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ABSTBACT

The application cf computer-aided design (CAD) tools in

the full custom design and testing of a 16-bit pipelined

two's complement multiplier in three micron NMOS is

described. A comparison between the full custom carry-save

addition (CSA) multiplier designed using CAD tools and a

multiplier generated by the MacPitts silicon compiler is

presented. Additional background material is also presented

on the CSA multiplication algorithm utilized.
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I- IITBQPOCTION

T?ith the ever increasing demand for extremely complex

integrated circuits, today's electrical engineers and

systems designers have to be knowledgeable in the design and

fabrication of Very large Scale Integrated (VLSI) circuits.

Several approaches exist today for the design of VLSI

circuits- These approaches include the interconnection of

standard library cells, gate arrays, programmable logic

arrays, and full custom design. Full custom design is the

most time consuming and expensive of the three, but gener-

ally yields a more efficient VLSI design in terms of circuit

density and speed of operation.

Cne methodology for full custom design that can be

easily understood and implemented by the systems designer

has been developed by Mead and Conway [Ref. 1 ]. This meth-

odology, coupled with the wide variety of computer-aided

design (CAD) tools that are available, makes it possible for

the systems designer to translate a design from a functional

block diagram, or a lcgic diagram, to silicon. Intelligent

simulation of the design prior to fabrication gives the

designer a high degree of confidence that the circuit fanc-

tions as desired, barring any unforeseen fabrication errors.

Another method that is available for the generation of

VLSI circuits is the use of a silicon compiler which takes

as input an algorithmic description of a circuit's desired

functions and generates the final layout of a VLSI circuit.

Using this approach to circuit design results in a rapid

design turn-around time. This allows the system designer

the ability to explore different architectures and find the

method best suited to solve a specific problem. Cne such

compiler that is installed and running at the Naval



Postgraduate School (NPS) is the MacPitts silicon compiler

developed at Massachusetts Institute of Technology's Lincoln

laboratory. The installation and initial research on the

MacPitts compiler is documented in work done previously by

Carlson £Bef. 2]. Carlson utilized the MacPitts silicon

compiler to generate an 8-bit unsigned pipelined multiplier

to be used in a digital filter. To provide the basis for

comparison of a full custom design and a design generated by

the MacPitts silicon compiler, a 16-bit two's coiplement

multiplier in three micron NMCS was hand-crafted using CAD

tools currently available at NPS.

The discussion of a general carry-save addition {CSA)

multiplier follows in Chapter 2. Chapter 3 presents the

adaptation of the CSA multiplication scheme to the 16- tit

two's conplement multiplier. The remainder of Chapter 3

contains the design and testing of the multiplier and a

description of the CAI tools utilized. Chapter 4 presents a

test plan for the VLSI circuit after its fabrication by the

MOS Inplementation Service (MOSIS) of the Defense Advanced

Research Projects Agency. This is followed by a comparison

of the hand-crafted and MacPitts generated multipliers in

Chapter 5.



II- UNSIGNED BINARY MULTIPLICATION

Id this chapter, the implementation of an unsigned

binary parallel multiplier is described. First, a brief

discussion of the add-and-shift algorithm is presented.

Although almost every reference in digital arithmetic

contains a section on this algorithm (also called sequential

multiplication), it is given here so that terminology and

representations used in this chapter and the next may be

introduced. Next, a multiplication scheme utilizing simul-

taneous generation of partial products followed by simulta-

neous reduction using carry-save addition (CSA) is

described. The chapter concludes with a discussion of

implementing this parallel multiplication scheme as a pipe-

lined VLSI design.

A. ADD-AND-SHIFT ALGORITHM

The lasis for the multiplier design presented in this

chapter is the add-and-shift algorithm, which is similar to

the way one multiplies using pencil and paper. For example,

as shewn in Figure 2.1, in multiplying two binary numbers

each bit of the multiplier requires a corresponding add-and-

shift operation.

A mathematical representation of the add-and-shift algo-

rithm foi two n-bit numbers is given in Equation 2.1. This

equation has been derived from chapter 2 of Introduction to

Computer Architecture by Stone and others [Ref. 3].

P = E2 k
ak b.

(
e 9 n 2 - 1 )

In this equation and throughout the remainder of this

10



MULTIPLICAND 1101
MULTIPLIER X1011-^
PARTIAL PRODUCTS 1101

0000
110 1

FINAL PRODUCT 1U0"0TT1T

Figure 2.1 Paper and Pencil Multiplication.

thesis, concatenation implies the logical AND, the symbol +

implies the logical OR, b represents the n-bit multiplicand

vector, a n represents bit n of the multiplier vector a and P

represents the 2n bit product vector. Figure 2.2 illus-

trates this concept for the multiplication of two 8-tit

operands and Figure 2.3 introduces a convenient dot repre-

sentation of the same multiplication. As can be seen from

Figure 2.2, multiplying two 8-bit operands results in ei^ht

partial products which are added to form a 16-tit final

product.

W\, i Xr,\'iX, X,, X.X'o-
Y7Y«YSY 4Y :, Y, Y,Yn-

MULTIPUCAND
MULTIPLIER

At.W.A.A, .V. A,V)-
H7 H ti n.,H|H<H> H, H„

F7 Ka I\ F
;l Fa V-, F, F

(j 7 (if; (ir, ( I ] (lj(l>(l|(i()

}l 7 H„ H-, H, Hi Ha Hi H„

A PARTIAL PRODUCT

Si5ShSi3S 12 SuS|(,*?9 Ss S 7 S6 S5 S., S., Sj S, S„ - FINAL PRODUCT

Figure 2.2 Multiplying Two 8-bit Operands.
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Figure 2.3 Dot Representation.

B. SIMULTANEOUS MATRIX GENERATION AND REDUCTION

In terms of speed, the basic add-and-shift algorithm is

the slowest of the multiplication schemes. One methcd to

improve the speed of the basic sequential multiplier is to

perform as many operations as possible in parallel. This

method, known as the Simultanoeus Matrix Generation and

Reductioi method [Ref. 4: pp. 132-147], is composed of three

distinct steps. In the first step, all of the partial prod-

ucts are simultaneously generated. In the next step, the

resultant matrix of partial products is reduced using carry-

save addition (CSA) until two vectors remain. Finally, the

two remaining vectors are added together tc form the final

product.

1 • partial Products Generation

The simplest way to generate each bit position of

the partial products is to use the logical AND operation as

a 1x1 multiplier. Fcr example, in Figure 2.2, each of the

terms in the eight partial products is the result of a

logical AND operation and also corresponds to a single dot

in each of the partial products of Figure 2.3. For an n-tit

12



multiplication this scheme requires nxn AND gates, which is

a simple, tut hardware intensive scheme.

It is possible to use encoding techniques that will

reduce the number of partial products. One such method that

reduces the number of partial products by half is the modi-

fied Eooth's algorithm- For a description of both Booth's

original and modified algorithms, the reader is referred to

two presentations of these topics [Refs. 4,5: pp. 132-13*7,

152-151].

Another way tc generate partial products is to use

read only memories (ECMs) . for example, the 8x8 multiplica-

tion cf Figure 2.2 can be implemented using four 256x8 RCMs

where each ROM performs a table lookup multiplication, as

shown in Figure 2.4.

In Figure 2. 4, the 4-bit value of each element of

the pairs (Y0,X0), (Y0,X1), (Y1,X0), and (Y1,X1) is concat-

enated tc form an 8-bit address into the ROM table. The ROM

location corresponding to the address contains a unicue

8-bit product. Thus four tables are required to simultane-

ously form the products Y1xX1, Y1xX0, Y0xX1, and YOxXO.

Note that the YOxXO and Y1xX1 terms have disjoint signifi-

cance, thus only three terms must be added to form the final

product. The number of rearranged partial products which

must be summed is referred to as the matrix height h. This

height corresponds tc the number of initial inputs to the

C3A tree. A generalization of this scheme for up to a 64x64

bit multiplication is shown in Figure 2.5. Each rectangle

in Figure 2.5 [Ref. 4: p. 138] represents a 4x4 ROM multi-

plier product.

Table I [Ref. 4: p. 139] summarizes the maximum

height of the partial products for the three partial product

generation schemes discussed in tnis section.

In the final design implemented in this thesis, the

partial products were generated using the 1x1 multiplier

13



4-BIT
BLOCKS

sly

Yl Y0

X XI X0

fl-BTT S Y0XX0
BLOCKS ?

Y0xXl PARTIAL
PRODUCTS

YlxX0

YlxXl

YBxXl

REARRANGED
YlxXl Y0xX0 PARTIAL

YlxXB PRODUCTS

FINAL 16-BIT PRODUCT

Figure 2.4 An 8x8 Multiplication Using ROMs.

(AND gate) method. This method was chosen over the ether

two tecause of its simple and regular implementation.

Eooth's algorithm was rejected as a choice due to the

complex nature of the control signals that are required.

The EQM partial product generation method was not chosen

tecause it would reguire 16 ROMs of 65536 x 16 tits to

simultaneously generate the 16 partial products needed in a

16-bit multiplier. Other possible combinations of different

size BOMs could also be used to generate the partial prod-

ucts, tut due to chip area and feature size limitations

imposed ty MOSIS the EOM method of generating partial prod-

ucts was rejected because it was not. feasible to construct

on a single chip.

14
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Figure 2.5 ROM Multiplier Weighted Position Structure.

2 - Initial Products Reduction

Cnce the partial products are generated, the next
step is to reduce the n partial products down to two. Cne
technigue that can be used to accomplish this is to utilize
3-input, 2-output full adders performing CSA in a Wallace
tree structure.

The partial products for the 8x8 multiplication
represented by Figure 2.3 can be viewed as adjacent columns

15



TABLE I

Matrix Height for Partial Product Generation Methods

GENERAL
FORMULA

MAX HEIGHT OF THE \L\TRrX

SCHEME
Number of Hits

8 16 24 32 40 48 56 64

1 X 1 multiplier (AND gate) n 8 16 24 ! 32 40
|
48

j
56 64

4X4 multiplier (ROM) {n/2) - 1 3 7 11 ! 15 1 19 23 ! 27 31

8>8 multiplier (ROM) (n/4)-l 1 3
j

4
j

7
|

9
|

11 ; 13
|

15

Modified Booth's algorithm (n/2) 4 8
j
12

j
16

1
20 24 ' 28 32

of height h, where each column corresponds to all terms to

the same power of 2, as shown in the Wallace tree structure

of Figure 2.6.

Figure 2.6 Partial Products in Wallace Tree Structure.

To reduce these columns of height h, CSA is used to

reduce three dots of column height to two dots. These two

output dots, which represent the familiar sum and carry

outputs of a full adder, are placed in the next level cf the

tree structure in their appropriate power positions. In

general, the number cf required levels (L) of CSA required

to reduce a Wallace tree structure of column height h tc two

is given ty Equation 2.2 [Ref. 4: p. 139]. L can also be

16



viewed as the minimum number of full adder delays required

to produce the pair cf column operands. For an 8x8 multi-

plication, the maximum column height is h=8. Thus, four

levels of CSA are required as illustrated in Figure 2.7

[Ref . 4: p. 111 ].

L log, 5

V
v
2

./

(egn 2.2)

Table II [Ref. 4: p. 139] shows the number of carry-save

adder levels corresponding to various column heights.

3. Carry Look-Ahead Addition

The final step in this multiplication scheme is to

sum the two remaining vectors created by the CSA reduction

scheme discussed in the previous section. The major consid-

eration in the choice of addition methods for the final

summation is speed of operation. One method that signifi-

cantly reduces the number of gate delays and increases the

speed over ripple carry addition is carry lookahead (CLA)

addition. Bather than give a full derivation of the CLA

addition concept [Ref. 5: pp. 84-91], the basic operation is

presented for the 32-bit CLA adder that is used in the final

design inplemented in this thesis.

Figure 2.8 represents the designed 32-bit CLA alder

which can be thought cf as operating in three steps. First,

the two input vectors X and Y to be summed are broken into

4-bit blocks. These tlocks are routed into a circuit called

a block P 5 G generator. The block P & G generator looks at

each 4-bit block from X and Y to determine if a carry into

the least significant bit position will propogate to the

carry out of the most significant bit position of the block.

The logic equations for these two signals, called tlock

propogate (Pn) and blcck generate (Gn) respectively for bit

positicn n, are given in Equations 2.3 and 2.4 for the nth

bit position. Equations 2.3 through 2.15 are derived from

[Ref. 5: pp. 84-91].

17



FIRST LEVEL
OF CSA

R SECOND LEVEL
OF CSA

THIRD LEVEL
OF CSA

FOURTH LEVEL
OF CSA

LAST LEVEL:
CARRY- LOOK-

AHEAD

Figure 2.7 CSA Reduction for an 8-bit Multiplication.
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TABLE II

levels of CSA Seeded vs. Maximum Column Height

Column Height (h) Number of Levels (L)

3 1

4 2

4 < n < 6 3

6 < n < 9 4

9 < n < 13 5

13 < n < 19 6

19 < n < 28 7

28 < n < 42 8

42 < n < 63 9

pn = (yB + y„)(yI,-i+n-i)(y»-2+^- 2)(YB - s+rn _ s
)

(egn 2,3)

cn = xn Yn + (.Yn + rn ).Yn _ 1
rn _

1 + ^n + rn)^n _
1
+rnM)Yn . 2 yrl _ 2 (eqn 2.4)

+ (.vn + y
f
,)(.Y

r,_ 1+ F„_
1
)(.vn _2+ y„_ 2)xn _ s yn . s

Next, the block P and G signals are input into a CLA

unit that generates the true carry Cn out of the next least

significant block C (e-1) . For a 32-bit addition, two CLA

units are required. The equations for the lower order CLA

unit are given in Equations 2.5, 2.6, 2.7, and 2.8.

C<= G i+ P C, n

C,= G 7+ P 7G i + P rP s Cin

^12 = Cn + PnG, + PnPiG, + P n P 7P sClfl

(eqn 2.5)

(eqn 2.6)

(eqn 2.7)

C 16 - G 1S + PuGu + P 15P nG 7 + P lsPuP 7G s + P llP llP 1P $Cim (eqn 2.8)

Since in a multiplication of two numbers the carry into the

least significant bit position is zero, the above four equa-
tions reduce to Equations 2.9, 2.10, 2.11, and 2.12.

C<= G
s

19

(eqn 2.9)



c c

z
u

u
Hi

5
H'

- * ^ LJ D
(5

a.
P

pi

so

> V en ^

z
u

o

£

3
1

u* * d * ^
*u

n
f^

>" * LL

Z
-H
^

<r
_i
u
3
O

8

^<* u.
n

X
1

mx t 0.
1 ^r

A
H p
o p

>" v LL —<
ru

^ * <£ H

in

—

<

u
1

-H x cc
u
p

;•»

x
<r

Z
u
<3

Q. t H

a.
in

v p
cc

in

> * \n V
~H ^
o

01

U

A
"1

y z
u

a.
u
p

10

V CL *V H

o p 01

>- * LL
en Q •<r

cc V
—

<

?Q

o
co

"
1

Z
LI

ru
a

i.i
s* * <r

o p ^^—^— "

(J u
2 (3

n
*" * LL

en
ru <r 8

*" *

o

x z
u
(J
CL

CM

u
~~1

cc
Ld
P
P
CC

a
*

* CL
i.
oM
X

8

^r

n
>" * t

1 A

rr 8X
^- u

i

p
p
cc

nf

20



c 8 = c 7 + p 7c s
< e<3n 2 - 10 >

C l2
= G u + P UG 7 + P UP 7G S

(egn 2.11)

C,«= G 1S + P 15G n + P lsP n C? 7 + i»
15PnP 7G s (egn 2.12)

Similarly, the equations for the upper CLA unit are given as

Equations 2.13, 2-14, and 2-15.

C 20 = <? I9 + Px,C lt
( e <3n 2 - 13 )

C 24 = G 2i + P 2iG l9 + P 2SP 19 C 16 (egn 2. 14)

^28 = ^27 + -^27^23 + ^27^21^19 + ^27^28-^ 19^ 16 (egn 2. 15)

Note that the carry out of the most significant tit is

disregarded. This is because the result of multiplying two

16-bit operands yields only a 32-bit result-

Finally, the carry signals generated by the previous

two steps are added in 4-bit block ripple carry adders with

their appropriate slices of X and Y to form the 32-bit sum.

Note that the carry cut of each 4-bit ripple carry adder is

disregarded, as it was generated and used previously.

C. PIPELINED ADAPTATION

In the previous section, the implementation cf a

parallel CSA multiplier was described. This method can

logically be partitioned into stages for realization as a

pipelined design.

In pipelining any design or algorithm, the basic objec-

tive is tc introduce concurrency by taking the function to

be performed and partitioning it into several subf unctions.

The following properties [Ref. 6: p. 4] are important to

consider when pipelining a design:

1- Evaluation of the basic function is eguivalent to seme

seguentiai evaluation of the subf unctions.

2. The inputs for one subfunction come totally from the

21



outputs of the previous subfunction in the evaluation

sequence.

3. Other than the exchange of inputs and outputs, there

are no interrelationships between subfunctions.

4. Hardware can be developed to execute each subfunction.

5. The times required for these hardware units to perform

their individual evaluations are usually approximately

equal.

The hardware required to perform each subfunction of a

pipeline is called a stage. At the output of each stage is

a latch that is used to perforce the actual exchange of oper-

ands between stages.

To partition the CSA multiplier into its stages, a

logical division of the subfunctions to be executed must be

determined. One method that initially may come tc mind is

to make the partial product reduction scheme using the

Wallace tree structure as one stage of the pipeline and the

CLA addition as a second stage. This was rejected because

for a 16-bit multiply, the first stage would require six

full adder delays and an AND gate delay before being ready

to be latched. In the second stage, the CLA adder would

require the delay for the P and G generation, the true carry

generation in the CIA unit, and four full adder delays

before being ready to be latched.

The next partitioning of subfunctions went one level

further into defining each stage. The CLA adder was further

subdivided into three subfunctions. The first stage

performs the generation of the P and G signals based on the

two 32-bit input vectors. The next stage uses the P and G

signals generated in the previous stage to produce the true

carry signals. In the third and final stage of the CLA

adder, the 4-bit blocks are summed with their appropriate

carry in signals generated in the previous stage to form the

final product. In looking at the CLA adder portion, the

22



longest delay occurs in the final stage. This delay has a

magnitude of 4 full adder delays and it is this figure that

is used to partition the Wallace tree reduction scheme into

stages.

For a 16-bit multiplication, the maximum height of the

Wallace tree is sixteen as shown in Table I. This maximum

height requires six levels of CSA addition (see Table II)

before a column height of two is obtained to be input into

the CIA adder. Also to be performed in this stage is the

generation of each bit of the partial products through the

use of AND gates. Starting at the beginning of the Wallace

tree structure and keeping the stage delay at less than the

four full adder delays of the CLA adder, the 1x1 multiply

and three levels of CSA can be accomplished in the first

stage of the pipeline. This leaves the next stage of the

pipeline with the remaining three levels of CSA to perform

before going into the 32-bit CIA adder for the generation of

the final product. Figure 2.9 shows each stage of the pipe-

line and its subfunction. This pipelined structure is to be

the one inplemented in the final design of this thesis with

adaptations to allow for the implementation of a two's

complement multiplier.

23



lxl MULTIPLIERS

1ST LEUEL CSA

2ND LEVEL CSA

3RD LEUEL CSA

LATCH

4TH LEUEL CSI=1

5TH LEUEL CSA

6TH LEVEL CSA

LATCH

BLOCK P & G GENERATORS

LATCH

LATCH

4-BIT RIPPLE CARRY ADDERS

LATCH

Figure 2.9 Pipelined CSA Mnltiplier
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III. DESIGN: ! 6-BIT TWCJ.S C0HPLE3ENT MOLTIPLIEB

A. TliO'S COMPLEMENT HULTIPLIEB

1 • Theoretical Architecture

The multiplication of two 16-bit signed numbers

represented in two's complement form can be performed

through the implementation of Equation 3.1 £Ref. 3] where n

equals sixteen- In Equation 3.1, the notation b f denotes

the one's complement cf the multiplicand.

P = £ 2
k
a

k k - 2
n -

,

a n _
1 i>

k = o

= E2'^i + 2
n -V.(l + l)

= I! »* -* +1-V.-.1' + »-..-, (€qn 3.i)

Each partial product generated through the use of Equation

3. 1 is summed with the remaining partial products as in the

unsigned CSA multiplier discussed in the previous chapter

with two exceptions. First, each partial product must have

its most significant bit extended to the most significant

bit of the final product. In the design used in this thesis

for 16-tit operands, the west significant bit of each

partial product must be extended to bit position 31.

Second, the most significant bit of the multiplier must be

added into bit position 15. This insertion of the most

significant bit of the multiplier can also be accomplished

by inserting it twice into the final summation at bit posi-

tion 13 and once intc each of the bit positions 14 and 15.

This is done in the final design of this multiplier to keep

the maximum column height to be input to the Wallace tree
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reduction scheme at sixteen. Figure 3.1 demonstrates the

use of this equation directly on the multiplication cf two

4-bit two's complement numbers where n equals four.

0111 +7 0111 + 7
X0101 s +5 X1011 = -5

0000TTTTT OOOUTTTTT
0000000 0000111
0001 11 000000
00000 11000
00000 00001
tjutuutjtt = + 35 7T07TTTTT = -35

1001 _ -7 1001 — -7
X0101 = +5 X1011 = -5

1117TUU7 1 1 1TTTJUT
0000000 11 11001
1 11001 OG0O0O
00030 00110
00000 0000 1

ITOHTUT = -35 UZnU'OTJTr = + 35

Figure 3.1 Two's Complement Multiplication.

Figure 3.2 Input to Wallace Tree Reduction Method.
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Figure 3.2 shows, in dot notation, the partial prod-

ucts generated with 1x1 multipliers using Equation 3.1 with

the two exceptions discussed above for a 16-bit two's

complement multiplication. It is this structure that is

input into the Wallace tree reduction scheme to be reduced

to a final maximum column height of two. Since the- maximum

column height is sixteen for the 16-bit two's conpleiaent

multiplication presented in this thesis, six levels of CSA,

as shewn in Figures 3.3 and 3.4, are required to decompose

this structure to a maximum column height of two. The

resulting two vectors generated by the CSA are then input

into the CIA adder presented in the previous chapter.

One interesting point to note is that the column

height fcr certain columns is only one. This is caused when

CSA is performed on three or less operands in a column and

no carry into that column is produced by the next lower

significant one. In these operand vectors, a zero is in r ut

for the appropriate tit position into the CLA adder.

To perform this multiplication in a pipelined

manner, latches must he inserted at the end of each stage of

the pipeline as discussed earlier. Since the first stage

involves a 1x1 multiplication to generate the partial prod-

ucts and three levels of CSfl, the first latch must be

inserted at the end of the third level of CSA. At this

point, 143 bits of data must be transferred to the second

stage. Therefore, the first latch is 143 bits wide.

Similarly, the second stage ends after the sixth level of

CSA is performed. This requires the second latch to be 57

bits wide. These 57 bits are then input to the CLA adder.

The third stage of the circuit generates the block P and G

signals. These signals and the 57 bits of the two CLA oper-

ands are then transferred to the fourth stage in a 7 bit

wide latch. The fourth stage uses the P and G signals to

generate the true carry signals to be used in the fifth and
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1ST LDJEL OF CSA
<B6 FULL ADDERS)

2ND LEVEL OF CSA
(93 FULL ADDERS)

3RD LEUEL OF CSfl

(51 FULL ADDERS)

Figure 3.3 Partial Product Reduction Dsing CSA.
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4TH LEVEL OF CSR
<42 FULL ADDERS)

5TH LEVEL OF CSR
<22 FULL RDDERS)

6TH LEVEL OF CSR
(19 FULL RDDERS)

INPUT TO 32-BIT CLP RDDER

Figure 3-4 Partial Product Reduction Using CSA (cont'd.)
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final stage. This requires a 64 bit latch at its output to

hold the carry signals and the two CLA operand vectors. The

final product appears at the output of the fifth stage and

is stored in a 32 bit wide latch so that latched outputs can

be provided to any subsequent circuits that this multiplier

may drive.

2 • Actual Implementatio n

The initial floorplan for the circuit is shewn in

Figure 3.5. This flcorplan closely follows the theoretical

implementation with two exceptions.

First, in a VLSI design, an AND gate used as a 1x1

multiplier is implemented with a NAND gate followed by an

inverter. This active-high signal is then input to an.

activ€-rhigh input, active-high output full adder in the

first level of CSA. Eather than construct these two circuit

elements in this manner, the actual implementation utilized

a NAND gate as the 1x1 multiplier driving an active-low

input, active-high output full adder. Any signal generated

with a NAND gate as a partial product bit that is not used

in the first level of CSA is simply routed through an

inverter to convert it to an active-high signal for use in

subsequent levels of CSA. This provided a reduction cf 256

in the number of inverters to fce constructed.

Second, the sign bits of each of the partial prod-

ucts must be extended to bit position thirty-one. These

extended bits must also be added in the Wallace tree reduc-

tion of the partial products. When these sign bits are

grouped for input to a full adder in the first level, up to

fourteen adders have the same three inputs. Rather than

duplicate the adders which would increase power consumption

and usage of chip area, only one adder was used to calculate

the sum and carry inputs to the next level of CSA. These

high fancut sum and carry inputs are then superbuf f er ed to
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NBNO ARRAY

LEUEL1

LDJEL2

LDS=3

LATCH
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LEVCL5

LOJEL6

LATCH

BLOCK P&G GENERATORS

LATCH

CLA

LPTCH

4-UI1 H1M33S"

LATCH

PRODUCT LOGO

Figure 3.5 Initial Floorplan.

drive the second level of CSA. This resulted in a savings

of thirty-five full adders not having to be implemented in

silicon.

The clocking of the circuit is accomplished hy a

non-overlapping two-phase clock. Both phases are input to

the circuit through separate input pads. An additional

signal called OP is provided to allow for the implementation

of a level sensitive scan design (LSSD) [Ref. 7]. In a

LSSD, the contents of the latches are either loaded in

parallel when OP is a high or serially shifted to an output
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pad and serially loaded from an input pad when OP is low.

This allows the contents of each of the first four latches

to be examined to aid in the detection of fabrication errors

or circuit malfunctions. The output latch is not serially

loaded or shifted to an output pad because its contents are

directly available at the output pads.

B. DESIGN TOOLS

Before the actual layout of a VLSI circuit can be under-

taker, certain CAD tools are needed by the designer. First,

a graphical layout editor is reguired to allow the designer

to ccnstruct a VLSI circuit. Second, to allow for the

implementation of complex logic functions, a PLA generator

is desired. Next, the ability to employ a design rule

checker on a layout is essential to insure that design rule

violations do not unintentionally occur. Finally, tools

that perform circuit simulation for logic, timing, and power

consumption are useful in determining the proper operation

of the designed circuit.

In the design of the 16-bit pipelined multiplier, the

CAESAE layout editor [Befs. 7,8] was used as the basis for

the layout of the entire chip. To facilitate the design of

complex logic functions, EQNTOTT [Bef. 9] and TPLA [Bef. 9]

were employed to construct complex programmed logic arrays

(PLAs) . LYBA [Bef. 9] was used to perform design rule

checks on the circuit. Circuit simulation for logic,

timing, and power were performed by ESIM [fiefs. 2,9],

CEYSTAL £Befs. 10,111 and PCWEST [Bef. 9] after a node

extraction was performed using MEXTBA [Bef. 9].

The manuals for each of the CAD tools discussed above

are available on the NPS Computer Science Department's UNIX

operating system. To obtain an on-line copy of the manual

for a specific design tool, issue the command

% cadman <design tool name>-
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To obtain a hardcopy cf a certain CAD tool manual, issue the

command

% cadman <design tool name> | lpr.

This ccmmand will send a copy of the normal CAD manual to

the lineprinter.

1

.

IQNTOTT

EC.NTOTT is a program which generates a truth table

suitable for input tc TPLA from a set of Boolean equations

which define the PLA outputs in terms of its inputs. The

equation syntax is

NAME = EXPRESSION;

where NAME is the output variable name and EXPRESSION is a

Boolean equation in sum of products (SOP) form that repre-

sents the output variable in terms of its inputs. In the

SOP expression, the 5 symbol denotes the logical AND, the ]

symbol denotes the logical OE, and the ! symbol preceeding

an operand denotes the logical inversion. The input and

output signal order, from left to right or top to bottom, as

appropriate, can be controlled with the INORDEF. and CUTCRDER

commands.

2

.

IPX

A

IPIA is a technology independent PLA generator that

supports design rules in the following styles:

1. Mead-Conway NMCS with butting contacts, no buried

contacts.

2. Mead-Conway NMCS with buried contacts, no butting

contacts.

3. MCSIS 3 micron bulk CMOS.
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It takes as its input the output of EQNTOTT and generates a

PLA layout in the desired technology- The default output

option is a CAESAR file. TPLA can provide inputs and

outputs en either the same side (cis version) or on opposite

sides (trans version) of the generated PLA- In addition,

clocked inputs and/or outputs can be supported ty TPLA

through another opticc selection.

3. IYRA

LYEA is a design rule checker that operates on

graphical files in CAESAR format. It can be invoked either

interactively while editing a CAESAR file or on a CAESAR

file and run in the background on the UNIX operating system.

The interactive mode is discussed in earlier work done by

Reid £Ref. 7]. In the background mode, LYRA is invoked by

executing the command

* lyra filename. ca S.

This generates a file named CHECKPT which contains the names

of all subcells of the design being checked that have

completed a design rule check. If an error is found in the

parent cell or any of its sutcells, a file with the same

name of filetype . ly is output to the user's current working

directory. This file contains all error information and can

be edited using CAESAR to view the errors for further

correction. This mode of operation for LYRA provides an

excellent means for design rule checking large designs that

normally would take a lonj time in the interactive mode.

C. LAYOUT

Cnce the designer has determined the architecture to be

implemented, the initial floorplan, and has mastered the CAD

tools that are availahle, the next step in the design cycle
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is to tegin the layout of the actual circuit. One technique

that is utilized in this design of a 16-bit pipelined multi-

plier is a form of tie hierarchical design method- In this

method, once the above three items are completed, the archi-

tecture is examined to look f cr some basic building blocks

that cculd be designed and used repeatedly in the construc-

tion of the circuit. Upon examination of the architecture

for the 16-bit pipelined multiplier, the four basic circuit

elements that can be designed and iterated throughout the

circuit are a full adder, a 4-bit block P and G generator, a

CLA unit, and a 1-bit latch cell.

The full adder is the main element in both of the first

two stages in the pipeline as veil as a basic buildirg block

for the 4-bit ripple carry adders in the fifth stage. The

first two methods of implementation that immediately arise

are constructing an adder by using either discrete gates or

a PLA generator such as TPLA. A third method [Ref. 12] that

is possible is to use pass transistors in a selector logic

circuit tc generate the sum and carry bits that are condi-

tioned on the three input bits to be added.

In choosing the adder to be implemented, two main

considerations in the selection of the adder are its speed

and power consumption. 3oth the discrete gate and the PLA

adders have a higher static power consumption than the

selector adder because they contain more depletion pull-up

transistors than the selector adder. After simulation of

these circuits for speed using CRYSTAL, it was found that

the selector circuit, with a 14.7 nanosecond propagation

delay, was faster than both of the other two by at least two

nanoseconds. Therefore, the selector adder was chosen as

one of the basic building blocks of the circuit. Figure 3.6

shows a circuit diagram of the selector adder used in the

design of the 16-bit icultiplier. Two minor drawbacks exist

to the selection of this type of adder. When the output of
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one adder drives the input of another, this is equivalent to

the output of a pass transistor driving an inverter. To

insure that the following adder inputs are driven tc the

necessary voltage levels to operate properly, the input

inverters to each vertical selector rail must have a pull-up

to pull-down ratio of eight. Also, the selector rail that

provides the true signal to the circuit must pass through

two inverters. This prevents the output of a pass tran-

sistor in the previous adder from directly driving the gate

of a pass transistor in the current adder [Ref. 1: pp.

24-25 ].

Figure 3.6 Selector Adder Circuit Diagram.
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Both the 4-bit block P and G generator and the CLA unit

are complex logic functions well-suited for implementation

as PLAs. These two circuit elements are implemented by

inputting Equations 2.3 and 2.4 (for the P and G generator)

and Eguations 2.9 to 2.15 (for . the CLA unit) into EQNI01T.

The output of EQNTOTT is then piped to TPLA to generate the

actual CAESAR files for the PLAs. Since data flows into cne

side and out from the opposite side of each stage, the trans

version of the PLAs was constructed.

The last building block of the circuit to be designed is

the 1-bit latch cell. Since a LSSD is an important

criterion for designing the 16-bit multiplier, the 1-tit

latch cell must be able to be loaded either in parallel

along the data path or in serial from an adjacent latch

cell. This function is under control of the OP signal.

To minimize the area consumed by the latch, a dynamic

latch composed of a pair of inverters coupled by pass tran-

sistors was selected. As in the adder circuit, a pull-up to

pull-dcwn ratio of eight is needed for the inverters because

they are driven by pass transistors. Figure 3.7 shows the

circuit diagram of the 1-bit latch cell as implemented. The

operation of the latch cell is as follows. For normal oper-

ation (0E=1) , the NOEEAL signal is high and the SHIFT signal

is low during PHIL Data appearing at the DATA IN port

drives the first inverter. When PH1 1 falls, the gate of the

first inverter retains the logic value of DATA IN in its

gate capacitance. "When PHI2 rises, this data drives the

second inverter which effectively transfers the data tc DATA

OUT and the next stage. For a shifting operation (OP=0)

,

the NORMAL signal is low and the SHIFT signal is high. Data

appearing at the LATCH IN port, which connects to EAIA OUT

of the next latch cell to the left, charges the gate capaci-

tance of the first inverter. The pass transistor transfers

the data to the second inverter on PHI2 as in a normal
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NORMAL PHI 2

DATA
IN

K=8o
SHIFT

SHIFT IN
FROM PREUIOUS CELL

SHIFT OUT
TO NEXT CELL

K=8
DATA
OUT

Figure 3.7 1-fcit Latch Cell-

operation. This effectively shifts the data from the LATCH

IN port to the LATCH OUT port in one cycle of the clock.

Figure 3.8 shows the circuitry to condition PHI1 with OP to

generate the NORMAL ard SHIFT signals used above.

PHI l

OP O D» NORMAL

r>—D» SHIFT

Figure 3.8 Generation of the Control Signals,
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Once these four basic building blocks are designed, each

stage of the pipeline and its latch is developed out of the

appropriate subcells. Next, the internal routing of signals

within a stage is accomplished through the use of a wire

list. Then the five stages of the circuit are wired

together to form the core of the design. Finally, all that

remains to be done is to connect this core design to a frame

to allow adequate interfacing for the packaging process.

This routing of signals both within the core of the

design and to the frame is an extremely time consuming task

that requires as much time, effort, and planning as the

design and layout of all the major components. The addition

of an automatic router would be a welcome addition to any

designer's CAD toolbag.

Ihe design frame is composed of a pad set that was

obtained from M05IS. These pads were specifically designed

for fabrication at 1.5 microns per lambda. A copy of these

pads is located in the file

/vlsi/berk83/lib/pads15.cif

and associated documentation can be found in the file

/vlsi/berk83/doc/pads15.

Both cf these files are located in the NPS Computer Science

Department's VAX11-780 running the UNIX operating system.

Numerous repetitions of the design - rule check - rede-

sign cycle occurred before a final design was obtained.

Using 1YEA for the design rule check on a large design such

as the 16-bit aultflier requires approximately 1000 CPU

minutes. When the UNIX system is heavily loaded, this

results in a turn-aicund time on the order of two tc three

days. Figure 3.9 depicts the final design of the entire

chip. Each of the six levels of CSA are shown as levell

through level6. The latches are labelled latchxx where xx

is the appropriate number of bits in the latch. The blcck P

and G generators are designated PG and the CIA unit is
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simply shown as CLA. The 4-bit ripple carry adders are

shown as ADD. Three blocks not previously discussed are

labelled AMP. These are control line drivers that drive the

high fancut NORMAL, SHIFT, and PHI2 signals to each of the

latches. These drivers are composed of the same circuitry

used ty the output pads to drive off chip loads.

16 Pin PIN3 IS Bin PIN3

NflND ARRAY

LEVCL1

LE\CL2

LEUEL3

LATCH143

L£UEL4

LDJO-5

LDJEL6

LPTCH57

PG PG PG PG PG PG PG

LflTcH70

CLfl

LflTCH54

IPDnlflDDlADDlPODlflGDlflnDlflnPlflDDl

LATCH32
]

32 PRODUCT PIN9 I LOGO 1

Figure 3.9 Final Chip Floorplan.

The actual plots cf each of the four building blocks and

the final circuit layout are contained in Appendix A. Ihese

plots were generated using the program CIFPLOT [Ref. 9].

40



E. DZSIGM VALID1TI0H

The next step in the design cycle is to functionally

validate the chip's operation hefore it is sent to MCSIS for

fabrication. This will give the designer a high degree of

certainty that the chip operates logically as desired with

an approximate power consumption and at a certain maximum

frequency cf operation.

Before these three items can be accomplished, two

preliminary steps must be accomplished. First, the CAESAR

file must be edited to label the nodes and a Caltech

Intermediate Format (CIF) file generated. For the purpose

of performing design validation using CAD tools, the scale

of centinicrons per lambda must be an even multiple of four.

This prevents round-cff errors in the resultant CIF file.

Since the final design is to be fabricated at lambda equals

1.50 nicrons, 152 centimicrons per lambda is used. Second,

the CIF file must be passed through the MEXTEA program using

the command

% mextra -o filename. cif &

so that a node extraction is performed on the circuit. On

large files, it is extremely useful to run this program in

the background mode as shown by the > in this command. A

large CIF file such as the one for the 16-bit multiplier can

take up to thirty minutes of CFO time to run. When the UNIX

systen is heavily loaded, this requires eight to ten hours

of real time. The output files are directly compatible with

the CAD simulation tools to be used.

1 • l23ica 1 Simulation

The first step in any design validation process is

to deternine if the circuit functions as it was designed to.

Today, as the complexity of VLSI designs increases, the
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number cf possible inputs goes up tremendously. For

example, to exhaustively test just the normal operation of

the 16-bit multiplier would require each possible combina-

tion cf the 16-bit multiplier and multiplicand inputs. Ihe

number of possible ccnbinations of the vectors a and t is

(216)2 = 232 = 4,294,967,296.

The ESIM logic simulator is the CAD tool to be used

for checking operation of the 16-bit multiplier. If a

vector pair is input only once, without regard to order, and

at an estimated rate cf two test vector pairs simulated per

minute, this would require

4,294,967,296 vectcrsxl day/2880 tests=1 . 49x 1 0* days.

This amounts to over 4085 years required to perfom an

exhaustive test.

Iherefore, seven representative pairs of test

vectors were selected for simulation to determine if the

circuit operates correctly. Exhaustive testing is not

possible, but most possible errors would be revealed by

these fei«, carefully chosen test vectors. These seven test

vectors are:

1. +143 x +27

2. -143 x +27

3. +143 x -27

4. -143 x -27

5. +1123 x +891

6. -1123 x +891

7. -32768 x -32768

These vectors were designed to test as large a number of

subcircuits as possible. The first four vector pairs test

the basic architecture for the correct implementation cf the

algorithn represented by Equation 3.1. The positive/
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negative and negative/negative test vector pairs also test

the CIA adder's ability to produce a proper sum over the

entire thirty-two bit width- The next two vector pairs test

the ability of the CSA in the Wallace tree reduction scheme

to produce a correct result in the upper sixteen bits of the

product. The last test vector is the largest negative

number representable in 16-bit two's conplement form-

Further simulation with additional test vectors would

increase the confidence of the designer in the ability of

the circuit to properly simulate a 16-bit two's complement

multiplication prior to fabrication.

Cnce the read-in of the .sim file by ESIfl is

completed, the initialization of the circuit, the defining

of watched nodes, and describing the clock cycles must be

accomplished before any simulation is performed. Rather

than do this each time ESIM is entered, a macro file was

created that is called at the beginning of each session.

This file is called init_esim and is shown in Figure 3.10

for the 16-bit multiplier. The input vectors for the two

operands are represented as ain and bin. The resultant

product vector is shewn as phigh and plow representing the

upper and lower 16-bits of the 16-bit product, respectively.

The latch input and cutput signals are represented as the

vectors latchin and latchout where the leftmost tit corre-

sponds to the first latch and the rightmost tit tc the

fourth latch.

After initialization of the circuit by executing the

init_esim macro, at each clock cycle the seven test vector

pairs previously defined are input in sequential order. In

each case, on the fifth clock cycle after introduction of a

test vector, the correct product appeared at the output pads

phigh and plow. This demonstrates that the circuit can

properly multiply two 16-bit two's complement operands to

yield a 16-bit result with the result dependent only en the
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w op

W ain a!5 al4 al3 al2 all alO a9 a8 a7 a6 a5 a4 a3 a2 al aO

W bin bl5 bl4 bl3 bl2 bll blO b9 b8 b7 b6 b5 b4 b3 b2 bl bO

W latchin ll_in 12_in 13_in l4jn

W phigh p31 p30 p29 p28 p27 P26 p25 p24 p23 p22 p21 p20 pl9 pl8 pl7 pl6

W plow pl5 pl4 pl3 pl2 pll plO p9 p8 p7 p6 p5 p4 p3 p2 pi pO

W latchout ll_out 12_out l3_out l4_out

K phil 01000 phi2 00010

h op

s

Figure 3.10 Initialization Macro for ESIM.

inputs tc the circuit five clock cycles prior. The results

of this logic simulation are contained in Appendix B.

The serial shifting of the latches has simulated and

used to generate the intermediate results discussed in the

next chapter. This also proved to logically operate as

expected, thus giving the designer a high degree of confi-

dence that the circuit operates as desired.

2 . liming

The CRYSTAL VISI timing analyzer is used to test for

the worst case propagation delay in the circuit. Each phase

of the clock in Loth a normal and shifting operation is

checked for a critical path that is defined to be within cne

percent of the worst case propagation delay. These critical

paths determine the naximum clock speed at which the circuit

can properly operate. The worst delays found are discussed

for each phase of the clock.
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Cn the rising edge of an externally applied phil

,

the longest propagation delay occurs from the input pads

until the data is stcred in the first inverter of the stage

1 latch. This delay is found to be 558.82 nanoseconds.

This long delay can te attributed to the two high fanouts

that occur in the data path of the first stage. The first

is a fanout of sixteen that occurs at each input pad to the

input of the sixteen NAND gates used as 1x1 multipliers.

The second is a fanout of fourteen that occurs at the end of

the first stage where the full adder cells that correspond

to the extended sign bits are distributed to drive full

adders in the second stage .

When phil falls, it takes 89.11 nanoseconds for the

latch cells to turn of their input pass transistors and

isolate the data so it may be transferred during phi2. This

fall time corresponds to the separation time between phil

and phi2 when both clock phases are low.

Cnce a rising clock edge is applied to phi2, it

takes 96.26 nanoseconds for the pass transistors in the

latch cells to turn or and charge the second inverter. To

complete the transfer of data, these pass transistors must

be disabled by the falling of phi2. This corresponds to the

minimum separation tetween the phi2 and phil clock phases

and is found to be 6 4.28 nanoseconds.

Figure 3.11 depicts the minimum clock cycle for the

16-bit multiplier as determined by CKYSTA1. This equates to

a maximum overall clock frequency of 1.234 MHz. The results

of the CHYSTAL timing analysis are contained in Appendix E.

3 - lower Consumption

EC power requirements for the 16-bit multiplier are

determined through the use of the CAD program POTEST.

POWEST looks for pullup transistors and determines a total

count of these devices. Using a reference power consumption
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Figure 3.11 Hininum Clock Cycle Parameters.

for pullup transistors of certain sizes and types, it

obtains a maximum estimate of power consumed by assuming all

pullups are on at the same time. The average power consump-

tion is determined by assuming that only half of the pullups

are en at a given time.

lor the 16-fcit multiplier, the maximum DC power

consumption is found to be 3.177 Watts with an average power

consumed of 1.983 Watts. The results of the POWEST simula-

tion are found in Appendix B.
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IV. TEST PLAN

As stated earlier, the use of the logic simulator ESIM,

the CRYSTAL timing analyzer, and POWEST will give the

designer a high degree of confidence that the circuit

designed will perform as desired. Once the circuit has been

fabricated and received from MOSIS, it must be tested to

insure that fabrication and/or bonding errors did not occur.

Preliminary work done by Carlson on a 16-bit pipelined

multiplier indicates that errors in fabrication and/or

bonding do actually cccur. In this chapter, a test plan for

the verification of tower consumption, correct logical oper-

ation, and maximum speed of operation is presented.

A. IEENTIEYING INPUT AND OUTPUT PINS

After fabrication, the chip will come back packaged in

an 84 tin sguare grid package with 21 pins on each side.

Since only 77 pins are used in the 32-bit multiplier, it is

imperative that the pin to pad connections are accurately

known. To do this, one must properly orient the chip.

Close examination of the chip will reveal the logo "GC ARMY"

located between the GND and Vdd rails that run arcund the

perimeter of the chip. Place this logo in the southeast

corner as shown in Figure 4. 1. Using this logo as a land-

mark, proceed clockwise around the chip starting on the

southern edge.

Along the southern edge are twenty-one output pads that

are used for a porticn of the product. Representing the

product as p31...p0 where pO is the least significant bit,

the southern edge contains signals p6 through p26 as one

moves from east to west. The western edge is made up of
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Figure 4. 1 Pad Identification.
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five output pads and twelve input pads. Moving frcm south

to north, the first five pads are p27 through p3 1 . The next

pad is the phi2 clock input followed by the four latch

serial inputs for latch 4 through latch 1. Then comes the

Vdd pad followed by the six most significant bits of the

multiplier a15 through a10. Moving west to east along the

northern edge, the remainder of the multiplier inputs a9

through aO and the eleven inputs of the multiplicand t15

through t5 are encourtered. Along the eastern edge going

from north to south, the remainder of the multiplicand pads

b4 through bO are found followed by the GND pad. Next are

the fcur latch serial outputs for latch 1 through latch 4.

Next are the OP and phil inputs which are followed by the

lower six bits of the product vector pO through p5. This

should complete the circuit around the chip and leave one

back at the logo. Extreme care must be exercised when

tracing the fine wires from the bonding pads to the pins,

especially along the east and west edges where the number of

pins is greater than the number of bonding pads.

To power the chip +5 volts DC should be applied tc the

Vdd pad and volts tc the GND pad. All inputs should use

Vdd to represent a logic 1 and GND for a logic 0. The

outputs use the same levels as the inputs to represent the

two logic levels. Tc measure the outputs, they should be

connected to a device with a high input impedance.

According to the documentation for the pads, the output pads

are designed to drive approximately two TTL loads, but may

require a puliup resistor to obtain a full Vid output level.

B. PCWEE COHSUHPTION

The simplest of the three tests to perform is to check

the static DC power consumption of the circuit. Once input,

output, and supply pins are properly connected, this can be
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accomplished by inserting a mi lliam meter into the Vdd supply

line and measuring the nuber of amperes the circuit is

drawing. This value multiplied by the +5 volts of the power

supply will give an approximate average DC power consump-

tion. This figure should be in the vicinity of the 1.983

Watts predicted by PGKEST.

C. TESTI8G FOB LOGICAL OPERATION

Since exhaustive testing of the 32-bit multiplier is

virtually impossible, the same seven test vectors that were

used in ESItt should be utilized to verify correct operation.

In addition, other random vector pairs should be tested for

correct operation in the circuit. At this point, speed of

operation is not a concern and the clock frequency should be

reduced by a magnitude of approximately ten from that

predicted by CRYSTAL This will insure that propagation

delays dc not beccne a factor in determining logical

correctness.

First, the vector pairs should be applied one at a time

and a minimum of five clock cycles completed with OP at a

logic 1. At the end of the fifth clock cycle, the output

should represent the correct product for the input pair.

This will at least insure that the chip performs a 32-bit

two's ccapiement multiplication. This should be done for

each cf the seven test vector pairs that were used in ESIM.

Next, each of the seven test vector pairs should te applied

every clcck cycle. After a delay of five clock cycles, the

correct results should appear at the output during phi2 of

each cycle of the clock. This establishes the fact that the

chip can multiply in a pipelined manner.

To determine if the latches can serially operate as

designed, known sequences should be applied at the inputs

with the OP pin at a logic 0. Since the latches that are
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output to the four latch output pads are all of different

lengths, the output of this operation will occur at

different times for each pin. For latch 1, latch 2, latch 3

and latch 4, the input sequence will start appearing at the

appropriate output pin after 143, 57, 70 and 64 clock

cycles, respectively -

If any of the test vectors fail, the intermediate latch

results cf each vector pair can be shifted to an output pin

for examination. This can provide an excellent aid in

locating circuit faults. The intermediate latch values and

the final product outputs for each of the seven test vector

pairs are found in Appendix C.

D. TESTING FOE flAXIBOM SPEED

The third and final test to be performed on the chips

that pass the logic function testing is to determine the

maximum frequency at which they will operate correctly. To

accomplish this, the duration of the time that phil and phi2

are high and the two interphase times when phil and phi2 are

low should be separately reduced until an incorrect product

is generated. This should be done with each of the seven

test vectors until a minimum time is found for each of these

four clock parameters. Then the worst case for each of

these parameters over all seven test vectors can be called

the minimum clock parameters for the 32-bit multiplier. The

maximum cverall clock frequency for the chip is then just

the reciprocal of the sum of the four minimum clcck

parameters.
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V. POLL CUS1CH VS. SILICON COMPILER DESIGN

One of the main advantages of using a silicon compiler

is that it provides an extremely fast transition time from

the initial architecture to the final layout of the design.

This author estimates that the total time to actually

generate the design of the 8-bit multiplier by Carlson

[fief. 2] using the MacPitts silicon compiler was less than

24 man-hcurs. Theoretically, at the end of this time, a

functionally correct layout is generated. Later wcrk done

by Froede [Ref. 11] on this compiler has proven that

MacPitts does not always generate a correct layout. In

comparison, the time consumed in the design of the 16-tit

multiplier presented in this thesis is estimated at over 750

man-hcurs.

This design turn-around time advantage of using a

siliccn compiler for chip generation allows the designer a

great degree of freedcm to explore possible different archi-

tectures to solve a problem and actually see the results in

siliccn. This freedom is not enjoyed by the full custom

designer whose architecture must be thoroughly researched

and optimized prior to the layout of the actual chip. If

this is net the case, a tremendous loss of valuable man-

hours occurs when the redesign of a chip»s basic architec-

ture must be undertaken.

Ihe use of a silicon compiler is not without its disad-

vantages though. Three of the main areas that a siliccn

compiler generated chip is at a disadvantage are:

1. density of transistors.

2. speed of operation.

3. power consumption per transistor.
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Tc make a specific comparison, an 8-bit multiplier

generated by the MacPitts silicon compiler available at NP5

was compared with the full custom multiplier of this thesis.

Ike f cllowing sections discuss -the three main areas listed

above. They are preceeded by a discussion of the two

circuit architectures that are to be compared.

A. EUHCTIONAL ARCHITECTURE

The architecture of the 16-bit multiplier has already

been thoroughly presented in the previous two chapters. In

summary, the chip performs a 16-bit two's complement pipe-

lined multiplication on 16-bit operands with a latency of

five cycles of a two phase clock. The circuitry for this

chip is designed using a minimum feature size of 3.0 micrcns

and is wholly contained on one integrated circuit.

The multiplier generated by the MacPitts silicon

compiler performs an 8-bit multiplication on unsigned 8- tit

operands with a latency of eight cycles of a three phase,

five segment clock. It uses the basic add-and-shif t algo-

rithm for the basis cf its architecture. Due to the limita-

tions in chip dimensions, pin count, and minimum feature

size imposed by MOSIS at the time the chip was fabricated,

this chip was designed with a minimum feature size of 4.0

microns. It requires the cascading of two identical inte-

grated circuits to perform an 8-bit multiplication.

Additionally, the 16-bit multiplier employs a L3SD tech-

nique that allows the contents of each of the four interme-

diate latches to be serially examined to aid in the

detection of circuit fabrication errors. The MacPitts

multiplier does not employ this technique and determing

fabrication and/or design errors is extremely difficult, if

not impossible, to perform by examining just the chip

outputs. A LSSD technique could possibly have been included
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in the HacPitts design, but if included the maximum chip

area defined by MOSIS may have been exceeded.

B. CHIP AREA AHD DEHSITY

Since both VLSI circuits are designed with different

minimum feature size, to provide a fair basis for comparison

of the two designs the 16-bit multiplier is normalized to a

4.0 micron feature size- Figure 5.1 shows the resultant

.log file from the MIXTRA node extractor for both the 8-tit

and 16-bit multipliers. This file contains the chip dimen-

sions in microns and the number of transistors in the

circuit

.

Window: 676600 602400
' 801 depletion

1612 enhancement

1398 nodes

Macpitts 8-bit Multiplier,

Window: -600 919350 -600 789300

, _ 3914 depletion

11962 enhancement

8503 nodes

Custom 16-bit Multiplier.

Figure 5.1 MEXTRA .log Output.

The size shown in Figure 5.1 for the 16-bit multiplier

is based on a 1.5 minimum feature size. This results in
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chip dimensions of 9199-50 by 7899.0 microns. By current

MOSIS limitations, the maximum chip dimensions are 9200.0 by

7900.0 microns. Therefore, at lambda equal 1.5 microns the

overall design is within one micron or less of the maximum

allowed by MOSIS. Normalizing the circuit dimensions tc a

4.0 micron minimum feature size, the 16-bit multiplier

consumes an area 12,260.0 by 10,532.0 microns. By compar-

ison, the MacPitts generated 8-bit multiplier occupies an

area 6766.0 by 6024.0 microns. The MacPitts chip consumes

approximately one-third of the area of the hand-crafted

multiplier.

Ihe ether main point of interest that deals with the

physical characteristics of the chip is its transistor

density cr number of transistors per square micron. Ecr the

normalized 16-bit multiplier. Figure 5. 1 shows a total of

15,876 transistors. This yields a transistor density of

1.23 x 10~* transistors per square micron. For the MacPitts

multiplier, the MEX1RA node extraction found a total of

2,413 transistors. Ihis gives a transistor density of 5.92

x10-5 transistors per square micron. One interesting point

to note is that the MacPitts compiler found eighty-four more

transistors on the 8-bit multiplier than the MEXTBA node

extractor did £fief. 2]. One possible explanation for this

difference is that KacPitts generates some unusual tran-

sistor structures that were unrecognizable by MEXTEA.

C. PCWEE CONSUMPTION

One area that is becoming more and more important with

the increasing number of transistors per chip that is being

created by improved technology is the static DC power dissi-

pation of a VLSI circuit. For the purposes of providing

comparisens, the CAD prcgram PCflEST is used as the basis for

reference.
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For the 16-bit multiplier, the average DC power consump-

tion is found to be 1.983 Watts with a maximum power usage

of 3.177 Watts. Using POWEST on the 8-bit multiplier

yielded an average DC power consumption of 0.352 Watts and a

maximum power usage cf 0.667 Watts. Appendix B contains the

results of the POWEST runs on both of the designs. The

MacPitts silicon compiler also outputs an estimate it makes

of the naximum power consumed ty a circuit. For the 8-tit

multiplier, this value is 0.407 Watts. This value is over

thirty-five percent less than the POWEST maximum value.

One way to possibly compare the power consumption for

the two designs is to determine a power consumed per tran-

sistor figure. Using the maximum POWEST values for both

designs yields 2.30 x 10-4 Watts per transistor for the

16-bit multiplier and 2.77 x 10-4 Watts per transistor for

the 8-tit multiplier. The difference between these two

figures can be primarily attributed to the following. The

MacPitts multiplier uses nine two input NAND gates to

generate the full adders used in each stage. The custom

multiplier uses a selector adder composed primarily of pass

transistors which consume no DC static power. This results

in an overall lower pcwer consumption per transistor for the

16-tit multiplier when compared to the 3-bit multiplier.

D. STEED CF OPEBATICB

As discussed earlier, CRYSTAL determined that the

maximum clock frequency for the 16-bit multiplier is 1.234

MHz. MacPitts generated designs use a different clocking

scheme than the two phase, non-overlapping clock presented

by Mead and Conway [ Eef . 1: p. 65]. It uses a three phase,

five segment overlapping clock to generate the control

signals for each latch in the pipeline. For a full discus-

sion cf the MacPitts clocking scheme and how to use the
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CRISTA! timing analyzer on a MacPitts design, the reader is

referred tc work done by Froede [Ref- 11]. The timing anal-

ysis was performed on the MacPitts multiplier in accordance

with this document and the worst-case CRYSTAL timing results

are cortained in Appendix B.

The overall minimum clock period for a CRYSTAL design is

found by adding the worst stage propogation delay that

occurs during the first two segments of the clock to the

last three clock segment delays. For the 8-bit multiplier,

the longest stage is the first- The critical path is found

to run from the input pads, through the Weinberger array,

and then through eight full adders cascaded in series to

perform cne summation of the partial products in the add-

and-shift algorithm. This delay was found to be 4838.89

nanoseconds. The sum of the individual times for the clock

signals tc travel frcm the input pads to the latch cells

during the last three segments of the clock is 207.14 nano-

seconds. This results in an overall minimum clock period of

5046. 03 nanoseconds and a maximum clock frequency of 198.176

KHz. The high propcgation time in the first stage of the

circuit is due primarily to three things. First, high

resistance polysiliccn is utilized for the long data runs.

Second, no signals are buffered in any way to provide an

improved signal sourcing capability to help combat the high

fanouts and long data runs. Third, am 8-bit ripple carry

adder is utilized to sum two partial products in every stage

of the pipeline. Each 1-bit full adder in an 8-bit ripple

carry adder is composed of nine NAND gates. The carry in

between each full adder in the ripple carry adder is net

routed directly, but is routed over a long polysilicon wire

which also contributes to the high critical path delay.
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E. SUHHABI

Table III summarizes the results for the comparison of

the hard-crafted design and its silicon compiler generated

counterpart. The results are as expected with the custom

design having a six-fold increase in maximum speed, a

thirty-eight percent decrease in power consumption per tran-

sistor, and a doubling of chip density over the MacPitts

design. The true advantage of the MacPitts silicon compiler

is in its ability tc provide extremely rapid design turn-

around time versus a hand-crafted design. As research

continues into the area of silicon compilation and improve-

ments are made to existing compilers, they may someday

become the powerful and useful tool that they have the

potential to be.

TABLE III

Summary cf Comparison Statistics

PARAMETER CUSTOM_MULT MACPITTS MULT

SIZE CF 16 bits 3 bits
OPERAND INPUTS

DI?EKSICNS 12266 x 10532 6766 x 6024
(micr ens)

DENSIIY 1.23x10"* 5.92x10"5
(transistors/micrcn 2

)

STATIC DC POWER
(Nattsl

POTEST
AVERAGE
MAXIMUM

MACPITTS
MAXIMUM

1.983
3. 177

NA

0.352
0.667

0.407

POfcER/IRANSISIOR
(Watts)

2. 00x10"* 2. 766x10-*

MAXIMUM FREQUENCY
(KHz)

1234.0 198. 176

DESIGN TIME 750 24
(man-hours)
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VI. CONCLUSION

In this thesis, the application of carry-save addition

to a 16-bit two's complement multiplication and its imple-

mentation as a pipelined VLSI design have been presented. A

comparison between this hand-crafted design and an 8-fcit

unsigned multiplier was developed- This comparison coupled

with the experience gained in the actual design and computer

simulation of the multiplier leads to the following conclu-

sions and recommendations.

A. EESIGN OF THE MOITIPLIEB

If the design of the multiplier were to be undertaken

again, three changes to the circuit would be desirable.

First, the incorporation of a static latch would be

attempted provided a feasible design that would fit into the

limited available chip area could he developed. A static

latch would insure that data remains valid and not be

discharged from the inverter's gate capacitance if toe slow

a clock is applied. Second, the high fanout from the latch

control drivers would be divided into a tree structure. At

its termination points would be smaller, more efficient

drivers that would drive a fanout not greater than five.

Third, improvements tc the buffering of the high fanout sign

extended bits of the first stage and the outputs of certain

1x1 multipliers would be accomplished. Both of the last two

improvements would be directed at optimizing the maximum

clock freguency of the multiplier.

Another possible solution to the long propagation delay

through the first stage is to partition the stage intc two

stages with approximately egual delay. Although this would
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reduce the propagation delay through the first stage, the

increase in routing complexity and area required for an

additional 204-bit latch may not be feasible in current

MOSIS limitations.

The 1SSD technique is highly recommended to he applied

to any pipelined design so that the testing and detection of

fabrication errors is made easier. Not only will the LSSD

technique prove beneficial in the after-fabrication testing,

but it also proved estremely useful in CAD simulation before

fabrication to detect routing errors. The value of imple-

menting a LSSD in most cases will far outweigh the increased

complexity of the latch design and the potential frustration

in searching for errors based on final latch outputs.

A 32-bit CIA adder could he developed to complement the

16-bit multiplier. This can be accomplished very rapidly

and with little additional effort by using the same method

described in this thesis with the following exception.

Since the carry in to an adder is not necessarily zero, the

equations actually input to EQNTOTT and TPLA should be

Equations 2.3 through 2.8 and Equations 2.13 through 2.15.

Additionally, the use of full 32-bit operands will require

the expansion of all of the latches.

E. CAD HSBDWABE AND SOFTWABE

The combination of EQNTOTT AND TPLA proved to be a very

useful pair of CAD tools in the development of complex logic

functions. Additionally, TPLA appears extremely versatile

with the different technologies available and its numerous

options.

CAESA3 proved to be a very good design tool for the

graphical layout of a VLSI design. The installation cf its

successor, the layout editor MAGIC, should greatly ease the

routing turden of the designer.
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The coming addition of hardware to support actual

testing of chips that have been fabricated by MOSIS will

greatly aid in determining the accuracy of available CAD

simulation tools. Once these in-house testing capabilities

are available, extensive testing should be accomplished in

the . two multipliers discussed here. In particular, a

detailed comparison should be made between CAD simulation

and actual results in the areas of functional operation,

maximum speed, and static DC power consumption.

C. SILICON COMPILATION

Even though the MacPitts program available at NES by no

means provides an optimum integrated circuit design, it is

an excellent vehicle from which to study the area of silicon

compilers. They provide an excellent alternative to the

custom, gate array, and standard cell interconnection

methods that are in tse today. Further research into opti-

mizing the existing MacPitts silicon compiler for speed,

power consumption, and transistor density should be

undertaken.
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APPENDIX A

STIPPLE PLOTS

On the following pages are the stipple plots of the four

basic building blocks that were used in the design of the

16-bit multiplier. Following these is a stipple plot of the

final layout for the 16-bit two's complement multiplier that

was designed for this thesis. For the purpose of clarity

and continuity, a stipple plot of the 8-bit multiplier

generated by the KacPitts silicon compiler is also

presented. All plcts were made with the CAD program

CIFPLCT.
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Figure A.1 Full Adder Cell.
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Figure A. 3 CIA Unit
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Figure A. 4 Block E and G Generator,
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APPENDIX B

SIMULATION RESULTS

The following pages in this appendix contain, in order,

the resultant ESIM and CRYSTAL session for the 8-bit multi-

plier, the CRYSTAL timing analysis for the 8-bit multiplier,

and the POWEST estimates for both the 16-bit and 8-bit

multipliers.
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ESia results for 16-bit two's complement multiplier

32.

11962 transistors. 8452 nodes (3914 pulled up)

sim> <§ init_esim

initialization took 33772 steps

initialization took 4682 steps

initialization took 230 steps

initialization took steps

initialization took steps

step took 6 events

latchout =0000

plow- 1111111111111111 65535

phigh= 11111 111 111 11 111 65535

latchin--0000

bin -0000000000000000

a in = 0000000000000000

op=l

sim> R 5

sim> v

laichout = 0000
plow = 0000000000000000

phigh = 0000000000000000

laiohin=-0000

bin -0000000000000000

ain =0000000000000000

Op— 1

h inputs: Vdd op

1 inputs: GND phil phi2

sim> @ test_yectorl

step took 451 events

latchout= 0000
plow =0000000000000000

phigh- 0000000000000000

latchin=0000

bin = 00000000 10001 111 143

ain = 0000000000011011 27

op=l
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Mill ~ (.

hlch'-'Ut 0000

plow oooooooooooooooo o

phigh -0000000000000000

laichin = 0OOO

bin 0000000010001111 143

ain -000000000001 10H 27

op— 1

cycle took 3785 events

sim> <3 test_yector2

step took 1927 events

latchout=0000

piow^oooooooooaoooooo o

phigh = 0000000000000000
latchin = 0000

bin — 1 11 1 1 1 1 101 110001 65393

ain = 0000000000011011 27

op = l

sim> c

latchout=0000

plow = 0000000000000000

phigh = 0000000000000000
latchin = 0000

bin-Ill 111 1 101110001 65393

ain=0000000000011011 27

op=l
cycle took 4888 events

sim> @ test_yector3

step took 2819 events

latchout= 0000

plow =0000000000000000

phigh = 0000000000000000
latchin = 0000

bin = 0000000010001111 143

ain- 111111 111 1100101 65509

op=l

sim> c

latchout = 0000

plow 0000000000000000

phigh -000000000(X)00000

latchin=0000

bin = 0000000010001111 143

ain = 1111111111100101 65509

op=l

cycle took 5243 events
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>>iii Q lost _vector4

<i*»p took 4777 events

latrhout-0000

plow-- 0000000000000000

phigh =0000000000000000

latchin = 0000
bin -11 11111101110001 65393

ain = l 11 111 111 1100101 65509

op = 1

sim> c

latchout=0000

plow = 0000000000000000

phigh-- 0000000000000000

latchin = 0000

bin=- 111 1 11 1101110001 65393

ain= 1111 11 111 1100101 65509

op= 1

cycle took 4821 events

sim> @ test_yector5

step took 3403 events

latchout=0000

plow = 0000000000000000

phigh -=0000000000000000

latchin=0000

bin = 00000l0001100011 1123

ain = 0000001 101111011 891

op- 1

sim > c

laichout-0000

plow = 00001 11 100010101 3861

phigh = 0000000000000000

latchin=0000

bin -0000010001 100011 1123

ain = 0000001 10111101 1 891

op=l

cycle took 5981 events
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sim Q test _yector6

step took 2121 events

latchout=0000

plow- 0000111100010101 3861

phigh- 0000000000000000

latchin=0000

bin=-0000001101111011 891

ain = 1111101110011101 64413

op—

1

sim> c

latchout=0000

plow = 1111000011101011 61675

phigh=llllllllllllllll 65535

latchin=0000 .

bin=0000001101 111011 891

ain= 1111 1011 1001 1 101 64413

op—

1

cycle took 5341 events

sim> @ test_yector7

step took 1708 events

latchout = 0000
plow=1111000011l01011 61675

phigh = 1111111111111111 65535

latchin=0000

bin - 1 000000000000000 32768

ain = 1000000000000000 32768

op= 1

sirn> c

latchout=0000

plow = ]111000011101011 61675

phigh = l 111111111111111 65535

latchin-0000

bin = 1 000000000000000 32768

a in 1000000000000000 32768

op- 1

cycle took 5084 events
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sim - c

latchout=0000

plow = 000011 1100010101 3861

phigh -0000000000000000

)atchin=0000

bin -1000000000000000 32768

ain= 1000000000000000 32768

op=l
cycle took 4786 events

sim^> c

latchout = 0000
plow = 0100010010010001 17553

phigh = 0000000000001111 15

latchin=0000

bin -1000000000000000 32768

ain= 1000000000000000 32768

op- 1

cycle took 4170 events

sim> c

lalchout=0000

plow = 1011101101101111 47983

phigh= 111111111 1110000 65520

latchin=0000

bin =1000000000000000 32768

ain = 1000000000000000 32768

op= l

cycle took 4280 events

sim> c

latchout = 0000

plow -0000000000000000

phigh = 0100000000000000 16384

latchin = 0000

bin -1000000000000000 32768

ain = 1000000000000000 32768

op= 1

cycle took 3953 events

sim> q
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CRYSTAL results for 16-bit two's complement multiplier.

Crystal, v.

2

: build mult32.sim

[1:12. lu 0:12.4s 1786k]

: inputs a<15:0> b<15:0> op phil phi2

[0:00. lu 0:00.1s 1795k]

: inputs ll_in 12_in I3_in l4_in

[0:00.0u 0:00.0s 1795k]

: outputs p<31:0> ll_out 12^>ut l3_out l4_out

[0:00.Ou 0:00.0s 1795k]

: markdynamic phil phi2

Marking transistor flow...

Setting Vdd to 1...

Setting GND to 0...

[0:08. lu 0:01.1s 1795k]

*** RISETIME FOR PHI2 IN NORMAL OP ***

: set 1 op

[0:00.5u 0:00.1s 1795k]

: set phil

[0:00.7u 0:00.1s 1795k]

: delay phi2 -1

(12279 stages examined.)

[0:46. 8u 0:04.6s 1855k]

: critical lm
Node 14171 is driven high at 98 26ns

...through fet at (2772, 1751) to Vdd after

16259 is driven low at 95.79ns

...through fet at (2792, 1810) to GND after

16968 is driven high at 92.08ns

...through fet at (2800, 1819) to 17829

...through fet at (2794, 1823) to Vdd after

1273 is driven high at 89.36ns

...through fet at (313, 1486) to Vdd after

11735 is driven high at 35.90ns

...through fet at (303, 1506) to Vdd after

1 1765 is driven high at 14.17ns

...through fet at (287, 1506) to Vdd after

11745 is driven low at 10.03ns

...through fet at (285, 1422) to GND after

11764 is driven high at 5.79ns

...through fet at (160, 1582) to Vdd after

12847 is driven low at 0.11ns

...through fet at (156, 1604) to GND after

phi2 is driven high at 0.00ns

[0:00. 3u 0:00.1s 1855k|
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*** FALLTIME FOR PHI2 IN NORMAL OF *••

: clear

;0:00.9u 0:00.3s 1855k)

: set 1 op

Marking transistor flow...

Setting Vdd to 1...

Setting GND to 0...

[0:06. 4u 0:00.6s 1855k]

: set phil

[0:00.8u 0:00.1s 1855k]

: delay phi2 -1

(16400 stages examined.)

[0:58. 8u 0.02.6s 1879k]

: critical lm
Node 11983 is driven low at 64.28ns

...through fet at (2836, 1550) to GND after

12776 is driven high at 64.98ns

...through fet at (2842, 1602) to 13219

...through fet at (2852, 1602) to 13220

...through fet at (2863, 1645) to Vdd after

12892 is driven high at 54.01ns

...through fet at (2840, 1645) to Vdd after

13081 is driven low at 53.08ns

...through fet at (2836, 1656) to GND after

14010 is driven high at 55.67ns

...through fet at (2756, 1696) to 14572

..through fet at (2772, 1696) to 14437

...through fet at (2782, 1751) to Vdd after

14171 is driven low at 35 54ns

. through fet at (2767, 1756) to GND after

16259 is driven high at 33 63ns

through fet at (2794, 1800) to Vdd after

169(>8 is driven low at 22.80ns

...through fet at (2800, 1819) to 17829

...through fet at (2792, 1816) to GND after

1273 is driven high at 21.54ns

...through fet at (313, 1486) to Vdd after

11735 is driven hi^'h at 13 39ns

...through fet at (293, 1506) to Vdd after

11765 is driven low at 10.69ns

...through fet at (285, 1483) to GND after

11745 is driven high at 7.19ns

...through fet at (287, 1410) to Vdd after

11764 is driven low at 2 51ns

...through fet at (156, 1581) to GND after

12847 is driven high at 0.56ns

...through fet at (163, 1604) to Vdd after

phi2 is driven low at 0.00ns

0:00. 3u 0:00.1s 1879k]
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*** PHI! RISETIME IN NORMAL OP ***

: clear

[0:00.9u 0:00.3s 1879k]

: set 1 op

Marking transistor flow...

Setting Vdd to 1...

Setting GND to 0...

[0:06. 5u 0:00.5s 1879k]

: set phi2

[0:00.2u 0:00.0s 1879k]

: delay phil -1

(5926 stages examined.)

[0:12. lu 0:00.6s 1879k]

: critical lm
Node 17518 is driven high at 108.62ns

...through fet at (2256, 1845) to 18827 after

normdrout is driven high at 101.60ns

...through fet at (4013, 1343) to Vdd after

10876 is driven high at 48.60ns

...through fet at (4141, 1351) to Vdd after

11000 is driven high at 26.81ns

...through fet at (4163, 1351) to Vdd after

11302 is driven low at 22.55ns

...through fet at (4166, 1423) to GND after

11063 is driven high at 17 47ns

...through fet at (4408, 1354) to Vdd after

11064 is driven low at 6.61ns

...through fet at (4433, 1362) to 11369

...through fet at (4433, 1366) to GND after

10622 is driven high at 5 72ns

...through fet at (4483, 1305) to Vdd after

10603 is driven low at 0.11ns

...through fet at (4498, 1281) to GND after

phil is driven high at 00ns

[0:00. lu 0:00.1s 1879k]

*** PHIl FALLTIMEFOR NORMAL OP ***

: clear

[0:00.8u 0:00.3s 1879k]

: set 1 op

Marking transistor flow...

Setting Vdd to 1...

Setting GND to 0...

[0:06. 2u 0:00.1s 1879k]

: set phi2

[0:00. 2u 0:00.0s 1879k]

: delay phil -1

(4092 stages examined.)

[0:10. 4u 0:00.6s 1896kl
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: critical lm
Node 4675 is driven low at 89.11ns

...through fet at (2091, 781) to GND after

4486 is driven high at 83.87ns

. through fet at (2736, 842) to Vdd after

normdrout is driven low at 39.96ns

...through fet at (4021, 1351) to GND after

11059 is driven high at 32.15ns

...through fet at (4141, 1446) to Vdd after

11302 is driven high at 10.54ns

...through fet at (4163, 1446) to Vdd after

11063 is driven low at 5.91ns

..through fet at (4407, 1362) to GND after

11064 is driven high at 3.13ns

...through fet at (4434, 1354) to Vdd after

10622 is driven low at 2.49ns

...through fet at (4498, 1304) to GND after

10603 is driven high at 0.56ns

..through fet at (4489, 1282) to Vdd after

phil is driven low at 0.00ns

[0:00 2u 0:00.1s 1896k]

*** PHI1 RISETIME FOR SHIFT OP ***

: clear

[0:00.9u 0:00.3s 1896k]

: set op

Marking transistor flow...

Setting Vdd to 1...

Setting GND to 0...

[0:06. 6u 0:00.5s 1896k]

: set phi2

|0:00.2u 0:00.0s 1896k]

: delay phil -1

(11989 stages examined.)

(0:42. lu 0:01.7s 1918k]

: critical lm
Node 4354 is driven high at 343.02ns

...through fet at (2743, 502) to 3227

...through fet at (2734, 463) to Vdd after

shdrout is driven high at 45.78ns

...through fet at (4007, 1223) to Vdd after

10522 is driven low at 29.07ns

. through fet at (4053, 1228) to GND after

10336 is driven high at 27 68ns

...through fet at (1067, 1216) to Vdd after

10523 is driven low at 24.23ns

...through fet at (4070, 1266) to GND after
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10589 is driven high at 19.49ns

...through fet at (4-407, 1334) to Vdd after

10633 is driven low at 6.61ns

...through fet at (4433, 1327) to 10631

...through fet at (4433, 1324) to GND after

10622 is driven high at 5.72ns

...through fet at (4483,. 1305) to Vdd after

10603 is driven low at 0.11ns

...through fet at (4498, 1281) to GND after

phil is driven high at 0.00ns

[0:00. lu 0:00.1s 1918k]

*** PHI1 FALLTIME FOR A SHIFT OP ***

: clear

[0:00. 8u 0:00.3s 1918k]

: set op

Marking transistor flow...

Setting Vdd to 1...

Setting GND to 0...

[0:06. 4u 0:00.4s 1918k]

: set phi2

[0:00. 2u 0:00.0s 1918k]

: delay phil -1

(20633 stages examined.)

[1:22. 2u 0:08.4s 1961k)

: critical lm
Node 11983 is driven low at 72.04ns

...through fet at (2836, 1550) to GND after

12776 is driven high at 70.74ns

...through fet at (2842, 1602) to 13219

...through fet at (2852, 1602) to 13220

...through fet at (2863, 1645) to Vdd after

12892 is driven high at 61.78ns

...through fet at (2840, 1645) to Vdd after

13081 is driven low at 60.84ns

...through fet at (2836, 1656) to GND after

14010 is driven high at 63 43ns

...through fet at (2756, 1696) to 14572

...through fet at (2772, 1696) to 14437

...through fet at (2782, 1751) to Vdd after

14171 is driven low at 43.30ns

...through fet at (2767, 1756) to GND after

16259 is driven high at 41.39ns

...through fet at (2794, 1800) to Vdd after

shdrout is driven low at 30.70ns

...through fet at (4032, 1225) to GND after
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10522 is driven high at 19.22ns

...through fet at (4045, 1289) to Vdd after

10523 is driven high at 10.01ns

...through fet at (4067, 1289) to Vdd after

10589 is driven low at 6 29ns

...through fet at (4406, 1327) to GND after

10633 is driven high at 3.13ns

...through fet at (4434, 1334) to Vdd after

10622 is driven low at 2.49ns

...through fet at (4498, 1304) to GND after

10603 is driven high at 0.56ns

...through fet at (4489, 1282) to Vdd after

phil is driven low at 0.00ns

(0:00. 2u 0:00.2s 1961k]

*** INPUT PAD TO LATCH 1 DELAY ***

: clear

[0:00. 9u 0:00.7s 1961k]

: set 1 op

Marking transistor flow...

Setting Vdd to 1...

Setting GND to 0...

[0:06. 3u 0:00.3s 1961k]

: set phil phi2

[0:00.9u 0:00.1s 1961k]

: delay a<15:0>

(43921 stages examined.)

(2:16.6u 0:09.2s 1961k]

: critical lm
Node 19554 is driven high at 558.82ns

...through fet at (1008, 2140) to Vdd after

19655 is driven low at 554.42ns

...through fet at (980, 2145) to GND after

21705 is driven high at 531.79ns

...through fet at (667, 2760) to 27839

...through fet at (677, 2760) to 27714

...through fet at (693, 2798) to Vdd after

27436 is driven low at 485.22ns

...through fet at (698, 2808) to GND after

22366 is driven high at 473.40ns

...through fet at (1823, 3125) to Vdd after

30352 is driven low at 337.44ns

...through fet at (183:. 3142) to GND after

30351 is driven high at 332.90ns

...through fet at (1807, 3257) to 33567

...through fet at (1817, 3257) to 33568

...through fet at (1840, 3306) to Vdd after
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33186 is driven low at 299 22ns

...through fet at (1818, 3293) to GND after

33391 is driven high at 298.15ns

...through fet at (1822, 3306) to Vdd after

30591 is driven low at 295.49ns

...through fet at (1955, 3577) to 38872

...through fet at (1955, 3580) to GND after

38615 is driven high at 241.93ns

...through fet at (1997, 3813) to Vdd after

40527 is driven low at 3.37ns

...through fet at (2011, 3839) to GND after

40457 is driven high at 2.61ns

...through fet at (2030, 3824) to Vdd after

40625 is driven low at 0.11ns

...through fet at (2052, 3839) to GND after

a2 is driven high at 0.00ns

|0:00.2u 0:00.2s 1961k]

= q

[8:58. 2u 0:49.0s 1961k] Crystal done.
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CEYSTAL results for stage 1 for the MacPitts chip

build st agel sim

n 12 4u 0:01.3s 247k]

inputs in<27:l>

[0:00.Ou 0:00.1s 256k]

: outputs a<24:l>

*** FIRST STAGE DELAY ***

. delay in<27:l>

Marking transistor flow...

Setting Vdd to 1...

Setting GND to 0...

(11559 stages examined.)

[0:22. 7u 0:00.9s 411k]

: critical

Node 2195 is driven high at 4838.89ns

...through fet at (565, 934) to Vdd after

2118 is driven low at 4831.44ns

...through fet at (506, 926) to 2127

...through fet at (506, 921) to GND after

2095 is driven high at 4825.41ns

...through fet at (485, 928) to Vdd after

1867 is driven low at 4813.82ns

...through fet at (423, 922) to 2086

..through fet at (423, 917) to GND after

1805 is driven high at 4783.75ns

...through fet at (669, 910) to a2

...through fet at (683, 910) to 1944

...through fet at (620, 934) to Vdd after

2119 is driven low at 4330.98ns

...through fet at (585, 924) to 2103

...through fet at (585, 919) to GND after

2048 is driven high at 4326.95ns

...through fet at (537, 930) to Vdd after

1933 is driven low at 4314 44ns

...through fet at (645, 1000) to 2790

...through fet at (645, 1005) to GND after

2730 is driven high at 4306.41ns

..through fet at (537, 1010) to Vdd after

2798 is driven low at 4293.82ns

...through fet at (506, 1006) to 2807

...through fet at (506, 1001) to GND after

2775 is driven high at 4287.69ns

...through fet at (485, 1008) to Vdd after

2551 is driven low at 4275.76ns

...through fet at (423, 1002) to 2766

...through fet at (423, 997) to GND after
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2525 is driven high at 4243.64ns

through fet at (669, 990) to a3

...through fet at (683, 990) to 2637

...through fet at (620, 1014) to Vdd after

2799 is driven low at 3741.79ns

...through fet at (585, 1004) to 2783

...through fet at (585, 999) to GND after

2624 is driven high at 3735.64ns

...through fet at (652, 1074) to Vdd after

3236 is driven low at 3712.11ns

...through fet at (423, 1082) to 3449

...through fet at (423, 1077) to GND after

3210 is driven high at 3680.28ns

...through fet at (669, 1070) to a4

...through fet at (683, 1070) to 3318

...through fet at (620, 1094) to Vdd after

3482 is driven low at 3186.59ns

...through fet at (585, 1084) to 3466

...through fet at (585, 1079) to GND after

3411 is driven high at 3182.56ns

...through fet at (537, 1090) to Vdd after

3307 is driven low at 3170 04ns

...through fet at (645, 1160) to 4149

...through fet at (645, 1165) to GND after

4087 is driven high at 3162.01ns

...through fet at (537, 1170) to Vdd after

4157 is driven low at 3149 43ns

...through fet at (506, 1166) to 4166

...through fet at (506, 1161) to GND after

4133 is driven high at 3143.25ns

...through fet at (485, 1168) to Vdd after

3907 is driven low at 3131.21ns

...through fet at (423, 1162) to 4124

...through fet at (423, 1157) to GND after

3881 is driven high at 3098.30ns

...through fet at (669, 1150) to a5

...through fet at (683, 1150) to 3990

...through fet at (620, 1174) to Vdd after

4158 is driven low at 2577.22ns

..through fet at (585, 1164) to 4141

...through fet at (585, 1159) to GND after

3978 is driven high at 2571.91ns

...through fet at (652, 1234) to Vdd after

4770 is driven low at 2555.05ns

...through fet at (530, 1244) to 4825

...through fet at (530, 1239) to GND after

4841 is driven high at 2547.85ns

...through fet at (513, 1252) to Vdd after
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4818 is driven low at 2532.70ns

...through fet at (478, 1242) to 4810

...through fet at (478, 1237) to GND after

4568 is driven high at 2501.33ns

...through fet at (669, 1230) to a6

...through fet at (683, 1230) to 4677

...through fet at (620, 1254) to Vdd after

4842 is driven low at 1985.61ns

...through fet at (585, 1244) to 4826

...through fet at (585, 1239) to GND after

4666 is driven high at 1980.29ns

...through fet at (652, 1314) to Vdd after

5456 is driven low at 1963.43ns

...through fet at (530, 1324) to 5508

...through fet at (530, 1319) to GND after

5526 is driven high at 1956 23ns

...through fet at (513, 1332) to Vdd after

5501 is driven low at 1941.04ns

...through fet at (478, 1322) to 5493

...through fet at (478, 1317) to GND after

5248 is driven high at 1909.46ns

...through fet at (669, 1310) to a7

...through fet at (683, 1310) to 5363

...through fet at (620, 1334) to Vdd after

5527 is driven low at 1388.69ns

. .through fet at (585, 1324) to 5509

...through fet at (585, 1319) to GND after

5346 is driven high at 1383.38ns

...through fet at (652, 1394) to Vdd after

6129 is driven low at 1366.51ns

...through fet at (530, 1404) to 6181

...through fet at (530, 1399) to GND after

6197 is driven high at 1359.33ns

...through fet at (513, 1412) to Vdd after

6174 is driven low at 1344.20ns

...through fet at (478, 1402) to 6166

...through fet at (478, 1397) to GND after

5928 is driven high at 1312.98ns

...through fet at (669, 1390) to a8

...through fet at (683, 1390) to 6036

...through fet at (620, 1414) to Vdd after

6198 is driven low at 800.61ns

...through fet at (585, 1404) to 6182

...through fet at (585, 1399) to GND after

6025 is driven high at 794.45ns

...through fet at (652, 1474) to Vdd after

6637 is driven low at 770.92ns

...through fet at (423, 1482) to 6842

...through fet at (423, 1477) to GND after
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6611 is driven high at 739.09ns

...through fet at (669, 1470) to 6644

...through fet at (683, 1470) to 6720

...through fet at (620, 1494) to Vdd after

755 is driven high at 219.87ns

...through fet at (634, 410) to Vdd after

1080 is driven low at 134.69ns

...through fet at (2443, 2876) to GND after

7571 is driven high at 10.74ns

...through fet at (2487, 2858) to Vdd after

in 16 is driven low at 0.00ns

[0:00. 7u 0:00.4s 41 lkl
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CBYSTAL results for the clock inputs to

the registers of the Macpitts chip.

Crystal, v.

2

: build timing. sim

[0:13.9u 0:01. 6s 258k]

: inputs phia phib phic

[0:00.Ou 0:00.0s 267k]

*** PHASE 1 OF 5
***

: set 1 phia phic

[0:00.1u 0:00.0s 267k]

: delay phib -1

(604 stages examined.)

[0:00.9u 0:00.1s 271k]

: critical

Node 6392 is driven low at 87.36ns

...through fet at (2322, 1476) to 6678

...through fet at (2314, 1472) to GND after

6391 is driven high at 81.45ns

...through fet at (2290, 1485) to 6679

...through fet at (2333, 1483) to Vdd after

588 is driven high at 65.23ns

...through fet at (2316, 841) to Vdd after

490 is driven low at 62.98ns

...through fet at (2314, 834) to GND after

28 is driven high at 50.57ns

...through fet at (791, 149) to Vdd after

21 is driven low at 0.80ns

...through fet at (817, 134) to GND after

phib is driven high at 0.00ns

|0:00. lu 0:00.1s 27lk]

*** PHASE 2 OF 5
***

: clear

[0:00. lu 0:00.0s 271k]

: set 1 phia

Marking transistor flow.

Setting Vdd to 1...

Setting GND to 0...

[0:00.6u 0:00.0s 271k]

: delay phib -1

(28 stages examined.)

[0:00. lu 0:00.0s 271k]

: delay phic -1

(28 stages examined.)

|0:00.1u 0:00.0s 271k[
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critical

Node 590 is driven low at 119.19ns

...through fet at (2344, 833) to GND after

491 is driven high at 113.28ns

...through fet at (2338, 813) to Vdd after

25 is driven low at 84.73ns

...through fet at (651, 134) to GND after

19 is driven high at 10.74ns

...through fet at (695, 148) to Vdd after

phic is driven low at 0.00ns

[0:00.1u 0:00.0s 271k]

***PHASE3 0F 5
***

: clear

[0:00.1u 0:00.0s 271k]

: set phib phic

[0:00.1u 0:00.0s 271k]

: delay phia -1

(40 stages examined.)

(0:00. lu 0:00.0s 272k]

: critical

Node 574 is driven high at 61.22ns

...through fet at (2087, 841) to Vdd after

483 is driven low at 59.11ns

...through fet at (2085, 834) to GND after

353 is driven high at 49.97ns

...through fet at (2088. 802) to Vdd after

31 is driven low at 30.89ns

...through fet at (907, 134) to GND after

23 is driven high at 10.74ns

...through fet at (951, 148) to Vdd after

phia is driven low at 0.00ns

(0:00. lu 0:00.1s 272k]

*** PHASE 4 OF 5
***

: clear

(0:00. lu 0:00.0s 272k]

: set phib phic

[0:00. lu 0:00.0s 272k]

: delay phia -1

(40 stages examined.)

[0:00.1u 0:00.0s 274k]

: critical

Node 574 is driven low at 54 31ns

...through fet at (2095, 833) to GND after
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483 is driven high at 49.17ns

...through fet at (2089, 813) to Vdd after

353 is driven low at 27.72ns

...through fet at (2082, 792) to GND after

31 is driven high at 15.16ns

...through fet at (919, 149) to Vdd after

23 is driven low at 0.80ns

...through fet at (945, 134) to GND after

phia is driven high at 0.00ns

[0:00. lu 0:00.0s 274k]

*** PHASE 5 OF 5
***

: clear

[0:00. lu 0:00.0s 274k]

: set 1 phia

Marking transistor flow...

Setting Vdd to 1...

Setting GND to 0...

|0:00.6u 0:00.1s 274k]

: set phib

[0:00. lu 0:00.0s 274k]

: delay phic -1

(412 stages examined.)

[0:00. 5u 0:00.0s 281k[

: critical

Node 6674 is driven low at 91.61ns

...through fet at (2136, 1472) to GND after

6384 is driven high at 85.13ns

...through fet at (2116, 1476) to 6673

...through fet at (2099, 1483) to Vdd after

578 is driven high at 70.69ns

...through fet at (2130, 841) to Vdd after

485 is driven low at 68.51ns

...through fet at (2128, 834) to GND after

25 is driven high at 55.79ns

...through fet at (663, 149) to Vdd after

19 is driven low at 0.80ns

...through fet at (689, 134) to GND after

phic is driven high at 0.00ns

[0:00.1u 0:00.0s 281k]

: q
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P0W3ST Results for the 16-bit Multiplier

", piiMi »>st -p • mult 3*2. sim

gamma 4V**.5. tox=9e-08m, uO=0.08m**2/V-s

vdd-5\ vtd=-3.5V. vte=0.8V, vsb=2V

#devs Pdc avg (\V) Pdcjnax (W) type

000000 O.OOOOOO enhancement pullups

3720 1 790881 2.793533 depletion pullups

194 191948 0.383896 special depletion pullups

3914 1982829 3.177428 TOTAL

POTJEST Results for the 8-bit Multiplier.

% powest -p < multip8c4.sim

gamma=0.4V**.5, tox=9e-08m, u0=0.08m**2/V-s

vdd=5V, vtd=- 3 5V, vte^0.8V, vsb= 2V

#devs Pdc_avg (W) Pdc max (W) type

0.000000

690 0.140672

111 0211404

0.000000 enhancement pullup

0.244640 depletion pullups

0.422809 special depletion pullups

801 0.352076 0.667449 TOTAL
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APPENDIX C

TEST VECTOBS

This appendix contains the inputs, intermediate latch

values, and the final product output for each of the test

vector pairs described in Chapter 3. Each binary value is

represented as its hexadecimal equivalent. The inputs and

outputs are represented with their most significant hexa-

decimal digit in the leftmost position. The intermediate

latch contents are represented in hexadecimal with the Nth

bit shifted out of the latch and placed to the left of the

previous bit serially shifted out. The latch at the end of

stage X is identified as latchX where X goes from 1 to U.

1HST_VEC10E_1

INPUTS: 001B 0C8F

OUTPUT: 00000F15

LATCH 1: 000 000000000 0000000 000 000 00 00 11 072E7

LATCH2: 000 000000 C2A6E7

LATCH3: 000000000000 153DC7

LATCK4: 000 0000000CA9DC7

TEST VEC1CR 2

INPUTS

OUTPCI

LATCH1

LAICH2

LATCH3

LATCH4

FF71 0C13

FFFFF0EB

6596 596 596 59 6596 596 596 59768C0D5A7295

155555554AIE695

2A9AA6A9AA15D70D15

AA552595457B8D15
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2J|ST_VECT0E_3

INPU1S: 008F . JIE5

OUTPUT: FFFFFOEB

LATCH 1: 4 104 104 10 410 40 10 406 16C90B6062250A53

LATCH2: 155555555530653

LATCH3: 2A9AA6A9A A2A580C93

LATCE4: AA5 52A954ASC0C93

1IST_VEC10R_4

INPU1S: FFE5 FP71

OUTPUT: 00000F15

LATCH 1: 4F3CF3CF3CE7CA38E76 8B6C85B49E01EB429

LATCH2: 0AAB34D5562A829

LATCH3: 15559699AAAC354049

LATCH4: 55ACE9B55E0AA049

IEST_VECTOR_5

INPU1S: 0463 037B

OUTPUT: 000F4491

LATCH1: 00 0000 00000000 002 80 088 4A01F 32 64 1F

LATCH2: 00000014A 1C641F

LATCH3: 0000000 1A50383083F

LATCH4: 000000 1 4A 01 1833F

12ST_VECIOR_6

INPUTS: 037B IE9D

OUTPUT: FFF0BB6F

LATCH 1: 4104104 10 4C0 4506 532 45514 59A2B3 0F169B

LATCH2: 15552C756S94A9B

LATCH3: 2A9A9 18FAB 130A45 13

LATCH4: AA5491F564C5251B
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TEST_VECTCJ_7

INPUTS: 8000 8000

OUTPUT: 40000000

LATCH 1: 000 4 1 04 104 10 41 041 04 104 104 12 0000 00000

LATCE2: O155555558C0O0O

1ATCH3: 029 AA6A9AAE0O000OO

LATCB4: 0AD56AB55CC0000O
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