in a platinum crucible, the oxid of mercury was decomposed, and its elements expelled, and a small portion of a green oxid remained in the crucible. In several repetitions of the process this, invariably, occurred. I had been led to suspect that this was the oxid of nickel, because the alkaline solution, from which it had been obtained, gave a black precipitate, with the hidro-sulphuret of ammonia; accordingly, on fusing a portion of this oxid, with borax, under the blow-pipe, it produced a glass of a hyacinth red; the same fact took place with a portion of a substance, known to be the oxid of nickel, which was fused with borax, for the sake of comparison. On fusing a portion of the chromat of lead, or Siberian red lead ore, with borax, and afterwards with vitreous phosphoric acid, glasses of an emerald green colour were produced.

Hence it was concluded, that the meteoric stones of Weston do not contain chrome, but that the green oxid obtained, was the oxid of nickel.

No. LII.

Observations of the Comet which appeared in September 1807, in the Island of Cuba, by J. J. de Ferrer.

Read August 19th, 1808.

	Mean time at the City of Havanna.		The observed long. of the Comet. - 1	The observed lat of the Comet. 0 " "
1807. Octr.	1	65450	2202112	184603 N.
Norr.	18	65442	2343658	374111
	3	65605	2514125	511300
	4	64930	2525708	515442
	7	64420	2570222	535418
	17	70426	2725440	591731
	18	62736	2743742	594237
	19	64410	2762740	600613
	25	65907	2875357	615632
Decr.	1	72600	2995531	625130

The longitudes and latitudes of the preceding table, have been deduced from angular distances observed of Arcturus, Vega, Altair, α, β and, in the Swan, with the circle of reflection, described in page 265 of this volume.

The observations from the 1st Octr. till the 7th Novr. were made in the city of Havanna, the others at the plantation of

Don Joseph de Cotilla, situated in latitude $22^{\circ} 55^{\prime} 16^{\prime \prime} \mathrm{N}$. and $44^{\prime \prime}, 3$, in time, E. of Havanna.

The times of the observations were determined by a good chronometer, regulated by absolute and corresponding altitudes of the sun and stars, and the tumes observed at the plantation, are referred to the city of Havanna, by the difference of meridians.

To determine the place of the comet, many series of observations were made with two or three of the above named stars, choosing those that made the most convenient triangles, and as the different observations could not be made at the same time, care has been taken, to refer all the distances observed, to the same instant, by means of the variation observed of the distances of the said stars from the comet.

The distances observed were freed from the effects of refraction, corrected by reference to the state of the thermometer and barometer.

The places of the stars were taken from the Connoisance dc temps, of Paris, 1806; allowance being made for the proper motion, precession of the equinox, nutation and aberration. Further, the latitudes and longitudes of the said table are the apparent, that is, affected by the nutation and aberration. The elements of the orbit of the comet were calculated from the first observations which I made in Havanna, that is, from 1st Octr. to 7th Novr., by Don Francis Leamur, Lieutenant Col. of the Royal Corps of Engineers, and are the following:-

Passage through the perihelion, mean time at the city of Havanna, Septr. 18th $111^{\text {h }} 58^{\prime} 59^{\prime \prime}$ Longitude of the ascending node. . . . $8^{s} 26^{\circ} 39^{\prime} 09^{\prime \prime}$ Inclination of the orbit. 631230 Place of the perihelion. 9004501 Perihelion distance, that of the sun being 1. . . 0,6462128

After having concluded the observations, namely up to the 1st December, I determined to calculate the elements of the parabolic orbit, by the combination of all the observations, and the following elements are the results.

[^0]Comparison of the observations with the results of the theory calculated by the above elements.

The longitudes and latitudes observed and calculated in the following table, are freed from nutation and aberration.

The two last columns shew the difference between the longitude and latitude, observed and calculated.

1807.	Mean time, Havanna.	The observed Longitude.	he observed Latitude.	Calculated Longitude.	Calculated Latitude.	Diff. long.	$\begin{aligned} & \text { Diff. } \\ & \text { lat. } \end{aligned}$
	h ' $\quad 1$	"	- 10	- ${ }^{\prime \prime}$	- ,		
ctr.	65450	2202114	184632 N	2202137	184630 N	-23	+02
18	65442	2343706	374136	2343619	374215	+47	-39
Norr.	65605	2514139	511317	2514136	511255		+22
	64930	2525725	515500	2525812	515421		+39
	64420	2570342	535433	2570225	535501	-17	-28
17	70426	2725516	591742	2725503	591836	+13	48
18	62736	2743823	594249	2743850	594258	-27	09
19	64410	2762821	600625	2762839	600646	-18	-21
25	65907	2875441	615637	2875514	615651	-33	-14
Decr. 1	72600	2995618	625130	29956	625122		+08

Continuation of Astronomical Olseroations, made at the plantation of Don Joseph de Cotilla.

Determination of 'Latitude.

1807, Norr. 13 By 8 series of \odot 's double altitudes, observed near the meridian, with a circle of reflection. . . $22^{\circ} 55^{\circ} 14 \frac{12^{\prime \prime}}{} \mathrm{N}$. ditto $\quad \sigma^{\prime}$'s diameter. $\quad 22 \quad 55 \quad 1.5 \frac{1}{2}$
17
21
ditto ditto. .
$22 \quad 55 \quad 09 \frac{1}{2}$
Novr. 17 By 4 series of double altitudes of the pole-star.
$\begin{array}{lll}22 & 55 & 20 \\ 22 & 55 & 17\end{array}$
20 By 2 series of Fomalhat. . $\quad 22 \quad 55 \quad 17$

Mean Latitude. $22 \quad 5516$
By astronomical observations, I have determined the bearing of the highest hill of Camoa, N. $13^{\circ} 34^{\prime} 10^{\prime \prime}$ W.

The hill of Camoa, from the city of Havanna. according to the survey which was made by the order of Government, was determined $=29250$. Varas of Castilla $=13,11$ geographical miles, bearing S. $45^{\circ} \mathrm{E}$.

The combination of the two bearings, and the latitudes of the hill of Camoa and Havanna, gives the former E. of the city of Havanna $11^{\prime} 05^{\prime \prime}, 2=44^{\prime \prime}, 3$ in time.
Observations made on a lunar eclipse, on the 14th Novr. 1807.

Observation of apparent lunar distances, observed with the circle of reflection, at the plantation.-The distances in the following table are the result of 4 series of direct and inverse observations.

1807.	Appt. time.		Appt. Dist.	Th	Barom
	${ }^{\prime} 1$		- 1		
Novr. 14	8 01 8 12 15	$a \times$ © ${ }^{\text {s }}$ remote limb.	19 06 18 40 18	$65 \frac{1}{2}$	3010
	82651 153740	ditto. ditto.	$\begin{array}{lll} 18 & 57 & 52 \\ 16 & 45 & 37 \end{array}$		
	15 9 9 0740	a ૪ ©'s nearest limb.	$\begin{aligned} & 164537 \\ & 205104 \end{aligned}$	66	3000
	92440	ditto. ditto.	210046		
	203120	$\bigcirc \mathbb{C}$ nearest limbs.	1181053	72	3000
	21 21 17 178	ditto.	1175013		
	$\begin{array}{llll}21 & 33 & 52 \\ 17 & 25 & 27\end{array}$		921637 4143	75 67	2996 30
	$\begin{array}{llll}17 & 25 & 27 \\ 17 & 53 & 15\end{array}$	a 收 $\begin{aligned} & \text { 's's nearest limb. } \\ & \text { ditto. ditto. }\end{aligned}$	414354 123706	65	3010 30
	220138	\bigcirc ¢ . .	515657	72	3010
	221612	ditto.	515126		
Decr.	225734	ditto.	525833	77	3000
	$\begin{array}{llll} 23 & 23 & 09 \\ 93 & 57 & 90 \end{array}$	ditto.	$\begin{array}{ll} 53 & 09 \\ 52 & 29 \frac{1}{2} \end{array}$		
	$\begin{array}{r} 235720 \\ 05054 \end{array}$	ditto. ditto.	$\begin{aligned} & 53 \quad 2246 \\ & 53 \\ & 42 \\ & 14 \frac{1}{2} \end{aligned}$		
	35027	ditto.	$661457 \frac{1}{2}$	74	3012
	41151	ditto.	661955		
	15148	ditto.	990541	74	3010
	2 2 6 11458	ditto. ${ }_{\text {c }}$ a ${ }^{\text {a }}$	$\begin{array}{ll} 99 & 12 \\ 50 \end{array}$		
	611433 62630	©'s and Atair nearest limb.	$\begin{array}{lll} 58 & 57 & 49 \\ 59 & 00 & 25 \end{array}$	70	2998
	63359	© a ૪ remote limb.	475301	69	3000
	70451	© a y remote limb.	2903 301.	74	2995
	71624 121328	ditto. ditto. ${ }^{\text {d }}$ d	29 210548		
	$\left.\begin{array}{lll} 12 & 13 & 28 \\ 12 & 18 & 16 \end{array} \right\rvert\,$	© and Regulus remote limb.	$\begin{array}{ll} 21 & 25 \\ 21 & 48 \\ 25 \end{array}$	70	3010
1808.	12 12 12 31 18 06	ditto.	21 21 35 14		
Jan. 11	140642	© a \% nearest limb.	261305	68	3015
	14 23 14 16	ditto. -	261848		
19	160831	\bigcirc and Antares nearest limb.	374455	55	3014
21	$\begin{array}{lll} 16 & 23 & 02 \\ 21 & 25 & 35 \end{array}$	$\stackrel{\text { ditto }}{\bigcirc}$	$\begin{array}{llll}37 & 39 & 58 \\ 61 & 55 & 05\end{array}$	71	3008
	214524	ditto, .	614910		

January 11th, 1808. Occultation of, in by the moon. Immersion on the dark limb. $\left\{\begin{array}{llllll}\text { Apparent time. } & 14 \mathrm{~h} & 46^{\prime} & 11^{\prime \prime}, 4 \\ \text { Mean time. } & . & 14 & 54 & 32, & 0\end{array}\right.$
The disappearance was instantaneous-magnifying power of the telescope, 75.

January 27. By four series of double altitudes of Canopus, near the meridian, observed with the circular reflector, corrected by the horary angles, and refraction, the meridian altitude was determined. $14^{\circ} 28^{\prime} 53,5^{\prime \prime}$ By 4 series of similar observations on Sirius. $\quad 50 \quad 36 \quad 54,4$

By 10 series of angular distances, observed with the circular reflector, and corrected for refraction, the mutual distance was determined $=36^{\circ} \quad 17^{\prime} \quad 19,4^{\prime \prime}$.

The difference of right ascension in time, of the above stars $=16^{\prime} 59,5^{\prime \prime}$.

By the distance observed, and the difference of right ascension results the difference of declination. $36^{\circ} 08^{\prime} 00,4^{\prime \prime}$

The difference of meridional altitudes $=$ difference of declinations, . . , . 360800,9

Taking the latitude of the place as stated above $22^{\circ} 55^{\prime} 16^{\prime \prime}$ and correcting the meridional altitudes observed, from nutation, aberration, and precession, we have the true, or mean declinations of the two stars on 1st January 1808.

| Canopus. | \cdot | \cdot | 52° | 35^{\prime} | $34,9^{\prime \prime}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Sirius. | | | | | |

Comparing the observations of la Caille on 1750, and supposing the annual precession in longitude $=50,1^{\prime \prime}$ we have the proper motion of Canopus in declination in 58 years- $0^{\prime} 10,1^{\prime \prime}$ Sirius.
$+102,0$
Mean declination of Sirius, according to the Rev. Nevill Maskelyne

Astronomical observations made at the city of Havanna. Latitude of the place $23^{\circ} 08^{\prime} 30^{\prime \prime}$.

Occultations of stars by the moon, observed with an Achromatic telescope-maguifying power 75.
April 5th, 1808. © 1 a 0 on on the dark limb, apparent time. . . 11h 53. 34"

The immersions were instantaneous.

Observations made on a lunar eclipse at the city of Havanna, on the 9th of May, 1808:-magnifying power of the telescope 70.

IMMERSIONS.	$\underset{h}{\text { Mean time. }}$
Beginning of the Eclipse.	122229
Beginning of Grimaldus.	122718
End of ditto.	122758
Beginning of Aristarcus.	122838
End of ditto.	123008
Beginning of Mare humorum.	123757
ditto. of Copernicus.	123937
End of ditto.	124057
Beginning of Plato.	124357
End of do.	124507
Beginning of Mare serenitat.	125057
Center of ditto. .	125516
Beginning of Tycho.	125646
End of ditto.	125841
Beginning of Mare Crisium.	130921
End of ditto.	131420
End of Langrenus.	131800
Total darkness of the \mathbb{C}.	132125

EMERSIONS.	Mean time. h , "
End of total darkness of the ©	14 5510
End of Grimatdus.	150150
End of Aristarcus.	150545
Beginning of Tycho.	151414
End of ditto.	151547
Center of Schikardus.	151928
End of Plato.	152123
Beginning of Mare serenitat.	152829
Center of ditto.	153307
End of ditto.	153757
End of Taruntius.	- 154417
Beginning of Mare crisium.	154646
End of ditto.	1549.26
The end of the eclipse.	. 155436

The above observations of the lunar eclipse are very exact, excepting the beginning and the end of the eclipse, which are liable to the error of one and a half minute, on account of the strong penumbra.

Table of the results of the occultations of the stars by the moon.

Mean time of immersions.
Longitude west from Paris, Mean time at Paris.
Apparent longitude of the stars.
Apparent latitude of the stars.
Latitude-Vertical angle.
Logarithmic radius of the earth.
Equatorial horiz. parallax of the ©
Parallax in Longitude.
Parallax in latitude.
Apparent difference of latitude between the moon and stars.
Conjunction mean time.
Havanna west from the plantation.
Conjunction in Havanua by observ.
At Paris by the new tables.
Havanua west from Paris.

Imm, y ${ }^{1 / C}$ at plantation Jan. 11, 1808.	Imm. $1 a$ ars < Havanna. Λ pril 5, 1808	Im. 347mayer Havanna. May 2, 1808.	$\left\lvert\, \begin{gathered} \text { Imm. w } \Omega \mathbb{C} \\ \text { Havanna. } \\ \text { May 3, } 1808 \end{gathered}\right.$
h \% "	h 1 "	h	h
145432	115607	85814	103126
53806	53850	53850	53850
203238	173457	143704	161006
$94^{\circ} 0755$	$130^{\circ} 26$ 03,6	12445 10,5	1385200
30448 S .	52934 S .	52048 S .	53407 S .
224758	230113		
9.9998036	9.9998000		
57 23,8	5824,5	5715	58 05,3
-4536,0	-41 35,9	-35 44,5	-38 52,3
+1305,2	+2917,9	+22 38,3	+3116,2
$\begin{array}{rl} 5 & 03 \\ 13_{h} 59 & 34 \\ 44,3 \end{array}$	6 08,0	7 36,0	1431
135849,7	11.0937	81811	93432
193824,0	164851	135711	151340
53934,3	53914	53900	53908

Results of observed lunar distances.

	January 11th, 1808 \mathbb{C} 人		January 19th, 1808. \& Antares. (CS \& Antares.	
	h	b		h ' "
Apparent time of the observations.	140643	14.2318	160831	162302
Apparent distances nearest limb.	$26^{\circ} 1305$	$26^{\circ} 18$ 48,2	374445	373955
Altitudes of \mathbb{C} calculated $\{$ Appt.	430340	392720	471820	485700
	434931	401030	475734	493501,5
Altitudes of the stars do. ${ }^{\text {Appt. }}$	165140	130710	133330	161320
Altitudes of the stars do. $\{$ True.	164841	130320	132941	161009
Corrected distances.	271222,8	272106,4		382902,8
Apparent longitude of the stars.	6706 52,3		2470500,6	
Apparent latitude of ditto.	52847 S .		43230 S .	
True longitude of the moon by obs vations January 11th, $14^{\text {h }} 15^{\prime} 00$ Apparent time at the Plantation.		$3^{5} 04^{\circ}$	$1^{\prime} 02^{\prime \prime}, 7$	
January 19th at $16^{\text {h }} 15^{\prime} 46^{\prime \prime}, 5$ appa	nt time.	628	30 03,5	

Havanna W. from Paris.
Longitude of the Plantation W. from Paris $=5^{\text {h }} 38^{\prime} 29^{\prime \prime}, 7+44^{\prime \prime}, 3=5^{\text {h }} 39^{\prime} 14$ Ditto from the observation of 19 th $53818,5+44,3$. . 53903

Solar eclipse of June 16th, 1806, in the city of Havanna.

Conjunction June 15th, Astronomical time. 225103
Ditto. in Paris, page 296, June 16th. 43012
Havanna west from Paris. 53909

By the Solar Eclipse (page 162,) observed in the city of Havanna, and at Lancaster in Pennsylvania.' U. S.

Havanna west from Lancaster 0h $24^{\circ} 25^{\prime \prime}$
Lancaster west from Paris (page 297.) 5
Havanna west from Paris. 53906

Longitude of Havanna, by the observations compared with the new tables published at Paris in 1806.

Passage of Venus over the disk of the Sun, June 3d, 1769.

By a previous calculation of the observations of this passage, I had determined the following elements:-

TABLE I.

Reduction of the observations to the center of the earth.

		$\left\|\begin{array}{c} \text { Appt. time } \\ \text { of the ob- } \\ \text { servations. } \end{array}\right\|$	$\begin{aligned} & \text { Effect } \\ & \text { of } \end{aligned}$	$\left\|\begin{array}{l} \text { Appt. time } \\ \text { of con. cen- } \\ \text { ter of earth } \end{array}\right\|$	Long. from	Contacts at center of earth. Appt. time at merid of Paris		
			Parallax		Paris.			
		h 11	' 1	h 1 "	h 1		b 1 "	h
Petersburg.	III	152441	-5 16	151925	15156		132729	
	IV	154327	-458	153829				134633
Cajaneburg.	II	92045	+644	92729	-14147	74548		
	IV	153227	-436	152751				134610
Wardhus.	II	93410	+627	94037	-15507	74530		
	III	152724	-433	$15 \quad 2251$			132744	
	IV	154541	-409	154132				134625
Batavia.	III	203013	-402 -345	202611 204446	-6 5815		132756	
	IV	$\begin{array}{llll}20 & 48 & 31 \\ 16 & 52 & 25\end{array}$	-345 -628	$\begin{array}{lllll}20 & 44 & 46 \\ 16 & 45 & 57\end{array}$				134631
Gurief.	III	$\begin{array}{llll}16 & 52 & 25 \\ 17 & 11 & 06\end{array}$	-6 68	$\begin{array}{lll}16 & 45 & 57 \\ 17 & 05 & 00\end{array}$	31824		2733	134636
Oremburg.	III	170506	-612	165824	-3 3058		132756	
	IV	172324	-5 53	$17 \cdot 1731$				134633
Orsk.	III	$\begin{array}{llll}17 & 18 & 26 \\ 17 & 36 \\ 57\end{array}$	-609 -552	$\begin{array}{llll}17 & 12 & 17 \\ 17 & 31 & 05\end{array}$	-3 4443		132734	
	IV	$\begin{array}{llll}17 & 36 & 57 \\ 21 & 08 & 24\end{array}$	-5152 -427	$\begin{array}{llll}17 & 31 & 05 \\ 21 & 03 & 57\end{array}$	-7 3630		132727	134622
Pekin.	IV	212654	-3 54	212300			132727	134630
		Me	u	the III	IV C		13273	627,5

In the calculation of this and the following tables, the parallax of the sun, at the mean distance of the earth $=8^{\prime \prime} 62378$, and the difference of parallaxes at the passage $=21^{\prime \prime}, 352$.

Note. The III contact at Petersburg was observed $13^{\text {h }} 28^{\prime} 29^{\prime \prime}$ and I subtracted one minute of time, being probably an error committed in setting down the time of the clock.

TABLE II.

Reduction of the observation to the center of the earth.

Paris.
Greenwich. Kew. Oxford. London. Stockholm. Upsal.

	Apparent time of observations.	Effect of parallax.	Appt. time at the center of the earth.	Longitudes from Paris.	Appt. time of con at center of the earth at Paris.
	h ${ }^{\text {c }}$	' "	h 1	h 1	h ,
11	73845	+703,1			74548,1
	72925	+704,2	736 29,2	+00 0921	745 50,2
	72817	+704,2	73521,2	+ 1024	74545,2
	72420	+702,0	73122	$+\quad 1423$ $+\quad 027$	74545
	72916	+7040	73620	+ 937	74557
	84146	+656,0	84842	- 10255	74547
	84012	+657,4	84709	I 0115	74554,4
	- .	+701,6		Mean.	745 49,5

TABLE III.

		Apparent time observations. b 1	Effect of parallax.	Appt. time at the center of the earth h $/$ "
Fort Prince of Wales	II	11523	+4 12, 1	119 35,1
	III	70047	+0 39,1	701 26,1
	IV	71920	+0 49,5	72009,5
St. Joseph.	II	01727	+020,3	${ }_{0} 17474$,
	III	55450	+447,9	55937,9
	IV	61319	+446,0	618 05,0
Taity.	II	214404	$-533,4$	213830,6
	III	31408	+617,4	320 25,4
Philadelphia.	I	21345 2	+ +38 +354	21723
	${ }_{\text {II }}$	23128 22612	+354 $+233,6$	23522 2356
Cape Francais.	II	${ }_{2} 4444,5$	+2 37,6	24722,1
Cambridge	II	24730,0	+419,0	25149,0

TABLE IV.

Difference of time between the interior and extcrior contacts at the

center of the earth.

Results of sun's parallax at the mean distance of the earth.

By the duration, at Taity and (n) Taity and (a)	
Taity and Wardhus. . .	$\left.8{ }^{\prime \prime}, 731\right\}$
Taity and Cajaneburg. .	8,516
St. Joseph and F. P. Wales.	
St. Joseph and (a) $=$	$\left.\begin{array}{l}8,645 \\ 8,588\end{array}\right\}$
Taity and F. P. Wales. $=$	8,588
Mean result.	- .

Contacts at the center of the earth, for the meridian of Paris; allowing the sun's parallax at the mean distance of the earth $=8^{\prime \prime}, 615$.

Error of the duration of the observations at Wardhus. . . . $+22^{\prime \prime}, 8$
Cajaneburg. . . . -16,0
(n) • • • • -0,5

Taity. $+1,3$
St. Joseph. . . . -2,3
F. P. Wales. . . . - 1,7

Determination of the longitude of different places, from Paris, by the observation of the passage of Venus.

Passage of Mercury over the disk of the Sun, Novr. 12th, 1782.

Horary motion of $\underset{\gamma}{ }$ in latitude, N .
$4^{\prime 2} 04^{\prime} 09^{\prime \prime}$
Apparent conjunction, by observations at Philadelphia.
\(\begin{array}{ll}23 \& 10
16\end{array}\)
Apparent conjunction
Cambridge
Longitude of Philadelphia west from Paris. . $5^{\text {h }} 10^{\prime} 10^{\prime \prime}$
Cambridge west from Paris . . 45353
Passage of Mercury over the disk of the sun, Novr. 5th, 1787.
Observations.

Difference of the horizontal parallaxes. . . . $=44^{\prime \prime}, 149$
Horary relative motion in longitude between the ingress and conj. 349,55
Between the egress and conjunction. 350,00
Horary motion in latitude, N. 51,40
$\frac{1}{1}$ diameter of $\odot-1^{\prime \prime}, 50$ irradiation. ${ }^{\prime}$. . . ${ }_{h} 969,28$

Annular eclipse, April 3d, 1791.

Elements from the Astronomical tables published at Paris, in the year 1806, by order of the Commissioners of longitude.

Proportion of the equatorial horiz. paral. and the \mathbb{C} 's horiz. diameter. $60: 3245,1$
Proportion of the equatorial and polar diameters of the earth $=330: 329$

Observations made by the Rev. Nevil Maskelyne, at Greenwich.

Oh $18^{\circ} 40^{\prime \prime}$	Apparent time, beginning of the eclipse.	
14451	Least distance of the limbs. $12^{\prime \prime} 52^{\prime \prime}$	
30647	End of the eclipse.	
m	8 observations, \bigcirc 's diameter was	$31^{\prime} 57^{\prime \prime}, 0$

	h 18	b 1 "	h 1 y
Apparent time of the observations at Greenwich.	01840	14451	30647
Difference of \mathbb{C} and \odot equatorial parallaxes.	05427,8		54 25,8
Parallax in longitude.	-18 02,4	-2907,0	-38 05,0
Parallax in latitude. - ${ }^{\text {a }}$	-34 47,1	-30 18,6	-27 10,4
Q's apparent semidiameter- 2 "' inflexion.	15 02,2	1501,0	14 59,0
\bigcirc 's semidiameter-2" irradiation.	15 58,4.	15 58,4	15 58,4

Conjunction at Greenwich by the combination of the beginning and
the end of the eclipse. . . apparent time. . . . $0^{\text {h }} 45^{\circ} 16^{\prime \prime}, 5$
Correction of latitude by the tables. +13
By the least distance of the limbs. + 13,6
Supposing the irradiation of the sun's semidiameter ${ }_{31}{ }^{\prime}$ ª' $^{\prime \prime}=1^{\prime \prime}, 8$
The \odot^{\prime} 's diameter was abserved . . . $31^{\prime} 57^{\prime \prime}, 0$
By the tables. $\quad 32.00,8$
The corrected distance of the limbs $=\frac{32^{\prime} 00^{\prime \prime}, 8 \times 12^{\prime} 52^{\prime \prime}}{31,57}=12^{\circ} 53^{\prime \prime}, 5$
The double irradiation. - 3, 6
True distance of the limbs. 12 49, 9
And the correction of moon's latitude corrected from the effect of refraction $=+11^{\prime \prime}, 5$
Conjunction at Paris $=\left(\begin{array}{ll}0 \mathrm{~h} & 45^{\prime} \\ 16^{\prime \prime}, 5+9^{\prime} & 21^{\prime \prime}\end{array}\right)=00 \mathrm{~h} 54^{\prime} 37^{\prime \prime}, 5$

Observations at the National Observatory of Paris.

Observations at Cambridge, New England.

April 2

Observation in the City of Philadelphia.

Formation of annulus. Break of annulus.
End of the eclipse.
h $\quad d$

With the corrections- $00^{\prime \prime}, 5$ for the difference of semidiameters and- $4^{\prime \prime}, 4$ for the sum of semidiameters, according to the results of the observations at Cambridge, we have the following results :-

By the end of the eclipse.
1846 11,5 Apparent time)
185028,5 .
Observed by Mr. Rittenhouse
h, " \quad, "
$\begin{array}{lll}19 & 44 & 38\end{array}$
($\quad \cdot 510$ 01, 4

Observations at George Town, Maryland.

Recapitulation of the results of longitudes of Philadelphia and Cambridge W. from Paris.

		Philadelphia.	$\underset{h}{\text { Cambridge. }}$
1769	Passage of Venus.	51003,7	454 00,5
1782	Passage of Mercury.	- 51010	453 53,0
1789	Passage of Mcrcury.	50954	45340
1791	\bigcirc 's annular eclipse.	- 51001,4	45358,5
1806	Solar eclipse, page 297.	50957,0	
	Mean results.	51001,2	45353

[^0]: Passage through the perihelion, mean time, at the city of Havanna, Septr. 18. 12h $37^{\circ} 00^{\prime \prime}$
 at Greenwich, \quad. 180640
 Longitude of the ascending node from the mean equinox $=8^{s} 26^{\circ} 42^{\prime} 12^{\prime \prime}$
 Inclination of the orbit.
 $6312 \quad 51$
 Place of the perihelion.
 $900 \quad 5135$
 Perihelion distance, that of the sun being 1 . . . 0,6462667.

