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In his seminal part IV, Annalen der Physik vol. 81, 1926 paper,
Schrödinger has developed a clear understanding about the
wave equation that produces the correct quadratic dispersion
relation for matter-waves and he first presents a real-valued
wave equation that is fourth-order in space and second-order
in time. In the view of the mathematical difficulties associated
with the eigenvalue analysis of a fourth-order, differential
equation in association with the structure of the Hamilton–
Jacobi equation, Schrödinger splits the fourth-order real
operator into the product of two, second-order, conjugate
complex operators and retains only one of the two complex
operators to construct his iconic second-order, complex-valued
wave equation. In this paper, we show that Schrödinger’s
original fourth-order, real-valued wave equation is a stiffer
equation that produces higher energy levels than his second-
order, complex-valued wave equation that predicts with
remarkable accuracy the energy levels observed in the atomic
line spectra of the chemical elements. Accordingly, the fourth-
order, real-valued wave equation is too stiff to predict the
emitted energy levels from the electrons of the chemical
elements; therefore, the paper concludes that quantum
mechanics can only be described with the less stiff, second-
order, complex-valued wave equation.
1. Introduction
During his effort to construct a matter-wave equation that satisfies
the quadratic dispersion relation between the angular frequency
ω and the wavenumber k ðv ¼ h� =ð2mÞk2 with h� ¼ h=ð2pÞ where
h ¼ 6:62607� 10�34 m2 kg s�1 ¼ Planck's constantÞ Schrödinger
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in his part IV, 1926 paper [1,2] reaches a real-valued, fourth-order in space and second-order in time

differential equation:

1
m
r2 � 2

h� 2 VðrÞ
� �2

cðr, tÞ þ 4

h� 2

@2cðr, tÞ
@t2

¼ 0, ð1:1Þ

where m is the mass of the elementary, non-relativistic particle and V(r) is its potential energy that is only
a function of the position r. In his 1926 paper [1], Schrödinger explains in his own words: ‘equation (1.1)
is thus evidently the uniform and general wave equation for the field scalar ψ’. He further recognizes that
his fourth-order equation (1.1) resembles the fourth-order equations of motion that emerge from the
theory of elasticity and references the governing equation of a vibrating plate. More precisely, because
of the three-dimensional geometry of atoms, the description of an electron orbiting the nucleus with
equation (1.1) resembles the equation of motion of a vibrating shell [3–6] which had not been
developed at that time.

For standing waves, the spatial and temporal dependence of the matter-wave can be separated:

cðr, tÞ ¼ cðrÞ e+ði=h� ÞEt, ð1:2Þ
so that

@cðr, tÞ
@t

¼ +
i
h� Ecðr, tÞ; @2cðr, tÞ

@t2
¼ � E2

h� 2 cðr, tÞ: ð1:3Þ

In the interest of simplifying the calculations in the eigenvalue analysis of equation (1.1), in association
that V(r) does not contain the time, Schrödinger [1,2] substitutes the second of equation (1.3) into
equation (1.1) and recasts it in a factored form:

1
m
r2 � 2

h� 2 VðrÞ þ
2

h� 2 E
� �

1
m
r2 � 2

h� 2 VðrÞ �
2

h� 2 E
� �

cðrÞ ¼ 0: ð1:4Þ

He recognizes that equation (1.4) does not vanish by merely setting one of the factors equal to zero given
that each factor is an operator. Inspired by the factorized form of his original fourth-order wave equation
(1.1) given by equation (1.4) in association with the structure of the Hamilton–Jacobi equation [7–12],
Schrödinger reverts to the first of equation (1.3) to separate the time dependence and settles with his
iconic second-order in space and first-order in time complex-valued wave equation [1,2]:

ih� @cðr, tÞ
@t

¼ � h� 2

2m
r2cðr, tÞ þ VðrÞcðr, tÞ: ð1:5Þ

At the end of section §1 of his part IV, 1926 paper [1,2] Schrödinger indicates that for ‘a conservative
system, equation (1.5) is essentially equivalent to equation (1.1), as the real operator may be split up
into the product of the two conjugate complex operators if V does not contain the time’.

The above equivalence statement advanced by Schrödinger is not true, since the fourth-order, real-
valued wave equation (1.1) is a ‘stiffer’ equation than the second-order, complex-valued equation (1.5),
yielding higher eigenvalues and therefore higher energy levels.

The higher energy levels predicted by the stiffer fourth-order, real-valued wave equation (1.1) than
those predicted by the classical second-order, complex-valued Schrödinger equation (1.5) are shown in
this paper by computing the energy levels of a one-dimensional elementary particle, ψ(x, t), trapped
in a square well with finite potential V. The paper shows that the one-dimensional version of
Schrödinger’s original fourth-order, real-valued equation is equivalent to the governing equation of a
vibrating flexural-shear beam [13,14]. By splitting the fourth-order, real-valued operator into the
product of two conjugate second-order, complex-valued operators and upon retaining only one of the
complex operators, Schrödinger [1,2] essentially removed from his original fourth-order equation (1.1)
its ‘flexural stiffness’ and left it only with ‘shear stiffness’.

In the view of the many predictions with remarkable accuracy of Schrödinger’s second-order,
complex-valued equation (1.5) for the atomic orbitals of the chemical elements and other features
of the Periodic Table [15–19] in association with the higher energy levels predicted from his
original fourth-order, real-valued equation (1.1) (therefore, apparently incorrect), this paper offers a
straightforward explanation why quantum mechanics can only be described with complex-
valued functions—a finding that is in agreement with more elaborate recent studies that hinge
upon symmetry conditions of real number pairs [20], the de Sitter algebra [21] or involve entangled
qubits [22–24].
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This paper shows in a simple, straightforward manner that Schrödinger’s original fourth-order, real-
valued wave equation (1.1), which is the simplest possible real-valued wave equation that satisfies the
quadratic dispersion relation v ¼ h� =ð2mÞk2, is too stiff to predict the energy levels that correspond to
the observed atomic line spectra (infrared, visible and ultraviolet) of the chemical elements. By
splitting the fourth-order, real-valued operator of equation (1.1) into the product of two conjugate
second-order, complex-valued operators, Schrödinger [1,2] extracts a more flexible equation than his
original fourth-order, real-valued equation (1.1) at the expense of being complex-valued—that is, his
iconic equation (1.5) which predicted correctly the energy levels of the hydrogen atom; and
subsequently made a wealth of fundamental predictions as manifested by the features of the Periodic
Table of the chemical elements [15–19,25].

The question that deserves an answer is how Schrödinger developed the remarkable intuition to
proceed from the onset of his efforts with a complex-valued equation for matter-waves—that is, only
the one factor of the split fourth-order, real-valued equation; which while complex-valued, is flexible
enough to predict the correct frequencies manifested in the observed atomic line spectra of the
chemical elements in the years to come and abandoned his original fourth-order, real-valued equation
that its predictions were apparently never explored.
pen
Sci.10:230793
2. The ‘flexural-shear beam’ equation for matter-waves
In the interest of illustrating that the fourth-order, real-valued wave equation (1.1) is a stiffer equation
than Schrödinger’s second-order, complex-valued equation (1.5), we consider for simplicity a single
elementary, non-relativistic particle with mass m > 0 in one dimension moving along the positive
direction, x, within an energy potential V(x). The total energy of the elementary particle, E, is
described with its Hamiltonian,

E ¼ Hðx, pÞ ¼ p2

2m
þ VðxÞ, ð2:1Þ

where p =m dx/dt is the momentum of the elementary particle and p2/(2m) = (1/2)m(dx/dt)2 represents
its kinetic energy. Using Einstein’s [26] quantized energy expression, E ¼ hn ¼ h� v, and de Broglie’s [27]
momentum–wavelength relation, p ¼ h=l ¼ h� k, where k = 2π/λ is the wavenumber, the Hamiltonian of
the elementary particle given by equation (2.1) in the absence of a potential (V(x) = 0) yields

v ¼ h�
2m

k2: ð2:2Þ

Equation (2.2) leads to a quadratic dispersion relation for matter-waves as opposed to the linear
dissipation relation, ω =Ck, of electromagnetic waves of shear waves in a solid continuum.

The simplest expression for a matter-wave travelling along the positive x-direction is ψ(x, t) =ψ0 e
i(kx−ωt)

and upon using that k ¼ p=h� and v ¼ E=h� ,
c(x, t) ¼ c0 e

ði=h�Þðpx�EtÞ: ð2:3Þ
The time derivative of equation (2.3) gives

@cðx, tÞ
@t

¼ � i
h� Ecðx, tÞ: ð2:4Þ

Substitution of the expression for the energy, E, given by equation (2.1) into equation (2.4) gives

ih� @cðx, tÞ
@t

¼ p2

2m
þ VðxÞ

� �
cðx, tÞ: ð2:5Þ

The second space derivative of equation (2.3) gives

@2cðx, tÞ
@x2

¼ � 1

h� 2 p
2cðx, tÞ, ð2:6Þ

and substitution of the quantity p2ψ(x, t) from equation (2.6) into equation (2.5) yields the one-dimensional
version of the time-dependent Schrödinger equation given by equation (1.5):

ih� @cðx, tÞ
@t

¼ � h� 2

2m
@2cðx, tÞ

@x2
þ VðxÞcðx, tÞ: ð2:7Þ
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We now proceed by taking higher-order derivatives to remove the imaginary unit i ¼ ffiffiffiffiffiffiffi�1

p
. The

time derivative of equation (2.4) in association with equation (2.3) gives

@2cðx, tÞ
@t2

¼ � E2

h� 2 cðx, tÞ; ð2:8Þ

whereas by raising the Hamiltonian given by equation (2.1) to the second power gives

E2 ¼ H2(x, p) ¼ p4

4m2 þ
p2

m
V(x)þ V2(x): ð2:9Þ

Substitution of the expression for E2 given by equation (2.9) into equation (2.8) yields

@2c(x, t)
@t2

¼ � 1

h� 2
p4

4m2 þ
p2

m
V(x)þ V2(x)

� �
c(x, t): ð2:10Þ

Upon differentiating of equation (2.6) in space two more times,

@4c(x, t)
@x4

¼ p4

h� 4 c(x, t): ð2:11Þ

The substitution of the quantity p4ψ(x, t) from equation (2.11) and of the quantity p2ψ(x, t) from equation (2.6)
into equation (2.10) gives

�h� 2 @
2c(x, t)
@t2

¼ h� 4

4m2

@4c(x, t)
@x4

� h� 2

m
V(x)

@2c(x, t)
@x2

þ V2(x)c(x, t): ð2:12Þ

Equation (2.12) is the one-dimensional version of the real-valued equation (1.1) originally presented by
Schrödinger [1,2] which satisfies the quadratic dispersion relation of matter-waves as dictated by equation
(2.2). We coin this time-dependent equation: the ‘flexural-shear beam wave equation’ because of the
striking similarities with an approximate beam equation that was proposed by Heidebrecht & Smith [13]
to model the dynamics of tall buildings which consist of a strong core-wall that offers flexural resistance
acting in parallel with the surrounding framing system of the building that offers shear resistance to
lateral loads.
3. The time-independent flexural-shear beam equation for matter-waves
The corresponding time-independent equation for standing waves (mode shapes) of equation (2.12) is
derived with the standard method of separation of variables where ψ(x, t) = ψ(x)f (t). Accordingly,

@2c(x, t)
@t2

¼ c(x)
d2f(t)
dt2

ð3:1Þ

and

@2c(x, t)
@x2

¼ d2c(x)
dx2

f(t);
@4c(x, t)

@x4
¼ d4c(x)

dx4
f(t): ð3:2Þ

Substitution of the expressions for the partial derivatives given by equations (3.1) and (3.2) into equation
(2.12) and upon dividing with ψ(x)f (t) gives

�m
1
f(t)

d2f(t)
dt2

¼ h� 2

4m
1

c(x)
d4c(x)
dx4

� V(x)
c(x)

d2c(x)
dx2

þ m

h� 2 V
2(x): ð3:3Þ

The left-hand side of equation (3.3) is a function of time alone; whereas, the right-hand side is a function
of space alone. In this case,

�m
1
f(t)

d2f(t)
dt2

¼ K, ð3:4Þ

where K is a spring constant with units [M][T ]−2. Accordingly, equation (3.4) is the equation of motion of
a harmonic oscillator with a real-valued solution

f(t) ¼ A sinvtþ B cosvt, ð3:5Þ



V(x) = V > 0

V = 0

0
–L

L
L

x

L

V(x) = V > 0

–�

Figure 1. The finite potential square well with constant strength V outside the well with width 2L.
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where v ¼ ffiffiffiffiffiffiffiffiffiffi
K=m

p
is the natural frequency of the harmonic oscillator. Returning to equation (3.3), its

right-hand side is also equal to the spring constant K =mω2:

h� 2

4m
1

c(x)
d4c(x)
dx4

� V(x)
c(x)

d2c(x)
dx2

þ m

h� 2 V
2(x) ¼ mv2: ð3:6Þ

Multiplication of equation (3.6) with h� 2cðxÞ=m yields the time-independent flexural-shear beam equation
for matter-waves:

h� 4

4m2

d4c(x)
dx4

� h� 2

m
V(x)

d2c(x)
dx2

þ V2(x)c(x) ¼ E2c(x), ð3:7Þ

where E ¼ h� v is the quantized energy of the elementary particle. The solution of equation (3.7) yields the
eigenvalues and eigenmodes. From the first space derivative of equation (2.3), @cðx, tÞ=@x ¼ ði=h� Þpcðx, tÞ,
we define the standard momentum operator, p̂ ¼ �ih� ð@=@xÞ. Accordingly, from equation (2.6), the

momentum square operator p̂2 ¼ �h� 2ð@2=@x2Þ and from equation (2.1), the Hamiltonian operator is

Ĥ ¼ p̂2

2m
þ V(x) ¼ � h� 2

2m
@2

@x2
þ V(x): ð3:8Þ

From equation (3.8), the Hamiltonian square operator Ĥ
2
assumes the expression

Ĥ
2 ¼ h4

4m2

@4

@x4
� h� 2

m
V(x)

@2

@x2
þ V2(x): ð3:9Þ

Accordingly, by employing the Hamiltonian square operator Ĥ
2
defined by equation (3.9), the time-

independent flexural-shear beam equation (3.7) can be expressed in the compact form

Ĥ
2
c(x) ¼ E2c(x): ð3:10Þ

It is the Hamiltonian square operator Ĥ
2
[28,29] that renders equation (3.10) stiffer than the classical time-

independent Schrödinger equation ĤcðxÞ ¼ EcðxÞ that was depleted from its original flexural stiffness [1,2].
4. Elementary particle trapped in a finite potential square well
with strength V > 0

Given that both the fourth-order, real-valued flexural-shear beam equation (2.12) and the second-order,
complex-valued Schrödinger equation (2.7) satisfy the quadratic dispersion relation offered by equation
(2.2) as dictated by the Hamiltonian, we proceed by comparing the predictions of these two equations in
an effort to show that Schrödinger’s original, fourth-order, real-valued equation (1.1) is a stiffer
differential equation than his second-order, complex-valued equation (1.5) or equation (2.7) in one
dimension. The quadratic Hamiltonian operator appearing in the flexural-shear beam equation (3.10)
leads to elaborate calculations even for simple cases; therefore, we select as a test case the response
analysis of an elementary particle with mass m trapped in a square potential well with finite potential
V and width 2L. Accordingly, the potential at the bottom of the well is zero as shown in figure 1. This
simple, one-dimensional idealization has been employed to determine the wavelengths for colour-
centre absorption [30].
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For the case where the elementary particle happens to be outside the well ðjxj � LÞ , V(x) =V > 0 and

equation (3.7) gives

d4c(x)
dx4

� 4m

h� 2 V
d2c(x)
dx2

þ 4m2

h� 4 ðV2 � E2Þc(x) ¼ 0: ð4:1Þ

The solutions of the homogeneous equation (4.1) are expected to be of the form ψ(x) = eβx and equation
(3.7) yields the following characteristic equation:

b4 � 4m

h� 2 Vb
2 þ 4m2

h� 4 ðV2 � E2Þ ¼ 0, ð4:2Þ

where V > E > 0. The four roots of the characteristic equation (4.2) are

b1 ¼
1
h�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m(V þ E)

p
. 0, b2 ¼ � 1

h�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m(V þ E)

p
¼ �b1 ð4:3Þ

and

b3 ¼
1
h�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m(V � E)

p
. 0, b4 ¼ � 1

h�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m(V � E)

p
¼ �b3: ð4:4Þ

Accordingly, for the case |x|≥ L, where V(x) =V > E > 0, the solution for ψ(x) is

c(x) ¼ A1 eb1x þ A2 e�b1x þ A3 eb3x þ A4 e�b3x: ð4:5Þ
For the case where the elementary particle is within the potential well (|x|≤ L), V(x) = 0 and equation
(3.7) gives

d4c(x)
dx4

� 4m2

h� 4 E2c(x) ¼ 0: ð4:6Þ

By setting ð4m2=h� 4ÞE2 ¼ k4, equation (4.6) assumes the form

d4c(x)
dx4

� k4c(x) ¼ 0: ð4:7Þ

Equation (4.7) has a real-valued solution [31,32]:

c(x) ¼ C1 sin (kx)þ C2 cos (kx)þ C3 sinh (kx)þ C4 cosh (kx), ð4:8Þ
where k ¼ ð1=h� Þ ffiffiffiffiffiffiffiffiffi

2mE
p

is a positive, real wavenumber. In this case (x≤ |L|), V(x) = 0 and from equation
(2.1), E = p2/(2m); therefore, the wavenumber k ¼ ð1=h� Þ ffiffiffiffiffiffiffiffiffi

2mE
p

appearing in equation (4.8) is
k ¼ ð1=h� Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mp2=ð2mÞp ¼ p=h� which is the de Broglie wavenumber. This supports the choice for the
same symbol, k.

It is worth noting that equation (4.7) is the equation of motion of a vibrating flexural beam
with distributed mass per length �m with units [M ][L]−1, Young’s modulus of elasticity Y with units
[M ][L]−1[T ]−2 ( force/area) and moment of cross-sectional area I with units [L]4. For a vibrating flexural
beam k4 ¼ �mv2=YI and upon using E ¼ h� v and cancelling the angular frequency ω, we obtain the
analogy YI=�m �! ðh� =2mÞ2, both having units of [L]4[T ]−2.
4.1. Continuity of solutions

4.1.1. Case 1: x≤−L where V(x) = V and V− E > 0. Bound states

For this case where x≤−L, the solution ψ(x) given by equation (4.5) remains finite when A2 =A4 = 0.
Consequently, for this case

c(x) ¼ A1 eb1x þ A3 eb3x for x � �L, ð4:9Þ
in which β1 and β3 are real-valued and given by equations (4.3) and (4.4).
4.1.2. Case 2: −L≤ x≤ L where V(x) = 0

For this case ψ(x) is given by equation (4.8).
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4.1.3. Case 3: x≥ L where V(x) = V and V− E > 0. Bound states

For this case where x > L, the solution ψ(x) given by equation (4.5) remains finite when A1 =A3 = 0.
Consequently, for this case

c(x) ¼ A2 e�b1x þ A4 e�b3x for x � L, ð4:10Þ

in which β1 and β3 are real-valued and given by equations (4.3) and (4.4).
The solution of the wave equation ψ(x) has to be continuous over the entire domain −∞ < x <∞.

Accordingly, at x =−L, equation (4.9) from the left and equation (4.8) from the right need to satisfy the
following continuity equations:

c(� L�) ¼ c(� Lþ),
dc(� L�)

dx
¼ dc(� Lþ)

dx
ð4:11aÞ

and

d2c(� L�)
dx2

¼ d2c(� Lþ)
d2x

,
d3c(� L�)

d3x
¼ d3c(� Lþ)

d3x
: ð4:11bÞ

Similarly, at x = L, equation (4.8) from the left and equation (4.10) from the right need to satisfy the
following continuity equations:

c(L�) ¼ c(Lþ),
dc(L�)
dx

¼ dc(Lþ)
dx

ð4:12aÞ

and

d2c(L�)
dx2

¼ d2c(Lþ)
d2x

,
d3c(L�)
d3x

¼ d3c(Lþ)
d3x

: ð4:12bÞ

The eight continuity equations given by equations (4.11) and (4.12) form a homogeneous system of eight
equations which yields the eigenvalues zn = knL and eigenfunctions (mode shapes) ψn(x) of the wave
function ψ(x).
4.2. Eigenvalue analysis
The wavenumbers β1 and β3 given by equation (4.3) and (4.4) can be expressed as

b1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mV

h� 2 þ 2mE

h� 2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ k2

p
ð4:13Þ

and

b3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mV

h� 2 � 2mE

h� 2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � k2

p
, ð4:14Þ

where b ¼ ð1=h� Þ ffiffiffiffiffiffiffiffiffiffi
2mV

p
is a positive number and k ¼ ð1=h� Þ ffiffiffiffiffiffiffiffiffi

2mE
p ¼ 2p=l ¼ p=h� is the wavenumber of

the solution of ψ(x) when −L≤ x≤ L given by equation (4.8).
The homogeneous system of eight equations that is generated by the eight continuity equations (4.11)

and (4.12) can be decomposed into four equations that produce the even eigenfunctions ce
nðxÞ and four

equations that produce the odd eigenfunctions co
nðxÞ. The homogeneous system that produces the even

eigenfunctions is

cos (z) cosh (z) �e�
ffiffiffiffiffiffiffiffiffiffiffiffi
b2L2þz2

p
�e�

ffiffiffiffiffiffiffiffiffiffiffiffi
b2L2�z2

p

�z sin (z) z sinh (z)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2L2 þ z2

p
e�

ffiffiffiffiffiffiffiffiffiffiffiffi
b2L2þz2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2L2 � z2

p
e�

ffiffiffiffiffiffiffiffiffiffiffiffi
b2L2�z2

p

�z2 cos (z) z2 cosh (z) �(b2L2 þ z2) e�
ffiffiffiffiffiffiffiffiffiffiffiffi
b2L2þz2

p
�(b2L2 � z2) e�

ffiffiffiffiffiffiffiffiffiffiffiffi
b2L2�z2

p

z3 sin (z) z3 sinh (z) (b2L2 þ z2)3=2 e�
ffiffiffiffiffiffiffiffiffiffiffiffi
b2L2þz2

p
(b2L2 � z2)3=2 e�

ffiffiffiffiffiffiffiffiffiffiffiffi
b2L2�z2

p

2
666664

3
777775

C2

C4

A2

A4

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

¼ 0, ð4:15Þ

where bL ¼ ðL=h� Þ ffiffiffiffiffiffiffiffiffiffi
2mV

p
is a dimensionless positive real number that expresses the strength of the

potential well and z ¼ kL ¼ ðL=h� Þ ffiffiffiffiffiffiffiffiffi
2mE

p
are the eigenvalues of the even eigenfunctions to be
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determined. The eigenvalues zn depend on the dimensionless product bL rather than on the individual

values of b and L and they are calculated by setting the determinant of the 4 × 4 matrix appearing on
the left of equation (4.15) equal to zero. As an example, for bL = 10 the characteristic equation of the
homogeneous system given by equation (4.15) yields four real roots (eigenvalues, n∈ {1, 3, 5, 7}) for
zn ¼ ðL=h� Þ ffiffiffiffiffiffiffiffiffiffiffiffi

2mEn
p ¼ 1:9747, 4:6204, 7:2901 and 9.7999. For larger values of bL (deeper and wider

potential well) the number of real eigenvalues increases given that the unknown eigenvalue z needs

to remain smaller than bL for the radical
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2L2 � z2

p
of the last column of the matrix appearing in

equation (4.15) to remain positive.
Similarly, the homogeneous system as results from the continuity equations that produces the odd

eigenfunctions is

sin (z) sinh (z) �e�
ffiffiffiffiffiffiffiffiffiffiffiffi
b2L2þz2

p
�e�

ffiffiffiffiffiffiffiffiffiffiffiffi
b2L2�z2

p

z cos (z) z cosh (z)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2L2 þ z2

p
e�

ffiffiffiffiffiffiffiffiffiffiffiffi
b2L2þz2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2L2 � z2

p
e�

ffiffiffiffiffiffiffiffiffiffiffiffi
b2L2�z2

p

�z2 sin (z) z2 sinh (z) �(b2L2 þ z2) e�
ffiffiffiffiffiffiffiffiffiffiffiffi
b2L2þz2

p
�(b2L2 � z2) e�

ffiffiffiffiffiffiffiffiffiffiffiffi
b2L2�z2

p

�z3 cos (z) z3 cosh (z) (b2L2 þ z2)3=2 e�
ffiffiffiffiffiffiffiffiffiffiffiffi
b2L2þz2

p
(b2L2 � z2)3=2 e�

ffiffiffiffiffiffiffiffiffiffiffiffi
b2L2�z2

p

2
666666664

3
777777775

C1

C3

A2

A4

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

¼ 0: ð4:16Þ

The finite eigenvalues zn ¼ ðL=h� Þ ffiffiffiffiffiffiffiffiffiffiffiffi
2mEn

p
that correspond to the odd eigenfunctions are computed by

setting the determinant of the 4 × 4 matrix appearing on the left of equation (4.16) equal to zero. As
an example, for bL = 10 the characteristic equation of the homogeneous system given by equation
(4.16) yields three real roots (eigenvalues, n∈ {2, 4, 6}) for zn ¼ ðL=h� Þ ffiffiffiffiffiffiffiffiffiffiffiffi

2mEn
p ¼ 3:2887, 5:9574 and

8.5976. For larger values of bL (deeper and wider potential well) the number of real roots of the
characteristic equation (eigenvalues) increases as long as z < bL so that the radical

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2L2 � z2

p

appearing in the last column of the 4 × 4 matrix equation (4.16) remains real.
5. Comparison of the eigenvalues predicted from the fourth-order
flexural-shear beam equation and from the classical second-order
Schrödinger equation

For any given value of the strength of the square potential well, bL, the resulting eigenvalues of the
fourth-order, flexural-shear beam equation (3.7) or (3.10), zn ¼ ðL=h� Þ ffiffiffiffiffiffiffiffiffiffiffiffi

2mEn
p

, yield the admissible
energy levels of the elementary particle in the finite square potential well, En ¼ ðz2n h� 2Þ=ð2mL2Þ.
Clearly, the predicted energy levels, En, are different from the corresponding energy levels, En,
predicted from the solution of the second-order, time-independent Schrödinger equation.

The predicted eigenvalues zn ¼ ðL=h� Þ ffiffiffiffiffiffiffiffiffiffiffiffi
2mEn

p
of an elementary particle in a finite square potential

well with the second-order, Schrödinger equation are the roots of the transcendental equations (5.1)
and (5.2) [33]:

tan (z) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2L2

z2
� 1

r
for even eigenfunctions ð5:1Þ

and

cot (z) ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2L2

z2
� 1

r
for odd eigenfunctions, ð5:2Þ

where b ¼ ð1=h� Þ ffiffiffiffiffiffiffiffiffiffi
2mV

p
as in the previous analysis.

As an example for bL = 10, equation (5.1) yields four real roots (eigenvalues of the even
eigenfunctions, n∈ {1, 3, 5, 7}) for zn ¼ ðL=h� Þ ffiffiffiffiffiffiffiffiffiffiffiffi

2mEn
p ¼ 1: 4276, 4:2711, 7:0689, 9:6789; and equation

(5.2) yields three real roots (eigenvalues of the odd eigenfunctions, n∈ {2, 4, 6}) for
zn ¼ ðL=h� Þ ffiffiffiffiffiffiffiffiffiffiffiffi

2mEn
p ¼ 2:8523, 5:6792 and 8.4232.

Table 1 compares the predicted eigenvalues for a non-relativistic particle in a finite square potential
well with potential V from the fourth-order, flexural-shear beam wave equation and the second-order,
Schrödinger wave equation for bL ¼ 10 and 30. Table 1 also shows the limiting eigenvalues for a
particle trapped in an infinitely deep potential well (V =∞) as they result from the second-order,
Schrödinger equation, zn ¼ ðL=h� Þ ffiffiffiffiffiffiffiffiffiffiffiffi

2mEn
p ¼ np=2 [33], and from the fourth-order, flexural-shear beam
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equation which are the solutions of the characteristic equation cos ð2kLÞ cosh ð2kLÞ ¼ 1 as shown in

the following.
Table 1 reveals that when bL= 10 all seven eigenvalues that result from the fourth-order, flexural-shear

beam equation are larger than the corresponding seven eigenvalues that result from the classical second-
order, Schrödinger equation. The same is true for the case when bL= 30. Consequently, this analysis
shows that the fourth-order, real-valued flexural-shear beam equation for matter-waves given by equation
(2.12) is a stiffer equation than the classical second-order, complex-valued Schrödinger equation given by
equation (2.7). Therefore, Schrödinger’s equivalence statement that equation (1.5) (which is eqn (400) in his
1926 paper [1]) and equation (1.1) (which is eqn (4) in his 1926 paper [1]) are equivalent, is not true.

Furthermore, table 1 reveals that when bL = 10, the first two eigenvalues z1 = 1.9747 and z2 = 3.2887
that result from the fourth-order, flexural-shear beam equation are even larger than the first two
eigenvalues z1 = π/2 and z2 = π that result from the classical second-order, Schrödinger equation at the
limiting case when the strength of the potential well is infinite (bL ¼ ðL=h� Þ ffiffiffiffiffiffiffiffiffiffi

2mV
p ¼ 1) [33]. This

pattern where the eigenvalues predicted from the fourth-order, flexural-shear beam equation when
trapped in a finite potential well exceed the eigenvalues predicted by the second-order, Schrödinger
equation when the particle is trapped in an infinite potential well becomes more dominant as the
strength bL of the finite potential well increases. For instance, when bL = 30, the first seven eigenvalues
that result from the fourth-order, flexural-shear beam equation are larger than the first seven
eigenvalues that result from the classical second-order, Schrödinger equation at the limiting case of an
infinitely strong potential well. Accordingly, there is a need to calculate the energy levels of an
elementary particle trapped in an infinitely strong potential well (bL =∞) when described with the
fourth-order, flexural-shear beam wave equation (3.7) or (3.10).

The wave functions (eigenmodes) associated with the energy levels (eigenvalues) appearing in table 1
for the situation where the elementary particle is described with the fourth-order, flexural-shear beam
wave function are offered by equation (4.8) for 0≤ |x|≤ L and by equation (4.10) for x≥ L.
Accordingly, the even eigenfunctions (n∈ {1, 3, 5,…}) are given by

ce
n(x) ¼ C2 cos zn

x
L

� �
þ C4 cosh zn

x
L

� �
for 0 � jxj , L ð5:3Þ

and

ce
n(x) ¼ A2 e�ðx=LÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
b2L2þz2n

p
þ A4 e�ðx=LÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
b2L2�z2n

p
for L , x, ð5:4Þ

whereas, the odd eigenfunctions (n∈ {2, 4, 6,…}) are given by

co
n(x) ¼ C1 sin zn

x
L

� �
þ C3 sinh zn

x
L

� �
for 0 � jxj , L, ð5:5Þ

and co
nðxÞ is given again by equation (5.4) for L < x.

The coefficients C2, C4, A2 and A4 appearing in equations (5.3) and (5.4) are obtained upon solving the
homogeneous system of equations given by the matrix equation (4.15); whereas, the coefficients C1, C2,
A2 and A4 appearing in equations (5.5) and (6.1a) are obtained upon solving the homogeneous system of
equations given by the matrix equation (4.16). When solving the homogeneous system of equations, one
of the four coefficients is assigned an arbitrary value and the other three coefficients are calculated in
proportion to the arbitrary assigned value of the first coefficient since the eigenfunctions ce

nðxÞ and
co
nðxÞ are eigenmodes of arbitrary amplitude which subsequently can be normalized according to

some normalization rule such as
Ð1
�1 jcðxÞj2 dx ¼ Ð1

�1 c2ðxÞdx ¼ 1.
Figure 2a plots the seven eigenfunctions ψn(x), n∈ {1, 2,…, 7}, of an elementary, non-relativistic

particle described with the fourth-order, flexural-shear beam equation (3.7) or (3.10) when trapped in

a potential well with finite strength, bL ¼ ðL=h� Þ ffiffiffiffiffiffiffiffiffiffi
2mV

p ¼ 10, which manifest at the energy levels

En ¼ z2nh�
2
=2mL2. The eigenvalues zn are listed in table 1. Figure 2b plots the corresponding first seven

wave functions ψn(x) (there are 19 wave functions in total) when the elementary particle is trapped in
a potential well with finite strength bL = 30.
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Figure 2. The seven eigenfunctions ψn(x), n∈ {1, 2,…, 7}, of an elementary particle described with the fourth-order, flexural-
shear beam equation (3.7) or (3.10) when trapped in a potential well with finite strength bL ¼ ðL=h� Þ ffiffiffiffiffiffiffi

2mV
p ¼ 10 which

manifest at the energy levels En ¼ z2nh�
2
=2mL2 (a); together with the corresponding first seven eigenfunctions ψn(x) when the

elementary particle is trapped in a potential well with finite strength bL ¼ ðL=h� Þ ffiffiffiffiffiffiffi
2mV

p ¼ 30 (b).
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6. Eigenvalues of the fourth-order matter-wave equation of an
elementary particle trapped in an infinite-potential square well

Figure 2 reveals that as the strength of the finite potential well increases, the eigenfunctions ψn(x) that
result from the solution of the fourth-order wave equation (3.7) or (3.10) meet the walls of the square
potential well at a decreasing slope which eventually tends to zero, dψ/dx (x =−L) = (dψ/dx)(x = L) =
0, as the strength of the potential well, bL, tends to infinity.

These zero-slope boundary conditions of the eigenmodes of the trapped particle at the walls of the
infinitely strong potential well are drastically different from the finite-slope boundary conditions of
the eigenmodes of the trapped particle when described with the second-order Schrödinger equation
(cnðxÞ ¼

ffiffiffiffiffiffiffi
2=a

p
sin ððnp=aÞxÞ with 0 , x � a ¼ 2L) [33]. These fixed-end (zero-slope) boundary conditions

(clamped eigenmodes) are another proof that the fourth-order, real-valued equation (1.1) originally proposed
by Schrödinger [1,2] is a stiffer equation than his classical second-order, complex-valued equation (1.5).

The eigenfunctions of the particle trapped in an infinitely strong potential well when described with
the fourth-order, flexural-shear beam wave equation (3.7) are given by equation (4.8), and the integration
constants C1, C2, C3 and C4 are derived by enforcing the boundary conditions

c(� L) ¼ c(L) ¼ 0 ð6:1aÞ
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and

dc(� L)
dx

¼ dc(L)
dx

¼ 0: ð6:1bÞ

This homogeneous system of four equations results in the transcendental characteristic equation

cos (2kL) cosh (2kL) ¼ 1: ð6:2Þ
The roots of equation (6.2), zn ¼ knL ¼ ðL=h� Þ ffiffiffiffiffiffiffiffiffiffiffiffi

2mEn
p

, are the eigenvalues of the fixed-end eigenmodes
appearing in table 1 under bL =∞.
/journal/rsos
R.Soc.Open

Sci.10:230793
7. Conclusion
In this paper, we show that Schrödinger’s original fourth-order, real-valued equation (1.1) for matter-
waves is a stiffer description (higher energy levels) of the behaviour of elementary particles than the
description offered from his classical, second-order, complex-valued equation (1.5). Given the
remarkable predictions of the complex-valued equation (1.5) for the energy levels of the chemical
elements as manifested from their observed atomic line spectra together with the features of the
Periodic Table [15–19,25], in association with that his original fourth-order, real-valued equation
predicts invariably higher energy levels (therefore, apparently incorrect), this paper shows that
quantum mechanics can only be described with the less stiff, complex-valued wave equation (1.5).
This finding is in agreement with more elaborate recent studies [20–24].
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