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SOLID GKOMKTltY. 

I'lIAITKU I. 

IE {wntfloit of a jiniiif in **jar0 U 
tig it to tlin-o fijptl {Jain » Tin4 |#tiiit *ii inf fir- 
tin? pkiit%< u nil!***! fin* uri*jinf tin? phm* * it tv 
m-untimt® ti«l tJirif Iii*t\4 of iiitniwlioii 

imtk Tin* fiirt'fc* m< urthmUw of a point im* 
front oiirli of fin* tlinm; eo-orditiat#' p\mn% 

pnritllf] to tho lin*** of of flto ofttor 
hi tli»i flaw jilatif % thrMorr fit** 
nitwit** an* nt tight anglon to mrh otliof, I ho 
lid to In: m tnn*fni*tr, 

O fowftfiti of J| {mint rotiijilotoff ilf foptiiiiir*fj win'll 
iifi,to?4 mo known. lor, Ivt TUX, Xt)X, SOT ho 
iiiatn pkmmt nn4 X*OX, TU¥I X u% fn« fin* mm, 

XP, I* tlio i*n«mk »#f J#, TIt«# fiintmi 
M*M iiro {infill!i/| trkj#«*fi%i4f to TUX, XUX* 

thmvfori* tln-y titoiff tlir iik*'* in tjk jf{t Mt m in il*« 
haw? a {mri*llrI*fiifioil of whirl* Up in it dmgow*}; 
{miiiIM nlgr* of n \mmUrfapifml «rr 

IP *> OQ, MP ** OfPmd XP m UK 
liiil^i. point wkmm* co-cinliftafifg ere we have 
m OQ, 0Hf 08 erjtmt it# fJ*o givrii t’o.ofdiimU*** 



If the co-ordinates of P parallel to OX, OY, OZ respec¬ 
tively be a, b, c, then P is said to be the point (a, b, c). 

3. To determine the position of any point P it is not 
sufficient merely to know the absolute lengths of the lines 
LP, MP, NP, we must also know the directions in which 
they are drawn. If lines drawn in one direction be con¬ 
sidered as positive, those drawn in the opposite direction 
must be considered as negative. 

We shall consider that the directions OX, OY, OZ are 
positive. 

The whole of space is divided by the co-ordinate planes 
into eight compartments, namely OXYZ, OXYZ, OXY'Z* 
OXYZ, OXYZ, OXYZ', OXYZ, and OX'YZ. 

If P be any point in the first compartment, there is a. 
point in each of the other compartments whose absolute 
distances from the co-ordinate planes are equal to those of JP ; 
and, if P be (a, b, c) the other points are (~ a, b, c), (a, — b, c), 
(a, b, - o), (a, - b, - c), (- a, b, - c), (- a, - b, c) and (- c) 
respectively. 

* 



CO-ORDINATES. 3 

4. To find the co-ordinates of the point which divides the 
straight line joining two given points in a given.ratio. 

bet rf> 9 be % given points, and R the point which 
divides PQ m the given ratio m1 : m2. 

Let P be yv Q be (x2, y2, z2), and R be (*, y, z). 

Draw PL, QM, RN parallel to OZ meeting XO Fin L, M, 
T. Then the points R, Q, R, L, M, X are clearly all in one 
lane, and a _ line through R parallel to LM will be in that 
lane, and will therefore meet QM, RX, in the points K, H 
ippose. 

Then 
HR _ PR _ _mx__ 
JCQ RQ mx + m2' 

But LP = MQ = z2, NR = z; 

z — a, _ to, 
z^-z, ~mt + m,2’ 

mz + mjsx 
z = —i-1- 

on 4- to 

Similarly 
_ m,x2 + nritfC, 

and y = OTi.y. + znjy. 
m1 + mt 

When PQ is divided externally, mt is negative. 



4 CO-ORDINATES. 

The most useful case is whore the line PQ is bisected: the 
co-ordinates of the point of bisection are 

iOt + aO. 4(y, + y,), i (*, + *»)• 
The above results are true whatever the angles between 

the co-ordinate axes may be. 

We shall in future consider the axes to be rectangular in 
all cases except when the contrary is expressly stated. 

5. To express the distance between two points iu terms of 
their co-ordinates. 

Let Pbe the point (®,, yt, *,) and Q the point (.r,, yv ss). 
Draw through P and Q planes parallel to the co-ordinato 
planes, forming a parallelepiped whose diagonal is J’Q. 

Let the edges PL, LK, KQ be parallel respectively to 
OX, OY, OZ. Then since PL is perpendicular to this plane 
QKL, the angle PLQ is a right angle, 

.-.PQ’-PL’-MM,* 
- ~PL* + lK* + K<f. 

Now PL is the difference of the distance* of J* and Q 
from the plane YOZ, so that we have PLntid 
similarly for LK and KQ. 

Hence P<2*- (wt-*,)*+ (yf-yf+(x,-.....(i). 

The distance of P from the origin can be obtained from 
the above by putting ®f-0,y,-0, st - 0. The mult » 

<?P*«®,*-f y,* + V.(ti). 



NATKS. 41 

Ex. I. The co»ordinatos of Ihit centre of gravity of Hit trifiiigla whwft it tgiilio 
points are frIf yv zx), (r^ y* «,), (rp y%, z%) am | (jrt f.Ja + %h I If i + y3 l y,). 
and 1 (Xj + *3 •**»). 

Ex. 2. Shew that the three lino* joining tfa# itiitMIfi point* of fipjirwlt* 
/ ©dgca of ft tetrahedron »t in a point. Hh#w tlsci that Mil# point in mt th«* 

^ line joining any angular point to the centre of gravity of the opposite fiici.% 
and divides that line in the ratio of H : 1. 

Ex. 3. Find the Umm of points which aw etfsfl&iistiyit from the pr»hu, 
(1, % 3) and (8, *2, - 1). *4«j» j u* ^n, 

Ex. 4, Shew that the point fff f), || is the centra of the ftpiiwv which 
passes through the four point* flt *2, 3), f1t % « I), { - i, 1, *2) and ft, - 1, an 

fi Let % /?, 7 be tint angl* which the lino /V^ makt«* 
with linen through P jwimlltd to tin* axes of «*o*ordinut»4> 
Then, since in the figure to Art T$ the tingle PLQ, PMl^ 1*XQ 
are right angles wo have 

PQ am a « PL, 
PQ am$ ^ PMt 

anti PQwmy*® PX. 

Square and add, then 

Ptf [am\ + em*0 -f 00**7] PL* + PM* f PX* <*' /*(/, 

Hence cun'1® + 4* rn&sy » l» 

The cmincH of if to angle* which n h! might Ittto make* 
with the punitive direction* of tin* co-oyditiah* axt n arc r tiled 
its direction-cminmt and wet Hindi tit future tUmnti* tht*>*#« 
cosines- by the letters I, ?/#, #4. 

Front the above wn me thill any three dtrtndiofucnHtnrs 
are cwtnocieil by the relation /* + m* i a1 ^ 1, If tfn 
dirmiimmcomtm of PQ hi lf m, a, k in easily nmm tfinfc ihmr 
of QP will In~f, —fu, ; ttml it in mmmtrthl whether wr 
consider ff t/t, »# or the mmm quantities with all the #ign> 
dian^ed, m titwtititiii-itwnoc 

It we know that a> 6, 0 itrct fircijuirtiorntl t«> line tltrwtum 
eesifiiii of some linn, we mu at nmm find ftt#j#«t direction < 

eeiinc^ For we have ^ w ^ ® * > Iiwicii ifiiclt » equal to 

V(i? f m* + /A) .1 #e 

V<«‘+ C+c4)" *,,t!-to ^(«* + & f c‘)5 *'J “ ^(‘t* + C 



6 CO-ORDINATES, 

Ex. The direction-cosines of a line are proportiwial ft* if, I, Vi, find 
their actual values. An*. iV 

7. The projection of a point on any lint* is flu* jmint 
where the line is met by a plane through tin* point per¬ 
pendicular to the line. Thus, in the* figure to Art. 2, Q. h. S 
are the projections of P on the lines OX, OVt OJi re¬ 
spectively. 

The projection of a straight line of limit*'*! length on 
another straight line is the length intercepted lmtwcou 
the projections of its extremities. If we have any niiiiilior of 
points P, Q, jR, 8... whose project ions on a htruight line nre 
p, q, r, then the projections of PQ, Qli, US,.. on tie* 
line, arepq, qr, n.... 

In estimating these projections we must rotj-hh-r tie* 
same direction as positive throughout, ho that we ,-hal! 
always have pq + qr + rs** ps, that in the projection of 
PS on any line is equal to the algebraie mim of flm pro¬ 
jections of PQ, QE and MS, This result umy In* *tat«*d m n 
more general form as follows:—Th« algebraic mm «*f tie* 
projections of any number of sides of a polygon begommg at 
P and ending at Q is equal to the projection <>f PQ. 

8. If we have any number of parallel straight !?n**% tip- 
projections of any other line PQ mi them are ?‘hr iut* r*»j*fh 
between planes through P and Q perpendicular to tl^dr 
directions. These intercepts are clearly all orpin}; ln**«?e thi* 
projections of any line on a series of parallel h! might lines 
are all .equal And, since the projection • #f rt /ifruiglii linn mi 
aja intersecting straight line is found hy multiplying *k 
length by the cosine of the angle between tin* wo 1mm 
the following proposition 

The projection of a finite straight line m miy oth*r 
straight Ime is equal to its length multijdwl by Hm mrnm 4 
the angle between the Urns, * 

9. In the figure to Art 2, let 0(j * n, Oil •* b, UK « «, 
rn/mr' 1S, , w**a for all point# on ifir u\mm 
PMQN, and that y * b for all [mints on l\m phmi PXHL, 
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and that r=c for all |KuntH on the plane PLSM- Also 
along the line SP we have x- u, ami y = &. ana at the 
point P we have* tin* throe relations # = af y = £ ^ = <3. 

Ho that a plan#* is determined by one equation, a straight 
line by two equations, and a point by three equations. 

In general, any single equation of the form F(x,y, z) = 0, 
in which tla* variables arc the co-ordinates of a point^ 
represents a surface of wane kind ; two equations represent a 
curve, and three equations represent one or more points. This 
we proceed to prove, 

HI hot two of flu- variahlos be absent, so that the 
equation of the surfaeo is of the form F (F) = 0, Then the 
equation u equivalent to \,r - tt) V — b) (x — c) ..... = 0, where 
nf I#, c,.., are th** roots of F(,o ^O; hence all the points 
whose eo«or*liuut* s Ktftdy the equalhm F(x^ = Q arc on one 
or other of the pi*wen a ;*• ti» x — b 0, # — c = 0,. 

Lf t one of the variables bo absent, so that the Equation 
is of the fbi'iii F !j\ ;/; ~ 0, Lyf P bo any point in the plane 
z ® 0 wlaoe co-ordinates sat hfy the ec(nation F (w,y) = 0 ; 
then the eo ordinale\ of all points in the line through P 
parallel to the axis of z, an* the same an those of P, ho far as 
ir and y are concerned ; if therefore follows that all such 
points are on the huiface. Hence the surface represented by 
flic equation F (r%y) ^ ■ 0 is traced out by a line which is 
always parallel to the avis of z, and which moves along the 
curve in the plane „r« b defined by the equation F(x} y) = 0. 
Bnch it surface i« called a cyiiudiical mirface, or cylinder. 

Next lei the equation of the surface be F{x> y,z) = 0. 
We have m^n that nil pom?* for which m = a, and y= b 

lie on it straight lint* pantile] to the axis of z. Hence, if in 
the rijnalifiii F(,rt « b, w** put x «* a, and y*=*b, the roots 
of the moulting equation in z wilt give the points in which 

«the Iocuh U tie t by a line thr» tugh parallel to the axis 
of z. 

Since the number «*f r**uU u finite, the straight line will 
meet the bnw in a tiiiit** number of points, and therefore the 
locum, which in the Mmombhige of nil such points for different 
value* of if Mid h% n 111 Ml be a Hurfure and not a solid figure. 



8 CO-ORMXATKS. 

11. The points whose co-ordinates stiibfy tiro wjimtioin 
must be on both the surfaces which those iMjuafcmns ivpn***nT 
and therefore the locus is the curve determined by the interns'* 
tion of the two surfaces. When three equations an* jgivmn 
have sufficient equations to find the co-ordinate^ahipnn^ii t her** 
may be more than one set of values, ho that three pquatiou- 
represent one or more points. 

12. The position of a point in space can h»> defined by 
other methods besides the one described in Art 1. 

Another method is the following: an origin O is taken, u 
fixed line OZ through 0, and a fixed plane XOZ Tie- 
position of a point P is completely detentiim-d wimn 
distance from the fixed point 0P the angle ZOl\ and f In* arc V 
between the planes XOZt and POZ are gbva Th*>»' 
ordinates are called Polar Co-ordinates, and aiv nmally de¬ 
noted by the symbols r, 0 and <f>, and f lie point is mlFd t.lio 
point (r, 0, <f>). 

If OX be perpendicular to OZ, and OF be {M^rpeiidicnlnt 
to the plane ZOX, we can express the rectangular cooiialiitii?*;^ 
of P in terms of its polar co-ordinates. 

Draw PN perpendicular to the plane JEW, and ,V„1/ 
perpendicular to OX, and join OX. Then 

on — OM = OX cos <f> — OP sin 8 cos <f> •n r sin 8 run 
y=MN=ON sin <f>■» OP sin 8 sin d> « rsin 0*in <A. 

and z — NP = OP cos 8 = r cos 8. 

We can also express the polar co-ordinates <>f any jxdnt to 
terms of the rectangular. The values are, 

r=V(P + f + z%8 = tan-+ £i, am} * a -? , 



CHAPTER 17. 

Tin-: Plank. 

]tl To A hex that the mrfmv represented by the general 
equation of the first degree is j7 jdwi*\ 

The inimt general tojuat n*i* nf the first degree is 
Ax -I- By + C? *l l> rn 0, 

lf|*r|f5l?.:?i;tfifl (.rt% yt% zg lie any two points on the locus, 
wc» have 

A .* i 1 Byt ■-}' i 'z% 4 D ®» 0, 

mid /Lr? .f (iz% 'f /)«(). 

Multiply 

then we have 
1/11 + Wl8 4* ne 

and add; 

A "Vh 1 ?Vr, 
wt I* ntf 

> /; "** A h (} *«, *, + *, + D = 0 

#et mt m% 4 ?h8 

Thin shew* \AiK 41 flint if the (mints hei% yx, zx), yti «f) be 
on the frtfeu, any ot}f*-j point in flu* lilift joining them is also 
on flit hirm; this An wh that. tlio locus satisfies Euclid’s 
definition of n phft^t 

14, Ta find the rymtwn of a phne* 

le t p h* fhe length of tin* jmr|**ndtcular ON from the 
origin on the plain*, and J**i /, w, it he tin* direction-cosines of 
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the perpendicular. Let P be arty point on tin* piano, ntt 
PL perpendicular on XOY, and LM perpendicular to 

Then the projection of OP mt OX k espial to tli 
of the projections of OM, ML and LP on OX 

Hence if P be (a?, yt z), we have 

lx + my 4 nz — .. 

the required equation. 
By comparing the general equation of fin* first . 

with (i), we see that the direction-cosines of the* tioritml 
plane given by the general equation of the first dt*gr 
proportional to A, B, C; and therefore [Art, C#] art* ctp 

a b a 
</{A* + B2+G%)' *J{A%^ 

Also the perpendicular from the origin on tint pi 
equal to —D 

15. To find where the plane whom* equation is 

Am + By + Oz 4* jO Oj 
meets the axis of x we must put y « * «{); \mm* 
intercept on the axis of m be a, we have A# + /) ^ II, 

Similarly if the intercepts mt the oilier mm an* h 
we have Bb + Dx* 0, and Cict-f />*{). Jfetnm the 
of the plane is 

This equation can easily be obtained independently* 



H>. Tu funl thv th.n pin mi thnnttjh thn*n ffinmn 
points* 

L**t tlii.* tliivi* jptiiif.H 1»* {j' u z zt m * \ ./* * v t z V 1 ^ v nv t • i’ %*%* *»/« z j|» rf§/ 
1 lie geiii'ml equation of a jihtui- is 

A a* + Up 4 (*: r /1- ft* 

It the three fjiveu points are on this ji|an«% we have 

-h'4 4 //.V, f <':% 4 /> •- U, 

•} /*V 1 f f I) <h 

I«|‘1 Jj'% *1 Hp% 4 f hq 4 fr if 

hliiriiunfii!^ A, //f f \ If- from flnot* hmf **‘|e;if %%■■$■* 
have for fli*.* iv quire* I p'rjnafh*ii 

•* . // . M i U* 

J\ * .yt » I 1 

11* f! A ft ' iz l S if !»** f }»e * qu;»1 iofa \ »»f f v o f •hit** 
& X A H V* ill 1 e the £fe|o lf>l |m|i of a |<! f||o fillot||||| 
“hell iiiforo rt4ri|| I* or4 1 iiit f S an* I A** ate I tot 1$ of the fin,t 
'tej/jvr, • o 111" o l- A \S ; aii*| hefe e #4 A A** f) f *4 

I*huje, He pine jer^o t}<n.u^h fill points eoimnoii Ut 
iN * 0 iiiel A^ fh l»*r if the * »♦ onhiiafeu of niiv jioijff nat htfy 
A * 0 niid A if fho-o- rMorjeuri?*-1 w ill alio "rifr.fi A* « kS1, 
ffejK*e, Autf *' X A A A il in ffie 
equation ot n j4'»iir fhionvh" inf-r rr?|o?# of fh<*' 
jiliilicta, 

I H. To fihA ih* f i 11 A' liifte pi on* v oeiy Iff#re ti 
0»if»/f ("* a /* Infer rrf|V#t ^ 
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If the three planes have a common line of mtWHUmii, wo 
can, by properly choosing X, make (ivj represent flie? mine 
plane as (iii). Hence corresponding cwtfikii'itis iiiumt Iw 
proportional, so that 

a 4- \a! _ 6 4- X// _ c 4- he d 4 *W ___ __ _..(i 

Put each fraction equal to — then we Imu- 

an- Xa/ + /ao" = 0, 
6 + X// 4 yud> = 0, 
c 4* Xf/ + ymC » 0* 

and rl 4* \d 4 pd -- 0, 
Eliminating X and p wo have the required conditions 

namely 
a , 6 , c , i/ i, si), 

a' , // , c , (/' j 
a", £/', c", </" ; * 

the notation indicating that each of the four deterriiiiuiiif .s, ob¬ 
tained by omitting one of the vertical columns m zero, * 

19. We can shew, exactly ns in Conies, Art iilt flint if 
Ax + By + Cz+ D=z() be the equation of a plane, and */* 
be the co-ordinates of any point, then Ax' 4 li*f 4 (Js \ i* 
will be positive for all points on one side of the plane, and 
negative for all points on the other «kk* 

20. To find the perpendicular dhiitam tf ci jjimn pmni 
from a given plane. 

Let the equation of the given plinm lie 

lx 4* my 4* nz »p ,{i), 
and let x\ y, / be the co-ordinates of tin* giv*ut point l\ Thu 
equation 

lv + my 4 .....fii | 
is the equation of a plane parallel to the given jilmn?. 

It will pass through the point (*',y,VH f 

M + mtj +«*'-/»'.(iii). 
It is easy to shew that there are only imt iinl* ;wnil«*nt conditions, *» m 

geometncaUy obvious, for if the pinittMi have two |p,#iiitg in e#iaiiion tli»t 
must nave a common line of intersection. 
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Now if PL In* fht* jis*r|»‘ii<iiim!ar frntit i1 nn fit** plant' * p, 
anti dX\ f>.V tlif4 prrjH*inlirii]ar*n finny fh* »m fin- pfatnm 

iij and (ii rmpt'rfivf'Iy, fh* u will 

U* -'. xx 

■ p r p 

-• / t i mp *i nZ p, 

Henri • fljr Imi-th **f tU** pm|»*Ti4i<‘»lar fYutu any |«41*f *m 

flu* plant* if f htp a;* - *// ■- 11 »<h?anird hy nnhntiftiling fin* 

co-ordinate <»f tin* |»»in* m tim U f mp ! nz /a 

If flit* *'t|ua?iuii *4 tL» plan*' 1 »r A*r f /!#/ f (*:: r ji Ii, if 

litav la* writ,if u 

A ' H _ <! 

*v f -I" 4 /4 * i f ) \ 1 *i * % fr‘ f f ' ‘ t * J " t /f1 4 f *p 

whirls ia *»f l!a* - num b*i in a-■» n: j»*iv tin Imigtlt nf tin* 

pi-rjtiialiralar fstmtt u*\ ?/, /t **n ?!#*’ jilaim in 

J t' * /(?/ * * V -I /i 

, ,P « /f 4 Op * 

r* I, in ; * „ ■ .n y - i M A .i u i^n Ax -T 11 1 ,f4 ti4n 1 f.. th* 

4“" * a f 5 a ,i 1 v * If 11 tf 

la *** 1 n • » l, < f , * * a < it r.f *A 1 ' U- • ><i'h f! # 1 ?fi. ‘4$| »?n| ita i\^*h 

li<* ihi \ * U . ^ / i, ,< I.*- | *?|M si > f . * t u u .a. i 'i by ‘fr 1 w 
1 v i ■ r Vb s %h >* n 

la *i m * , a „* a)4,( $ni#, | ;. IT % ■ 1" fJt U}$ f 
f t 1 • I <1 1 i?.V n < ' y. i; 'i f a 4 1 e i * n.* * 

la. 1, ba •* ih a, lb h , n a * >i v- t i , y tly i/.n ,V * ^ b», 
.m « r t)> :i * *■ t 1 h * f i m h y n.t 

fa n i , tin a •;'! r •! ,j jn;„n. K f - l, ! \ i/, *■'. .i 1 1 

l a I * | ?i« "■ - ^ f < SSI* fr , 

la r N*- I » lf»?t ’( 1 1 I x\ - , i* f ji f y; • nb- 

• 1 i T'i * t , !'i* 

la V bln n %)f i II-,»• b‘%- | . n- §s f „ i* -n %t<- ml 

In fij If '* 1 m v * ? « y y V.? a* * . 
f M' Jr <* 4v # * 4 a 

la. K 1, * 4 i ? ntr 1 bn.' l*1 |te i’>at 

tin J i( / ♦ ' a a m i *. * .r *f » * '< /* *» 
, ^ f * * ' f* ,i 0 /' *m * r * /* 

4*™ ; . t' Jt 
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Ex. 9. The locus of a point, whoso distance* from i% 
in a constant ratio, is a plane. 

Ex. 10. The locus of a point, which moves so that tin* r- 
from any number of fixed planes is constant, is a plane. 

21. The co-ordinates of any point on tin* line 
of two planes will satisfy the equation of each 
Hence any two equations of the first deg re 
straight line. We can find the equations of a ? 
their simplest form in the following maimer. 

Let PQ bo the straight line, pq its project hm 
XOYlby lines parallel to OZ. Then the cu-tmli 
of any point in PQ are the same as the eo*urdii 
of its projection in pq. 

Hence if lx -f*my = 1 be the equation of pq 
nates of any point on PQ will satisfy tin* oquatu 

lx -f my »1* 
Similarly, if the equation of the project ion c 

jAme YOZ be ny+pz*» 1, the oo-onliiinti^ of i 
PQ will satisfy the equation jiy-f-pz » L 1 h*tm$ t 
of the line may be written 

kr + my® 1, 

It should be noticed that the equations of n i 
contain four independent constants. 

The above equations are imsymmctrical aw: 
useful as another form of the equation® which m 
find 
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22. Let (% fi, j} be any point /I on a straight line, iin*I 

(x, ?/, z) any other point P on the line* at a «!i 4an*v e from 

(«, ami let l} mf n be the ditvutiomensiues of the hrn\ 

Draw through J ami /'plate*-* |rirn!b'l to the* mnitolmafe 
planes so ns to make a p;imil*4opfpr’b awl let A/*> l,Mt MI* 
he edges <4 this pamlhdMpiped parallel to the a*en of j\ j/, ? 
respectively. Then AL i* the project ion of A I* on the axD 
of#; therefore 

We have similarly 

m n 

Hence tin? equation* of the hue are 

r - % y • - A : y ^ ; 

I m it 

Kt» I T*» ilfel hi i *y«4JM’Ue A fWm lie- * nf tin l tip -1 Ion* 
«eoti<m at tlir plhu* • ly J.Jfy '■ -if 

Tim WJJ }«* ’4 7 • * * t It' IK" <)•,II .itl.rtu, , 
f .# 4 

mntwn aw? pW|nf?ioWf1 %> i It, X I hr ,<# t'esl *vv»< of tin Xfe tno 
emin*. % aw llrr#4i«e f \ '/» U, ;h 4. \*L 

Iv*. *i. Finl o» » w?*e lie fit f ini lie* xvpnite«M U,»* ftsn t */y -V 
X ,f«*, j| f / of y if « *y 

LX. 3. lOH'l tips fl4o‘li 4} * ui ||j*f Ifftft %'U'^P -M if# 

* + In y * If; v ^,ts 1 •* !, . 
V T# V14 14 

E*. 4. Writ* fhmn tin * |e%twn 4 tin tie** thr'wwh fh« j^Ie* 
P* % 4) which $4 topjfilh lie *w#4 I * tin |?o( # , jf ^ ,1,, * $ 



10 THE STRAIUHT LINE. 

23. To find the equations of a straight tine through two 
given points. 

Let the co-ordinates of the two given points All be 
xv y zt and x9i ys>z9; and let the eo-ordinatuH of any jaiiiit P 
on the line AB be x9 y, z. ^ Then the ratio of the portion* 
of AP&nd AB on any axis is equal to AP ; A ik 11* nee 
the equations of the line are 

si-yi -i~V 
24, To find the angle between two straight fha-s n4*m 

direction-cosines are given. 

Let l m, n and l\ m, n be the direction-roHines of the 
two lines, and let 0 be the angle botiveon them. 

Let P,Q be any two points on the first line. 

Draw planes through P, Q parallel to tins cu.onliniitu 
planes, and let PL, LM, MQ he edgen of the p?4mlidopIj«*fl 
so formed. Then the projection of PQ on the* second line in 
equal to the sum of the projections of PLt Zili and MQ on 
that line. 

Hence PQ cos 0 = P£J' + IM„ m* + MQ* in 

But PL ~l.PQ> LM** m.JPQ, md MQm0. PQ* 
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therefore cos 9 = 11' 4- mm! 4* nn. 
If the lines are at right angles we have 

W + mm' + nn' = 0. 
If L, M’ N are proportional to the direction-cosines of a 

line, the actual direction-cosines will be 
L M JST 

A/^ + M2 + Hr2)} V(L2 + M‘2 + IF2)9 + + 
Hence the angle between two lines whose direction-cosines 

ire proportional to L, M, N and If. N' respectively is 
LL'+MM’ + NN' 

c0s V (-L* + M2 + N1) v (L* + AT + iV'2) • ' 
The condition of perpendicularity is as beforo I 

LL'+ MM'+ NN’= 0. 1 

Ex. 1. Shew that the lines p = § = j an^ J = = ■j ar® a* right angles. 

Ex. 2. Shew that the line 4z=Zy= -z is perpendicular to the line 
x— ~y= -4z. 

X 7/ Z X W Z 
Ex. 3. Eind the angle between the lines ~ ~ and ~ ^ = g. 

Am. cos""1 

Ex. 4. Shew that the lines 3x + 2y -\-z~5~Q=x+y -~2z-Sj and * 
x-4y~4z = Q=zlx + IQy -8z are at right angles. 

Ex. 5. Find the acute angle between the lines whose direction-cosines are 
'3 1 v/3 , y/s 1 n/8 Am. 60°. 

Ex. 6. Shew that the straight lines whose direction-cosines are given by 
le equations 2l + 2m~n=0, and mn+nl + lm~0 are at right angles. 

Eliminating 2, we have 2mn — (to + n) (2m - n) = 0, or 2 m1 - mn - ft2 = 0. 
lence, if the direction-cosines of the two lines be Z*, mlt nx and Z2, ntQ, Ma, we 

aveSimilarly—»=-J. Hence the condition ZxZa + 

•%n2=0is satisfied. 
Ex. 7. Find the angle between the two lines whose direction-cosines are # 

ven by the equations l+m-bn=Qf P+mP-rflss0. Am. 00°. 
Ex. 8. Find the equations of the straight lines which bisect the angles 

Jtween the lines f = ^ , and ~ =? 1. 
v 1ft It v 1ft It ^ 

Let P, Q be two points, one on each line, such that OP = OQ =r. Then 
ie co-ordinates of P are ir, mr, nr, and of Q are Vr, mlr, n'r; hence the co- 
dinates of the middle point of PQ are J(Z + V) r, J (m+ to') r, J(n + ft') r. Since 

S. s. o. 2 
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the middle point is on the bisector, the required equations are 

—!L_ — —1_ Similarly the equations of the bisector of the 
l+l' m+m' n+n'. 

supplementary angle are ^, = AL-, = - 

25. By the preceding Article 
cos 6 = IV + mm 4* nri; 

therefore; sin2 6 = 1 — (IV {-mm! + nri)2 
1 , = (P+m*+n*)(l* + m,* + ri*) 

— (££' +«' + '/m')2; 

therefore sin 0 = {(mri — m'nf 4- (nV — n'lf 4- (Ini' — I'mf j. 

26. To find the angle between two planes whose equations 
are given. 

The angle between two planes is clearly equal to the 
angle between two lines perpendicular to them. Now we 
have seen [Art. 14] that the direction-cosines of the normal 
to the plane 

Ax-b By -f Css 4- D = 0, 

are proportional to A, B} G. Hence by Article 24 the angle 
between the planes whose equations are 

Ax -{-By ■{■ Gz 4* D = 0, 

A'x 4- B'y-{ G'z + JD'=0} 

is , !“ cos-1 A&KbB'+QC ___ 
j> V(^2 + i52+ Q9) V (:4'2+ B*+"(7s) • 

®x* Find the equation of the plane containing the line x + y+ssxl 
2x+3y + 4z — 5, and perpendicular to the plane x - y -f z s= 0. 9 

Am. x-z+2 »0. 
. Fx*.2- At what angle do the planes x+y + 2;.= 4, x - 2p -z»4 cut? Is the 

/origin in the acute angle or in the obtuse? Is the point (1, -3, 1) in the 
% f®cute an£le or 111 the obtuse ? Ant. cos-4^3, acute, obtuse. 

the equation of the plane through (1, 4, 8) perpendicular 
to the line of intersection of the planes 3x + 4y + 7z+4=0, and a; - y + 4.3 * 0 * 
also of the plane through (3, 1,-1) perpendicular to the line of intersection 
of the planes 3a;+y - z = 0, 5x - By+2z=0. 

Am. l5x+y-7z + 2=Q. Am. aj+lty+HssO. 

Ex. 4. Shew that the line *£ = ~ is parallel to the plane 

*4 lx+my + nz + p=0 if IX+m/i + wv = 0, the axes being rectangular or oblique. 
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27. To find the perpendicular distance of a given point 
^om a given straight line. 

Let the equations of the line be 
o)~ a __y — [3 — y 

l m n 

Let (figji) be the given point P, and let PQ be the per- 
ndicular from P on tiie line. 
Let A be the point (a, /?, y), and draw through A and P 

tnes parallel to the co-ordinate planes so as to form a 
rallelopiped of which AL, LM\ MP arc edges parallel to 
* axes. 
Then AQ is the projection of AP on the given line, and 

jqual to the sum of the projections of AL, LM, and MP; 
before A..Q = (/— a) 14- (g — 0) m + {h — y) n. 
Hence JPQ* = AI*-AQ* 

= <f-a'f+(grfi)'+(k-tf)' 
— {i (/ — a) 4* m (// — 0) -f n (h •— y)}\ 

28. To find the condition that two lines may intersect 

Let the equations of the lines be 
x — a _ y — ft _ z — y w — a 

l m n ' 
y-P 

If the lines intersect they will lie on a plane; and, since 
plane passes through (a, 0, y), we may take for its 

ation 
X(x~d) 0) + p(z ~y) = 0 

2—2 
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The point (a, /3', 7') is on the plane, hence we have 
X (a' - a) + fj- (J3' - fi) + v (7' - 7) = 0.•• (»)■ 

Also, since the normal to the plane is perpcuflieiibir to 

both lines, we have 
Xi + ftm •+• vn =0...(\nh 

and Xi' + prni + z/h' = 0...*. 

Eliminating X, /a, v from the equations (ii>, (jhf and i\\} 
we have the required condition, namely 

a — a, fi'-P,y -V 

l , m , n 
V , m' , // 

If this condition be satisfied, by eliminating X, /o if Ir*ua 
(i), (iv), (iii), we find for the equation of the piano through flm 

straight lines 

y-frs-V j = °- 
l, m , n ] 

l!, in, // 

If the equations of the lines bo ttxai + bjj+rx2+ u, 
a*® + 62y + c/ 4- rZ8 = 0, and a/a + /y/ + cyr -f c/;|^ 0. 'y; 4 % 
+ <?4^+ d4 = 0, the condition of intersection of tin? line* is tiir 
condition that the four planes may have u common pm of 
which is found at once by eliminating w, //, 

29. To find the shortest distance bchmn hm straight 
lines whose equations are given. 

Let AKB and OLD bo the given straight Urn**, and lot 
KL be a line which is perpendicular to both. Then KL in 
the shortest distance between the given linoH, for it is tiie 
projection of the line joining any oilier two point# on tin* 
given lines1. 

Let the equations of tint given lines be 

x — a _ y — h 
l w, 

—, and 
n 

- a y - hf z - r 
l* fit u 

1 We can find KL by the following ; iIfuw AE llifutiMh A 
parallel to CD; let aP be perpezirlltmlar to the plane 141//, »o-l b * flu 
plane PAD cut CD in L ; then if LK he iliawn \mhlh 1 to DA if Ik* liu> 
line required. 
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Let the equations of tint line on which t !i* - shortest 
distance lies be 

Ezi _?/-£_ 5-7 (\\ 
y “ p  .h 

Since the lino, (i) meets fho "hen line*, uv havo f* \if, 2HJ 

a —a, 7 — c -0 a ii t, 
Z , tit , a J 

X , » n ] 

and ' fx — o', ft — //, 7 ■* c' f t.........fiit f 

I T , m*, /f 

1 X » /i # J' 

Since (i) is perpendicular to the. given I in*'*, \w have 

Xt -f* fit(i *f 101. 0, 
\ r * . . * «  * it . and 

therefore 

Xf *4- /and -t c/f - ■ i); 

X ^ I*. i* 

mu' —■ 01 7# til' — nl ltil l ##4 

ffence, front ftp find rulj, we see that (ar, /?» 7), which in 
an arbitrary point on tin* shortest diai-antrc, is i#n tin- two 
planes 

j: — af y — ~ - c 
/ , m , 11 ? 

j W#/ *— Iff ft, ml* — if* l, ltil f M 

anti j a: — eh, 1/«- /#’, «> c* jt'f 

j f , oh , if 

j Mti — w#hn of — a7, /#// — IW 

These pianos tin tvfbr** inter-ert, in th#* lino on ttfrirl* the 
shot test distance lies* 

We can find th** length of f}§o ahotfco-..! dhlae* «* ftoni tf*.* 
fuel that it is the projection of the fine joining do jaunfs 
frq b, c) ntid (a t //, c j* Now fiir projection of tJrio lino u%% tie? 
line whose dirnefionomines fire X, p, 1# b 

(a - rf) X “f (6 - I/) /* t (e ~ r / e, 
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But as above 
X _ ya = v . 

onn — Tun ZW — ZV/& ’ 

therefore each fraction is equal to 

1 
— mn)2 + (nl' — ^Z)2 H- (Zm' — Z'm)2} 

Hence the length of the shortest distance is 

(a — a') (mn — mn) + (5 — b')(nl' — ril) + (c — c)(lm' — Z'm) 

— m'n)2 + (nV — riV)2 + (Zm' — Z'-m)2} 

Ex. 1. Eind the perpendicular distance of an angular point of a cube 
from a diagonal which does not pass through that angular point. 

Am. a 

Ex. 2. How far is the point (4, 1, 1) 

x+y+z~4t x-2y~z=4? 

from the line of intersection of 

Ans. 

Ex. 3. Shew that the two lines 3-2=2?/-C> = 3£, 43-11=4?/- IB=3z 
meet in a point, and that the equation of the plane on which they lie ia 
2#-6?/+ 32 4-14 = 0. 

Ex. 4. Eind the equation of the plane through the point (a', y3', y% and 

through the line whose equations are ——a = ----- = . 

Am. 
x-a, 2/-/S, z-y 
a-a^-p,y-7 

Z , m , n 
= 0, 

Ex. 5. The shortest distances between the diagonal of a rectangular 
parallelopiped and the edges which it does not meet are 

be ca ah 

vH^+cV ^+c*r 
where a, 6, c are the lengths of the edges. 

Ex. 6. Eind the shortest distance between the straight lines 
i(x-l)=i (?/~2)=js:-3, and^-W3=3=0. 

, tm -10 

Ex. 7. Determine the length of the shortest distance between the lines 
4%as By = -r and 8 (3-1)= -y-2= ~4* + 2. Eind the equations of the 
straight line of which the shortest distance forms a part. Am, f$t 

30. If through any number of points, P, Q, R... lines be 
drawn either all through a fixed point, or all parallel to a 
fixed line; and if those lines cut a fixed plane in the points 
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P\ Q', R...; then P\ Q\ R... an? railed the projections of 
Pf Q, jR... on the plane. If the lines PP\ QQ\ PIC... are 
all perpendicular to tin* fixed plane, the projection is said to 
bo orthogonal. 

The orthogonal projection of a limited straight Hint on a 
plane is the line joining the projections of its extremities. 
It is easily seem that the projection of a linn on a plane 
is equal to its length multiplied by the cosine of the angle 
between the* line* and flic* plane*. 

*11. The orthogonal pnjevtimt of anp plane arm an 
anp other plane is found bp multi piping the ami ftp the 
cosine of the a tuple heheenti the plant's. 

Divide the given area into a very great number of 
rectangles by two sets of lines parallel and perpendicular to 
the line* of intersect ion of the given plane and the piano of 
projection. Then, those lines which arc* parallel it# the line 
of intersection are unaltered by projection, and those whirl* 
art? perpendicular are diminished in flu* ratio I ; ran 0% where 
0 is the angle between the planes. Hence every rectangle, 
and therefore the sum of any number of rectangles, ta 
diminished by project ion in the* ratio of I : am 0, But, 
when each of the rectangles is made indefinitely small, their 
HU in is equal to flu* given area. Hence any urea h diminished 
by projection in the ratio 1 ; eon 0. 

32. If we have more than one plane area, we tints! 
trmk© some convention m tec the sign of the projection, 
and wo fiavn tin* following definition; the nlgeliniiu pro* 
jeetjftfi of «riy fnee of a polyhedron mi a fixed plane fa 
found by multiplying its area by the cosine of the angle 
between the normal to the fixed plane and tb«* nmnml 
to the face, the normals to tie* faces bring all drawn mil wards 
or ail drawn inwards 

33, Let A be the area of any plane mu face ; /, m, n the 
ciircctioii-cosincw of the normal to urn plane ; A., Ar At the 
projections of J on the co-ordinate planes. Then we have 

A$ ™ /* A, A v *< m , J* A* n. A* 
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Hence, since P 4* m2 4* n2 = I, 
we have A 2 4- d / 4- A / = Ai- 
Also the projection of A on any other piano, the ilireetion- 
cosines of whose normals are l\ iu\ ?/, is A cost/; and we 
have 

A cos 6 = (It 4- woa/ 4- ////') *1 
= T/lx 4“ ?//'-'( y 4* ///!„. 

Hence to find the projection of any plane area, or <4' th»* 
sum of any plane areas, on any given piano, \ve may first 
find the projections Ax, Au, A, m the co-nidi nat»* planes, 
and then take the sum of the projections of A^ J.,. on 
the given plane. 

34. To find the volume <fi a tetrahedron hi krms <fi the 
co-ordinates of its angular pm'iris. 

Let the co-ordinates of tin*, angular points of tlm t. tri¬ 
hedron ABC!) be (xv yl% zx)t (yr,f //a, zfi b/\, gw nml (j.r y# zp. 
The volume of a tetrahedron h mie-third ftmnmi of tie Inm* 
multiplied by the height Now the expiation «4 tle* far*' Jp 'll m 

# , y > s , i «o. 

**» ?/». 1 
> //» » ^ 

^4 ? //j » Z4 > 1 i 

The perpendicular p from A on this is found t*v oh* 
stituting the co-ordinates of A and dividing by the .pi.-oe 
root of the sum of tint squares of the eo#dt>i»iif» i4 </t 
and z. 

Now the coefficients ofV, y, - an? 

^ | » I *; y. I , t i ,ft» 1 f 

1 } 1 , , y | 

Vo Z4> 1 : **4» ^ i 1 ^ :! 

respectively; and these coefficients are respectively *'qtinl 
to twice the area of the, projection of /If1// on flie panm*# 
# = 0, y»6 and r® 0. Hence* the root »#f th*< Mint 
of the squares of the coefficients of irt g utnf $ ihi by flu* 
preceding Article, equal to t&BiUh 
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36. Four given planes which ham a common line of 
intersection cut any straight line in a range of constant cross 
ratio. 

Let any two linos moot the pianos in the points 
P, Q, It, 8 and P\ Q\ respectively. Let t>9 (t bo 
any two points on the line of intersection of tin* given planes, 
and let the line of intersection of the fwo pbutes OpfJItS, 
OP'Q'R'S' meet the four given planes m F\ Q'\ lesper- 
tively. Then, from the pencil whoso vertex h Oy wv haw 
{PQRS\ = {P'Q'H'S"]', and, from the pond! whose wrtex is 0\ 
we have [F ' Q" R"8ff)=}P' (/ J L'tf}. \p Q'HS'% 
which proves the proposition. 

37. Def. Two systems of planes, each of a limb hn 
a common line of intersection, are. said to bo frum<>y*’<i{*hw 
when every four constituents of the on**, awl tin* -pond¬ 
ing four constituents of the* other, have eqmi! rr*o. * 

An equivalent definition [sen < enirs, All teibj r, fie* 
following:—two systems of planes, end* of which ho , a 
common line of intersection, are said to be loufe^raphie 
which are so connected that to each plane of tie* oim qptrin 

corresponds one plane, and only one, «*f the ut!e r. 

Oblique Axes. 

38. Some of the preceding inv«**ligaUnriH at*ply * qrndly 
whether the axes are rectangular or oblique. The a* m$*y ltd 
easily recognised. We proceed to consider rum*: niws in 
which the formulae for oblique and rectangular a*#'., 
different 

39. Let I\ Q be two point# on m Mmsgiit line* and 
through P, Q draw planes parallel to tins w^wiirmto phmm 
so as to form a parallelepiped, and kt PL% J,h\ }{Q b- 
edges parallel to too axes. Then tltu mtioH of PL, LK, Ki$ 
to PQ are called the direetwn-rutw* of tlie line PQ, It in 
clear that the direction of a line it determined by it* 
direction-ratios. 
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40. To find the antjles a line makes with the a,suh of 
co-ordinates, iu terms of its direct ion-ratios. 

L»-f X, /i, r 1* .■ »!.. :ih^3» h YnZ. Znx, X<>\ •*-ti iv<4 v 
Li-I /, i ?/#, ?i 1 *»* »!..• < lir*-«4 itiii *f tlii* Yin* • /u iiiiii 1*4 

A 7 Hi*1 :? J? J- if ’A if h t ho L. t /'/„ , UK, 
AV>1#*"* |i'H4 f .<1 ft»>- t|.ut UU y /. /O/ UK m , IV. 
/ry ■- n . /'V* in Ait, 00. Tf,.-i», lOIlf’l’ fill* •fii iii *4 
Pti f*fi fIs*" ;t,\i *4* ./■ 1 U * qh> :i) fi. )!( tilt t ft ruKo. 

Wf" h;n» 

iy* PL -1 [,K <-,r. p ► i /fv «•- ’0; 
v v *m *i i 1 * '* »*4 I1 * l| **»w 

Siittibt ly * ■ ..H ti * //I * If rn-i A, 

iiik! r 'i lH ff t ‘ -’liH J| ■i- in r*iH X * *x 

4L 4 |i 14«/ tin* r d*ftt**H t ** fm*vn (la* ttirr-rii*. »>#f rtf it ff‘4 ,,/■« 

!V'j* * f PL, Lf\ , f\tj ffll t*ff flii'H \V** 

PL tl i UK ji * M tj niH y /OJ; 

thfrHwt*1 fii*m Art, 10, 1 

l (l < m #* -■$- n * «i if r*,A p 4. w 1 « m** Xi 

§■ n it iom j» -f m mn A 4* «| I 

»4 P 4 m* 4 n* I* iimn r*m k, •* *Jtd * 11*414 -f %JL## mm p ^ f , *4j;, 

%vlliri4 L th** 4 tt’heUnli 



Let the co-ordinates of the points P, Q be 

«x, yv and wt, yt, s,. 
Then l.PQ = PL = tr,-tcv m.PQ*=LK~yt-ux, 
and n. PQ-KQ = 2s-zt. 

Hence from (i) we have 

V pq*=(*,-*gs+ (y, -y1)*+(*, - *,)' + x 
' + 2 (*a - *,) (*, - «,) cos yu + 2 (xt - xt) (& -yt)*'»v.. (n), 

which gives the distance between two points in terms of their 

oblique co-ordinates. 

42. To find the angle between two linen wfmmi dtnctiun- 
ratios are given. 

Let l, m, n and l\ m, ri be the cHrcrt. ion'ration »4 fill1 
lines PQ and PQ\ and let 6 1m* the angles brtween tlnm 

Let PL, LKf KQ be parallel to the asms, m that 

PL^l.PQ, IK« m. PQ, ami KQ « n. PQ, 

Project PQ and PLKQ on the line P'Q*; tie n 

PQ cos 0 = Z PQ. cos a 4- m P Q. cm 0f 4- n P Q. cm */, 

where of, f3\ y are the angles the linn P Q* makes wit It f tm 
axes. Hence, from Art. 40, we have 

cos 6*3*1 (i 4* ml cos v 4 u mm 
4* to (!' cos v 4- m 4 a' cm k) 

4 n (f mm p 4 wi# cos X 4* ft#) 
= ZZ' 4- mm' 4*«»' 4* (mnl 4 m*n) mm X 4 M 4 w’ty p 

*4' (/#/ 4 Z «| W'S t, 

43. jTo find the volume of a Mw&edron in form* ci/ three 
edges which meet in a point and of the angle* th§g with 
one another. 

Take the axes along the three m\m% and lot uk ht § 
be the lengths of the edges, and \ p, w tbo angWa they mak* 
with one another. Then 
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where 6 is the angle between OZ and the normal to the 
plane XO Y. 

Let the direction-ratios of the normal to the plane XOY 
be l, m, n. Then from Art. 40 we have 

l + on cos v + n cos ft = 0, 
l cos v -f m + n cos X = 0, 
l cos p -f- m cos X + n = cos 0. 

Multiply by l, m, n and add, then, from (i) Art 41, 
n cos 0= 1. 

The elimination of l, m, n from the above equations gives 

1, cos V, COS [X, 0 = 0; 

COS V, ^■1, cosX, 0 

COSyU., , cos X, 1, cos 6 

0, o, cos 0, 1 1 

therefore sin8 v cos* 9 — 1 ' 
COS V , COS fJL 

COS V , 1, cos X 

1 COS fJL , cos X, 1 

= 1 - cos* X — cos2 /* — cos2 V -f 2 COS X COS fJL COS V. 

Hence the volume required 

= £ abc <sj (1 — cos2 X - ~ COS2 - - cos2 v + 2 cos X cos /a cos v). 

Transformation of Co-ordinates. 

44. To change the origin of co-ordinates without changing 
the direction of the axes. 

Let f gt h be the co-ordinates of the new origin referred 
to the original axes. Let P be any point whose co-ordinates 
referred to the original axes are at, v, z9 and referred to the 
new axes x\ y\ z. Let PL be parallel to the axis of m and 
let it meet YOZ in Lf and TOY in L\ 
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Then LP = x, L'P « a!; 

therefore m — LIJ *f. 

Similarly y — ;/ = <7, 
and s —z ^ h. 

Hence, if in the equation of any surface we write r «f / 
y +g, z 4- h for x, y} z respectively, we obtain the equation 
referred to the point (/, gt h) as origin. 

45. To change the direction of the men without changing 
the origin, both systems being rectangular. 

Let l ,mvn%; l%, m2, and «. be the dimotion- 
cosines 01 the now axes referred to the old. 

Let P be any point whose co-ordinates in ike two 
are a?, 5 and x\ y\ z\ 

Draw PL perpendicular to the plmm XOT nnd IM \wt* 
pendicular to OX!; then OAl**x> ML »y\ md LP 

Since the projection of OP on OX in equal tu the until of 
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These are the formulae Required. 

Since lx, mx,tlx ] lt, mv n2; and la, m3, ns are direction-cosines, 
we have •» 

l? + m? + nx*= 11 
K + m* + n*=l l. 

K + m3 +na—^ > 

Also, since OX', OY, OZ' are two and two at right 
angles, we have 

44 + “A + = 0,1 

44 + 3A + «A = 0, L 
and 44 + AA + «A = 0 J 

The six relations between the nine direction-cosines which 
we have found above .are equivalent to the following : 

4*. + V +4* = M 
m*■+ in* + m* = 1, > 

+ *,2 =1,J 
»»A + ?«a + ™A = (4l 
»,4 + +V« =o,L 
4m, 4 4"h + 4™» =0,j 

This follows at once from the fact that 4, 4» 4 5 
mI( m4, m.; and nx, nt, n, are the direction-cosines of 
OX, OF, OX referred to the rectangular axes OX', OY, OZ'. 

46. Since 
44 + mxmt4 nxn%<t'0, 

and 44 + wiwi + »a — 0, 
we have 

_4__ _ . 3 _ 
wiA-^A 4m,-4m/ 

Hence each fraction in equal to 

_ — \/4* nq* 4* * 

Vl(mA - «A)* + 
± 1. [Art. 25.] 
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Also 4* «» 

1%) ms, ”, 

4-' ”, 

= 4(«y», - msres) + m, (»A - nal.) + nx(l,m, - 4m.) 

- ± (lx + m,1 + «,2) = ± 1* 

47. If in Art. 45 the new axes are oblique we still have 
the relations 

x — lxx' + + 4*4 
y = mxx' + mjf + mtz, 
z => nxx' + nj/' + njs. 

We can deduce the values of x, y, / in terms of «r, y, s: 
the results are 

x' h> 4> 4 I 4* 4* 
.n\ 

mx, *». mv *\> 
nx, »• nt, n»> 

and two similar equations. 

48. The degree of an equation is nnulternl by any trans- 

formation of axes. 

From the preceding Articles wo nee that, however the 
axes may be changed, the new equation is obtained by *nb- 
stituting for as, y, z expressions of the form las t my 4 in. ip. 

These expressions are of the first degree, and therefor** if 
they replace x, y, and z in tho equation, tint degree **f the 
equation will not be raised. Neither can tho degree of the 
equation be lowered; for, if it were, by returning to th<- 
original axes, and therefore to the original equation, the 
degree would be raised. 

49. We shall conclude this chapter by the solution of 
some examples. 

(X) A Urn of comtanl length hm UsmtmmiMm m tiro fitted tMlfhf U«t*i 
shew that the Urns of it$ Middle mint It m «llp4 

If we take the axes of eo-ortoaten m In Art, if, th$ ilm titles# 
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nities of the line in any one of its possible positions be x1, ylf zx and 
, z%; and let (x, y, z) be the co-ordinates of the middle point of the line. 
, if 2l be the length of the line, we have 

4i2=(xj - x2)2+{y1-y^+(«! - 22)5- 

it, since andi!I=c, and y2= -moc^, z2= -c, we have 
1, , 2y 

Xl~x-~ m^y'L+y^~'m’ 
y1-ya=m(x1+xj = 2mx, 

z1-z2=2c, and 2z=z1+z2~0. 

snce the locus of the middle point is the ellipse whose equations are 

2=0, Z2=™+m2a;2 + cs. 
5 m2 

' A line moves so as always to intersect three given straight lines, 
are not all parallel to the same plane; find the equation of the 

e generated by the straight line. 
aw through each of the lines planes parallel to the other two; a 
elopiped is thus formed of which the given lines are edges. Take the 
> of the parallelopiped for origin, and axes parallel to the edges, then 
[nations of the given lines are y=b, z— -c) z=c, rc= -a; and x=a, 
b respectively. 

t the equations of the moving line be 
as-a__ y - /3 _z -y 

l ~~ rri ~ n ‘ 

ace this meets each of the given lines we have 
b — 13 __ - c-y c — y — a- a a-a __ —h — ft 

m ~~ n ’ n ~~ l 9 l ~~ m”~ * 

nee, by multiplying corresponding members of the three equations, we 
tat (a, /3, 7), an arbitrary point on the moving line, is on the surface 
i equation is 

(a-x)(b-y) (c-z) + (a+x) (b+y) (c+*)=0, 

H+«+a+i.0. 
be ca ao 

The lines of intersection of corresponding planes of two homograpMc 
s describe a swface of the second degree. 
e may take y=rmt z=c, and y = -mx, z= ~~c for the equations of the 
)f intersection of the two systems of planes [see Art. 35.] 
t the equations of corresponding planes of the two systems be 

y -mx+X{z ~ c)=0, 

y+mx+y (z+e)*z 0. 

the^ystems are homograpMc there is one value of X' for every value of 
L one value of X for every value of W; hence X, X' must be connected by 
don of the form 

XX^+AXffe* 3Xff 0*0. * 
s. s. a. - ■ ' 3 



Substitute for X and X', and we have 

yp-m%x* — A (2 + c) (y—mx)-B (z-c) (y 4-mx) 4- C (z2 — c2) = 0. 

Hence the line of intersection of corresponding planes describes a surface of 
the second degree. 

Examples on Chapter II. 

1. If P be a fixed point on a straight line through the origin 
equally inclined to the three axes of co-ordinates, any plan© 

Y through jP will intercept lengths on the co-ordinate axes the sum of 
** whose reciprocals is constant. 

2. Shew that the six planes, each passing through one edge 
of a tetrahedron and bisecting the opposite edge, meet in a point. 

3. Through the middle point of every edge of a tetrahedron 
a plane*is drawn perpendicular to the opposite edge; shew that 
the six planes so drawn will meet in a point such that the 
centroid of the tetrahedron is midway between it and the centre 
of the circumscribing sphere. 

ys 
m 

-, and which 
n 

4. The equation of the plane through -j = 

\ perpendicular to the plane containing ~ ^ ^ and - = ^ = 

is x (on — n) 4- y (n — l) + % (l — m) = 0. 

5. Shew that the straight lines 

& 
m 

£=-5. 
bp cy9 

& _ y ___ z 
l~~ m~~ n9 

_ x 

P y9 aa 

will lie in one plane, if 

l /, v Wl , x Wi, rv/\ 
-{b-c) + j(c-a) + -(a-b) = 0. 

% 

t. Two systems of rectangular axes hare the same on, 
a plane cut them at distances a, 5, c, and a\ bf, c' from the 
then 

1 1 1111 
a2+ ¥ +e* ~afi+ 6'*T a’1' 

Wm 
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7. Determine the locus of a point which iiiovim ho m always 
to be equally distant from two given straight lines. 

8. Through two straight lines given in Hpimo two planm are 
drawn at right angles to one another; find the locus <»f their bit« 
of intersection. 

9. A line of constant length hm its ojctremitiis* on two ghm 
straight lines; find the equation of the surface generated by it, 
and shew that any point in the linn describes an iillifim 

10. Shaw* that the two straight lines roprfMMttml by the 
equations ax + by + c»» 0* yz + zx + my 0 will b« |K$r|*eiidt«mt*r if 

1 1 I n 
— + y *§* 0, 
« h c 

11. Find the piano on which the ansi of tli« projection of the 
hexagon, formed by six edges of n mlm which do licit uu nt n given 
diagonal, is a maximum. 

12. Prove that the four planes 
my + nz Cl, w» + £&<*’ 0, /x + my - 10, /x 4 ?ny 4s its ^f% 

fonn a tetrahedron whoso volume k . 
Miuh 

IS. Find the surface generahfd hv a straight line which is 
parallel to a fixed plan© and meet a two given straight linen* 

14 A straight lino snoots two given straight lines and tnsko* 
the «wne angle with both of them; find the eurfeoe whiob it 
generates. 

15. Any two finite straight limt« mm divided in lit© mtm 
ratio by a straight lino; find the equation nf tlm mrtmin which it 
generates* 

IS. A straight lint always parallel to the phut© of yi jw**©** 
through the curve* »®4./h#*, % 0, and x$ < «*, #/ II; prove 
that the equation of the iiirfite# generated m 

«y »{«•-» mf (## - «*)* 
„ Three straight int* mutually at tight angle# meet in a 

poult t*f and two of them interaiHst tin* mm of m mid g rmji##i 
tiv«*fy, while the third paase* through a fixed point (0* 0, e) on the 
axis of & Shew that in© equation of tint tmm of Jt* m 

sf + y** ih tn. 
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18. Find the surface generated by a straight lino which meets 

y = mx, z = c; z = *~-c; and y8 + s8»*c\ z^O. 

19. P, P are points on two fixed non-intersecting straight 
lines AB, A'B' such that the rectangle Al\ A*F is constant Find 
the surface generated by the line PF. 

20. Find the condition that 

oaf + bi/ + cz? + 2afyz + 2b'zx + 2 c'zy = 0 

may represent a pair of planes; and supposing it satisfied, if 0 lm 
the angle between the planes, prove that 

, d 2Ja'‘ + 6" + c"~6cca - ab 
tan v =»  -—y——— «—, 

fit v4*C 

21. Find the volume of the tetrahedron formed by planes 
whose equations are y + « « 0, % + x=sQ, m + y^0f and & + y 4> $ - L 

22. Find th© volume of a tetrahedron, having given the 
equations of its plane faces. 

23. Shew that the sum of the projections of the faces of a 
closed polyhedron on any plane is m 

24. . Find the co-ordinates of the centre of tit® sphere fa* 
scribed in the tetrahedron formed by the plants whose equation# 
are z « 0, y » 0, *a» 0 and a? + y + z * 1. 

25. Find th© co-ordinates of the centre of the sphere in¬ 
scribed in the tetrahedron formed by th© planet whose equations 
are y + #= 0, = # + y » 0, and w + y + z m, 



CHAPTKK III. 

50. The most general equation of tho 
fl®* + btf + C3%+2fyz -f 2ffz,v + Hftxy + ‘2ur,+ 
contains ten constants. But, since wo may 
the equation by any constant quantity w 
relation between x, y, and z which it ii 
really only nine constants which are fixed 
surface, viz. the nine ratios of tho ton omm 
one another. A surface of the second «h* 
be made to satisfy nine conditions and in 
conditions which u surface of the second 
must be such that each gives rise to one r 
constants, as, for instance, the condition of 
given point. Such conditions as give two 
between the constants must bo reckoned , 
the nina 

We shall throughout tho present chapt* 
equation of the second degree is of the ah 
is otherwise expressed. The left-hand sit! 
win be sometimes denoted hv S'tm « 
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Let the equations of the straight line be 

l m n 

To find the points common to this line and the surface, 
we have the equation 

a (2 + Irf + b (0+mr)' + c(y + nr)* + 2/ (0 + mr){y + nr) 
+ 2g (7 + nr) (a + ir) + 2h (2 + fr)(/3 + mr) + 2u(cc + Ir) 

+ 2 v(0+mr) + 2m (y +nr) + d — 0, 
or 

r* (a?+ bm’+ cn*+ %fmn+2gnl+ 2him)+r|i^+vl20+n<liy } 

+ F (a, 0, y)« 0.(i). 

Since this is a quadratic equation, any straight line meets 
the surface in two points. 

Hence all straight lines which lie in any particular plane 
meet the surface in two points. So that, all plane section* of 
a surface of the second degree are conics. 

In what follows surfaces of the second degree will 
generally be called conicoids. 

52. To find the equation of the tangent jiane at ang 
point of a coniooid. 

If (a, 0, y) be a point on F(a>, y, «)«0, one root of 
the equation found in the preceding Articlft will bo toto. 
Two roots will he zero if l, m, n satisfy the relation 

The line 

.dF, dF ’dF 

lld+md0 + nld 
x-a_y-0 z-y 

l m n 
will in that case \m a 

tangent line to the surface, the point of contact being (a,0,y). 
If we eliminate l, m, n between the equations of the line, 

and the equation (i), we see that all the tangent lines lie in 
the plane whose equation is 

dF 
'(*-*)?[+<*■ ■0)jz> + (»- 7} 
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This piano is called the tangent plum at the point (a, ft, 7). 

If wo write the equation (ii) in full, wo obtain 
x(aa + k0+gy-bu)+g(hx + b0 +fy 4- r) 4 s Igx 4-ffi+cy+w) 

= <za* 4- bf& 4- cy* 4- 2/J8y + 2773 4- 2/»a/8 4 «3 4- r# + W7. 
Add m + v0 +wy + d to both rides, then the right, stile 

becomes F(ct, 0,7), which ia zero; wo therefore have for the 
equation of the tangent piano at (a, 0, 7) 

x(a<x+hj3+gy + u) + y(fn + bfi+fy+u)+z(gx +/0 4oy4 w) + 
4 u« 4 «/9 4 «7 4 d ™ 0.. .(iii). v 

Ex. 1. Find tlift equation nf lli« fMigt-rti Jfiiirw at III?* ftnifil {*% /f mi 
the surfaces ax% + %f + «8+dfI. An*, #t/je f- hify § t• d ^41, 

Ex 2. Find file equation of tfiw t*i<#i*xit piano at Hip f««ttf (x% »j\ /f mt 

the surface «**+&j/* + Vs 4). * *<// t %#f « r, <©. 

53. The condition that the tangent piano at {% 0, 7) 
may pass through a particular point (j>\ </\ d) m 

d (ax + k0+gy+ii)+g'(fn+b0 f/74 a) fs'fg*4/^4-074 m) 
4* m 1 1 >0 + w7 + f/»- 0. 

This condition is equivalent to 

a (oaf4-%'+^'4-m) 4/8 (hd+bg'+fd+v) +y(gd4//4c/4 w) 
4 ax' 4 a//' 4 «/*' 4 rf “ 0, 

From the last equation wo see that all the points, the 
tangent planes at which pass through the particular point 
(d, ij, /), lie on a plane, namely on the plane whose equation 
is 
w(ad + %' 4 gd 411) 4 y (hd 4 %' +/d 4 v) 

4 * (gd +fy 4- ed f vi) 4 lt d 4 w/ 4 «•*' p d ** 0 

This plane is called the pofcu* jofotut of the point {<*', /» d). 
The polar piano of any point iP cute the surface in a conic, 

and the tine joining /'tontiy point on this coma is a tangent 
line. The assemblage of such lines forms a cone, which is 
called the tangent cone from JP to the oonioetd. 

The equation of tK polar plane of the origin, found by 
potting dmg'mdm0 in the above, is 

ux + vy + HM+d^Q. 
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54. The condition that the polar plana of (a, y\ z*) may 
pass through (a, /9, y) is as above 

a {ax' 4 hyf 4 gzf 4* u) 4 P (haf 4* by* -hfa* 4* t?) 
4- y (graf 4/y' 4- czf 4- w) 4- tar' 4* f/ 4* w*' 4 d » 0. 

This equation is unaltered if we interchange a and #r\ 
P and y\ and y and z ; it therefore follows that if the fwdfir 
plane of any point P with respect to a conicoid puss through 
a point Q, then will the polar plane of Q pans through P. 

55. Let B he any point on the line of intersection of tlni 
polar planes of P, Q. 

Then, since B is on the polar planet of P and also on tltn 
polar plane of Q, the polar plane of It will pans through P 
and through Q, and therefore through the lino PQ, HimUttrly 
the polar plane of 8, any other point on the lino of inter¬ 
section, will pass through the line PQ. 

Two lines which are such that the polar piano with 
respect to a eonicoid of any point on the one piisnos through 
the other, are called polar lines, or conjugate linos, 

'56. If any chord of a eonicoid be drawn through a jmimi 
0 it mil be cut harmonically by the mrfme and tfw polar 
plane of 0. 

Take the point 0 for origin, and let the surface kt given 
by the general equation of tie second degree. 

Let the equations of any line, which cute the surface in 
P, Q and the polar plane of 0 in R, bo 

1 m n 
To find the points where the line cuts the surface we liatt, 

as in Art 51, the quadratic equation 

r* (al* 4- bnr? 4- on* 4* 2firm 4- 2yd 4 2/dm) 

4 2r (ul4 twi 4 wi) + if ■* 0. 
11 2 

Hence + + + 

The equation of the polar plane of 0 in 

«®+ey + tt« + d“0. 
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Hence ~ (m^ + tim + wn); 

, 112 
therefore OP+ OQ**7Fli’ 

which proves the proposition. 

57. To find the condition that a given plane mag touch 
a conicoid. 

Let the equation of the given plane be 

Im 4 my 4 nz 4?> « 0 ......(i). 

The tangent plane at (d, y\ z) m 

so (aod 4* hy 4 y/ 4 u) 4 y {hx 4* by 4 ») 

4- z(gx +fii 4 c/ 4 w) 4 in*?' 4vy* 4 m/ 4 d 

If the planes represented by (i) and (ii) are the mme we 
have 

ax' 4 hy 4 gz 4 u hx 4 foj 4- fz* 4 « gd 4// 4 M 
~“ fa " ^ — 

nx' 4 w/ 4 ms 4 d 

Put each fraction equal to —X; then we have 

am' 4 /i;/4 <7/ 4 n 4 X / 0, 
hi 4 by 4// 4 0 4 X w • 0, 
£// 4jn/ 4 0/ 4 a* 4 X ft ^ fl, 
W 4 v;f 4w/4 i/4 Xp ®* Cl 

Also, since (a/ /f %*) ii on the given plane, 

Id 4 «/ 4 »/ 4p » 0. 

Eliminating m\ y\ m\ \ we obtain the required condition, 
namely 

ap A, g> «, l 

fh I, W. m 
if* /. C, w, n 

*>» P 
1, », «» 0 
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The determinant when expanded is 

Jtf + Bnf+faf + Ljt + ZMsA+ZGM+l Him 
+ 2 Ulp + 2 Vmp + 2 JFhp a> 0, 

■where A, B, G, &c. are the co-factors of a, b, o, &c. in the 
determinant 

?! v 

are the col 

a, h, 9. 
h, b, f> 

9> f> G, 

v, W, 
m 
d 

We will give special investig&tfoas in the two following 
cases which are of great importance; 

I. Let the equation of the surface ha 

oaj*+ by* + cz* 4*ci * (l 
The tangent plane at any point « y% %') is 

am'x + by'y + ciz 4-d *0* 

. Hence, comparing this equation with the given equation 
h 4* my + m 4* p ®* 0, 

, ax' by' gz* d 
we have 5=5 *'z- =» ~ * 

l m n p 

sj(am*4- b*jf% 4- c/f 4-rf) 

/jriry.py 
v/U + T +0 + d) 

hence, since aw* + by1 +• os'* + d » 0, 
the required condition of tangency is 

Each fraction is equal to 

• 4* "T* + —* 4* 
a b o 

■0. 

31 liet the equation of the surface be 
aa?+by* + &emQ, 

The tangent plane at any point («', s') is 

ax'no + btfjf + s+d »» (), 
Hence, comparing this equation with the given equation 
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we have 

hence, since 

. Each fraction is equal to 
n p 1 

\f(axf% +by*+',2z) 

ax% + by* -f 2/ =» 0, 

the required condition of tangeney is 

i:+if+2„JI=o. 
a b 1 

58. If we find, as in Article 51, the quadratic equation 
giving the segments of a chord through (% 0, y) tho roots of 
the equation will be equal and opposite, if 

rdF t dF t dF 
l-r+m j/4 + «-y- 

da dp wy .CO- 

In this case (pc,@, y) will be the middle point of the chord. 
Hence an infinite number of chords of the conicoid have the 
point (a, 0f y) for their middle point 

If we eliminate lf m, n between the equations of the? 
chord and (i), we mm that all such chords are in the plane 
whose equation is 

(x—a)^+(y^0)f/0 * ($~y)^**Q.(it), 

Hence (a, 0, y) is the centre of the conic In which (ii) meets 
the surface. 

This result should be compared with that obtained in 
Art 52. 

Bx. 1. The lootts of the centre of ill p 
psss through * fixed point l» » coaieoM* 

The equation of the kmn li (f~x) ^ 

ire the co-ordinates* of the Axed poiu 

The bmm of tho eesitve of pai 
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The section whose centre is (a, & 7) is parallel to tlie nmm plane 
Ix+mr+nz—Q if 

dF dF dF 
7ia d8 dy 

l m n 

Hence the loons is the straight line whose dqmtiimn are 

dP 
7 dx m dy ~ n th * 

The straight lines clearly all pass through the point of intornactton of the 
t dF dF . dF A 

pIan6B^=^=dj=0- 

59. To find the hem of the middle points of 4 *y#£m of 
parallel chords of a conicoid. 

As in the preceding Article, (a, 0P y) will he f In* middle 
point of the chord whose direction-canines are l% m< i#f if 

,dF, dF dF * 

Hence the locus of the middle point* of all chord* whoso 
direction-cosines are l, m, n is the* piano whoso equation is 

rdF dF dF . 
l -5— + tn —. +1> . • 0, 
dx dy as 

Be/. The locus of the middle points of n system of parallel 
chords of a conicoid is called the diametral plum. 

If the plane he perpendicular to tins chord* it hmat*, it is 
called a principal plane, 

60. To find the equations of die principal plane* of a 
conicoid. 

The diametral plane of the chords whose direction*cosincg 
are l, m, n is 

jdF^ (IF t dF „ 
l~, +m-r~ + n mO, 

dm dy ds ' 
or, writing the equation in full, 

l(am+ky+gsi+u)+m(kz + by+Ji + v) 
+ » (g« +/y + ce •¥ w) ** 0, 

or as{al+}m-\rgn)+y {hi + bm +/») +e<gl + cn) 
+ ul + WR + KIt-U. 
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If this plane be perpendicular to the chords it bisects, 
we have 

al + hm 4- gn hi + bm +jn gl +fm+cn 
l ~~ m n 

Put X for the common value of these fractions, then 

(a-X)Z +Am + gn =0,} 
hi + (b — X) m +fn = 0, >.(i). 
gl ’+fm + (c — X) n = 0J 

Eliminating Z, m, n we have 

h, b — X, 

or X8 — (a + b + c) X2 + (be + ca + ab —f* — g2-~ h2) X 

— (abo + %fgh — a/72 — fy/ — oh2) = 0. 
This is a cubic equation for determining X; and when X is 

determined, any two of the three equations (i) will give the 
corresponding values of l, rn, n. 

Since one root of a cubic is always real, it follows that 
there is always one principal plane. 

Find the principal planes of the following surfaces: 
(i) xt+y2-zi+2yz + 2z3c-~2xy=a?. 

(ii) llflc3+10ya+6** - Qyz + 4zx -12xy «1. 
Am. (i) sc + y + z=*0t aj+y~*2£«0. 

Am. (ii) rc+2y+2,s=:0, 2a?+y-2«=s0, 2«-2y-j-^as0. 

61. All parallel plane sections of a conieoid are similar 
and similarly situated conics. 

Change the axes of co-ordinates in such a way that the 
plane of coy may be one of the system of parallel planes; and 
let the equation of the surface be the general equation of the 
second degree. 

Let the equation of any one of the planes be z**k. At 
ail points of the section of the surface Jr (x, y, z) «0, by the 
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plane z = k both these relations are satisfied; we therefore 
have 

cud + by* + ck* + 2fyk + 2ghc + 2hxy + 2 ux + 2 vy 
+ 2 mk +■ d*=l).(i). 

Now the equation (i) represents a cylinder whose gene¬ 
rating lines are parallel to the axis of z, and which is cut by 
the plane z — 0 in the curve represented by (i). 

Since parallel sections of a cylinder are similar and simi¬ 
larly situated curves, the section of the surface F(,c, y, r)»» 0 
by z= k is similar to the conic represented by (i) and « *0; 
and all such conics, for different values of*k, are clearly 
similar and similarly situated: this proves the proposition. 

Classification of Conicoids, 

62. We proceed to find the nature of the different 
surfaces whose equations are of the second degree; ;uid we will 
first shew that we can always change the direef ioiw of the 
axes of co-ordinates in such a way that the coefficients of ys, 
zee, and xy in the transformed equation urn id! zero. 

63. We have seen [Art. 60] that there is at least mm 
diametral plane which is perpendicular to the chords it 
bisects. 

Take this plane for file piano z ** 0 in a new system of co¬ 
ordinates. 

The degree of the equation of the surface will not bo altered 
by the transformation; hence the equation will be of the form 

cud + by‘+cd + 2\fyz+2gzx + 2hxy + tux +2i'y-f tvs f d * 0. 

By supposition the plane z»0 bisects all chords parallel 
to the axis of z; therefore if («', d, d) be any point on tho 
^rface, the point (a\ ,—%*) will alio bo on lit© sitf#©®. 
From this we see at once that/« <=■ (). 

Now turn the ax® through an angle | tan"1 ^, then 

[See Conics, Art. 167] the term involving m will disappear. 
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Hence we have reduced the equation to a form in which the 
terms yz, zm, and my are nil absent 

64. When the terms yz, zm, my are all absent from the 
equation of a eonieoid, it follows from Art till that the eo**ordb 
nate planes are all parallel to principal planes. Ifetiei? by 
the preceding article, then* are always Mm* principal 
planes, which are two and two at right angina This shewn 
that all the roots of the* cubic equation found in Art. till are reith 

For an algebraical proof of this import nut theorem mm 
Todhimter’s Theory of Equation**, 

65. We have seen that t.ho general equation of the miccintl 
degree can in all eases lie. reduced to the form 

A. J? *4 Ilf “f* Oz* 4* <2 ffm + 2 Vy 4® « !i s 4" h sa 0, 

L Let A, It, O be all finite. 
We can then write? tin* equation 

it , v* tr n #v 
■ a+ // + a 

Hence, by a change of origin, wo havu 

Au* +/If/>', 

If D' be not zero we have 
r* y* , ** _ 
T/'Tt+T? l' 
a Yt a 

which we can write in the form 

or 

<r? , f ** , 
a*4***?”1-.* 

. 

. 

..0% 

or 
. 
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jy TV TY 
according as ^, -jj are all positive, two positive and 

one negative, or one positive and two negative. [If all three 
are negative the surface is clearly imaginary.] 

If U be zero, we have 

Atf + Bf+Gf- 0.(*). 
II. Let C, any one of the three coefficients A, B, 0, be 

zero. 

Write the equation in the form 
, ms / F\* 77* P 

^(-+3+^+3+2Wr'+2)"5-7-O' 
then, if W be not zero, the equation can, by a change of origin, 
be reduced to 

As? + By* + 2Wx = 0.(«). 

If W be zero, we have the form 
Ac? + By* + D* >■ 0.(£), 

or, if jy be zero, the form 
As? + By*** 0....(17). 

III. Let B, 0, two of the three coefficients, be zero. 

We then have 

A(a + f)’+2 Vy+ 2 Ws+B - ~ - 0. 

TP 
Now take 2 Fy+2 Wz+B—— 0 for the plane y—Q, and 

the equation reduces to the form 

«*=* 2%.....................(5). 

If however F« TT *» 0, the equation is equivalent to 

^* If .........a...*.*,.* 
66. We now proceed to consider the nature of the 

surfaces whose equations are (a), (fi),.(t); to one of which 
forms we have seen that the general equation is reducible. 



the KiMman. m 

The surface whose equation is 

It 

is called m dlipmiti. 
Let a, b, c he in descending order of magnitude; then 

{x,y} z) being any point on the surface, we have 

** i '!? | s' 4 1 
<r‘v •>••» i- 

Bo that m point on the sutfUeo is nf a distance from*the 
origin greater than o, or fam than v, The Mirfaee in therefore 
limited in every direction; and, id nee fill plane section# of a 
comcoid are con ten, it follows that nil plant* seHioim of mi 
ellipsoid are ellipses. 

The surface* m clearly symmetrical about each of the no 
ordinate planes. 

If r be the length of a sertiwiiaimdcr whose direction* 
cosines are /, mf nt wr have the relation 

If two of the coefiie$eni4 nre eijua!, b and c nuppum*, 
the section by the plane ninl therefore {Art. ill j 
by any plane parallel to h a Hide. I Loire the 
surface is that formed by the revolution of the idlitMn 
£ t% * * 

+ *0 m 1 about the axis of 

The surface formed by the revolution of uti ellipse about 
its major axis m called a pruhUt Mjthermd; flint formed by 
the revolution about the mi nor axk in mlhd mi Mute 
spheroid* 

If « m b m o the equation of the miiimnt S* # + y1 + jf m t$\ 
which from Art 5 reprmmita a ijiliert, 

a act. 4 



50 THE H'fPEJRBOLOID OF ONE SHEET. 

67. The surface whose equation is 

,jiT^ c‘~ ’ 

is called an hyperboloid of one sheet. 
The intercepts on the axes of x and y are real, and those 

on the axis of z are imaginary. 
The surface is clearly symmetrical about each of the co¬ 

ordinate planes. 
The sections by the planes x — 0 and y » 0 are hyperbolas, 

and that by z = 0 is an ellipse. 
The section by z = k is also an ellipse, the projection of 

which on z — 0 is -t, + = 1 + - j, and the section becomes 
w 0 o 

greater and greater as h becomes greater and greater. 
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ir £ . 
revolution of the hyperbola ,-^wj 1 akitii m conjugato 

axis. 
The figure shews the nature of the suri'acin 

68. The surface whose equation m 

is called an ftt/ptrbnfoitl of two xhitiH* 

The intercepts on the axis «#f x mi* r* al,tlt*Hf*«m the other 
two axes are imaginary. 

The sections by the planes y^tt and z -<** 0 are hyper* 
bolas. 

The section by the plane x k ifimghmry, The parallel 
plane x^k dmm not meet the surface in real points tst&Iem 
A,*2 >a\ If F> «s the section h an clique tin? twee* of which 
become greater and greater m k become* greater ami greater. 
The surface theiefore eoudMH of two tie tin la d porttoms lut tn 
the figure. 

If 6*0, the mMim by any plait© parallel to #«■§ I* 
a circle. Hence th© surface k that futmml by the revolution 

of the hyperbola * — ^ ** 1 about its traa»ftr« am 

80. Tbo iurfac© who** equation i* J*# + iff® 4 f V * II t§ 
a c«m 
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A cone is a surface generated by straight lines which 
always pass through a fixed point, and which obey some other 
law. The lines are called generating lines, and the fixed 
point through which they pass is called the vertex of the 
cone. 

If the vertex of a cone be taken as origin, the equation 
of the surface is homogeneous. This follows at once from the 
consideration that if (x, y, z) be any point P on the surface, 
any other point (lex, Icy, kz) on the line OP is also on the 
surface. 

Conversely any homogeneous equation represents a cone 
whose vertex is the origin of co-ordinates. For, if the values 
x, y, z, satisfy a homogeneous equation, so also will be, ky, 
kz, whatever the value of k may be. Hence the line through 
the origin and any point on the surface lies wholly on the 
surface. 

The general equation of a cone of the second degree, or 
quadric cone, referred to its vertex an origin is therefore 

at# + by1 + ca* + %fyz + 2gzm 4- 2 hxy =» 0. 

70. If r be the length of the somi-diameter of the 
surface ax* + bif + cz‘ = 1, we have the relation 

^ = aP+6ma + cn*. 

Hence the direction-cosines of the lines which meet the 
surface at an infinite distance satisfy the relation 

aP + bm* + cn*=*Q. 

Such lines are therefore generating lines of t he cone 
atP + by*+af**Q. 

This cone is called the asymptotic com of the surface. 

71. The equation +J^* + 2Fa=>0 is equivalent to 

j + £ = 2z, or j — |* = 2a, according as the signs of A and B 

are alike or different. 



THK vm&imumx 

surface whoso equation is 

4* & 2«» 

is called an elliptic pnmbulmtL 
The section* by the plane* x « 0 and t/**f) arc parabola* 

having a common axis, and whose concavities arts in the mmm 
direction. 

The section by any plane parallel to 5 *0 is 1411 ullijiici if 
the plane be on the jwstftvt? mde of z *c 0, and is imaginary if 
the plane be on the negative hide of ;aO, Hcsica tliu 
surface is entirely on the positive mh of the plant! jg«I), ami 
extends to an infinite distance. 

The surface whoso equation in 

is called an hjumrbolk ptimhnhuL 

The sections by the plain * and y *»0 are parabola* 
wHicli have a common axis, and whose concavities are in 
opposite direction x 
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The section by the plane z- 0 is the two straight lines 

given by the equation j ~j = 0. The section by any plane 

parallel to z—0 is an hyperbola: on one side of tho plane 
z = 0 the real axis of the hyperbola is parallel to the axis of 
x, and on the other side the real axis is parallel to the 
axis of y. 

The figure shews the nature of the surface. 

72. It is important to notice that the elliptic paraboloid 
is a limiting form of the ellipsoid, or of the hyperboloid of 
two sheets; and that the hyperbolic paraboloid is a limiting 
form of the hyperboloid of one sheet. 

This can be shewn in the following manner. 
The equation of the ellipsoid referred to (—a, 0, 0) as 

origin is-^ + ^4*^ — — = 0. Now suppose that a, b, o all 

b c* 
become infinite, while —, - remain finite and equal respec- 

a a 
ir * 

tively to l and l'; then, in tho limit, we have j + 

which is the equation of an elliptic paraboloid. 
The other cases can be proved in a similar manner. 

73. The equation As? *f By*+D *0 represents a cylinder 
[Art. 10], being a hyperbolic cylinder if A and B have dif¬ 
ferent signs, and an elliptic cylinder if A and B have the same 
sign. If the signs of A, B, JD are all the same the surface is 
imaginary. 

The equation Aa? + By*~Q represents two intersecting 
planes, which are imaginary or real according m the signs of 
A and B are alike or different. 

The equation 0®=2hj represents a cylinder whose mtiding 
irve is a parabola, and which is called a pambolic cylinder. 

The equation afmk represents the two parallel planes 
=» ± 



EXAMPLES. 55 

1. The sum of the squares of the reciprocals of any three diameters 
ellipsoid 'which are mutually at right angles is constant. 

be the semi-diameter whose direction-cosines aro {lv ml1 w© 

r a ~ a2 !j2- 

111 
jV6 —5 H—r> 4* —« 

r* v v 

Tin 4 4- , and similarly for the other diameters. By addition 

111 
'5* + 55 + ?* 

x. 2. If three fixed points of a straight line are on given planes which 
t right angles to one another, shew that any other point in the line 
ibes an ellipsoid. 
3t A, B, C be the points which are on the co-ordinate pianos, and 
?/, z) be any other fixed point whose distances from A, B, C are a, b, c. 

-=Z, %ssmt and -=n, where l, n are the direction cosines of the 
a b c 

Hence the equation of the locus is £3 
a? 

x. 3. Find the equation of the cone whose vertex is at the centre of an 
5oid and which passes through all the points of intersection of the 
joid and a given plane. 

ni* g!t 

iet the equations of the ellipsoid and of the plane he ^ + fl + and 

ny+nz~l. We have only to make the equation of the ellipsoid 
ogeneous by means of the equation of the plane: the result is 

q /2 -jS 

+ ^5+3= (te+my + «*)*. 

’or this equation being homogeneous represents a cone whose vertex is 
le origin; and it is clear that the plane cuts t£e cone and the ellipsoid in 
same points. 

2x. 4. Find the general equation of a cone of the second degree referred 
nee of its generators as axes of co-ordinates. 
Che general equation of a quadric cone whose centre is at the origin is 

<w? 4- by* 4- cz* 4- 2\fyz 4- %gzx 4- 2 hxy=0. 

.'f the axis of a; be a generating line, then yssQ, must satisfy the 
ition for all values of a; this gives a=0. Similarly, it the axes of y and* 
generating lines, d=0 and c=0. Hence the most general form of the 
ition of a quadric cone referred to three generators as axes is 

fyz+gzx+hayssO. 

Ex. 5. Find the equation of the cone whose vertex is at the centre of a 
>n ellipsoid, and which goes through all points common to the ellipsoid 
a concentric sphere. 

If the equations of the ellipsoid and sphere be + ^4-^«ly and 

i/24-^«r® respectively; the equation of the cone will be 

* 
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Ex. 6. Find the equation of the cone whose vertex is the point (a, 0, 7) 
gpi W® 

and whose generating lines pass through the conic + j- = 1, 1 «0. 

Let any generator be ~ s= £ = * 7. This meet# s«0 where 
l in n 

*=a~i7’ and y=p-r^y. Hence I (p-”?)’**. « 

~{<m-7Z)2+~ (fin-ym)2=n?. Substitute for t, m, n from the equations of 

the line, and we have ~ (etf~7«)a4-p ($2 -yyfsz(z -yft the required 

equation. 

74. If the origin be the centre of the surface, it is the 
middle point of all chords passing through it; hence if 
(x., yt, ej be any point on the surface, the point(— xv—yv — zt) 
■will also be on the surface. 

Hence we have 

aa>* + by* + as* + 2fytzt + 2gztxt + 2hxtyt + 2 uxt + 2 eyi 
+ 2wzl + d « 0, 

and ax*+by* + cz* + 2fytzt + 2gz1xl + 2//«,y, — 2nlc, — 2vyx 
— 2wzl + d m (); 

therefore uxl + vyl +icz, = 0. 

Since this equation holds for all points (xt, yt, zt) on the 
surface, we must have u, v, w all zero. 

Hence, when the origin is the centre of a conicoid, the 
coefficients of x, y and z are all zero. 

75. To find the co-ordinates of the centre of a conicoid. 

Let (£, y, 0 be the centre of the surface; then if we take 
(£ % £) for origin, the coefficients of a, y, and z in the trans¬ 
formed equation will all be zero. The transformed equation 
will be [Art. 44] 

«(»■+ {)*■+ & {y+nY+o (*+£)*+2/(y+*?) f*+# 
+ 2g(z + 0 (« + f) + 2A (®+ £) (# + i?)-t-2tt(*+£) + 2»(y+i;) 

+ 2w(ir + §)4-d»»0. 

♦ 
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Hence the equati, ms giving'th»* tiiitro itm 

of •»■ htj + yf 4 « - 1*, \ 

•' *•/£ f *' >•*.>,i). 
and :t%+f*ri ) 

Therefore » 

£ r 
h, '/ r * !h If fl, A» 
b» /’. *■ A. /, II ; ; A, i, 
/. C, It? f» C # fi; 1 i fir, /. 

-1 
a, h, sr i 

• 

, A, 5, /! 
'/. /, 

! II ; 

The equation «»f the conic,id when referral to the centra 
(£, n- D «»in 

ax’ + %* 4 as 4- 2/V* -t dyjw * i!/uy i </'« 0......(U), 

where A's /’ , j), £). 
Multiply equation* (i) in order hy £, t/, f and auhtme*. fcho 
sum from F(f, ?/, then we have 

dV «ff 4 tjj■( »»•£ +if. 

From f|) mid /iii) wo h«v>* , ^ 

; «, A, //, n 0; 

j I', b, /, » i 

j 3' /> c > w ! 
- a , f?, m, ft *« r/ | 

thtrdw if1 Up A* *f ** np A, #/f «  t»v). 

i *, *. / ; h, b, f, , 
! fit, /, c j » f, n, m 1 

«, p, w, d 
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The determinant on the right side of (iv) is called the 
discriminant of the function F [sc, y, z)> and m denoted by the 
symbol A. 

The determinant on the left side is the discriminant of 
the terms in F(x, y, z) which are of the second degree; it is 
also the minor of d in the determinant A, and, m in Art. 57, 
we shall denote it by D. Equation (iv) may therefore be 
written 

cTD = A ........(v). 

76. The equations for finding the centre can also be 
obtained from Art. 58 (i); for (f, rj, f) will be the middle 
point of every chord which passes through (£, i}f f), pro¬ 
vided 

dF dF dF A 

It should be noticed that tho co-ordinates of the centre 
are given by the equations 

£ v K i 
17 Vir”2?' 

where U, V, W, D have the same meanings as in Art. 57. 

77. If, by a change of rectangular axes through tho same 

origin, an? + ly* + cz* + 2fyz + Igzx + 2hxy 

becomes changed into 

aW + iy + eV + 2f'yz + %g'zx + 2h'xy; 

then, since a? + tf + z*\s unaltered by the change of axes, 

o<B*+Zy + C2,+ 2fyz + 2gzx + thxy — X (m* + y* + s*),. .(*) 

will he changed into 

a'a? + Vtf + cfj? •+• if'ys + 2g’m + 2/t'xy 
- X («* + y* +1*).(ii). 

The expressions (i) and (ii) will therefore be the product 
of linear factors for the same values of X. 



ISVAUXASfH. 

The condition that ft) m tin.? product *4 lirnw facttii.» k 

l a — X, A * f# - <4 
A * A - A * / 

g > / * c * k < 

that in 

X»~X' (a 4* & + c) I- X (fc f *w f nU - /* — */* - /#*) 
« r,d,r i *2fyfi « ii/? - yf — rAf) ^ C|, 

The condition tlmt fit) h the ftfoilitrl nf !in««nr fhrtoni i;i 
similarly 
Xa-~Xf{» 4-1/ +r/| | \<bV' f rV f n%' -/** * ff-h'h 

— ty6V 4 - 4/^ - A//’1 - r?#'1) * ft. 

Since tin* root** of tin* nl *»•*■>• cubic ii*ir* iti X am the 
same, the? eoofficiffiit* mii:4 hr rijtial 

Hence tin* following *ocprr nm by any 
change of rectangular j«h through fti#* mtm* origin, find 
are therefore calh'd 

a + k 4 f.... 
Jfc 4 cit 4 nli *»/* «. 11, 
ttM 4 tfgh ~##/f — Af1 - rA1 111* 

Bine© the coefficient* of ili«? tartri* of ihu aamnd degree 
are unaltered hy a change of origin, the axe* being parallel 
to their original dimetions, it follow* that the exprewiintts 
I, II, and 111 are unaltered by my change of mctatfegular 
mm. 

78. We have aeon {Art, iSj that by a propur choice of 
reetiingtilar i«« i#4f 4 hf 4 ♦ %/ys + ifft* 4* S/wry ran al¬ 
ways \m reduced to the form *x* + 0f i yi \ and't hi* re¬ 
duction can be effected without changing the ctrigita* for tit 
terms of the »e«»t4 degrMj mm not altered by Irttisforiiiiiif to 
any parallel mm* 

Mow $P -f */f 4* J* k titmlfered by a change of reef angular 
mm through the niiiit origin* Hence* when the axee art m 
changed that 
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aa? + bf + cz* + 2fxjz + 2gzx + 2/m/ becomes «* *h 0f + yz\ 

ax* + by* + cz* + 2'fyz + 2gsx + 2hxy - X (£ + y* + *’) ... (i), 

will become 
cur* + 0f + yz*- X(a? + f + :*)....(ii). 

Both these expressions will therefore bo the product of 
linear factors for the same values of X. The condition that 
(i) is the product of linear Factors is 

a —X, h , g aO...(iii). 

h , b-X, f 

I g , f .c-x 

But (ii) is the product of linear factors when X is equal to 
a, 0, or y. 

Hence the coefficients a, 0, y are the three roots of the 
equation (iii). 

The equation when expanded is 

X*—X* (a + b + o) -I- X (ah + be + m —f* -g* — A4) 

- (ube + 2fgh - a/* - tig* - ch*) - 0. 

This equation is called the discriminating cubic. 

It should be noticed that the equation is tin: «»we m that 
found in Art. 60. 

79. We proceed to show how to find the nature of a 
conicoid whose equation is given. 

First write down the equations for finding tint centre of 
the conicoid; and from Art. 75 wo see that there k a definite 
centre at a finite distance, unless the determinant 

a, h, g s D 

h, b, f 

\ 9i ft G 
is zero. 
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If D be not zero, change to parallel axes through the 
centre, and the equation becomes 

ax2 + by2 4- cz2 + 2fyz + 2gzx + 2hxy 4- d! — 0, 

where d' is found as in Art. 75. 
Now, keeping the origin fixed, change the axes in such a 

manner that the equation is reduced to the form 

ax2 4- y%24- 72^ 4- d' ~ 0. 

Then, by Art. 78, a, /3, 7 will be the three roots of the dis¬ 
criminating cubic. 

[When the discriminating cubic cannot be solved, since its 
roots are all real [Art. 64], the number of positive and of 
negative roots can be found by Descartes’ Rule of Signs.] 

Since Dd! = A, the last equation may be written in the 
form Dix2 4- Dfiy2 4- Dyz2 4- A = 0. 

If the three quantities ~ , ~~ are all negative, 

the surface is an ellipsoid ; if two of them are negative, the 
surface is an hyperboloid of one sheet; if one is negative, the 
surface is an hyperboloid of two sheets; and if they are all 
positive, the surface is an imaginary ellipsoid. 

If A = 0, the surface is a cone• ... 

Ex. (i). 11a?2+10?/2+62s - 8yz+4zx - 12xy + 72a? - 72y + 36# +J50=0. 

The equations for finding the centre are ~ = ^- = ~=0, ox 
chx cLy ctz 

lla?- 6|/ + 2^ + 36=0, 
- 6a?+ 10^-42-36=0, 

2a?- 4i/ + 62 + 18 = 0. 

Therefore the centre is (- 2, 2, -1). 
The equation referred to parallel axes through the centre will therefore be 

11a;2+IO3/2 462s-83/2+420; — 12o?t/-12=0. [Art. 75 (iii).] 
The Discriminating Cubic is X3 — 27X2 + 180X — 324=0 ; the roots of which 

are S, 6,18. Hence the equation represents the ellipsoid 3a?2+6j/a+182s=12t 
a?2 y2 - < 

01 i+j+rL 
We can find the equations of the axes by using the formulae found in 

Art. 60. The direction-cosines of the axes are \r f; -■§; 
-fc f, -fc . 
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Ex. (ii). as + 2y5+8i!s-4w-4j-yT<i=0. 

The Discriminating Cubic is X»-6V +8X4-14=0. All the roots of the 
cubio are real; hence, by Descartes’ Knlo of Signs, them aro two positive 
roots and one negative root. The surface is therefore an hyperboloid of 
one sheet, an hyperboloid of two sheets, or a cone, according as d is 
negative, positive, or aero. 

80. Next suppose that D- 0. Then the throe planes 
[Art. 75 (i)] on which the centre lies will not intersect in a 
point at a finite distance from the origin, and we shall have 
three cases to consider according as the planes meet in a 
point at infinity, or have a common line of intersection, or 
are all parallel to one another. These three eases wo shall 
consider in the following Articles. 

It should be observed that when D *» 0 one root of the 
discriminating cubic is zero. 

81. The conditions that the planes whose equations are 

ax + hy + gz + u «= 0, 
hx + by +fz + v ■* 0, 

and gx +fg + cz + 0, 
may he parallel are 

a h g , h h f 
A b J g f o 

These conditions may be written 

af=*gh, bg = hf, ch**fg.(i). 

Now these are the conditions that the terms of the second 
degree should be a perfect square; and when this is the case 
it is obvious on inspection. 

When the terms of the second degree are a perfect 
square, the general equation can be written in the form 

fgh ^ ^* ++ 2tt® + Ivy + 2w» + d *■* 0.. .(ii). 

If the plane w + vy+wz<mQ is parallel to the plane 
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the equation (ii) will represent two parallel planes: the con¬ 
ditions for this are 

uf— vg = wh.(iii). 

If the conditions (iii) are not satisfied, the equation (ii) is of 
the form Ay2 4- Bcc = 0, 

which represents a parabolic cylinder whose generating lines 
are parallel to y = 0, x ==. 0. 

Hence the general equation of the second degree repre¬ 
sents a parabolic cylinder whose generating lines are parallel 
to the line 

^ + -4-^ = 0, wc 4- 4- wz = 0, 
j y 

provided the conditions (i) are satisfied, and that (iii) are not 
satisfied. 

The latus-rectum of the principal parabolic section can be 
found by the same method as that employed in Conic*, 
Art. 172. 

Ex. Find the nature of the conicoid whose equation is 

4tx2+y’2 -f 4z2 ~ iyz + Szx - 4:xy + 2x - 4?/ -j- 5z 4-1=0. 
The equation is 

{2x - y + 2^)a+2x - 4y + 5z+1=0. 
This isiquivalent to 

(2x-y + 22-j-X)2==x(4X -2) -y (2X-4)+2(4X- 5) 

The planes 2x-y+2z+\=Q, and x (4X—2) - y (2\ - 4) + z (4\ - 5) -1=0, 
will he perpendicular, if \=1. Hence the equation of the surface may be 

written (2x~y + 2z-bl)2=2x-|-2y--z-lj4; 

(2x-y+2z+l\* 1 2x + 2y~z —db 
—S ””3 ‘ 3 

Hence, taking 2x~^ + 2z+l=0, and 2a;+2?/- 2-1=0 as the planes y=0 
and x=0 respectively, the equation of the surface will be 

Hence the latus-reetum of a principal parabolic section is * 
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82. Next suppose that the three planes on which the 
centre lies axe not all parallel, but that they have a common 
line of intersection. 

If we take any point on the line of centres for origin, the 
equation will take the form 

cut? + btf + a? + 2fyz + t<jzx + 2/wy + d' *■ 0. 

Then, keeping the origin fixed, by transformation of axes 
the equation will be reduced to the form 

a®5 + fiy* + cf = 0........(1), 

One root of the discriminating cubic is zero, since 
and the roots a, 0, 0 are given by the equation 

A’ — Aa (a + b + c) + X (be + ca + ab — f* - tf — l?) ** 0, 

If 61 — 0, the surface represented by the equation-(i) is 
two planes, real or imaginaiy. 

If 6' he not zero, the surface is a cylinder. 

The conditions that the three planes 

ax + hy + gz + a *> 0, 
hx + by +fz + v =0, 

gx+fy + cz + w -0, 

may have a common line of intersection, arc given hy 

a, kt g, k «(>, [Art. 18] 

| h, b, /, « 

I g, f, c, w 

that is, £T- V- 

Ex. find the nature of the conloold whoa# equation !** 

+|f*+If11 -1 6*a? - &ey+9to -1% - 8# * 1111 * ft 
The equations giving the centre are 

Site - 4?/ - 8* *f 48«0f 
- 4#4* y -10«0» 

and - 8® 4-4*- 4*0, 

Hence there Is a line of centres. find on# point- on %\m Urn* for ♦ sample 
(?* % 1)» and change ft# origin to ft# point {§» i§» 1! t to ill 
ftenleeome &2at4’y*4-4t*~16*4~8toya»l* 
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rjpjfcxG discriminating Cubic is \8-3 7\2 + 84X=0. One root is zero, and the 
ot^er two roots are positive; hence the equation is an elliptic cylinder. 

rjpjtie axis of the cylinder is the line of centres; and its equations are 

x y -10 z-1 

S3. If the planes on which the centre lies meet at a point 
we proceed as follows. 

{Since one root of the discriminating cubic is zero, the 
equation can always be solved: let the roots be a, 0. 

JTixrd the directions of the principal axes of the surface, 
l>-y rnoa/ns of the equations of Art. 60; and take axes parallel 
-to tdttese principal axes. The equation will then become 

ax2 4 /%2 4- %u'x 4 2 v'y 4 2 w'z 4 d = 0, 

ox, by a change of origin, 

ax2 4 (3y2 + 2 viz = 0. 

Hence the surface is a paraboloid, the latera recta of its 

p>rixxci]pal parabolic sections being ™ and . 

Ex. IFind the nature of the surface whose equation is 

3^0 ~ 6 yz - 6 zx -lx- 5y+ &z+ 3=0. 

Tlxe discriminating Cubic is Xs - 3\2~ 18X=0; the roots of which are 6, 
— 3, O. 

Th© 

H. 31 

1 1 — 2 
direction-cosines of the principal ares are -^r; 

—77z » —to- » -vs ; and -i, ^, 0. Hence to find the equation referred to 
^/3 ts/& y^ sj* 
axes parallel to the principal axes, we must substitute 

» . y . * * . JL 
y6*y3*y2’ yB + ys 

. J?L , JL 
y2 ’ y3 yd 

Cor sc, # respectively. The equation will then become 

6a;2 - By2 - V6a; - 2y By-y2* + 3=0; 

ox* by oTianging the origin 6x2~3y2-y2;z=0. 

Thus tHe surface is a hyperbolic paraboloid, the latera recta of the principal 
parabolas being $y2 and $y2. 

st* s. a. 5 
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84 It follows from Art. 75 (ii) and (iv) that when D is 
not zero, the necessary and sufficient condition that the 
surface represented by the general equation of the second 
degree may be a cone is A = 0. 

When A = 0 and also D - 0, then will U, V and W be 
all zero*: hence [Arts. 81 and 82] the surface must be either 
a cylinder or two planes; and cylinders and planes are 
limiting forms of cones. Conversely, when the surface re¬ 
presents a cylinder, or two planes, U, V, If and U are all 
zero, and therefore also A = 0. 

Hence A = 0 is the necessary and sufficient condition 
that the surface represented by the general equation of the 
second degree may be a cone. 

85. To find the conditions that the surface represented by 
the general equation of the second degree may be a surface of 
revolution. 

We require the condition that two of the roots of the dis¬ 
criminating cubic may be equal In that case 

cud 4- by*+ cz% 4- 2fyz 4- %gzx + %hxy 

can be transformed into 
ad 4- of + <yjP. 

Hence 

ad 4* bf 4* od 4- 2fyz 4- 2gm 4- 2hay — X (d 4- / 4- d).. * (i), 

* This can be proved as follows: 

We have uU+vV+wW+dDm/i. 

And, since a determinant vanishes when two of Its rows are Identical, we 
have also 

aU+hV+gW*mDm®9 
hU+br+fW+v&mO, 

and gU+/V+eW+wD*0. 

Hence when A=0 mid D=0, unless Wf F, W are al aero, m mm ilhttlnate 
U, F, W from the first equation and mf two of the others: we thus 
obtain three determinants whkh are all wre; hut these iltU nnumnin $m 
U9 F, and W. 
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can be transformed into 

ax2 + ay2 + ryZ2 + y* + z*).(ii). 

Now if we take A = a, (ii) will be a perfect square. 
Hence if the surface is a surface of revolution, we can, by 

a proper choice of X, make (i) a perfect square; and that 
square must be 

\x \J(cb — X) 4- y \J(b — A.) Jt z \/(c V)}2* 

We therefore have 

*J(c — X) Aj(a — X) = A l.(iii). 
\/la^X)J{b-X)=g J 

■•f-X.(iv). 

Hence, if fg,h be all finite, we have 

. / 9 
the required conditions. 

Let A, any one of the three quantities f, g, A, be zero; 
then from (iii) we see that X = a or X = b, and therefore also 
# = 0 or /= 0. 

Suppose <7 = 0 and A = 0; then X = a, and the condition 
for a surface of revolution is 

(b-a)(c-a) =/*.(v). 

Examples on Chapter III. 

1. Determine the nature of the surfaces represented by the 
following equations: 

(i) as2 —2^ + 6^4- 12xz + a2 = 0. 

(ii) as2 + z*-t-4&y- 2xz4- 1. 

(iii) cc2 — 2xy — 2ys — 2;wc = a9. 

(iv) 32a?2 + y2 -f — 16^c — Sxy = 1. 

(v) Jx+ Jy+ = 

(vi) 2sc? + 5y* + z2 — 4a??/- 2oj - 4y - 8 = 0. 

5—2 
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2. Find the nature of the surfaces represented by the following 
equations: 

(i) cc*+ 2y*-3s*~4y3-f §zx-\%SGy + 1 =0. 
(ii) 2sc® 4* 2y* - 4c® - 2yz - 2zx - (mj - 2a: - 2// + s - 0. 

(hi) 5x® - y® + s* 4- 6a«? + 4wy + 2« + 4y *f» 6z *** 8. 

(iv) 2ctr® *f 3ys + 3ys + 2zx + 5xy — 4y 4 8% — 32 — 0. 

Find the equations of the axes of (i), and the latcra recta of 
the principal parabolas of (ii) and of (iii). 

3. Shew that the equation 

a?3 + 3/ + z§ + y» 4* zx + xy « 1, 

represents an ellipsoid the squares of whoso semi-axes lire 2, 2, |» 
Shew also that the equation of its principal mm m »* y * & 

4. Shew that, if the axes, supposed rectangular, be turned 
^ round the origin in any manner, u§ + «?a + tcs will m unaltered. 

5. Shew that, if three chords of a conicoid have the same 
middle point, they all lie in a plane, or intersect in the centre of 
the conicoid. 

6. Through any point 0 lines are drawn in fixed directions 
which meet a given conicoid in points P, F mi Q, Q* respectively; 
shew that the rectangles OP, OF and OQ, OQ* are in a constant 
ratio. 

7. If any three rectangular axes through a fixed point 0 cut 
a given conicoid in P, F; Q, Q and Ef E; thin will 

pf§ qq* nnn 
mroF +w:<w+&£*: on** 

3 1 1 1 
ana oFj^ + gy£)^» 

be constant. 



CHAPTER IV. 

Ooxtmitm Rkkkkhki* to thkir Am 

86. _ In the present chapter we shall investigate some 
properties of conicoids, obtained by taking the equation* 
of the RurfaecK in the simplest forms to which they can be 
reduced. 

We shall begin by considering the Hpfwro. 

Tut; Hi'Hkiik. 

87. The equation of the sphere whose centre is (a, b, c) 
and radius d is {Art. 8] 

{*- «)* + <y- bf 4* (s - cf m <?, 
The equation of any sphere is therefore of the form 

#* Hh f + is + HA# + •J/iy + *Uh -h l)*» 0. 

Conversely wery equation of the above form, that is every 
equation in which the cnefOt *dV*, »/, and a* are equal, and 
in which the terms ye, *r, ary do not tqqxur, represents a 
sphere. 

88. The general equation of a sphere contains four 
constants, and therefore a sphere can 1st inode to satisfy four 
conditions. Wo may, for example, find the equation of a 
sphere which parses through any four points. 
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If (xv yv *t), (xs, y„ zt), (x„ yt, *,), (x,;/,, zt) be the four 
points the equation of the sphere through them will be. 

x* + y* + z*. W , y> *, 1 

< + !/? + <> Vv 1 

«.*+y.*+*.*. y*. *,• 
1 

<+y;+*>*> y.» 1 

a!4+y*+z*> ^4* y«. *v 1 

89. The equation of the tangent plane at any point 
(x', y', z') of the sphere whoso equation is -f- t/s -f- zi = «* is 
xtd + yy' + zz — a* [Art. 52, Ex. 1]. This result can be 
obtained at once from the fact that the tangent plane at any 
point (a?', y, *') on a sphere is perpendicular to the lino 
joining (x’, y', z') to the centre. This gives for the equation 
of the plane 

(x -x') x'+ (y- y) y' + (z- s') s' - 0, 
or xx' + yy' + zz *= a®. 

The polar plane of any point (of, y\ d) can be shewn, by 
the method of Art. 53, to be 

azd + y/ +zz'**a\ 

90. It can be easily shewn, that if 8 * 0 bo the equation 
of a sphere (where 8 is written for shortness instead of 
a? + $/* + **+ 2 Ax + 2iBy + 20z + P), and the co-ordinates of 
any point be substituted in 8, the result will bo equal to the 
:•!» lis itTi] fl i iT&S r:>iW:Vil m i uS 1 *fi» A iTsil ii X 7»»1 iTIlil 7 

Hence, if 8= 0, and 8 *= 0 be the equations of two spheres 
(in each of which the coefficient of a? is unity), 8 «■ 8 is the 
locus of points, the tangents from which to the two spheres 
are equal. 

The surface whose equation is 8-8 **() passes through all 
points common to the two spheres 8** 0, and 8 * 0; for, if 
the co-ordinates of any point satisfy the equations 8 ** 0 and 
8' = 0, they will also satisfy the equation 8-8**0. 

Now S—8*=0 is of the first degree.and therefore represents 
a ®toie. The plane through the points of intersection of two 
spheres is called their radical plane. 



We have seen that the tangents drawn to two spheres 
from any point on their radical plane are equal. 

The radical planes of four given spheres meet in a point, 
viz. in the point given by >6’x = S& ~ SB~ S4) where £t « 0, 
$ =0, Ss = Q, jS4 — Q are the equations of the four spheres, 
in each of which the coefficient of a? is unity* 

This point is called the radical centre of the four spheres. 

Ex. 1. Eind the equation of the sphere which has (xv yv %) and 
(r2, z2) for extremities of a diameter. 

If (%, yf z) b© any point on the sphere, the direction*cosines ot the lines 
joining {x, y, z) to the two given points are proportional to x-xX) y »yu 
*-*!, and x y - y%, z ~~ z2, 

Ihe condition of perpendicularity of these lines gives die required 
equation 

(3 - 3!) (*—rj •+ (y - Jf!) (y- yj> + (*- *x) {* - %)» 0. 

Ex. 2. The locus of a point, the sum of the squares of whose distances 
from any number of given points is constant, is a sphere. 

Ex. 8. A point moves so that the sum of the squares of its distances 
from the six faces of a cube is constant; shew that its locus is a sphere* 

Ex. 4. J, B are two fixed points, and P moves so that JPA*>*nP£ : shew 
that the locus of JP is a sphere. Shew also that all such spheres, for different 
values of % liave a common radical plane* 

Ex. 5. The distances of two points from the centra of a sphere aw pro¬ 
portional to the distance of each from, the polar of the other* 

Ex. 6. Shew that the spheres whose equations are 

#+y* 4- # ± *p 2By+%Cx *p D » 0, 
and a?^+pa+*9+2n£»4*2&p*i-to+4«>0( 
cut one another at right angles, if 

2Aa^2Bb+2&c~JD ~<dss{). 

91. We proceed to prove some properties of the ellipsoid; 
and we shall always suppose the equation of the surface to be 

aa + hI+? L' 

unless it is otherwise expressed. 

To obtain the properties of the hyperboloids we shall 
only have to make tire necessary changes iff the signs of 
i* and c\ 
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We have already seen [Art. 52J that the equation of the 
tangent plane at any point («', y, z') is 

sox' , yy' zz ^ . 
-r+ hi +-j 1...W- 

The length of the perpendicular from the origin on the 
tangent plane at the point (®'t y', z) is [Art. 20] given by the 
equation 

A x'*, y* , •s'S#' .... 
p a o c 

Equation (i) is equivalent to be + my + nx where 

l at m y' n z' 
p~a* ’ p~ir p~W’ 

,. - aH* + b*m* + <?n* *'* , y" , s'* . 
jp* a* o* o* 

Hence the plane whose equation is fa + my + nz *® j>, will 
touch the ellipsoid, if 

n*s» a*P+eV ..(iii). 

92. To jSnd tAo locus of the point of intersection of three 
tangent planes to an ellipsoid which are mutually at right 
angles. 

Let the equations of the planes he 
lt tc+mt y+n, z « J (a*l* ■+ b*m* 4- <fn*), 
ltx + mty+ntz**J (a*l*+b*m* + c\% 
lg®+«iiy+n,e»-V (aH* + b*m* + c*nt*). 

By squaring both sides of these equations and adding, we 
have in virtue of the relations between the direction-cosines 
of perpendicular lines 

as* y* f a* = a* + A* + d*. 
The required locus is therefore a sphere. This sphere is 

called the director-sphere of the ellipsoid. 

93. The normal to a surface at any point P is the 
straight line through P perpendicular to the tangent plane 
at P. 
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The normal to an ellipsoid at the point (*', y', s') in 
therefore 

a* 1/' c* 

[Art. 01.] 

the direction -cosines of the norma! are 

vx w' /»' 

o* ’ 4* * / * 

04. If the normal at (ir\ y\ s') pans through thn par- 
ticular point (/, g, h) wt* have* 

bg. 
**■ u £. 
it* b* ? 

Put each fraction oqital to then 

, a]f 
n’ + \’ 

Hence, nince 

^ , - 
**+x* 

f'W**! „« t ,t + . * r» 

we have 

•V.. 4 %\ , ^ m , 
(m* * V } (t'U K>* + (t* i K? '■ 

. Siam this iMjiiatifin fur X h nf lliii math it fblbws 
tilt fcltrt me mm fwiiiiji the tmnmim at witieh jmm through a 
pm plat 

Sx* I. Thf At m$ pm% J* tit ah fti§»#il«t «g»M*t* h Mffftwwil 
ptat i» 0* Bhew Hint lit# faftiff «t tfe* milllit (4 J*t| i* m wtpwfdL 

1*. 2. fb« Hunts*! At **»? fwittl i* ©f mi «?IltfMtt#i4 awti* tit# |#ii»lpt 
PMM* k % % 0r Hf*#w tltnf rnp 1% »# Iti % mlift 

lx# I# 97b# »«»•!* to w* #llijtt«lft #l the f*4iti J*# I# mart * ftfhtfffpl 
te @t tf $ ito«w that thti f&tmr t§hfalt FF »t titfst »gltt btawt* 
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Ex. 4. If P, Q be any two points on an ellipsoid, the plane through 
the centre and the line of intersection of the tangent planes at Pf Q, will 
bisect JPQ. 

Ex. 5. P, Q are any two points on an ellipsoid, and pianos through the 
centre parallel to the tangent planes at P, Q cut the chord PQ in P', Q'0 Shew 
that PP'=QQ'. 

95. The line whose equations are 

_y-§„* -7 = 
l m n * 

meets the surface where 

(a + Irf t (fi + mrf t (y 4* nr)* __ n 
2 * Tt T* “ j# “ “ * « 

a o* cr 

If (a, ^9, 7) he the middle point of the chord, the two 
values of r given by the above equation must he equal and 
opposite; therefore the coefficient of r is zero, m that we 
have 

Hence the middle punts of all chords of the ellipsoid 
which are parallel to the line 

x y _ z 
l m~~ n 

are on the plan© whose equation is 

Im f my nz . 
55 + # + '?'s“0- 

This plane is called the diametral plane of the line 
x y z 
1 m n* 

The diametral plane of lines parallel to the diameter 
through the point (a/, y\ z) on the surface i® 

hence the diametral plan© of any diameter is parallel to the 
tangent plane at the extremities of that diameter. 



The condition llinl the point (r\ g'\ 2') should b« 
on the diametral plain* it) in 

sir »/ ,y 

u* 1/ 

The symmetry of this remit shew* flat if *4 jwlut Qhf**m 
tho din urn trill plfitte of O/l tlnii will l* he nf» flu* lihiinefriil 
plane of (JQ> 

Let OJt !>** the lim* of inletoption of tint iliainefriit 
pianos of Ol\ OQ; then, si nee the diametral phiiuot of (}t\ 
OQ pan# through O/f, fit** diametral piano of O/l will pam 
through V mid thrMiigh {K mid will therefore b«* the plane 
POQ, ho that the piano through mty two of the throe itruta 
OP, OQ, Oil in dtatnolinl It# flu* thiol 

Three planes are said to lie rwi/i#i/«il#* when eaeh is tlbe 
metrai to the lino of InUmm^wM of the other two, mul throe 
dkmotnm are m%ut f«* In* eotijttgato when the plane of any two 
is diametral to the third. 

06, If (r , y|t «,}» 4rf, > ,tsJ and f*rf r, 
of conjugate diameters, wo have from Art, if,# 

’t) he ettr«itiittii*R 

f Vi„ 
n* * h1 f e# ‘ 

i. 

j 
*<Al*o# sitie© tli© points art cm tliii *tirfts£$, 
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Now from equations (ii) we see that 

5 Vi *i-S % ?*. and -f 
b’ c’ a’ b’ c’ a 

are direction-cosines of three straight lines, and from equations 
(i) we see that the straight lines are two and two at right 
angles. Hence, as in Art. 45, we have 

a’) 

•■(«»), 
*I* + ** + *,#-e*J 

and 

yA+ys»+y*h™°\.(iv)> 
*1*1+*^*+***»“ o! 

We have also from Art. 46. 

a- 

S 

h 
b’ 

h 
b ’ 

*, I = 1, or j xlt yv sx • abo. 

a h 
a’ o’ 

c 

*> 
c 

4 
c 

•(v). 

y„ v 

From (iii) we see that the sum of the squares of the pro¬ 
jections of three conjugate semi-diameters of an ellipsoid on 
any one of its axes is constant. 

Also, by addition, we have, the gum of the /squares of three 
conjugate diameters of an ellipsoid is constant 

From (v) we see that the volume of the parallelepiped 
which has three conjugate semi-diameters of an ellipsoid for 
conterminous edges is constant. 

In the above the relations (iii) and ^iv) wore deduced 
from (i) and (ii) by geometrical considerations. They 
could however be deduced by the ordinary processes of algebra 
without any consideration of the geometrical meaning <h the 
quantities, and hence the results are true for the hyper¬ 
boloids. 
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97. The two propositions (1) that the sum of the squares 
three conjugate semi-diameters is constant, and (2) that 
parallelopiped which has three conjugate semi-diameters 
conterminous edges is of constant volume, are extremely 

portant. We append other proofs of these propositions. 
Since in any conic the sum of the squares of two conjugate 

n-diameters is constant, and also the parallelogram of 
ich they are adjacent sides, it follows that in any conicoid 
change is made either in the sum of the squares or in the 
ume of the parallelopiped, so long as we keep one of the 
ee conjugate diameters fixed. 
We have therefore only to shew that we can pass from 

7 system of conjugate diameters to the principal axes of 
j surface by a series of changes in each of which we keep 
3 of the conjugate diameters fixed. 
This can he proved as follows:—let OP, OQ, OR, he any 

•ee conjugate semi-diameters, and let the plane Q OR cut a 
ncipal plane in the line 0 Q') and let OR be in the plane 
OR, conjugate to OQ; then 0P9 OQ, OR are three 
ijugate semi-diameters. 
Again, let the plane FOR' meet the principal plane in 

dch OQ lies in the line OP", and let OR" he conjugate to 
P" and in the plane ROM'; then OP", OQ and OR" are 
ni-conjugate diameters- But, since OR' is conjugate to OP" 
d to OQ', both of which are in a principal plane, it must he 
principal diameter. 
Hence, finally, we have only to take the axes of the 

ption Q'OF' to have the three principal diameters. 

98. It is known that any two conjugate diameters of a 
nic will both meet the curve in real points when it is an 
ipse; that one will meet the curve in imaginary points 
len it is an hyperbola; and that loth will meet the curve 
imaginary points when it is an imaginary ellipse. Hence, 

' transforming as in the preceding Article, we see that 
ree conjugate diameters of a conicoid will aU meet the 
rface in real points when it is an ellipsoid; that one will 
eet the surface in imaginary points when it is an hyper- 
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boloid of one sheet; and that two will meet the surface in 
imaginary points when it is an hyperboloid of two sheets. 

99. To find the equation of an ellipsoid referred to 
three conjugate diameters as axes. 

Since the origin is unaltered we substitute for xt y and z 
expressions of the form bo 4 my 4 nz in order to obtain the 
transformed equation [Art. 47]. 

The equation of the ellipsoid will therefore be of the form 
Ax* 4 By* 4* CV 4 2Fyz 4* 2 Ozx 4 2llxy = 1. 

By supposition the plane & = 0 bisects all chords parallel 
to the axis of x, Therefore if (xv yv zj he any point ou the 
surface, (— xv yv zt) will also be on the surface. Hence 
Qzjx. 4 Ex.yt = 0 for all points on the surface: this requires 
that G = ll = 0. 

Similarly, since the plane y — 0 bisects all chords parallel 
to the axis of y, we have H - F — 0. • 

Hence the equation of the surface is 
An? + By* + 6V* * 1, 

a? if z* 
or + ' ' 

where a', V, <f are the lengths of the semi-diameters. 

100. We may obtain the relations between conjugate 
diameters of central conicoids by the following method :— 
The expression 

+ +yt+e*) 
is transformed, by taking for axes three conjugate diameters 
which make angles a, &, y with one another, into the 
expression 
od 
^5 + ^, + + X («*+y-i-2*+2yx cos « + 2x» cos 

The two expressions will therefore both split up into 
linear factors for the same values of X. Hence the roots of 
the cubics 

(? + X')(^ + X)(? + X')“0* 
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1 , 
^ + x. A cos 7, A cos /3 

A cos 7, 
1 _ 
y2 4- A , A cos a =0 

Acos/3, X cos a, 
h+x 

e equal to one another. 

Hence, by comparing coefficients in the two equations, we 
tve 

a2 + 62 + c2=a'2 + &'2 + c'2:.(i), 

o* 4- cV 4- a?b2 = 6'V2 sin2a 4- c/2a2 sin2/? 4- a/2£/2 sinfy.(ii), 

id 

k = a!Vc’ V(1 — cos2a — cos2/3 — cos27 4- 2 cos a cos/3 cos 7).. (iii). 

Therefore the sum of the squares of three conjugate 
Lameters is constant; the sum of the squares of the areas of 
le faces of a parallelepiped having three conjugate radii for 
mterminous edges is constant; and the volume of such a 
arallelopiped is constant. 

Ex. 1. If a parallelopiped be inscribed in an ellipsoid, its edges will be 
irallel to conjugate diameters. 

Ex. 2. Shew that the sum of the squares of the projections of three 
mjugate diameters of a conicoid on any line, or on any plane, is constant. 

Ex. 3. The sum of the squares of the distances of a point from the six 
ads of any three conjugate diameters is constant; shew that the locus of the 
oint is a sphere* 

lx. 4. If be extremities of three conjugate 
iameters of an ellipsoid, the equation of the plane through them will be 

^(%+a;24-a?3) + |5(y1-fy2+y8) + j2(%+2a4-%)==l. 

^Ex. 5. Shew that the tangent planes at the extremities of three conju¬ 
re diameters of an ellipsoid meet on a similar ellipsoid. 

Ex. 6. Shew that the locus of the centre of gravity of a triangle whose 
ngular points are the extremities of three conjugate diameters of an ellipsoid 
s a similar ellipsoid. 
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The Paraboloids. 

101. We have seen that the paraboloids are particular 
cases of the central surfaces; properties of the paraboloids 
can therefore he deduced from the corresponding properties of 
the central surfaces. We will, however, investigate some of 
the properties independently. 

We shall always suppose the equation of the surface 
to he 

od ?/ 

a h 
* tz. 

102. To find the locus of the point of intersection of three 
.tangent planes to a paraboloid which are mutually at right 

Let Ijs + mty 4- 0 be on© of the tangent planes; 
then, since the plane toucnes the surface, we have 

cd* + bm*« 2ntpt. [Art. 57, in] 

Hence we may write the equation in the form 

lp>%x~r mtnjy + nt3s + i (al* + bm*)* 0. 

We have also 

Ip* ® 4* mtn9 y 4- n8f « +1 (al* + bm*)« 0, 

and lz%04*y + n*z + %(al* + bm*)«0. 

Since the planes are at right angles, we have by addition 

^4*i(a4*5)*®0} 

hence the locus is a plane. 

103. The equation of the normal at any point (#> y\ d) 
of the paraboloid is .# 

m-~d v — t/ * — d 
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The normal at (F, y, s’} will pass through the particular 
point (/, g, h), if 

j — n ■' g — if ft - y 
•'mmmmmmm SR UmmmmySlmm IS • # 

iL “ 5 
« /r 

Put each fraction equal to X ; then 

, of > k'f . ; .. 
uf=a■+\^"r+\" A','X; 

and substituting in 

we have 

./’* »/* , 
a v 

+ h,f t{h-s n 
(a + \f + {k + \)‘ 1 ' 

The equation in X in of tlm fifth 
five normals can bo drawn from any pmtit to a jmmlmhdd, 

104 The middle point* of all chord* of tin) paraboloid 
which are parallel to the line 

X it z 
t ws sss ■■■■■' 
I m n 

are [Art. 5U] on the piano whose equation is 

.(If' (IF <IF .. 

or ‘f+ 
« 6 

Hcnco all diametral pianos are parallel to the axis of the 
surface. 

>, It is easy to shew conversely that all planus {mrallel 
to the axis are diametral plane*. 

A line jiarallel to the axis of the surface is called a 
diameter. Every diameter meet* the surface in am leant at 
a finite distance from the origin; and this [sunt to called the 
extremity of the diameter. • 

6.0.0. * 6 
I 



82 PARABOLOIDS. 

The two diametral planes whose equations are 
lx , my n 
- +~v — 01 = 0, 
a b 

i . m'y / a and — H—% — w =0, 
a b 

are such that each is parallel to the chords bisected by the 
other, if 

IV mm' _ n 
Hh v. 

a b 

If this condition be satisfied, the planes are called con¬ 
jugate diametral planes. 

The condition shews that conjugate diametral planes 
meet the plane £ = 0 in lines which are parallel to conjugate 
diameters of the conic 

a*2 - ^ -4-^ = 1. 
# a b 

Qv'V 105. If we move the origin to any point (a, & y) on the 
x surface, the equation becomes 

x* yl 2 mo. 2y0 . 

aba b 
If we take the planes 

x = 0, y =s 0, and ~ + ^ — z « 0 

as co-ordinate planes, and therefore the lines 

a 0 a ’ 0 b ]3’an<^ 0 "* 0 1 
for axes, we must [Art. 47] substitute 

a® aa t fty 

yw+sy 7W+W)’ 7oa+*s) + V(i8+^)+^ 
for a?, y, # respectively. 

The transformed equation is 
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This is the equation to the surface referred to a point 
(a? /3, y) as origin, two of the co-ordiimttt planes being parallel 
to their original direction#, ami the third being the tangent 
plane at (a, ft 7). 

/ Ex. 1. Shew that tli© 1 (mm of the ceiitriii ©f puiaUel tiwtlkiiw of a 
^paraboloid is a diameter. 

x Ex. 2. Shew that all plmum parallel to ill# as lit of 11 gwraboloid cut the 
v surface in parabolaa. 

Ex. 8. Shew that the latifim recta of all parallel parakdi# mmiimm of » 
paraboloid are «p»L 

Ex. 4. Shew that fli« iircjection#, «ii a plane g»«'rpf*tt<limilar to tint axli 
i of a paraboloid* of all plan© umXimm which m© nut parallel to the aJtia« aril 

similar conici. 

Ex. 5. P% Q are any two point * on n parakd<Mtv and the titnuml plain s 
at P, <2 interwict in the I in© MS; itlirw that tin* plan© through MS and the; 
middle point of PQ In paralh’1 to tin* axm of III© p?*iiib©bmi. 

Ex. 0. Shew that two cmijiirate point* on a diameter of » pmttbohdd 
are equidistant from the extremity of that tliattioter, * 

Ex. 7. Bbew that the «ttii of Itiii luteta m»ta of fit© mdiotK of a 
paraboloid* mad# by any two conjugal# diametral platm through a flsrcd 
point on the surfact , in ©ouMant* 

Conks, 

106. The general equation of a cone of the second 
degree is 

ax* + by* + cz* + 2fys + tysx + 2 hxy ««0. 
The tangent plane at any point (os', y’, s') on the 

surface is 

(®-d) (ad + hy + yx) + (y -y) (fid + by' 4•/:') 
+ (*- *') (ysf +//+cd) » 0, 

or 

x(ad + ky' + ys) + y (hd + hi/ +fs) + s (yd -f fy rs ) 0. 

The form of this equation shews that the tangent plane 
at any point on a cone pusses through its vortex, m,m geo¬ 
metrically evident from the fact that the* generating line 
through any point is one of the tangent lines at that point, 
and therefore lies in the tangent plane. 

6-2 



84 TANGENT PLANE OB’ A CONE. 

107. To find the condition that the plane lx+my+nz=Q 
may touch the cone whose equation is 

ax2 4- by2 4- cz2 4- 2fyz 4- 2gzx 4~ 2hxy = 0. 

Comparing the equation of the tangent plane at the point 

y\ /), namely 

a* {ax' + hy 4- gz) + y {hx 4- by 4- fz') 4- z {gx +fy + cz) = 0, 

with the given equation, we have 

ax' 4- hy + gzf _ hx' 4- by' +fz' _ gx' + fy 4- cz' 
l m n 

Put each fraction equal to — X, then 

ax’ 4- hy' 4~ gz' 4- XZ =0, 
hx -j- by' + fz' 4- Xm = 0, 

and gx' +fy' 4- cz 4* Xn = 0. 

Also, since (x, y, z) is on the plane, 
lx' 4- my' 4- nz' = 0. 

Eliminating x', y\ /, X, we have the required condition 
ct, h , g j I j83 0, 
ht b , /, m 

g, f, c, n 
l, m, 0 | 

or AP 4- Bm* + On2 4- 2Fmn + 2Gnl+ 2Him - 0, 
where A, i?, (7, &c. are the minors of a, 5, e, &e. in the deter¬ 
minant 

a, h, qK 

k, b, f 

f, o 

108. ^ If through the vertex of a given cone lines be drawn 
perpendicular to its tangent planes, these lines generate 
another cone called the reciprocal cone. 

The line through the origin perpendicular to the plane 

lx 4- my»0, is ?«® 1L m S. 
I m ?! 
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Hence, from the result of the last article, the reciprocal of 
the cone 

ax? 4- by1 + 02? + 2fyz 4-2<jzx 4- 2htcy —0, 
is Ax? + Bf + Ce? + 2Fyz + 2 Gzx + 2Hxy - 0. 

Since the minors of A, B, O, &c. in the determinant 

\A, H, 0 
Iff, B, F\ 
Iff, F, C 

are proportional to a, b, c, &e., we see that the relation be¬ 
tween the two cones is a reciprocal one. 

As a particular case of the above, the reciprocal of the 
cone 

ax? + by* + cx? = 0, is ~ 4- f- 4- — = 0. 
J a b c 

From this we see at once that a com and tie reciprocal 
are co-axnal. 

109. To find the condition that a com may have three 
perpendicular generators. 

Let the equation of the cone be 

ax? + bf4-cz* + 2fyz +■ 2gzx + 2 hxy ** 0.(i). 

If the cone have three perpendicular generators, and we 
take these for axes of co-ordinates, the equation will [Art. 73, 
Ex. 4] take the form 

Ayz 4- Bzx 4- Cxy** 0 .(ii). 

Since the sum of the co-efficients of a?, if and z* is an in¬ 
variant [Art. 79] and in (ii) the sum is zero; therefore the 
sum must be zero in (i) also. Therefore a necessary condition 
is , 

a 4- b + c = 0.(iii). 
If the condition (iii) is satisfied there are an infinite 

number of sets of three perpendicular generators. For take 
any generator for the axis of xr; then by supposition any 
point on the line y*»0, * — 0 is on the surface; therefore the 
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co-efficient of x2 is zero, so that the transformed equation is of 
the form 

by2 + cz2 + 2\fyz + 2gzx + Ihxy = 0 .(iv); 

and since the sum of the co-efficients of x2} y2y z2 is an in¬ 
variant, we have b -f c = 0. 

Now the section of (iv) by the plane x = 0 is the two 
straight lines 

by2 + cz1 +2fyz = 0; 

and these are at right angles, since h -f c = 0. 

110. If a cone have three perpendicular tangent planes, 
the reciprocal cone will have three perpendicular generators. 

Hence the necessary and sufficient condition that the 
cone 

ax2 + by2 + cz2 + 2fyz + 2gzx + 2 hxy = 0, 

may have three perpendicular tangent planes is 
A + .5-4- (7 = 0. 

Ex. 1. CP/ CQ, CR are three central radii of an ellipsoid which are 
mutually at right angles to one another; shew that the plane PQR touches 
a sphere. 

Let the equation of the plane PQR be Ix+my+nz=$>. The equation of 
the cone whose vertex is the origin, and which passes through the intersection 

of the plane and the ellipsoid ^ + + is^ + ]£ + £» (—* 

By supposition the cone has three perpendicular generators; therefore 
1 1 1_ 1 
aa + 52 +(.2-4,5 • 

Ex. 2. Any two sets of rectangular axes which meet in a point form six 
generators of a cone of the second degree. 

Ex. 3. Shew that any two sets of perpendicular planes which meet in 
a point all touch a cone of the second degree. 

111. To find the equation of the tangent cone from any 
oint to an ellipsoid. 

Let the equation of the ellipsoid be 

5Z + 1 + 1-! 
a*+ 62+c2~i- 
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liet the co-ordinate** of any two [wauls 1\ Q h«* //\ £ 

co'\ f, z* respectively. 
The eo-ordinates of a point which divides PQ in the mth* 
n are 

nx 4- mx' n/ 4* vif ft* Pi 
m 4 n * m 4 « 1 w* 4 m 

its point be on the ellipsoid, we have 

V + K WV_. (w f w/> 
c 

M « _ , * tf / *t # #/ 4, 

fI-'”V+2w;,(e + w'},v™0 
/2l/#a */"* J2#,f \ 

+m’U* ** v '4 O ’0' 
If the Hue PQ cut the *urface in coiucidkmt pointy the 

ve equation, considered m a quadratic in mtmt have 

al rootn; the condition fur lh« In 

')&+W-0 
(XX 

U4' 

If m £ * 

»" + -;;r "* ^ )' 
Hence, if the point t* (os', jf, s') In,* fixed, the flourdiniiten 
any point Q, on any tangent lino front l* to tlw tdlipwid, 
st satisfy the equation 

;4+s->)0$4‘) 
.«■ 

Hence (i) in the required equation of the tangent rule? 
m (*', y', /) to the ellipnoifl, 

112. If we aupjame the point (J, >/, s') to move to an 
inite distance, the cone will heroine a cylinder who»«- 
aerating lines nr« parallel to the line from the r«»tre 
the ellipsoid to tlw point {x, y', s’). 
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Hence, if in the equation of the enveloping cor 
x' = It, y = mr, z = nr, 

and then make r infinitely great, we shall obtain tb 
of the enveloping cylinder whose generating 
parallel to 

x _ y __ z 
l~~ m n ’ 

{x2 y2 s? _\/Z2 w? 1^ 

fc5 + F + ?-1jfe5 + 65 + ?~?j 

Substituting Ir, mr, nr for yV z' respectiv 
equation of the enveloping cone we have 

m2 n2 
62 + c2 

/xl ym zn 

Ws+Tr + 7' 
Hence, when r is infinite, 

U*+ 6a + C* ; u*+ V1 + cV U2 + 62 + c2 

113. The equation of the enveloping cylind' 
found, independently of the enveloping cone, in the 
manner. 

The equations of the straight line which is draw 
any point (x, y\ z) parallel to 

are 
x — x 

x 
V 

.y- 
" m n* 

l - r. 
I m n 

The straight line will meet the ellipsoid in t1 
whose distances from (x'y fi/y z') are given by the eq 

* ^ ' 'hi my' nzf\ 
a d* 7,2 d*' (5 

y z 
4. -i_ .8 ^ 12 ' ■ 1 ] 4- 2r 

a" V !<) 
mr 

* w ' &2 
The straight line will therefore touch the surfac< 

(of* , yn , ** (Id mg % 
t>+F+?-vb+^+?j=i7+?+- 
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Hence the co-ordinates of any point, which is on a 
tangent line parallel to 

x _ y _ z 
l m n * 

satisfy the equation 

(a?, tf_. *1 _ i\(l. vl. iil) m+nsY _ 0 
W + 63 + c* V L*A* + cV u* b* +cv ~0, 

which is the required equation of the enveloping cylinder. 

Ex. (i). To find the condition that the enveloping cone may have three 
perpendicular generators. 

The equation of the enveloping cone whose vertex is (tf, y\ zr) is 
^ r, 2 
Ts ** rk „ 

A fx^ ty* ** A fxx' ytf zx' A* _ 

If this have three perpendicular generators the sum of the coefficients of 
re2, y2, and sP must be equal to zero [Art. 109], Hence *'), the vertex 
of the cone, is on the surface 

fl 1 1\ (x* y* z* A 

(a* + l> + c=) («“ +A?-1) 
,£!+r+* V + d4iV 

Ex. (ii). Shew that any two enveloping cones of an ellipsoid intersect In 
plane curves. 

The equations of the cones whose vertices are (scf, y*t z1) and (a?"f &) are 

A (d% »* ** , \ (xtf ^ yy'zz* , \* 

and (5? + p+ci “1 j (gr + i,t + ci- -1J “ ( «,• + jr + -1) 
respectively. 

The surface whose equation is 

/«'+p:+£*:_iV (£+*?+?■ a U* 6‘ + e» 1 A** <>* ^ / 
{**? Vf x? y* ** \ 

A*1 ** w-1) \u*+0+v-1) 
passes through their common points, and clearly is two planes. 

Ex. (in). Find the equation of the enveloping con© of the paraboloid 
mP+b^+m*s0. 

Am. (n#+by%4*%z) (aaf94*bym4*2z'}m(arntf+byy' 4**4* tff* 

Ex. (iv). Find the locus of a point from which three perpendicular 
tangent Una can he drawn to the paraboloid «*?+hy3+ 

A«t. ah(#4'p$)4“2(a4-h) f»l# 
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Examples on Chapter IV. 

1. Find the equation of a sphere which cuts four given spheres 
orthogonally. 

2. Shew that a sphere which cuts the two spheres *V « 0 and 
S' = 0 at right angles, will cut W + mS' = 0 at right angles. 

3. OP, OQ, OR are three perpendicular lines which meet in 
a fixed point 0, and cut a given sphere in the points P, Q, R; 

✓ shew that the locus of the foot of the perpendicular from 0 on 
the plane PQR is a sphere. 

4. Through a point 0 two straight lines are drawn perpen- 
dicular to one another and intersecting two given straight lines 
at right angles; shew that the locus of 0 is a conicoid whose 
centre is the middle point of the shortest distance between the 
given lines. 

5. Shew that the cone Agf+Bif+Ca?+2Fyzir203&+2Hjsy = 0 
ywill have three of its generators coincident with conjugate diameters 

of -1 + C +t= 1, if + + C<P = 0. 
a? b8 cr 

6. A plane moves so that the sum of the square* of its 
distances from n given points is constant; shew that it always 
touches an ellipsoid. 

7. The normals to a surface of the second degree, at all 
points of a plane section parallel to a principal plane, mmt two 
fixed straight lines, one in each of the other principal plants* 

8. Shew that the plan© joining the extremities of three 
conjugate diameters of an ellipsoid, touches another ellipsoid. 

9. Having given any two systems of conjugate semi-diameters 
of an ellipsoid, the parallelepiped which has any three for conter¬ 
minous edges is equal to teat which has the other three for 
conterminous edges. 

10. If lines be drawn through the centre of an ellipsoid 
parallel to tee generating lines of an enveloping mm9 tee cone no 
formed will intersect tee ellipsoid in two planes parallel to the 
plane of contact. 
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11. The enveloping cone from a point P to an ellipsoid has 
three generating lines parallel to conjugate diameters of the 
ellipsoid; find the locus of P. 

12. The plane through the three points in which any three 
conjugate diameters of a conicoid meet the director-sphere touches 
the conicoid. 

13. Shew that any two sets of three conjugate diameters 
of a conicoid are generators of a cone of the second degree. 

14. Shew that any two sets of three conjugate diametral 
planes of a conicoid touch a cone of the second degree. 

15. Shew that any one of three equal conjugates of an 
ellipsoid is on the cone whose equation is 

(a? +h* + c2) gj + §! + = 3 (rf +2f + z>). 

16. P, B, F and P, Q, E are the extremities of two sets of 
conjugate diameters of an ellipsoid. If p, pv p2, pa are the per¬ 
pendiculars from the centre and P, Q, R respectively on the 
plane DEF, prove that 

P?+P*+Psa = 2p £Pi +Pi +Pz)- 
17. The sum of the products of the perpendiculars from the 

two extremities of each of three conjugate diameters on any 
tangent plane to an ellipsoid is equal to twice the square on the 
perpendicular from the centre on that tangent plane. 

18. The distance r is measured inwards along the normal to 
an ellipsoid at any point P, so that pr = ma, where p is the per¬ 
pendicular from the centre on the tangent plane at P; shew that 
the locus of the point so obtained is 

a*oc? b2y* c* s? - 
(a?-m*)* + (ba-m*y + (c2 - mj ~ 

19. Through any point P on an ellipsoid chords PQ, PE, PS 
are drawn parallel to the axes; find the equation of the plane 
QES, and shew that the locus of K, the point of intersection of 
the plane QES and the normal at P, is another ellipsoid. Shew 
also that if the normal at P meet the principal planes in Ox, G2, Gz 

_2_L Jl. -JL 
PG+ PG2 + PGt' 

then will 
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20. PR is the perpendicular from any point on its polar 
plane with respect to a conicoid and this perpendicular meets a 
principal plane in G; shew that, if PK. PG is constant, the locus 
of P is a conicoid. • 

y* 
21. Shew that the cone whose base is the ellipse P ** 1, 

Ck U 

X9 z* 
z = 0, and whose vertex is any point of the hyperbola — r-8 

(& — Q Q 

— 1, 2/ = 0, is a right circular cone. 

22. A cone, whose equation referred to its principal axes, is 

aV + jSV-^ + iW 
as® y9 

is thrust into an elliptic hole whose equation is ~g+ ^*1; shew 

that when the cone fits the hole its vertex must lie on the ellipsoid 

23. In a con© any system of three conjugate diameters meets 
any plane section in the angular points of a triangle self polar 
with respect to that section. 

24. The enveloping cones which have as vertices two points 
on the same diameter of a conicoid intersect in two parallel planes 
between whose distances from the centre that of the tangent 
plane at the end of the diameter is a mean pro|»ortionaL What 
is the corresponding proposition for a paraboloid ? 

25. Shew that any two enveloping cones intersect in plane 
curves; and that when the planes are at right angles to on© 
another, the product of the perpendiculars on on© of the planes of 
contact from the centre of the ellipsoid and the vertex of the 
corresponding cone, is equal to the product of inch perpendiculars 
on the other plane of contact. 

26. If a line through a fixed point 0 bo such that its con¬ 
jugate line with respect to a conicoid is perpendicular to it, lint 
that the line is a generating line of a quadric cone. 

27. The locus of the feet of the perpendiculars let Ml from 
points on a given diameter of a conicoid on the polar planes of 
those points is a rectangular hyperbola. 
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28. Prove that the surfaces 

as8 ys _ 2z X* if 2z 

will have a common tangent plane if 

4.£-2~ 

’ V *a‘ 

a. 

> 

at 2 > ^3 = 0. 

29. Prove that an ellipsoid of semi-axes a, b, c and a concen¬ 

tric sphere of radius - ..—, are so related that an in- 
* JbV + cV + aW 

definite number of octahedrons can be inscribed in the ellipsoid, 
and at the same time circumscribed to the sphere, the diagonals of 
the octahedrons intersecting at right angles in the centre. 

30. of y2 z* 
Find the locus of the centre of sections of ~s + y* + - * = 1 

a ¥ c 
nr2 £ 

which touch -75 + {7* + -71 — 1. 
a* b* c2 

31. Planes are drawn through a given line so as to cut an 
ellipsoid; shew that the centres of the sections so formed all lie on 
a conic. 

32. Find the locus of the centres of sections of an ellipsoid 
by planes which are at a constant distance from the centre. 

33. Shew that the plane sections of an ellipsoid which have 
their centres on a fixed straight line are parallel to another straight 
line, and touch a parabolic cylinder. 

34. The locus of the line of intersection of two perpendicular 
tangent planes to ax2 4- by3 + cz® = 0 is 

a (b ■+• c) sc2 + b (c + a) 2/ + c (a + b) ¥ = 0. 

35. The points on a conicoid the normals at which intersect 
the normal at a fixed point all lie on a cone of the second degree 
whose vertex is the fixed point. 

36. Normals are drawn to a conicoid at points where it is 
met by a cone which has the axes of the conicoid for three of its 
generating lines; shew that all the normals intersect a fixed 
diameter of the conicoid. 
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37. Shew that the six normals which can he drawn from 
any point to an ellipsoid lie on a cone of the second degree, three 
of whose generating lines are parallel to the axes of the ellipsoid. 

38. Find the equations of the right circular cylinders which 
circumscribe an ellipsoid. 

39. If a right circular cone has three generating lines 
mutually at right angles, the semi-vertical angle is tmrlJ± 

40. If one of the principal axes of a cone which stands 
on a given base be always parallel to a given right line, the locus 
of the vertex is an equilateral hyperbola or a right line according 
as the base is a central conic or a parabola. 

41. The axis of the right circular cone, vertex at the origin, 
which passes through the three lines, whose direction-cosines are 
(ll3 ml3 nx), (4, ms, na), (4, n») to the plane 

0, 1, 1, 1 
X, K 
1/f 
zf % 

42. The equations of the axes of the four cones of revolution 
which can be described touching the co-ordinate planes are 

a? tt 
mmmvaummimm *££m # ^ IE* issaswaas 

sura Burp umy 

a, p, y being the angles YOZ, ZOXf and JOT respectively. 

43. Prove that four right cones may be described, passing 
through three given straight lines intersecting in the same point, 
and that if 2a, 2/?, 2y be the mutual inclinations of the straight 
Hues, the equations of the cones referred to the straight lines m 
co-ordinate axes will be 



EXAMPLES ON CHAPTER IV. 95 

44. Shew that, if P, Q, B be extremities of three conjugate 
diameters of a conicoid, the conic in which the plane PQB cuts 
the surface contains an infinite number of sets of three conjugate 
extremities, which are at the angular points of maximum triangles 
inscribed in the conic PQB. 

45. Shew that, if the feet of three of the six normals drawn 
from any point to an ellipsoid lie on the plane lx 4* my + nz + == 0, 
the feet of the other three will be on the plane 

ax by cz 1 A 
-r + — +-=0, 
l m n p 

the equation of the ellipsoid being ax2 + by2 + cz* = l. 

46. Prove that the locus of a point with which as a centre of 
conical projection, a given conic on a given plane may be projected 
into a circle on another given plane, is a plane, conic. 

47. If C be the centre of a conicoid, and B (Q) denote the 
perpendicular from P on the polar plane of Q; then will 

B(Q) 0(Q) 
Q(P)~ C (P) • 

48. The locus of a point such that the sum of the squares of 
its normal distances from a given ellipsoid is constant, is a co-axial 
ellipsoid. 

49. If a line cut two similar and co-axial ellipsoids in P, P; 
Q, Q'; prove that the tangent plane to the former at P, P', 
meet those to the latter at Q or Q' in pairs of parallel lines equi¬ 
distant respectively from Q or Qf. 

50. A chord of a quadric is intersected by the normal at a 
given point of the surface, the product of the tangents of the 
angles subtended at the point by the two segments of the chord 
being invariable. Prove that, 0 being the given point and P, P' 
the intersections of the normal with two such chords in perpendi¬ 
cular normal planes, the sum of the reciprocals of OP, OPft is 
invariable. 

W 



CHAPTER V. 

Plane Sections of CoNicorns. 

114 We have seen [Art. 51] that all plane sections of a 
conicoid are conics, and also [Art 01] that all parallel 
sections are similar conics. Since ellipses, parabolas, and 
hyperbolas are orthogonally projected into ellipses, parabolas, 
and hyperbolas respectively, we can find whether the curve 
of intersection of a conicoid and a plane is an ellipse, 
parabola, or hyperbola, by finding the equation of the pro¬ 
jection of the section on one of the co-ordmate planes. 

For example, to find the nature of plana sections of a 
paraboloid. 

The plane he -f my -f nz +• p ® 0 cuts the paraboloid 
aa? + byst+2z*=* 0, in a curve through which the cylinder 

a (my + nz + pf + bPy* + 2Pz « 0 

passes. The plane x == 0, which is perpendicular to the 
generating lines of the cylinder, cuts it in the conic whoso 
equations are m =» 0, a (my 4* nz + p f + blfy% + 2Pm *■ 0; and 
this conic is the projection of the section on the plan© x « 0, 
If n=»0, the projection will be a parabola; but, if n be not 
zero, the projection will b© an ellipse or hyperbola accord¬ 
ing as oil* (am* 4 bP) - aW is positive or negative, or oWV 
positive or negative, that is, according as the surface is m 
elliptic or hyperbolic paraboloid. 
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Hence all sections of a paraboloid which are jmmllol 
to the axis of the surface are parabola*; all either sections of 
an elliptic paraboloid are ellipses, and of a hyperbolic 
paraboloid are hyperbolas. 

Ex. 1. Find thu condition that tins iteticiii of + + by tin* 
plane fa + my+m+p “ 0 tniij l«» n parabola. 

# Is «* n* n 
Ann* ■ f* . 4* .»0, 

a h ' « 
Ex. 2. Shew that my tangent plane to the aftymptnile ©«# of a eotiioitl 

meets the oonlcoid in two parallel «trnlglifc Unci, 

119. To find ike turm and area of any central plane 
motion of an dlipmdd. 

Let the equation of the ellipsoid be 

ur 

and let the equation of the plane be 
£#+ my + m ■» 0. 

Every semi-diameter of the surface whose length is r is n 
generating line of the cone whose equation is [p. M, Ex, ">] 

*’ Cf y)*f (l- ~l)** («■ - /) -0.<“>■ 
This cone will, for all value* of r, Ik? cut by the plans in twit 
straight lines which lie along equal distmotoira of tins section; 
aud, when r is equal to cither of the section, these 
equal diameters will coincide. Hint. mt the plitini (i| will 
touch the com? (ii) when r m equal to either twtm-Jtxi# of 
the section of tho ellipsoid by the piano. The condition 
of taageacy gives 

i f+ i r 
a*~ i* &~r* 

From (iii) we see that 

m + n •(iii). 

nr- 

where rJt,, 

abo aJbei 
WP+VvS+fa*) " p . 

r. are the semi-axes of the section, and p is 

4«0. 

perpendicular on the parallel tangent plains. 
8,8.0, 

the 
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From (iv) we see that the area of the section is equal to 

•Kabo 
4 b*rrf 4- c%nF) * 

116. To find the area of any plane section of an ellipsoid. 

Take for co-ordinate planes three conjugate planes of 
which z= 0 is parallel to the given plane; then the equations 
of the surface and of the given plane will he respectively 
of the forms 

<* v 4*4 >5, = X» and z ® k 

The cylinder whose equation is 

of f U 
d'*+b'*+'c* = 1, 

passes through the curve of intersection of the surface and the 
plane; and the area of the section of this cylinder by z «■ k is 

■jra'b' sin v ^1 — ^, 

v being the angle XOY. The area of the section of the 
ellipsoid by z — 0 is ira'b' sin v. 

Hence, if A be the required area, and A0 bo the area of 
the parallel central section, we have 

AwmA*( 1 7*)’ 
Now the tangent plane at (0, 0, o') is * - o'; therefore the 

perpendicular distances of the given plane and of the parallel 
tangent plane from the centre are in the ratio of k: o'. 

Hence A => At ^1 — ^j.. ,(i), 

where p and pt are the perpendicular distances of the given 
plane and of the parallel tangent plane from the centre. 

This gives the relation between the area of any section 
and of the parallel central section; and we hive found 
in Art. 115, the area of any central section. 
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Hence the area of the section of the* ellipsoid whoso 
equation, referred to its principal axes, is 

** . .V4. £*«,i 
a, + b* + c' ’ 

made by the plane whose equation is 

&4 my 4 m 

wabc /, 

V 4 b\i 6W 4 cV) (* a*!14 4 e1 

A 7rabc f 

* ff*P 4 68m* 4 oV 

I _ . /. 
a*!14 b'sM® 4 c*mV ' 

[Art, 1151, 

[Art. f)l |. 

Ex, 1. To find the am of the action of a paraboloid by any piano, 
bet the equation of the paraboloid Im I & Of and let tbo t*|txa» 

tion of the section he Ix + mg + p -0, The projection of the auction m 
the plane **s0 is the conic 

«e3 4* %f - - (tr I my •§' p) a 0t 

OT I)* "i C4 ?' **) • 
The area of the projection li 

* /Is , mfi t \ 
^sU + r+^ji 

Ex. 2. To find the am of the Bidden of the news ' + \ * *-** 0 by the 
e o e 

plane to+wy -f «*p* 
*• i/3 # 

The area of the section of ^ 4 ^ t ^ - * I by the given plane i« 

r I- ps { 
V (k*tP+khm* 4 to#) I ~ 4 &m*J * 

If we put &»0the ittrfkje b##«iii§§ the mm, The reunified am fa thenifim 

Ex. S. If central plane auction* of m ellipsoid be of etna, tltifif 
planes touch a mm of the mond Iipm 

7—2 



100 PLANE SECTIONS. 

Let the area be 

Then we have 

T?L. t and let the equation of one of the planes be 

tx+my+nz=0, 

_7robe_ __ irabc 
^(aH2+b'lm? + c:in1*)~‘ d 1 

«2Z2 + 62//i2-hc%2=d2; 

(a2 - d2) P + (62 - d3) m3 + (c2 - d?)^-0. 

This shews that the plane fo+my+ra^O always touches the cone 

..t y* +.^1^0 
a2-d* lr-d,2 c*~d* * 

117. We can find, by the method of Art. 115, the area 
of a central plane section of the surface whose equation is 

aaf + bif -f c^-f- 2fyz + 2gzx + 2hey = 1. 

For the semi-diameters of length r are generating lines of 
the cone whose equation is 

(a ~ p) ^ + ^ + (c “ p) ^ + 2/^ + 2^zx + 2^ “ °- 
When r is equal to either semi-axis of the section of the 

surface by the plane 
lx + my + nz = 0, 

the plane will be a tangent plane of the cone. The condition 
of tangency gives, for the determination of the semi-axes, the 
equation 

1 
a~~^> h, r/> i = 0. 

h> h 1 

5“r*’ f> m 

9> f> 
i 

o — 
r* 

I 
! 

it; 

l, m9 nf 0 

This result may also be obtained by finding the maxi¬ 
mum value of ^ + /+/ = /, subject to the conditions 
ad-f by® + cj^ + 2fyz + lgsw + ihxy lf and 
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118. To find the directions of the axes of any central 
section of a conicoid. 

Let the equation of the surface be 

as? + by2 4- cz2 4- 2fyz 4- 2gzx 4- 2 hxy = 1, 
and let the equation of the plane be 

lx 4- my 4 nz = 0. 
Then, if P be any point on an axis of the section, the line 
joining P to the centre of the section will be perpendicular H 
to the polar line of P in the plane of the section. 

Hence, if P be (£, rjy f), and if’ the direction-cosines of 
the polar line be X, fi, v, we have 

Xf 4-py 4- 0...(i). 

Also, since the polar line is on both the planes 

4-/^7 4-yf) 4 y (Af 4- by+f£) 4* * (g^ -b~fy 4- c£) =*1, 

and lx + my 4-^=0, 

it is perpendicular to the normals to those planes; hence 

X (of 4-hq 4-flff) 4- f* (Af 4- Zty +/£) + v (g£ +/? 4- cf) « 0.. .(»), 

and Xi 4- fzm 4* = 0......(iii). 
Eliminating X, p, v from the equations (i), (ii), (iii), we 

have 97, ? »0. 

a£4-A>74-y£ A? 4-617 4- 
i, m, n 

Hence the required axes are the lines in which the given 
plane cuts the cone whose equation is 

v, t/> m -0. 
m 4- hy 4- g z, fm by+fz, gx 4- fy 4- cz 

l, m9 n 

119. To find the angle between the asymptotes' of my 
pkrne section of a conicoid. 

Let $ be the angle between the asymptotes of the plane 
section, and let the semi-axes of the section be a, /?. 
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Then tan —= — 1 “ ; 
2i CL 

- 4a2iS* 

W- 
This gives the required angle, sine© we have found, in the 

preceding articles, the axes of any plane section. 

Ex. 1. Find the angle between the asymptotes of the section of 
ax" + by2 -f cz2=1 by the plane Ix+my + nz=0. 

The semi-axes are the roots of the equation 

Z2 W2 7ll 

tan2 6= • 
b + c) 

therefore .. 
(rx2 + r£Y {l2 (6 + c) + m2 (c + a)+n2 (a + 6) 

Ex. 2. To find the condition that the section of the conicoid 

aa?+.by2+cz2+2fyz+2gzx+2hxy=zl 

by the plane lx+my+nz—0 may be a rectangular hyperbola. 
The square of the reciprocal of the semi-diameter whose direction-cosines 

are X, /a, v is given by 

i=a\2+6/a2 -H;?'3+2ffiv+2ppX+2 XX/a. 

Take any three perpendicular diameters; then we have by addition 

11 -j+-^=o+J+c. 
'2 TS 

Now, if n, r2 he the lengths of any two perpendicular semi-diameters of a 
rectangular hyperbola, r23+r22=0. 

Hence for any semi-diameter of the conicoid which is perpendicular to 
the plane of a section which is a rectangular hyperbola, we have 

1 
r2 

= Ur+ 6 + <7. 

The required condition is therefore 

al2+ bm*+cn2+2Jmn + 2gnl+2him=a+b + c=s(a+b+c) (Z2+m8 + n2). 

Ex. 3. Shew that the two lines j$ven by the equations a#3+6^+0#=*0, 
lx+my+nz=0 will be at right angles, if 

P(b+c)+m? (c + a) + (a+6)=0. 

The lines are the asymptotes of the section of the conicoid asx^+by^+cs2^! 
by the plane lx+my+nz=0. 
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120. If two conicoids ham ms plane section in common 
all their other points of intersection m m another plane. 

Let the equations of the common plane section be 

ax? 4- h\f 4- 2hxy 4- 2ux + tmj 4- c « 0, z *= 0. 

The most general equations of two eonicoids which pass 
through this conic are 

as? + by* 4* 2hey 4- 2uz 4* 2mj 4- c 4 z {lx 4- my 4 ns 4- J?) * 0, 

and 

4- iy* 4* 2hxy 4- 2 us 4* 4c 4 ^ (/> .f m'// 4* n*z 4- p*) » 0. 

It is clear that all points which are on both surface*, and 
for which z is not zero, are on the plane given by the 
equation 

h 4*my 4 ns 4/>* tx4* my 4* ns 4 p'; 
this proves the proposition. 

Circular Sections. 

121* 2b find the circular necHom of an dltpmml 

Since parallel sections are similar, we need only consider 
the sections through the centre 

Now all the of the ellipsoid which are of 
length r are generating line* of the cone whose equation m 

I * ()* 

If there be a circular unction of radius r, an infinite 
.**1*,.... —If.,..,. I* *1. . *11 I* ... ...t._ l... 
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The equations of the. other pairs of planes are respectively 

Of these three pairs of planes, two are imaginary, IT or, 
11 11 

if a, b, c be in order of magnitude, p —5 and ~2-5 have 
0 Cb C Ob 

the same sign, and therefore the planes (i) are imaginary ; 
for a similar reason the planes (iii) are imaginary. Hence, 
the only real central circular sections of an ellipsoid jmsB 
through the mean axis, and their equations are 

VS,-p)"±V(ff'-s 
Since all parallel sections are similar, there are two 

systems of planes which cat the ellipsoid in circles, namely 
planes parallel to those given by the equation (iv). 

If 5 = c the two planes which give circular sections sure 
coincident. 

122. If the surface he an hyperboloid of one sheet, we 
must change the sign of ca in the equations of the ImMt 
Article. In this case the planes which give the real circulaur 
sections are those given by equations (i), a being supposed to 
be greater than b. 

If the surface be an hyperboloid of two sheets, we must 
change the signs of b% and c\ In this case the planes wliicfa 
gjive the real circular sections are those given by equation 
(ii), b being supposed to be numerically greater than c. 

123. If a series of planes be drawn parallel to e&tl&er 
of the central circular sections of an ellipsoid, these pianos 
will cut the surface in circles which become smaller and 
smaller as the planes are drawn farther and farther firoftt 
the centre; and, when the plane is drawn so as to touch tbm 
ellipsoid, the circle will be indefinitely small 
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Def. The point of contact of a tangent piano which outs 

a surface in a point-circle is called an umbilio, 

124 Any two circular modem of opposite systems am on 
a sphere. 

The circular sections of the ellipsoid are parallel to tint 
planes whose equations ar«* 

-/!•)-°- 

Hence « j,-$ + s f {l -J.) + ;> * 0, 

0, 

are the equations of the planes of any two circular sections of 
opposite systems, 

The equation 

*?.>/.*? , , r_ /n i \. ft i v 
+l* + 

i 

' J C -l)-‘C(*• - ,!■)+«} * ”• 
is, for all values of X, the equation of a conicoici which passei* 
through the two circular sections; and, if X — l,tho equation 
represents a sphere; which proves the proposition. 

125. We can find the circular sections of the paraboloid 

£ + ? a b 
klz, 

by writing tlie equation in the form 

+/ + **-2m) + y (l - ’) -** 0. 

It is clear that the two pianos given by tint 4'quat ton 

cut the paraboloid when* they cut the sphere whose equation 

«* + /+**- 2«s * 0; is 
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and, since the planes must cut the sphere in circles, they will 
cut the paraboloid in circles. 

We can shew in a similar manner that the planes given 
by the equation 

will give circular sections of the paraboloid. 
Of the two pairs of planes given by the equations 

0, 

one will be real, if a and b are of the same sign; but both 
pairs of planes will be imaginary if a and b are of different 
signs, so that there are no circular sections of a hyperbolic 
paraboloid.* 

Ex. 1. Shew that the conicoid whose equation is 

(j4 + X)**+(B + X) f + ((/ + X) s2 I, 

has the same cyoHe planes for all values of X. 

Ex. 2. Shew that no two parallel circular mmixnm of a conicoid, which 
is not a surface of revolution, are on a *phtm» 

Ex. 3. Find the circular sections of the eonicolt! whose equation I« 
ax$ + by* + cz* + 2fyz f + 2hxy -a I* 

All semi-diameters which are of length r mm generating fines of the cone 
whose equation is 

p_l.p»+ (&- ^y* + VyiJ %« »*ifcj-y <>..$)• 

If therefore r is the radius of a circular section, Him cone mmt im two 
planes. The condition for this m 

i 1 . 
j«"r3f * * V 0 .... .. Alih 

If we substitute In ft) any one of the roots of the equation fhf, we shall 
obtain the equation of the corresponding planes of drntuur section. 

Ex. 4. Find the real droular factions of the following mdmm 
(i) 4^ 4 4* s nr lf 
(it) + 4/f^h 

* Thi* is not strictly trues a section through any g*ti*ratlnjr line by a 
plane parallel to the axis of tht* anriatw « a eirel* of iiiltiilt radios. 

1 



EXAMPLES. 107 
Am. fif plane* parallel to 

„ (JC i*f -*)(*-Jf+9*) »0. 
f»| plane* parallel to 

Ei. 5. Fifii! ilia mntllUom that the plane 

Ix + my+m ts 0t 
may mt tm eontooid 

«s *1* %f + os 4- y$j% + %ia? § 2 Axy *s X 
in a rireh** 

A4 in El. B, Hit* 

(n~^i)Jf3+ (k~ :,*}’■**1 (" "y») *,+2/i/*+20*®+2%=o 

hiiinI* tor »»*# \nhie of 7* l«* two planes of which the given plane is one. 
Tin* equation must therefore bo tlw mm« a§ 

{fa ) m»j hm) |[ («-^(''“ *,) • * («■-^,)J- “0. ^ 

Ilf comparing tlift of yit jup, xf wo hare 

:K'KK‘H- 
muI two similar equations* 

Untie® tho m|iiirr4 comlittan* mm 
WmJ* *i/«t ,mt(m* bh&~2hlm 

mf m* ' f *' »3t fl '4 

IL#Il Wi* will cfittchnic thin chapter by the solution of 
two 03tamj4*f4. 

Ex. X. Ifi’rli rt/l/j'if fwtfff O on a mmtmM m mriixt and flam sections of 
Hi# mnkbld far hmt*9 rnw* are drscriM; shew that the mm an cut by my 
jtkm jwrittM to tlm toiifnif pktm at O in a system of slmttm conics. 

Tim equation of a eontadkl, referrm! to three conjugate diameters as axes, 
k of the tow 

j# mi mt 

a? hiT # * 
ilonoe the aquation, mkmd to pml«l mm through to© extremity of one of 
itif 4kii»t#i»# will \m 

g* mt i* 8i . 
I# * ^ + # '** £ 

fill# wit will t*l«i fcr tha iw|iitttioii of the surface, the common vertex of the 
rmm Wm% the origin* hrt ir 4 my 4 m 1 to tlw equation of any plane 
*e«?fie» | then 111# mmm^mdkm i»tt« will tm 

dl *1 jf » 
e (fa+«y+«*)-o. 

I 
I 
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The section of this cone by the plane z = h is clearly similar to the conic 

which proves the proposition. 

Ex. 2, With a fixed point 0 on a conicoidfor vertex, and a plane section 
of the conicoidfor hose, a cone is described; shew (i) that if the cone have 
three perpendicular generating lines} the plane base will meet the normal at 0 
in a fixed point; and (ii) that if the normal at 0 be an axis of the cone, the 
plane base will meet the tangent plane at 0 in a fixed straight line. 

The most general equation of a conicoid, when the origin is on the 
surface and the plane 2=0 is the tangent plane at the origin, is 

ax2+by2 + cz2 + 2fyz + 2 gzx + 2 hxy + 22 = 0. 

The equation of the cone whose vertex is the origin, and which passes 
through the points of intersection of the conicoid and the plane 

lx+my+nz~l 

is ax2 + by2+cz2 + 2fyz + 2gzx + 2hxy + 2z (lx^ my-t nz) ~0. 

Now the condition that the cone may have three perpendicular generating 
lines is 

a + 6 + c + 2w= 0 [Art. 109]. 

This shews that the intercept on the axis of z is constant; which proves 
(i). The conditions that the axis of z may be an axis of the cone are 
[See Art. 60] g + l=0, and/+m=0. Hence the plane meets the axes of x 
and y in fixed points; which proves (ii). 

Examples on Chapter V. 

1. Shew that the area of the section of an ellipsoid, by 
a plane which passes through the extremities of three conjugate 
diameters, is in a constant ratio to the area of the parallel central 
section. 

2. Given the sum of the squares of the axes of a plane 
central section of a conicoid, find the cone generated by a normal 
to its plane. 

3. Shew that a plane which cuts off a constant volume from 
a cone envelopes a conicoid of which the cone is the asymptotic 
cone. 
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4. Shew that the axes of plane sections of the conicoid 

a2 b‘ c2~l 

which pass through the line 

« = y 
l m~~ n 

lie on the cone whose equation is 

1 %\ /I _ 1\ _l/w _ l\ (1_ 1 \ 1 (l _ m\/l _ 1\a 
s?\y ” z) \b2 c2) y2\z x) \c2 a2) + z2 \x y) y&3 Pj 

5. If through a given point (%0, y0, z0) lines be drawn each 
of which is an axis of some plane section of ax2 + by2 + cz? = 1, 
such lines describe the cone 

a(b-~c) 
xn 

—*_+'& (c-a) —+ c (a-b) — 
x — CCA '«/_«/ v y < 

= 0. 
*o y—Vo 

6. If the area of the section of 

t+t^x 
b c 

be constant and equal to a2, the locus of the centre is 

7. If a conic section, whose plane is perpendicular to a gene¬ 
rator of a cone, be a circle; the corresponding projection of the 
reciprocal cone is a parabola. 

8. Shew that the principal semi-axes of the normal section 
of the cylinder which envelopes b2c*x2 + c2a2y2 + a2b2z2 = a2b2c2, and 
whose generating lines are parallel to 

x __y_ _ z 
l m n* 

are the values of r given by 

7)1 ox 
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9. Shew that the section of 

y2 z2 __ 2x 

b2 c2 CL 

by the plane lx 4* my + m = 0 is a rectangular hyperbola, if 

(b*--<?)P + m*ba-n2<?=Q. 

10. Shew that all plane sections of 

which are rectangular hyperbolas, and which pass through the 
point (a, Qj y), touch the cone 

(«-«)* _ (y-PY + (*zjY _ o. 
a, b a—b' 

11. Find the locus of the vertices of all parabolic sections 
of a paraboloid, whose planes are at the same distance from its 
axis. 

12. Shew that, if the plane lx + my-b nz = p cut the surface 
ax2 + by2 + cz2 = 1 in a parabola, the co-ordinates of the vertex 
of the parabola satisfy the equation 

I \b cj m\c aj n \a bj 

13. The area of the section of (ahefgh\xyz)2 = 1 by the plane 
which passes through the extremities of its principal axes is 

14. A cone is described with vertex (f9 gy h) and base the 
section of the surface aot? + by2 + = 1 made by the plane 
shew that the equation of the plane in which this cone again meets 
the surface is 

x (of* + bg* + ch*~~ l)~2f (afx+ bgy + ckz- 1). 
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15. Shew that the foci of all parabolic sections of 

lie on the surface 
a b 

16. Circles are described on a series of parallel chords of a 
fixed circle whose planes are inclined at a constant angle to the 
plane of the fixed circle. 

Shew that they trace out an ellipsoid, the square on whose 
mean axis is an arithmetic mean between the squares on the other 
two axes. 

17. Shew that if the squares of the axes of an ellipsoid 
are in arithmetical progression the umbilici lie on the central 
circular sections ; if they are in harmonic progression the circular 
sections are at right angles; if they are in geometrical progression 
the tangent planes at the umbilici touch the sphere through the 
central circular sections. 

18. Points on an ellipsoid such that the product of their 
distances from the two central circular sections is constant lie on 
the intersection of the ellipsoid with a sphere. 

19. If the diameter of the sphere which passes through two 
circular sections of an ellipsoid be equal to its mean diameter, the 
distances of the planes from the centre are in a constant ratio. 

20. A sphere of constant radius cuts an ellipsoid in plane 
curves; find the surface generated by their line of intersection. 

21. The hyperboloid of 4- y* — %* tan® a = a2 is built up of thin 
circular discs of cardboard, strung by their centres on a straight 
wire. Prove that, if the wire be turned about the origin into the 
direction (l, m, n), the planes of the discs being kept parallel 
to their original direction, the equation of the surface will be 

(nx — Izf + (ny — mzf = n* (z* tan® a + a2), 

22. If a series of parallel plane sections of an ellipsoid be 
taken, and on any sections as base a right cylinder be erected, 
shew that the other plane section, in which it meets the ellipsoid, 
will meet the plane of the base in a straight line whose locus will 
be a diametral plane of the ellipsoid. 
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23. Any number of similar and similarly situated conics, 
which are on a plane, are the stereographic projections of plane 
sections of some*conicoid. , 

24. The tangent plane at an umbilicus meets any enveloping 
cone in a conic of which the umbilicus is a focus and the inter¬ 
section of the plane of contact and the tangent plane a directrix. 

25. The quadric ax8 + by2 4* cz2 = 1 is turned about its centre 
until it touches a'a? + b\f + cV =* 1 along a plane section. Find 
the equation to this plane section referred to the axes of either 
of the quadrics, and shew that its area is 

"V dbc- a'b'c' 

0 



CHAPTER VI. 

Generating Likes of Conk *o ids. 

127. In cones and cylinders we have met with examples 
of curved surfaces on which straight lines can be drawn 
which will coincide with the surface throughout their entire 
length. 

We shall in the present chapter shew that hyperboloids 
of one sheet, and hyperbolic paraboloids, can be generated 
by the motion of a straight lino; and we shall investigate 
properties of those surfaces connected with the straight Inum 
which lie upon them. 

Def. A surface through every point of which a straight 
line can be-drawn so m to lie entirely on the surface, is 
called a ruled surface; and the straight lines which lie upon 
it are called generating lines. 

A ruled surface on which consecutive generating lines 
intersect, is called a developable surface. 

A ruled surface on which consecutive generating lines do 
not intersect, is called a skew surf me. 

128, To find where the straight line, whose equations are 

x-ay-0z-y 
’-'"‘■""‘y ■ as tan • ss 7% 

I mn 

meets the surface whose equation is F (mf y, ») m 0, we must 
substitute a 4* lrt 0 + mrf and y + nr for x, yt m respectively, 
and we obtain the equation F (a + lrf 0 4* mrf y-t* nr)®* 0, 

& g, u. g 
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If the surface is of the &th degree, the equation for finding 
r is of the Jcth degree ; hence any straight line meets a surface 
of the kth degree in k points. 

If, however, for any particular straight line, all the co¬ 
efficients in the equation for r are zero, that equation will be 
satisfied for all values of r; and therefore every point on that 
straight line will be on the surface. Since there are k + 1 
terms in the equation of the kth degree, it follows that 
k + 1 conditions must be satisfied in order that a straight line 
may lie entirely on a surface of the kth degree. 

Now the general equations of a straight line contain four 
independent constants, and therefore a straight line can be 
made to satisfy four conditions, and no more. 

It follows therefore, that, if the degree of a surface be 
higher than the third, no straight line will, in general, lie 
altogether on the surface. For special forms of the equations 
of the fourth, or higher orders, we may however have 
generating lines; for example, the line whose equations are 
y = mx and z = m* will, for all values of m, lie entirely on the 
surface whose equation is za? = y%. 

If the equation of a surface be of the third degree, the 
number of conditions to be satisfied is equal to the number 
of constants in the general equations of a straight line. 
Hence the conditions can be satisfied, and there will be a 
finite number of solutions. The actual number of straight 
lines (real or imaginary) which lie on any cubic surface is 27. 
[See Cambridge rnd Dublin Math Journal, YoL iv.] 

The number of conditions to be satisfied, in order that a 
straight line may lie entirely on a conicoid, is three. Since 
the number of conditions is less than th© number of constants 
in the general equations of a straight line, the conditions can 
be satisfied in an infinite number of ways, so that there are 
an infinite number of generating lines on a conicoid; these 
generating lines may however all be imaginary, m m 
obviously the case when the surface is an ellipsoid. 

129. A generating line on any surface touches the 
surface at any point 0 of its length, for it jHtwes through a 
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>f the surface indefinitely near to 0; hence the tangent 
to any surface at a point through which a generating 
isses will contain that generating line, 

). The section of a conicoid by the tangent plane at 
dnt through which a generating line passes, will be a 
of which the generator forms a part; the conic must 
>re be two straight linen, 
nee, through any point on n generating line of a 
id another generating line passes, and they are both in 
igent plane at the point. 
e two generating lines in which the tangent plane to a 
id intersects the surface are coincident when the conicoid 
ne or a cylinder. 

(. Since any plane section of a conicoid is a conic, any 
which passes through a generating line of a conicoid 
it the surface In another generating line; and both 
/ting lines are in the tangent plane at their point of 
sction. Hence, any plane through a generating Urn of 
coid touches the surface, its point of contact beinff the 
of intersection of the two generating lines which lie 
t 
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in straight lines whose projection on the plane x = 0 arc 
z* 

given by the equation ± ± -2- = 0. These lines are clearly 

real when the surface is an hyperboloid of one sheet, and 
imaginary when the surface is an ellipsoid, or an hyperboloid 
of two sheets. 

Hence the hyperboloid of one sheet is a ruled surface. 

The hyperbolic paraboloid is a particular case of the 
hyperboloid of one sheet; hence the hyperbolic paraboloid is 
also a ruled surface. 

This can be proved at once from the equation of the 
paraboloid. For, the tangent plane at the origin is z = 0, and 
this meets the paraboloid aot? + by* + 2z=*Q in the straight 
lines given by the equations aa? + hf = 0, z = 0; the lines 
are clearly real when a and b have different signs, and are 
imaginary when a and b have the same sign. 

Hence an hyperboloid of one sheet (including an hyper¬ 
bolic paraboloid as a particular case) is the only ruled uonicoid 
in addition to a cone, a cylinder, and a pair of planes. 

133* To shew that there are two system# of generating 
lines on cm hyperboloid of one sheet 

Since any plane meets any straight line, the tangent 
plane at any point P on an hyperboloid of one sheet will 
meet all the generating lines of the surface, and the points 
of intersection will be on the surfaca But the tangent 
?lane cuts the surface in the two generating lines through 

}; hence every generating line of the hyperboloid must 
intersect one or otner of the two generators PA, PB which 
pass through any point P on the surface. 

Now no two of the generating lines which meet the same 
fenerator can themselves intersect, for otherwise there would 

e three generating lines in a plane, which is impossible, 
since every plane section is a coma 

Hence there are two systems of generating lines, which 
are such that all the members of one system intersect PBf 
but do not themselves intersect; and all the members of the 
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intersect PA, but do not themselves intersect, 
to position of P is arbitrary it follows that every 
of one of the two systems of generating lines meets 

3rrlt>er of the other system. 

If a straight lino intersect a conicoid in three points, 
itirely coincide with the surface ; and hence, to have 
■tins line of a conicoid given, is equivalent to having 
nts given. 
ave three non-intersecting generating lines given is 
s equivalent to having nine points given, so that 
3 tli ree non-intersecting generators are sufficient to 
ie the conicoid on which they lie. 
line meet three non-intersecting lines, it will meet 

iooid of which they are generators in three points, 
Lm the three points in which it intersects the three 
id. hence it must itself be a generator of the surface, 
the straight lines which intersect three fixed non- 
ing straight lines are generators of the same system 
.cold, and the three fixed lines are generators of the 
system of the same conicoid. [Bee Art. 49, Ex. 2] 

Since any line which ineots three non-intersecting 
lines is a generating line of the conicoid on which 
it follows that the only lines which meet the three 

d which also meet a fourth given straight line are 
sratora of the surface, of the system opposite to that 
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Ex. 2. Shew that the plane through the centre of a conicoid and any 
generating line, will cut the surface in a parallel generating line, and will 
touch the asymptotic cone. 

Ex. 3. A conicoid is described to pass through two non-intersecting given 
lines and to touch a given plane. Shew that the locus of the point of contact 
is a straight line. 

Let the given lines meet the given plane in the points A, B respectively. 
Then, the given plane will cut the surface in two generating lines, one 
of which will intersect both the given lines; hence, since the points of 
intersection must be A and B, the point of contact must be on the 
line AB. 

Ex. 4. The lines through the angular points of a tetrahedron perpen¬ 
dicular to the opposite faces are generators of the same system of a 
conicoid. 

Let AA\ BB', CC', DZ>' be the four perpendiculars, and let«, fi, y, 3 be 
the orthocentres of the faces opposite to A, B, C, D respectively. Then, it is 
easy to prove that the lines through a, 7, 8 parallel respectively to 
AM, BB!, CCf, JOB' will meet all the four perpendiculars. Since the four 
perpendiculars are met by more than two straight lines, they are generators 
of the same system of a conicoid; and the four parallel lines through 
a, /9,7, 8 are generators of the opposite system of the same conicoid. 

Ex. 5. If a rectilineal quadrilateral ABCD be traced on a conicoid, the 
centre of the surface is on the straight line which passes through the middle 
points of the diagonals AB, BD. 

The planes BAD, BCD are the tangent planes at A, 0 respectively, and 
BD is their line of intersection; hence the centre of the conicoid is on the 
plane through BD and the middle point of AC. Similarly the centre is on the 
plane through AC and the middle point of BD. 

Ex. 6. If a rectilineal hexagon be traced on a conicoid, the three lines 
joining opposite vertices win meet in a point, and the three lines of inter¬ 
section of the tangent planes at opposite vertices lie in a plane. [Dandeiin.} 

Let A BCD ED be the hexagon. Intersecting generators of a conicoid are 
of different systems; therefore AB, CD, EF are of one system, and BC, DM, 
FA of the opposite system; so that opposite sides of the hexagon are of 
different systems, and therefore will intersect. Bach of the ’ diagonals 
AD, BE, vF is the line of intersection of two of the planes through pairs of 
opposite sides; therefore AD, BE, OF meet in a point, namely in the point 
of intersection of the three planes through pairs of opposite sides. 

Let X be the point of intersection of AB and DM, F the point of inter, 
section of BC and EF, and Z of CD and FA. The tangent planes at Af Df 
namely the planes FAB, CDE, intersect in the line XZ; the tangent planes 
at B, E intersect in the line XY; and the tangent planes at C, F Intersect in 
the line YZ. Hence the three lines of intersection of the tangent planes at 
opposite vertices lie in the plane XYZ. 

Ex* 7. Four fixed generators of the same system cut ah generators 
of the opposite system in a range of constant cross-ratio, f0ha»lt§*4 

Let * “ ' ~ ‘ ‘ 
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the points A, JB, C, D; A', B\ <7, D' and A", B", C", D" respectively. Then, 
the four planes through A"B"G"Dn and the fixed generators cut all other 
straight lines in a range of constant cross-ratio [Art. 36]; we therefore have 

{A'B'C'D'} = {ABCI)}. 

Ex. 8. The lines joining corresponding points of two homographic 
systems, on two given straight lines, are generating lines of a conicoid. 

136, To find the angle between the two generating lines 
through any point of an hyperboloid. 

The section of an hyperboloid of one sheet by the 
tangent plane at any point is similar and similarly situated to 
the parallel central section. Hence the generating lines 
through any point are parallel to the asymptotes of the 
parallel central section. Let the equation of the surface be 

and let f g, h be the co-ordinates of the point P through 
which the generating lines pass. 

Let a*, be the squares of the axes of the central section 
which is parallel to the tangent plane at P, and let 6 be the 
angle between the generating lines through P. 

Then tan~=* V — 1—, 
a a 

and therefore 

tan 6 — . 

Now the sum of the squares of three conjugate semi¬ 
diameters is constant, and also the parallelepiped of which 
they are conterminous edges. Hence 

a2 4 y9® 4. OP1 = a® ~j- i2 — c\ 

and afip = J — 1. aba 
Hence we have 

137, We can write the equation of an hyperboloid of one 
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sheet in such a way as to shew at once the existence of 
generating lines. For, the equation 

is equivalent to 

—4. vl - f2 -1 
+ ca 19 

and it is evident that all points on the line of intersection of 
the planes whose equations are 

a c \ X +i, 

are on the surface; and by giving different values to X, we 
obtain a system of straight lines which lie altogether on the 
surface. The generating lines of the other system are 
similarly given by the equations 

We can find in a similar manner the equations of the 
generating lines of the paraboloid 

a? y* 0 

The equations of the generators of one system are 

a b a o X 
and of the other system 

x . y m y 1 
- + t- %Xz, a b ’ a b X 

138. The equations of the generating linos which pass 
through any point on an hyperboloid of one sheet can he 
obtained in the following manner. 

The co-ordinates of any point on the surface can be 
expressed in terms of two variables 8 and <f>, where 

<c = aoo8 08ec<£, y=*&sin 0see£, and s*«ctan<£. 
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This is seen at once if we substitute in the equation of 
the hyperboloid. 

The two generating lines through the point P are the 
lines of intersection of the surface and the tangent plane at 
P. Now, the equation of the tangent plane at (9, is 

CO v z 
- cos 9 sec 6 + v sin 9 sec 6 — tan 6 = 1: 
a o ^ c r J 

hence the tangent plane meets the plane z = 0 in the 
line whose equations are 

30 W 
- cos 6 + |sin 9 = cos <£, z = 0.(i). 

If this line meet the section of the surface by z = 0 in 
the points A, B, whose eccentric angles are a, respectively, 
we have from (i) 

a a-f/3 a- fi 
6= = 

or a = 9 + and /3 = 0 — <£.(ii). 

Now AP, BP are the generators through P; hence from 
(ii), 9 4- </> is constant for all points on the generator AP, and 
6 —<j> is constant for all points on the generator BP. 

The direction-cosines of AP are proportional to 

a (cos a — cos 9 sec <f>), b (sin a — sin 9 sec <f>), - c tan <p; 

or proportional to 

^ cos (6 + </>) cos (f> — cos 9 r sin (9 4- <j>) cos <jf> — sin 9 
d -1—: ;-, 0 -, — C I 

sin «jb sm 0 ’ ’ 

or to a sin (0 +<f>), — b cos (9 + 0), c; 

hence the equations of AP are 

x — a cos 6 sec 0 _ y — b sin 9 sec 0 _ z — e tan 0 
a. sin (0 + <£) ~ - b cos (9 + 0) c ' 

Similarly the equations of BP are 

x -acos 6sec0 _y— & sin 0sec0 —ctan0 
a sin (0 — 0) - - b cos (0 - 0) ‘ 
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Cor. The equations of the generators, through the point 
on the principal elliptic section whose eccentric angle is #, 
are 

x - a cos 9 — bsind ___ 
a sin 0 — bcos 6 ““ c' 

These equations may also be obtained as follows: 

The line whose equations are 

x — a cos 0 __ y — b sin 0 _ z _ 
l m n ’ 

will meet the surface, where 

(ia cos $ + Irf (b sin 0 + mrf nY ___ 

“a1” + b% If 

Hence, in order that the straight line may be a generating 
line, we must have 

and 

Whence 

P nt 

l cos 0 m sin 0 

L m nt 
a_b c 

sm~ —cos$ ± 1 ’ 

The equations of the generators are therefor© 

x — aoQ8 6 y — b sin 0 t z 
asm# — bcos 0 c 

139. To find the equations of the gemrating lines 
through any point of a hyperbolic jparaboloid. 

Let the equation of the paraboloid b© 
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Let the equations of any line be 

fl-g = y-P = *-7^ r 
l m n 

The points of intersection of the line and the surface are 
given by the equation 

Hence, in order that the straight line may be a generating 
line, we must have 

l2 m* 

a? 6* " °. 

r,i\ 

a2 S2 .... 
and -5-p-27 = 0.(m). 

The equation (iii) is satisfied if (a, j3, 7) be any point on the 

surface; from (i) we have - = ± ~; and, substituting in (ii), 
0/ 0 

we obtain 
£ m _ n 

&~±6~"a_/3‘ 

a + T 

Hence the equations of the two generating lines through 
the point (a, p, 7) are 

«-a y-P-*-Y nxr\ 
a ~ ±b a_£. 

It is clear from the above that any generator of the 
paraboloid is parallel to one or other of the two planes 

x-±l=o. 
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Ex. 1. Shew that the projections of the generating lines of an hyper¬ 
boloid on its principal planes are tangents to the principal sections. 

The tangent plane at any point P on a principal section is perpendicular 
to that section. Hence the projection on the principal plane of any line in 
the tangent plane at P is the tangent line which is in the principal plane. 
This proves the proposition, since the generating lines through P are in the 
tangent plane at P. 

Ex. 2. Find the locus of the point of intersection of perpendicular 
generators of an hyperboloid of one sheet. 

If the generating lines at any point P are at right angles, the parallel 
central section is a rectangular hyperbola, and therefore the sum of the 
squares of its axes is zero. But the sum of the squares of three conjugate 
semi-diameters of the hyperboloid is constant and equal to a1 + b* - c2. Hence 
OP2=a24-62~c2; so that the points are all on a sphere. 

This is the result we should obtain by putting tan 0 = co in the result of 
Art. 186. We could also find the locus by using the equations of Art. 188. 

Ex. 8. Find the angle between the generating lines at any point of 
a hyperbolic paraboloid. 

Tbe result is obtained at once from equations (iv), Art. 139. The gene¬ 
rators are at right angles, if 

_ ff=0) or if 2y+a»-0. 

Thus generators which are at right angles meet on the plane z «| (h9 - a3). 

Ex. 4. A line moves so as always to intersect three given straight Hues 
which are all parallel to the same plane: shew that it generates a hyperbolic 
paraboloid. 

Ex. 5. A line moves so as always to intersect two given straight line* 
and to be parallel to a given plane; shew that it generates a hyperbolic 
paraboloid. 

Ex. 6. AB and CD are two finite non-intersecting straight lines; shew 
that the lines which divide AB and CD in the same ratio am generators of 
one system of a hyperbolic paraboloid, and that the lines which divide AO 
and BD in the same ratio are generators of the opposite system of the mma 
paraboloid. 

Examples on Chapter VL 

1. A straight line revolves about a fixed straight lm% find 
the surface generated. 

2. If four nondntersecting straight lines he given, shew that 
the four hyperboloids which am be described, one through each 

sset of three, all pass through two other straight lines. 
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3. Find the equation of the conicoid, three of whose generat¬ 
ing lines are x~0, y —a; 3/ = 0, 2 = a; 2 = 0, x = a. Shew that it 
is a surface of revolution, and find the eccentricity of its meridian 
section. 

4. Find all the straight lines which can he drawn entirely 
coinciding (i) with the surface y3 - z3 = 3a3x; and (ii) with the 
surface t/1 — £4 = 4a3x. 

5. Normals are drawn to an hyperboloid of one sheet at 
every point through which the generators are at right angles; 
prove that the points, in which the normals intersect any one of 
tjhe principal planes, lie in an ellipse. 

6. Given any three lines, and a fourth line touching the 
hyperboloid through the three lines, then will each one of the four 
lines touch the hyperboloid through the other three lines. 

7. A line is drawn through the centre of ax3 + btf + cz2 = 1 
perpendicular to two parallel generators. Shew that such lines 
generate the cone 

8. If two generators of an hyperboloid be taken as two of the 
axes of co-ordinates shew that the equation of the surface is 
of the form 

+ 2fyz + 2gzx + 2hxy + 2 wz = 0. 

9. The generators through any point R on a ruled quadric 
intersect the generators at a fixed point 0 in P and Q. Shew 
that if the ratio OP : OQ is constant, R lies on a plane section of 
the quadric which passes through 0. 

10. Find the locus of a point on an hyperboloid the genera¬ 
tors through which intercept on two fixed generators portions 
whose product is constant. 

11. If all the generators to an hyperboloid of one sheet be 
projected orthogonally on the tangent plane at any point, their 
envelope will be an hyperbola. 

12. Find the equation of the locus of the foot of the perpendi- 
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cular from the point (a, 0, 0) on the different generating lines 
of the surface 

13. Prove that the product of the sines of the angles that 
any generator makes with the planes of the circular sections is 
constant. 

14. If CP, CD he conjugate semi-diameters of the principal 
elliptic section, and generators through P and D meet in T, prove 
that TP2 = CD2 4- c2, TD2 = CP2 + c\ 

15. If two generators drawn from 0 intersect the principal 
ellipse in points P, P', at the ends of conjugate diameters, then will 

, <9P2+0P,2 = a2+52 + 2c2. 

The angle between the generating lines through the point 
x2 y2 z2 „ . A, 4- Xn 

16. 

(xyz) of the quadric 

are the roots of the equation 
a b 

4- — = 1 is cos-1 
K - X, 

where Xv 

a(a 4- A) + b (b 4- A)+ c (c + X) 

17. Shew that the shortest distances between generating lines 
of the same system drawn at the extremities of diameters of the 
principal elliptic section of the hyperboloid, whose equation is 

lie on the surfaces whose equations are 

exy _ abz 

x2 4- y2 a* — b*' 

18. Find the equations of the surfaces of revolution which 
pass through the lines y-mx = Q~z — c, y + mx?=0 = z + c and 
also through the origin. 

19. The locus of points on (abcfgh) (xyz)* = 1 at which the 
generators axe at right angles is the intersection of the surface 
with the sphere 

a, 
h, 

9* 

K b, 
/, 

9 
f 
c 

(x* + y* + t?) = bo + ca + ab~f*-g* -~h\ 
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20. Having given two generating lines that intersect and two 
points on an hyperboloid, shew that the locus of the centre is 
another hyperboloid bisecting the straight lines joining the two 
points to the intersection of the generators. 

21. Shew that the volume of every parallelopiped which 
can be placed so that six of its edges lie along six of the generators 
of a given hyperboloid of one sheet is the same. 

22. A solid hyperboloid has its generators marked on it and 
is then drawn in perspective : shew that the points of intersection 
of the representatives of consecutive generators of the same system 
will lie on an hyperbola. 

23. If two points P, Q be taken on the surface 

such that the tangent planes at those points are at right angles to 
one another, then will the two generating lines through P appear 
to be at right angles when seen from Q. 

24. If two conicoids have a common generator, two of their 
common tangent planes through that generator have the same 
point of contact. 

25. If AO A', BOB', COC1 be any three straight lines, the 
lines AB, OAr B'G' are generators of one system, and A'B\ 
C'A, BO are generators of the other system, of the same hyper¬ 
boloid. 

26. Deduce Pascal’s Theorem from Dandelin’s Theorem. 
[Ex. 6. Art. 135.] 

27. If from any point on a hyperbolic paraboloid perpen¬ 
diculars be let fall on all the generators of the surface of the same 
system, they will form a cone of the second degree. 

28. If from any point on the surface of an hyperboloid of one 
sheet perpendiculars be drawn to all the generators of the same 
system, they will form a cone of the third degree. 

29. The normals to a conicoid, at all points of a generating 
line, lie on a hyperbolic paraboloid. 

30. In every rectilinear octagon ABGDEFGH which is on 
a conicoid, the eight lines of intersection of the tangent planes at 
A, 1); A, F; G, B; G, D; E, E; E,B; C} F; C, H are all 
generators of another conicoid. Also the lines AD, AF, QB, GD, 
EE, EG, GF, EB are all generators of another conicoid 
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Systems of Conicoids. Tangential Equations. 

Reciprocation. 

140. Since the general equation of the second degree 
contains nine constants, it follows that a conicoid will pass 
through any nine points, and that an infinite number of 
conicoids will pass through eight points. 

If 8 =* 0, and 8' = 0 represent any two conicoids which 
pass through eight given points, then the equation 
8 4* XS' * 0 will be of the second degree, and will therefore 
represent a conicoid, and it is clear that the conicoid 
84-XS' = 0 will pass through all points common to 0 and 
8' a* 0. Also, by giving a suitable value to X, the conicoid 
8 4 X8' = 0 can be made to pass through any ninth point; 
and therefore will represent any conicoid through the eight 
given points. 

Since the conicoid 8+XS'**Q not only passes through 
the eight given points, but also through all points on the 
curve of intersection of #«*0 and f »0, we see that all 
wnforids through eight given points have a common mm*e of 
intersection* 
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141. Four cones will pass through the curve of inter¬ 
section of two conicoids. 

Let the equations of any two conicoids be Ft (x, y, z) « 0 
and F9 (x, y, z) = 0. The equation of any conicoid through 
their curve of intersection is of the form 

Fx (a?, y, z) 4- XB\ (a, y, z)« 0. 

The above equation will represent a cone, if 

ax4\aa, hx + AA2, gx 4 Xg9, ux 4- Xu9 =0. 
hx 4* , bt 4- XL, ft 4- Xf% , vx 4- Xv9 

f + xA> + wt + Xw9 
ux + Xu9, vx 4- Xu*, wx 4- Xw%, d% + Xdti 

Since the equation for determining X is of the fourth 
decree, four cones, real or imaginary, will pass through the 
points of intersection of two conicoids. 

142. The vertices of the four cones through the curve of 
intersection of two conicoids are the angular points of a 
tetrahedron which is self-polar with respect to any conicoid 
which passes through that curve. 

Take the vertex 0 of one of the cones for origin, and 
let Fx (a, y, z) = 0 and F% (x, y9z)** 0 be the equations of the 
two conicoids. Then the equation of the cone will be of the 
form Fx (x, yf z) 4- XF% (xt yy z) « 0. But, since the origin 
is at the vertex of the cone, its equation will be homo¬ 
geneous. We therefore have 

u%+ Xut»vx 4~ Xv9 ™ wt 4- Xwt« dt 4- Xclt« ot 

Now the equation of the polar plane of 0 with respect to 
any conicoid 

Ft (xf yf z) 4 fiF% (xP yf #)- 0, is 

(ux +i*u%)x 4 (vx 4-y 4* (w% 4 pw9)z^dt 4yad*«0; 

and, from (i), it is clear that this polar plane coincides with 

um 4 v.y + wtz + dt» 0 
for all values of p. g 

&S.O, 
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Hence 0 has the same polar plane with respect to all 
conicoids through the curve of intersection of the two given 
conicoids. 

Now the polar plane of 0 with respect to any one of the 
other cones through the curve of intersection will pass 
through the vertex of that cone, and hence the vertices of 
the other three cones are on the polar plane of 0 with respect 
to any conicoid through the curve of intersection of the given 
conicoids: this proves the theorem. 

143. If $= 0 he the equation of any conicoid, and 
a/3 = 0 the equation of any two planes, then will 8 — \a/3 = 0 
be the general equation of a conicoid which passes through 
the two conics in which 8 = 0 is cut by the planes a = 0 

and /3 = 0. 
If now the plane a = 0 be supposed to move up to and 

ultimately coincide with the plane p = 0, we obtain the form 
32=0, which represents a system of conicoids, all of 

which touch $ = 0 where it is met by the plane j3 = 0. 
The surfaces 8 — \a/3 = 0 and 8=0 touch one another at 

the two points where they are cut by the line whose equa¬ 
tions are a = 0, @ = 0. For at either of these points the 
surfaces have two common tangent lines, namely the tangent 
lines to the sections by the planes a = 0 and /3 = 0. 

' 144. All conicoids which pass through seven given points 
pass through another fixed point. 

Let 8t = 0, $2 =<£>, $3=0 be the equations of any three 
conicoids through the seven given points. 

Then the conicoid whose equation is Sl + \Si + /x,Sz=0 
will clearly pass through all points common to $* = 0, $2 = 0 

and $8 = 0; and $a 4* X$2 + ya$8 = 0 can be made to coincide 
with any conicoid through the seven given points, for the 
two arbitrary constants X and /m can be so chosen that 
the surface will pass through any two other pojnts. Now 
the three conicoids 8t = 0, 8= 0, $8 = 0 have eight common 
points, all of which are on -f X$2 -f* = 0; this proves 
the theorem. 

Thus, corresponding to any seven given points there is an 
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eighth point associated with them, such that any conicoid 
through seven of the points will also pass through the eighth 
point; and it should be remarked that in order that a system 
of conicoids may have a common curve of intersection, they 
must have eight points in common which are not so associated. 

Ex. 1. All conicoids through the curve of intersection of two rectangular 
hyperboloids are rectangular hyperboloids. 

[A rectangular hyperboloid is one whoso asymptotic cono has throe per¬ 
pendicular generating lines.] 

The asymptotic cone of a conicoid has throe generators at right angles 
when the sum of the coefficients of x'\ y* and z* in the equation of the surface 
is zero. Now the sum of the coefficients of x*} y* and z* in will be 
zero, if that sum is zero in S and also in S’. This proven the proposition. 

Ex. 2. Any two plane sections of a conicoid and the poles of those planes 
lie on another conicoid. 

Let ax2 + by* + cz* + d=:Q be the conicoid, and let (af, y\ /) and f.r", >/% z") 
be any two points. The equations of the polar plain s of these points will be 
ouxtsf + byy' + crr' + d=0 and axx" + byy" + czz* -f d » 0. 

The conicoid 

X (ax* + by2+cz*+d)~ (axx1 + byy1 + czz*+d) (axx" + byy" + czz" + d) sr () 

is the general equation of a conicoid through the two plan# auctions. The 
conicoid will pass through (x'f y\ d) if X be such that 

X (ax’* + by'* + ex'2+d) - (ax'*+by1* *f cz'2 + d) (axfx" + bt/y" + cz'f + d) m0, 
or if X *■ axfx' + by’y"+cz'z" + d. 

The symmetry of this result shews that the conicoid will likewise 
through (*", y'\ z"). 1 

Ex. 8. Through the curve of intersection of a sphere and an ellipsoid four 
quadric cones can be drawn; and if diameters of the ellipsoid be drawn 
parallel to the generators of one of the cones the diameters are all equal 
Also the continued product of the four values of such diameters is equal to the 
continued product of the axes of the ellipsoid and of the diameter of the 
sphere. 

Let the equations of the ellipsoid and of the sphere be 

£?+y*+**wl 
S* + P + £j-1, 

and (* - a)* + (y - /3)» + (* - t)‘=r*. 

The general equation of a conicoid through the curve of Intersection fs 

x (s»+ % + £ “1)+(* “ «)*+iv ~ W+(*-y)* - r*mQ.(i), 

9—2 
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This conicoid will he a cone, if the co-ordinates of the ch 
equations 

(l + £).-a = 0, 

(l + p)^-/3=0, 

and - ax - fry ~ yz + a2 -h fi2 -b y2 - r2 - \=0. 

Eliminating x, y, z we have 

a?a2 62/32 c2y2 

a2+X + &2+X + c2+X 
a2 — fr? — "y2 -j- r2 -j- X = 

If, for any particular value of A, the conicoid given by ( 
equation of the cone, when referred to its vertex, takes the fc 

(i+jy+(i+±y+(i+°; 

and therefore the direction-cosines of any diameter which, if 
of the generating lines of the cone, satisfy the equation 

P rrP n2 1 
a5* W + &~ ~x' 

Hence the square of the semi-diameter is constant and eq1 

Hence also the continued product of the squares of th< 
the semi-diameters is equal to the product of the four roots of t 
and the product of the roots is easily seen to be aPWchr*. 

Ex. 4. The locus of the centres of all conicoids which 
given points is a cubic surface, which passes through the mic 
line joining any pair of the seven given points. 

Let 81=0, $2=0, $3=0 be any three conicoids through 
points; then the general equation of the conicoids is 

$1+X$3+/4$3 = 0. 

The equations for the centre are 

ax dx dx 

ty dy +fAdy * 

&SX , _ dS2 dS, A 
dz dz rdz 
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Hence the equation of the locus of the centres, for different values of X 
and fiy is 

dSf 0% . 

dx 1 dx 1 dx 9 

dS1 dS9 
dy ’ dy ’ dy 

dSj dS, <IS9 
dz ’ dz 1 dz 

which is a cubic surface, since &c. arc of the first degree. 
dx 

Now, to have the centre of a conicoid given, is equivalent to having three 
conditions given; hence a conicoid which has a given centre can be made to 
pass through any six points. Hence, if A, B be any two of the seven given 
points, one conicoid whose centre is the middle point of AB will pass through 
A and through the remaining five points; arid a conicoid whose centre is the 
middle point of AB, and which goes through „4, must also go through JL 
Thus the middle point of AB is a point on the locus of centres; and so also 
is the middle point of the line joining any other pair of the given points. 

[Messenger of Mathematics, vol. xnr. p. 145, and xrv. p. 97. j 

Tangential Equations. 

145. If the equation of a plane be lw + mg + nz + 1 = 0, 
then the position of the plane is determined if l> m} n are 
known, and by changing the values of Z, m and n the 
equation may be made to represent any plane whatever. 
The quantities Z, m, and n which thus define the position of 
a plane are called the co-ordinates of the plane. These co¬ 
ordinates, when their signs are changed, are the reciprocals of 
the intercepts on the axes. 

If the co-ordinates of a plane be connected by any relation, 
the plane will envelope a surface; and the equation which 
expresses the relation is called the tangential eqmtim of the 
surface. 

146. If the tangential equation of a surface be of the nm 
degree, then n tangent planes can be drawn to the surface 
through any straight line. For, let the straight line be given 
by the equations ax+by + cz + l^ 0, a'm + b'y + oHl^O; 
then the co-ordinates of any plane through the line will bo 
a + \a’ b + \V ,c + W T* % ' r 4 , . 
___ _ and . if these co-ordinate* bo mib- 
itA, ItA X Hr A * 
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stituted in the given tangential equation, we shall obtain an 
equation of the nth degree for the determination of X, which 
proves the proposition. 

Def. A surface is said to be of the nth class when n 
tangent planes can be drawn to it through an arbitrary 
straight line. 

147. We have shewn in Art. 57 that the plane 

lx -f my + nz + 1=0 

will touch the conicoid whose equation is 

aa?+ by2jr cz*4- 2\fyz + 2gzx -f 2hxy -f 2ux + 2vy + 2wz +d = 0, 

if Al2 + Bm2 + On2 ■+■ 2Fmn + 2Gnl 4* 21lhn 

+ 2m+%Vm+2Wn + D = 0, 

where A, J3, 0... are the co-factors of a, 5, c... in the dis¬ 
criminant. 

Hence the tangential equation of a conicoid is of the 
second degree. 

Conversely every surface whose tangential equation is of 
the second degree is a conicoid. 

148. Since the tangential equation of a conicoid is of the 
second degree, which in its most general form contains nine 
constants, it follows that a conicoid can be made to satisfy 
.nine conditions and no more; and in particular a conicoid 
can be made to touch nine given planes. 

149. To find the Cartesian co-ordinates of the centre of the 
conicoid given by the general tangential equation of the second 
degree. 

The two tangent planes to the conicoid which are parallel 
to the plane m ® 0 are those for which m ■» n * 0. The values 
of l are therefore given by the equation aF+tul + d** 0. 

Now the centre of the surface is on the plane midway 

between these; and hence the centre is on the plane m *» * 
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V W 
Similarly the centre is on the planes y = and j . 

Hence the required co-ordinates are ^^[8«*e 

Art. 76.] 

150. We may take the equation of the moving plane to 
be lx 4 my 4 nz 4 p = 0; and the plane will envelope a surface 
if Z, m, 7i, p be connected by a homogeneom equation; for 
any homogeneous equation in l, m, n, p would be equivalent 

to an equation between the constants - , m . 2, 
1 V P P 

If we take lx 4 my 4 ns 4/> » 0 for the equation of the 
plane, we may suppose l, mf n to be the direction-cosines of 
the normal to the plane. 

151. To find the director-sphere of a mniooid whom 
tangential equation h given. 

If we eliminate p between the equation of the surface and 
the equation lx 4 my 4* nz 4 p « 0, wo shall obtain & relation 
between the direction-cosines of any tangent plane which 
passes through the particular point (r» y, z). The rtdation 
will be 

aP + hm% 4 cn% 4- d (lx 4* my + nzf *4 2firm 4* *&gnl 4 thlm 
— 2 (id 4 vm 4 wn)(lx 4 my 4 nz) ■* 0. 

If (a, y, z) be a point on the director-sphere, thro© per¬ 
pendicular tangent planes will pass through it; the above 
relation must therefore lm satisfied by the' direction-cosines 
of each of three perpendicular planes. Hence, by addition, 
we have 

a 4 h 4 o — turn — tmj ~ twz 4 d (&? 4 y* 4 z%)« 0, 
which is the required equation of the director-sphere. 

152. If $«» 0 and $'**0 he the tangential equations of 
any two conicoids which touch eight given planes, then the 
equation 8 4 Xflf' * 0 will be of the second negro#, and will 
therefore be the tangential equation of a comeoid; and it h 
clear that the conieoid 8 4 Xflf'*» 0 will touch the common 
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tangent planes of 8 = 0 and S' = 0, for if the co-ordinates of 
any plane satisfy the equations 8—0 and 8f = 0, they will 
also satisfy the equation S + X$' = 0. Also, by giving a 
suitable value to X, the conicoid S 4- X8f = 0 can be made to 
touch any ninth plane: it will therefore represent any coni¬ 
coid touching the eight given planes. 

153. If 8t = 0, = 0, == 0 be the tangential equations 
of any three conicoids which touch seven given planes; then 
the conicoid whose tangential equation is St 4 XS§ 4* /aSb = 0 
will touch each of the seven given planes, for if the co¬ 
ordinates of any plane satisfy the three equations St — 0, 
$2=0 and $8 = 0, it will also satisfy the equation 

St 4* X$# 4- p8s = 6. 

Also, by giving suitable values to X and jm, the conicoid 

St 4- X$g + fiSn = 0 

can be made to touch any two other planes; hence 

St 4 X$2 4* m$8 = 0 

is the most general equation of a conicoid which touches the 
seven given planes. 

Similarly, if 8t = 0, 8B-= 0, $g = 0 and S4«0 be the 
tangential equations of any four conicoids which touch six 
given planes, $ 4 X$g 4 /4$8 4 vS4 = 0 will bo the general 
tangential equation of the conicoids which touch those six 
planes. 

Ex. 1. The centres of all conicoids which touch eight given piatutt aw m a 
straight line. 

If 5=0 and 5'=0 be the equations of any two conlcioldi which touch the 
eight given planes, then 5+X5'» 0 wiU be the general equation of a mminM 
touching them. The centre of the conicoid la given by 

u+\uf v+Xt/ wi'X«/ 
xz=d+\*’ymj+)&’'md+\d'- 

Eliminating X we obtain fee equation of the centre locus, namely 

hence the loens is a straight line. 
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Ex. 2. The centres of all conicoids which touch seven given planes are on 
a plane. 

If S=0, S'=0, S"=0 be the equations of three conicoids which touch the 
seven given planes, then the general equation of a conicoid which touches the 

planes will be S+\S' + fiS"=0. 

Ex. 3. The director-spheres of all conicoids which have eight common 
tangent planes have a common radical plane. 

The director-sphere of the conicoid S + \S'=Q is 

a+1 4. e - 2ux - 2vy - 2wz+d (<c2 + +z2) 

+\ {a' +1/ + c' - 2u'x - 2ify - 2w'z + d' (a2 +y* + 22)} = 0. 

Ex. 4. The director-spheres of all conicoids which touch six given planes 
are cut orthogonally by the same sphere. [P. Serret’s Theorem.] 

If (71== 0, C«=0, (7g=0 and <74 = 0 be the equations of any four conicoids 
which touch the six planes; then the general equation of the conicoids 
will be 

Gl -f- ACg -j- fiC$ -f vC4=0. 

Now from Art. 151 we see that the equation of the director-sphere of a 
conicoid is linear in a, b, c, <fec. It therefore follows that, if $i=0, &2=0, 
S8=0 and £4=0 he the equations of. the director-spheres of the conicoids 
C1==0, C2=0, C8=0 and C4=0 respectively, the equation of the director- 

sphere of Gi +\C2 + /aCg + y(74=0 

will be Si + X$2 + fiS% -f- vS4=0. 

Now from the condition that two spheres may cut orthogonally [Art. 90, 
Ex. 6], it follows that a sphere can always be found which will cut four given 
spheres orthogonally; and it also follows that the sphere which cuts 
orthogonally the four spheres ^=0, £2=0, &8 = 0 and S4—0, will cut 
orthogonally any sphere whose equation is Sx + \S2+pSz+vS4=0. This 
proves the proposition. 

Ex. 5. The locus of the centres of conicoids which touch six planes, and 
have the sum of the squares of their axes given, is a sphere. [Mention’s 
Theorem.] 

By Ex. 4 aU the director-spheres of the conicoids are cut orthogonally by 
the same sphere; and the director-spheres have a constant radius. Hence 
their centres, which are the centres of the conicoids, are on a sphere con¬ 
centric with this orthogonal sphere. 

Reciprocation. 

154. If we have any system of points and planes in 
space, and we take the polar planes of those points and the 
poles of the planes, with respect to a fixed conicoid (7, we 
obtain another system of planes and points which is called 
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the polar reciprocal of the former with respect to the 
auxiliary conicoid 0. 

When a point in one system and a plane in the reciprocal 
are pole and polar plane with respect to the auxiliary 
conicoid (7, we shall say that they correspond to one another. 

If in one system we have a surface $, the planes 
which correspond to the different points of 8 will all touch 
some surface 8'. Let the planes corresponding to any 
number of points P, Q, 11... on a plane section of 8 meet 
in T; then T is the pole of the plane PQR with respect to 
O, that is the plane PQR corresponds to T. Now, if the 
plane PQR move up to and ultimately coincide with the 
tangent plane at P, the corresponding tangent planes to S’ 
will ultimately coincide with one another* and their point of 
intersection T will ultimately be on the surface 8'. So that 
a tangent plane to the surface 8 corresponds to a point 
on the surface 8\ just as a tangent plane to 8' corresponds 
to a point on S. Hence we see that 8 is generated from 8 
exactly as 8 is from 8. 

155. To a line L in one system corresponds the line 27 

in the reciprocal system which is the polar lino of L with 
respect to the auxiliary conicoid. 

If any line L cut the surface 8 in any number of points 
P, Q, 22... we shall have tangent planes to 8 corresponding 
to the points P, Qt 22..., and these tangent planes will 
all pass through a line, viz. through the polar line of L with 
respect to the auxiliary conicoid. Hence, m many tangent 
planes to 8 can be drawn through a straight line as tier© 
are points on 8 lying on a straight line. That m to say the 
class [Art. 146] of 8 is equal to trie degree of 8. Keeiproeally 
the degree of 8 is equal to the class or 8.1 

In particular, if 8 be a conicoid it is of the second degree 
and of the second class; hence 8 is of the second class and of 
the second degree, and is therefore also a conicoid. 

156. The reciprocal of a point which is common to 
two surfaces is a plane which touches both the reciprocal 
surfaces* 
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If two surfaces have a coin meat curve of intersection, 
they have att infinite number of common points; the 
reciprocal surfaces therefore have mi infinite number of 
common tangent plane*. These common tangent planes 
form a surface; and, nines* the lint? of intersection of any 
two consecutive planes is on tin* surface, it is a ruled 
surface, the generating lines being the lines of intersection 
of consecutive planes. Any one of the planes contains 
two consecutive generating linen, no that two consecutive 
generators must intersect; hence the surface is n developable 
surface. 

If all the points of the curve lie on a plane, nil the 
tangent plain's to the developable pans through a point; 
the developable must therefore be a cotun i fence the 
reciprocal of a plan*.* curve is a cone. 

It follows by rod promt ion from Art. 144, that all coni- 
coids which touch seven fixed plaues will touch an associated 
eighth plane. 

It also follows from Art 14(1 that all comcoids which 
touch eight given planes have mi infinite tititnbcr of common 
tangent planes, provided that the eight given planes do not 
form an associated system. 

157. The leciprocufiott is usually taken with respect to 
a sphere, and *4 net* the nrifnre of the reciprocal surface h in¬ 
dependent of the radius of the sphere, we only mptire to 
know the centre of the sphere, iihHi m railed flic origin et 
red promt ton* 

The line joining the miff** of ii sphere to any point is rpendieuhr to the polar plane «f the point* Hence, if i\ Q 
any two pointh, the angle between the polar planes of 

these points with ie*prt !## n sphere* h eipml to the angle 
that PQ subtends at tin* centre of the sphere, 

158, If any cotiirnid be reciprocated with respect to u 
point 0, the pointH on the reciprocal surface which corre¬ 
spond to the tangent planes through 0 to the original surface 
must be at an infinite distance. 
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Hence the generating lines of the asymptotic cone of the 
reciprocal surface are perpendicular to the tangent planes of 
the enveloping cone from 0 to the original surface. 

In particular, if the point 0 be on the director-sphere of 
the original surface, that is if three of the tangent planes 
from 0 be at right angles, the asymptotic cone of the 
reciprocal surface will have three generating lines at right 
angles. 

Corresponding to a point at infinity on the original 
surface we have a tangent plane through 0 to the reciprocal 
surface. 

Hence the tangent cone from the origin to the reciprocal 
surface has its tangent planes perpendicular to the generating 
lines of the asymptotic cone of the original surfaces. 

In particular, if the asymptotic cone of the original surface 
have three perpendicular generating lines, three of the tangent 
planes from 0 to the reciprocal surface wilt be at right angles, 
so that 0 is a point on the -director-sphere of the reciprocal 
conicoid. 

159. As an example of reciprocation take the theorem 
“ If two of the conicoids which pass through eight given 
points are rectangular hyperboloids, they will all be rect¬ 
angular hyperboloids/' If this be reciprocated with respect 
to any point 0 we obtain the following, “If the director- 
spheres of two of the conicoids which touch eight given 
planes pass through a point 0, the director-spheres of ini the 
conicoids will pass through 0/’ Hence “ the director-spheres 
of all conicoids which touch eight given planes have a com¬ 
mon radical plane/1 

As another example of reciprocation take the theorem:—- 
“ A straight line is drawn to cut the faces of a tetrahedron 
ABOJJ which are opposite to the angles A, 1), Of J> in 
a, b, c and d respectively. Shew that the spheres described 
on the straight lines Aa, Bb, Cc, and JJd m diameters have 
a common radical axis/' 

Let 0 be a point of intersection of the spheres whose 
m, n* tc ****,.«. 
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respect to 0 we shall obtain another tetrahedron whose 
faces and angular points correspond respectively to the 
angular points and faces of the original tetrahedron. * Corre¬ 
sponding to the four points a, 6, c, d which are on a straight 
line, we shall have four planes with a common line of inter¬ 
section; and, since a, 6, c, d are on the faces of the original 
tetrahedron, the corresponding planes will pass through the 
angular points of the reciprocal tetrahedron; also since the 
angles AOa, BOb, COc are right angles, the three pairs 
of planes corresponding respectively to a and A, to b and 
jB, and to c and G will he at right angles; this shews that 
the line of intersection of the planes corresponding to a, b7 c, d 
will meet three of the perpendiculars of the reciprocal 
tetrahedron. But we know [Art. 135, Ex. 4], that every line 
which meets three of the perpendiculars of a tetrahedron, 
meets the remaining perpendicular; and hence the planes 
corresponding to d and D are at right angles, which shews 
that the angle dOJD is a right angle. Hence 0 is also on 
the sphere whose diameter is Dd. 

Ex. 1. The reciprocal of a sphere with respect to any point is a conicoid 
of revolution. 

Ex. 2. Eind the reciprocal of ax2+by2 4- cz2=l with respect to the sphere 

x2+y2+z2=l. Am. —+ ™+-=l. 
a b c 

Ex. 3. Shew that the reciprocal of a ruled surface is a ruled surface. 

Ex. 4. Shew that if two conicoids have one common enveloping cone 
they also have another. [The reciprocal of Art. 120.] 

Ex. 5. Either of the two surfaces ax2+by2= ±2z is self reciprocal with 
respect to the other. 

Examples oh- Chapter VII. 

1. When three conicoids pass through the same conic, the 
planes of their other conics of intersection pass through the same 
line. 

2. Shew that, if the curve of intersection of two conicoids 
cross itself, the conicoids will touch at the point of crossing ; and 
that if the curve of intersection cross itself twice, it will consist 
of two conics. 
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3. Shew that three paraboloids will pass through the curve of 
intersection of any two conicoicls. 

4. Shew that a surface of revolution will go through the 
intersection of any two conicoids whose axes are parallel. 

5. If a conicoid have double contact with a sphere, the square 
of the tangent to the sphere from any point on the conicoid is in 
a constant ratio to the product of the distances of that point from 
the planes of intersection. 

6. Any two conicoids which have a common enveloping cone 
intersect in plane curves. 

7. Shew that the polar lines of a fixed line, with respect to a 
system of conicoids through eight given points, generate an hyper¬ 
boloid of one sheet. 

8. Shew that the polar planes of a fixed point, with respect 
to a system of conicoids through seven given points, pass through 
a fixed point. 

9. Shew that the poles of a fixed plane, with respect to a 
system of conicoids which touch seven given planes, lie on a fixed 
plane. 

10. The polar planes of a point with respect to two given 
conicoids are at right angles; shew that the locus of the point is 
another conicoid. 

11. All conicoids through the intersection of a sphere and 
a given conicoid, have their principal planes, and also their cyclic 
planes, in fixed directions. 

12. If 0 be any point on a conicoid, and lines be drawn 
through 0 parallel to equal diameters of the conicoid, these lines 
will meet the surface on a sphere whose centre is on the normal 
at 0. 

13. If 0 be the centre of any conicoid through the intersec¬ 
tion of a sphere and a given conicoid, the line joining 0 to the 
centre of the sphere is perpendicular to the polar plane of 0 with 
respect to the given conicoid. 

14. Shew that, in a system of conicoids which have a common 
curve of intersection, the diametral planes of parallel diameters 
have a common line of intersection. 
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15. If a system of conicoids be drawn through the inter¬ 
section of a given conicoid and a sphere whose centre is 0, the 
normals to them from 0 form a cone of the second degree, and 
their feet are on a curve of the third order which is the locus of 
the centres of all the surfaces. 

16. If any point on a given diameter of an ellipsoid be 
joined to every point of a given plane section of the surface, the 
cone so formed will meet the surface in another plane section, 
whose envelope will be a hyperbolic cylinder. 

17. A cone is described with its vertex at a fixed point, and 
one axis parallel to an axis of a given quadric, and the cone cuts 
the quadric in plane curves; shew that these planes envelope a 
parabolic cylinder whose directrix-plane passes through the fixed 
point. 

18. If two spheres be inscribed in any conicoid of revolution, 
any common tangent plane of the spheres will cut the conicoid in 
a conic having its points of contact for foci. 

19. If the line joining the.point of intersection of three, out 
of six given planes, to the point of intersection of the other three, 
be called a diagonal; shew that the ten spheres described on the 
diagonals have the same radical centre, and the same orthogonal 
sphere. 

20. The circumscribing sphere of a tetrahedron which is self 
polar with respect to a conicoid cuts the director-sphere of the 
conicoid orthogonally. 



CHAPTER VIII. 

CONFOCAL CONICOIDS. CONCYCLIO CONICOIDS. 

Foci of Conicoids. 

160. Conicoids whose principal sections are confocal 
conics are called confocal conicoids. 

The general equation of a system of confocal conicoids is 

, 2/2 , ** -1 

a* + \*V + X + <?+\ 

Suppose a, 6, c to be in descending order of magnitude. 
If A is positive, the surface is an ellipsoid, and the 

principal axes of the surface will increase as X increases, and 
their ratio will tend more and more to equality as X is 
increased more and more; so that a sphere of infinite radius 
is a limiting form of one of the confocals. 

If A, is negative and less than <? the surface is an ellipsoid; 
but the ellipsoid becomes flatter and flatter as X approaches 
the value — c2. Hence the elliptic disc whose equations are 

5=0, 
is a limiting form of one of the confocals. 

If X is between — e2 and — b2 the surface is an hyperboloid 
of one sheet. When'A is very nearly equal to — c2, the 
hyperboloid is very nearly coincident with that part of the 

plane 5=0 which is ext&rior to the ellipse ^ *»!• 

y 
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When X is very nearly equal to — V*, the hyperboloid is 
very nearly coincident with that part of the plane y = 0 
which contains the centre and is bounded by the hyperbola 

If X is between — b2 and — a2, the surface is an hyper¬ 
boloid of two sheets. When X is very nearly equal to — b2, 
the hyperboloid is very nearly coincident with that part 
of the plane y = 0 which does not contain the centre and is 

x2 z* 
bounded by the hyperbola p -f p = 1. 

When X is between — ad and — oo the surface is imaginary. 
The two conics 

and 

Z = 0, 
a? 

~ + 
a* — c 

y= o, d — T? + 

?/* 

z1 
e-v 

=i, 

= i, 
which we have seen are the boundaries of limiting forms 
of confocal conicoids, are called focal conics, one being the 
focal ellipse, and the other the focal hyperbola. 

161. Three conicoids, confocal with a given central conicoid, 
wiU pass through a given point; and one of the three is an 
ellipsoid, one an hyperboloid of one sheet, and one an hyper¬ 
boloid of two sheets. 

Let the equation of the given conicoid bo 

S+fr+?-L 
Any conicoid confocal to this is 

<r 

+ 17 r 
.a). 

This will pass through the particular point (f g, h) if 

/* (6* - X) (c8 - X) + / (c* - X) (a* - X) 
+ h* (a* - X) (b* - X) - (a8 - X) (6* ~ X) (c8 - X) * 0.(ii). 

8. S. 0. 10 
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If we substitute for X the values a2, 62, c2, and — co in 
succession, the left side of the equation (ii) will be 4*, 
hence there are three real roots of the equation, namely one 
between a2 and &2, one between b2 and c2, and one between 
c2 and —oo. When X is between c2 and — oo, all the 
coefficients in (i) are positive, and the surface is an ellipsoid; 
when X is between c2 and b2, one of the coefficients is 
negative, and the surface is an hyperboloid of one sheet; and 
when X is between b2 and a2 two of the coefficients are negative, 
and the surface is an hyperboloid of two sheets. 

162. One coniooid of a given confocal system will touch 
any plane. 

Let the equation of the plane be 

, lx 4- my + UZ — P. 

The plane will touch the conicoid 

/ , / i / - ! 
0? H~ X b* 4* X C 2 4" X ’ 

if (a24- X) P+ (b*+ X) m2 4- (c2 4- X)n2 =p2, 

which gives one, and only one, value of X. Hence one con- 
focal will touch the given plane. 

163. Two conicoids of a confocal system will touch my 
straight line. 

Let the straight line be the line of intersection of the 
planes Ix+my + nz 4 p = 0, Vm4*rriy 4-n'z4-jp' = 0. 
Any plane through the straight line will be 

(i14- hV)x4- (m4-km') y 4- kn')z + (p 4- %/) = 0. 

This plane will touch the conicoid 

a? f z2 
a24-X + 624*X^c24-X~ ’ 

(a2 + X) (i + kl')2 + (&* + X) (m 4- km')* 

4- (c2 4* X) (n 4- kri)% * (p 4- hpf* 

if 
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Now, if the given line be a tangent line of the conicoid, the 
two tangent planes through it will coincide. Hence the roots 
of the above equation in k must be equal. The condition for 
this gives the following equation for finding X, 

{(a2 4* A) l2 4- (b2 4* X) m2 4 (c2 -\-X)n2 — p2} 

{(a2 4 X) V2 + (b2 4 X) m'2 + (c2 + X) n'2 - p'2} 

= {(a2 4 X) IV 4* (b2 4- X) mm' 4- (c2 4- X) nn' — 

Since the equation is of the second degree, there are two 
confocals which touch the given line. 

/164. Two confocal conicoids cut one another at right 
angles at all their common points. 

Let the equations of the conicoids be 

L 
a? y2 2? 
a3 + 6“ + 

_jL.+ .=1 
a2 4- X b2 4" X c2 4 X } 

and let (p'y'z’) be a common point; then the co-ordinates 
y\ / will satisfy both the above equations. Hence, by 

subtraction we have 

x2 t y2 z'2 _ 0 ... 

cF((? +\) + b* (V + X) + e,(? + X)""U .W‘ 

Now the equations of the tangent planes at the common 
point (^y/) are 

and 

xx 
;#* + 

zz 
.jl— 

c* 9 

M. zz 
a2 4- X 6* 4-X o2 4* X 

1, respectively. 

The condition (i) shews that these tangent planes are at 
right angles. 

Hfe. 

10—2 
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165. If a straight line touch two confocal conicoids, the 
tangent planes M the points of contact will be at right angles. 

Let (aA/V)> (®"y"z") te the points of contact, and let the 
conicoids be 

as + X 6’ + X c’ + X 

md ^^ + ^ + -—, = 1. 

The tangent planes will bo at right angles if 

w'x" , y'y" , __ z'z" , _ A ,;v 
(a* + X) (a’ + X') + (5’ + X) (// + V) ^ fcVX) (c’ + X') ^ '' 

But, since the line joining the two points is a tangent line to 
both conicoids, each point must be in the tangent plane at 
the other. Hence 

, V'!f" , *'*” , 
a* + X 6’ + X c* + X ' 

and .^,+ g^ + ^l-i. ' 
a+ X X c + X 

By subtraction we see that the condition (I) is satisfied. 

Ex. X. Tli© difference of the sauares of the jperpendicatar* from the 
centre on any two parallel tangent plane* to two gif mi eottfoeal wnimitim m 
constant. Jpx* - ps9 * \t - X3.]' 

Ex. 2. The locus of the point of intersection of three plane** mutual!;? 
at right angles* each of which touches of three given ecmfooala, I* m 
sphere, [mo Art. 92.] 

Bx. S. The locus of the umbilici of a upturn of confocal ellipsoids la the 
focal hyperbola. 

[The umbilici ar® given by 
* M~b* A m . ///>-** w 

__=* ^a^t, v-o, «y(a’+X)' 
Ex. 4. Xf two concentric and co*ax£al crmlcoidb cat one another t?erjrwhere 

at right angles they must bo eonfoeaL 

Ex. $» P, Q art two points, one on each of two confocal conicoids, uni 
the tangent planes at P, 0 meet in the lint MM; shew that, if fclit plane 
through MS and the centre bisect the lint PQ, the tangent pianist at P asi § 
mmt be at right angles to on# another* 
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Ex. 6. Shew that two oonfocal paraboloids cut everywhere at right angles. 

[The general equation of confocal paraboloids is 7—r* + ~—=2z + \.] 
L + A +A 

166. We have seen that three conicoids confocal with a 
given conieoid will pass through any point P, the parameters 
of the confocals being the three values of X given by the 
equation 

, y* , ** i 
ft8 + X P 4- X c8 4- X 

where a?, y} z are the co-ordinates of P. 

If the roots of the above equation be Xv X2, Xa, it is easy 
to shew that 

*2 _ (a8 4- \) (a2 4- X2) (a8 + X8) 
(d1 — Z?) (a* — c¥) — ’9 

with similar values for y* and s?. 

Hence the absolute values of the co-ordinates of any 
point can be expressed in terms of the parameters of the 
conicoids which meet in that point, and are confocal with a 
given conieoid. 

cy/^167. The parameters of the two confocals through my 
point P of a conieoid are equal to the squares of the awes of 
the central section of the conieoid which is parallel to the 
tangent plane at P; and the normals at P to the confocals 
are parallel to ike axes of that section* 

Let (of, f, /) be any point P on the conieoid whose 
equation is 

a, + 6‘ o' L’ 

then, if P be on the confocal whose parameter is X, we have 

:X + + c^x * 
and therefore 
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The equation of the central section parallel to the tangent 
plane at P is 

xx 
._yy 
+ b* 

zz 
+t-: 

'0. 

Hence the equation giving the squares of the axes of the 
section is 

vl Z1 

I^+TII+iIT=0 CArt'115]’ 
a* r* b* r* c8 r* 

a'2 i/8 _ .... 

0r a? (a8 - r8) + 68 (6* - r8) + c8 (c8 - r8) “ 0.^ 

Comparing (i) and (ii), we see that the squares of the 
axes of the section are the two values of X. 

The equations of the diameter which is parallel to the 
normal at P to’one of the confocals are 

x_y _ z 
x y' * __ 

The length of the diameter will he equal to 2*/X if it be 
one of the generating lines of the cone 

*(?-£) + -£)-° tArt-«■E* *1: 

the condition that this may be the case is 

(u2-x)3U9 v + (&*-Tx7\# + x/*0* 

and it is clear from (i) that this condition is satisfied. 

Hence an axis of the centrJt*!section is parallel to the 
normal to one of the confocals through P, ana the square of 
the length of the semi-axis is equal to the parameter of 
that confocaL 
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Coe. If diameters of a conicoid be drawn parallel to the 
normals to a confocal at all points of their curve of inter¬ 
section, such diameters will be of constant length. 

168. Two points (&, y, z), (g, 77, f), one on each of two 
co-axial conicoias whose equations are 

is + 2/-+--l - + 2/S+--l 
at + b' + c*~ 1>cr‘+/Ss+7B"'i' 

respectively, are said to correspond when 

f=2and£=l. 
a a 0 p 0 7 

In order that real points on one conicoid may correspond 
to real points on the other, the two surfaces must be of the 
same nature, and must be similarly placed. 

It follows at once from the equations (i), Art. 96, that if 
on one of the conicoids three points be taken which are ex¬ 
tremities of conjugate diameters, the three corresponding 
points on the other conicoid will be at extremities of con¬ 
jugate diameters. 

169. The distance between two points, one on each of two 
confocal ellipsoids, is equal to the distance between the two 
corresponding points. 

Let (mlf yv zt)> (r, 3 z%) be the two points on one 
conicoid, and (£,, Q, (ff, the corresponding points 
on the other conicoid. 

Then 
a a 0 fd c y 

and S = & = &. 
a a h p c y 

We have to prove that 

k - &•+ (y-v,y+ 0-?.)’ - <®s - w+0-+0-r,)*, 

“ (“1 -1*•)'■+ d *-?»•)’+(ff> ■~l**)’ 
=(®«-£)’ + (y.- %y+0, - (r,)*, 
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(**-«*>(§ 

which is clearly the case, since the conicoids are confocal, ami 

e+a’+S-s’+g+i’.,. 
a p 7 a 6 c 

m 170. The loom of the poles of a given plane with respect 
yto a system of confocal conicoids is a straight Urn* 

Let the equation of the confoeals he 

_iL_+_*L+_jL fc, 
£4>_X + 5!‘-\+c1‘-X. l’ 

and let the equation of the given plane ho 
lx + my + nz=l. 

The equation of the polar plane of the point (*', y, s') is 

JEL +JJP' + ZL -i 
a*_X o* —a d* — X 

Comparing this equation with the equation of the given 
plane, we have 

x , if , / 
_  «* t tsss mni Anri     . n ** * 

6s —X 
m, and ~j- **«; 

C A 

therefore 
I m n 

Hence the locus of the poles is the straight line whose 
equations me 

a ~ cfl y ~ * — e8a 
i m n 

This straight line is perpendicular to the given plane, and 
it clearly must pass through the point of contact of that con- 
focal which touches the plane. Hence the perpendicular 
from any point on its polar plane with respect to a coniootci 
meets the polar plane in the point where a confocal cotiieoid 
touches ii 
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171. The axes of the enveloping cone of a conicoid are 
the normals to the confocals which pass through its vertex. 

Let OP, OQ, OR be the normals at 0 to the three 
conicoids which pass through 0 and are confocal with a given 
conicoid; and let P, Q, R he on the polar plane of 0 with 
respect to the given conicoid. 

By the last article, the line OP is the locus of the poles of 
the plane QOR with respect to the system of confocals. 
Hence, the pole of the plane QOR with respect to the given 
conicoid is on the line OP; the pole is also on the plane 
PQR, because PQR is the polar plane of 0 and therefore con¬ 
tains the poles of all planes through 0. Therefore the point 
P is the pole of the plane QOR with respect to the given 
conicoid. Similarly Q and R are the poles of the planes ROP 
and POQ respectively. Hence OPQR is a self polar tetra¬ 
hedron with respect to the original conicoid. 

Now let any straight line be drawn through P so as to 
cut the given conicoid in the points A, B and the plane QOR 
in C. Then [Art. 56] the pencil 0 {APBC} is harmonic; and 
OP and 00 are at right angles, hence OP bisects the angle 
A OB. This shews that OP is an axis of any cone whose 
vertex is at 0, and whose base is a plane section of the 
conicoid through P. One such cone is the enveloping cone 
from 0 to the given conicoid; hence OP is an axis of the 
enveloping cone. We can shew in a similar manner that OQ 
and OR are axes of the enveloping cone. 

172. To find in its simplest form the equation of the 
enveloping cone of a conicoid. 

Let the equation of the conicoid be 

o? y2 s? - _ 4. ~ ^ _ 1. 

The equation of any tangent plane is 

lx -f my + nz~ *J(a2F + 6W + cV). 

Hence the direction-cosines of the normal to any tangent 
plane which passes through the point (x09 yQ) z0) satisfy the 
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equation. 
aH1 + bV H- cV — (l:ra + my0 + = 0. 

Hence the equation of the reciprocal of the enveloping cone 
whose vertex is (x0, y0, z0) is 

aV + by + eV - (xxa + yy„ + zzaf = 0.(i). 

Similarly the equation of the reciprocal of the enveloping 
cone of the conicoid 

or y‘‘ 
(ii). 

is (at—X)x*+(bt-\)y‘+(e>-X)zi- (yx0+ yye+ zz0)**= 0...(iii). 

It is clear from Art. CO, that the cones (i) and (iii) are 
co-axial for all values of X. Hence, since a cone and its 
reciprocal are co-axial, it follows that all cones which have a 
common vertex and envelope con focal conicoids are co-axial; 
and, by considering the three confocals which pass through 
the vertex, the enveloping cones to which are the tangent 
planes, we see that the principal planes of the system of 
cones are the tangent planes to the confocals which jaws 
through their vertex. 

The enveloping cones of the three confocals which pass 
through (<r0, y#, zt) are planes, and their reciprocals are 
straight lines. Hence the three values of X for which the 
left side of (iii) is the product of linear factors (which are 
imaginary) are the three parameters X.,, X„, X, of the eon- 
focals through (<e., y„, z,). 

But [Art. 77j the three values of X for which the left 
side of (iii) is the product of linear factors are the three roots 
of the discriminating cubic of (i). 

Therefore the roots of the discriminating cubic of (i) are 
X,, X„ X,; so that the equation of the reciprocal of the 
enveloping cone, when referred to its axes, is 

Xj®1+\j/*+\ji* ** o. 
Hence the equation of the enveloping cone is 
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Ex. Find the locus of the vertices of the right circular cones which 
circumscribe an ellipsoid. 

If a cone be right circular, the reciprocal cone will be right circular. 
Hence we require the condition that the cone whose equation is 

a?x2+by2+cV- - {xx0+yy0 + zz0)2 = 0, 

may be right circular. 

If y0, Zo be all finite, the conditions for a surface of revolution are 

[Art. 85] a2 - x02 + xQ2 = b2 - yf + yf = c2- zQ2+z02, 

so that, unless the surface is a sphere, x0yQZQ must be zero. If z0=0, the 
condition for a surface of revolution gives 

(c2 - a2 + x02) (c2 - b2 + yQ2) = x0*y0*. 

Hence the enveloping cone from any point on the focal ellipse 

is right circular. 

Similarly, the enveloping cones from points on 

aS_&a + cS_^_1» . .(U). 

or from points on ,/,+ / 2 —X, a—0. 
b2 - a2 c- - a2 3 .(iii). 

are right circular. 

The conic (ii) is the focal hyperbola, and (iii) is imaginary. 

OONCYCLIC CONICOIDS. 

173. The reciprocal of the conicoid 

, f , ** _ i 

with respect to the sphere x2 4- y1 -+■ z2 — k2, is 

(a* 4 X) x2 4 (V2 4 X) y* 4 (c2 4 X) z2 = k\ 

It is clear that the reciprocal conicoids have the same 
cyclic planes for all values of X. 

Hence a system of confocal conicoids reciprocates into a 
system of concentric concyclic conicoids. 
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174. The following are examples of reciprocal properties 
of confocal and concentric coucychc conicoids. 

Three confocals pans through Three eoocyelics touch any plane, 
any point, namely an ellipsoid, an namely an ellipsoid, an hyperooloid 
hyperboloid of one sheet, and an of one sheet, and an hyperboloid of 
hyperboloid of two sheets; also the two sheets; also the lines from the 
tangent planes at the point to the centre to the points of contact of the 
three surfaces are at right angles. plane are at right angles. 

Two confocals touch a straight Two coneycllcs touch a straight 
line, and the tangent planes at the line, and the lines from the centre 
points of contact are at right angles, to the points of contact are at right 

angles. 

One conicoid of a confocal system One conicold of a coneyclic system 
touches any plane. passes through any point 

The locus of the pole of a given The envelope of the polar plane 
plane with respect to a system of of a given point with rmptmt to a 
confocals is a straight line. system of concyclic* i» a straight line. 

The principal planes of a eon© The mm of a none whoso vortex 
enveloping a conicoid are the tangent is at the centre of a oonlcold and bn** 
planes to the confocals through its any plane section, are the lines from 
vertex. the centre to the point** of contact of 

the plane with the eoneyolios which 
touch it. 

Foci of Conicoids. 

175. There are two definitions of a conicoid which corre¬ 
spond to the focus and directrix definition of a conic. 

One definition, due to Mac Cullagh, is ns follows:— 

A conicoid is the locus of a point which moms so that its 
distance from, a fixed point, called the focus, is in a constant 
ratio to its distance (measured parallel to a fixed plane) from 
a fixed straight line called the directrix. 

Let the origin be the focus, and the plane ••«{) the fixed 
plane. 

Also let the equations of the directrix bo 

I m n 
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Let x', y, z be the co-ordinates of any point P on the locus, 
and let a plane through P parallel to z = 0 meet the directrix 

in if, then M is |/+i (z -h), g + ™(*- h), z’ 

Now OP2 = e*.PM2, e being the constant ratio. Hence 
the equation of the locus of (x} y', z) is 

a?+y*+z>= e^cc-.f-ln(z- A)}2 + [y~9" (*- 

The locus is therefore a conicoid, and is such that sections 
parallel to z = 0 are circles. 

If the axes be changed in any manner (i) will always be 
of the form 

(*- *)2 + (y- /3)2+ (*- 7)2~ ^ = 0, 

where A is the sum of two squares, or is the product of two 
imaginary factors. We can therefore find the foci of any 
given conicoid whose equation is S = 0, from the consideration 
that # - X {(# — a)2 + (y — /3)2 H- (* — 7>2} will be the product 
of imaginary linear factors if (a, ft, 7) be a focus, provided a 
suitable value be given to X. 

176. The other definition of a conicoid, due to Salmon, 
is as follows :— 

A conicoid is the locus of a point the square of whose 
distance from a fixed point, called a focus, varies as the pro¬ 
duct of its distances from two fixed planes. 

The equation of the locus is clearly of the form 

(x—af+ (y—/3)2-f(>-~ 7)"= h\lx+my+nz 4-j)) (fix+ray 4 n'z 4p'). 

We can find the foci of any conicoid according to this 
definition by the consideration that 

S-\{(x-ay+(y-fiy + (z- y)2} 

will be the product of real linear factors if (2, 7) be a focus, 
provided a suitable value be given to X. 
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177. To find the foci of the conicoid whom equation is 

ax' + by* + cz* = 1. 

We have seen in Articles 175 and 170 that (a, ft, 7) is a 

focus when 

or* + by* + m* - 1 - X {(•« - a)* + {>J~ ft? + <*-1?\.(i) 

is the product of linear factors. 

Hence X must he equal to a, or b, <*r c, 

Let X = a, then (i) becomes 

(b - a) y’+ (c - a) z*+ tmx + tufty+ tayz - a (**+ £’+7,j -1, 

or (6 - a) |y + ]• + (e - a) j* + 

, ah/SP «<•*/ . 
+ 2twa: — a-a —, - — - ■ — I. 

b- U C - rt 

Hence, in order that (i) may be the product of linear 
factors, we must have a * 0, and 

ft8 7* 

l a c a 

Similarly, ifX ■= 6, we have ft => 0 and 

a* 7* , 

1 _1 l _1 
u~ b c b 

and, if X *» 0, we have 7 « 0, and 

«’ _ , J? _r+_r»l. 

There are therefore three conics, one in each principal 
plane, on which the foci lie. 
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178. If the surface be an ellipsoid whose semiaxes are 
o, the conics on which the foci lie are 

x y 
a? -c2 - c‘ 

= 1, z = 0. 

a? - 6* ' c — b 
i=l, 2/ = 0. 

•(iX 

•(ii)» 

id y2 , ** 

b*-a2 + c2-n2 
= 1, x = 0 (iii). 

_ Since a, b, c are in descending order of magnitude (i) is an 
lipse, (ii) is an hyperbola, and (iii) is imaginary. These 
>nics are called the focal conics; and, as we have seen in 
.rt. 160, they are the boundaries of limiting forms of confocal 
micoids. 

179. The focal conics of the cone ax2 + bf + cz‘ = 0 can 
e deduced from the above, or found in a similar manner, 
'he conics become 

x — 0, = 0; 

aid 

y = o, 

z—0, 

= 0; 

=0. 

One of the focal conics of a cone is therefore a pair of real 
straight lines which are called the focal limes ; the other focal 
conics are pairs of imaginary straight lines, which we may 
consider as point-ellipses. 

Ex. 1. Two cones which have the same focal lines cut one another at 
right angles. 

Ex. 2. Shew that the enveloping cones from any point to a system of 
eonfocals have the same focal lines. 

Ex. 3. Shew that the focal conics of a paraboloid are two parabolas. 
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180. The focal lines of a cone are perpendicular to the 
cyclic planes of the reciprocal cone. 

The equations of any two reciprocal cones referred to 
their axes are 

cuc*+ If + os® = 0, and — + ~ = 0. 
u (t 0 C 

The cyclic planes are [Art 121] 

(a- b)a?+ {c -&)** = 0, and ^ + j^, - *f ® 

The focal lines are by the last article 

y = 0,  -- 4- =—=• = 0, and y = 0, — / + - • , - 0. 
J 'll 11 J a-b c-~b 

a b c b 

It is therefore clear that the focal lines of one cone ure 
perpendicular to the cyclic planes of the other. 

Examples oh Chapter VIII. 

1. Three confocal conicoids meet in a jiofrit, and a central 
plane of each is drawn parallel to Its tangent piano at flint point 
Prove that, one of the three sections will Im an ellipse, mm tin 
hyperbola, and one imaginary, 

2. Plane sections of an ellipsoid envalotx* a confocal; shew 
that their centres lie on a surface of the fourth degree, 

3. l\ Q are two points on a generator of a hyperboloid; /*, Q' 
the corresponding points on a confocal hyperboloid. Shew that 
FQf is a generator of the latter, and that PQ ** FQ\ 

4. Shew that the points on a system of ooiifocal* which are 
such that the normals are to a given Mae art on m rect¬ 
angular hyperbola. 

5. If three lines at right angles to one another touch a 
conicoid, the plan© through the points of contact will envelop© 
a confocal 
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5* If three o£ -the generating ^es of the enveloping cone of 
raboloid be mutually at right angles, shew that the vertex will 
>n a paraboloid, and. that the polar plane of the vertex will 
l7B touch another paraboloid. 

If through a given straight line tangent planes be drawn 
■ system, of confocals, the corresponding normals generate a 
srbolic paraboloid. 

i Shew that the locus of the polar of a given line with respect 
system of confocals is a hype*^0^0 paraboloid one of whose 

aptotic planes is perpendicular to the given line. 

1 Planes are drawn all passing through a fixed straight line 
each touching one of a set of confocal ellipsoids j find the locus 
ieir points of contact. 

10. At a given point 0 the tangent planes to the three coni- 
s which pass through. 0, and are confocal with a given conicoid, 
drawn; shew that these tangent planes and the polar plane of 
irm a tetrahedron which is self-conjugate with respect to the 
n conicoid. 

11. Through a straight line in one of the principal planes 
[Qnt planes are drawn to a series of confocal ellipsoids; prove 
. the points of contact lie on a. plane, and that the normals at 
e points pass through a fixed point. 

E£ a plane be drawn cutting the three principal planes, and 
ugh each of the limes of section tangent planes be drawn to 
series of conicoids, prove that the three planes which are the 
of the points of contact intersect in a straight line which is 
tendicular to th© cutting plane, and passes through the three 
i points in which, the three series of normals intersect. 

12. Any tangent plane to a con© makes equal angles with the 
t©s through the line of contact and the focal lines. 

13. If through a tangent ah any point of a conicoid two 
jent planes be drawn to a focal conic, these two planes will be 
dly inclined to the tangent plane at 0. 

14. The focal lines of the enveloping cone of a conicoid are 
generating lines of the confocal hyperboloid of one sheet which 
e» through its vertex:. 

s. s. a. 11 
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15. Any section of a cone which is normal at P to a focal 
line, has P for one focus. 

16. If a section of an ellipsoid be normal to a focal conic at 
P, then P will be a focus of the section. 

17. The product of the distances of any point P on a focal 
conic of an ellipsoid, from two tangent planes to the surface which 
are parallel to one another and to the tangent at P to the focal 
conic, is constant for all positions of P. 

18. From whatever point in space the two focal comes are 
viewed they appear to cut at right angles. 

Hence shew that the focal conics project into confocals on any 
plane. 

19. If two confocal surfaces be viewed from any point, their 
apparent contours seem to cut at right angles. 

20. If two cylinders with parallel generators circumscribe 
confocal surfaces their sections by a plane perpendicular to the 
generators are confocal conics. 

21. The centres of the sections of a series of confocal eoniccmi* 
by a given plane lie on a straight lino. 

22. Shew that those tangent lines to an ellipsoid front mi 
external point whose length is a maximum or mini mum are normals 
at their respective points of contact to confocals drawn through 
those points: and further, that the locus of these maxi in inn and 
minimum lines to a series of ellipsoids confocal with the original 
one is a cone of the second degree. 

23. A straight line meets a quadric in two pointi /* Q m 
that the normals at P and Q intersect: prove that PQ trusts my 
confocal quadric in points, the normals at which Inifrmml, and 
that if PQ pass through a fixed point it lies on a quadric witie* 

24. If from any point 0 normals are drawn to a mmttmt of 
confocals (1) these normals form a cone of to© second ikwm% f‘2f 
the tangent planes at the feet of the normals form a ditvHbimble 
°f. . fourth degree. Consider the case of 0 being In, mm of tlm 
principal planes. 
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25. The envelope of the polar plane of a fixed point with 
respect to a system of confocal quadrics is a developable surface. 
Prove this, and shew that the developable surface touches the six 
tangent planes to any one of the confoeals at the points where the 
normals to that confocal through the fixed point meet that confocal. 

26. Prove that the developable which is the envelope of the 
polar planes of a fixed point P with respect to a system of confocal 
quadrics, meet Q the polar plane of P with respect to one of the 
confoeals in a line, whose polar line with respect to the same 
confocal is perpendicular to Q; and that these polar lines generate 
the quadric cone six of whose generators are the normals at P to 
the three confoeals through P, and the three lines through P 
parallel to their axes. 

27. Prove that if a model of a hyperboloid of one sheet be 
constructed of rods representing the generating lines, jointed at the 
points of crossing; then if the model be deformed it will assume 
the form of a confocal hyperboloid, and prove that the trajectory 
of a point on the model will be orthogonal to the system of confocal 
hyperboloids. 

28. The two quadrics 

tayz + 2l/zx 4- 2cxy = 1 and 2afyz + 2Vzx + 2dxy = 1 

can be placed so as to he confocal if 

nbc , .aW , 
«?+?*+? «'s + b*+ a'1 ’ (a9 + 6* + c’)8 (a'0+b'1 + o'2)3 ~ *T' 

29. Two ellipsoids, two hyperboloids of one sheet, and two 
hyprboloids of two sheets belong to the same confocal system; 
shew that of the 256 straight lines joining a point of intersection 
of three surfaces to a point of intersection of the other three, there 
are 8 sets of 32 equal lines, the lines of each set agreeing either in 
crossing or in not crossing each of the principal planes. 

30. A variable conicoicl has double contact with each of three 
fixed confoeals; shew that it has a fixed director-sphere. 

11—2 
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Quadriplanar and Tetrahedral Co-obdinj 

181. In the quadriplanar system of co-ordinal 
planes, which form a tetrahedron, are taken as pi 
reference, and the co-ordinates of any point ar© its 
dicular distances from the four planes. The perpen 
are considered positive when they are drawn in tl 
direction as the perpendiculars from the opposite 
points of the tetrahedron. 

Since the perpendicular distances of a poir; 
any three planes are sufficient to determine its ] 
there must be some relation connecting the four 
diculars on the planes of reference. 

Let A, B, 0, jD be the angular points of the tetri: 
and a, 6, c, d be the areas of the feces opposite resp 
to A, By C3 D i then, if a, /3, <y, 8 be the co-ordinates 
point, the relation will be 

aa + J/3-f cy + = ZV9 

where V is the volume of the tetrahedron ABOL 
is evidently true for any point P within the tetra 
since the sum of the tetrahedra BOBP CDAJP 
ABQP is the tetrahedron ABGB; and, 
the signs of the perpendiculars, it can 1 
universally true. 

regard being 
>e easily see] 



TETRAHEDRAL CO-ORDINATES. 165 

182. The tetrahedral co-ordinates a, 0, 7, S of any point 
P are the ratios of the tetrahedra BGJ)Pt GDAP, J)ABP, 
ABGP to the tetrahedron of reference AJBGJJ. The relation 
between the co-ordinates is easily seen to be 

a + 0 + 7-f S= L 
It is generally immaterial whether wo use quadriplanar or 

tetrahedral co-ordinates, but the latter system has some 
advantages, and in what follows we shall always suppose the 
co-ordinates to be tetrahedral unless the contrary is stated. 

We shall also suppose that the equations are homogeneous, 
for they can clearly always be made so by means of the relation 
a~f/3-fy-J-S— 1. When the equations are homogeneous we 
can use instead of the actual co-ordinates any quantities 
proportional to them. 

183. The co-ordinates of the point which divides the 
line joining (a%> 0 yv §x) and (as, 0%,%, Ss) in the ratio X : /x 
are easily seen to do 

fi%% 4- Xag p0% 4- X0% j#yl + \y? 4- X3S 
X -f* /a , X 4“fit * X-h/x * X Hb /-& 

184. The general equation of the first degree represents a 
plane. 

The general equation of the first degree is 

la 4- m/3 4-7174-pS® 0. 
We may shew that this represents a plane by the method 
of Art. 13. 

Since the equation h 4- m/3 4- wy 4- p$ * 0 contains three 
Independent constants it is the most general form of the 
equation of a plane. 

The equation of the plane through the three points 
0*t» $1* H%9 (®t> fiv %t ^a)i (®gf 0$$ %) \) Df 

a, 0. y, 5 

a„ St* r.. 
««. ft** %> ** 

*»• ?»* % 
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185. To shew that the perpendiculars from the angular 
points of the tetrahedron of reference on the plane whose 
equation is la 4- m/3 4-717 4-pS = 0 are proportional to l, m, n,p. 

Let X, M, N, P be the perpendiculars on the plane from 
the angular points A, B, C, D respectively; the perpendicu¬ 
lars being estimated in the same direction. Let the plane 
meet the edge AB in K; then at K we have 7 = 0, 8 = 0 

Gt B 
and la + rnB = 0: therefore — = —». 

ml 

Now L : M :: AK : BE. 

But AK : AB :: ACDK : AGDB :: 0 : l; 
similarly KB : AB :: KBGB : ABGD :: a : 1; 

L : M:: AK : — KB :: fi : — a.:: l : m; 
L M , . .. . , JT P 
t = —, and similarly each = — ==—. 

/. /m *> fn tn 

186. The lengths of the perpendiculars on a plane from 
the vertices of the tetrahedron of reference may be called the 
tangential co-ordinates of the plane; and, from the preceding 
article, the equation of the plane whose tangential co-ordinates 
are l, m, n, p is la 4- m/3 4- my 4-p8 = 0. 

The co-ordinates of all planes which pass through the 
point whose tetrahedral co-ordinates are a19 Bx> are 
connected by the relation lax 4- m/3t 4- nyt 4- p8x = 0. Hence 
the tangential equation of a point is of the first degree. 

187. The equation of any plane through the intersection 
of the two planes whose equations are 

la 4* m/3 4- ny 4-jp8 = 0, and Va 4- m'/3 4- n'y+p'8 = 0, 

is (l4-XZ') a + (m4-Xm') /34- (n + 'XnS) y+ (p +\pr) 8 = 0. 

Hence the tangential co-ordinates of any plane through 
the line of intersection of the two planes whose co-ordinates 
are l, m, n, p and l', m\ n, p' are proportional to 14- 7d\ 
m 4- Xm', n 4- Xn', p 4- Xp'. 
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188. To find the perpendicular distance of cc point from 
a plane. r 

Let the equation of the plane be 
la + m/3-b nr/ + p$ == 0...(i), 

and let its equation referred to any three perpendicular 
axes he 

Ax + By 4- Cz 4- B = 0...(ii). 

We know that the perpendicular distance of any point 
from the plane (ii) is proportional to the result obtained by 
substituting the co-ordinates of the point in the left-hand 
member of the equation. Hence the perpendicular distance 
of any point from (i) is proportional to the result obtained 
by substituting the co-ordinates in the expression 

la 4- m/3 4- ny 4-pS. 
Hence, if l, m, n, p be equal to the lengths of the perpendiculars 
from the angular points of the tetrahedron of reference, the 
perpendicular distance of any other point (a, /3\ <y\ &') will 
bo W + m/3' 4 ny 4- p&. 

189. If a plane be at an infinite distance from the 
angular points of the tetrahedron of reference, the perpen¬ 
diculars upon it from those points are all equal. 

Hence the equation of the piano at infinity is 

a 4~ 4* 'y 4- S = 0. 

This result may also be obtained in the following 
manner. 

Let kaf k/3, ky, kS be the co-ordinates of any point; then 
the invariable relation gives kx 4 k/3 + ky 4- fcB = 1, or 

a4*^4-74~S:=^. If therefore k become infinitely great, we 

have in the limit a4^84y48S30, This is the relation 
which is satisfied by finite quantities that are proportional 
to the co-ordinates of any infinitely distant point. 

190. Let at, /31,yl, be the co-ordinates of any point P, 
and a, ft, y, 8 the co-ordinates of a point Q. Also let 0X, 02, 0B, 6i 
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be respectively the angles between the line PQ and the 
perpendiculars from the angular points A, B, G, I) of the 
fundamental tetrahedron on the opposite faces. 

Then, a, b3 c, d being the areas of the faces opposite to 
A, B, G, jD respectively, we have 

a - = i a-BQ cos ft — ft^^b.PQ cos Q%, 
io.PQ cos 08, and 8 - 8, = J d. PQ cos 0r 

The equations of the straight line through P, whose 
direction-angles are 0V 02, 0V 04, are therefore 

= ft-fti _ 7-% _ 8-8, _ t 
a cos 0t b cos 02 c cos 0Q d cos 04 * * 

Since the sum of the projections of the four faces of the 
tetrahedron on a plane perpendicular to PQ is zero, we have 

a cos 0t-\-b cos 02-f c cos 08 + dcos &4 = 0, 
or, putting l, m, n, p instead of a cos 0 , b cos 02> o con 0 $ 
d cos 04 respectively, 

Ex. 1. Find the conditions that three planes may have a common linn of 
intersection. 

Ex. 2. Find the conditions that two planes may be parallel. 

. equation of a plane through a given point parallel to it 
given plane. 

[Any plane parallel to la+mp+ny+pd=:0} is 

la+mj3 4- ny +po -f \ (a -f- /? -f 7 + 5) = 0. 

Hence the parallel plane through («', /S', 7', 5') is 

te + mp+ny+pd^ya'+mp' + ny'+pd^fa+p + y+fy'J 

,Ex- hi. eJaatl0ns of tJle four PJaaes each of which passes through a 
vertex of the tetrahedron of reference and is parallel to the opposite fa«fare 

£+7+5=0, 7+5+ a=0, 6+a+£=0, and a+/3+ra=0. 

Ex. 5. Find the condition that four given points may lie on a plana, 

‘lt the sonditiou that four gton plane, may im. Is . point. 

“h 

«=/S+7+«, £=7+*+o,7=5+a+jS, and 5=a+£+y. 
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Ex. 8. SRew that the lines joining the middle points of opposite edges of 

a tetrahedron meet in a point. 

Ex. 9* IFind the equations of the four lines through A, J5, 0, D respec¬ 
tively parallel to the line whose equations are 

la+rnp + =0, I'a+m'jS + n'y +p'd = 0. 

Ex. XO. A olane cuts the edges of a tetrahedron in six points, and 
six other -points are taken, one on each edge, so that each edge is divided 
harmonically • shew that the six planes each of which passes through one of 
the six latter* points and through the edge opposite to it, will meet m a 
point. 

Ex. XX. Lines AO a, BOb, COc, DOd through the angular points ot * 
tetrahedron meet the opposite faces m 6, c, d. Shew that the four of 
intersection of the planes BCD, bed; CDA, eda; JDAB, dab; and ABO, abc 
lie on a plane. 

[If O Ice («', /S', y’, S’) the equation of bed is 

g. + 21 + I_^=0; 
/3'+ V S' a' 

hence tb.e line of intersection of BCD, led is on the plane 

“ . P.y . i_o 1 
«' + P + ?+5;-°-1 

Ex. X2. If two tetrahedra be such that the straight Itoesjoinmg 
corresponding angular points meet in a pomt, then will the four lines 
of intersection of corresponding faces lie oma plane. 

19X. We shall write the general equation of the second 
degree in tetrahedral co-ordinates in the form 

qo? + r/32 + sf + t& + 2f/3y + 2gya. 4- 2/w/3 
+ 2 uaZ + 2v/3$ + 2wyS = 0. 

The left side of the equation will he denoted by 

F{<*, ’Yy s)- 

192 To find the points where a given straight line cuts 
the surface represented by the general equation of the second 
degree i/n tetrahednal co-ondinates. 

Let the equations of the straight line he 

a — at _ /8-A = 7~7i _ S "A = p. 
I ~ m n p 
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To find the points common to this line and the surface, 
we have the equation 

F (oq -f Ip, & -f mp, yx + np, Bt +pp) = 0, 

+ p*F(l, m, n,p) = 0. 
Since there are two values of p, the surface is a conicoid. 

or F(^^%,cx) + p(l^ 

193. To find the equation of a tangent plane at any paint 
of a conicoid. 

If (oq, fix,y19 Bx) be a point on the surface, one root of the 
equation found in the preceding article will be zero. Two 
roots will be zero, if 

7 dF, dF , dF dF A 
lda1+mdfi1 + 71 d% +P dSl ~ 

The line will in that case he a tangent line to the surface. 
Substituting for l, m, n,p from the equations of the straight 

line, we obtain the equation of the tangent plane, namely 

But, since the equation F (a, /3, 7, B) = 0 is homogeneous, 
dF ^ dF ^ dF jj dF _ 
da, + & d/3, + %dy1+ S' dS, ~ 0; 

therefore the equation of the tangent plane at the point 
(»,> Vi, K) is 

„dF,ftdFJ_ dF -dF . 

194. It can he shewn hy the method of Art. 53, that the 
equation of the polar plane of any point (oq, /3t, y19 St) is 

dF^zdF^ dF^zdF„* 
8 doc,+d/3,+ 7 dy, + S dS, - °- 

195. To find the co-ordinates of the centre of the conicoid. 
The polar plane of the centre is the plane at infinity, 

whose equation isa + /3+y + S = 0. 



TETRAHEDRAL CO-ORDINATES. 171 

Hence, if (a1? /3t, yv be the centre of the comcoid, 
we must have 

dF _dF __dF _ dF 
dat dj3t "" dy1 ~ d8x * 

196. The diametral plane of a system of parallel chords 
of the conicoid can be found from Art. 192. The equation 
of the plane is 

dF 
da 

, dF dF dF A 
+ mW + ndj+Pd8~°- 

Since l+m 4W4.P = 0 [Art. 190], it follows that all the 
diametral planes pass through the centre, that is through the 
point for which 

dF^dF^dF^dF 
da d/3 dy dS’ 

. 197. To find the condition that a given plane may touch 
the conicoid. 

The condition that the plane la 4- m/3 4 ny 4 pS = 0 may 
touch the conicoid can he found as in Art. 57. The result is 

QP + Urn2 4 Sn2 4 Tp2 4 2Fmn 4 2 Onl 
4 2127m 4 %Ulp 4 2 Vmp 4 2 Wnp = 0, 

where Q, JR, 8 &c. are the co-factors of q, r, s &c. in the dis¬ 
criminant. 

198. To find the condition that the surface represented by 
the general equation of the second degree may be a cone. 

The polar planes of the angular points of the fundamental 
tetrahedron with respect to a cone meet in a point, namely 
in the vertex of the cone. The equations of the polar 
planes are 

qa 4 4 gy + uB = 0, 
ha + rj84 fy 4 vb = 0, 
gx + f/3+sy 4 wS = 0, 
ux 4 v/3 +wy 4 tS — 0. and 
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The required condition is therefore 
q, hy (J> u 
h > T y f y V 

ffy fy By W 

Uy V, Wy t 

= 0. 

199. To shew that any two coracoids have a common self 
polar tetrahedron. 

We can shew, as in Art. 142, that four cones can pirns 
through the intersection of any two conicoids, and that the 
vertices of the four cones are the angular points of a tetrahe¬ 
dron self-polar with respect to any conicoid through the 
curve of intersection of the given conicoids. 

The equation of a conicoid, when referred to a self-polar 
tetrahedron, takes the form 

qi% 4* rft2 4 4 = 0. 

For, since a = 0 is the polar plane of the point (1, 0,0,0), 
we have h = g = u = 0; and similarly /«= v « w ~ 0. 

200. To find the general equation of a conicoid circum¬ 
scribing the tetrahedron of reference. 

If we substitute the co-ordinates of the angular points of 
the tetrahedron of reference in the general equation of the 
second degree, we have the conditions q**r**$**t**0. 

Hence the general equation of a conicoid circumscribing 
the tetrahedron of reference is 

f/37 4* ffffa 4 ha/B 4 uaB 4 V0B 4 wyS *» 0. 

201. To find the general equation of a conicoid which 
touches the faces of the tetrahedron of reference. 

The planes a=0, 7 = 0 and 5*0 will touch the 
conicoid riven by the general equation of the second degree if 
Q=z0, B = 0, $==Q and JP-0. [Art. 197.] 

Hence conicoids which are inscribed in the tetmhedron of 
reference are given by the general equation, with the con¬ 
ditions Q =* jB as 0. 
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Ex. 1. Find the equation of a conicoid which circumscribes the tetra¬ 
hedron of reference, and is snch that the tangent planes at the angular points 
are parallel to the opposite faces. Am. £7+7a + a/3+ctS+/35 + 75=0. 

Ex. 2. Find the equation of the conicoid which touches each of the faces 
of the fundamental tetrahedron at its centre of gravity. 

Am. a2 + /32 +• 72 + 52 — (3y — ya — a/3 — a5 — /Sd—7#=0. 

202. To find the equation of the sphere which circum¬ 
scribes the tetrahedron of reference. 

The general equation of a circumscribing conicoid is 

fft1y gya 4 haft 4 uaB 4 4 wyB = 0. 
If the conicoid be the circumscribing sphere, the section 

by S = 0 will be the circle circumscribing the triangle ABC. 
Now the triangular co-ordinates of any point in the plane 
3 = 0, referred to the triangle ABC, are clearly the same as 
the tetrahedral co-ordinates of that point, referred to the 
tetrahedron ABCD. Hence, when we put S = 0 in the equa¬ 
tion of the conicoid, we shall obtain an equation of the same 
form as the triangular equation of the circle circumscribing 
ABC. Hence, comparing the equations * 

fPy +97* + hafi = 0, 
and BC2/3y 4 CA*ya 4- AB2a/3 = 0, 

we obtain = 

By considering the sections made by the other faces of 
the tetrahedron, we obtain the equation of the circumscribing 
sphere in the form 

5(7/37 + CA2ya 4 AB2a/3 4 AD2aS 4 BD2/3$ 4 CJD2yS = 0. 

203. To find the conditions that the general equation of 
the second degree may represent a sphere. 

Since the terms of the second degree in the equations of 
aU spheres, referred to rectangular axes, are the same; if 
8 = 0 be the equation of any one sphere, the equation of any 
other sphere can be written in the form 

$ 4 Za 4 -f ny 4 pB = 0, 
or, in the homogeneous form, 

5 4 (Za4m/?4wy4pS) (a 4 /S 4 74 8) = 0. 
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If this be the same conicoid as that given by the general 
equation of the second degree, 8 = 0 being the equation of 
the circumscribing sphere found in Art. 202, we must have, 
for some value of X, 

~Xq = lj Ar = m, Xs = n, Xt=p; 
also 2 Xf = JBG2 + m + n, 
and five similar equations. 

Hence the required conditions are that should 

be equal to the five similar expressions. 
The conditions for a sphere may also be obtained by 

means of the equation found in Art. 192; or in the following 
manner. 

To find the points, Pv P2 suppose, where the edge BO 
meets the conicoid given by the general equation of the 
second degree, we must put a = 0, S = (); and we obtain 

. r/32 *f sy2 + 2//?7 = 0 ; 
we have also /3-+<y = I ; 

rF + s(l-ft*+ 2//3(l -/S) = 0, 
and, if the roots be /3lf J3V we have 

= r + a- -if 

CP GP 
Now £ A = ; 

hence, if the conicoid be a sphere, and if tv tv tt, t. bo the 
lengths of the tangents from the points A, Ji, 0, 1) 
respectively, we have 

r + s - 2f _ 
W~ ~t*m 

By considering the edges OD, GA wo have similarly 
8 +1 —2w _ q_+a—2/7 a 

should be equal to the similar expressions. 

r+ 8—2 f 
B(? 
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Examples otf Chapter IX. 

1. Shew that, if qa2 + r/32 + sy2 + tS2 = 0 be a paraboloid, it wilJL 
touch the eight planes = 0. 

2. The locus of the pole of a given plane with respect to a 
system of conicoids which touch eight fixed planes is a straight 
line. 

3. The polar planes of a given point, with respect to a system 
of conicoids which pass through eight given points, all pass through 
a straight line. 

4. If two pairs of the opposite edges of a tetrahedron are each 
to each at right angles to one another, the remaining pair will be 
at right angles. Shew also that in this case the middle points of 
the six edges lie on a sphere. 

5. Shew that an ellipsoid may be described so as to touch each 
edge of any tetrahedron in its middle point. 

6. If six points are taken one on each edge of a tetrahedron 
such that the three lines joining the points on opposite edges meet 
in a point, then will a conicoid touch the edges at those points. 

7. If two conicoids touch the edges of a tetrahedron, the 
twelve points of contact are on another conicoid. 

8. If a conicoid touch the edges of a tetrahedron, the lines 
joining the angular points of the tetrahedron and of the polar 
tetrahedron will meet in a point. 

9. Shew that any two conicoids, and the polar reciprocal of 
each with respect to the other have a common self-polar tetrahedron. 

10. A series of conicoids Uv Z7S... are such that U +l and 
Urmml are polar reciprocals with respect to Ur; shew that lfr+t and 
Ur_^ are also polar reciprocals with respect to Ur, 

11. The rectangles under opposite edges of a tetrahedron are 
the same whichever pair is taken; prove that the straight lines 
joining its comers to the comers of the polar tetrahedron with 
respect to the circumscribed sphere will meet in a point. 



176 EXAMPLES ON CHAPTER IX, 

12. If four of the eight common tangent planes of thro 
conicoids meet in a point, the other four will also meet in a poim 

13. A plane moves so that the sum of the squares of it 
distances from two of the angles of a tetrahedron is equal to th 
sum of the squares of its distances from the other two ; prove Um 
its envelope is a hyperbolic paraboloid cutting the faces of th 
tetrahedron in hyperbolas each having its asymptotes pasHitij 
through two of the angles of the tetrahedron. 

14. If ABGD bo a tetrahedron, self*conjugate with resect t» 
a paraboloid, and XM, DB, BO meet the surface in A%i Mv 0 
respectively; shew that 

'jJT' Tb,‘ dcx * , 

2 a, +bbx +c&1 
15. If a tetrahedron have a self-conjugate sphere, and if its 

radius be /«?, prove that ®= 2 * where » is the. mm of tin 

squares of the edges of one face, and 8 the mini of the squares o; 
all the edges. 

16. Shew that the locus of the centres of nil conicoiilg wit set 
circumscribe a quadrilateral is a straight line. 

17. The locus of the polo of a fixed plane wit It mpwt to thr 
conicoids which circumscribe a quadrilateral is it straight linn 

18. The polar plane of a fixed point with respect U>any eoidfoid 
which circumscribes a given quadrilateral plages through a IIMil 
line. 

19. The sides of a twisted quadrilateral touch a comeotd \ 

-^ —^ ~ ~ '    "   1' 

(2) that two of the conicoids will touch a given line, (3) that one 
conicoid will touch a given pinna Bhew also tint the eonfooids 
are cut in involution by any straight lino; iil*o that tlm \mm of 
tangent planes through any line are in Involution. 
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22. Nine conicoids have a common self-polar tetrahedron; 
shew that the eight points of intersection of any three, the eight 
points of intersection of any other three, and the eight points of 
intersection of the remaining three are all on a conicoid. 

23. The sphere which circumscribes a tetrahedron self-polar 
with respect to a conicoid cuts the director-sphere orthogonally. 

24 The feet of the perpendiculars from any point of the 

surface - + - + = 0, on the faces of the fundamental tetra- 
a p y o 

hedron lie in a plane, a, 5, c, d being proportional to the volumes 
of the tetrahedron formed by the centre of the inscribed sphere 
and the feet of the perpendiculars from it on any three of the 
faces, and the co-ordinates being quadriplanar. 

25. The middle points of the twenty-eight lines which join 
two and two the centres of the eight spheres inscribed in any tetra¬ 
hedron are on a cubic surface which contains the edges of the tetra¬ 
hedron. Shew also that the feet of the perpendiculars from any 
point of the cubic surface on the faces of the tetrahedron lie on a 
plane. 

26. The six edges of a tetrahedron are tangents to a conicoid. 
The plane through the three points of contact of the three edges 
which meet in the same vertex meet the .face opposite to that 
vertex in a straight line : shew that the four such lines are gene¬ 
rators of the same system of an hyperboloid. 

27. When a tetrahedron is inscribed in a surface of the second 
degree, the tangent planes at its vertices meet the opposite faces in 
four lines which are generators of an hyperboloid. 

28. The lines which join the vertices of a tetrahedron to the 
points of contact of any inscribed conicoid with the opposite faces 
are generators of an hyperboloid. 

29. The lines which join the angular points of a tetrahedron 
to the angular points of the polar tetrahedron are generators of the 
same system of a conicoid. 

30. Cones are described whose vertices are the vertices of a 
tetrahedron and bases the intersection of a conicoid with the oppo¬ 
site faces. The other planes of intersection of the cones and 
conicoid are produced to intersect the corresponding faces of the 
tetrahedron. Prove that the four lines of intersection are genera¬ 
ting lines, of the same system, of a hyperboloid. 

S. S. G. 12 



CHAPTER X. 

Surfaces in General. 

204. We shall in the present Chapter discuss some 
properties of surfaces of higher degree than the second; 

205. Let F(x, y, z) = 0 he the equation of any surface. 
To find the points of intersection of the surface and the 

straight line whose equations are 

x—x __y—y' _ 
l ~~ m ~~ n ~ ’ 

we have the equation 
Fix + lr} y' 4- mr, z -f nr) = 0, 

rt, r t '\ fj ^ dF\ 
'(‘■I'■‘) + r{1&+m3? m) 

r2 /, d d d V w 
+o(!e+”5?+’,E'J^+' 

If the equation of the surface be of the n®1 degree, the 
equation (i) will be of the degree. Hence a straight line 
will meet a surface of the degree in n points, and any 
plane will cut the surface in a curve of the nr- degree. 

206. To find the equation of the tangent plam at any 
point of a surface. 

If (x'f y\ z‘) be a point on F (x, y, z) = 0, one root of the 
equation for r, found in the preceding article, will be zero. 
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Two roots will be zero if l, m, n satisfy the relation 

,dF , dF , dF n 
lJ? + m%? + n3?as0‘ 

The line will in that case be a tangent line to the surface - 
and the locus of all the tangent lines is found by eliminating 
l, m, n by means of the equations of the straight line. We 
thus obtain the required equation of the tangent plane 

„ dF . , „ dF , „ dF . / t\ 

y +(*-*):, 

If the equation of the surface be z — f (xt y) = 0, it is easy 
to deduce from the above, or to shew independently, that the 
equation of the tangent plane at (x, y, zf) is 

z — z = (a? • 
. df , 

'X)tu + iv 
,,df 

’v)w- 
207. The two real or imaginary lines whose direction- 

cosines satisfy both the relations 
,dF , dF , dF . 

l33+mdf + n7n-‘°’ 

,nd ('E>+"s| + »B-)‘-f’-». 
meet the surface in three coincident points. 

Hence at any point of a surface two real or imaginary 
tangent lines meet the surface in three coincident points. 
These are called the inflexional tangents. 

208. The tangent plane at any point of a surface will 
meet the surface m a curve of the idegree; and, since 
every line which is in the tangent plane, and which passes 
through its point of contact, meets the surface, and therefor e 
the curve of intersection, in two pints, it follows that the 
point of contact is a singular point in the curve of inter¬ 
section. 

When the inflexional tangents are imaginary, the point is 
a conjugate point on the curve of intersection. When the 
inflexional tangents are real, two branches of the curve of 

' 12-2 
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intersection pass through the point of contact; and these 
branches coincide when the inflexional tangents are coin¬ 
cident. 

209. The section of any surface by a plane parallel and 
indefinitely near the tangent plane at any point is a conic. 

Let any point on a surface be taken for origin, and let the 
tangent plane at the point be the plane z = 0. Let the 
equation of the surface bez = f(x, y); then, since £ = 0 is the 
tangent plane at the origin, we have 

z = ax2 + %hxy -f by2 

+ higher powers of the variables. 

Hence, if we only consider points so near the origin 
that we may neglect the third and higher powers of the 
co-ordinates, the section of the given surface by the plane 
z = k, is the same as the section of the conicoid whose equa¬ 
tion is 

2 = ax2 + by2 + 2hccy, 

by the plane z = Jc; the section is therefore a conic. 

The conic in which a surface is cut by a plane parallel and 
indefinitely near the tangent plane at any point, is called the 
indicatrix at the point; and points on a surface are said to 
be elliptic. parabolic, or hyperbolic, according as the in¬ 
dicatrix is an ellipse, parabola, or hyperbola. 

210. If, at the point (xr, y\ z') on the surface F(x, y} z) = 0, 
we have 

dF_dlf_dF__ 
dx ~ df — dz' ~~ 

every straight line through the point (x, y', z!) will meet the 
surface in two coincident points. 

Such a point is called a singular point on the surface. 
All straight lines whose direction-cosines satisfy the relation 

Ydx^^dy' 

will meet the surface in three coincident points and are 
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igent lines. Eliminating l, m, n, by means of the 
of the line, we obtain the locus of all the tangent 

the cone whose equation is 

VF d*F d*F 
dz"‘ it + (y—yf -faT* + (* - *') 

y) {z- z) + 2 0-z') (*-*') 
d*F 

dzdx' 

+ 2(x-x') (y-f) d*F 
docdy' 

0. 

the tangent lines at any point of a surface form a 
point is called a conical point; and when all the 
nes lie in one or other of two planes, the point is 
odal point. 

Find the equation of the tangent plane at any point of the 

y%+z%=a$; and shew that the sum of the squares of the inter- 
axes, made hy a tangent plane, is constant. 

Prove that the tetrahedron formed by the co-ordinate planes, 
gent plane of the surface xyz^azy is of constant volume. 

Find the co-ordinates of the conical points on the surface 
2/9 + ^ + 4a8 = 0; and shew that the tangent cones at the conical 
[ght circular. 

deal points are (2a, 2a, 2a,) (2a, - 2a, - 2a,) (- 2a, 2a, - 2a) and 
2a). The tangent cone at the first point is 

xP+yt + z2 — %yz — 2ikb~ 2x^=0.] 

Envelopes. 

To find the locus of the ultimate intersections of a 
surfaces, whose equations involve one arbitrary 

le equation of one of the surfaces he 
F(x, y, z, a) = 0, 

s the parameter. 
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A consecutive surface is given by the equation 
F(x} y, z, a+Sa) =0, 

or F(x, y, z, a) + -^F(x, y, z, a) 8a +.= 0. 

Hence, when 8a is made indefinitely small, we have for the 
ultimate intersection of the two surfaces the curve given by 
the equations 

d 
F(x, y, z, a) = 0, and ^ F (x, y, z, a)- 0. 

The required envelope is found by eliminating a from these 
equations. 

The curve in which any surface is met by the consecutive 
surface is called the characteristic of the envelope. Every 
characteristic will meet the next in one or more points, and 
the locus of these points is called the edge of regression or 
cuspidal edge of the envelope. 

212. To find the equations of the edge of regression of the 
envelope. 

The equations of the characteristic corresponding to the 
surface F (x, y, z,a) —0 are 

d 
F0, y, z>a) = 0 and -^F(%, y, z, a) = 0. 

The equations of the next consecutive characteristic are 
therefore 

d 
F(x, y,z,a+ 8a) = 0 and ^-F(x, y, z, a + 8a) = 0, 

or r+%la+...-0,*& g+gW.= 0. 

Hence at any point of the edge of regression we must have 

^ = 0, dFm 
da 

• 0, and 
da2 ~ 

The equations of the edge are found by eliminating a from 
the above equations. 
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vvelope of a system of surfaces, whose equation 
ie parameter, will touch each of the surfaces 

"be three consecutive surfaces of the system ; 
■be curve of intersection of the surfaces A and 
3 curve of intersection of the surfaces B and 
curves PQ and PQ' are ultimately on the 
Jt be any point on the curve PQ; and let 

ints, very near the point JR, one on the curve 
her on P Q'. Then the plane RST will in 
dtion he the tangent plane at JR both to the 
to the envelope; and hence the envelope 

face B, and similarly every other surface of the 
curve. 

nd the envelope of a series of surfaces whose 
e two arbitrary parameters. 

ation of any surface of the system be 

F(x, y, g, a, b) = 0, 

:he parameters, 

ve surface of the system is 

F (ix, y, z, a 4- 8a, b + 8b) = 0, 

in dF (jt dF *)aj6) + Sa_ + g6_+.= o. 

x and 8b are made indefinitely small, we must 
i of ultimate intersection 

F= 0, and 8a ^4- 8b ~w~= 0, 
da ab 

i 8b are independent, 

™ n dF AdF P-0, 0. 
curve of intersection of F with any surface 
it goes through the point which satisfies the 
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equations 

FAMILIES OF SURFACES. 

„ „ dF n , dF 
J?-0'ar-0'“dar 

The required envelope is found by eliminating a and h from* 
the above equations. 

215. To shew that the envelope of a series of surfaces, 
whose equations involve two arbitrary parameters, touches each 
surface of the series. 

Let the curves of intersection of the surface F with 
consecutive surfaces of the system pass through the point P; 
then P is a point on the envelope. Let Ft, Ft be any 
two surfaces consecutive to F, and let Q, B be the points on 
the envelope which correspond to these surfaces. Then all 
surfaces consecutive to Ft, and therefore the surface F, will 
pass through Q; similarly the surface F will pass through 12. 
Hence, in the limit, the envelope and the surface F have the 
three points P, Q, R, which are indefinitely near to one 
another, in common; they therefore have a common tangent Elane. Hence the envelope touches the surface Ft and simi- 

trly for any other surface. 

Ex. 1. Find the envelope of the plane which forms with the co-ordinate 
planes a tetrahedron of constant volume. Am. constant. 

Ex. 2. Find the envelope of a plane such that the sum of the squares of 
its intercepts on the axes is constant. Am. ^ « constant. 

Ex. S. Find the equations of the edge of regression of the envelope of the 

plane a sin 0 - p cos 0=a0 ~ cz. Am. m*+y* ssa*, y tan —. 
a 

Families of Surfaces. 

216. To find the general functional and differential equa- 
turns of conical surfaces. 

The equation of any cone, when referred to its vertex m 
origin, is homogeneous; and is therefore of the form 

'g- ?)-o. 
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Hence the equation of any cone whose vertex is at the 
point (a, ft, 7) is of the form 

F Gp, 
v* — 7 

P-o. ©■ 

This is the required functional equation. 

The tangent plane at any point of a cone passes through 
the vertex of the cone. Hence, if the equation F (%, y, z) = 0 
represent a cone whose vertex is (a, 7), we have 

^~S+ ~ ® fr+ 0.(ii)> dz 

which is the required differential equation. 

217. To find the general functional and differential equa¬ 
tions of cylindrical surfaces. 

A cylinder is the surface generated by a straight line 
which is always parallel to a given straight line, and which 
obeys some other law. 

Let the equations of the fixed straight line be 
x __ y __ z 
l m n' 

The equations of any parallel line are 

.(i), 
l m n w 

the two constants a and f3 being arbitrary. 

Now, in order that the line (i) may generate a surface, 
there must be some relation between the constants a and y3. 
Let this relation be expressed by the equation a = then, 
we have from (i) 

l m \ 
x~nZ=f\y~ne)> 

or F (rue — Iz, ny — mz) =0.(ii), 

which is the required functional equation. 
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The tangent plane at any point of a cylinder is parallel to 
the axis of the cylinder. Hence, if the equation F(x} y,z) = 0 
represent a cylinder, whose axis is parallel to the line 

oo_ y __z 
l m n’ 

we have 
jdF dF dF n l —+n -o 

dx dy dz 
which is the required differential equation. 

218. To find the general functional and differential equa¬ 
tions of conoidal surfaces. 

Def. A conoidal surface is a surface generated by the 
motion of a straight line which always meets a fixed straight 
line, is parallel to a fixed plane, and obeys some other law. 
The surface is called a right conoid when the fixed plane is 
perpendicular to the fixed line. 

Let the fixed straight line be the line of intersection of 
the planes 

lx + my 4- nz 4* p = 0, l'x + m’y 4- viz 4-p = 0; 
and let the fixed plane, to which the moving line is to be 
parallel, be 

Xx + fiy + vz — 0. 

The equations of any line which satisfies the given 
conditions are 

lx +my + nz 4-p4- A (lrx + my + n'z +• p) = Q, 
and ' Xx + /ay + vz + B = 0. 

In order that the straight line may generate a surface, 
there must be some relation between the constants A and B. 
Let this relation be expressed by the equation A = f(B); 
then we have 

lx + my + nz 4-p 
I'x + m’y 4 n'z+p 

=f (Xx 4- fzy + vz) 

the required functional equation. 
If we take two of the co-ordinate planes through the fixed 

straight line, and the third co-ordinate plane parallel to the 
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fixed plane, the above equation reduces to the simple form 

!!-/«.(“)• 
The differential equation of conoidal surfaces which 

corresponds to the functional equation (ii), can be readily 
shewn to be 

dF dF A 
X dx + y dy 

The differential equation may also be obtained as follows. 

The generator through any point is a tangent line to the 
surface; and the condition that 

% jn 
oo y 0 ’ 

may be on the plane 

{^-x)i^+{v~y)i^+^~z)rz==0 
dF dF - 

18 xte+yc%=0' 

Ex. 1. Shew that xyz~c (x2-y2) represents a conoidal surface. 

Ex. 2. Find the equation of the right conoid whose axis is the axis of z, 
and whose generators pass through the circle x~a, y2+zi=b2. 

Am. a2y24*x2z2=b2x2. 

Ex. 3. Find the equation of the right conoid whose axis is the axis of z, 
and whose generators pass through the curve given by the equations 
x=acoanz, y=a sin nz. Am. y=xtm nz. 

Ex. 4. Shew that the only conoid of the second degree is a hyperbolic 
paraboloid. 

219. Cones, cylinders and conoids are special forms of 
ruled surfaces. There are two distinct classes of ruled 
surfaces, namely those on which consecutive generators inter¬ 
sect, and those on which consecutive generators do not 
intersect; these are called developable and skew surfaces 
respectively. We proceed to consider some properties of 
developable and skew surfaces. 
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220. Suppose we have any number of generating lines 
of a developable surface, that is any number of straight lines 
such that each intersects the next consecutive. Then, the 
plane containing the first two lines can be turned about the 
second line until it coincides with the plane containing the 
second and third lines; this plane can then be turned about 
the third line until it coincides with the plane through the 
third and fourth lines; and so on. In this way the whole 
surface can be developed into one plane without tearing. 

221. The tangent plane at any point of a ruled surface 
must contain the generator through the point [Art 129J. If 
the surface be a skew surface, the tangent plane will be 
different at different points of the same generator; but, if the 
surface be a developable surface, the tangent plane will be 
the same at all the different points of a given generator, for 
the tangent plane is the limiting position of the plane 
through the given generator and the next consecutive 
generator. 

Since any tangent plane to a developable surface touches 
the surface at all points of a straight line, it follows from Art, 
213, that a developable surface is the envelope of a plane 
whose equation contains only one variable parameter, 

222. To find the general differential equation of develop¬ 
able surfaces. 

The tangent plane at any point of a developable surface 
meets the surface in two consecutive generating lines which 
are the two inflexional tangents at the point. 

Hence, at any point of a developable surface, the two lines 
given by the equations 

,dFt dF, dF A 

. (7 d d ciy* A 
and — — + 

must coincide. 
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The condition that this may be the case is 

d*F 
da? ’ 

d?F 
dxdy ’ 

d?F 

d?F d?F 
dxdz' 

d?F 
dydz’ 

d?F 
dz* ' 

dF 
dz • 

dxdy’ 

d?F 
dy* ’ 
d?F 

dydz ’ 

dF 
dy ’ 

dF 
dx 

dF 

dy 
dF 
dz 

0 

= 0. .(i). 

dxdz ’ 

dF 
dx ’ 

This is the required differential equation. 

The differential equation may also be obtained from the 
property, proved in the last Article, that a developable surface 
is toe ert'volope of a plane whose equation involves only one 
parameter. 

For, tlie general equation of the tangent plane of a 
surface at the point (x, y, z) is 

■<f—>£+<,-y)g. 

Hence, if the surface is a developable surface, there must 

be some relation connecting and that is, connecting 

dz 
and — 

dx cLy 
cIj& 

: we therefore have 

Therefore 

dz 
dx 

--F 

■ F 

(!) 

" (i£\ 
\dy) • 

do? ' dy* ~ i^dxdy) ’ 
which is equivalent to (i). 

and 

Hence 
d?z 

d*z 
do? 
d?z 

dxdy 
d*z 

d?z 
dxdy* 
d?z 
dy*’ 
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223. We can find the equation of the developable 
surface which passes through two given curves, in the follow¬ 
ing manner. The plane through any two consecutive gene¬ 
rating lines of the surface will pass through two consecutive 
points on each of the given curves; hence the tangent plane 
to the required developable surface will touch each of the 
given curves. 

Now the equation of a plane in its most general form 
contains three arbitrary constants, and the conditions of 
tangency of the two given curves will enable us to express 
any two of these constants in terms of the third, and the 
equation of the plane will thus be found in a form involving 
only one arbitrary parameter. The developable surface is 
then obtained as the envelope of the moving plane. 

Ex. Find the equation of the developable surface whose generating lines 
pass through the two curves 

y2=iaxi 3=0 and&2=4a|/, z^c; 

and shew that its edge of regression is given by the equations 

ca;2 - Sayz*=s 0 » cy2 - Zax (c - z). 

Let one of the tangent planes of the developable be +«?+ 1»0* 
The plane touches the first curve, if fa+my + lmQ touches y2 -kaxszQ; that 
is, if l—am,2. The plane touches the second curve, if Ix + mj + «c +1 mO 
touches x2—4tay\ that is, if m (nc+l)—aP. Hence, the equation of the 
tangent plane of the developable is found in the form 

am2x+my+ (a3m$-l)£ + lssO....(i). 

The surface is therefore given by the elimination of m between (i), and 

2amx+y + 8 —— ...(ii). 

For points on the edge of regression we have also 

, „ a%mz A 
OX + S — as 0.. 

6 -0a). 

From (ii) and (iii) we have m = - and therefore, from (Hi), 

This is the equation of one surface through the edge of regression. We 

obtain another surface through the edge by substituting mm ~ in (i); the 

result is (c -z), and at all points common to the surfaces cefimUam 
and 'fzmop [c-z), we must have cy%mZax (c~r). 

I 
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224. To sheiu that a conicoid can be drawn which will 
touch any skew surface ctlong a generating line. 

Let AB, A B*, A/rJ3" be three consecutive generators of 
any skew surface. Then, [Art. 134], a conicoid will have 
these three lines as generators of one system, and any line 
which intersects the thi'ee given lines will be a generator of 
the opposite system of the same conicoid. Through any 
point Q on A B draw the line PQR to intersect the lines 
AB and A J/. Then this line passes through three con¬ 
secutive points of the given surface, and is therefore a tangent 
line to the surface.. Hence the plane through A'B' and PQR 
touches both the given.surface and the conicoid. Hence the 
conicoid touches the given surface at all points of the line 
A'M. 

By means of the above theorem many properties of a 
ruled conicoid may be shewn to be true of all skew surfaces. 

225. To find the lines of striction of any skew surface. 

Def. The locus of the point on a generator of a ruled 
surface where it is met by the shortest distance between 
it and the next consecutive generator, is called the line 
of striction of the surface. 

If we know the equations of any generating line, we can 
at once find the direction of the shortest distance between it 
and the next consecutive generator, and this shortest distance 
is a tangent line of the surface. Hence, in order to find the 
point on the line of striction, which corresponds to anv 
particular generator, we have only to write down the con¬ 
dition that the normal at a point on the generator may be 
perpendicular to the shortest distance between the given 
generator and the next consecutive. 

Ex. 1. To find til© lines of striction of the hyperboloid 

fC2 Z* 

Thfi Ilwtlon-coiittM of a generator, and of the next consecutive 
ggnmior, ar« proportional respectively to 

a*S»0, - b cos 0, c, and asm {9 + d$), -b cos (6 + dd), c. 
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Hence the direction-cosines of the shortest distance arc proportional to 
— be sin 0, ca cos 0, ab. 

Now if lx v z) be the point where the shortest distance meets the con¬ 
secutive’generators, the normal at (* »,*) must be perpendicular to the 
given generator, and also to the shortest distance. We therefore have 

X . n 
- sin 6 - 
a 
x 

*2z. 

™ cos 0--=O, 
b c 

and ^ sin 0-|j cos 0+^ = 0. 

e, we get for the lines of striction the intersection of the 
surface and the quartie 

J5 U3 + + <?U2 «V " *a V®3 V‘) * 
Ex. 2. To find the lines of striction of the paraboloid whose equation is 

3? _y% 
a* b2* 

Ail the generating lines of one system are parallel to the plan© 

2-|=0 . 
a b 

The shortest distance between two consecutive generators of this system will 
therefore be perpendicular to the plane (i). Hence, at a point m the 
corresponding line of striction, the normal to the surface is parallel to (Ij. 
The equations of the normal at (x, y, z) ar© 

izl tJ 
_£ = y = . 
a2 “S5 

Hence one line of striction is the intersection of the surface and the plans 

Similarly, the line of striction of the generator* which are parallel to the 

plane - + |=0 is the parabola in which the plant ~ ^»0 cuts tb« 

surface. 

[See a paper by Prof. Larmor, Quarterly Journal of Mathematic* t 
Vol. xix. page 381.] 

226. To find the general functional and differential equa¬ 
tions of surf aces of revolution. 

Let the equations of the axis of revolution be 
®-a_y—b $—c 

l m n * 
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The ^ equations of a section of the surface by a plane 
perpendicular to the axis are of the form 

(x — a)2 + (y — b)2 4- (# — c)2 = r2, 

and lx -f my *4-nz ~p. 

Hence, since there must be some relation between r2 and 
pt the required functional equation is 

(a? — a)2 + (y — &)2 + — c)2 =■ /(to 4- my 4- nz). 

The normal at every point of a surface of revolution 
intersects the axis. The equations of the normal at the point 
(x\ y% z') of the surface F(x, y, z) = 0 are 

x —of __ y — yf_z — z 

"dT" dF “"3F* 
dx dy' dz 

By writing down the condition that the normal may in¬ 
tersect the axis, we see that at every point of the surface, 

dF dF dF = 0; 
dx 9 dy9 dz 

x —a, y — b, z —c 
l, m, n 

this is the differential equation of surfaces of revolution. 

Note. In the above, and also in Articles 216 and 217, 
we have obtained the functional equation and the diffe¬ 
rential equation by independent methods. The differential 
equation could however in each case be obtained from the 
functional equation; this we leave as an exercise for the 
student. 

For fuller treatment of Families of Surfaces the student 
is referred to Salmon’s Solid Geometry, Chapter xm. 

aaa 13 
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Examples on Chapteb X. 

1 Prove that a surface of the fourth degree can be describ&l 
to pass through all the edges of a parallelepiped,.and that if it 
pass through the centre it also passes through the diagonals of the 

figure. 

2. Shew that at any point on the axis of z there are two 
tangent planes to the surface «V = x* (e2 - z2). 

3. Pind the developable surface which passes through a 
parabola and the circle described in a perpendicular plane on the 
iatus rectum as diameter. 

4. Find the equation of the developable 'surface which 
contains the two curves 

y2 = 4ax, z = 0; and (y -b)s = icz, as = 0; 

and shew that its cuspidal edge lies on the surface 
(ax + by + cz)* = 3 abx (y ■+■ b). 

5. The developable surface which passes through the two 
circles whose equations are of H- y2=a?, z = 0, and of -f sf * c1, y m 0, 
passes also through the rectangular hyperbola whose equations are 

%2 — nf — ~c k and x = 0. 
J a*-c* 

6. Prove that the surface 

has two conical points, and two singular tangent planes, 

7. Explain what is meant by a nodal line on a surface, and 
find the conditions for such a line on the surface <f> (xf yt z) m 0, 

There is a nodal line on the surface z(v? + y*) + m 0; 
find it. 

8. Give a general explanation of the form of the Burtkm 
z(a? + y*) = 2kxy, Shew that every tangent plane meet® the 
surface in. an ellipse whose projection on a plane perpendicular to 
the nodal line is a circle. 
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Examine the general form of the surface 

xyz - a2x - b2y - c*z + 2abc = 0, 

bew that it has a conical point. Shew also that each of the 
5 Posing through the conical point and a pair of the inter¬ 
ns with -the axes touches the surface along a straight line. 

)* If a, mled surface be such that at any point of it a straight 
an be drawn lying wholly on the surface and intersecting the 
>f z, then at every point of the surface 

£C2 
d2Z 

2xy 
d'z ad2z A 

+y ;o=0- dx* J dxdy * dy2~ 

1. Shew that the surface whose equation is determined by 
limination of 6 between the equations 

x cos 0 + y sin 0 = a, 

x sin 9 — y cos 6 = - (cO - z), 
c 

levelopable surface, and find its edge of regression. 

WHa»t family of surfaces is represented by the equation 

) ? Describe the form of the surface whose equation is 

z ~ V 
- as tan 1 ~. If n~ 2, prove that through any point an 

ite number of planes can be drawn, each of which shall cut 
urfhce in a conic section. 

3. At a point on the surface (x ~ y) z2 + ax {z + a) — 0 there 
general only one generator, but at certain points there are 
which are at right angles. 

4. Any tangent plane to the surface a (x? -+• y2) + xyz = 0 
a it again in a conic whose projection on the plane of xy is a 
mgul&r Hyperbola. 

.5. Shew that tangent planes at points on a generator of the 
ice ytx? — a?z = 0 cut x = 0 in parallel straight lines. 

.6. Prow© that the equation x3 + «/8 + 2s - 3xyz = a8 represents, 
rf&ee of revolution, and find the equation of the generating 
‘6* 

17* From any point perpendiculars are drawn to the 
ir&tors of the surface z \x2 +-y®)- 2mxy = 0 ; shew that the 
of the perpendiculars lie upon a plane ellipse. 

13—2 
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18. Shew that all the normals Jo a skew surface, at points on 
a generator, lie on a hyperbolic paraboloid whose vertex is at the 
point where the generator meets the shortest distance between it 
and the next. 

19. A generator PQ of the surlace xyz - h (x* + y*) = 0 meets 
the axis of z in P. Prove that the tangent plane at Q meets the 
surface in a hyperbola passing through P, and that as Q moves 
along the generator the tangent at P to the hyperbola generates a 
plane. 

20. Prove that all tangent planes to an anchor-ring which 
pass through the centre of the ring cut the surface in two circles. 

Also if a surface be generated by the revolution of any conic 
section about an axis in its own plane, prove that a double tangent 
plane cuts the surface in two conic sections. 

21. Prove that a flexible inextensible surface in the form of 
a hyperboloid of revolution of one sheet, cut open along a 
generator, may be bent so that the circle in the principal plane 
becomes the axis, and the generators the generating lines of a 
conoid of uniform pitch inclined to the axis at a constant angle. 

22. Prove that every cubic surface has twenty-seven lines 
and forty-five triple tangent planes real or imaginary, and that 
every cubic surface which has a double line is a ruled surface. 

Discuss some properties of the surface whose equation is 

y3 + x *z -f yzw = 0. 

23. Four tangent planes to any skew surface which are 

Sa“e ge„nerator tlieir cross-ratio equal 
to that of their four points of contact. 1 

24 Any plane through a generator of a skew surface is a 
tangent plane at some point P and a normal plane at some point 
F; shew also that there is a point 0 on the generator 
the rectangle OP. OF is constant for all planes tfoS^hT 

25. Shew that the ware-surface, whose equation is 

_ aV . jy cv 
as,+ya + 2s_a* a* + + *»_ J* +5f+y* + **_ ^ 

has four conical points, and four singular tangent planes. 
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Curves. 

227. We have already seen that any two equations will 
represent a curve. By means of the two equations of the 
curve, we can, theoretically at any rate, express the three 
co-ordinates of any point as functions of a single variable; we 
may, for example, suppose the three co-ordinates of any point 
of a curve expressed as functions of the length of the arc 
measured along the curve from some fixed point. 

228. To find the equations of the tangent at any point of 
a curve. 

Let x, y} z be the co-ordinates of any point P on the 
curve, and let x -f Sx, y + By, z 4* Bz be the co-ordinates of an 
adjacent point Q. Then, if Bs be the length of the arc PQ, 
we have, since the arc is ultimately equal to the chord, 

. Bx2 + By2 -h Bz2 = Bs2; 

Also, since the direction-cosines of the chord PQ are 
proportional to Bx} By, Bz, and the tangent coincides with the 
ultimate position of the chord, the direction-cosines of the 
tangent are equal to 

dx dy dz 
ds 3 ds ’ ds9 

so that the required equations of the tangent at (x, y, z) are 

%-x __rj ~y _£-z 
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If the curve be the curve of intersection of the two surfaces 
F(x, y,e) = 0 and G (x, y, z) = 0, 

the tangent line at any point is the line of intersection of the 
tangent planes of the two surfaces at that point. Hence the 
equations of the tangent at any point (x, y, z) are 

.(i/, , . dF ry v d>F . 

v dG / v dG 

229. To find on a given surface a curve such that ike 
tangent line at any point makes a maximum angle with a 
given plane. 

It is clear that the tangent line to such a curve at any 
point is in the tangent plane to the surface at that point, and 
is perpendicular to the line of intersection of the tangent 
plane and the given plane. 

Let the equation of the given plane be 

lx *f my *f nz = 0. 

Then the direction-cosines of the line of intersection of the 
given plane and the tangent plane at any pint te, y z) of 
the surface F (x, y} z) = 0, are proportional to 

dF dF 
mdF~nTy> n 

dF 
c£> 

dF dF 

The direction-cosines of the tangent to the curve are 

Hence we have 

dx dy ds 
Ts> ds* a? 

' dF dF 
m -j-n -5— 

^ dz dyt as\ az dy) ds \ m 

dz (j dF dF\ 

the required differential equation. 

-*g) 
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If the given, plane be the plane z = 0, the differential 
equation of a line of greatest slope will be 

dF dy o 
dx ds dy ds 

Ex. Find the lines of greatest slope to the plane 3 = 0 on the right conoid 
whose equation is x—y f (z). 

The differential equation of the projection on 2=0 of a line of greatest 
slope is x dx + y dy = 0. 

Hence the projections of the lines of greatest slope on the plane 2=0 are 
circles. 

230. Definitions. If A, B, G be three points on a curve, 
the limiting position of the plane ABC, when A, C are 
supposed to move up to and ultimately to coincide with B, is 
called the osculating plane at B. 

The circle ABC in its limiting position is called the circle 
of curvature at U, the radius of the circle is the radius of 
curvature, and its centre the centre of curvature at B. 

The normals to a curve at any point are all in the plane 
through the point perpendicular to the tangent to the curve: 
this plane is called the normal filcme at the point. 

The normal which, is in the osculating plane at any point 
of a curve is called the principal normal. 

The normal which is perpendicular to the osculating plane 
is called the binormal. 

The surface which is the envelope of all the normal planes 
of a curve is called the jcolor developable. 

The angle between the osculating planes at any two 
points P, Q of a curve is called the whole torsion of the arc 
PQ. The limiting value of the ratio of the whole torsion to 
the arc is called the torsion at a point 

The radius of the circle whose curvature is equal to the 
torsion of the curve at any point, is called the radius of torsion 
at that point, and is represented by a. 

The radius of the sphere which passes through four 
consecutive points of a curve is called the radius of spherical 
curvature. 

Note. In what follows we shall have frequent occasion 
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to employ differential coefficients with respect to the arc; and 
we shall for shortness write x\ x", x" &c. instead of 

dx d?x d3x „ 
da9 d?9 d? 

231. In the annexed figure A, B, 0, D} B, F... are sup¬ 
posed to he consecutive points of a curve, and p, q, are 
the middle points of the chords AB, BO, CD.... Planes are 

^bTcv 
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drawn through. £>, q,r... perpendicular to the chords AB,BC 
CD..., and LP, MQP, are the lines of intersection of 
the planes through p and q, q and r, r and sy.... The lines pL, 
qL are in the plane ABC, and perpendicular respectively to 
AB and BG; the lines qM, vM are in the plane BCD, and 
perpendicular respectively to BG, CD. 

Then, in the limit, when the chords AB, BG, CD... 
become indefinitely small the planes A BG, BCDbecome 
osculating planes of the curve; the planes pLP, qMQ 
become normal planes of the curve; the points L, My JSF be¬ 
come centres of curvature of the curve; the lines LP, MQP} 
NRQ... become generating lines of the polar surface, and are 
called polar lines; and the points P, Qy P... become con¬ 
secutive points on the edge of regression of the polar 
surface. 

All points on the plane pLP are equidistant from A and 
j5, all points on the plane qMP are equidistant from B and 
Gy and all points on the plane rMP are equidistant from G 
and P; therefore a sphere with P for centre will pass through 
A, ByG,D; hence the edge of regression of the polar surface 
is the locus of the centre of spherical curvature. 

282. To find the equation of the osculating plane at any 
point of a curve. 

Let P, Qy R be three consecutive points on the curve such 
that PQ = QR = 8s; and let s be the length of the arc 
measured from some fixed point up to Q. 

Then, if the co-ordinates of Q be co, yy zy those of P, for 
which the arc is s — 8s, will he, if we neglect powers of Ss 
above the second, 

x-x'Ss+j-Ss*’ y-2('& + £ &* s -z'Ss 4- y Ss*; 

and the co-ordinates of R will be found by changing the sign 
of 8s. 

The equation of any plane through Q is of the form 

£(£-*) +M(v-y) + N-(£-z)~ 0. 



202 THE PRINCIPAL NORMAL. 

If this plane pass through the points P and R, we must 

have 
Lx + My 4-Nz' =0, 

Lx" + My"+Nz" = 0; 

and, eliminating L, M, JT, we have the required equation of 
the osculating plane, namely 

v-y> K-* 
x , y, z 

x, y'\ z” 

0. 

233. To find the equations of the principal normal, and 
the curvature, at any point of a curve. 

Let P, Q, R be three points on a curve such that 

JPQ = QR = 8s. 

Then, if Fbe the middle point of PR, QV is in the plane 
PQR; and, since the chords PQ and QR only differ by cubes 
of 8s, QV is ultimately perpendicular to PR, and is therefore 
the principal normal at Q. 

Then, the co-ordinates of P, Q, R being as in the last 
Article, the co-ordinates of V are 

y + £'&> z + j8s\ 

Hence the equations of QV are 

%-<c_y-y_ Z-z 

xr y" zn .(l)* 

Again, the circle PQR, in its limiting position, is the 
circle ot curvature. Hence, if p be the radius of curvature* 
we have m the limit 
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Hence, the direction-cosines of the principal normal, -which 
from (i) are proportional to x\ y'\ z\ are equal to 

Px"> py" and pz". 

The co-ordinates of the centre of curvature are easily seen 
to be J 

*+p**"> y + pV, * + pV. 

234 To find the direction-cosines of the linormaL 

The binomial is perpendicular to the osculating plane. 
Hence, if l, m, n be the direction-cosines of the binormal, -we 
have from Art. 232 

l __m __ n 

y z" — zy"~ zx" — viz" ~~ xy" — yx * 

But 

(if/' - sttfy + w - (cjy + (xy - 3/V')2 

= O'2 + y2 + z2) (z"2 + y"2 + Z"2) - (afar + 2/V' + z’z'J 

— 1 
P2 

since x'2 + y2 + /2 = 1, 

therefore x'x” + yy"+zz” = 0. 

Hence the required direction-cosines are 

p iy'z"-y')> p &x' -x'^)> p W- 

235* To find the measure of torsion at any point of a 
mwe. 

Let l, m, n be the direction-cosines of the normal to the 
osculating plane at P; and let l + SI, m + 8m, w 4- Sn be the 
direction-cosines of the normal to the osculating plane at Q, 
where JPQ = Ss, Then, if Sr be the angle between the 
osculating planes, we have 

dnfi St = (mSn — nSmf + (nSl — ISn)2 + (ISm — mSlf. 
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Hence, in the limit, we have 

dr\s l dn dm\2 , / dl 7 dnV /, dm dl\* 
%J-(m7R-nlk)+(n'£-ls) +(!-£-“aj ■ 

or, ^ = (mn>/ m'n)2 + ~ n'Vf + (Imf — Z'm)2...... (i). 

Now l = p (yY' ■— «'y"); 

r=p (//" - *Y) + &(y'z" - zY), 

and similarly for m' and n\ 

Hence mri — m'w = p*(/x" — a?'*;") {xytf> — yV") 

= x\ y\ z' . 
xf\ y", z* 
x"\ y"\ 

We can find similar expressions for nf — n'l, and for 
Zm' — I'm; and substituting in (i), we have 

per \x , y", z" 
tn t/r 

® > y , 

236. To find the condition that a curve may be a nlane 
curve. ‘ " 

Let a?, y, z be the co-ordinates of any point T on the 
curve, expressed in terms of the arc measured from a fixed 
point up to P; and let Q be the point at aTstance l 

QS'bf ^0nS the CUrVe &°m P- Tben tb0 co*^inate« of 
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If all point# of the curve are on the fixed plane 

Ax + Ihj + ('z + j) -s 0. 

the equation 

+ ^ *'a,J + it if"•+ a;i ?/" + ...'j 

<-v,+'i'"'+•••)+"-<>■ 
will bo satisfied for all mixes of a. 

The coefficients of nil the different power# of <r must 
therefore be zero. lienee we fiav»> 

Ax? + ify" +■ Us’ =® (), 

Ax’ + ///' + Cs" -0, 

The elimination of A, If, ft gives 

/ , / , s' - - 0, 

i . y". *" 
1 ?»* *♦» 
i •' - y » * 

a relation which, ain' t* Z*' ia arbitrary, must be satisfied at all 
points of flat given curve 

From flat tmdt of the preceding Article it will be seen 
that the above condition simply expresses the fact that the 
torsion is zero nt all points of a plane curve. 

The condition tbat it < one may be a plane curve may 
also bo obtained in the following manner. 

The direct ion-cosine* of the normal to the osculating 
piano arc [Art. SJf+] 

p «A" - *Y), p (*V' - aV') mid p (*'/' - yV'). 
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Since these are constant, we have 

pC^-.y'O + f (yV'-,y)=o, 

P {z'x'" - xz"') + & {z'x -xz") 

p W - y'x"') + ^ W - y'x")=o* 

*0. 

and 

Multiply these equations in order by y\g" and acid: 
we then have 

aT (yz"'-z'y") + y” (z'x"-*V")+** (*y " - yV") - 0, 

which is the same condition as before. 

237. To find the centre and radius of spherical curvature. 
The locus of the centre of spherical curvature is the edge 

of regression of the polar surface, that is of the envelope of 
normal planes of the curve. 

The equation of the normal plane at the point (x, y, £) is 

(g-x)x’+(v-y)y'+(Z-is)*'«0.(i). 

Hence [Art. 212] the corresponding point on the edge of 
regression is the point of intersection of (i), and the 
two planes 

(£ - x) x" + (v-y) y" +(£-z) z" 

+ .(ii), 

(i - X) x’" + (7 - y)y"> + (£-*) J" - 0.. .(iii), 
a! x" + y'y" + z'z" =* 0. 

In the figure to Art. 231, we have 

P —pL = qL, p + Sptm qM =* rM, 
8t = LqM=LPM. 

If K be the point of intersection of MQP mi aKL wa 
have to the second order, Mq = Kq, and KP m, LP- ’ 

••• LK = Sp, 

nnd LP^X^di ultimately. 

and 

since 

238 

and 
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Also pP*=pL* + LP- 

R' = S + (d£)\. •(h), 

where JR is the radius of spherical curvature. 

Meeting the sides of the triangle JCLP on the axis of 
x, we have, if l, m, n be the direction-cosines of the binormal, 

8p.px"+^l-?£(l+Sl) =0; 

therefore ultimately px" — ^ — = — ~ 
J r dr dp ds dr’ 

or px" = *l'.(iii). 

Since l— p {y'£' - z'y") [Art. 234] we have from (iii) 

px" = ap (y'z” - z'y’") + <rg (y'z" - z'y"). 

Similarly py" = <rp (z'x'"- xz"') + a^ (z'x - x'z"), 

and pz" = <rp (x'y'" — y'x"') + <r ^ (x'y" — y'x"). 

Multiply the last three equations by x", y", z respectively 
and add; then we have, as in Art. 235, 

1_ 
pV 

> y > * 
y\ /' 

(iv). 

289. Since, in the figure to Art. 231, M and L are the 
feet of the perpendiculars from q on two consecutive tangents 
to the curve PQJR, if we substitute R, p and r for r, p, yfr in 

either of the known formulae r or p -f for the radius 

of curvature of a plane curve, we shall obtain the radius of 
curvature of the edge of regression. 
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Hence the radius of curvature of the edge of regression i» 
equal to 

~ dR . , cPp 

[For this and the preceding article see a paper bv 
Dr South, Quarterly Journal, Vol. vii,] 

240. The following examples will illustrate the use of 
the different formulae we have investigated in this chapter. 

Ex. 1. To find the curvature and the Union of m helix* 

A helix is a curve traced on a right circular cylinder m m to cut all t\m 
generating lines at the same angle. Its equations are ©anily umn to im 

x=a oob&, yssa sin $, smrfttin a. 

Hence x' = - a sin &. 0f, y'*=acoH0.0% z*w a tm a . 0\ 

Square and add, then l=a30'* sec3 a. 

We therefore have »"= - cos 0?22lf t ~ _ ftjtl # 

and also *'"=! sin?eoB»a, y"'» -^ew *'"^0. 

Hence l_oos4o 

and 
p2<r~ 

?" a3 > Qt flag 
a 

<*o«*« * 

- sin 0 cos a, cog ^ cos a, 

-ico8 0oo8*«, -l*intfoo«*a, 0 

jjBmOeo^o, <so.9«w»«, o 

= ^ccwi«»iaa; 

<r» 
strut cos a 

the a^a°o?theeoy^to.tllThta0in^IS P*«f«»Jieakrly 
of the principal normal at 0, namely” 0008 ^ wrUia* ^°wn tiia wmUmil 

-aT.! * Kr.a *‘“0 ■* -■ «tf tan a 
°os9 * *Jn 9 



EXAMPLES. 209 

We have 

Ex. 2. To find the equations of the principal normal, and of the 
osculating plane at any point of the curve given by the equations 

x = 4a cos8 0, y=4a sin8 0, z=3c cos 20. 

x' = — 12a cos2 0 sin 0 . 0', 

yf = 12a sin2 0 cos 0 . 0', 
z' = - 6c sin 20 . 0'. 

Square and add, then 1 = 6*/ (a2+ c2) sin 20.0', 

Hence x' = - -77 ,,2 _l_ „2ycos 2/'= - V(^ + c2> “s/V +^T ’ " n/K+c2)’ 

sec 0, y" 

■^•sin 0, 2'= ■ 
v v 

cosec 0, z"=0. 

=0. 

* *x “ 12 (a2 + c2) “ 12 (a2+c2) 

The equations of the principal normal are therefore • 

x — 4a cos3 0 _ ?/ - 4a sin3 0 _ 2 - 3c cos 20 
im0 cos 0 0 

The equation of the osculating plane is 

| x - 4a cos8 0, y — 4a sin3 0, £ - 3c cos 20 

— a cos 0, a sin 0, - c 

sin 0, cos 0, 0 

Ex. 3. To find to the third order the co-ordinates of any point of a curve 
in terms of the arc, when the axes of co-ordinates are the tangent, the principal 
normal, and the binormal at the point from which the arc is measured. 

Let OX OY OZ be the tangent, principal normal, and binomial at the 
point 0 of a curve. Let x, y, z be the co-ordinates of a point at a distance s 

from 0, and let - and ~ he the curvature and torsion of the curve at 0. 

Then, at the origin, x'=l, y'=0, z'=0; 

also py"=1> *"-°- 

We have, at any point of the curve, 
xfx" + yY + z'z''=: 0. 

Differentiating, we have 

-i+x'x'” +y'y'"+z'z"'=0.. (i). 

Also, by differentiating 

-x'Vjry’Vjrz"- 

we have at any point 

-1 ^ s=x'V/'+2/Y"+^"' 
ffids 

.(h). 

S. S, G. 
14 
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Also we know that 

_1_ _ a:', y\ 

PV(r f 

\%tr\ zm\ 

From (i), (ii), (iii) we see that at the origin 

p2 J p2 d* pff 

Hence, by Maclaurin’s Theorem, we have to the third order 

*=*~0^’2/ = ’ 2p (ip2 (Is f 3 tip 

Examples on Chapter XI, 

1. Find the equation of the surface gmimtUnl by the principal 
normals of a helix. 

2. Find the osculating plane at any point of the curve 

x « a cos 0 + b sin 0, y-adnO + b cm $f s ** e sin *2fl 

3. Find the equations of the principal normal ut any mint of 
the curve 

x* + f = a*, — y*# 

4. A.point moves on an ellipsoid so that Its direction of 
motion always passes through the perpendicular from the cutitn* 
of the ellipsoid on the tangent plane at my point; nhew that the 
eiirve traced out hy the point is given by the mtmmdkm of the 
ellipsoid with the surface 

xm-n yti-% zl~m _ 

i, m, « being inversely proportional to the apiams of the semi, 
axes of the ellipsoid. . 

5‘ ,A ^rve 18 t?ace<i on a cone so aa to cat all the 
generating hoes at the same angle; show that its projection on 
the plane of the base is an equiangular spiral, 

6- Shew that any curve has an infinite number of ovolnta. 

SSntre Of lt? devel°pable. Show also that the locust 
the; centre of principal curvature is not an evoluto. 
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7. If a circular helix he drawn passing through four con¬ 
secutive points of a curve in space, prove that when the four 

2 

points ultimately coincide the radius of the helix equals f ^ } and 
p“ 4- cr 

its slope is tan"1 - . 
<7 

8. Shew that if the osculating plane at every point of a 
curve pass through a fixed point, the curve will he plane. 
Hence prove that the curves of intersection of the surfaces whose 

a4 
equations are a? + y* + z* = a\ and as4 + yl + z* = — are circles of 

radius a, 

9. Prove that the helix is the only curve whose radius of 
circular curvature and radius of torsion are both constant. 

10. A. curve is drawn on the cylinder whose equation is 

bV + aY-a2b2 = 0, 

cutting all the generators at an angle a; shew that its radius of 
curvature at any point is p cosec2 a, where p is the radius of 
curvature of the principal elliptic section through the point. 

XL If a curve in space is defined by the equations 
x = 2a cos t, y—2a sin t, % = bt% 

prove that the radius of circular curvature is equal to 

2 /( (a3 + 52*2n 
a\f \a2 + 62+6Vr 

12. In any curve if E be the radius of spherical curvature, 

o the radius of absolute curvature and - the tortuosity at any 
r cr 

point (os, 3/, z), then 

IS. If the tangent and the normal to the osculating plane at 
any point of a curve make angles a, ft with any fixed line in space, 

shew that = where - are the curvature and 
sin p dp p p or 

tortuosity respectively. 
14—2 
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14. [Find the curvature and torsion at any point of the curve 
in •question 5. 

15. Prove that the origin is the centre of absolute curvature 
of the curve + &;/+ cz*« 1, ra? + + rz* = 1 at all points, 
whose co-ordinates satisfy the equation 

a 

h 

r A b — r 4 c —-5 
-- ar + -—?/ -f —? -y + —r* 

c-a a~h 
■;0. 

16. A curve is drawn on a right circular cone always inclined 
at the same angle a to the axis ; prove that <r = p tan a. 

IT. If pf or be the radii of curvature and torsion at any point 
of a curve in space ; p, <r similar quantities at the corresponding 
point of the locus of the centre of spherical curvature, then 

Pf/ » ereT. 

18. Every portion of a curve is equal and similar to the* 
corresponding portion of the edge of regression of the polar sur¬ 
face ; prove that the tangent to it makes an angle of \Tf with n 
fixed plan©, and that its projection on that plan© is the evolute of 
a circle. 

19. Shew that if along the tangent to any curve a point lie 
taken at a constant distance c from the point of contact of the 
tangent to the given curve, and if pt be the radius of curvature in 
the osculating plane of the curve traced out by the point, then 

(<?+f>y_sP'(c*+P')s 
p,* o* K p p <i») ’ 

where p and cr are the radii of curvature and torsion of the given 
curve. 

20. A circle of radius a is traced on a piece of paper, which 
is then folded so as to become a cylinder of radius h\ shew flint, if 
p he the radius of curvature at any point of the curve which the 

circle now becomes, then *-1*^ ^ ctw4~, where # is the distance, 

measured along the arc, of the point from a certain fixed point of 
the curve. 



CHAPTER XII. 

Curvature of Surfaces. 

14*1. Wb have already seen, in Art. 209, that the section 
t*y surface, by a plane parallel to and indefinitely near 
tangent plane at any point 0 on the surface, is a conic, 
hr is called the Indicatrix, and whose centre is on the 
ml a,t O. 

*4*2. X*et any section of the surface, drawn through the 
lal OF, cut the indicatrix in the diameter QFQ', and let 
r hire radius of curvature at 0 of the section. Then we 

in the limit, 2p,OF=QF2. Hence, for different 
ral sections through 0, the radius of curvature varies as 
3»c|na,re of the diameter of the indicatrix through which 
“fraction passes. 

543. Since the sum of the squares of the reciprocals 
ny two perpendicular semi-diameters of a conic is 
t ant, it follows from the last article that the sum of the 
>rocals of the radii of curvature of any two perpendicular 
rial sections through a given point of a surface is con- 

t. 

E4f4n Since the semi-diameter of a conic has a maximum 
a* minimum value, it follows from Art. 242 that ther 

ns of curvature of a normal section through any point of 
i rface Has a maximum and a minimum value, the corre- 
idinjg sections being those which pass through the axes of 
ind.ica.trix* 
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The maximum and minimum radii of curvature are called 
the principal radii of curvature, and the corresponding 
normal sections are called the principal sections. 

The locus of the centres of principal curvature at all 
points of a given surface is called its surface of centres. 

245. If the axes of x and y be taken in the direction of 
the axes of the indicatrix the equation of the surface will be, 
when the terms of the third and higher orders are neglected, 

2 z — acf + hif. 

Let plt pt be the principal radii of curvature, that is the 
radii of curvature of the sections made by the planes y » 0, 

1 1 
x=rO respectively; then it is clear that />,»-, and p «. . 

(Jb fj 

Hence the equation of the surface will be 

t,-±+£. 
Pi P* 

The semi-diameter of the indicatrix which makes an 
angle 8 with the axis of x is given by 

2z _ cos'6 sm°d 

p~ +~p' 

If p be the radius of curvature of the corresponding 
section, we have r*=2px. 

Hence 
1 cos* 8 sin'B 

P = ~Pi Pt 
The results of Articles 243, 244 and 245 are due to Euler. 

246. When the indicatrix at any point of u surface is an 
ellipse, the sign of the radius of curvature is the wtmo for all 
sections; this shews that the concavity of all sections is 
turned in the same direction, so that the surface, in the 
neighbourhood of the point, is entirely on our side of the 
tangent plane. The surface in this case is said to be 
Synclastic at the point. 

When the indicatrix is an hyperbola, the sign of the 
radius of curvature is sometimes positive and sometimes 
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negative, shewing that the concavity of some sections is 
turned in opposite directions to that of others. The surface 
in this case is said to be Anticlastic at the point. 

The radius of curvature of a section which passes through 
ari asymptote of the indicatrix is infinite; hence the 
asymptotes divide the sections whose concavity is turned one 
way from those whose concavity is turned the other way. 

In the figure of Art. 71, the concavities of the sections 
by the planes oo = 0 and y = 0 are turned in opposite direc¬ 
tions ; and the normal sections through the two generating 
lines at O are the sections of zero curvature. 

When the indicatrix is a parabola, that is to say is two 
parallel straight lines, which become ultimately coincident, 
one of tlae principal radii of curvature is infinite; and, if px 
be the finite radius of principal curvature, the curvature oi 

any other normal section is given by the formula - = C0S 
Px 

247. To find the radius of curvature of any oblique 
section qjf a surface. 

Let any oblique section through the point 0 of a surface 
cut the indicatrix in the line RKR\ and let the normal 
section through the same tangent line cut the indicatrix 
in the line Q VQ’ parallel to RKR\ Let JT, V he the middle 
points of BB', QQ/ respectively, and let p, p0 he the radii of 
curvature of the sections J&OR, QOQ' respectively. 

Then we have, in the limit, 

2p. OK = RIP, 

and 2p0.OV=QV*. 

But OF, and therefore VKt is small compared with QV; 
hence RBI and QQf are ultimately equal. Also 

OV^OK cos 6, 

where. 0 is the angle between the planes ROR' and QOQ. 
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Hence we have ultimately, 

P__OV 

Po~OK 
= COS 0, 

or p = p0 cos 9. 

This is called Meunier’s Theorem. 

248. From Meunier’s Theorem, and the theorem of Art. 
245, it follows that if two surfaces touch one another, and 
have the same radii of principal curvature at the point of 
contact, then all sections through that point have the same 
curvature. 

249. The following proof of Meunier’s Theorem is due to 
Dr Besant. 

Let OT be any tangent line at the point 0 of a surface, 
and let P be a point contiguous to 0 on the normal section 
through OT, and Q a point contiguous to 0 on an oblique 
section through OT. Then a sphere can be described to 
touch OT at 0, and to pass through P and Q; and the 
sections of this sphere by the planes TOQ, TOP are 
ultimately the circles of curvature at 0 of the sections of 
the surface by those planes. Hence, as Meunier’s Theorem 
is obviously true for a sphere, it is true for the surface. 

Ex. 1. Eind the principal radii of curvature at the origin of the surface 
2z=6r2 - 5xy — 6y2. Am. £s, — •fg. 

Ex. 2. Eind the radius of principal curvature at any point of the curve 
of intersection of two surfaces. 

Let p be the required radius of curvature at any point P. Let the 
surfaces intersect at an angle a, and let 6, a - 6 be the angles between the 
principal normal of the curve of intersection, and the normals to the two 
surfaces. Let px, ps be the radii of curvature of normal sections of the two 
surfaces through the tangent line at P. Then, by Meunier’s Theorem, 

p=Pi cos 0, and p=p2 cos (a - 0). 

Hence, eliminating 0, we have 

sin2 ct, _ 1 1 2 cos a 

/>2 ~ Pi + Pz ~ P1P2 
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h Def. A line of curvature on any surface is a curve 
xa,t the tangent line to it at any point is a tangent line 
of the principal sections of the surface at that point. 

The normals to any surface at consecutive points of 
its lines of curvature intersect. 
j P be an extremity of an axis of the indicatrix which 
>onds to the point 0 of a surface, then 0, P are 
xtive points on a line of curvature, 

b F be the centre of the indicatrix, then OV will be 
rmal to the surface at 0. 

e tangent line at P to the indicatrix is perpendicular 
normal to the surface at P; it is also perpendicular to 
rid , since P is an extremity of an axis of the indicatrix, 
ngent line is perpendicular to PV. Hence OV, PV, 
ae normal at P are in a plane, and therefore the 
Is at 0 and P will intersect. 

reversely, if the normals at P and 0 intersect, the tan- 
ne at P to the indicatrix will be perpendicular to the 
which contains the normals at 0 and P; therefore the 
it line will be perpendicular to PV, and hence PV is 
s of the indicatrix. 

2. To find the differential equations of the lines of 
vt/re on any surface. 

t F(x, y, = 0 be the equation of the surface. Then 
uations of the normal at any point (<r, y, z) are 

Z~x v-y %-z 
1F~ dF ~ dF 

doc dy dz 

Le normal at the consecutive point 

(x 4 dx, y 4 dy, z 4 dz) is 
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The condition of intersection of the two normals gives 
the equation 

dx, dy, ds = 0...{i). 

dF dF dF 
dx’ dy’ dz 

*(f). <f)' o, 
Since (x + dx, y + dy, z + dz) is on the surface, we have* 
also 

The equations (i) and (ii) arc the required differential 
equations. 

253. To find the principal radii of* curvature, and the 
lines of curvature, on a surface of revolution. 

It is clear that the normals to the surface at all points on 
a meridian lie in the plane through the axis and that 
meridian; hence normals at consecutive points on & meridian 
intersect, so that any meridian is a line of curvature It m 
also clear that the normals to the surface at all punt# of itny 
circle whose plane is perpendicular to the axis or the surface, 
meet the axis in the same point, and therefor© any such 
circle is a line of curvature. Hence the lines of curvature 
are the meridians, and the circular sections which are per¬ 
pendicular to the axis. 

It is easy to see that one of the jprineipal radii at any 
point P is the radius of curvature of the generating curve at 
P; and that the other principal radius is the length of the 
normal intercepted between P and the axis. 

254 The tangent plane to a developable touche# the 
surface at all points of a generating lino. Thu tiortimk 
to the surface at all points of a generating line are therefore 
parallel; hence normals at consecutive points inf ©meet, m 
that one set of the lines of curvature of a developable urn the 
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generating lines, the corresponding radii of curvature being 
infinite. 

The other lines of curvature are curves which cut all the 
generating lines perpendicularly; and hence, if the surface 
be developed into a plane, the lines of curvature will become 
involutes of the curve into which the edge of regression 
developes. 

In the particular case of the developable being a cone, 
the lines of curvature will cut the generating lines at a 
constant distance from the vertex, and hence they are the 
curves of intersection of the surface and spheres with the 
vertex for centre. 

Ex. 1. Find the surface of revolution which is such that the indicatrix 
at any point is a rectangular hyperbola. 

The principal radii of curvature must be equal and opposite at any point. 
Hence the radius of curvature at any point of the generating curve must be 
equal and opposite to the normal: this is a known property of a catenary. 
Hence the surface is that formed by the revolution of a catenary about 
its axis. 

Ex. 2. Shew from the general differential equations of lines of curvature, 
that one system of lines of curvature on a cone are the generating lines, 
and the other system are the curves of intersection of the surface and con¬ 
centric spheres. 

The equations are 

dx , ty , dz =0. .e>. 
dF dF dF 
dx ’ dy ’ dz 

KS)- *(£)■ Ol 
, dF , dF . dF . A rn 

and -=- dx+ -r- dy-b-j- dz= 0 .(u). 
ax ay az 

Since the surface is a cone whose vertex is at the origin, we have 

dF dF dF A 
xte+v^+zm=0 •(“*)» 

therefore from (ii) 

-(2M©-(2)-.«• 
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Multiply the terms of the columns in (i) by x, y, z respectively, and add; 
then on account of (Hi) and (iv), (i) will hmmm 

dx , dy , xdx^y dy +z d$ \mQ. 

dF dP () 
dx 9 dy 

*(£)■ *(*)• • 
Hence either xdx+ydy+xdi-n0.(»). 

From (v) we have sfi + y3 + ss s* constan t, 
shewing that one series of the line* of curvature arc the curves of inter¬ 
section of the surface and concentric spheres!. 

From, (vi) we have 
cIP dF dF 
ffe dy ds Txz 

si a 

where I, ra, » are constants. Hence, from (lit), we have 
U^my + nsmQ, 

which shews that the other mrlm of linos of curvature arc tli« generating 
lines. 

Ex. 0. If two surfaces cut one Mother at a rnnstafit nngl*% and the 
curve of intersection bo a line of curvature on on*' of the surfaces, it will be 
a line of curvature on the other. 

Let P, $ ho any two consecutive points on the curve of interaction, and 
let Oab be the lino of intersection of the normal pianos of tV «*r%r> nt t\ 9# 
where 0 is in the osculating plane of the arc f%h If fbt curve of titter ^ 
section be a line of curvature on one of the surface*, the normal & in that 
surface at Pf Q must interneet, they will therefore imwt the \hw. Omh In the 
same point, a suppose. 

Let the normals to the other surface at P, V *«•*** V** ro»j»ectiwly. 
The triangles 01% OQa aw equal in all mn*rt% for PO’^ih 1% 

and Oa is common. And, since the mtrfmm intersect at a emistsut angle, 
the angles aPc and aQP are equal. Thereto the angle f>iV, Otp' an? »|t»h 
Bat the angles P(kf QOF am equal, and P(j^> (jo. TIwrHforc Vr.&(Mf» 
This proves the proportion. 

Ex. 4. If the line of Intcwcetioii of two mtrfmm W m hoc of rwrvatur# 
on both, the two surfaces cut at a constant angle. 

For let P, # be my two onasKtetitivft points m the carve of iaivmctioa j 
tot the normals to one surface at I\ Q meet in a, and the normals Pi the 
other surface meet In b. Then, we have Pa*& f% 0t and mmmtm 
to the two triangles aPb, aQb. Emm the angle* aPb mm ate equal* 
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5* If a line of curvature be a plane curve its plane -will cut the 
euriace at a constant angle. 

Any line is a line of curvature on a plane (or on a sphere). The theorem 
therefore is a particular case of Ex. 4. 

If three series of surfaces intersect at right angles at 
all their common points, the curve of intersection of any two 
18 a tine of curvature on each. (Dupin’s Theorem.) 

Take for origin a point of intersection of three of the 
surfaces, one of each series, and let the three perpendicular 
tangent planes be taken for co-ordinate planes. The equa¬ 
tions of the three surfaces will then be 

2# + ay2 + bz2 + 2 hyz +. ....=0. .(i). 

2y + aV + b'x2 + 2Kzx -f. .... = 0. .(ii). 

2z + a'V-f- b"y2 4- 2h"xy-f. .... = 0.... .(iii). 

At a consecutive point common to (i) and (ii) we have 
0, y = 0, z = z, where / is very small; and the tangent 

planes to (i) and (ii) at (0, 0, /) are ultimately 

x + bzz + hyz = 0, 

y + a'zz'-h Tixz = 0. 

The condition that these may he at right angles gives 

Ji'z' ■+ hz' + abz'2 = 0, 

or, ultimately, h 4- h* = 0. We have similarly, since the other 
surfaces cut at right angles, hr -f h" = 0, and h" + h = 0. 
Hence h = h' = K* = 0, and therefore the axes are tangents to 
the lines of curvature on each surface. This being true at all 
points of intersection of three surfaces, it follows that all 
curves of intersection of two surfaces of different systems are 
lines of curvature on each. 

We have proved in Art. 164 that confocal conicoids cut 
on© another at right angles at all their common points. 
Hence, one system of the lines of curvature of an ellipsoid 
are its curves of intersection with confocal hyperboloids of one 
sheet, and the other system of lines of curvature are the 
curves of intersection with confocal hyperboloids of two sheets. 
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256. To find the principal radii of curvature at any 
point of a surface. 

Let £ y, f be the co-ordinates of the point of intersec¬ 
tion of the normals at two consecutive points (x, y, z) and 
(x + dx, dy, z + dz) of a surface, anti let p Ik* the radius 
of curvature at (x, y, z) of the normal section through those 
points. Then [Art. 251] p is one of the princijtal radii of 
curvature, and we have 

P — x y — y K~ z _£L_ 
^F = “37 *ZF /i / ^lY . fitV , (<IIY 

dx dy dz V [\2.e/ \dy) "* \d:J dy 
„ pdF 

••• t=e + *-di’v' 

. P, 
K 1 

u tw u p <f F 
K tlz 

And, since (£ y, £) is also on the normal at {.r -f tlx, 
y+dy, z 4 dz), we have by differentiating the preceding 
equations, considering £ y, £ p as constant, 

n 1 l!dF\ P‘liedF '■4vy- «■ i.- 
and two similar equations. 

Since 
d8^ d*.F rf*Jf 

zWdx + dx7yt}y + dJh,h' 

written 

and similarly for d and d # tlw «*qutttuina may be 

* /Kd*F\, ^ d'F , f c/fF , 
0 “ [p +-%f) dx + Edy** + rfn/*<h - 

“F\ . t d*#’ ' ■" 

i-y^+a c&dy 'p + dy* 
. d(T f//* 

dydztls~ * dy' 

We have also 
p„,dF, dF , 

0-^dw+ ^dy+^d*. 



Kiiuiiitai iit” (l-r.tlif, dz, iIk we have for the determination 
of tin* jiriiit'ijiiil radii lip* jniiii**n 

d‘F <VF tPF dV 
+ dP ’ ih tli/ ’ d.rdz ’ dx 

<l‘F «: XF <PF_ dF 
*1 x-ty * t> + <h,‘ ’ iltf.h ’ dtj 
*t'F tPF k if F dF 

ftj: ilj 1 thjth ’ p + dP ’ d; t 

4F tIF tIF 
\ \ 

0 
! dx * •b‘ 3S ’ 

ff#?„ fl\* f tff»* vmhUn'H **f nn*j mirfavs* 

A? an iifiilfiir fli*- ii4ilip;itnx is a rircdn 
f.* f tlm n| flip wuhm* bit F(*rt yf z) «* 0, and 

lf?t '.r\ ty\ // bt* Huy fr4nf **h it, Tim pfjtmimn of the surface 
rpfrrml h* ji:*rn!b!l a\*‘* (£, /» /) will be 

4F 4F »*F % ft ,1 4\\f 
' ,1/ * V r/y * * ,// ’ 1 P ,// * X ,bf'+ Sill') b + *" “°- 

tip mhmuix i% similar l<i Urn section of the Ifpn*' 
Iftllllr *1*1 

d'F . d'F , 

rf*r <l'F 

by iho |»lwi« 
,hd>r'*-wy;fy*'J + lm(i -(i>’ 

"0..(ii), 
»iy tip dp 

' »ir 4-v./y f 

and we hm* nlrriwly found {Art. 125, Kx. fij the conditions 
that ft given «*eti«*n of a *»iiieo!*l may be circular, 

Front tlw result of Art. 2S6 it » clear that the two values 

of ^ «r< *h*- * <4 the »*«?* of the acction of d) by (ii). 
M 
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258. To find the radii of principal curvature, and the 
lines of curvature, of the surface whose equation is z = f (x, y)t 

Let (£, rj, f) be one of the centres of principal curvature 
at the point (%, y, z), and let p be the corresponding radius 
of curvature. Then, the equations of the normal at (x, y} z) 
will be 

Z-x = V-y £-0 = p 

p q -1 f(l+f + q2)’ 
therefore f — x = — p (£ — z), 
and t) -y = -q(t-z). 

Since the normal at (x + dx, y + dy, z + dz) also passes 
through (£, 7)} £) we have, by differentiating the preceding 
equations, 

— dx = — dp (f — z) 4- pdz, 
and —dy — — dq (f— z)-j- qdz; 
that is — dx=p (pdx + qdy) —z) (rdx+sdy)...(i) 
and ~dy = q (pdx + qdy) — — z) (sdx 4- tdy)... (ii). 

Eliminating f — z from (i) and (ii) we have 

(1 4-p2) dx-hpqdy _pqdx+ (1 + <f) dy m 
rdx -h sdy sdx 4- tdy 9 

therefore (1 + p2) s —pqr 4- {(1 +p2) — (1 4- <f) r) 

+ {pqt - s (1 + 22)} (^) = 0.. .(iii), 

which is the differential equation of the projection of the 
lines of curvature on the plane 5=0. 

Again, from (i) and (ii) we have, putting /c for 

Jl+tf + q*, 

(l +/ + Tfdx± (pq + Sfdy= 0, 

(W+ f) *> + (i+f+j) dV=°- and 
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lleiini \l 4 1? 4- ti 4 tf* f 4- *0, 

or 
(rf - a' \f p* k\HI ¥ p*) -f HI I-'/) — 2/>y#} p 4- k% * 0...(iv), 
wliirli i> ;m giving tht* {iriiiri{ial radii of curvature. 

At tm umMHni* tlm diiwlium of principal curva¬ 
ture an* niiiii if**; Inin* tin? corididmiB for an umbilicus 
iirof of til** luti% Artu*U», 

1 ! }•' ,}:*'f 
r t .¥ * 

J60, IMf, Tl*«* what* curmtnre of any portion of a 
«urfiicc% bmmdrnl l#y n vUm*A ctirw, in equal to the area cut 
of from a »ftiieni |:»f unit rmliiifi tif radii winch are parallel to 
the introiiti* t«» the hi all {mint* of the curve. 

Ti,« ntvra*i« turmtum of any portion of & surface is the 
folio <»f tint wiudv curvature to the area of that portion. 

The measure of curmtnre at any point is the average 
curvature <4 -t v< ry rued! j»»rtio« which includes the point. 

These definit which are analogous to the definitions 
in plan*? curves, are dun to linuss, 

Th« curve trad'd nut «>n the unit sphere as above is 
calltsl the kitntfmpk of the given portion of the surface. 

261. To *hew thnt. the measure of cnrm.tu.re at any point 
of a turf arm ur the reciprocal of the product of tho principal 
rwtfti«/ at feature vf the mrfm at that point. 

Getrwrb'r a small portion PQMS of the surface bounded 
by Itru* »t » urvaturc; then Pyttti is ultimately a rectangle 
whw area is Ptf. i*8. 

Let line* parallel to tho normal* at P, Q, R, 8, drawn 
through the outre of a sphere of unit radius, meet the sphere 
in p, <i, r,«. Then, since the principal planes at any point of a 
•urlrae nr«' at right angle*, the angles p, q, r, $ MO right 
a»«l«, ami tier- hue pqn is ultimately a rectangle whose rum 
is M<P*’ the angle between the normal* at/* and Q 
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is ultimately —, and the angle between the norumlH at P 

Pl pa ... 
and 8 is ultimately —, where Pl, Pt are the pnnajwii radii 

P2 JJQ J tig 
of curvature at P. Hence pq ==—-, and ps » > in that the 

po p% 
area of pqvs is ultimately—"p~p * Hence flits mriiniitt* of 

curvature at P, which by definition is the limiting value of 
area pqrs_ • _1_ 

area PQES * 1S pj>% * 

Geodesic Liner 

262. Def. A geodesic line on a surface m such that any 
small element AB is the shortest line which am be drawn 
on the surface from A to B. 

The length of the line joining any two imMimtely mar 
points will clearly be least whoa the curvature is heat, fliit 
by Meunier’s theorem, the curvature of a mirfkv through a 
given tangent line is least when the section k n, iinrifwl 
section. Hence at any point of ageodesic lino on a mnfnm* f In* 
plane of the curve contains the normal to the hitrtW.wi that 
the principal normal of the curve coincidi* with the normal 
to the surface. We therefore have at any point of a gcinli^ir 
line on a surface 

d%m <Py d*z 
ds* d&* U 

dm dy Hz 

CUBVATUBE OF CONICOIM, 

263. Since all parallel sections of a mmmM are ittnilar, 
it follows that the indicatrix at any point P of a mmmid m 
similar to the central section which is para!let to the fJiiiptitt 
plane at P. Hence the tangents to tbe liii§» of mrmmm 
at any point P are parallel to the axes of that centiml §eeUot!» 
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NoW, by Art. 167, the lines which are parallel to the axes 
of the central section are the tangent lines at P to the curves 
of intersection of the conicoid with the confocals which go 
through P. Hence, as we have already proved in Art. 255, 
the line* of curvature of a conicoid are the curves of intersec¬ 
tion with confocal cvuicoids. 

264. We can shew that the lines of curvature on a 
conicoid are its curves of intersection with confocals in the 
following manner. 

At points common to 

an<l r+\+ 
we have, by subtraction, 

y9 
= 1 

h 4* X c 4* X •(ii). 

+ 
2* 

<i (ci 4* X) b (b 4* X) c (c 4* X) 

Differentiating (ii) and (iii) we have 

laid 

adx ydxj zdz 

a4\ &*4* X o 4* X 

3-d.t: ydy zdz 

.(iii). 

.(iv), 

a(a + X) ' 6 (5 + X) ^V(c 4-X) .. 

The elimination of a + X, b + \ c + X from (iii), (iv), 
(v) gives 

!■ 
dy, 

j m 
! a * 
| da, 

j da 
a * b 

z 
0 
dz 

dz 
c 

•(vi). 

which in the differential equation of the curve of intersection 
of (!) and any one of its confocals; and it is easy to see, by 
comparing with (i), Art 252, that (vi) is the differential 
equation of a line of curvature. 

15—2 
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265. The radius of curvature of any normal section of a 
central conicoid may be found as follows. 

The radius of curvature of any central section of a coni- 

coid through a point P is, by a well-known formula, eipud to 

— where d is the semi-diameter parallel to the tangent nr 1\ 
p 
and p is the perpendicular from the centre on the tangent 
at P. Hence, by Meunier’s Theorem, the radium of curvature 
of any normal section of a conicoid through the fwititi P m 

d2 
equal to —, where p0 is the perpendicular from the centre 

Po 
on the tangent plane at P, and d is the Krini-dminetoi 
parallel to the tangent line at P; for the cosine of tin- angle 

between the normal section and the central section is . 
V 

266. At any point of a line of curvature of a cnitmt 
conicoid, the rectangle contained by the diameter parallel to the 
tangent at that point and the perpendicular from the centre on 
the tangent plane at the point is constant. 

Let p be the perpendicular from the centre on tin* tangent 
plane at any point P of a given line of curvature, and Set % A 
be the semi-axes of the central section parallel to the tangent 
plane at P. Then, one of the axes, a suppose, is parallel to 
the tangent at P to the line of curvature, and the either axis 
is of constant length for all points on tho hn« of curvature 
[Art. 167, Cor.]. Hence, since is constant, it follows 
that pa is constant throughout the line of curvature. 

267. At any point of a geodesic on a mitral amiaml, the 
rectamgle contained by the diameter parallel to the tum/mt at 
that point amd the perpendicular from the centre on the tangent 
plane at the point is constant. * 

cup °f a gCOcUteic mi th« wnicoid 

d\ tfy cPz 
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or 6L = f_ = £L = x.(i) 
ax by cz w* 

We have to prove that pr is constant, where 

1 = a®2 + by2 4- c*'2.(ii). 

and -2 = d'a? + 6 V + cV.(iii). 

Differentiating ax2 4 by2 4- cz2 = 1 twice with respect to s 
we have * 

a#'2 4- by2 4 cz2 -f axx" 4- byy" 4- czz" = 0.(iv). 

From (i) we have 

^ axx" + byy" 4- czz" p2 £ ,...N , N 

x =^+5y+'°v' =~^’from (lu) and (lv)- 
1_ dr 

Also x =^T%W=Ii'from to and to). 
p® ds 

Hence + = o 
r p ds ’ 

and therefore pr is constant. 

Ex. 1. The constant pr is the same for all geodesics which pass through 
an umbilic. 

This follows from the fact that the central section parallel to the tangent 
plane at an umbilic is a circle, and therefore the semi-diameter parallel to 
the tangent to any geodesic through an umbilic is of constant length. 

Ex. 2. The constant pr has the same value for all geodesics which touch 
the same line of curvature. 

At the point of contact of the line of curvature and a geodesic which 
touches it, both p and r are the same for the line of curvature and for the 

Ex. 8. Two geodesics which touch the same line of curvature make equal 
angles with the lines of curvature through their point of intersection. 

From Ex. 2, the semi-diameters parallel to the tangents to the two 
geodesics, at their point of intersection P, are equal to one another, and are 
therefore equally inclined to the axes of the central section which is parallel 
to the tangent plane at P. But the axes of the central section are parallel to 
the tangents to the lines of curvature through P: this proves the proposition. 
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Ex 4 Two geodesics which pass through imilulici nmko, equal ftaglr-i 
with the lines of curvature through their point of intersection. 

Ex. 5. Any geodesic through an umbilie will pass through the oppmn- 
umbilic. 

Ex. 6. The locus of a point which moves so that the wim, m the differ¬ 
ence, of its geodesic distances from two adjacent ambilie* k conatimt, m a 
line of curvature. 

Ex. 7. All geodesics which join two opposite umbttie* are of constant 
length. 

Ex. 8. The point of intersection of two goodimio tangent* to a giwiii lim* 
of curvature, which intersect at right angles, in mi a sphere. 

Let r,, i\ be the semi-diameters parallel to thu Ump'iit* to flu* 
at P, their point of intersection. Then, niims the gi*oili??<ici cut n% t-rnlii awgltw 

where a and p are the semi-axes of the central milfoil parillul to tit® t&nppnt 
plane at P. Put, if p be the perpendicular on th« tangent plnii® at }*t jf|, fl 
pr± —pr%=constant, from Ex. 2. Hence, Mttioct pap t« eumUmt, mid alm 
a2 3+/r+OP2, it follows that OP is constant. 

Ex. 9. The point of intersection of two ge0f!«**2o taiifptiH oru» in ta^lj qf 
two given lines of curvature, which cut at right atiglti, i* mi ti ttphwis 

Examples on CitAvrm XII, 

1. A surface is formed by the revolution of a jmraWk nlmut 
its directrix; shew that the principal curvutnrea at any point nr»* 
in a constant ratio. 1 

2. If p, p' be the principal radii of curvature of »»nv point ,,f 
an ellipsoid on the line of its intersection with a given (•oiawitric 

sphere, prove that the expression will 1** invariable. 

3. If ii1 + «a + Ma+." 0 be the venation to a aurfare 
where «r is a homogeneous function of a:, y, *, ,»f the rth <*«»». 
then u1 + u, + ul(h> + my + m)^0 will be the general reurtti„„ „f 
surfaces of the second order having the mm curvature at tj,„ 
origin. 
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4. The normal at each point of a principal section of an 
ellipsoid is intersected by the normal at a consecutive point not 
on the principal section; shew that the locus of the point of inter¬ 
section is an ellipse having four (real or imaginary) contacts with 
the evolute of the principal section. 

5. In the surface y cos - — x sin - = 0, 
* a a 

the principal radii of curvature at (x, y, z) are *±=X 

6. Shew that the umbilici of the surface 

lie on a sphere whose centre is the origin and whose radius is 

equal to 
abc 

ab + bc±ca 

7. The centres of curvature of plane sections of a surface at 
any point lie on the surface 

(a?2 + y2 + z2) (— + —) =z(a? + y2). 
\Pl P2' 

8. Prove that the line which separates the synclastic from 
the anticlastic parts of a surface is a line of curvature, and that 
along it the inflexional tangents coincide. 

9. The projections of the lines of curvature of an ellipsoid on 
the cyclic planes, by lines parallel to the greatest axis of the 
surface, are confocal conics. 

10. If one of the lines of curvature on a developable surface 
lies on a sphere all the other lines of curvature, other than the 
rectilineal ones, lie on concentric spheres. 

11. A plane curve is wrapped upon a developable surface. 
If p is the radius of curvature of the plane curve at any point, p 
the corresponding radius of circular curvature of the curve upon 
the surface, R the corresponding principal radius of curvature of 
the surface, and <f> the angle at which the curve intersects the 

generator of the surface, ~ 
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12. If one system of lines of curvature of a surface are 
ciieles, the surface is the envelope of a sphere whoso centre moves 
on a given curve. 

13. If a geodesic line is either a lino of curvature or n plane 
curve it is both; but a plane lino of curvature l« not xu.ri’s»arily 
geodesic. 

Shew that if one series of the, lines of curvature in gtnulrmc 
they arc all repetitions of the same plane cum*. 

14. Shew that if the normal to a surface always ]»&»*'** 
through a given curve, one set of the lines of curvature are circles; 
and that those normals which pass through a given point on the 
curve are generating lines of a right cone whose axis is the 
tangent at that point. Hence shew that if the normal always 
passes through two curves, these curves must U* conic* In planes 
at right angles, the foci of one being tint vertices of the other, 

15. Find the differential equation of the projection nit the 
plane xy of each family of lines of curvature of the aurfnr*' which 
is the envelope of a sphere whose centre lien on the paritkik 
a9 + 4ay~ 0, 3^0, and which passes through the origin, 

10. Show that the principal curvatures lit any point of a 
surface are given by the equation 

tU 1 >n M 
(B + p * 7hj • dz 
dm dm 1 dm 
"S * 7Q V it 

dm dm rfa 1 

dx 9 d], - <iZ ft 

where l, m, n mm the direction-CMMe* of tlm normal at the 
point. 

# 17. The tangent planes to the surface of mitre* at tin* two 
points where any normal mmU it are at right angles. 

IS, Shew that the point for which %><y .% In an iiinbiliir ©f 

and the radius of curvature tliere ii 
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19. In a hyperbolic paraboloid, of which the principal para¬ 
bolas are equal, the algebraic sum of the distances of all points of 
the same line of curvature from two fixed rectilinear generators is 
constant. 

20. Along the normal at a point P of an ellipsoid is measured 
PQ of a length inversely proportional to the perpendicular from 
the centre on the tangent plane at P; prove that the locus of Q is 
another ellipsoid, and that the envelope of all such ellipsoids is the 
“ surface of centres,” that is the locus of the centres of principal 
curvature. 

21. Shew that the specific curvature at any point of the 
surface x7/z = abc varies as the fourth power of the perpendicular 
from the origin on the tangent plane at the point, and that at an 

umbilicus it is ■£■ (abc)~$. 

22. If a surface have one principal radius of curvature con¬ 
stant it is the envelope of a sphere of constant radius. 

CC& %8 
23. Find the umbilici of the surface - + -■ + — = F, and 

abc 

shew that at the umbilicus - = % = ~ the directions of the three 
abc 

lines of curvature are given by the equations 

dx dy dy dz . dz dx . . 
a b ’ b c c a * J 

24. If two geodesics be drawn on an ellipsoid from any point 
to two fixed points, the sine of the angle between them varies as 
the perpendicular on the tangent plane at the point. 

25. Shew that on a surface of revolution, the distance of any 
point of a geodesic from the axis varies as the cosecant of the 
angle between the geodesic and the meridian. 

26. If a geodesic line be drawn on a developable surface and 
cut any generating line of the surface at an angle \j/ and at a 
distance t from the edge of regression measured along the generator, 
prove that 

dt 
— + cot tl/. t = p, 
a*/' 
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where p is the radius of curvature of the <dr of w«m«»n 
at the point where the generator touches it. 

27 Shew that the tangent to a geodesic or line of curvature 
on a quadric always touches a geodehie or lute of curvature 

respectively on a confocal quadric. 

28 Shew that the reciprocals of the radii of curvature tuitl 
torsion of a curve drawn on a developable surface are 

sin9 0 , sin 6 eon H da 
and .. 

where o is the principal radius of curvature of the surface at the 
point 0 the angle the tangent line to the curve »imkr» with the 
generator through the point, and a the angle Mwmi the normal 
to the surface and the principal normal of the curve. 

If a geodesic on a developable surface be n plane rune it must 
be one of the generators or else the surface must b* a cylinder. 

1 1 
29 If - and - be the curvature ami tort minify nt any j«tttt of 

p cr 
11, 

a geodesic drawn on a surface, and --1 - lie the principal curvature 
Pt P§ 

of the surface at that pomt, show that 

30. Through a given generator of a hyj*©i hi 4*4*1 i#f nm 
draw a variable plane; this will touch tli« MtifW:© nf Home }*«itjt 
A on the generator and will contain tin? normal Ut tlm mirfiirr m 
another point B. Shew that the sum of tlr mpmn* t*mi% of tin 
measures of curvature of the surface at A Mid // m r«iiwt»nt for wfl 
planes through this generator* 

Hence shew that the same projxmitinti m Inti* for any t*k*?w 
surface. 

31. If 'zzr be the pitch of the ic*rt?w by which »nj f#n©«tor ©f 
a skew surface twists into Its eonneetstiv* " »liw that 

+ pp'=z 0, where p, p are the principal radii of eti rvaittm at tin 
point where the shortest dhtam&i betwwm tit# two c#tiw«tiw 
generators meets them. 
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32. If a geodesic be drawn on an ellipsoid from an umbilicus 
to an extremity of the mean axis, prove that its radius of torsion 
at the latter point is 

a2c2 

where a, b, c are the semi-axes of the ellipsoid arranged in 
descending order of magnitude. 

33. If from any point on a surface a number of geodesic 
lines be drawn in all directions, shew (1) that those which have 
the greatest and least torsion bisect the angles betweerftfche 
principal sections, and (2) that the radius of torsion of any line, 
making an angle 6 with a principal section, is given by the 
equation 

~ =z f — - sin 0 cos 0. 
& \Pi pj 

where plf are the radii of curvature of the principal sections. 

34. Find the equation to the surface which is the locus of the 
central circular sections of a series of confocal ellipsoids. Prove 
that this surface cuts all the ellipsoids orthogonally, and that the 
orthogonal trajectories of the circles, drawn upon the surface, are 
lines of curvature upon two hyperboloids confocal with the 
ellipsoids. 

35. If a cone of revolution circumscribe an ellipsoid, prove 
that the plane of contact divides the ellipsoid into two portions 
whose total curvatures are 2tt (1 + sin a) and 2ir (1 - sin a), where 
2a is the vertical angle of the cone. 

36. If any cylinder circumscribes an ellipsoid it divides it into 
portions whose integral curvatures are equal. 

37. The measure of curvature at any point of the surface 

x* + y* z* n . ca 

where r is the length of the generator through the point cut off 
by the plane z = 0. 

38. Prove that, if radii be drawn to a sphere parallel to the 
principal normals at every point of a closed curve of continuous 
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curvature, the locus of their extremities divides tin* surface of the 
sphere into two equal parts. 

Hence shew that the total curvature of a gvmlvnk triiiiigle mt any 
surface is equal to the excess of its angles over two right angles, 

39. Define the radius of geodesic curvature «»f it curve drawn 
upon a surface, and shew that at any point it in equal to Ucot 
where R is the radius of curvature of the twnmil section ecinfiiiin 
ing the tangent to the given curve, and $ i» the iiicliniifion of tlii? 
osculating plane to that section. 

40. If a surface roll on a second surface without rotation 
about the common normal, and the truce cm mm unrimm m m 
geodesic, the trace on the other surface is n 

Hence prove that Gauss’s measure of cux'Vaturo is cotiatmit for 
all areas enclosed by geodesics. 
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1. The inclinations to the horizon of two lines which are at 
right angles to one another are a, /?, the lines being on a plane in¬ 
clined to the horizon at an angle 6; shew that sin2 0 = sin2a + sin2fi. 

2. Shew that the volume of the tetrahedron of which a pair 
of opposite edges is formed by lengths r, r' on the straight lines 
whose equations are 

is 

x-a __ y-b. 
m 

vrr‘ 

z-c . x-a 
- and —=t— 

n l 

a — b- b 

y-b' ^ z-c' 
m/ ri 9 

l , m , n 

1' , m , n' 

3. A parallelogram of paper is creased along its shorter 
diagonal, and the two halves are folded so as to make ah angle 9 
with each other: find the distance between the extremities of the 
longer diagonal, and prove that it is equal to the shorter, if 

A 
sin2 ~ = cot a cot ft, where a and ft are the angles the sides make 

Ja 

with the shorter diagonal. 

4. The ends of a straight line lie on two fixed planes which 
are at right angles to one another, and the straight line subtends 
a right angle at each of two given points: shew that the locus 
of its middle point is a plane. 

5. The equations of three straight lines are y-z = 1, x » 0; 
*-a5=l, 2/ == 0; and cc —y = 1, » = 0; prove that the locus of all 
straight lines which intersect the three lines is 

x2 + y2 + z2 - 2yz - 2zx - 2xy = 1 
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6. Three fixed lines ar© cut by any oilier lino In the point* 
A, B, C, and D is the point on the line ABC inch that f A JHJB} 
is harmonic: shew that the locus of I) in n straight Him, 

7. A point moves so that its perpendicular dimmiiow from 
two given lines are in a constant ratio: nlmw that its hmu in mi 
hyperboloid. 

8. A straight line slides upon two fixed Ht might lines in 
such a way that the part intercepted subtends u right angle at, 
a fixed point: shew that the line generates ft cmiicidd, 

9. A sphere touches the six edges of n tetrahedron : hImw 
that the three lines joining pairs of opposite point* of v*mUu:t 
will meet in a point. 

10. A straight line moves In Hindi a manner that lme§| fg 
four fixed points on the line in always on n giv**n plaint; ulmw 
that any other fixed point on the line dticrilnw it |iini«? «*Ilt|j#r*, 

. 11- Any ^ree points P9 Q, R% ami the polnr pkmm of tlmm» 
points with, reference to any conieoid urn takftti. By p/i »«* 
the perpendiculars from P on the pilar pianos of Q and M nmm* 
tively; QRa, QPa are the perpendbulnm from Q m tlm m\m 
planes of R and P respectively; and RPt, HQ urn the 
diculars from R on the polar plane* of /' and Q tt«w,4ivl|v 
Shew that PQX. QRt. RPt m PRf. QF%. * 1 *'*’ 

12. Shew that, if the equation 

aa? + b^ + as* + %fyz+2gxo+2hsy « 0, 

represent two planes, the planes which biwct the augltm Iihvm 
them are given by the equation 

ox + hy+gz, has + by+f*, gx + fyie: 

_L_ _± i 
of-gh ’ bg-1? diZjy 

13. Shew that, if the equation 

a*8 + by* + cs* + %fy% + 2gz» 4 2k#y .. g 
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sent two planes, the product of the perpendiculars on the 
:S from the point (x, y, z) is 

_ax2 4 by2 4 ca? 4 2fyz 4 2gzx 4- 2hxy_ 

(ce + 6 + c)2 + 4(f ‘J -be) 4 4{<f — ea) + 4(A2 - a&) 

If IT ^ (cibcdhnnpqr) (xyzw)2 = 0 is the equation of a cone, 
that the co-ordinates of the vertex satisfy the equations 

dJT dU dU 
da db dl 
0A = ’*~0A 

da 06 dl 

s A is the discriminant. 

X Shew that, if the equation 

* 4- by* -4 cz2 4 2fyz 4 2gzx 4 2hxy 4 2ux 4 2wj 4 2wz 4 d ® 0, 

sent a paraboloid of revolution, e = 6±a. Shew also that if 
f* a, the equations of the axis of the paraboloid will be 

cz 4 w = 0, (cas + u) Ja, + (cy + v) Jb = 0. 

>. Shew that the three principal planes of the surface 

ax2 4 by2 + cn? + 2/y« 4 2^ssb 4 2hxy = 1 

verx "by the equations 

arr •+• hy 4- gz, 7uc + by +fz , gx +fy + cz =0, 

jLqc 4 JOTy 4 6r#, jSo; + By + Fz, Gx + Fy + Cz 

sc ,2/ , * 

5 JL* (7... are the minors of a, b, c in the determinant 

a, h, g . 

h \ f 

*' f, c 

r. If r be any semi-axis of the conicoid 

ax? 4 by* 4 cz? 4 2/^» 4 2y«sc 4 2hxy -1, 

that the values of r will be given by 

_2* +—L.t.A ri 
gr7i — af + —^ hf- bg + ^ /g~ch+ 
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18. The ellipse VV + ahf - a*it * 0, z « 0 is a pfinio motion 
of a cone whose equation, referred to its principal axes, is 

/?yx2 4* yay% + apt ^ 0. 

Shew that the vertex of the cone is on the curve 

f xfl + + I «*y - fcV - </ « (it 4 //|;3'r# 
{ a + /? + y J t jfty + ya + a/f j 

_ JaV/Vl1 
t a/iy / * 

19. Shew that the conicoid ax* * &// 4* c%* §•#/ 0 h it# qWU 
polar reciprocal with respect to any ono of the mndmkh 

* act •*» by* + s* 0, 

20. Find the locus of the centre of 1 ho sphere which 
through two circular sections of a oomooid which lire of epjmidic 
systems and whose planes are equidistant from the ecntn*, 

21. Prove that the foci of sections of tin mmh hy 
a series of parallel planes lie on m edlipw, 1 

22. Shew that the perpendicular front the centre m f§|t, 

tangent plane at any point of ^1/1. , 1 m fi4* # %jim f 
a c * rt# 

is the length of a generator through the point cut off by t|ir rij#4l.f, 
of xy. * 1 

23. The six lines ^'<7, Cd', A'fl, IlC, C'A «... six «*,. 
rators of the hyperboloid oat + %3 + . lf ««! J/y //y* ^4 
are respectively parallel to fff", C'A ; shew tk», if Vl,.’ 
parallelopiped of which the six generators are itlgw* It.* compli-tnl 
the comers which are not on the hyperboloid will be mi * 1 

03? + by* + cs? + 3 0. 

24. Shew that at any point the rate jtor unit of length «.f 

generator at which the normal to the hyperboloid 1** v\ *'w . 
# m* it* ^ 1 

twists round a generator as wo move along it in ,e , r 

“““”d *I“* “• <* 
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25. A BGDQ is a twisted, polygon all whoso angles are right 
angles; Aft, CD lying on fixed straight linos. Shew that if A, 
//, </, D he any points on their respective lines, the locus of P or 
Q is ini hyperboloid, of one sheet. 

20. If l he the latus-rectum of a parabola, and l]7 ltJ, the 
latent recta of its orthogonal projections upon a rectangular system 
of coordinate planes making angles «, ft and y respectively with 
the plane of the original parabola, then 

2 coh*« co coaly 

fi" 11 + 11 + I s 

27. If tin*, six points on a conicoid, normals at which meet 
in a point, are joined in pairs by three lines, prove that whatever 
sot of joining lines in taken the sum of the squares of the semi- 
diameter# parallel to them is constant. 

2ft. A eonieoid whose centre is I) touches the three planes 
YOZ) ZOX, XO V in A, ft, (J respectively: shew that the lines 
through A, /A C parallel respectively to OX, OF, ()Zy and the 
line (JJJ nro four generators of an hyperboloid of one sheet. 

29. Three perpendiculnr tangent planes are drawn, one to 
each of three coufoca! coracoids: shew that the normals at the 
points of contact of the plane*, and the line joining their point 
of intersection to the centre of the coracoids are generators of an 
hyperboloid of one ulieot 

30. If any line through a fixed point 0 meet any number of 
fixed planes in the points At li7 O.., and on the line a point X 

1111 
l*§? taken such that —^ ^ 4- ^ 4* <.*; show that the locus 

of X will be a plain!. 

3L If any line through a fixed point 0 meet any given sur¬ 
face? m tint |joint# Af B% <7, lb.., md X bo taken such that 

dx L f on * m: * on ' ~ • u“ "11 ol * * 

plane, 

a u. a 16 
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32. Two straight linos drawn in lixod dim-lion* through any 
noint 0 moot a given Kurfaco in tins P'ltm J, It, V, It... and 
1 , OA.OB.OV,Oi> .. . 
A', J?, O', O'...; show that - , J( _ mf _ «« murtani. 

33. Prove that the peck! of n helix m If It rrgurd to any p»tt*i 
oa its axis is a curve lying <>** hypibolutd <#!' otm bhm ; find 
that, if the pitch of the helix he |w% tl<i< mrve mil nil feiprio 
dicularly all the generators of erne system of flit? fiy perl#,kid, 

34. A curve is drawn on a sphere of milk* #i ml*ing till the 
meridians at a constant angle; shew (if ilrnt the hn*% of the per 
pendicular from the centre of tin* sphere upon the ttf,*f ii»g piano 
is the centre of curvature} (2) that if pf ir l#n the twin of * nrva 
tur© and torsion <r/>8 - a®. 

35. Prove that the shortent dixtimre *4 the fanpiik at P 
/¥p 

points P$ of any curve Is ultimately mjtiiil to » wlieie p » 

o* are the radii of curvature and torsion. 

36. Tangent planes to a romeohl wu drawn at pointy along n 
line of curvature: shew that the perpend let jkra from the centre 
on their planes lie on a <|iii4ilrie cone, that the ddfhr* **t ronrn mt 

formed are cortfocal, and that the torsi hnr>, r»f ftm mum itte 
perpendicular to the circular mdUim #4' ihn rnntnmL 

37. A curve is drawn limiting n mmimd fttigk «* with the 
axis of a paraboloid of revolution: prove fi) tl*«t ii« premium 
on a plane perpendicular to tin? itxk is the m%'nh$tm of ii rirrlif 
of radius £ cot a, (ii) that itn radii of curvature |» ami torsion «t 
are given by the cnpuitions |/mitf« i/ tdti*i» eonf« s r*« Prof*#, 
where r is the distance of the jiwiiil front tin* ««% md l m flat 
semi-latus rectum of the generating parabola* 

RAMAN RF$I/.:;j ,l i'fUTr 
CANGALA •' - TV 

Class Mo 5}A- 

acc. ncrf,*!** HA am* sii*ag »t l 





PREFACE. 

The following work is intended as an introductory text¬ 

book on Solid Geometry, and I have endeavoured to present 

the elementary parts of the subject in as simple a manner "as 

possible. Those who desire fuller information are referred to 

the more complete treatises of Dr Salmon and Dr Frost, to 

both of which I am largely indebted. 

I have discussed the different surfaces which can be 

represented by the general equation of the second degree at 

an earlier stage than is sometimes adopted. I think that 

this arrangement is for many reasons the most satisfactory, 

and I do not believe that beginners will find it difficult. 

The examples have been principally taken from recent 

University and College Examination papers; I have also 

included many interesting theorems of M. Chasles. 

I am indebted to several of my friends, particularly to 

Mr S. L. Loney, B.A., and to Mr R E Piggott, B.A, Scholars 

of Sidney Sussex College, for their kindness in looking over 

the proof sheets, and for valuable suggestions. 

Sidney Sussex College, 
April, 1884. 

CHARLES SMITH. 





CONTENTS. 

CHAPTEK L 

Co-ordinates. 

*3o-ordinates . . *. 

Oo-ordinates of a point which divides in a given ratio the line joining 
two given points .......... 

distance between two points .. 
direction-cosines. 

JElelation between direction-cosines ........ 
Projection on a straight line. 
docus of an equation. 

Polar co-ordinates ..- . 

PAGE 

1 

7 
8 

CHAPTER II 

The Piane. 

JLxi equation of the first degree represents a plane.9 

332 equation of a plane in the form Ix+my+nz=p.9 
332 equation of a plane in terms of the intercepts made on the axes . . 10 
232 equation of the plane through three given points ..... 11 
Hi equation of a plane through the line of intersection of two given 
planes.11 

Conditions that three planes may have a common line of intersection . 11 
Congth of perpendicular from a given point on a given plane . . 12 
E2 equations of a straight line.  . 14 
B2 equations of a straight line contain four independent constants . . 14 
Symmetrical equations of a straight line.15 

C
O
 

rj*
 

l©
 

i©
 


