A New Generation Polar Research Vessel

Impact of an Ice-Diminishing Arctic on Naval and Maritime Operations

Washington, DC July 10-12, 2007

Presentation Outline

- Background
- Science and Operational Requirements
- Results from Technical Studies
 - Research Vessel Features
 - Mission Sensitivity Studies
- Project Schedule
- Some Closing Thoughts

Background

U.S. Research Capable Icebreakers (Operational and Planned)

Geographic	Vessel	Primary	Icebreaking
Area	Ownership	Mission	Capability
Arctic	UNOLS (ARRV)	Science	0.8 m (2.5 ft)
	USCG (Healy)	Multi-mission	1.4 m (4.5 ft)
High Arctic	USCG	Multi-mission	1.8 m (6 ft)
Antarctica	Commercial (Lease to National Science Foundation)	Science	0.9 - 1.4m (3 - 4.5 ft)

This presentation will show the conceptual design of a dedicated research vessel with icebreaking capability for use in the Antarctic, but Arctic capable.

Science and Operational Requirements

NATHANIEL B. PALMER - 1992 to present

Critical New Research Requirements

- Enhanced icebreaking capabilities 1.4m (4.5 ft) at 3 kts
- Increased endurance to 80 days and 20,000 miles at 12kts
- Increased accommodations for 50
- Moon pool for geotechnical drilling provides access to the water column through a controlled interface (no ice, limited surge, and turbulence)
- Ability to tow nets and research instrumentation from the stern during icebreaking
- Acoustically quiet
- Hull form designed for the installation of bottom mounted sensing instruments and operation during icebreaking

ANTARCTICA

Additional Science and Operational Requirements

- Capability to conduct autonomous underwater vehicle remotely operated vehicle (AUV/ROV) operations
- Jumbo piston coring (JPC) capacity for 50 m
- Compliance with International Maritime Organization (IMO) guidelines for Arctic vessels
- Reduced air emission from diesel engines and incinerator and other features for a "greener" ship
- Provision for a helicopter flight deck and hangar
- Space for 6 portable lab containers
- Aloft, enclosed platform for science observations
- Inter-deck elevator and wide passage way on main deck

Desired Operating Profile

	Days
Science operations away from port and in-transit	265
In-port preparations for science operations	35
Repairs and maintenance	65
Total days	365

Davis

Results from Technical Studies

Above water features of PRV

Underwater view of PRV box keel with bottom mapping sensors

Principal Characteristics

LOA	120.2 m	Draft	10.2 m
LWL	108.3 m	Displacement	13,900 MT
Beam	22.3 m	Shaft Power	15,000 kW

Some Environmental Features Incorporated in the PRV

Rate of greenhouse emissions reduced by 90% compared to existing vessel

No emissions in port; PRV connects to shore side electric power (cold ironing)

In addition:

Designed for 40-year ship life and environmentally friendly disposal Waste water and waste oil treated to highest international standards Environmental management system on-board and ashore form reduces energy by 20%

Improved hull

Double hull construction minimizes risk of oil spill

Employs latest ballast water exchange and treatment technology

Hull coated with non-toxic paint

Emission Reduction per Horsepower

□ NOx+THC (g/kW-hr) □ PM (g/kW-hr)

To achieve the emission goal -- there is a need to reduce the quantity of sulfur in diesel fuel oil.

Sulfur inhibits the use of NO_x and particulate matter emission reduction equipment (such as catalysts and filters) which are needed to meet U.S. Environmental Protection Agency regulations for air quality.

The Future of Ultra-Low Sulfur Diesel Fuel in the U.S.

U.S. Marine Fuel Oil Sulfur Levels in 2004 and 2011

Marine Diesel Oil
Heavy Fuel Oil

Year

Next Generation Diesel Engine ???

Homogeneous Charge Compression Engine (HCCI)

- Economical 25 percent fuel reduction
- Ultra low emissions near zero
 - Oxides of Nitrogen (NOx)
 - Particulate Matter (PM)
- Operate on gasoline, diesel fuel, alternative fuel
- Has marine application
- "May be" commercialized in light-duty passenger vehicles by 2010

Combustion occurs simultaneously throughout the cylinder volume rather than a flame front.

It is not here yet !

Research is still on-going in such areas as

Controlling ignition timing over a wide range of speeds and loads. Limiting the rate of combustion heat release at high-load operation. Providing smooth operation through rapid transients.

Major engine manufacturers are conducting HCCI research and EPA funding some aspects.

Results from Mission Sensitivity Studies

Sensitivity Studies

Added Science Mission Capability

Project Schedule

Project Timeline (Vessel lease)

	YEAR							
ACTIVITY	1	2	3	4	5	6	7	8
Pre-RFP Development			-					
Compile RFP Documents and Issue								
Bidding, Evaluation, and Contract Award			-					
Shipyard Design and Construction				-				-
Acceptance Trials and Final Outfitting								
Transit to Southern Hemisphere Port								

Icebreaking Research Ship Duration from Inception to Delivery

Ship	Years
Arctic (ARRV) Ownership UNOLS	17
High Arctic (replacement for POLAR Class) Ownership USCG	15
Antarctic Ownership Commercial (lease to NSF)	11

Estimated Schedule for New U.S. Research Vessel Deliveries

Arctic (ARRV)	
Ownership UNOLS	2011 to 2013
High Arctic (replacement for POLAR Class) Ownership USCG	2022 to 2024
Antarctic	
Ownership Commercial	2015 to 2017
(lease to NSF)	

Alaska Region Research Vessel

LOA	72 m	Scientist berths	26
Beam	16 m	Endurance	45 days
Draft	5.5 m	Icebreaking	0.76 m

Impact of an Ice-Diminishing Arctic On Naval and Maritime Operations

Some Closing Thoughts

Features to Consider in the Next Generation Polar Icebreaker

Design and build for:

- 40 year ship life
- Set the standard for protecting the environment
 - Green icebreakers
- High skill level of personnel (ice piloting and ice navigation are the most critical skills)

A Vision of the Future

The year is 2040 and climate change continues with the disappearance of Arctic ice

The latest U.S. research icebreaker is observed off Point Barrow, Alaska.

