Detoxification of fusarium toxins in transgenic crop plants

RAKESH KHADKA M.Sc. Agrobiotechnology

Lay out

- General introduction Fusarium spp. Mycotoxins
- Chemical Names of major Fusarium Mycotoxins
- Importance
- Detoxification of mycotoxins
- Methods for identifying organisms capable of degrading mycotoxins.
- Case Study- on Detoxification of Fusarium Toxin Fusarium trichothecenes biosynthesis pathway Transformation of Tri101 Gene in Rice.
 Detection of in vitro trichethecene 3 O acetyltrans

Detection of in vitro trichothecene 3-O-acetyltransferase activity in transgenic lines.

- O Discussion
- Reference

Fusarium spp.

Taxonomic Classification

Kingdom: Fungi Phylum: Ascomycota Order: Hypocreales Family: Hypocreaceae

Genus: Fusarium

- Filamentous fungus widely distributed on plants and in the soil.
- Fusarium species are toxigenic.
- Common contaminant and a well-known plant pathogen causing destructive and agriculturally important diseases of small grain, cereals and maize.
- Mycotoxins produced are often associated with animal and human diseases.

Mycotoxins in General:

Mycotoxins are the toxic chemicals produced by fungi for a variety of reasons.

- 1. To attack or gain access to hosts by helping to dissolve cell membranes.
- For as protective measures against encroaching organisms.
- Mycotoxins, such as Mycotoxin T2 (Fusariotoxin) or the Amanitatoxins can be lethal to animals.
- Most-studied mycotoxins in Fusarium are toxic to both plants and animals. including hemorrhagic, estrogenic, emetic, and feed refusal syndromes, fescue foot, degnala disease etc etc.
- Disease caused by fusarium toxin do not only severely reduce yield,but also results in contamination of grain with unacceptable high amounts of mycotoxins, a problem of world wide significance.

Chemical Names of major Fusarium Mycotoxins; Marasas et al.

Some of the names are redundant, and some the result of research in different countries

- Openion of the control of the con
- Fumonisin B1
- Moniliformin
- Neosolaniol
- Nivalenol
- Scirpentriol
- Vomitoxin
- Zearalenol
- Zearalenone
- Trichothecenes

Fusarium mycotoxins may leach into the soil, causing damage to plants and animals through leaching even after the fungus is no longer active.

Importance

- Fungal diseases are common problems in crop agriculture.
- Mycotoxins, such as those produced by fusaria fungi for instance, are in fact a major food safety issue.
- Many strides have been made against plant diseases as exemplified by the use of hybrid plants, pesticides and improved agricultural practices.
- However, the problems of fungal plant disease continue to cause difficulties in plant cultivation.
- Thus, there is a continuing need for new methods and materials for solving the problems.

These problems can be met through a variety of approaches:

- 1. the infectious organisms can be controlled through the use of agents that are selectively biocidal for the pathogens.
- 2. interference with the mechanism by which the pathogen invades the host crop plant.
- 3. interference with the mechanism by which the pathogen causes injury to the host crop plant.
- 4. is interference with toxin production, storage, or activity.

Detoxification of mycotoxins

- Although reducing fungal infections is the most desirable method of eliminating mycotoxins.
- Cultural practices and genetic approaches have achieved limited success in disease control in terms of effectiveness and cost.
- Efforts to produce GM crops with enhanced disease resistance have not been successful on a practical level.
- An alternative solution, transgene-mediated detoxification of mycotoxins has been proposed.
- A prerequisite for this is the availability of genes encoding enzymes with detoxification activities in plants by the deployment of anti-mycotoxin antibodies (plantibodies) or mycotoxin-degrading enzymes.

Methods for identifying organisms capable of degrading mycotoxins.

- Mycotoxin is incorporated into culture medium for selection of organisms.
- These organisms are used to isolate the enzyme and the gene responsible for conferring mycotoxin-resistance.
- The gene is cloned and inserted into a suitable expression vector for the further characterization of protein.
- The DNA encoding for mycotoxin-resistance can be used to transform plant cells normally susceptible to Fusarium or other toxin-producing fungus infection.
- Plants can be regenerated from the transformed plant cells.
- A transgenic plant can be produced with the capability of degrading mycotoxin, as well as with the capability of producing the degrading enzymes.

Case Study- on Detoxification of Fusarium Toxin

- The necrotrophic fungal pathogens Fusarium graminearum and Fusarium culmorum cause Fusarium head blight (FHB).
- A loss of yield.
- Serious threats to humans and animals by contaminating grains with the tri-chothecene mycotoxin deoxynivalenol (DON).
- DON inhibits protein synthesis in eukaryotes.
- Stimulates the development of plant diseases as a phytotoxin presumably by interfering with the expression of defense-related genes.
- Fusarium species have Tri101 gene for self protection.
- Tri101 gene encodes trichothecene 3-O- acetyltransferase.

Wheat spikes with symptoms of Fusarium head blight

Fusarium trichothecenes biosynthesis pathway

Transformation of Tri101 Gene in Rice.

- Total DNA and RNA were extracted from leaves using a Nu-cleon PhytoPure plant and fungal DNA extraction kit and RNeasy Plant Mini kit.
- ONA and RNA probes were prepared using a PCR DIG probe synthesis kit and a DIG RNA labeling kit.

Construction of pEU-Tri101

Transformation of Tri101 Gene in Rice.

- Mature seeds of japonica rice, Oryza sativa L. cv. Nip-ponbare, were used for callus induction.
- Scutellum tissues were excised from a 1-week culture on LS medium solidified by 0.25% gellan gum containing 2 mg/l of 2,4dichlorophnoxyacetic acid (2,4-D).
- Bombarded with plasmid-coated gold particles (0.6 μ m).
- pAct1-gfbsd1 containing an enhanced green fluorescence protein gene (egfp) fused to the blasticidin S (BS) resistance gene (bsd) was used as a transformation vector.
- Plantlets were regenerated from transgenic calli and grown in a greenhouse under natural light.

Detection of in vitro trichothecene 3-O-acetyltransferase activity in transgenic lines

Detection of in vitro trichothecene 3-O-acetyltransferase activity in transgenic lines

Discussion

- Fungal diseases are common problems in crop agriculture. Many strides have been made against plant diseases as exemplified by the use of hybrid plants, pesticides and improved agricultural practices.
- The problems of fungal plant disease continue to cause difficulties in plant cultivation.
- There is a continuing need for new methods and materials for solving the problems
- Efforts to produce GM crops with enhanced disease resistance have not been successful on a practical level.
- An alternative solution, transgene-mediated detoxification of mycotoxins has been effective to control somewhat..

References

- Bruins MBM, Karsai I, Schepers J, Snijders CHA (1993) Phyto-toxicity of deoxynivalenol to wheat tissue with regard to in vitro selection for Fusarium head blight resistance. Plant Sci 94:195
- Dahleen LS, McCormick SP (2001) Trichothecene toxin effects on barley callus and seedling growth. Cereal Res Commun 29:115

 – 120
- Eudes F, Comeau A, Rioux S, Collin J (2000) Phytotoxicity of eight mycotoxins associated with Fusarium in wheat head blight. Can J Plant Pathol 22:286–292
- Kimura M, Kaneko I, Komiyama M, Takatsuki A, Koshino H, Yoneyama K, Yamaguchi I (1998) Trichothecene 3-O-acetyltransferase protects both the producing organism and trans-formed yeast from related mycotoxins. Cloning and characteriza-tion of *Tri101*. J Biol Chem 273:1654–1661
- McCormick SP, Alexander NJ, Trapp SE, Hohn TM (1999) Dis-ruption of TRI101, the gene encoding trichothecene 3-O-acetyltransferase, from Fusarium sporotrichioides. Appl Environ Microbiol 65:5252–5256
- Zamir LO, Nikolakakis A, Devor KA, Sauriol F (1996) Biosynthesis of the trichothecene 3-acetyldeoxynivalenol. Is isotrichodermin a biosynthetic precursor? J Biol Chem 271:27353–27359

Thank you