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There is an urgent need for a better understanding of animal
migratory ecology under the influence of climate change. Most
current analyses require long-term monitoring of populations
on the move, and shorter-term approaches are needed. Here,
we analysed the ecological drivers of seabird migration within
the framework of the energyscape concept, which we defined
as the variations in the energy requirements of an organism
across geographical space as a function of environmental
conditions. We compared the winter location of seabirds with
their modelled energy requirements and prey fields throughout
the North Atlantic. Across six winters, we tracked the migration
of 94 little auks (Alle alle), a key sentinel Arctic species, between
their East Greenland breeding site and wintering areas off
Newfoundland. Winter energyscapes were modelled with
Niche Mapper™, a mechanistic tool which takes into account
local climate and bird ecophysiology. Subsequently, we used
a resource selection function to explain seabird distributions
through modelled energyscapes and winter surface
distribution of one of their main prey, Calanus finmarchicus.
Finally, future energyscapes were calculated according to
IPCC climate change scenarios. We found that little auks
targeted areas with high prey densities and moderately
elevated energyscapes. Predicted energyscapes for 2050 and
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2095 showed a decrease in winter energy requirements under the high emission scenario, which may
be beneficial if prey availability is maintained. Overall, our study demonstrates the great potential of
the energyscape concept for the study of animal spatial ecology, in particular in the context of global
change.

1. Introduction
Theoretical and empirical studies have demonstrated that migration evolves to maximize fitness
in a seasonal environment [1,2]. Migratory animals thereby target the most profitable areas [3],
balancing their energy requirements with available resources, within ever-changing ecological
landscapes. Such complex spatio-temporal match/mismatch of migratory species with their biotic
and abiotic environments shape migratory dynamics and the fate of populations on the move [3,4].
Migrating animals are thus particularly vulnerable to climate change and resulting environmental
modifications [3,5,6]. Among birds, most long-distance migrants breed at high latitudes, where climatic
changes have the strongest amplitude and seasonally travel to more favourable wintering grounds [7,8].
Overall, this puts a strong emphasis on the migratory ecology of birds in a warming Arctic [9].

Bird sensitivity to climate change has been mainly studied during the breeding season. In particular,
drastic changes in phenology have been noticed worldwide, triggered by shorter winters in polar and
temperate regions [9–11]. Such phenological changes, that differ between species, can lead to a mismatch
between food availability and demands for reproduction with strong impacts on breeding success,
particularly for migrating species [5,10]. However, the impacts of climatic changes during winter have
been the focus of fewer studies [6,12], probably because it is far more challenging to monitor individuals
outside the breeding season [3].

A prerequisite to understanding how wintering animals are affected by climate change is to quantify
the ecological benefits of seasonal habitat choice. For this purpose, it is essential to define and use
ecological metrics that will allow researchers to rate and compare the profitability of wintering areas.
According to evolutionary theory, these fitness proxies should show functional relationships with the
capacity of each individual to survive and reproduce [13]. Indeed, a series of studies have identified
the impact of wintering conditions on adult survival probabilities [14,15], while others have identified
significant carry-over effects of such conditions on survival and reproduction in subsequent months [16],
or even years [17].

Despite the great success and the necessity of such studies, they require long-term population
monitoring and individual phenotyping, which are both extremely time-consuming and costly,
particularly for long-lived species, like many migratory birds. Animal energetics offer a powerful,
short-term alternative [18]. In particular, within the rapidly emerging field of movement ecology [19],
the concept of energy landscapes (hereafter ‘energyscapes’) seems extremely relevant and attractive
for mechanistic explanations of animals’ geographical distribution. Specifically, Wilson, Shepard and
collaborators defined energyscapes as ‘environmentally dependent variation in the cost of transport,
driven by variation in parameters such as incline, substrate type, vegetation, current speed, or
direction’ [20,21]. Here, we propose to broaden the concept of energyscape and define it as variation
in the energy requirements of an organism across geographical space as a function of environmental
conditions. In addition to the cost of transport, our definition thereby includes all costs associated with
body maintenance and thermoregulation. Energyscapes are, consequently, highly sensitive to climatic
conditions.

The recent development of mechanistic energetic models allows energyscapes to be estimated for any
animal at any location around the globe [22–26]. This methodology, which in birds compares well with
the accuracy of empirical measurements [27,28], provides a unique opportunity to develop and expand
the concept of energyscapes for the study of animal migration.

In this study, we determined monthly energyscapes for an Arctic migrant, the little auk (Alle alle),
and used them to test hypotheses related to wintering ecology in a climate change context. Little auks
are the most numerous seabird of the Arctic (with an overall population estimated between 40 and 80
million individuals) and they are key components of Arctic marine food webs. Their winter migration
across the North Atlantic has only recently been depicted through the use of miniaturized electronic
geolocators [24]. Because the little auk is the smallest of all seabirds in the Atlantic Arctic, with a body
mass of 150 g, its morphology makes it a particularly attractive model for the study of avian energetics
in a migratory and wintering context. Indeed, its mass-specific resting metabolic rate is approximately
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seven times that of Emperor penguins (Aptenodytes forsteri) [29], and therefore energetic constraints
acting upon little auk winter migratory decisions are predicted to be drastic. Finally, little auks feed
on zooplankton, especially Calanoid copepods, which show a strong response to the climate-induced
increase of North Atlantic surface water temperatures [30]. It is therefore an excellent model species for
the study and forecast of the marine ecological consequences of rapid warming in the North Atlantic.

We took advantage of a large dataset on little auk migratory movements in the North Atlantic. This
information was collected over 6 years using geolocators for a little auk population which breeds in
East Greenland and predominantly overwinters off Newfoundland. Once the location of this wintering
hotspot had been identified, we used the mechanistic model Niche Mapper™ and remote-sensing
information to assess the energyscapes of birds within the North Atlantic. Then, we used resource
selection functions (RSFs) to compare little auk spatial distribution with the modelled energyscapes
and abundance of zooplankton prey. This approach allowed us to characterize the energetic strategy
of wintering little auks, and to go further than the correlative approach of [24] in the definition of
ecological drivers of their distribution. Finally, using climate forecasting models, we modelled the future
energyscapes of little auks in their wintering region, to assess the potential impacts of forthcoming
North Atlantic climate warming. As temperature is predicted to be the main driver of little auk energy
requirements during winter according to [22], we expected that little auk energy demands would
consequently decrease due to this warming.

We tested the hypotheses that (i) little auks optimize the position of their wintering location, so as
to minimize their winter daily energy requirements, and maximize their use of zooplankton density
gradients; and (ii) climate change will significantly modify little auk energy requirements at their current
wintering location.

2. Methods
2.1. Seabird winter geolocation
Fieldwork took place at Ukaleqarteq (Kap Höegh, Liverpool Land, 70°44′ N, 21°35′ W), East Greenland.
Breeding adults were equipped with light-level archival tags (GLS) each summer from 2009 to 2014 and
recaptured the following years. All GLSs weighed between 0.8 and 1.5 g (0.6–1.1% of the lowest equipped
bird weight). GLS types, technical characteristics and deployment/recapture details are available in
electronic supplementary material, file S1. In total 244 GLSs were deployed, 102 were retrieved and
94 data files were exploitable. Three birds were equipped for 2 years, and one bird for 3 years. Birds
were captured either in their underground nests or with a lasso placed on the rocks surrounding their
nests. They were weighed and fitted with a metal ring on which a GLS was attached using a cable tie.
Previous investigations showed that GLS deployments had no measurable impacts on little auk body
condition [24].

GLS data were analysed with British Antarctic Survey (BAS) softwares (TransEdit and Locator) for
BAS and Biotrack devices, and with Intiproc

®
for Migrate Technology devices. In both cases, the light

intensity threshold was set to 10 lux, and the sun elevation angle to −3°. Two positions per day were
obtained for each bird, one at local noon and one at local midnight. Points on land and outside the
study area (70° W–15° E, 30° N–80° N) were removed. All bird handling procedures were approved by
the Government of Greenland (Permits nos. 66.01.13, 2011–047447, 2012-065815, 2013-083634 and 2014-
098814) and validated by the ethics committee of the French Polar Institute (Permit no. MP/53/06/12).
Tracking data are available on Movebank (https://www.movebank.org/) under the study named
‘Adaclim’.

2.2. Modelling seabird energyscapes
To model seabird energy requirements at a point in time and space, we used the mechanistic
model Niche Mapper™, which evaluates the daily energy requirements of an individual using the
biophysical properties of seabird bodies exposed to specific microclimatic conditions [22,31]. Niche
Mapper consists of two submodels: a microclimate model and an animal model. The microclimate
model uses macroclimate data (sea surface temperature (SST), air temperature, cloud cover, relative
humidity and wind speed), substrate properties, geographic location and time of year to calculate hourly
environmental conditions at the animal’s height. Microclimate model calculations are detailed in [32].
The animal model uses the outputs from the microclimate model to iteratively solve a heat balance
equation to find the metabolic rate needed for the animal to maintain its body temperature, accounting

https://www.movebank.org/
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for convective, radiative, evaporative and solar heat fluxes with its microenvironment. Heat balance
calculations are detailed in [33]. Little auks were modelled as a series of simple shapes that have well-
understood heat transfer properties that enable surface temperature calculations—and thus heat flux
calculations—given a certain core temperature to maintain: two ellipsoids for the head and torso and
two cylinders for the featherless parts of the legs. Legs were modelled to allow heat loss, with possible
changes in peripheral blood flow as a function of bird heat balance and external temperature. For time
not spent diving or flying, little auks were modelled as floating on the ocean surface with legs and 25%
of torso submerged in the water (electronic supplementary material, file S2). Auks were modelled as
diving 24% of each day and flying 9% of each day (electronic supplementary material, file S2, [22]).
All model input values are detailed in electronic supplementary material, file S2. Monthly average
environmental input data were downloaded from the International Comprehensive Ocean-Atmosphere
Data Set (ICOADS, http://icoads.noaa.gov/, observed data, 1° × 1° resolution). The model was run to
predict little auk daily energy requirements during the winter months (November, December, January
and February) between 30° N to 80° N and 70° W to 15° E with a 1° × 1° grid size. A sensitivity analysis
was performed to identify input variables which had the strongest influence upon modelled energy
requirements (electronic supplementary material, file S3).

2.3. Zooplankton winter abundance
We used the distribution and abundance of the copepod Calanus finmarchicus, one of little auk main
prey, as a proxy for little auk prey availability [24,34]. Since temporally continuous observational data
on C. finmarchicus are not available on the spatial scale required for our study, we used abundance
estimates obtained from the ocean-scale population model of [35]. This is an explicitly spatial model
(at 0.5° × 0.25° grid size) where at each discrete location the population is divided into surface
(0–100 m depth) individuals and deep diapausing individuals. The surface population is further divided
into discrete development classes that map on to the naupliar and copepodite stages. Development
rate and egg production depend on the local temperature and food availability. A proportion of
individuals entering the pre-adult (CV) copepodite stage join the diapausing population and emerge
as surface adults (CVI) in the spring. Temperature and spatial transport for the model was determined
using outputs from the Ocean Circulation and Climate Advanced Modelling Project [36] ocean
circulation model, while phytoplankton food was estimated from SeaWIFS satellite observations
(https://oceancolor.gsfc.nasa.gov/data/seawifs/). Model outputs have been successfully compared
with field data from the continuous plankton recorder, in situ winter distributions of diapausers
and, at some locations, copepod time series. A full formal description of the approach is given
in [35]. The spatial extent of the model encompasses our entire study area, as defined in the
previous section, and we used the modelled abundances of the surface CV and CVI copepodite
stages as our proxy for little auk prey. The current version of this model does not yet allow
forward projections of C. finmarchicus abundance due to a lack of reliable projections of phytoplankton
abundances.

2.4. Habitat selection of little auk
We determined how little auks balanced the cost of their daily energy requirements with the benefits
of searching for C. finmarchicus for each winter month (November to February). We used RSFs [37]
that assessed whether a given habitat feature is used disproportionately relative to availability (i.e.
selection or avoidance). RSFs compared the daily energy requirements of little auks and the density of
C. finmarchicus at GLS locations with those expected at an equal set of random locations generated within
the 95% kernel density of observed locations for each month (figure 1). This kernel density contour was
chosen to represent available locations (both favourable and less favourable wintering locations). RSFs
were fitted using generalized linear mixed models with a binomial distribution for errors and a logit
link. We added a random intercept to account for the unbalanced number of locations collected across
individuals [38]. We assessed empirical standard errors that are robust to both among- and within-
individual correlations (i.e. serial correlation) and that provide robust estimates of significance [39].
The RSF took the form w(xij) = exp(β0 + β1x1ij + β2x2ij + · · · + βnxnij + γ0j), where w(xij) is the relative
probability of selection for little auk, x is a vector, β0 is the mean intercept, β is the estimated fixed
regression coefficient for continuous covariate x, i represents the ith observation, j represents the jth
individual and γ 0j is the random effect on the intercept β0 for animal j. We included the squared energy
requirements and the squared density of C. finmarchicus to allow for quadratic effects, and an interaction

http://icoads.noaa.gov/
https://oceancolor.gsfc.nasa.gov/data/seawifs/
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Figure 1. Little aukwinter distribution (number of individuals per 1°× 1° cell, green), little auk energyscape (kJ d−1, red), little auk prey
distribution (log 10 density (m−2)) and relative probability of habitat selection by little auks for eachmonth in the North Atlantic (brown).
Monthly 95% kernel contours of little auk positions are presented in red. The position of the colony (red plus symbol) and the 50% kernel
of winter positions (green) are presented in the top-left panel. White areas represent an absence of data.

term between prey density and energy requirements. Both the daily energy requirements and density of
C. finmarchicus were centred to avoid collinearity issue and multicollinearity was low in all RSFs (variance
inflation factors ≤6.6 in all models, [40]). We evaluated model robustness using k-fold cross-validation,
by developing RSFs with 80% of the locations (training set), and then by testing the predictive power of
these RSFs with the 20% withheld locations (testing set) [39,41]. RSFs were performed with the GLIMMIX
procedure of SAS v. 9.2 software (SAS Inst.).

2.5. Energyscape projections
We investigated changes in energy requirements within the core wintering area of little auks (defined as
the 50% kernel density contour of the positions from 1 November to 28 February) for three decades
centred in 2010, 2050 and 2095, using climatic projections based on two IPCC (Intergovernmental
Panel on Climate Change) scenarios: one reflecting a low greenhouse gas concentration trajectory
(Representative Concentration Pathway, RCP 2.6) and one reflecting a high concentration trajectory (RCP
8.5). Based on model comparisons by [42] for our studied area, we chose the Canadian Earth System
Model v. 2 (CanESM2), which reproduced the best observed climatic trends off Newfoundland. Climatic
predictions for sea-surface temperatures, air temperatures, cloud cover and relative humidity were
downloaded from http://www.cccma.ec.gc.ca/data/cgcm4/index.shtml. As Niche Mapper™ requires
a minimum and a maximum value for each input variable, and only mean values were available
from CanESM2, we calculated min/max from the observed amplitude within the same variables from
ICOADS data. Niche Mapper™ was run for each year of the three decades using both scenarios (RCP
2.6 and 8.5). Then, for each month and each run, we calculated the mean daily energy requirements of
little auks within their core wintering area (figure 4, core wintering area presented in the top-left panel
of figure 1, [43]).

http://www.cccma.ec.gc.ca/data/cgcm4/index.shtml
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3. Results
3.1. Little auk winter distribution and timing of migration
Figure 1 presents the density of bird positions per 1° × 1° cell for each winter month (wintering period).
On figure 2, bird positions were summed by longitude and latitude for each non-breeding month
(migration + wintering periods). Over the study period (2009–2015), GLS recordings showed that little
auks migrated to their wintering grounds in October (figure 2). Birds wintered off Newfoundland,
between 40° N and 55° N and 35° W and 55° W, at nearly 3000 km from their colony. They remained within
this area until February, and migrated towards their breeding grounds in March (figure 2). Figure 2 shows
a clear overlap between little auk distribution and peaks of C. finmarchicus abundance over the winter
months. Hence, the timing of migration matched the narrowing (October) and broadening (March) of
the C. finmarchicus distribution in the North Atlantic.

3.2. Little auk energyscape
The sensitivity analysis revealed that little auk daily energy requirements are mainly driven by SSTs
and air temperatures (electronic supplementary material, file S3). Little auk daily energy requirements
in the North Atlantic followed a latitudinal gradient, with higher energy requirements at higher
latitudes all year round (figures 1 and 2b). During winter, daily energy requirements were highest
around Newfoundland, within the cold Labrador Current, and increased gradually from December
to March. Visually, this peak of seabird energyscape overlapped with the highest predicted densities
of C. finmarchicus, especially in January and February, where the prey spatial distributions were less
widespread (figure 1). Consequently, in January and February, the little auk distribution became slightly
uncoupled from the prey distributions, birds remaining in areas with lower energy requirements in the
southeast of prey distribution (figures 1 and 2b).

3.3. Little auk habitat selection
All RSFs were robust to k-fold cross validation and had a high power to predict spatial distribution
of little auk (table 1). From November to January, little auks had a higher likelihood of selecting areas
with high C. finmarchicus densities and moderate levels of daily energy requirements (figure 3a–c). In
December, little auks were more likely to occur where their energy requirements were around 260 kJ d−1.
In November and January, they experienced increased daily energy requirements, around 340 kJ d−1.
As the daily energy requirements progressively increased, and the prey spatial distribution strongly
overlapped high energyscapes around Newfoundland in January and February (figures 1 and 2), little
auk made a trade-off between the benefit of food resource and energy requirements. In January, little auks
also selected in a lesser extent areas with low density of C. finmarchicus (figure 3c). The trade-off was still
stronger in February, little auks being more likely to select areas with high daily energy requirements
(figures 1–3d).

3.4. Predictions
Under the low emission scenario, projections of little auk energy requirements did not differ with
time, except in January where a slight difference between 2010 and 2095 was found (figure 4,
table 2, November: F2,27 = 2.69, p = 0.086, December: F2,27 = 0.49, p = 0.61, January: F2,27 = 3.7, p = 0.038,
February: F2,27 = 2.88, p = 0.074). Under the high emission scenario, there was a significant decrease in
energy requirements with time, for each month (figure 4, table 2, November: F2,27 = 63.5, December:
F2,27 = 99.1, January: F2,27 = 42.8, February: F2,27 = 46.3, all p < 0.0001).

4. Discussion
Our detailed analysis of little auk wintering energyscapes and prey fields in a climate change context,
support our first hypothesis: the wintering grounds of little auks were shaped by both prey availability
and energyscapes. Yet, prey fields seemed more important than energy requirements to explain bird
winter locations. Our results also partially support our second hypothesis: forthcoming climate warming
will substantially modify energyscapes for little auks wintering off Newfoundland under a high emission
scenario only. Overall, our study highlights the relevance of the emerging energyscape concept as a
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Figure 4. 10-year average little auk energetic requirements in 2010, 2050 and 2095 for two emission scenarios. Values are means± s.d.
Energetic requirements are calculated for little auk core wintering areas, defined as the 50% kernel density contour of the GLS positions
obtained each year (2009–2015) from 1 November to 28 February (represented in top-left panel of figure 1). Low emission= RCP 2.6,
black, circles. High emission= RCP8.5, red, triangles. For each scenario andmonth,meanswithdifferent letters are significantly different
(Tukey post hoc test, table 2). No difference was found for RCP 2.6 in November, December and February (table 2).

methodological framework for the study of animal migration ecology and evolution in the context of
global change [44]. Nevertheless, our results also demonstrate the need to include prey fields and their
energetic profitability in future energyscape studies.

4.1. Seabird wintering in the Northwest Atlantic
In this study, we took advantage of existing, detailed knowledge of Calanoid copepod distribution
and habitat models in the North Atlantic [35,45]. While the importance of Calanus finmarchicus in
the winter diet of little auks is still a matter of debate, we considered that C. finmarchicus density
and distribution was a good proxy for overall little auk prey availability, as they fed either on those
prey, or on species from the next trophic level, such as amphipods and krill when they wintered
off Newfoundland [31,46,47]. Interestingly, little auk timing of migration correlated closely with
C. finmarchicus range restriction in autumn, and range expansion in spring (figure 2). This observation
also strongly suggests a tight link between little auks and C. finmarchicus off Newfoundland in winter.

Little auks did not winter in areas where their energyscape was the most favourable, i.e. the East
Atlantic (figure 1). In fact, they were constrained because highly productive areas were also located where
their energy requirements are higher, within and around the cold Labrador Current off Newfoundland
(figures 1 and 2). Within this area, they fine-tuned their spatial distribution in respect to the energyscape,
targeting the southeastern range of C. finmarchicus during winter, where prey items were still abundant
and bird energyscapes were more advantageous (figures 1 and 2). They seemed to avoid shelf waters,
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Table 2. One-wayANOVAs and Tukey post hoc tests comparingmean energy requirements per decade, for each scenario and eachmonth.
d.f., degrees of freedom; SS, sum of squares; MS, mean square.

ANOVA Tukey post hoc test, adjusted p-values

scenario month factor d.f. SS MS F p 2010–2050 2050–2095 2010–2095

low emission
RCP 2.6

November decade 2 26.91 13.46 2.69 0.086
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

residuals 27 134.94 5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

December decade 2 6.57 3.28 0.49 0.61
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

residuals 27 180.07 6.67
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

January decade 2 189.4 94.68 3.7 0.038 0.2 0.64 0.033
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

residuals 27 691.3 25.6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

February decade 2 531.7 265.86 2.88 0.074
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

residuals 27 2497 92.48
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

high emission
RCP 8.5

November decade 2 602.6 301.3 63.5 <0.0001 0.0004 <0.0001 <0.0001
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

residuals 27 128.1 4.74
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

December decade 2 709.2 354.6 99.05 <0.0001 <0.0001 <0.0001 <0.0001
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

residuals 27 96.7 3.6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

January decade 2 1336.8 668.4 42.84 <0.0001 <0.0001 0.0008 <0.0001
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

residuals 27 421.3 15.6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

February decade 2 3806 1903.2 46.25 <0.0001 0.0001 0.0009 <0.0001
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

residuals 27 1111 41.1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

potentially because at these locations cold water stemming from the Labrador Current [48] increased
their energy requirements. As in summer, they also targeted the edges of the continental shelf such as
around the Grand Banks, where upwelling concentrates prey [49]. A second wintering strategy was
also observed: according to the RSF, there was a medium (January) and high (February) probability
of little auk occurrence with medium energy requirements when there was little or no C. finmarchicus
(figure 3c,d), which suggests that some of the little auks from East Greenland could rely on different
prey/food web at the end of winter.

Little auk wintering areas are also crucial for many other seabird species [50–57]. Indeed, the
Northwest Atlantic is a major wintering hotspot for seabirds from various breeding grounds [50–53],
and even for birds from the Southern Hemisphere during the boreal summer [57]. It is also a migration
stopover for some long-distance migrants [55,56], and Southwest Greenland itself hosts seabirds from
the whole Arctic [54]. Therefore, the energyscape concept illustrated here, as well as associated analytical
tools, will also be of great use for the general ecological understanding of the evolution of aquatic bird
migration in the North Atlantic, in a global change context.

4.2. Wintering strategies under forecasted climate change
Under the high emission scenario (RCP 8.5), little auk energy requirements should decrease during the
twenty-first century within their current core wintering areas (figure 4, table 2). Under the low emission
scenario (RCP 2.6), their energy requirements are predicted to decrease only in January (table 2, figure 4).
The RCP 2.6 represents a high mitigation scenario that aims to keep global warming to less than 2°C
above pre-industrial temperatures [7]. A decrease in energy requirements during winter is therefore
likely for little auks, and could be beneficial for them as well as for other wintering seabirds. In order
to anticipate the future distributions of wintering migrants, it is also necessary to know how their prey
will react to ongoing environmental changes, and two scenarios can be considered: (1) if prey biomass
remains constant, winter visitors could stay in their current wintering areas, especially if those become
energetically more profitable, due to climate warming. However, (2) if prey abundance decreases in
this area, they may have to move to follow their current prey distribution and/or target different prey
species. It is therefore imperative to understand whether little auk wintering areas off Newfoundland
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will remain highly productive during winter, thereby supporting scenario (1), or if changes in ocean
circulation may modify primary productivity and associated food webs. Higher temperatures are known
to favour smaller zooplankton species [58,59]. Therefore, prey biomass has to be maintained to sustain
the rest of the food web, including migratory bird populations. Yet, over the past 40 years, a decrease
in total zooplankton biomass has been observed in the Northeast Atlantic and the same phenomenon is
predicted to occur in the Northwest Atlantic [60].

Thanks to the continuous plankton recorder survey [61], the spatio-temporal evolution of zooplankton
species has been well studied in the North Atlantic during the last 50 years. A northward shift in
zooplankton assemblages and in the copepod Calanus finmarchicus has been demonstrated for the
Northeast Atlantic [45,62] as well as for the Northwest Atlantic [63], whereas no changes have been
found so far for the Arctic species C. glacialis and C. hyperboreus that form an important food link at higher
latitudes [62]. The authors speculate that this may be due to the southward penetration of water from the
Labrador current into the Northwest Atlantic [62]. These studies suggest that seabird visitors may have
to move northwards to target their preferred prey during winter. It is, however, not clear whether prey
will move further north in the Labrador Sea. Recent climatic models suggest a cooling of the Labrador
Sea due to a local collapse of deep-ocean convection [64] that would prevent Calanus finmarchicus range
expansion.

Currently, seabirds (including little auks) that winter at higher latitudes in the Labrador Sea may rely
on different prey communities [31,47,65,66]. Indeed, energy requirements are higher further north [22],
but prey of these areas are richer in lipids [67,68]. In particular, copepods from colder waters are
bigger and richer in lipids [63]. Changes in winter distribution will be facilitated in species that show
a low individual consistency in their wintering areas. While seabirds were until recently seen as highly
consistent in their wintering locations [69], this understanding is changing [70], and among Alcids
in particular, individual consistency varies strongly between species, suggesting some plasticity in
wintering ecology [71,72]. In this study, preliminary results on little auks equipped with GLSs during
two or three successive years confirm that they are not always wintering at the same place (electronic
supplementary material, file S4).

Finally, a northward shift of little auk wintering grounds could be beneficial because it reduces
overall migration distance. In the case of little auks from East Greenland, wintering in the Labrador
Sea instead of the area around the Grand Banks of Newfoundland would reduce migration distance by
about 1000 km, corresponding to 33% of their current migration distance. Such a shortening in migration
distance has been observed in some terrestrial bird species [73,74], and an experimental study has even
shown that residency can evolve rapidly in a passerine population if selection pressure towards shorter
migration is maintained [75]. Migrating closer to the breeding area is not only beneficial because of a
decrease in travel costs, but also because it allows a better detection of the environmental conditions
occurring at the breeding grounds, so as to match resource phenology at the breeding site [74].

However, one potential barrier to the poleward shift of little auk wintering areas is the decrease
in daylight duration and the polar night, but this does not seem to directly impact Arctic seabirds, as
individual seabirds, including little auks, have been found to actively forage during the polar night in
Greenland, Spitsbergen or the Barents Sea ([76,77], Fort J et al. unpublished). Yet the polar night also limits
winter primary productivity at high latitudes, as well as the carrying capacity of the coastal ecosystem
with respect to apex predators. In this context, poleward range expansions may also enhance inter- and
intra-specific competition [78,79]. In our study system, little auks from other populations are already
wintering further north in the Labrador Sea, and could become competitors if the whole wintering area
of this species is narrowed [80]. Lastly, a poleward shift may result in a mismatch between prey blooms
and the timing of migration, as phytoplankton blooms occur later at higher latitudes because of light
restriction during winter [81].

4.3. Outlook
With the present study, we have broadened the concept of energy landscapes as defined by Wilson,
Shepard and collaborators [20,21], and redefined it as the spatial variations in energy requirements of
an animal at a specific moment in time. Therefore, in contrast to [21], this approach does not require
recording detailed accelerometry data to estimate transport cost for each study individual, but rather
some knowledge of environmental conditions encountered through time, and on species time-budgets
and metabolism. Energyscapes calculated with Niche Mapper™ can consequently be used in a much
wider range of species and ecological contexts [82,83]. These two approaches could nonetheless be used
complementarily if accelerometry data help fine-tune NicheMapper™ input parameters.
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................................................
Our study of little auk wintering ecology has also demonstrated the overarching importance of prey

fields, for a thorough understanding of individual strategies and population biogeography under climate
change. Therefore, once functional relationships between prey availability and predatory performance
become known for little auks [84], we propose further expanding the energyscape concept to include
this information. Energyscapes would then be defined as the energetic profitability, for a given species
at a given time, thereby setting an exciting target for future investigations of species biogeography in a
changing world.
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