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PREFACE.

In this volume, an attempt has been made to produce a

Treatise on the Planetary Theory, which, being elementary

in character, should be so far complete, as to contain all that

is usually required by students in this University. But it

is not without diffidence that I submit my volume to their

notice. In the earlier part of it, the methods which have

been adopted are to some extent original*, and the general

arrangement of the second chapter will, it is believed, be

found to be new. Through the kindness of the Publishers,

a portion of Pratt's Mechanical Philosophy has been placed

at my disposal. Of this I have availed myself, particularly

in the chapter on the Stability of the Planetary System ; but,

on the whole, comparatively little has been reprinted ver-

batim from that work. Among other sources of information,

my obligations are mainly due to Ponte"coulant's Theorie

Analytique du Systime du Monde, Airy's Mathematical

Tracts, and Frost's Planetary Theory in the Quarterly

Journal of Mathematics: but I have also referred to the

* Some of these have already appeared in Mathematical Journals.
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MScanique Celeste, the MScanique Analytique, Mrs Somer-

ville's Mechanism of the Heavens, (a work forming a complete

Mathematical treatise on Physical Astronomy,) a Memoir

by Prof. Donkin on the Differential Equations of Dynamics,

Phil. Trans. 1855, &c. A collection of Problems has been

added, taken chiefly from the Smith's Prize and Senate-

House Examination Papers of the last twenty years. In

conclusion, I would express my sincere thanks to Messrs

A. Freeman, P. T. Main, and other friends, of St John's

College, for the valuable assistance which they have afforded

me, and would venture to hope that the work will be found

useful.

C. H. H. CHEYNE.

St John's College,

October 9, 1862.
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THE PLANETAEY THEORY.

CHAPTER I.

INTRODUCTION.

1. To determine the motion of a system of bodies sub-

ject only to their mutual attractions, is a problem the mathe-

matical difficulties of which have not yet been overcome:

hence in the particular cases of this problem which the Lunar

and Planetary Theories present, recourse must be had to

methods of approximation. Happily the arrangement of the

Solar System renders approximate methods possible, and in

the skilful hands of the Mathematicians of the last century,

they have been brought to a high state of perfection.

2. If the Sun were the only attracting body, the planets

would describe exact ellipses, agreeably to Kepler's first law
;

but in consequence of the attractions of the planets them-

selves, slight deviations from elliptic motion are produced.

The method of calculating these deviations, to which our

attention will chiefly be directed, is due to Euler ; it consists

in supposing the planets to move in ellipses, the elements (or

arbitrary constants) of which are continually though slowly

changing*.

* The legitimacy of this hypothesis will appear when we come to treat of

the equations of motion. See Arts. 21 and 11,

C. P. T. 1



2 PLANETARY THEORY.

3. Now the elements of an elliptic orbit are (i) the mean

distance, or semi-axis major, (ii) the excentricity, (iii) the

longitude ofperihelion, i. e. of the point of the orbit nearest to the

Sun, (iv) the longitude of the epoch*, or mean longitude at the

epoch from which the time is reckoned, (v) the inclination of

the plane in which the orbit lies to some fixed plane of refer-

ence, (vi) the longitude of the ascending node. Of these (i)

and (ii) determine the magnitude of the orbit, (iii) determines

its position in its own plane, (v) and (vi) determine the posi-

tion of this plane, and (iv) has reference to the position of the

body itself in its orbit.

If the planets moved accurately in ellipses, these would be

constants : we must however be prepared to consider them as

variable quantities, which it will be the object of the problem

to determine. They are termed the elements of the orbit.

4. But further, not only is it found that the true orbit of

a planet is not an ellipse, but that it is not even a plane curve,

although the departure of the planet from the plane in which

it is at any instant moving is extremely slow. We define as the

plane of the orbit the plane containing the radius vector and

direction of motion of the planet at the instant under con-

sideration.

5. We shall suppose the Sun and planets so distant from

each other that they may be considered to attract as if they

were condensed into their respective centres of gravity; a

supposition which would be rigorously true if these bodies were

exactly spherical, and either of uniform density or composed of

concentric spherical shells, the density of each shell being uni-

form throughout. The errors, however, thus introduced into

the motions of translation are found to be inappreciable for the

planets, though not in the case of their satellites. The mo-
tions of rotation will not be considered in the present treatise.

* Also briefly termed the epoch.
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6. Moreover, since the masses of the planets are extremely

small in comparison of that of the Sun, it follows that in cases

where it is not necessary to carry the approximation beyond

the first order of these masses, we are permitted to avail our-

selves of the Principle of the Superposition of Small Motions,

and thus to reduce the problem to a case of that of the Three

Bodies.

7. So far the Theory of the Planets resembles that of the

Moon, and the same method of treatment might be employed

in both cases. But they differ in this respect : the ratio of

the distances of the disturbed and disturbing bodies from the

central one* is much smaller in the Lunar than in the Planetary

Theory, so that if in the latter theory the approximation were

made by means of series proceeding by powers of this ratio, it

would be necessary to retain many more terms than are re-

quired in the former. For this reason a different method of

development is employed. The perturbations of the Moon,

however, are far larger than those of the planets, since in the

former case the Sun, of which the mass is enormous, and the

distance not proportionately great, is one of the disturbing

bodies.

8. To find an expression for the component in any di-

rection of theforce which disturbs the motion of a given planet

relatively to the Sun.

Let M denote the mass of the Sun, m, m\ m", &c, those

of the planets, and suppose the relative' motion of m re-

quired.

Let x, y, z, x, y, e', x", y", s", &c, be the co-ordinates

of m, in, m", &c, referred to any system of rectangular axes

* By the central body is meant that whose attraction exercises the greatest

influence on the body whose motion is required ; the Sun for instance in the

Theory of the Planets, and the Earth in that of the Moon. All the other

attracting bodies are called disturbing bodies.

1—2



PLANETARY THEORY.

originating in the centre of gravity of the Sun ; r, r', r", &c,

their distances from the origin
; p, p", &c, the distances of

m\ m", &c, from m.

Now if to every body of the system we apply forces equal

and opposite to those which act upon the Sun, we shall reduce

the latter to rest without affecting the relative motion. Hence,

considering the action of only one disturbing planet m, the

forces acting upon m will be

M+m. ,. ,. „-.—2— in direction mm,

fffi

—a in direction mm',
P

-is in direction m'M,
r'

of which the last two constitute the disturbing force.

Let V- .—
, : then on the hypothesis of Art. 5, Fwill be

the potential of m', and the components parallel to the axes of

the disturbing force due to the action of m, will be

dx
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6 PLANETARY THEORY.

be borne in mind that in -j- the variation is purely hypo-
as

thetical, and has nothing whatever to do with the actual

variation of R due to the motion of the planet.

For example, suppose the curve of reference a straight

line parallel to the axis of x, and let R be expressed

in terms of x, y and z ; then in this case x only will

vary, and the disturbing force parallel to the axis of x will

r]~R

be denoted by -=— . y and z being considered constant in the

differentiation. Similarly, the disturbing forces parallel to

the axes of y and z will be expressed by -y- and —r- respec-

tively, the differential coefficients being strictly partial.

Again, suppose the curve of reference a circle with its

plane parallel to that of xy, and its centre in the axis of z,

and let R be expressed in terms of the polar co-ordinates

(rv #j) of the projection of the planet on the plane of xy, and

its distance (z) from this plane ; then in this case 6
1
only will

vary, and the disturbing force perpendicular to the projected

radius vector will be expressed by , r
1
and z being con-rM

sidered constant in the differentiation. Similarly, the forces

parallel to the projected radius vector and to the axis of z,

will be expressed by the partial differential coefficients -^—

,

-j- respectively.

10. The disturbing function, like the potential, is inde-

pendent of any particular system of co-ordinates that may be
employed. For

B = y

-

^73 (xx +yy +zz)
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m mr Ix x y y z z

p r \r r r ^ r r

m mr—
7? COS (O,

p r

if co denote the inclination of r to r.

11. 7b express E' m ferms o/" <Ae polar co-ordinates of
the projections of m and m' ore a fixed plane, and of their

distancesfrom it.

Take the fixed plane for that of xy : let rv r
t

' be the pro-

jections of r, r upon it, and V 0/ the inclinations of rv r,' to

the axis of x ; then

a; = r
x
cos

1}
?/ = r, sin #

i;

a;' = r
t

' cos 0/, y' = rl sin 0/

;

therefore xx + yy' + zz' = r// cos (01
- #/) + zz,

p'*=(x -xy+(y-yy + (z-zT

=^ + r/
2 - 2Vl ' cos (0, - 0/) + (z - z'f,

r'* = x'* + y'2 +z'2

= r* + z'\

Hence by substitution,

mE =
{r

2 + r'
2 - 2r,< cos (61

- 6'/) + (* - s')
2

}
4

m' for/ cos (0, - 0/) + gg'}

h'
2 + s'f

12. In a subsequent chapter we shall consider the de-

velopment of R in terms of the time and the elements of the

orbit, in a series ascending by powers and products of the

excentricities and inclinations, which in the Planetary Theory
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are very small. At present we shall content ourselves with

shewing how R may be expressed in terms of these quantities.

We shall assume that the equations connecting the co-ordi-

nates, the time, and the elements in an elliptic orbit, hold

also in the case of a disturbed planet.

13. To explain how E, may be expressed in terms of the

time and the elements of the orbit.

Let r, denote the radius vector and longitude of the

disturbed planet, the latter being measured on a fixed plane

of reference as far as the node, and thence on the plane of the

orbit : let the elements be a the mean distance, e the excen-

tricity, & the longitude of perihelion, e the longitude of the

epoch, (the last two being measured in the same way as 0,)

H the longitude of the node measured on the plane of refer-

ence, and i the inclination of the plane of the orbit to the

plane of reference. Our object is to express E in terms of t

and these elements.

Again, let
O!

ot , e , O denote the longitudes of the

planet, of perihelion, of the epoch, and of the node, measured

entirely on the plane of the orbit.

Let a sphere be described with its centre coinciding with

that of the Sun, and its radius of any magnitude: let the

planes of reference and of the orbit cut it in the great circles

NM, NP, then the line of nodes will cut it in N; let the

radius vector of the planet cut it in P, the projection of this

radius on the plane of reference in M, and the lines from

which 6, 6 are measured in L, respectively. We shall

suppose L to be the same origin as that from which
X

is

measured in Art. 11.

Then in the figure LM=0v LN + NP = 0, OP=0
O ,

LN= £2, the angle PNM=i, and PM= the latitude of the

planet which we shall denote by X.
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Hence from the right-angled triangle PNM,

tan (0j - fl) = cost tan (0-il) (1),

sin X = sin i sin (0 — 12) (2):

also r
1
= >

, cosX (3),

z = r sin A. (4).

9

O
= LN- ON= e - e = ^ - w

;

Again, from the formulas of elliptic motion*,

r = a{l+^ei — ecos(nt + e — zT )
— ^e'cos 2 (nt + e — •nrj —...],

6 =nt+e + 2e sin (w« + e - ot ) + |e2
sin 2 (mi + e - w ) + ...f:

but

therefore =
O + e — e , e — zr = e — «r,

and our formulas become

r = a{l+|-e2-ecos(rci+e—«)—^e
2
cos2(rcf+e—sr)— ...}.. .(5),

0= w< + e + 2e sin (nt+ e - er) + \i sin 2 (n« + e - vr)+ (6)

.

In Art. 11 we have expressed R! in terms of rv 6
1
and z

;

hence by equations (1) to (4) it may be expressed as a func-

tion of r, 0, 12, and i : we may then substitute for r and 8

from equations (5) and (6), and R! will be expressed in terms

* See Tait and Steele's Dynamics, Arts. 114 and 122.

"I" » ia termed the mean motion, and is connected with the mean distance by

the equation »2a3 =^4, where n = M+m.
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of t and the elements of the orbit. Similarly B", B'", &c,

and therefore B may be expressed in terms of t and the

elements.

14. We proceed to investigate certain relations which

subsist between the partial differential coefficients of B with

respect to the co-ordinates of the disturbed planet, and its

partial differential coefficients with respect to the elements of

the orbit. These will be useful in obtaining the formulae by

which the values of the elements are calculated.

We premise that when we speak of the partial differ-

ential coefficient of B with respect to one of the elements, we
suppose B expressed in the manner indicated in the last

article, and that the time as well as the other elements are

considered constant in the differentiation : when we speak

of the partial differential coefficient ofB with respect to r or 0,

we suppose B expressed in terms of r, 6, i and 12, which may
be done by equations (1) to (4).

,- m 7 , dR dR dR
15. lo shew that -t7t = ^—Ht—

•

ad de dar

Equations (5) and (6) of Art. 13 may be written

r = f (nt + e — zr),

6 — zr —
<f>

(nt + e — or),

whence it follows that

dr dr _
de dvr

'

d0 de
,

ae d'S7

Now since e and w enter into B oidy through r and 0,

dB = dB dr dB dd

de dr de d0 de
'
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dR dR dr dR d6

dts dr d-sr dd dm

'

therefore, by addition,

dR dR_dR
de dvr d6

,/.«,, 7
dR dR dR

,
dR

lb. lo shew that -T7r=^i—Hj r tft •

d#, de aw all

From equations (1) to (4) of Art. 13 we obtain

ri =j>{r,e-a,i),

z =T|r(r, 6 — £1, i),

where <£, %, ty are symbols of functionality.

It follows that

de
+

do, '

d0 ' dQ,~ '

dz dz _
~d6

+
dQ,~

Now since by Art. 11, R is a function of rv X
, and z,

dR_dRdr
t

dR M, dR dz

de ~ dr
x
de

+
de, de

+
dz de'

dR_dRdr
x

dRde, dR dz_

dn ~ dr, da + de
t
dn + d» da ;

therefore, by addition,

dR dR_dR
Je'

+ da~de'
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whence, by the last article,

dB_dB dR dR
dd

t
de dvs dQ,

'

-.r, m 7 . dR . . dR 7 dR
17. lo obtain -^— in terms of -*- and -tt: .

de J dr aff

If w denote the excentric anomaly, we have*

r = a (1 — e cosw) (1),

V&MK- «
nt+ e— ts- =u — e sin u (3),

tan
2

from which r and 6 may be expressed in terms of t and the

elements by eliminating u. Assuming r and so expressed,

we proceed to obtain -=- and -y-

.

1 de de

dr I . du
From (1), -j- = a I e sin u -=- — cos w)

and from (3), -y- (1— ecosw) — sin« = (4)

;

eliminating -j- , we have

dr { e sin w
-=- = a J, cos u
de II— e cosw

e — cos u
= a\-

1 — e cos u

a
1—e cos u — (1 — e'

e (1 — cos u)

* See Tait and Steele's Dynamics, Arts, no, in, and nj.
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-r{i-^},by(D,
= — a cos (& — &),

by the polar equation to the ellipse.

Again, differentiating the logarithms of equation (2),

1 dd 1 / 1 1 \ . 1 du1 dd _ 1 / 1 1 \

sin(0--nr) de ~2 [i + e
+
l-ej

eliminating -j by means of (4),

1 dd 1

sin w de
'

sin (0 — nr) de 1 — e
2

1 — e cos u '

= a ^) + 7}'^ (1) 'a{\-£)

-H
if A2 = /u-a (1 — e

2

) ; therefore

de
= a

{¥
+
r)

Sm ^-^

Now since R is a function of e only because it is a function

of r and 0,

<Zfl <Z5 dr dR dO

de dr de dd de
'

= — a cos (6 — w) -T^ + a fp + -
J
sin (0 - ot)

d0
'

Since 0-vr =
o
-vr

o ,
(see Art. 13,) this equation may

be written

= - a cos (0„ - «„) -=- + a p + -
1 Bin {0O - wj -™

>

under which form it will be useful in the next chapter



CHAPTER II.

FORMULA FOR CALCULATING THE ELEMENTS OF THE ORBIT.

18. We now proceed to form equations of motion,

taking the Sun's centre for the origin of co-ordinates, the

radius vector of the planet for the axis of x, a perpendicular

to it in the plane of the orbit for the axis of y, and a normal

to this plane for the axis of z. With this system, it will

be shewn that two of the resulting equations can be ex-

pressed in the same forms as if the planet moved in one

plane.

Let x, y, z be the co-ordinates, u, v, w the velocities of

the planet with reference to three rectangular axes originat-

ing in the Sun's centre, and moving with angular velocities

<j)t
, <£2 , <£3

about their instantaneous positions : let X, Y, Z be

the accelerations due to the impressed forces in the directions

of the axes. Then (Routh's Rigid Dynamics, Art. 114),

doc

dt

dz .

and the equations of motion are

(1)>
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Y= (2).

^="^-^2 + ^1 J

In these equations <£,, $2 , 3
are arbitrary; we propose

so to determine them that the axis of x may coincide with

the radius vector of the planet, and the plane of xy with the

plane of the orbit.

In order that the axis of x may coincide with the radius

vector of the planet, we must have

x=r, y = 0, z = 0,

always ; and therefore

dzdx _ dr dy _
~di~di' ~di~ '

dt
= 0:

and in order that the plane of xy may coincide with the plane

of the orbit, we must have

w =
always ; and therefore

t-«-
Hence equations (1) give

dr
u
^dt'

v = rfo' & = 0;

and equations (2) become

d2
r

-v #« , „ j
drY=r

-dT
+ ^jt'

Z=rM»
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In order to reduce the first two of these equations to the

forms they would take if the motion were in one plane,

let & = ^: thus

ds-_ fdexA
df \dt) '

rdt\ dt)'

19. If we measure on the plane of the orbit from the

planet's radius rector in a direction contrary to that of motion

an angle equal to
O, we arrive at what may be considered

as the origin from which
O
is measured. Since this will be

a point having no angular velocity about the axis of z, which

is normal to the plane of the orbit, it is said to be fixed in the

plane of the orbit*.

20. We shall for the present confine our attention to the

first two of the above equations.

In order to find the components of the disturbing force

parallel and perpendicular to the radius vector of the planet,

let us take first the radius vector as the curve of reference

;

then s = r, and R being supposed expressed as a function of

r, 0, 12, and % (see Art. 13), we have

dR_
ds
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since 0, il and i do not vary with s. Hence the disturbing

force in direction of the radius vector = -^-

.

dr

Again, let us take as the curve of reference a circle in the

plane of the orbit, with its centre coinciding with that of the

sun ; then Ba = rS9, and we have

dR_ldR
ds~r dd'

since r, 12, and i do not vary with s. Hence the disturbing

force perpendicular to the radius yector =—™ .

We have then



18
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Suppose the four first integrals of these last

(fee %\ _
A' di)~

Cl

X*

' dt) °*

' dt) *

(2).

<fee

<fec

oft' dtj

where cl5 c
2 , c

3 , c
4

are arbitrary constants or parameters.

The method of the Variation of Parameters consists in so

determining cv c
2 , c

s
and c

4
as functions of t, that these inte-

grals (and therefore the two final integrals of the equations

$j = 0,
<f>s
= 0, which can be obtained from equations (ii) by

doc dif\
eliminating -j- and -JM shall satisfy equations (i). That

Cj, c
2, c

3, and c
4
caw be so determined, may be seen as follows

:

by the solution of equations (i), values of x and y and there-

fore of -^- and -j- can be found as functions of t and constant
dt dt

quantities ; if these be substituted in equations (ii) the requi-

site values of cv c
2 , c

3
and c

4
will be obtained. For an ex-

ample of the application of this method, see Boole's Differential

Equations, Chap. ix. Art. 11.

22. If in equations (1) and (2) of Art. 20 we put R = 0,

and then integrate them, we obtain

i = |{l + ecos(0
o

dr fie . a
di
= T sm^~^

(3),

(4),
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where h, e, ot are tlie constants of integration. Equation (3)

indicates motion in an ellipse, of which e is the excentricity,

•nr the longitude of perihelion, and h twice the area described

in an unit of time. If the mean distance in this ellipse be

denoted by a, we have in addition

A2 = fia (1 - e'
2

) (6).

We shall assume (in accordance with the principles of the

method of the Variation of Parameters) the first and second

integrals of equations (1) and (2), together with equation (6),

to retain the same forms when R is not zero; h, e, sr , and a

being in this case considered variable*.

The values of these elements are to be obtained from the

condition that the above integrals shall satisfy equations (1)

and (2).

23. If their values as calculated for any given time be

substituted in equation (3), it will represent an ellipse having

a contact of the first order with the actual orbit, since the

dr dd
values of -,-• and —, ° at the common point will be the same

dt dt r

for both curves. It is termed the instantaneous ellipse, since

the planet may for an infinitely small time be supposed to

move in it. Moreover, the velocity and direction of motion

of the planet will be the same as if it moved in this ellipse,

so that if at any time the disturbing force were to cease, the

planet would continue to move in the instantaneous ellipse

constructed for that time. This is accordingly sometimes

given as the definition of the instantaneous ellipse.

* We stall also for convenience suppose the equation ri*a? =/t to hold in the

disturbed orbit, n being of course considered variable.

2—2
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24. To obtain formula for calculating the elements of the

instantaneous ellipse at any time.

Suppose the value of c required, where c denotes any one

of the elements. From equations (3), (4), and (6) we may,

by eliminating the other elements, obtain c as a function of

r, 6 , -j-, and h* : let then

where r is written for -j- . Differentiating, we have

dc_dfdr dffflv dfaV dfdh
dt dr dt dd

a
dt dr dt dh dt

'

d/_<Pr_ /<20
oy fi ,

JR
dt~ df~

r
\dt t

Now — =— =W-T7°) — t + -y- » from equation (1)

:

dh d ( »d6\ dR . ,. , >

'dt

=
dt[

r
ti)

=
dd>

fr°m e1Uatl0n ® ;

therefore
dc = d£dj- d£d^ d£ ( (Wri

tneretore ^ -
drdt +^ dt

+
dr

,
]r[

dt ) J
dfdR dfdR
dr' dr dh dd

'

But, since by hypothesis, if R were zero and c constant,

our assumed integrals would still satisfy the differential equa-

tions, we have (making R zero and c constant)

Q= df±,^fd6 ,dfLfddX ^
drdt

+
dd dt

+
dr'\\dt) ?]'

,, r dc df dR df dR
therefore

d-ri-Tr +
dhd0-

* We retain h for convenience, in preference to replacing it by r2 —

.
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Hence in obtaining the formulae for calculating the ele-

ments of the orbit, we may proceed as follows. From equa-

tions (3), (4), and (6) .we may express the element required

as a function of r, O ,
-=- , and h. We may then, by differen-

tiating the resulting equation with respect to t as if r and 6

dR „ d'r ^ dB „ dh ,

were constants, writing -y- tor -^, and. -^ tor -j-, and

eliminating, if necessary, -j- and h by means of equations

(4) and (6), obtain the differential coefficient of the element

required in terms of the elements, the co-ordinates of the

planet, and the disturbing force. The result, however, will

in every case admit of being expressed in terms of the ele-'

ments and of the differential coefficients ofR with respect to

them.

25. To obtain a formula for calculating the mean dis-

tance.

From equations (3), (4) and (6), if e and w be eliminated,

we shall find

_/£_ (dr\
2 Aa

_2/f
a \dtj r

2 r
7r>

Differentiating as if r were -constant, and writing -jy- for
dr

d2
r dR P dh ,

w> -re
for

dt>
we have

fj,
da _ /dR dr dR d6

oJdi~ \dr dt
+

~d~0dt

Now since r =f(nt + e — w),

6 — ot„ = — w = (p (nt + e — &),

and the forms of -Z and -rf are the same as if the elements
at at

were constant, we have
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dr .,. > dr

and similarly, ^'
= n^>=

n

,^;

. . 11 da „ (dR dr dR d0\
therefore ^di

=2n
KdF de

+
~dti Te)

<fo _ 2na2
<£R

<& /a de

26. This formula may also be obtained as follows. If s

denote an arc of the actual path of the planet measured from

some fixed point to its position at time t, we have the equa-

tion of motion
d?s _ fi dr dR
d7~'~?ds' + ds~

,

and by a known formula

/dsV _2fj, /j,

\dt) r a

'

Differentiating the latter we obtain

ds d2
s _ 2/u. dr (i da

dtdf l^di^tfllt'

and, multiplying the former by 2 -j-

ds d2
s _ 2fidr dR ds

did?~~^~di + ~ds~dt'

a1 e -w da n dRds
therefore '-% -y- = 2 -=- -y-

a at as dt

-*~dT>

where —%— denotes the differential coefficient of R with
dt

respect to t, only so far as it involves t through involving the
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co-ordinates and elements of the disturbed planet. Now sup-

posing R expressed as a function of t and the elements (Art.

13), the form of \ will be the same as if the elements were

invariable (see Art. 35) : since then t is always coupled with e

in the expression nt+ e, we have

d{R) dR dR= n -r-, r = n

therefore

dt d(nt + e) de
'

da Ind* dR
dt /j, de

27. To obtain a formula for calculating the excentricity.

From equations (3) and (4)j if «r be eliminated, we obtain

dr\*_pV (h p\*

dt) h* \r k

Differentiating as if r were constant, and writing -j-

. d*r

" dr

since

therefore

dR dr
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28. This formula may also be deduced from that of the

mean distance, by means of the equation

h*= fm(l-e1

).

Wehave2£§= M (l- e*)§-2/*ae |,

or 2na* V(l - <?)^ = 2^«2
(1 -O^ ~ 2/"" % l

de_ na(l-e>

)
dR nai/jl-e*) fdR dR

at fie de fie \de din.

29. To obtain a formula for calculating the longitude of

perihelion.

From equations (3) and (4), if e be eliminated, we obtain

dr /a . h a

Differentiating as if r and # were constant, and writing

dR c d2
r

-j- lor —nr
dr dif

dr ilQ . dss- dR (\
,
fi\ dh

_(l,t\dR_
~{r + hV d~9'

therefore -5- cosec (0 — «r ) -j-5

^- lor—rxr, we obtain

dR
.

/• w\ % cZ#

a

— coefc-w)f +
(J
+ |)sin(^ - CTo)

1 dR .. x .=
«-s- ; (Art - 17 -)

but from equation (4) -5- cosec (0O
— ct ) = ~

;

, » dm
a _ A cZi? _ na a/(1 — e

2
)c?i?

<&
, fiea de fie de
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Now if tb denote the longitude of perihelion measured on

the plane of reference as far as the node, and thence on the

plane of the orbit, O the longitude of the node on the plane

of reference, O its longitude on that of the orbit, we have

bj — •sj- = D, — O
;

therefore
d^ = dp +

da_dD,^
at at at at

Now -j- is the angular velocity of the line of nodes on

the plane of reference, —g-° its angular velocity on the plane

of the orbit

;

,, » dil. d£L
theretore -t-51 = —^- cos i ;

at at

therefore -y- = —j-5 + (1 — cos i) -^- ;

dt dt
K 'at

or, substituting for -y- from Art. 31 or 35,

cfa = na^/(±-J)dB
nat&n

2 dR
dt jj,e de fi\/(l — e') di

To obtain formulaefor calculating the longitude of the node,

and the inclination.

30. We now return to our third equation of motion,

A.
d6

o 7

or, as it may be written,

K$
1
=Zr (1).

We have seen (Art. 18), that </>2
= 0; hence the motion of
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the plane of xy, which coincides with the plane of the orhit,

is compounded of the angular velocities fa about the axis

of x, and fa about the axis of z. Now the former is equiva-

lent to an angular velocity fa cos (0 — X2) about the line of

nodes, and an angular velocity fa sin (0 — X2) about an axis

perpendicular to it in the plane of the»orbit : but the angular

di
velocities of the plane of the orbit about these axes are -=- and

sin i -j- respectively ; therefore

fa cos {6 — X2) = -j-
, fa sin (0 — X2) = sin i —t- .

Hence, by equation (1),

dihj
t

= Zr cos (0-X2) (2),

h sin* -j- = Zr sin (0 — XI) (3).

31. In order to determine Z we must suppose the curve

of reference perpendicular to the plane of the orbit. If we de-

note by s an arc of this curve measured from some fixed point

up to the planet, we have by Art. 8, Z= -j- . Now the po-

sition of a point on the curve of reference may be determined

by its polar co-ordinates r, on a plane passing through it

and the sun, the inclination i of this plane to the plane of

reference, and the longitude XI of its node. Since, however,

an infinite number of planes can be drawn through two given

points, we must introduce some further condition to fix the

position of that on which r and are measured.

First, then, let it pass through SN the line of the nodes

:

let P be the position of the planet, and suppose the curve of

reference a circle AP with its centre C in SN. Through SN
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draw a plane inclined at a small angle St to the plane of the

orbit, cutting the circle AP in p, and let Pp = 8s; then

. Pp=CP.Si,

Ss = r sin (0 — £1) Bi
;

di _ 1

ds r sin {6 — O)
'

or

therefore

Now, (see Art. 13), B may be expressed in the form

B=f(r,0,n,i),

in which, if the series for r and 6 be substituted, B will be

expressed as a function of t and the elements. Hence

dB_dBdr dB dd dB dD, dB di

ds~drds dd ds dH ds di ds
'

and

therefore

dr

ds
= 0,

d0 _ d£l _ di_ _ 1

1

r sin (0 - fl)
'

<75

r sin (9 — Cl) di
'

On substituting this value for Z in equation (3), we

obtain

7 . .dQ, dB
h sin i -j- = -j7

;

srttodfflfcg
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or since h
2 = /ia(l — e

2
), and wV = /*,

dt

na dR

H V(l — e
2

) sin i di
'

32. Again, suppose the plane on which r and are mea-

sured, instead of passing through SN, to pass through a line

8G in the plane of the orbit perpendicular to SN; and take

for the curve of reference a circleAP with its centre C in SC.
Through SC draw a plane inclined at a small angle to the

plane of the orbit, cutting the sphere in the great circle nmp,

and the circle AP in p. Draw Nm perpendicular to np.

Then Nm which measures the inclination of the two

planes = — SO sin i, and

CP = r cos (0-O);
hence if Pp = 8s,

Ss = — r cos (0 — D,) SO sin «

;

therefore -j- = 75—prr—;—
-.

.

as r cos (0 — 11) sin i

Again, S0=Ln + np- (LN+ NP)

=M — nN

= — SO cos t + SO

;
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therefore j- = (1 - cos i) -*-
;

i dr n di
also j- = 0, -r = 0.

as as

Henc *? = ^?^ dBdD,
ds dd ds dH ds

-& j. M _ -\ &®L 1

\dil
+ ^ C0S *

; d6] r cos (0-fl) sin i
*

On substituting this value for -Z'in equation (2), we have

di_ _1 (dR dR)

dt~ hsmi\da + {)
-~ coai)

de)

= " H5T? {aa
+ 2 sm

2U + 3Sj|
(Art 15) '

na ( 1 <#5 £ /rf# dR\\

2 Ue +
<Wj

'

33. The only remaining element is the epoch, but before

proceeding to obtain a formula for its calculation, we shall

give another method of obtaining the results of the last two

articles.

34. To obtain a formula for calculating the inclination.

{Second method.)

If the motion of the planet be referred to the polar co-ordi-

nates of its projection on the fixed plane of reference and its

distance from this plane, we have the equation

1 d ( 2
dd\ 1 dR .„ . . _.—r [r, -r1 - =—tk (kee Art. 9),

r
1
dt\ l dt) r^e^ K "

df a
d6A dR

dt\ l dt) d8
x

'

Now if SA, SA
X
denote the vectorial areas swept out in

or
dtV 1 dtj~d6.
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the time St on the plane of the orbit and the plane of reference

respectively, we have

SA
t
= SA cost:

but SA^lr^SA^SM;

therefore r* -£= r
2 ^ cos i = h cos i.

Hence our equation of motion becomes

d ., ., dR
a (*«»•) =35;.

, . .di .dh dR- hsmi
dt
+C0St

dt
z=

dT
1

;

, . .di dR .dh
therefore - A Bint

Jt
=^ - cos *^
dR .dR

= dd
l

- C0St
d5

=m + i
1 -«» i

>i5>
(Aril6)

'

dR .. . /tffl
,
dR\ ......

therefore^ = -^^ |^ + (I - cos ,)^ +^j}

wa ( I dR i (dR
,
di?

- + tan - -y- + -7—
/iV(l— «*) lain* dll 2 V^e rfsr

35. Jb obtain a formula for calculating the longitude of

the node. {Second method.)

Since the velocity of the planet at any time can be ex-

pressed in terms of the co-ordinates and elements of the instan-

taneous ellipse constructed for that time, in the same form as
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if it moved in this ellipse, its component in any direction can

also be so expressed. Hence, considering R as a function of

rv Qv z (see Art. 11), the values of -£ , -77 ,
~

, and there-

fore of —~- (where \ denotes that R is to be differentiated

with respect to t only so far as it involves t ftrough involving

the co-ordinates of the disturbed planet) may be expressed in

the same forms as if the elements were invariable.

Now we have seen (Art. 13) that R may be thus ex-

pressed :

R=f(r,d,£l,i),

or since evidently, 6 — £1 =
O
— O

,

R=f{r, 0„+fl-n
o , fl,t)*

We have then, considering the elements variable,

d{R)_dRd^ dR d(8 + Sl-nB)
dR dD, dRdi

dt.
~ dr dt

+
d6 dt dQ, dt di dt*

and, considering them invariable,

d^R) = dRdr dRdO,

dt ~ dr dt dd dt
'

Equating the two values of \ , we obtain

dRfdn,_dn,\ dRdO, dRdd_
W {dt dt )

+ <m dt
+

di dt~

dR dR dR dR
Now d6rM

=
lk

+
d^>

d-8
* We have made this transformation, because, although the value of -3- is

the same in form as if the elements were invariable, this is not the case with

00

dt
'
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and (see Art. 29), -^ =-5- cos i;

^ e f«ZB ,, . (dR , dS\l in
,
dR di A

-therefore • j— + (l_cos^ *^)| -^ +-^=0.

Substituting for -3- its value

dD, _ «a «2iiJ

dt fi V(l — e
a
) sin i di

'

36. To obtain a formula for calculating the longitude of

the epoch.

If R be expressed in terms of t and the elements (see

Art. 13), since nt + e always occurs as one symbol, we may
write

R =f(nt + e, a, e, zr, fl, i).

Differentiating, the elements being considered variable,

we have

d{R) _dRd (nt + e) dR da dR de dR dzr

dt de dt da dt de dt der dt

dRdti dRdi
+

dil dt
+

di dt

'

and differentiating as if the elements were invariable, which

is permissible for the reason explained in the last Article,

d(R) dR
dt de

Equating the two values of —y~+
,

cut

n
<ZR = dR/ dn de\ dRda dRde dRdm_
de de \

n
dt dt)

+
da dt

+
de dt

+ dm dt

.dRda dRdi
dD, dt di dt

'
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Substituting for -j- , -y-, &c, their values

0=^(t — + d£\ 2na* dR dR na (*
~ e") dR dR

de \ dt dt) fi de da fie de de

naj(l-e*) fdR dR\dR na \/'(1 - e
2

)
dR dR

fie \de dwj de fie de dvt

. i
watan- ,„ ,_ ,„ ,_

2 dRdR na dR dR
fJL V(l — e

1

) di d'ur p */(l — e
2
) sin i di d£l

4

na dRdR watan §" /dR dR\dR
/i V(l - e

2
) sin i d£l di /i V(l — e

2

) \ de dzr) di '

_dR l dn de\ 2na? dR dR
de \ dt dt) /j, de da *

W(W)
{1 _ ^/*e
L y

^
n de de

watan- 7r> ,_
2 dRdR

/j,V(l — <?) de di
'

Dividing eveiy term by -j- , and transposing, we obtain

de _ dn 2nd2 dR na*f(l — e*), .. n^dR
dt dt /a da fie

' ^ '' de

«a tan —
7T)

2 art

IA\j{\ — e
A

) di
'

37. Of the formulas which have been obtained for cal-

culating the elements of the orbit, that of the preceding article

is the only one which contains a term proportional to the

C. P. T. 3
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time*. It may, however, be replaced by one in which no

such term exists. Tor, let £ denote the mean longitude,
5

then

% = nt + e;

d

P

dn de
therefore

Tt
= n + t

Tt + dt>

d .j. r
,. dn de

or Jt

(Z-Jnti) =% + Zf

Now let £ = / »wft + e,

then by the formula of the last article

de _ 2nd1 dR na V(l — e") , ,, ~, dR
It JTda

+ ~^T~ ll Vl1 6}]
de

naUn
l dR

Since in the elliptic formulae e never occurs except when

coupled with nt, in the expression nt + e, it will be altogether

eliminated if for nt+e we write Jndt + e.

Considered as replacing the element e, e' is called the

epoch *. Since however we shall never have occasion to em-

ploy the formula of the preceding article, the accent will in

future be omitted.

Jndt is termed the mean motion in the disturbed orbit,

and is denoted by £1

38. To obtain a formula for calculating £, we have

<P£_dn
d? ~ dt

'

" The reader, if acquainted with the Lunar Theory, will have already seen
the inconvenience of such terms.

+ It may be noticed that if n were constant, e' would be identical with e. .
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and differentiating the equation wV = fi

therefore -r-

2na
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but this forms no new relation, since it has been deduced

from (i).

40. When the elements have been calculated by means

of the above formulae, the position of the planet will be given

by the equations

r = a\l+-e2 — ecos(f+e — tr) — -e2 cos2 (£+e — zr) —...[,

6 = f+ e + 2e sin (£+ e - «) + -<? cos 2 (£+ e - «) + ....



CHAPTER III.

DEVELOPMENT OF THE DISTURBING FUNCTION.

41. In the first chapter we have obtained equations by
means of which R may he expressed in terms of the time

and the elements of the orbit ; we now proceed to shew how
the actual development may be effected in a series ascending

by powers and products of the excentricities and the tangents

of the inclinations. In the Planetary Theory these are ex-

tremely small, and the series will converge rapidly. Ac-

cordingly in the present treatise small quantities of orders

higher than the second will be neglected*.

42. If we recur to Art. 11, it will be seen that, consider-

ing only one disturbing planet,

R = m'\ -
;

—
(* -*')'} i

r,r,' cos (fl
t
- 0/) + zz'

~\

(r^ + O* J'

The first step towards the required development will be

the expansion of r
lt

r,', V #/, z and z' in terms of the time

* We may remark that to this order of approximation the inclinations, their

sines, and tangents will be equal.
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and the elements of the orbit. For this purpose we may
employ the equations which have already been obtained in

Art. 13, viz.

:

tan (0l
— O) = cos i tan (0 — 12),

sin \ = sin i sin (0 — O),

r
x
= r cos \, z = r sin A,,

r = a\l + -e3 — ecoa (nt + e — sr) —-e'cos2(n + e— or) — ...i

,

50= nt + e + 2esin (nt + e — ot) + 2e2 sin2(«£+e — nr) + ...,

with similar equations involving the co-ordinates and elements

of the disturbing planet.

(i) To expand rv We have

r
x
= r cos X = r (1 — sin

2
X)^

= r(l-isin2
\+...)

= rll-isin2 ;sin2 (0-O) + ...[

= r - 1 - itan2
t sin

2
(0 - fl) + ...1

to the same order of approximation,

= r \l -itan2
i"+ itan2 ;cos 2 (0-Cl) + ...I

;

or substituting the expansions for r and 0,

r, = a -n +-e2 — -tan2
;— e cos (n£+e — sr) — -e" cos 2 (nt+e— •or)

-tan2 t'cos2(n« + 6 — 12) + ...[+V
= a(l + u), suppose.
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Similarly, »•/ = «' (1 + w')-

(ii) To expand
t
. We have

tan (0, -d)= tan {(0t
- 12) - [9 - 12)}

tan (0,-12)- tan (0-12)_
1 + tan (0X

- 12) tan (0 - 12)

_ (cos « — 1) tan (9 — 12)

1 + cos i tan
2
(0 — 12)

- 2 sin
2

1 tan (0- 12)

1 + tan2
(0 - 12) - 2 sin

2

^ tan
2
(0 - 12)

- sin
2

\ sin 2(0 -12)

l-2sin2
^-sin

2
(0-12)

= -sin2

| sin 2(0-12)-...;

therefore 6
X
- 9 = - sin

2 1 sin 2 (0 - 12) - . .

.

= -tan2isin2(0-I2)-...,

to the same order of approximation; or, substituting the

expansion for 9,

5

i
= nt + e + 2e sin (nt + e — vr) + -e2

sin 2 (nt + e - *r)

— tan
2 - sin 2 (wi + e — 12) + ...

= n£ .+ e + », suppose.

Similarly, 0/ = n'f + e + v'.

»f *to*W-4M*..
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(iii) To expand z. We have

z = r sin \ = r sin i sin (0— O)

= rtan£sin(0 — O) — ...

to the second order; or, substituting the expansions for r

and 0,

z = a {tan i sin (nt + e — O) + ...}.

A similar expression may be found for z'.

43. Having obtained the expansions of r
(
, r',

t
,
0',

z, z we must now substitute them in the expression for R.

This may be effected as follows.

Let R! be the value of R when u, u, v, v are severally

zero : then, writing
<f>

for nt + e — (n't + e') we have

R' = m' [{a
2+ a'

2 - 2aa' cos cf> + (z - s')
2}^

- iaa' cos <£ + zz') (a
12 + z'

2
)"*]

= m' [(a
2 + a'

2— 2aa' cos <£)"*
Ti cos <£]

(3/

- m' [i (a
2+ a'

2 - 2ad cos <£)-* (a - z'f

,1 , 3 a ,2 ,1+^ ZS ~2^ S C0S
^J

+

Now R = R +-T-au + -j-f au+^rr (v-v)
da da d<p v '

1 (d"R' „ „ , d2R' ,„ ,„ d2R , ,.„}+2U^ au+^ au+ w {v ~ v)
\

d2R' , , d2R' . ,. d2R' , ,+ j j , aa uu + , j. om [v —v j + , , ,

,

a u (v — v)
da da dad<p v da dtp v '

+
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44. It will be shewn in a subsequent article that

(a
2 + a'

2 -2aa'cos<£)-s

,

can be expanded in a series of the form

-

^

+ -4
1
cos<£+.4

2
cos2(/>+ ... + .4* cos k(j>+ ...

Assume then

(a
2 + a'

2 -2aa cos <p)-^ = I C + C; cos </> + C„ cos 2<£ + . .

.

(a
2 + a'

2 - 2aa cos <£)"* =
I DQ+D1

cos £+ Z>
2
cos 2$ + . .

.

Thus

i? = m'|iC + 1̂
-j)cos^+Cf

2
cos2^ +

...J

+~{2^ + fe-a'2
)
COS ^ + -^ COS^ + -j

+waV
i2^

+ (^ + ri
co^ +w cos2^ + -j

- m' (v - v) j(
C

t
- £) sin

<f>
+ 2

C

2
sin 20 + . . .

.]

_"' («-"')'
j^-ji) 008^ + 4(7, COB 2»+...|
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-"'
(* ~ S?

{^ Do+A cos
<ft
+ Z>

2
cos 20 + . . j-

0+...}.
, (zz 3 a „- m {^-2^ s cos

45. By Art. 42,

m = - e
2 — j tan

2
& — e cos («i + e — is) — - £ cos 2 (w< + e — •nr)

+ - tan
2
» cos 2 (w£+e-0) + ...

5
v = 2e sin (mi + e— ot) + - e

2
sin 2 («£ + e - is)

-tan2 |sin2(wf + e-£l) + ...,

z = a {tan i sin (nt + e — 0,)+ ...},

with similar expressions for u, v, z.

Hence to
2 = e

2
cos

2
(«2 + e — is) + ...

e
2

e
2

=
o + -5 cos 2 (nt+e — is) + ...,

(i> - v'f = 4e
2
sin

2
(«« + c - w) + 4e'

2
sin

2
(m'i + e' - *r')

— 8ee' sin (nt + e— is) sin (w'£ + e' — is') + . .

.

= 2 (e
2 + e'

2

)
- 2e

2
cos 2 (nt + e- is)- 2e'

2
cos 2 (n'<+ e' - sr') -

— 4ee' cos (<£ — ot + «t') +4ee' cos {(n + n')t+e+ e'—is—is' ]+...,

mm' = ee'cos (nt + e— is) cos(n't + e' — is') + ...
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66
'

6&
1

= — cos (<£ — ot + to-
) +— cos {(n + n') t+e+e— ct — «'} + ..

.

z« (u — «') = — e
2
sin 2 (re£ + e — w)

+ 2ee' cos (»£ + e — «r) sin (n'i + e' — w') + . .

.

= — e
2
sin 2 (mi + e — zr) — ee sin

(<f>
— zr + er')

+ ee'sin {(n + n) t + e + e—zr — or'} + ...,

, ,.„ a2
tan

a
i a'

2
tan

2
z" o2

tan2
t . _.

i*-*y = —2—+
%

__ COs2(«i + £ -n)

-cos2(re'i+e'— fl')— aa' tan z"tarn"cos (</>— fl+ 12')

&c.

2

+ da' tan i tan i'cos
{
(re + re') i + e + e — D, — £2'} +

46. If these values be substituted in Art. 44, it will be

seen that cosines will be multiplied only by cosines, and sines

by sines. Hence the series will consist of two parts, one inde-

pendent of t explicitly, and the other consisting of periodical

terms of the form

Pcos {(pn ±qri) t + Q),

where p> and q are any positive integers or zero, P is a function

of the mean distances, excentricities, and inclinations ; and Q
a function of the longitudes of perihelia, nodes, and epochs.

The former part is denoted by the symbol F: we proceed to

determine its value as far as the second order of small quan-

tities.

47. To determine that part of R which is independent of

the time explicitly.

If those terms only be written down which either are, or

after reduction will become, independent of t, we have

,(G
B

adA\(£_ tajrVi a dC_ /e'
2

tan
2
1

m i" +
2 da U ± )

+
2 da'
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greater than p. Hence the principal part of the coefficient

,of a term Pcos (pnt + q) in w2
, will be of the order p.

Since then the law holds in w2
, it may be shewn in like

manner to hold in the product of m2 and u, i. e. in us
. Thus

it may be proved for any power of u. In like manner it

may be shewn to hold for any powers of u, v, v', z, or z.

(3) The same law is true for the product of any powers

of u, v, z ; and likewise for the product of any powers of

u, v, z' . This may be proved by a method similar to that

of (2).

(4) In the product of any powers of u, u, v, v', z and
z', the order of the principal part of the coefficient is the

arithmetical sum of the multipliers of nt and n't.

For let us consider a term Mcos {(In ± Vri) t + N}. Now
this must evidently have arisen from the multiplication of

L cos (Int + X) with L' cos (l'n't + X'), or of L sin (lnt + \)

with 11 sin (l'n't + X), where by (3) L is of the order I and
L' of the order I'. Hence M will be of the order I + I'.

Now any term in the development of R of the form
P cos {(pn-qn) t+ Q) must have arisen partly from the

COS
multiplication of P

t
. Jc<f>, or as it may be written

sin

cos
A

Bill
{(&»-&»')<+&}

COS
With P

> sin tf(P -*)"-(? ~ *) «'] * + Q,

and partly from its multiplication with

cosP
3 qi

-

n {[(P + Jc)n-(q + 7c) n'] t + Q3 ,sin

where h is any positive integer or zero, P
1
is a function of a

and a only, and P
2 , Ps

are functions of the excentricities and
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inclinations, such that the orders of their principal parts are

given by law (4). Hence the order of the principal part of

P will be equal to the lesser of those of P
2
and P

a
.

Now the order of the principal part of P
2
will be the

least value of which the arithmetical sum of p ~ 7c and q ~ Jc

is susceptible, for different values of k.

(i) Suppose Jc intermediate top and q ; then this sum

=p~Jc + q~Jc=p~q;

(ii) Suppose Jc not greater than the smaller of p and q ;

then this sum =p + q — 2k, the least value of which (by

putting Jc equal to the smaller ofp and q) =p ~ q •

(iii) Suppose Jc not less than the greater of p and q;
then this sum = 2Jc—p — q, the least value of which (by

putting h equal to the greater ofp and q) =p ~ q.

Thus p ~ q is the order of the principal part of P
2
. That

of P
3
will be the least value of which p + k -f q + Jc is sus-

ceptible, i.e. p + q-

Hence it appears that the order of the principal part of

P is p ~ q.

51. The principal part of the coefficient of a term in E,

of tJie form P cos
{
(pn + qn') t + Q} is of the order p + q.

This term arises from the multiplication of such terms as

P
x

C°S
{{Jen - Jen) t+ Qt),

with P
2
1™ {[(P -k)n+(q + Jc) n'] t+Q,},

and P
3

C°S
{[(p + 7c)n+(q- Jc) «'] t + Q3],sm

and as in the last Article, the order of the principal part

of P will be equal to the lesser of those of P, and P
3

.
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Now the order of the principal part of P
2

will be the

least value which the arithmetical sum oip~k and q+ k

can assume, for different values of k.

(i) Suppose k less than p ; then this sum

=p —k+q+k =p + q.

(ii) Suppose k not less thanp; then this sum

= k —p + q + k,

the least value of which (by putting k equal to p) =p + q.

Similarly it may be shewn that p + q will be the order

of the principal part of P
3
.

Hence it follows that p + q will be the order of the

principal part of P.

In Art. 44 we have assumed that (a
2 + a'

1 — 2aa' cos
<f>)~"

can be expanded in a series of cosines of
<f>
and its multiples,

we shall now give a proof of this and shew how the coeffi-

cients may be calculated.

52. To shew that (a
2 + a'

2 — 2aa' cos
<f)~° can he expanded

in a series, of cosines of multiples of(j>.

r

Suppose a greater than a, and for — write a ; then
CC

(a
2 + a'

2 - 2aa cos <£)
-8 = a-28

(1 + a2 - 2a cos 0)
-8

= a-28 {1 + a
2 - a (e+^ + e^"1

)}"
8

= a-
28

(1 - ae*^1
)-* (I - ae"*^)"8

= a-
28 |l + sae^-1 +"^^ aV*^

+
13

ae +
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x jl + sae-^~l +
S

(
s + V aV2*^1

L£

's (s + 1) (s + 2)
*+...]

I u
,«(n+l) s (s + 1) (s + 2) 5 , I

/e*^1 + e-^'-w—n

—

+ .

where the coefficients of e
10 and e **^ x

will always be

equal. Hence we may write

(a
2+ a'

2 - 2aa cos <£)"8

= - A„ + A, cos </> + -4
2
oos 2$ + ... +A cos 7c <£ + ...

,

where ^4 , ^i;
&c, are functions of a and a. The series

which they represent will be always convergent provided a is

less than unity, or a greater than a. If a be less than a', we
have only to interchange a and a in the above, so that a will

then denote the ratio of a to a.

53. To calculate C and C
t
.

In the preceding article, let s = - ; then

C.P.T.
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Unless a be small, these series will converge too slowly

to be practically useful. More convergent series might be

obtained, but according to Ponte"coulant {Systeme du Monde,

Tome in. p. 81), it is more convenient to employ elliptic

integrals for the purpose, in the manner we proceed to ex-

plain. We have

(a> + a'*-2aa'coS <l>)i

=
l
G

°
+C

i
COS<

l>
+C

>
COs2(

l>+ -

cos 11
, 2 , ,t—o ' „„= ^1 = 5 G cos(f> + ~ (7,(1 + 003 20)
(a + a — "aa cos 0)* 2 T 2 J r/

+ 2 C
2
(cos 30 + cos 0) + . ..

Integrating both sides of these equations with respect to

between the limits and 2n, we obtain

„c = r # i r **
K (a* + a'

2 - 2aa cos $)* aJ (1 + a2 -2a cos 0)*
'

cos d(j> 1 f
2" cos d4>_r _ f

2,r cos d<f> if
1

i (a
2 + a'

2 -2aa'cos(A)* a J,o (a
2 + a'

2 -2aa'cos0)^ aJ
B (1 + a

2 - 2a cos 0)*
'

These integrals may be reduced to the standard forms of

elliptic functions by assuming

sin (5 — 0) = a sin 9
(1) (

whence tan 6 = -

sin

cos — a (2).

From (1) cos (5 - 0) (l - g) = a cos

therefore
gjftcos (5- 0) -acos 5

0?5 COS (5-0)
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Now

cos (0 — <p)—a.cos0 = cos (cos cf>
— a) + sin sin <£

cos
2 # . .N . , , .„.

^-^ + sin0Jsm<£, by (2),

_sin <£

sin

= V{(cos<£-a)
a +sina

#, by (2),

= A/(l + a2 -2acos<£) (3).

Also cos(0-<£)=V(l-a2
sin

2
6l) (4).

d(j> _ 111 + a2 — 2a cos (M
Hence ._ // l + a2 -:

rVl 1-a2J V\ l-a2
sin

2
6»

Again, from equations (3) and (4)

i

V(l + a2 — 2a cos cf>) = */(l — a2
sin

2
6) — a cos ;

therefore 1 + a
2 — 2a cos <£ = 1 — a

2
sin

2

+ a
2
cos

2 - 2a cos V(l - a
2
sin

2
(9),

2a cos ^ = 2a
2
sin

2 + 2a cos V(l — a
2
sin

2

0),

or cos ^ = a sin
2 + cos \/(l — a

2
sin

2
0).

Now as <jE> increases from up to 2tt, also increases from

to 27r; hence

1 p* #
V(l + a

2 -2acoss/>)

- _L F" de

~aW V(l-«2
sin

2 0)'

r _ i r
2,r cos

<ft aty1_
a^j„ V(l + a

2 -2acV(l + a
2 - 2a cos <£)

4—2
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1 /•»" asia'ddO 1 [
a" „—

I -TTi 2 am "I cos ° <

=— \r ,m ^ ./* - f

2

V(1 - a
2
sin

2

0) «wl -

Hence with the usual notation for elliptic integrals (see

Todhunter's Integral Calculus, Art. 222),

air v
' «7T \ 2 /

C, = 4- {^(«, 2tt) -E(a, 2tt)}

-h{'(*D-*(-

The numerical values of Fla, —
j
and -E'fa, — ) may be

found from Legendre's tables of elliptic functions.

54. Given Ct and C^_
t
to obtain C,^.

We have

(a
2 + a'

3 - 2aa' cos <£)"& = -C + C^ cos <p + ... + Ch cos /c0 + ...

;

differentiating with respect to <f>,

aa sin <jj (a
2 + a"' — 2aa' cos </>)"& = G

x
sin <£ + 2 C

s
sin 2<£> + . .

.

+ 7^0jsin k<f> + ...
;

therefore aa' sin <p (-0 + O
x
cos

<f>
+ . . .)

= (a
2 + a'

2 - 2aa' cos </>) ( <7X
sin $ +. 2 C

2
sin 2$ 4- ...)

;

equating coefficients of sin k(f>,

laa'(Ck„-C^)=lc(a* + a")C
li
-aa'{(k-l)Ck_1+(k + l)Cm};
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, „ 2k a2 + a'
2

_, 2k - 1 „whence C\. , = -= p- (A — -—, OV ..*" 2& + 1 W * 2/c + l **

55. Given Ck awe? Ck+1 to obtain Dk .

As in the last article, we have

ad sin </> (a
2 + a'

2 — lad cos <£)"* = C
x
sin <£ + 2 G^ sin 2<£ + . .

.

+ &G\sin&$ + ...

;

therefore ad sin <£ ( -D +D
l
cos c^ + D^ cos 2<£ + . . .

J

= G
x
sin 4> + 2G

i
sin 2</> + ...

;

equating coefficients of sin &<£,

2itf1 = aa'(Z>».
1-A I

.1) (1),

writing k + 1 for &,

2(& + l)Ct+1 = a«'(A-.ZU (2).

Again,

(a
2 + a'

2 - 2ad cos cf>)~^ = -D + D, cos
<f>
+ Z>

2
cos

2<f> + . . .,

and

(a
2 + d2 - 2ad cos $)'* = \C + G

x
cos <j> + C

2
cos 2$ + . .

.

;

J*

therefore - O + C
x
cos $ + . .

.

= (a
2 + a'

2 - 2ad cos
(f)

(-D„+ D
x
cos # + . . .

J
:

equating coefficients of cos Jeep,

C,= {a
2 + d2)Dk-ad{D^ +D^ (3),

writing h + 1 for h,

C^ = (a
2 + a'

2

) D^ - ad (2?, +AJ W.
Eliminating Dh_x

between (1) and (3),

(2* + 1) Ct
= (a

2 + a'
2

) A - 2oo'2>w (5).
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Eliminating D^
2
"between (2) and (4),

(2&+1) 0^ = - (a
2 +a'2)^ + 2aa'A (6),

Finally, eliminating D^ between (5) and (6),

(2* + 1) {(«
2 + «'2

) Ck - Zaa'C^} = {(a
2+ a'

2

)

2 - 4aV2

} Dt ,

or J*=<S^a2+a'

2) "~ 2au
'ĉ

]
-

56. To calculate the successive differential coefficients of

Ct and Dk with respect to a and a'.

We have

(a
2 + a'

2 - 2aa' cos $)
_4 = 5 C + O

t
cos + C2

cos 20 + . .

.

+ Ck cos Jc(f> +

.

. .

:

differentiating with respect to a,

— {a — a'cos<f>) (a
2 + a'

2 -2aa'cos0)"? = --j-°+ ^-'cos <£+-...

+— COS^-f-...;

substituting for (a
2+ a*

2 — 2aa' cos $)~8 its expression in series,

— {a — a'
cos 0) f q-0 +D

l
cos <j> + ... +Dk cos Ic<j> + ...\

ldG0l dO
t , dCt 1±

equating coefficients of cos Jc<f>,

By giving to & in succession the values 1, 2, 3, &c, those

°f
da ' "d^'

^C
"
may ^e fotind

>
tne nght-hand member
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being calculated by the formula of the last article. By equat-

ing the parts independent of </>, we obtain

4£— «z>.+«'A.
da

B
da

The value of —^ may be found by differentiating the

dO
expression for Dk in Art. 55, and substituting for -1 and

dGk+l

da

t^1 their values as given by the present article.

The successive differential coefficients of Ck and Dk with

dC
respect to a may be obtained from the expressions for —5-- -

and —j— by simple differentiation and substitution.

57. We might determine in the same way the successive

differential coefficients of Gk and Dk with respect to a ; but

when those with respect to a have been found, the former

may be derived from them, as we proceed to shew. On ex-

amining the expansion of (a
2 + a'

2 — 2aa cos
(f>)~'

in Art. 52,

it will be seen that Ak is a homogeneous function of a and a

of —2s dimensions. Hence Ck and Dk are homogeneous

functions of a and a, the former of — 1, the latter of —3

dimensions. It follows that -~ , -^-£ will be homogeneous
da da

functions of — 2 and — 4 dimensions respectively ; and so on.

Now by a known property of such functions

dCk , duk na —j- + a -j-, = — Ck,
da da

dO
which determines -— :

' da
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da' da da da '

which determines
da da

a
,d*ch

|
a
d*Ch = 2

dok

da'
2 da da da '

d'C
which determines 7

,„* : and thus all the differential coeffi-
da

cients of Ct may be determined.

In like manner all the successive differential coefficients of

Dk may be calculated.

We are now in a position to simplify the expression for

F. We have (Art. 47.)

„ , (Q If dC a
2 d*G\ .F= to' J-i? + - [a -r* + — —rV e

2

I [2 ±\ da 2 da' J

K,ac„„d*ca\,+ l{
a

la-'
+a d^) e

+ j aa'Z^ tan i tan i' cos (XI — XI') + • • •
[

•

The following proposition will be found useful.

d2C d2C
58. To shew that ,

,"
,
= — D1( and that , ' = — D

We have

1
C + G

1
cos + C

2
cos 2$ + ... = {a

2 + a'
2- 2ad cos <£)-*

:fore - -t-° + -r^ cos $ + -T-
2 cos 2$ + ...

= — (a — a cos $) (a
2 + a'

2 — 2aa' cos <£)"* >
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therefore

l-l^T-, + ?^r- cos0 + ... =cos £ (a
2 + a'

2 - Soo'cos^)"*
2 da da da da T

+ 3 (a — a' cos <£) (a' - a cos$ (a
2 + a'

2 — 2aa' cos
(f>)~*

= cos </> (a
2 + a'

2 — 2aa' cos $)~*

+ 3 {aa' (1 + cos
2

cf>)
- (a

2 + a'
2

) cos <£} (a
2 + a'

2 - 2aa' cos <£)
_l

= cos <£ (a
2 + a'

2 — 2aa' cos </>)"*

+ 3 {aa' sin
2
<£ — cos (a

2 + a'
2 — 2aa' cos <£)}

(a
2 + a'

2 - 2aa' cos <£)
_l

= — 2 cos $ (a
2 + a'

2 — 2aa' cos <£)"*

+ 3aa' sin
2

$ (a
2 + a

2 - 2aa' cos $)
_i -

Now (a
2 + a'

2 - 2aa' cos </>)"* = - D +Bx
cos <£ + . .

.

;

differentiating with respect to
<f>

3 aa sin
<f>

(a
2 + a'

2 - 2aa cos $)~2

= Z>j sin $ + 2Z>
2
sin 2$ + ...

;

, , 1 d2
C„ d'G, .,

= -2cos^(^D + JD
1
cos<f>+..^)

+ sin $ {D
t
sin <j> + 2DS

sin "20 +...),

whence, equating the parts independent of
<f>,

and also the

coefficients of cos <j>

2dada x 2 2
'

and ^rfo
7- ^
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dC
59. Since -r-

2
- is a homogeneous function of a and a of

da °

— 2 dimensions,

da? da da da '

, , dO, a, ePO
n

ad d iGa
therefore a —r-2 + — -j-

2
° = — -

afa 2 <fa
2

2 da da

1
' 71= - OKI X'j.

Hence the coefficients of e
2 and e'

2
in the expression for F

are each equal to - aa'D .

o

Again, since C^ is a homogeneous function of a and a' of

— 1 dimensions,

hence the coefficient of ee cos (w — in-')

= i(2C
1
-aa'i? );

but (Art. 55) 2&Ck = ad (!>*_, - DtJ ;

therefore, making h = 1,

2C
1
= aa'(2> -.D

2);

hence the coefficient of ee' cos («r— vr')

= -\adD
2
.

Again, (Art. 56)



DEVELOPMENT OP THE DISTURBING FUNCTION. 59

dC
therefore a*D. + a -j- = aa'D,

.

da l

Similarly, a'
2D + a' =p = aa'D,

.

Hence the coefficients of tan
2
i and tan

2
i' are each equal

1 , „.

to — — aa'D,

.

o

Finally, the expression for F becomes

F=m'\Q+l ad D, (e
2 + e'

2

)
- \ ad D, ee cos («r - w')

[ 2 o 4

— - aa'D (tan
2 /+ tan2 %) + j aa'D tan* tan z" cos (£2 — Q/)

+ ..}



CHAPTER IV.

SECULAR VARIATIONS OP THE ELEMENTS OF THE ORBIT.

STABILITY OF THE PLANETARY SYSTEM.

60. We have seen in the preceding Chapter, that the

disturbing function, when developed, consists of two parts;

the one independent of the time explicitly, the other in-

volving it under a periodical form: we shall consider sepa-

rately the effects of these two parts. In the present Chapter

our attention will be directed to the first or non-periodical

part of B, which we have denoted by F, The inequalities

thus produced in the elements of the orbit are termed secular,

in consequence of their very slow variation.

61. By differentiating the expression for F in Art. 59,

with respect to the elements, we obtain

de
U

'

dF m' ,

-}— = — aa Da ee sm yss — -sr )

,

ofo- 4 8
^

"

dF m
, n m , , ,.—=-= -aaU,e—-oo^.e cos w-sr ,

de 4 l 4 a x '

dF m' ,_ . *•//-» n'\-r- =——aaJJ, tan i tan i sm (11 — 11),
dll 4 l x '
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dF m' m
-p =—j- aa'D^ tan i+— aa'-Z^ tan z" cos (Q — £2'),

^
• .,

-T- = an expression similar to F.

Substituting these in the formulae of Art. 39, and neg-

lecting small quantities of orders higher than the second,

we have

da

dt
= °>

dt 4yU.

-D
2
e'sin (ot — ot'),

<?ot m'na*a' rn _ , . ,..

e
~dt

=:

V tA 8 --
!
6 cos(ot-ot)},

<?i m'nd2a n ., .

of*

=
4^ A tan

*
Sm (^ - n ).

. Jfl m'na'a „ ,, ., ,. AMtan z -5- = 1^ [tan t — tan % cos (I2 — 12 )}

J = ^ +^ (e
2 - tan2

1 ) +^2
(e'

2 - tan2
*')

+ A^ee cos (to- — ot') + ^4, tan «' tan i' cos (12 — XI')

,

where in the last expression, A, A
t

, &c, have been written

to denote certain functions of a and a.

62. To calculate approximately the secular variations of

the elements of'a planet 's orbit, in a given time.

Let a , e , ot , &c, be the values of the elements at some

given epoch ; a + 8a*, e + Be, ot + Sot, &c, their values after

an interval t : then Ba, Be, Sot, &c, are the required variations.

By Maclaurin's Theorem,

* It will be shewn in Art. 64 that 8a is always zero.
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« fde\ fd
2
e\ f

der\ /d*vr\ ffd-nr\ fa

which may he carried to any required degree of accuracy, hut

in practice the first two terms will generally he sufficient.

We have supposed the variations of the elements required

at a time t after the epoch ; if they be required at a time t be-

fore the epoch, we have only to change the sign of t in the

ahove.

We may remark that ( -y ) , (
-y-

)
, &c. are of the order of

the disturbing force, since they involve the first power of m ;

f

-7-5
J , (-tt) , &c. will involve m % and be of the second

order ; and so on.

In the short period of one year all terms after the first may
be neglected, so that putting t=l, we have

& = ©; &c-

Hence the coefficient of t in the above formulse is called

the annual variation.

63. Since the elements of the planetary orbits are con-

tinually changing, it will be interesting to shew that the

dimensions of these orbits, and their inclinations to the

ecliptic, nevertheless fluctuate between very narrow limits.

This constitutes what is termed the Stability of the Planetary

System : in order to establish it, it will be necessary to prove

the stability (i) of the mean distances, (ii) of the excentri-

cities, (iii) of the inclinations.
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64. To prove the stability of the mean distance of the

planetsfrom the Sun, and of their mean motions.

By Art. 61 -57 = 0, so that a is constant. Now it will be

shewn in a subsequent chapter, (see Art. 91), that to the first

order of the disturbing force, the periodical terras of B can

produce only periodical variations*; consequently to this

order, the mean distance is susceptible of no permanent

change. The same is true of the mean motion n, since

J
it = —1 , and jj, does not alter. We are hereby assured of the

a*

impossibility of any of the bodies of our system ever leaving it,

in consequence of the disturbances it may experience from the

other bodies ; and this secures the general permanence of the

whole, by keeping the mean distances and periodic times per-

petually fluctuating between certain limits (very restricted

ones) which they can never exceed or fall short of.

This result may easily be extended to all orders of the ex-

centricities and inclinations : for since nt + e always occurs in

B as one symbol, e cannot occur in F because t does not, so

that —r , and therefore —=- is zero.
de at

65. To prove the stability of the excentricities of the pla-

netary orbits.

We will first consider the case of two planets only. By
Art. 61,

de m'nd*a ,-.,., ,.

-7 =
;

D„e sin (ot — or).
dt 4/*

2 v '

* This result is also true when the square of the disturbing force is included:

for the demonstration the reader is referred to Pontecoulant's Systeme du Monde,

or to Laplace's Mecanique Celeste.
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„. .. , oV mn'd*a _ , . . , .

bimuarly, -j- = X>
2
e sin (ra- — tn-J.

Now since D
2
is the coefficient of cos 2j> in the develop-

ment of

(a* + a'
2 -2aa cos $)-%,

an expression in which a and a are similarly involved, it

follows that

Hence, multiplying the above equations by — e, -r~, e,
.

tiCCi lb CL

respectively, and adding, we have

m de m , de'

na at na at

therefore, since a experiences no secular variation,

— e + —j-, e = V.
na na

A similar equation holds for any number of planets. Ee-

de

placing for convenience —-

—

- by (a, a'), we have

= — m'na (a, a) e sin (ot — vr')

— m"na (a, a") e" sin (sr — sr") — ...

de ,,.,..., .

—y- = —m a (a , a) e sin (1:7 — •57)

—mna {a, a ) e sm (ct — to- )
—

,

C£0 rf urn \ • / »/ \
--y- = — wm a (a , a) e sm (•bj- — st)

— mna" (a", a') e'sin (ot" — -ct') —
,

Since J)I = -D
2 , it follows that (a, a') = (a', a) : hence mul-

lying t

we obtain

tiplying these equations by — e, —r-, e', &c, and adding,r J ° u J na na °'
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in de in , de' m" , „ de"— e ~j7 + ~t-' e -j:+-rrT,e -t-+... = 0;
na at na at n a at

whence by integration

%(™e*)=C.
t

\na J

Now observation shews that all the planets revolve round

,he sun in the same direction, so that the mean motions n, n

,

n" , &c. are of uniform sign. Hence all the terms of the left-

hand member of the above equation are positive.

We learn also from observation that the excentricities of

the planetary orbits are at present very small indeed, with the

exception of the Asteroids, the masses of which ..are very

small. Hence the constant must be small. Since, then, all

the terms of the first side of the equation are positive, and

their sum always equals a small constant; it follows that

every term is small, and therefore that the excentricities are

always small*.

66. To prove the stability of the inclinations of the planes

of the planetary orbits.

t. a , „„ di m'na2
a' _ , ., . ,_ „,,

Bv Art. 61 -r =—; D , tan* sin (ft -ft ).
J at ifi '

CT . ., , di' mn'a"
2a n , . . ,„, „.

Similarly, -j =—— -D, tan % sin (ft -ft).

As in the last article, it may be shewn that B[ = Z>,

.

Hence, multiplying the above equations by

m ,
.in .,— tant, —rrtan i

,

na na

* It should be noticed that the above is satisfactory only for those planets

whose masses are considerable, which is the case with Jupiter and Saturn; but

the stability of the excentricities is not confined to these planets. For a com-

plete discussion of the subject the reader is referred to Pontecoulant's Systime

du Monde, or to Laplace's M6canique Celeste.

C.P.T 5
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respectively, and adding, we have

m
,

,di m' ., di'— tan i -=- -\——, tan i —=- = 0,
na at na at

or to the same order of approximation,

m ,
.d (tan i) m' ., d (tan {')— tan i ; h -j—, tan ^ j-— =

;

na at na at

i

therefore — tan2 {+—;—, tanV = C.
na na

A similar equation would (as in the case of the excentri-

cities) be true for any number of planets. Now the inclina-

tions of the planetary orbits to the ecliptic are at present very

small : hence if we take for our fixed plane of reference a

plane coinciding with the present position of the ecliptic, it

follows, as in Art. 65, that their inclinations to this plane must

always remain very small*.

67. The stability of the excentricities and inclinations

may also be established as follows.

By conservation of areas

% (mh cos t) = const.,

or since

A2 = pa(l- i) = {M+ w) o (1 - e
2
),

ifM denote the mass of the sun, we have

S{wW(l +^+...)(l-jV...)(l-f+ ...)} = const.

m2

Since a is constant, if we neglect -ttt, and the fourth

powers of the excentricities and inclinations, this may be

written

2 (m Vae
2

) + 2 (m V«*
2

) = 0,

* We may remark that the above demonstration, like that of the preceding
article, is applicable only to the case of planets of considerable mass.
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or to the same order of approximation

2 (m tjae
3

) + 2 (m \Ja tan
2
i) = C.

Since we know from observation that all the planets re-

volve round the sun in the same direction, all the radicals

in this equation must be taken with the same sign. Also,

since the excentricities and inclinations are at present very

small, the constant must be small. Hence it follows, as in

Arts. 65 and 66, that the excentricities and inclinations must

always remain very small.

68. It may be observed that the result of the preceding

article proves the stability of the excentricities and inclina-

tions as far as the third order of small quantities, while in

Arts. 65 and 66 it was only established to the second order.

We will now shew that if small quantities of orders higher

than the second be neglected, the equation of the preceding

article includes those of Arts. 65 and 66.

On referring to Art. 61, it will be seen that to the second

order, the excentricities and inclinations are given by equa-

tions independent the one of the other. Each must therefore

be the same as if the other did not exist. Hence in the

equation of the preceding article, if we make successively

i= and e = 0, we have

2 (m */ae
2

)
= C, 2 (m \ja tan

2
i) = C;

or, since »Ja =
na

\na J \na I

which agree with Arts. 65 and 66.

69. From the results of the preceding articles, we draw

the following remarkable conclusion : The fact that the planets

revolve about the sun in the same direction, ensures the stability

5—2
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of the planetary system. The converse of this would not

necessarily be true, as we shall see in Art. 75 : the numerical

relations of the dimensions and positions of the orbits of the

planets, might be such as to ensure stability, although they

revolved in opposite directions. But the above is independent

of particular numerical relations.

70. The conclusions at which we have arrived with

regard to the stability of the planetary system are of especial

interest. In consequence of the changes in the elements it

might have been supposed that the orbits would ultimately

undergo such alterations in their dimensions as to bring the

planets into collision or hurry them into boundless space.

Or even if no such violent catastrophe occurred, a derange-

ment of the seasons might seriously have interfered with the

physical comfort of man*. But analysis shews (and the

results are confirmed when the approximation is carried fur-

ther,) that unless some unknown cause should operate to

produce the contrary, the dimensions and position of the orbits

will for ages remain nearly the same as they are at present,

i.e. nearly circular in form, and but little inclined to each

other, thus affording a beautiful illustration of Gen. viii. 22

:

" While the earth remaineth, seed-time and harvest, and cold

and heat, and summer and winter, and day and night shall

not cease."

* See Herachel's Outlines of Astronomy.



CHAPTER V.

SECULAR VARIATIONS OF THE ELEMENTS CONTINUED.

INTEGRATION OF THE DIFFERENTIAL EQUATIONS.

71. In Art. 62 we have given a method of calculating

the secular variations sufficiently accurate for the practical

purposes of astronomy, but the equations of Art. 61 admit of

actual integration. To this we now proceed.

72. To integrate the equations for the excentricity and

longitude ofperihelion.

We have (Art. 61) for the planet m

de m
dt 4/a

d'or mnd1d

- D
2
e' sin (ot — •nr'),

{D.e - D/ cos (w - ut')}
;

dt 4/i

with similar equations for the planet m'.

We shall be able to reduce these to a system of linear

differential equations if we assume

u = e sin sr, v = e cos ot,

u = e sin &', v = e cos ot'
;

du dtsr
,

. de
therefore -j- = e cos « -^- + sm w ^

.
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Substituting the values of -5- and -j , and writing a

j. m naa ,
tor — • , we have

dt dt

— . wf> Tin.vp

4;,

~di
0. (D

1
e cos sr — D

2
e cos •or')

= a(Z^-D/).

Similarly, ~Tt
— a (AM

' —AM)-

In like manner for the planet m, writing a' for —
,

we have

g=a'(A«-A«')-

The forms of these equations suggest the following par-

ticular integrals

:

u =M sin (gt + 7), v =M cos (gt + 7),

w' = If'sin (gt + 7) , v' = M' cos (#« + 7)

.

Substituting these in the differential equations, we obtain

from either of the first two

gM=oi(D
1
M-D

2
M'),

and from either of the last two

gM'^o!(D
1
M'-D,M);

eliminating the ratio M : M'

or f-{a + a
,)D

lg + aa'(D
l

t -D
%
*) = 0:

and the roots of this equation will be real and unequal, real

and equal, or impossible, according as

(a + a')
2
i)

1

2 -4aa'(Z»
1

2-A2

)
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is positive, zero, or negative. Now

(a + a')
2 D? -W (-»/ - A') = (« - «TA2 + 4aa'Z>/,

a positive quantity, since n, n and therefore a, a' are of like

sign. Hence the values of g will be real and unequal : denote

them hj
ffl , ffs , and let 7l , <y

2 ; M
x

, M2 ; M;, M
t

' ; be the cor-

responding values of 7, M, M' respectively. Then the com-
plete solution of the differential equations will be

u=M
l
sin {gj + 7l) +M2

sin (g2
t + %),

v =M
l
cos

(9lt + 7l) + M, cos (g2
t + 7a),

u = if/sin (gj + 7l) + M; sin {gj + 7l),

t/ = Jf/cos (&* + 7l) + ilf/ cos (gj + 7a).

Of the constants in these equations, four are arbitrary and

must be determined from observation. We have

<? = «2 + «
2 = M; +M

%

' + 2M
t
M

2
cos {( ffl

-g
2)

t +% - yj,

tan OT = " M
i
sin (ft* + 7.) +^"2 si" (.7,* + 7.)

.

v M
l
coa{g

l
t + <y

i
)+M

2
cos(g

2
t + y2

)'

with similar equations for e and -ur.

73. Had we considered a system of several planets, we
should have obtained by a similar process

e*= M*+ M° + M*+ ... +2^ cos {&-&) * + %-%}
+2M& cos {(^-^3) * + %-%} + -

_if
1
sin(ff1

<+ 7l)+if2 sin (^+y,)+ jf,8in (ftf + y.) + ...
'

"

iflCos(^+ 7l)+if2cos(^+ 72)+M3
cos (g,t + %) + ...

'

with similar equations for each of the other planets.

74. From the form of the expression for e in Art. 72, the

stability of the excentricities, in the case of two planets, may

be inferred. We have
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Consequently the excentricity fluctuates between the limits

M
1
+M

3
and M

t
~M

2 , and since we know from observation

that M
1
andJf

2
are very small*, it follows that the excentri-

city must always remain very small.

27T
The period of the changes in the excentricities = ,

?x~9x
and is the same for each planet. In the case of Jupiter and

Saturn this amounts to 70414 years ! The greatest and least

excentricities which Jupiter's orbit can attain are "06036 and

•02606, those of Saturn -08409 and -01345; the maximum of

each excentricity taking place at the time of the minimum of

the other. This follows from the equation

na na

which has been obtained in Art. 65.

75. It appears from the preceding article that the stabi-

lity of the excentricities is a consequence of the periodical

form of the solution of the differential equations, a result

which depends upon the fact that gx
and gs

are real and un-

equal. Now we have seen that in order that this may be the

case, it is only necessary that

(a + a7A2-W(A2-A2

)

shall be positive, a condition which might be satisfied if the

signs of n, n, and therefore of a, a! were different. In this case,

then, the stability would still subsist. Let us however con-

sider what would be the effect of equal or impossible roots to

the quadratic from which g is found. In the former case a

term would be introduced into u, u, v, and v proportional to

* In the case of Jupiter and Saturn, Sir John Herschel finds that

M1
— -'01715, M2 ='04321, for Jupiter;

Mi'= '04877, il//= '03532, for Saturn:

the year 1700 being taken as the epoch. See Article, Physical Astronomy in

the £ns/,clopcedia Mitropolitana.
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tlie time, and in the latter the periodical terms would be re-

' 'placed by exponentials. Consequently the excentricities

would increase indefinitely with the time, and the stability

would no longer subsist.

76. We now proceed to examine the expression which

has been obtained in Art. 72, for the longitude of perihe-

lion, viz.

tiva -, - -Mi sin (ffi* + %) +K si" (fff + %) .

M, cos
{9l t + 7l ) +M2

cos (gjt + %)

'

" dt M? + M: + 2M
1
M^oS {{gl -gJt + % -^} '

The maxima and minima values of nr, if such exist, will be

found by equating -^- to zero. Thus

If this (disregarding sign) be not greater than unity, the

perihelion will oscillate, the period of a complete oscillation

being the same as that of the excentricities, viz. ; but

if, as is the case with Jupiter and Saturn, this be greater

than unity, the longitude of perihelion has no maximum or

minimum, and the perihelion moves constantly in one direc-

tion.
«

Again,

dn_l
(ff1
-g

1
)(M'-M

t

t
) 1, .

dt 2 4^+^ +21^ cos {(&-&) t +% - % ]

+
2

[ffl +™

Hence when e is a maximum or minimum, -5- will be

either a maximum or minimum, and the apsidal line will be
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moving most rapidly or most slowly, different cases occur-

ring according to the signs and magnitudes of the quantities

involved.

77. When the apsidal line oscillates, to find the extent

and periods of its oscillations.

We have (Art. 72)

tan -r -
M

i
sin (&* + %) +K sin (ffJ + 7,) .

M
1
cos (gjt + 7l ) +Mt

cos (gj +%)

'

,, c , .
. tanra- — tan (g.t + <y.)

therefore tan (-& — at — 7,) = ^ '-^
\ vi iii

1 + tan ot tan (gj + 7J

—M
2
sin ifr

M
l
+M

a
COS i/r

'

if vr = (&-ft)* + 71-Yr

Also by the last article, if t be the least positive angle

whose cosine is — -p

—

!—
, , , z , ,

e
2J = ^1 + ti M*

M
* (

C0S ^ - C0S T
)

•

Different cases will occur according to the signs of J/„

Jlf
2 , &c. Suppose .flfj, M

2
to have different signs, gl

and _$r
2

positive, and gx
greater than gs

. Then i/r increases as £ in-

creases, and -3- will be negative, or the apsidal line will

regrede, while cos i/r — cos t is positive, i. e. so long as ifr is

between Inir — t and 2n7r + t : -j— will be positive, or the

apsidal line will progrede, while ^ is between 2mr + t and

2(ft + l) 7T-T.

To find the angle through which the apsidal line regredes

and the period of the regression. Let t', t" be the values
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of t, zt', is" the values of is corresponding to the values

2mr — t and 2mr + t of ty : then

(ffi -ffi) f + % - % = 2«7T- r,

(& ~&) *" + 7i - 72
= 2wtt + T,

, , , . Af.sinT
tan (is — at — y,) = -^j—^ ,V Vi 111 J^ + j(f

2
cos T '

tan (ra- — at — 7) = ^r^ ?-= .

From these equations the values of t', t", is' , is" may be

found, and thus is' — is" the amount of regression will be

known. The period of regression

31-9*

In like manner the amount and period of the progression

may be obtained. The latter will be found to be ———— .

3x~9%
The period of a complete oscillation will be the sum of

2tt
the periods of the regression and progression, that is r

which agrees with the preceding article.

78. The motion of the centre of the instantaneous ellipse

in consequence of the secular variations of e and is may be

exhibited geometrically as follows.

We have, by Art. 72,

e cos is =M
1
cos {gf + yj +M3

cos (g2
t + y2),

e sin is =M
1
sin (gj + yj +Ma

sin (g2
t + y2).

Let a circle be described in the plane of the orbit with

its centre S coinciding with that of the sun, and its radius

equal to M^a, where a is the mean distance. Let a point P
describe this circle uniformly with a velocity gv starting from
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0. Again, with centre P and radius equal to M
2
a let another

circle be described, and let a point Q describe this circle

uniformly with a Telocity g2 , starting from G. Let 8L be

the line from which longitudes are reckoned, and draw PK
parallel to it: then if the angle 08N be equal to <yv and

CPK to 72 , the angle PSN will be equal to ffJ+ %, and

QPK to gt
t + 72

. Produce QP to meet the circle again in R,

and draw QN perpendicular to SN. Then, supposing M
x
and

M
2
to be both positive, we have

SN= SP cos PSN+ PQ cos QPK
= Mfl cos

(ffl
t + 7l) +M3

a cos {g2
t + 7.,)

= ae cos ar.

Similarly, it may be shewn that

QN= ae sin or.

Hence, the apse being supposed to move from L in the

direction contrary to that of the hands of a watch, Q will be

the centre of the instantaneous ellipse.
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If M
t
be positive and M

2
negative, it may be shewn in

like manner that the centre of the ellipse will be R. If

Mv M2
be both negative, join QS and produce it to Q' so

that SQ' = SQ: then the centre of the ellipse will be Q'.

A similar construction will of course apply for the motion

of the further focus.

79. To integrate the equations for the inclination and lon-

gitude of the node.

We have (Art. 61) for the planet m

di m!na?d

dt 4[x,

Z^ tan z' sin (12 -12'),

.dfl mnaa „ . . ., ,„ „,,,
tan i—r-= ;

D, {tan i — tan i cos (12 — 12 ) ;

dt 4/i
L l

with similar equations for the planet m'.

To integrate these, assume

p = tan i sin 12, q = tan i cos 12,

p = tan *" sin 12', q = tan i' cos 12'

;

therefore -^ = tan i cos 12 -j- + sin 12 (1 + tan
2
*) -j .

Substituting the expressions for -j- and -j ,
and writing

a for — , since tan
2
i -j being of the third order may be

omitted, we have

% = aD, (tan i' cos 12' - tan i cos 12)
dt

'

= aD
1
(q'- S).

L Similarly, J = %D
X {p -/)
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Also for the planet m, writing a' for —
,

f = «'A(2-2'),

The forms of these equations suggest the following par-

ticular integrals

:

p=Nsm(ht + 8), q = Ncos(ht+$),

p' = N' sin (ht + 8), q'= N' cos (ht + 8) .

Substituting these in the differential equations, we obtain

from either of the first two,

and from either of the last two,

eliminating the ratio N : N',

(h + aDJ {h + aD
x)
= aotDf,

or A2 + (a + a') DJi = Q-

therefore h = — (a + a') Dv or h = 0.

Denote the former by \, and let Sv S
2 , Nv 2V

S , N,', NJ,
be the values of 8, N, N' corresponding to h = \ and h = 0.

Then NJ = JSF
2 , and the complete solution of the differential

equations will be

p =N
t
sin {\t + SJ + iV

2
sin S

s ,

g = Nt
cos (hj + S

x)
+ iV

2
cos S

2 ,

p'=N
t

' sin (A,* + 8J +Nt
sin S

2 ,

4 = N; cos (fy + SJ + iV
2
cos 8

2
.
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Of the constants in these equations, four are arTbitrary,

and must be determined from the known values of i and Xi at

some given epoch.

We have then

tan2
% =/ + q* = N* + N* + iNft cos (hjt + S, - 8

2)

,

ten a = £ =^ sin &' + 8
' } + N*

sin 5
°

2 i^cos^+SJ+^cosS,'

with similar equations for % and XI'.

Had we considered a system of several planets, we should

have obtained a result precisely similar to that of Art. 73.

80. From the form of the expression for tan i, the sta-

bility of the inclinations, in the case of two planets, may be

inferred. We have

tan
2
* = iV

x

2 + N? + 2N,N
2
cos {\t + 8, - 8

2).

Consequently tan i fluctuates between the limits N
x

-\-N
2
and

N
t
~ JV"

2 ; and since we know from observation that JSf
t
and i\r

2

are very small, it follows that the inclination must always

remain very small.

Further, the periods of the changes in the inclinations of

the orbits of the two planets are the same, being —j- ; and

as^ appears from the equation of Art. 66, the maximum of

each inclination will take place at the time of the minimum
of the other.

In the case of Jupiter and Saturn, the period is 50673

years; the maximum and minimum inclinations of Jupiter's

orbit to the ecliptic are 2° 2' 30" and 1° 17' 10", those of Saturn's

orbit 2° 32' 40" and 0° 47'.

81. We now proceed to examine the expression which
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has been obtained in Art. 79 for the longitude of the node.

We have

tan a = Ni*>*(h i
t + S

i) + N'i«inS,

i\r cos (hj + 8J + iV
2
cos S

2

"

The maxima and minima values of XI, if such exist, will

be found by equating —r- to zero. Thus

N
«H»(V+ 8i- 8i)=— »F-

If this (disregarding sign) be not greater than unity, the

node will oscillate, the period of a complete oscillation being

the same as that of the ©seanijacities, viz. —T . But if it be
i hf

greater than unity, there cannot be any stationary positions,

and the node will move continually in one direction.

It may be shewn, as in Art. 76, that the motion of the

node will be fastest or slowest whenever the inclination is

either a maximum or minimum.

82. When the line of nodes oscillates, to find the extent

and periods of its oscillations.

It may be shewn as in Art. 77, that if ijr be written for

h
l
t + B

l
— 8

2 , and t denote the least positive angle whose

. . K
cosine is
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then ty decreases as t increases, and the line of nodes re-

gredes so long as i/r is between 2mr + r and 2mr — r, and
progredes so long as i|r is between 2mr — t and 2 (re — 1) tr + t.

Let XI', XI" be the values of X2 corresponding to the values

2?i7r + t and 2b7t — t of
-ty

; then

tan (XI' — S
2)
= — cot t,

tan (Xi" — S
2)
= cot t ;

therefore XI' — 8, = W7r + t ,
2 2

XI" — S„ = mm- — ( t — —
2/

therefore Xi' — XI" = 2t — tt,

which is the angle through which the line of nodes regredes.

Also the period of this regression may be shewn as in Art. 77

to be —j- . Similarly, the angle through which the line of
~ 1

nodes progredes may be shewn to be 2t — it, and the period of

+v . 2(tt-t)
the progression —-—7—

- .

The period of a complete oscillation will be the sum of

2w
the periods of the regression and progression, that is —7-

,

1

which agrees with the preceding Article.

The remaining cases corresponding to different arrange-

ments of the signs of N
x , iV2 and \ may be treated in like

manner.

The mean value of X2 is mir + B
2 ,

(this will be found to

be the case whatever be the signs of N
t , N2

and \ ;) and

the mean value coincides with the true whenever sin yfr = 0.

Since then 1^ is the same both for the disturbed and disturb-

ing planet, the nodes of both orbits will arrive simultaneously

at their mean positions.

C.P.T. 6
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In the case of Jupiter and Saturn N^ is for each planet

numerically less than N
x

, so that the node oscillates; the

extent of oscillation being 13° 9' 40" in Jupiter's orbit, and

31° 56' 20" in that of Saturn on either side of their mean

position, the ecliptic being taken for the plane of reference,

and supposed immoveable.

83. To shew that the inclination of the orbits of two

mutually disturbing planets to each other is approximately

constant.

If 7 denote this inclination, we have by Spherical Trigo-

nometry,

cos 7 = cos i cos i' + sin i sin i' cos (12 — 12')

= cos i cos i' {1 + tan i tan i' cos (12 — 12')

}

= (1 + tan2 ifl (1 + tan
2 1')"4

{1 + tana tan*" cos (12 - II')}

= 1 — - {tan
2
i + tan2 i' — 2 tan I'tan i! cos (12 — 12')},

if we neglect small quantities of orders higher than the

second.

Now tan2
i + tan2

i' — 2 tan i tan i' cos (12 — 12')

=p*+<f+p" + f-2(pp'+ Sa;')

= (*-.P')
,

+ (Z-2')
,

therefore 1 - cos 7 = - (N
x
— iV/)

2

,

2

or 7.sm^l^-iV/);

whence it follows that 7 is constant.

84. The equations which give the secular variations
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of the node and inclination may be interpreted geometrically

as follows*.

The equations to be interpreted are

p = iV
t
sin (hjt + B

t)
+ iV

2
sin B„,

q = N, cos (hf + SJ + iV
2
cos 8

2 ,

where p — tan i sin SI,

q = tan i cos SI.

Since in the differential equations from which these have

been obtained, small quantities of the third order have been

neglected, we have to the same order of approximation

sin i sin Sl=N
1
sin (hj + B

t)
+N

t
sin B

2

sin i cos S1 =N
1
cos (hjt + S

x)
+ JV

2
cos S

a
.

(I).

Let a sphere be described with its centre coinciding with

that of the sun, and its radius of any magnitude: let the

fixed plane of reference cut it in the great circle AL, L being

the origin from which longitudes are measured, and LA a

* For this elegant geometrical interpretation, the Author is indebted to

Mr Freeman, of St John's College. See Appendix, Art. J.

6—2
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quadrant. Let another fixed plane inclined at a small angle

J to the former cut the sphere in NM, and let LN= a>. Let

K, P, Q he the poles of AL, NM, and the plane of the orbit

respectively : join KA, KL, PA, PL, QA, QL, PQ, KP, and

produce the latter to meet AL in 0. Then N will be the

pole of OK, and ON & quadrant; therefore

AO = M°-OL = LN=<o.

Let PQ= p, and the angle QP0=6. Then from the

right-angled triangles A OP, L OP, we have

cos AP= sin /cos a, cos/P=sin/sin&>,

sinAP sinAPO = sin e», sin .4Pcos APO = cos / cos w.

Similarly

cos A Q = sin i cos O, cos LQ = sin i sin fl.

Now cos J. Q = cosAP cos PQ + sinAP sin PQ cos APQ
= cos .4P cos PQ + sin ^4P sin PQ

(cos .4P0 cos OPQ - sinAPO sin OPQ),

. or sin i cos O = sin Jcos a> cos p

+ sin p (cos 2 cos eo cos — sin to sin 8)

= sin /cos co cos p + sin p cos (0 + ta^

neglecting sin
2 - /sin p.

Similarly,

sin zsin O = sin /sin » cos p + sin p sin (0 + a>).

Now these equations will be identical with equations (1),

if we suppose

sin p =N1} sin /cos p = JV^,
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We have then the following interpretation :

—

the normal

to the plane of the orbit moves uniformly so as to generate in

space a fixed right circular cone.

85. To integrate the equation for the longitude of the

epoch.

We hare (Art. 61)

j = A + A, (e
2 - tan2 i) + A, (e'

2 - tan
2
i')

+ As
ee cos (in- — zr') +At

tan i tan i' cos (fl — D,')

.

Now from the formulae of Art. 72, we obtain

e* = M? + M2 + 2M
l
M,co*{(g

1 -gl t+ 7l
-%},

e'* = M-+M-+ 2Jf
1
'Jf>s {(g, -g2)

t+j-%],

ee cos (ct - ot') = MJ^l +M2
M^

+ (M
t
M; +m2

m;) cos
{{9l -g2

)t + yi
- 7j.

In like manner, from the formulas of Art. 79,

tan
2
i = Nf + N; + 2N,N, cos [\t + B

t
- SJ,

tan
2
i'=N

t
" + N," + 2N^N

2
cos {h

t
t + B

1
- SJ,

tan i tan i' cos (XI - Of) =N^ + N*
+ N, (N

t
+ NJ) cos [\t + \- SJ.

If these values be substituted in the expression for -j ,

it takes the form

jt

=Sn + B
x
cos {(gt -g,) t + yl

- %} + B2 cos \\t + 8
l
- S

2],
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where Bn, B
1

, and 2?
2
denote certain constants. Integrating,

we hare

6 = e + Brit + —±- sin
{(^ - g,) t + 7l

- yj

B
+f sin{h

1
t + S

1
^B

2}.

We may omit the term Bnt, if we consider it as furnishing

a correction on the mean motion n, which thus becomes

(1 + B) n. With this understanding

e=e,,+-^- sin {(yx
-

<72)
(+ % - %] + -f

sin jfij + 8, -

S

2}.

If this expression he developed, we may again omit the

term involving the first power of t, and consider it as affording

a further correction to the mean motion *. Thus we shall ob-

tain a series of the form

Be = Bf + Bf+...

86. In the Theory of the Planets this inequality is insen-

sible, but in that of the Moon it amounts to upwards of 10

seconds in a century, forming what is termed the secular ac-

celeration of the Moons mean motion. Thus it appears that

this inequality does not, as its name would seem to imply,

contradict the general theorem of the invariability of the mean

motions, since it is due to a variation not of the mean motion,

(as we have employed the term in the preceding pages,) but

of the epoch. If however, as in the Lunar Theory, the epoch

be omitted, any variation in the mean longitude will of neces-

sity be thrown upon the mean motion ; only in this case, n

will not be given by the equation n'a3 = fi.

87. We have hitherto supposed the planetary motions to

be referred to a fixed plane, but have left the particular plane

* The advantage of thus disposing of these terms arises from the fact that

the mean motion as determined by observation is the complete coefficient of t

in the expression of the mean longitude.
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undetermined. In practice it is usual to take the position of

the ecliptic at some given epoch, as for instance the year

1800 ; but since it is to the true ecliptic that astronomers refer

the celestial motions, we will now obtain formulas for deter-

mining relatively to the plane of the earth's orbit, the position

of that of any other planet.

Let then m, m denote the masses of the earth and the

planet considered, and suppose the orbits of m and m but

little inclined to each other and to the fixed plane of reference.

Let X, V denote the latitudes of points in these orbits corre-

sponding to the same longitude 6
i ; then (see fig. to Art. 13)

tan X = tan i sin {6
X
— XI) , tan X' = tan i' sin (d

x
— XI')

.

Now since i and i' are very small, we may replace tan X,

tan X' by X, X' respectively : thus

X' - X = tan i' sin (9X
- XI') - tan ^sin [9X

- XI)

= (tan % cos XI' — tan i cos XI) sin 6
X

— (tan i' sin XI' — tan i sin XI) cos 6lS

or, with the notation of Art. 79,

\'-\=(s'-g) aind
1
-(p'-jp) COS0, (1).

Now let 7 denote the inclination, v the longitude of the

node of the orbit of in relatively to that of m ; then approxi-

mately

X' — X = tan 7 sin (91
— v)

= tan 7 cos v sin 6
X
— tan 7 sin v cos

X (2).

Hence equating coefficients of sin 6
t
and cos Q

x
in equations

(1) and (2),

tan 7 cos v = c[ — q, tan 7 sin v = p' — p ;

whence tan
2
7= {p' -p)

2 + ($' - q)\
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and tanv=S—-.

These expressions determine the position of the orhit of

m relatively to that of m, when the values of p, p, q, and q
are known. Differentiating them, and neglecting small quan-

tities of orders higher than the second, we obtain

dy_/dp-_df
dt'Kdt dt

]
'-" v+ {%-a) cosv

>

dv _ fdp dp\ cos v idq dq\ sin v

dt \dt dtj tan 7 \dt dt] tan
7"

Ifthe values of -jj- , -+, &c. he suhstituted, these equations

give the variations of 7 and v.

88. For the theory of the invariable plane of the solar

system, the reader is referred to Pontecoulant's Systeme du
Monde.



CHAPTER VI.

PERIODIC VARIATIONS OF THE ELEMENTS OF THE ORBIT.

89. We come now to consider the variations produced

by the periodical terms of R. These are called Periodical

Variations, as opposed to the Secular Variations produced by

the non-periodic terms. We have seen indeed that the latter

are for the most part periodical in form, but in the Planetary

Theory, the term Periodical Variations is restricted to those

we are about to consider in the present Chapter.

90. We have seen (Art. 46) that the general type of a

periodical term is P cos {{pn ± an) t + Q}, where P is a func-

tion of a, e, i; and Q is a function of nr, e, £2. Now such a

. dR dR , dR , .

term will produce a similar term in -j- ,
-5-

,
and -5-r ; Dut

a term of the form P sin {(pn ± an) t + Q) in -5— , -j- ,

an(j ._. . If then these be substituted in the equations
all

of Art. 39, they will take the forms

-j = Px
sin {{pn + an) t + Q],

-^ = P2
sin {(pn ± an) t + Q],
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dt
= P

3
cos {{pn ± qri) t + Q],

^P^{{pn±qri)t+Q),

dn
dt

= P
6
cos {{pn ± qri) t + Q],

di

dt
= P

6
am[(pn±qn')t+ Q),

J= P
n
sin {{pn± qri) t+Q],

where Plt P2 , &c. are functions of the elements of the dis-

turbed and disturbing planets, and involve the first power of

the disturbing mass.

91. In integrating these equations, we may in general

consider the elements which enter in the right-hand members

as constant and equal to their values at the epoch from

which the time is reckoned*.

Let then a, e, &, &c. denote the values of the elements

at epoch, 8a, 8e, Sot, &c. their periodical variations after an

interval t : then integrating the above equations

p
8a = *

—

j cos f (pn + qri) t+Q],
pn ± qn iur — 2 /

»>>

_5
pn ± qiX

P.

8e = ±-2

—

T cos {{pn + qri) t + Q),

I>n±iV
;^{(pn±^)t+Q},

* This is equivalent to neglecting the square of the disturbing force : see

Art. 95.
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pn ± qn
Be =—

—

i—, sin \{pn + qri) t + Q\,pn + on ijr ~ ±
'

'

p
hi= s—, cos Upn 4- qri) t + Q\,pn±qn l ^ * '

sr= ""

(^±Wr
sin{(pw±gw) ' + ^

Hence it appears that the variations produced by the

periodical terms of E are all periodical in form.

92. It will be seen that all the expressions of the last

Article involve the divisor pn ± qri, while S£ involves -the

divisor (pn ± qri)
2
. If then it should happen that either

pn + qri or pn ~ qri is very small, a term in B containing

{pn ± qri) t in its argument, though of a high order, may
have a sensible effect on the elements of the orbit. Now
since p and q are either positive integers or zero, pn + qri

cannot be small unless n and ri are small, a case which does

not occur with any of the planets: but we have instances

in which pn ~ qri is small*.

Since the period of such inequalities is very great (being

;
J

, they are called inequalities of long period, or long

inequalities.

93. To select such terms in B, as will produce the prin-

cipal inequalities of long period.

* If in any case the mean motions of two planets were exactly commen-

surable and in the ratio of p to q, the corresponding term of R, as we have

already remarked (Art. 48), would cease to be periodical and would form a part

of F, but no instance bf this occurs among the planets,
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We have seen that the dimension of the principal part

of the coefficient of a term containing (pn - qri) t in its argu-

ment is p ~
q (Art. 50) ; hence if we can find two integers

p and q nearly in the ratio of n to ri, and having a small

difference, the corresponding term of R will produce an im-

portant long inequality in the elements of each planet.

In the case of Jupiter and Saturn n : ri :: 5 : 2 nearly,

and 5 — 2 = 3; hence there is a long inequality arising from

a term in R of the form Pcos{(2n—5ri) t+ Q}, the prin-

cipal part of P being of the third order. This inequality is

interesting in an historical point of view, having long baffled

the labours of mathematicians and appeared inexplicable on

the hypothesis of gravitation. It was at last successfully

•explained by Laplace.

For the Earth and Venus, n : ri :: 8 : 13 nearly, so that

there is a long inequality arising from a term in R of the

fifth order. The discovery of this inequality is due to the

Astronomer Royal.

Finally, in the case of Neptune and Uranus, n : ri :: 1 : 2

nearly, hence there is a long inequality arising from a term

in R which is of the first order.

94. Between corresponding terms of the long inequali-

ties in the mean motions of two planets, arising from the

near commensurability of n and ri, there is a simple approx-

imate relation.

Let m, m' be the masses of the two planets, R, R' their

disturbing functions: then by Art. 8, considering only the

mutual action of m and m, we have

t. m tri , , , ..
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jy m m . , , ,,

r

We shall distinguish the first and second terms of R and

R' as the symmetrical and unsymmetrical parts respectively,

since the co-ordinates of m and m are involved symmetrically

in the former but not in the latter.

Since then the symmetrical parts of R and R' differ only

in having m and m interchanged, if

m'M cos {(pn-qri) t+ Q]

be any term in the symmetrical part of R, that of R' will con-

tain the term
mMcos {(pn — qri) t + Q).

Confining our attention to these terms, we have (Art. 39)

d^_ _ Zria dR__3na d{R)

dt /m de (a dt

=_nap m'j\fs[n^n _ gw-) t+ Q};

therefore S?= -~^ "]_ ,
sin {(pn - qri) t + Q}.

Similarly, S?' = *™*J^^y™ {(p» - qn) t + Q}.

8?" m'firiap _ m'fi'na
X1CHC6 hm ^ "~

~
'

To r~
—~" ""

t T

S£ m/m a q m/xn a

approximately, since qri is nearly equal to pn ;
therefore

S£ m *J(rid)

"Eg
=_ wVW '

or since /u.' differs from /* by a quantity of the order of the
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disturbing force, the square of which, we are neglecting,

we have

$f m kja
'

the required relation.

The same relation is also approximately true in the case of

terms arising from the unsymmetrical parts of -5 and R'*.

For denoting these by B
t
and B^ respectively, we have

/ x' v z' \B^-m'^x-^+y^+Zy,),

Ri= - m \x ? +y^+z ?).

Now the equations of motion of the planet m referred to

rectangular axes are

df
+

r 3 ~ dx'
'

Hence, the differential coefficients being taken as if the

elements were constantf

x' _ 1 <ZV y__I^' l__ 1 d2
z'

r'
3

/*' df ' r'
3 ^ rdf ' r'

3
y! dt '

therefore i?
i
= _r^_ +y_ +«_j

.

* For the demonstration of this we are mainly indebted to The Theory of

the Long Inequality of Uranus and Neptune: an essay which obtained the

Adams Prize for the year 1850. By E. Pierson, M.A.

*t* This is simply an analytical artifice : we merely assert that if the differen-

x,'

tial coefficients be so taken, then -^, &c, and therefore Ri and £1 will take the

above forms.
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Similarly, ^-2^ +yg + .

Now any term in B
1
containing 1 (pn — qn') t in its argu-

ment can arise only from the combination of terms in x, y,

d 2x
and z, containingpnt in their arguments with terms in -p-

,

-~-
, and -p- containing quit. Suppose then x and x when

developed in terms of t and the elements to contain respec-

tively the terms

L cos (pnt + 1), U cos (qn't + I').

d2x
Hence the product x —rj- will contain the term

- - LL'qV cos {(pn - qn') t + l-l'},

<Px
and the product x —-,« the term

— — LL'pV coa{(pn — qn')t + l—l'}:

the coefficients are in the ratio gV2
to pV. Similarly, the

coefficients of the same cosine in y —^ and z —^ are to

, d2u , , d2
z . ,.

those m y -yk and z -^ in the same ratio.

Hence if —, Mg*ri2
cos {(pn — qn) t+ Q]

A*

be any term in B
1 , then i?/ will contain the term

- Mp'rf cos {(pn - qn') t+ Q).
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Confining our attention to these terms, we have

sy Zrfap m'Mfri* . .. ,. -
o& = r 7 ^-7^2 sin {(pra - jre ) t + Q),

fj,/j,
(pn—qn) t%jr * ' J

»„ 3m'Vff mMp'n* ... ,. _.

6^ = r^ 7
*—77-, sin {(pre - £« J < + <?}•

_, S? m'a<7 jre'wa ,

Hence ^ = r = — nearly,
be, map mn a

titm i\fa

m*Ja '

the square of the disturbing force being neglected.

By means of this relation, when one of the long inequali-

ties is known, the other may be calculated : it may be used as

a formula of verification.

95. We have remarked that in integrating the equations

of Art. 90, we may in general consider the elements which

enter in the right-hand members as constant and equal to

their values at the epoch from which the time is measured.

In the case, however, of inequalities whose periods are very

long, the secular variations of the elements in the interval

produce a sensible effect. In order to take account of these,

we may integrate our equations by parts, considering the

elements variable ; and then substitute their values as calcu-

lated by the method of Art. 62. For example, consider the

equation

j± = Psin {(pn - qri) t + Q)

= Psin X, suppose.

Integrating by parts, and remembering that n is constant

with regard to secular variations, we have
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rf? P , 1 dP . ,
-7- = T COS X + 7 7T2— Sm ^
a£ _p» — qn [pn — qn ) dt

1 d2P
+ -. r-3 -rs-cosX- ...;ym — qn) at

P . \ dP
therefore S£= — •; ^ sin ^ — -; mt cos X

{pn — qn) (pn — qnydt i

1 d2P .

(jm — qn ) ar

1 dP .
,

1 <PP . xcos X + y-^—:r
-
7r1 -j^- sin X + ..

{pn — qnf dt {pn — qn'Y df

1 d*P

{jm — qn')
4,

dtf

3 d*P 1 .

+ - _2 dP
{pn — gw')

3
dt

..[ cosX.

JP <?
2P

In this equation P, -y-, -jt, &c. are functions of the

elements ; their values may be calculated by the formulae of

dP
Art. 62. It may be noticed that P is of the first order, -5- of

<fP
the second, and -tj- of the third of the disturbing force:

JP .....
for -5- , being found from P by differentiation, will involve

the differential coefficients of the elements, which are them-

d2P
selves of the first order ; and similarly for -^—

.

96. Having now completed our account of the methods

c. P. t. 7
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of treating the secular and periodic variations of the elements

of the orbit, we will say a few words on the distinction be-

tween them. In the first place we may observe that the

periodic variations involve the mean longitude of the dis-

turbed and disturbing planets, and therefore depend chiefly

upon the configuration of the planetary system. On the con-

trary the secular variations depend solely upon the values of

the elements. The latter class of variations take place with

extreme slowness, so that if these only existed, a considerable

time must elapse before the deviation of the planet from

elliptic motion became appreciable. On the other hand, the

periodic variations (such at least as are rapidly periodic)

" are in their nature transient and temporary : they disappear

in short periods, and leave no trace. The planet is tempo-

rarily drawn from its orbit (its slowly varying orbit), but

forthwith returns to it, to deviate presently as much the other

way, while the varied orbit accommodates and adjusts itself

to the average of these excursions on either side of it ; and

thus continues to present, for a succession of indefinite ages,

a kind of medium picture of all that the planet has been

doing in their lapse, in which the expression and character

is preserved; but the individual features are merged and

lost*." On this account it is convenient to suppose the

planet to move in an ellipse, the elements of which are cor-

rected for secular variations only, and to take account of the

periodic variations by applying small corrections to the radius

vector and longitude as calculated from the elliptic formulae.

97. We will accordingly shew how by means 'of the

periodic variations of the elements, the corresponding in-

equalities in the radius vector and longitude may be calcu-

lated. If we take for our plane of reference the position of

* Herschel's Outlines of Astronomy, 5th edit. Art. 656.
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the plane of the orbit of the disturbed planet at the epoch

from which the time is reckoned, the inclination will be of

the order of the disturbing force, and therefore if we neglect

the square of the latter, we may also neglect the square of

the former.

98. To calculate, the periodic variations in radius vector.

Let 8a, be, Sot, &c. denote the periodic variations in

a, e, &, &c, and let Sr be the corresponding variation in r

;

then

s dr j. dr s dr t dr &i, dr .

br = -j- oa + T be + -=— 6-sr + -jz. °£ + -7- be,
da ae dvr a% de

in which the square of the disturbing force is neglected,

since this would be introduced by the squares and products

of ha, be, &c. The values of ba, be, &c. have been found in

U7* CL7
1

Art. 91, those of -j- , -7-, &c. may be obtained from the

.equation (Art. 40)

r = a\l+-i — eco& (f+e-w) — -e2 cos2 (£+e— -st) -...[.

99. To calculate the periodic variations in longitude.

These might be found in the same manner as the varia-

tions in radius vector, but they may also be deduced from

them : we proceed to obtain a formula for this purpose.

We have ^ = p» (Art. 22),

and e-0o
= n-n

o ;

dd h ,„ n dil , . , nn ,

therefore ^ = -
2 + (1-cos*)^- (see Art. 29)

_h
~~r2 '

7—2
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/70
since (1 — cos i) -j- being of the order of the square of the

disturbing 'force may he neglected.

Let Br, B9, and Bh he corresponding variations in r, 6

and h ; then
d{6 + B6)_ h + Bh

dt (r + Br)"

dd dB0 h
,

or
di
+
-dT

=
7 lJ - $H)"
_h Bh _ 2hBr

neglecting the square of the disturbing force ; therefore

dB8 _ Bh 2JiSr

dt ~ r* r
3

'

which gives the variations in longitude. The value of Bh

may be found from the formula

dh_dR dR
dt de d'sr

'

For the periodic variations in latitude, we refer to Ponte"-

coulant's Systeme du Monde, Tome I. p. 492.

100. As an example of the processes of this chapter, we
will calculate the variations in radius vector and longitude

due to the term m'Me cos {(re — 2re') t + e — 2e + •sr} in R.

Considering this term only, we have

R = m'Me cos {(re - 2m') t + e - 2e + -a]

= m'Me cos X, suppose.

•o- dR ,dM , dR
xience -j- = m —— e cos X, -y- = mMcos X,

da da de '

dR ,„, . <£B^-=-mifesmX, -y- = - m'lfe sin X,

AB . dR n
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Substituting these in the formulae of Art. 39, and neg-

lecting small quantities of orders higher than the first, we
have

da 2na2
,,. .

T- = mMe sin X,
at fi

'

de na ,-,,.,
-
77 =— mM sinX,
at fjb

din na ,,,
e-T~=—mm cosX,

at [m

de 2na? , dM , 1 na , ,

,

-j? = m t— ecosX + -— em if cos X,
at

fj,
da 2 fi

d*£ 3n*a ,,, . ,
—nr = w» ite sm X.

By integration we have

- 2m'M naj'e
ba = —, cos X,

fi n — 2n

.. m'M na
be = —, cos X,

fi n — 2n

- m'M na . .

ebvs = —-rSinX,
fj,

n — 2n

/l m'M 2m'a dM\ nae .

be = {- j— 5-;SinX,
\2 fj.

' p da J n — 2n

~„ 3m'M n'ae . .

S£= t r-TTj smX.
fj,

{n — 2n)

Also

r = a \l + - <? - e cos (£+ e - w) - ^

e

2
cos 2 (£+ e - w) - . .

.

|

;
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therefore, small quantities of orders higher than the first being

neglected,

g=l- e cos(r+e-^),

_ = a {e — cos (f+ e — or) — e cos 2 (£+ e — w)},

-j— = — a {e sin (£ + e — ot) + i sin 2 (f+ e — to-)},

WOT

-sp= ae sin (£+ e — is),

dr t> , \
-j- = aesin (£+e — ot).

Now oV = -^- 8a + tj- Se + -^- 8w + -^7. Sf+ -7- Se
oa ae dvr at, ae

2m'ilf wa2
e= —7 cos \

fi n—2n

m'M na

fj.
n — 2n'

m'M na

7-7 cos \ {e — cos (f+ e— «r) — e cos 2 (£+ e — «•)}

7 sin\ {sin (f+ e — us-) + e sin 2 (£"+ e — «)}.
yu. w — 2w

Since we are neglecting the square of the disturbing force,

the elements in this equation may be considered as constant,

and therefore nt written for f : we have then, restoring to \
its yalue

~ m'M no* ., ,. ,,
or = —, cos 2 I (n — n ) * + e — e

}

fi n— 2n tv ' '

m'M . na"e

ft n — 2ri
-, cos {(n - 2m') t + e — 2e + to-}
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,
rn'M na?e ,,„ „ ,, ,+ —, cos {(3w - 2n') t + 3e - 2e - ct},

which is the variation in radius vector.

101. To calculate the variation in longitude, we shall

employ the equation

dS9_Sh 2hSr

dt~V r
3 '

-.T ah dR dR „ , , , . „Now -T7 = -Y- + ^— = - 2m Me sin \

;

at ae ais-

therefore &h = —-7 cos \

;

x, - 8k 2m'Me
theretore -» = -1-7 ——. cos X

r a {n — 2n)

2mM n*ae ,, „ ,= —, cos \{n - 2ri) t + e-2e + wl.
fi n — 2n lv ' '

JlOT JlOT
Also —3- =—j- {1 + 3e cos (nt + e — •m) + ...}

mM' n*a . ,, ,. , „= —
-, cos 2

f (n - n ) t + e - e

}

(l n — 2n l '

5 mM n'ae ,, „ ,. „ , ,

+ - — ——, cos Un-2n)t + e-2e +&]
2 ft n — 2n tv '

5 m'M n2
ae , ,„ „ ,. „ „ , ,+ 2—^^'™{(3n-2n')t+3e-2e-v}.

Hence by substitution

dhO 2mM n*a aU ,, t „
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3m'M rfae

jj, n — 2n

hrdM n*ae

7 cos {(«- 2w) t + e-2e' + w}

-, cos {(3n - 2n') < + 3e - 2e' - w}.
jj, n — 2ri

By integration

„- m'M n3a . „ f , « .
, „ /»

8e =-^r (n^n'){n-n')
Sm2^-n)t + e - e]

/* (w — 2n)

5m'M n2
ae

ji (n — 2ri) (3n — 2ri)

which is the variation in longitude

- sin
{
(3m- 2k') t + 3e- 2e -«•}

,

In the case of Uranus and Neptune, since n : n nearly

as 2 : 1, the term we have been considering is important in

the theory of the long inequality.



CHAPTER VII.

DIRECT METHOD OF CALCULATING THE INEQUALITIES IN

RADIUS VECTOR, LONGITUDE, AND LATITUDE.

102. In the calculation of the planetary inequalities, we
have hitherto employed exclusively the method of the Varia-

tion of Elements, hut there is another method of solving the

problem, which demands our attention. It consists in obtain-

ing equations for calculating the inequalities in radius vector,

longitude, and latitude directly from the equations of motion.

The two methods are sometimes distinguished, the former as

that of Lagrange, the latter as that of Laplace. In practice

both are employed, that of Lagrange chiefly for secular, that

of Laplace for periodic variations: but the method of La-

grange may also be advantageously employed in the calcula-

tion of long inequalities. We proceed then to explain the

method of Laplace.

103. If r
t , t , and z denote the projected radius vector,

longitude, and distance from the plane of reference, of the

planet, we have (see Art. 9) the equations of motion

dt, Adt) r»"
"*"*•/

d I 3 dd,\ dR
dtY 1 dt) dd'

d%
z _ fiz . dR

~dl~~7^~dz~'
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If we take for the fixed plane of reference the position of

the plane of the orhit at the epoch from which the time is

measured, the inclination (as we have remarked in Art. 97)

will be the order of the disturbing force, the square of which

will be neglected. Now it will be seen on referring to Art.

42, that »-, and
t
differ from r and 6 by quantities depending

upon the square of the inclination : hence in the above equa-

tions, we may replace r, and 6
t
by r and respectively. Also

if X denote the latitude of the planet, we have

g = r sin X.

Hence our equations of motion become

d*r fd6V p dR ,,«

i?- r {<sr-? + -E (1)>

dtVW-M (2) '

d* (r sin X) u . . , dR . .

\e
;— g«nX + ^- (3).

104. As a first approximation, let values of r, 6 and X
be obtained from these equations by neglecting the disturbing

force, and let r + Br, + 80, X + Sx denote the true values of

these co-ordinates; then Br, B0 and B\ will be very small

quantities, of the order of the disturbing force: they are

termed the perturbations in radius vector, longitude, and

latitude. We proceed to investigate equations by means of

which these quantities may be determined.

105. To obtain the, equationfor the perturbation in radius

vector.

From equations (1) and (2) of Art. 103, we obtain
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fdrV , (dff\* 2/*, _
f fdB dr dE d,6\

{dt)
+r [W = T + 2

J(> Tt
+ T9 dt)

+ G

-¥W
d-^dt + G (4).
dt

Multiply (1) by r and add it to (4) : thus

If the disturbing force be neglected, this equation be-

comes

^-**" «
Let a value of r be obtained from this equation, and let

r + Br denote the true radius rector : then if we agree to

neglect the square of the disturbing force in our next ap-

proximation, it will be sufficient to write r + Sr for r in those

terms of (5) which do not involve the disturbing force : also

since Br is itself of the order of the disturbing force, its square

may be neglected. Hence from (5)

dt' '~ r + Br
+

„ dB , fd(R) , „_

hence by (6),

d*(rBr) u dR JdjR)
de

+
r
s(rdr) r

dr +2J ^ at,
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which is the equation for the perturbation in radius vector.

We may express the right-hand member in a more convenient

form, for since

r = a (1 + w),

dR_dRdr_ .dR,
da dr da dr

'

^ , dR dB
therefore r—r = « t- :

dr da

, d(B) dR
also —^— = w -=— .

Hence our equation becomes

d2
(rSr)

,
ft . s . dR „ (dR 7

106. To obtain the equation for the perturbation in longi-

tude.

We have from equation (1) of Art. 103,

\dt) ~r
(d0\* ld\ /f;_l^

r dtf r
3

r dr'

As before, let a value of 6 be obtained from this equation,

the disturbing force being neglected, and let 0+S0 denote

the true value of the longitude: then writing r + Br for r

and + BO for 6, and neglecting the square of the disturbing

force, we have

2
MdM = ld^_8r<Pr_3fJ

1
_\§R

dt dt~r df r
2 df r

4 r dr]

, .
*d0 T dR dR

but r -=- = h, r -r- = a -j- :

a* ar aa
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. . . dB0 d 2
Sr . d*r 3a - <Zfl

therefore 2ft —=- = r —1-=— or -=-r v or — a -j-
cft eft

2 «V r
2 da

d I dSr ~ dr\ 3ti ~ Ji?

This equation will become integrable if we eliminate the

term— $ . rBr by means of the equation for the perturbation

in radius vector. We have from that equation

„ n d*(r8r) 3/i . dR „= 3—W^- + -r . rSr - 3a ^- - 6w
<F(r8r) 3/* e „ dR n [dR
-dir+i-^-^da-^j-dj'

therefore by addition,

nZ d80 n d*(rSr) d ( d8r . <fr\ , dfl
2ft —j- = 3—V, h -7- r -, 0?' -=- — ia -=-

«?« a!« eft \ <ft rfi/ da

-enj^dt;

therefore 2ftS0 = 3^ + r^ - Sr^-iaffdt
dt dt dt J da

,d(rSr) - or , [ dR , „ /"f^i? 7 „= 4 \ ; - 2Sr— - la ^- dt- 6n -j- c?«
2

,

eft dt J da J] de

,™ „d(r8r) ~ ai- „ [dR ,, „ /fa'iZ 7 „

or AB0 =2^fl-Br Jt
-2aj^dt- 3njj

Te
de,

which determines the perturbation in longitude, when that in

radius vector is known.

107. To obtain the equation for the perturbation in

latitude.

From equation (3) of Art. 103, we have

a" (r sin X) /*(?• sinX) (£5

J?
+~

r
8 ~~5s'
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Since the plane of reference is supposed to coincide with

the position of the plane of the orbit at the epoch from -which

the time is reckoned, we have at the epoch \ = : hence,

denoting by SX the latitude at time t, our equation becomes

d 2
(rS\)

, p , j_ dR

which is similar in form to the equation for the perturbation

in radius vector.

108. To integrate the equation for the perturbation in

radius vector.

The equation is (Art. 105),

d*(rSr) a . . . dR „ f dR 7-J
aW
1+7^ =a

da
+2n

)-de
dL

Let us consider a term in R of the form

P cos {{pn — qn') t + Q),

where P is a function of the mean distances, excentricities,

and inclinations, and Q of the longitudes of the perihelia,

nodes, and epochs: then uniting this term with the non-

periodic part of R, which we have denoted by F, we have

R = F+Pcos {{pn - qn) t+Q};

A, „ dR dF dP ,. ,.

therefore -^ = -^ + -& cos {[pn - qn ) t + Q},

dR „ dQ ... ,. ^,

-fa
= ~ P

~dJ
sm i(Pn ~ <L

n ) « + Qh

since F does not contain e ; therefore

nP
d-Q-

n
J~de

dt =
pn - on'

C°S ^Pn~^ t+ Q)+m'9>
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where g is an arbitrary constant, the value of which may be

any whatever. We might omit it, and consider it as in-

cluded in the constant C of Art. 105, but the advantage of

retaining it will be seen hereafter.

„ dR n [dRj, „ , dF
Hence a -5—1- zn —=— at = 2mg + a -=-

f 2nP^\
+ < dP de> cos {(pn-qn')t+ Q]

[ da pn—qn)

dF
= 2mg + a -j- +P

x
cos {(pn — qn) t + Q),

dP 2nPf
i t. dF de

suppose, where F^ = a -^- + ,
.

1 •" x da pn — qn

Again (see Art. 13),

r — a \ 1 + - e
8 — e cos (nt + e — «)

— -e2
cos 2 (n2 + e — ot) — ...[

,

therefore t = —8 {1 + 3e cos («< + e — -or) + ...},

= n" {1 + 3e cos (nt + e - «•) + ...},

since «V = /t.

Hence, by substitution, the equation for the perturbation

in radius vector becomes

d* (r$r) „ ^ . „ ,
dF _ .

,

,. „,

-j# + w «*»" = 2™^ + a -v- + "i cos {(pi - 2?i ) * + <?}

— w2 rSr {3ecos (w<+ e — -as) + ...}.

109. This equation must be solved by successive ap-

proximation, as in the Lunar Theory. By omitting all
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small quantities, we obtain a first approximation to the value

of rSr; this being substituted in the second member, and

small quantities of orders higher than the first neglected, we
obtain a second approximation, which will be correct to the

first order. In like manner, a third, and higher approxima-

tions may be obtained.

On referring to Art. 59, it will be seen that small quanti-

ties of the second order being neglected,

hence, neglecting all small quantities, the equation of the

preceding Article becomes

d2
(rSr) vn /JP

-^rL + n\rBr = 2m'g +~a^ + P
l
cos{(Fn-qn')t+Q}.

The integral of this equation is

1 /„ , .id dC:* 1 fa , ,
id dC.\

+
n'-{pn

t

-
gn')'

C°S ^^~^) * + Q\

+A cos (nt — B),

where A and B are arbitrary constants. Since, if all small

quantities be neglected, r = a, we have as a first approxima-
tion,

2 1 / , m dC.\

+ atn'-^LgnT}
C°S «*" ~^ ' + ®

H— cos (nt — B).



DIRECT METHOD OF CALCULATION. 113

110. We may, however, omit the last term: for, con-

sidering this only, the radius vector of the planet becomes

a \ 1 — e cos (nt + e — ot) -f -j cos int — B) + . . .

J-

= a [1 - {e cos (e — ot)
5
cos B] cos w£

+ [e sin (e — -st) + —
2
sin B] sin ntf + . .

.]

= a {1 — e
x
cos (nt + e—m^ + ...},

A
if e

L
cos (e — •srj = e cos (e — -ej) ^ cos 2?,

A
e
x
sin (e — srj = e sin (e — bs) + -

2
sin 5,

from which e
1
and -ct

x
may be determined.

Now since the ellipse upon which our approximations are

based, has been obtained by neglecting the disturbing force,

we may in the elliptic formulas replace e and ot by e
x
and nr

1

respectively, since they differ by quantities of the order of the

disturbing force. If this be done, our first approximation

becomes

. 1 / , to' dC.
&• =— 2m'g + ir a-rJ

P
+ —r-2

—

r1 ^1 cos i(Pn ~ 2n') * + Q\-
a \n — (pn — qn

) \

111. In order to obtain a second approximation, this

value must be substituted for Br in the right-hand member of

the equation of Art. 108. Also since the square of the dis-

turbing force is neglected, we may write e
i
and ^ for e and w

in this equation. We will write for brevity

Br = L + P
2
cos {{pn - qn) t + Q}.

C. P. T. 8
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Substituting this in the equation of Art. 108, and omitting

those terms which have produced the first approximation*,

we have

d".rSr „ »—
di~

= - Zn\ cos (nt + e - wj [L +P
2
cos {(pn - qri) t + Q]\

= — 3n\L cos (nt + e — wj

3- - n\P
t
cos [{(p+l)n- gn] t + Q + e - bjJ

3- - m^Pjj cos [{(p — 1) re - jre'} £ + # - e + «rj.
z

112. On the form of this equation, we have an important

remark to make. In consequence of the term

— 3n\L cos (nt + e — wj,

its integral will contain the term

3
- ejntL cos (nt + e — •nr

1).A

Here, then, we are met by a difficulty: our equations

have been formed on the hypothesis that the square of hr is

small enough to be omitted, whereas here, we have a term

capable of indefinite increase. This term then, if retained,

would ultimately vitiate the whole approximation. The diffi-

culty might, as in the Lunar Theory, be obviated by writing

en for re in the elliptic formulae, which amounts to supposing

the perihelion to be in motion. Its motion is however better

found by the method of the variation of elements. Indeed it

* These terms are omitted for the sake of brevity: in order, therefore, to

obtain the complete second approximation, we must add to the integral of the

above equation the result of the first approximation.
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may be shewn that such terms as those we are considering,

lead to the formulae which have already been obtained, for the

secular variation of the elements*. We shall accordingly

altogether neglect such terms, and suppose the elements of the

ellipse on which our approximations are based, to have been

previously corrected for their secular variations.

113. With this understanding, the complete integral of

the equation of Art. Ill, will be

, 3 n\P
2

2 ri* -{(p + l) n-qn'Y

cos [{(p + 1) n - qn) t + Q + e — srj

3 n\P,
2 ri

1 — [(p — 1) n — qn)

cos \_{(p
— 1) n — qn) t + Q — e + srj

+ J. cos (nt—B).

If this be added to the result of the first approximation,

we obtain for a second approximation

. 1 / , m' dC
n\ P.

rSr = -2 2mW— a-r-°) + -2—i— 1 ^
n \ " 2 da J n — (pn — qn f

cos {(pn — qn) I + Q)

3 n\P,
2 n2

-{(p + l) n-qn'Y

cos [{(p + 1) n — qn) t + Q + e — otJ

3 n\P
2

2 n2
—{(p - 1) n-qn'Y

cos [{(p — 1) n — qn) t + Q — e + wj

+ A cos (nt — B).

* It is thus that the Secular Variations are first obtained in the Micanique

Celeste. See PontcScoulant's Systtme du Monde, Supplement au Livre II.

8—-2
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The arbitrary constants might he disposed of as in the

first approximation, but it is more convenient in practice to

determine them otherwise. In order to obtain a second ap-

proximation to the value of Sr, it is only necessary to multiply

the right-hand member of the above equation by

- {1 + e
l
cos (nt + e- ctJ},

neglecting e*.

114. To calculate the perturbations in longitude.

"We have (Art. 106)

d.rSr ^ dr „ [dR ,. „ ffdR

~de

i*a n d.rSr ., dr „ [dR , „ /"/"m=2 -dr- Br dr 2aj^ dt - 3n
JJ

dt.

Taking for simplicity, the first approximation to the value

of rSr, which has been obtained by neglecting the first power

of the excentricity, we have

1 / , m' dC\
rSr = -,(2m'ff + — a^) +

n* \
""*

' 2 da)
T

na - {pn-qrif

cos {(£>«. -£»')<+ #};
therefore

d.rlr 2P.(pn-qn) . ,. ,. .,

also, neglecting the first power of the excentricity,

By Art. 108, writing - m'C for .F, we have

dR 1 ,tf0
o

dP ..

da~
=

2
m

-da-
+

da-
C0S «Pn-^ t+ ®'
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nP
d
-$-

and n\-T-dt =
6—? cos {(pn-qn')t + Q} + rrt'g;

J de pn — qn l L

therefore — 2a I —j- dt — Zn I —7- df

2a~j-+ % J
sm \{pn-qn')t+ Q],

pn — qn \ da pn — qn

where/ is an arbitrary constant.

Hence by substitution, we have

hW =/- (ma ^° + Zm'g) t

\ da de

[pn — qn (pn — qn')*

115. This expression is open to the objection of contain-

ing a term proportional to the time, which being capable of

indefinite increase, would ultimately vitiate the whole approxi-

mation. Here, then, we see the advantage of having a

quantity g which may be determined at pleasure : we will so

determine it that the objectionable term shall vanish. This

condition gives

1 ac
S = -3 a

da--

We may also omit the constant f, and consider it as con-
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tained in the epoch. We have then, writing for h its value

na? V{1 — e
2

)
, and neglecting e

2
,

BnPf
ae

(pn — qri)

+
2P

1 (Pn- qn0 l Bln l)(+Q]i
n—(pn — qn)) lwr 2 '

116. Before proceeding to obtain the perturbations in

latitude, we will make a few remarks on the forms of the ex-

pressions for Br and B0. If we confine ourselves to the results

of the first approximation, it will be seen on substituting the

value of P,, that^wi — qri and n'— (pn — qri)* occur as divi-

sors, and that the expression for B6 contains besides, the

divisor (pn — qri)
2
. The second of these may be written

{(1 —p) n+qn'} {(1 — p) n—qn'}.

If then either

(i) pn — qn, (ii) (1 —p) n + qri, or (iii) (1 —p)n — qri,

be very small, the corresponding terms in Br and B6, though of

a high order, may yet be sensible. This is especially the case

with the first, since as we have remarked, its square occurs

in the expression for B6. These are instances of what iu

the preceding chapter have been characterised as long in-

equalities.

The period of the term Pcos {(pn — qri) t + Q], which has

given rise to these inequalities is

2tt

pn — qn

in the case of (i), this is very large, and in that of (ii) or (iii)

it is very nearly equal to — , since pn — qri is nearly equal
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to + n. Hence it appears that terms in R whose period is

either very large, or nearly equal to that of the planet, may
give rise to important inequalities in the radius vector and

longitude. Their actual importance will of course depend in

part upon the order of the principal part of P
l
with respect to

the excentricities and inclinations, i.e. (see Art. 50) upon

p~q.

117. To integrate the equation for the perturbation in

latitude.

The equation is (Art. 107)

the position of the plane of the orbit of the disturbed planet at

the epoch, being taken for the fixed plane of reference.

Differentiating the expression for R in Art. 44, with respect

to z, we obtain

—m (z — z) (\D + D
1
cos <j) + . . . + Dk cos hj> + . .

.) nr >

or, putting z equal to 0, and substituting

a tan % sin (n't + e — D,')

for z (see Art. 42),

- m'a tan % sin (n't + e - a') ^-D + -rt + D, cos <£ + . . . 1

.

This expression, after reduction, consists of terms of the

form
Psin {(pn - qn) t + Q],

where p and q are positive integers, and either may be zero.

Considering one such term, our equation becomes

—dP + ? (rSX) = PsIn [[pn ~ qn
'

]
t+Q] -
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Now as in Art. 108,

3̂
= w2

fl + 3e cos (nt + e - w) + •••} ;

T

hence, neglecting the product eSX,

***W + w2
.rSX = P sin {(pn - an) t+ Q}.

ctz

The integral of this equation is

p
rS\ = -j

—

-, ^ sin f !pn — an) t+ 0} + A cos («< — B).
nr—[pn — an) ixr x '

If instead of taking for the fixed plane of reference, the

plane of the orbit of the disturbed planet at epoch, we take a

plane slightly inclined to this, we may omit the arbitrary

term. For, denoting the planet's latitude with respect to this

plane by X, we have approximately

X = tan i sin (nt + e — D,),

and it may be shewn as in Art. 110, that omitting the term

in question is only equivalent to changing slightly the values

of i and X2.



CHAPTER VIII.

ON THE EFFECTS WHICH A RESISTING MEDIUM WOULD
PRODUCE IN THE MOTIONS OF THE PLANETS.

118. In the preceding chapters, we have supposed the

planetary motions to take place in free space, and the results

of calculations hased upon this hypothesis manifest a very

close agreement with observation. There is, however, a

remarkable circumstance connected with Encke's comet which

seems to indicate the possibility of the existence of a very rare

medium, too rare indeed to cause any sensible resistance to

the motions of the planets, but which, as we shall presently

see, may yet influence the motions of comets, in consequence

of the extreme smallness of the masses of these bodies. It

has been observed that the comet above referred to (which

describes an elliptic orbit in a period of about 3£ years,) has

since its appearance in 1786, been moving round the Sun

with an increasing mean motion. Encke attributes this to

the resistance of a medium pervading space. We shall

therefore proceed to examine the effects which such a medium

would produce upon the elements of a planet's orbit, assuming

the resistance to vary as the product of the density of the

medium and the square of the velocity of the planet. We
shall neglect, in the present investigation, all forces except

the Sun's attraction and the resistance of the medium ; conse-

quently the planet may be supposed to move wholly in one

plane.
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119. Let r, 6 be the radius vector and longitude of the

planet, s the length of an arc of its actual orbit measured from

some fixed point to its position at time t, and p the density of

the medium. Then if 7c be a constant, we may represent the
.7 \ 2

resistance on the planet by Tep ( -j- )
, and the equations of mo-

tion will be

^!r_ (§i\
2

- ft z. ek\* dr

de
T
\dt)~ r*

kp
[dt) Is'

i d f
2 de\ 7 fds\

2 de

("%--Hr dt V dt) ~ "* \dt)
r
ds

dd
If r

2
-j- = h, these may be written
dt

dt
r
\dt)~ r*

kp
dtdt W '

(•S-Ml M.
d_f ,d&

dt

These equations are the same in form with those of

ds o/r
Art. 20, and may be treated in a similar manner, —kp-j--y

Gut CLZ

taking the place of -7- , and — hph -=- that of -^ . We have

from equation (2)

'<U~'
"
f'"2r

dh 1 t ds
-j-^-lcph-r.

120. To obtain a formula for calculating the mean dis-

tance.

We might proceed as in Art. 25, but we shall here employ

the method of Art. 26. We have

^1 - - t <t. - V f*Y
df ~ r* ds P \dt)

'
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and by a known formula of elliptic motion

(ds\* _2/j, fj,

\dt) r a

'

Differentiating the latter, we obtain

ds d2
s 2fj, dr fj,

da

dl~dl'
= ~7'

di
+

a?~di'

and multiplying the former by 2 -y-

,

dsd"s_ 2fidr , fds\*
2 Jtdf~~^dt~ 2kp

\di
'

therefore J^ = - 2^g
da 2kpa2

/ds\
a

121. To ohtain aformula for calculating the excentricity.

We have, as in Art. 27,

A" ~\dt)

drV (h fi

r h
+ L--? (3).

Differentiating as if r were constant, and writing — & -?-
-7

, d\

^e *-_z. /^'V
ds

{f
h V) f

l f
1
}

^V) dh

K" dt
~~ P \dt) dt

+
|Vr A/ U AV A

3

J
dt
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Now from equation (3)

\dt)
+

r*

fie 2/jl fi

Jf
+ T~T*

1p M'(l-e')
.

de 2hp ds [W ,„ „,]
or -=- = ~r\ (l-e)f

dt e dt [fir
v ')

2kp (1 - e
2

) /« \ *

This result may also be obtained by difTerentiating the

formula h2 = fta (1 — e
2
), and substituting the expressions for

dh -.da .
, „„

t- and -T- , as in Art. 28.
oft oft

122. 2b obtain a formula for calculating the longitude of

perihelion.

We have, as in Art. 29,

£«*<»-)-*-£ «
Differentiating as if »• and were constant, and writing

, dr ds j, d2
r- kp

dtdt
f°rW

di
2 /a , <#ct 7 dr ds .. . (1 fiVdh

cosec (^-^--j^co^-^--^]-

. dh . ~ ds
or since _ =_^_,
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dr
T cosec

2

at

,n . dts- , ds (dr , ,n . fh u,

but from equation (4) of Art. 22,

t- cosec (0 — w) = S- »

at s ' h

therefore —=r = sin (0 — -or) -^ .

dt e
v ;

<&

123. Before proceeding to obtain a formula for calcu-

lating the epoch, we shall express the results of the preceding

articles in a form convenient for application.

If u denote the excentric anomaly, we have

r = a (1 — ecos w) (1),

nt + e — zy = u — e sin u (2).

Hence
dsV _2/ji, _/jt,

dt) r a

a \\ — e cos u

/j, 1 + e cos.m
_

a 1 — e cos u

'

— 1

Al j,
ds /{l + ecosu\ . * .

therefore -y- = ma A / , since no? = y <u.

dt y \l — 6 cos uj

From (1), by differentiation as if the elements were inva-

riable, we have

dr . du
-T- = ae sm u -p ;

at at
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and from the equation

; = J{l + ecos(0-*7)},

dr fie . /a .

dr
equating the two values of -5-

,

. ,n . ha . du
sin [0 — to-) =— sin u -j-

.

^ ' /m at

From (2), by differentiation as if the elements were inva-

riable, we have
<fe 1 . .

-t- = - (1 — ecosM).
du n^

Hence, by substitution, the formulae of the preceding

articles become

da

du

de

du

= - 2hpa (1 + e cos u)^ (^^J ,

„, „ « //l + ecosw\
= -2kPa(l-e)cosu^ ^_ ecosu),

cfc_ 2kpas/(l—e!

) . /{l + ecosu—-— — — Sill Mi/ ~

du e V \1 — e cos w

124. 2b obtain a formula for calculating the epoch.

By differentiating the formulae

r = a (1 — ecosw),

nt + e — •S7 = w — e sin w,

considering the elements, first variable, and then invariable,

arid comparing the results, we obtain

du de ., , daaesmu -j- = a cos u -?— (1 — e cos u) -^-
,

a< <« x ' oft
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dn de dts du de
t

di
+ d-t-^

= ^- eCOa ^dt- Smu
dt

;

whence, eliminating -j-

dn de _ dw _ cos u — e de (1 — e cos uf da
dt dt dt e sin u dt ae sin u dt

'

As in Art. 37, we may omit the term t -=- if we bear in

mind that the mean longitude will then be denoted by

/•
ndt + e. Thus, on substituting the values of -^ , ~

, and

-j-
, and reducing, we obtain

de __ 2kpa . .. 2 .
3

, . /fl+ecosu
du

{1 — V(l — e
2

)
— £ cos m} sin w . /

(

—
e cos u

125. The formulae of the preceding articles are sufficient

to determine the elements of the orbit at any time, and being

perfectly general, are applicable as well to the motion of

comets, as to that of planets, but before we can integrate

them, we shall require a knowledge of the form of p. Now
the analogy of the terrestrial atmosphere would lead us to

suppose that if the sun be surrounded by an ethereal medium,

its density decreases as the distance from the sun increases.

Moreover, the researches of Professor Encke on the comet

which bears his name, seem to indicate the law of the in-

verse square. We will, however, assume p to be such a

function of r, that when multiplied by . /(-
) , andr J V \1 - e cos uj '

developed in a series of cosines of u and its multiples, it takes

the form

A + Be cos u + Ce* cos 2u + . ..
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Thus our formulas become

-j-=- 2ka* {A + (A + B) e cos u + ...},

-j- = — 2ka -Mcosw + — (1 +cos 2m) + ...[

d™ „ 7 f a Be . n 1e— = — 2ka jisinii+ -r- sin 2u + ....{

,

du

du
-j- =Tca (Ae sinw + ...).

126. Supposing the orbit nearly circular, to examine the

effect *of the medium upon the elements of the orbit.

Since the orbit is nearly circular, we shall neglect squares

and higher powers of e ; thus the preceding formulae give

on integration

a = const. — 2kdi \Au + {A + B) e sin u],

e = const. — 2ka \A sin u +— [u H ;— ) J-

,

f Be
car = const. + 2ha \A cos u +— cos 2w

e = const. — lea Ae cos u.

Hence in an entire revolution of the planet, the mean
distance is diminished by AwlcofA, and the excentricity by
2-rrkaBe, while the longitudes of perihelion, and of the epoch

remain unchanged. Also from the formula n = ^- , it ap-

pears that the mean motion is, in an entire revolution, in-

creased by SirknaA.
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127. We have already remarked that no traces of a

resisting medium have yet been discovered in the motion of

the planets : but, since k varies inversely as the mass of the

body acted upon, the formulas of Art. 123 shew that such

a medium, though too rare to influence the planets, might yet

sensibly affect the motions of comets, in consequence of the

extreme smallness of their masses.

C P. T.



PEOBLEMS.

1. Supposing in the Problem of the Three Bodies the

relative orbit of two of the bodies to be a circle described

uniformly, obtain equations for determining the motion of the

third body ; and transform the system of co-ordinates, so that

the plane of the circular orbit being that of xy, the axis of x

shall always pass through the two bodies in that plane.

2. Shew that the plane of the orbit of a planet revolves

about the planet's radius vector as an instantaneous axis*.

3. A particle is describing an orbit round a centre of

force which is any function of the distance, and is acted upon

by a disturbing force which is always perpendicular to the

plane of the instantaneous orbit, and inversely proportional

to the distance of the body from the centre of the principal

force. Prove that the plane of the instantaneous orbit re-

volves uniformly round its instantaneous axis.

4. Find when the curvature of the instantaneous orbit of

a body, acted on by disturbing forces, is the same as that

of the actual orbit ; and shew that this is always the case

when the only disturbing force arises from the action of a
resisting medium.

* In this and the following problem, the plane of the orbit must be supposed
to have no angular velocity about a normal to itself. See note to Art. iq.
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5. If R be expressed on the one hand as a function of

rlt l}
and z (Art. 11), and on the other as a function of r,

0, i, and 12, being measured on the plane of the orbit from
the node, prove that

dR_dR
dd

1

~ da '

and obtain a formula for calculating the inclination.

6. If R be expressed as a function of t and the usual

elements, obtain the formulae

da _ I dR
dt h sin i di

'

di _ cot (0 - CI) dR
dt h di

'

where is measured on the plane of reference as far as the

node, and thence on that of the orbit, and

7 2 (d0 „ . o i dCl
h=r* [-J--2 sin

8 - —r-
\dt 2 dt

7. The central force being —
% + ~ , obtain the following

equation for the apsidal motion

d-ar _ Va (1 — e
2

) fi cos (0 — ot)

dt e»JfA r*

o, e and sr_being elements of the instantaneous ellipse.

8. A body revolving about a centre of force, which varies

inversely as the square of the distance, is constantly retarded

by a small constant force ; find the alteration of the major

axis, excentricity, and apse, in one revolution.

9—2
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9. When the disturbing function B is independent of 0,

„ . » de , dsr
find expressions tor -= and -j-.

If B = —
, these expressions give variable values for e

and -ar, whereas the motion of the body actually takes place

in a fixed ellipse: shew this, and explain the apparent

paradox.

10. A planet describes an orbit under the action of a

force ^ tending to the Sun, /a not being quite constant:

obtain the following equations for the variations of the ex-

centricity and longitude of perihelion

;

d{fie)

djJL

= — cos (0 - ot),

dvzr . ,a .

A"^- = -«n(0-*r).

If d/i be always positive, what in a whole revolution is

the nature of its effects upon the excentricity and position of

the major axis ?

11. If the equation of the Moon's orbit be reduced to

the form

d"u

jg2
+u-a = af,

shew that the excentricity and longitude of perihelion may
be found from the equations

-^ = -/sin [0 - «•), e~ =/cos (0 - w).

Apply these equations to find e and -ar, when f is a small

disturbing force, depending only upon the Moon's distance

from the Earth.
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12. Assuming the differential equation for s in the Lunar
Theory to be

^ + s = - m2
s j- + - cos 2 (9 - mff) I

+ ™2 §|sin2(0-m0)},

shew that if 7 be the longitude of the Moon's node,

^ = - - «i
s
{1 - cos 2 (mO - 7) - cos 2 (0 - 7)

+ cos 2 (9 - mff)}.

From the above expression for — , find the ratio of the

mean motion of the node to that of the Moon, taking into

account terms of the order mk
.

13. If two planets disturbing one another were revolving

in periods of 350 and 201 days, what form of terms in the

disturbing function would demand examination ?

14. The periods of Venus and the Earth are 224*7 and

365*256 days respectively; find approximately the period of

the long inequality arising from their mutual perturbations,

the important term in the disturbing function R being of the

form
Pe'e" cos {13 (nt + e) - 8 (n't + e) - 3w - 2w'}.

15. The radius vector of a planet is affected with a small

periodical inequality ; shew that its effect may be represented

by continued and periodical alterations of the excentricity and

PT
longitude of perihelion, the period of either being ,„ ,

where P is the period of the planet and T that of the in-

equality.
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16. If in addition to the force of the Sun on a planet

there be a small force tending towards the Sun, and varying

inversely as the mib power of the distance of the planet

from the Sun, prove that the perihelion of the orbit will have

a . progressive or regressive motion according as m is greater

or less than 2.

Can you explain this result by reasoning similar to that

used in Airy's Gravitation ?

17. It has been found by comparing theory with ob-

servation that the perihelion of Mercury progresses at a rate

greater by a than that due to the attraction of known bodies :

shew that this increment would be accounted for if the law of

force tending to the Sun were ^ + ^ , and if // = ac
4 ./— , the

orbit being supposed to be nearly a circle, and the mean dis-

tance to be c.

18. The central force acting on a body being

shew to terms inclusive of y! and the square of the excen-

tricity, that the motion is in an ellipse revolving uniformly

about the focus.

19. Shew by means of the formula

da _ 2nd2 dR
dt y de

that the chief perturbation of the axis major of the Moon's
orbit may be expressed by the equation

1 +2^^ C°S2 ^ + 6 - n
'

f - e')}>
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where n and ri are the mean motions of the Moon and Sun
respectively.

20. A satellite revolving in an ellipse of small excen-

tricity is disturbed by another satellite revolving about the

same primary ; find approximately the variation of the mean

distance and the motion of the apse, corresponding to the

terms

-j r
2
[1 + 3 cos {2 (n - ri) t + e - e'}]

in the function R, having given

da 2nd2 dR dm _ na V(l — e
2

) dR
dt fi de ' dt /j,e de

21. Prove that, neglecting periodical variations, the ex-

centricity of any orbit can always be represented by the

diagonal of a parallelogram, whose sides are constant, and

angle varies uniformly.

22. Given the equations

tan
2
i= N* + N* + 2N

t
N

2
cos (h

t
t + B

t
- S

2),

ffln o -^ sin (/^ + 8,)+^ sing
,

.

tan _ -^ cQg^ + ^ +^ cog ^

,

explain the nature of the motion of the node, when the mini-

mum inclination is zero.

23. Prove that as far as secular variations only are con-

cerned the function F is constant.

24. Considering only secular variations, obtain the fol-

lowing equations

:

2 — e -jr = C, £ — tan i -j- = C.
\na dt \na dt J
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25. If the squares of the masses of two mutually dis-

turbing planets were to each other inversely as their mean

distances, shew that the nodes would oscillate through equal

angles.

26. If M, rn, m be the masses of three bodies mutually

attracting according to the law of gravity, M being much

larger than m or m', and if v, v be the velocities of m, ml at

distances r, r' from the centre of M, supposed fixed, shew that

the equation of vis viva for this case may be assumed to be

mv* + m'v'
2 + 2M{- +—,

;
) = 0,

\2a r 2a r J

2a and 2d being the major axes of the instantaneous ellipses

of m and m.

27. Infer from the foregoing equation by the method of

the variation of parameters the ratio of simultaneous changes

in the mean distances and mean motions of two planets mutu-

ally disturbing.

28. If r be the true radius vector, 6
t
the projected longi-

tude, and \ the latitude of a planet, obtain the following

equation of motion

:

rfV

29. Obtain the following equation between the pertur-

bations of a planet in longitude and radius vector, whatever

be the law of force, provided it be central and a function of

the distance only, and provided such a function as B can be

found

:

-4F8r-2r~8r,
dr '
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where F denotes the central force, and h twice the sectorial

area described by the undisturbed planet round the Sun.

30. If the orbits of two planets which disturb each other

be very nearly circular, shew that the inequalities of the

radius vector may be immediately deduced from those of the

longitude by means of the equation

d. B8

Br 1 dt 1« n 7? _ n
r 2 d0 2fin — n

~dl

31. Integrate the equation

^Jp + n* . rBr = % {Pcos [pnt + Q)},

determining the arbitrary constants so that Br = 0, and

—~— =0, when t = 0: and shew that for small values of t,

rBr = t (— cos Qj ,

the case ofp = 1 being included.

32. A planet moves in a resisting medium of which the

resistance

-l(ds\\~ r
2
\dt)

'

apply the equation

d*{rBr)
, M f

J ^),7, dR
w + ?- rSr - 2

I^ir
dt - r

dr-

to obtain the following, in which e
2
is neglected

:

a* (rBr)

dt
-+ n" . rBr + n* . rBr . 3e cos (nt + e — or)

+ 2/?i
2a {nt+ — e sin (nt + e — -sr)} = 0.
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33. The co-ordinates of the position at any time t of a

disturbed planet being x + Sx, y + hy, z + Sz, reckoned from

the Sun's centre as a fixed origin, and referred to the plane

of motion at a given epoch ; and r being the heliocentric

distance, x, y the co-ordinates of the position which the

planet would have had at the time t, if the disturbance had

ceased at the given epoch ; obtain the following equations for

determining hx, Sy, Sz to the first order of the disturbing

force

:

de
+

r
3 +

dz'
~

'

in which /a is the sum of the masses of the Sun and planet,

and B' is put for

- m' (x* + y" + s'yi + m {(x - xf + (y -yj +(z- z
l

f]^,

m being the mass, and x', y', z the heliocentric co-ordinates

of the disturbing planet.

34. Shew that the effect of a resisting medium on the

instantaneous orbit of a planet, would be to make the apsidal

line regrede or progrede, according as the planet moved from

perihelion to aphelion, or from aphelion to perihelion.

35. Two small planets P, Q, very near each other, re-

volve about the Sun in orbits very nearly circular, and make
two revolutions about each other while they make one revo-

lution about the Sun. Compare the sum of their masses with

the mass of the Sun.
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If the line PQ move parallel to itself, what inference do

you draw ?

36. If the motion of a planet round the Sun be disturbed

by the action of another planet, the latter being supposed to

describe a circular orbit of radius a with uniform velocity n,

obtain the following exact equation

:

ii)
+r

'{-di)
+

{dt
)- 2nr^dt

+G

2m 2mV 2m'= w cos °> H n

>

r a (pf' _ 2a r cos w + r
2
)*

where r is the radius vector of the disturbed planet, rv 6V z

its co-ordinates referred to a fixed plane, and a the inclina-

tion of the radii vectores of the disturbed and disturbing

planets to each other.

37. Prove that, if the periodic times of a disturbed and

disturbing planet are not commensurable, the secular changes

of the orbit of the disturbed planet are the same as they

would be if the mass of the disturbing planet were distributed

over its orbit, in such a manner, that the part of the mass

distributed over each portion of the orbit should be propor-

tional to the time which the planet actually takes to describe

that portion.
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ON THE FOKM OF THE EQUATIONS OF ART. 39.

1. On referring to Art. 39, it will be seen that the

formulae which have been obtained for calculating the elements

of the orbit involve only partial differential, coefficients of R
with respect to these elements, multiplied by coefficients

which do not contain the time explicitly. This circumstance

greatly facilitates their application, by rendering them fit for

use as soon as the partial differential coefficients have been

calculated. We proceed to shew that this remarkable cha-

racteristic is not restricted to the particular system of elements

which have been adopted, but may be attained with any

system of elements whatever. The discovery of this is due

to Lagrange.

2. If the motion of the planet be referred to three rect-

angular axes originating in the centre of gravity of the Sun,

we have the equations of motion (see Art. 9)

cPx fix _dR . .W + V~~dx W '

d*y mL_dR
d?

+
r3 ~ dy W '

d^z uz_dR
df^r3 ~ dz W*
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Let a, b, c, d, e, f be the six elements introduced by in-

, . , „ -, e dx du dz
tegratmg these equations when H=0, and. tor -5- . -4- ,

-j-

write x, y, z'\ then x, y\ and z can be expressed as functions

of t and the elements ; hence

dx' /dx'\ dx' da dx' db

~di
==

{~dt)
+

da ~dt
+

db dt
+ '

(dx'\
-j-

J the elements are supposed constant

we put R equal

(dx\ fix

If in equation (1) we put R equal to 0, we have

dx'\

therefore
dx' /dx'\ _ dR

_

~dl \dt)~dx'

dR dx da dx db
therefore

d^
=-^ di

+
db Tt

+ >

and similar equations hold for -j— and -7— -

Now since R is a function of x, y, and z,

dR _dR dx dR_dy dS_dz

~da
~~ Hx da dy da dz da

_ /dx dx' dy dy_ dz^ dz' \ da
~ \da da da da da da J dt

(dx dx dy dy dz_ dz'\ db/dx dx dy dy_ az_ az_

\da db da db da db J dt

/dx dx_ dy dy_ dz_ dz'\ dc

\da dc da dc da dc J dt

+
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3. We may eliminate — from this expression : for, sup-
at

posing x, y, and z expressed as functions of t and the elements,

we have

dx _ (dx\ dx da dx db

di~\di) da dt
+

db dt '"*

but by the principles of the method of the Variation of

Parameters

dx _ (dx\

dt~[dij'

A , e dx da
,
dx db dx dc

therefore -; 5- H—77 ~r + -,—=- + •• = 0.
da dt db dt dc dt

c,. ., , dy da du db dy dc
Similar1^ Ta-d-t+Idt + -clK

+ - =0
>

dz da dz db dz dc _
da dt db dt dc dt '

Multiplying these equations by -j-
, -jj- , &c, and adding,

we obtain

_ (dx dx dy dy dz dz'\ da

\da da da da da da) dt

(dx dx? dy dy dz dz'\ db

\db da db da db da) dt

(dx dx_ dy dy dz dz'\ dc

\dc da dc da dc da) dt

+
d~R

If this expression be subtracted from that for -r- in Art. 2,
da 1

the latter may be written

dB_
da~ Va'

b'dt^^^dt
dR r db r -.dc

[a, b]-r. + [a, CW+...
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, r v\ —^x ^x' dx dx dy dy dy dy'

da db db da da db db da

dz dz dz dz
4

Similarly,

da db db

dR r7 ..da r, -, dc

M = [b
'
a]

-dt
+ ^ C

^di
+ -

4. By successive elimination between these equations,

we can obtain expressions for -7- , -j- , &c., in terms of

-j- , -57- , &c, [a, J], [a, c], &c. : if, then, we can shew that

[a, b\ [a, c], &c, are independent of the time explicitly, it will
IT)

follow that this is also the case with the coefficients of -7--.

da '

dR p . ., . P da db „

—jj- , &c, in the expressions tor —7- , -j , &c.

5. To shew that [a, b] is independent of the time ex-

plicitly.

Let V= -
; then the equations of motion give

(dx\_dV (dy\ = dV (dz\_dV
\dt)~ dx' \dt) dy ' \dtj~ dz

'

Now differentiating with respect to t only so far as it occurs

explicitly,

d ,
n

dx d fdx'\ dx' d /dx\

dt^' l
=

d~adi \db) ~db at \da)

dx d fdx'\ dx' d ldx\

db dt \da) da dt \db)

+
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dx d (dx'\ dx dx1_dx d fdx\ dx dai

~dadb\dt) db da

dx d fdx'\ dx dx

~~db da \dt) da db

+

~ dadb\dx) db da\dx)

dy d_ fdV\ _dy d_ fdV\
+ dadb\dy) db da\dy

)

+ dadb[dz) dbda\dz)

_dxd^ fdV\ dy d (dV\ &±d_ fdV\
~ da dx\ db ) da dy\db ) da dz\db )

fdV\ _dyd_ fdV\ _dsd_ /dV\

\da) db dy\da) db dz\da)
dx d_(dV

db dx \ i

^ d2V d*V =Q
da db db da

Hence [a, 6] does not contain the time explicitly. The

same is of course true of [a, c], [J, c], &c. It follows, then,

that whatever system of elements be adopted, we can always

express their differential coefficients in terms of the partial dif-

ferential coefficients of It with respect to them, multiplied by
coefficients which do not involve the time explicitly.

6. From the formula of Art. 3 of this Appendix, which
is due to Lagrange, those of Chapter II. may be deduced : for

this we refer to Pontecoulant's Systeme du Monde, Tom. I.

p. 542.
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ON THE GEOMETRICAL INTERPRETATION OP THE FORMULAE

FOR THE SECULAR VARIATIONS OP THE NODE

AND INCLINATION.

7. In Art. 84 we have shewn that in consequence of the

secular variations of the node and inclination, the normal to

the plane of the orbit moves uniformly, so as to generate in

space a fixed right circular cone. This result may also be

obtained somewhat differently: we will here indicate the

process*.

The equations to be interpreted are

p = tan i sin XI = JVj sin (hj + S
2)
+ iV

2
sin S

2 ,

q = tan /cos XI = N^cos (hj + SJ +Na
cos S

2
.

Employing the figure and construction of Art. 84, it will

be found that

cot QA = tan i sin 11, cot QL = tan i cos XI.

These are the geometric representations ofp and q. Now
it may be shewn by Spherical Trigonometry that

. ^ a ^ tan /sin a> + tan p (sin to cos + sec Icos to sin 0)
cot QAO = —^ n a '

1 — tan 1 tan p cos

~ r ~ tan Jcos &) + tan p (cos m cos — sec /sin <a sin 0)
cot QLO = —f-j

—

J- £ •

1 — tan 1 tan p cos

These expressions are rigorous ; if we neglect the product

tan2/ tan p, and higher products of tan/ and tan p, they

become
cot QA — tan /sin m + tan p sin (0 + a>)

,

cot QLO = tan/cos co + tan p cos (0 + to).

* This method as well as that of Art. 84, is due to Mr Freeman, of St John's

College.

C. P. T. 10
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From these equations the interpretation follows as in Art.

84. The advantage of this method is that it affords a geo-

metric representation of p and q: on the other hand, in

the method of Art. 84, the trigonometrical reduction is

simpler.

ON THE METHODS OF CALCULATING THE MASSES OF

THE PLANETS.

8. There are in general two methods of determining the

masses of the planets ; either by observations on a satellite,

when the planet is accompanied by a satellite ; or by compar-

ing the inequalities produced in their motion by their mutual

action, as deduced from observation, with the same ine-

qualities calculated from theory. The secular variations are

best adapted to give the most exact results ; but these are not

yet known with sufficient accuracy to allow of this use. We
are therefore obliged to recur to the periodic variations, and,

by combining a vast number of observations, gather from

them the most probable results *-

9. When the planet is accompanied by a satellite the

formula for calculating its mass may be obtained as follows

:

Let M, m, m be the masses of the Sun, the planet, and the

satellite: P, F the periodic times of the planet about the Sun,

and the satellite about the planet ; a, a the mean distances of

the planet from the Sun, and the satellite from the planet.

Then we have

P= 2m* p = 27TO *

therefore
m + m _ PV8

M + m~P'V
* Ponte'coulant's Systime da Monde, Tome in. p. 340.
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or approximately,

m + m' _PV3

M "PV
This equation gives the mass of the planet when that of

its satellite is known. If the latter be neglected, the formula

becomes

m ^PV8

M P'V

10. In the case of the Earth, this method is not suf-

ficiently exact, but the following may be employed. The

attraction of the Earth on a body at its surface, in the parallel

of which the square of the sine of the latitude is -
, is very

o

nearly the same as if the Earth were condensed into its

centre. (See Pratt's Figure of the Earth, Art. 89.) Let then

sin
2
1 = -

, g = the Earth's attraction on a body at its surface in

latitude I, b the mean radius of the Earth, E the mass of the

Earth, M the mass of the Sun, P the length of the year, and

a the mean radius of the Earth's orbit. Then

E 2-n-cfi

therefore

b*> ^M'

E ^gVP* = gP
2

fb_\
3

where - = sine of Sun's parallax = sin 8".57.

11. For the methods of calculating the mass of the

Moon we refer to Ponte"coulant's Bysthme du Monde, Tome
IV. p. 651.
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Tables of the numerical values of the masses of the

planets, and of the elements of their orbits, will be found in

Herschel's Outlines of Astronomy, pp. 693 et seq.

THE END.
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