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Understanding the failure modes of curved hollow tree trunks is
essential from both safety and conservation perspectives. Despite
extensive research, the underlying mechanism that determines
the cracking failure of curved hollow tree trunks remains
unclear due to the lack of theoretical analysis that considers
both the initial curvature and orthotropic material properties.
Here we derive new mathematical expressions for predicting
the bending moment, Mcrack, at which the cracking failure
occurs. The failure mode of a tree species is then determined,
as a function of t/R and cR, by comparing Mcrack with Mbend,
where t, R and c are, respectively, the trunk wall thickness,
outer radius and initial curvature; Mbend is the bending
moment for conventional bending failure. Our equation shows
that Mcrack is proportional to the tangential tensile strength of
wood σT, increases with t/R, and decreases with the final cR.
We analyse 11 tree species and find that hardwoods are more
likely to fail in conventional bending, whereas softwoods tend
to break due to cracking. This is due to the softwoods’ much
smaller tangential tensile strength, as observed from the data of
66 hardwoods and 43 softwoods. For larger cR, cracking failure
is easier to occur in curvature-decreasing bending than
curvature-increasing due to additional normal tensile force F
acting on the neutral cross-section; on the other hand, for
smaller cR, bending failure is easier to occur due to decreased
final curvature. Our formulae are applicable to other natural
and man-made curved hollow beams with orthotropic material
properties. Our findings provide insights for those managing
trees in urban situations and those managing for conservation
of hollow-dependent fauna in both urban and rural settings.
1. Introduction
Slender hollow structures have the merit of resisting bending
moment and torque with a relatively lower weight per unit
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Table 1. Nomenclature.

notation

c initial curvature of a trunk

cR dimensionless initial curvature of a trunk

ccriR critical cR value at Mcrack =Mbend
cminR the minimum cR for which cracking can occur—cracking does not occur for cR < cminR. cminR= 2K. Only

applicable for the case of decreasing curvature

c0 change of curvature due to bending moment Mc0 . c0 ¼ Mc0=ELI

c0R dimensionless change of curvature due to bending moment Mc0

c0bendR critical c0R at which conventional bending failure occurs, i.e. Mc0 ¼ Mbend. c0bendR ¼ sb=EL
c0crackR critical c0R at which cracking failure occurs, i.e. Mc0 ¼ Mcrack. c0crackR � K

EL Young’s modulus in the longitudinal direction

I moment of inertia of the cross-section of a trunk

K K ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðc + c0crackÞc0crack

p
R at Mc0 ¼ Mcrack. ‘+’ and ‘−’ are respectively for increasing and decreasing

curvatures. K ¼ c0crackR for straight trunks
Q Q ; ccriR+ c0crackR at Mbend =Mcrack.‘+’ and ‘−’ are respectively for increasing and decreasing curvatures.

Q/R is the final curvature at failure

Mbend bending moment at which the conventional bending failure occurs

MBrazier bending moment at which the Brazier buckling failure occurs—a thin-walled tube, subjected to bending

moment, buckles because the cross-section ovalizes

Mcrack bending moment at which the tangential cracking occurs

Mcrack0 bending moment at which the tangential cracking occurs for a straight trunk

Mc0 bending moment that creates a curvature change of c0

R outer radius of a hollow trunk

t wall thickness of a hollow trunk

(t/R)cri critical t/R ratio at which Q= K. ccriR, or equivalently Mcrack =Mbend, exists if and only if t/R≥ (t/R)cri
εL-failure normal strain at which the conventional bending failure occurs. εL-failure= σb/EL
σb bending strength in the longitudinal direction

σT tangential component of tensile strength perpendicular to fibres, or tangential tensile strength for short
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length than solid cylinders of the same weight [1]. They are ubiquitous in nature and are commonly seen
in many organisms as a result of convergent evolution. Examples include decayed hollow tree trunks
[2–4], bamboo stems, cereal stalks [5], porcupine quills [6], animal bones [7] and microtubules [8].
Many living trees have their cores rotten and become hollow, known as piping [2]. For instance, 37%
of trees, belonging to a wide range of species, were found to be hollow in a study conducted in the
Amazonian rainforest [3]. In this paper, we focus on ‘tree trunks’; however, our methods generalize to
any slender hollow structure with orthotropic material properties. Symbols are listed in table 1.

When a tree is subjected to strong wind, the wind-induced drag force acts on the crown and trunk,
and causes a large bending moment on the trunk and root plate. For an initially curved tree trunk, the
bending moment may increase or decrease its curvature, depending on the wind direction (figure 1a).
This moment is the main source of trunk failure.

Solid- or thick-walled hollow tree trunks tend to break due to conventional bending failure—fibres
buckling on the compression side, followed by fibres tearing on the tension side (figure 1b). The cross-
section remains circular until the break, and the classic bending theory is suitable for predicting the
maximum bending moment the trunk can resist. Thin-walled trunks, however, tend to break due to
cracking failure—tangential crack initiation on the inner surface, followed by longitudinal splitting
(figure 1b). Cracking failure is due to cross-sectional flattening or ovalization [5,9–13], a phenomenon
neglected by the classic bending theory. The mechanism of cross-sectional flattening is briefly
described as follows. When subjected to a bending moment, an elastic straight beam forms a curve.
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Figure 1. (a) An example of curved tree trunks: the outer radius R≈ 0.2 m, the initial curvature c≈ 0.35 m−1 and the
dimensionless initial curvature cR≈ 0.07; Trema orientailis (hardwood). Photo credit: Yan-San Huang. (b) Schematics of cracking
and bending failures. (Trunk sketches by Da-Chang Yang.) (c,d) Finite-element simulations of cross-sectional flattening, known
as Brazier buckling, of a curved circular hollow trunk subjected to curvature-increasing bending (c) and curvature-decreasing
bending (d ). The cross-section becomes ovalized with its long axis perpendicular to the plane of bending in case (c), or
parallel to the plane of bending in case (d ). cR= 0.2, R= 0.1 m, c= 2 m−1 and t= 0.005 m.
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The fibres on the convex and the concave sides are, respectively, under tensile and compressive stresses in
the axial direction. Those longitudinal tensile and compressive stresses also set up transverse
compressive forces, pointing toward the neutral axis, on both convex and concave sides [12,14]. These
forces then compress the circular cross-section to become oval with the long axis perpendicular to the
plane of bending. For isotropic ductile materials, such as metals or plastic drinking straws, the cross-
section buckles and eventually collapses without cracking, known as Brazier buckling failure [15,16].
For an initially curved trunk subjected to curvature-increasing bending, the orientation of the ovalized
cross-section is the same as that of a straight trunk (figure 1c); however, in curvature-decreasing
bending, the orientation is different and has the long axis parallel to the plane of bending (figure 1d ).

The exact failure mode of a trunk depends on its material properties and geometric parameters. The
former includes (i) the ratio t/R of wall thickness t to outer radius R, (ii) the initial curvature c; the latter
includes Young’s modulus E, bending strength in the longitudinal direction σb, and tangential
component of tensile strength perpendicular to fibres σT, called tangential tensile strength hereafter. It
also depends on the wind direction if the trunk is initially curved.

Wood is a natural orthotropic material, with fibres generally aligned along the tree axis, that has
different mechanical properties in the three mutually perpendicular axes—longitudinal, radial and
tangential. The longitudinal axis is parallel to the fibres; the radial and tangential axes are on the
cross-section perpendicular to the fibres. Since the fibres are longitudinally oriented, Young’s modulus
and breaking strength are the highest in the longitudinal direction [17] and are approximately 15-fold
to 20-fold larger than those in the tangential direction [18,19]. These orthotropic material properties
must be taken into consideration when predicting the failure modes.
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Spatz & Niklas [5] successfully used numerical simulations to predict the critical bending moments of

various failure modes and considered t/R ratio, slenderness and orthotropic material properties.
Numerical simulations, although powerful, may sometimes come at the detriment of physical insights
and analytical understanding of the interplay between key parameters. Our earlier work presented an
analytical expression for predicting the bending moment for tangential cracking of straight hollow
trunks [13]. Using Taiwan red cypress as an example, we showed that Brazier buckling, cracking
failure and conventional bending failure occur for 0 < t/R<0.06, 0.06 < t/R< 0.27 and 0.27 < t/R< 1,
respectively. Since trunks with extremely small t/R are rare, only the bending and cracking failures
are relevant.

Despite the extensive studies, there is still no analytical expression for predicting the cracking failure
for initially curved orthotropic trunks, and our understanding on how they fail is still lacking. In this
paper, we follow the theoretical framework in [13] to derive such analytical expressions for both
curvature-increasing and curvature-decreasing bending. We apply the expressions to analyse the
failure modes of 11 tree species, including four hardwoods, three softwoods and four tropical woods.

Specific gravity is the most important physical property of wood which influences its strength as long
as the wood is sound [20]. In general, hardwoods have larger specific gravity than softwoods. We also
compare the material properties, as a function of specific gravity, between hardwoods and softwoods
for 66 species of hardwoods and 43 species of softwoods.
.7:200203
2. Theoretical formulation
Figure 2 shows the schematics of curved hollow trunks subject to curvature-increasing bending
(figure 2a,c,e) and curvature-decreasing bending (figure 2b,d,f ), respectively. The circular cross-sections
are flattened (figure 2a,b) due to the transverse distributed forces (figure 2c,d ) set up by the
longitudinal bending stresses. These transverse forces induce tangential moments acting on axial-
radial planes (figure 2e,f ), which creates tangential cracking if the tensile stress exceeds the tangential
tensile strength σT.

We determine the failure mode at a given t/R ratio and cR by comparing the magnitudes of bending
moment at which the conventional bending failure (Mbend) and tangential cracking failure (Mcrack) occur.
The expression for Mbend is obtained from the literature, and those for Mcrack for curved trunks derived
here are new and have not been reported before. We derive the equation for the change of curvature,
corresponding to the bending failure (c0bend) and cracking failure (c0crack), and also the equation for the
critical cR= ccriR, as a function of t/R, at which Mbend =Mcrack.

According to the classical bending theory, the maximum bending moment of a tree trunk is

Mbend ¼ sbI
R

, ð2:1Þ

where σb is the bending strength of typical green wood in the longitudinal direction, I is the cross-
sectional moment of inertia and R is the outer radius of the circular cross-section. For a hollow trunk
with small wall thickness to radius ratio, t/R, Mbend = πR3(t/R)σb, and for a solid trunk (t/R=1), the
bending moment is Mbend solid ¼ pR3sb=4.
2.1. Initially curved hollow trunk subject to curvature-increasing bending

2.1.1. Derivation of mcrack for cracking failure

For an initially curved trunk with a circular hollow cross-section, the tangential cracking is initiated at
w= π/2 when subjected to curvature-increasing bending. The corresponding bending moment Mcrack is
derived as follows (electronic supplementary material):

Mcrack ¼ 2sTIðt=RÞ
3ðcRþ c0crackRÞRð1� ð1=2Þðt=RÞÞ3 for w ¼ p

2
, ð2:2Þ

where cR is the dimensionless initial curvature, and c0crackR is the dimensionless change of curvature
when cracking failure occurs, which will be determined in the following section.
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Figure 2. Analysis of cross-sectional flattening of a curved circular hollow trunk for curvature-increasing (a,c,e) and for curvature-
decreasing (b,d,f ). (c,d ) Inward and outward force distribution in a transverse section. (e,f ) Free-body diagram of one quarter of the
transverse section for calculating the bending moment M(w) exerted on axial sections with an angular position w. θ, angular
position of the transverse force dF; M0, statically indeterminate bending moment at w= 0. The direction of dF determines the
direction of cross-sectional flattening. Note that dF is a body force per unit axial length (unit: N m−1), not a shear force. F is
the internal normal force per unit length acting on the axial-radial plane at w= 0.
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2.1.2. Derivation of K and c0crackR for cracking failure
If an initially curved trunk is subject to a curvature-increasing bending moment Mc0 , its curvature will
increase by c0

c0 ¼ Mc0

ELI
, ð2:3Þ

where EL is Young’s modulus in the longitudinal direction.
From equations (2.2) and (2.3),

Mc0

Mcrack
¼ 3ðcRþ c0crackRÞc0RELð1� ð1=2Þ ðt=RÞÞ3

2sTðt=RÞ for w ¼ p

2
: ð2:4Þ
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For crack failure initiation, Mc0 ¼ Mcrack and c0R ¼ c0crackR. Define K ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðcRþ c0crackRÞc0crackR

p
and from

equation (2.4)

K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2sTðt=RÞ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ELð1� ð1=2Þ ðt=RÞÞ3

q : ð2:5Þ

Solving K2 ¼ ðcRþ c0crackRÞc0crackR for c0crackR gives

c0crackR ¼
�cRþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcRÞ2 þ 4K2

q

2
: ð2:6Þ

The solution with ‘−’ is discarded, since it results in a c0crackR , 0.
From equation (2.6) and cR≥ 0, we obtain cRþ c0crackR ¼ cRþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcRÞ2þ4K2

p
2 � K. By definition

ðcRþ c0crackRÞc0crackR ¼ K2, it follows that 0 , c0crackR � K:
.Soc.open
sci.7:200203
2.1.3. Derivation of c0bendR for bending failure
From equations (2.1) and (2.3), it follows that

Mc0

Mbend
¼ c0ELR

sb
: ð2:7Þ

Setting Mbend ¼ Mc0 gives

c0bendR ¼ sb

EL
¼ 1L-failure , ð2:8Þ

where εL-failure is the normal strain at which the conventional bending failure occurs.
Note that equation (2.8) is independent of the bending direction, valid for both curvature-decreasing

and curvature-increasing bending.
The failure mode can be determined by comparing equations (2.6) and (2.8)—c0bendR , c0crackR for

bending failure; otherwise, for cracking failure.
2.1.4. Derivation of Q for determining whether the failure mode is bending or cracking

From equations (2.1) and (2.2), it follows that

Mcrack

Mbend
¼ 2sTðt=RÞ

3ðcRþ c0crackRÞsbð1� ð1=2Þ ðt=RÞÞ3 , ð2:9Þ

where c0crackR is obtained from equation (2.6).
To determine the critical value, cR= ccriR, at which Mbend =Mcrack, we define Q ; ccriRþ c0crackR and

from equation (2.9)

Q ¼ 2sTðt=RÞ
3sbð1� ð1=2Þ ðt=RÞÞ3 : ð2:10Þ

Cracking failure occurs when Mcrack <Mbend, i.e. when cR> ccriR or cRþ c0crackR . Q; bending failure
occurs when Mcrack >Mbend, i.e. when cR< ccriR or cRþ c0crackR , Q. As a result, a trunk with smaller
ccri tends to fail due to cracking. At the critical condition of Mcrack =Mbend, c0R ¼ c0crackR ¼ c0bendR.

At cR= ccriR, ðccriRþ c0crackRÞc0crackR ¼ Qc0crackR ¼ K2.

c0crackR ¼ K2

Q
¼ sb

EL
¼ c0bendR

ccriR ¼ Q� c0crackR ¼ Q� sb

EL
for Q � K: ð2:11Þ

Note that equation (2.11) is only applicable for Q≥K. Q and K monotonically increase with t/R, and
Q≥Kwhen t/R≥ (t/R)cri, where (t/R)cri, is the critical t/R ratio at which Q=K (electronic supplementary
material, figure S1).
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2.1.5. Derivation of (t/R)cri

The critical ratio (t/R)cri is calculated by setting Q=K, using equations (2.5) and (2.10) as follows

ðt=RÞcri
ð1� ð1=2Þðt=RÞcriÞ3

¼ 3s2
b

2ELsT
: ð2:12Þ

2.2. Straight hollow trunk
For a straight trunk, the tangential cracking is initiated at w= π/2 and the cracking momentMcrack0 can be
obtained from equation (2.2) by letting cR= 0 and c0crackR ¼ K as follows:

Mcrack0 ¼ I
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ELsTðt=RÞ

p

R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:5ð1� ð1=2Þ ðt=RÞÞ3

q : ð2:13Þ

The failure mode of a straight trunk can then be determined by comparingMbend andMcrack, which is the
topic of our earlier work [13]. Note that equation (2.13) is slightly different from equation 2.13 of [13] and
is more accurate since the point of action of F is changed from the periphery, i.e. R, to the centre of ring
thickness t/2, i.e. R− t/2.

2.3. Initially curved hollow trunk subject to curvature-decreasing bending

2.3.1. Derivation of Mcrack for cracking failure

The bending moment Mcrack at which the tangential cracking occurs in a curvature-decreasing bending
can be derived by following the procedure similar to the curvature-increasing case, except that the
cracking is initiated at w=0 (electronic supplementary material):

Mcrack ¼ 2sTIðt=RÞ
3ðcR� c0crackRÞRð1� ð1=2Þ ðt=RÞÞ2ð1þ ð1=6Þ ðt=RÞÞ for w ¼ 0 and c � c0crack, ð2:14Þ

where cR is the dimensionless initial curvature, and c0crackR the dimensionless change of curvature when
cracking failure occurs, which will be determined in the following section.

2.3.2. Derivation of K and c0crackR for cracking failure
From equations (2.3) and (2.14),

Mc0

Mcrack
¼ 3ðcR� c0crackRÞc0RELð1� ð1=2Þ ðt=RÞÞ2ð1þ ð1=6Þ ðt=RÞÞ

2sTðt=RÞ for w ¼ 0: ð2:15Þ

For crack failure initiation, Mc0 ¼ Mcrack and c0R ¼ c0crackR. Define K ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðcR� c0crackRÞc0crackR

p
and from

equation (2.15),

K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2sTðt=RÞ

p

ð1� ð1=2Þ tERÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ELð1þ ð1=6Þ t=RÞp : ð2:16Þ

Solving K2 ¼ ðcR� c0crackRÞc0crackR for c0crackR gives

c0crackR ¼
cR+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcRÞ2 � 4K2

q

2
: ð2:17Þ

The solution with ‘+’ is discarded, since the smaller one will occur first. Then, we have
ðcR� c0crackRÞ � K and 0 � c0crackR � K.

Note that c0crackR exists if and only if (cR)2≥ 4K2 or cR≥ 2K. The minimum value of cR is cminR= 2K
and its corresponding c0crackR ¼ K.

2.3.3. Derivation of Q for determining whether the failure mode is bending or cracking

From equations (2.1) and (2.14), it follows that

Mcrack

Mbend
¼ 2sTðt=RÞ

3ðcR� c0crackRÞsbð1� ð1=2Þ ðt=RÞÞ2ð1þ ð1=6Þ ðt=RÞÞ , ð2:18Þ

where c0crackR is obtained from equation (2.17).
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To determine the critical value, cR= ccriR, at which Mbend =Mcrack, we define Q ; ccriR� c0crackR and

from equation (2.18)

Q ¼ 2sTðt=RÞ
3sbð1� ð1=2Þ ðt=RÞÞ2ð1þ ð1=6Þ ðt=RÞÞ : ð2:19Þ

Cracking failure occurs when Mcrack <Mbend, i.e. when cR> ccriR or cR� c0crackR . Q; bending failure
occurs when Mcrack >Mbend, i.e. when cR< ccriR or cR� c0crackR , Q. As a result, a trunk with smaller
ccriR tends to fail due to cracking. At the critical condition of Mcrack =Mbend, c0R ¼ c0crackR ¼ c0bendR.

From equation (2.17) and cR≥ cminR=2 K, we obtain cR� c0crackR ¼ cRþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcRÞ2 � 4K2

q
=2 � K

By definition ðcR� c0crackRÞc0crackR ¼ K2, it follows that c0crackR � K.
At c= ccri, ðccriR� c0crackRÞc0crackR ¼ Qc0crackR ¼ K2.

c0crackR ¼ K2

Q
¼ sb

EL
¼ c0bendR

and

ccriR ¼ Qþ c0crackR ¼ Qþ sb

EL
for Q � K: ð2:20Þ

Note that equation (2.20) is only applicable for Q≥K. Q and K monotonically increase with t/R, and
Q≥Kwhen t/R≥ (t/R)cri, where (t/R)cri, is the critical t/R ratio at which Q=K (electronic supplementary
material, figure S1).
2.3.4. Derivation of (t/R)cri
The critical ratio (t/R)cri is calculated by setting Q=K, using equations (2.16) and (2.19) as follows

ðt=RÞcri
ð1� ð1=2Þðt=RÞcriÞ2ð1þ ð1=6Þðt=RÞcriÞ

¼ 3s2
b

2ELsT
: ð2:21Þ
3. Results and discussion
Equations (2.2) and (2.14) show that Mcrack is proportional to the tangential tensile strength of wood σT,
increases with t/R and decreases with the final dimensionless curvature provided that cR≥ 0 and cR≥ 2 K
for the curvature-increasing and curvature-decreasing conditions, respectively.

In this section, we describe case studies of several tree species using the equations presented in the
previous section. Their mechanical properties, critical t/R ratios, K and Q for both curvature-
increasing and curvature-decreasing cases are summarized in table 2.

We first compare the bending moment at which the tangential crack occurs under curvature-
increasing and curvature-decreasing cases by evaluating Mdec/Minc, where the subscript denotes the
bending direction. Using Zelkova serrata as an example, we find that, for larger cR, cracking failure is
easier to occur for curvature decrease than curvature increase, i.e. Mdec/Minc < 1, due to additional
normal tensile force F acting on the neutral cross-section; on the other hand, for smaller cR bending
failure is easier to occur due to decreased final curvature (electronic supplementary material, figure S2).

Figure 3 compares K, Q and ccriR for various tree species. We observe that all parameters increase
with t/R. Figure 3a shows K of two hardwood and two softwood species under curvature-increasing
or curvature-decreasing bending. An investigation of the result highlights two key observations. First,
curvature-increasing bending has larger K than the case of curvature-decreasing. This is due to the
additional tensile stress F/t exerted on the cracking plane, w=0, of the curvature-decreasing case
(figure 2f ), where F is the internal normal force per unit length derived in equation S2 of electronic
supplementary material. Such a tensile stress does not exist on the cracking plane, w= π/2, of the
curvature-increasing case (figure 2e). Second, the hardwoods in general have larger K than the
softwoods. Recall that Mcrack is proportional to c0crackR since Mcrack ¼ Mc0 ¼ c0crackELI.

Figure 3b shows Q of the four species under curvature-increasing or curvature-decreasing bending.
We observe a trend similar to K that is the hardwoods, such as Z. serrata and Paulownia tomentosa,
have larger Q than that of the softwoods, such as Cryptomeria japonica and Pinus densiflora.
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Curvature-increasing bending has larger Q than the case of curvature-decreasing. At such a condition,
hardwood is in general stronger in resisting cracking failure than softwood.

When given the geometrical and material properties of a tree, we may use ccriR as derived in
equations (2.11) and (2.20) to determine the mode of failure—cR> ccriR for cracking failure and cR<
ccriR for bending failure. Figure 3c,d shows ccriR for 11 tree species, including four hardwoods, three
softwoods and four tropical woods, under curvature-increasing or curvature-decreasing bending,
respectively. Note that tropical woods are in general hardwoods, but one of the species used here,
Agathis spp., is a softwood. Recall that ccri is the critical initial curvature at Mbend =Mcrack, which exists
if and only if Q≥K or t/R≥ (t/R)cri. At t/R= (t/R)cri, ccriR= 0 and= 2σb/EL, respectively, for the case
of curvature-increasing and curvature-decreasing. The hardwoods tend to have larger ccriR than the
softwoods and tropical woods, indicating that at a given t/R and cR, hardwoods are more resistant to
cracking failure (cR< ccriR or Mbend <Mcrack), compared with softwoods and tropical woods, which are
more likely to experience cracking failure (cR> ccriR or Mbend >Mcrack).

No data point exists for t/R< (t/R)cri in curvature-decreasing case (figure 3d ), which means that
bending and cracking failures cannot both exist. However, failure may still occur within this range,
depending on the conditions as follows: (i) cracking only, if cR≥ 2 K, (ii) no cracking, if cR<2 K,
(iii) bending failure only, if cR<2 K and σb/EL< cR≤ 2σb/EL, and (iv) no failure, if cR<2 K and 0<
cR< σb/EL. Here, we assume that the trunk does not flip over, i.e. c0R � cR.

Figure 4 shows Mcrack/Mbend as a function of t/R for four species. Bending failure occurs when
Mcrack/Mbend > 1, otherwise cracking failure occurs. For instance, for Z. serrata with cR=0.03, the
critical (t/R)cri is 0.39, indicating that the trunk will fail due to cracking as t/R<0.39 and due to
conventional bending as t/R>0.39 (figure 4a). Also, at a given t/R, the larger cR, the more likely the
cracking failure will occur. Unlike the curvature-increasing case, where failure will always occur as
Mc0 increases, a trunk subjected to curvature-decreasing bending may not fail all the way to
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cR� c0R ¼ 0, i.e. a straightened trunk. As shown in figure 4e, for Z. serrata with cR=0.01, the trunk fails
due to cracking as t/R<0.065 and due to bending as t/R>0.065. Although no data are shown for t/R>
0.065 since Mcrack does not exist, the trunk still fails in bending as long as cR≥ σb/EL= 0.0073; similarly,
for cR=0.03, the trunk fails due to cracking as t/R<0.33 and due to bending as t/R> 0.33. For the special
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case cR = ccriR = 0.0145 and (t/R)cri = 0.128, where Q=K, the trunk fails due to cracking as t/R less
than 0.128 and fails in bending as t/R > 0.128. Similar observations can be made for the other three
species. We find that, compared with the two hardwood species, the two softwood species are
more likely to fail in cracking for a given t/R and cR, which is consistent with the observations
in figure 3.

We also compare the theoretical predictions with those from the finite-element method (FEM)
simulation (figures 4 and 5). This serves as a check on any errors in the mechanics theory, though it
may not be a substitute for a comparison with experimental data. The results from both methods
are in general consistent. The deviation is relatively large for large t/R, e.g. ≥0.5, and for small t/R,
e.g. ≤0.1. The former is due to the fact that dF is assumed to act at R− t/2 (figure 2e,f ), which
introduces certain error for large t/R, in which case the radial coordinate of the centroid of the
shaded trapezoid is slightly greater than R− t/2. The latter is due to the fact that our FEM
simulation considers the Brazier buckling effect (figure 1c,d ), which is not considered in
our theoretical models. Brazier buckling is known to become the dominant failure mode for very
small t/R [13].

A particular hollow trunk’s failure mode is determined by its geometric parameters and material
properties, including Young’s modulus, bending strength and the tangential tensile strength. To
confirm whether the trends observed in figures 3 and 4 are still valid for a larger number of species,
we expand our analysis to include 66 hardwoods and 43 softwoods (figure 6) with the green wood
properties from Wood Handbook—Wood as an Engineering Material [19]. Bending strength (σb), tangential
tensile strength (σT), Young’s modulus (EL) and their ratios are plotted against specific gravity, since
specific gravity is highly correlated with wood’s strength and elasticity [20]. For the species analysed
here, the specific gravity of hardwoods ranges approximately from 0.31 to 0.80, whereas that of
softwoods ranges approximately from 0.29 to 0.54. EL, σb and σT increase with specific gravity for
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both hardwoods and softwoods. Softwoods, however, have significantly lower tangential strength than
the hardwoods with similar specific gravity. σT/σb of the softwoods is significantly smaller than that of
hardwoods, and they exhibit distinct patterns—the ratio increases with specific gravity for hardwoods
and decreases for softwoods. Since Q is proportional to σT/σb and ccriR increases with Q, softwoods
have smaller σT/σb and ccriR, indicating that softwoods are more likely to fail in cracking. This
reaffirms the findings shown in figures 3 and 4. Also, we note that the failure mode of hardwoods
and softwoods show an opposite trend as a function of specific gravity. The difference in the
mechanical properties, and hence the failure mode, between softwoods and hardwoods, might be
explained by their different microstructures [22]. Softwoods, such as Japanese cedar (C. japonica),
consist of up to 95% tracheids oriented along the trunk. Only approximately 5% of the tissue is
oriented in the radial direction, the uniseriate rays. By contrast, hardwoods, such as Japanese zelkova
(Z. serrata), have more complex microstructures, consisting of different tissue types, such as vessels,
fibre tracheids, libriform fibres and rays. Hardwoods can have larger rays (multiseriate rays) and a
higher relative volume fraction of such radially oriented tissue—typically 12% for alder, 20% for oak
and 16% for ash. There are no fibres and rays aligning along the tangential direction that serve as
strengthening mechanisms [23].
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During secondary growth, xylem accumulates growth stresses that are similar to the residual stresses

that occur in artificial materials during processing, such as thermal stress. These growth stresses represent
an important bio-mechanical mechanism that enables the tree to adjust to the ecological environment
[24–26]. In coniferous trees, compression wood is formed on the lower side of a tilted trunk
(longitudinal compressive stress), whereas in dicotyledonous trees, tension wood is formed on the
upper side (longitudinal tensile stress). The tangential growth stresses are always compressive. By
producing reaction wood, up-righting of leaning trunks or branches is achieved. These growth stresses
can influence the precision of Mcrack calculation. However, very few data are available. On the other
hand, in the hollowing process, a large part of the growth stresses can be released, and hence the
effect of growth stresses on cracking will be reduced. Therefore, in this study, the effect of growth
stress is neglected. Also, we use unidirectional strength criteria—we neglect the fact that tangential
stress on wood may modify its longitudinal strength.

How important is it to account for initial curvature, compared with the straight case, i.e. equation
(2.13)? What is the threshold cR above which initial curvature can no longer be neglected? Suppose an
error of 10% is acceptable for the curvature-increasing case, from equations (2.2) and (2.13), we have
Mcrack0=Mcrack ¼ ðcRþ c0crackRÞ=K ¼ 1:1 or cRþ c0crackR ¼ 1:1K. Recall that ðcRþ c0crackRÞc0crackR ; K2.
It follows that c0crackR ¼ K2=1:1K � 0:91K. The threshold cR for 10% error is then determined to be
cR= 1.1K− 0.91K=0.19K, where K can be obtained from equation (2.5) or figure 3a.
.7:200203
4. Conclusion
In this paper, we investigate the failure modes of curved hollow trunks due to bending by comparing the
tangential cracking (longitudinal splitting) and conventional bending failure. We derive new analytical
expressions for predicting the bending moment at which tangential cracking occurs under the
curvature-decreasing and curvature-increasing bending. We also derive analytical expressions for
critical thickness to radius ratio (t/R)cri and critical ccriR, which can be used to predict the failure
mode of a trunk with given geometric parameters and material properties. We study 11 tree species and
find that the hardwoods are more likely to break due to bending failure, whereas softwoods and
tropical woods tend to break due to cracking failure. This can be attributed to the softwoods’ much
smaller tangential tensile strength, compared with the hardwoods, based on the data of 66 hardwoods
and 43 softwoods. At the same specific gravity, softwoods have a similar bending strength as
hardwoods, but their tangential tensile strength is significantly lower. A trunk subjected to a curvature-
increasing moment will eventually crack or fail in bending. By contrast, for the curvature-decreasing
case, whether or not the trunk fails and in which mode depend on its cR, t/R and material properties.
For larger cR, cracking failure is easier to occur for curvature decrease than curvature increase due to
additional normal tensile force F acting on the neutral cross-section; on the other hand, for smaller cR
bending failure is easier to occur due to decreased final curvature. Our findings may be readily applied
to assess the failure potential of other natural and man-made curved hollow structures with orthotropic
material properties and may shed light on the safety assessment, conservation and ecology of trees.
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