative in respect of

conductions as well as convections.

78 E. It also appears, and perhaps this is of greater analytical import-

ance, that the two rates of logarithmic decrement, that of inequalities of

vis viva, and that of rearrangement of mean inequalities in the symmetry of

the mean arrangement of the grains, which also secures the redistribution of

angular inequalities in the rates of component conduction of momentum, are

in a measure independent and are analytically distinct.

79. The inequalities in the mean symmetrical arrangement of the mass,

although, being the most remote, they have presented the greatest difficulties

to recognition and analytical separation, are of primary importance and

distinguish between classes of granular media. It has been shown that

logarithmic decrement of these inequalities results from diffusion among the

grains.

79 A. It does not, however, follow that such logarithmic rates of decre-

ment would exist when the grains were in such close order that no grain

could break through the closed surface which might be drawn through the

centres of its immediate neighbours. For then, whatever might be the

order of arrangement of the grains, notwithstanding the existence of a certain

extent of freedom, it could undergo no change.

If in this last case the general state of the medium were such that the

mean freedoms of each grain were equal in all directions, so that there were

no inequalities in the mean component paths in different directions, the

relative-motion would be in a state of mean equilibrium without inequalities

and the rates of displacement, by conduction, would be equal in all directions.

But if, from the last condition, the medium were subjected to a mean

distortional strain, however small, the mean component paths of the grains

would no longer be equal in all directions
;
and the rates of displacement of

the momentum, by conduction, would be no longer equal in all directions,

but would be such as tended to reinstitute the former condition
;
that is

to say, the rearrangement of the grains within the limits of freedom would

be such as to balance, not the external mean stresses by which the strains

were brought about, but the stresses necessary to maintain the strain steady.

And thus the logarithmic decrement would not be to a state in which the

mean paths were equal in all directions, but to a state in which the in-

equalities in the mean paths were such as to maintain the necessary

inequalities in the rates of displacement, by conduction, to secure equili-

brium under the external stresses.

80. It thus appears that, while the effect of relative accelerations to

redistribute all mean inequalities, in the angular distribution of relative
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vis viva, is independent of any symmetry in the mean arrangement of the

grains, and, hence, of mean angular inequalities in the mean component

paths of the grains, and is therefore subject to no limits. Whatever the

relative freedoms of the grains may be, the angular redistribution of in-

equalities in the mean component paths depends solely on the rate of

redistribution of the mean inequalities in the symmetry of the arrange-

ment of the grains and is subject to limits depending on the relative lengths

of the mean component paths of the grains, taken in all directions, as com-

pared with the diameters of the grains.

81. It also appears that the definite limit, at which redistribution of

the lengths of the mean paths ceases, is that state of relative freedoms

which does not permit of the passage of the centre of any grain across the

triangular plane surface set out by the centres of any three grains which are

neighbours.

This definite limiting condition obviously corresponds to that at which all

diffusion of the grains amongst each other ceases.

82. It thus appears that there is a fundamental difference in media,

otherwise similar, according to whether or not the freedoms are within or

without this limit.

This difference amounts to discontinuity in the media, for within the

limit there will be no rearrangement of the grains however long a time may
elapse or whatever the state of strain may be. While outside the limit,

in however small a degree, any state of mean strain must ultimately be

relaxed however long the time.

83. The time taken for such relaxation will in some way be a function

of the degree in which the freedoms are without the limit of no diffusion

which will range from infinity to zero, so that there are continuous degrada-
tions in the properties of the media according to the degree in which the

freedoms exceed the fundamental limit.

84. The independence of the redistribution of relative vis viva on this

fundamental limit to redistribution of the arrangement of mass in media

consisting of perfectly hard spheres, or of masses of any rigid shapes, does

not appear to have formed a subject of study by those who have developed
the kinetic theory of gases : so that however complete this development

may be with respect to limited classes of granular media which have formed

the subjects of this study, the methods employed can have been applicable

only to those classes of media in which the extent of the relative freedoms

has, in a large degree, been outside the fundamental limit of no diffusion.

85. It seems important that the limitation imposed, by the methods of

analysis hitherto used in the kinetic theory, on the class of media to which

R. 6
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that theory applies, should be distinctly pointed out here, before proceeding to

the further analysis of the general theory. Otherwise confusion might arise

in the mind of any reader acquainted with the conclusions already accepted

as resulting from the kinetic theory, as to the reason why, after having
arrived at the general conclusion that the only media which can consist

of component systems of mean and relative motion belong to the class of

granular media with some degree of freedom, which is also the class of media

to which the kinetic theory has been applied, any further analysis should

not simply follow the lines of the kinetic theory as hitherto developed ?

This question having been anticipated by the answer which is given
in the previous paragraph, in which it is shown that the general class of

granular media is subject to fundamental differentiation according as the

ratio of the mean paths of the grains to the dimensions of the grains is

within certain limits
;
and that hitherto the method of the kinetic theory

has not been such as to take account of these limits, and is thus only

applicable to media in which the relative paths are large as compared with

the linear dimensions of the grains*.

86. Besides the fundamental limit of no diffusion there is also another

fundamental limit, which appears as soon as a finite relation between the

paths and the linear dimensions of the grains is contemplated. This limit is

that to which the medium approaches as the paths of the grains approach
zero.

If the granular medium is in a steady condition, then if the relative

vis viva is finite there will be some extent of freedom. But for any given
vis viva the mean paths will depend on the rates of conduction or vice versa.

Thus it is possible that the relative mean paths may be indefinitely small as

compared with the diameters of the grains, and the rates of conduction

indefinitely large.

87. It has been shown Art. 74 (a) that a granular medium, in which the

grains are in such arrangement that each grain is in complete constraint

by its neighbours, cannot consist of mean and relative systems of motion.

While from the previous paragraph it appears that granular media in which

there is finite relative-energy may approach within any approximation of

the condition of complete constraint with their neighbours.

88. The conclusion, as stated at the end of the last paragraph, has

a fundamental significance. It clears the way to the recognition of the

definite geometrical distinction between the effects of redistribution in

media, otherwise similar, in which the mean paths are respectively within

and without the fundamental limit of no diffusion.

*
Phil. Mag. 1860, Vol. xix. p. 19, Vol. xx. p. 21.
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When there is no relative motion and each grain is in complete con-

straint with its neighbours, if there is no mean motion, it follows, at once,

that the directions of the normals, at the points of contact, to the surfaces of

the grains, whatever these directions may be, are undergoing no change
are fixed in space.

If then, as shown in the last paragraph, granular media in which there is

vis viva of relative-motion may approach indefinitely to the condition of

complete constraint, it follows that in such media, when the mean paths are

indefinitely small compared with the diameters of the grains, the directions

of the normals at points of contact approximate indefinitely to certain

definite directions fixed in space, that is, as long as there is no mean-

motion. Thus we have the definite geometrical distinction, that as long as

the mean paths are within the fundamental limit of no diffusion, and there

is no mean-motion, the normals to the surfaces at encounters are within

certain angles of directions fixed in space ;
while if the mean paths are

without these limits, in however small a degree, the normals continually

change their directions so that, if sufficient time is allowed, all directions

are equally probable.

89. While within the fundamental limit any one grain can only have

contacts with a strictly limited number of other grains, in the case of

Fig. l.

uniform spherical grains, in regular symmetrical piling, the number of grains

any grain can come in contact with is twelve, so that if there is no strain

in the medium and the mean paths are indefinitely small, as compared with

62
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the diameter, there are twelve fixed normals in which this grain can have

contact with other grains. The twelve normals radiate from the centre of

the grain, and when the grains are in the regular formation each normal

is in the same line with an opposite normal so that there are six fixed axes

symmetrically situated in which encounters take place. And as the resultant

accelerations are in the directions of the normals at encounter, these six

directions of the normals are six axes of conduction of momentum.

These axes pass through the twelve middle points in the edges of a cube

circumscribing each grain, if there are no mean strains in the medium, and

are thus symmetrically placed with respect to the three principal axes of

the cube. This is shown in Fig. 1, p. 83.

If, then, the rates of conduction across surfaces perpendicular to these

six axes are equal, the momentum conducted being in the direction of the

axes, the grains will, of necessity, be in mean equilibrium.

This state of equilibrium in no way depends on the mean density of

the relative vis viva of the grains. Therefore, in the limit, as the mean

paths of the grains become indefinitely small, as compared with their

diameters, as regards the direction of the rates of conduction, whatever the

relative vis viva may be, the state will be the same.

Thus, if there is no relative motion, but the grains are under stress,

equal in all directions, by rates of conduction resulting from actions at

the boundaries of the medium, the rates and directions of the resultant

actions would be the same as if the rates of conduction resulted from the

exchanges of momentum of relative-motion.

90. This limiting similarity between the states of media, one of which,

having no system of relative motion, is purely kinematical, and cannot

satisfy the conditions of consisting of mean and relative systems of motion,

while the other, essentially, satisfies these conditions, has a fundamental

significance, although (except by the recognition that in the one case the

conduction results from mean actions at the boundaries of the medium,
while in the other the conductions are between the moving grains) this

significance in no way appears as long as there are no mean strains in the

media.

If these media are subject to any indefinitely small distortional strains

the discontinuity between them, as classes of media, appears.

In the case of kinematical media without mean strain, the stresses being

equal in all directions and finite, no strain will result from indefinitely small

stresses, nor will any strain result until the mean distortional stresses arrive

at the same order as the mean stress equal in all directions. Thus if p
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represents the stress, equal in all directions, and^?^ p is the normal stress

imposed in the direction in which x is measured, the stress in the direction

at right angles remaining equal to p (and not affected by the strain), there

will be no strain until pxx is greater than 2p. Whence it follows that any
distortional strain is attended by an increase of mean volume occupied

by the medium equal to the contraction in the direction in which x is

measured, since there is no work spent in resilience, or in accelerations of

relative vis viva. Thus the kinematical medium has absolute stability up to

certain limits*.

91. On the other hand, the granular medium with relative motion,

however small may be the mean paths, when subject to no distortional

strain, and to indefinitely small distortional stresses, yields in proportion
to the stress so that such stress is equal to the strain multiplied

by a coefficient which is constant if the terms involving the square and

higher powers of the strain are neglected; and this medium has the character

of a perfectly elastic solid for indefinitely small strains. It has therefore no

finite absolute stability, arid no dilatation as long as the squares of the

strains are indefinitely small. As the strains increase, however, dilatation

ensues, as expressed by the terms involving the squares and higher powers of

the strains.

Thus, although for small strains the two media are fundamentally

different, as the strains become larger the conditions of the two classes of

media approximate towards similarity, as regards the relation between

stresses and strains; and thus the door opened to mechanical analysis

by the recognition and analytical study of the property of dilatancy, as

belonging to all media consisting of rigid discontinuous members, is not

closed to the analysis of systems of mean and relative motion. So far from

this being the case, the recognition of the coexistence of relative motion, by

easing off the condition of absolute stability, belonging to the purely kine-

matical system, supplying as it were kinetic cushions at the corners, has

removed difficulties which otherwise rendered analysis impossible.

92. The primary conclusion arrived at in this section, that the only

media which, as purely mechanical resultant systems, can consist of com-

ponent systems of mean and relative motion, are those which consist of

discontinuous perfectly conducting members with some degree of freedom,

while limiting, as already pointed out, the scope of the subsequent analysis

necessary for the definite expression of the several rates of action resulting

from convections in such media, also indicates the methods by which this

analysis may be accomplished.

* Phil. Mag. Dec. 1885, "On the Dilatancy of Media composed of Rigid Particles in Contact."
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Given the mean actions across the boundaries of any portion of the

medium, the mean action of the grains enclosed is, at any instant, a mean

function of the generalised ordinates which define the shapes, positions and

dimensions of the members, the intervals of freedom, number of grains in

unit volume, their velocities and their directions of motion.

Thus the method of analysis is to express the several probable mean
rates of action, resulting from convection and conduction, in terms of the

mean vis viva of relative velocity, the mean component-paths and mean paths,

their number, mean-mass, and any other generalised mean ordinates that the

shapes of the grains may entail. Then these expressions may be substituted

in the members on the right of the equations, Section VI., since these include

general expressions for the several actions.

The method thus indicated constitutes a general extension, or completion,
of the method employed in the kinetic theory of gases.



SECTION VIII.

THE CONDUCTING PROPERTIES OF THE ABSOLUTELY RIGID

GRANULE, ULTIMATE-ATOM OR PRIMORDIAN.

93. ALTHOUGH the absolutely rigid atom is as old as any conception in

physical philosophy, the properties attributed to it are outside any experience

derived from the properties of matter. In this respect, the perfect atom is

in the same position, though in a different way, as that other physical

conception the perfect fluid. Both of these conceptions represent conditions

to which matter, in one or other of its modes, apparently approximates,
but to which, the results of all researches show, it can never attain, although
this experience shows that there is still something beyond.

The analysis of the properties of conducting momentum, which must belong
to the perfect atom considered as of uniform finite density, is obtained from

the principle of conduction defined in Art. 72, Section VII.; from which

it appears that it must conduct in all directions at an infinite rate, or that

it must be capable of sustaining stress of infinite intensity, tension, com-

pression or shearing; while it is shown that the property of conducting

negative momentum in a positive direction or vice versd requires that the

momentum and the conduction shall be imaginary.

In the case of matter (rigid bodies) these imaginary stresses and rates

of conduction are held to imply rates of actual conduction, round the outside

of the bodies, in the medium of the ether. A conclusion confirmed in the

case of matter by the existence of limits to the intensities of these stresses.

Such outside conduction is at variance with the conception of fundamental

atoms outside of which there is no conducting medium and which atoms

do not possess the properties of changing their shapes or of separating

into parts.

It becomes clear therefore that any fundamental atom must be con-

sidered as something outside of another order than material bodies, the

properties of which are not to be considered as a consequence of the laws

of motion and conservation of energy in the medium but as the prime cause

of these laws.
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94. If, for the sake of simplicity, the medium consist of closed spherical

surfaces of equal radii <r/2 with the same internal constitution anything or

nothing and the interstices between them are unoccupied; these surfaces

having the property of maintaining their motions, uniform in direction and

magnitude, across the intervals, and that of instantly reversing the com-

ponents of their relative velocities in the directions to the surfaces at

contact on encounter without having changed their shapes ;
such a medium,

however far it might go to satisfy the kinematical conditions necessary for

the physical properties of matter, would of necessity entail the laws of

motion and the conservation of energy ;
and would thus constitute a purely

mechanical medium in which the results would be the same whatever might
be the constitution of the space within the surfaces.

The mean density in such a medium would be measured by the number

(N) of closed surfaces divided by the space occupied. And the density
within the surfaces would be the reciprocal of the volume enclosed (-rro^/G).

Since each of the grains represents the same mass, this mass becomes the

standard of mass
;
and being common to all the grains, is of no analytical

importance.

In the same way cr, the diameter of the grains, becomes the standard of

scale in the medium
;
and being the same for all the grains has no analytical

importance.

It is, therefore, important and convenient, as adapting the notation to

any arbitrary system of units, to define the mass of a grain in terms of

the dimensions of the grains in the arbitrary units.

The most definite and convenient definition appears to be that which

makes the mean density of the medium, when the grains are piled in their

closest order, a maximum, that is when each grain has contact with twelve

neighbours at the same time. In this way the mass of a grain is expressed by

a?

VI
'

where <r is the diameter of a grain expressed in arbitrary units.

Then if p" expresses the mean density of the medium

And thus p" becomes unity when the grains are in closest order.



SECTION IX.

THE PROBABLE ULTIMATE DISTRIBUTION OF VELOCITIES OF

THE MEMBERS OF GRANULAR MEDIA AS THE RESULT OF

ENCOUNTERS, WHEN THERE IS NO MEAN MOTION.

95. Maxwell's Theory.

Since the only action between elastic hard particles, as considered by

Maxwell, is that of exchanging each other's relative motion in the direction

of contact at the instant of contact, and the action of the grains, as defined

in Section VIII., is identically the same, notwithstanding that it is not

ascribed to elasticity, Maxwell's* proof of the law of probable distribution

of velocities to which the action between the particles tends, applies equally

to the grains. This law of Maxwell's is perfectly general and independent
of all circumstances as to shape and size of the particles, and the extent of

their freedoms, as long as there is freedom in all directions, and there is

no distortional mean motion.

According to this law the mean of the energy, taken over limits of space,

such as define the scale of the relative velocity of the motion in each degree

of freedom, is the same for each and every degree of freedom, and is

constant when equilibrium has been established. From this it follows that

the time-mean of the energy of motion in each degree of freedom is the

same, and is equal to the space-mean.

In the case of all the grains being similar and equal the mean component
velocities positive or negative are the same, whether taken with respect to

time, or to space. And when the grains differ the mean component
velocities are inversely as the square roots of the masses.

This law of distribution, to which the relative-velocities, in any granular

medium, tend when the mean motion ceases, being general requires no

further exposition here.

* Phil. Mag. 1860, Part I., pp. 2023, Props. I, II, HI, IV.
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In following up the consequences of the law, to which the mean com-

ponent vis viva tends, on the mean distribution of the spheres, Maxwell,

it appears, has tacitly introduced an assumption which, although legitimate

in cases in which the diameters of the spheres are negligible as compared
with the mean-paths of the spheres between encounter, has completely
obscured the fact that the mean arrangement of the grains does not depend

solely on fulfilment of the law of distribution of the vis viva', but also

depends on the hindrance which the surrounding grains may offer to the

enclosed grain in changing its neighbours.

When the grains are small compared with spaces separating them this

hindrance becomes negligibly small. And, further, whatever effect it might
have is entirely dependent on the conduction through the grains ;

so that

the neglect of the displacement of momentum by conduction renders any
account of such mutual constraints which the grains may impose on each

other futile.

It now appears, however, that taking account of the conditions, we have

in these a class of actions which, however insignificant they may be when

the density is small, entirely dominate all other actions when the density

approaches maximum density. And it thus becomes evident that the

failure of the kinetic theory, as applied to gases, to apply to the liquid and

solid states of matter is owing to this tacit assumption that the distribution

of the mass depends only on the action which secures that the distribution

of vis viva shall approach that of uniform angular dispersion as the medium

approaches a state of equilibrium.

It will thus be seen, that accepting Maxwell's law of probable distri-

bution of vis viva, it still remains necessary for the purpose of definite

analysis, to define the limits of its consequences on the probable arrange-
ment of the grains, i.e. of mass.

96. Maxwell's law of probable distribution of vis viva is independent

of equality in the lengths of the mean paths.

This is founded on the demonstration (1) that when two elastic spheres,

having relative-velocities in any particular direction, undergo chance en-

counter, all directions of subsequent relative-motion are equally probable,

and (2) the demonstration that whatever may be the shape of the elastic

bodies the same law holds, as to the linear velocity, and is further extended

to their rotational motions. As consideration here is confined to the case

of smooth spheres it is sufficient to take into account the first case only.

The most general expression of this law for uniform grains is, taking

x, y, z to represent the component velocities of grains in the directions ac, y, z

respectively, and N for the number of grains in unit space, the numbers
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of grains which have component velocities which, respectively, lie between

x + Sx, y+ By, z + Bz, are
AT {s2+y2+s2}

BN = --^.e * BxByBz ..................(130).
a3

(TT)*

From> this definite expression of the law it will be seen that it is confined

to direction only and would apply equally to cases where in some directions

the grains were making short paths and in others long paths, as well

as to that in which the mean paths are equal in all directions. Q. E. D.

97. The distribution of mean and relative velocities ofpaws of grains.

In Proposition V. of the same paper Maxwell extended the law of

probable distribution of vis viva to the distribution of the relative vis viva

of all pairs of grains. He does not seem, however, to have further extended

it to that of the mean motions of the pairs; which is remarkable as it

appears to follow directly from his method and would have saved him much

subsequent trouble.

These extensions do not in the least involve the arrangement of the

grains. It is however convenient to introduce the demonstration of the

law of distribution of the mean-velocities here, for the purpose of reference,

and it is simpler to demonstrate both at the same time.

Taking x, y, z as the components of the mean-velocity of a pair of grains

and x', y', z as the relative components of the same pair, and ccly ylt z1}

#2 , y-it ^2 as the components of the individual motions, we have

= Z-z.

Then for the numbers of grains for which x is between ac^ and #j + B^ ,

yl between y and yl + By1} z between z^ and z + Bz1} and ac2 is between #2 and

#2 + Bas2 , &c., &c.

N, t(x+at)*
,

(y+yQ* g+m
,

\

n x
= \,e \ rf a*

'

a* / dxdydz

.iVo _JV:i_.. -_j-i fLL-i-^z. Z-i-Y -,
. -. i -, i \

n 2
= ,,\*e \ ** * > dx dy dz

o. (TT)*
/

The first of these equations expresses the probable number of grains

having mean-velocities between x and x + Bx, &c., &c., for any particular

value of x', the relative-velocity, &c., &c.

And the second equation in the same way expresses the number of

grains having relative-velocities between x and x' + Bx', &c., &c., for any
value of x, &c., &c. Whence the probability of the double event is expressed

by the product
T TIT 1

'dydy'dzdz

(132).
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Then if r = OP + y* + 2? and r' = x'z + y'
2 + /2

,
the number of pairs having

mean-velocities between r and r+ Brand relative velocities between r' and

r + Br is

wiW2
=

-TZT e~2(72+r/2)
dxdydzdx'dy'dz' (133).

These admit of integration either with respect to x, y, z, or x', y', z .

Thus integrating x, y, ~z from x = oo to # = oo we find

-tSu^ d*'d^' <"*>

for the whole number of pairs whose components of relative velocities are

between x' and x' + Bx', y' and y' + By', z' and z' + Bz'. And integrating for

r' instead of r we find

7^^ e~~tfdxdydz ...(135)

(/V2)
3
(7T)*

for the number of pairs whose mean components of velocity are between

x and x + Sx', &c., &c.

These may be expressed in a more convenient form by substituting

r3d cos 0d<}> for dx, dy, dz.

And applying this to the three expressions for the number

of grains having velocities between r and r + Br,

of pairs having relative-velocities between V2r and V2 (r + Br),

of pairs having mean velocities between r/V2 and (r + Sr)/V2,

since ^V is the number of grains in unit volume and N(N 1) is the

number of pairs of grains,
AT4/V12 _f

i *Br = rh (136),

(137),

(138>
(a/V2)

s VTT

Q. E. D.

The first and second of these laws of angular distribution of vis viva are

the same as those given by Maxwell
;
and the third, that for the distribution

of the mean vis viva of pairs of grains, leads to the same results as Maxwell

arrived at in a different manner. Together they constitute the principal

means of giving definite quantitative expression to the results of the analysis
of the actions in a granular medium. And it is important to notice that they
are derived from the probable independence of the preceding and antecedent
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directions of the relative velocities of a pair of grains before and after

encounter under conditions in which the mean density and constitution of

the medium remain unaltered.

In Proposition VI. Maxwell has shown the rates at which the several

members of the medium exchange vis viva, using arbitrary constants. And
in his Proposition VII. he proceeds to the demonstration of the probable

length of the path of a grain in terms of N, the number of grains in unit

volume, s the diameter of a grain, and v the velocity. He has first shown

that if r is the relative velocity of a particle with respect to N particles in

unit volume, this particle will approach within the distance s of JVvrrs2

particles in a unit of time.

Thus in Propositions VIII. and IX. he determines the number of pairs

moving according to the laws expressed in equations (137) and (138) which

will undergo encounters in a unit of time, and in Proposition X. determines

the mean path of a particle to be

In this result there are two things to be noticed.

In the first place the ?rs
2
in the denominator represents the area of the

target exposed to the centre of a spherical grain by another grain in the

direction of their relative motion; while the \/2 is merely the ratio of

the mean relative velocity of the pair to the mean velocity of either grain,

equations (136), (137). It is thus seen that, although the dimensions of the

grain are, perforce, taken into account as determining the probability of an

encounter, no account is taken of the third dimension of the grain in

diminishing the actual distance the centres of the grains would travel

between encounters. Hence Maxwell's mean path I can only be an approxi-

mation when his s is small with respect to his I.

The second point to be noticed in Maxwell's deduction of the mean path
is that he has tacitly assumed I to be the same in all directions. And has

thus assumed not only that the density is constant, which is assumed in the

determination of his laws of distribution of vis viva, but also that the arrange-
ments of the particles must be such that the mean chance of encounter is

equal in all directions, a condition which does not enter into the laws of

distribution of vis viva, and consequently limits the application of this mean

path to conditions of the medium such that all directions afford equal chance

of encounter. A condition which is obviously approximated to as the actual

density becomes small compared with the maximum density, when each

particle is in continuous contact with twelve neighbours.

98. In pointing out the limits to the application of Maxwell's analysis of

the action in a medium of hard elastic spheres, my chief object has been to
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direct attention to those extensions and modifications which are necessary

to render the analysis general, and thus to present a clear idea as to how far

Maxwell's method may be applied. At the same time it seemed very desirable

to show clearly, that in extending the analysis to include conditions of the

medium to which Maxwell had not applied his method, there is nothing at

variance with the results he had obtained under the condition to which his

application of this method extended.

Maxwell's laws of the probable distribution of vis viva, and mass, extended

to include the mean vis viva of pairs of grains, are, as already pointed out,

perfectly general.

But it is necessary to obtain expressions in terms of the quantities which

define the relative motions of the medium for the rates at which the actions

of conduction through the grains displace momenta and vis viva of relative

motion, which expressions shall, if possible, be as general as the law of distri-

bution of vis viva.

In the media considered by Maxwell the distances between the grains are

assumed to be large compared with the dimensions of the grains. Whereas

in the general theory it is fundamental that cases should be considered in

which the distances between the centres of the grains, which are neighbours,

approach indefinitely near to the linear dimensions of the grains.

Such consideration involves methods of analysis by which the several

effects of the action between the grains may be defined whatever may be

the relation between a- the diameters of the grains and X their mean path.

In the first instance the consideration of these rates is confined to states

of the media in which, whatever may be the density as compared Avith the

possible density, the arrangements of the grains, however varying, are such

that the mean actions in every direction are similar and equal ;
the medium

being everywhere in mean equilibrium. And afterwards to proceed to the

effects of inequalities both angular and linear.



SECTION X.

EXTENSION OF THE KINETIC THEORY TO INCLUDE PROBABLE
RATES OF CONDUCTION THROUGH THE GRAINS, WHEN THE
MEDIUM IS IN ULTIMATE CONDITION AND IS UNDER NO
MEAN STRAIN.

99. THE mean rates of convection and conduction of momentum, ex-

pressed in equations (120) by pxx , pyx , &c., and p" (uu')", p" (v'u)" , &c.,

admit of expression as

where p = % (pxx +pyy -h pa ), p' (v'v)" = p" (u'u' + v'v + w'w')"

and in this case p and ^p"(v'v')" represent the mean action, equal in all

directions, while pxx p, p" (u'u')" ^p"(v'v')" &c., pyx ,
&c. and p"(v'u)" repre-

sent inequalities.

In this first extension of the kinetic theory the object is to express the

actions indicated by p and p"(v'v)" only, assuming that the inequalities are

zero, in terms of the quantities which define the condition of the medium.

100. To determine the mean path of a grain,

The mean path of a grain expressed by X is the distance traversed by its

centre between encounters, which is not the component in the direction of its

motion, of its distance between the points at which the two actual contacts,

which limit the path, have occurred, although it approximates to this as X/o-

becomes large.

Maxwell has shown that neglecting o-/\ the mean path of a grain and the

relative path of a pair of grains are expressed by

\ = -=^- - and V2X = -=. .................. (139)*

respectively, while both of these are obtained from

.............................. (140),
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where N expresses the number of grains in unit volume
;

so that either

member represents the mean volume maintained free from other grains by
the kinetic action of each grain.

In this estimate however no account is taken of the striking distance, of

the centres of the pair of grains, from the plane, normal to their relative

paths before contact, through the point of contact, so that the centres of both

grains are assumed to be in this plane at the instant of contact.

When X/o- is large we have all positions of the projection, in the direction

of relative motion of the striking grains, over the disc 7r<r
2

/4, equally probable,

and then the probable mean relative striking distance in the direction of

relative motion is

2

s*
This is a relative distance and the corresponding actual extension of their

actual paths is, by equations (136) and (137),

101. The assumption that all positions of the projection, in the direction

of relative motion, of the striking grains are equally probable over the disc

area 7rer
2

/4 is obviously legitimate when X is large compared with <r, and

hence these estimates of the probable mean striking distance when X/cr is

large are precisely on the same footing as Maxwell's estimate of the mean

path neglecting er/X. But there does not seem to be the same ground for

this assumption when <r/X is large; while, on the other hand, there is

evidence, as pointed out in Section VII. (Arts. 88 and 89), that, when the

grains are close, the normals at encounter fall into line (approximately) with

the direction of a finite number of axes, fixed in space, not more than six.

In this article the arrangement of the grains is assumed to be similar in

all directions
;
so that, whatever may be the law of distribution of the pro-

jections of encounters on the disc-area, the probability will be equal in all

directions at equal distances from the centre of the disc.

Therefore taking 0, as before, for the angular distance from the axis of the

disc at which the normal at encounter meets the hemisphere of unit radius,

the law of radial distribution on the disc may be expressed by a function of

cos 9, which function will depend only on the ratio 0-/X. Thus as a general

expression for the probable mean striking distance we have

27TO- I cos 6 (1 + A l cos 6 + &c.) sin 6d sin 6

2?r f

2

(1 + A l cos 6} sin 0d sin 8
Jo
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in which A
1
&c. are functions of <r/X only ;

and as the law of radial distri-

bution of the striking distance is perfectly general we have in the right

member a perfectly general expression for the mean relative striking distance

of a pair of grains in the direction of their relative motion. And dividing this

by \/2 we have for the mean probable actual striking distance of a grain

Thus as a general expression for the mean path of a grain we have

1(1 2

^/2\7r(T*N~3

and for the volume maintained by a grain .(142).

102. Further definition q/ /(<r/X).

Since the foregoing expression for the volume from which a grain excludes

other grains applies to all conditions of the medium it must include the case

in which \ is indefinitely small; in which case, if the medium is in uniform

condition with three perpendicular axes of similar arrangement, the unique
condition is that in which the volume maintained by each grain approximates
to cr

3
/\/2, as explained in Section IX., each grain being in contact with 12

neighbours. In this case N approximates to \/2/a
3 which is the reciprocal of

the volume maintained by the grain, which thus approximates to the volume

of the spherical grain multiplied by 6/\/27r. Substituting this for the right

member of the second equation (142) we have for the limit when <r/\ is large

6
(143).4 V2-7T

Then, again, if
A,/er is large the value to which /(<r/A,) approximates is unity.

Whence for an expression satisfying all cases in a uniform medium with three

axes of similar arrangement it appears that we may take

.(144).

where a? = 1 6/4\/2 TT and 6
2

is arbitrary

It is convenient however to render the expression for this function a little

more general, since in a granular medium although generally in uniform

condition, with three axes of similar arrangement, there may exist localities

where the arrangements vary about local centres
;
the medium being still in

equilibrium and \/a being small. Under such conditions the limits of

variation are defined by the fact that equilibrium requires that each grain
shall be in approximate contact with at least four grains. And it seems that

R. 7
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these may be included by substituting 1 6r/4, where G has the value 6/V2-7T

when the medium is in uniform condition, and values ranging to the limit

18/4V2-7T when the medium is in varying condition, as about centres of

disarrangement, instead of 6/4\/2 TT in a2
. Then

By definition (Section IX.) p
= Nff3/^/2, and by the second equation (142)

103. In order to render the expressions for the mean relative-path of a

pair of grains and the mean path of a grain, taking account of the three

dimensions of the grains, general and complete, use has been made, equation

(139) in Art. 100, of the ratio (l/\/2) of the mean path of the grain to the

mean relative-path of a pair of grains as determined by Maxwell for con-

ditions in which the third dimension is negligible.

The legitimacy of this assumption therefore remains to be proved. But

before proceeding to the proof of this proposition the proofs of two other

geometrical propositions are desirable, as they depend directly on the law of

distribution of the component-striking distance over the area of the normal

disc.

104. The first of these propositions is :

When a pair of grains having any particular relative velocity (\/2 F/), all

directions being equally probable, undergo chance encounter, the probable mean

product of the displacement of momentum, in the direction of the normal at

encounter, by conduction, multiplied by the component of \/2 F/ in the direction

of the normal is

To prove this, let % be the acute angle between two diameters drawn

through the centre of a sphere of unit radius in the directions of the normal

at contact and that of the relative motion before contact, and let o> be any
small area on the surface of the sphere taken so that its mean position is at

the point in which the diameter in the direction of the normal meets the

surface of the sphere.

Then by the law of probability of the striking distance it follows that, at

a chance encounter, the probability of the normal meeting the surface in co is

Q) COS X (1 A! COS % + &C.)~~



105] EXTENSION OF THE KINETIC THEORY. 99

or multiplying this probability by the product of the normal component of

the relative velocity ^F/eoe^, and again by a, the normal displacement,

integrating over the hemisphere for all values of ^, and dividing this

integral by the integral of the probability of an encounter on <w for all values

of % over the hemisphere, we have for the probable mean product of the

normal component of relative velocity multiplied by the displacement

2-7T -
\/2 crV/ cos y (1 ,4, cos v + &c.)sin , ,

1 - T * V^

Sir
r2 w
I -c

Q. E. D.

105. The second of the two geometrical propositions is :

The probable mean component conduction of component momentum in any

fixed direction at a single collision is

To prove this we have to multiply the mean product of normal displace-

ment multiplied by the component of the relative velocity by (cr
3

/\/2) the

mass of a grain ;
thus obtaining the expression for the mean displacement,

in the direction of the normal at encounter, of momentum at a single

encounter, as

Then, taking as the angle which the direction of the normal makes with

any fixed direction, say that in which % is measured, and resolving the normal

displacement cr and the mean normal component of V in the direction of %,

multiplying by sin ddd, integrating over the sphere and dividing by 4nr,

cos B sin

Q. E. D.

This expression for the probable mean-component conduction at a single

encounter is one of the factors of the rate of component conduction by pairs

of grains having particular relative velocity V2 F/, the other factor being the

number of collisions that take place between such pairs in unit space in unit

time.

This second factor involves the discussion of the ratio of the mean path

to that of the relative path of a pair of grains.

72
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106. The number of collisions between pairs of grains, having particular

relative velocities, in unit of time, in unit space.

Taking N for the number of grains in unit space and substituting F/ for

r in the equations (136), (137), (138), Section IX., we have for the numbers

of grains having velocities between V-l and F/ + 8Fx

'

(149),

for the number of pairs of grains having relative-velocities between *J2 F/

and V2(F1'+SF1')

N(N
,~,l

}

t
(

f*
Fl7

e~^ ^dV1

' = (N-l) n, ......(150),
(V^ a) v 73

"

and for the number of pairs of grains having mean-velocities between F//A/2

......(151).

107. From the equations of distribution of velocities, relative-velocities,

and mean-velocities amongst the grains and pairs of grains in unit volume,

it follows that the proportion of the N grains having velocities between F/
and F/ + SF/ is the same as the proportion of the N (N 1) pairs of grains

having relative-velocities between A/2 F/ and \/2 ( F/ + 8 F/) as well as the

proportion of N(N I) pairs having mean-velocities between F//4/2 and

(F1

' + SF1')/V2, since for every one of the grains having velocities between

F/ and F/+ 8F/ there are (N I) pairs of grains having relative-velocities

between \/2 Vi and A/2 (F/ + SF/) and (N 1) pairs having mean-velocities

between F//V2 and (F/ + SF/W2.

Multiplying the equations (136), (137), (138) respectively by F/, */2 F/,

and F//V2 respectively, and integrating from F/ = to F/ = oo
,
we have for

the mean velocity of grains, the mean relative-velocity of pairs of grains, and

the mean mean-velocity of pairs of grains,

and (F/)"A/2 = "

And as the grains are of equal mass the relative velocity of each grain in a

pair is half the relative velocity of the pair; so that the mean relative

velocity of each grain in the pairs is
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108. To find the mean path of the grains, taking V2X for the mean path

of the pairs.

Each grain has at any instant N 1 relative paths with the N 1 other

grains in unit volume, and N 1 relative velocities, so that the N grains

have in all N (N 1) relative paths and N(N 1) relative velocities.

A change in the actual velocity of any one grain causes a change in the

relative velocity of each of the N 1 pairs of which it is a member. And
as at an encounter between the members of a pair two grains change their

actual velocities, there are 2 (N 1) changes at each collision in the

N(N 1) relative velocities of the pairs in unit volume. The mean

relative path of a pair of grains between changes being by definition V2X,
the mean relative path of a grain is X/\/2. And considering a particular

pair of grains, their paths and velocities relative to each other, though

continually changing, are always parallel and equal, so that the distances

relative to each other traversed by each of the grains in unit of time have

a mean value (F/X'/V^, and the mean number of changes of relative path
and velocity in unit of time is

X/V2 X

Whence the number of changes in all the relative paths of all the grains

is N (N 1) (F')"/X; and since there are 2 (N 1) changes for each collision

the number of collisions in unit volume in unit time is

Having thus found the number of collisions between the N grains in

unit volume in unit of time, since there are two grains engaged in each

collision the total number of encounters made by all the individual grains

in a unit of volume in a unit of time is twice the number of collisions :

that is

Therefore the mean number of paths traversed by each grain in unit

time is

<ZT
x

Then since ( V')" is the mean distance traversed by a grain in unit time,

dividing by the number of encounters the mean path is

V"
*X = X ................................. (154).
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Therefore if \/2 X is the mean relative path of pairs of grains, X is the

mean path of a grain. It also appears that the mean number of collisions

in unit of time in unit volume is

2 X X -V/TT

And the mean number of grains a grain encounters in unit time is

}

109. The mean path of a pair of grains.

This follows directly from the last proposition. For as the number of

mean paths of pairs of grains is identical with the number of relative paths

of pairs, and the mean velocities of pairs is one-half their relative velocities,

the mean paths of the pairs must be one-half the mean relative path of the

pairs, that is, must be equal to the mean relative path of each grain of

the pair, or

110. The number of collisions of pairs of grains having relative velocities

between V2 F/ and V2 (F/ +dV1').

Since the mean relative distance traversed between changes by a pair of

grains irrespective of relative velocity is \/2 X, the mean time of a pair of

grains having relative velocity \/2 F/ in traversing their mean path (\/2 X)

is X/F/.

Then since the number of pairs of grains in unit volume having relative

velocities between A/2 F/ and \/2 (F/ + dV^) is N(N 1), and each of these

pairs changes F//X times in unit time, the total number of changes of these

pairs in unit of time is

And since there are 2 (N 1) changes for each collision, we have for the

numbers of collisions of the n(N 1) pairs of grains in unit of time,

equation (148),

r) V NV'k(V'\* (Vi'P
n-i v j j.\ FI 4r\r*j _ v _ix JT// /i K7\
-or~ s=

~o~\ r~r~ e a - aV i ............... (157 )-2X 2 X a3
V7r

The integral of this from F/ = to F/ = oo gives the number of collisions

of the N grains in unit time.

111. The mean rate of conduction of component momentum in the direc-

tion of the momentum conducted. Cases 1 and 2.
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Multiplying the probable mean component conduction from a mean

collision of a pair with relative velocity A/2 F/, equation (136), by the number

of collisions in a unit of time, equation (157), and integrating F/ between

the limits F/ = to F/ = oo we have for the mean rate of conduction

.........(158),
whence since (V F')"

= 3 ( U' U')"

p.~ /() (U
f

Ur=P**", &c., &c.............(159).
O A. \A,/

112. The left members of equation (159) express in terms of the

quantities which define the relative motion of the medium, the mean normal

stresses, or the mean rates of conduction of momentum, in the direction

of the momentum conducted. And besides these there are the mean tan-

gential stresses, or rates of conduction in directions at right angles to the

direction of the momentum conducted.

These rates are obtained by substituting in equation (158), for cos3
#,

&c., &c., cos 6 sin 6 cos
</>, &c., which when integrated over the surface of

a hemisphere are zero, if all directions of relative motion are equally pro-

bable, but have values in a medium with linear inequalities when the axes

of reference are other than the principal axes of the inequalities.

It is therefore necessary to obtain their integral values over the several

groups of pairs having relative velocities in directions in which the sign

of the component displacement is the same as that of the component of

normal velocity, as

*

1 ?/(T) V2 F/ f f

2

cos 6 sin cos < sin eded$ ,3V7 \\J^ Jo Jo
y
_4<r fa\ V2 V1

.

ri r

JoJo
smOd0d(f>

oJo

which multiplied by the mass and the number of collisions and taking

the mean is

so that to each of these groups of pairs there is a corresponding group for

which the normal components of mean-relative motions are of opposite sign,

the mean taken over the two groups or over the whole unit sphere is zero
;

so that in a medium without linear inequalities

pw
7/ = 0, &c, &c............................ (162).
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113. The mean rate of convection of components of momentum in the

direction x by grains having velocities F/, for which all directions are equally

probable, is expressed by

/JT y
2irp \Vi -~ cos2 6 sin Odd v/2

Jo A. r i

2-777?
I si

J o

sin dd6
^- (163),

which becomes, taking Maxwell's expression for the mean value of v2 from

to oo
, (a

2
. f), when multiplied by the product of the mass into the number

of grains,

And for the mean rate of momentum conveyed in the direction of the

momentum

p" = p'(U'Uy',&c.,&xs......................(165).

For the lateral convections of momentum the expression is

ir IT

I rz rz (F/F/)"
/>( I A. cos#sin2 0c#sin<c<

2JoJo L-_ =
^-&c., +&a, -&c (166),

1 r*
[*

.

5H S11
O Jo JO

where the integration extends, as in the case of lateral conduction, over

groups of grains of which the directions are such that cos 0, sin 0, cos
</>,

&c.

have the same signs, positive or negative. The groups in which the corre-

sponding signs are opposite have integrals with the opposite signs negative
or positive, so that for the complete integrals

p"(V'W')" = Q, &c., &c (167).

114. The total rates of displacement of mean-momentum in a uniform
medium.

Adding the expressions for the rates of conduction and convection in

the respective members of equations (159) and (165), also (162) and (167),

we obtain for the whole rates of displacement of the components of

momentum

PXX" + P" (U'U'y = p" \~L+- --^f(-}> (U'uy, &c. &c. /-i/? Q \

(
o v2A, \A./j \- ...(lOo^.

2V+p"(tf'n"=o, &c . &c. j
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115. The number of collisions which occur between pairs of grains having
mean velocities between F//V2 and ( F/ + d F/)/\/2.

Since the mean distance traversed between changes of a pair of grains,

irrespective of mean velocity, is A A/2, the mean time of a pair of grains

having mean velocity F//V2 in traversing their mean path is \JV. And
since the number of pairs of grains in unit volume having mean velocities

between F//A/2 and ( F/ + d VV)/\/2 is n(n 1), and each of these pairs

changes F/A times in a unit of time, the total number of changes of these

mean paths is V
n(N-\Y-.

And since there are 2 (N 1) changes for each collision the number of

collisions of the n (n 1) pairs of grains in unit volume in unit time is

which integrated gives the total number of collisions a/\/7r . A.

116. The mean velocities of pairs having relative velocities V2F/ and

F//V2.

Since the time of existence of a pair between changes, whatever the

mean and relative velocity, is the time of existence of both the mean and

relative velocities between changes, and the mean ratio of the mean and

relative paths between changes is that of l/\/2 to \/2 or 1 to 2, it follows

that the mean ratio of the mean and relative velocities is 1 to 2. And

hence the mean velocity of all pairs having relative velocities between A/2 F/
and V2 (Vt

'

+ d F/) is between F//V2 and ( F/ + d FOA/2. Q. E. D.

117. All directions of mean velocity of a pair are equally probable what-

ever the direction of the mean velocity.

This follows directly from the expression for the number of pairs having

particular mean and relative velocities

r ,-
-^
-

. e~^ . dr,d (cos

r - -
. e 2

. drzd (cos

rx being the mean velocity, r2 the relative velocity and 0^, #2^2 having
reference to the angular positions of rv and r2 .

For, taking r^r^ and r2 8r2 constant, and ascribing any particular values

to #2 < 2 and S#2S$2 ,
the number of pairs, having a mean velocity Vl in
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directions such that, referred to the centre of a sphere of unit radius, they
meet the spherical surface element dcos Oidfa, is to the total number which

meet the sphere as d cos d^dfa is to 4?r. Q. E. D.

118. The probable component of mean velocity of a pair having relative

velocity r2
= \/2 Vt in the direction of the normal at encounter.

Since r^ = rz/2 and r2
= V2 F/, rx

=
F//\/2. In all directions the probable

component value is

119. The probable mean transmission of vis viva at an encounter in

the direction of the normal.

When two equal spheres encounter, the displacement of energy by
conduction of momentum is the product of the displacement a- multiplied

by twice the product of the components of the mean velocity and relative

velocity of a pair in the direction of the normal. Therefore since the

probable component of mean velocity in the direction of the normal (last

article) is F//2 \/2, and the probable component of the relative velocity as

obtained by dividing out the a in equation (147) is 2 *J2 .f(a-/\).V1/3, the

probable displacement of vis viva in the direction of the normal is

If I, m, n are the directions of the normal referred to fixed axes, the

component displacements of the vis viva of components parallel to the

axes are

120. The mean distance through which the actual vis viva of a pair of

grains having relative velocities between \/2 F/ and \/2 ( F/ + 8 F/) is dis-

placed at a mean collision.

Since the mean velocities of pairs of grains having relative velocity

v'2 F/ is F//-V/2 and the actual vis viva of such a pair is

we have for the displacement of the total vis viva of a pair of grains

And since the displacement of vis viva by convection by a grain having
velocities between F/ and F/ + 8F/ between encounters is XF^ and there
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are, in unit time, twice as many mean paths traversed as there are collisions,

the relative rates of displacement of vis viva by convection and conduction

are as X to cr.y(<r/X)/3, and the displacement of vis viva on encounter is

in cases (1) and (2)

It thus appears that, while, as has already been shown, the range of

mass or any mean quantity carried by mass is X, and the range of relative

velocity or momentum is

the range of vis viva is

121. The probable mean component displacement of vis viva at a mean
collision by conduction.

Multiplying the mean normal conduction of vis viva at a collision of

a pair of grains having relative velocity \/2 F/ by cos 6 . sin 6 . dd . 2-n- and

integrating from 6 = to =
vr/2 and dividing by 2?r we get

am

122. The probable mean component displacement of vis viva by convection

between encounters by a grain having velocities between F/ and F/4-dF/.

Multiplying the product of the vis viva of the grain Fj
2 into the probable

displacement (X) by cos 6 . sin . dd, dividing by 2?r and integrating from

Q = to 6 = TT/2, the rate of the mean probable convection is

27T

123. The mean component flux of vis viva.

Since there are two mean paths traversed for each collision, adding
twice the mean component displacement by convection for one path to the

mean displacement by conduction at an encounter and multiplying by
w1F1/2X, the expression for the mean flux by grains having directions such
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that cos 6 and cos < are positive, and for pairs of grains for the mean velocity

of which cos 6 and cos < are positive, is

124. The mean component flux of component vis viva.

The flux of the components of vis viva may be separated for direct

, a d sin2 d . d sin2 6 . .,

action by substituting cos2 6 .
- for ^ in the last equation and
2i i

integrating :

-&IM-

'
2

f
2 d cos2<r\ r

2 n
x/J o J o

-\L "M+JLo *r I
*-

i o-v

and for lateral action by substituting sin2 6 . cos2

f-

2 d sin4

oJo 4

+ cos

dsin2

47T

_p n,

8'JV

125. The component of flux of mass in a uniform medium.

Since mass is not subject to conduction, and the probability of a grain

having velocity F/ is nJN while the probable mean path is X and the

number of collisions in unit space and time between the grains having
velocities between F/ and (F/+8F/) is

F/
Wl

--xT'

the component in direction of x of a grain of which the direction is

defined by sin . dd .
d<j>

is X cos 6, and multiplying by the number of mean

paths traversed by each of such grains in a unit of time we have

IV
x

X cos 6n .
~- sin 6 . dO .

d<f>
TO T/ ,2

d sin2
6.d0.d<l>

47T

Then integrating from 6 = to 6 7r/2 and < = to
<f>
=

?r/2 and from

7 = to F/ = oo

/ ^I'l * "^ /i tr>\
T-= T -J- (I'O),

Jo 4 4 V""
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and taking account of the mass of a grain

a

is the flux of mass by the grains for which cos is positive, &c., &c.

126. The extension of the kinetic theory has thus been carried as far

as to include the expression of the rate of flux of momentum, vis viva,

and mass, by conduction, as well as by convection, in the ultimate state of

the medium without mean strain. Q. E. D.

It is to be noticed that the analysis effected in this section does not

complete the extensions which are desirable, and possible, as these include

the extension for the expression of the rates of conduction as well as con-

vection, when the medium is subject to mean uniformly varying conditions

though still in equilibrium.

These form the subject of Section XII. so that their consideration may
follow the consideration of the logarithmic rates of redistribution of angular

inequalities resulting from the varying condition of the medium on which

they depend.



SECTION XL

REDISTRIBUTION OF ANGULAR INEQUALITIES IN THE
RELATIVE SYSTEM.

127. WHEN a granular medium, however uniform and symmetrical
its mean initial condition, passes from a state of equilibrium and mean

rest into a state in which there are mean rates of strain, there follow, as

a consequence, rates of establishment of inequalities in the mean distribution

in the relative system, which are expressed by the rates of transformation

from mean to relative motion, as in the last term in equations (116) and

(117) and in (116 A) and (117 A).

The general analysis of the effects of the mean motion on the relative

motion for granular media comes later in the research *
;
and it is sufficient

here to have pointed out the general source of such inequalities, as in this

section we are not concerned with the source except in as far as it may be an

assistance in realizing the general distinction between the two classes of

inequalities. Thus the inequalities which are called into existence by rates

of strain partake of the characteristics of the rates of strain.

Local volumetric rates of strain, which cause the density to vary from

point to point, institute what will here be called linear inequalities, while

uniform distortional rates of strain institute what will here be called angular

inequalities.

The inequalities so instituted, owing to the activity of the relative-

motion, are subjected to rates of redistribution proportional to their magni-

tudes, and it is the determination of these rates in terms of the constants

which define the condition of the medium that constitutes the purpose of

this section and the next.

These two rates of redistribution, like the volumetric and distortional

strains, are analytically distinguishable as belonging to different classes

of mean actions.

The rates of angular redistribution have the characteristics of production
at a point. Their integrals are not surface integrals, and they are included

in the expression for angular redistribution in the fourth term, equation

(117 A).

* Section XIII.
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The rates of linear redistribution, on the other hand, have the character-

istics of a flux. Their integrals are surface integrals, and they are included

in the expressions for the linear rates of distribution in the second and

third terms, equation (117 A).

It thus appears that these rates require separate treatment, and as

the analysis for the linear rate depends, to some extent, on the angular rate,

the angular rate is taken first as the subject for this section, and the linear

for the subject of the next, Section XII.

128. Logarithmic rates of angular redistribution by conduction through
the grains as well as by convection by the grains.

The necessity of logarithmic rates of angular redistribution in the mean

angular inequalities in the vis viva of relative-motion, and of inequalities

in the symmetry of the mean arrangement of the grains, for the maintenance

of approximately mean- and relative-motion has already been proved in

Section VII.
;
and the actions on which these rates depend have undergone

considerable qualitative analysis (to use a chemical expression) in the same

section. What is necessary, therefore, in this section is the application

of the definite, or quantitative, analysis for the definition of these rates.

The first step in this direction is the definite consideration, in the

concrete, of the instantaneous effects of encounters between hard spherical

grains of equal mass and dimensions.

For this purpose use is here made of the conceptions and the method

given by Rankine in his paper "On the Outlines of the Science of Energetics*,"

a remarkable paper, which seems to have received but little notice.

129. In a purely mechanical medium, since any variation of any com-

ponent-velocity of a point in mass can only result from some action of

exchange of density of energy with other points in mass, there are always
masses engaged in such an exchange. Considering these to include all the

mass through which the exchange extends (as between some particular

portion of the medium and all the rest) the sum of the energies of the

components of motion, in any particular direction that of x immediately
before the exchange is the active accident, or the "

effort," of the component

energy to vary itself, by conversion into some other mode, which, in a purely
mechanical system, considered as a resultant system, can only be energy of

component motion in some directions y and z at right angles to x.

The energy so converted into directions y and z is called the "passive
accident." And in the same way the sum of the energies in the directions

y and z, antecedent to the action, is the active accident or the effort of these

energies to vary the energy in the direction x.

* Proc. of the Phil. Soc. Glasgow, Vol. in. No. 1 ; Bankine's Scientific Papers, p. 209.
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It is at once apparent that the result of such accident is, taking account

of the dimensions of the grains, to produce three instantaneous effects,

while, if the dimensions of the grains are neglected as being small (as has

been the case in the kinetic theory), only one of these effects is recognised

as the result of the exchanges of energy on the instant. And although this

one effect has been taken into account in the kinetic theory its position

in that theory has not been generally denned, nor has it been made

the subject of separate expression in the equations.

The first, and hitherto the only, published mention it has received as

a specific effect occurs in Arts. 20 and 21 of my paper
" On the Theory of

Viscous Fluids *," where reference is made to the "
angular redistribution of

relative-mean motion."

It was not however till some time afterwards that I was able to distin-

guish, geometrically, the circumstances on which the existence of angular

redistribution of relative motion depend, and obtain separate expressions

for their effect.

It is included in those terms in equations (47 A), Section III. of this

research, which are not surface integrals, although not specifically expressed,

being associated with the resilience-effects in these equations for a resultant

system ;
the specific expressions for the separate effects for a resultant

system are however effected in equations (47 A).

The instantaneous action of which this angular redistribution is the effect

turns out to be the only instantaneous action on the energy of the relative

motions of the mass or densities of masses engaged other than the effects

on resilience
;
so that, when the masses engaged are two equal hard spheres,

angular dispersion of the energy of their relative velocities, that is, of their

velocities relative to their mean position, is the only instantaneous effect

on this relative energy. This theorem may be easily proved.

130. When two hard spheres encounter, their relative-velocities are in

the same direction, and their momenta, relative to axes moving with their

mean-velocity, are equal and opposite. Suppose the axis of x to be the

direction of relative motion. Then at encounter the grains exchange

components of momenta in directions of the line of centres, and thus the

relative component momentum of each sphere in the direction of the line of

centres is reversed
;

so that if the line of centres does not coincide in

direction with the lines of relative motion, the instantaneous effect (1) of

conduction is exchange of energy of component motion from the direction x

to those of y and z at right angles to x. This is angular redistribution

of the energies of component motion, and is the only change of the energies
of the relative motions, measured from the moving axes. For as the relative

*
Eoyal Soc. Phil. Trans., Vol. 186 (1895) A, pp. 1467.
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momenta in direction of the line of centres of the respective grains are

reversed at the instant there is no change in the position of their energies ;

so that at the instant there is no linear displacement of the energy of the

relative motions. Q. E. D.

131. The other fundamental effects of the action between the grains

those which have been neglected in the kinetic theory are (2) the dis-

placement of momentum which results when two spheres encounter, having

components of actual momentum (referred to fixed axes), in the direction of

the line of centres, which differ in magnitude, causing the instant displace-

ment of the difference of the component momenta, in the direction of the line

of centres, through a distance <r, or the sum of the radii of the spheres. And

(3) the instantaneous exchange of actual component energies in the direction

of the normal.

This linear redistribution of momenta by conduction and the consequent
linear displacement of their energy, relative to fixed axes, when there is mean

motion, are the complement of the angular redistribution of energy, the

three effects being the total instantaneous effect of the encounter, which

admit of analytical separation, as long as there is no resilience.

132. The concrete effects of encounters between the grains must be

considered as belonging to the resultant system in which there is no

resilience. For when the effects come to be analytically separated by inte-

gration into effects on the mean and relative systems respectively, if there

are rates of strain in the mean system there will be, perforce, abstract

complementary resilience-effects in both systems.

It therefore appears that, if the mean effects of encounters are to be

considered as belonging to the relative system, it is necessary to assume that

the mean-motion is not undergoing strain, or that any rates of strain are

indefinitely small. Then since the relative motions are the only motions, the

following theorem requires no further demonstration.

133. If the directions, velocities and positions of the grains, constituting

a granular medium, be considered, at any instant, as a complex accident, at

the instant an encounter occurs, between any pair of grains, the three instan-

taneous effects, already discussed, will constitute an instantaneous finite

variation in the complex accident, which variation will continue the same

finite change, from the condition that would have existed, had the pairs

passed through each other without effect, no matter what other variations

might have taken place. Also, the subsequent effects resulting from the

first encounter will remain unchanged. And thus, the integral effect of an

encounter, at a time subsequent to the encounter, is its instantaneous effect

added to all effects which ensue as a consequence of the encounter. In a

granular medium, since each encounter involves two grains, the number of

R. 8
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changes would increase as the sura of the series in geometrical progression

with the factor 2
;
so that in a time ten times as long as the average time

between two encounters, by the same grains, the number of effects resulting

from a single encounter would be on the average 8000.

Thus taking account of the three analytically distinct instantaneous

effects, in a time ten times as long as the average life of a path, the effects

of an encounter would entail, on the average, 8000 changes in the directions

of paths of grains, 8000 linear shunts of component momenta through the

distance cr in different directions, and 8000 shunts of the difference of the

vis viva of the normal velocities through a in the direction of the normals.

Assuming, then, that in these changes, or variations of the complex

accident, each has its effect in removing a portion of any mean inequality,

which portion is proportional to the mean inequality, some idea may be

gathered of the predominance of the effect of these changes in bringing

about and maintaining the mean condition of the medium to which the

changes tend.

134. In order to form definite estimates, in terms of the quantities, or

mean constants, which define the condition of the medium, of the rates of

decrement of inequalities from the condition_to which the variations tend, as

well as to find expressions for the resulting condition of the medium, it

seems, in the first place, necessary to define, somewhat precisely, what are

the immediate after-effects which follow, severally, from the three instan-

taneous effects which have been analytically distinguished. For such

definition the following general theorems may be proved.

THEOREM. The only effect which follows the instantaneous effects of an

encounter, until there occurs another in which one of the grains is engaged,
is the linear change in position of mass, energy, and momentum, which results

from the instantaneous change in the direction of vis viva.

The proof of this theorem follows, at once, from the analytical definition

of the three effects and their continued existence.

For the instantaneous effect of linear displacement of the component
momenta by conduction through the distance a- in the direction of the

common normal remains unaltered and hence produces no further effect

till the next encounter.

And exactly in the same way the instantaneous exchange of the energy
or vis viva of the components of the velocity of the grains, in the direction of

the normal, remains unchanged until the next encounter. Therefore it follows

that the instantaneous changes in the direction and velocity (which is obtained

for each grain by superimposing on its actual velocity, before contact, the

normal component of the relative velocity of the pair, measured in the direc-

tion opposite to the normal component of the velocity of the grain before



136] REDISTRIBUTION OF ANGULAR INEQUALITIES. 115

contact) represent the actual changes in the directions and velocities of the

respective grains, whence, as these effects are to institute rates of linear

displacement of mass, momentum and energy by convection, these are the

only changes, and they are the after-effects of the instantaneous change in

the direction of vis viva. Q. E. D.

135. From the theorem in Art. 134 it follows, as a corollary, that :

The instantaneous, and after-effects of an encounter (before the next

encounter of either of the grains) are confined absolutely to normal displace-

ments of mass, and of normal components of momentum and energy ;
so that

they have no effect whatsoever on the positions of mass, momentum or energy
as measured in directions at right angles to the normal.

Therefore whatever may be the directions and velocities of pairs of grains
before encounters, if the normals at encounter are all parallel to one axis, there

is no lateral redistribution as the result of the encounters, whatsoever may be

the extent of the normal redistributions.

136. From the principle stated in the corollary, Art. 135, that the redis-

tributions resulting from encounters are confined to the directions of the

normals at encounter, the following theorem may be proved.

THEOREM. In a granular medium, in its ultimate state, without angular

inequalities in the vis viva, &c., <&c., the rates of angular redistribution of the

vis viva will be equal in all directions, and equal to the rate of redistribution

in the directions of the normals, if the directions of the normals are such that

all the lines, drawn from a point, parallel to the directions of the normals,

meet the surface of a sphere, about the point, of unit radius, in points which

are symmetrically distributed over the surface of the sphere.

For in granular media, without angular inequalities, if \/<r is large, all

directions are equally probable for the normals of encounters, in which the

changes in normal vis viva are equal ; so that the probable rates of redistri-

bution of inequalities are equal in all directions.

And in media in which cr/X is small, as has been shown (Section VII.

Art. 89), the directions of the normals will be arranged about n axes sym-

metrically placed ;
n = 4 being the smallest number of mean normals that

admits of symmetrical arrangement ;
and n = 12 the largest number, and the

number in the ordinary piling. These mean normals being parallel to six

axes, so that the probable arrangement in each group, of the directions of the

normals, at encounters, in which the changes of normal vis viva are equal, will

be similar about the axes; and it has to be shown that the rates of distribution

will be the same in all directions.

This proof follows from the principle of the resolution of stresses or

component vis viva.
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If the angles between any line OA drawn through a point 0, and the lines

drawn through the point 0, in the directions of the normals, are respectively

6-i, Z , &c., then the sum of the products ofpl cos
2
0j, p2 cos

2
2 ,
&c. is the rate of

redistribution in the direction OA, and is the same for all directions if the

directions of the normals are symmetrical. Q. E. D.

137. The theorem in Art. 136 includes the redistribution of the actual

vis viva between the grains, as this results from the same exchanges in

directions of the same normals as determine the directions of vis viva
; and,

further, includes the redistribution of the limited displacement of normal

momentum by conduction. Q. E. D.

138. When the mean condition is such that there are more normals in

any one direction than in those at right angles, the rates of redistribution will

be greater in that direction in which there are most normals. But, as regards

the vis viva, as long as the distribution of the normals is such that the normal

redistribution is in no direction zero, there will be rates of redistribution which,

though not equal in all directions, all tend to bring about an equal distribu-

tion of vis viva in all directions, and also tend to bring about the normal

distribution of the actual vis viva of the grains.

As long as the inequalities in the symmetry of the directions of the

normals are small, the effect on the rates of redistribution will be very small,

that is, on the rate of redistribution of vis viva, and on the actual distribution

of velocities of the grains, whatever may be the state of the medium as regards
the ratio a-f\.

Thus for the component vis viva and actual vis viva there is a continuous

law of rate of redistribution and only one even when <r/\ becomes indefinitely

large, so that the directions of the normals approximate to steady axes which

only change their position on account of mean strain in the medium.

139. The redistribution of rates of limited conduction of momentum, or

the limited displacement of normal momentum, is primarily dependent on the

rates of redistribution of the directions of the normals. And the redistribution

of the normals is primarily dependent on the redistribution of the positions
of mass, which again has a primary dependence on diversion of the paths, as

the after-effect of the instantaneous angular redistribution of vis viva, but this

dependence on the divergence of the path is essentially limited by the value

of er/X.

If this is small that is if the freedoms are great then, after an encounter,

it is a matter of chance, like the length of the path of a grain, in what direction

the normal at the next encounter will be, all angles being equally probable,
and consequently the redistribution of the normals is determined by this

probability.
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But when the condition of the medium is such that <r/X is large the

greatest possible distance a grain can travel before the next encounter may
be much less than o-, and this in any direction, in which case the possible

direction of the normal is limited by a conical surface, which may be of angle

zero, in the limit.

Then the rate of redistribution of the normals varies with the angle of this

cone. Thus, as <r/\ approximates to oo
,
the directions of the normals approxi-

mate to fixed axes according to the arrangement of the grains ;
in which case

there is a redistribution of the rates of conduction of momentum or of the

conduction of energy.

And here it may be noticed, that before the grains become virtually close,

a limit is reached at which change of neighbours, or diffusion of the grains,

ceases, and as soon as that limit is reached the mean position of the grain is

constant, except for mean strains, and then the normals group round mean
axes which only move with the mean strains of the medium.

Thus the displacements of normal momentum and energy depend on

the arrangement of the grains apart from the mean freedoms, and the

redistribution of the conduction depends on the redistribution of inequali-

ties in the symmetry of the arrangement of the grains, so that, although
both the angular redistribution of the vis viva and rearrangement of in-

equalities in the symmetry of the mean arrangement of the grains, are

included in the fourth term of equation (11 7 A), expressing angular redistri-

bution, they have not been analytically separated, in the terms, as depending
on angular dispersion of vis viva and rearrangement of the inequalities in the

symmetry of the mean arrangement of the grains.

The analytical separation of the abstract actions on which the two .effects

of angular redistribution respectively depend, effected by the demonstration

of the foregoing theorems, renders it possible to deal with the two rates

separately and so to obtain analytical definition of the respective rates in

terms of the constants which define the state of the medium.

140. The analytical definition of the rates of angular redistribution of

inequalities in the directions of vis viva of relative motion.

As these actions do not appear to have been the subjects of previous

consideration it is necessary to demonstrate two preliminary propositions

before considering the mean effects.

141. The energy of component motion in any direction cannot by its own

effort increase the energy of component motion in this direction.

This proposition might be taken as self-evident
;
but it may be definitely

proved. In the case of spherical grains the proof, is simplified, and particularly

if the relative-motion is such that the only inequalities are in the energies

of motion in different directions unequal angular dispersion.
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Taking the axes of reference fixed, I, m, n and I', m', n', and I", m', n" as the

direction cosines of the normal at the point of contact and of two other direc-

tions at right angles, also ul> v1 ,
w lt u2 , v2 ,

w2 for the antecedent velocities of the

two grains, and Ult Vlt Wly Uz> Vz ,
W2 ,

for the subsequent velocities, it follows

as a direct result of the.exchange of the components of motion in the direction

of the normal that at a single encounter,

1 + [/"2
2 -

ui>
- w2

2 = - 2 (m
2 + ft

2
) l

z
(u2

-
Ujf

''

(vz
- v^ + ft

2

(wz
-

&c.,&c. ...(177).

+ 2 (21
-

1) [hn (^ - tO (va
-

v,}

+ nl

Then, since for any two spheres with particular relative motion, u^ u^,

v2 v1,w2 w1 ,
the probability of their normal, at the point of contact, having

a direction within any small area, sin 0ddd<f), on a sphere of unit radius,

having its centre at the centre of one of the spheres, assuming all angles

of relative motion after encounter equally probable, is :

sin 0d6d(f> cos ^
~^~ ~'

where % is the angle between two radii, one meeting the surface of the unit

sphere in the direction of the point of contact, and the other in the direction

of the relative motion, drawn so that ^ is an acute angle, so that % is

always between zero and Tr/2.

142. The active and passive accidents.

In considering the action resulting from conduction of momentum of two

spheres at a single encounter, the problem is greatly simplified by taking the

direction of one of the axes of reference to be that of the relative motion of

the spheres ; while, as will be seen, it does not lose in generality.

Taking ^ to be measured in the direction of the relative motion, v2 v1}

w2 wl are each zero, and putting

i (MI +O2 + i (M,
- wO

2 for ?V + w2
2
, &c., &c.

in equation (177) we have

US + U,?
-

1 (Ul + utf
-

(Ma
-O2 = - 2(m

2 + w2

) l*(u>
-
uj* + +

..(178),

in which the ciphers represent the values of the terms having factors (va
-

Vj)

and (w2 Wj).

Multiplying these equations by the factor of probable positions of the

normal and integrating over the sphere of unit radius, since cos % is positive
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and equal to + cos 0=l, the equations become on transposing the last terms
in the left members

_ (179),

where, since the square of the relative motion, (w2 u^2
, is double the sum of

the squares of differences between the actual component motions and the

mean component motions,

! + W2\
2 1

MI +
2

/! +

j. +

tt,
-

+ K-

...(180).

2 ;
'

v 2

The left members of equations (178) express, respectively, the effects, both

active and passive, of the accidents on the energies of the components of motion

in the directions of x, y, z respectively.

The first terms in the right members, which are all negative, or zero, express
the effects of the active accidents on the energies in these directions respec-

tively, while the last two terms, which are positive, or zero, express the effects

of the passive accidents in these directions. Q.E.D.

143. The active accidents are work spent by the efforts produced by

respectively, in other directions than those of a, y, zv

respectively. Thus the effort in the direction of the normal caused by w2 MI

is 21 (u2 u-i) and the component of the relative velocity u^ ^ in the direction

of the normal is I(u2 Wj); so that the total result of this effort is 2 2

(w2 Wj)
2
,

work spent by energy in direction of x. Of this 2 4

(w2 %i)
2

ig work returned

to the energy in direction of #; so that the portion of the energy in the

direction x expended in (passive accidents) changing the energy in directions

of y and z is 2 (/
2

1) I
2

(u2
- u^, and the passive accidents in the directions

of y and z are 2 2m2

(uz w^2
,
2 2n2

(w2 u^f respectively.

144. The angular dispersion of relative motion.

The equations (180) show that considering the chance encounter between

two grains, whatever their relative-motion before encounter, all directions of

the subsequent relative-motion are equally probable. So that any angular

inequality in their relative-motion is virtually extinguished after a single
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encounter; although if the pair have any mean-motion, whatever it may
be, the inequality in this remains as before encounter. Q. E. D.

145. The mean angular inequalities.

Before we can pass from dispersion of the component relative-velocities of

a pair of grains to that of the mean-inequalities of all the grains the demon-

strations of several propositions become necessary.

For reasons, which will appear, we have here to consider only such mean

angular inequalities as are introduced in the relative motion of the medium

while the mean system is undergoing mean rates of strain.

These inequalities, as Maxwell has shown, for a medium consisting of

equal hard spheres, are expressed by, taking N for the number of grains
in unit volume,

dxdydz

where a2
, f&, 7

2 are double the mean of squares of the respective component
velocities.

Since the differences between a2
, /3

2
, <f and the mean (a

2 + /3
2 + 7

2
)/3 are

always small compared with their mean it becomes more convenient to alter

the notation and, taking a2 as expressing the mean of 2 + /3
2 + 7

2
,
to take

a (1 + a), a (1 -f 6), a (1 -f- c) respectively for Maxwell's a, y&, 7 ; a, b, c are then

small fractions of unity such that their squares may be neglected and for the

mean squares we have

a2

(1 + 2a), a2
(1 + 26), a2

(1 + 2c),

and the inequalities are 2cw2
,
26a2

, 2ca
2

; 2a, 26, 2c being the coefficients of

inequality from the mean of the mean squares of the respective components.

It is to be noticed that in equation (136) the axes of reference are the

principal axes of the space variations of the mean motions of the medium
the principal axes of distortional mean motions and also of the inequalities.

146. The angular inequalities in the mean relative motions of pairs of

grains have the same coefficients of inequality as the mean actual motions.

Integrating equation (181) with respect to y and z from oo to + oo

yO.

Ar -5a-)Ne
^ dx ...........................(182).

Then, after Maxwell, taking xl as a particular component of velocity in

direction of x, the number of grains which have component velocities

between a?a and x^ + 8^ is

AVa),e 2 dx.
a (1 + a) -V/TT

Phil. Trans. Royal Soc., 1866, p. 64.
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And again taking x2
= x1 + x' the number of grains between ^ + x' and

&\ "T" w "T" Ow lo
(& ~\~x

f^

(/Y
5 (1

~~ 2#)\

--^ . . e
a

)
c&e.

a (1 + a) V^ /

Then the number of pairs of grains which satisfy both these conditions is

NN s i\ a;i "*"i>/ "^"Ti /

a2

(l+2a).vV
e dXldx '

/Y>

Then, since x
l + may have any value from oo to + oo for any value

41

of x', integrating for xl between these limits for any particular value of x, the

number of pairs which have component relative-velocities, in direction as,

between x' and x' + Sx' is :

V2a(l + a)V7r

In exactly the same way it is shown that the numbers of component
relative-velocities between y' and 3/4- By* and between z' and /+/ are

respectively

]\Tl _5_(i_2c)IV *"2
dz'.

V2a(l

Multiplying these expressions by x'2
, y'

2
,
z'* respectively and integrating

from oo to + oo
,
and dividing by JV 2

,
we have for the mean-squares of the

respective components, in the directions x, y, z

2a2

(1 + 2a), 2a2

(1 + 26), 2a2

(1 + 2c),

which have precisely the same coefficient of angular inequalities as the

mean squares of the components of the actual velocities obtained from

equations (181)
a2

(l + 2a), a2

(1 + 26), a2
(l + 2c). Q.E.D.

147. The mean squares of the components of relative-motion of all pairs are

double the mean squares of the components of actual motion.

In the last paragraph of the last article it has been shown that the

mean squares of the components of relative-motion of all pairs including

the inequalities are double the mean squares of the components of the

actual motion, so that no further demonstration is necessary.

148. The rate of angular redistribution of the mean inequalities in the

actual motion is the same as the rate of redistribution of the angular

inequalities in the relative motion of all pairs.

This follows at once from the inequality of the coefficients of inequalities

which has already been proved.
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149. The rate of angular dispersion of the mean inequalities in vis viva.

It has been shown, equations (180), that the angular inequality in the

squares of the relative velocities of any pair of grains is virtually extinguished
at a single encounter. From this it follows that the virtual inequality in the

motion of any grain exists only from the time of the institution of the

inequality to the time of its next encounter.

This time is expressed by

^L
TV

Fj being the actual velocity of the grain, and Xj the distance traversed before

encounter.

This distance Xj may be anything from to oo . But it is proved by
Maxwell to be independent of V and to have a probable mean value,

neglecting cr as compared with X, of

Taking a- into account, as will be shown, the probable value of A,

becomes

The probable path being X, the probable time of any grain with velocity

V, is

A
TV

It thus appears that, although the mean relative distance traversed

between encounters by pairs of grains having the same relative velocities

Fj is independent of Fa ,
the mean time between encounters varies inversely

as Fj.

In order therefore to obtain the probable mean time of existence of

inequalities in the angular distribution of the vis viva, it is not sufficient to

find the probable value of the mean time ^- ,
for all values of F1} since this

^i

would only be the probable mean time between encounters during which the

inequalities in the mean velocity are sustained.

150. The mean time of mean inequalities of vis viva.

The direction of motion of each grain is the direction of its path ;
so

that if I, m, n are the direction -cosines of the motion, the probable times of

the continuance of the components of motion in directions x, y y
z are

\l \m \n

V\l' V\m' V\n^'
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and since the chance of a collision in a unit of time is "Pi/A, the probability

of continued existence is

and the probability of continuing for a time

._n1\
=

TT

is e~n >
.

Whence it follows that, taking account of all the pairs of grains at

different relative velocities, but moving nearly in the same directions, the

times for which their continuance is equally probable are

, _WiM _ n 2\l
"\ -rr

j
> kg -ir- -I )

W'^....................... V"
10 "/'

so that, multiplying Vfl
2
,
V2H2

,
&c. respectively by ^, ta , &c., and adding, the

sum will be equal to

2 {n1\l^(V1 + F2 + &c.)},
=

and similarly for the other two components.

And putting Fand F2

respectively for the mean values of F and F2
,
the

mean time of equal probability for the continued existence of F2
is obtained

by dividing the product by F2
: ~^=

,
and for the other components

V v

F 2ra2
'

These mean times, it will be noticed, are independent of the directions

of the groups, being all expressed by

t = ^=
,
where the probable continuance is e~"> = e *? ...... (186).

Differentiating this expression with respect to t,

From equation (181) the mean values of w2
,
v2

,
w2 are found to be

In these a2
is constant, and a -f b + c = 0, and the inequalities are

^(l + 2a)-^ = 2a|-, &c., &c (188).
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Then by equation (187) the probability of continued existence is ex-

pressed by

Whence if % =
0,

or = - 2a 3
, &c., &c. Q.E.F.

151. Translated into the notation adopted in this research for the ex-

pression of the velocities of the component system of relative motion, we

have for the mean inequalities referred to their principal axes,

')"l &c., &c............ (190),

and for the rates of dispersion with reference to the same axes we have,

putting 92/92 in place of d/dt to distinguish these as rates of angular

dispersion,

// 82 r/ / 'v/ i //','/, / '\>n 3 "" '/ [~/ ' 'v (u/u> + v
'

v
'

' / '\>n 3 "" '/ [~/ ' 'v (u/u>

ww)] = -^-ap \(uu) -^

&c., &c., ...... (191),

where 2a/vV is the time-mean of the velocities of a grain, and \ is the

measure of the scale of the system of relative motion. (N.B. These rates

are independent of <r.)

As already pointed out, Art. 146, the expressions in equations (189) and

(190) for the inequalities are with reference to their principal axes only ;
so

that in order to obtain expressions that shall apply for any axes it is

necessary to effect the transformation from the principal axes, at a point, to

fixed axes.

152. Rates of angular dispersion referred to axes which are not necessarily

principal axes of rates of distortion.

Taking hm^, lzm^n.2, I3m3n3 to be respectively the direction cosines of the

principal axes with reference to any rectangular system of fixed axes,

', V, c', /', <7',
h'

to be the mean values of w'2 , v'
2
,
w'z

, v'w', w'u', u'v' (u, &c., as before, repre-

senting the relative velocities referred to the principal axes 1, 2, 3), and let

, b, c, f, g, h, be their corresponding mean values when referred to the fixed

axes of x, y, z.
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Then
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a = l?a! + l*V + I3
2
c

b = rn^a' + mjb' + m3*c'

c = n^a' + n/b' + n3
2
c' > .(192).

f= m-ji^o! + mznj)' + w3w3c'

g = n^a' + nj,yb' + n3l3c'

h = ^Wjd' + I.2m2b' + I3m3c' t

From these, adding the second, third, and fourth,

.(193).

Also since the principal axes do not change their position in consequence of

the dispersion of the inequalities

92 (a')

(194).

?., &c.

Then substituting from equations (190) for d2a'/d2t, &c., in (194), and

remembering that lju' + 1&' + I3w', when referred to the principal axes is the

same as u referred to the fixed axes, we have by equation (193), for the

rates of dispersion, referred to any axes,

Vat
w'w')"}

3 ,,*J7T

'S ~\

n V77
"

=-Z p
~ a

4( A<
V)

/7

], &c., &c.

" &c -

153. The analytical definition of the rates of angular redistribution of

inequalities in rates of conduction through the grains.

As already proved, Arts. 78 c and 79, Section VII., and the theorem Art. 136

in this section, the angular inequalities in the rates of conduction are the

result of unsymmetrical arrangement of the grains. And as, according to

the definitions of mean- and relative-mass, Art. 47, the mean-mass is inde-

pendent of the arrangement, since the number of grains within the scale of

relative-mass is not affected by the arrangement, the inequalities in the

rates of conduction are the result of unsymmetrical arrangement of the

relative-mass.
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It has also been shown, Art. 77, Section VII., that angular inequalities in

the mean conduction result from angular inequalities in the lengths of the

mean paths of the grains, and it has been further pointed out that angular

inequalities in the lengths of the mean paths are the result of the distortion

rates of mean strain. And the number of paths traversed being inversely

proportional to their lengths, there are more mean paths traversed in direc-

tions in which the relative paths are shortest.

It thus appears that, although the rates of conduction are not of the

same dimensions as the mean paths or the position of relative-mass, the

rates of angular redistribution of the angular inequalities are the same.

154. The rate of angular redistribution of mean inequalities in the

position of the relative-mass in terms of the quantities which define the state

of the medium.

When, owing to the rates of distortional or rotational strain in the mean-

motion of a granular medium, there are instantaneous inequalities in the

symmetry of the arrangement of the grains, there will be inequalities

in the lengths of the mean component paths; and, the number of com-

ponent paths traversed being inversely proportional to their lengths, there

will be more relative paths traversed in the directions in which they are

shortest.

Then, since after each encounter all directions of relative paths are

equally probable, after each encounter any inequality which may be attri-

buted to any pair of grains is virtually extinguished. And, as shown in

Art. 1 50, the probability for the continued existence for a time

ti
= n^ is e-H (196).

v\

From this it follows, as in equation (185),

^ = WIT), t2
= n^ 17j, &c., &c (197),

V in
"

2fr2

in which expressions the direction cosines 11} mlt n1} &c. are nearly constant

and nlf the index of probability, is constant.

Therefore taking the products (^ V1 + &c.) and dividing the mean product

by V the mean velocity the mean time of existence of the inequality is

found to be

* = "i^ ....(198),

and the mean probability of continued existence is

-It
e~n i = e A

(199),
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which when the inequalities are small becomes

If, then, we take a, f, &c., the angular inequalities in the positions of

relative mass, we have for the relative rates of angular dispersion,

It will be observed that the logarithmic rate of decrement of inequalities
in relative mass differs somewhat from that of the vis viva. This is a

consequence of the difference in the mean time of probable existence of V
and of F2

.

155. The limits to the dispersion of angular inequalities in mean mass.

The numerical coefficient is the only respect in which the rate of angular
redistribution of mass differs from that of vis viva as long as \/<r is large.

But as the density becomes large, unlike the redistribution of vis viva, the

redistribution of relative mass depends on two circumstances, the inequalities

being small in both cases.

Inequalities in vis viva are not subject to any limits imposed by the

neighbouring grains and consequently all directions of motion are equally

probable, however close the grains may be, and whatever may be the arrange-
ment of the grains.

On the other hand the possibility of angular rearrangement of the grains

turns on the possibility of a grain passing through the triangular surface set

out by the centres of three of its neighbouring grains ;
and this possibility

is closed at some density less than that of maximum density. The density

at which this closure is effected is that at which diffusion ceases and the

state of permanent distortional elasticity commences. Before this density is

reached the diffusion becomes slower and slower as the density increases
;

so that in a granular medium of which the mean condition is uniform, but

which is steadily contracting, the chance of a grain rinding a clear way
between three of its neighbours diminishes, and each grain dwells longer

and longer in the same mean position in the medium, until all chance ceases

and its mean position is definitely defined, notwithstanding that it has still

a certain range of freedom. For the general consideration of the rate of

rearrangement of mass it is necessary to take account of the probability of

a grain returning after encounters to the formation before encounter, and

this presents great difficulties. But it will be sufficient to point out here

that owing to the
'

instantaneous action at encounter, no more than two

grains are ever in contact at the same time, so that there is no chance of

combination of the grains, and that the mean position of two grains is not

altered at encounter while the relative motions are reversed.
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In the next section it will appear that the linear dispersion of vis viva of

grains is very slow as the angular dispersion is very great, so that any chance

activity of a grain of an exceptional character is immediately dispersed

amongst its neighbours and brought back to the mean.

When therefore the density is such that X/cr is very small and the density
is nearly the maximum, i.e. when G is nearly 6/\/27r, there is no rearrange-
ment of the grains, and this will hold good as G increases provided that the

extent of the medium for which the value of G is large is very small.

Thus we have two states of the medium in which the rates of rearrange-
ment are defined, and between these a gap in which the definition is

difficult.

Fortunately this difficulty is confined to a very small portion of the total

range of density, being that between the density at which diffusion ceases

and that at which diffusion becomes easy.

This gap covers a region of which the higher limit of p is slightly less

than 1/V2, when the distribution is uniform, and is equal to 1/3 at irregular

points and surfaces
; \/(r being small in both cases.

For values of p above these limits there is no diffusion and consequently

no redistribution in the arrangement of mass, while for values of p below

these limits the change in rate of redistribution is very rapid at first,

then gradually settling down to the same relative rate as that of redistribu-

tion of vis viva.

If then we take as before a = di (a)/3i (t), &c. to represent the small

angular inequalities instituted by the distortion in the mean system during
the time 92 (t) ;

the rates of redistribution to which these are subjected will

approximate to that to which the vis viva is subjected as p approximates
to zero. Thus the law of redistribution has an asymptote

Then if we take f(G) as expressing a coefficient by which the upper
limit of p must be multiplied to bring it to unity

(202).....

are expressions which give the rates of redistribution correctly except,

perhaps, in the immediate region of the higher limit.

156. The rates of probable redistribution of angular inequalities in the

rates of conduction.
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Any angular inequalities in the rates of conduction result, solely, from

angular inequalities in the distribution of mass, but the coefficients of the

rates of redistribution are not the same for rates of redistribution of mass as

for the redistribution of conduction.

The mean time of continued existence of the path of a grain

-^ .................................(203),

is not the mean time for the continued existence of the product of the mean

path multiplied by the vis viva. If however the mean time for the mean path
be multiplied by the factor

we have ..(204),

72 72

which is the same coefficient as for the time of continued existence of

vis viva.

To obtain the expressions for the probable relative rates of angular
redistribution of angular inequalities in the rates of conduction correspond-

ing to the rates of angular redistribution of angular inequalities in the

distribution of mass, we have to multiply the relative rates of redistribution

of mass by the factor

3?r

8
'

Then substituting the actual inequalities in the angular rates of con-

duction

(Pxx'-p"}, Pyx', Pzx", &c.,

for a, f, &c., the expressions for the rates of redistribution of these

inequalities of conduction arean 1
2 / // //\ o / ^ *

In these equations (204) for the rates of angular dispersion of the dis-

tortional- inequality, and the two rotational inequalities in conduction, as well

as in the corresponding equations for the rates of angular dispersion of the

corresponding inequalities in the vis viva of relative motion (195), the analysis

E. 9
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for each inequality has been effected separately in terms of the quantities

which define the state of the medium.

These six rates of dispersion for each of the components in directions

x, y, and z added together constitute the rate of increase of the energy of the

component of relative motion received from the other components of the same

system. And thus it appears that the expressions for these six rates of

redistribution are the analytical equivalent, in terms of the quantities which

define the condition of the medium, of the fourth term in the equation (117 A);

which may be expressed as

du
f

1 dv' dw'\\ If ,
M <W\

dy
+

dz]}~
V

~^ yx
\dy dx)

, fdu' <*w'Y|~L o

+ P zx j^
-

-5 r
&c

-> &c-

\dz dx]}\

Q. E. F.



SECTION XII.

THE LINEAR DISPERSION OF MASS AND OF THE MOMENTUM
AND ENERGY OF RELATIVE-MOTION, BY CONVECTION AND
CONDUCTION.

157. THESE actions are expressed by the second, third and fifth terms in

equations (123), or more concisely by the second and third terms in (117 A),

2 \dx [(Pu
'

u
' + P*x)' u'~\

+ &c
-|

>
&c

-> &c -

It has been shown that the actions of the component mean and relative

stresses on the space-variations of the relative velocities (p'du'/da + foc.)" are

confined to the resilience and the angular dispersion of the energy of the

components of relative-motion at the points where the inequalities of angular
distribution exist

;
and therefore do not account for any linear redistribution

from point to point.

Linear redistribution requires the conveyance or transmission of energy, &c.

from one space to another, and the integrals of these actions must be surface

integrals.

These actions of linear redistribution are again such that their effects

can be studied only by considering the causes which determine the rates

at which energy, &c., is carried and conducted across a plane from opposite

sides. The relative-velocities at which the grains arrive at a plane, or which

come in collision with a grain intersected by the plane, are not determined by

any action at the plane, but by the antecedent actions.

As far as these actions of redistribution depend on the convections, that is,

neglecting the dimensions of the molecules, they have been taken into account

in the kinetic theory of gases.

Clausius was the first to obtain the true explanation* on the supposition

that the mean distance between the molecules was so great, compared with

their dimensions, that the latter might be neglected. In this method he takes

*
Fogg. Ann. 1860.

92
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account of the principle, that after a collision the mean velocity of the pair is

the same as before, and of the consequence, that the molecules crossing a

plane surface, perpendicular to the directions in which the inequality varies,

from opposite sides, must have mean velocities such that their sum, in the

direction of the downward slope of the inequality, is equal to V, the mean

velocity of the encountering molecules, the same as if they arrived at the plane

from uniform gas in motion with this mean velocity, VI ;
the uniform gas being

discontinuous at the surface in respect of density and velocity, but continuous

in respect of mean vis viva] the density and the mean relative- velocity on

either side of the plane surface being that of the varying gas at a distance

proportional to the mean path of a molecule.

Maxwell by a law of force (which he had arrived at from his experiments
on viscosity* as the fifth power of the distance) obtained a numerically

different, but otherwise, essentially, the same law.

In a communication "On the dimensional properties of matter in the

gaseous state -f*" I have fully discussed this action, of the linear redistribution

by the convections
; confirming and extending Clausius' explanation.

In that paper, by making use of the arbitrary constant s for the mean-

range, or distance from the plane at which the molecules crossing the plane
receive their characteristics as those of a uniform gas in motion with the

mean velocity, V, of the molecules which cross in unit of time, the assumption
that this distance is proportional to the mean path is avoided, and this is

important where the mean path (X) is of the same order as the dimensions, a-,

of the molecule or grain.

In these analyses account has not been taken of any effects of conduction:

so that, neither Clausius' nor Maxwell's, nor yet my own previous method is

directly applicable for the determination of the rates of linear dispersion of

linear inequalities in a medium in which a- and A, are of the same order, or

in which A/cr is small.

It thus appears that to render the analysis general these methods must

be extended by taking account of the expressions (159), (162), (165), for the

rates of flux by conduction of momentum, as well as of vis viva in terms of X,

and <r
;
so as to obtain expressions for the mean-ranges of mass, momentum,

and vis viva, as determined by conduction as well as by convection.

158. The analysis, to be general, must take account of all possible

variations in the arrangement of the grains.

But in the first instance it is obviously expedient to restrict the arrange-
ment of the grains, to be considered, to those which have three axes, at right

angles, of similar arrangement, as in the octahedral formation; in which cases,

* "On the Dynamical Theory of Gases," Phil. Trans. Royal Soc., p. 49, 1866.

t Phil. Trans. Royal Soc., 1879, Part .
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whatever may be the formation, equilibrium is secured when the internal

arrangement of the medium is uniform along each of the three axes
;
and the

external actions on the medium over planes which are perpendicular to the

axes are also uniform.

159. Mean-ranges.

Having obtained expressions for the rates of flux of mass, momentum, and

vis viva, respectively, by conduction as well as by convection, for any group of

grains in any direction, in a uniform medium, it remains to analyse these

expressions so as to obtain the component mean-ranges of mass, momentum,
and vis viva.

It is to be noticed that mass and vis viva are scalar, while momentum or

velocity is vector
;
and that this fact gives the mean-ranges of momentum and

velocity a different significance from those of mass, and vis viva or energy.

The mean-range of convection by grains in the direction of their actual

motion, whatever they may convey, is X. And the mean-range of conduction,

at encounters between pairs of grains in the direction of the normal, whatever

is conducted, is cr.

160. The component mean-ranges.

The respective component mean-ranges of conduction and convection are

obtained by multiplying the components of the rate of flux by convection, in

the direction of the elementary group, by the component of \ in that direction,

and the component rate of flux by conduction, in the direction of the elemen-

tary group, by the component of & in that direction, respectively, integrating

for the general group and dividing by the integral flux for the same group.

The component mean-range of mass.

As mass is not conductible the mean-range of conduction is zero. The

component mean-range that of convection is then obtained from equation

(175) as

r
2" r

Jo Jo
fit r

I

fJ OJ

< = |X (206).

161. The component mean-range of momentum or component velocity.

In equations (158) and (163) if the factors for convection and conduction

under the signs of integration are multiplied respectively by X cos 6 and

<r cos 6, and integrated with respect to 6 from 6 = to 6= Tr/2, <J>
to

=
77/2 and divided by the respective integrals of the flux, between the

same limits, the component ranges of momentum in the direction of the

momentum, by convection and conduction, respectively, are found to be

X and fo-.
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And performing the same operation on equations (160) and (166), the

component mean-ranges of momentum at right angles to the direction of

the momentum, by convection and conduction, respectively, are

fX, and f<r.

162. The mean-range of vis viva.

Multiplying the convections and conductions, under the signs of integra-

tion, in the three equations (172), (171), (174) respectively by Xcos# and

(r cos
(f>

and dividing by the respective integral rates of flux, the respective

mean-ranges are found to be, for convection and conduction,

For actual energy fX and fa-, coefficient f.

Direct displacement X 0-, ||.

Lateral

The mean-ranges of momentum and vis viva, inasmuch as they are

expressed in terms of X, and a, are general when X has the value expressed
in equation (146).

It should be noticed that while the mean-range of the grains in an

elementary group is X, the mean path from centre to centre, owing to con-

duction, the mean-range of the velocities and the squares of the velocities are

respectively extended to

that is to say the velocity of the grain is not determined by the mean

condition at the centre of the grain at which it last undergoes encounter,

but at a position further back
;
and this becomes of fundamental importance

when X/o- is small.

163. The mean characteristics of the state of the medium.

The mean quantities which define the state of a (spherical) granular
medium in uniform condition are

(1) <rVV2, the mass of a grain,

(2) the constants in the expression / (

-
) ,

Art. 102,
VX,/

(3) u", v", w", the mean velocities of the medium,

(4) N, the number of grains in unit volume,

(5) a, where 3a2

/V2 =(7/77'.

Of these five mean characteristics (1) and (2) stand in different position

from the rest, (1) being constant in time and (2) depending on the ultimate

arrangement of the grains, and the consideration of these may be deferred.
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The mean characteristics (3), (4) and (5) all enter into the definition of

the state of a medium in uniform condition.

164. Characteristic velocities, densities and mean-velocities of the grains.

From equation (136) it appears that, referred to axes moving with the

mean motion of the medium (u", &c.), the number of grains having velocities

between F/ and F/ + 8 F,' in directions which referred to the centre meet the

surface of a sphere of unit radius in the small element d (cos 6) d (<f>),
is

~ e
a ddd.d<b ............ (207).

(TT) \ a

Dividing by N
IV

, . -<20).

If then in one state of the medium a has the value an and in another state

has the value 2
= a

1 (l + 9a1/ 1 ),
the characteristic velocities, for which

-^
=
|L (209),

will be F/ and F^F^l +9a1/ 1).

The inequality between the characteristics is:

In the same way for the characteristic densities if the numbers of grains

in the two states are j^ and N2
= N!

(
1 + -^ j

the characteristic numbers of

the two states are

Wj and nj f 1 +

9JV
with the inequality n^ -sx-.

r
,

And if u" and u" (1 + du"/u") are mean component velocities in the two

states the characteristics are

u," and <' = <'(l +^ (210).

165. Characteristic rates of flux when the axes are fixed.

Putting I = cos 6, ra = sin cos
<j>,

n = sin d sin $ for the direction cosines

of the normal at contact of a pair of grains referred to axes moving with the

mean motion of the medium, in the directions of x, y, z, and remembering
that the range of convection is \ while that of conduction is cr, that for

momentum the rates of the fluxes are A/2or/( ^ )/3X and for vis viva of(- )
/3\,

VA,// \A//

and putting d(cQ)xx , &c., and d(pQ)xx for the respective rates of convection
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and conduction of an elementary group in direction defined by d (cos 6) d<f>,

with respect to fixed axes; for the flux of mass we have by equation (175)

<
j>, &c., &c. ...(211).

\ , / j \ vTT

And by the last Art.

8 GQ,) = 3 (<&)** + B (*) + 8 (u") + B (JV)

whence the inequality of flux is

-9(c&)** =(s^
Equation (212) is general and Q may represent mass, momentum or

vis viva.

166. Rates of convection and conduction of momentum by an elementary

group.

Substituting the mean-rate of flux of momentum by convection, and

noticing that the component mean-path is increased from X cos 6 to

X (u" + F/ cos 0)/ F/ while the conduction is not altered by the mean-

motion omitting the square of the mean-motion and dividing out the X,

we have :

For direct action referred to faced axes

3 (cQi)xx + 3 (PQi)xx
= p\(u' + F/ cos 0)

2+~ ?/ (? J
F/2 cos2

!

^.
d (

- cos

&c. &c.

&c. &c.

(213).
For lateral action

a (cQi\x + a (PQi)yx
= p \(u" + F/ cos 0) (v" + F/ sin B cos <A)

I

X/
J
N

167. For the rate of displacement of vis viva by an elementary group

referred to fixed axes.

Taking, as before, X (u" + F/ cos 0)/u for X and omitting, for the sake of

simplicity, all quantities of the second order, such as u"-
2

/\ and Xo-2
,
we have

for the direct rate of displacement

(Qi)**
= P \(u" + F/ cos 6} (u" + F/ cos

[/O

\f M (j

C S ^ + W// sin ecos(
t> + w

"
sin ^ sin ^) ...(215).
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The first term within the brackets on the right, which is the convection

term, becomes, omitting the terms of second order,

3t*"Fi'* cos
2 6 + F/ 3 cos3

0.

One part of the first of these two terms expresses the rate of displace-

ment of mean vis viva by u"
;
while the remainder of this term expresses the

displacement of the inequality of vis viva (2u" Fx

'

cos2
0) by F/.

The second of the two terms, which changes sign with cos 8, expresses the

displacement ( F/
2 cos2

6) by F/ cos 6.

The second term within the brackets expresses the displacement resulting
from conduction on the mean normal velocity, and this does not change sign

with cos 0.

For the lateral action

U = p JO"
+ F/ cos 6) (v" + F/ sin cos <)

2
\

~- /(- )V1

'i

(u"cos0+v"sin0cos<l)+w"sin0sm<l>)cos0sm-acos*<t>]o \A/

^ d (- cos 0) d<j> )

1
,.

I

_| J

(216).

168. The inequalities in the mean rates of flux of mass, momentum and

vis viva resulting from space variations in the mean characteristics in a medium

of equal spherical grains.

When the mean state of the medium varies continuously from point to

point, so that (X/JV) (dN/dx),

da. I T (/, , f(T\ /'
\ ) 7 /, , 7

Idas. X + v/zo-/
- /3 a,} du ax,

/ (V
'
\\Ji / j

and (X/a) dct/adt are of the first order of small quantities, the mean charac-

teristics N, a, u", &c., obtained by integrating over a unit of volume, taking
account of the motion in all directions, are taken as the mean characteristics

at the centre P of the unit element.

Then it follows that if PQ represents a distance r of the order X + cr,

having a direction defined by I, m, n, the characteristics at Q will, to the

first order of small quantities, be, putting / for any one of the characteristics,

1 4. A + n }l (2m
7 T^ III'

7 TlfT^JP V**-1-'/'dx dy dzj

If, then, r is the range of /, whether it is X, \/2o"/(r-)/3 or trf[- )/3,
\X// \X//
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as the case may be, and it be assumed that the group of grains arriving at

P, from the direction of Q, arrive as from a uniform medium having charac-

teristics which are the mean characteristics at Q, the inequalities in the mean
rates of flux at p would be obtained by substituting

T r fid d d\ T /rtir,\I -I = r (l + m +n )I (218)
V dx dy dz]

for 9 (7) and integrating 1 1 3 (/) sin 9 dd
d<f)

for the partial groups.

There is however nothing in the definition of the mean characteristics,

at a point, in a varying medium, as stated above, to warrant the assumption
that the grains arriving from the direction Q will arrive at P with the mean

characteristics of the medium at Q.

The mean characteristics are the means of all the groups at Q, whereas

the grains arriving at P from Q must, unless PQ is at right angles to the

direction in which the medium varies, differ from the mean at Q taken in all

directions
;
and therefore cannot have the mean characteristics at Q. It is

necessary therefore to obtain further evidence before we can determine what

are the characteristics of the elementary groups in different directions, which

evidence is found in the conditions of equilibrium of the varying medium.

169. The conditions between the variations in the mean characteristics,

a, u", &c., N or p, in order that a medium, in which <r and the constants

m/(-) are constant, may be in steady condition with respect to all the
\A/

characteristics.

The condition of equilibrium of a medium in mean uniform condition

requires that u", a. and N should each be constant for all positions and all

directions
;
so that in a medium in which any one of these mean character-

istics varies, the rest being constant, the equilibrium would be disturbed.

But it does not follow that equilibrium would be impossible if two or more

of the mean characteristics vary.

For the case where <rj\ is small these general conditions have been

already determined, in the study of the conduction of heat by Clausius*,

and more generally, in the study of the dimensional properties of matter in

the gaseous state f. In the latter instance, this was accomplished by the

recognition that if the mean characteristics, u", a, N, of flux by a mean

group of molecules arriving at P were the mean characteristics of the

medium at Q, PQ being the range of the characteristics, the three conditions

*
Fogg. Ann., Jan. 1862

; Phil Mag., June 1862.

t Phil. Trans. Royal Soc. t 1897, Part u. pp. 786803.
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of steady density, steady momentum and steady vis viva, could not be

satisfied
;
whereas if the characteristics, a and N, of the flux arriving at P

from Q were the characteristics at Q, while instead of the characteristics

u", v", w" at Q arbitrary functions of x, y, z (U, V, W) are taken for the

mean velocities of the arriving group, all the conditions could be satisfied
;

and the values of U, V, W be determined in terms of u", v", w", a and N.

This method may be applied for the determination of the conditions

between the mean characteristics, U, a, N and u"
,
when - is large as when

X

small, now that the expressions for the mean rates of flux and mean ranges,

resulting from conduction, have been determined, as well as those resulting

from convection, in a uniform medium.

170. The equation for the mean flux.

Substituting U for u", &c. in the expressions for the characteristic rates

of flux by an elementary group ( ), remembering that X is the range
of convection and <r the range of conduction, that

dN dN dN\
dx dy dz )

/, da da da.\= XU-r +m-j- +n -j-
\ dx dy dz

,
For convection

da da

dy

da = cr ( I -,- + m -j- + n -=- ) a, For conduction
dx dy dz.

I (219),

in the expression for the inequality of the flux, and integrating from 6 =
to 6 = TT and from

</>
= to

<f>
= 2?r, the equation for the mean flux is obtained

to a first approximation.

For the flux of mass.

From equations (176), the equation for the flux of mass in direction of

x is :

pU
" = pU-l-(a

d
/ + p^),&C.,&c............. (220).3 /vV V dx r dx]

Equation (220) has reference to fixed axes, for moving axes the equations

become

,., ........(221).3 \fir \
dx dx)

These equations define the values U, V, W in terms of the characteristics

(u", a, p or N), the mean characteristics at the point.

For the rates of flux of momentum to a first approximation.

From the first of equations (213) the rates of direct flux of momentum
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become, to a first approximation, assuming X to be the same in all directions,

For lateral flux.

From the second of (213) the equations become

A,

}. ...(222).

d -O
.For Ae rates of flux of vis viva to a first approximation.

From equations (215) the equations for the rate of flux of direct vis viva

become

For lateral flux.

From equation (216)

<7
2

dp da?

dx
"
dx

...(223).

The values of U u", &c., as defined in equations (221), are small

quantities of the first order. Hence as these quantities, and their space

variations, enter into the rates of momentum as factors of the small distances

X, and a- only, the terms into which they enter are all of the second order

of small quantities, as compared with p, and may therefore be neglected as

being within the limits of approximation. Omitting these terms from

equations (222), the rates of flux of momentum to the first order of small

quantities are by convection :

P" (uu'y = p" -=
, &c., &c.,

p" (u'v'}"
= 0, &c., &c.,

and by conduction, equation (159),

P"XX = -s- ?/(? ) P" | > &c., &c.,
O A. \A/

.(224).
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The total rates of flux of momentum being

o Ai \ A*/ \ jj >** y /

p"xy + p" (u'v'y = o, &c., &c. )

Substituting in equations (223) the values of Uu", &c., as obtained

from equations (221), the rates of flux of the vis viva of the component
motions become by transformation :

, , , ,
X a f dp 21 cfa

2
\

(p'u'u'u')'
= 7^-7- 3a2 -^- PT-lo V/TT V dx 2 r dx/

},&c.,&c. ...(226).

, . ... ox
by equation (223)* * '

And for the rate of flux of the total vis viva

-*-^pdx 2 r
, , ,

\ + pU VV
1 a
S -7
9V<7r

&c., &c.......... (227).

The equations (221) to (227) as they stand are perfectly general.

So far however these equations satisfy the conditions of steady density
and steady vis viva, only, on the supposition that the conditions of mean-mass

are satisfied. And these conditions explicitly involve the space variations

of X; as is at once seen from equations (225).

171. The conditions of equilibrium of mass referred to axes moving with

the mean motion of the medium.

Differentiating equations (225) with respect to x, y, z, respectively, and

transforming, the general conditions of the equilibrium of mass may be

expressed as
/ \

r
-

J W _- - &c" &c - -(228)'

(229).

and from equation (146), differentiating and transforming,

_dp_ 3X + XV2a2 62e":
/9vz

>
&c->
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Adding the equations (228) and (229) the condition of equilibrium is

&c" &0....................<230)-

The rates of flux of vis viva when the medium is in equilibrium.

Substituting in the first and second of equations (226), (227) respectively

from equation (228) the respective rates of direct flux by convection and

conduction are expressed as:

/// ' ' 'v o

p (u uu )
= - s-s-H 6X2

15AM
}

1 da?
+ 21X \p 5 -=-

, &c., <fec.

5

o/xt /o.x ,o-
-2(4o--V2X)cr/ -

12o- .. , -

V2U/ -
/?
.-

7
-

:
,&c. ) &c.

the respective rates of lateral convection and conduction being one-third of

the corresponding direct rates.

Adding the respective members of the equations (231) the expression for

the total rate of direct flux of vis viva by convection and conduction is :

Then, since the rates of flux of lateral vis viva are each one-third of the

normal rate, the total rate becomes

+(p"u'w'+pxz)w'

A- V2
)
ff/(0)

p^, fe>&c.......(233).

The equations from (221) to (233) are perfectly general to a first

approximation of the inequalities, the axes moving with the mean motion of

the medium, the medium being in steady condition, and the arrangement
such that a" and 62 are constant.
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172. The coefficients of the component rates of flux of (o-
3

. a2

/2 \/2) the

mean component vis viva of the grain.

By equation (129 B) Section VIII.

Substituting this in equations (233), dividing byN and putting (C2
2 + D2

2

)

for the product of the first two factors of the member on the right, these

members take the form :

\/2 dx

as expressing the relative rates of flux of the vis viva of the grains across

surfaces moving with the mean motion of the medium.

These rates expressed by the space rates of variation of the vis viva

of the grains multiplied by the coefficient ((72
2 + Z)2

2
) express the rate of

flux under the condition of steady motion.

But as long as the scales of the variation of a2 are sufficiently large,

as compared with the squares of the scale of the relative mass and the

mean paths, to come within the limits of approximation for the maintenance

of mean and relative systems, the rates at each point will be approximately
the same as under the conditions of equilibrium.

Then if the inequalities of mean motion are so small that the inequalities

instituted in N, \ and a may be neglected as compared with N, \ a,

i.e. if the scales of mean motion are sufficiently large and the inequalities

sufficiently small, the coefficients (72
2 and Z)2

2
,
which are respectively the

coefficients for convection and conduction, may be taken as constants within

the limit of approximation.

173. The rate of dispersion of linear inequalities in the vis viva of the

grains.

Putting

1 93 ^ _ 1 d
r

. ' f\ ' ( '
'\

'
(

=\~, 1 xx ==
"AT

'

j~ L\ PXX ~i" PU U ) U (pm/ + pU V )V \pa
rl + l\l rim *- * -* ' ' *

N d3t

dx

we have

Thus although not vectors the component rates of redistribution depend
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severally on the component inequalities, and admit of separate expressions
which when added together give the expression

And multiplying by N

174. The expressions for the coefficients C2
2 and D2

2 involve the arbitrary

constant 62
,
so that the general expression cannot be completely interpreted

until 62 is defined. But the terms which depend upon b are very small

except for states of the medium in which X is greater than cr/10 or less than

100-; so that outside these limits the coefficients are independent of 62

within the limits of approximation.

Then, outside these limits, the expressions for 2
2 and D2

2
,
as appears from

equation (233), when <r/X is small, are, within the limits of approximation,

3XcO

(237).

And when o-/X is large

(238).

And these values become infinite in the limit.

175. Summary and conclusions as to the rates of redistribution by
relative motion.

The equations (202) express, in terms of the quantities which define

the relative motion of the medium, the rates of angular rearrangement
of the relative-mass, by institution of relative motion, corresponding to the

last term in equations (119) Section VI.

Equations (235) Section XII. express the linear redistribution of in-

equalities in vis viva of relative motion by the actions of convection and

conduction corresponding to the second and third terms of equations (117 A)

Section VI.

Equations (195) and (205) express the respective rates of angular redis-

tribution of angular inequalities in the vis viva of relative motion, resulting

from convections and conductions respectively, corresponding to the fourth

term in equations (117 A).

The second term in the equations (119) Section VI. is the only term

in the equations of mass which does not become zero when p" is constant in
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time and space. Therefore equations (202) express the only redistributive

actions on mass, equation (204), resulting from relative motion. These

redistributions of relative-mass are essentially positive dispersions of un-

symrnetrical arrangement, at rates which are proportional to the inequalities
in the arrangement of the mass. But subject to the same limit as the

permanent diffusion, as X/cr becomes small.

Thus the action of relative-motion on the mass is that of positive

dispersion of all inequalities.

The second, third and fourth terms in equations (117 A) are the only
terms in the equation which depend on relative motion only ;

that is, are

the only terms in these equations that do not necessarily vanish when the

vis viva of mean motion is constant.

Therefore the equations (195) and (204), Section XI., express the only
redistributive actions on the vis viva resulting from relative motion.

From these equations it appears that all these actions are essentially

dispersive of inequalities, at rates proportional to the inequalities multiplied

by coefficients depending on the characteristics of the medium
;
the only

limit being that imposed by the nearness of the grains, which is the same

limit as that of permanent diffusion as expressed in equation (205).

It thus appears that to a first approximation the action of the relative

motion on relative mass and relative vis viva is essentially that of positive

dispersion of inequalities ;
in which the rates of linear dispersion, and of

angular dispersion of vis viva, by convection, are subject to no limit, while

those of angular rearrangement of mass and of angular dispersion of vis viva

by conduction are subject to a finite limit as the grains become closer.

The generalization of the dispersive actions.

The numerical coefficients of the several rates of redistribution expressed

in the equations (202), (195), (205) relate to a medium consisting of uniform

spherical grains. But if, for these numerical coefficients, arbitrary constants

are substituted, these equations become general, that is to say, they include

all discontinuous media in which the separate members do not alter their

shape or size.

Whence the conclusion follows, that discontinuous, purely mechanical

media satisfy the condition for the maintenance of the state of relative

motion.

R. 10



SECTION XIII.

THE EXCHANGES BETWEEN THE MEAN- AND
RELATIVE-SYSTEMS.

176. IT has been shown (Sections XL and XII.) that the effect of the

relative motion is to disperse all inequalities in the mean vis viva of

relative motion and in the arrangement of the mean-mass
;
the rates and the

limits of these actions having been expressed in terms of the quantities

which define the relative motion.

It remains therefore (1) to effect such analysis of the terms in the

equations which express the effect of inequalities, in the mean-system, in

instituting inequalities in the relative-system, as is necessary to define the

actions they express, in terms similar to those in which the rates of redistri-

bution are expressed ;
and (2), by combining the effects of the respective

actions of institution and redistribution, to arrive at expressions for the

resultant inequalities which may be maintained.

The only terms, which remain to be considered in the members on the right,

of the equations of component vis viva of mean- and relative-motion (123)

after transferring the first term on the right, which is the convection term :

to the left member, are those terms which are concisely expressed as the fifth

and sixth terms in equations (117 A).

Therefore these terms are the only terms which express exchanges of

vis viva between the two systems taken as a whole. And since these terms

do not become surface integrals they express the exchange, at points, of vis

viva from the mean-system to the relative-system. And further, these terms

are transformation terms solely; so that they each express, under the

opposite sign, the exact rates of exchange as the corresponding terms in the

equations (116 A). Thus the fifth term in equations (117 A) expresses the

rate at which vis viva is received by the relative-system from the mean-

system on account of the diminution of the abstract resilience in that

system, while the sixth term in (117 A) expresses the rate of exchange of
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kinetic energy necessary in order to satisfy the condition of no energy in the

residual system, the expressions under opposite signs being identical in the

two systems.

177. The initiation of inequalities in the state of the medium.

Since the terms in (117 A) express the only actual rates of exchange of

energy between the two systems, and the effects of the relative-system are

purely dispersive, it at once appears that in a medium, in a state of general

equilibrium, inequalities can be initiated only by acceleration of mean-

motion, and whatever the state of the medium may be, all initiation of

inequalities springs from acceleration of mean-motion as the prime cause.

This being so, any rate of change which may result by transformation front

inequalities in the mean-motion will be expressed as :

or
,

i t

according to whether or not the rate of convection dc ( )/dt is or is not

included in the action.

In this way the joint actions of institution and redistribution are ex-

pressed as

178. As presenting by far the greatest difficulty, and thus entailing the

most discussion, the rates of institution of angular inequalities in the rates

of conduction through the grains demand first consideration. These rates,

it would seem, have not hitherto been the subject of analytical treatment
;

and although the expressions for these rates of institution are clearly dis-

tinguishable, now that the conductions are separated from the convections,

the interpretation of these terms presents difficulties owing, partly, to the

novelty of the conceptions involved.

It appears that the analysis of these conductions constitutes the kinetic

theory of the abstract elastic properties in the mean-system of a granular

medium, that is to say, properties of distortional elasticity.

The terms which express the rates of increase of abstract resilience in

the mean-system are included in the last term but one in the right members

of equations (11 6 A).

In a purely mechanical medium there is no resilience in the resultant

system, so that these terms in the mean-system have their identical counter-

part under the opposite sign in the corresponding equations of the relative-

system. But that which has rendered this subject obscure, is that the

counterpart is under different expressions.

This is owing to the generality of the equations, which are not confined

to a purely mechanical medium. However, on changing the signs of the

102
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terms in (116 A) we have the interpretation of the corresponding terms in

(11 7 A). These terms,

dx

1 f fdu"+ +

represent the rate at which kinetic energy in directions x, &c. is being
abstracted from the relative-motion to supply the abstract mean resilience,

depending on conduction, to the mean-system of motion. This is obvious, as

regards the first of the terms within the brackets, for the components in

directions x, y and z. But as these represent uniform expansion multiplied

by uniform pressure, both the expansion and pressure being equal in all

directions, it introduces no angular inequalities in the relative vis viva. It is

however these terms, or more strictly, the three corresponding terms for the

directions x, y and z taken together, that, owing to their simplicity, reveal

the modus operandi by which the conduction through grains, of changeless

shape or volume, can affect the work done in contracting the space in which

they exist.

It is not the conductions that are the active agents. But these conduc-

tions are a passive necessity of the space occupied by the grains ;
and thus

measure the contraction of the freedom of the grains, owing to their volume.

Whence, it is at once realized that the amount of increase of kinetic energy,
which would result from a contraction of the entire space occupied, would

not be the same as it would be if the grains, while conserving their mass,

ceased to occupy volume. For in the latter case, taking V the velocity of

the grains and p for the density, and supposing the action were what is

called
"
isothermal," the velocity V remaining constant, the rate of displace-

ment of momentum would not be />F
2

/3, as it would be if the volumes of the

grains were zero.

Neither would this stress vary with p but with p {1 + <f>(p)} where
<f>(p)

represents virtual contraction of the space free to the motions of the centres

of the grains. Thus the variation of the kinetic energy caused by a mean
volumetric strain in the medium is increased by the proportion of the volume

occupied by the grains to the exclusion of other grains. It is thus seen that

it is this excess of work in any mean strain, resulting from the virtual

space from which the grains shut each other out, that is measured by the

conductions. These effects have been fully expressed in equations (158) and

(159), Section X., and are easily realized in the case of volumetric strain.

But it is quite a different matter to realize how a purely distortional strain,

which neither affects the volume of the space nor the volume of the grains,

can produce a virtual alteration of freedom open to the grains or inequalities

in rates of conduction
;
and hence the importance of the evidence derived
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from the consideration of the volumetric strain in the interpretation of the

results of distortional strains as expressed in the three last terms within the

brackets. From these it appears at once that the action which determines the

character of any effect there may be is rate of distortion, which also determines

the rate of action, while the subject acted upon is the component of conduc-

tion induced by the distortional strain. In the first of these distortional

terms, for instance,

we see that all actions on the mean rates of conduction, expressed by p",

equal in all directions, are expressly excluded. The recognition of this is

important as it shows the independence of the actions, in so far that if the

distortional strain does not induce any change in the rate of conduction there

is no effect. This raises the question : what is it that determines whether

or not these distortional strains shall have any effect ? And the answer to

this is furnished from the experience derived from the volumetric strain.

If the mean distortional strain, by altering the relative positions of the

grains from what they would have been without the distortional strains, so

alters the mean extent of freedom in the directions of the principal axes

of the rates of strain, there will be effects, otherwise not.
"
Limiting the

freedoms
"

is only an expression for altering the probable mean paths, and

as a distortional strain consists essentially of strains in directions at right

angles, such that one of these strains is of opposite sign and equal to the

sum of the others, the action of a distortional strain is not to alter the mean

density, nor if cr/A, is small the mean paths of the grains, taken in all

directions, but to institute inequalities, increasing the mean paths in the

directions in which the strain is positive, and decreasing them in those

directions in which it is negative.

It becomes plain, therefore, (1) that no matter what the mass or number

of grains may be, if the volumes are such that the space they occupy is

negligible compared with the space through which they are dispersed, the

effect of distortional strains on the conductions must also be negligible.

And (2) that any effect the distortional strains may produce on account

of the size of the grains depends on the change in the angular arrangement
of the grains, as measured by the angular inequalities in the mean paths,

that may be instituted.

And from these two conclusions it appears definitely that the abstract

exchanges of vis viva, from the mean system to the relative system, in con-

sequence of distortional strain in the former, and the space occupied by the

grains in the latter, depend solely on the angular arrangements, as they are

here called, of the grains.

This general and definite conclusion brings into view, for the first time,
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the fundamental place which the conditions to be satisfied by the relative

mass, as set forth in Section V., as resulting from first principles, occupy in

the exchanges between the two systems.

It also calls our attention to the fact, pointed out in the preamble to

Section IX., that the tacit assumption in the kinetic theory of gases, that

the redistribution of vis viva entailed the redistribution of mass, has limited

the application of this theory to circumstances in which the conductions are

negligibly small, and reveals the necessity, for the general theory, of a study

of the law of redistribution of mass resulting from the dispersion of mass

as a subsequent effect of encounters, and as being in some respects inde-

pendent of, and of equal importance with, Maxwell's law of redistribution

of vis viva.

Although in such studies of the kinetic theory as I have seen I have not

found any reference to the existence of such a law or the necessity of its

study, in a recent reference to the celebrated paper by Sir George G. Stokes,
" On the Equilibrium of Elastic Solids," I was much relieved to find that, in

his discussion of Poisson's theory of elasticity, he expresses the opinion that it

is important to take into account the possible effects of new relative positions

which the molecules may take up, in which I recognise a reference to what

I have called the angular distribution of the grains.

179. The probable rates of institution of inequalities in the mean angular
distribution of mass.

When the condition of the granular medium is such that the probable
mean path of a grain is the same in all directions that is, when the mean

of the paths of all the grains moving approximately in one direction is the

same, whatever direction this may be there are no angular inequalities in

the arrangement of the grains. And when the means of the paths of grains

moving approximately in the same directions are different for different

directions, these differences serve to measure the inequalities in the angular

arrangement of the grains.

And in exactly the same way the angular inequalities in the number of

encounters between pairs of grains having relative-mean paths approximately
in the same direction serve (and are rather -more convenient) to measure the

angular inequalities in the mass.

Such relative angular inequalities are instituted solely by distortional

motion in the mean system. And the rate of distortion is one of the factors

of the product which represents the rate of institution of the relative

inequality ;
the other factor being the ratio of the average normal conduction

of momentum at an average encounter of a pair of grains, divided by twice

the average convection by a grain in the direction of its path.
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By equation (147) the normal conduction at a mean collision is

and by equations (155) and (156), there are two mean paths traversed for

each collision, and the mean displacement of momentum, by the convection

of a grain between encounters, is X V.

Therefore the ratio of the corresponding normal conductions and normal

convections is

2

3
~

( 39) '

And the rates of institution of relative angular inequalities in the arrange-

ment of the mass are represented by

" - 2 - + + - ..
3 X 7 w (

dx 3\dx dy dz )}

This is, only, when u", v", w" are referred to the principal axes of the

rates of distortion. And da'/dt, db'/dt, dc'/dt, represent the relative rates of

increase of the mean paths of pairs of grams having relative motion in the

directions of x, y, and z respectively. The rates of relative increase of pairs

of grains, having directions of motion other than the directions of the

principal axes, are obtained from those in the directions of the principal axes

as in the ellipsoid of strain.

Besides expressing the inequalities in the angular distribution of mass

and in the mean relative paths, da', &c., express the rates of increase of the

inequalities in the numbers of encounters between pairs of grains having
relative velocities in the directions of the principal axes. But they do not,

without further resolution, properly represent the rates of increase of the

inequalities in the rates of conduction in the directions of the principal axes
;

since the directions of encounter, that is, the normals at encounter, may
depart by anything short of a right angle from the direction of the relative

motion of a pair.

Before proceeding to consider the relative-inequalities in the rates of

conduction, however, it seems desirable to call attention to the distinction

between rates of strain and strains.

It will be noticed, after what has already been said as to the difference

between the effects of volumetric strains and distortional strains, that in

what follows, the expressions da'/dt, &c. are used to express the rates of

increase of relative-inequalities resulting from rates of distortion, while

* N.B. The a', b', c', in this article have no relation to (a, 6, c) as used in equations

(181) &c. for inequalities of vis viva.
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these expressions are equally applicable to the rates of volumetric strain.

Thus the expressions,
\/2 a l du dv dw

A/2 a , f<r\ f~ du 2 fdu dv dw\~]
and -o- T/lv J

2 j"~oT~ + j~+T~'3 A/ w {_
dx 3 \dx dy dz JJ

express, respectively, the rate of relative increase of X, the mean path,

in all directions, and the rate of increase of the inequality in the mean value

of the mean paths of the pairs of grains having motion in the direction of

x only. This at first may appear paradoxical ;
but the explanation becomes

clear when it is remembered that a rate of strain does not represent a strain,

however small.

For a finite rate of strain to cause a strain it must exist for a finite time.

And to convert the expression for a rate of strain into the expression for a

strain it must be multiplied by the expression for a time
; recognising this,

the difference between the effects of volumetric strains and distortional

strains is at once seen. In the uniform volumetric strain the effects on the

path of every pair of grains, whatever the direction of the paths, are the

same
;
whereas in the distortional strain, if the strain in direction of one

of the principal axes is positive, the sum of the strains in the other two axes

is equal and negative, and thus they neutralise each other except for such

effects as result from rearrangement of the grains.

Noticing this, it is seen that the rates of strain in the directions of the

principal axes on the pairs of grains with relative motion only, in one or

other of these axes, are perfectly independent. And, assuming that there

are no initial inequalities, these independent rates express the initial rates of

increase of the initial inequalities in the mean relative paths, with relative-

motion in the directions of the principal axes of rates of distortion. And,
as long as the relative inequalities are very small, this independence will

be approximately maintained.

Taking Bt as an indefinitely small increment of time and multiplying both

members of equations (146) by this time we have, putting a' = da'St/dt, as a

first approximation to the effects of the rates of institution,

, V2 a- , /o-\ (_ du" 2 fdu" dv" dw"\] .
a =V>/ T \Z-r --; K-+-T- + ^H&, &c., &c. ...(241),3 X/ \X/ {

dx 3\dx dy dz /)

or since X is not affected by the distortional strains we may put for the actual

rates

u" 2 /du" dv" d

.........(242),

which express the increase in the mean paths of pairs of grains having
relative velocities in the directions of the principal axes.
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Then since the numbers of encounters between such pairs are inversely as

the increase of the paths, we have, equating the reciprocals of both members,

l_ '-l- g- + + ...(243).
3 Xy

\\J (da; 3\dx dy dz )}

From which we have for the rate of relative increase of encounters the

numbers of pairs with relative motion in the directions x, y, z,

V2 <T
(<r\

( du" 2 (du" ^ dv" dw"\\a = 5*-r/|T i"-j
-- s -j \r -j + ~r~ f

...... (244).3 \J
\\J (

dec 3\dx dy dz
/']

Having thus obtained to a first approximation expressions for the effect

of rates of institution of inequalities in the pairs of grains having relative

motion in the directions of the principal axes, we may proceed as in Art. 149

to find, to a like approximation, the effect of these inequalities in the numbers

of encounters on the normal conductions in the directions of the principal

axes of distortion.

180. The initiation of angular inequalities in the distribution of the

probable rates of conduction resultingfrom angular redistribution of the mass.

Taking x, y', z as measured in the directions of the principal axes of

the distortional strains, and a', b', c' respectively for the relative in-

equalities in numbers of encounters between pairs of grains having relative

velocities in the directions of x, y', z' respectively, where a' -f b' + c' = 0, we

have for the probable relative inequality in the number of encounters of pairs

of grains having relative motion in the directions defined by I', mf, n referred

to the principal axes,

-
(l'

2 a' + m' 2
b' + n'*c), since /' = g'

= h' = 0.

Then, taking llt mlt w x as the direction cosines of the principal axis

measured in direction ac', with respect to any arbitrary system of axes

measured in directions of x, y, z; Z2 ,
w2 , n^ and 4, m3 ,

n s being the direction

cosines of the principal axes of y' and z respectively referred to the arbitrary

system, the inequalities in encounters between pairs in directions x, y, z

respectively are expressed by
-

(l*a' + I2
2
b' + J,V), &c, &c......................(245)

respectively. Then using an blf Cj to express these inequalities, we may
also take, in the usual way, f, g, h, the probable tangential inequalities,

'

+ m3n3c), &c., &c.

Then to find the inequality in the number of encounters having normals

in the directions of the axes of x, y, z, respectively, resulting from encounters

between pairs of grains in all directions, we must express the probable
number of pairs having relative velocities in a direction defined by I, m, n

referred to the directions of x, y, z
;
such an expression is

a1
= I

2a + m*b + n2
c + 1mnf+ Znlg + 2lmh ............ (247).
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Then the angular distances of the direction of ax from this line to the axes

of x, y, z respectively are defined by I, m, n respectively ;
and the probability

of the normal at encounter being in the direction of x is lat ,
in the direction

of y is mttj, and in the direction of z is naa . These are the inequalities in

the numbers of encounters of which the directions of the normals are in

the directions x, y, z, respectively, resulting from encounters between pairs

having relative motion defined by I, m, n. Then integrating a:l, ^m,

a{n over hemispheres having axes in the directions of x, y, z, respectively,

we obtain, respectively, on dividing by TT the mean inequalities in the proba-

bility of encounters having normals in the directions of the axes x, y, z.

Thus putting I = cos 6, m sin 6 sin
<J>,

n = sin cos
</>,

-"ftJo (

d cos4 6 1 id cos2 Id cos4 6 , ,.

a + - - + - -
(6 + c)- ' v

4?r 27T V 2 4 4

a 1

(248).

181. The mean relative inequalities in normal conduction are obtained

after the manner in which equation (148) is obtained, by resolving the com-

ponents of mean normal conduction in the directions of x, y, z respectively,

and multiplying them by the expressions for a, 6, c, &c. equations (247).

Then, since a + b + c = 0, we have for the probable inequalities respec-

tively a/4, 6/4, c/4.

Our object however is not to obtain the inequalities in the probable
number of encounters, but the inequalities in the mean normal conduction in

the directions of the principal axes.

The mean relative inequality of normal conduction is obtained by the

same method as in Art. 104. This requires that for the direction of x, l^

must be multiplied by -^- *J^f\ -} Vv
l, and then integrated. Thus

o \\J
Tt

- /'2V-f(-\ [*[
dcos5 1

(dcos
3 dcos5 0\

]

(249),
reduce to

(250).

These are the inequalities in the probable normal conductions in the

directions of the axes of x, y, z respectively, and it remains to find the

inequalities in the probable conductions in the directions of the principal axes.
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The probable inequalities in the conductions resulting from an encounter,

having the normals in the direction of x, are obtained by substituting the

expressions for a, b, c in the preceding equations, then resolving the

normal components of Vv and <r, in the members on the right of these

equations, in the directions of x
', y', z respectively, integrating over a

sphere of unit radius and dividing by 4?r. Thus since a'+ 6'+ c' = 0,

-t ? 27T V2
10 O

9

It will be observed that these expressions are for inequalities of the

probable component of conduction in the directions of the principal axes,

taking into account the relative inequalities in probable normal conduction

in all directions
;
and that they do not express rates of conduction corre-

sponding to the expressions in equations (158) and (159), but if multiplied by
<r

3

/\/2 the mass of a grain, they express inequalities of conduction corre-

sponding to the conductions expressed in equation (148).

To obtain the expressions for the inequalities in the rates of the relative

component conductions in the directions of the principal axes of distortion,

the expressions for the corresponding component conductions must be multi-

plied severally by the number of encounters each grain undergoes in unit

time, and by the number of grains in unit space, as expressed by the integral

of equation (157).

Comparing the expressions thus obtained with the rates of conduction,

equation (158), it is at once seen that the inequalities in the probable rate of

component conduction in the directions of the principal axes of distortion

are, remembering that a expresses d1 (a')d1t/dit, &c.,

'32
GO f| (a/)^ =

| W** ~ p
"
} dlt'

&c" &c.....(252)-

Then although the significance of the a' and a, &c., used to express
relative inequalities in mean paths have no relation to the a' and a, &c., used

to express inequalities in the vis viva, in equations (192 194) they are of

similar significance and admit of similar transformation, whence it follows

that by a process strictly corresponding to that followed in Art. 152, these

rates of conduction transformed to any system of rectangular fixed axes x, y, z,

.(253),

( dj 9i<
'

3^ j
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d / '\

then dividing by 8t and substituting the values of -^
-

,
&c. from equations

v\ t

(146)

d1 (a)(a) _ _ V2 a
f

/cr\ (
duT_ _ 2

fdu" &vT_ dw"\\ >

,*

= "

3 \fW { dx 3 (dx
+

dy
+

dz )}
'

dw"
.(254).

To convert these into rates of institution of inequalities in the probable
rates of conduction they must be multiplied by the constant coefficient of

the d1 (a')/d1t in equations (252) which by equations (159) may be expressed
as: 0'32//'; the coefficients of the right members of equations (254) may
also be expressed by 2,p"/pa.

2
. Therefore

0-32X'
2 L duT _ 2 /<&/'

^_^\ dw"^ =
a2

I <& 3\
'2

" dw"
, (255)

express the initial rates of increase of probable angular inequalities in

the rates of conduction, resulting from distortional rates of strain in the

mean-system, which are expressed in the last term but one of equations

(117 A).

The rates of increase of conduction resulting from rates of change of

density.

By equations (239) the relative rates of increase of p" are the products

of the relative rates of change of density multiplied by the ratio of the rate

of conduction to the rate of convection
;
the last factor is

3 \\\
.

'

Thus for the relative rate of increase of p"

1 a1 (j?
//

) = _(du^
dif d*/V

p" 8^ ^
o2

V cte dy rf^ /

^ o

the actual rate of increase being

d1 (p") = _ p"
2

(duT dv^ dw"\

dj a? \ dx dy
+

dz )

.(256).
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182. The transformation of vis viva or kinetic stress.

This as expressed in the last term of equations (117 A) and multiplied by 2

so as to express the rate of increase of vis viva (not energy), is

MY (W'U'Y I &C &C

If the axes are principal axes of rates of distortion and the medium is in

uniform condition the last two terms within the brackets are zero. Then

taking a', b', c' for the relative inequalities, which are initially zero, we have

for the rates of increase

2
9,a' , , ,w , (n du" 2 /du" dv" dw"\} D

P -^ 4r =P (uuj \2-j 5 ( j- + -j- +T- H , &c-> &c- ..-(257).
z oj {

dx 6\dx dy dz /J

Putting ^Ttt^nj, ^m 2n2 , Izm^n^ for the direction cosines of the principal

axes referred to any system of rectangular axes and taking a, b, c, f, g, h

as expressing the inequalities when referred to other fixed axes, by the

well-known theorem

V + m3
2
c'

f= m1n1 a' + m^ntf + m3n3 c
f

&c. &c.

where a + b + c = a' + b' + c'

dit dt dt dt

and substituting for the values of da'jdt, &c., from (257)

.(258).

.(259),

Pr
a2 dla . (da" 1 fdu" dv"
-- =3 a ----- + --

o2

dw"
-j -j-
dy dz

a*/dv" dw"\

, &C..&G (260),

Then putting aV2 for

(263).

These equations express the initial rates of increase of angular inequalities

in the rates of convection resulting from distortional rates of strain in the

mean system, which are expressed in the last terms of equations (117 A).
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183. The institution of linear inequalities in the rates of flux of vis viva

of relative motion by convection and conduction.

Thus far the analysis for the rates of institution of inequalities in the

vis viva and rates of conduction has been confined_to the effects of uniform

rates of strain in the mean-motion extending throughout the medium, whether

distortional, rotational, or volumetric. When however the rates of mean

volumetric strain are other than uniform, as long as the parameters of such

motion are large as compared with the parameters which define the spaces

over which the means of the relative mass and relative-momentum are

approximately zero, the analysis of the effects resulting from small variations

in the rates of strain in the mean-motions, in instituting linear dispersive

inequalities in the mean vis viva, p(a?)"/2, of relative-motion, follows as a

second approximation on that which has preceded.

In Section V. equation (93), it is shown that provided the relative motion

and relative mass are subjected to such redistribution as to maintain the

scales, over which they must be integrated, small compared with the corre-

sponding scales of the mean-motion, the conditions for mean- and relative-

systems will be approximately satisfied.

The expressions for the rates of institution of linear dispersive inequalities

by convection and by conduction are given by equations (261) and the last of

equations (256)
2\2

dx

-?.
1 / "\_ _ ^P f^L 4.^ ^w/^' (264).

dit^ 3 a? \dx dy

184. The institution of inequalities in the mean motion.

In the case of a space within which there are no inequalities, in

either system, the institution of inequalities in the mean system within the

space must be the result of some mean inequalities in the mean state of the

medium outside the space of some action across the boundaries; since in

an infinite medium, including all the mass, all actions must be between one

portion of the medium and another.

For the sake of analysis however it is legitimate to consider the mean
actions on the boundaries of any space, as determined by the scale of mean-

motions, as arbitrary. And it is important to notice that such mean actions

on the mean motion are the only actions that it is legitimate to treat as

arbitrary ; since, as has been shown in the last article, the institution of

inequalities in the relative motion results solely from the action of the mean
motion.
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Arbitrary accelerations may be finite or infinite and by assuming the

accelerations infinite we are enabled to institute finite inequalities in the

mean motion in an indefinitely short time, and this without instituting any

inequalities in the relative motion, as the instantaneous result of the

institution of the inequalities in the mean motion
; whence, it appears, that

we may, for the purpose of analysis, start with a medium without any

inequalities in the mean mass, relative mass, or relative motion, but with

arbitrary inequalities in the mean-motion. With such an initial start we

have, from equations (120) Section VI.,

p-L = 0, &c., &c (265).

185. The redistribution of inequalities in the mean-motion.

The effect of the instantaneous institution of inequalities in the mean

motion is an instantaneous finite acceleration to the institution of inequalities

in the relative motion as expressed in equations (255) to (263) as the result

of transformation
;
the action including both the convections and conductions.

This acceleration of the inequalities, in vis viva of relative motion, including

conduction, is also an acceleration to the institution of the space-rates of

variation of these inequalities, and these space-rates of variation of the

inequalities of relative motion are transformed back as accelerations of the

mean motion.

Thus, although diu'/dj = 0, the institution of du"/dx, say, has instituted

an acceleration to the institution of inequalities, the space variations of which

react as accelerations on the mean-motion. That these reactions are dis-

persive, of inequalities in the mean motion, follows definitely from the

sequence of the rates of action already defined.

To prove this we may consider the acceleration of any one of the

inequalities, instituted by the mean motion, as to its rate of reaction, on

the inequalities of position of the mean-momentum, by itself independently

of other inequalities. Considering the effect of acceleration of the inequality

on the acceleration of the rate of increase of mean-momentum, it appears,

at once, from the equations (120) that the reaction resulting from this

inequality affects both u" and v". These effects may be considered separately.

But from equations (255) to (263) it appears that the rate of institution of

the inequality p" (u'v')" + p"xy depends on the mean inequalities

du^ dif.

dy dx '

so that if du"jdy is zero there will still be reaction unless dv"/dx is also

zero.
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From equations (255) to (263) the rate of institution of the inequality is

*" dv
"

Then changing the sign and differentiating with respect to y we have for

the rate of increase of reaction from this inequality,

Differentiating this last equation with respect to y the acceleration of the

rate of increase of the inequality in the mean motion is

M
}
_

(

2
,

0-64 N d* fdvT dv" x-

This equation expresses the partial effect of the inequality p" (u'v')" + p"Xy
on du"jdy. And proceeding in a similar manner we have for the other

partial effect on dv"/dx

.........<->

Then adding, the total effect becomes

0-64 N / d &\ du"
+ ~ +

dx
"

It is at once seen that this equation represents a positive acceleration to

dispersion of the inequality in the mean motion, du"/dy -f dv" jdx, as the

result of the rate of institution of the inequality p"(uv')" +p"Xy

In a similar manner it may be shown that the effects of the five

distortional inequalities, in the rates of convection and conduction, are

accelerations to the dispersion of the five remaining inequalities in the

rates of increase of mean motion. These, together with rates of dispersion

of the volumetric inequalities, admit of expression in a general form.

186. The inequalities in the component of mean motion.

du" dv"

(du" _ 1 fdu" dv" dw"\\ dy
1 J~. o I /

~r 3jT7 j_ ) ( >
"""""

da;

efce 3 V dx
'

dy
T ^ y j

'

2

/rfw" dw"\

\lte
+

~dx~) I /du" dv" dw"\
3 o -j- + T~ + -j >

&c-> &c->
2 3\dx dy dz J

admit of expression after the manner of expression of component stresses by

simply substituting I"xx for p"^, &c., &c., and we may further simplify the

expressions by putting /" for (I"m + I"yy + /")/3.
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In the same way we may take /^ for {p" (u'u')" + p"xx}.
In this way we

have for the three typical expressions of accelerations to rates of increase in

inequalities of mean motion

^ (T" T"\ (*r* + ***
P 5T (* a

"~ * )
=

P a + /-.- J3

, vi a2
. 0^4 \

(d* d*_\, j,, , j,,
yx) "''\ p 2

+
2p"a*

P
)(dy*

+
da?)

(2 xy + 1
*

rft At \ ( A* ft*" a
, _ _*rt I

tt / T" \ ,

a / r//

3
T
3p

/x
a2

D fL //" N -
f

" a
, _ n *}

a
(T" \ + *LPm^ *) \P O+Q-TT^P M53V "/^A4

Each of these types, it will be observed, expresses acceleration to the

dispersion of the inequality of the mean motion.

Whence it appears that the instantaneous institution of inequalities in

mean-motion is also an instantaneous institution of accelerations to the

dispersion of the inequalities in the mean motion. Q. E. D.

It will be observed that since by definition the mean relative components
taken over the scale of relative motion are all zero, there can be no change
in the mean momenta as the result of exchanges between the two systems.
And hence the action of dispersion can be, only, changes of the position of

the momentum from one place to another.

187. In the consideration of the equations for momentum the question
of dissipation of energy of mean-motion to that of relative-motion does not

arise. But, as an acceleration to dispersion of inequalities of the mean-

motion is an acceleration to decrease the component momentum where it is

greater and increase it where it is less, so that there is no change in the

integral momentum of mean motion, it follows, as a necessary consequence,

the acceleration to dispersion of momentum entails an acceleration to dis-

sipation of energy of mean-motion to that of relative-motion. The expression

for these initial accelerations to dissipation of energy may be obtained in

various ways, one of which is involved in the proof of the following theorem :

The initial rates of institution of inequalities as expressed in equations

(255) to (263), for convections and conductions, are essentially accelerations to

mean rates of increase of the vis viva of relative-motion as well as to the

redistribution of inequalities in the mean system.

The terms which express exchanges of energy by transformation from the

mean system to the relative system, which are the only exchanges between

the systems, are the last of the terms in each of the equations (116 A). Then

putting p"&(t*V)/3j($]i &c., &c., as the initial effects of the instantaneous

R. 11
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institutions of inequalities in the mean motion on the relative motion,

we have
( 1 T u'u + v'v' + w'w' 1

"
fdu" dv"

1 '

[ .
I

,...(272),

+

+P\ (

:j-+ j- + j-
V dx dy dz

"du"

, , , v,/du" dw"\\
[p wu-pzx\ ( 4-

,-J\ \Aj4t \JU*As / \

and two corresponding expressions for the other components.

By equation (265) di^'/dj, &c., &c. as well as all inequalities of relative

motion are initially zero
;

so that, initially, both members are zero. Then

performing the operation 31/91< on both members and observing that by

equation (265) this operation has no effect on the mean inequalities,

dv" dw"^ ^

dx dy dz

dx

dv"
(273),

and two corresponding equations for the other components.

These three equations taken together express in terms of the differential

coefficients the rates of institution of inequalities of the relative motion,

expressions for which in terms of the mean motion are given in equations

(255) to (263): and substituting these expressions for the differential

coefficients in each of the three equations, and adding the corresponding

members, we have for the total initial rate of acceleration of the rate of

increase of relative energy

c.(-^c(~} =
(V64 ,,2\((du^\

z

/^"V (
dw"

p"o?P J \\dxj \dy ) \dz

dv" dw"\ 2 fdw"
dz dy J2 \\dy dx J \dz dy j \ dx dz J)"

The member on the right is essentially positive while the left member

expresses the acceleration of the mean rate of the vis viva. Q. E. D.

188. The first term on the right, equation (274), expresses the accelera-

tion of the rate of mean-energy of relative motion resulting from the

inequalities of the direct space variations of the mean motion, including
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both volumetric and distortional effects, while the second term expresses
the acceleration of the rate of mean-energy in consequence of the tangential

space variations of mean-motion.

These accelerations are all positive, tending to produce a dispersive con-

dition of relative-motion.

The tendency, thus proved, of the effect of transformation from energy
of mean-velocity to energy of relative-velocity, at each point, so to direct

the signs of inequalities in relative vis viva as to cause dispersion of both

energy of mean and energy of relative-velocity, and to render the effect

of transformation, of mean-motion to energy of relative-motion, positive,

is quite independent of all other actions or effects
; and, although not

hitherto analytically separated in the theory of mechanics, is now seen to

be one of the most general kinematical principles the prime principle

which underlies those effects which have long been recognised from ex-

perience and generalised as the law of universal dissipation of energy.

The analytical separation of this principle does not immediately explain

universal dissipation. It accounts for the initial acceleration to the dispersive

condition, but it does not, alone, accountfor irreversibility of the dissipation.

The proof of this at once follows from equations (271), the general

solution of which is

which expresses two reciprocal inequalities of mean motion proceeding in

opposite directions uniformly at velocities

V
0-64

P"*+:^

If then u" be everywhere reversed, the direction and the rate of propaga-

tion of the reversed inequality remaining the same, will bring the state of

the relative motion back to the initial condition. And this applies to all

inequalities, so that if there were no other action than that of transformation

including its effects on the mean and relative inequalities, these effects would

be perfectly reversible.

189. The conservation of the dispersive condition depends on the rates of

redistribution of the relative motion.

By equations (271) and (274) it appears that as long as the inequalities

of relative-motion are zero while the inequalities in the mean motion are

finite the signs of the acceleration to the dispersive condition are always

positive. Therefore if these inequalities remain small as compared with the

energy of relative motion, while the signs of the inequalities of the mean-

motion are not changed, a dispersive condition is secured. From which it

112
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follows that any cause which maintains these inequalities small, compared
with the relative energy, will render the dispersion irreversible by reversing
the mean motion, no matter how great the acceleration to the dispersive

condition arising from the prime tendency to the dispersive condition.

Such actions exist in the angular and the linear dispersions, of the

angular and linear inequalities of vis viva of relative motion, and rates of

conduction through the grains, equations (195) and (205), Section XI., and

(236), Section XII.

From equation (266) it appears that the instantaneous reversal of the

mean motion has no effect (instantaneous) on the relative motion
;
so that

this is not simultaneously reversed. And thus it is not the resultant motion

that is subject to reversal, but only the abstract mean motion, while the

abstract relative motion continues as before to redistribute the reversed

mean motion.

This explanation of irreversibility of the mean motion and the irreversible

dissipation of energy could not have been obtained until the analytical

separation of the abstract mean motion from the relative motion had been

accomplished. And this fact fully explains the obscurity which has hitherto

surrounded dissipation of energy.

The general reasoning in this article, although sufficient to afford a

general explanation, is, of necessity, supplemented by the definite analysis

by which the inequalities in the vis viva of relative motion are determined in

the next article.

190. The determination, in terms of the quantities which define the con-

dition of the medium, of the inequalities maintained in the vis viva of relative

motion, and in the rates of conduction, by the combined actions of institution by

transformation, and redistribution by relative relative-motion.

In entering upon this undertaking it is in the first place necessary, in

order to render the course of procedure intelligible, to point out that as far

as mechanical analysis has as yet been developed, including the present

research, it has not included such analysis as is necessary to express the

means of the instantaneous transmission of accelerations, and thus we are

unable to deal definitely with continuous initiation from rest of continuous

inequalities. This inability, which is generally recognised, was discussed

in a paper read before Section A of the British Association at Southport,

though not further published. In this paper it was suggested that such

inability was evidence of some property in the constitution of the medium

necessary for the instantaneous transmission of acceleration, and showed that

if the medium consisted of rigid particles as in Maxwell's Kinetic Theory

(1860), then since any acceleration at a point would, necessarily, extend

through the thickness of the grain, it would therefore afford instantaneous
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linear transmission of acceleration, and so render the necessary analysis for

dealing with initiation possible. As we are here dealing with a granular

medium, this analysis, if fully developed, would remove the disability. But,

having assurance of this, we may avoid the development of the analysis by

following the method of Stokes considering only such inequalities as are

steady or periodic when referred to moving axes. Under such conditions the

determination of the inequalities maintained is practicable, and indicates

the general form of the equations for the general inequalities.

The incompleteness of the analysis for the expression of the linear

instantaneous transmission of accelerations is not the only reason for con-

fining the application of the analysis to steady or periodic inequalities.

Putting aside uniform continuous strains and rotations in the case of

a granular medium, of which the mean condition is uniform and indefinitely

continuous, it is the properties of such a medium, of transmitting undulations,

that first claim our attention. And as such undulations are the only

motions, in such a medium, that can extend to infinity throughout an infinite

space, they must be considered as the principal form of mean motion.

However, before proceeding to consider the undulations, it may be well

to point out the several classes of mean motion which may be recognised at

this stage of the analysis.

Other than undulations, the only possible mean motions, including mean

strains, are such as involve some local disarrangement of the medium,

together with displacement of portions of the medium from their previous

neighbourhood as in the vortex ring which may have a temporary
existence when <r/\ is small

; or, of far greater interest, local disarrangement
of the grains when so close together that diffusion is impossible, except at

inclosed spaces or surfaces of disarrangement, depending, as already ex-

plained, on the value of G being greater than 6/V2.7T. Under which con-

dition it is possible that, about the local centres, there may be singular

surfaces of freedom, which admit of their motion in any direction through
the medium by propagation, combined with convection, together with strains

throughout the medium which result from the local disarrangement, without

any change in the mean arrangement of the grains about the local centres
;

the grains moving so as to preserve the mean arrangement.

191. Steady continuous uniform strains or undulations extending through-

out the medium otherwise in normal condition.

We have :

(1) Equations for the angular inequalities maintained in the vis viva of

relative motion.
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(2) Equations for the angular inequalities maintained in the rates of

conduction.

(3) Equations for the component linear inequalities maintained in the

mean vis viva.

(4) Equations for the linear inequalities maintained in the rates of

conduction.

(5) Equations for the rates of increase of mean vis viva a2

/2 resulting

from angular dispersion by convection.

(6) Equations for the rates of increase of mean vis viva resulting from

angular dispersion by conduction.

(7) Equations for the rates of increase of mean vis viva by linear dis-

placement resulting from inequalities in the mean vis viva.

(8) Equations for the rates of increase of mean vis viva by linear dis-

placements resulting from inequalities in the mean pressures.

192. THEOREM. To a first approximation the first four of these eight

equations all have the same general form as long as the space and time

variations of the mean motion are constant, simple harmonic, or logarithmic

functions of time and space, in which case the constants of frequency and the

hyperbolic variations are such as may be neglected as compared with tr/A,

and 1/X. And the same for the last four equations.

It is to be noticed that the condition in the theorem as to smallness

of the constants is necessary when treating the variations of the mean

motion as arbitrary, since the condition is, as shown in Section V., a necessity

for the maintenance of the mean and relative systems.

To prove the first part of the theorem :

The equations for any one of the six partial angular inequalities in vis viva

of relative motion.

Putting
V

^
.

,

.

I for the inequality in vis viva of relative motion.

/" in mean motion.

A* for the coefficient by which I" is multiplied to represent the rate of

institution.

v
AZ for the coefficient by which / must be multiplied to express re-

distribution.
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-
, 7 ,

-
,

to represent distances in directions x, u. z, which are the
a b c

parameters of the component harmonic inequalities in the mean motion
;
the

equation for the maintenance of / becomes :

v
In this case where /" and I are component inequalities in the mean-

motion, and in the vis viva of relative-motion, the coefficients A^, A,
are respectively, as in equation (263) Section XIII. and (195) Section

XL:

^ 2p, A^-a- .................. (277).

Then if I" is as before, and / is taken for the inequality in conduction

corresponding to the inequality in convection in the same direction, the

equation will become the equation for the inequality in conduction. If

B^, B2

'2 are put for the coefficients of conduction corresponding to A^
and J. 2

2
,

as in equation (205) Section XI.

Also, if I" is taken to express the linear inequality in mean-motion in

any direction, say that of x, in the rate of volumetric strain in the mean-

motion, and / is taken to express the linear inequality in the mean vis viva
V V V V

of relative-motion, since d^Ijdx^, &c. take the forms a zlxx ,
b2Iyy , d*Izz ,

where I/a, 1/6, 1/c are components of some constant parameter, the equation
will become the equation for the linear inequality maintained in direction x

in the mean vis viva when X/cr is large.

Putting C^ and a2
(72

2 to correspond to Ai2 and A 2
2 in (277),

(279).

And /" being the linear inequality in the same direction in the rate of

volumetric strain of mean-motion
;

if / is taken to express the linear

inequality in the rate of mean-conductivity (p"), equal in all directions,
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the equation becomes the equation for the inequality in the mean-conduction

if Dj
2
, a

2A2

correspond to A? and A<? in equation (277),

^- ...............(2SO),

V fj^ V
since, as in equation (279), a?I= -^ (/).

Thus as long as the inequalities in the mean-motion can be expressed
as simple finite harmonic or logarithmic functions of time and displacement,
the equations for the dispersive inequalities have the common form as in

equation (276).

The second part of the theorem follows as a consequence of the first

for, since the equations for the dispersive inequalities have the same form,

the general solution of this form of equation will apply to all the in-

equalities.

Then if such solution can be found for the dispersive inequalities,

since the rate of increase of the mean vis viva at a point, at any instant,

is the result of the action of the inequality on the space rate of variation

of the mean strain which institutes the inequality, the rates of increase

of the mean vis viva (
2

/2) are the products of the inequalities (/) by the

corresponding inequalities (/") in the mean-motion. And these are ex-

pressed in a general form.

193. The approodmate solution of the general differential equation for
the inequalities in mean vis viva of relative-motion and rate of conduction

resulting from steady or periodic inequalities in the mean-motion.

In all probability the equation (276) does admit of complete solution.

But the analysis is greatly simplified by recognising that any secondary

effects, resulting from the existence of inequalities, to vary the mean vis

viva of relative-motion (
2

/2) by transformation from mean-motion, and thus

to vary the coefficients A^ and A/, are proportional to a2/". And con-

sequently, since by definition a2 is finite, by taking /" sufficiently small the

secondary effects of /" and a" may be rendered as small as we please, and

the integral effects indefinitely small as compared with the finite value of a2
.

In this way the coefficients A? and A may be taken as constant, and

there is no loss of generality in the solution
;
while the expression for the

rate of increase of a 2
, as determined by the approximate solution of the equa-

tion of transformation, may be subsequently introduced as a small quantity.

Solution to a first approximation, I" small.

Since according to the theorem the space and time variations of /" are

constant or periodic, we may transform the equation (276) by putting
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qxx , &c. for the maximum values of I"xx , &c., which are constant. And
I"xxl^ is the maximum value of u". Hence

I"xx = qxx sin (mt ax),

where qxx is constant in time and space.

We then have for the angular inequalities and linear inequalities re-

spectively :

9 v v
\

^- (/) + A 2
2I = A?qxx sin (mt ax}, &c.

|

\ (281).

^ (7) + a?G.?I= C?qxx sin (mt - ax), &c. I

The introduction of the two forms is only a matter of convenience in

keeping the partial constants distinct.
V

Then if we put / = Cest and eliminate by differentiation with respect to

time, Aj
2
, A? being constant, it can be shown that for steady or periodic motion

^4,.[4.*r4H
.(282),

M. *-** A _ l w vy.j /-.

01

and that this is the only solution if A?, A.?, &c. are constant. The

analysis is somewhat long. But if we recognise that all the terms in the

equation (281) must have the same frequency m, the same result is obtained

by differentiating both members of (281) and substituting the result from

A^I ^ (I) = A 2

qxx [A sin (mt ax) m cos (mt ax)} . . .(283),

V V
whence, since d2

I/dt
2 = m2I is of the same form as equation (282),

/= . A
1

2

qxx \A.2
2

siu(mt ax) mcos(mt ax)} ...(284),
JR.-} T~ m

which will be the general form on substituting B^, B2
2 for C-f, a>C.?, and

A2
,

2A2 for A,2
,
A. 2

. Q. E. D.

The equation for the rate of increase of the mean vis viva (a
2

/ 2).

Multiplying the expression for /, equation (284), by the corresponding

expression for I", it at once appears that / consists of two parts, the one

being continuously positive and the other periodic.

Thus: //"= -

[

ri A*qA
2 sin (mt - ax)

in-
j- Afqm cos(mt ax) (285),+ -0.2
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from which it appears that the dispersive inequality in equation (284) is

expressed by

sn * ~

the remaining part of /,

o

-
ax),

representing that part of the inequality the effect of which is purely

periodic, or non-dispersive. Therefore the equation for the rate of increase

of the mean vis viva is

which is a general form for all rates of dispersion of mean vis viva.

Q. E. D.

194. Having, in Art. 193, obtained the general expression for total

inequalities maintained by relative-motion as the result of institution by
transformation and redistribution, as well as the general expressions for

the dispersive and periodic components of the inequalities, it appears that

the analytical distinction between the corresponding inequalities in vis viva,

and rates of conduction, may be expressed by substitution for A* and

A.?, &c., the values of these constants as expressed :

,
.... (convection, in equation (277),

for angular inequalities in \ . .

[conduction, (278),

f ,. ,.,.
. (convection, ., (279),

tor linear inequalities in J

(conduction, (280).

They are, for angular inequalities in convection :

q \-T
a sin (mt ax) m cos (mt ax) [

. . .(287) ;

J

for angular inequalities in conduction :

i _! -/(g)p sin (mj _^

w cos (mt ax) . . .(288) ;

m + u4



195] THE EXCHANGES BETWEEN THE MEAN- AND RELATIVE-SYSTEMS. 171

for linear inequalities in a2

/2 in convection :

5 a2

v ' 3^2 fa23Xa )

Ivx = m N2 q \
. sin (mt - ax)

- m cos (mt -ax)\ . . .(289);
/ft oAOt\ I A/7T Im2 + v

V VT /

for linear inequalities in oc
2

/2 in conduction :

,
.

,

T a2 sin (ra
-

OMJ)
- m cos (m -

ax)
*

I O
> a T a

V 77
" X 4

......(290).

The equations for angular inequalities are general for all states of the

medium. But the expressions for the linear inequalities are those to which

linear inequalities approximate according as \/<r is less than the limit at

which diffusion ceases, or is greater than that at which diffusion is general.

[See Art. 145 and Art. 155, Section XI.]

In considering periodic inequalities in a medium of unlimited extent,

which is, except for the inequalities, uniform and isotropic, it will simplify

the analysis to recognise, that such inequalities as can be propagated through
the medium, must have directions of propagation which are normal to con-

tinuous surfaces which are either spherical closed surfaces, or of such extent

that their boundaries are at distances large compared with the periodic

parameters.

This in the first instance confines our attention to directions of propaga-
tion everywhere normal to an infinite plane. We notice that the classes of

inequalities in the mean motion are reduced to two: those in which the

mean motion is in the direction of propagation, and those in which the mean
motion is normal to this direction.

We also notice that these two resultant inequalities are to a first

approximation independent, although they may have the same direction

of propagation, and therefore may be dealt with separately.

195. Expressions for the resultant institutions of inequalities of mean
motion when the motion is in the direction of propagation.

Putting xl and u" as the direction of propagation and motion for institu-

tion of angular inequalities we have, since

/duT dv^ duf\

\dx dy dz )
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is an invariant, for the inequalities of mean motion for the inequalities

(u'u, v'v', w'w'), &c.

_ L - - (-(l

"

4- -
1

" dw

, 3 V '(fa?!

w
"\\

l dui
"

4-1 dUl
"

efe, /J
'

3 rfyi
'

3 dzl

'

Then, taking xly ylt z as principal axes, /1} w1? Wj as the direction cosines of

i,.yi, z\ referred to any rectangular system x, y, z, the components are,

since

ldu^du dv," dw"
3 dx, dx, dy,

\
du" 1 fdu," dv," dw,'\~\ _ , du,"

dx, 3 \ dx, dy, dz, J J dx,

_ n i **L &c &c (290 A).
el nt*
W/wj

&c. fec.

For the linear inequality of mean motion, taking the principal axes the

same as for the angular inequality, we have

where

/dui" dvi' dw"\

\ dx^ dyi d0! J
'

dvl _ dw1 _~ ~

And transforming to the axes x, y, z, we have for the components in directions

fdu" dv" dw"\ o~
[-j- + j~ + -j- '

&c-> &c -

\dx dy dz J

Expressions for the resultant institutions of inequalities of mean motion

when the direction of propagation is perpendicular to the direction of motion.

If *'o> 2/0)
ar>e measured in the directions of propagation and mean motion

respectively, the resultant rate of shear strain is expressed by

Then taking xl} yl} zl for the principal axes, 11} ml} n^ for the direction-

cosines of the principal axes referred to x
, y ,

z
,
we have, resolving for the

principal strains,

du^' _ j
dv dvi' j

dv1 dwl

j litfli j ,
- = froWto ^ -J

= 0.
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And since

ni = n .2
= n3

= Q, Zj
2 = 42 = mi* = m/ = % ^m, = - L2m2

=
,

du
l/dxl

=
dvjdx-t

= ^dv /dxn ,

and referring to any rectangular axes x, y, z, the partial inequalities are

(du" /du" dv" dw"\\ 1 , dv" du"\/~
\dx

~
\dx dy ~dz~

~~

2 dx dy

dw" du"
o -J +-j2 V dx dz

\

)>
&c-> &c.......(290 B).

)

196. The equations of motion of the mean system in terms of the quantities

defining the state of the medium.

Having obtained the four general expressions for:

The total angular inequality in convection: equation (287)

linear (289)

angular conduction (288)

linear (290)

Adding the two first together we have the total inequality in vis viva.

And in the same way adding the last two together we have the total

inequality in conduction.

Then again adding we have the total inequality.

Thus reverting to the forms A^, Bf, &c., for the respective constants,

arid introducing the actual expressions for the general expressions I"
,
or the

harmonic expressions p (u'u), &c., for the inequalities, we have, for angular

and linear inequalities in vis viva,

A-\ f A 91 (du" 1 /du" dv" dw"\]
MM) = ri 4ii! i ~T H j + ~j ) r

31 (du" dv" dw"
77^- 2 -K- i- -,- -

m2 + (a6
Y

2)
4

_ dt dx dy dz

A i

2 r A 91 \ (dv" dll"} o /ono\
p(v'u')

= -- ^I'-S olT- + T~f >&c.,&c (292),
m? + AJ L 9^J 2 ( dx dy }

. , ,. Af [ . 311 (dw" du"\ s s /OOQ\
p(wu)= \A 2

Z
-^- \a\-j-+ j-h&cv&c (293).w2 + A<? L 9<J 2 dx dz )
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And for angular and linear inequalities in conductions

m P+? j*
B^ ^n* d\{du" I (du" dv" dw"\

P xx
~ P "- ~3t\ dx~Z\fa d

+
dz)

A2
f .. 3} (du" dv" dw"

2

w2

-f(aA)
4

I 9^J \dx dy dz

(294),

V
( d\i(dv''du"\

TT. \ ?r,f { i I- "T~ r . &c., &c. ... (29o),
- /} 2 ( o^J 2

(_
dx dy }ra

2 O
+ '

&c" &c - -

P yx=-

and two corresponding equations in directions y and z for convections and

conductions.

N.B. The linear inequalities which form the second member of equations

(291) and (294), and the corresponding terms of the equations for directions

y and z, do not include such linear inequalities in the vis viva and con-

ductions as are instituted by dispersion of angular inequalities, since these,

being secondary effects of the mean inequalities which are themselves small,

are altogether negligible. And thus equations (291) to (296) are the

equations for the inequalities in vis viva of relative motion to a first

approximation. Q. E. F.

As to these inequalities it may be well at this stage to point out :

(1) That if m2 and a2
,
62

,
c2

,
which express the frequencies in time and

space are zero, the angular inequalities in the mean motion are severally

constant, while the linear inequalities are zero.

(2) If the direction of propagation is in the direction of motion, or is

normal to a shearing motion, all the inequalities in mean motion are zero

except that one, whether it be

du du du
j- > j~, j- i

&c
->
&c -> &c -

dx dy dz

But otherwise the inequalities of mean motion as expressed in equation (291)
are partial.

(3) The coefficients of these partial equations must be such as will,

within the limits of approximation, resolve into the resultant equations for

the resultant inequalities.

(4) The coefficients in the partial equations which express component

angular inequalities satisfy the condition of resolution stated in (3) as a

matter of form.

(5) The coefficients in the partial equations which express component
linear inequalities do not obviously, as a matter of form, satisfy the condition

of resolution to a first approximation unless a*C//m* is small. But treating
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this quantity as small, it can be shown that they do satisfy the condition

even to a second approximation. Thus omitting the square of d2

C.?/m? as

a first approximation, and putting (a
2 + 62 + c

2
)
2

2
4
/4m

2
,
the mean value of

a4C2
2

,
in the second approximation, the terms expressing component linear

inequalities take the form

,
&,, &c.. ..(297) ,

ra2 \ dtJ \ 4ra2
/

and these obviously satisfy the conditions of resolution for inequalities in

both vis viva and conduction :

C*
(

d\ (du" dv" dw"\ ( (a? + 62 + c2
)
2
G,

4
)

a2G 2
-

5i) I ~j
--

H-j- + j II I , &c., &c....(298),m2
V dtJ \dx dy dz J { a2

which satisfy the conditions of resolution, and the second approximation may
be neglected.

(6) The proof that these 2
(72

2

/m
2 are small, is not possible as long as

m2 and a? are considered as arbitrary, and subject only to the conditions of

being small as compared with tr/\ and 1/X, since the proof depends on

dynamical analysis which is effected in a subsequent article, in which it

is shown that for any disturbance propagated through the medium these

constants are extremely small.

(7) Although small the second approximation is finite as long as the

first approximation to the inequalities is finite. Beyond reminding us of

this fact there is no object in retaining this second approximation.

197. The equations of motion to a first approximation.

Substituting in the equation of mean-motion (119) from equations (291)

to (296) for the inequalities in the relative vis viva and rate of conduction,

these take the form :

du" A? r a
'

dt

6 dx \ dx dy dz

&c. &c.

d2

^7 I H :

(300),

with two similar partial equations for the rates of increase of dv" /dt and

dw''/dt, and the conditions

dw dv - _

dy dz
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As explained in (7) in the last article the last factor in the second

term on the right, which adds the second approximation, may be omitted

within limits of a first approximation.

Substituting for the coefficients Af, A, &c. their values in terms of

the quantities which define the state of the medium, as given in equations

(277) to (280) and (287) to (290), we have, to a first approximation, the

equations of motion in the mean system in terms of the quantities, referred

to axes moving with the mean-motion of the medium, the general ex-

pressions for which are stated in equations (119). Q. E. F.

From these partial equations (300), we get the partial equations for

the component vis viva of mean-motion, in terms of the quantities which

define the state of the medium, by multiplying the partial equations of

motion by u", v"
,
w" respectively, as in equation (122), and these added

together resolve into the several equations of vis viva in terms of the

quantities the general expression for which is given in equations (125).

198. The equations of the components of energy of the relative system

in steady or periodic motion.

It has already been shown, equation (285), that the rate at which the

component of energy of relative motion is increasing, at a point moving
with the mean-motion of the medium, is the product of the total partial

component of the inequality in relative motion multiplied by the inequality

of mean-motion in the general form :

A?
a*AS-^\r*.oil

Therefore, proceeding as in the last article to take account of all the

inequalities angular and linear, since the constants are the same, and the

linear inequalities a, b, c are the parameters of the variations, the equations
for the partial rates of increase of the energy of relative motion by trans-

formation from the mean-motion become

i a ia?\ ( A, 2

r, i a
"-z ^ ~.

t) r%+ 1 9 / ,2 i A 4 2 9 7\tz ot\/ ( m T -0.2 I Gi

dv dw\~] 2

Ifdv
duY Ifdw du^

dx 3\dx dy dzj] 4>\dx dy) 4<\dx dz

+~^n J"2A2-^-W' +^ +^7 (301),
ra2 + (aiA,) [

2 dJ \_dx dy dz J

with two corresponding equations for the directions y and z.
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Then substituting for the coefficients from equations (287) to (290) we

have, to a first approximation, the partial equations for the vis viva of

relative motion in terms of the quantities which define the state of the

medium, terms for which the general expressions are given in equations

(123).

Then considering the partial equations (298) we have for the resultant

equation of relative vis viva, the general expression for which is given by

equation (126),

P2 "

__ _

3\dx dy dz

l((d/uT_ dvy /

2 [(dy
+
dx)

+
\dz dy dx dz
/dv'^

duf\ 2 fdw" <^V
\dz

And putting for the right-hand member its equivalent

\ | [p" (*' + * + w'*)]
- i

| [>" (u' + .'
2 + i^)],

we have the expression which would constitute the first member of

equation (126).

Therefore we have, in the second member of equation (302), the ex-

pression, to a first approximation, for the rate of variation of the energy
of the relative system in terms of the quantities which define the state

of the medium.

Thus equations (300), (301) and (302) are, to a first approximation,

respectively the partial equation of momentum of mean-motion, the partial

equation of energy of relative motion, and the resultant equation of energy
of the relative system.

And it may be noticed that the equation of energy of mean-motion

corresponding to equation (125) Section VI. is at once obtained by multi-

plying equations (300) by u", v", w" respectively.

And thus the dynamical theory of a purely mechanical medium is

established and defined for periodic inequalities to a first approximation.

Q. E. D.

B. 12
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It is to be noticed here that the three equations (300) of momentum

in the mean system, to a first approximation, .
when multiplied by the

respective components of mean motion, become the component equations

of energy of mean motion, and on being reduced and added together form

the resultant equation of mean energy.

And since, in a conservative system, such as that under consideration,

the only exchanges between the two systems are between the energy of

mean motion and the energy of relative motion, we should have as the sum

if the approximation is complete ;
and this is the case.

That is to say, the approximate expressions for energy of mean motion

obtained from equation (128) become, on changing the sign, the equations

for energy of relative motion.

It thus appears that there is only one equation of energy although

there may be two systems of partial equations for the energy of the

components of mean and relative motion.

There are, however, two systems of equations for momentum, one for

momentum of mean motion, and the other for the mean momentum of

relative motion, the second of which is expressed by

(O" = o, 00" = o, (o" = o,

while the first is the system expressed by equations (300).

This affords a check on the method of approximation which only

becomes apparent at this stage.

199. The equations of motion to a second approximation.

In proceeding to a second approximation, it is to be noticed that the

rates of increase of a or a2
, Af, Bf, CV

2

,
and D^, the coefficients in the first

approximation, are the result of the irreversible dissipation from vis viva

of mean motion in consequence of the inequalities in mean motion, as

considered in the first approximation, tending to increase the value of a,

and to institute linear inequalities in the value of a or a2
;
such secondary

inequalities are instituted both by angular and linear inequalities in the

first approximation.

But it is not in taking account of these secondary inequalities that the

second approximation consists, for, as will appear as we proceed, such

secondary inequalities are of no account as compared with the first.

The second approximation consists in taking account of the rate of

irreversible dissipation of energy resulting from each of the several actions,
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as expressed in the first approximation, as cause logarithmic rates of

diminution in the linear inequalities of mean motion.

In this portion of the analysis, since the general expression for the

equations to a first approximation has been effected, attention may be

confined to the two primary undulations, approximately simple harmonic,

referred to axes in the direction of mean strain
; taking the axis of ac for

that of propagation and the axis of y for that of shear, so that the

inequalities (/") in mean motion are expressed by

du" , dv"
-f and -

7 .

dx dx

The equations for the undulations are obtained to a first approximation

by taking all the rates of variation of the mean motion zero, except those

which enter into the two expressions respectively in the equations (300),

(301) and (302).

200. The determination of the mean approximate rates of logarithmic

decrement.

To do this it is necessary to know two quantities :

(1) The ratio which the mean of the total undulatory energy bears

to the mean of the energy of mean motion, including resilience, per
unit volume.

(2) The rate of irreversible dissipation per unit volume in terms of

the energy of mean motion to which it is proportional.

Let R be the ratio of the total energy of undulation to the total,

including resilience, per unit volume
;

T the coefficient by which mean energy of mean motion must be

multiplied to express the rate of dissipation.

Then, the bar indicating the mean,

-r, 8 fu"'
2
-f v"2 + w"2

\ A /u"2 + v"2 + w"2l
\

The logarithmic rate of decrement is r
*

-T

*Ju"* + v"*lw"* = e*
R

The values of T are all to be obtained from equation (302) omitting

the d/dt.

The values of R are a little more complex. But as in the first

* No connection with T (tau) the rate of propagation of light.

122
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approximation the motions are a simple harmonic function of t and x or

x and y,

R = 2 for normal waves,

R = 2 for transverse waves when there is no diffusion,

R = 1 for transverse waves when diffusion becomes easy.

This last case, whatever other interest it may have, is of great interest

in affording a check on the correctness of the approximation, since Stokes

has obtained a complete solution of this case for a gas as well as any viscous

fluid, and as <rj\ is small in this case it enables us to compare this approxi-

mation, and, as will appear, to show that the results are identical. In

this case total mean energy is the same as the energy of mean motion.

The only values of R which are not included in the list above are the

values of R for transverse waves for the region between the state of no

diffusion and that at which diffusion becomes easy, and in this case the

value of R varies, very rapidly at first, but at a diminishing rate, from

2 to 1.

201. The rates of decrement in a normal wave.

Taking x for the direction of propagation and motion, the motion

harmonic and w/'
2 for the maximum value of u"2

;
the mean value is Mi"

2

/2,

and the mean energy V2

/4.

The two rates of irreversible dissipation of energy by angular inequalities

and linear inequalities are obtained \>y omitting the d/dt in the coefficients of

both the terms of equation (302) and dividing by p.

For convenience putting A for the sum of the coefficients for the angular

inequalities, and L for the sum of the coefficients for the linear inequalities,

resolving in direction x, we have for the respective rates of dissipation

And we have for the mean square of the inequality, mean energy of

motion, and total energy,

q*/2a
2
,
and q

z

/a
2

respectively.

Thus R = 2 and = = QA + L) a\

5 ........................... <306 >-

And the equation for the normal wave is

(306).
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In a similar manner for the transverse wave

.(307).

The mean values of (dv"/dxy*, (v")
2

,
and total energy are, when <r/X is

large, and since there is no linear inequality,

T=-Aa?, = 2,

and the equation for the transverse wave becomes

j

a

If <r/X is small, R is 1 and

When o-/X is large the equation for undulations in the direction of the

propagation is

A* *-.. ^*r & o o- o A \ir * Wl * f*r\c f <yw/ - ft w\ lQ~\ f\\
\s e* V^V^O \ I/ L'V \JvvU ! * lOJLV/l*

a

and the equation for transverse undulations

a,

In the same way if <r/X is small the equation for the normal un-

dulations is

a

and for transverse undulations

// *3/%'
~~

\ n T~ ^* I v / t \ / > 1 > v

v =---e ^3 VT ' cos (mt ax) (olo).a

From equation (310) the coefficients A, B, L, are

^ =
3V^'

and for - small L=^. /^A\X m2 2 \/7r f \^^)-

, .
,and for -
largeX

5 j9
2 4 o-

2a G
9= - - v-~~ ~ a"

,3m2 2 3

We have thus obtained the complete equations for indefinitely small

steady continuous undulations, including rates of decrement for normal and
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transverse waves, in terms of the quantities a, X, <r which define the condition

of the medium.

These equations are thus available for obtaining the rates of propagation

and the rates of decrement for normal as well as transverse undulations for

any specified values of a, X, a.

Also if the rates of propagation together with the rates of decrement for

both the normal and transverse waves are known, the values of a, X, a- may
be found from the equations.

At this stage of the analysis, however, we have aot before us all the data

necessary to make a complete determination of the values of or, X, <r, so that

the equations would be the equations of light, as this would require a know-

ledge of actual rates of decrement as to which we have no certain knowledge,
and further, these equations have been obtained by neglecting all secondary

actions (see note, Art. 196). And thus these equations afford no evidence as

to the limits of the possible magnitudes of the undulations.

The conditions which limit the possible magnitudes of the undulatory
strains have been generally discussed in Art. 91, Section VII. From which

discussion it appears that, when the medium in normal piling has relative

motion, however small X/o- may be, the medium yields in proportion to the

stress when subject to indefinitely small variations of stress
;
so that such

stress is equal to the strain multiplied by a coefficient which is constant if

the terms involving the square and higher powers of the strain are neglected
as small compared with the first term

;
and in this case the medium has the

properties of an elastic solid within the limits of such strain. It has no

finite stability and only such dilatation as would correspond to the elastic

solid as long as the terms involving the square and higher powers of the

strain are small.

On account of both these the further consideration of the undulations is

continued in the section next but one to this after the consideration of

the possible strains, other than the undulatory strains, which afford further

evidence.



SECTION XIV.

THE CONSERVATION OF MEAN INEQUALITIES, AND THEIR
MOTIONS ABOUT LOCAL CENTRES, IN THE MEAN MASS.

202. IN the last section we obtained the equations for continuous steady

undulations, including the rates of decrement, for normal and transverse

waves in terms of a", X" and a-, the only quantity undetermined being the

superior limit to the amplitude ;
while from the same section it is evident

that undulatory strains have characteristics which differentiate them from

strains other than undulatory, and that they are essentially elastic strains

maintained only by the inequalities of the mean motion, and independent of

motion by propagation. It remains to effect such analysis of the strains

other than undulatory, the possibility of which has been pointed out in

Art. 190, Section XIII. These are:

(i) Some local disarrangement of the medium together with some dis-

placement of portions of the medium from their previous neighbourhood,

such as vortex rings, which may have a temporary existence if A/'/o- is large.

(ii) Local abnormal arrangements of the grains when so close that

diffusion is impossible except in spaces or at closed surfaces of disarrange-

ment, depending, as already explained, on the value of G being greater than

6/\/27r, under which conditions it is possible that, about the local centres,

there may be singular surfaces of freedom, which admit of their motion in

any direction through the medium by propagation, combined with strains

throughout the medium, which strains result from the local disarrange-

ment without change in the mean arrangement of the grains about the

local centres the grains moving so as to preserve the similarity of the

arrangement.

203. The character of these two general classes of strain must depend

primarily on the state of the medium, where uniform, as indicated by the

value of <r/X".

When <r/X" is small there is no dilatation, and there is diffusion, hence

there are no singular surfaces except such temporary surfaces as result from

vortex motion. Therefore this class of strain may be considered as belonging

to the undulatory class which does not concern us in this section.
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The second of these classes of local disturbance, in which a/X is large, so

that there is no diffusion except about centres of disturbance, includes all

local disarrangement of the normal piling that can under any circumstances

be permanent.

(i) Such permanence belongs to all local disarrangements of the grains

from the normal piling, which result from the absence of any particular

number of grains at some one or more places in the medium which would

otherwise be in normal piling. The centres of such local disturbance may be

called centres of negative disturbance, or centres of negative inequalities in

the mean density.

(ii) We can also conceive disarrangement resulting from excess of grains

in the otherwise uniform medium a definite number of grains over and

above the number which constitute the uniform piling, and such, whether or

not capable of independent existence, will be called a positive disturbance.

These positive and negative centres are the principal centres of distur-

bance, as well as the simple centres of disturbance.

There are other classes of disturbance which, although more or less com-

plex, are to some extent permanent.

(iii) If by any action on the medium in normal piling a number (n)

grains were displaced from their previous neighbourhood when in normal

piling, to some other neighbourhood previously in normal piling, the distur-

bance would be reciprocal, and, if there were no further displacement, would

be permanent if there were no further action.

It should be noticed that such displacement might correspond exactly

with that of a negative disturbance resulting from the absence of (n) grains,

and a positive disturbance from introduction of (n) grains in positions corre-

sponding to those from and to which the (n) grains were displaced.

It should be noticed however that, assuming the possibility of the

displacement and that of the simultaneous existence of equal negative

disturbances, this in no way proves the possibility of the existence of a

solitary positive disturbance.

(iv) Another class of possible local disarrangement of the normal piling
in an otherwise uniform medium is that class which does not depend on the

absence, presence, or linear displacement of grains, but does depend on the

rotational displacement of the grains about some axis.

If we conceive a finite spherical surface in the medium, and further

conceive that for 30 on either side of a diametral plane the medium im-

mediately external to this surface is, owing to rotational disarrangement,

resisting positive rotation of the surface, while the medium immediately
internal to the surface, that which extends from each of the poles to within
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30 of the diametral plane, is resisting negative rotation, then it will appear,
since owing to the relative motion the medium is to some degree elastic,

there will be positive rotational strains extending outwards in the external

medium within 30 of the equator, and negative rotational strains extending
outwards over both the surfaces from the poles to within 30 of the diametral

plane.

These represent a state of polarisation in the strains of the medium,
inside and outside, and if we had two such polarising surfaces with similar

poles in contact the strains would superimpose, while if the opposite poles
were in contact the strains would cancel.

204. With regard to the conservation of similarity in the arrangement
of the grains within and without singular surfaces, we may prove the follow-

ing theorem.

THEOREM 1. When the condition of the medium is such that there is no

diffusion except at a singular surface, where G is greater than Qf\f2tr as

a result of the absence of n grains, the replacement of which would restore the

uniformity of the medium to that of unstrained normal piling, there will result

inward strains extending from an infinite distance to some spherical surface

within the singular surface; then whatsoever may be the inward strains in

the normal piling and the disarrangement of the grains, with the surface at

which the strained normal piling ceased and abnormal piling commenced, the

number of grains absent would be the same (n) and the strains in normal

piling would be the same.

To prove this we have only to consider that, owing to the pressure from

the outside and the mobility of the grains due to the relative motion, a",

however small, would secure that in the first instance the arrangement
of the grains was such as to cause the minimum dilatation, and hence

would secure the maximum normal inward strain and then would be in

equilibrium. Then since there would be no outside disturbance, if there are

to be any exchanges of neighbourhood owing to relative motion, these ex-

changes must be such as do not entail any increase in the mean dilatation.

Whence it follows either that all the grains within the singular surface must

maintain their neighbourhood, in which case the centre of disturbance

would remain unchanged, following whatever uniform motion the medium

might have, or the arrangement of the grains immediately inside and

outside the singular surface must be such that the dilatation caused by any
influx of grains into the singular surface from one side would be simul-

taneously compensated by the contraction caused by the efflux of the same

number of grains from the opposite side, in which case the centre of dis-

turbance, together with, its attendant strains extending from infinity to the

abnormal piling, would be free to move in any direction and maintain the

same minimum dilatation. Q. E. D.
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It is to be noticed that the second alternative requires conditions as to

the possibility of which nothing has been affirmed in the proof of the theorem,

while the first is general.

Then again we have as a corollary to the last theorem : If two negative

centres of disturbance exist within any finite distance of each other, the

numbers of the grains absent in each of the centres would remain the same.

But it does not follow, as a necessity, that the strains in the normal piling in

the respective centres should be the same as if the other centre of disturbance

was absent.

Then again we have a theorem with respect to a more complex dis-

turbance :

THEOREM 2. When the disturbance is such as would result from the

removal of n grains from one place in a uniform medium and their introduc-

tion to another place at any finite distance, which is the same thing as two

equal centres of disturbance at a finite distance, one negative as the result of

n grains being absent, and one positive as the result of n grains in excess.

Then whatever may be the resulting strain or motion in and about the

two centres, the number of grains absent in the negative disturbance must

always be the same as the number of grains in excess in the positive dis-

turbance however this number may be changed by exchanges between the

centres.

This theorem being self-evident needs no demonstration.

205. The dilatations which result from strains in the normal piling in

the otherwise uniform continuous granular medium have been subjected to

somewhat full discussion in Arts. 86 to 92, Section VII. This discussion

includes the ideal case (a" = 0), in which there is no relative-motion, as well

as that (a" finite) in which there is relative relative-motion.

It is with the second of these cases that we are directly concerned, but

it appears that the only process of effecting the analysis necessary for

determining the coefficients for the dilatations in the medium with relative

motion is, in the first instance, to determine the coefficients of dilatation,

when a" = 0, for small strains in the directions of the axes of distortion.

Then by examining the effects of relative motion on these to arrive at the

general coefficients of dilatation for small strains in all directions in the

medium with relative motion.

206. In Art. 90, Section VII. it appears that in the uniform kinematical

medium (X = 0) there are six axes symmetrically placed, which are axes of

no contraction, and bisect the middle points of the edges of the cube of

reference, and all pass through the centre. Between these axes and at angles
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of 45 to them, that is in directions parallel to the axes of reference, or the

edges of the cube, there are three axes of possible symmetrical distortion
;

hence this medium under any mean stress p", equal in all directions, has

stability and crystalline properties. If however the stability resulting from

uniform stress is overcome, say by uniform superimposed stress in the

direction of one of the axes of reference, the dilatation resulting from the

initial small strain is positive, and can be shown to be equal to the normal

contraction, i.e. the result of the normal contraction and lateral extensions

is to increase the volume by a quantity equal to the small normal strain

multiplied by the initial volume. Hence the coefficient is unity.

As the strain increases the coefficient diminishes according to a definite

law (which will be expressed) slowly at first, then more rapidly until maxi-

mum dilatation is reached, when the coefficient is zero, and G = G/TT. The

medium is then unstable, and under the mean pressure equal in all directions

would revert to some second state of normal piling.

207. To prove the statements in the

last article as to the coefficients of the

dilatations resulting from small strain in

the direction of one of the axes of dila-

tation in a kinematical medium :

Let OA, OB, OC = a1 ,b1 ,
clt respectively

be the principal axes of strain. B'

Let AB, AC, &c. the generating lines of

the conical surface be the lines of no con-

traction.

Put

6 = OAB, </>
= OAC, LB = AB, Lc = AC.

Then
a = LH cos 9 = Lc cos

(f>

b = LB sin 6=0 = Lc sin
</

da n da

.(315),

.(316),

IT 7T= ^.a.b.c = ^.a. LBjjc sin 9 sin $ (317),
J O

- = - 1 + cot2 9 + cot2

.(318).da
'

Then, since dV/V is the dilatation and -
dafa the strain, the coefficient

of dilatation is by equation (318)

a dV
- da

' V
= - 1 + cot2 9 + cot- ..(319).
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Whence it appears, since 6 =
<f>
and cot 6 diminishes as 6 increases, we have

for the maximum coefficient

cot2 + cot2 <-l = l,

and this is when the axes of no contraction are inclined to the axes of dis-

tortion at 45.

Further, it appears that as 6 increases from 45, cot2 diminishes until

dilatation is zero, when the condition of the medium is unstable.

This may be demonstrated graphically. In Figs. 3 and 4 AA, BB and CC
are the three axes of symmetrical distortion, and the full-line circles represent

the spherical grains in contact. (See also Fig. 1, page 83.)

Fig. 3.

Fig. 4.

Fig. 3 shows a loss 2A A' in height. Fig. 4 shows a gain 4<AA' in plan.
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These losses and gains are taken on the three axes at right angles of

which the dimensions are AA, BB, CC.

The normal strain is 2AA'/AA.

The volume is AA . BB . CC or (AA)
3
.

The increase of volume (AA)2
. 4>AA' - (AA)

2
. 2AA' = (AA)* . 2AA'.

Whence we have the dilatation

dV_(AAY.'2AA'
~V

=

(AA)
3

And dividing by the strain 2AA'/AA and changing the sign, we have for

the coefficient of dilatation

AA (AA)
2

. 2AA'
2AA'

'

(AA)
3

= 1.

207 A. Then as regards the inequalities of pressure pr = 2pt
= \p' ',

resulting from such symmetrical distortional strains in the principal axes of

strain, since there is no work done on the grains it follows directly, putting

p" for the mean pressure, pr for the normal in the direction of the strain,

and pt for either one of the tangential since these are principal stresses

Pr+2pt = 3p" (320),

and since there is no work done on the grains,

Pr
=

tyt (321),

whence by (320)

Pr = ip", Pt
= lp" (322).

208. It is to be noticed that contraction strains, such as that discussed

in the last article, the strain being in the direction of one of the axes of

distortion, are the only symmetrical strains when a = 0, and it does not follow

that the coefficient of dilatation for small unsymmetrical strains is unity.

But it does follow from virtual velocities that if p" is the mean pressure in a

kinematical medium without limit, that the normal pressure resulting from

a local disturbance cannot be greater than 2p" and must be greater than zero

if p" is finite.

From this we have the proof of the important theorem :

That whatever the coefficient of dilatation may be, a disturbance such as

might be caused by the removal of any number of grains from a space in an

otherwise uniform medium, without relative motion, would be attended with

inward radial displacement of the grains from infinity throughout the entire

medium.

For, as has just been shown, pr must be greater than zero
;
so that there

can be no cavity greater than the space from which the grains can exclude
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other grains, and there can be no dilatation without the displacement of

grains, so that as the ideal excavations proceeded the grains would follow

inwards, and as there is no elasticity and the grains are all under pressure,

each grain as it disappears must cause inward movement from infinity; for

as the coefficient of dilatation cannot be infinite, the grains being smooth

spheres without friction (so that any binding or jamming would be impos-

sible) every grain would be under pressure. Q. E. D.

Thus the relation between the tangential and normal pressures would

depend upon nothing but the coefficients of dilatation, and if these were

constant the normal and tangential pressures would be constant. But such

constancy would depend on there being angular similarity in the arrange-

ment of the grains about every axis through the centre of disturbance,

which similarity does not exist in the normal piling. It is therefore certain

that the inward strains, although having six axes of similar arrangement

symmetrically placed, would be influenced by the crystalline formation of the

uniform piling; particularly at great distances from the centre of disturb-

ance. For when the distances from the centre are large the strains would

be so small that the crystalline characteristics of the uniform medium would

have undergone very slight modification, whereas near the centre where the

displacements are greatly larger the unsymmetrical characteristics would be

greatly modified.

On these grounds it appears certain that the coefficients of dilatation

would be greatest at an infinite distance from the centre and would gradually
diminish

;
in which case the tangential pressure would fall and the normal

pressure rise gradually as they neared the centre, satisfying the conditions of

virtual velocities and the condition for equilibrium, which latter requires

that at any distance r from the centre pr + 2pt
=

p". What the mean of

such coefficients might be is doubtful, but it seems probable that they would

not differ greatly from the coefficient unity, which is the smallest coefficient

for symmetrical distortion.

Whatever these coefficients may be it follows from the paragraph last

but one, that the dilatation resulting from the inward strain must occupy
the space from which the grains were absent, so that the sum of the normal

and tangential stresses would be equal to the mean pressure of the medium,
or pr + 2pt

= 3p".

209. From the conditions of geometrical similarity in the case of uniform

continuous media it appears :

(i) The size of the uniform grains has no effect on the dilatation or

mean pressures resulting from continuous uniform distortions. Therefore
similar and equal continuous finite distortional strains will produce similar
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and equal dilatations whether the grains are indefinitely small or of any

finite size.

(ii) The size of the uniform grains in a continuous medium does affect

the dilatations resulting from strains other,than continuous uniform distor-

tional strains.

To prove these theorems.

If we consider two finite media of which the parts are exactly similar in

shape, number, and relative position, but in one of which the scale is A
and the other B, these media will be geometrically similar except as to scale.

Thus whatever strains in proportion to the constant parameters, A and

B respectively, these media may undergo, the proportional similarity will

hold, and this extends to the dilatations, the coefficients of which will be

equal. Q. E. D.

If however instead of considering these similar actions within spaces

proportional to the scales A and B, we consider these proportional actions

within equal spaces, the principle of similarity disappears unless the positions

and strains are such that there is perfect uniformity throughout the medium.

This proves the first theorem. Perfect uniformity exists in the case of grains

in uniform piling subject to equal distortional strains whatever the values of

A and B, provided the spaces are such that there is no sensible effect from

the boundaries. Q. E. D.

It is thus proved that for other than equal uniform strain there cannot be

similarity in the effects in equal spaces in media of which the scales of

similarity A and B differ.

Thus if the strains in the medium in which the scale is A are subject to

variation on that scale, while those on the scale B are subject to similar

strains on that of B, then the effects of these variations taken over equal

spaces will of necessity differ. Q. E. D.

Then since the dilatations resulting from parallel continuous strains are

in no way dependent on the size of the grains, even if these are infinitely

small or have any finite size, the question arises as to what would be the

difference in the dilatations resulting from finite similar local disturbances

about negative centres in two media in one of which the grains are infinitely

small and in the other finite.

In the first place it appears that as far as regards the dilatations resulting

from uniform parallel distortional strain these would be independent of the

size a.

And it can be shown that these are the only dilatations if <r is indefinitely

small as compared with the reciprocal of the curvature.
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For since cr is indefinitely small when the scale of disturbance is finite,

if we conceive all dimensions including a to be exaggerated so that cr

becomes finite, and the distances between the grains exaggerated on the

same scale, then, since the mean strains before exaggeration vary continuously

without crossing, so that in the strains the finite paths of two grains which

were neighbours before the strain would still be neighbours after the finite

strain although separated by any distance which is less than the finite

distance cr, their two paths would still be parallel lines of infinite length

and at any finite distance apart.

It is thus shown that if the grains are indefinitely small as compared
with the dimensions of the disturbance, the only dilatations would be those

resulting from uniform parallel distortional strains. Q. E. D.

Again in the case of the medium in which the grains are finite it has

been shown, Art. 207, that when the grains are finite, however small as

compared with the dimensions of the finite volume from which grains are

absent, that the effects must differ from those resulting from uniform parallel

distortion.

And by the last theorem, putting 47rr 3

/3 for the volume the absent

grains would occupy in normal piling, it appears, since <r/r is indefinitely

small, that the dilatations result solely from uniform parallel distortional

strains. And hence whatever finite curvature may result from finite strains,

this curvature does not, as curvature, produce any effect on the dilatation
;
so

that there are no curvature effects.

Then since it is shown that when cr is finite, however small compared
with the reciprocal of the curvature in the strained normal piling, the

dilatation resulting from curvature depends solely on the existence of a

finite value of the product of a multiplied by the curvature, the dilatation

will equal <r multiplied by the curvature.

Further, it follows that for any given strain, this dilatation resulting

from curvature will be in excess of the dilatations resulting from uniform

parallel strains.

210. The analytical separation of the dilatation resulting from uniform

strain and that resulting from the curvature would be perfectly general if cr

might have any value as compared with the curvature. But, in that case,

any analytical separation of the dilatation resulting from distortions from

that resulting from the size of the grains would be different on account of

the reaction of the dilatation resulting from the size of the grains on that

resulting from distortion. But we are only concerned with cases in which
<r is such that cr multiplied by the curvature is so small that to a first

approximation any reaction from the dilatation resulting from the curvature

may be neglected.
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Whence it appears that, to a first approximation the only curvature is

that instituted by a uniform distortional strain as if a- multiplied by the

curvature were indefinitely small the dilatation resulting from small inward

radial displacements about a centre being of necessity equal to the curvature

at each point. It follows as a necessity that, taking A as the dilatation

resulting from the uniform distortional strains, the dilatation resulting
from curvature owing to the finite size of the grains at the same point is

expressed by A<r/2r1} where rl is the radius of the singular surface, whence

we have for the total dilatation

211. Granular media with relative motion have this fundamental

difference from media without relative motion, that when in normal piling
the medium with relative motion is within certain limits perfectly elastic

without crystalline properties, that without relative motion is perfectly rigid

and crystalline.

When the media are both under strain this difference is not so apparent,
as the medium without relative motion is then also without rigidity. But

the difference is still fundamental, and the fundamentally of the difference

in no way depends upon the degree of relative motion. For in the one the

medium satisfies the condition of virtual velocities, while in the other state,

owing to its elasticity, this condition cannot be absolutely satisfied however

near the approximation may be.

The crucial difference between the two states is virtually reduced to the

existence of a state of absolute rigidity in the one, however limited, when

the piling is normal, and the absence of such rigidity in the other however

small may be the relative motion.

For as has been shown in Art. 207 the medium without relative motion

while satisfying the -condition of virtual velocities when strained from the

normal piling, will also satisfy the condition of equilibrium that the sum
of the normal and tangential pressures equals three times the mean pressure,

or that

pr + 2pt
= 3p" .............................. (323).

Another medium will also satisfy the conditions that the pressure between

the grains cannot be negative, and that every grain is in contact with at

least four grains, whence it follows (since the last three of the four preceding
conditions are satisfied in the strained medium without relative motion they
are of necessity satisfied by the strained or unstrained medium with relative

motion) that if, as has been shown, the condition of virtual velocities can be

satisfied to any degree of approximation in the medium with relative motion,

such medium has to any degree of approximation all the properties of the

E. 13



194 ON THE SUB-MECHANICS OF THE UNIVERSE. [212

medium without relative motion, except those depending on the limited

stability on which the crystalline properties depend.

It is thus shown that the necessary distinction between the two states is

that of finite rigidity when there is no relative motion.

In regard to this statement it is perhaps necessary to call attention to

the fact already demonstrated, that in the case of a medium with relative

motion, the relative motion as expressed by a in a steady state of strain

must be constant, since any inequalities in a are subject to redistribution,

so that the mean energy of every grain remains constant. Therefore the

energy of the medium after the grain has been removed and the inward

strain established would be constant, and there would be no change in the

mean relative kinetic energy of the grains -.-^
.

-^ ,
and it is the state after

\ * ^

the grains have been removed with which we are alone concerned.

This although, for the purpose of analysis, an ideal action that of

removing grains from a medium in otherwise uniform normal piling such

action has no existence. This appears from Theorem 1 in this section, from

which it follows that whatever may be the volume occupied by the absent

grains when in normal piling such accident is permanent.

It has thus been shown that the inward strains resulting from the

absence of grains which would occupy the volume 4"7rr
3

/3 in normal piling

about any centre in the infinite, elastic medium, must cause dilatations

extending from an infinite distance to the singular surface about the centre

of disturbance, which dilatations occupy a volume equal to 4wr 8
/3, the

volume from which the grains are absent
;
and they are such as satisfy the

conditions of equilibrium under the same mean pressures normal and tan-

gential expressed by
pr +2pt = 9p" (324),

p" being the mean pressure equal in all directions.

212. It also follows from Art. 210 that these dilatations, notwithstanding
the relative motion of the medium, admit of analytical separation into the

two classes :

(i) Dilatation resulting from uniform distortional strains such as would

result if a were indefinitely small.

(ii) Dilatation which results from the finite value of a and the curvature

induced by the uniform distortional strains.

The relations of these dilatations are those expressed in Art. 210 by

,,
/ n

cr \ (the total dilatation per unit)
-A 1 + I .

\ (32o).
V ZrJ (

01 volume at the point j
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for the only difference resulting from the relative motion is the absence of

any limited stability.

213. From the conclusions arrived at in Art. 211 it follows, if p" is

constant, that the total dilatation resulting from the inward strains does not

depend in any degree upon the coefficients of dilatation, nor upon the relative

motion a, as long as <r/\ is within the limits of no diffusion, whatever may be

the value of a.

It does not however follow from this that the distribution of the strains

is independent of the variations in the coefficients of dilatation, since it has

been shown (Art. 207) that if there is no relative motion the coefficients of

dilatation must increase with the distance from the centre of disturbance.

But in the absence of any limited stability as in the case of a being finite,

since we need consider those cases only in which the coefficients of dilatation

from small strains are unity, the circumstances may be so chosen that the

strains follow some regular law.

However, before discussing these circumstances, we may with advantage
consider what further conclusions as to the relation between the strains and

dilatations, as well as the relation between the normal and tangential

pressures, are afforded by the adoption of unity as the general coefficient

of dilatation in the medium with relative motion.

Since the coefficients are constant and equal to unity, the mean strains

resulting from the absence of a volume of grains expressed both in magnitude
and shape by the sphere 47rr 3

/3, will be radial and symmetrical. Then by
the theorem of Art. 212, if cr is small compared with r

,
since the strains

must be everywhere very small, the relations between the inward strain and

the dilatation will be such (if at any point we take a* for the principal

strain in the direction of any radius and ft and 7 for the principal strains

tangential to the surface of the sphere, since the strains are inwards ft and 7

are negative and equal) as are expressed by

fl + y to or
a-+? = -l (326).

Then adding (ft + 7) the negative or contraction strains to a the positive or

expansion strain, we have the dilatation

.(327).

Then we have from these equations the general relation that the dilatation

resulting from tangential contraction (ft + 7) is equal to half, and can only

be half, the normal elongation resulting from the tangential contraction,

together with the dilatation caused by the contraction strain.

*
a, , 7 are here used to express principal strains.

132
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The dilatation expressed by either member of equation (327) is the total

dilatation resulting from the uniform distortional strains, as well as that

resulting from the curvature on account of the finite size of the grains. And
to complete the analysis of the relations between the dilatations and the

strains it is necessary to effect the analytical separation of these two

dilatations.

The separation of the dilatations follows at once from equation (324).

By equation (327) we have for the total dilatation per unit of volume at

a point

And from equation (325) the total dilatation is

Therefore

(328)
-03 + 7) J^

'

'

9v
2T|

The first and second of equations (328) are respectively for the dilatations

resulting from uniform strains and from the size of the grains.

These involve the squares of o~/2i\; neglecting this term we have as

approximations :

For the dilatations resulting from uniform strains

And for the dilatations resulting from the size of the grains

Adding these two last expressions we have

-( + 7).................................... (329),

which expresses the total dilatation per unit of volume at a point in the

medium.

Then integrating the partial dilatations from oo to rx over the medium,
since the total integral dilatation is 47rr 3

/3 we have for the integral dilatation

resulting from uniform distortion

r.. ............(880).
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And for the dilatation resulting from the size of the grains

The relations between the strains and the resulting dilatations, as expressed
in equations (326 to 331), are the complete relations to a first approximation
as long as there is no other disturbance in the normal piling than the

spherical disturbance which gives rise to the radial inward strains. And they
have been obtained by taking the coefficients of dilatation as unity.

The relations between the principal stresses are such as satisfy the

equation of equilibrium

pr
" + 2pt

" = 3p" (332),

and are also such as satisfy the condition of virtual velocities approximately,
which on the assumption that the coefficients of dilatation are unity, since

the contraction strains are tangential, requires that

Pt"
=

2pr" (333).

Therefore from (332) and (333) we have

K = tP" ^d Pr
" = lp" (334).

Equations (332) and (333) express completely, to a first approximation, the

relations between the constant mean pressure, equal in all directions, and the

constant mean tangential and normal principal stresses resulting from a

negative spherical disturbance about an only centre on the supposition that

the coefficients of dilatation are unity.

214. Having in the last article effected the analysis of the relations

between the dilatations and strains, as well as between the mean tangential

and normal principal stresses and the mean pressures, equal in all directions,

about an only negative centre, on the supposition that the coefficients of

dilatation are unity, it remains to consider that choice pointed out (Art. 213)

of the circumstances under which this condition can be realised.

The definition of a negative local disturbance (Theorem (i), Art. 203) in-

volves the absence of a certain number of grains, which if present in normal

piling would render the piling in the medium normal, reverse the strains,

and so obliterate all trace of disturbance about the centre.

There is nothing in the definition of such local centres that defines the

mean distance from the local centre at which the grains may be absent, nor

is there any obligation that the space from which the grains are absent shall

be continuous, as long as there is some symmetry about the centre.

It is therefore open for us to consider such arrangement of the position
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about the centre from which the grains are absent as will result in the least

analytical complexity.

It would seem at first sight that the greatest simplicity would be secured

by assuming that the grains were removed from a spherical space. But in

that case it at once appears that the inward radial displacement would

extend to the centre of the sphere. And it also appears (Art. 207) that

the contraction strains as the centre was approached would be such that

instability would come in, and the arrangement near the centre would revert

to some more nearly normal piling, forming a nucleus of grains in normal

piling without dilatation. In this case the dilatation would commence in the

grains outside the spherical nucleus, there being a spherical shell of grains in

abnormal piling constituting a broken joint between the nucleus and the

medium outside, which, although strained inwards, would still be such that

the grains had not changed their neighbourhood. Thus it appears that the

abstraction of grains from a spherical space would not entail that this

strained normal piling would reach the centre.

The arrangement instituted as a result of this abstraction from a

spherical space seems most natural and, with a little modification, such

arrangement presents the least analytical difficulty.

If we adopt the nucleus in an exaggerated form and the spherical shell

of grains in abnormal piling, no matter how thin, also take rx for the radius of

the singular surface which is somewhere within the spherical shell of grains

in abnormal piling, since the volume of grains absent is 47rr 8

/3 which volume

as a spherical shell of radius ^ would have a thickness approximating to

r 3

/3r!
2

,
we have as an expression for the inward radial displacement of the

grains in strained normal piling which are adjacent to the singular surface

(335).

Then since this is the greatest possible radial displacement, and being

adjacent to the singular surface is independent of dilatation, the contraction

strain, owing to the displacement, would be the largest contraction strain

possible. Whence, if this is small, all the contraction strains will be very

small, and as the dilatations are equal to the contraction strains, though
of opposite sign, the dilatation would be very small, and by Art. 207 the

coefficients of dilatation would approximate to unity.

In order to show that the contraction strains at the singular surface

resulting from radial displacement

would be very small
;

let the outer circle (Fig. 4 A) represent a section
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through the centre of disturbance before the volume 4<7rr
3
/3 is removed,

and the inner circle represent the section through the centre after the

Fig. 4 A.

volume is removed. Then if the inner circle is taken to represent the

section of the singular surface through the centre of disturbance, since the

radial displacement [a = 2 (@ + 7)] of the grains at that surface has been
shown to be (equation 335) rf/Srf, the contraction at the singular surface is

I

^ 2

(336).
( r 3

)

J _i_ I

Then since r /i\ is small, according to powers of r /rlf we get a rapidly

converging series, the first term of which is

-. = + ? .............................. (337).

Then by equation (327) we have as a first approximation to the dilatation

resulting from the contraction at the singular surface r^/Sr^. And as this is,

approximately, the greatest possible dilatation, it follows that under the

conditions as stated above the radial displacement and inward strains are

such that the coefficients of dilatation would to a first approximation be

unity.

It is thus shown that the conditions assumed in the present article are

not only possible but are also the most probable.

215. In order to complete the analysis for an only negative centre it

remains to obtain the expressions for the contraction strains and dilatations

at any distance from the singular surface corresponding to those found in

the last article for the contraction strains and dilatations at the singular

surface.

This problem differs essentially from that of determining the strains at

the singular surface
;

this difference appears at once when we realise, as

already pointed out, that the radial displacement which the grains at the

singular surface have undergone is definitely expressed by r^/Sri*, since

it is subject to no displacement from dilatation, whereas the radial displace-

ment which the grains at an arbitrary distance r from the centre have

undergone depends on the dilatation between r and r
t .
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There are however two definite conditions that the radial displacements

must satisfy to a first approximation.

(1) The condition (Art. 207) that whatever the radial displacement may
be it must be such that the integral of the dilatations taken from i\ to oo

shall be equal to the volume from which the grains are absent.

(2) That the radial displacement must be such that at any distance

greater than i\ the resulting tangential contractions will cause dilatation

which, integrated over the volume of the spherical shell 4nr (r^
3 r 3

)/3, will

express when divided by r^ radial displacements corresponding to those

assumed.

If instead of taking r 3

/3r
2 or r^/S^r2 we take

for the radial displacement, we have for the contraction strains, since they are

negative and only half the total elongation,

Qr3
-r2

From which to a first approximation we have for the contraction strain

1

3 r4
'

Then changing the sign, multiplying by TT and integrating from r^ to r

4?r rjr?
(338).

The result arrived at in equation (338) admits of more general proof,

from which it appears that this result is the only result possible.

Putting X for the radial displacement ;
since the dilatation is expressed

by X/r we have to obtain the expression for X satisfying the condition

-r*dr = ^-r<? (339),
J *>

r 6

whence it appears that

X--^ (340).

Also dividing the last term in equation (338) by r2 we have for the radial

displacement at a distance r

which is the same expression for the radial displacement as that assumed.

So that both conditions are completely satisfied.
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216. In this section it is assumed that there is no diffusion. Having in

the previous articles in this section effected the analysis of the inward strains

and the consequent dilatations for only negative spherical disturbances

resulting from the absence of grains, before proceeding to consider the corre-

sponding analysis for the other inequalities in the density of mean matter,

it seems convenient to proceed with the analysis necessary to determine the

effects such negative disturbances may have on each other when existing

within finite distances of each other.

Any such action must depend on the interference of the strains outside

the respective singular surfaces, and any attraction of the centres resulting

from such interference must be a function of the distance between the

centres.

From Arts. 209 and 212 we have perfect similarity in the strain

resulting from uniform distortions, from which it follows that such strains

from different negative centres superimpose without affecting their respective

dilatations, and hence can in no way interfere or attract one another.

In the case of the strains resulting from finite values of a- owing to the

curvature resulting from distortions, the strains from different negative centres

at any finite distance must interfere.

This appears in Arts. 209 and 212, in which it is shown that for other

than equal uniform strains there cannot be geometrical similarity in the

effects in equal spaces, in media of which the scales are different.

For, applying this to the case in hand, since the diameter of the grains,

ff1 say, is common to all the grains, while the number of grains absent as well

as the radii of the singular surfaces may differ in almost any degree, the

dissimilarity at once appears.

For the sake of clearness we may consider in the first place two cases in

both of which the a- has the value o-a ,
and the singular surfaces both of radii r1}

but in one of which the volume of the grains absent is ra
3
,
and in the

3

., 4?r
other rb

3
.

Then by equation (331) we have for the dilatation at a distance r for

the centre a

!zr r 3^i/' 1 _ M
3

a
r* ( ZrJ

'

and for the centre 6

477477
3 (Tj / 0-!\

T Tb ?A ~2rJ'
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and neglecting 0^/2^ for the present, as small, multiplying by r2dr and

integrating from r, to r = oo we have for the dilatation, taking &> to express it,

From the expressions in the preceding paragraph for the total dilatation

resulting respectively from the two centres considered as if each were the

only centre within an infinite distance, it appears in the first place that the

dilatation resulting from the product <r into the curvature is directly propor-

tional to the volume occupied in normal piling by the grains absent. And
in the second place from the form of the expressions obtained, that the total

dilatation is inversely as the radius of the singular surface.

It is this fact, that whatever may be the volume occupied by the absent

grains in normal piling, the dilatation will be inversely as the radius of the

singular surface, which proves the effect of dissimilarity between the constant

value of a and the different values of r^, namely that for any particular

volume of grains absent the dilatation resulting from the small centre will be

greater than that resulting from the large centre in the inverse ratio of the

radii of the centres.

So far we have only considered the effect of dissimilarity in trji\ on the

supposition that each centre is the only centre within finite distance.

We may now proceed to prove that negative centres at finite distances

attract each other.

Taking o> to express the total dilatation from r to r = oo resulting from a

single negative centre, then as has just been shown

(342).

Then the number of such singular surfaces which would occupy an

empty spherical shell of radius rB when arranged in closest order would be

approximately

And by equation (341) the total dilatation of each of the N' surfaces outside

the surface 4?rr 2
is
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Multiplying <>! and a>B by N' we have for the respective total dilatations

N'u^N'--
*^ (345)

and

JX-WB =J\- ~~-- (346).3 rB

Subtracting these equations as they stand we have

(347).

Then from equation (347) it follows that the dilatation resulting from

any number of negative similar disturbances (if the singular surfaces are at

an infinite distance from each other) will be

, 47rr
3

a-

"T"-*
1

while if these surfaces are arranged in closest order the dilatation will be

477T 3
ff

~3~ ^-

Whence since rB is greater than r^ it is shown that, no matter how

accomplished, the dilatation resulting from negative centres diminishes in

the ratio

n
r*'

as the centres of the singular surfaces approach until they are arranged in

closest order.

This proves the diminution of the dilatation owing to the diminution of

the variations of strain as the centres approach or the diminution of the

dilatation owing to the diminution of the curvature of the normal piling in

the medium due to dissimilarity. Q. E. D.

From the proof of the foregoing theorem it also appears how it is that

the dilatations resulting from distortion do not interfere however much they

superimpose, for since the dilatations resulting from distortion in no way

depend on the curvature in the medium, as curvature, they depend only on

the strain, whereas the diminution is in the variations of the strain.

In order to prove the attraction of the negative centres it is necessary to

consider the effects of the pressures in the medium. These have already

been discussed in Art. 213, equations (332) to (334), in which it is shown

that the dilatations resulting from curvature are subject to the mean

pressure p" and satisfy the condition of virtual velocities. In dealing with

attraction it might seem necessary first to prove or assume that the singular
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surfaces are also surfaces of freedom which can be propagated in any
direction through the medium, for as the medium is elastic in consequence
of the finite relative motion, if we can find the variation of the work done

by the external media on the singular surfaces owing to variation of their

distances, it becomes possible to separate the active effort from the passive

resistance.

Multiplying the member on the right of equation (347) by p" we have

as the expression for the difference of the energies in the media when the

N' singular surfaces of radius r^ are at an infinite distance from each other,

and when the N' singular surfaces of radius ^ are arranged in closest order

within the surface rB .

This difference in the energy proves the existence of attractions what-

ever may be the passive resistance owing to want of mobility of the singular

surfaces.

These attractions as obtained by neglecting a-
2 are the only attractions

between negative centres of disturbance which are small compared with their

distances apart, as follows from the fact already proved that the aggregate

dilatation resulting from distortional strains depends only on the volume of

the absent grains.

217. The law of the attraction of negative centres appears at once from

the analysis.

If instead of taking the total dilatation from rB to r = <x>
,
as in equation

(346), we take the dilatation from rR to r, where r is greater than rB ,
the

dilatation from the JV' singular surfaces in closest order is

<r

Then if there is another singular surface of radius ^ in which the volume

of grains absent is 47rr 3

/3 at the distance r the variations of the strains of

the outside singular surfaces interfere with those from the centre rB \
and

multiplying the dilatation outside rB less the dilatation outside r by minus

the volume of the grains absent in the outside centre, we have the expression

::':' ...: .'I';
-^

and differentiating this expression with respect to r we have
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whence multiplying by p", since <r/\ is large so that the density within the

singular surfaces is unity, we have for the acceleration

___
\ 3 J dr \ra rj \ 3 ) r2

This expresses the space rate of variation in the work, or energy in the

system, with the distance, that is the effort to bring the centres together
whatever may be the passive resistance.

It is thus shown that the law of attraction, that is the effort to bring the

surfaces together, whatever may be the passive resistance, is the product of

the masses of the grains absent multiplied by a- and again by minus the

reciprocal of the square of the distance.

This law of attraction, which satisfies all the conditions of gravitation, is

now shown by definite analysis to result from negative local inequalities in

an otherwise uniform granular medium under a mean pressure equal in all

directions, as a consequence of the property of dilatancy in such media

when the grains are so close that there is no diffusion and infinite relative

motion
;
and further it is shown to be the only attraction which satisfies the

conditions of gravitation in a purely mechanical system.

The mechanical actions on which this attraction depends are completely

exposed in the foregoing analysis, and offer a complete explanation of the

cause of gravitation.

In this explanation of the cause of gravitation there are some things

which are at variance with previous conceptions, besides the fundamental

facts, (i) that the attraction of the singular surface which corresponds to

that of gravitation is not the effect of masses present but of masses absent,

which has already been revealed in the previous analysis, and (ii) that the

volume enclosed within the singular surfaces, which is the volume from

which the singular surfaces shut each other out, has no proportional relation

to the number of grains absent, but, as will at a later stage appear, depends
on the possibility of some one definite arrangement of the grains absent, out

of a finite number of possible different arrangements.

218. In the analyses of Newton, Laplace, Poisson, and Green, for defining

the consequence which would result if distant masses attracted each other

according to the product of the masses divided by the squares of the distances,

the attraction is taken as inherent in the masses. This assumption assumed

that there was something that was not force, but which varied with the

distance from a solitary mass, and this something after various names is now

generally called the potential. That any of the philosophers named believed

in force at a distance is more than doubtful, as Hooke and Newton and

Faraday repudiated any such idea. Maxwell went a stage further and
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showed that such attractions might be a result of a certain law of varying

stresses in a medium as to this he writes,
"
It must be carefully borne in

mind we have made only one step in the theory of the medium. We have

supposed it to be in a state of stress, but we have not in any way accounted

for the stress or explained how it could be maintained." "I have not been

able to make the next step, namely to account by mechanical considerations

for the stresses in the dielectric*."

Maxwell is here writing of electricity, which is not the same thing as

gravitation, as will presently appear.

This second step, namely that of accounting by mechanical considerations

for the stresses in the medium, has now been overcome; as we have the

mechanical interpretation of the potential as the product of the uniform

pressure p" multiplied by the integral of the dilatation over the medium
rB to rl} or

-
, , (349),3 \rB rj

or, omitting the constants,

Fll *' 3 "*0 /OCA\= o- (350).
r

This is entirely rational and when multiplied by 47rr 3
/3 and differ-

entiated gives us the attraction hitherto expressed by ^-f-.

And it thus appears that the thing to which the name potential has been

applied is the product of p" multiplied by the total dilatation between the

surface of radius rB and the surface of radius r (greater than rB).

It is to be noticed that in so far as we are concerned with the effort of

attraction and not with acceleration, it is only the volume of the space from

which the grains are absent, and not the mass within the space, that we

have to take into account.

And it is for this reason that in the foregoing analysis, in this section,

p has not been introduced. But since, in states of the medium under

consideration, in our present notation p is, to a first approximation, equal to

unity, it would have made no difference if we had taken it into account

(when we have to consider the displacement of mass owing to the effort, the

fact that p" is unity is of primary importance), since whatever the effort to

acceleration, the acceleration is inversely proportional to the density and

this will appear at a later stage.

In order to render the expression for attraction intelligible it should here

be noticed that strains, and consequent dilatations in the medium, which have

*
Electricity and Magnetism, Vol. i. Arts. 110 and 111.

t This jR has no connection with the R used in Arts. 200 and 201.
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no dimension, and which are the only actions, are outside the singular

surfaces
;
so that we are not dealing with two or more independent masses,

but with the variations in the displacements in the entire medium, all the

mechanism, so to speak, being in elastic connection controlled by the pressures,

as conditioned by the positions of negative inequalities in the mean mass

represented by 47rr 3

/3.

There is no complete freedom of inequalities as long as there are other

inequalities within a finite distance.

Thus it appears that the singular surfaces are virtually the handles of

the mechanical train.

219. Having effected the analysis for the attractions and the potential,

we may now return to the inequalities in mass as mentioned in the schedule,

Art. 203.

The second inequality in the mean mass in that schedule is that which

may be conceived to result from an excess of grains, instituting a positive

centre.

The analysis for the effects of such positive centres is precisely similar

to that already effected for the negative centre, except that in the case of

the positive centre the curvature would be reversed, the curvature being

away from instead of towards the centre.

The effect of this appears to be to cause positive centres to repel instead

of attract each other. Such repulsions would as in the case of negative
centres depend on the product a multiplied by the curvature, which is of

opposite sign to that for positive centres, and thus the effort of repulsion
between two positive centres would be expressed by

,,/47rr
8

\ 3

The coefficient of dilatation is the same unity. There is thus no

necessity to repeat the analysis. This concludes the approximate analysis of

the actions between centres having similar signs.

It may however be remarked that there are reasons why it is probable
that positive centres should exist, as will appear at a later stage.

220. The first of the class of complex local inequalities ((iii), Art. 203) is

that which would be instituted if by action on the medium in normal piling

a number of grains (n) were displaced from their previous neighbourhood
when in normal piling to some other neighbourhood previously in normal

piling.

Such complex inequalities are only second in importance to groups of
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negative inequalities at finite distances, such as have already been discussed.

In the case of complex inequalities there is no difficulty in conceiving that

owing to the mean pressure there would be an effort to reverse the displace-

ment, as nothing would seem more natural if we have an absence of grains in

one place and an excess in another, under pressure, than that there should

be strains from the place of excess to the place in which the grains are absent,

and vice versa.

It also appears at once as pointed out in Art. 203 that the case is identi-

cal with that which would result from the existence at finite distance of equal

positive and negative centres, having the same number of grains absent and

present respectively.

This identity indicates the direction of the analysis necessary in order to

obtain the expressions for the effort to reverse the displacement.

We have already obtained the expressions for the dilatations per unit of

volume at any point distant r from, a negative centre resulting both from

the distortional strain and from the curvature owing to the finite size of the

grain

4?rr 3
r-L , 4nrrQ

3
a-

o A
" .

3 r4 3 r4

And it has also been shown that there is no diminution in the dilatations in

the former as the centres approach.

It has also been shown, Art. 217, that multiplying the dilatations at a

point resulting from a negative centre by p"r*dr and integrating from r^

to r, we have the equation

4>7rr
3

[
r

a- ,

the second member of which expresses the potential of attraction between

the two equal negative centres. This multiplied by a second negative

inequality and differentiated with respect to the distance between the centres

expresses the effort of attraction of the centres as

3 (352).

And again, although not previously noticed, it appears at once from equation

(351) that, if instead of the limits of integration being from 1\ to r, they are

taken from r to r = oo
,
we have

47rr 3 f*r .,, 4nrr 3
a-

p v> -. -r2dr = p
' ^ .

-
(363).3 J r ?'

4 3 r

This integral must have some significance as a potential. And it appears
on multiplying equation (353) by 4nrr 3

/3, which is an expression for a positive
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inequality equal to the negative inequality, and differentiating with respect

to the distance between the centres, when the equation becomes :

The second member expresses an attraction between the positive and

negative centres.

221. The significance of the two integrals.

In Art. 216 from equation (346) it is shown that negative centres

attract, therefore if there were a choice of two general integrals of the dilata-

tion from a negative centre, from one of which in the case of negative centres

there would result a repulsion, while the other would result in attraction, it

is certain that the integration which would result in the attraction is the

only one between negative centres whatever might be the significance of the

other integration. And this is what actually occurs.

If instead of the limits from rx to r as in equation (351) the limits are

taken from r to oo as in equation (353), then taking account of a second

negative singular surface we should have for the complete potential :

which differentiated with respect to r is:

f r
which expresses a repulsion. Hence this cannot be the integral for the

attraction of one negative centre for another.

As already remarked this form of integral of the dilatation from a

negative centre must have a significance, and significance appears when we

substitute a positive inequality 4>7rr
3

{3 in place of the negative inequality

4<7rr
3

/3 in the last expression for the attraction, which becomes

/4arr *

Thus we have the expression for the attraction of equal positive and

negative centres resulting from the finite size of the grains.

222. The intensity of the attractions of equal positive and negative

inequalities.

In the first place it is to be noticed that the intensity of the attraction

between equal positive and negative inequalities as in the last expression

R. H



210 ON THE SUB-MECHANICS OF THE UNIVERSE. [223

(Art. 221) is as cr to r^ of the total intensity of attraction between positive

and negative surfaces. Indeed the expressions last but one and last (Art.

221) only indicate the significance of the two integral potentials. And

such intensity as they express in no way depends on the curvature.

This becomes clear if we recognise that in the case of a displacement of

n grains the strains from the negative centres are negative and extend to

infinity, while the strains resulting from the positive centres are positive and

extend to infinity. The components of the negative strains cancel with the

components of the positive strains with which they are parallel ;
hence the

diminution of the dilatation as the displacement diminishes in no way

depends on the curvature but wholly on the cancelling of the distortional

strains.

It thus appears that in order to express the effort to restore the normal

piling in the medium, we have only to substitute the radius of the singular

surface in the place of cr in the last expression (Art. 221).

Thus for the total effort, in the complex inequality resulting from the

displacement of a volume of grains 4?rr 3

/3 through a distance r, to restore

the normal piling we have

R - - n" /
47rr 3

y T1 mTlP
^ 3 ) rz ^ooo>

Q. E. F.

223. It may be noticed that in obtaining equation (355) no use has

been made of the potential of attraction. This is because the inequality
caused by a displacement of a volume of grains under the pressure p",
which has the dimensions ML3T 2

,
is essentially one displacement, not two

equal and opposite displacements as in the case of two equal negative

centres, in which the relative displacements of energy have no effect on the

mean position of energy in the medium.

This may be shown by subjecting the expressions for the effort of

attraction between negative centres, and the effort to reverse the displace-
ment in the case of complex inequality, respectively, to further analysis.

Taking the effort of attraction of two equal negative centres, as in

equation (354), to be :

,/ 4-7rr
3

o-

P
3 >2'

and the effort to reverse the displacement in the complex inequality, as in

equation (355), to be :

\~2TJ f-'

and then integrating each of these expressions from ^ to oo
,
we have as
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the energies resulting from the dilatation from outside the singular surfaces

of radius rlt

/47rr 3Y 1

"nrK'
and

Then to obtain the expressions for the potential of attraction for either

of these respective energies, the factor 1/r must be separated into two factors

proportional to two inequalities of the same or opposite sign in accordance

with the sign of the product of the inequalities. Then multiplying the

factor which has the positive sign by 1/r we have the potential, while the

other factor is numerical and represents the attraction of the centres.

In the case of two negative centres, taken as equal for simplicity, as the

signs of the inequalities are the same we have for the potential :

and for the attraction :

And in the case of the complex centre, since the product of the centres is

negative, we have for the potential :

, /47rr.,
3

Y 1

Tl v~3/ r

and for the attraction :

Whence it appears that in the complex inequality both the potential and

the attraction are irrational. Whence it is proved, since the effort is real,

that the absolute displacement of energy is one displacement and not two.

224. The electrostatic unit of electricity is defined as the quantity of

positive electricity which will attract an equal quantity of negative

electricity at unit distance with unit effort. This unit as is shown in

Art. 223 is irrational. An expression for the unit corresponding to the

electrostatic unit is obtained from either of the last two expressions in

Art. 223.

Thus from the first of these, putting r\ = r and r= 1, we get:

142
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And from this, since all the quantities under the radical are positive, we

have the condition

= l ...........................(356),

from which if p" is known r may be found.

225. From the analysis in Art. 223 it is easily realised that there is a

fundamental difference in attractions between two negative centres, and the

attraction of two equal centres one positive and one negative. It has been

shown (Art. 217), that the attraction of two negative centres corresponds, in

every particular, to the attraction of gravitation as derived from experience.

And it now appears that the alteration from a positive to a negative

inequality correspond to the statical attraction of the positive for the

negative electricity. Not only then has the step at which Maxwell was

arrested that of accounting by mechanical considerations for the stresses

in the dielectric been achieved, and a moot point of historical interest

settled, but as now appears a definite error as to the actual attractions has

been revealed.

This error is in the general assumption that electrified bodies repel each

other. As this may not be at once obvious it will be discussed in the next

article.

226. To show that positively electrified bodies do not repel.

It has been shown in Art. 225, neglecting the small attractions of two

positive or two negative centres, that the efforts of attraction between equal

positive and negative centres, at any distance r, are equal and opposite.

If then in the same line we have two equal complex inequalities arranged

so that their displacements are opposite, the negative centres being outwards

as -\
----

[-, the effort of attraction of one of these complex inequalities would

not in the least be affected by the other complex centre.

Hence there is no attraction between two positive centres, the only effort

to separation of the two positive centres being between those of the two

complex inequalities, the effort in either being the same as if the other was

not there. Hence the only efforts are those of attraction. Q. E. D.

It should be noticed that these attractions are quite apart from the

repulsions resulting from two positive centres owing to the curvature and

finite size of the grains as in gravitation, and further that, other things

being the same, the ratio of the attractions between positive and negative
and the repulsions between positive centres is as rjo; and hence the

repulsion may be neglected as compared with the attraction.

227. In the analysis for the effort of attraction of negative inequalities
and that to reverse the displacement of a complex inequality the terms in
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the expressions for the contraction strains which involve powers of r*/r*

the ratio of the volume of grains absent divided by the volume enclosed by
the singular surface have been neglected (Art. 214, equation (337)) and it

is this simplification only which renders the law of attraction as the inverse

square the law of attraction of the singular surface at a distance.

But this in no way limits the variation of the stresses over those portions

of the space in and between the parts of the two singular surfaces which are

within indefinitely small distance of each other. Such limits can only be de-

termined by taking into account the higher terms which have been neglected.

This analysis I have not attempted. But it seems to me very important
to notice this omission, as it appears that the attractions or repulsions ex-

pressed by the higher powers of 1/r, when the surfaces are indefinitely near,

must be of great intensity, so that owing to sudden variations the work

done in separating the surfaces must be extremely small.

These characteristics are those of cohesion and surface tension and they

promise to account by mechanical considerations for the hitherto obscure

cohesion between the molecules as belonging to the attractions resulting

from the finite value of the diameter of the molecules divided by the

curvature resulting from distortion, or, we might say the complement of

gravitation.

228. The fourth and last class of possible local disarrangements causing
strain in the normal piling, with some degree of permanence, in the schedule

(Art. 203), is that which does not depend on the absence, presence, or linear

displacement of grains, but does depend on local rotational displacement of

grains about some axis.

Then since there are no resultant rotational stresses or rotational strains

in the medium, or rotation of the medium, the rotational inequalities must

be arranged so as to balance.

Any such rotation of a portion of the medium would be attended with

dilatations. But it does not follow that the dilatations would in all cases be

so small that the coefficient would be unity.

Then noting that the medium in virtue of relative motion of the grains is

in some degree elastic, if we conceive that by two opposite couples about

parallel axes at a finite distance two equal spheres of grains in normal piling

having their centres on the respective axes, could be caused to turn about

their axes through opposite but equal angles 6 and 6, the actions would be

reciprocal, and supposing the actions to start from the medium in normal

piling, when the angles were so small that at the surfaces there was no

change of neighbours, the only effects would be strains attended by dilatation

about the axes, which on removal of the couples would revert, restoring the
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unstrained medium. And in this case the coefficient of dilatation would be

unity.

Then if the angles were increased the strains would be such that over the

equators of the spheres the grains would change neighbours, diminishing the

dilatation; so that on the couples being removed the spheres would not

revert and would not restore the unstrained medium, nor would the angles 6

and 6 be zero.

Those portions of the surfaces of the spheres nearer the axes, where the

strains had not been sufficient to cause a change of neighbouring grains,

would be subject to stress tending to diminish the angles 6 and 6, while

in those portions where the grains had changed their neighbours the stresses

would be resisting this change, so that the result would be a balance of

strains and stresses, leaving the system in equilibrium under the relative

rotational strains and stresses and dilatations extending outwards from the

surfaces of each till they vanish at an indefinite distance.

The strains and stresses extending from the sphere of which the residual

angle was 6, since the axes are at a finite distance, could not in any way
affect strains of shear having the angle 6. But if the shears were in a

plane perpendicular to the axes arid at a finite distance from each other, the

strains and stresses being opposite would cancel, and the dilatations would

diminish in such manner and proportions that there would be efforts to

approach proportional to the inverse square of the distance. Or, if, other

things being the same, the spheres were at finite distances on the same axes,

they would still be under efforts to approach, owing to the cancelling of the

strains and diminution of the dilatation. And in either case, other things

being the same, if one of the poles at the axis of either one of the spheres
were reversed the result would be an effort of repulsion. Q.E.F.

Thus efforts of attraction correspond exactly with those of fixed magnets,
and thus we have been able to account by mechanical considerations

for the magnetism which has any degree of permanence.

229. Having in the foregoing articles of this section accomplished the

analysis necessary for the determination of the attraction of negative centres

of disturbance, the efforts to reverse the displacement in the complex

inequalities, discussed the probability of cohesion as the result of the terms

neglected in the analysis for the efforts of the negative centres, and effected

the analysis for the efforts of attraction resulting from opposite rotational

strains about parallel axes at a distance
;

it remains to complete the section

by effecting the analysis for determining the mobility of the singular surfaces.

230. From Theorems 1 and 2, Art. 204, and more particularly in Art. 214,

we have defined the effects of local inequalities in the mean mass, when a/\
is large, on the arrangement of the grains and the distribution of the strains
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in the medium about both negative and positive centres. Thus it has been

shown in the case of a negative centre that the inward strains would be such

that the resulting dilatation would pass the point of stability and reform,

causing a nucleus of grains in normal piling which might increase until it

was stopped by meeting the inward strained, and consequently dilated,

normal piling.

This meeting of the two closed surfaces, the outer surface of the nucleus

in normal piling with the inner surface of the inwardly strained normal

piling, affords the first clue to the possibility of a surface of freedom. For,

since the grains are uniform equal spheres, there can be no fit between the

grains in normal piling at the one surface and the grains in strained normal

piling at the other. To use a mechanical expression the grains cannot pitch,

and consequently there is a spherical shell of grains in abnormal piling which

constitutes the singular surface a surface of weakness if not a surface of

freedom. Then by Theorem 1 it follows, whatever may be the arrangement
of the grains and whatever the exchange, there can be no change in the

arrangement or number of the grains. Therefore these surfaces of misfit are

fundamental to all inequalities in the mean mass.

231. Since there is no regular fit in the shell of abnormal piling at the

singular surface, say of a negative centre, and each of the grains is in a state

of relative motion, each of the grains is in a state of mean elastic equilibrium
such that half the grains are on the verge of instability one way and half in

another. If, as by the existence of another negative centre at finite distance

there is an effort of attraction, however small, it would, since there is no

finite stability, in the first instance cause change of neighbours, and if

sufficiently strong it would entirely break down the stability and cause one

or both the centres to approach at rates increasing according to the inverse

square of the distance, since as by Theorem 1 there would be no change in

the mean arrangement of the grains and the viscosity may be neglected.

232. This brings us face to face with questions as to the mode of dis-

placement of the singular surfaces, as well as the manner of motion of the

inequalities in the mean mass which constitutes the centre, which have not

as yet been discussed.

In the first place it appears at once, however strange it may seem, that

in the case of a negative inequality, to secure similarity in the arrangement
of the infinite medium the mass must move in the opposite direction to the

inequality, otherwise there would be no displacement. And further the

opposite displacements of the positive and negative masses must be equal,

subject to the condition that for every indefinitely small displacement of the

negative inequality there should be an equal and opposite and exactly similar

and similarly placed displacement of positive mass.
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233. Then, apart from vortex rings which cannot exist in a medium in

which tr/\ is so large that there is no diffusion of the grains, it appears that

the only way in which the conditions in the last paragraph are realised is

by propagation. This admits of definite proof.

If we conceive a singular surface about a negative centre to be moving

upwards through the medium, as it rises the upper surface will be con-

tinuously meeting fresh grains. Then if the motion continues one of two

things must happen. The grains must be shoved out of the way, in which

case all similarity of the arrangement would be destroyed, or the grains must

cross into the singular surface. If this were all we should again have the

similarity upset, as the singular surface must increase to accommodate grains

coming in. But if at the same time as the grains enter the singular surface

from above grains cross out of the singular surface in exactly the same

numbers and vertically under the grains which enter from above, the motion

of the singular surface would not disturb the similarity of the arrangement

beyond such limits as the elasticity of the medium admits.

This manner of progress of a singular surface is that which has several

times been referred to as propagation. It is strictly propagation. For if

there is no general uniform mean motion the grains within the singular

surface are at rest, while if the medium has such mean motion it would not

affect the motion of the singular surface though it would affect the rate of

propagation since that would include the propagation through the moving
medium.

This then is the only mode of displacement of a singular surface the

propagation.

N.B. This law of propagation would not prevent strains in the singular

surfaces such as might be caused by undulations in the medium corresponding
to those of light.

234. It may seem that displacement by propagation does not of necessity
entail displacement of mass; nor would it if there could be propagation
without local inequalities in the mean density of the medium. But in a

uniform medium, without inequalities, there can be no propagation as there

is nothing to propagate.

Thus it is that the inequality in density, the integral of which is the

volume of the grains, the replacement of which would restore the uniformity
of the medium, obliterating the inequality, constitutes the mass propagated.
And as this, for a negative centre, is negative, its propagation requires

the displacement of an equivalent positive mass in the opposite direction

to that of propagation of the negative inequality.

235. It thus appears that the distribution of the density of the positive

moving mass is at all points the same as the distribution of the density of
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the negative inequality, and as this on changing the sign is the same as the

dilatation at all points, the density of the positive moving mass is equal to

the dilatation.

The dilatation at any point in the medium resulting from a negative
centre is expressed by :

4 Trr^o
3

3 r4

in which r is greater than rl9 while r /r is small.

It thus appears that, since the density of the medium is unity, the motions

of the medium of unit density necessary to equal the displacements of the

positive mass at density 47rr1
r 3

/3r
4
,
which can under no circumstances be

greater than 4 <7rr
3

/3r1
3 are almost indefinitely small.

236. Taking Ua as the velocity of the singular surface and u" as the

velocity of the medium at any point outside the singular surface, since there

is no mean motion of the grains within the singular surface, u' is everywhere
small compared with Us ,

Of course this does not affect the integral displacement of mass integrated

over the medium from rt to oo . But it does affect the displacement of the

apparent energy of the motion of the inequality which is taken to be 4?rr 3

/3.

For if we integrate w"2 over the medium it is small compared with

us\^

This apparent paradox, however, is explained on recognising that the grains

being uniform, since <7/\ is very large, the conduction of energy is nearly

perfect ;
so that the rate of displacement of momentum does not depend only

on the convections of the order u"2

p but depends also on the conductions

tt>

since these actions are the direct result of the propagation of the singular

surface through the medium, so that there is no change in the strains,

dilatations, or the mean arrangement within or about the singular surface

for an infinite distance. It is easy to realise the way in which the strains at

. any fixed point contract and expand as the singular surface moves away from

or approaches the point.

237. In the foregoing reasoning in this section no account has been

taken of the possibility or impossibility of any lateral motions of the grains

which might be necessary to maintain the arrangement. That such lateral

motions of the individual grains would be necessary is certain
;
but it

does not follow as a matter of course that they would be possible without

creating temporary strains which would in the first instance require a certain
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acceleration to start them. But once started the action, since it involves

a certain definite rate of displacement of mass, would proceed at a uniform

rate, supposing no viscosity, and the medium unstrained by other centres.

That the necessary acceleration to effect the start must depend on the

particular arrangements inside and outside the singular surfaces, is clear.

And from this it may be definitely inferred that the number of definite

primary arrangements in which the stability to be overcome by acceleration

is within finite limits, is finite.

Whence it follows that the number of singular surfaces having different

numbers of grains absent, in which the limits of stability are within finite

limits, is finite
;
and these would be the only surfaces of freedom. Q.E.D. .

It should be noticed that the expression
"
primary arrangements

"
is here

used to distinguish those singular surfaces which do not admit of separation

into two or more singular surfaces of freedom.

It is thus shown that singular surfaces about negative inequalities admit

of motion in all directions, by a process of propagation, without any mean

motion of the grains within the singular surfaces, while the motion of the mass

outside the singular surfaces, when there is no other inequality within finite

distance, is such as to maintain the similarity in the arrangement about the

centre entailing the displacement of the mass (47rr
3

/3) in the direction

opposite to that in which the singular surface is displaced by propagation.

238. We have thus effected the analysis for the determination of the

mobility of solitary negative centres. And it may be taken that the analysis

for positive centres would follow on the same lines with the exception of the

sign of the inequalities.

There still remains to consider the possibility of the combination of

primary singular surfaces, forming singular surfaces with limited stability

in which the grains absent or present are the sum of the grains, the absence

or presence of which constitutes the inequalities of the primary singular

surfaces combined.

It has been shown by neglecting certain terms (equation 337) that

negative inequalities attract according to the inverse square of the distance

and in Art. 227 it has been pointed out that the terms neglected are such .

as would indicate cohesion or repulsion between the singular surfaces when

closest
;
and in such conditions there would be a connected singular surface

however many were the primary singular surfaces cohering, so that mobility

of the whole group would be secured.

In the case of two primary negative inequalities in which the numbers of

grains absent are different, although neither of these admit of separation into

two or more separate inequalities, there does not appear any impossibility,
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except such as results from their limited stability, why they should not

combine if their velocities are sufficient to break down the limited stability.

In such case it seems that one or other of two results must happen ;

either the breakdown would be temporary, the two centres immediately

reforming as by the rebound, setting up a disturbance in the medium which

would be propagated through the medium, or they would reform into a single

negative centre, in which the volume inside the reformed singular surface

would be less than that of the sum of the volumes within the two singular
surfaces of the two primary inequalities, or in some other way manage to

diminish the dilatation
;
and in this case also there would be a disturbance

in the medium.

239. It is certain that when negative inequalities are arranged in their

closest order, there is cohesion between the adjacent singular surfaces which

resists the separation of the adjacent singular surfaces but does not cause

attraction between the singular surfaces when these are at a distance which

is greater than some small fraction of the radius (rj) of the singular surface

(Art. 227). It is also certain that, when under the conditions stated, the

singular surfaces would still attract one another at a distance as in

equation (348) :

And thus if we consider N the number of such negative centres within a

distance r3 to be indefinitely large as compared with rlt since they are in

closest order the centres would be in stable equilibrium under normal and

tangential pressure, as in the case of gravitation.

240. If the number of grains absent about each of the centres which

constitute the total negative inequality is the same, and by some shearing
stress the inequality is subject to a shearing strain, there would result

dilatation, doing work on the medium outside, which would be maintained

as long as the shearing stress
;
but since all the centres are equal, whatever

arrangements of the grains under the stress take place between the centres,

there would be no absolute displacement of mass.

And the result would be the same whatever might be the number of

grains absent in the primary inequality.

241. Thus we may consider what the action would be if we had two

such total inequalities A and B differing in respect to the number of grains

absent in their primary inequalities say that the number of grains absent is

greatest in A.

If these total inequalities are brought together by their attractions the

grains in abnormal piling which separate the two total inequalities A and B
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may be, for simplicity, taken parallel to a plane which is a plane of weakness in

the medium. If, then, there are shearing strains parallel to this plane such

as cause grains from the inequality A to pass to the inequality B in the

abnormal piling in the plane of weakness, so that in this piling the arrange-

ment, instead of the two primary inequalities in which the numbers of grains

absent are A and B, is two equal negative inequalities in each of which the

number of grains absent is :

A+B A+B
2 '2 s

and one complex inequality in which the numbers of grains absent in the

positive and negative centres are :

A-B B-A
2

'

2
'

in this case it at once appears that besides the attraction correspond-

ing to gravitation and cohesion, the effect of the rotational strain would be

to cause absolute displacements of mass, which, by Art. 225, would cause

efforts of reinstitution between the strained aggregate inequalities, correspond-

ing to electric attractions. But as the attraction would be normal to the

surface of weakness, while for reinstitution the action must be tangential,

the rotational strain might be stable, and the attraction might hold when

the strained aggregate inequalities were forced apart. If the rotational

strains were sufficient the normal attractions might overcome the normal

stability of the complex inequalities, and in that case there would be a

sudden tangential reversion, which, as there is absolute displacement of mass,

would in the recoil reverse the complex inequality and so on, oscillating until

the energy was exhausted in setting up undulations in the medium which

would be propagated through the medium at the velocities of the normal or

transverse waves as in light.

If we have two aggregate inequalities in one of which the primary

inequalities are not combined, while in the other the different primary

inequalities are combined, we should have three total inequalities A, 5/2, C/2

in the arrangement :

B
'

C B C
2
+

2
+

2
+

2

2
"'

2
"'

and two complex inequalities :

B C

2 2

Then if the strains were sufficient the normal attraction might overcome

the normal stability of the complex inequalities, causing a reversion. In this

case however it does not follow that the reversion would be complete and so
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reinstitute A, B/2, 0/2 ;
for since the work done by the strains might be

sufficient to overcome the resistance to combination of B/2 and (7/2, the recoil

from the breakdown would cause a total or partial combination of 5/2, (7/2,

instituting B the aggregate inequality and so diminishing the energy available

for undulations, thus affording an explanation by mechanical considerations of

the part electricity plays in instituting the combination of molecules into

compound molecules with limited stability.

It is to be noticed that the effects of rotational strain between the

aggregate negative inequalities which differ as to the number of grains
in the primary inequalities, correspond to the effects produced when resin is

rubbed by silk or frictional electricity and thus the so-called separation of

the two electricities by friction is accounted for by mechanical considerations.

Having shown that negative inequalities may not only attract, but may
also cohere when in contact, we may return to the consideration of the

significance of the fact mentioned in Art. 217, that the attractions correspond-

ing to gravitation as well as cohesion depend solely on the numbers of grains

absent, while the volume within the singular surfaces, which determines

the volume from which one centre excludes other centres, depends on the

possibility of some arrangement between the grains in abnormal piling and

those in strained normal piling (Art. 214).

241 A. It is shown in Art. 217 that for any displacement of a negative

inequality there must be a corresponding displacement of positive mass in

the same plane and in the opposite direction. From this it follows that

as two negative centres approach under their mutual attractions the mass in

the medium recedes, which is an inversion of the preconceived ideas. Such

action however is not outside experience, since every bubble which ascends

from the bottom in a glass of soda-water involves the same action. The

matter in the bubble having the density of the air requires the descent

of an equal volume of water at a density 800 times greater than that of the

air. It is the negative inequality in the density of matter which under

the varying pressure of the water causes the negative or downward displace-

ment of the material medium water and the positive or upward displace-

ment of the negative inequality in the density within the singular surface.

In order to recognise the significance of the parallel drawn in the last para-

graph it must be noticed that in this research we have adopted a definition

of mass, which, although satisfying the laws of motion and the conservation

of energy, is independent of any other definition of matter. Hence it is open
to us to suppose that what we call matter may be such, that if expressed in

the notation so far used in this research, would represent local negative

inequalities in the mean density of the medium.

Then since, as has already been shown, and will be confirmed in what is

to follow, the definition of matter as representing negative local inequalities
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in the mean density of the granular medium completes the inversion and

removes all paradox, this definition of matter is adopted as the only possible

definition.

We then have for the negative inequality :

where p" = 1.

And for the volume from which one negative inequality excludes other

similar inequalities, when in closest order, we have by equation (343):

4 4

3'3
ir ' n'

Then dividing the negative inequality by the volume from which other

centres are excluded we have as the expression for the mean density of the

negative inequalities when in closest order :

Then again dividing p" the density of the uniform medium by IT, the

mean density of the inequality, we have in the ratio of the two densities a

number without dimensions as expressed by

<358>-

In equations (357) and (358) II is used to express the mean density of

the negative centres when in closest order. Thus II is the maximum mean

density of the negative centres for any particular negative centres.

It does not however follow that U expresses the maximum mean density

of negative inequalities for all negative inequalities when in closest order.

For as pointed out there is no proportional relation between the number of

grains absent and the volume within the singular surfaces for inequalities

which differ.

But it does follow, from the fact that the number of centres which have

surfaces of freedom is finite, that there must be some negative inequality of

which the mean density is a maximum. And from this it again follows that

p"/II must have a minimum value.

Then taking fl to express the minimum value which, whatever it may be,

is constant and without dimensions, we may express the densities of all the

other negative inequalities in terms of ft, making use of any system of units.

Then if, as before, the density of the medium is unity, the maximum

density of negative inequalities is :
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and if the mean density of an inequality is n times less than the maximum

inequality it is expressed by:

J^
nil'

And again, if, changing the unit of density, the density of the medium
becomes nfl, the maximum density of negative inequalities is expressed by n.

The proof that the quotient O of the density of the uniform medium
divided by the maximum mean density of the negative inequalities is a

numerical constant, independent of units, giving us, as it were, the gauge by
which we can compare the quantities, as obtained, in this and the previous

sections, with the evidence derived from actual experience, completes the

consideration of the possible strains other than the undulatory strains (con-

sidered in Section XIII.) resulting from the conservation of inequalities in

the mean mass, which formed the subject of this section.



SECTION XV.

THE DETERMINATION OF THE RELATIVE QUANTITIES a", A", o-, G,

WHICH DEFINE THE CONDITION OF THE GRANULAR MEDIUM
BY THE RESULTS OF EXPERIENCE. THE GENERAL INTEGRA-

TION OF THE EQUATIONS.

242. IN the last paragraph of Section XIII. it was noticed that, up to

that stage, it was not possible, for want of evidence as to the actual rates of

degradation of light, to complete the determination of the values of a", cr, \".

And further, that as the equations (310 313) have been obtained by neglect-

ing all secondary inequalities, they afford no evidence as to the limits imposed

by dilatation on the shearing and normal strains. These disabilities have not

as yet been altogether removed. But we have, in the last section, obtained

expressions, in terms of p", a", a, \", for the attraction of negative centres,

which correspond to those of gravitation. Also in the last article it is shown

that what is known as "matter" corresponds with the inequality in the

medium resulting from absence of grains. Also it is proved that there must

be a finite maximum mean density for negative inequalities when in close

order, which corresponds to the mean of the heaviest matter. And further,

it is shown that the mean density of the uniform granular medium, divided

by the maximum density of negative inequalities, is a number without

dimensions expressed by H whence we are enabled to measure the density
of any inequalities in closest order, in any system of units. We are thus

in a very different position, as regards evidence, from what we were at the

end of Section XIII.

243. By the last article of Section XIV., taking 22 as expressing in c.G.S.

units the density of the matter platinum, which is approximately the densest

form of matter, we have unity for the density of the matter water in C.G.S.

units.

Then for the density of the granular medium in C.G.S. units we have

220,

where the constant number H has still to be determined.



245] THE VALUES OF Ot", X", <T AND G BY EXPERIENCE. 225

The change of units of density, from that in which the density of the

medium was taken as unity, to the density as measured in units of matter,

has thus been effected.

244. From the last article it follows that, measured in C.G.S. units of

matter, the mean pressure in the medium, equal in all directions, becomes

p = 22%>" ...............................(359).

Also the mean density of the medium p" or unity becomes

p = 220,0" ...............................(360).

And, if in C.G.S. units of matter, p expresses the mean density of any

negative inequalities in closest order, however complex, such as the mean

density of the earth 5'67, the corresponding expression, when p" is taken

as unity, is

245. From equation (359) we may now proceed to find an expression for

the mean pressure in terms of the rate of degradation in the transverse

undulations when <r/\" is large.

From equation (311) the rate of degradation of transverse waves is

expressed by
i */;__2vv;
7" dt~ 3 VTT

'

Then if tt is the time taken to reduce v
"
to v1

1
where

//=
3 VTT 1

....(363),
2 a2

tt

which gives one equation between the three quantities a", X" and tt .

A second equation is obtained from the dynamical condition of undulation

m In /QC/I\- =T= . /- ............................... (364),
a V P

and n = k
'
k being " ' P '

~~ .................. (365).

Therefore, reducing,

, ............................(366),-

4

4
'

2-7TT
.(367).

R. 15
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Then, L being the wave-length, if we put

nz . cr = L

27T
since i =

,a

_
substituting

- - for <r in equation (367),

.(368)..,
a 4 an2r

Then eliminating a" from equations (367) and (368) to find \"

V' = Sl . (n,t)-* ............................(369),

the value of the constant coefficient being

Then substituting from equation (369) in equation (367)

(370),

or

vt

The equations (369) and (371) define the values of the constants X" and a"

which enter into the expression p" in equation (159) in terms of a, r, na and

tt which define the wave-length and rate of propagation for any particular

rate of degradation.

Thus substituting in the equation (159) which is

and which, under the condition cr/\" large, is, taking the density of the

medium as unity,

P"=fFT5^ '(3m

the equation becomes

\/2 L *Jntt. s,
2

, ,1 6

Then transforming we have

1 o!

P" =i-
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If the constants 5X and s2 are taken to correspond with the rate of propa-

gation of light and with the wave-length of the ultra-violet light in the C.G.s.

units

51
= 9-7005 x 10-"

52 = 1-0738 x 10s
,

from which substituting in equations (369) and (371)

X" = 9-7005 x 10-" . =

et"=l-0738xl03

C=5755xl05 f^

And since the wave-length L is 3'933 x 10~5 we have, dividing by ^ and

substituting in the second expression for p",

p" = 1-8574 x!0u 7 (376),
\ttJ

which becomes in C.G.S. units of matter (by equation 359)

22fV= 22fi x 1-8574 x 1011 C~} (377).

For convenience the expression for a"X" may be here included :

a"X"= 1-0418 xlO-10
. (378).
tt

246. Having effected the translation of units and obtained an expression

for the mean pressure in the uniform medium in terms of n^ftt , we now

proceed to the evidence as to the absolute density, or, what is the same

thing, the value of the number expressed by fl.

The density of the luminiferous ether, thus far, has been an unknown

quantity. Such views as have been expressed range from a density in-

definitely greater than that of the heaviest material Hooke to a density

indefinitely smaller than that of the lightest solid material Sir Gabriel

Stokes and Lord Kelvin.

But as pointed out in Art. 242 we have now the two sources of evidence

that arising from the known law of gravitation, which includes the existence

of permanent negative inequalities, or molecules with surfaces of freedom,

and that resulting from the limits to the intensity of waves of light ;
besides

such evidence as may accrue from the determination made by Lord Kelvin as

to the dimensions of the molecules, and such evidence as has been obtained as

to the rates of degradation of the transverse and normal waves.

152
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The equations (376) and (377) define the pressure in terms of

or

according to whether the density of the uniform medium is taken as unity, or

is expressed in C.G.s. units of matter.

247. As measured in c.G.s. units, the matter in the earth, assuming

Baily's value, 5'67, for the mean density, is

614 x 1027
,

the mean radius is 6'3702 x 108 and the attraction of the earth on a unit of

matter at the surface is

# = 981 ................................. (379).

To compare with this evidence we have the expressions for the correspond-

ing quantities as obtained from equations (348) for corresponding conditions

when translated into the same units.

In the general expression for the attraction of negative centres in closest

order, equation (348), where p"
= 1 :

.f/'tf'f- r-Y-P (3
- r

o) r*>

(f_\i
I and r = rB ;

rj

substituting, the expression for the attraction of unit mass becomes, if the

.. r 3 4 5-67

Then, supposing that rfjr? is a maximum, we have from equation (358)

<380)-

And as the density of the mean negative inequality is 5'67/22 of the

maximum inequality, we have for the attraction

which becomes, on substituting from equation (380) and reducing,

4 4 5-67

Then transforming so that the density of the medium is 22O, since rB is

6-37 x 10", we have for g
A K.ay

981 =
22%/Vl TT . 6-37 x 108

................(381).
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Then substituting the value of 22Hp" in equation (377) we have

4 fn \*

g7r5-67
x 6-37 x 10 8 x 1-8574 x 10" x

(-)
<r = 981 (382).

Then, cancelling and reducing the numerical factors, since

we have

981 = 1-105^10"

(383).

whence Vn2^ = 1'126 x 10U

And thus we have obtained the value of

which satisfies the condition # = 981.

248. The evidence afforded by the limits of the intensity of light and

heat does not appear to have hitherto demanded much attention. But it

now appears that, if we can find a fair estimate of the maximum intensity of

transverse undulations, it would afford important evidence.

For the rate of displacement of energy by the transverse waves in the

uniform medium we have, taking U for the rate at which energy must be

supplied to maintain the waves, and r for the rate of propagation : since the

velocity of light is independent of the wave-length, the maximum energy of

mean motion over a unit surface

is, by equation (308), the mean energy of the undulation
;
and

U-r.p"
1? and

*"-(?)'
(384).

It must be noticed that in these expressions for U and v" no account is

taken of the secondary effects imposed by the dilatation in the granular
medium. This was noticed in the last paragraph, Section XIII., as showing
that there is a limit to the intensity of harmonic institutions.

Put definitely, the condition to be satisfied for harmonic undulations is

that, taking x and y for the directions of propagation and mean motion

respectively,

- K -~ is small as compared with p".
8 dx

Thus if the amplitude of the transverse motions is considerable, the

action will not be confined to the institution of simple harmonic waves,

but will include compound harmonic waves, and probably normal waves,

which would proceed faster than the simple transverse harmonic waves,

until, by divergence or degradation, their intensity was reduced.



230 ON THE SUB-MECHANICS OF THE UNIVERSE. [249

Evidence from which we may form an estimate of the limit to the

amplitude at which the waves cease to be sensibly harmonic may, it appears,

be found. The greatest intensity of transverse waves is obtained from the

carbons of the electric arc. If then we assume that U, the work expended
in producing the light, is all spent in radiation of heat and light from the

carbons, we have only to measure the radiation area of the carbons to obtain

an outside estimate of the mean value of v".

Thus if U per sq. cm. is 2'29 x 109

ergs

2'29xl09 = /<'
2 .T (r = 3xl010

) ...........(385),

whence we have

1*52
Vl
" 2 = xlO-1 in C.G.s. units .................. (386),

P

where p is 220/0" and where p" is unity.

249. From this value of #/' we may obtain the expressions for y the

amplitude of the undulations, and for x.

Taking r as an arbitrary amplitude

y = r cos and dyjdt = - r sin Q . dd/dt.

Then since the periodic time is 2?r/m, differentiating 6 with respect to

time ddjdt = m, and

v" = mrsinO and v" is a maximum when

e =-7r/2.

.'. r = , y = cosd,m m
e

and x = -
,

a

.: ^ = a.^ = -a B
i'sm<J = ^ .....(387).

da; dv m T

Then multiplying this by n or pr
z we have for the shearing stress

:.*V ........................(388),

and these are in gravitation units.

Then from equation (386) we have, for the maximum value of the

transverse velocity v",

??
22

and multiplying by 22O we have for the maximum shearing stress

<'=- ..............................(389),V22H

V22O (390).
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Taking s (= 10~2

) as the coefficient of the limit within which 22O . 3/8
may approach 22Hp", we have, substituting the expression on the right of

equation (377) for 22Hp",

22ft x 1-8574 x 10" (??}
= V22O x 1172 x 1012

,

\tt/

whence follows: .

logs

6-31

equation (390), "8000 - log V
422H (391),

14 (392),

14-logV22Ii...(393),

Vw2^= 1126 xlO14

(384), -0517 + 14 (392),

7-108 x 10 14

= 1-785 x 1013 x vQ, 2517 + 13 + log'22O ...(394),

a- = 5-534 x 10-20 x V22H ......... (372), -7430 -20 + log V22O ...(395),

6-777 x 10s

X"= 8-612 xlO-28 .................. (375), "9351-28

250. So far we have obtained the expressions for the limiting values of

a", A,", <r and the logarithmic decrements for transverse and normal waves

in terms of the constant coefficient H which enters as a factor into the

expressions for the density of the medium and the potential of attraction.

Substituting from the equations (391 393) in equation (375) we have

x 10s

............................(397),
V22H

X"= 8-612 xlO-28 .................................(398),

a = 5-534 x 10-20 x V22I1 .......................(399).

Then for logarithmic decrement of the transverse undulations, <r/X" large,

substituting in equation (311) the values as given above for a" and X" we have

as in equation (362), tt being the time required to reduce v" from v to v fe,

tt
= -*= 1-784 xl013 V22fl ..................(400).

2i A, oc a

N.B. This result checks the calculation, since this value corresponds

with equation (394) in the first three significant figures,
which is the limit

of the arithmetical approximation attempted.

The value of tt thus found in terms of the coefficient \/22H expresses the

time the transverse waves would travel before their amplitude was reduced

in the ratio from 1 to 1/e, or their energy in the ratio 1/e
2
.
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The values of a", \", <r cannot be defined except by further evidence. Such

might be obtained if we could completely solve the dilatation problem and

so obtain the value of fl. Failing this, however, there remains one source of

evidence from which we may obtain a close approximation to the value of the

ratio V22T}.

251. The conclusions to be drawn from the absence of evidence of any
normal waves in the medium of space until very recent times.

From equations (310) and (311) it appears that in a granular medium

normal as well as tangential waves may exist, the only difference being in

their rates of propagation and in their rates of degradation.

From this it would seem that, if the medium of space is purely mechanical,

either such waves did not exist for lack of incitement or the normal waves had

no effect upon our senses or on the physical properties of matter. The recent

remarkable discovery of Rontgen that under certain intense electrical actions

a system of waves which have the properties of normal waves in a uniform

medium subject neither to refraction nor reflection, can be produced, has

opened the door to different conclusions. The first suggestion by Rontgen
was that these were normal waves. And although various special explana-

tions have been attempted to avoid the admission of their being normal

waves, every one of these explanations involves normal action.

It appears, from the definite analysis of the granular medium, that when

the uniform medium is in the state to propagate transverse waves the degra-

dation of which is such that the diminution from loss of energy by degradation
in some millions of years is in the ratio 1/e

2
, the rate of degradation of the

normal wave is such as would occupy something less than the millionth (10~
6

)

part of a second to reduce it in the same ratio
;
so that the normal wave

would lose nine-tenths of its energy before it had traversed some thousands

of metres, say a; metres, and this affords crucial evidence of the purely

mechanical granular structure of the medium of space. The coincidence

is such, that in the absence of any definite proof to the contrary, it should

carry conviction notwithstanding those things which cannot be defined for

want of evidence.

252. Without attempting any general discussion of X-rays there are

several very significant characteristics which afford evidence besides that

of not being subject to refraction or reflection. In the first place the rays

in their production are attended with very intense light, that is they are

attended with transverse waves. In the second place, after the light waves

have been filtered out, they can again be transformed into visible transverse

waves by their passage through certain earthy substances. And in the third

place, in passing through any matter they are subjected to rapid degradation
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which is proportional to the density and thickness of the matter through
which they pass.

Thus it has been so far impossible to study these rays except by their

passage through matter, while it is shown that in two ways their passage

through matter is attended by degradation other than the degradation of

the normal waves in vacuo.

Any estimate as to what might be the rate of degradation of these waves

in vacuo is at best very difficult. But the fact that these waves, which are

subject to divergence as well as the three sources of degradation, have

sufficient range to permit of experiment through a distance of some metres,

shows that if they are normal waves their rate of degradation in vacuo would

be much less than it appears to be in the experiments. It thus appears that

x, the distance the waves must travel in vacuo to reduce the energy in the

ratio 1/e
2
,
cannot be less than some thousand odd metres.

253. To find the rate of decrement of the normal wave under the limits

defined by equations (221) to (224) in terms of the ratio l/\/22O.

From equation (310) we have, neglecting as small the first term in the

index, and substituting 6/V2w for G,

'5 jo
2 4 cr

2

_o_ _6_
a4

2(3 2
a2
+
3 X"

'

v^ 72 47rm2

1 du" P 2
, . -TT =e (401).u dt

The index in the right member of this equation represents the logarithmic

rate of decrement of the normal wave.

Transforming this index and substituting the values of a, X and a- as defined

in equations (221) to (225) for the transverse wave, and of m and a for the

normal wave, taking the time frequency m to have the same value as for the

transverse wave and the linear frequency a to be O//2-387 where a is the same

as for the transverse wave [2*387 being V3/e + 4m/3n]. Then taking A as

expressing the numerical constant in the expression for the decrement, we

find as the values of the several factors and their logarithms,

A = 1-567 x 10-2

log 1952 - 2

T~2 = 1111 x 10~21 -0457 - 21

a2 = 2-553 x 1010 -4068 + 10

/ = 3-102 x 10-2 -4916 - 2

0-4 = 9-376 x 10-82 x (22O)
2 '9720 - 82 + log (22O)

2

a"3 = 3-113 x 1011 x (2211)-* -4930 + 11 + log (22H)-i

\"-= 6-387 x 1086 '8053 + 86

,.(402).
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The logarithm of this product being

(403),

log decrement log (log decrement)

- 2-556 x 10s x V22n, -
['4076 + 3 + log(22n)] ...... (404).

Then if tn is the time to reduce u"'2 in the ratio 1/e
2 we have

tn = 3-923 xlO-y\/22O, log B = -5924 -4 ............ (405).

The product of the time tn multiplied by the rate of propagation of the

normal wave is the linear distance which the normal wave must travel so

that the energy is reduced in the ratio 1/e
2
.

The rate of normal propagation is 2'387 x 3 x 1010 as above.

Therefore taking x as the distance the normal wave must travel to

diminish the energy in the ratio 1/e
2 we have

x = 2-801 x 107 x = . ..(406).
V22H

Q. E. F.

254. Then to find the inferior limit to the value of the ratio ex-

pressed by a
From the evidence furnished by Rontgen rays we have in Art. 253

defined this ratio to be such that the value of x (in c.G.s. units) shall not

be less than some thousand odd metres. And from the absence of any
evidence of normal waves other than Rontgen it follows that there must

be a superior limit
;
but this depends on the value of O and cannot be

defined without further evidence.

To find the superior limit of H, putting for simplicity

# = 2-801 x 107- ............ . .............. (407),

we have by equation (406) from the evidence of Rontgen rays

\/227i = 10 where q is not less than 2,

whence we have for the value of fi,

= 4-546 x 102?-1
........................(408),

and for the density of the uniform medium

. ................... (409).

255. It is pointed out (Art. 254) that the superior limit to the value

of ft cannot be obtained except on further evidence
;
evidence which has

as yet not been taken into account, and is exactly to the point, is

available.

This is the evidence as determined by Lord Kelvin (and confirmed by



255] THE VALUES OF a", A,", (7 AND G BY EXPERIENCE. 235

the observation as to the area over which a definite volume of oil would

destroy the ripple caused by a moderate wind on the surface of water), that

the diameters of the molecules or singular surfaces are of the order of the

ratio of the wave-lengths of the ultra-violet light multiplied by some ten

thousandths, say 4 x 10~10
,
and this evidence comes in as directly bearing

on the value of q.

Although there is a degree of uncertainty about the relative value of the

"atomic-volumes" of the elementary molecules, it appears certain that there

is no great difference, that is to say, no difference greater than from 1 to 10

in the relative volume of the molecules, and for our purpose it is sufficient

to consider that, assuming the relative volumes equal, the greatest difference

of the grains absent is from 1 to 1/200.

It has been shown (Art. 230) that the probable arrangement of the grains
in a negative local inequality, which has a surface of freedom, is that of

a nucleus in normal piling, that is to say, a permanent nucleus on which

the inward strained normal piling reaches, forming a broken joint in

abnormal piling, whence it appears, in order that the singular surface may
be a surface of freedom, the maximum inward strain, that is, the inward

strain at the singular surface, must be greater than a the diameter of a grain,

and probably some five times a.

In this way we have a limit to the diameter of the singular surface,

4 x 10~10
,

and by the last paragraph, taking 10 to be the inferior limit to the maximum
inward strain, we can find a value for q which is quite independent of any
evidence already adduced.

Taking 22fl = 10*? for the density of the medium,

T! = 2 x 10~10 for the radius of the singular surface,

47rr
s

/3
= volume of grains absent.

By equation (380)

Then since by equation (396)

a3 = (S-534)
3 x 10-B4+3

?,

and r fa-
= n /2, also rja- = rij/2

and G(
1 = 6(w1)

2
............... (412),

\ <r ]

Qn*
u I

<r J
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Equation (413) expresses the number of diameters of a grain which would

measure the inward strain at the singular surface of the maximum inequality

as of platinum or 22.

Then reducing

J^= 1-602 x 10 <9
-3<

, ...(414).
6w!

2

For the minimum inequality, n
1
remains the same, and n a

is divided by
200, and we have from equation (414),

3

^ x 10-2

= 8-013 x 106~39
(415).

Di

Then if we take the number of the diameters of a grain which measure

the inward strain at the singular surface of the minimum inequality to be

8-013,

? = 2 (416).

We have thus found the superior limit of the square root of the density

of the uniform medium to be

\/22H = 100.

256. Comparing the inferior limit of V22H in Art. 254, obtained from

the evidence of Rontgen rays, with the superior limit in Art. 255 obtained

from the evidence as to the size of the molecules, we see they are identical.

Too much weight must not be attached to this identity since the

estimates on which they are based are somewhat wide approximations, so

that they must be considered as relating rather to the order of the quantities

than the actual numbers. Yet considering that the evidence of the size

of the molecule, and that of the Rontgen rays, are perfectly independent,
the result, which, taken as a wide approximation, would be almost infinitely

improbable as a mere coincidence, when substituted in the equations (390)
and (396), and (402) and (409) enables us to obtain, in c.G.s. units, the values

of all the arbitrary constants which define the condition of the purely
mechanical medium, and they are such as correspond with the experience
as to the rates of propagation and as to their rates of decrement of both

transverse and normal waves
; they also correspond with experience as to

the existence of molecules and gravitation, the limit of the intensity of the

energy of light and radiant heat, besides the absence of normal waves, and

the evidence of Rontgen rays.

The numerical values of these constants are for convenience given in the

following table.
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It is thus shown by definite analysis that an infinite, purely mechanical,

medium consisting of uniform spherical grains, in relative motion, the grains

being in normal piling, except for local inequalities in the mean density, and

so close that there is no diffusion, affords a complete account by purely
mechanical considerations of potential energy, the propagation of transverse

waves of light and the apparent absence of any rate of degradation, the

lack of evidence of normal waves, the gravitation of matter and electricity,

as the result of the dilatation which follows from the strains caused by local

inequalities in the density of the medium.

It is also shown, by definite analysis, that this is the only explanation

possible by purely mechanical considerations.

257. Having arrived at the conclusion stated in Art. 256 we might
make this the end of this research, having every confidence that the evidence

which has not already been adduced would confirm that which has been

adduced. It is not, however, the sole purpose in undertaking this research

merely to show that there is a mechanical explanation of such parts of the

universe as shall render the mechanical structure of the remainder in-

definitely probable, but also to obtain as much light as may accrue from the

purely mechanical analysis. The analysis is therefore continued so far as it

relates to effects in the medium, that is to say, it does not include electro-

dynamics or electro-magnetics, since the institution of complex centres, that

is, the magnetic conditions, is not a primary effect, for it results in separating

the molecules, after combination, the reunion of which results in electric

currents.

258. The blackness of the sky on a clear dark night would be explained

if the light waves were subject to viscosity however small, or nearly so.

It has been so far a moot question whether there is such viscosity. But

it now appears from the rate of decrement of the transverse waves, Art. 256

(5
-603 x 10~16

), that the time taken to reduce the energy of the wave in

the ratio 1/e
2

,
or 1/8, would be more than fifty-six million years. This rate

of decrement, although affording an ample account by mechanical considera-

tions of the absence of uniform brilliance in the sky, such as would result

in an infinite space from an infinite number of stars, however sparsely

scattered, if there were no rate of decrement as the result of viscosity, is

such as has baffled all attempts to obtain any evidence of decrement by
observation.

259. The dissipation of the inequalities in the mean energy of the

medium resulting from the rates of decrement of transverse and normal

waves which, as shown in Art. 256, affords a complete mechanical explanation

of the blackness of the sky, differs fundamentally from that dissipation which

results in the increase of energy of the molecules, or singular surfaces. This
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is at once apparent since the degradation of the energy of the normal and

transverse waves can only be a dissipation from the energy of the molecules,

or mean motion, to increase the irreversible energy of the mean relative

motion of the medium.

It thus appears that the dissipation of the mean motions of matter, such

as the motions of the sun and planets, or vortices in fluids, until all motion

ceases, does not complete the dissipation of energy, for this would go on

until the only energy was irreversible relative motion of the grains, which is

expressed by a"2
.

260. The electrostatic unit, or more correctly the unit corresponding to

the electrostatic unit, is denned (Art. 224) by the condition

P"(^)

2

ro
7 =l (417).

This definition is on the supposition that the density of the medium
is taken as unity.

Thus if the density is taken as 22H, we have as the condition

22%?" (~) r'=I (418).
\ /

Then reducing the member on the left by the table (Art. 256) it is found

that the complex inequality in which the number of grains is displaced is

1-615 x 1045
,

and in which the displacement is unity ;
the effort to institute the normal

piling is unity and thus corresponds to the electrostatic unit.

Comparing the effort to revert to the effort of attraction between two

negative centres, each having the number of grains as above, since the radius

of the shell which would contain the grains is

r- =6-493 x 10~3

(419),

the ratio of the effort to reinstitute the normal piling, to the effort of

attraction between gravitating mass, is approximately

1-2 x lO 15
.

Thus the effort of attraction between the two gravitating masses, the

grains absent in each of which are the same as the grains which constitute

the electrostatic unit, is eighty-one thousand billion times less than unity.

261. The conclusion arrived at in Art. 256, as to the density of the

medium, does not exhaust the conclusions to be drawn from the size of

the molecules. Coupled with the evidence afforded by the effects in dis-

sociating certain compound molecules, possessed by the transverse waves



240 ON THE SUB-MECHANICS OF THE UNIVERSE. [262

of shorter length and greater frequency, it appears that there must exist

certain coincidences of periods between the possible internal vibration periods

of compound molecules and the periods of the shorter waves.

262. From the evidence, Art. 261, it follows that the compound mole-

cules which are dissociated by the waves of light must have been in a state

of limited stability : so that

(1) by the breakdown the total potential energy is reduced,

(2) a sudden disturbance in the medium is produced causing waves,

which are of undefined length, in the medium.

263. Comparing the evidences as to the effects of waves of greater

frequency in dissociating certain compound molecules, adduced in Arts.

253, 254, with the conclusions arrived at in Arts. 238 241 as to the

effects of collisions between compound singular surfaces, rotational strains,

and the institution of complex inequalities corresponding to electrostatic

induction, it appears that the latter account for the former by mechanical

considerations as will appear in the following articles.

264. Accepting the statement in Art. 263, we find ourselves face to face

with the question, What is the source of light ?

From the mechanical analysis it follows, Art. 238, that undulations in

the medium can arise from nothing else than the relative motion of the

singular surfaces. The collisions of these surfaces would set up disturbances

which would be propagated through the medium with the velocity of light,

and which would correspond to the waves of heat. But from Arts. 238 241

it appears that there is another effect than that of simple collision, by which

undulations may be instituted.

In Art. 241 it appears that when two aggregate inequalities, separated by
a surface of weakness, in which the numbers of grains absent in the primary

inequalities differ, are subjected to rotational strain, parallel to the surface

of weakness, the strain will cause the total aggregate inequalities to reform,

instituting two fresh aggregate inequalities with limited stability, which, as

the strain is gradually reduced, do not gradually revert but, owing to the

limited stability, are maintained until the strain has been relaxed sufficiently

to overcome the limited stability and then break down under the nearly

full effort of the complex inequality; which, by Art. 260, is more than two

hundred billion times greater than what would be the effort of attraction

of the two equal negative inequalities at the same distance.

Such a transverse reversion as that considered would not result merely
in reinstituting the normal piling. But, as it involves the absolute displace-

ment of mass, the recoil by reversing the strain would institute a complex
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inequality of the opposite sign ;
and this would be repeated, in a gradually

diminishing degree, until all the energy was spent in setting up undulations

which would be transverse.

We have thus two, more or less distinct, sources of undulations; and

from the evidence it appears that, whatever undulations result from the

collisions of singular surfaces, the undulations corresponding to those of

polarised light are those caused by the reversion of the complex inequalities.

265. Since, from Art. 264, it appears that the institution of light

depends on the existence, in the medium, of compound molecules with

limited stability, and it also appears that these compound molecules dis-

sociate in the production of light, it follows that either the source of

light must be continually diminishing or that there must exist some action

which results in thus reassociating the primary inequalities, and as the

first alternative is contrary to experience We must accept the second as

a fact.

The reassociation of the primary molecules which, when associated, form

compound molecules with limited stability, receives its explanation from

the mechanical analysis on the same lines as that of their dissociation.

Thus if we have two aggregate inequalities in one of which the primary

inequalities are not combined the differing primary inequalities are combined.

These may be analysed by putting

a + a for the combined total aggregate inequality, and

b + b' for the total aggregate inequality uncombined, then

a + a' + b + b' a + a' + b + b'

These if added together constitute the total aggregate inequalities ; they

express two equal total negative aggregates together with one complex

aggregate inequality.

Thus putting a + a = A the total aggregate inequality in which the

primary inequalities are combined, we have

^1 + 6 + 6' A + b + b'

2 2

A-(b + b') b + b'-A
2

'

2

Then if the strains were sufficient the normal attraction might overcome

the normal stability, i.e. the stability in the direction of the normal, of the

R. 16



242 ON THE SUB-MECHANICS OF THE UNIVERSE. [266

complex inequality, causing a reversion. In this case, however, it does not

follow that the reversion would be complete and so reinstitute A, b and b',

for since the work done by the strains might be sufficient to overcome the

resistance to combination of b and b', the recoil from the breakdown would

cause a total or partial combination of b and b', thus instituting B, the total

aggregate inequality, and so diminish the energy available for the institution

of undulations.

We have thus an explanation by mechanical considerations of the part

played by electricity in instituting the combinations of molecules which

differ into compound molecules with limited stability.

266. The absorption of the waves of light, let us say by lamp-black,

presents a problem, the explanation of which, by the assumption that the

molecules are capable of internal vibrations in various periods, is altogether

sufficient. Thus, supposing the molecules in the lamp-black are so various

that there are molecules the internal vibrations of which coincide with

all periods of the incident wave, they would be set in periodic motion

and absorb the energy of the waves
;
but this is not all. For supposing

the absorption of the light continuous, the energy in the molecules would

continually increase, and this is not in accordance with experience. There

must therefore be some means by which the energy absorbed by the

molecules may escape. This cannot be by radiation, since in that case

it would only escape as light, which it does not. It is mechanically

impossible that it should escape by radiation in the form of the long
dark waves. And the only other mode of escape for the energy is by
transmission by convection and conduction through the molecules to the

surface of the lamp-black. Nor does this altogether solve the problem for in

such an experiment as we are considering, it may be possible that the lamp-
black is in vacuo

;
in which, having reached the surface, it would be arrested.

And the absorption continuing the energy of the molecules would con-

tinually increase indefinitely. Since any such indefinite increase of the

absorbed energy is outside experience it follows that within the limits of

experience such perfect vacuum as contains no free molecules is impossible.

The evidence which follows from the theoretical explanation of Sir William

Crookes' radiometer* at once illustrates the fact mentioned above, for when
the light is turned on the receiver which contains the vanes, the latter

almost instantly acquire a steady speed which shows that the lamp-blacked
surfaces as well as the opposite surfaces, which are white, have acquired
a steady difference of temperature, so that there is no further increase of

temperature from the absorption of the light ;
the energy received from the

light wave by the black surfaces of the vanes, taking the form of energy
* " Certain dimensional properties of matter in the gaseous state." Phil. Trans. R. S., 1879,

p. 823.
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of vibration of the molecules, is transmitted to the surface beyond which

the vibrating molecules do not pass, but, as the molecules at the surface

are vibrating, the energy of this vibration is communicated by contact to

any free molecules whose paths bring them in contact with the molecules

at the surfaces of the vanes, causing reaction and conveying the energy to

the inner surface of the receiver.

Thus if there were no free molecules there would be no motion imparted
to the vanes, and as the stage of exhaustion at which the vanes do not

revolve in unlimited light has not yet been attained, it follows that on the

assumption that the waves of light are capable of communicating energy
to the molecules in the mode of internal vibration, the production of an

unlimited intensity of energy by the absorption of light is outside

experience.

267. The assumption on which the absorption of light is based, Art. 266,

has not as yet been subjected to the further analysis necessary for a

mechanical explanation of the actions involved.

It therefore remains to show that, in spaces where negative inequalities

exist, the state of the granular medium is so far affected by these in-

equalities that it no longer transmits waves which pass through the medium

at the same velocity as when there are no inequalities, undisturbed, other-

wise than by divergence.

To show this :

We have (Art. 230) the fundamental misfit between the nucleus in the

singular surface with the grains in strained normal piling, instituting in the

medium a shell of grains in abnormal piling which constitutes a shell about

each singular surface which offers little or no resistance to strains tangential

to the singular surface.

We have also (Art. 255) the diameter of the singular surface some ten

thousand times less than the wave-length. Thus we have a free singular

surface through which the medium is free to move by propagation, the

diameter of which is 10000 times less than the transverse wave, but which

is still subject to the undulatory motion of the medium corresponding to the

light waves.

Consider next what must happen from the existence of a single negative

inequality in a space through which transverse waves are passing:

In the first place, since the surface of the inequality is a surface of

freedom there would be a certain small area of the surface about an axis

through the centre of the inequality which presents a nearly plane surface

perpendicular to the direction of propagation, and this small surface, owing
to the freedom of the inequality, offers no resistance to the transverse wave.

162
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This area of freedom would relieve the stress in the medium in the plane

normal to the direction of propagation, and so cause an increase of the

undulatory motion at the small surface, the recoil from which would reverse

the direction of propagation over the small area, thus instituting a partial

reflection. (N.B. The amount of this reflection would admit of quantitative

determination, but the analysis is long and it does not appear to be

necessary.)

The reflection considered does not constitute the entire reflection which

would result, for there would be similar reflections at the opposite surface of

the inequality, and besides the reflections on the small surfaces nearly plane,

there would be reflections resulting from the relaxation of the components
of the transverse stress all over the surface of the inequality, causing re-

flections in all directions except in planes normal to the direction of

propagation. So that there would be a general but varying scattering of the

transverse wave in all directions greater than ?r/2 from the direction of

propagation, varying from a maximum at TT to nothing at 7r/2.

The proportion of undulations within a distance ^ of the axis in the

direction of propagation scattered by the passage of a wave by a single

inequality is extremely small, for, although the small surfaces of freedom do

relax, to some extent, the stresses consequent on the undulations in the

medium, a singular surface is so small as compared with the wave-length,
that they follow the motions of undulation, and are subject to nearly the

same stresses as if there were no inequalities.

Then if we consider a space, through which the waves are passing, to

be occupied with negative inequalities in somewhat close order it does

not appear that the rate of propagation would be greatly altered owing to

relaxation of the elasticity of the medium.

But the rates of propagation do not, as it seems, depend solely on the

elasticity ;
for the singular surfaces, owing to their cohesion, introduce

another system of possible vibrations the internal vibrations of the negative

inequalities.

That the vibrations possible in the inequalities may be instituted as

the result of undulatory stresses requires only a coincidence in the periods
of the waves and the vibrations of the inequalities. Then since the evidence

of the existence of a considerable number of periods of vibration in all

inequalities is according to evidence, and it has been shown that however

small the effects of the undulations solitary grains do cause a certain dis-

turbance in the negative inequalities, it follows that the passage of a wave

through a space in which the inequalities are somewhat close will result,

if continued for a sufficient time, in imparting periodic motions to the

inequalities having periods coinciding with the wave periods.
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Then supposing the regular undulation to cease, the vibrations of the

inequalities would institute waves of the same period until their energy was

exhausted. Whence it follows that in the case in which waves are passing

steadily into and through a space occupied by inequalities in somewhat close

order, they will maintain the vibration of the molecules and at the same

time pass through the medium, and then the energy of the waves and the

vibration of the inequalities together would be greater than that of the

inequalities alone in the ratio

energy of wave motion + energy of inequalities

energy of wave

Then supposing a steady state to have been reached, if either of these

actions were diminished it would receive assistance from the other; and

from this it follows directly that, while the energy in a wave-length before

entering the space containing the inequalities is the only energy of the

undulation, the energy in a wave-length in the space would be the energy
of the undulation before passing plus the energy of the inequalities.

Then again if the mean rate of the motion of the energy of both

undulation and inequality were that of the undulation, there would be more

energy passing out of the space than that entering, and the state could

not be maintained steady. But if, on the other hand, after entering the

space with inequalities, the rate of passage of the total energy was that

given by
energy of wave

energy of wave + energy of inequalities
'

the state would be steady, and the rate of propagation diminished in the

same ratio.

It has thus been shown that in the granular medium waves corresponding

to light waves are capable of communicating energy to the negative

inequalities corresponding to molecules, which was the object in this some-

what long article.

268. Refraction of waves in the granular medium, when passing from

one space to another which differs as to the closeness of the arrangement,

follows directly from the paragraph last but one, Art. 267, in which it is

shown that the waves pass from a space in which there are no inequalities

into a space in which the inequalities are in some close order; the ratio

of the rate in the space without inequalities to the rate in the space with

inequalities is as

energy of propagation + energy of inequalities

energy of propagation

and this is the expression which corresponds with the index of re-

fraction.
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It also appears that in the main the cause of refraction is coincidence

in the wave period with the period of vibration in the inequalities. The

relaxation of the elasticity of the medium by the freedom of the centres

must cause diminution in the velocity of propagation, but it would seem to be

indefinitely small.

269. The effect which, in a granular medium, corresponds to the dis-

persion of the rays in the spectroscope, at once receives its mechanical

explanation from the explanation (Art. 268) of the effects which correspond

to refraction together with the evidence (Art. 261) that as the waves become

shorter their effects in dissociating the compound molecules increase. The

mechanical explanation is that there are more coincidences in period in

the case of short waves than in the longer. And this refraction increases as

the length of the wave decreases, or, the shorter the waves the higher the

index of refraction.

270. The reflection of the wave of light which results when the light

passing from a space in which there are no inequalities into a space in which

the inequalities are in somewhat close order, depends, when the direction of

propagation is not perpendicular to the reflecting surface, on the direction

of the transverse motion in the wave front. Thus, supposing the direction

of propagation is parallel to the paper and across the page, if the motion

in the wave front is parallel to the paper and the reflecting surface is

a plane perpendicular to the paper and inclined to the direction of propaga-

tion, there may be, at the same time, motion in the wave front perpendicular
to the paper, which motion is independent of the normal to the paper as

illustrated in the figure below :

FIG. 5.

AB direction of propagation,
CD trace of plane of reflection perpendicular to the paper,
GH direction of motion parallel to plane of reflection turned at 90,
EF direction of motion perpendicular to propagation.

The general motion of the medium thus indicated may be realised by

imagining a sheet of paper to be moving with a point revolving steadily with

a radius equal to half the amplitude of the wave, without turning the paper
in its plane, which must be perpendicular to the paper. The two motions

EF and GH may be considered as analytically distinct.
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The vertical harmonic motions, in the medium EF in planes parallel to

the paper, in varying phases, without any motion in the direction of propa-

gation, which constitute the undulations, must as the undulations arrive

at the inclined reflecting surface of the space enclosing the inequalities,

undergo partial reflection in the direction KL on account of the relaxation

at the surface caused by the inequalities. This relaxation is proportional,

other things being the same, to the number of singular surfaces in unit

volume.

The angle of incidence on the surface of the space enclosing the in-

equalities at which the reflection is a maximum is of necessity such that

the reflected and refracted rays are at right angles in the plane of incidence,

and in this case the motions in the medium which are reflected are parallel

to the plane of incidence and thus correspond to light polarised in the plane
of incidence.

Then again, the portion of the waves in which the motion of the medium
is perpendicular to the plane of incidence, although subject to the same

refraction as that in which the motion of the medium is parallel to the

plane of incidence, undergoes no reflection at the surface CD.

The waves in the granular medium are a consequence of the motions

in the medium which are transverse to the direction of propagation ;
these

may be anything perpendicular to the direction of propagation. But they
admit of being resolved in any two directions at right angles to each other

and perpendicular to the direction of propagation, and when so resolved

are analytically independent, that is to say, if the components of the trans-

verse motions of the medium in one direction ceased to exist the motions of

the other component would not be affected.

Thus if transverse motions in the medium were confined to one direction,

and that in a plane parallel to the plane of the paper, the shearing stresses

would be all parallel to the paper in planes at right angles to the direction

of propagation : hence these stresses would propagate transverse motions

parallel to the paper but would not propagate motions normal to the paper ;

and on the other hand transverse motions in the medium normal to the

paper would cause transverse shearing stresses normal to the paper which

would propagate motions normal to the paper but would not propagate

motions parallel to the paper.

It therefore follows that the transverse waves in which the motion is

parallel to the paper can, in a granular medium, be instituted only by

rotational stress in which the rotation is parallel to the paper. And such

transverse waves will propagate parallel to the paper in the direction to

which these planes are normal. And further, on arriving at a surface the

normal to which is parallel to the paper, beyond which surface there are
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inequalities, the wave will be reflected according to the laws of reflection,

such reflection being strictly parallel to the paper.

On the other hand, it follows that the transverse waves in which the

motion is normal to the paper can, in a granular medium, be instituted only

by rotational stress in which the rotation is normal to the paper ;
such waves

propagate parallel to the paper in the direction to which their planes are

normal, and are not subject to reflection at an inclined surface perpendicular

to the paper, as shown in Fig. 5, since the motion in these transverse waves

is entirely normal to the paper, as is shown by the line GH, turned

through 90 in Fig. 6. Thus it is seen that the only reflection resulting

from both components of the motion in the medium when the waves pass
from a space without inequalities into a space with inequalities is the

reflection resulting from the inclination of the surface parallel to the plane
of incidence, as shown in Fig. 5.

It may appear from what precedes that there is a difference besides that

of the motion of one of the rays being parallel and the other normal to

the paper, since so far no mention has been made of any reflection of the

ray in which the motion is perpendicular to the paper. This apparent
difference disappears, however, since if the reflecting surface in the plane

of incidence were removed and replaced by a surface normal to the paper
inclined at a corresponding angle to the direction of propagation, then

the reflection would be from the waves perpendicular to the plane of

incidence, and there would be no reflection from the plane of incidence.

It is thus shown that in the granular medium when the transverse stresses

in the medium are equal in all directions normal to the direction of propa-

gation, when waves proceed from a space in which there are no inequalities

into a space in which there are inequalities, if the separating surface is

inclined to the direction of propagation there will be reflection in the plane

of incidence of that component of the wave which is in the plane of incidence,

in a degree depending on the closeness of the inequalities and the angle of

incidence, while the other component of the wave-motion will not be subject

to any reflection resulting from the inclination. And as this applies whatever

the direction of propagation may be, it affords a definite proof that the

motion in the medium which is reflected is in the plane of incidence.

This result in the granular medium corresponds in every particular with

the experiences of polarisation except that heretofore it seems to have been

a moot question whether or not the motion in the ether which is polarised by
reflection was parallel or perpendicular to the plane of the medium*.

* "In the theories of Fresnel and Cauchy the vibrations are assumed to be perpendicular to the

plane of polarisation in those of MacCullagh and Neumann to be parallel to it. Stokes arrived

at the conclusion that they are parallel, while by a similar experiment Holtzman arrived at the

opposite conclusion.
"

Lloyd, Wave Theory of Light, 1857.
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Thus not only does the analysis of the granular medium account by purely
mechanical considerations for the phenomena of polarisation, but also removes

all doubt, if the explanation is mechanical, as to the fundamental necessity

that the motion in the medium that can be reflected must be in a plane

parallel to the plane of incidence.

The foregoing proof that that component of the motion of the medium
which is reflected is that parallel to the plane of incidence has been based on

the relaxation of the mean coefficient of rotational elasticity owing to the

presence of negative inequalities, as discussed in Art. 267. This was all

that was required, as the relaxation in translucent matter is comparatively

very small. When, however, we come to metallic reflection, which in the

case of mercury at perpendicular incidence is 0'666 as against O'OOIS for

water, it appears that the relaxation is altogether of another order than in

translucent substances.

In the mechanical medium such difference is accounted for by the

extremely small size of the singular surfaces, the radii of which are about

2 x 10~10 or 2 x 10~5 of the length of the shorter waves. These singular

surfaces as long as their arrangement is in open order will cause relaxation

which is small but which increases somewhat proportionally to the number of

such surfaces in unit space, each surface being, as it were, independent, so that

the abnormal pilings which embrace every grain will only meet at a few

points. But as the inequalities approach the closest order the rate of

decrease of the relaxation increases very rapidly until the normal piling

of the singular surface becomes nearly continuous. The surface of the space

enclosing the inequalities then becomes a singular surface of the aggregation
of inequalities outside of which the piling is abnormal.

To realise the evenness of such a boundary surface embracing the whole

or any part of the aggregate inequalities it is only necessary to remember

that the radii of the singular surfaces are less than one ten-thousandth of the

wave-length, whence the roughness which would be less than 1 x 10~ 9 cm. and

thus would be smoother than any artificial polish which can be imparted to

metal, and hence could only compare with the surface of mercury.

It is thus shown that the granular medium not only affords an explana-

tion of the polarisation of light but also affords an explanation of metallic

reflection. And these explanations being accomplished it appears that the

mechanical explanation of the rest of the phenomena of light must of

necessity follow.

271. The aberration of light admits of an explanation so simple and the

coincidence of the value of the velocity of light thence deduced with that

derived from the observations of the eclipses of Jupiter's satellites is so re-

markable as to leave no doubt in the mitid as to the truth of the explanation.
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But when the aberration is subjected to closer examination the explana-

tion is found to rest on the heretofore unexplained absence of any resistance

to the motion of the ether through matter
;
for notwithstanding the efforts

made to rest the explanation on another basis this has not been completely

accomplished.

The difficulties in conceiving the free motion of the ether through matter

do not present themselves in the analysis of the properties of the granular

medium as now accomplished. This follows from the analysis which has been

effected in this and the previous section.

It is shown :

(1) That the motions of the singular surfaces are independent of the

mean-motion of the grains in the medium (Art. 233).

(2) That the institution of undulations depends on the varying strains

resulting from relative motion of the singular surfaces (Art. 264).

(3) That the energy of the wave is absorbed by the singular surfaces,

and that the energy thus absorbed is conducted and conveyed through the

aggregate singular surfaces (Art. 266).

Whence it follows that the singular surfaces which correspond to matter

are free to move in any direction through the medium without resistance, and

vice versa the medium is free to move in any direction through the singular

surfaces without resistance. And that the waves corresponding to those of

light are instituted and absorbed by the singular surfaces only. So that after

institution at the place where the singular surfaces are, the motion of the

waves depends solely on the mean motion of the medium, and the rate of

propagation is equal in all directions until they again come to singular

surfaces. Thus all paradox is removed and the explanation of aberration

is established on the basis of the absence of any appreciable resistance to

the medium in passing through matter.

Thus besides the explanations by definite analysis of:

the potential energy,

the propagation of transverse waves of light,

the apparent absence of any rate of degradation of light,

the lack of evidence of normal waves,

the gravitation of matter,

electricity,

which explanations render the purely mechanical substructure of the universe

indefinitely probable, we have by further analysis obtained :
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The explanation of the blackness of the sky on a clear night. (Art. 258.)

The definite proof of the fundamental dissipation of the energy of the

waves of light and the relative energy of the molecules to increase the mean

irreversible relative motion of the grains ;
which dissipation is independent

of that which tends to the equalisation of the mean energy of the molecules.

(Art. 259.)

The number of grains, the displacement of which through a unit distance

represents the electrostatic unit. (Art. 260.)

The proof of the coincidences between the periods of vibration of the

molecules and the periods of the waves. (Art. 261.)

Proof that dissociation of compound molecules proves the previous state

to have been one of limited stability. (Art. 262.)

Proof that light is produced by the reversion of complex inequalities.

(Arts. 263264.)

Proof, that the reassociation of compound molecules results from the

reversion of complex inequalities. (Art. 265.)

Proof of the absorption of the energy of light by inequalities. (Art. 266.)

Proof that negative inequalities affect the waves passing through.

(Art. 267.)

Proof that refraction is caused by the vibrations of the inequalities having
the same periods as the waves. (Art. 268.)

Proof that dispersion results from the greater number of coincidences as

the waves get shorter. (Art. 269.)

Proof that the polarisation of light by reflection is caused only by that

component of the transverse motion in the medium which is in the plane of

incidence, and results from the passage of the light from a space without

inequalities through a surface into a space in which there are inequalities.

(Art. 270.)

Proof that metallic reflection results from the relative smallness of the

dimensions of the molecules compared with the wave-length, and the close-

ness of their piling, when the waves pass from a space without inequalities

across the surface beyond which the inequalities are in closest order.

(Art. 270.)

Proof that the aberration of light results from the absence of any

appreciable resistance to the motion of the medium when passing through
matter. (Art. 271.)
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