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Why a visual editor?

• Drop in new contributors is a major issue for Wikimedia 

• MediaWiki is based on the (very) rich “wikitext” syntax

• Wikitext stops people becoming contributors or staying

• Not an appropriate environment for the 21st Century

• Prevents us from providing other helpful editing tools
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Flexibility and modularity

• We’ve designed VisualEditor to be very modular

• You can integrate it for platforms beyond MediaWiki 

• You can replace or extend existing tools

• You can expand it for editing new content

• We support all ~300 languages that MediaWiki does
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So what are we building?

• A client-side JavaScript contentEditable HTML editor

• Stand alone product, for integration on any platform

• A MediaWiki integration

• Unique needs – rich data model, generated content

• Needs server-side wikitext⟷HTML parser: Parsoid
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Outline

• We can’t edit the input HTML+RDFa directly

• Reliable conversion from HTML to a thing we can edit

• Round-trip back to HTML without corruption

• Synchronise with ContentEditable (both ways)

• Needs to support real-time collaborative editing
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• Gives us a linear view of the HTML tree:
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   →
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<span typeof="mw:Extension/ref" 
rel="dc:references" about="#mwt11"  
data-mw='{"name":"ref","body":
{"html":"Initially restricted to just 
the VisualEditor: namespace, later for 
all pages."},"attrs":{}}' 
id="cite_ref-1-0" class="reference"><a 
href="#cite_note-1">[1]</a></span>
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Matching code snippets

ve.dm.MWReferenceNode.static

 .matchTagNames = null;

ve.dm.MWReferenceNode.static

 .matchRdfaTypes = ['mw:Extension/ref'];
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Language challenges

• Data Model stores text as an array of characters

• We changed from code units to grapheme clusters

• Code units: ñg == [‘n’, ‘˜’, ‘g’]

• Grapheme clusters: ñg == [‘n˜’, ‘g’] 

• Thought this would be better for language support

• … but this doesn’t work, so we reverted to code units
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Language issues

• Supplementary characters: 𨋢

• Complex grapheme clusters: 

• Combining accents: façòn

• Bi-directional: רית12345עב

• See also input methods (later!)
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Browser contentEditable

• Messes up HTML

• Inconsistent key handling

• Adds <br> tags

• Native text insertion 

• Spellcheck

• Selection & cursor

• Equal rendering
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Programatic cursor handling

• Intercept the browser’s native cursor handling

• Prevent the cursor from entering protected elements 

• Allows us to skip over non-editable elements

• Keyboard deleting is more predictable (we have control) 

• Thought this would allow us to avoid stupid UX issues

• … but this breaks i18n, so we are (partially) reverting
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Input Method Editors #!$%

• Lots of languages rely on Input Method Editors (“IMEs”)

• Notably East Asian and Indic languages

• Each IME has its own unique way of changing content

• Can alter by OS and browser quite significantly

• Even by version (e.g. iBus 1.4.2, 1.4.3@FF26/Debian)

• We built an IME/browser testing framework to cope
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SurfaceObserver

• Poll DOM for changes and notify model

• Lots of things emit no or few events (e.g. spellcheck)

• Possibly use (native) MutationObserver in the future

• Re-render if really necessary

• Re-rendering is slow

• Re-rendering closes IME composition
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Actual rich editing of stuff!

Text formatting

• “Annotations” – things like bold, italic, underline, link, …

• Includes more complex ones which can need inspectors

Generated content

• References, templates, meta-data, media items, …

• This generic capability makes VisualEditor unique
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Tool UX types: Toggle

Simple toolbar buttons

• Bold, italic, …

• Clear formatting

• En/unlist

• In/outdent
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Tool UX types: Dialog

For complex items

• Transclusion (shown)

• Media item

• Reference

• Page meta-data
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Tool UX types: Inspector

Lightweight semi-dialog

• Link (shown)

• Language

• Formulæ

• Colour-picker
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Image: https://commons.wikimedia.org/wiki/File:Future_plate.svg – Public domain, created and uploaded by [[User:Ltljltlj]]

https://commons.wikimedia.org/wiki/File:Future_plate.svg
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Patches welcome! :-)

• Adding new functionality for stand-alone or MediaWiki

• Content types or new ways of editing them

• Core functionality (TogetherJS collaboration, …)

• Integrating into a new platform is ‘undiscovered country’

• There may be bugs, holes & stupidities (sorry)

• We’re really keen to help you if you’re interested
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A rich Web editor for anyone
Thank you!


