
A rich Web editor for anyone
James Forrester & Roan Kattouw	

linux.conf.au 2014, Perth

The Wikimedia movement

Image: https://commons.wikimedia.org/wiki/File:The_Blue_Marble.jpg – public domain original from NASA; adjusted by User:Deglr6328

Overview

https://commons.wikimedia.org/wiki/File:The_Blue_Marble.jpg

Why a visual editor?

Why a visual editor?

• Drop in new contributors is a major issue for Wikimedia

Why a visual editor?

• Drop in new contributors is a major issue for Wikimedia

• MediaWiki is based on the (very) rich “wikitext” syntax

Why a visual editor?

• Drop in new contributors is a major issue for Wikimedia

• MediaWiki is based on the (very) rich “wikitext” syntax

• Wikitext stops people becoming contributors or staying

Why a visual editor?

• Drop in new contributors is a major issue for Wikimedia

• MediaWiki is based on the (very) rich “wikitext” syntax

• Wikitext stops people becoming contributors or staying

• Not an appropriate environment for the 21st Century

Why a visual editor?

• Drop in new contributors is a major issue for Wikimedia

• MediaWiki is based on the (very) rich “wikitext” syntax

• Wikitext stops people becoming contributors or staying

• Not an appropriate environment for the 21st Century

• Prevents us from providing other helpful editing tools

Flexibility and modularity

Flexibility and modularity

• We’ve designed VisualEditor to be very modular

Flexibility and modularity

• We’ve designed VisualEditor to be very modular

• You can integrate it for platforms beyond MediaWiki

Flexibility and modularity

• We’ve designed VisualEditor to be very modular

• You can integrate it for platforms beyond MediaWiki

• You can replace or extend existing tools

Flexibility and modularity

• We’ve designed VisualEditor to be very modular

• You can integrate it for platforms beyond MediaWiki

• You can replace or extend existing tools

• You can expand it for editing new content

Flexibility and modularity

• We’ve designed VisualEditor to be very modular

• You can integrate it for platforms beyond MediaWiki

• You can replace or extend existing tools

• You can expand it for editing new content

• We support all ~300 languages that MediaWiki does

So what are we building?

So what are we building?

• A client-side JavaScript contentEditable HTML editor

So what are we building?

• A client-side JavaScript contentEditable HTML editor

• Stand alone product, for integration on any platform

So what are we building?

• A client-side JavaScript contentEditable HTML editor

• Stand alone product, for integration on any platform

• A MediaWiki integration

So what are we building?

• A client-side JavaScript contentEditable HTML editor

• Stand alone product, for integration on any platform

• A MediaWiki integration

• Unique needs – rich data model, generated content

So what are we building?

• A client-side JavaScript contentEditable HTML editor

• Stand alone product, for integration on any platform

• A MediaWiki integration

• Unique needs – rich data model, generated content

• Needs server-side wikitext⟷HTML parser: Parsoid

So what are we building?
Wikitext

Parsoid

HTML	

+ RDFa

HTML	

+ RDFa

Parsoid
Serializer

VisualEditor

Data Model

Content Editable

Editing Tools

So what are we building?
Wikitext

Parsoid

HTML	

+ RDFa

HTML	

+ RDFa

Parsoid
Serializer

VisualEditor

Data Model

Content Editable

Editing Tools

So what are we building?
Wikitext

Parsoid

HTML	

+ RDFa

HTML	

+ RDFa

Parsoid
Serializer

VisualEditor

Data Model

Content Editable

Editing Tools

So what are we building?
Wikitext

Parsoid

HTML	

+ RDFa

HTML	

+ RDFa

Parsoid
Serializer

VisualEditor

Data Model

Content Editable

Editing Tools

HTML	

Storage

HTML	

+ RDFa

HTML	

+ RDFa VisualEditor

Data Model

Content Editable

Editing Tools

Data Model

HTML	

+ RDFa

HTML	

+ RDFa VisualEditor

Data Model

Content

Editing Tools

Outline

Outline

• We can’t edit the input HTML+RDFa directly

Outline

• We can’t edit the input HTML+RDFa directly

• Reliable conversion from HTML to a thing we can edit

Outline

• We can’t edit the input HTML+RDFa directly

• Reliable conversion from HTML to a thing we can edit

• Round-trip back to HTML without corruption

Outline

• We can’t edit the input HTML+RDFa directly

• Reliable conversion from HTML to a thing we can edit

• Round-trip back to HTML without corruption

• Synchronise with ContentEditable (both ways)

Outline

• We can’t edit the input HTML+RDFa directly

• Reliable conversion from HTML to a thing we can edit

• Round-trip back to HTML without corruption

• Synchronise with ContentEditable (both ways)

• Needs to support real-time collaborative editing

Example

Example

• Gives us a linear view of the HTML tree:

	

 	

 <p>Hi</p>

Example

• Gives us a linear view of the HTML tree:

	

 	

 <p>Hi</p>

 →

[{type:'paragraph'},'H','i',
{type:'/paragraph'}]

Example

• Gives us a linear view of the HTML tree:

	

 	

 <p>Hi</p>

 →

[{type:'paragraph'},'H','i',
{type:'/paragraph'}]

• Lets us create linear, fully reversible transactions (diffs)

Example

• Gives us a linear view of the HTML tree:

	

 	

 <p>Hi</p>

 →

[{type:'paragraph'},'H','i',
{type:'/paragraph'}]

• Lets us create linear, fully reversible transactions (diffs)

• Keeps track of every change for undo/redo

Example

• Gives us a linear view of the HTML tree:

	

 	

 <p>Hi</p>

 →

[{type:'paragraph'},'H','i',
{type:'/paragraph'}]

• Lets us create linear, fully reversible transactions (diffs)

• Keeps track of every change for undo/redo

Input HTML+RDFa

Input HTML+RDFa

<span typeof="mw:Extension/ref"
rel="dc:references" about="#mwt11"  
data-mw='{"name":"ref","body":
{"html":"Initially restricted to just
the VisualEditor: namespace, later for
all pages."},"attrs":{}}'
id="cite_ref-1-0" class="reference">[1]

Input HTML+RDFa

<span typeof="mw:Extension/ref"
rel="dc:references" about="#mwt11"  
data-mw='{"name":"ref","body":
{"html":"Initially restricted to just
the VisualEditor: namespace, later for
all pages."},"attrs":{}}'
id="cite_ref-1-0" class="reference">[1]

Input HTML+RDFa

<span typeof="mw:Extension/ref"
rel="dc:references" about="#mwt11"  
data-mw='{"name":"ref","body":
{"html":"Initially restricted to just
the VisualEditor: namespace, later for
all pages."},"attrs":{}}'
id="cite_ref-1-0" class="reference">[1]

Input HTML+RDFa

<span typeof="mw:Extension/ref"
rel="dc:references" about="#mwt11"  
data-mw='{"name":"ref","body":
{"html":"Initially restricted to just
the VisualEditor: namespace, later for
all pages."},"attrs":{}}'
id="cite_ref-1-0" class="reference">[1]

Matching code snippets

Matching code snippets

ve.dm.MWReferenceNode.static

 .matchTagNames = null;

Matching code snippets

ve.dm.MWReferenceNode.static

 .matchTagNames = null;

ve.dm.MWReferenceNode.static

 .matchRdfaTypes = ['mw:Extension/ref'];

Language challenges

Language challenges

• Data Model stores text as an array of characters

Language challenges

• Data Model stores text as an array of characters

• We changed from code units to grapheme clusters

Language challenges

• Data Model stores text as an array of characters

• We changed from code units to grapheme clusters

• Code units: ñg == [‘n’, ‘˜’, ‘g’]

Language challenges

• Data Model stores text as an array of characters

• We changed from code units to grapheme clusters

• Code units: ñg == [‘n’, ‘˜’, ‘g’]

• Grapheme clusters: ñg == [‘n˜’, ‘g’]

Language challenges

• Data Model stores text as an array of characters

• We changed from code units to grapheme clusters

• Code units: ñg == [‘n’, ‘˜’, ‘g’]

• Grapheme clusters: ñg == [‘n˜’, ‘g’]

• Thought this would be better for language support

Language challenges

• Data Model stores text as an array of characters

• We changed from code units to grapheme clusters

• Code units: ñg == [‘n’, ‘˜’, ‘g’]

• Grapheme clusters: ñg == [‘n˜’, ‘g’]

• Thought this would be better for language support

• … but this doesn’t work, so we reverted to code units

Language issues

Language issues

• Supplementary characters: 𨋢

Language issues

• Supplementary characters: 𨋢

• Complex grapheme clusters:

Language issues

• Supplementary characters: 𨋢

• Complex grapheme clusters:

• Combining accents: façòn

Language issues

• Supplementary characters: 𨋢

• Complex grapheme clusters:

• Combining accents: façòn

• Bi-directional: רית12345עב

Language issues

• Supplementary characters: 𨋢

• Complex grapheme clusters:

• Combining accents: façòn

• Bi-directional: רית12345עב

• See also input methods (later!)

HTML	

+ RDFa

HTML	

+ RDFa VisualEditor

Data Model

Content Editable

Editing Tools

Content Editable

HTML	

+ RDFa

HTML	

+ RDFa VisualEditor

Data Model

Content Editable

Editing Tools

Browser contentEditable

Browser contentEditable

• Messes up HTML

Browser contentEditable

• Messes up HTML

• Inconsistent key handling

Browser contentEditable

• Messes up HTML

• Inconsistent key handling

• Adds
 tags

Browser contentEditable

• Messes up HTML

• Inconsistent key handling

• Adds
 tags

• Native text insertion

Browser contentEditable

• Messes up HTML

• Inconsistent key handling

• Adds
 tags

• Native text insertion

• Spellcheck

Browser contentEditable

• Messes up HTML

• Inconsistent key handling

• Adds
 tags

• Native text insertion

• Spellcheck

• Selection & cursor

Browser contentEditable

• Messes up HTML

• Inconsistent key handling

• Adds
 tags

• Native text insertion

• Spellcheck

• Selection & cursor

• Equal rendering

Programatic cursor handling

Programatic cursor handling

• Intercept the browser’s native cursor handling

Programatic cursor handling

• Intercept the browser’s native cursor handling

• Prevent the cursor from entering protected elements

Programatic cursor handling

• Intercept the browser’s native cursor handling

• Prevent the cursor from entering protected elements

• Allows us to skip over non-editable elements

Programatic cursor handling

• Intercept the browser’s native cursor handling

• Prevent the cursor from entering protected elements

• Allows us to skip over non-editable elements

• Keyboard deleting is more predictable (we have control)

Programatic cursor handling

• Intercept the browser’s native cursor handling

• Prevent the cursor from entering protected elements

• Allows us to skip over non-editable elements

• Keyboard deleting is more predictable (we have control)

• Thought this would allow us to avoid stupid UX issues

Programatic cursor handling

• Intercept the browser’s native cursor handling

• Prevent the cursor from entering protected elements

• Allows us to skip over non-editable elements

• Keyboard deleting is more predictable (we have control)

• Thought this would allow us to avoid stupid UX issues

• … but this breaks i18n, so we are (partially) reverting

Input Method Editors #!$%

Input Method Editors #!$%

• Lots of languages rely on Input Method Editors (“IMEs”)

Input Method Editors #!$%

• Lots of languages rely on Input Method Editors (“IMEs”)

• Notably East Asian and Indic languages

Input Method Editors #!$%

• Lots of languages rely on Input Method Editors (“IMEs”)

• Notably East Asian and Indic languages

• Each IME has its own unique way of changing content

Input Method Editors #!$%

• Lots of languages rely on Input Method Editors (“IMEs”)

• Notably East Asian and Indic languages

• Each IME has its own unique way of changing content

• Can alter by OS and browser quite significantly

Input Method Editors #!$%

• Lots of languages rely on Input Method Editors (“IMEs”)

• Notably East Asian and Indic languages

• Each IME has its own unique way of changing content

• Can alter by OS and browser quite significantly

• Even by version (e.g. iBus 1.4.2, 1.4.3@FF26/Debian)

Input Method Editors #!$%

• Lots of languages rely on Input Method Editors (“IMEs”)

• Notably East Asian and Indic languages

• Each IME has its own unique way of changing content

• Can alter by OS and browser quite significantly

• Even by version (e.g. iBus 1.4.2, 1.4.3@FF26/Debian)

• We built an IME/browser testing framework to cope

Demo of IMEs

SurfaceObserver

SurfaceObserver

• Poll DOM for changes and notify model

SurfaceObserver

• Poll DOM for changes and notify model

• Lots of things emit no or few events (e.g. spellcheck)

SurfaceObserver

• Poll DOM for changes and notify model

• Lots of things emit no or few events (e.g. spellcheck)

• Possibly use (native) MutationObserver in the future

SurfaceObserver

• Poll DOM for changes and notify model

• Lots of things emit no or few events (e.g. spellcheck)

• Possibly use (native) MutationObserver in the future

• Re-render if really necessary

SurfaceObserver

• Poll DOM for changes and notify model

• Lots of things emit no or few events (e.g. spellcheck)

• Possibly use (native) MutationObserver in the future

• Re-render if really necessary

• Re-rendering is slow

SurfaceObserver

• Poll DOM for changes and notify model

• Lots of things emit no or few events (e.g. spellcheck)

• Possibly use (native) MutationObserver in the future

• Re-render if really necessary

• Re-rendering is slow

• Re-rendering closes IME composition

HTML	

+ RDFa

HTML	

+ RDFa VisualEditor

Data Model

Content Editable

Editing Tools

Editing Tools

HTML	

+ RDFa

HTML	

+ RDFa VisualEditor

Data Model

Content

Editing Tools

Actual rich editing of stuff!

Actual rich editing of stuff!

Text formatting

Actual rich editing of stuff!

Text formatting

• “Annotations” – things like bold, italic, underline, link, …

Actual rich editing of stuff!

Text formatting

• “Annotations” – things like bold, italic, underline, link, …

• Includes more complex ones which can need inspectors

Actual rich editing of stuff!

Text formatting

• “Annotations” – things like bold, italic, underline, link, …

• Includes more complex ones which can need inspectors

Generated content

Actual rich editing of stuff!

Text formatting

• “Annotations” – things like bold, italic, underline, link, …

• Includes more complex ones which can need inspectors

Generated content

• References, templates, meta-data, media items, …

Actual rich editing of stuff!

Text formatting

• “Annotations” – things like bold, italic, underline, link, …

• Includes more complex ones which can need inspectors

Generated content

• References, templates, meta-data, media items, …

• This generic capability makes VisualEditor unique

Tool UX types: Toggle

Tool UX types: Toggle

Simple toolbar buttons

Tool UX types: Toggle

Simple toolbar buttons

Tool UX types: Toggle

Simple toolbar buttons

• Bold, italic, …

Tool UX types: Toggle

Simple toolbar buttons

• Bold, italic, …

• Clear formatting

Tool UX types: Toggle

Simple toolbar buttons

• Bold, italic, …

• Clear formatting

• En/unlist

Tool UX types: Toggle

Simple toolbar buttons

• Bold, italic, …

• Clear formatting

• En/unlist

• In/outdent

Tool UX types: Dialog

Tool UX types: Dialog

For complex items

Tool UX types: Dialog

For complex items

Tool UX types: Dialog

For complex items

• Transclusion (shown)

Tool UX types: Dialog

For complex items

• Transclusion (shown)

• Media item

Tool UX types: Dialog

For complex items

• Transclusion (shown)

• Media item

• Reference

Tool UX types: Dialog

For complex items

• Transclusion (shown)

• Media item

• Reference

• Page meta-data

Tool UX types: Inspector

Tool UX types: Inspector

Lightweight semi-dialog

Tool UX types: Inspector

Lightweight semi-dialog

Tool UX types: Inspector

Lightweight semi-dialog

• Link (shown)

Tool UX types: Inspector

Lightweight semi-dialog

• Link (shown)

• Language

Tool UX types: Inspector

Lightweight semi-dialog

• Link (shown)

• Language

• Formulæ

Tool UX types: Inspector

Lightweight semi-dialog

• Link (shown)

• Language

• Formulæ

• Colour-picker

Demo

Image: https://commons.wikimedia.org/wiki/File:Future_plate.svg – Public domain, created and uploaded by [[User:Ltljltlj]]

https://commons.wikimedia.org/wiki/File:Future_plate.svg

Patches welcome! :-)

Patches welcome! :-)

• Adding new functionality for stand-alone or MediaWiki

Patches welcome! :-)

• Adding new functionality for stand-alone or MediaWiki

• Content types or new ways of editing them

Patches welcome! :-)

• Adding new functionality for stand-alone or MediaWiki

• Content types or new ways of editing them

• Core functionality (TogetherJS collaboration, …)

Patches welcome! :-)

• Adding new functionality for stand-alone or MediaWiki

• Content types or new ways of editing them

• Core functionality (TogetherJS collaboration, …)

• Integrating into a new platform is ‘undiscovered country’

Patches welcome! :-)

• Adding new functionality for stand-alone or MediaWiki

• Content types or new ways of editing them

• Core functionality (TogetherJS collaboration, …)

• Integrating into a new platform is ‘undiscovered country’

• There may be bugs, holes & stupidities (sorry)

Patches welcome! :-)

• Adding new functionality for stand-alone or MediaWiki

• Content types or new ways of editing them

• Core functionality (TogetherJS collaboration, …)

• Integrating into a new platform is ‘undiscovered country’

• There may be bugs, holes & stupidities (sorry)

• We’re really keen to help you if you’re interested

Questions?

A rich Web editor for anyone
Thank you!

