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Statistical analysis based on quantile methods is more
comprehensive, flexible and less sensitive to outliers when
compared to mean methods. Joint disease mapping is useful
for inferring correlation between different diseases. Most
studies investigate this link through multiple correlated mean
regressions. We propose a joint quantile regression framework
for multiple diseases where different quantile levels can be
considered. We are motivated by the theorized link between
the presence of malaria and the gene deficiency G6PD, where
medical scientists have anecdotally discovered a possible link
between high levels of G6PD and lower than expected levels of
malaria initially pointing towards the occurrence of G6PD
inhibiting the occurrence of malaria. Thus, the need for flexible
joint quantile regression in a disease mapping framework
arises. Our model can be used for linear and nonlinear effects
of covariates by stochastic splines since we define it as a latent
Gaussian model. We perform Bayesian inference using the R
integrated nested Laplace approximation, suitable even for
large datasets. Finally, we illustrate the model’s applicability by
considering data from 21 countries, although better data are
needed to prove a significant relationship. The proposed
methodology offers a framework for future studies of
interrelated disease phenomena.
1. Introduction
Malaria is considered a leading cause of mortality worldwide, and
the disease is most prominent in Africa. It has been estimated
that malaria affected about 219 million people and caused
around 435 000 deaths in 2017 [1]. The Malaria Atlas Project [2]
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provides a global database on malaria risk in order to solve critical questions. This project disseminates

free, accurate and up-to-date geographical information on malaria and associated topics. One of its
research outputs points out a relationship between malaria and glucose 6 phosphate dehydrogenase
(G6PD) deficiency, a genetic disorder that affects red blood cells. The G6PD is a gene that provides
instructions for making the glucose-6-phosphate dehydrogenase enzyme. The research by the Malaria
Atlas Project found that G6PD deficiency is common in populations that have a high level of malaria
infection [3]. Studies dating back to the early 1960s [4,5] postulated that G6PD deficiency inhibits the
occurrence of malaria. The reasoning was that G6PD deficiency leads to the accumulation of oxygen
radicals inside red blood cells (H2O2). This accumulation offers resistance against malaria infection
because the Plasmodium falciparum parasite (the parasite that causes malaria) does not have any
antioxidant mechanism, which makes it more vulnerable to oxygen radicals [6,7]. The hypothesis that
G6PD deficiency provides some protection against P. falciparum malaria was further supported by a
review by Greene [8], based on experimental and population studies. At the same time, it was
acknowledged that there are not enough data in population studies, due to limited sample sizes, to
produce concluding evidence [8,9]. However, there are opposing arguments, also based on limited
population studies, stating that G6PD deficiency by itself is unlikely to produce a significant
protection against malaria (see [10]). In 1995, Ruwende et al. [11] suggested, from two case-control
studies of more than 2000 African children, that G6PD deficiency reduced the risk of severe malaria
by around 50%. In 2017, a systematic review by Mbanefo et al. [12] based on a selection of 28 various
studies arrived at the conclusion that G6PD deficiency could potentially offer some protection against
uncomplicated malaria, but less likely so for severe malaria.

Following the results of Allison & Clyde [5] and Beutler [9], it is of interest to perform a statistical
inference of such a relationship between diseases and quantify the uncertainties involved. A joint
mean regression disease mapping model could provide insights into how the mean risk of malaria is
correlated with the mean risk of G6PD. However, to analyse the anecdotal evidence regarding the
hypothesized link between the diseases we need to investigate the correlation between different risk
quantiles instead of the means. We thus need a joint quantile disease mapping approach where
different quantiles can be considered. In the framework of disease mapping, the number of cases is a
discrete random variable most often modelled as a Poisson random variable where the risk is
modelled instead of the actual count by including an offset for the exposure. Multivariate (or joint)
disease mapping provides insights as to the risk of multiple diseases and their correlation with each
other on the mean level and is described in detail by Martínez-Beneito & Botella-Rocamora [13]. As
far as the authors are aware, there is no available literature on joint quantile disease mapping,
to which we aim to contribute in this study.

Quantile regression was introduced by Koenker & Bassett [14]. Since then quantile regression has
been widely used, also in Bayesian spatial analysis by Reich et al. [15]. Moreover, spatial quantile
regression is widely used with other applications ranging from modelling of wildfire risk [16] to
studying healthy life years expectancy [17] to economics [18]. In most works, however, the response
variable is assumed to be continuously distributed and the asymmetric Laplace distribution (ALD)
likelihood [19] is used to model the quantiles, irrespective of the data-generating distribution. This
provides a non-parametric approach for quantile regression which seems feasible in most cases.
However, the ALD approach inherently assumes that the data are continuous. In the case of disease
mapping, the data are always discrete. A naive application of the ALD to discrete data often results in
quantile crossing, since the resulting interpolation does not respect the discreteness of the data.
Various works have been proposed that suggest different approaches to smooth and interpolate the
data to a certain degree such as jittering by Machado & Silva [20] and density regression by Canale &
Dunson [21]. Recently, Liu et al. [22] proposed a quantile regression model for discrete data by
developing a discrete version of the ALD likelihood function. These approaches however cannot be
applied to disease mapping directly due to the exposure difference between observational units that
should be incorporated into the model directly. Even though quantile regression is often used to
circumvent parametric assumptions and restrictions, in disease mapping the parametric model is
necessary and should be respected by the quantile regression model. Model-based quantile regression
has been used by Chambers et al. [23] to develop a negative binomial regression α-quantiles approach
with an ecological regression model for application to disease mapping of lip cancer.

We propose a model-based joint quantile disease mapping model where disease counts are assumed
to follow a Poisson distribution with appropriate exposure levels, and the quantiles of the risks are
modelled jointly. The likelihood is constructed from a continuous approximation of the Poisson
likelihood enabling the linking of the quantile regression model to the canonical parameter of the
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likelihood. We perform the Bayesian inference of this model using the integrated nested Laplace

approximation (INLA) approach [24] as to put forth a practical, efficient and accurate framework for
joint quantile disease mapping to practitioners. Most Bayesian approaches are based on Markov chain
Monte Carlo (MCMC) methods but they suffer from convergence issues and/or impractical
computation times. INLA has been shown to achieve the accuracy of MCMC methods with much less
computational cost (in terms of time and memory requirements) [24–26].

Disease mapping and some details are presented in §2 where we include the case of joint disease
mapping through multiple correlated mean regressions. Then we introduce the model-based quantile
regression model for counts in §3 and show some properties with simulation studies. After extending
model-based quantile regression model for counts to the disease mapping framework for one disease
in §3, the joint quantile disease mapping model is proposed in §4 and applied to the data of malaria
and G6PD deficiency cases in §5. The paper is concluded with some discussion of the contributions,
shortcomings and possible future extensions in §6.
R.Soc.Open
Sci.11:230851
2. Disease mapping
2.1. Introduction
Disease mapping, also known as spatial epidemiology, analyses the incidence of disease using
geographical information thus describing the spatial variation of a disease. The two characteristics of
disease mapping are the location of the events, which is called spatial or geographical distribution,
and the disease itself. The Poisson distribution is often used to model the incidence of diseases by
taking the difference in exposure of observational units into account. For a region that consists of n
non-overlapping areas, let yi denote the number of cases in region i. Often yi is assumed to be
distributed as

yi � PoissonðmiÞ, ð2:1Þ
where μi is the mean and the variance of yi. The mean function often consists of two components. The
first component is usually called the relative risk, which represents the risk within a region; it is
unknown and the purpose of this work to estimate these values. The second component is usually
called standardization, where the different exposures are taken into account. The expected local count
is the value that represents our expected incidence if the population behaved locally in a similar way
as globally. The expectation of the cases in region i can be written as follows:

EðyiÞ ¼ mi ¼ Eili, ð2:2Þ
where Ei is the expected incidence for the ith area and λi is the relative risk for the ith area [27]. The
expected number can be obtained by using indirect standardization, as follows:

Ei ¼
Xm
j¼1

rðsÞj nðiÞj , ð2:3Þ

where nðiÞj is the number of experimental units in stratum j of area i, m is the total number of strata and rðsÞj
denotes the disease rate in stratum j of the standard population. The disease rates rðsÞj in Ei for each
stratum j are not known; they are estimated from the aggregate population data as in equations (2.4),
(2.5) and (2.6):

rðsÞj ¼
Pn

i¼1 yijPn
i¼1 nij

ð2:4Þ

where yij is the number of cases in stratum j of area i, and nij is the number of experimental units in
stratum j of area i. We can express the disease rates in another form as follows:

rðsÞj ¼
yðsÞj
nðsÞj

, ð2:5Þ

where yðsÞj is the number of cases in stratum j of the standard population, and nðsÞj is the number of
experimental units in stratum j of the standard population. In applications where strata information is
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not available, the disease rates can be computed simply as

rðsÞ ¼
Pn

i¼1 yiPn
i¼1 ni

, ð2:6Þ

where yi is the number of cases of area i, and ni is the number of experimental units in area i. A discussion
about the expected number for all regions, which we denote by Ei, is necessary. The previously defined
disease rates somewhat oversimplify the situation by treating Ei as a fixed value, even when it is reliant
on our estimation of r(s). However, as the number of regions n grows, this approximation becomes less
significant. It is also worth noting that the main purpose of defining r(s) is to determine the grand
intercept, m0, which is not of major interest in this context [28].

Note that λi = 1 means there is no augmented or lower risk in comparison with the whole study area
while λi > 1 and λi < 1 indicate higher risk and lower risk than the average, respectively. The maximum
likelihood estimator of λi is l̂i ¼ yi=Ei, which corresponds to the standardized mortality ratio (SMR).
However, mapping SMRs directly is misleading and insufficient for regions with small populations
[28]. Therefore, the covariates need to be incorporated in order to smooth extreme values because of
the small sample sizes by borrowing information from neighbouring regions.
pen
Sci.11:230851
2.2. Model specification
The model considered in this work for disease mapping is formulated as follows:

yijli � PoissonðEiliÞ, i ¼ 1, . . . , n

and

logðliÞ ¼ hi ¼ m0 þ
XF
f¼1

bfXif þ
XR
r¼1

rrðZirÞ þ bi,

where ηi is the additive linear predictor, m0 is the intercept and βf is the fixed effect of the covariate Xi f.
Random effects such as splines for nonlinear effects of covariates Zi are included through the functions
frrgRr¼1. These nonlinear effects are Gaussian models with specific covariance structures such as random
walk models, autoregressive models, frailty models, spatial models and so on (see [29] for more details).
The spatial effects are denoted by b.

For the spatial effects, b, different spatial models for areal data can be assumed, such as Besag model
[30], Besag–York–Mollie (BYM) model [30], Leroux model [31] or Dean’s model [32].

The BYM model combines an unstructured random effect v, with precision parameter τv, to capture
over- or underdispersion and measurement error, often assumed as an IID term (independent and
identically distributed), with a spatially structured effect u, with precision parameter τ, often assumed
as a Besag term. The dependence structure of u is defined through the precision matrix Q as

Qii ¼ tni and Qij,i�j ¼ �t, ð2:7Þ
where i∼ j denotes the neighbourhood of region i, ni denotes the number of neighbours of region i and τ
is a precision parameter. A traditional Besag model is improper by construction since it is intrinsic, so a
proper version of the Besag model has been proposed such that the precision matrix is full rank by
adding a small value to the diagonal, as follows:

Qii ¼ tðni þ dÞ and Qij,i�j ¼ �t, ð2:8Þ
with d > 0 for an non-intrinsic model and d = 0 for the intrinsic version.

Each term in the BYM model has a precision parameter but these cannot be compared directly since
they are only precision parameters and not the marginal precisions. For interpretability
and identifiability, a reparametrization of the BYMmodel was proposed by Simpson et al. [33], as follows:

bi ¼ 1ffiffiffiffi
tb

p
ffiffiffiffi
f

p
u�i þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1� f

p
v�i

� �
, ð2:9Þ

where ϕ is a weight parameter interpreted as the proportion variation explained by the spatially
structured term in bi, and u� and v� are scaled to have a precision matrix with a generalized variance
of 1 as proposed by Sørbye & Rue [34].
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In the framework of this disease mapping model, we define the latent field as

V ¼ fm0, b, r, bg,
and the set of hyperparameters θ are cascaded from the fixed effect precisions τm, tb and parameters from
the random effects ρ as well as those from b.

From this construction, the data y are conditionally independent given the latent field and the
hyperparameters, such that the likelihood function is

pðV, ujyÞ ¼
Yn
i¼1

f ðyijV, uÞ, ð2:10Þ

such that the linear predictors are linked to the latent field through the design matrix A as

h ¼ AV:
R.Soc.Open
Sci.11:230851
2.3. Prior specification and posterior propriety
We assume prior independence among the parameters and, as such, we assign centred Gaussian priors
with specific precisions to the latent field elements, and various other priors to the hyperparameters as
set out next.

For the latent field elements, we assume the following:

m0 � Nð0, tmÞ, bjtb � Nð0, tbIÞ
and rjur � Nð0, QrÞ, bjub � Nð0, QbÞ,

ð2:11Þ

so that the joint prior for this part of the latent field is

Vju � Nð0, QðuÞÞ,
where V ¼ ðm0, b, r, bÞT is the latent field, u ¼ ftm, tb, ur, ubg, and the precision matrix Q(θ) has a block
diagonal structure as formed from (2.11). The structure ofQr is determined by the specific random effects
like an autoregressive model or a spline model while Qb is constructed to reflect the BYM or proper Besag
model structure as in (2.9) and (2.8), respectively.

The vector of hyperparameters, u, is assigned a joint prior pðuÞ, which is composed of independent
marginal proper priors of any shape (not necessarily Gaussian). Often we use penalizing complexity
priors to ensure against overfitting [33].

The joint posterior of the unknown parameters V and u from (2.10) and (2.11) is

pðV, ujyÞ/ pðyjV, uÞpðVjuÞpðuÞ,
and based on the prior structures, the posterior propriety holds.
2.4. Approximate inference using INLA
Computational Bayesian inference can be achieved largely in one of two ways, either through sampling-
based methods like MCMC and deviants or approximately using approximate methods like variational
methods or Laplace approximations like the INLA. INLA, as introduced by Rue et al. [24], has been
shown to be widely applicable to various statistical models; in particular, to the latent Gaussian
models class in which disease mapping models are included [35–38].

INLA employs a series of Laplace approximations and numerical integration to perform approximate
Bayesian inference through numerically approximating the posterior densities of the latent field and
hyperparameters. Since its inception, various advances have been proposed and the latest techniques
in the INLA methodology are described by Van Niekerk et al. [25] and Gaedke-Merzhäuser et al. [26].
For convenience, we briefly summarize the methodology.

For data y, latent field V, and hyperparameters θ, the INLA methodology can be summarized as
follows:

(i) Find the m-variate Gaussian approximation of pðVju, yÞ at the mode mðuÞ of pðVju, yÞ, with
matching curvature using the Hessian of pðVju, yÞ at the mode mðuÞ.
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(ii) Let

~pðujyÞ/ pðV�, ujyÞ
pGðV�ju, yÞ

����
V�¼mðuÞ

: ð2:12Þ

We locate the mode of ~pðujyÞ, from which we construct a set of T integration points u� in the area
of the highest probability mass of ~pðujyÞ.

(iii) Calculate

~pðujjyÞ ¼
ð
u�j

~pðujyÞdu�j, ð2:13Þ

where we note that this is a low-dimensional integral since p is generally small.
(iv) Now define

~pðViju�k , yÞ �
pðV�, u�k jyÞ

pGðV�
�ijVi, u�k , yÞ

����
V�

�i¼m�iðu�k Þ
, ð2:14Þ

with pGðV�
�ijVi, u�k , yÞ the (m− 1)-variate Gaussian approximation at the mode m�iðuÞ for the T

configuration points u�k , k ¼ 1, 2, . . . , T, and calculate the posterior marginal densities of the
latent field as

~pðVijyÞ �
XT
k¼1

~pðViju�k , yÞ~pðu�k jyÞDk, ð2:15Þ

where ~pðu�k jyÞ is from step (iii), with Δk the step size.

Various simplifications to the approximations have been proposed as well in order to achieve increased
computational efficiency, such as an empirical Bayes approach where the integration points uk are all set
to the mode of ~pðujyÞ, termed the simplified Laplace approximation strategy. A recent advance is to use only
the first Laplace approximation in step (ii). Then, instead of the second Laplace approximation in step
(iv), the univariate conditional posteriors of Vi are crudely extracted from aforementioned Laplace
approximation, whereafter a mean and variance variational Bayes correction is employed to improve
the accuracy. These details can be found in [25].

2.5. Joint disease mapping
Sometimes specific diseases have similar spatial patterns due to sharing the same aetiologies. In this case,
these diseases have some dependence, and it would be naive and misleading to model them separately.
Thus, joint disease mapping is proposed to obtain improved estimates and model dependence in an
appropriate manner. There are two common joint disease mapping approaches. Firstly, ecological
regression, where the rate of one disease enters as a covariate in the risk regression of another disease.
This approach assumes that the risk is measured without any error. Secondly, the shared component
model (SCM), where a shared component is included in the risk regression of both diseases and
information of both diseases is used to estimate the models. The joint disease mapping model based
on a SCM for two diseases (the extension is trivial for more diseases) can be formulated for region i as

yi1jli1 � Poisson (Ei1li1),

yi2jli2 � Poisson (Ei2li2),

logðli1Þ ¼ m1 þ
XF1
f¼1

bfXif þ
XR1

r¼1

rrðuirÞ þ bi1 þ Si

and logðli2Þ ¼ m2 þ
XF2
f¼1

gfZif þ
XR2

r¼1

jrðvirÞ þ bi2 þ aSi,

where md is a disease-specific intercept for disease d, βf is the fth fixed effect for disease 1 with covariate
X f , γf is the fth fixed effect for disease 2 with covariate Zf , ρ

r is the rth random effect of disease 1 with
covariate ur, ξr is the rth random effect of disease 2 with covariate vr, bi d is a disease-specific spatial
random effect (a BYM or Besag term), and Si is the shared spatial random effect with a proper Besag
prior as in (2.8) with parameters τ and d. Here, a and S can be used to evaluate the spatial
dependence between the two diseases while bd presents the spatial dependence within each disease.



(a) (b)

Figure 1. One realization of cases of disease 1 (a) and disease 2 (b) under the correlated setup by using joint disease mapping.
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The prior we assume for a is Gaussian with mean 0 and variance 1. All other priors are assigned as
described in §2.3.

In the framework of joint disease mapping we have a larger latent field since we define V as

V ¼ fm1, m2, b, g, r, j, b1, b2, Sg,
and again we collect all hyperparameters in u, including a. By defining this extended latent field and
hyperparameter set, the model can be identified as another latent Gaussian model; thus, we can use
INLA for the Bayesian inference thereof. We omit the technical details of the latent Gaussian model
development for joint models (models with more than one likelihood and regression model) and refer
the interested reader to Van Niekerk et al. [39] for these details.
 1
2.6. Simulation study
The code for this simulation study is available at https://github.com/JanetVN1201/Code_for_papers/
tree/main/Joint%20quantile%20disease%20mapping%20.

In this simulation study, we simulate two sets of data: one in which the two diseases are correlated
and another in which the diseases are independent. We use the regions of Pennsylvania as our area of
interest; there are 67 connected regions within this area. The model that we postulate is

yi1jli1 � Poisson (li1) with logðli1Þ ¼ m1 þ bi1 þ Si
and yi2jli2 � Poisson (li2) with logðli2Þ ¼ m2 þ bi2 þ aSi,

ð2:16Þ

where b1, b2 and S are proper Besag terms as in (2.8) with parameters τ1, d1, τ2, d2, τ and d, respectively.
The assigned vague priors are

m1, m2 � Nð0, 1000Þ, t1, t2, t � Gammað1, 0:0005Þ
and

d1, d2, d � Gammað1, 1Þ, a � Nð0, 1000Þ:
The correlated data are simulated based on the following relative risk models:

yi1jli1 � Poisson (li1) with logðli1Þ ¼ 1þ Si

and

yi2jli2 � Poisson (li2) with logðli2Þ ¼ 1þ 0:7Si,

where Si is the shared component that follows a proper Besag model (2.8) with precision parameter τ = 1
and d = 1.

Figure 1 shows one realization of the simulated correlated data. We considered 20 realizations as our
dataset (without loss of generality). Even though the data are simulated without disease-specific spatial
effects, we include the disease-specific spatial effects in our model to ascertain if the model can
distinguish between the two sources of spatial variation (shared and non-shared).

The independent data were generated as follows:

yi1jli1 � Poisson (li1) with logðli1Þ ¼ 1þ bi1
yi2jli2 � Poisson (li2) with logðli2Þ ¼ 1þ bi2,

where bi1 and bi2 are proper Besag terms with parameters τ1 = 1, d1 = 1, τ2 = 1 and d2 = 1.

https://github.com/JanetVN1201/Code_for_papers/tree/main/Joint%20quantile%20disease%20mapping%20
https://github.com/JanetVN1201/Code_for_papers/tree/main/Joint%20quantile%20disease%20mapping%20


Table 1. Posterior inference for model (2.16) with correlated and independent data.

correlated data independent data

parameter true mean 95% credible interval true mean 95% credible interval

m1 1 1.11 (1.020; 1.776) 1 1.109 (1.015; 1.202)

m2 1 1.029 (0.958; 1.099) 1 0.965 (0.865; 1.065)

τ1 — 2060 (257.9; 8120) 1 1.33 (0.869; 1.96)

d1 — 1.165 (0.139; 3.92) 1 0.823 (0.299; 1.84)

τ2 — 2674 (338.4; 1100) 1 1.423 (0.914; 2.10)

d2 — 1.515 (0.088; 7.17) 1 0.682 (0.237; 1.60)

τ 1 1.236 (0.778; 1.81) — 2955 (3.641; 20763)

d 1 1.089 (0.384; 2.68) — 1.195 (0.235; 3.15)

a 0.7 0.703 (0.553; 0.849) — 1.006 (0.432; 1.62)

Table 2. Model selection criteria for model (2.16) with correlated and independent data; italics indicate the better fit.

correlated data independent data

model DIC WAIC DIC WAIC

model for λi1 only 5515 5502 5498 5498

model for λi2 only 5199 5208 5457 5444

sum of theseparate models 10714 10710 10955 10942

joint mean model 10543 10519 10985 10964

royalsocietypublishing.org/journal/rsos
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The estimated values of the parameters obtained by INLA are similar to the true values, as shown in
table 1. Note that the estimated values of τ1 and τ2 are very large for the correlated data, indicating a very
small marginal variance of the disease-specific spatial effect and thereby negating the inclusion of these
effects as expected. For the independent data, the estimated value of τ is large hence negating the
inclusion of the shared component.

The deviance information criterion (DIC) and the Watanabe–Akaike information criterion (WAIC)
[40] are presented in table 2. These model selection criteria show a preference for the joint model
when the data are correlated and a preference for separate models, which is (2.16) without the shared
components S, when the data are independent. This indicates stable estimation and the model’s
ability to distinctly estimate an associated joint model if needed, while not overfitting when the model
should not have been specified jointly.
3. Model-based quantile regression
3.1. Introduction
Quantile regression models the conditional quantile of the response variable given the explanatory
variables, instead of the conditional mean. Let Y be a real valued random variable. The αth quantile
of Y is given by

QðaÞ ¼ F�1ðaÞ ¼ inffy : FðyÞ � ag for 0 � a � 1,

where F(y) = P(Y≤ y) is the cumulative distribution function (CDF) of the random variable Y. As in mean
regression, a loss function is used in order to infer the parameters. The loss function most often used in
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the framework of quantile regression is the check loss function. Given that 0≤ α≤ 1, 8u [ R, the quantile

loss function is defined as

raðuÞ ¼ ua u � 0
uða� 1Þ u , 0:

�

An estimate of the αth quantile of the random variable Y can be obtained by minimizing the following
risk function:

argmin
qa[R

E [ra(Y� qa)], ð3:1Þ

where qα is the αth quantile of the random variable Y. However, when the quantile qa is influenced by the
explanatory variables X∈Rp, it is referred to as the αth conditional quantile. This relationship can be
articulated as qa ¼ QaðY j XÞ, which can be formally represented by

QaðY j XÞ ¼ X`ba,

where the vector ba encompasses the coefficients that need estimation for the αth quantile. The estimate
of the conditional quantile is called quantile regression. The quantile regression models the relationship
between X and the quantile of Y. The estimate of the quantile regression can be written as

q̂a ¼ argmin
qa[R

E [ra(Y� qa)], ð3:2Þ

such that Fðq̂aÞ ¼ a. This approach encompasses the use of the ALD for quantile regression in a non-
parametric fashion since the optimization in (3.2) is independent of the shape of F. The use of the
ALD likelihood is justified by the fact that the corresponding maximum-likelihood estimator coincides
with the optimum defined in (3.1). However, although this choice may seem appealing due to the
apparently weak modelling assumption on the response, the ALD may not represent the shape of the
data; thus it is a working likelihood and not a generative one. Adopting the ALD imposes several
restrictions that may not be obvious or desirable in applications: the skewness of the density is fully
determined when a specific percentile is chosen, the density is symmetric when α = 0.5, and the mode
of the error distribution is at 0 regardless of α, which results in rigid error density tails for extreme
percentiles [41].

The limitations of using a working likelihood are even more critical in the Bayesian framework, where
the lack of a generating likelihood implies that the validity of posterior inference is no longer guaranteed
by the Bayes theorem. As shown by Yang et al. [42], the scale parameter of the ALD affects the posterior
variance, despite not having any impact on the quantile itself, meaning that posterior credibility intervals
are not stable. Although some corrections for the posterior variance can be found in the literature, for
example in [42], these results are only asymptotically valid.

In the case of disease mapping, we do not have a real valued response variable Y, resulting in a
discontinuous quantile function Q(α). Thus the optimization in (3.2) leads to multiple solutions.
Various proposals to induce smoothness in the quantile function can be found in the literature by
mainly either jittering or interpolation. However, these approaches often lead to quantile crossing
since a new smoothing is needed for each α. Liu et al. [22] proposed a discrete version of the ALD for
discrete data, which also induces quantile crossing unless multiple quantiles are modelled jointly,
which is not feasible with their MCMC based approach.

Often, the response variable distribution is specified parameterically and is not in question, like in
disease mapping. In geostatistics, Leiva et al. [43] propose a quantile regression model based on the
Birnbaum–Saunders distribution often used in this field. When the parametric assumptions are not
challenged, a model-based approach to quantile regression seems more intuitive than invoking an
approximate likelihood with extra unknown parameters. Moreover, by linking the quantile to the
canonical parameter of the distribution, we can gain more insight into the data itself.

We focus on the case where we can assume the true generating model is known. As opposed to mean
regression, where generalization of the basic linear model heavily relies on the response distribution, in
quantile regression, this is a relatively unexplored strategy, with the notable exceptions of Noufaily &
Jones [44], Opitz et al. [45], Castro-Camilo et al. [46] and Frumento & Salvati [47]. We refer to this
setting as model-based quantile regression.

For a principled Bayesian analysis using quantile regression for discrete data, we need an approach
that respects the form of the underlying data, is not prone to quantile crossing, and is computationally
efficient to implement. Hence, we propose model-based quantile regression.
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3.2. Proposal

Model-based quantile regression is an approach for quantile regression that considers the quantiles of the
generating distribution instead of a working likelihood. This approach extends the generalized linear
mixed model (GLMM) framework from modelling means to modelling quantiles. Our proposal is
comprised of two stages: firstly, a generalized additive mixed model (GAMM) for the quantile with
an invertible link function g(), and secondly, the quantile is mapped to the canonical parameter of the
distribution through a mapping function h().

This approach can be used in both frequentist and Bayesian frameworks. The parameters of a model-
based quantile regression model are all identifiable, which is not the case when the ALD and its
variations are employed.

Let F(yi, λi) be the distribution of Yi|Xi, for i = 1,…, n, where λi is the canonical parameter of the
distribution. Given 0≤ α≤ 1, the αth quantile of Yi|Xi is qi,α =Qα (Yi|Xi). The model-based quantile
regression model is constructed as follows:

Step 1. Modelling
The quantile qi,α of the distribution F(yi, λi) is modelled as follows:

qi,a ¼ g(hi,a),

where g is an invertible function, and ηi,α is the linear predictor for the αth quantile of the response
variable for the ith observation. The linear predictor can include fixed effects, random effects or both.
Moreover, parametric or semi-parametric models can be included in this approach in order to study
the impact of the covariates at different levels of the distribution and non-parametric models can be
used for prediction.

Step 2. Mapping
The quantile qi,α is mapped to the parameter λi of the distribution F(yi, λi) as

li,a ¼ h(qi,a), ð3:3Þ
where h is an invertible mapping function. This function h is derived by inverting the CDF of F(yi, λi) to
obtain the quantile function and subsequently expressing λi as a function of the quantile.

In this approach, the parameter λi is modelled implicitly, by explicitly modelling the quantile and
invoking the functions g() and h(). Unlike mean regression, when the parameter of the generating
distribution links to the linear predictor through a function λi = g(ηi), where ηi represents the linear
predictor for the expected value (mean) of the response variable for the ith observation, in model-
based quantile regression the parameter of the generating distribution is linked to the linear predictor
through a composition function λi,α = h(g(ηi,α)).
3.3. Model-based quantile regression for discrete data
The extension of model-based quantile regression for discrete random variables is not straightforward,
since the objective function in (3.1) is non-differentiable for discrete random variables. The positive
mass of the points for the discrete variable prevents the sample quantile from having an asymptotic
distribution. Additionally, it is not easy to apply the modelling and mapping steps of model-based
quantile regression, as described in §3.2, to discrete data. First, in the modelling step, the common
models for g are the log for count data and the logit for binary data; these are continuous functions.
Therefore, the model qi,α = g(ηi,α) is not appropriate, since the quantile on the left-hand side is discrete
whereas the function g is continuous. Additionally, the map h is troublesome to derive since the CDF
is non-invertible, which implies that there is no unique λi to generate each quantile.

To address these issues, we approximate the distributions for discrete data by deriving continuous
counterparts, and then model the quantiles of the continuous version instead of the discrete. The
continuous counterpart is obtained by interpolating the CDF of the discrete random variable in a way
that respects the original shape. The model-based quantile method can be applied to discrete variables
if their CDF can be expressed as

FYðy, lÞ ¼ PðY � yÞ ¼ kðbyc, lÞ,
where k is a continuous function, and Y is a discrete random variable. The interpolation can be obtained
by removing the floor operator, so that k(y, λ) is the CDF of the continuous version of Y, denoted by Y

0
. By
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the definition of the floor operator, for all integers y,

FYðy, lÞ ¼ kðbyc, lÞ ¼ kðy, lÞ ¼ FY0 ðy, lÞ: ð3:4Þ

The (continuous) distribution of Y0 is considered as a continuous generalization of the discrete variable Y
because the respective CDFs are equal for all integer values y. While modelling the quantiles of a
continuous approximation implies that the fitted quantiles curves are not discrete, the equivariance
property of quantile guarantees that

QaðY j XÞ ¼ QaðdY0e j XÞ ¼ dQaðY0 j XÞe, ð3:5Þ

where X are explanatory variables ∈Rp. We highlight that our proposal allows for any type of inferential
procedure on the quantile curves, as opposed to other likelihood-based methods working on the ALD
assumption, which are limited to point estimation. Hypothesis testing and confidence intervals can be
approached asymptotically by deriving a limiting distribution for the estimator of the quantile curves.
In order to do so, it is enough to note that the link function obtained by composition of the modelling
and mapping steps is monotone and differentiable; as a consequence, it follows directly from the delta
method that the maximum-likelihood estimators of the quantile curves cQa

ðMLEÞðY j XÞ for every α are
asymptotically Gaussian [48].

In the next section, we present the details for count data assumed to follow a Poisson distribution. The
details for binomial and negative binomial data are provided in appendix A.
3.3.1. Continuous Poisson

Here, we present details on the approximation of the discrete Poisson distribution with a continuous
Poisson (CP) counterpart.

The CDF of a Poisson distribution can be expressed as the ratio of an incomplete and regular Gamma
function, as follows:

Yjl � PoissonðlÞ FYðyÞ ¼ PðY � yÞ ¼ Gðbyc þ 1, lÞ
Gðbyc þ 1Þ y � 0 ð3:6Þ

where Gðy, lÞ ¼ Ð1
l e�ssy�1 ds is the upper incomplete Gamma function. Following §3.3, the CP is then

defined from (3.6) as

Y0jl � Continuous PoissonðlÞ FY0 ðyÞ ¼ P(Y0 � y) ¼ Gðyþ 1, lÞ
Gðyþ 1Þ y . �1:

The reason for changing the support from y≥ 0 to y >−1 is to avoid mass at 0, so there will be no jump in
the CDF of the CP, as illustrated in figure 2. The CP and discrete Poisson random variables can be related
as Y ¼ dY0e. The CDF and quantile function of the Poisson and CP are illustrated in figure 2 for specific
values of y, λ and α, and the properties in (3.4) and (3.5) are evident. The model-based quantile regression
model for Poisson data is then defined for Yi|ηi, a continuous Poisson random variable with parameter
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λi, as

qi,a ¼ g(hi,a) ¼ exp {hi,a}

and li,a ¼ h(qi,a) ¼ G�1(qi,a þ 1, 1� a)
G(qi,a þ 1)

:
ð3:7Þ
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3.3.2. Model-based quantile regression for disease mapping

From §§3.2 and 3.3, we can define a model-based quantile regression model for disease mapping. One
issue that remains is how to decompose the expected number of cases into the local expectation, Ei,
and the relative risk λi. In the case of modelling the quantile instead of the mean, there are two options:

— Include Ei in the linear model as an offset:

qi,a ¼ exp {hi,a þ log (Ei)} ¼ Ei exp {hi,a}

and li,a ¼ G�1(qi,a þ 1, 1� a)
G(qi,a þ 1)

:
ð3:8Þ

— Consider Ei as a scaling of the parameter of the distribution:

qi,a ¼ exp {hi,a}

and li,a ¼ Ei
G�1(qi,a þ 1, 1� a)

G(qi,a þ 1)
:

ð3:9Þ

These two approaches are equivalent in Poisson mean regression, but not equal in Poisson quantile
regression; thus, the choice of approach depends on the purpose of the analysis. If the focus of the
study is to infer a quantile-specific model, then (3.8) is more appropriate; whereas (3.9) can be
considered as a model for the parameter λi.

3.4. Properties
As mentioned, various approaches exist for the modelling of quantiles of discrete data. Here, we pose our
proposal of model-based quantile regression against the approach of Machado & Silva [20] which is
based on jittering as a means of interpolation embedded in the R package Qtools. The code for this
investigation is available at https://github.com/JanetVN1201/Code_for_papers/tree/main/Joint%
20quantile%20disease%20mapping%20.

As a toy example, we simulate a sample of size 70 from a Poisson distribution with

li ¼ expð1þ 0:5XiÞ,
where Xi was simulated from a standard Gaussian distribution. We fit the following model:

qi,a ¼ exp (mþ bXi),

for various 0 < α < 1, using both approaches and the results are displayed in figure 3. The quantile
crossing that results from the jittering approach is clear, while this does not occur with the model-
based approach. Since the model-based quantile regression uses the data-generating distribution as
information, each quantile regression is informed about the other quantiles, without explicitly
modelling all quantile levels jointly. To overcome the quantile crossing phenomena in another
framework, like jittering or the discrete ALD, multiple quantile regressions should be fitted
simultaneously and a spline model can be used to smooth over them, as suggested by Wei et al. [49].
This is a cumbersome and time-inefficient process for a practitioner, that can be circumvented by
adopting the model-based quantile regression model.

As a further analysis, we simulated 300 datasets, each with sample size 70 from a Poisson distribution
with

li ¼ expðXiÞ,
where Xi is the absolute value of a centred Gaussian random variate with standard deviation 1.5. For each

https://github.com/JanetVN1201/Code_for_papers/tree/main/Joint%20quantile%20disease%20mapping%20
https://github.com/JanetVN1201/Code_for_papers/tree/main/Joint%20quantile%20disease%20mapping%20
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dataset, different levels (α∈ {0.05, 0.1,…, 0.9, 0.95}) of the jittering and model-based quantile regression
models are fitted of the form

qi,a ¼ exp (bXi),

and the number of quantile crossings are observed. This result is displayed in figure 4, and again the
robustness against quantile crossing of the model-based quantile regression approach is clear, even for
small sample sizes (which is often the case in disease mapping).
4. Bayesian joint quantile disease mapping
The main goal of disease mapping is to estimate the relative risk of diseases across regions. Specific
diseases sometimes have similar spatial patterns due to sharing the same aetiologies. In this case,
these diseases have some dependence; thus, it would be more appropriate to model them jointly
rather than separately. Moreover, sometimes the dependence might be in different quantiles between
the diseases or some diseases could inhibit the occurrence of other diseases. The proposed joint
quantile disease mapping model links different quantiles of multiple diseases using a more general
framework by considering dependence not on the mean, but on the quantiles.
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4.1. Model specification

We present the details for two diseases, although our proposal holds for analysis of more than two
diseases. The joint quantile model for two diseases can be formulated as follows:

yi1jli1 � Poisson (Ei1li1)

yi2jli2 � Poisson (Ei2li2)

logðqi1,a1Þ ¼ hi1,a1
¼ m1 þ

XF1
f¼1

bfXif þ
XR1

r¼1

rrðuirÞ þ bi1 þ Si

and logðqi2,a2Þ ¼ hi2,a2
¼ m2 þ

XF2
f¼1

gfZif þ
XR2

r¼1

jrðvirÞ þ bi2 þ c Si,

ð4:1Þ

where λi k is the relative risk of unit i for disease k and is mapped to the αk level quantile qik,ak , as in §3.3.2.
In the modelling part, mk is a disease-specific intercept, bi k is a disease-specific spatial random effect, and
Si is the shared spatial component following a proper Besag prior as in (2.8) with parameters τ and dwith
c as the parameter that accounts for the correlation between the two diseases. The model also
incorporates fixed effects of covariates X i and Zi, respectively, using b and g, for the two diseases.
Various random effects such as splines for nonlinear effects of covariates ui and vi are included
through functions frrgR1

r¼1 and fjrgR2
r¼1, respectively.

Since a composite link function is now used to map the data to the linear predictor, as in §3.2, instead
of a simple link function as in joint disease mapping through mean regressions as in §2.5, many results
from §2 hold in terms of model specification as in §2.2, prior specifications and posterior propriety as
in §2.3.

We define the latent field

V ¼ fm1, m2, b, g, r, j, b1, b2, Sg,
and hyperparameters u ¼ fc, t, d, ur, uj, ub1 , ub2 , . . .g, whereafter the data y ¼ fy1, y2g are conditionally
independent given the latent field and the hyperparameters, such that the likelihood function can be
expressed as

pðV, ujyÞ ¼
Yn
i¼1

f ðyijV, uÞ: ð4:2Þ

As in §2.3, the prior for the latent field, pðVjuÞ, is Gaussian by construction with a block diagonal
precision matrix QðuÞ, and the prior for the hyperparameters, pðuÞ, is composed from multiple
independent priors to form the joint posterior of V and u from (4.2) is

pðV, ujyÞ/ pðyjV, uÞpðVjuÞpðuÞ,
with linear predictors h ¼ AV, and based on the proper priors, the posterior propriety holds.

We use the INLA framework to perform approximate Bayesian inference of this model (4.1), as
mentioned in §2.4, to avoid the computational cost of MCMC while maintaining the accuracy of the
posterior estimates.
4.2. Simulation study
The code for this simulation study is available at https://github.com/JanetVN1201/Code_for_papers/
tree/main/Joint%20quantile%20disease%20mapping%20.

In this section, we simulate independent and correlated data based on the map of Pennsylvania,
which is considered as a connected graph of size 67. The model we fit here is

yi1jli1 � Poisson (li1) with logðqi1,a1Þ ¼ m1 þ bi1 þ Si
and yi2jli2 � Poisson (li2) with logðqi2,a2Þ ¼ m2 þ bi2 þ cSi,

ð4:3Þ

where b1, b2 and S are proper Besag terms, as in (2.8), with parameters τ1, d1, τ2, d2, τ and d, respectively.
We assume the following vague priors:

m1, m2 � Nð0, 1000Þ, t1, t2, t � Gammað1, 0:0005Þ
d1, d2, d � Gammað1, 1Þ, c � Nð0, 1000Þ:

https://github.com/JanetVN1201/Code_for_papers/tree/main/Joint%20quantile%20disease%20mapping%20
https://github.com/JanetVN1201/Code_for_papers/tree/main/Joint%20quantile%20disease%20mapping%20
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Figure 5. One realization of cases of disease 1 (a) and disease 2 (b) under the correlated setup by using joint quantile disease
mapping.

Table 3. Posterior inference for model (4.3) with correlated and independent data.

correlated data independent data

parameter true mean 95% credible interval true mean 95% credible interval

m1 1 1.118 (1.036; 1.199) 1 1.121 (1.030; 1.21)

m2 3 3.037 (2.986; 3.088) 3 2.968 (2.892; 3.043)

τ1 — 3252 (647.5; 12400) 1 1.29 (0.783; 1.98)

d1 — 0.561 (0.094; 2.15) 1 1.22 (0.379; 3.23)

τ2 — 2598 (603.4; 6690) 1 1.05 (0.849; 1.32)

d2 — 0.473 (0.167; 1.1) 1 1.05 (0.523; 1.78)

τ 1 0.967 (0.661; 1.33) — 27822 (669.5; 190000)

d 1 1.573 (0.905; 2.68) — 1.10 (0; 7.94)

c 0.7 0.735 (0.637; 0.832) — 1.14 (0.533; 1.84)
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The correlated data were generated based on the following quantile regression models:

yi1jli1 � Poisson (li1) with logðqi1,0:2Þ ¼ 1þ Si

and

yi2jli2 � Poisson (li2) with logðqi2,0:8Þ ¼ 3þ 0:7Si,

where Si is the shared spatial component that follows a Besag proper model (2.8) with precision
parameter τ = 1 and parameter d = 1.

Figure 5 shows one realization of the correlated data that were added to the Pennsylvania map.
The independent data were generated based on the following quantile regression models:

yi1 � Poisson (li1) with logðqi1,0:2Þ ¼ 1þ bi1

and

yi2 � Poisson (li2) with logðqi2,0:8Þ ¼ 3þ bi2,

where bi1 and bi2 are proper Besag terms (2.8) with τ1 = 1, τ2 = 1, d1 = 1, and d2 = 1.
The estimated values of the parameters obtained by R INLA are similar to the true values, as shown

in table 3. For the correlated data (where no disease-specific spatial effects were included), the large
estimates of τ1 and τ2 indicate the absence of disease-specific spatial effects, since these result in very
small variance. Similarly, the large value of τ in the case of independent data indicates a negligible
shared spatial component.

The model selection criteria presented in table 4 show a preference for the joint quantile model when
the data are correlated and a preference for the separate quantile regression models, which are (4.3)



Table 4. Model selection criteria for model (4.3) with correlated and independent data; italics indicate the better fit.

correlated data independent data

model DIC WAIC DIC WAIC

model for qi1,0.2 only 3226 3239 3226 3239

model for qi2,0.8 only 4191 4162 4191 4161

sum of the separate models 7417 7400 7417 7400

joint quantile model 7211 7198 7615 7578

(a) (b)

Figure 6. Countries where both G6PD deficiency and malaria cases are observed (a) on the African continent (b).
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without the shared components, when the data are independent. This indicates stable estimation and the
model’s ability to distinctly estimate an associated joint model, if needed.
5. Joint quantile disease mapping model for malaria and G6PD deficiency
In this section, we fit the Bayesian joint quantile disease mapping model proposed in §4 using INLA to
model the quantiles of the incidences of malaria and G6PD deficiency in some African countries as well
as their dependence. The code for this analysis is available at https://github.com/JanetVN1201/Code_
for_papers/tree/main/Joint%20quantile%20disease%20mapping%20.
5.1. Exploratory data analysis
The numbers of cases of malaria and G6PD per region were obtained from https://malariaatlas.org/.
Various country-level covariates can be used in our model; however, for the motivating example, the
emphasis is placed on the joint component, even though various fixed and random effects might be
considered for a thorough analysis of the data itself.

We only selected the countries for which information on both malaria and G6PD is available, as
indicated in figure 6. According to figure 6, the countries are distributed around the world. Since we
want to investigate the spatial correlation, we consider the African continent so that most countries
included have some neighbours, as in figure 6. In figure 7, the SMRs for malaria and G6PD deficiency
are presented. In general, the risk of G6PD deficiency is higher than the risk of malaria because G6PD
deficiency has a higher SMR. Some areas such as Abidjan and Madagascar that are considered to
have the highest risk of G6PD deficiency have the lowest risk of malaria according to the SMR values,
which could indicate a prohibitive relationship between these two diseases. The numbers of observed
cases of malaria and G6PD can be seen in figure 7. Kenya has the highest number of malaria cases,
while Nigeria has the highest number of G6PD deficiency cases. We also include the expected number
of cases for each country based on the assumption of similar global and local behaviour in figure 7.
5.2. Results
To investigate the relationship between the quantiles of malaria and G6PD deficiency, we applied the
joint quantile model proposed in §4, with yi1 and yi2 representing the cases of malaria and G6PD

https://github.com/JanetVN1201/Code_for_papers/tree/main/Joint%20quantile%20disease%20mapping%20
https://github.com/JanetVN1201/Code_for_papers/tree/main/Joint%20quantile%20disease%20mapping%20
https://malariaatlas.org/
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Figure 7. Observed number of cases (a,b), SMR (c,d) and expected number of cases (e,f ) of malaria (a,c,e) and G6PD (b,d,f ).
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deficiency, respectively. Thus, the proposed model is

yi1jli1 � Poisson (Ei1li1)

yi2jli2 � Poisson (Ei2li2)

logðqi1,a1Þ ¼ m1 þ bi1 þ Si
and logðqi2,a2Þ ¼ m2 þ bi2 þ c Si,

ð5:1Þ



Table 5. Posterior inference for model (5.1) of the malaria and G6PD deficiency data.

joint quantile model joint quantile model joint mean model

a1 ¼ 0:2, a2 ¼ 0:8 a1 ¼ 0:8, a2 ¼ 0:2

parameter mean 95% credible interval mean 95% credible interval mean 95% credible interval

m1 7.853 (6.572; 9.13) 7.887 (6.632; 9.138) 7.882 (7.245; 8.52)

m2 4.248 (3.746; 4.741) 4.151 (3.655; 4.639) 4.154 (3.739; 4.561)

τ1 309.46 (1.226; 2054.61) 11.31 (5.485; 24.16) 0.416 (0.236; 0.673)

ϕ1 0.352 (0.029; 0.868) 0.056 (0; 0.311) 0.189 (0.013; 0.611)

τ2 1.269 (0.671; 2.131) 131.5 (55.62; 326.2) 1.07 (0.564; 1.805)

ϕ2 0.168 (0.014; 0.539) 0.169 (0.015; 0.534) 0.196 (0.02; 0.582)

τ 0.104 (0.043; 0.218) 3.111 (1.182; 7.326) 107.9 (6.489; 438.352)

d 1.683 (0.378; 4.596) 1.704 (0.372; 4.784) 1.14 (0.08; 4.517)

c 0.214 (0.012; 0.442) 0.199 (−0.042; 0.444) 1.003 (0.384; 1.629)
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with bi1 and bi2 assumed to be distributed as a BYM model (2.9) with parameters τ1 and ϕ1, and τ2 and ϕ2,
respectively, to allow for spatially structured and unstructured effects. Si is assumed to be a proper Besag
term as in (2.8) with parameters τ and d.

We present the results based on quantile levels α1 = 0.2 and α2 = 0.8, to model the relationship
between a low quantile of malaria and a high quantile of G6PD. For illustration, we also investigated
the opposite relationship, i.e. between a high quantile of malaria and a low quantile of G6PD
deficiency. Other levels were also considered and the results are presented in appendix B.

The posterior inference is presented in table 5. With regards to the proposed model (5.1), we note that
the precision parameter for the shared spatial effect, τ, is small, indicating a significant spatial correlation
structure. To investigate the relationship between the quantiles of the two diseases we interpret the
posterior inference of c. Since c∈ (0.012; 0.442), we can conclude that the quantiles of the two diseases
with α1 = 0.2 and α2 = 0.8, share a common spatial field and are thus correlated. The positive
association between the two quantiles is unexpected and indicates evidence against the anecdotal
claim investigated in this work. This positive association could be spurious since confounders like the
vector load are not available to be incorporated in the model. The disease-specific spatial field for
G6PD deficiency is non-trivial with a small precision parameter τ2∈ (0.671; 2.131), even though based
on the small weight parameter ϕ2∈ (0.014; 0.539), we note that the unstructured effect accounts for
most of the variation in the disease-specific effect; this is also clear from figure 8, where we show the
posterior means of the structured and unstructured effects for the countries under consideration.
Concerning the shared spatial field, S, we illustrate S and cS for α1 = 0.2 and α2 = 0.8 in figure 8.

On the contrary, for α2 = 0.2 and α1 = 0.8, the shared spatial field as well as the disease-specific spatial
fields exhibit low spatial correlation since the precision parameters are estimated to be large, τ∈ (1.182;
7.326), τ1∈ (5.485; 24.16), τ2∈ (55.62; 326.2). Also, the quantiles seem to be unrelated since c∈ (− 0.042; 0.444).

We use the fitted joint quantile regression model and calculated in-sample predictions for each
country and disease; these predictions are displayed in figure 9 together with the observed cases. We
concur that the model seems to fit the data well.

To further investigate the model fit, we calculate the DIC and WAIC for the joint quantile models as
well as the joint mean model; these results are presented in table 6. Note that for the data under
consideration, model (5.1) with α1 = 0.2 and α2 = 0.8 is preferred based on the model selection criteria.
This indicates some support for the hypotheses of high quantiles of G6PD deficiency being associated
with low quantiles of malaria, even though here the association is counterintuitive.
6. Concluding remarks
The motivation of this work stemmed from estimating the relative risk of malaria and G6PD deficiency,
jointly, on the African continent. G6PD deficiency is considered to offer some resistance against malaria,
based on anecdotal medical studies [5,9]. If this is the case, we would expect to see a lower incidence of
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Figure 8. Posterior mean of the unstructured (a,b), structured (c,d), and shared (e,f ) spatial effect in the model for malaria (a,c,e)
and G6PD deficiency (b,d,f ).
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Figure 9. Observed (a,b) and predicted (c,d) cases for malaria (a,c) and G6PD deficiency (b,d) for model (5.1) with α1 = 0.2,
α2 = 0.8.

Table 6. Model selection criteria for model (5.1) of the malaria and G6PD deficiency data; italics indicate the better fit.

a1 ¼ 0:2, a2 ¼ 0:8 a1 ¼ 0:8, a2 ¼ 0:2

model DIC WAIC DIC WAIC

model for qi1,a1 only 168 164.8 168.4 166.4

model for qi2,a2 only 246.8 241.4 246.2 240.3

sum of the separate models 414.8 406.2 414.6 406.7

joint quantile model 413.6 402.2 414.5 406.1

joint mean model 414.5 405.4 414.5 405.4
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malaria in areas where there are many cases of G6PD deficiency. As such, joint mean disease mapping
will not provide the information needed to investigate these initial findings, since the hypothesis pertains
to different quantile levels of the disease cases. Hence, we proposed a joint quantile disease mapping
model of different quantiles for the joint inference of many diseases. We base the model on a model-
based quantile regression approach that is shown to be more intuitive in the framework of disease
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mapping and also more robust to the phenomena of quantile crossing, without the joint modelling of

multiple quantiles within the same disease. We use the efficient INLA framework to perform full
Bayesian analysis of our proposed model.

Our main contribution is twofold. Firstly, we propose a very general joint quantile disease mapping
model in which the correlation between different quantiles can be inferred and multiple diseases can be
considered, together with an efficient computational framework for the inference thereof. Secondly, the
significant correlation between a high quantile of G6PD cases and a low quantile of malaria cases
encourages further investigation of this hypothesis based on the expanded data collection efforts as
already underway at the Malaria Atlas Project. This analysis provides a statistical framework to
investigate the anecdotal findings reported by medical professionals and could underpin future
studies in this direction. The finding of a positive correlation between low quantile of malaria and a
high quantile of G6PD is odd. We expected to find a negative correlation and this motivates further
investigation based on more extensive data. Various shortcomings are evident as well, such as the
absence of an indication of the vector load in the area. If there is an increased number of vectors in
the area then the effect of the absence or presence of G6PD deficiency could be confounded, since the
number of malaria cases will be high, even if half of the subjects have G6PD deficiency. If the vector
load is low, however, then there will be few cases of malaria, regardless of whether G6PD deficiency
is high or low. This extra information is needed to confidently affirm whether G6PD deficiency offers
some resistance to malaria.

Future developments could include expanding the proposed model for geo-referenced data that are
not aggregated by country but rather observed at individual locations. This extension could enable the
application of a more accurate model for high resolution spatial data and could even be used to
identify hotspots of either disease within a country to provide valuable information to public health
officials. The computational framework we used, based on the INLA methodology, can be trivially
extended to this case. Furthermore, we could incorporate temporal information into the model when
these data become available, since model (4.1) can accommodate temporal structures as random
effects; this may provide insights into the evolution of cases of the diseases over time.
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Appendix A. Model-based quantile regression for other discrete
data-generating function
We show how the Binomial and the Negative Binomial distributions can be similarly extended to the
continuous case. Their CDFs can be expressed as

Y� � Binomialðn, pÞ FY� ðyÞ ¼ I1�pðn� y, yþ 1Þ
and

Z� � Negative Binomialðr, pÞ FZ� ðzÞ ¼ I1�pðr, zþ 1Þ,
where Ix(a, b) is the regularized incomplete Beta function defined as

Ixða, bÞ ¼ Bða, b, xÞ
Bða, bÞ with Bða, b, xÞ ¼

ð1
x
tað1� tÞb�1dt:
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The continuous extension is then obtained as

Y � Continuous Binomialðn, pÞ FYðyÞ ¼ I1�pðn� y, yþ 1Þ

and

Z � Continuous Negative Binomialðr, pÞ FZðzÞ ¼ I1�pðr, zþ 1Þ:

These continuous extensions result in interpolation of both the cumulative distribution and quantile
functions of the discrete counterparts. The advantage of this interpolation scheme is that the
behaviour of the resulting continuous random variables mimics that of their discrete counterparts. In
the discrete case, it is well known that the Poisson distribution is the limiting case of both the
Binomial and the Negative Binomial and that the Binomial and Negative Binomial are entwined in a
one-to-one relation. Theorem A.1 shows how these relationships between variables are preserved in
the continuous case; hence, the two classes of distribution have similar meanings. From a modelling
perspective, in fact, theorem A.1 justifies the interpretation (i) of the CP as an approximation for a
Binomial-like distribution in the case of rare events, (ii) of the Continuous Negative Binomial as an
over-dispersed version of the CP and (iii) of the Continuous Negative Binomial as the waiting time
until the arrival of the rth success in a Binomial-like experiment.

Theorem A.1. Let X be a Continuous Poisson random variable with parameter λ, Y be a Continuous Binomial
with parameters n and p and Z be a Continuous Negative Binomial with parameters r and p. Then the following
relations hold:

(i) for n→∞ and p→ 0 so that np→ λ

FYðxÞ ¼ Bðxþ 1, N � x, pÞ
Bðxþ 1, N � xÞ �! Gðxþ 1, lÞ

Gðxþ 1Þ ¼ FXðxÞ, ðA1Þ

(ii) for r→∞ and p→ 0 so that rp→ λ we have

FZðxÞ ¼ Bðxþ 1, r, pÞ
Bðxþ 1, rÞ �! Gðxþ 1, lÞ

Gðxþ 1Þ ¼ FXðxÞ,

(iii) let W be a Continuous Binomial random variable with parameters s + r and 1− p, then

FZðsÞ ¼ 1� FWðrÞ:

Proof.

(i) Immediately follows from Ilienko [50].
(ii) Follows trivially from (A 1).
(iii) Follows from

FZðsÞ ¼ 1� Ipðsþ 1, rÞ
¼ 1� Ipððsþ rÞ � ðr� 1Þ, ðr� 1Þ þ 1Þ
¼ 1� PðY � r� 1Þ
¼ PðY � rÞ:

▪



Table 7. Posterior inference for model (B 1) of the malaria and G6PD deficiency data.

α1 = 0.4, α2 = 0.8 α1 = 0.5, α2 = 0.5 α1 = 0.8, α2 = 0.8

parameter mean
95% credible
interval mean

95% credible
interval mean

95% credible
interval

m1 7.87 (7.238; 8.504) 7.879 (7.252; 8.508) 7.907 (7.291; 8.524)

m2 4.255 (3.864; 4.637) 4.138 (3.726; 4.54) 4.255 (3.865; 4.636)

τ1 0.404 (0.228; 0.648) 0.409 (0.23; 0.656) 0.426 (0.24; 0.683)

ϕ1 0.183 (0.011; 0.606) 0.183 (0.011; 0.606) 0.182 (0.011; 0.611)

τ2 1.138 (0.602; 1.923) 1.020 (0.538; 1.720) 1.14 (0.599; 1.917)

ϕ2 0.195 (0.016; 0.603) 0.194 (0.016; 0.595) 0.189 (0.015; 0.591)

τ 1788.819 (121.382; 6657.269) 1804.623 (122.885; 6704.552) 1907.333 (137.889; 6953.007)

d 0.973 (0.062; 3.462) 0.939 (0.067; 3.436) 0.91 (0.063; 3.364)

c 1 (0.377; 1.623) 1.002 (0.375; 1.622) 0.998 (0.378; 1.625)
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Appendix B. Malaria and G6PD deficiency analysis
To investigate the relationship between other quantiles of malaria and G6PD deficiency, we consider the
same model as in (5.1):

yi1jli1 � Poisson (Ei1li1)

yi2jli2 � Poisson (Ei2li2)

logðqi1,a1Þ ¼ m1 þ bi1 þ Si
and logðqi2,a2Þ ¼ m2 þ bi2 þ c Si:

ðB1Þ

We considered different values of α1 and α2 and the posterior inference of these models are presented
in table 7.

For different values of α1 and α2, we observe that the correlation between the diseases are in opposite
quantile levels since for the same quantile the large value of τ indicates that malaria and G6PD deficiency
are uncorrelated through those quantiles, contrary to the findings in §5 for α1 = 0.2, α2 = 0.8.
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