PART 1.
FOR THE PRIMARY EXAMINATION.

HIGH SCHOOLE

Digitized by the Internet Archive in 2008 With funding from Microsoft Corporation

$$
\begin{aligned}
& -4.54 \\
& 3 \times 1 \\
& 0 \times c \\
& 4 \times 2
\end{aligned}
$$

Ministry of Education, Ontario Historical C.!'ection

HIGH SCHOOL

BOTANICAL NOTE BOOK:

PART I.

FOR THE PRIMARY EXAMINATION.

- By -
H. B. SPOTTON, M.A., F.L.S.

Priscital, of Hariborn in meet Collegiate inamtute. Toronto.

Authorized by the Education Department of Ontario.

Price, お0 Cents

THE W. J. (iAGE COMPANY (LTD.) toronto.

THE EDUCATIONAL BOOK CO. TORONTO.

8245

PREFACE.

This book is designed specially to meet the wants of candidates for the Primary Examination of the Ontario Elucation Department. A very large number of the technical terms necessary in plant description are arranged in a systematic and convenient way, and fully defined and illustrated. In the blank schedules provision is made for entering very fully, if required, the details of structure, and for cases where additional particulars may be thought necessary blank space is provided in which such may be recorded.

Special forms of sehedules for the description of Compositie are provided, and prominence is given, in all the schedules, to drawing, winich is so indispensable to good work.

In order that every facility may be afforded to the young student to acquire early the fundamental ideas of elassification, an analytical table of the chief Orders represented in Canada is provided, so that as soon as a basis has been laid by the thorough examination of a few representative plants, the Orders to which they belong may be aseertained by the pupil at once. For the full classification recourse must necessarily he had later on to the Flora, which is designed to accompany the note-book.

It is hardly necessary to point out to the intelligent teacher that he must use judgm: in determining the degree of fullness of description which he will demand from his pupils. Very much depends on the stage at which they have arrived; a descuiption which would he quite satisfactory as coming from beginners might be wholly inadequate if given by advanced pupils. The schedules can of course be easily adapted for use with classes of all grades.

TABLE OF CONTENTS．

On the Mininement on Ehempontary Clanefe in Botiny．
Prioticii，Exprerses．

（itajciry．

Descraptive Suthentofe：
Ordinar！Plant schedules．
Compmesites．
Loaf Schedules．
Flomerr Sehmilules．

IヒリーI．

ON TIIE MANAGEMENT OF

ELEMENTARY CLASSES IN BOTANY.

The followilg suggestions are offered in the hope that they may be found helpful to those who are beginning the work of teaching Botany;, as well as to the young student. The writer, mindful of the difficulties and perplexities which he has himself often had to encounter, makes no apology for thus presenting what appear to him to be the chief essentials to success in this department of school work. It goes without saying that no written instructions can ever make a successful teacher where natural enthusiasm is wanting, but it is equally true that the young enthusiast may derive some bencfit from the larger experience of others; and while the intelligent and active teacher will not slavishly follow the details of any method, but will be quick to avail himself of any legitimate device which will serve his purpose, still there are broad principles upon which those who have had practical experience will probably agree. In the following remarks an attempt is made to outline the course of a year's work, which it is thought will be found practicable in any High School.

When to begin Botanical Work.-A good deal might be said in favor of beginning our botanical work in the spring. At that time, when nature is awaking from the torpor of winter, and the first leares and flowers are unfolding, it is especially delightful to ran ble abroad. Then, perhaps more than at any other time, the youthful mind is attracted by the forms of the vegetable world, and is prepared to enter upon the systematic study of them with more than ordinary enthusiasm. And if it were possible to continue through the summer the botanical work begun in the spring, doubtless the n.ost satisfactory results would be obtained. There is, however, the break caused by the long vacation, during which teacher and pupils are separated and school work generally abandoned, so that when classes are resumed in September the work of the spring has to be gone over again, with the disadvantage of having, in most cases, new pupils as well as old ones to deal with. On the whole, therefore, as the school year begins in September, and a general re-organization of classes then takes place, it seems most advantageous to begin the botanical work at that time. During September and Octuber an abundant supply of material is available, with the advantage also of access to fruits and seeds af all kinds, as well as flowers. It is exceedingly desirable that during this period, when fresli plants can be had for examination, the botanical lessons should be frequent. If a short lesson could be given every day at this time surprising progress would be made in a few weeks. When summer has passed by, and work has to be confined to such material as has been collected for winter use, the lessons need not be given so often ; probably twice a week would be found quite sufficient. Then, in the spring, when field work can be resumed, the lessons may again be increased in frequency for a time.

How to begin.-Assuming, then, that the botanical work is commenced in September, the next question to consider is how to carry on the work of the class so as to give the subject its highest educational value. Botany is essentially a science of observation. One of its very highest uses as a factor in education is that it trains the eye to habits of accuracy. But, in order to
raveive this benefit, it is essential that the pupil should be bronght into contact with the forms which are the ubjects of stuls; that he should handle them and view them for himself; that he shond by promal inspection, ascertain their hahits, and by visiting their hamats leam the situa"bons in which they tlomish hrst. Undonbtedly, then, the first essential in giving a lesson is that every member of the chas should have hefore him a specimen of the plant, or part of phant, which is 10 hee the suliject of the lesson. Then the teacher will direct attention to the different orghas, namally in the order of develoment of the organs themselves; first to the root, then to the stam. then to the leates, amd finally to tho flower, ln a first lesson it would not be amiss to mike a sumerticial examination of the entire plant, rapidly and briefly discussing the nature anl ume of each part, but avoiding as far as posssible the use of techmial terms. The chajter on the Butercup, as fiven in the text-book, really affords material for several lessons. Each toacher mast hawerar, be guited lig the time at his disposal and the circomstances of his class as to how whath grouml he will artempt to cover at one time. Some of the plants described in the text-book an for ihatace, Heparica and Marsh Marigold, will not be available in the antumn. This, how"wr. is a matear of comparatively little conseqnence, as others can be substitucul. In fact, after one phat. Stwh as Buthernp, has been thoroughly understool, almost any of her dicotyledonous fhat may he taken up and comparad with it. The order followed in the text-hook is a good one, leatuee the puyil is lell lye derees from the study of floral forms in which all the parts are present ble ent rely disconmened, to others showing various complications and irregularities; but the julifins tescher will realily sumpement the work of the text-book by the use of material which he whll fiml in abumane ever? where about him. Let him keep in view the series of facts who it is an retal that the cl cus should know, and he may use any material which would anable the class to lascover those facts from iersonal observation.

How to conduct a Lesson. -If the class is a large one. it will economize time to have the ohecrations mate simultanmoly. Suppose the Red Maple is the subject of the lesson, which of romora in this particular case must be given in the spring. The class having observed that the
 thom apmanmberst of trem, and that all the trens are visited by multitudes of buy insects, let an abriminet syryy of beth sorts of flowers he procured and taken to the class-room. Set the teather then llatil to the stomithte flowers, and proceed with the observations upon them. Every pupil theold have lefore him a blank schembe, in which he will set down the rusult of his oliservations, sail a will he well for the twabler to have a large schedule, visible to the clasc, markeif of upon the Bhathe it \quad demmig that the pupils have been made acquainted with the common terms employed In the furmat, if them all terequired to examine the calyx, and to set down in the proper place the mabilaref egale. Then ascortain what has bem thus set down. If all agree in their obmerations, the reanlt may hata mal anl recorded in the schemble on the blackboard. If there are variations, these rmust he lah 1 into atol noted, if correct. Then comes the question- "Polysepalous or Gamosepralat?" -sha mails io te chenked as before. Then-" sumpior or Inferior?"-to be lealt with in like
 to ther own julfiem meto what they may think worth recording. When the notes have been made, the thele r now welet from flam kuch as are most worthy, and enter these in his hackboard schedule. The corda will nuixt le lokn i for anl a recorl made. The word "Wanting" will doultless be written down by enory onf atd mive then ho mao written on the hackboard. Then the stamens come under notice. Each wifl manniz the momber he find, and in this caso it is harily likely that all the results
 the teacher shanla en'er in lia form the lowest and highent numbers, thens: 5-7, as expressing the collective result, and he thonil inprove the ofportmity here presented to cantion his pupils not to
infer too much from the examination of a single specimen, as variations similar to that now under notice are not uncommon. The cohesion and adhesion of the stamens will next be observed, and the "Remarks" column filled and checked as before. Pistil "Wanting" will be the next entry, and will complete the examination of the staminate blossom. The fertile flowers will then be distributed and the work carried on in the same manner, the pupils being led to find out for themselves the difference between the two kinds of flowers, and no observation on their part being considered altogether unworthy of notice, even though relatively unimportant. The significance of the invasion of the flowers by insects can now be made clear, and the pupils should be advised to observe the trees from time to time afterwards, in order to see what progress the fruit is making, to note the development of the wings, the lengthening of pedicels; and finally the sprouting of the seeds and the production of a strong new plant, all in one season. Other points, such as the shape of the leaves, comparison with other species of maple, etc., etc, may be introduced at the discretion of the teacher, but care should be taken to aroid vagteness and confusion in offering for the consideration of the pupils more than they can readily grasp, and the relative importance of points of structure should be distinctly brought out. For this reason a form of schedule, which will present the various features in their proper perspective and avoid giving the impression that all observations are of equal importance, is the best. It is, in the writer's judgment, a great mistake to dwell at first with any degree of minuteness upon the morplology of the rarious organs-to attach much importance, for instance, to the minute description of leaves. What is wanted is to get a clear apprehension of the leading characteristics of the great groups of plants, and the main facts of plant life, and anything which tends to cloud the perception of these things must be a hindrance to true progress. After typical floral forms have been examined, and some knowledge has been gained of the more comprehensive groups, then it will be proper to proceed with the study of those finer distinctions upon which depends the separation of genera and of species, and which are essential to know in order to use intelligently the classified list of the common plants of the country.

Winter Work.-As already suggested, the lessons in the fall should be as frequent as circumstances will allow, so as to complete the examination of as many typical flowers as possible. Meanwhile preparations should be going on for the winter lessons. Fruits, seeds, leaves, bulbs, tubers, cones, etc., etc., should be collected in as great variety as possible. A supply of ferns should also be laid in, neatly pressed and mounted, as these plants may be studied nearly as well in winter as in summer. Elementary microscopic work can also be just as well done in winter. Every school should now have a good compound microscope, and the teacher who can skillfully cut a few hand sections has at his command an inexhaustible source of interest and delight to his class. In all this winter work, and indeed in all botanical work, a good deal of attention should be given to drawing. It forms a very useful exercise, for example, to dictate or write on the blackboard, a botanical description of a leaf, and then require the class to draw the leaf so described. So, also, if a section is viewed through the microscope, a drawing of what has been observed should in all cases be demanded, as the most satisfactory way of ascertaining whether the observer has carried away the right impression; whether he has, in short, seen what he was desired to see. It will often happen, too, in the examination of minute flowers, that it becomes necessary to dissect out and exhibit separately special portions of the flower, say, for example, the pollen-masses of the milkweed, or a single stamen of the pine. The teacher should, in such a case, perform the necessary dissection ; and having fixed the portion properly under the lens, pass it round for the inspection of the pupils. They may then be required to make a drawing of the object, and having thus apprehended what is necessary, may be asked to try to repeat the dissecting process for themselves.

The study of the structure and germination of seeds is another part of the work which can be very well done in winter, and many interesting and valuable lessons may be given upon these points. Seeds of different sorts should be placed upon wet flannel or blotting-paper and allowed to germinate. The
whole proces may then the observed in the most convenient way, dissections and comparisons being really male at barions stagen.

Spring Work.-If the programme thms lighty sketched be fairly cartied ont, the yount butanist should be bery well prepared for field work in the spring. He will now put to a practical use the information he has been achuiring about the parts of plants and their modifieations, and will proced to identify and classify the flowering plants which come in his way according to the characters which he tinls them to exhibit. As soon as pranticable the pupils shonld be remuired to collect and bring to the chassorom any wild plants whatever which they may find in flower. If thoir specimens are anclo-m in a suitable tin box, with a light sprinkling of water, they will remain in excellent condition for seval days. It is now of minor consequence whether all the members of the class are engaged upon the same plant or not; but whether they are at work upon the same or different plants, the schedub ${ }^{\text {s }}$ must in all cases be conscientionsly filled up before they attempt to determine the name and place of the specimen. Perhaps, for a time, until all become familiar with the use of the "flora," it would ine better to work upon one plant at a time. If this plan be followed, the points of structure should be oh sorved, recorded, and checked as already described for the earlier lessons, and when the characters of the plant have thas been detinitely sctled, recomrse must be had to the "key" which is prefixed to the tlors. Fall instructions are given in the book its.lf for the use of this "key." so that they need not be repated here. All the teacher has to do is to accompany the class through the varions questions which have to bo answered, putting them, if preferred, one by one, and receiving the answers of the class in any way he may prefer, the answers in every case, of course, to be obtained from the completed schedphe. If the true name of the plant is at length arrived at, this will be the best ovidence that the work of ohervation has been accurately performed. Two or three lessons carried out in this mamer will give the phils confidence, and familiarize them with the use of the flora, after which they may be allown to examine and determine almost any flowering plant they may meet with. The teacher will find it rafill at this stage to begin a register of the practical work done by his pupils. If prizes are given, the Ewarding of them may be made to depend largely upon the showing of this register. Then, if there is Lime, the mole of preserviny aml monentin! specimons for the herbarimm might be explained. Apart from it bonanimal importanere, this work has an educational value in itself, demandir.k, as it does, the grean t in ath and care to ensure the most successful results. Full instructions will be found at the ant of the gloseary.

Excursions - The writer camot do intwr than reporduce heve a short aceome of a botacal fimb hat, wratin tr him for the Eilncational Monthly some time ago, in order to illustrate how such a dey nay he li.nt:-

A BOTANICAL FIELJ DAY.

 anint, mentrort if a clasa firmed shme monthe ago, and having now, hy tho study of oflected specimens,

 alac to determine the ube of of amh y hata at they den not alroaly how.

comfort at most seasons of the year, but, in this warm and leafy month of June, solid enough unifr fout to dispel uncomfortable fears of falso steps. If, instead of descending, you skirt along the brow of the hill, to the westward you come upon open meadows, with here and there a low copse or thicket; while to the eastward are noble woods of niaple and beceh, succeeded farther on by pines, as the character of the soil changes. To the southward are cultivated fields and market gardens, and in the distance the glinting of the sun on a couple of church spires marks the direction of the neighboring town.

Ten o'clock is the hour of meeting, and on this occasion an exemplary punctuality is observed by everybody. As it is intended to make a day of it, lunch baskets have not been forgotten. These are left for safekeeping at a cottage close by, and then, after a bricf rest in the shade of a friendly beech, the party is divided, for the day's work, into small groups, and an area roughly marked out for each. The lower grounds and the lake region, as being somewhat difficult of aecess, are assigned to the sturdier boys, whilst the hillside and the exploration of the woods and fields above are divided among the remainder.

It is agreed that the work of collection shall be limited to two hours, and accordingly, as the distant boom of the noon bell comes over the fields, our botanists begin to straggle in again. It is nearly one o'clock, however, before the last detachment arrives. This consists of the boys who have made their way to the eastern end of the lake and the beaver-meadow. Their appearance is hailed with a shout of admiration, for of all the collections of flowers, theirs is certainly the most imposing. They must, iudcel, have hit upon a veritable botanic garden, for each of them carries a huge bouquet, made up of a profusion of Lady's Slippers and other Orchids, together with Lilies, Pitcher Plants, and beautiful pink Pyrolas. These boys are flushed with the excitement of their walk and their success; and though the condition of their lower extremities would seem to indicate that they are not altogether unacquainted with bogs, they make no reference thereto, but dwell with enthusiasm, and some degree of extravagance perhaps. on the beauties of the scene they have just left. But the others, though their collection will nat vic in brilliancy with the products of the beaver-meadow, have, nevertheless, in nearly every case, something of more than ordinary interest to show. The explorers of the lake margin were fortunate enough to find a punt, by meaus of which a number of aquatic plants, Yellow Pond Lilies, Utricularias, the pretty white Water-Crowfoot, and the Water-Shield, were brought within their reach; and on the cool northern hill-side, trailing over the base of moss-covered stumps, specimens of the Twin-Flower-a special favorite of the great Linnæus, and named Linnca borealis in his honor-were obtained, as well as Violets of various species, Woodbines, Mitchellas, etc. The open fields and fence-rows yielded St. John's-worts, Elder, Gnaphaliums of several species, a handsome Rudbeckia - the purple Cone-flower-and of course the ubiquitous Dandelion, and Mayweed, and Mullein.

But just now there are cravings which are not intellectual, cravings too urgent to be disregarded. The interest in botany is, at this moment, decidedly of a secondary nature, and when the lunch baskets are sent for, and their contents exposed to view, the gravest doubts of their sufficiency are entertained and freely expressed. The fullest kind of justice is done them, and in the course of a few minutes no vestige whatsoever remains-nothing even suggestive of them, save the shrunken wrappers, upon which some eyes are now turned with an expression almost approaching to gloom. It is suggested, and the suggestion meets with no opposition, that whatever may be the merits of botanical pursuits from an intellectual point of view, they have recommendations of a physical nature, not wholly unworthy of consideration; and it begins to dawn upon these youthful scientists, though as yet they have no clear conception of the ideal mens sana in corpore sano, that Botany has this decided advantage over all other school studies, that, to pursue it with efficiency, exercise of body must accompany exercise of mind. They san also comprehend that the botanical laboratory is as free as air to everyone who wishes to make use of it; that everywhere around them the lavish productions of nature are only waiting to be asked, to unfold their beauties; and that anyone who holds converse with the silent yet eloquent creations of the floral world, must become imbued with more or less of the feeling which inspired the tenderest of American poets, when he sang of the flowers as

> "Teaching us by most persuasive reasons How akin they are to human things."

But the afternoon is advancing, and important work still remains to be done. It is not enourh to admire color and form ; we must look a little deeper, and analyze the structure of our flowers with as much
minutemos as may lex suited to the eapacity of the present students. In other words, we propose toturn our ramble of factieal account in the way of an whect-leson, and to test the observing faculties hy trying to a wign to each plant it proper phace in a lotanical elassification. A gook many of the plants are recoguize l. without much diffieulty, as luing nenr relatives of species already exumined in the class-room ; tho Lady*s Gipher. for instance, is at once pronnumed to be an Orehid; the Piteher-Plant is immoliately identifial hy its haves, the Water-crowfout is only a white Butterenp; the few Composites in hoom at this seran ane reformed at unce to the proper family : and so with a number of others. But there are sume which
 a ione it is arrangal that one person shall real alowl from the manual, while the otbers, with sedecmens in Leml. listen to the deneriptions, and assent or dis-ent, as these correspond to the charactera exhibited hy the Hant malur examination, or the reverse, until finally it - true placo and name are revealed. 'Thumbaving Len duly noted dosm, along with the dato of collewion and the loeality, other specimens are taken up in the seme way; and though it is found impusihle to wortake all the plants that have beeng gathered. yot con siderable hadwas is made, and even the rlullest (for wur cla-s, not being an ideal whe contains dull as well as clever pupila feel a certain dogree of confilenew in their ahility to do a little botanieal work on their own becount.

The work of determination is not prolonged to wearinesis, and sonn after three bibled preparations are t ade to return home. The fatigue of the morning's walk has completely disappearent, and the youthlul ninl. releaver from the strain to which it has been sulijected, unhends, and with that singular fertility of Towire which causes the average juvenile to lu at wnee the envy and the terror of his elders, immediately alvance a host of topics for discussion, quite foreign to the oljecet of the day ${ }^{\text {s }}$ procecdings. Botany is for the frosent laid a-ile. and it ceases to her a matter of any couserume whatever, whether stamens are hypoFumat or otherwian, or what may be the relation of the caly to the ovary. With plenant convermation the
 Lug wr may mect again for another Field Day.

PRACTICAL EXERCISES.

1.-Examine and record, with drawings, the modes of vernation in six different plants.
$\xrightarrow{2}$ - Compare the leaves of Red Maple, Silver Maple, aud Sugar Maple, making drawings.
3.-Compare the leaf-clusters of the White Pine, Red Pine, and Tamarack.
4.-Determine the phyllotaxis in six different plants.
5. -Make a cross-section of a chuster of the leaves of the Blue Flag, near the base. Make a drawing of the section.
6.-Examine buds of the following, with special reference to protective coverings: Lilac, Spruce, Horse-chestnut, Beech, Poplar. Make notes of what you observe. Where bud-scales are present examine their inside surfaces.
7.-Compare the climbing apparatus of the Pea with that of the Bean.
S. - Compare as to mode of growth and ramification the stems of the Apple-tree and the Pine.
9.- Make vertical sections of the eye of a Potato, an Indian Turnip, and an Onion, and make drawings of the sections.
10. -Make rertical and cross-sections of three different buds. Draw the sections.
11.--Examine the prickles of a Bramble and of a Galium. Are they hooked downwards or unwards? Of what service are they to the plants? Give reasons for your opinion.
12. - Examine the ends of shoots of the Lilac towards the close of simmer. Note the replacement of the terminal bud by two lateral ones. Examine these again late in the fall.
13.- Examine tendrils of the Grape-rine and Virginia Creeper. noting any difference in their mode of action.
14.-Examine the twining stems of the Hop and the Morning Glory, noting differences.
15. - Detach bulblets from the axils of the leaves of the Tiger Lily, and plant them. Record results.
16. - Cut with a knife into the stems of an exogen and a woody entogen (Bamboo, for example). Note and account for any difference in the difficulty of cutting through the outer surface.
17.- Examine and record, with drawings, the modes of æstivation in six different flowers.
18. - Draw floral diagrams of six different flowers. and write out the formulas.
19.-Compare the head of the Thistle with that of the Red Clover.

Practical, Pambenis.

20. - Defach with the point of a pencil the pollen-masses in any orchid flower, thus imitating the action of an insect. Note the downward contraction of the pollen-mass shortly ufter its withdrawal. What purpose is served be this contraction? Extatet also the pollen-matses from a flower of Milkweed.

21 - Ohame whether insects visit the flowers of my of the following: Pine, Willow, Cucumber, Maple.
22.- Mak and draw sections of six different ovaries.
23. - Noak an bean in water for an hour or two, and then disseet it, exhibiting all its parts.
21.-('ompare the pappus of the Dandelion with the silky hairs upon the seeds of Milkweed and of Willow-herb. Note differencer of origin.
2.- Burn bean and an acorn in moist, warm sawilust, and note any difference in the phenomena of germination.

2ri. - Gather a few acorns and seeds of the Red Maple and lay them away for the winter. In the spring test their germinating powers.

27 - Fixumine smates of preen pine-cones, and also of ripe ones.
2n. Situly the dehiscunce of the ovary in Purslane, shepherd's Purse, Catchtly, Columbine, Mallow, Murning filory.
29.- Vinabet ont the cmbry on from six albminous seeds.
al - Wberve through a good microncupe, and make drawings of :-
(1) Six different pollen-srains.
(h). A thin slice of J:lder pith.
(c) A sheded torn from the under surface of a leat.
(d) I similar shend from the upper surface.
(1.) A cross-section of a bit of Lilac leaf with is vein in it.
(f) A plant-hair.
(9) A vertical section through the dip of a rootlet.
(h) A thin slice of Potato.
(i) The bloom on a Cablugeleaf.
31. Make cront-sertiont of the Pambon mend a branch on small stom of ally of ome native wools. Exacone with a lene nond wrte notes on the different appearancen premented.
 anl asoonint for tham.
 opinton of the bourer if it afolir.
31. - Examine the aticky atem of the Catchtly. What camses the stickiness? What is its prob able uso?
35. - Examine the scurfy under surface of a leaf of the common Shepherdia. View a small portion nuder a good microscope and write notes on what you ohserve.
36. - Scrape the surface of a slice of Potato with a knife, mount the scraping, and examine with a good microscope. Add a drop or two of solution of iodine ; examine agrain. and describe and explain the result.
37.-Try similar experiments with a Turnip, a Carrot, an Apple, a softened Pea. and write uotes on the results.
35. -Study the germination of a Pea, a Windsor Bean, and a grain of Indian Corn. Write notes upon any phonomena observed. Try the effect of different temperatures on the rapidity of germination.
39. - Observe and write notes upon the different aspects presented hy plants when grown in the shade and when exposed to full sunlight.
40. - Immerse a few green leaves in a bottle full of water. Invert upon a shallow dish of water without spilling. Expose the whole to strong sunlight, and examine after two or three hours. Describe and explain anything you observe.
41. -Repeat the last experiment, placiner the apparatns in a dark closet. Note results.
42. - Fill about one-third of a large wide-monthed bottle with well-soaked Peas. After three or four hours carefully remove the stopper and lower into the bottle a lighted match or taper. Note and explain results.
4.- Grow a hyacinth or a crocus in a nerfecilv dark cellar. Note the effect upon the colour of the leaves, and also uron that of the flowers.
41. - A plant growing in a window bends towards the lirht. What inference would you draw as to the effect of light upon the rate of growth?
4.̄. - Procure and examine the structure of the little bladders found on the immersed leaves of the common Bladderwort. Note the action of the trap-door leading into the bladder. Examine also the contents, and make notes of your observations.
46. - Examine the structure and contents of the leares of the Pitcher-plant. Make drawings and notes.

ORDERS PRESCRIBED FOR STUDY

 $\because O R$ THE
PRLMARY EAAAMINATION．

1．RANUNCULACEA．
2．CRUCIFER压．
3．MALVACEE．
4．LEGUMINOSA．
5．ROSACEÆ．
6．SAPINDACE压．
7．UMBELLIFER压．
8．COMPOSIT屚．

9．LABIATE．
10．CUPULIFERA．
1i．ARACE压．
12．LILIACEÆ．
13．IRIDACE过．
14．GRAMINE厌．
15．CONIFERE．
ultline of classification
PLANTS
（RYFTOF．I．MS Flow．rless

PHANEROGAMA

＇THMLLOHITVEN
Fing Algat
Mosaes liverworts

padicema
Erder－
（innera
－perites
年
いいいTYLにいい心

Pteridopliytex

GLOSSARY.

GLOSSARY OF BOTANICAL TERMS

USEI) IN PLANT DESCRIPTION ${ }^{\top}$.

THE ROOT.

Origin.

J'madry : when originating directly from the lower end of the radicle of the embryo (Fig. I). Such a root is usually(but not always) single, and may send out lateral fibres as it Lrows; such fibres or branches are included in the primary root.

Annuals and bieumials, and many trees, have, as a rule, only yrimary roots.
Seconmary : when originating from any other part of the tiant than the end of the radicie. as trom the sil?e of stems (Fig. -), from tubers, rootstocks, imus, cuttmes, etc.

Perenuial herbs, creeping plants, aud mnst shrubs, produce such roots abundantly:

Form.

Taf: having a main central axis. distinctly larger than any of the branches (Fis. ? ?
$\ddot{\text { risenc心 }}$: made up oi many simiar parts without a distinct rentral axis (Fig. 4).
A therroo: is
(a) Comical, when it gradually tapers from a broad top (Tig. i).
(h) Spindle-shaped or fusiform, when thickest in the mathe (Tig. 6).
(c) Turnip shapul or nupiform, when nearly globular with an abruptly tugering buse (Fig. 7).

Fibreme ronte are

(i) '!! cmarse flatads, as in Puttercup.
(h) Iff fim throuds, as in any commongrass.
(9) Fiascided or clustrrid or tulwrous, when each of the fitere han twe the a thealy mass, ats in Peony (Fig. \&).

In dearip on the Varinty inay follow the Form on the same liaw ; for cranthe F'oust: Tap, conical.)

(Yolour.

In many plante the colvor of the root is claractaristic, and should always in given in the deseription.

Fig. 1.

Fig. 3.

Fik 5.

Fig. 7.

Fige for

Figes.

Position.

Subterranean: when, as in most cases, tho root is underground.
Aizrial: when the roots spring from the sides of the stem above ground, as in Poison Iry, which uses roots for climbing ; and in Indian Corn.
AqUATIC: when suspended in water, as in Duckweed.

Duration.

ANNUAL: lasting one season only.
Bienvial: lasting two seasons.
Perennial: lasting year after year.

THE STEM.

Class.

Exogenous (or Dicotrledonous): with the wood in amual layers or rings (Fig. 9).

Note that plants with exogenous stems have also the following characters:
(a) The embryo of the seed has more than one (usually two) cotyledons.
(b) The leaves are net-veined.
(c) The parts of the flower are usually not in threes or sixes, but commonly in fours or fives.
(d) They have a true bark.

Endogevous (or Monocotyledonous): with the wood not in rings but scattered through the stem (Fig. 10).

Plants with endogenous stems have also the following characters:
(a) The embryo has but one cotyledon.
(b) The leares are nearly always straight-veined.
(c) The parts of the flower are never in fives, but almost invariably in threes or sixes.
(d) They have no true bark.

Attitude.

Erect: growing directly upwards.
Declined: bending over towards the ground.
Prostrate, or Procumbent, or Trailing: lying flat along the ground.
Creeping: lying flat, and striking ront at intervals (Fig. 11).
Diffuse: spreading in all directions.
Ascending: growing upwards in a slanting direction.
Climbisg: when the stem raises itself by means of tendrils (Fig. 12) or leaf-stalks, or hooked prickles, which lay hold of neighbouring plants or other objects.
Twining: when the stem itself coils round the support (Fig. 13).

Fig. 9.

Fig. 10.

Fig. 11.

Fig. 12.

Fis. 13.

Texture．

Hermments：with litale or no wood，and dying down to the erolule ent year．
Wimby：asit shrul－anl trees，

Position．

Of subtervanan stems there are the following warieties：
（a）Rhizume．or liondsta ki：a horizontal．more or less thedu．premual mutergromm stem．which protuces each s．ason a new hat at it extremity．from which the ammal overgromindem is developed，as in Trillim，Bloodroot． and mest of our early thowerine herbe（Fig． 14 ．
（b）Tulwe ：the thathenen end of a rhizome．As the Potato and Artiohoke（Fis．15）．
（c）liuth：a slohnlas mass．usmalls made up of theshy bares attachel to a short that stem，as the Lily（Fias．16i） and Onion．
（4）Corn：a bulb having the stem part very larse fanspal with the low or leaf fart，as in Imitan－Turnif （Fiz． 17 ）
 theerents rety wom and the leasme or ring in a cluster fion the sirfare of the sromme，as in Dantelion and liepation

Shape．

Therombul Fle．日l
Mo 100－1 $\mathrm{H}=21$
thanter hice－
Wivilar－Fise 1 ．

Juice．

Brasehing．

Ten man＝

 lelon，＊w $\frac{1}{n}$ m＋Pr＝
 finaci－s，Fin peow slinua

Fig． 11.

Fig． 15

Fis． 1 l

Fig． 1.

Fior is 18 or 21

With Rtrxaers: when there are slender branches from the base of the stem which take root at the end, as in Straw= berry, etc. (Fig. 11).
With Stolons: when branches bend over so as to reach the gromnd and take root (Fig. 11).
With Suckers: when an underground branch sends up a stem at a distance from the parent plant, as in Mint, etc. (Fig. 11).
Tendrils are sometimes branch-forms, as those of the Grape (Fig. 12).
Spines, as in Hawthorn, are also branch-forms, stunted and pointed (Fig. 24).

THE LEAF.

Parts.

Blade: the broad part.
Petiole: the leaf-stalk.
Stipules: two small nsually leaf-like pieces, one on each side of the petiole where it joins the stem of the plant (Fig. ${ }^{25}$) ; but sometimes the stipules are in the form of spines, as in Locust, and sometimes they form a tube around the stem, as in Smartweed (Fig. 27).
Sheath: the tubular petiole which surrounds the stem in many Endogens (Fig. 26).
Ligule: the thin semi-transparent appendage growing at the top of the sheath in most grasses. It appears to be an upward extension of the lining of the sheath (Fig. 2(5).

Position.

Radical: when arising from the stem at or below the surface of the ground.
Cauline: all the leaves higher up the stem.
In plants like Dandelion and Hepatica all the leaves are radical. In Buttercup and Shepherd's Purse there are both linds (Fig. 28).

Arrangement.

Alterante: when only one leaf springs from a node, or joint of the stem (Fig. 29).
Oppostre: when two leaves spring from each node on opposite sides of the stem: and opposite leares are derusisute when each pair is at right angles to the next pair (Fig. 30).
Whorled, or Verticillate: when three or more leaves spring from a node (Fig. 31).
Fasciculate: when there are several leaves in a oundle, as in Pine, Larch, etc. (Fig. 32).

Division．

Sisple：：when the blade is in one piece，however deeply it may be cut．
Compurin：when the blate is in two or more distinct pieces， whel are then known as leaflits．
A compound leaf is
（a）Pinmut，：whon tho leatlets are armanged on each side of a cemtral or mid rib：and such a pinnate leaf will be ond－pimmatr if there is an odd leatlet at the emb（F゙ig． $3: 3$ ；abruptl？！pinmate if there is wot a tarminal leaflet （Fior．3！）；aml pinmate with at trmbeil if the mid－rib ends in a tembril．as in Pea，rte．（f゙ig．Bin）．

Asam：the leaf is twor－pimmate if the primary divi－ sooss bre thems．lven pinnate（Fig．ifi）：thrice－pinmate if the sthelivision is earried through amother stage；and elecompuиml if still more divident．

It is intreruphially－piumate if．as in＇Tomato，there are small loathetsintur＞persed amonst the larger ones（rig．ist）．
（b）I＇Almati：if the leaflets are spread ont from the

A caspanmal laf is firther described by mentioning theramber an l form of the lionthis．（An example of the nomplate do－crption of a compmond loff is fiven at the bugining of the leaf－achedules later ons）．

Venation．

Stu Un，Hr－vetvin）：when the veins rim nearly parallel，either froma ind ion ent of the loaf，as in grasises（f：ig．39）or

Sfar－iefin：when the veir．4 ran in all dituctions，forming a n＂－work．such a loaf in
（la）pïnmat？！wh wimel：when there a diminet con－
 sade｜Fle 11）：य前

Outline．

1．Of leaves nearly alike at both ends．

Filfonsu：thembl－l ke．an in Aytaragus．

Fig． 33.

Fig．35．

Fig．34．

Fig． 36.

Fik． 39.
Fis． 10.

Fitg． 38.

Fig． 13.

F゙ig． 41.
Fig．te．

Linear : narrow compared with the length (Fig. 44).
Oblong: not more than three times as long as broad, and with sides inclined to be straight (Fig. 45).
Oval, or Elliptical: not more than twice as long as broad (Fig. 46).
Orbicular: round, or nearly so (Fig. 47).

2. Of leaves broadest below the middle.

Subulate: awl-shaped (Fig. 48).
Lanceolate: as in Fig. 49.
Ovate : as in Fig. 50.
Deltoid: about as broad as long, and rather triangular (Fig. 51).

3. Of leaves broadest above the middle.

Oblanceolate : the reverse of lanceolate (Fig. 52).
Spathulate: like the last, but more rounded at the top (Fig. 53).
Obovate : the reverse of ovate (Fig. 54).
Wedge-Sifaped, or Cuneate: like the last, but with the end more flattened and the margins nearly straight (Fig. 55).

In describing outlines, it will often be necessary to combine terms, as for example: linear-oblong, linearlanceolate, oblong-ovate, etc., as the case may require.

Margin.

Entire: not indented in any way (Fig. 56).
SERRATE: witl sharp teeth pointing forward like the teeth of a saw (Fig. $5 \overline{7}$).
Serrulate: very finely serrate (Fig. 58).
Dentate: with teeth pointing outward (Fig. 59).
Crenate: with teeth rounded at the point (Fig. 60).
A margin may also be doubly-serrate (Fig. 61), doublydentate, or doudly-crenate (Fig. 62), when the larger teeth are themselves serrate, or dentate, or crenate.
Sinuate: deeply wavy (Fig. 63).
Ciliate: with a fringe of hairs.
Revolute: with the edge turned back.
REPAND: like the edge of an expanded umbrella (Fig. 64).
Pinnatifid: when the edge of a pinnately-veined leaf is very deeply lobed (Fig. 65).
Br-pinnatifid: when the first lobes are themselres pinnatifid (Fig. 66).

Fig. 49
Fig. 50.

Figs. 52.

55.

Figs. 64. 56. 57. 58.59.
Fig. 65.

Figs. 60. 61. 62. 63

Fig. 66.

Pamatifid：when the edge of a palmately－veined leaf is very leerply lobel（Fig．67）．

Parinite：when the edice somewhat resembles the teeth of a comb．

ĽMB ite：pinnatifid，with a sery large love at the end（Fig．（f5）． Ruscivare：pinmatifid，with tho lobes pointing hackwarls． as in Dandelion（Fig．68）．
Phinite：falmatifid，with the lobes at the base two－cleft （Fis．1；9）．
Multifil：cut into many fine segments or lobes，as in Milfoil．

Apex．

Acumati：ruming out to a long slender point（Fig．70）． Actit ：making an achte angle（Fig．71）．

Obtuaf：making an obtuse angle ；hunt（Fig．7ツ）．
Theseite：as if the ent were cut off square（Fig．73）．
Rati－a：with，the earl slightly indented（Fig．74）．
EMalko心ate：with a distinct notch（Fig．75）．
Olu nebate：rather deeply notehed（Fig．76）．
Cr－punate：with a short but distinctly tapering point （ $\mathrm{Fi}_{\mathrm{r}} .7 \mathrm{~T}$ ）．
 chel of the mit－rit，（Fig．in）．

Aristate：tipped with a bristle．

Base．

ATTT：making un acute augle（Fig．7！）．
Terian，making an obtuse magle；blunt（Fig．46）．
Tupreve，with＝lons and slemer base（Fig．80）．
Corbate：rounlul and notohell（Fig．（；ii）．

－biotrire：whib hath luhes pintiug downwarils（Fig．8：3）．

Peltati：sher ita folbole is attacherl，not to the calpe，but

Revimita，with very lereb romblel lohen（Fig．8fi）．
CoA－plas：when the leaf is walle．and the loles are close

Fig．1；7．

Fig．©s．

54．Nu．N1．

Flı． 3 ．

Fig．si．

Flょ．Kか

Fig． 8 f．

Perfoliate: when the lobes of a sessile leaf grow together at the back of the stem, so that the stem seems to pass through the leaf (Fig. 87).
Connate, or Conyate-perfoliate: when two opposite sessile leaves grow together by their bases (Fig. 88).
Decurrent: when the lobes of a sessile leaf grow down the sides of the stem (Fig. 89).

Surface.

(The student should use his lens in determining the character of the surface of either stem or leaf.)
Smooth, or Glabrous: entirely without hairs.
Glaucous : covered with a bloom which may be rubbed off with the fingers, as in Cabbage.
Puxctate: showing transparent dots when held up to the light, as in St. John's Wort.
Scabrous : rough, but without hairs.
Pubescent : covered with fine soft short hairs.
Villous: with long soft hairs.
Tomextose: with matted hairs.
SEriceous: with silky hairs.
Hoary: with white down.
Hispid: with stiff hairs.
Spinous: with scattered spines.
Rugose: wrinkled.
Culiate: with hairs on the edge.

Colour.

The colour of the leaf must be described by an appropriate term, and if, as is often the case, the two surfaces differ in colour, this fact must be noted.

Texture.

Leaves differ very much in texture. Some are very thin and soft, others almost leathery, while others again are very thick and fleshy. In describing a leaf. judgment must be exercisel in selecting a suitable term.

Duration

Fugacious, or Caducous: falling off early in summer.
Deciduous: falling off in autumn, as in most trees and shrubs.
Persistent, or Evergreen: remaining at least a year on the plant.

Vernation, or mode of folding in the bud.
Conduplicate: doubled lengthwise. Shown in cross-section in Fig. 90.
Plicate: folded like a fan, as in Mallow (Fig. 91).
Convolute: rolled from one edge to the other (Fig. 92).

Figr. 87.

Fig. 88.

Fig. 8.

Fig. 90.

Fig 品

1Nond ti: : rollel inward from both edqes (Fig. 93). Rewollte: rolled backwarl from both elgers (Fig. 94).
Checosits: cuiled from the apex, as in Fems (Fig. (9))
Equitust : ach leaf douhbed lengthwise and astride of the next laaf within, as in Iris (Fig. 96).

INFLORESCENCE.

Mode.

Tonmanal: when the spparate flowers are on the ends of stems or branches.

Terminal Inflorescence is also known as Determisate, or Difinite. or Crmose, or Cexthetial, and it is
(a) Solitury: when a single flower terminates the stem, as in Tulip and Hepatica. In other words the tlowers io not form a cluster (Fis. 97).
(b) I Cyme: when the flowers are in a cluster of which the central flower (on the end of the main stem) is the earlust (F"ig. (1s), as in Chickweed and Swot-William. In Chickweed the crme is lowe. and in sweet. William it is drus.

1sinecial cast of Cymes arising from the axils of leaves are referred to below under the head of Mixed Intlorescone.)
Axhbal:s: when the separate flowers spring from the axils of lates or lirants.

Axillary Infloresence is aloo known as Latimal, or Ifibtehemiati: of Inherinite, or Ramemosi, or Bothyかよ., or Clestraret la, : and it is
(a) Colitary: whin the thowers are promued singly in the axp of orlinary latife (not hates) as in Morningfilors. ute. The flowers do not form a cluster.
(h) If furme: when the flowers form a rather long - lobler, fach thow twige in the axil of a bract, amd havhag a pelmel (hate stalk) of it nwn (Fise !?9).
(In f-inte of the Crocs family the bracts are absent.)
of A Aphlo: whon the reparate flowers are sensile. or twary mo. alome the man axis, as in Hollyhook, ete. 1re 1001
(4) 1 II, I: when the axis of the eluster is short, and the thewers henelinexly rather rlow ly frackel toknthr r , as in Clifer an Thile.efo.
On In Cidel: when the In licels of the flowers arw of the saine lakel, ant are from thesemepoint Fig. 101).
of) I Cargm: wh in the [wilnes arien from differnt pmine on the neem. bit the thowors reach the same luwe alowe IFIE. 1021.

The Raceme, Umbel, and Corymb may be compound, as shown in Figs. 103 (compound Raceme) and 104 (compound Uimbel).
(g) A Catkin: when the flowers (usually imperfect) arise from scale-like bracts along a slender axis. The Catkin is thus a special kind of spike (Fig. 105).
(h) A Spadix: when the flowers (often imperfect) are arranged in a spike-like cluster on a fleshy axis, as in Indian-Turnip (Figs. 106 and 107).

The Spadix is usually surrounded by a large showy bract called a spathe (Fig. 108).

Mixed: when asillary and terminal forms are combined. For example, in many Composites the inflorescence is terminal or cymose as to the heads themselves, while each head separately is always axillary or lateral as to the development of the florets of which it is made up. The chief varieties of mixed inflorescence are
(a) The Thyrse: a cluster like that of Lilac, in which the primary branches are lateral, and the secondary cymose.
(b) Verticillaster: a cluster like that of Catnip and Mint flowers generally, where two dense cymes form in the axils of opposite leaves, giving the appearance of a whorl.

In connection with inflorescence the following terms should be noticed :

Peduncle : the flower-stalk, or in the case of clusters the stalk supporting the whole cluster.

Pedicel : the separate stalk of each flower in a cluster.
Scape: a leafless flower-stalk rising from the ground or near it, as in Tulip and Dandelion.

Bract: a foliage-leaf, differing from the ordinary leaves of the plant in size, shape or colour, and found mader the flower or flower-cluster.

Bractlet : a secondary bract, as seen on the pellicels in Fig. 103.

Involucre: a circle of bracts, such as the outer leaves of Composite flowers like Dandelion, etc. (Fig. 109).

Involucel: a secondary or minor involucre or circle of bractlets, such as is commonly found under the small clusters of a compound umbel (Fig. 104).

Fig. 103.

Fic. 105. Figr. 106.
107.

Fig. 10s.

Fig. 10\%

THE FLOWER．

Parts：

Cath ：the outer sht of thower－leaves，nsatally green or green－ 1sh，as in Buttereup Pig．110．

The pieces of which the calyx is mate up are callect srptids．
Comblas：the secoml art of ther－leaves，immediately within the calys．amb wnally some other colow than wren （Fig．110）．

The preces of which the corolla is made up are called Pitals．

The－two－ets taken together are known th the Floral Einmolums，athd also as the Porianth，but the latter term is fenerally reatrintul to the flowers of Monocotymions， shoth as Lilies．Where the parts are very mollo alike． Sothe flowers of Wicostedons，stuth as Marsh－Marigold 1Fig．111，have only one net of tlomal empolenes，and this is then nearly ：alway the calyx．no matter what its colour is．
Stamis or Avhet．on M ：the third set of flower－leates．
 112）．These protuce the pollo n ．
Partion firvernm：the entral organ of the flower which leeren the send．It may le in wereral pieces．as in Butter－ dup，（Fin．11：），or in one piece as in Shepherd＇s Purse Fig． 1116
Thane last two set takent torether are the Exsential oryths of the tlowtr．They alone are directly concerme il In the prondertion of seme．The thoral envelopes protect the e－cll il meals．and attract insects whieh help to statribute the pollen．
Reabitarhe：than malarged top of the peduncle to which the pris of thas thewor are attached．
ぐ）afe，the following points：Flowers are
（is）Plekfer，if thes have both mamens and pistil， wheher daly a an ！cormlla are freatit or not．
 And ligerfoct fiowner ar．
｜1．Nomimat，If they inar stannus，lant her fistil．

 ne lie Willar I a 110.

 ate lere oft the same plant an in（incumixer and Tnlian（rli．

Flg． 110.

Fly． 111.

Fif． 11% 。

Fik． 113.

Fis．11．5．

Fis．114．
(5) Dioccious, when staminate and pistillate flowers are borne on different plants, as in Willow.
(c) Polygamous. when there is a mixture of perfect and imperfect flowers.
(d) Complete, if all four parts, viz: calyx, corolla, stamens, and pistil, are present.
(e) Incomplete, if any one or more of the four sets are wanting. Incomplete flowers are achlam!gleous when calyx and corolla are both wanting, as in Willow.
(f) Srmabtrical, if the different sets consist of the same number of pieces each, or of a multiple of the same number, for example: 4 sepals. 4 petals, 8 stamens. 4 carpels.
(g) Unsymmetrical, if there are not the same number of pieces (or a multiple of the same number) in each set.
(h) Regular: when the pieces of each set are alike in size and shape, as in Buttercup (Fig. 110).
(i) Irregular: when the pieces of each set are not alike in size and shape, as in Sweet Pea. Orchid, etc. (Fig. 117).

THE CALYX.

Cohesion (union of like parts).

Polysepalous: with the sepals entirely distinct from each other, so that they can be pulled off separately, as in Buttercup (Fig. 110).
G. mosepalous : when the sepals are all united together (Fig. 118).

The following terms are applicable to the gamosepalous calyx :
(a) The Tube: the lower united part (Fig. 118).
(b) The Limb: the upper separated lart (Fig. 118), made up of lobes or teeth. In many composite flowers the limb is pappose, consisting of fine bristles (Fig. 119).
(c) The Throat: the entrance to the calyx-tube.

Adhesion (union of unlike parts).
INFERIOR: when the calyx is plainly beneath the ovary and free from it, as in Buttercup, etc. (Fig. 112).
SUPERIOR: when the calyx-tul) grows fast to the outside of the orary and the limb rises abore it, as in Apple, etc. (Fig. 120).

Fig. 117.

Fig. 118.

Fig. 119.

Fig. 120.

Duration．

Frgaciots or Cameuts：falling off ats soon as the flower oprns，as in Bluotroot and Poplys．
Dacunots：falling off ubout the same time as the corollat and stamens，as in Buttereup．
Pen－ATENT：remaning after the corolla has fallen off，as in Hollyhock and swert－Brier（Fig．1こ1）．

As she sepals are only morlified leaf－forms，they may be further dearibed hy means of the terms already explained for leaves，such as lancolate，pubescent，ete．

THE COROLLA．

Cohesion．

Potypitumes：when the petals are entirely distinct from wach other，as in Buteroup（Fig．110）．In such petnls two parts may often be distinguished，a broad upper part， the limt，and a narrower lower part，the clau（Fig．122）．
Gamoretalous：when the petals are grown together in how－ ever slight a degree，so that the corollat may be pulled off in one piece，as in Convolvulus，etc．（Fig．123）．

The terms tuln，limb and throut are applicable to such corollac，as well as to the gamosepalous calyx．

I gamopralous corolla is further deseribed by stating its Form．It is
［a｜Tubular，when of nealy the same width from tor to lottom（Fig．121）．
（b）Fommi－shripmed，when the tube spreads out gradu－ ally into a wide borter（lig．12：3）．
（c）C＇ampamalate，or bell－shaped，when the tulne is short and wite，with a slichtly spreating horder（l＇ig．12：）．
（1）Sither－shagell，when the tube is long and narrow whot a spreading border at right augles to it（Fig．126）．
（e）liontate．when the tule is very short with a spread－ mbe kertir Fige 1：2．
if Ercoulate，or morn－anapeal，when the tule is swollen balaw aml contrantinl at the month（Fig．120）．
（L）Iathate．When distinctly two－lipped as in Catnip and Turtomand（12

A Lahlate corolla is further dewcrilued as
（1）Pingent，when the month is wille open（（Fig．129）．
121 Peromite．When the mouth is closed by an wherl pojention of the frower lip ealleat the palate （Fig．130）．
（b）Ligulate．Whan one silie of the tulme is prolonged into a ribiben or astat，as in Damiolon（Fis．119）．

Fig． 121.

Fig． 122.

Fig．123．

Fig．125．

Fis． 12 t

Fif． $12!3$.

Fig．1：1．

Fifs．12i．

Fif。1ご

Fig． $1: \ldots$ ．

The form of corolla pecnliar to plants of the Pulse Family is known as

Papilionaceous (Fig. 131): it consists of five petals; an upper large one (the standar d), two side ones (the ringss), and two lower ones which are united together to form the keel.
Finally, both gamopetalous and polypetalous corollas may have one or more petals prolonged into spurs at the base (Fig. 130).

Adhesion.

Hypograous: when inserted on the receptacle, under the ovary and fre from it (Fig. 132, c).
Perigynous: when inserted on the calyx (Fig. 133, c.)
Epigrious: when inserted on the top of the ovary (Fig. 134, c).
The corolla should be further described by giving the shape, colour and size of the petals, using the ordinary terms.

In describing the flowers of monocotyledons having a coloured perianth, use the following terms for cohesion:
Polyphyllous: when the pieces of the perianth are entirely separate.
Gamophyllous: when the pieces of the perianth are united.
For adhesion, use the terms superior and inferior, as explained above for the calyx.

\#Fstivation.

This term is applicable to both calyx and corolla, and means the mode in which these organs are folded in the bud. It is
(a) Valvate, if the edges of the parts meet without overlapping (Fig. 135), as in the calyx of Mallow.
(b) Convolute, if the members of a set overlap so that each has one edge covered and the other uncovered (Fig. 136), as in the corolla of Mallow:
(c) Imbricate, when the members of a set overlap so that at least one piece has both edges uncovered and at least one piece has both edges covered (Fig. 13T), as in Apple.
(d) Plicate or plaited, applied to the folding of gamopetalous corollas. The plaits may overlap in the convolute manner, as in Fig. 138; they are then said to be supervolute.

Fig. 131.

Fig. 132.

Fig. 133.

Fig. 134.

Fig. 135.

Fig. 137.

Fig. 136.

Fig. 138.

THE STAMENS OR ANDRECIUM.

Parts.

F'thanis: the lown stalk-like part; it supports the anther fig. 110 . Stamens ate
(a) fisertel, if the filaments are on long that the wablem- p ramble In and the peranth (Fig. 111).

(c) Acovile, if the filuments are abment (Fis. 112).
 hound! iwol aur or vells which contain the pollen 1Fice 1.\%.

Thai - 0 form of the anther is ustally more derply erenolal that the other; this is the fiuce the other bemg Ghe then k;

Auspherer is
(s) Infores:- if the face is toward the centre of the flaws.
(b) Fidrom, if turned ontwards.

Ithal him ut of the - Aliflur:

Thes audier tats ine atticheol to the tilament in there ways. It
(18) Ineat of it - lower emil reat on the top of the ALems it is $1 \mathrm{l.f}$.
(i) Ithat if lie hack of the antlow lis with its "hale fimpth suave fand sttachol to) than filaturnt (J'e 111
 a lowe an tha la k of the auther, कn that then latter

DiAk
The abser may aperin evoral wave to allow the pespe at sles ember Dies ation union or
(t) 1 melluilua, elaratios sothera il opmis from top
 mel

(0) ry pers when the pallm rase- through a

Flg. 139. Fis. 1.10.

Fig. 1/L.

Fig. 142.

Flı. 11:.

Fig. 114.

Fig. 14!.

[^0]Polles: the minute grains (alike in the same plant, but very different in different plants) contained in the anther-cells, commonly resembling a loose dust or powder (Fig. 140), but sometimes cohering in sticky masses (pollinia), as in Orchis (Fig. 149).

Pollen-grains are plant-cells having two coats, and enclosing a thickish liquid. Fig. 150 shows a single pollen-grain with its inner coat growing out in the form of a tube.

The pollen is the essential part of the stamen. The pupil should examine with a good microscope various kinds of pollen-grains, and make drawings of them.

Number.

If the stamens are not more than ten in number, the exact number should be stated. If more than ten, they are mumerous or indefinite, and this is indicated by the sign \propto in the proper column of the descriptive table.

Cohesion.

If the stamens are entirely separate from each other, their cohesion (or the absence of it) is described by prefixing to the ending -androus the Greek prefix corresponding to the number of stamens present, as follows:

1.	2.	3.	4.	5.	6.	7.
mon-	di-	tri-	tetr-	pent-	hex-	hept-
8.	9.	10.		more than 10.		
oct-	enne-	dec-		poly- androus.		

The cohesion is
Didranyous: if there are four stamens, two long and two short (Fig. 151).
Tetradynamous: if there are six stamens, four long and two short (Fig. 152).
Moxadelphots: when all the filaments are grown together, learing the anthers separate, as in Mallow (Fig. 153).
Diadeliphous: when the filaments are grown together in two sets, as in Pea (Fig. 154).
Triadelprous: when the filaments are grown together in three sets, ass in St. John's Wort (Fig. 15̄).
Polyadelphous: when the filaments are grown together in more than three sets.
Sexgexesious: when all the anther's are grown together, leaving the filaments separate, as in Dandelion (Fig. 15̄).

Adhesion.

Hrpogryous: when inserted on the receptacle under the orary (Fig. 132, s).
Perigynous: when inserted on the calyx (Fig. 133, s).

Fig 150.
Fig. 149.

Fig. 151.

Fig. 152.

Fig. 153.

Fig. 154.

Fig. 155.

Fig. 156.

Epaixors：when inserted on the ovary（Fig．131，s）．
Eipiotanuts：when inserted on the corolla（Fig．151）．
EPburano－：when inserted on the perianth（in Monomote－ dしゃに．
（ixadmaors：when inserted on the style，ats in Orehids （Fig．1：万斤）．

Situation．

It is impertant th note the position of the stamens with refer－ ence to the petals whin they are of the sane number as the latter．They may be
（a）Iltormute with the petals．
（b）Opposite the petals．

THE PISTIL OR GYNGCIUM．

Parts．

Carpess：the piecers，either distinct or combined together， which make up，the whole pistil．The pistil is
（a）Simple，if it consists of one carpel only，as in Pea （Fig．154）．
（b）Compound，if it consists of two or more carpels， wher arparate from each other（1pocarpous）as in Butwernp（Fis．1．51），or combined torether（symetrpolls） as in Fis．160．When several carpels are combinell，the munture is very commonly indicated hy seams or sutures on the ontside of the ovary．

Whether composel of one carpel or several combined． the pistil may have the following farts：
Oyaks ：the lower swollen part．contaning the ovile or oweles which develope into seeds（ Fig．160），The ovary
 wew ral－celled（Fig． 1600 ．In the later case the separat－ 14\＆wall，are called dissepimonts，and the cells are often at ohou of as laruli（sing．Iniulus）．
sryaf：the narow part above the ovary（Fig．160）．A com－ pmun 1_{1}－stal may have several styles，as in Fig． 16 is．
Stoma．She moist ronghith uper end of the style．This furt lafere from the rest of the pistil in laving no skin or epilermis EEis．16：3）．

（a）Cimputut，if it forms a kinob or limton on the end of the H ！sle（Fig．164）．
（H）Plumon．if of a feathery mperaraner as in grasses （Fis．16in）．
（c）Pitalioll．if leiflike and coloured，its in Iris（Fig． 15in）．

Fig．157．

Fil． 1% ．

Fig． 15% ．

Fif．1hi．

Fin．l \because ．

Fig． 1 ．．．

Fi 只 16%

Note that the essential parts of the pistil are the orary or seed-bearing part, and the stigma which receives the pollen.

The style is often wanting, and then the stigmat is sessile.

An exceptional pistil is found in gymmospermous plants like the Pine. Here the orules are not enclosed, but are attached to the inner face of an open leaf or scale, the scales forming a cone (Figs. 167, 168, 169).

Cohesion.

Apocarpous: when the carpels are not united together in any way (Fig. 15?).
Srxcarpous: when the carpels are grown together in any degree (Fig. 160). They may be united merely at the base of the ovary, or to the top of the style.

Adhesion.

SUPERIOR: when entirely free from the calyx (Fig. 13.2, f), as in Buttercup, Shepherd's Purse, etc.
Inferior: when surrounded by the calyx-tube which grows fast to it (Fig. 134, f), as in Apple and Fuchsia.

THE OVULE.

Definition.

Orules are the bodies which, after fertilization by the pollen, develope into seeds.

Placentation.

By this term is meant the arrangement of the placentas, or projections in the interior of the ovary upon which the orules grow. Placentation is
(a) Marginal, in a simple pistil like that, of Pea, the placenta being on one seam or suture (Fig. 158).
(b) Axile or Central, when the pistil is compound, and the dissepiments meet in the centre of the ovary (Fig. 160.)
(c) Parietal, when the compound ovary is one-celled and the ovules are borne on the walls (Fig. 161).
(d) Free Central, when the ovary is one-celled, and the orules are borne on a column which rises from the bottom of the cell (Figs. 170, 171).

Parts of the Ovule.

Furiculus: the stalk by which the orule is attached to the placenta (Fig. 173, f). If this stalk is absent the orule is sessile.
Primine: the outer coat of the orvule (Fig. 172, ai).
Secundine: the inner coat (Fig. 172, $i i$).
Micropyle: the minute opening through the two coats (Fig. $172, m)$.

Fig. $1 ; 7$.

Figs. 16s, 169.

Figs. 1:1. 1 II.

Fig. 172.

Nechers: the holy of the ovule within the eoats (Fig. 1i?, k).
Emmen-sid : the large cell in the mueleus in which the young plant is developed (Fig. 1i-2, em).
Chatazi: the portion where the two coats are blembet rogether (Fis. 1i-2. A .

Kinds of Ovule.

Orthermenots: when the orule is erect, and the microply is as far as possible from the funiculus or point of attachme:1t (Fis. 1-9).
A, atmerots: when the ovule is completely invernen or bent upon itwelf so as to bring the microprle close to the point of attachment (Fig. 173). In this rase the fmiculns beromes furel with the primine on one silfe, forming the raphe (Fig. 173, r).

Fertilization.

Ovules are converted into seeds by the action of pollen uron them. Pollen grains fall upon the stigma which is moist and retains them. The grains begin to grow as shown in Fig. 150, the inner coat being protruded as a slender tube which makes its way down through the style into the ovary, and then throuth the mieroply of the ovale. timally attachine it.elf to the surface of the cmiryo-sac, and carrying the contents of the pollen-grain with it. Presently growth bergins inside the embro-sac, amd som the embryo is forment. It is the presemen of the embryo which marks the distinction between an ovole and aseed.

In mont cases the ovule is fertilized by fullen brourht from another thewer of the same sinecies (rros-sfertilization, feranse very eommonly the pollen of it: own flow r is really either too some or tor late to be of user that is, the fmilt an ant the stigma in the same flower do not commonly mathre at the same sime. Plants are

Eintomophitous. whern they itepend uron insecte to sarry the pollen from flower to flower. and

Anomophituss, when this service is performed hy the wind.

Fig. 173.

Fig. 171.

THE FRUIT.

Definition.

The frut is the ripenal pistil together whit any onher part, such as the belux or recuptacle, which may in ather rent to 1:. If there are ur, wh alherent parta the frout is a tran fruf. copanting whelly of her ripuned cwary with
 as in Alt, strawherry and Row.

The essential parts of the fruit are
(a) The Secd, or matured ovule, and
(b) The Pericarp, or matured ovary, within which the seeds are contained.

The Pericarp is in three layers:
(a) The Epicary (or Exocarp), the outer layer.
(b) The Mesocarp (or Sarcocarp), the middle layer.
(c) The Endocarp, the inner layer.

Kinds of Fruit.

A.-Dry Fruits: those whose pericarp remains thin, and becomes dry and hard at maturity. Such fruits are
(1) Dehiscent, when the pericarp opens so as to allow the seeds to escape.
(2) Indehiscent, when the pericarp does not so open.

Dry Dehiscent Fruits.

(a) Follicle, a fruit of a single carpel, which opens down one edge only, as in Marsh-Marigold and Peony (Fig. 175).
(b) Legume, a fruit of a single carpel, which opens down both edges (dorsal or outer and ventral or inner sutures), as in Pea and Bean (Fig. 176).

The Loment is a special form of legume. It is made up of a number of one-seeded joints which separate from each other when ripe ; each joint, as a rule, remaining closed (Fig. 177).
(c) Silique, a syncarpous fruit of two carpels divided by a thin partition, from which the carpels fall away when ripe, leaving the placentas and seeds around the edge of the partition (Fig. 178).
(d) Silicle, a fruit of the same construction as the silique, and differing only in shape; the silique being considerably longer than broad, as in Stock (Fig. 178): and the silicle being nearly or quite as broad as long. as in Shepherd's Purse (Figs. 179, 180).
(e) Pyxis, a fruit which opens by a horizontal seam. so that the top comes off like a lid, as in Purslane (Fig. 181).
(f) Capsule, a syncarpous fruit which normally splits at maturity, either wholly or partially, into as many pieces as there are carpels.

The Dehiscence of the Capsule is
Septicidal: when the splitting takes place in the line of the dissepiments (Fig. 182).

Fig. 176.

Fig. 178.

Fig. 179.

Fig. 177.

Fig. 180.

Fig. 181.

Fie. 182.

Lat hathat．：when the splitting takes pare in the mid－ dhe of the wall of each carpel，that is．along the llorsal sumures（Fing 1s3）．
s：mplemand：when the walls split away from the parti－ tom，leavinz the later standing（F゙im．1st）．
Chatimenthe：when the top of the pricarp romes off like ald（Fı．1～1）．
By pones：when the seeds watape thromgh small open－ ink hata the top of the capsule，ats in loppy．

Dry Indehiscent Fruits．

（a）A．forn a dry iulehiscont mesereled fruit，having the perwap fre from the sed．ats in Butternup，（Figs． 14．5．1N斤，and all Compositer．
（b）Caryopsis or Grain，a dry imblhiscent one－sected fruit，having the pericarp）allherent to the swed．as in the Oat（Fis． $1 \begin{gathered}\text {－} \\ \text { ），aml（irasees grmerally．}\end{gathered}$
（1）Siul，a dry indehiseent one－semenl fruit with a hard thick pericopp，and nanally the protuct of a symarpons pistil．in whech ath the ecols and seeds but one have dis－ appeared during growth．

The mut is often accompanied by a Cupule or harloned involucre，ats in the Arorn（Fife 188）， Bench－mut aml Itazel－mut．
（d）Lfirilc．like an Achene，but with a very thin loose

（a）Solhiznorarp，a dry indehiscout two－several－sended fruit，which hamak up at maturity into our－sismend piemes （carpel－1，wh of wheh，howerer，remuins whsed，as in Mallow（Fig．190），and all 「mbelliforons pants（Fig． 191 ）．

 －wo pifun it maturity，and so is a true erhizorarp．

（a）Jompe or Niomefruit，a tlenly fromt having a very hat I ent itap（tike pmbinen），which enclones the seed －It a rembation．a tha ham u－nally juicy mesorarp，and fo biminge shin or equcarp，the the llam，Cherry；

（h）f ： F ！a thats frugt，having a soft ant juiry

Then in ingois a flerial kinl of bery kurwin as a Hapmer．l／um

Fig．184．

15．1914．

Fig． 191.

Fig． 195.
(c) Gourl or Pepo, a modified berry, laving a hard rind, as in Pumpkin, Syuash, etc.
(d) Pome, a fleshy pseudocarp, the product of a syucarpous pistil, in which the fleshy layer consists chiefly of an enlarged calyx-tube, as in Pear and Apple (Fig. 1915).
(e) Aggreyated Fruit, a clustered and coherent mass of carpels, the product of a single flower, as in Raspberry (Fig. 197).
(f) Nultiple Fruit, a clustered and coherent mass of carpels, each carpel being the product of a separate flower, as in Pine-apple. The cone of the Pine may be regarded as a clry multiple fruit (Fig. 198).
(g) Accessury Fruit, one in which the most conspicuous part is neither a part of the pistil nor combined with it, as in Strawberry, where the conspictions part is only the enlarged and brightly coloured receptacle, the true fruit consisting of the achenes which dot its surface (Fig. 199), and in Sweet Brier, where the fleshy outer part is a calyx-tube lined with a hollow receptacle which bears the true fruit (achenes) on its inner surface (Fig. 200).

THE SEED.

Definition.

The seed is the mature ovule, and is specially characterized by the presence of the embryo or young plantlet.

Parts

Integument : formed by the development of the coats of the orule, and consisting of an outer and an inner layer.
(a) Testa, the outer layer (Fig. 206).
(b) Tegmen, the inner layer (Fig. 20if).

In connection with the integument note
(1) The Funiculus, already defined when describing the orule.
(2) The Hilum, or scar where the funiculus was attached.
(3) The Micropyle, a minute opening through the integument.
Also the following special appendages:
(1) Aril, an outgrowth of the funiculus or placenta, forming a more or less fleshy covering outside the true integument of certain seeds. as in the Climbing BitterSweet and the White Water Lily (Fig. 201).

Fig. 194.

Fig. 197.

Fig. 198.

Fig. 199.

Fig. $=00$.

Fig. 201.
（2）Coma，is tuft of hairs athached to the testa in some seeds，as in Willow－herb and Milk－weed（Fig．202）．

The comamast not be confoumled with the mapmas of composite llowers ；the latter is attached to the fruit．
（3）W＇in！！，a thin expansion of the testa（Fig．20：3）． But in the seds of the Pine the wing splits off from the scole upon which the seed grows（Fig．168）．
Nuchats：the boly of the seed within the intermment．con－ taining
（a）Eimbryo，the young plantlet as found in the seed． This is made up of
（1）Roulicle，the rudimentary stem（Fig．201）．
（2）Cotyledons，or Scel－leures，the first leaves，often thick and fle chy，ats in the Bean（Fig．205），but some－ times thin and leaf－like．
（3）Ilumule．the bud at the top of the radicle（Fig． 201）．
（b）Allumm or Einlorperm．when present ：nourishing matter storeal up outside the embryo as shown in the shated portion of Fig．206．the light part in the centre being the embrso．

Kind．

 Mosenetratancots：having only one cotyledon（Figs． 210, $211.21 \because$ ）．
Pongcotybemsous：having several cotyledons（Fig．206）． This is rare．
Acorvielxnous：havine no cotyledons（rare）．
Alsmm心n＇s：having albumen or endosimem in ablition to the embryo（Firs．201F，210）．
The following torms apply to the folling of the garts of the etelirso in deotylendonous secels：
（b）Arrumbent．when the radicle is turned so as to toach the olges of the cotyledons（Fig．el：3）．
（i．）Inoumbuts．when the radicle is turned so as to lis aganios the lack of one cotyledon（Fig．214）．
（0）Cometuplir it．the same as incumbnt with the adl thon thes the enteleelons are curved so ats 10 partly infoll the ralicle（lig．215）．

Nature and Use of the Parts of the Flower．

All the purts of the flower are lanf－forms fityllomed，differinge
from or linars blinge－leave fuctuse thir functions are diffirmt．

Fif． 202.

Fir． 203.
cotyledun

Fíg．2川1．
cotyleclun

Fig． 210.

Fig． 211.

Fig． 212.

Fig． 213.

Fig． 214.

Figk． 215.

The sepals differ less in appearance from ordinary leaves than any of the other parts. The petals resemble foliage-leaves in shape, but are mostly bright-coloured instead of green, and they are often sweet-scented. Sepals and petals together are protective organs, and they also serve to attract insects.

Stamens are leaf-forms in which the filament answers to the petiole, and the anther to the blade, as shown in Fig. 216.

Carpels are leaf-forms folded lengthwise more or less completely, as shown in Fig. 217.

Stamens and carpels are essential organs, and are directly concerned in the production of seed.

FLORAL DIAGRAMS.

By a floral diagram is meant the plan of a flower as exlibited in a cross-section. It should show the number and relative position of all the floral organs. The position of sepals, petals, and stamens is commonly easy to fix, but the true position of the carpels presents a little more difficulty. The ovary must be cut across with a sharp knife while some other organ (say the calyx) is still in position, and the relative situation of the carpels must then be carefully observed. The æstivation of calyx and corolla may also be shown to advantage in a floral diagram.

A number of examples of these diagrams are given in the margin, and the pupil should make the construction of such diagrams a regular part of his work.

Fig. 218 is a diagram of a Mint flower.
Fig. 219 " " Leguminous flower.
Fig. $2 \supseteq 0$ " " " Marsh Marigold.
Fig. 2.21 " " Melon (staminate).
Fig. 222 " " " Melon (pistillate).
Fig. 223 " " Composite flower.
Fig. 224 " " " Iris.
Fig. \unrhd_{2} อ " " " Grass flower.

Fig. 216.

Fig. 21 .

Fig. :2ッ0.

Fig. 222.

Fig. 221.

Fig. 223.

Fig. 224.

Fig. $2 \geq 5$.

LONGITUDINAL SECTIONS.

The pupil should make a constant practice of splittin! flowers throush the centre (best done from below upwards with a very sharp knife). and drawing the section thas presented. such a drawing is exceedingly useful in connection with the floral diarram, as still further exhibiting the relation of the parts to each other.

Fir. 22f is a good example. Here the relations of the parts can ber seen at a glance.

COMPOSITE FLOWERS.

A full description of a Composite flower involves some particulars of a special kind; for convenience, therefore, the varous terms in use are collerted together here.

Inflorescence.

Under this heading describe the arrangement of the heads, using the terms already explained-solitary, cymose, racemose, corymbose, spiked, ete.

Head.

The summblate of tlorets (few or many) on a common receptarle.

Parts of the Head.

Flomets: the small single flowers which in the rggregate in ake up, the head. These are
(a) Ligulate, when the corolla is prolonged on one side into a that strap-shapenl piece (Fig. 2eて).
(b) Tumblar, when the corolla is not thas prolonged, h, is regularly deweloped all roul (Fig. 2.2.).
RafFiture: the place upon which the florets stand.
Isomeder.: the eirele or circles of bracts which surround the limal.

Kinds of Head.

Litoriftoras: when all the florets of the heal are lignlate, af in Lan lelion (F'is. 229).
Tenetifhobas: whon all the floreta are not ligulate; and su/h halsare
(a) Discrid, if at the flomets are tubular as in Thistle.
(b) Radiate, if the tionets round the margin of the head ray-florets ere ligulate. while the central ones (disk-flonts) are mbular, as in Suntower (Fig. 230).

Fig. 22.

Fig. 227.

Fig. 228

Fig. 229.

Ray-Florets (always without stamens).
Number: 5, 10, $20, \propto$, etc.
Kıv:
(a) Pistillate, if the pistil is present.
(b) Neutral, if the pistil is absent.

Suape: linear, oblong, ovate, etc.
Colour: white, yellow, etc.
Pappus (if present) :
(a) Simple, if in a single row of similar pieces.
(b) Double, if there is an outer row of shorter pieces.
(c) Capillary, of fine hair-like pieces.
(d) Plumose, of branching hairs or bristles, as in Thistle.
(e) Barbed, if the hairs have teeth pointing backward, as in Dandelion.
(f) Chaffy, of a few teeth or scales (Fig. 231).

Achene:

(a) Compressed, when somewhat flattened.
(b) Terete, cylindrical (the cross-section round).
(c) Anglerl, as in Fig. 232.
(d) Striate, marked with fine vertical lines.

Disk-Florets.

Number: $5,10,20, \propto$, etc.
Kind: perfect, staminate, etc.
Colour : yellow, brown, etc.
Pappus: as for the ray-florets.
Achene: as for the ray-florets.

Receptacle.

Form: flat, concare, convex, conical, etc.

Surface:

(a) Chaff y, if there are chaff-like scales or bristles growing on the receptacle among the florets (Fig. 230), as in Sunflower.
(b) Snooth, or naked, if there are no such scales or bristles, as in Dandelion.

Involucre.

Form:
(a) Ovoid, egg-shaped, the broader part below, as in Thistle.
(b) Cylindrical, nearly the same width all the way up (Fig. 233).
(c) Saucer-shaped, very flat and shallow.
(d) Cup-shaped, Bell-shaped, etc.

Fig. 231.

Fig. 232.

Fig. 233.

Bracts (or Scales) of Involucre.

Nimamar of Rows: state the exact number, unless very num rous.

Arranifemedt of sidales:
(a) Imbrioutal. in several rows and overdapping (Fig. 2: : : \%)
b) Riflected, wrned backward, as in Dandelion (Fig. $23(1)$.
(c) It 1 prowsed, closely pressed together.
(1) Sifucroose, with the points widely spreading (Fig. 2:3:3).

Texture:
(a) II rinclomes; green and leaf-like.
(b) Sactions. thin and membranaceons.

Smape: "he the orkinary leaf terms.

GRASSES.

Themplant-al-o remuire several surcial terms for their comptete description. I few of the most necessary are given here.

Inflorescence.

In nemply all cion the intlorescence is a pemicte, that is, an irreflaty branched raceme, and the panicle is cither lanee and open, as in Madow-nrass (Fig. 2:3ヶ), or dense and worely packerl as in Tomothy and Foxtail.
-IKREET: the small aprate clusters of flowers which
 Toure is hat om, tlowr r in the spikelet.
OteR lifioth : the pair of bracts at the baw of the spikelet (Fire : OHO Not their hape and relative size.
 en lowes - b partichlar Hower (Fig. 242).

 onesulumatly forme in frose flowers.

Culm.

 an I the ratente anl wher characters can be describel liy torma alomily explaided.

L.eaf.

Sueath: the ower portion of the leaf surrounding the stem, and split on the side array from the blade (Fig. 238).
Ligule: a thin upward projection from the top of the sheath. Fruit.

This always a caryonsis or grain.

TYPES OF GRASSES.

The following selection of Grasses will be found useful for examination, as illustrating most of the variations in the structure of these plants.

1. Timothy.

Note the close inflorescence. Separate one of the component pieces which will probably resemble Fig. 234. If fully opened out it will resemble Fig. 235. Carefully dissect and describe, making a floral diagram. The spikelet here consists of a single flower.

2. Red-Top.

Note the open panicle (Fig. 236). Detach and dissect a spikelet (Fig. 237), which in this plant also consists of a single flower. Observe the difference in the size of the inner bracts, and the three nerves on the larger one.

3. Meadow-Grass.

The inflorescence is here an open greenish panicle, but each spikelet (Fig. 239) is compressed laterally and contains from three to five flowers. Fig. 240 shows a single flower. Note the delicate whitish margin of the lower palet, and the thin texture of the upper one; also the two teeth at the apex of the latter, and the five nerves on the former.

t. Chess.

Here the spikelets (Fig. 241) are on long, slender, nodding pedicels, and each contains from eight to ten flowers. The glumes are different in size. Dissect out a single flower (Fig. 242) and note the awn on the lower palet. The upper palet at length grows fast to the groove of the obloug grain.

5. Couch-Grass.

In this grass the spikelets are sessile on opposite sides of a zig-zag peduncle, so that the whole forms a sort of spike. Each spikelet is four to eight-flowered, and there is but one at each joint of the peduncle, the side of the spikelet being against the stalk. Note the running root-stocks, which cause the grass to be a muisance difficult to get rid of.

Fig. 238.

Fig. 23:

Fig. 240.

Fig. 241. Fig. 242.

6. Old-Witch Grass.

This srane is to ln fombl werywhere on somly soil and in
 patiche very lates compomme and loose, the penticels to ing evterm ly wemer. Of the two glumes one is mach lateer than the ofher. U'nkes you are careful you will resard the -pikelets ats 1 -tlowered; dhempe, however. -hat in adition to the one manifertly perfert thower the ic is an oftor pllath tone. This palet (which is very much Whe the larger shme is at rulimentary or ahortive seromed thower, amb the spikedet may he dencribed as $1 \frac{1}{8}$-tlowered.

i. Barnyard Grass.

This is a stom, conre plamt. common in manmed soil. It is fram ote to forr fent in height, ame hanche from the loser. The phihelets form dellis spikes, amd these are cruwded in a deman panicle which is rough with stiff hain- The structure of the spikelots is much the same as in 0hl W-W. (irass. lut the pate of the nentral flower in pinted with a rough atwo bristle.

5. Foxtail.

In the common Foxtan the inflorescence is apparently a dense, bratls. "ylmimeal spike. In reality. however. it is a st kol panithe the spikelets being much the same as in Bamand lima-, but their fudicels are prolonged heyond lame int awn-lki briotles. In this phant the bristles are in dutara ame are bathe upwards. The spitios are terin!!-! llome in colsure.

Vir. 213.

THE PLANT-BODY GENERALLY,

And the Functions of its Parts.

Th. highar plants, such as phatherocams. are found to be mathenf of for dise net kimle of members, as follows:
 previausls leatabla atul iertant arial forms. together
 livale orcaniors The root differs from the stem in W.an 1 imporitad r=rects:

If is tomel cithe if mase of havelemed cells consti-
 yombe the ae it mate los way through the soil, and it is mblef Ifore the fandeas fati as it is worn awfy on the puralde
(b) The growth of the rase in lengtio in acromplished ly adlitione to in atmomty, inmenliately lelum the root-cay
(c) Roots originate endoyenously, that is to say; they do not develope from the exterior or surface of the plantbody. but always begin in the depper tissues, and eventually break their waý through the overlying layers till they reach the surface.
(d) They do not, as a rule, produce leaves or buds.
(e) They tend, as a rule, to grow downwards into the soil, avoiding the light.
(f) The minute structure of the root is less perfect in its development than that of the stem.

The functions of the root are
(a) To fix the plant in its place.
(b) To act as an absorbent of the mutritions liquida contained in the soil.
(c) In special cases to serve as a storehouse of fool for the plant.
B.-Caulome: including the stem and all its equivalents, such as branches, runners, tendrils, thorns, ete., as already described.

In contrast to the root, the stem is always precented by a bucl.

A bud is an early stage of the development of a stem or branch, and is found on dissection to consist of many rudimentary leaves crowded on a short axis. This axis subsequently developes throughout its lenyth, forming the internodes (Fig. 244), thus differing widely from the root, which grows by additions to its extremity.

Winter-buds are covered with scaly hracts called ludscales, which separate and fall away soon after the development of the bud begins in the spring.

Euds are

(a) Terminal, when at the ends of stems and branches.
(b) Axillary, when produced in the axils (Fig. 244) of

Fig. 24. leaves.
(c) Aclventitious, when produced in some irregular manner.
(d) Accessory, when produced as extra or additional buds beside the regular axillary bud, so that there are really several buds in the axil.

The functions of the caulome are
(a) To bear leaves and flowers.
(b) To serve as a medium for the conveyance of the nourishing liquids absorbed by the root.
(i) In crrtain rasts to spre as a storehonse for phatfook.
(.) Pushoom:: imeluting the learns and all their equivalents,
 as alreatly doseribed.

The phyllome is alwitys devoloped laterally on a - :tulone.

Foliagr-leavers (at contrasted with flower-leaves) are fubrally green, owing to the preancy of a sulstance callod rhturopllyll (fomm also in all other green parts). A section throneh the boily of a leaf is shown in Fig. 245 , the shatel portions representing the cells which contain sillorophyll.

The chiof function of folitue-leaves is to assimilate the foul-materials derived from the soil aml the air, thas comberting them into forms (commonly stareh) whichean he uad in alvancing the plant's growth. Sunlight and chlorohyyll are essential to the process of assimilation.

Transpiration. Water-viapour is given off throush the leares. hy the aurney of mimute openings (chiefly on the muder surface) known as stomuta (singular stoma). ()hes of ther meatly magnitied is shown in Figr. 241 . The- stomatit :ommunieate with air-spaces among the lonarly-pacheal cells in the body of the leaf. It may often lae obarrand in hot bright weather that the leaves of plants dronp if "xpmed to the sinn; this is becanse the loss of water through the luares is greater than the sumply thronelh the roots. It night, howreer, the stomatitclose, and fhe balance beins reatored the platut recovers.

The functions of thower-leaves have alreaty bern rofirred :o.

L-The thws: including all the outgrowths from the surface (1) "pmbrmis, wherther of stam, leaf or root, such ath hais, horalion, rocol-hairs, prickless, etc.
of ${ }^{\text {ol }}$ the trichome structures the ront-hatirs which orem hbinlantly on the gomme roots of most plants, are thee 1 , important. "They consist of sinele loner cetls, finl ther fintion is th increane the ahorhing surface of the 1 ont for which servies they are peroliarly fitual hy Phe than and dolente nature of their walls.

Kata on furts above fromml usually ronsist of a row of wils phental ond to fad (Fisen 25. 215). Often they are hram hal. .w in the leaf-hams of the Mullein.

Filandulur lusirs ferrate a limided the cell which oecuplit lhe extmouty of the har. The sticky surfaces of eprtan flanta are yrolurel in this way

Fig. 215.

Fis. 2.6.

Fig. :2if

F゙K : ! R

Stinging hairs secrete a poisonous liquid. The point of a hair of this kind on piercing the skin breaks off, leaving the poison in the wound.

Prickles (Fig. 249) differ from thorns in being outgrowths of the bark thorns arise from the wood.

GROWTH.

The growth of a plant consists in the multiplicatlon of its cells, and the subsequent enlargement of the latter by the addition of new matter. The development of the cell frequently involves, also, a change of form.

Germination.

By this term is meant the commencement of the process of growth from the seed. Under suitable conditions of temperature and moisture the embryo, which is dormant in the dry seed, wakens into activity and begins to develope. The details of the process vary somewhat according to the structure of the seed. If the coty-ledons are thin and leaf-like, as in Maple for example, the radicle generally grows throughont its length so as to raise them above the soil, where they at once expand and become the first green leares of the new plant, a root being at the same time developed from the lower end of the radicle. But if the cotyledons are thick and fleshy; containing much nourishment, then usually a bud called the plumule, which contains the elements of additional bits of stem, will be a prominent feature in the embryo, and in this case the cotyledon or cotyledons not infrequently remain under ground, as in the pea and the acorn, and so do not perform the office of foliage-leaves, but merely supply the newly developing parts with nourishment. In albuminous seeds, the endosperm is the chief source from which the germinating embryo derives its support.

Vitality of Seeds

There is a considerable difference in regard to the length of time during which seeds retain their vitality. Some, such as those of Elm and Poplar, will germinate only if they have been kept fresh and not permitted to dry up, while others, such as those of Indian Corn and Wheat, and in general those containing a copionts store of starch, may be kept for a rery long time without losing their germinating power.

Food of Plants.

Growth implies assimilation of fool. The elements of plantfood are ascertained hy making a chemical analysis of the plant itself. Water forms a very considerable percentage of the whole whirht, but is prescmt to a greater extent in some portions of the plant bouly than in others. Fleshy roots, for example. may contath as much as 90 per cent, while dry seeds contain only ahont 12 per cent.

The water may be expelled hy careful drying, and if What is then left is bumst, what is called the organic part of tho plant disappears, and the imor!amic part (the ash) remains behind. The orsanic part consists manly of the elements carbon. lyidroren. oxymen. nitrogen, amd sulphur ; while the inorsanic patt contans very smatl quantities of pho-phoms. iron, calcimm, magnesium. and potassimm. Of all these constituents of the dr? plant carbon is the most abundant, amounting to about half the entire woight.

Sources of Plant-food.

All the materials just mentioned are obtatined from the air, the water, aut the soil. There is constantly present in the air carbonic acid gas-a compouml of carbon amd oxycen. 'This is aboorbed hy the leaves of lami-plants, and (beines solnhle) from the water in whah they live, by immersed jlants. After absorpion the gas is decomposed and the carbon appropriated. The oxygril rou ruired by the plant is derived chefly from the carbonic acill gas and from water. Ifylrogen is olitained ehidfly byy the deromposition of water, atm nitrogen from the nierates and ammonia salts in the soil. Sulplur, also, is obtained fiom salts ocemring in the soil, and so too, of courne, are all the inorganic cements

Respiration.

I'lants, like animals, are contimally inhaling oxygen ; indeed, as with noimaly oxycen is r-sontinl to ther existener.
 'quattis of nvi ru. The gas whan inhuled is combined
 of ox lation is alwass accompanital hy ivolution of heat. This is will illintratel in the procest of inaltils, where Iampliarieg is lang-l tomeler. A soon as the grain berins in of rotit oxyenis is ruphlly abisorlewl, allil a very decided rise of thoparature taho flace.

Assimilation.

This is the proces by which the carbon obtained from carbon dioxide is combined with the elements of water to form starch.

Metastasis.

This is the process by which the starch, resulting from assimilation, is converted into soluble forms and removed from the cells where it was produced to other portions of the plant where it is needed for purposes of growth, or, if there is an excess, to storehouses such as roots, bulls, etc., for future use.

Circumstances Affecting Growth.

Temperature. - Growth may be stopped altogether by either too low or too high a temperatere, and between the limits within which any given plant is found to be capable of growth there will be found a particular degree of temperature more favourable to growth than any other, either above it or below it. This may be called the optimum. The effect of temperature differs considerably according to the amount of water present in the part affected, dry seeds, for instance, resisting a temperature, either high or low, to which soaked seeds would at once succumb.
Light.-Light is essential to assimilation, but seeds and tubers, as well as many of the lower plants which are without chlorophyll, such as Mushrooms, will grow in the absence of light as long as the stock of assimilated material upon which they draw is not exhansted. The growth which takes place in the cambium-layer of dicotyledons and in roots is another example of increase in size in the absence of light. The assimilated material in all these cases, however, has been previonsly elaborated elsewhere.

Light is found to exercise a retarding influence upon growth. A plant, for instance, in a window will bend towards the light, because the cells on the side mearest the window grow more slowly than those which are shaded. thus causing curvature of the stem and petioles.
Gravitation.-Gravitation also affects growth, as we know that the stem and root, or axis of the plant, are nsually in the line of the radius of the earth at the place of growth. If a seedling plantlet be laid with the stem and

Minists) uf Cisucasbon, Ontardu Historical Collection root horizontal, the stem will curve upward and the root downward in the endeavour to restore the vertical direction.

THE HERBARIUM.

Those who are anxions to make the most of their hotanical stmdes will find it of great advantage to gather and preerve specimens for reference. A few hints. therefore, on this suljeet will not be out of phace. It will, of course. be an object to collectors to have their specimems oxhibit as many of their natural characters as powihle, so that, although dried and pressed, there will be no ditticulty in recomizis: them; and to this end neatness and care are the first requisites.

Collecting.

speciments should be collected when the phants ate in flower. and, if possible, on a dry days as the flowers are then in bethor combition than if wat. If the phant is small, the whole of it, root amd all. shouh be taken ul' if too large to be treated in this way, a flower and one or two of the learwis (radical ats well ats cauline, if these be different) may be gathered.

Drying.

As many of your -pecimens will he collected at a distance from home a close tin hox. which may be shung over the shoulder by a strap, should be provided. in which the plam- maty be kept fresh, particularly if a few drops of water loe -prinkled upon them. Perhaps a better way, however, is to carry a portfolio of convenient sizesay 1.5 inchen by 10 inches-male of two pieces of stout pastrbatarl or thin deal. and havine a coupte of straps with bucklue for fastening it together. Between the covers shoubl the phaced sheerts of blotting-paper or coarse wrapine-paper, as many as will allow the swewens to be ap parated bey at luat live or six shemts. The advantage of the portfolio in, that the phants may he placed thetwon the shents of hottine-paper, and subjeeted to firentime ly means of the straps as soon as they are Lathered. If carried in a box, they shomh be transferrent in papre an somb an poscible. Then apecimems -houll he. spend out woth gerat care, and then ormppling and doibling of leaver Luturdent againat. The only way in prevent mondiling is to phace plenty of paper betwern the planta, aud chem!e the fithre froquently: the fretheney deyen ling on the amome of moisture containel in the trealmenta From tmplays to a formight will be foml altieent for the thorol-h drying of almont auy blant ymajallatromeet with. Hatving made a pile of -permon* whel famer tetween them, as directent, they should lee then on a cabile or tlone. wored by a tlat |
board, and subjected to pressure by placing wrights on the top; twenty bricks or so will answer rery well.

It is of great importance that the sheet of puper within which the plant is first placed should not be interfered with during the drying process. The directions as to frequent changes refer only to the sheets not immediately in contact with the plant. These, to ensure the best results, should be changed once a day for the first few days; less frequently thereafter. Gray recommends ironing with hot irons in order to remove more rapidly the moisture from fleshy leaves, and in any case to warm the driers in the sun before putting them between the plants.

Mounting.

When the specimens are thoronghly dry, the next thing is to mount them. and for this purpose you will require sheets of strong white paper; a good quality of unruled foolscap or cheap drawing paper will be suitable. The most convenient way of attaching the specimen to the paper is to take a sheet of the sane size as your paper, lay the specimen carefully in the centre, wrong side up, and gum it thoroughly with a very soft brush. Then take the paper to which the plant is to be attached, and lay it carefully on the specimen. You can then lift paper and specimen together, and, by pressing lightly with a soft cloth, ensure complete adhesion. To render plants with stout stems additionally secure, make a slit with a penknife through the paper immediately underneath the stem, then pass a narrow band of paper round the stem. and thrust both ends of the band through the slit. The ends may then be gummed to the back of the sheet.

Sorting and Ticketing.

The specimen having been duly mounted, its botanical name should be written neatly in the lower right-hand corner: together with the date of its collection and the locality where found. Of course only one Species should be mounted on each sheet; and when a sufficient number have been prepared, the Species of the same Genus should be placed in a sheet of larger and coarser paper than that on which the specimens are mounted, and the name of the Genus should be written outside on the lower corner. Then the Genera of the same Order should lee collected in the same manner, and the name of the Order written outside as before. The Orders may then be arranged in accordance with the classification you may be using, and carefully laid away in a dry place. If a cabinet, with shelves or drawers, can be specially devoted to storing the plants, so much the better.

KEY TO THE FAMILILS OR ORDERS.

SERIEC 1. PILANEROMAMS.

Plants produeing true flowers and seeds.

CLASN 1. MCOTVLEDONK.

Distinguisheal orlinarily hy having net-veinell leaves, and the parts of the tlowers in fonrs on fives, very rarcly in stxes. Wool growing in rings, anl? surrounded hy o true hark. Cotyledons of the embryo mostly two.

seen enclosed in an ovary.

1. POLV゙IETALOUG IHV゙SION

Two distinct sets of Floral Einvelopes. Paste of the corolla separate irom each other.
 - Sitamens hypothenous (inserteil on the rorenterle).

- I'atil "pocarpouse (carpuls separate jrom eath other).

Ravictuaraf-Herls. Leaves generally decolnputand or much dissected. .
AvNacr.n. - small trees. Leaves entire. Petalo 15, $m: 2$ sets
 mac.nbling a conte.
 cious. Leaves prltate near the elge.
Brasenia, in
 the petrole attur hed to the centre.
Vature stamens monadelphons. Calyx peral tent. Uvaries in a rimg

Podophyllum, in

Lenapritucr, - Calyx fugacions. Leaves large, peleate, doply loheal. Fruit a large fleshy ferry, 1 cellet.

+ Pril agmourpan. (vitigman, stylfs, pluerntip, or cisx, more then one.)

Actæa, ${ }^{\prime \prime}$

 a muy seerlel I rry. Leaves compound . .
Хуйllbic: 3.-Agratics. Leaves floating, large. deply corilate.
 shapal.
Diriffrite, - Tuice real or yellow. Sopals 2, ea licous

Violace．玉．－Corolla l－spurred．Stamens 5．Pod with 3 rows of seeds on the walls．
Balsaminacee．－Corolla 1 －spurred，the spur with a tail．Stamens 5 ．Yod bursting elastically．
Polygalace．e．－Lower petal keel－shaped，usually fringed at the top．Anthers 6 or S，l－celled， opening at the top．Pod 2 －celled．
Legrunose．－Corolla mostly papilionaceons． Filaments often united．Ovary simple，with one parietal placenta．Leares compound．．．．

$$
++ \text { Corolla regular, or nearly so. }
$$

1．Calyx superior（i．e．，adherent to the ovary， wholly or partially）．

（a）Stamens perigynous（inserted on the calyx）．

Cratægus，in
Rosace．f．－Shrubs．Stamens occasionally from 5 to 10 only．Leaves alternate，with stipules． Fruit drupe－like，containing l－j bony nutlets．
Saxifragacee．－Leaves opposite or alternate， without stipules．Styles or stigmas 2；in one instance 4．Ovary l－celled，with 2 or 3 parietal placentæ
Hamamelace．e．－Shrubs．Stamens 8；styles 2. Flowers yeilow，in autumn．．．．．．．．．．．．．．．．．．．．．
Haloragf．f．－Aquatics．Stamens 4 or S．Styles or sessile stigmas 4
ONagrace．e．－Flowers symmetrical．Stamens 2， 4 ，or S ．Stigmas 2 or 4 ，or capitate
Melastomacea．－＇uen＇1－celled，opening by a pore at the amens 8．Style and stigma 1.
rple
$\begin{array}{cc}\text { Lythrace．f．－} & \text { rently adherent to，but } \\ \text { really } \mathrm{fr}^{\prime} & \text { brary．Stamens 10，in } 2\end{array}$
Lithrace．f．－
really frently adherent to，but
fr $^{\prime}$ f whorled． il－bearing herbs．Flowers really fr＇ sets．I
Cectrbita moner （on the ovary，or on a disk which vers the ovary）．
（ $)$ Stame

Euonymu：

Celastraceat－snrub，with 4 －sided branchlets， not climbing．Leaves simple．Porls crimson when ripe．Calyx not minute．
Umbellifere．－Flowers chiefly in compound umbels．Calyx very minute．Stamens 5. styles 2．Fruit dry，2－seeded
Araliacee．－Umbels not compound，but some－ times panicled．Stamens 5．Styles usually more than 2．Fruit berry－like．
Corsace．e．－Flowers in cymes or heads．Sta－ mens 4．Style 1 ．．．．
2．Calyx inferior（i．e．，free from the ovary）． （a）Stamens hypogynous（on the receptacle）．
Crtcifere．－Petals 4．Stamens 6，tetradynamous． Pod 2－celled．

Cistacez．－Petals 3．Sepals 5，very unequal ；or only 3 ．Pod partly 3－celled
Droserace．f：－Leaves radical，beset with redrlish glandular hairs．Flowers in a l－sided raceme

19

Elodes，in

Hypericace．e．－Leaves with transparent dots． Stamens 9，in 3 clusters．．．．．．．．．．．．．．．．．．．．． 19
Caryopirylate．e．－Styles $\simeq-5$. Ovules in the centre or bottom of the cell．Stem usually swollen at the joints．Leaves opposite．．．．．．
Livaceat．－Stamens 5，united below．Porl 10. celled， 10 －seeded．
Geraniace．⿰㇒⿻土一𧘇小．－Stamens 5．Carpels 5，－they and the lower parts of the 5 styles attached to a long beak，and curling upwards in fruit．26

Oxalidafe．f．，－Stamens 10．Pod 5－celled．Styles 5 ，distinct．Leaflets 3，obcordate，drooping at night－fall．
Ericace．e．－Anthers opening by pores at the top， or across the top．Leares mostly evergreen， sometimes brown beneath；but in some in－ stances the plant is white or tawny．83
（b）Stamens perigynous（plainly attached to the calyx）．
Saxifragacef．－Leaves opposite or alteruate， without stipules．Styles or stigmas 2；in one instance 4．Carpels fewer than the petals．．． 46
Crasselace．e．－Flowers symmetrical．Stamens 10 or S．Leaves sometimes fleshy ．．．．．．．．．．．．． 48
Litiracee．－Stamens 10，in two sets．Ca yx enclosing，but really free from，the ovary． Leaves mostly whorled．．51
（c）Stamers attached to a fleshy disk in the bottom of the calyx－tube．
Anacardiacea．－Trees，or shrubs，not prickly． Leares compound．Stigmas 3．Fruit a 1－ seerled drupelet．
Celastrace．e．－Twining shrub．Leaves simple． Porls orange when ripe ．．．．．．．．．．．．．．．．．．．．．．
Sapindace．t．－Shrubs，or trees．Fruit 2－winged， and leaves palmately－reined．Or，Fruit an inflaterl 3 －celled pod，and leaves of 3 leatlets． styles 2 or 3 ．
（d）Stamens attached to the petals at their rery base．

Claytonia，in

Portrlacace．f．－Sepals 2．Leaves fleshy．Style 3－cleft
AQdifoliacee．－Shrubs，with small axillary flowers，having the parts in fours or sixes． Fruit a red berry－like drupe．Stigma sessile． Calyx minute

II．GAMOPETALOUS DIVISION．

Corolla with the petals united together，in however slight a degree．

A. (atyx angerlor (iadherent fo tho oviary).

- 广tamens triterl by their unthers.

C口 chatice.e. - Temlril-bearing herbs
Comiont.\%. -Flowers in heals, surrounded by an involuere.
I_onbl.l wr.t. Flowers not in heads. Corolla split

- Stamens not united together in any way.
- $\begin{gathered}\text { tume na inserted on the corolla. }\end{gathered}$

Hipone t. Flowers in hemds, surrounded by an insolucre. l'lant prickly
VALMRINWE.E: - Flowers white, in elustered cymes. stamens fewer than the lobes of the corolla
Rublacke:-Leaves, when opposite, with stipules; when whurled, without stipules. Vlowers, if in hr mils, without an involucre.
(why 1.1 ICE.A.- Leaves opposite, without sti1 blen: but, in one genus, with appendages resembling stipules....

$\therefore-\dot{-}$-itumens not insertell on the corolla.

 ment as many as the lobes of the corolla....
Biblerrex:-Chiffly shruhby plants or parasites. fiamens twice as many as the lohes of the corolla

13. (aly $\begin{aligned} & \text { Infrerior (free fromithe wing). }\end{aligned}$

- Stectumas more thines the latest of the sorolles.

Lakormans.k.- Ofary 1-celled, with 1 parictal ylacenta. Stamens mostly diadelphous

Adlumia, in

Fitworncras. - Plant elimbing. Corolla 2 -spurred.
Wuriref Filaments monablelphous. Carpels in A tug
Firacar f - Chiclly shrublyy planta, with simple ontire lases. Stamens twoe as many as the 1, he a of the corrilla.
Porsgabionf. Abthers for s, l-chlled, openimg at tosetop. Pol: ecelled. Flowers irrogular: liwe ptal kolshaperl, anl wanally frougcal st tiet"p
Orabimers Stamens lo, is of thein longer. Styloa i, distiont. Leaflots 3, olocoriate, Arispify at motht-fall.
 in from of eark lalr.

P'pablicye. - tamens on the corolln. fovary l-colol, with a irfe central placita rilugg from the have

- . Stamens just us mamu us the lubes oi ther coroilu, inserted on its tube alternately with its lobes.
+omories 2, spurute.

Arorrxacke:-Plants with milky juice. Authers converging rombl the stigmas, lint mot adherent to them. Filaments distinet
$11+$
Asolimpmader.- Plants with milky juice. Anthers allhering to the stigmas. Pilaments monatelphous. Flowers in nmbels

114
-t- Orar!! 4-lohed around the lumse of the style.
Mentha, in
Labiat.k. Stamens 4. Leaves opposite aromatic lon

Verbascum, in
Sideormitakdamis:- ('orolla nealy regular. Flowers in a long terminal spike. St it ans 5 ; the filaments, or some of them, woolly
Polemonime.z. - Style 3-cleft. Comblat salvershaperl, with a lomg tube. Pe 1 3-celled, fewsceded; seeds small
$11!!$
 genemally q-seceleds : seeds lavge. ('hielly twining or trailing plants.

11!9
Sublvaler: - Sityle single. Forl or berry 2 -arlled, many-seded.

I1"

- . Stamens finorr then the luluas nitlie corollea: then

Lamat *.- Owary f-lohed aromme the base of th: 0 style, Stanims | and dmynamous, of oceasionally coly 2 with anthers. Stem square. Ino
 style rame from the apex. "1r, owary 1 celled and l-seeded. Stammins didynamons........
Lextiniface: :- - Apuatic. At:amen4 2. Ovary 1-cellerl, with a frev central placenta........
Obomachace.t. - Parasitic herlor, withont green foliag', Owary I celleil, whth many seeds on the walls. Stamens didy mmons....
Schormtantacem. Ovary acelled, with many seerls. Sitamens dilymanous, or only 2......

III. APETALOUS DIVISION.

Corolia (and sometimes calyx also) wanting.

A. Flowers not in catkins.

* Culyx and corolla both wanting.

Saurtrace.e.-Flowers white, in a dense terminal spike, nodding at the end. Carpels 6 or 4 , nearly separate................................ 1 :
Ceratophyllacees - Immersed aquatics, with monœecious

* * Calyx superior (i.e., adherent to the ovary).

SAXIFRAGACEE. -Small, smooth herbs, with inconspicuous greenisu-yellow flowers. Stamens twice as many as the calyx-lobes, on a couspicuous disk124

whorled finely dissected leaves. Flowers
aloragee.-Aquatics. Leaves finely dissected or linear. Stamens 1-S. Ovary 4-lobed or (Hippuris) 1-celled.
Onagracee.-Herbs, in ditches. Stamens 4. Uvary 4 -celled, 4 -sided.
Aristolochiace.e.-Calyx 3-lobed, dull purple inside. Ovary 6 -celled.........................
savtalacee. -Low plants with greenish-white flowers in terminal clusters. Calyx-tube prolonged, and forming a neck to the 1 -celled nut-like fruit.
Eleagaice.an - Shrubs with scurfy leaves. Flowers diœcious. Calyx 4-parted, in the fertile flowers apparently adherent to the ovary, and becoming tleshy in fruit

* * * Calyx inferior (plainly free from the ovary).
- Ovaries more than one and separate from each other.

Hasunculacee. - Calyx present, colored and petal-like. Achenes containing several seells, or only one
Rutace.e.-Prickly shrubs, with compound trans-parent-dotted leaves, and diœecious flowers...
$+-\div$ Orary only one, but with more than one cell.
Crassclace.e.-Herbs, in wet places. Pod 5celled and 5 -horned.
Phytolaccacee.-Herbs. Ovary 10 -celled and 10 -seeded.
Euphorbiace.-Herbs. Ovary 3-celled, 3-lobed, protruded on a long pedicel. Juice milky ..
Sapinlacee.-Trees. Ovary 2-celled and 2-lobed. Fruit two 1 -seeded samaras joined together. Flowers polygamous .
Rhamyaces.-Shrubs. Ovary 3 -celled and 3 seeded ; forming a berry
Firoide...-Prostrate herbs with whorled leaves. Ovary 3-celled, many-seeded.

Urticace.f-Trees. Leaves simple. Ovary 2. celled, but fruit a 1 -seeded samara winged all round. Stigmas 2.
+-+-Otury only one, 1 -celled and 1 -seeded.
Polytinvacef.-Herbs. Stipules sheathing the stem at the nodes

119
URticace.ł. - Herbs. Stigma 1. Flowers moncecions or dieccious, in spikes or racemes. No chafl-like bracts among the flowers. Ur, stigmas $-:$: leaves palinately-compound $1: 7$
Amarastacer. - Herbs. Flowers greenish or redlish, in spikes, with chatf-lile brects interspiersed. Stigmas 2.118

Chrarophace.e.-Herbs. Flowers grcenish, in spikes. No chaffi-like bracts. Stigmas 2..... 111 i
Oleace.f..-Trees. Leaves pinnately-compound. Fruit a 1 -seeded samara........................ 11%
Urticace.e.-Trees. Leaves simple. Fruit a 1 -seeded samara winged all round, or a drupe. 127
Laurace.e. - Trees or shrubs. Flowers dicecions. sepals 6 , petal-like. Stamens 9 , opening by uplifting valves

12:2
Thymeleace.e.-Shrubs with leather-like bark, and jointed branchlets. Flowers perfect, preceding the leaves. Style thread-like

18. Flowers in eatkins.

> * Sterile or staminate flowers only in cutkins.

Juglanimace.t.-Trees with pinnate leaves. Fruit a mut with a hnsk.

130
Cepllifers.- Trees with simule leaves. Fruit one or more muts surrounded by an involucre which forms a scaly eup or bur.
*. Both sterile and fertile flowers in catkins, or cotkinlike heuds.
Salicacere. - Shrubs or low trees. Ovary l-celled, many-seeded ; seeds tufted with down at one end.

136
Platinice.e.-Large trees. Stipules shecthing the brunchlets. The flowers in heads
Myricace.t. -Simbos with resinous-dotted, usually fragrant, leaves. Fertile flowers one under each scale. Nutlets usually coated with waxy grains.
Betrlace.e.-Trees or shrubs. Fertile flowers 2 or 3 under each seale of the catkin. Stigmas 2, long and slender ...

SUB-CLASS II. GYMINOSPERMIS.

Orules and seeds naked, on the inner face of an open scale; or, in Taxus, without any scale, but surromitel by a ring-like disk which becomes red and berry-like in fruit.
Conifer.f. - Trees or shrubs, with resinous juice, and mostly awl-shaped or needle-shaped leaves.
Fruit a cone, or occasionally berry-like
139

CLASS IL. MONUCUTV1.ElNN:

Distin_ushed ordinarily by having straight-veined leaves (though oceasionally net-veined ones), and the parts of the flowers in threes, never in fives. Woml never forming rings, but interspersed in separate bundles throughont the stem. Cotylalon only 1 .

1. Sl'ADICEOLN IUIVINION.

Flowers cullected on a spadix, with or withont a spathe or sheathing bract. Leaves sometimes netseinel.
Arachat- Horls (either thag-like marsh-plants, or terrestrial,) with pungent juice, and simple or compomml leaves, these sometimes netreinerl. spadix usual.g (but not always) accompanied by a spathe. Flowers either without a peranth of any kind, or with $4-6$ sepals
Tipumek. - Aquatic or marsh plants, with limpar strancht-veined leaves ercet or floating, and momecious thowers. Heals of flowers cylinhical or globular, no spathe, and no tloral envelnges.
L.msscer.r.- - Suall aquatics, freely floating about 144 Dulutrex-Immersel aguaties. Stems branching and leafy. Flowers perfect, in spikes, senerally on the surface.

II. I'ETALOIDEOUS DIVISION.

Flowers not collecterl on a spadix, furnished with a cor lla-hke, or occasionally herhaceous, perianth.

1. IVrianth -uperfur (atherent fo the ovary).

* Flomer ratincions or polygumous, regular.
 only als, we water ; perianth of 6 pieces. .
Hasconsf wr.e. - Twiners, from knottel rootatinks. Lesares heart-shaped, net-veined. l'orl with 3 large wings.
().chmarex. - itammas 1 or 2, gynamirons. Hiwners irregular

 prom ab binto.

150

H. Frobanth inferior (free from the ovary).

Allinacest. - Pistil apocarpons: carpels in a ring or head, leares with distinct petiole and blate 147
smbarras:-Climbing plants, with alternate robhed and net-veined petioled leaves. Flowers diucions

Triglochin, in

Alsmaref:. -linsh-like marsh herbs. Flowers in a spike or raceme. Carpels when ripe splitting away from a persistent axis
laliactat:- - l'erianth of similar livisions or lobes, mostly 6, lint in one casc 4 . One stamen in front of cach livision, the stamens similar.

Trillium, in

Lidiare.e. - l'erianth of 3 green sepals an $\}$ three colored petals.
Postenekimek. - Stamens 6, 3 long and 3 short. Perianth (blue or yellow) tubular, of 6 lobes. Aquatios
JiNoArF.vi. - Yerianth glamaceous, of similar pieces 162
Eriocildonary.s. -In shallow water. Flowers in a small woully hearl, at the summit of a 7 angled scape. Leaves in a tuft at the base... 16.5

III. Gi.C'MACLOUS DIV゙ISION.

Flowers withont a true perianth, but subtended by thin seales called glumes.
Cypreareat. - Sheaths of the leaves not spolt. . . 16.5

Gramisen.- - Sheaths of the leavessplit on the sile sway from the blate........ 165

SERIES II. CRITTOMAMS.

llants without stamens and pistils, reprolucing themselves by spores instend of seeds.

CLASS III. ITERIUOIMYTES.

Stems containing vascular as well as cellular tissuc. Fildes.-spores prodnced on the fronds 174
Equastace.t. - Spores promeed on tho under side of the shieli-shaped seales of a terminal spike ur cone..
Lrcombnse.t.- -Spore-cases proklaced in the axils of the simple leaves or bracts.152

ILLUSTRATIVE EXAMPLES

of

PLANT DESCRIPTION.

A few examples of the method of filling plant schedules are given in the pages which immediately follow. They are intended to be suggestive rather than to be implicitly followed. Teachers will use their own judgment as to the degree of elaboration which will be aimed at in any particular case, as a good deal must depend upon the stage of the pupils' knowledge.

Hoot．	Origin ．．．．．．J＇rimar！！．
	Furin ．．．．．．Tap！，lon！and stont．
	（iolour ．．．．White or whitish．
	Wumtion．．．．lirmmiel on turemial．
	Posiriosin ．．．Suhtertulutur．
－TEM．	
	Tastime ．Iferlateons．
	Pr－itiosh ．．．lirinel．
	Shapm．．．．．．．＇ylintrimel．
	Branchiniz．．．Nems siut wh，witenturled．
	H．inht ．．．．Inue to tro．tiot．
	Mrefate．．I＇，

1．1：11．Jivivion ．．．．．．．．N゙imple．
Position ．．．．．．．．＇culine．
Artangumant．．．．Ile rache．

Insertion．．．．．．．I＇lisolall：petioles viry long．
（Intline ．．．．．．．Iiouml－kidney－shupud．
No．of leatlets，if any．．．None．
＊Trexture．．．．．．．．Thirkish．
＊（colour ．．．．．．．．diron lueth sider．

＊V＇mation ．．．．．I＇atmathl！met－vint

＊Basce．．．．．．．．．Iter pl！！morlate．

lícer mose
Variaty．

HII：FI，OWI：Iた。

	S．．	Contratas．		
$\begin{aligned} & \text { Porlantia. } \\ & \text { lonte } \end{aligned}$		Notte－Thio－pare nueal	nowt be rased ixerpt for	Mnamentylaturs．
	i	＇ía muave pirluars．	furierion：	An epricat rof there hiruts． lioly，ratrals，in rixiatout．
Sarblla． li．1．n＊。	．i			l＇etels while or piakivh，olmordate． 1 inthl lesul．＇onlou ust in the l，mit．
	$*$		ル！！！＂！！！！	Tuln wi stomerns unitud withe thi lewse
121．111． virian． 1＇irgros． leary 1				C＇arplas in a rily，＂ts man！！！as the st If／₹． 1 we．eled．
18175．		Iry，iadrhise \therefore hizomarif，hor lull．lic．．．．．． Iv etury ar th 14 जf No．1．ドulu！！＊hetjul	ut． akian！＂p into I－secrlat clow aurpils． कutylultons rrumplul，lillle	

CLASSIFICATION, de.

SERIES. Phanerogams.	Botanical Name Malva rolundifolia.
Classs. Angiosperms.	Popular Name. Round-teaved Mallon.
SI'b-Class. Dirotyledons.	Habitat Tioadsides and rultivated soil.
Divisiox Polypetalous.	Where found Roadszile, North Toronto.
Drder Malvacere.	Date of collection...... September 201h, $18 \% 4$.
Grenus. Malva.	-
Species Rotundifolia.	

DRAWINGS, \&C.

PLANT SCHEDULE．

No．

но日\％．		AEME．	Llivision ．．．．．．simıle．
	Form．．．．．．Fibrons．		Position ．．．．．．Renlical．
	Colur：r ．．．．．．Whitish．		Arrangement．．ilteruate．
			Stipulation．．．．．Firstipulate．
			Insertion．．．．．．．P＇etioles sheathiny the setere．
Sธบ．	Cla－－．．．．．．．．Monerotyledonoux：＂bullb．		Outline ．．．．．．．．Oblony lanctule．
	Attitule．．．		No．of leaflets，if any．．．${ }^{\text {cone．}}$
	Textmre ．．．．Herlmateons．		＊Texture．．．．．．．Thickish and soft．
	Pusition ．．．．Iteel in the grount．		＊＇ollur ．．．．．ireen，molltel with／urple alore．
	Shatw ．．．．．．．．1／ostly ollony ：small．		＊：ize ．．．．．．．．．Three to five inches long．
	Juice．．．．．．．．C＇olouriexs．		＊Voution ．．．．．sitraight－veinerl．
	Branthing．．．${ }^{\text {one }}$ ．		＊Margin ．．．．．．．Eintire．
	Heicht ．．．．．．		＊．дpex ．．．．．．．．．leute．
	Inration ．．．Premaial．		＊Base．．．．．．．．．．Tapering．
	surface．．．．．．		＊Surface ．．．．．．．．＇mooth and shining．
1W＋1．0	arime．Morle．．．．．．．．．Torminal．		Varioty．．．．．．．．．．．isulitary．

THE：FBWWIK．

Orsias．	Ni．	Combritos．		
Fertamth。 locsicen．	$1 i$	I＇ulyphyllous．	Inferior．	Divisions sprealin！，Ianmalate，！rellou， purghe－spotted，un inch long．
Curnila． fielaly．				
Filles notit． ．1tillar．	ii	II，rumilrous．	H！ノツy！	Stamens ofpuribe the slicarions of the pricunth．
1•1．111． Neftims． Mylen． Pisrpols． （）ecoryy－alls．	$\begin{aligned} & 1 \\ & 1 \\ & 3 \\ & 3 \end{aligned}$	Signarapues．	Su／kriur．	Otery netroumel at the buse．S＇yle club－shatual．Nífmer ：i－lobed．
FIRIIT． Kin！． Jr！！：Id liverne． ソッット・•• Finpurele． In．hitu net Larnlicilal． Ni）．of Se．． 1／atr\％ 				

chasificition. de.

SERIES Phanerogams.	Botanical Name......... Frythronium Americanum.
Class Angiosperms.	Popular Nimme......... . Doy's-tooth Violet.
Sub-CLASS. Monorotylerlons.	Habitat Copises. $^{\text {c }}$
Divisiox................... Petaloileous.	Where found Ifigh P'ark, Toronto.
Order..................... . Liliarere.	
Genus.. Erythronium.	
Species Americanum.	

DRAWINGS \& .

Note.-This plant sends up a scape, 5 or 6 inches hiyh, which bears a single nodding flower. The leaves are two in number.

COMPOSITES．
PLANT SCHEDULE．
No．
nowr．Origin．．．．．．．Siromiary．
Furn．．．．．．．Fibrons．
Colonir ．．．．．．．IVrommish．
lumation ．．．I＇erennial．
Position ．．．．Finforatanan．
๗T1：
（’）a－s ．．．．．．．．Dicotylalonous．
Attitmle．．．．Erent．
Texture ．．．．II riveroues．
Pn－ition ．．．．．．diriat．frum a rootstock．
Shape ．．．．．＇yliudriral，slightly grooved．
Itrice．．．．．．．．＇shentrins．
Dranching．．．I＊＊uall！！utane．
Mright．．．．．．．itont trinches．
Inration ．．．．IRhizume perennial：aürial st，m пा＂nual．
siurfacr．．．．．．Smunth，or meas！！！so．

E．E．EF Hivision ．．．Simple．
Iosition ．．．Tindiral and ranline．
Arrangement．．Alfernate．
Stipulation．Firstipulatr．
Insertion．．．Lower jetiolate；upper sessile．
Outlinu．．．Lower spathulate：upper linear．
No．of leaflets，if any．．．None．
＊Texture．．．．Ralhur lizck．
＊Colour ．．．．．Green both sides．
＊size ．．．．．．．1－1！inches long．
＊Venation ．Pinnately uet－veined．
＊Margin ．．．Radical menate：cauline serrate．
＊Apex ．．．．．Obtuse．
＊Base ．．．．．Lourfo taperiny ：apper clasping．
＊Surface ．．．Gilabrous．
－Applicable to leatlets if leaf is compound．

111：156．

Irrançan・はt
Kim？
sir．．

16 II－FI．GIRETS．
Vinml $\cdot \mathrm{r}$ ．
rieloner

Kinl＿．．．．．．．livillatr．
Trリリル trading．

131－h－F1日B1：
V1tuln r
Viril many．
Filour
Thapw．．Tulalar，slighlily iompreverd．
Kins．．．．．．．．．．．．．．．．riont
Prppita
Termianl，wlitar！．
liutialo．
I！2 imrlues arrows．

Many．
W\％its

Damin r	Viry man！y．
Filour	Y，llore．
Thap．．．${ }^{\text {a }}$ ，	Tulutar，sliglitly iompreverd．
Sins．	I＇riert
Prppus．	15 \％riminy．

$$
\begin{aligned}
& \text { Form Vlattish, or slightly ronver. } \\
& \text { surface }
\end{aligned}
$$

INBOH．ETRE，

Form ．．．．．．．．．．．．．liroul anil Alat．
Rows of ticales．．．．．．Iluıut finur：
Form of kisales．．．．．Lancrolato．
Trexture of ticales．Wielt sorions mar！ins．
Arraturathent ．．．．．．Imbritatal．

いい1：リン。
Furm ．．．．．．．．．．．．．．．arl！rylimirical．
Riurfacr．．． \qquad Sitriath of rablerr．
（の） 015 IWhilish or aronilisi．
－1．1．13．
V．rallaminous．
 florels．

THE FLOWERE。

DRAWINGS, \&C.

LEAF SCHEDULES．

LEAF OF ROING－LEAVEI MALLOW：

LEAF（\％REい（＇Lパル！

\qquad

DESCRIPTIVE SCHEDULES.

Eootr.	Origin
	Form
	Colour
	Puration
	Pu-ition
STEM.	Clas:
	Attitule
	Texture
	Preition
	\therefore thane
	Tuice
	Iramehing
	Height
	Luration
	Surface

LEAF. Division-
Position
Arrangement
Stipulation
Insertion
Outline
No. of leaflets, if any
*Texture -

* Colour-
**ize
*Venation
*Margin
* I pex
*Base
*surface
- Applicable to leafteta if leaf is compound.

THIE: VLOWLELR.

classirication. afe.

SERIES -..	Botanical Name.
Class	Popular Namı
Sub-Class	Habitat
Drvision	Where found
Order	Date of collection
Genus	
Species	

DRAWINGS, \&C.
\qquad

noot.	Origin
STEM.	Form ...
	Cołour
	Duration
	Positinn
	Class...
	Attitule
	Texture
	Prsition
	Shape
	Tuice
	Branching
	Incight --
	Iuration
	surfare

LEAF.
Division
Position
Arrangement
Stipulation
Insertion -
Ontline - \qquad

No. of leaftets, if any
*Texture
*Colour

* izo
*Venation
*Marcia
* Arex
*Base
*Surface
- Applicable to leatlets if leaf is compountl.

THE FLOWEIR.

13:ci...	So.	Conesion.	ADHESION.	Notes on Fons, Aistivation, Cohotr, f:rc:
inlyv.				
Corolla. l'fals.				
 Fbament. . Inther!				
[13 1011. Nbymas. siviles 'isrpll. Oerory-r ily.				
FIBI 17.			--	

DRAWINGS, \&C.
PLANT SCHEDULE.
No.

root.	Crigin	
	Form	- $+1+$
	Culour	--
	Durntion	- $=-$
	Position	-
-TEM.	Clas:	-
	Attitud	\square
	Texture	
	Position	
	Shape	
	Iuice	
	Imanchins	- - -
	Height	r
	Duration	
	sirface	

Mrioniantive. Made

EEAF Division
Position
Arrangement
sitinulation
Insertion
Outlinn
No. of Jeaflets, if any
*'Texture

* ('olour
*: izu
* Vontition
*Margin
* I pex
*Base
*surface
- Applicable wh bethets it tenf is compound

TIIE FIGWIEIS.

CLASSIFICATION, NC.

SERIEs...	Botanical Name.
Class	Popular Name
Sub-Class	Habitat .-......
Division -	Where found
Order	Date of collection
Genus.	
Species	

DRAWINGS, \&C.

PLANT SCHEDULE.

NO.

Classification, de.

	Botanical Name.............
Class	Popular Name...
SUB-CLASS ..	Habitat........................
DIVISION	Where found
Order ..	Date of collection
Genus ..	

DRAWINGS, \&C.

CLASAELCATION, AC.

SERIES	Botanical Name
CLARS	Popular Name
Sub-Class	Habitat.....
Divinion	Where found
	Date of collection
licnus.....	
species	

DRAWINGS, \&C.

DRAWINGS, \&C.
noot.
Origin
Form
roloar-
lumation
lowition

STE.II.
Clば
Aititule
Texture
Pasition
Shap
Juice
Bratuhtire
H.ight

Unration
s'rfat..

IEAF.
1)ivision

Position
Arrangement -
Stipulation
Insertion
Outlinu \qquad
No. of leaflets, if any
*Texture

* Colour
*

*Venation
*Margin
*. Ipex
*Pase
*surface

- Applicable tw leaflets if leaf is compouma

TIE FIAWEIE.

clasification. afe.

SERIES ...	Botanical Name.
Class	Popular Name..
Sub-Class	Habitat
Drvision - ...	Where found
Order --me	Date of collection
Genus -	
Species .-	

DRAWINGS, \&C.

Heot.	Urigin \quad.
	Form
	Colour
	Duration
	Position
STEM.	Flas:
	Aititude
	Texture
	Position
	Shalre
	Juice
	Mranhehing
	Height
	I uration
	surface

ILEAF。
Division
Position
Arrangement
Stipulation
Insertion
Outline
No. of leaflets, if any
*Texture

* (olonr
*,ize
*Venation
*Margin
* A pex
*Base
*surface
* Applleable to leathets if leaf is compmom.

Variety

T11: FI, WEIR.

SERIES ...-	
	Popular Name....................................- -
Division	Where found
	Date of collection
Genus ...	
Species ...-	

DRAWINGS, \&C.

HOOT.
Origin
Form.
Colour
Duration
Position
STE.9.
Clas-
Attitude
'Texture-
Potition
:lın
Iuice
Branching
Height
Imration
\therefore ırfaca

LISAE.
Division
Position.
Arrangempibt
stipulation
Insertion
Outline
No. of leaflets, if any
*Texture \qquad
*Colour \qquad
*Size
*Venation
*Margin
*A pex
*Base
*Surface
*Appliealhe to leathets if leaf is compound.
Varicty

Classification, de.

SERIES	Botanical Name
Class	Popular Name.
Sub-Clas	Habitat
Division -	Where for:nd
Order	Date of collection
Genus	

DRAWINGS, \&C.

ISEIOIBEACEVAE. Mode
b.v:ar. Пivixion

Position
Arrangement -
Stipulation
Insertion
Outlime \qquad
No. of leaflets, if as!y
*Texture -

* Colour
*Size
*Tonation
*Marorin
* A prox
*Base
*surface
- Applicable to leatlets if leaf is compound

THE, FIGWEIR.

SERIES ..	Botanical Name.
CLASS	Popular Name.
SUB-Class	Habitat
DIvisios	Where found
Order	Date of collection
Genus ...	
Species	

DRAWINGS, \&C.

SERIES	Botanical Name.	
Class	Popular Name	
Stb-Class	Habitat	
DIVISION:...	Where founi	
Order	Date of collection	\ldots
Genus		
Species		

DRAWINGS, \&C.

Varicty
IVEIORE:CREVE. Morle

THE, FIAWEIR.

SERIES	Botanical Name
Cl.ass	Popular Name.
SUB-Class ...	Habitat
Division	Where found
Order	Date of collection
Genus ...	

DRAWINGS, \&C.

SERIES	Botanical Name
Clasi	Popular Name
SUB-Clasis	Habitat
DIVISION	Where fotund
Order	Date of collection
Genus ...	
Species	

DRAWINGS, \&C.

تо0t．
Origin
Form．
Colutir
1）Hration
Position＝
sTEM．
Clに路
Atrithor
Trixture
I＇いitior
Slizke
Jui
Firathin ：
II．，int
1）1rationt
sirfiem

LEAEF
Divisiol
Position
Arrangement
Stipulation
Insertion
Outline
No．of leathets，if any
＊Textur＊
＊olour
size
＊Tenation
＊Margin
＊．I pex
＊Base
＊surface
－Applicalle to leatlets if leaf is compramel．

THE：ILOWEEE．

（1\％いい	\therefore ，	COHINはいさ．	Alillision．	
Prrianth． lear＊				
$\begin{gathered} \text { (als. } \\ \therefore a^{\prime} \end{gathered}$				
$\begin{gathered} \text { wrolla. } \\ \text { l' } 1 \text { ass. } \end{gathered}$				
1．13838゙81＊＊ dothr．				
51．111． sthire Parmbla． Oezrycils．				
FI：IIT． hin 1 In lii－ 11 V．． 1 f It in miftintif． 1				

Classification, ac.

	Botanical Name
Class	Popular Name.....................................
	Where foun l
	Date of collection
Genus ..-.	

DRAWINGS, \&C.

Itoor.
sTEM.
Origin
Forin -
Culosar -
I)uration

In-ition
Clive
Attitule
Teiture

shap
Juice
I Frauling
Heizht
Duration
surfares

AEATE livision
Position \qquad
Arrangement -
Stipulation
Insertion
Outline \qquad
\qquad
No. of leaflets, if nuy
*'Texture-
*Colour

* Size \qquad
*Venation
*) Marrin
* Ipex.
*Basr
*surface
- Applicable to leatlets if leaf is compound.

THE FLOWERE

DRAWINGS, \&C.
\qquad

ROOT. $|$| Origin |
| :--- |
| Form |
| Coluur |
| Duration |
| Presition |
| (lasi |
| Attitule |
| Texture |
| Position |
| Shape |
| Juice |
| Branching |
| Height |
| Inration |
| Surface |

LEAF. Division
Position
Arrangement
Stipulation
Insurtion
Outline
No. of leaflets, if any
*Texture
*Colour

* izizo.
*Venation
*Margin
*A pex
*Baso
*Surface
- Applicable to leatlets if leaf is compound.

INFLOREACEMCE Norde
Variety

THE FEOWEER

Clissification, ac.

DRAWINGS, \&C.

classification, de.

DRAWINGS, \&C.

IEOOT．
Origin
Form
Colour
Duration
Position
sTEM．
Clas：
Attitul？
Texture
Position
Shape
Juict
Branching
Height－
Duration
surface

INH．ORESCEMCE Mode

ILEAF．
1）ivision
Position
－Irrangemint
Stipulation
Insertion
Ontline
No．of leaflets，if ans
＊Textire
＊Colurr
＊izo
＊V゙mation
＊Maryin
＊ \boldsymbol{A}^{1+x}
＊Baso
＊Surface
－Ipplicable in leatlets if leaf is componnt．

Variety
THE：FI．AWEIR．

1）RE，AN．	Sir．	（＊1世．5以）	Andessins：	
Prerlaath． L－stes．				
(aly). cpals．				
Carolla． l＇rials．				
$\begin{gathered} \text {-1:1menn. } \\ \text { Filumente. } \\ \text { I Alorrs. } \end{gathered}$				
fiotil. －17mas． sigles． Paryl． Oéart－rile．				
Kinl Vhrit？ Inhil romer No．of 7 t．It 				

SERIES	Botanical Name...
CLASS	Popular Name..
SUB-CLASS	Habitat
DIVISION.....	Where found
Order	Date of collection
Genus ...	
Species	

DRAWINGS, \& C .

PLANT SCHEDULE.

NO.

R(1)T.
Crigin
Forn:
Culour
Duration \qquad
Position
Clas:
Attiture
Texture
J'usition
Shape
Juien
Mranching
Height
Itrration
sirface

Leaf. I:iviくion
Position
Arrangement \qquad
Siturulation
Insertion
Outline
No. of leaflets, if any
*Texture
*Colour
*:ize
*V'enation
*Margin
*Apex
*Baso
*surface

- Applicable to leathets if leaf is compomed.

IVF.ORHETISIE.
Mode
Varicty

THIE NLOWIIR.

	Botanical Name --.................-
Class	
SUb-CLASE....	
Division -..	
	Date of collection
Genus ...a...	
Species ...	

DRAWINGS, \&C.

LEAE:
Division
Position
Arrangeme:at
Stipulation
Insertion
Outline
No. of leaflets, if any
*Texture
*Colour
*Sizo
*Venation
*.Margin
*. Apex
*Base
*surface

- Applicable to leaffets if leaf is componad.

Varioty

THE FLOWEIK.

DRAWINGS, \&C.

COMPOSITES．
PLANT SCHEDULE．
NO．
（6）（1）T．
Origin
Furn
Coblomer
Thatation
I＇ovition
sti：n．
（11ヶ＜
Attitule
Texture
1rsition
－hape
Inice
Branching
Height
Luration
cirface

HIS：
Division \qquad
Position
Arrangement
Stipulation
Insertion
Outline \qquad
Nu．of leaflets，if any
＊Texture
＊（ olour
＊Nize
＊Venation
＊Margin
＊Apex
＊Basie
＊Surface
＊Applleable to leathets if leaf is companand．

Arran＿＋1ulut
Kin！ \qquad
－i／4．
－1：11－12．01：1．T～。
Viluln r
（＇olbir
4lien
｜in｜

「阳り＂

Niminer
Coblos $1 r^{\circ}$
$\therefore 141$
Kinl
－all

ARBCEIT ITB，
Forlis
Surlace

IVMIITHE：
Form
Rows of sicales
Fintin of scabed
Texture of sirales
Arrangellinht

HHEXIV．
Fiorm
sirfice

Colotis

SEED．
－If floreta are all alike kive particulara mader leading Diak－ thurets．

THE: FLOWEIR.

CLASSIFICITIGN, IC。

DRAWINGS, \& C.

COMPOSITES．

воит．	Origin $\quad \square$	LEAF．	Division ．．．．．．．．．．．．
	Form－		Position．
	Culour		Arrangement
	Hurntion		Stipulation ．．
	Position ．		Insertion \quad－
NTEM．	C＇lass．		Outline－
	Attitude		No．of leatlets，if any
	Texture		＊Texture
	Pusition		＊＇ colour
	＊hape－		＊Size
	Ituice ．－．．．－		＊Yenation
	Branching		＊Margin
	Height		＊Apex \ldots ．．．
	buration		＊Base
	surfact－		＊Surface \qquad ＊Applleable to leatets if leat is compound

INFIGIEEATENEE，AC．

HE．ADS．

Arrangentunt
Kinl

Size

Number
（i）lolir
－h เ阝＂
lin！

1＇sp川は

Number
Culour
Shapti－
Kind

HECEPTACLE．
Form
Surface
NVOLCSE：
Furm
Fows of sealen
Form of scales
Texture of scales
Arrangement－

AcIEMES．

Furin \qquad
Surface
Culuur
SE：E．I．
－If florets are all alike glve partlenlars under heading Dlak－ floreis．

CLASSHFICATION, AE.

DRAWINGS, \&C.

COMPOSITES．

8：（3）（1）．
Wrisin
Furn
Cohsur
1）Iration
Porition
stiv．
へ「anis
Attitull
Trixture

Shape
Tuice
Pratchenine
H．ight
1）uration
surface

LEAF：
Division
Position
Arrangement
Stipulation
Invertion
Ontline
No．of leathets，if any
＊＇Texture
＊© olour
＊ 「iそ
＊Venation
＊Margin
＊＊）Apex
＊Basic
＊Siurface
＊Applicable to heatlets if leaf is eompmad．

H1：いい。

Arrangement
Kin！
$\rightarrow i \neq$.

－58．11－11．41815：

Ninmbrr
1alior
Slup
Kiml
Topplad \qquad

Numin．r
Fononr
N14＂
Kin
P！THM：

Form
simtace

NOB．1 CIEF．

loom
Rows of sembew
Fionm of sonles
Tristure of scales

1411：VI：．

Form
surface
（in）our
s．E：1）．

If torets are all alike kive particulars muder heading Diak－ Alorets．

Classification, ofe.

	Botanical Name......................................
Class	Popular Name.
Slb -Class ...	Habitat
Order	Date of collection

DRAWINGS, \&C.

COMPOSITES.

PLANT SCHEDULE.
No.

EVELORENCENCE, AC.

HEADA.

Arrangement
Kin!
Sizn

- RAV-IIG)IEITG.

Number
Colour \qquad $-\infty-\square$

Shap \qquad
hind

HIGH-FIORET
Nitnimer
Colour
Shapm
Kin 1
Pappis

HEAEPTACLE

Form
Surface

INOBACBE.
Furm
Rows of scales
Form of scales
Texture of seales.
Arrangemint

HIEVF.

Form
Surface.
Cilour

SIIVID.
"If foreta are all alike give pariliulars umbler heallag Diskflorets.

Organ.	No.	Cohesion.	Adhesion.	Flomal Diagram.
Calyx. Sepals.				
Corolla. Petals.				
Stamens. Filaments. Anthers.				
Pisil. Stigmas. Styles. Carpels. Ovary-cells.				

CLASEIFICITHON. AC.

SERIES.	Botanical Name.....
Class.	Popular Name
Sub-Clas	Habitat
Division	Where found
Order.	Date of collection
Genus	
Species	

DRAWINGS, \&C.

COMPOSITES.
soot.

BTEM.

Form --
Position
Class
Attitude
Texture
Hosition
Shape - .-
Juice -
Branchiug
Height
Duration
surface -

LLAF。
Division
Position
Arrangement
Stipulation
Insertion
Outline
No. of leaflets, if any
*Texture
*C'olour

* Size
*Venation - ...
*Margin
*A ${ }^{\text {rex }}$
*Base
*siurface.
* Applicable to leaftets if leaf is compound.

11EAIIS.
Arrangement
Kind
Si/e

- EATHEDEETA.

Nimin r
Colour
\therefore : 1pe
Kin!
Pappus

- IDIFK-FBARITA.

Number
('olour -
shape
Kind
I'sppus

HECENTACLE.

Form
surface

Ivoonters.

Form
Fows of scales -
Form of scales
T'exture of senkes
Arrangement
ACIIEN:S.
Form.
Surface \qquad
Colour \qquad
SEED.

- If dorets are all alike give particulars under heading DiskAbrets.

THE FLOWEIR.

Organ.	No.	Cohession.	ADHESION.	Floral Diagras.
Calyx. Sepals.				
Curbila. Petals.				
stamens. Filaments. Anthers.				$()$
Pistil. Stigmas. Styles. Carpels. Ovary-cells.				$\underbrace{-}$

CLASSIFICAT1ON, AC.

DRAWINGIS, \&C.

COMPOSITES．
koot．Origin
Form
Colonar
Inration
Pusition
stem．（ Cl B S
Attitule．
Texture
Po－ition
shape
Juicr－
Branchiner
Height
［uration
surfa\％

LEAF．Divicjon
Position
Arangement
stipulation
Insertion
Outline
No．of leaflets，if any
＊Texturo
＊＇olour
＊ Si \％
＊Venation
＊Margia
＊Apex
＊Bas＂
＊surface
－Applicable to leattets if teaf is combumal．

IVFIGREGCEVCL，ofr．

115：！リー．

Arтangement
Kin 1
Ri／．． \qquad

Number
Colimr \qquad
Maj＂
Kin！

Pарр川＊

1）1－h－FI．OIE：Tッ．
Ninmin r
Euberar
Siapr
Kinl
Paluus

IEACDETACIA：

Form
suraco

NTODICBE．

Forsı
Rows of seralow
Fonm of seatu
Texture of eratis
Aranngumait

11H：VI：

Form
siurface
Coluar
sEED．
－If flari la are ali aike give particuiars umder heading Disk－ tioneis．

THE FLOWER.

DRAWINGS, \&C.

LEAF SCHEDULES.

LEAF OF

DESCRIITION.

IIviaion
Position
Arrangerment
Invertion
Stipulation
Outline
No. of leaflets, if any
*Texture
*Culour
*ㄴize
*V・ロッtion
*Marcin
*A $\mathrm{I}^{\text {m }} \mathrm{X}$

*2urfarm

- Applicable to leathers if leaf ls comprumat.

LEAF SCHEDULES.

Leaf of

DESCRIPTION

Division
Position
Arrangement
Insertion
Stipulation
Outline
No. of leaflets, if any
*Texture
*Colour
*Size
*Venation
*Margin
*A pex
*Base
*Surface

* Applicable to leaflets if leaf is compound.

Leaf of

Division

Position
Arrangement
Insertion.
Stipulation
Outline
No. of leaflets. if any
*Texture
*Colour
*Size
*Venation

* Margin
*Apex
*Base
*Surface
- Applicable to leaflets if lea 1 is compound.

LEAF SCHEDULES.

Leaf of

Descrilitios

Dramengs.

Leat of
livision
Po-ition
Arrangerment
In+rtion
sipulation
Gutline
No. of leaflete, if any
*Texture

* Colinar
*-ise
*Venation
* Margin
*Apex
* Base
*Surface
- Applleable co leatleta if leai la compound.

LEAF SCHEDULES.

Leaf of \qquad

DESCRIPTION.

Drawnggs.

Leaf of

\qquad
Division
Position
Arrangement
Insertion
Stipulation
Outline
No. of leaflets, if any
*Texture
*Colour
*Size
*Tenation
*】argin
*Apex
*Base
*Surface

* Applicable to leaflets if lear is compound.

Drawnos．

Lょ゙いだ OF \qquad －．
livi－in！
Praitiru
Armagettent
In＋riin
－timblaiten
Whtime
NO，of liafletw，if ans
＊T．rame
＊（in）our
＊－ize
＊Venation－
＊Margin
＊A pex \qquad
＊Base
＊suriae
－Applicable ti lealima if leaf is compriand

LEAF SCHEDULES.

Leaf of

Description.

Drawngs.
Divisiou
Position
Arrangement \ldots
Insertion
Stipulation -
Outline -
No. of leaflets, if any
*Texture
*Colour
*Size
*Tenation
*Margin -
*Apex -
*Base -
*Surface - Applicable to leaflets if leaf is compound.

LeAf of

LEAE SCHEDULES.

Leaf of

Leaf of

LEAF SCHEDULES.

Leaf of

DESCRIPTION.

Division

Position
Arrangement
Insertion
Stipulation
Outline
No. of leaflets, if any
*Texture
*Colour
*Size
*Venation
*Margin
*Apex
*Base
*Surface

* Applicable to leaflets if leaf is compound.

Leaf of

Drawtigs.

LEAF SCHEDULES．

Latar of

1）FジRIMrIoxi．

Tivisi，n
Prition
Artangeliont
Invertulu
Stipmlation
Cutline
Vo．if latlota，if ภルッ
＊Tixt itn
＊olinar
＊-1
－Vintion
＊Marain
＊ 1 max
－13yar
＊nirfice
－appltabalo be leathet If leap ta compe und

LEAF SCHEDULES.

Leaf of

Description.
Division
Position
Arrangement
Insertion
Stipulation
Outline ...-...
No. of leaflets, if any
*Texture
*Colour
*Size
*Venation
* Margin
*Apex - - -
* Base.
*Surface

Leaf of

* Applicable to leaflets if leat' is compound.

LEAF SCHEDULES．

Make Draw wig of Leaves Answering to tie Following Descriptions．
The tescher will lictate the descriptions．）

DEN＇RIITION．

Lbivisiun
Pusition
Arrangement
Insertion
stipulation－
Outline
No．of liatlets，if any－
＊Texture
＊Crolour
＊－iz．
＊Venation
＊Margin
＊． 1 pex
＊Bas．
＊siurf．u＂e
＊Applicable to leatlets if leaf is compond．

Livixion
Pronition
Arrangement
Incretion
Stipulation
Outlinu
No．of leathets，if any－
＊Texture
＊（colo）ll
＊sǐe．－
＊「゙ゥnation
＊．Mnrfin
${ }^{*} \mathrm{~A}_{\mathrm{f}}{ }^{\mathrm{F}}$ ． x
＊ßa－＊
＊－infface
－Appllable to lentlets If leaf is comprund．

LEAF SCHEDULES.

Make Drawings of Leaves Answering to the Following Descriptions.
(The teacher will dictate the descriptions.)

Description.

Division
Position
Arrangement
Insertion
Stipulation
Outline
No. of leaflets, if any
*Texture
*Colour
*Size
*Venation

* Margin
*A pex
*Base
*Surface
* Applicable to leaflets if leaf is compound.

Division
Position
Arrangement
Insertion
Stipulation
Outline
No. of leaflets, if any
*Texture
*Colour
*Size
*Venation

* Margin
* Apex
*Base
*Surface
* Applicable to leaflets if leaf is compound.

Drawlias.

LEAF SCHEDULES.

Make Drawintis of leaven Asiwering to the Foldowing Drachbrtoxs.
The teacher will dictate the descriptions.)

HEVRRITTHN:

\qquad

```
Hivision
Preition
Arawgemint - -
In*rtion
stipulation
Ontlin
```

\qquad

```
No. of lenatleto, if any
*Textur"
``` \(\qquad\)
```

* Coluar
* $\mathrm{Zize}_{\mathrm{iz}}$
*Venation
* llar-in
*. $\mathrm{I}_{\mathrm{N}} \mathrm{N}^{2} \mathrm{~S}$
* [13-
*~nrfare
- Applicable to leatieta if leaf is compumad.

```

\section*{livisin}

Praticen
Artangetment
In*rtion
- iturnaiont

Outlime-
Su. of leall.t-, if auv
*T, स्तन,
*Cinlor
*. i , \(/\)
* リ゙, mation
*. Margin
* Alır
* Bra -
* הurface
- Appileable to leatleta if leaf ia compmund.

\section*{LEAF SCHEDULES.}
make Drawings of Leaves Answering to the Following Descriptions. The teacher will dictate the descriptions.)

Description.

Division
Position
Arrangenient
Insertion
Stipulation
Outline
No. of leaflets, if any
*Texture
* Colour
*Size
*Venation
*Margin
*Apex
*Base
*Surface
* Applicable to leaflets if leaf is compound.

Division
Position
Arrangement
Insertion.
Stipulation
Outline
No. of leaflets, if any
*Texture
*Colour
*size
*Venation
*Margin
*Apex
*Base
*Surface
* Applicable to leaflets if leaf is compound.

\section*{LEAF SCHEDULES.}

Make Drawting of Ladyes Answering to the Foldowing Descraptons.

The tercher will dietate the deseriptions.)

DEACRHTION.

Livision
Position
Arrangement
Incertion
Sitipulation \(\qquad\)
Gutline \(\qquad\)
No. of leaflet-, if any-
*'Textur.
* (coluur
* : ize
*Venation
*larair
* I Iren
* Base
*suriace.
- Applicable to leadets if leaf is compmond.

> Diviaion
> Perition
> Arrangement
> In*rtion
> stipulation
> (1)tline
> No. of luafletu, if any
> *T.*सt!r.
> * Colour
> *: i/,
> *V゙erntion
> * Jiargin
> * 1 pex
> * Ване
> *-surface
- Applicable to leatiets if leaf la compund.

\section*{Drawings.}
\(\qquad\)

\section*{LEAF SCHEDULES.}

Make Drawings of Leaves Answering to the Followling Descriptions. (The teacher will dictate the descriptions.)

\section*{Description.}
```

Division
Position
Arrangement
Insertion
Stipulation
Outline
No. of leaflets, if any

```
\(\qquad\)
```

*Texture
*Colour
*Size
*Venation
*Margin
*A pex
*Base
*Surface
* Applicable to leaflets if leaf is compound.

```

* Applicable to leaflets if leaf is compound.

\section*{L.EAF SCHEDULES.}

\section*{Make Drawings of Leaver Answering to tie Fuldowiog Dercriptions \\ The teacher will dletate the descriptions.)}

\section*{LEAF SCHEDULES.}

Make Drawings of Leaves Answering to the Following Descriptions. (The teacher will dictate the descriptions.)

DESCRIPTION.

\section*{LEAF SCHEDULES.}

Make Dramtige of Leayes Answering to tile Following Descriptions.
(The tescher will dietate the descriptions.)

\section*{DEACRIPTION.}

Division
Position
Arrangement
Insertion
stipulation
Outline
No. of luatletw, if any \(\qquad\)
\(\qquad\)
*Textur.
* ('olour \(\qquad\)
* *ize
*Tenation
*Margin
*A pex
* Bass
*Surface.
- Applicable to leaflets if leaf is compound.

Division
Porition
Artangiment
Invertion \(\qquad\)
Stipulation
Outlin.
Nin. of leaflets, if any
*Texture
* Colour
*Kiz.
*Vonstion
* Margin
*A pex
* Base
*surface
- Applicable w leaffets if leaf is comp und
! 1 . IWTNG:

\section*{LEAF SCHEDULES.}

Make Drawings of Leaves Answering to tite Following Descriptions.
(The teacher will dictate the descriptions.)
\begin{tabular}{|c|}
\hline Description. \\
\hline Division \\
\hline Pusition \\
\hline Arrangement. \\
\hline Insertion \\
\hline Stipulation \\
\hline Outline \\
\hline No. of leaflets, if any \(\ldots \ldots \ldots\) \\
\hline \\
\hline *Colour \\
\hline *Size \\
\hline * Venation \\
\hline * Margin \\
\hline *Apex \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
*Base \(\qquad\) \\
*Surface \(\qquad\) \\
* Applicable to leaflets if leaf is compound.
\end{tabular}} \\
\hline \\
\hline \\
\hline Division \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Position \(\qquad\) \\
Arrangement \(\qquad\)
\end{tabular}} \\
\hline \\
\hline I isertion \\
\hline Stipulation \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Outline \\
No. of leaflets, if any \(\qquad\)
\end{tabular}} \\
\hline \\
\hline *Texture \\
\hline *Colour \\
\hline *Size \\
\hline *Yenation ... \\
\hline * Margin \\
\hline *Apex \\
\hline *Base \\
\hline *Surface .. \\
\hline
\end{tabular}

\section*{FLOWER SCHEDULES．}

Flower of
\begin{tabular}{|c|c|c|c|c|}
\hline Omi & No． & Cohrsions． & Anlrsw & Nutes on Fulim，Estivation，Colncr，mite． \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
Derlauth． \\
1．ares．
\end{tabular}} \\
\hline \multicolumn{5}{|l|}{（』1） Nejerls．} \\
\hline \multicolumn{5}{|l|}{\[
\begin{aligned}
& \text { Corulla. } \\
& \text { l'ela's. }
\end{aligned}
\]} \\
\hline \multicolumn{5}{|l|}{stamens．
falaments．
Inthers．} \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
3iall． \\
Nigmans． \\
syes． \\
Carpels． \\
Ouary rels．
\end{tabular}} \\
\hline I IEIIT． & \begin{tabular}{l}
！！ \\
iरcert \\
of \(>\) \\
rip，t
\end{tabular} & \[
d
\] & & \\
\hline
\end{tabular}

Fıいいなに（ば
\begin{tabular}{|c|c|c|c|}
\hline 1310， 1 V & No． & & AHIFSHUS． \\
\hline Perlianth． locaer & & & \\
\hline \begin{tabular}{l}
\[
1 \Omega i 5 x .
\] \\
A少相s．
\end{tabular} & & & \\
\hline \[
\begin{gathered}
1 \text { wroslla. } \\
\text { l'tals. }
\end{gathered}
\] & & & \\
\hline \[
\begin{aligned}
& \text { tianirnt. } \\
& \text { filalints. } \\
& \text { I th ry. }
\end{aligned}
\] & & & \\
\hline \begin{tabular}{l}
J＇inil． \\
SEigmers \\
\(S_{1} v^{\prime}=1\) \\
C＇arjus． \\
Ovary，ils
\end{tabular} & & & \\
\hline
\end{tabular}

FRIIT．
Kiv！
「irioty
Lh hichat
So． \(1, f\)－ 1 I
Itwetrip，ion if has

Fighai．Diafiram．

\section*{FLOWER SCHEDULES.}

Flower of.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Organ.} & No. & Cohesion. & ADhesion. & Notes on Fors & Fistivation, Colocr, micc. \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Perianth. \\
Leaves.
\end{tabular}} & & & & - & \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
calyx. \\
Sepals.
\end{tabular}} & & & & & \\
\hline \multicolumn{2}{|l|}{Corolla. Petals.} & & & & & \\
\hline \multicolumn{2}{|l|}{stamens. Filaments. Anthers.} & & & & & \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Pistil. \\
Stigmas. Styles. Carpels. Ovary-cells.
\end{tabular}} & & & & & \\
\hline FEEIT. & \multicolumn{5}{|l|}{\begin{tabular}{l}
Kind \(\qquad\) \\
Variety \(\qquad\) \\
Dehiscence \(\qquad\) \\
No. of Seeds \(\qquad\) \\
Description of Seed \(\qquad\)
\end{tabular}} & \\
\hline
\end{tabular}

Flower of
\begin{tabular}{|c|c|c|c|c|}
\hline Org & No. & Cohesion. & Adhesion. & Notes on Form, Estivation, Cololr, etc. \\
\hline \multicolumn{5}{|l|}{Perianth. Leaves.} \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
Calyx. \\
Sepals.
\end{tabular}} \\
\hline \multicolumn{5}{|l|}{Corolla. Petals.} \\
\hline \multicolumn{5}{|l|}{Stamens. Filaments. Anthers.} \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
Pistil. \\
Stigmas. \\
Styles. \\
Carpels. \\
Ovary-cells.
\end{tabular}} \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
Kind \(\qquad\) \\
Variety \(\qquad\) \\
Dehiscence \(\qquad\) \\
No. of Seeds \(\qquad\) \\
Description of Seed \(\qquad\)
\end{tabular}} \\
\hline
\end{tabular}

\section*{FLOWER SCHEDULES.}

Flower of
\begin{tabular}{|c|c|c|c|c|}
\hline OHidis. & No. & Combsmes. & Anhesios. & Notes us Fohm, Aestivatun, Coloun, bete. \\
\hline \multicolumn{5}{|l|}{\[
\begin{aligned}
& \text { I'vorlanth. } \\
& \text { Late čev. }
\end{aligned}
\]} \\
\hline \multicolumn{5}{|l|}{vituo.} \\
\hline \multicolumn{5}{|l|}{\[
\begin{aligned}
& \text { Curolla. } \\
& \text { Petals. }
\end{aligned}
\]} \\
\hline \multicolumn{5}{|l|}{} \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
1’に111. \\
"igmas. \\
Styles. \\
Curpuls. \\
Oeary-cells.
\end{tabular}} \\
\hline HIR115. & \begin{tabular}{l}
 \\
 \\
of \\
rip
\end{tabular} & crl & & \\
\hline
\end{tabular}

\section*{FLOWER SCHEDULES.}

Flower of
\begin{tabular}{|c|c|c|c|c|c|}
\hline Organ. & No. & Cohesion. & Adhesion. & Notes on For & Estivation, Colour, etc. \\
\hline \multicolumn{6}{|l|}{\begin{tabular}{l}
Perianth. \\
Leaves.
\end{tabular}} \\
\hline \multicolumn{6}{|l|}{\begin{tabular}{l}
Calyx. \\
Sepals.
\end{tabular}} \\
\hline \multicolumn{6}{|l|}{Corolla. Petals.} \\
\hline \multicolumn{6}{|l|}{stimens. Filaments. Anthers.} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Pistil. \\
Stigmas. Styles. Carpels. Ovary-cells.
\end{tabular}} & & & & \\
\hline FREIT. & \multicolumn{4}{|l|}{\begin{tabular}{l}
Kind \(\qquad\) \\
Variety \(\qquad\) \\
Dehiscence \(\qquad\) \\
No. of Seeds \(\qquad\) \\
Description of Seed \(\qquad\)
\end{tabular}} & \\
\hline
\end{tabular}

Flower of
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Orgas:} & No. & Cohesion. & ADhesion. & Notes on For & Estivation, Colour, etc. \\
\hline \multicolumn{7}{|l|}{\begin{tabular}{l}
Perianth. \\
Leaves.
\end{tabular}} \\
\hline \multicolumn{7}{|l|}{Cafyx. Sepals} \\
\hline \multicolumn{7}{|l|}{Corulla. Petals.} \\
\hline \multicolumn{7}{|l|}{Stamens. Filaments. Anthers.} \\
\hline \multicolumn{7}{|l|}{\begin{tabular}{l}
Pistil. \\
Stigmas. Styles. Carpels. Ovary-cells.
\end{tabular}} \\
\hline \multicolumn{6}{|l|}{\begin{tabular}{l}
Kind \(\qquad\) \\
Variety \(\qquad\) \\
Dehiscence \(\qquad\) \\
No. of Seeds \(\qquad\) \\
Description of Seed \(\qquad\)
\end{tabular}} & \\
\hline
\end{tabular}

\section*{FLOWER SCHEDULES.}

Flowet of

\section*{FLOWER SCHEDULES.}

Flower or \({ }^{\text {a }}\)
\begin{tabular}{|c|c|c|c|c|}
\hline Organ. & No. & Cohesion. & ADHESION. & Notes on Form, Estriation, Colour, etc. \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
Perianth. \\
Leaves.
\end{tabular}} \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
Calyx. \\
Sepals.
\end{tabular}} \\
\hline \multicolumn{5}{|l|}{Corolla. Petals.} \\
\hline \multicolumn{5}{|l|}{Stamens. Filaments. Anthers.} \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
Pivil. \\
Stigmas. Styles. Carpels. Ovary-cells.
\end{tabular}} \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
FIEATT. \\
Kind \\
Variety. \(\qquad\)
\(\qquad\) \\
Dehiscence \(\qquad\) \\
No. of Seeds \(\qquad\) \\
Description of Seed \(\qquad\)
\end{tabular}} \\
\hline
\end{tabular}

Flower of

\section*{FLOWER SCHEDULES.}

Finwiar of
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Ontias.} & No. & Cohestos. & Aminsios. & Nome on Fomm, Fisination, Colotr, etc. \\
\hline \multicolumn{6}{|l|}{\begin{tabular}{l}
Perianth. \\
Lectes.
\end{tabular}} \\
\hline \multicolumn{6}{|l|}{\begin{tabular}{l}
calve. \\
sejals.
\end{tabular}} \\
\hline \multicolumn{6}{|l|}{Corolla. l'etals.} \\
\hline \multicolumn{6}{|l|}{ Filaments. Anthers.} \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
P1, 111. \\
Stigmas. Silyles. Carpels. Ovary.cells.
\end{tabular}} & & & \\
\hline Ferit. & \begin{tabular}{l}
his \\
Va \\
Le. \\
lu. \\
I)es
\end{tabular} & & & -... - - - & \\
\hline
\end{tabular}

Flowite of

\section*{FLOWER SCHEDULES.}

Flower of
\begin{tabular}{|c|c|c|c|c|}
\hline Organ. & No. & Cohesion. & ADHESION. & Notes on Form, Estivation, Cololt, etc. \\
\hline \multicolumn{5}{|l|}{Perianth. Leaves.} \\
\hline \multicolumn{5}{|l|}{Calys. Sepals.} \\
\hline \multicolumn{5}{|l|}{Corolla. Petals.} \\
\hline \multicolumn{5}{|l|}{stamens. Filaments. Anthers.} \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
Pistil. \\
Stigmas. \\
Styles. \\
Carpels. \\
Ovary-cells.
\end{tabular}} \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
FELIT. \\
Kind \\
Variety \\
Dehiscence \\
No. of Seeds \\
Description of Seed
\end{tabular}} \\
\hline
\end{tabular}

Flower of.

\section*{FLOWER SCHEDULES.}

Flowis of
lerlanth.
LCates.

Flowisr of

\section*{FLOWER SCHEDULES.}

Flower of

Flower of.
\begin{tabular}{|c|c|c|c|c|}
\hline ORG & No. & Cohesion. & ADHESION. & Notes on Formi, Estivation, Colocr, etc. \\
\hline \multicolumn{5}{|l|}{Perlanth. Leaves.} \\
\hline \multicolumn{5}{|l|}{Calyx. Sepals.} \\
\hline \multicolumn{5}{|l|}{Corolla. Petals.} \\
\hline \multicolumn{5}{|l|}{stameas. Filaments. Anthers.} \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
Pistil. \\
Stigmas. \\
Styles. \\
Carpels. \\
Ovary-cells.
\end{tabular}} \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
FREIT. \\
Kind \\
Variety \\
Dehiscence \\
No. of Seeds \(\qquad\) \\
Description of Seed \(\qquad\)
 \\
Floral Diagram.
\end{tabular}} \\
\hline
\end{tabular}

\section*{FLOIVER SCHEDULES．}

Fiowse of
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Omian．} & No． 1 & Commstos． & Amitsion． & Notes on Fonm，Aismbation，Cololn，ETC． \\
\hline \multicolumn{6}{|l|}{Perianth． lecoues．} \\
\hline \multicolumn{6}{|l|}{rajr.ja/s.} \\
\hline \multicolumn{6}{|l|}{\begin{tabular}{l}
Corall：1． \\
J＇ta＇s．
\end{tabular}} \\
\hline \multicolumn{6}{|l|}{\begin{tabular}{l}
stamens． \\
Fiament． \\
I uthers．
\end{tabular}} \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
1•isibl． \\
Nigmas \\
Styles． \\
liarj，ls \\
Ovary－cells．
\end{tabular}} & & & \\
\hline צ゙BIt． & \begin{tabular}{l}
Ki \\
Fr \\
［1． \\
\(N_{0}\), \\
ค
\end{tabular} & \begin{tabular}{l}
\(\qquad\) \\
int \\
inct \(\begin{aligned} & \text { act }\end{aligned}\) \\
of Һッ \\
cription
\end{tabular} & \[
+4
\] & & \\
\hline
\end{tabular}

FцハWだに が

\section*{FLOWER SCHEDULES.}

Flower of.

Flower of...
\begin{tabular}{|c|c|c|c|c|}
\hline Org & No. & Cohesion. & ADHESION. & Notes on Form, Estivation, Colour, etc. \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
Periamth. \\
Leaves.
\end{tabular}} \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
Calyx. \\
Sepals.
\end{tabular}} \\
\hline \multicolumn{5}{|l|}{\[
\begin{aligned}
& \text { Corolla. } \\
& \text { Petals. }
\end{aligned}
\]} \\
\hline \multicolumn{5}{|l|}{stamens. Filaments. Arthers.} \\
\hline \begin{tabular}{l}
Pistil. \\
Stigm \\
Styles \\
Carpel \\
Ovary
\end{tabular} & & & & - \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
Fevit. \(\mid\) Kind \(\qquad\) \\
Variety \(\qquad\) \\
Dehiscence \(\qquad\)
\(\qquad\) \\
No. of Seeds \(\qquad\) \\
Description of Seed. \(\qquad\)
\end{tabular}} \\
\hline
\end{tabular}

FLOWER SCHEDULES.
Flomer of

Flowi:e (\%)
\begin{tabular}{|c|c|c|c|c|}
\hline 118:0) & Si1. & (OHESION. & A DITESUNS. & \\
\hline \multicolumn{5}{|l|}{Perlanth.
1, atv.} \\
\hline \multicolumn{5}{|l|}{(い1) 。 Sijaly.} \\
\hline \multicolumn{5}{|l|}{Corolln. l'inls.} \\
\hline \multicolumn{5}{|l|}{} \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
1PI=111. \\
Nay Ian \\
stwox \\
Carpust. \\
Ovory-da
\end{tabular}} \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
FRIIT. \\
Kini \\
Whinculace \\
Vr. of maed \\
Emacription of sevl
\end{tabular}} \\
\hline
\end{tabular}

\section*{FLOWER SCHEDULES.}

Flower of.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Organ.} & No. & Coheston. & Adhesion. & Notes on For & Estivation, Colour, etc. \\
\hline \multicolumn{2}{|l|}{Perianth. Leaves.} & & & - & & \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Calyx. \\
Sepals.
\end{tabular}} & & & & & \\
\hline \multicolumn{2}{|l|}{Corolla. Petals.} & & & & & \\
\hline \multicolumn{2}{|l|}{Stamens. Filaments. Anthers.} & & & & & \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Pistil. \\
Stigmas. Styles. Carpels. Ovary-cells.
\end{tabular}} & & & & & \\
\hline Fieit. & \begin{tabular}{l}
Kin \\
Va \\
Deh \\
No \\
Des
\end{tabular} & d. \(\qquad\) iety iscen of cript & ed & & & \\
\hline
\end{tabular}

Flower of

\section*{FLOWER SCHEDULES.}

Flower of

Flowea of
\begin{tabular}{|c|c|c|c|c|}
\hline ()homs. & Nu. & Conestos. & Admeshon. & \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
Perlamols. \\
Leser*.
\end{tabular}} \\
\hline \multicolumn{5}{|l|}{\[
\begin{gathered}
\text { Cubs. } \\
\text { Separis. }
\end{gathered}
\]} \\
\hline \multicolumn{5}{|l|}{Curolla.
l'ials.} \\
\hline \multicolumn{5}{|l|}{- fomeñ. Firaments. A.shers.} \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
1010. \\
Megmian Siylo. C'arpels. Ovaryiols.
\end{tabular}} \\
\hline IRIIT. & \begin{tabular}{l}
iety \\
\(\mathrm{i}+\mathrm{F}+\mathrm{I} 2\) \\
of Sert \\
ripti
\end{tabular} & \(\mathrm{C}!\) & & \\
\hline
\end{tabular}

FLOWER SCHEDULES.
Flower of

Flower of
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Organ.} & No. & Cohesion. & Adhesion. & Notes on Fo & Estivation, Coludr, etc. \\
\hline \multicolumn{7}{|l|}{Perianth. Leaves.} \\
\hline \multicolumn{7}{|l|}{\begin{tabular}{l}
Calyx. \\
Sepals.
\end{tabular}} \\
\hline \multicolumn{7}{|l|}{Corolla. Petals.} \\
\hline \multicolumn{7}{|l|}{stamens. Filaments. Anthers.} \\
\hline \multicolumn{7}{|l|}{\begin{tabular}{l}
Pistil. \\
Stigmas. Styles. Carpels. Ovary-cells.
\end{tabular}} \\
\hline \multicolumn{7}{|l|}{\begin{tabular}{l}
FIEEIT. \\
Kind \\
Variety \\
Dehiscence \\
No. of Seeds \(\qquad\) \\
Description of Seed
\end{tabular}} \\
\hline
\end{tabular}

\section*{FLOWER SCHEDULES．}

Flower ur
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Hrgin．} & So． & Cohismes． & Amuesion． & Notes on Fors & Tismathos，Conotr，etc． \\
\hline \multicolumn{7}{|l|}{\begin{tabular}{l}
IPeriandill． \\
L．enees．
\end{tabular}} \\
\hline \multicolumn{7}{|l|}{\begin{tabular}{l}
（a）：。 \\
Lejals．
\end{tabular}} \\
\hline \multicolumn{7}{|l|}{Corolla． l＇elals．} \\
\hline \multicolumn{7}{|l|}{\begin{tabular}{l}
stamens． \\
\(\because\)＂i aments． \\
Abthers．
\end{tabular}} \\
\hline \multicolumn{7}{|l|}{\begin{tabular}{l}
『らいい。 \\
Nigmar． \\
Styles． \\
Carply． \\
Ovary－cells．
\end{tabular}} \\
\hline \multicolumn{6}{|l|}{\begin{tabular}{l}
JRIIT．Kinul \(\qquad\) \\
Variety－ \(\qquad\) \\
［h．hincence． \\
Ni．，of Lueth \(\qquad\) \\

\end{tabular}} & \\
\hline
\end{tabular}

Faowir af

\section*{FLOWER SCHEDULES.}

Flower of

Flower of

\section*{Flural diagrams.}

Diagram of.................

Diagram of
... . ..

Jiayram uf

Dia!gram of

INiagram of

Diagram of

Thiagram of \(\qquad\)
\(\qquad\)

Jiagram of

FLORAL DIAGRAMS.

Diagram of

Diagram of...............

Diagram of...............

Diagranı of

Diagram of .

Diagram of

Diagrant of

Diagram of............ ..

\section*{INDEX OF PLANTS.}

\(\qquad\)
\(-\)

\(\qquad\)
-

\[
\begin{aligned}
& 2+1 \\
& i+2
\end{aligned}
\]
电
```


[^0]:    

