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ABSTRACT

The problem of ship steering in canals and confined waters is analyzed

with emphasis on stability and bifurcation analysis. The classical maneuver-

ing equations of motion augmented with a model for ship/canal interaction

are used to model the open loop dynamics. Coupling of a control law and a

guidance scheme with appropriate time lags is employed to model the essential

dynamics of a helmsman. The complete system is analyzed using both linear

and nonlinear techniques in order to assess its stability under finite distur-

bances. The results indicate that for certain regions of parameters, limit cycle

oscillations may develop which could compromise system stability and safety

of operations.
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^HOOL
I. INTRODUCTION

A. PROBLEM STATEMENT

The problem of motion stability of ships and other marine vehicles has been

the subject of extensive studies in the past (Comstock, 1977). Most of these

studies are with regards the ship's directional stability in open waters under

open loop conditions. It is well known that in restricted waters such as canals

or rivers, although it is possible to have positional stability in principle, in

reality it is never the case. This is due to the destabilizing effects of the bank

suction forces and moments. These act always in a destabilizing fashion; i.e.,

after a small initial disturbance they produce a force or a moment which tends

to increase the ship's path deviation from nominal (Comstock, 1977). Open

loop conditions, important as they are, rarely represent real life applications.

Ships traveling in canals are under closed loop control, typically provided

through the helmsman or an autopilot. It becomes then important to assess

the stability of the system under finite disturbances and incorporating some

modeling of closed loop operations.

B. OBJECTIVES AND OUTLINE

This thesis utilizes both linear and nonlinear techniques in order to analyze

the problem of closed loop dynamic stability of ships in canals. Ship modeling



is discussed in Chapter II and it follows standard ship maneuvering equations

(Clayton and Bishop, 1982) augmented by a model for bank suction effects

(Beck, 1976). A Mariner class ship is selected as a model because of the avail-

ability of data for its hydrodynamic coefficients (Comstock, 1977), (Bernitsas

and Kekridis, 1984). A heading control law based on Nomoto's first-order

model, coupled with a line of sight guidance law is chosen in order to model

the fundamental behavior of closed loop conditions. Since, in practice control

actions are hardly ever instantaneous, appropriate time lags are introduced

in the feedback. These are modeled using the techniques outlined in (Venne,

1992). Linear eigenvalue analysis is performed in Chapter III in order to

reveal parametric stability boundaries. It is established that loss of stability

occurs when a pair of complex conjugate eigenvalues crosses the imaginary axis

which results in periodic solutions or limit cycles (Guckenheimer and Holmes,

1983). A nonlinear analysis based on Hopf bifurcation methods (Chow and

Mallet-Paret, 1977) and (Hassard and Wan, 1978) is performed in Chapter

IV. Conclusions derived from this study and some recommendations for fur-

ther extensions are discussed in Chapter V. The basic programs that were used

to produce the results are included in the Appendix.



II. PROBLEM FORMULATION

A. SHIP DYNAMICS

Restricting our attention to the horizontal plane, the mathematical model

consists of the nonlinear sway (translational motion parallel to the vehicle's

longitudinal axis) and yaw (rotational motion about the vertical axis ) equa-

tions of motion. If we consider a moving Cartesian coordinate frame located

at the geometric center of the vehicle, Newton's equations of motion are:

m(v + ur + xcf) = Y, (1)

Izt -\-mxaiv + ur) = N
, (2)

where v and r are the relative sway and yaw velocities of the moving vehicle

with respect to the water, m is the vehicle's mass, Iz is its moment of in-

ertia with respect to the vertical axis, and u is the constant forward speed.

Since all quantities will be considered as dimensionless in this study, in the

following we consider u to be equal to one. xq is the longitudinal position

of the ship's center of gravity with respect to its centroid, and Y,N represent

the total excitation sway force and yaw moment respectively. Following stan-

dard ship maneuvering assumptions, these forces can be expressed as the sum

of quadratic drag terms and first-order memoryless polynomials in v and r,

which represent added mass and damping due to water. In this way they can



be expressed by:

Y = YyV + Yrf + Yvv + -Yvvvv 3 + -Yvrrvr2 +

-Yrvvrv 2 + Yrr + Yfy, y) + YSS , (3)

1 1N = NyV + NfT + Nvv + -Nvvvv
3 + -Nvrrvr

2 +

-Nrvvrv
2 + Nrr + N{^,y) + N66 , (4)

where Ya , Na represent the partial derivatives with respect to the indicated

variable a and 8 is the effective rudder angle. Y(ip,y), N(ip,y) represent the

interaction/proximity forces and moments that arise due to the presence of

the canal, and shallow water effects.

The resulting nonlinear differential equations can be non-dimensionalized

with respect to the constant forward speed of the ship, u and its length, I.

The dimensionless time variable is then equal to tu/l. A standard inertial sys-

tem (x,y) is introduced here where the a:-axis points in the assumed nominal

straight line path and the t/-axis is the distance from this nominal path, see

Figure 1. We assume that the nominal straight line path is along the center-

line of the canal. In cases where the concept of a geometric centerline is not

applicable, we assume that the nominal path is along the zero bank suction

location. This is consistent with recommended navigation practices that are

currently in use.

The complete model is presented by the following equations:

(m - Yy)v - (Yr - mxG )r = Yvv + -Yvvvv 3 + -Yvrrvr2 +



2^

Canal centerline <-

Figure 1: Vehicle geometry and definitions of symbols

-Yrvvrv 2 + (Yr - m)r + Yty, y) + Y66 ,

-(Ny - mxG )v + (Iz - Nr )r = Nvv + -Nvvvv
3 + -Nvrrvr

2+
,

b 2

1

Nrvvrv
2 + {Nr - mxG)r + N(ip, y) + NSS ,

2

ip = r
,

y = sin tp + v cos ijj
,

(5)

(6)

(?)

(8)

where the expressions for the ship's yaw rate as well as its inertial position rate

have been added, and tp is the local heading angle. The interaction/proximity

forces and moments are expanded to include up to third order terms,

1 3 1
3Y (^, y) = Y^tp + Yyy + -Y^ip + -Yyyyy ,

N{if>, y) = N^ + Nyy + -N^^ 3 + -Nyyyy
3

,

o o

(9)

(10)



as explained in more detail in the folowing section.

B. HYDRODYNAMIC COEFFICIENTS

We chose a Mariner class ship as a representative model. Its hydrodynamic

coefficients and geometric properties were taken from (Comstock, 1977) and

(Bernitsas and Kekridis, 1984). Results from (Beck, 1976) were used in order

to model the bank suction forces and moments. Typical results are shown in

Figure 2. These show force and moment coefficients versus ship deviation (77),

and for canal width w = OAL. Force and moment coefficients are nondimen-

sionalized with respect to the water density and the ship's speed and length,

as is customary in ship maneuvering. Since the suction force and moment

must change their sign as either y or ij; changes its sign, they must be modeled

by odd power polynomials, as was done in the previous section. Numerical

values for the coefficients Yy , Yyyy , Ny , and Nyyy can be found by curve fitting

of the results of Figure 2. Using a depth to draft ratio of 1.9 we were able to

estimate,

Yy = 0.02
,

Yyyy = 0.468,

Ny
= -0.0025

,

Nyyy — .

The value of N^ was estimated by "discretizing" the ship in two segments,



FIGURE 13
VARIATION OF SIDE FORCE AND MOMENT WITH

WALL POSITION RATIO FOR THE MARINER

" -1,

-2. -

-3

-4.

— c _

-6.

w/L = .4

U = 7 kts, full scale
F. = .37, h/T = 1.3
n '

= .31, h/T =1.9

Experiment

Figure 2: Forces and moments due to canal [Beck (1976)]
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at the bow and the stern, and calculating the suction forces on each part

individually. Their resultant moment produced,

Nj, = 0.01 .

The value of N^^ was taken to be zero, due to lack of reliable data. The value

of Y$ was estimated to be equal to —Yv = 0.014 which is true for motions along

the centerline of the canal (Comstock, 1977). Again, due to lack of reliable

data we took Y^^ = 0.

C. CONTROL LAW

The linearized set of equations (5) through (7) can be expressed in the

following form:

ip = r
,

v = an ip + a\iv + a^r + auy + b\6
, (11)

r = a2 i?/> + a22v + a23r + a24y + b26 ,

where the coefficients a^, bi are functions of the vehicle hydrodynamic coeffi-

cients and geometric properties and are given below:

an = — [(Iz - Nr)Yj, + (Yf - mxG)N^} ,

Uyr

a l2 = — [{Iz ~ Nr)Yv + (Y+ - mxG)Nv ] ,

ai3 = —— [{Iz- Nr)(Yr - m) + (Y+ - mxG){Nr - mxG )) ,

L> vr

a 14 = — [{Iz -Nr)Yy + (Yr-mxG)Ny\ ,



Q>21

0-22

«24

&1

b2

D 1)T

D,

D,

Dv

1

u vr

1

L) Vr

1

[(Nv - mxG)Y^ + (m - iyj\fy] ,

[(TV;, - mic)^ + (m - 3^)iVj
,

[(No - mxcOO'r - m) + (m - Yv)(Nr - mxG )] ,

[(Nv - mxG)Yy + {m- Yv)Ny ] ,

[{Iz - N,)Y6 + (Y, - mxG)N6 ] ,

[(Nv - mxG)Y6 + (m - YV)N6 ] ,

(m - YV ){IZ - Nr) - {Nv - mxG)(Yr - mxG )

A control law that could model a human operator should not be based on

feedback of the side slip velocity v. Instead, it is more likely that human

operators will respond to changes in the ship's heading angle ip and rate of

change of heading, r. Therefore, we choose to base our control law on Nomoto's

model, which follows by assuming negligible sway velocity v
,

r = ar + cip + b6 (12)

where the coefficients are

a = a23 ,

b = b2 ,

c = a2 \

A linear control law can be introduced in the form,

6 = ki{ip - ipc ) + k2r , (13)



where ipc is the commanded heading angle and the gains fci, k2 are computed

such that the closed loop system (7), (12), and (13) has the desired dynamics.

The existence of the difference (ip — ipc ) in the control law (13) has the effect of

trying to point the ship's longitudinal axis towards the desired heading. The

characteristic equation of the system is obtained from (7), (12), and (13) as

s
2 - {a + bk2 )s - (c + bki) = .

If the desired characteristic equation is

S
2 + 2(LUnS + uj

2
n = ,

the control gains can be computed from

6 6'
a + 2Co>n

ko =
•

b

The natural frequency ton and damping ratio £ are selected based on general

properties of second order systems. Relatively high values of u>n and low values

of £ will correspond to a responsive operator, while the opposite is true for

combinations of low un and high (.

Finally, in order to take into account the effect of rudder saturation, the

commanded rudder angle is given by

<5 = <5sat tanh(^ , (14)

where <5o is the slope of 6 at the origin given by (13), and <5sat is the saturation

limit on 6, typically around 0.4 radians. The hyperbolic tangent function is

used instead of a hard saturation function, because of its differentiability.

10



D. GUIDANCE SCHEME

Since the previous control law stabilizes the ship to any commanded head-

ing angle, it must be coupled with an appropriate orientation guidance scheme

to provide path keeping along the desired track. The simplest guidance scheme

which models some fundamental aspects of helmsman behavior is a pure pur-

suit guidance where the commanded heading angle equals the line of sight

angle,

i/>e =- tan" 1 (—) , (15)
\Xd/

as shown in Figure 1. The ship is located at (x,y) and attempts to point its

longitudinal axis towards a target point which is located ahead of the ship

on the reference path at a constant preview distance Xd- Pursuit guidance is

achieved by commanding a heading angle ipc equal to the line of sight angle

(15).

The positional error information y in equation (15), is assumed to lag the

actual error y by an amount of T seconds, in other words,

y = y(t-T). (16)

In this equation, the time lag T models the necessary time that it takes for

the helmsman to process his path deviation and initiate appropriate corrective

actions.

11
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III. LINEAR ANALYSIS

In this Chapter, we present a linearized analysis of the equations of motion.

The purpose of this analysis is to assess stability or instability of the equations

in response to small deviations from the straight line reference track. No

attempt will be made here to characterize the transient response of the system.

This can be accomplished through numerical simulations.

A. COMBINED SYSTEM

If we incorporate the interaction/proximity forces (9) and (10) in the ship

dynamics model, equations (5) through (8), we end up with the combined

system,

tp = r
,

(m - Yy)v - {Yf - mxG)r = Yvv + -Yvvvv 3 + -Yvrrvr2 + -Yrvvrv 2+
1 3 1 3

(Yr - m)r + Y^tp + Yyy + -Y^V + ^YyyyV +W ,

1 1

-{Ny - mxG)v + (Iz - Nr)r = Nvv + -Nvvvv
3 + -Nvrrvr

2+ (17)

1
6

1
2

-Nrvvrv
2 + (Nr - mxc)r + N^ip + Nyy + -N^^ip3+

-Nyyyy
3 + Ns6I

3

y = sin tp + v cos i/j .

Study of the asymptotic properties of this system is the subject of this and

the following chapters.

13



B. LINEARIZATION

The linearized form of equations (17) is the following,

ip = r
,

(m — Yy)v — (Yj- — mxo)r = Yvv + (Yr — m)r+
Y^ + Yyy + Ys6, (l8)

-(Nv - mxG)v + (Iz - Nr)r = Nvv + (Nr - mxG)r+ l '

N^ip + Nyy + N66 ,

y = ip + v .

The rudder angle 8 has one of the forms that are developed below. The time

delay operator can be expressed in terms of its Taylor series expansion,

y(t - T) = y - Ty +
l

-T2
y - ^T3y^ + . (19)

Practical computations can be performed by truncating equation (19) to first,

second, or third order.

1. First order approximation in y

We have,

y (t - T) = y - Ty
,

or

In its linear form,

and, therefore,

y(t-T)=y-T(iP + v). (20)

tanh
( T

2
"

)

= T
2
" '

6 = 8 .

Furthermore, in its linear form equation (15) can be written as

Ipc = •

14



If we incorporate (20) into (13), we derive the linearized first order approxi-

mation in 8,

8 = kiip + k2r + —y (ip + v) . (21)
Xd x d

2. Second order approximation in y

Keeping the second order terms in y(t — T) we get,

y{t-T)=y-Ty + ^T2
y . (22)

If we incorporate (22) into (13) along with the linear equations 8 =
<5o and

ipc = -y(t - T)/x d , we get

8 = kill) + k2r + —y (ip + v) + -^

—

(r + v). (23)
Xd Xd 2xd

3. Third order approximation in y

In this case,

y(t-T)=y-Ty + ±T2
y - ^Tzy^

, (24)

and

h hT . k{T2 kiT3
. . . .

8 = kiip + k2r H y (ip + v) + —— (r + v) (r 4- v) . (25)
Xd Xd 2xd oxd

4. First order approximation in 8

If a time lag, T, exists on 8 instead of simply y, then

8 = <5sat tanh f
—!-

J
,

where,

8i = 8 {t -T)=8 - T8 .

15



This equation models a time lag associated with the entire application of the

necessary corrective control action and not just its positional error. Using the

above equations along with the linear equations 8 = 8\ and ipc = —y/xd, we

get

k\ k{T
8 — kiip + k2r H y — k\Tr [ip + v )

— k2Tr . (26)
Xd Xd

5. First order approximation in both y and 8

In a more general setting, we can assume that a time lag, 7\, exists in the

control law 8, and a different time lag, Tb, is present in the processing of the

positional error y. Assuming a first order approximation for both, we have

<5i = 8o(t - Ti) = 6o - Ti8 ,

and

y(t -T2 ) =y - T2y .

Therefore, in this case using the above equations along with the linear equa-

tions 8 = 8\ and ipc = —y{t — l2)/£d ,we obtain

k\ k{T\
8 = kiip + k2r -\ y — k{Tir (ip + v) —

Xd x d

bTl^ +^ + bMlir +i,)-^. (27)
Xd Xd

Using one of the above expressions, the linearized equations of motion can

be written as

ip = r
,

v = anip + ai2v + aur + o 14y + biS , ^g)
r = a2iip + a22v + a2zr + a24y + b28 ,

y = ip +v
,

where all coefficients have been previously defined.

16



C. SERIES EXPANSIONS OF TIME LAG

1. First order approximation in y

In this case we have,

y(t-T)=y-Ty.

Substitution of (21) into (28) yields the following matrix system,

V

r

y J

10
-421,1 -422,1 -423,1 -424,1

-431,1 -432,1 ^33,1 -434,1110
V

r

y

(29)

where,

-421,1 = an + b\ki —

-422,1 = an
Xd

-423,1 = a i3 + bik2

-4 24,1
= biki

Oi4 +
Xd

-4 3 1,1
= 021 + &2&1 _

-432,1 = b2k{T
0-22

Xd

-433,1 = £23 + ^2^2

-4 34,1
= b2h

a24 +

bikxT

Xd

Xd

Xd

2. Second order approximation in y

In this case we have,

2-:

y(t-T)=y-Ty + -Tl
y

17



Substitution of (23) into (28) yields the following matrix system,

[ip]

V

r

. y .

where,

-421,2 =

^22,2 =

^23,2 =

10
^21,2 ^22,2 ^23,2 ^24,2

^31,2 ^32,2 ^33,2 ^34,2110
auXd + hkiXd — bikiT

xd - 0.5&i/ciT
2

ai2Xd ~ b\k\T

x d - O.Sb^T2

auXd + bik2x d + 0.5bjkiT
2

4>

v

r

y

xd - O.bbfaT2

auxd + b\k\
24,2 ~ x d - 0.56ifciT

2

b2k 1T b2k 1T 2

Mia — a2i + &2«i
-

xd 2xd
>2

^21,2

^32,2 — 0-22

b2k{T b2kiT
—Z ^22,2

Xd

•^33,2 = 0-2Z + b2k2 +

2x d

b2kiT
2

,

b2k 1T2

2x,
+

2x,
A 23,2

b2ki b2k{T
2

^34,2 = ^24 H 1

~ ^24,2
X d 2x,

3. Third order approximation in y

A third order approximation in y is based on,

1

(30)

y(t-T) = y-Ty +
l
-T2

y - -T^

Similar algebraic steps as in the previous two approximations result in the

following eigenvalue problem,

10
10

£33,3 £35,3

10
B53 ,3 #55,3 .

v

r

y

V2

18



10
1

^31,3 -432,3 -433,3 -434,3 -435,3110 r

y

(31)

-451,3 ^52,3 ^53,3 ^54,3 ^55,3 J L v2

where, v\ = v, v2 is the rate of change of v, and the entries of the generalized

eigenvalue problem (31) are given bellow. Higher order approximations in T

can not produce any usable stability results, since the B matrix in (31) becomes

singular.

-43i,3 = «n + Mi -
Xd

-432,3 = ai2 —
bjkiT

Xd

-433,3 = 013 + &1&2 +
6ifciT

;

2xh

-434,3 — a 14 +
Xd

-435,3

^51,3

b^T2

2x d

a2i + b2 ki

-452,3 = G22 _
b2k 1T
xd

^53,3 = ^23 + &2&2 +

b2k 1T

Xd

b2hT :

2x d

-454,3 = &24 +
Xd

A 55,3 —
b2k lT2

2x d

62 fciT
3

6x d

#35,3 = £33,3

b2hT3

B 33,3

B 53,3 —
6x d

+ 1

19



B55,3 =
b2k 1T i

6xd

4. First order approximation in 6

Substitution of (26) into (28) yields the following matrix system,

1

1 #23,4

533,4

"

l>]
V

r

1
_ . y .

10
-421,4 ^22,4 -423,4 -424,4

^31,4 -432,4 -433,4 ^34,4110
where,

121,4 an + b\k\
&ifciT

Xd

^22,4 = 1x2
—

Xd

-423,4 = 013 + b\k2 - hkiT

^24,4 O14 +
Xd

-431,4 = 0-21 + &2&1
b2k 1T

Xd

-432,4 = 0-22

b2k lT

Xd

V

r

y

-433,4 = ^23 + b2k2 ~ b2k{T

a ,

&2&1
-^34,4 = Q-24 "I

Xd

#23,4 = b Yk2T

#33,4 = l + b2k2T

5. First order approximation in both y and 6

Substitution of (27) into (28) yields the following matrix system,

10
I?22,5 #23,5

#32,5 #33,5

1

if;

V

r

. y

10
-421,5 -422,5 -423,5 -424,5

-431,5 -432,5 -433,5 -434,5110
V

r

y

(32)

, (33)
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where,

„ ,
, , Mi?i hkiT2

^21,5 = an + dim

bik\Ti bikiT2

Xd Xd

-423,5 = ai3 + 0i«2 - Ol«iTi H

6i/ci

-422,5 = Ol2 —

-424,5 = 0-14 +
Xd

hk\Ti b2kiT2
-43i,5 = 0.21 + b2ki

-
Xd xd

b2k{Ti b2k{T2
-432,5 = &22 —

Xd x d

b2kiTlT2
-433,5 = «23 + b2k2 ~ b2k{Ti +

Xd

a ,

^l
-4 34,5 = ^24 H

bikiTrT2
#22,5 = 1

#23,5 = bik^

b2k 1T1T2
•D32,5 =

Xd

#33,5 = 1 + b2k2Ti

D. EXACT COMPUTATION OF TIME LAG

The previous analysis using Taylor series expansions of y(t — T) breaks

down for approximations beyond third order, as the corresponding generalized

eigenvalue problem becomes singular. Thus, in order to obtain an exact com-

putation of the stability curves and check the validity of the calculations, a

different technique will be performed in this section. This technique is based
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on frequency response methods and it utilizes Nyquist's criterion for stability

[Friedland (1986)].We write the system of equations (11) along with equations

y = ip + v and 8 — k\ip + k2r + ~y(t — T), in the Laplace domain, where
Xd'

.-Ts
y(t-T)-^ye-'

s
, (34)

is the time delay operator.The characteristic equation of the system is,

s
4 + Qi5

3 + a 2s
2 + a 3 s + q 4 + (/32s

2 + fas + /3 )—e~Ts =
, (35)

where

Oil — —0-12 - «23 - &2&2 ,

OL2 = —^14 + ^12^23 — 022^1^2 ~ ^22^13 + a\ 2b2 k2 ~ b2 kj
_ «21 j

0:3 = —a24 — Ol3a24 — ^24^1^2 + ^23014 + 01462^2 — ^1^1^22 ~

^11^22 + ^2^1^12 + ^21^12 ,

#4 = (221^14 + ai2a24 — ^22^14 _ ^11^24 + b2k\a\4 — bikid24 ,

02 = ~hh ,

01 = -^13^2^1 + ^1^1^23 - &2^1 ,

Po — ^12^2^1 — ^1^1^22 — &2^1^H + bikiCL2l ,

The characteristic equation is written as,

1 + —G(s) = 0,
Xd

where

s
4 + aiS"3 + a 2 s* + Q3S 4- Q4
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is the open loop transfer function , and ^- denotes the effective position gain.

For stability, we can utilize the Nyquist criterion which states that the critical

value of Xd can be computed from,

— \(G(jcj)\ = 1 for aigG(juj) = -n (37)
Xd

where j denotes the imaginary unit. The argument, argC(jcj), of(36) is,

nc \ v,. -i 01" , -i <*3^ ~ Qi^
3

, 0Q ,

arg G\j (J) = -ujT + tan —--tan — . (38)

The set of equations (37) result in the critical visibility distance,

Xd
$W + (A) " fou 2

)

2

(39)
\ (asuj — aiuj3 )

2 + (uj
4 — a2UJ 2 + a^) 2

The value of u> in(38) such that argG(jco) = — -k is the value of the phase

crossover frequency. After solving for the phase crossover frequency, the critical

value of Xd is obtained by direct substitution of this value of u into equation

(39).

E. RESULTS AND DISCUSSION

Typical results are presented in Figures 3 through 6. All results shown

are nondimensional unless otherwise stated. The critical value of Xd versus ujn

for zero time lag, and parametrized for different values of the damping ratio

£ is shown in Figure 3. Stability is ensured for values of Xd greater than its

critical value. It can be seen that lower values of ion require higher values

of Xd for stability. This means that a less responsive helmsman will need a
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longer lookahead distance for a stable operation. Similar conclusions hold for

variations in the damping ratio (. In this case, higher values of £ correspond

to better helmsman response which requires less lookahead distance.

The effect of time lag T2 is shown in Figure 4. Time lags are in seconds. It

can be seen that reasonable amounts of time lag do not have a serious effect on

stability, at least in a linear sense. Of course, an amount of time lag may have

a serious effect on the transient response of the system as well as its ability to

reject an external disturbance. This can only be established by a systematic

series of numerical simulations. Similar conclusions hold for non-zero time

lags T\, as shown in Figure 5.

Finally, the severe destabilizing effect of the canal is demonstrated by the

results of Figure 6 where a comparison between canal and open water results is

presented. It can be seen that an order of magnitude increase in the lookahead

distance may be required if the same control parameters are to be used in both

open water and a canal.
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IV. NONLINEAR ANALYSIS

A. INTRODUCTION

It can be numerically confirmed that in all cases of stability loss of the pre-

vious chapter, one pair of complex conjugate eigenvalues of the corresponding

eigenvalue problem crosses transversally the imaginary axis. A situation like

this in which a certain parameter is varied such that the real part of one pair

of complex conjugate eigenvalues of the linearized system matrix crosses zero,

results in the system leaving its steady state in an oscillatory manner. This

loss of stability is called Hopf bifurcation and generically occurs in one of two

ways, supercritical or subcritical. In the supercritical case, stable limit cycles

are generated after the nominal straight line motion loses its stability. The

amplitudes of these limit cycles are continuously increasing as the parameter

distance from its critical value is increased. For small values of this criticality

distance the resulting limit cycle is of small amplitude and differs little from

the initial nominal state. In the subcritical case, however, stable limit cycles

are generated before the nominal state loses its stability. Therefore, depend-

ing on the initial conditions it is possible to diverge away from the nominal

straight line path and converge towards a limit cycle even before the nominal

motion loses its stability. This means that in the subcritical Hopf bifurcation

case the domain of attraction of the nominal state is decreasing and in fact

it shrinks to zero as the critical point is approached. Random external dis-
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turbances of sufficient magnitude can throw the vehicle off to an oscillatory

steady state even though the nominal state may still remain stable. After the

nominal state becomes unstable, a discontinuous increase in the magnitude of

motions is observed as there exist no simple stable nearby attractors for the

vehicle to converge to. Distinction between these two qualitatively different

types of bifurcation is, therefore, essential in design. The computational pro-

cedure requires higher order approximations in the equations of motion and is

the subject of the next section.

B. DETAILED CALCULATIONS

The nonlinear equations of motion are written as,

ip = r
, (40)

v = aiii> + ai2V + ai^r + auy + bi6'

,

(41)

r — a2iip + a22v + a23r + a24y + b2 6' , (42)

y = sin tp + v cos ip
, (43)

where the control law is,

i
y(t-T)

8 = kii) + k2r + fci tan
-1 —

, (44)

and, including saturation,

£' = £sat tanh(-/-] . (45)
\t>sat/

We perform a Taylor series expansion of the equations, keeping the first non-

vanishing nonlinear terms. Due to port/starboard symmetry in the problem
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this means expansion to third order terms,

simp =ip - |V
3

, cos?/; = 1 - \i\)
2

, (46)

'-°-ikf'
k

(47)

8 = k^ + k2r + -iy(t - T) - -^y3
{t - T)

, (48)

where for consistency, the term y(t — T) is approximated by its first order

expansion in T,

y(t-T) = y-Ty = y-TiP + \T^ - Tv + \Tvi}j
2

. (49)

Substitution of equations (46) to (49) into equations (40) to (45), produces

the system,

x = Ax + g(x), (50)

where the state variables vector is,

x = [ip,v,r,y}
T

,

A is the linearized matrix at equilibrium, and g(x) contains all third order

terms.

If T is the matrix of eigenvectors of A evaluated at the critical point Xd,

the linear change of coordinates,

x = Tz, z = T _1
x, (51)

transforms system (50) into its normal coordinate form,

z = T- 1ATz4-T _1
g(Tz) . (52)
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At the Hopf bifurcation point, matrix T *AT takes the form,

T _1AT =

-u>

w

p

q

where luq is the imaginary part of the critical pair of eigenvalues, and the

remaining two eigenvalues p and q are negative (or complex conjugate with

negative real parts) . Therefore in the new system of coordinates (51) the

dynamics of (50) are governed by a reduced two-dimensional system z\ and

Z2 since the coordinates 23 and 24 correspond to the eigenvalues p and q and

are asymptotically stable. For values of Xd close to the bifurcation point Xd,

matrix T _1AT is,

T -iAT

a'e -{ujq + uj's)

ojq + uj'e ol'e

p+p's

q + q'e

where, s denotes the criticality difference,

£ = Xd — Xd :•u "critic (53)

U) =

a =

p =

Q =

derivative of the real part of the critical eigenvalues with respect to e
,

derivative of the imaginary part of the critical eigenvalues

with respect to e
,

derivative of p with respect to e
,

derivative of q with respect to e .

Due to continuity, the eigenvalues p + p'e and q + q'e remain negative for small

nonzero values of e. Therefore, the coordinates 23, 24 correspond to negative
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eigenvalues and are asymptotically stable. Center manifold theory predicts

that the relationship between the critical coordinates z\, z2 and the stable

coordinates 23, 24 is at least of quadratic order. In fact, due to the symmetry

in our problem the relationship is cubic,

21= e?(23
3
,24

3
), 22 = C>(2

3
,2

3
).

It follows that because of this order, 23, 24 do not influence the third order

Taylor series expansions, and can be dropped from the equations. Therefore,

we can write the reduced system that describes the essential dynamics of (52)

in the form,

21 = a'ezi - (u + u'£)z2 + Fi(zi,z2 ) , (54)

i2 = (ujq + uj
r

£)zi + a'sz2 + F2 (z1 ,z2 ) , (55)

where F\, F2 contain the third order terms,

Fi(zi,z2 ) = ru zl + ri2ziz2 + ri3ziz% + ru z%
, (56)

^2(^1,22) = r2i2
3 + r22z\z2 + r2Zzizl + t 24l z\ . (57)

The coefficients r# are computable from the previous Taylor expansions, and

they are given below.

The nonlinear expansion coefficients r»j that are utilized in the definition

of the cubic stability coefficient K, are given by the following:

rn = n 12£21 + n 13£3 i + n 14 £41 + n 12dn + ™i3^2i ,

T\ 2 = n\2l22 + 7113^32 + 7114^42 + n\2di2 + rii3d22 ,
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ri3 = ^12^23 + "13^33 + nu£43 + ni2di3 + ni3d23 ,

^14 = ^12^24 + ™13^34 + ^14^44 + "12^14 + ni3d24 ,

1"21 = n 22hl + ™23^31 + "24^41 + "22^11 + ™23^2X ,

^22 = ^22^22 + ™23^32 + ^24^42 + ^22^12 + ^23^22 ,

?~23 = ^22^23 + ™23^33 + ^24^43 + ^22^13 + ^23^23 ,

T24 = ^22^24 + ^23^34 + ^24^44 + ^22^14 + ^23^24
,

where we denote,

T= [my] , T-1 = [nij ] , i, j = 1, . . . ,4 .

For numerical purposes the critical eigenvector of T must be normalized so

that its first nonvanishing coefficient is identically equal to 1. The coefficients

£i:j are given by,

21 c2 c 2 o 2 c 2—— = <V^mnm 2i + <Vwmnm 2i + <-ty^r
mnm3i + o

T/,rrmiim 31
h

+<5vV>ym iim4i + ^Vyymnm 4i + ^wr"T-2im 3i + ^^^21^31

o
+^W2/m 21m4 1 + 6vyym2im 4l + 6rrym 31m4i + 5ryym3im41

+^w"lll^21m31 + <$i/wymnm 21m41 + ^^772117714177^3!

+<5ury7n2i7n4im3i + S^^rrin + <5uwm 2i
+ 8rrrm 2 i

+ 8yyymAl ,

= <V/^(m llm 22 + 277T,nmi2m 2l) + 6vw(m 12m 21 + 2mxxmx2m 22)

+6^r (mixm 32 + 2mnm i2^3i) + (Vrtm^mjn + 2mnm3xm 32)

+<5^y(miim42 + 2mnmi2m4i) + ^viw(m 4im i2 + 2miim4im42)

+(^(77121777,32 + 2m 3im 2im22) + ^("122^3! + 2m 3im32m 2 i)

32

^22
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+SVVy(m 2im42 4- 2m4im2im22) + Svyy(m22m 41 + 2m4im42m2i)

+6rry(m 31m42 + 2m4im3im32) + ^7^(^132^41 + 2m4ira42ra3i)

+6^vr [mum2im32 + m 3i(mnm 22 + mi2m 2i)]

+S^vy[mum2im 42 + m4i(mnm22 + m 1277121)]

+S%pry [miim4imz2 + ^31(^11^42 + ^12^41)]

+Svry[m2im,4ims2 + 7n 3i(77i2i77i42 + m 22"T-4i)]

+<5^V'tA(3m 11mi2) + 5wu(3m 21m22) + <5rrr(3m 31 ra32) + 5yyy(3m 41m 42) ,

£— = #vVf (
m i2m 2i + 2mnmi2m22) + fy*w(mnm 22 + 2mi2m2iTn 22)

01

+^#(^12^31 + 2mnmi2m32) + <Vr(m llm 32 + 2mi2m 3im 32)

+^y(m i2m4i + 2mnmi2m42 ) + ^vyy (
m 42mn + 2777,12777,4177142)

+ <5Wr(m 22m 31 + 2m21^22^32) + ^rr(m 2im32 + 2m 3im22777 32)

+<5wy(m 227n4i + 2m2im227n42) + <$7jyy(77i2i7n 42 + 2777,41777,42777,22)

+^TTj/(^32m41 + 2m42m3im32 ) + ^ryy(^31^42 + 2m4i77l42m32 )

+^ur.[m 1277222^31 + 77l 32 (777,i 1 77l22 + TTi^TT^l)]

+^y[m 12m 227774i + m42(miim 22 + 7711277121)]

+<5^r.y[mi2m42m 3 i + m 32 (777,11777,42 + 7711277141)]

+6vry [m22
,m42msi + m 32{m2\m42 + 7712277141)]

+8Tp^(3miim l2 ) + Svvv(3m2\m 22 ) + 6rrr(Smzim 32 ) + 6yyy(3m4im 42 ) ,

24 r2 c 2 c 2 c 2— = o-
lp.l)}V
m l2m 22 + o^vvmi2m 22 + d^rm l2mz2 + o^rr7ni27n 32

01

+6-
lp1pym l2m42 + 6^^7711277142 + 8vvrm 22m 32 + <5wrm227n 32

o 9 9 9
+<5uuy7n 2277i42 + bVyyrn 22'm 42 + Srrym 32m42 + 6ryym 32m 42
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+6^vrmi2m22'ms2 + <Vvym12^22^42 + 5'0rym12m42'7l32 + ^ury^22^42^32

4i 4i
62 61

^32 ^22

62 &1

^33 ^23

b2 h
h4 ^24

b2 h
1 2

/ 1

^41 = -2mn (
m 2i +

3

mn

£42 = -mn ( mi2m2i + -mnm 22 + -mi2mn
J

,

^43 = -mi2 fmnm 22 + -7^1277121 + -mi2mii
J

,

£44 = --77li2 (m 22 +
-77112

J •

The coefficients da are given by,

dn = —[cu(Iz - Nr ) + c2i{Yr - mxG )] ,

i-Jvr

d\2 = — [Cl2(lz ~ Nr) + C22{Yr ~ mXG)] ,

J-JyT

dl3 = —[Ci3(lz ~ Nf) + C23(Yf - mxG )] ,

du = —— [cu (Iz - Nr ) + c24(Yf ~ mxG )} ,

L> vr

d2 \ = -r—[cu{Ny - mxG ) + c2i(m - Y*)]
,

L)VT

d22 = r=—[ci2(Ni - mxG ) + c22(m - ¥&)] ,uvr

^23 = jr-[ciz{Ny - mxG ) + C2z{m - Yv )} ,

d2A = -fr-[cu(Ni - mxG ) + c24(m - Y*)]
,
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where

o J. o J. o

en = -Yvvvm 21 + 7:Yvrr™>3lm,2i 4 -YTVVm2lmz\

1
3

1
3+ -}'WV'm ll + 7^yyj/m 4l >

c 12 = -Yvvv3mll
m 22 4 -zYvrr{m

2
zlm 22 + 2m 3im 32m 2i)

4 7Yrvv{™>2imz2 4 2m 3im2im 22) 4- -Y^^m^m^
1 2+ T^yyy3m 41m 42 ,

C13 = -Vt;tw3m22m2i 4 -ywr.(m 32m 2 i 4 2m 31m 32m 22)
D Z

+ -^rw(^22m31 + 2m32m 2im 22) 4- ->V'V>V'3rn 12rn ll

1 24 ^YyyySm ^2'm 41 1

X O J. Q JL O

C14 = -y
r

wvm22 4 -^rr^32m 22 + -Yrvvm 22m32
O Z 2

4 ~Y^^m l2 4 ^Yyyyrn A2 >

o J. o J. o

C21 = -Nvvvm 2l + -iVwrm31m2i 4 -Nrvvm21m 3 i

z z

1 3
1

34 —N^^rrin + -Nyyym 4l ,

C22 = -Ntw«3m2im22 4 -^^(^3^22 4 2m 31m 32m 2i)
D Z

4 -Ar
rVV(^2im32 4 2m 31m 2im22) 4 -A/'^v3m iim i2

Z D

1
24 ~A/'yyy3m 41m42 ,

C23 = -NvvvZm22'm,2\ 4 -N^m^r^i 4 2m 3imz2m 22 )

Z

i/V_....frr 2 - ' «-
2

1-

4 -Nrvv {m\2mz\ 4 2m32m 2im 22 ) 4 -N^^m^mn

4 -Nyyydm^m^
,

3 2 2
C24 = -Nvvvm 22 + -Nvrrm32m 22 + -Nrvvm22m 32

1
3

1
34 -N^^m l2 4 -Nyyym 42 .

D
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The coefficients in a third order expansion of the control law are defined

by

A;iT
3

1 T k\
S^ijjv = — -To

- {k[) k'2 + 0.5/ci 1

''sat *d *•'
rf

dxpvv —
c o IV 2/ ' 3
ssat

Sat

X. Lt'1-2uyirr —
cO 12 '

8
2
sat

/\2 /t lfei r2^

°sat ^d xd

1 , fc? T/Ci

-iri
°sat x -

<->i/>yy — j-2 1 ^2
'S£

Cr =
~T2 v 2/ ^2 j

^sat

X Lt-'t- 2
uurr — <-2

A'2"'2 '

dsat

1 Y£/\2
fcl ^l^

2

sat

<$wy — . 2 (*2) _
°sat x d x d

°vyy — r2 ^2 9 ^ _3 '

°sat xd xd

1 ofci

°rry — <-2 2 '

^sat ^-d

1 /c
2

°ryy — r2 *-2 2 '

°sat ^-d

Vxjjvr
== T2 ^Ki'^2'^2 >

<->sat

1
, ,*i T2

/d

^Vwy — —
T2 ^"-1*2 "

^sat ^d X
c

Oi/jry == —
T2 ^"-l"-2 j

<->sat ^d

1 , fei

<5s
2
at *d
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,
1 1 , ,,s3 ,

W fc,T
3

ysat "-" ux d ox d

1 !,_..* fclT
3

0--+ O OX j'sat

1 1
X I_ .2 1.3
yrrr — c2 Q 2 '

sat

1 \k\ 2/ci

dent O Ij OIj

and

7
1

/C-] — /C^ rCj -

%d

T
fc2 = — k\ .

Xd

C. NONLINEAR COEFFICIENT K

If we introduce polar coordinates in the form,

z\ = RcosO
, 22 = -Rsinfl

, (58)

we can use (54) and (55) to produce an equation describing the rate of change

of the radial coordinate R,

R = a'eR + V{6)Rz
, (59)

and a similar equation in the rate of change of the angular coordinate 0,

6 = uj + uj'e + Q{9)R2
. (60)

The system of equations (59) and (60) contains two variables, one of which,

i?, is slowly varying in time, whereas the other one, 6 is a fast variable. Then,
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equation (59) can be averaged over one cycle in to produce an equation with

constant coefficients and similar stability properties,

R = a'eR + K,RZ
, (61)

where,

1 f2n

K =— V{9) d9 = | (3rn + na + r22 + 3r24 ) . (62)
Z7T 70

Nontrivial equilibrium solutions of (61) correspond to limit cycles in the

original system. The nontrivial equilibrium of (61), Rq, is given by,

a's
Ro =

\J-^-
(63)

In our problem, since the trivial equilibrium gains its stability for xj > ^dcritical ,

the coefficient a' is always negative. Therefore, it can be seen from (63) that

a limit cycle will exist provided K and e have the same sign. The stability

properties of this limit cycle can be determined by linearization of (61) around

Rq. The linearized system is,

R = -2a'e(R - R ) , (64)

and its eigenvalue is,

(3 = -2a e . (65)

We can see that the Floquet exponent (65) is negative if e is negative, which

means that K. must be negative. Therefore, location and stability of limit

cycles depends entirely on the cubic coefficient JC which is computable from

(62). We can summarize our findings as,
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Figure 7: Nonlinear coefficient K, versus un for <5sat = 0.4 and various values of C,

• If K < then limit cycles exist for e < (xj < £<*„.„.;„,) and they are

stable.

• If K > then limit cycles exist for e > (rc^ > £dcritical ) and they are

unstable.

D. RESULTS AND DISCUSSION

Typical results in terms of the nonlinear stability coefficient /C are shown in

Figures 7 through 10. The general conclusion from this series of graphs is that

the bifurcations are all strongly subcritical. This means that any linearized

stability results should be viewed with extreme caution. Limit cycles exist
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Figure 10: Nonlinear coefficient /C versus wn with and without channel effects

before stability in the linear sense is lost and a self sustained oscillation in the

system may develop as a result of an external disturbance even if the nominal

equilibrium state is still stable. The bifurcations become more subcritical;

i.e., /C is more positive, for smaller values of £, as Figure 7 shows. Figure 8

demonstrates the effect that the saturation limit 8sat has on the value of K.

Higher values of 53at , although are not related to the critical value of Xd result

in significant changes in the value of K,. The general trend is that higher <5sat

results in less subcritical bifurcations as evidenced by the overall decrease of

/C. Figure 9 shows the effect of non-zero time lag on the nonlinear stability

coefficient. It can be seen that, like the linear stability results, the effect is

minimal. Finally, Figure 10 shows the canal effect on K. This figure was
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produced for zero time lag, ( = 0.8, and <5sat = 0.4. It can be seen that the

existence of a canal causes the bifurcations to be much more subcritical than

the open water case. This demonstrates the severe destabilizing effect that the

canal introduces in both the linearized and the nonlinear analysis.
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V. CONCLUSIONS AND RECOMMENDATIONS

This thesis presented a comprehensive study of linear and nonlinear stability

properties of straightline motion of surface ships in confined waters. The

classical maneuvering equations of motion incorporating canal suction effects,

were coupled with appropriate navigation, gauidance, and control laws in order

to mimic the helmsman's behavior. The main conclusions from this study can

be summarized as follows:

1. There exists a critical preview distance for straightline positional stabil-

ity. For values less than the critical distance, the system is unstable.

2. Including canal effects, the critical preview distance may be an order of

magnitude higher than in open water. If the same preview distance is to

be used in both cases, the corresponding control law for canal maneuver-

ing must be considerably more responsive than in open waters.

3. The critical preview distance is monotonically decreasing for increasing

control law responsiveness. This means that in order to accomodate

smaller values of the preview distance, more responsive control laws are

required .

4. Physically realizable time lags do not seem to have a significant effect on

the values of the preview distance.

5. As the preview distance becomes less than its critical value, one pair of
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complex conjugate eigenvalues of the linearized system matrix crosses

the imaginary axis. This corresponds to a bifurcation to periodic so-

lutions (Hopf bifurcation) and the system exhibits oscillatory behavior,

also known as limit cycles.

6. Higher order approximations in the equations of motion were utilized in

order to assess the stability of the resulting limit cycles. It was found

that in all cases, the limit cycles were unstable. This has the following

implications:

(a) It is possible for the system to lose its stability even before the critical

preview distance is crossed. This means that all linearized stability

analysis results should be viewed with extreme caution.

(b) As the critical preview distance is crossed, it is expected that the

system will develop limit cycles of large amplitude. This clearly

presents a dangerous situation which should be avoided in practice,

by appropriate changes in the design parameters.

Recommendations for further research include the following:

1. Simulation studies in order to verify the limit cycle behavior.

2. Study of different ship characteristics and canal geometry.
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APPENDIX

The following is a list and description of the computer programs used in this

thesis. The programs are written in FORTRAN. Complete printouts of the

programs follow. Standard eigenvalue/eigenvector numerical analysis subrou-

tines are required for all programs.

• THESIS1.FOR

Calculation of critical Xd- First order approximation for time lag Ti-

• THESIS2.FOR

Calculation of critical Xd- Second order approximation for time lag T2 .

• THESIS3.FOR

Calculation of critical Xd- Third order approximation for time lag T2 .

• THESIS4.FOR

Calculation of critical Xd- First order approximation for time lag T\.

• THESIS5.FOR

Calculation of critical Xd- First order approximation for time lags T\ and

T2 .

• HOPF.FOR

Calculation of the nonlinear cubic stability coefficient /C. Requires the

output of one of the previous programs as its input.
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C PROGRAM THESIS 1. FOR (Time Delay-lst Order Approx. T2)

C BIFURCATION ANALYSIS

C

PROGRAM THESIS

1

IMPLICIT DOUBLE PRECISION (A-H.O-Z)

DOUBLE PRECISION Kl ,K2,L,NR,NV,NDELTA,NPSI ,NY,IZ,MASS,

& NRDOT.NVDOT

DIMENSION A(4,4) ,FV1(4) , IV1(4) ,ZZZ(4,4) ,WR(4) ,WI(4)

C

OPEN (11,FILE='BIF1.RES')

OPEN (12,FILE='BIF2.RES')

OPEN (13,FILE='BIF3.RES')

open (15, f ile='eig.resl'

)

c

c Vehicle ; Parameters:

IZ =0.0

L =528

RHO = 1.94

XG =0.0

MASS =0.0088

U = 1.0

c

YRDOT = 0.00000

YVDOT =-0.00912

YR =+0.00456

YV =-0.01434

YPSI = 0.01400

YY = 0.02000

YDELTA= 0.00278

NRDOT =-0.00115

NVDOT = 0.00000

NR =-0.00296

NV =-0.00460

NPSI = 0.01000

NY =-0.00250

NDELTA=-0. 00139

WRITE (*,1001)

READ (*,*) WNMIN.WNMAX.IWN

WRITE (*,1002)

READ (*,*) XDMIN,XDMAX,IXD

WRITE (*,1003)

READ (*,*) ZETA

WRITE

1

>,1100)
READ ([*,*) TL

TL=TL*U/L

DVR =(IZ-NRDOT)*(MASS-YVDOT)-

& (MASS*XG-YRDOT)*(MASS*XG-NVDOT)
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AA11=( (IZ-NRDOT) *YPSI- (MASS*XG-YRDOT) *NPSI) /DVR

AA12= ( (IZ-NRDOT) *YV- (MASS*XG-YRDOT) *NV) /DVR

AA21= ( (NVDOT-MASS*XG) *YPSI+ (MASS-YVDOT) *NPSI) /DVR

AA22= ( (MASS-YVDOT) *NV- (MASS*XG-NVDOT) *YV) /DVR

AA13= ( (IZ-NRDOT) * (YR-MASS)

+

& (YRDOT-MASS*XG) * (NR-MASS*XG) ) /DVR

AA23= ( (NVDOT-MASS*XG) * (YR-MASS)

+

& (MASS-YVDOT) * (NR-MASS*XG)) /DVR

AA14=( (IZ-NRDOT) *YY+(YRDOT-MASS*XG)*NY) /DVR

AA24=( (NVDOT-MASS*XG) *YY+ (MASS-YVDOT) *NY) /DVR

BB1 =( (IZ-NRDOT) *YDELTA- (MASS*XG-YRDOT) *NDELTA) /DVR

BB2 = ( (MASS-YVDOT) *NDELTA- (MASS*XG-NVDOT) *YDELTA) /DVR

AN0M=AA23

BN0M=BB2

CN0M=AA21

EPS -l.D-5

ILMAX=1500

DO 1 1=1, IWN

WRITE (*,2001) I, IWN

WN=WNMIN+(I-1)*(WNMAX-WNMIN)/(IWN-1)

Kl=- (WN**2 . DO/BNOM) - (CNOM/BNOM)

K2=- (ANOM+2 . DO*ZETA*WN) /BNOM

DO 2 J=1,IXD

XD=XDMIN+(J-1)*(XDMAX-XDMIN)/(IXD-1)

CALL LINEAR(K1,K2,XD,AA11,AA12,AA13,AA14,AA21,AA22,AA23,

& AA24,BB1,BB2,A,TL)

CALL RG(4,4,A,WR,WI,0,ZZZ,IV1,FV1,IERR)

CALL DSTABL(DEOS,WR,WI,FREQ)

write (15 ,*)DEOS,XD ) WN

IF (J.GT.l) GO TO 10

DEOSOO=DEOS

XDOO =XD

LL=0

GO TO 2

10 DEOSNN=DEOS

XDNN =XD

PR=DEOSNN*DEOSOO

IF (PR.GT.O.DO) GO TO 3

LL=LL+1

IF (LL.GT.3) STOP 1000

IL=0

XDO=XDOO

XDN=XDNN

DEOSO=DEOSOO
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DEOSN=DEOSNN

6 XDL=XDO

XDR=XDN

DEOSL=DEOSO

DEOSR=DEOSN

XD=(XDL+XDR)/2.D0

C

CALL LINEAR(K1 ) K2,XD,AA11,AA12,AA13,AA14,AA21,

& AA22,AA23,AA24,BB1,BB2,A,TL)

CALL RG(4,4,A,WR,WI,0,ZZZ,IV1,FV1,IERR)

CALL DSTABL(DEOS,WR,WI,FREQ)

DE0SM=DEOS

XDM=XD

PRL=DEOSL*DEOSM

PRR=DEOSR*DEOSM

IF (PRL.GT.O.DO) GO TO 5

XDO=XDL

XDN=XDM

DEOSO=DEOSL

DEOSN=DEOSM

IL=IL+1

IF (IL.GT.ILMAX) STOP 3100

DIF=DABS(XDL-XDM)

IF (DIF.GT.EPS) GO TO 6

XD=XDM

GO TO 4

5 IF (PRR.GT.O.DO) STOP 3200

XDO=XDM

XDN=XDR

DEOSO=DEOSM

DEOSN=DEOSR

IL=IL+1

IF (IL.GT.ILMAX) STOP 3100

DIF=DABS(XDM-XDR)

IF (DIF.GT.EPS) GO TO 6

XD=XDM

4 LLL=10+LL

WRITE (LLL,*) XD.WN

3 XDOO=XDNN

DEOSOO=DEOSNN

2 CONTINUE

1 CONTINUE

C

1001 FORMAT (' ENTER MIN, MAX, AND INCREMENTS OF WN (dimensionless) '

)

1002 FORMAT (' ENTER MIN, MAX, AND INCREMENTS OF XD (dimensionless)')

1003 FORMAT (' ENTER DAMPING RATIO')

1100 FORMAT (' ENTER TIME LAG TL (dimensional)')

2001 FORMAT (215)
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END

C

SUBROUTINE DSTABL (DEOS , WR , WI , OMEGA)

C

C EVALUATES THE EIGENVALUE WITH THE MAXIMUM REAL PART

C

IMPLICIT DOUBLE PRECISION (A-H.O-Z)

DIMENSION WR(4),WI(4)

DE0S=-1.0D+20

DO 1 1=1,4

IF (WR(I).LT.DEOS) GO TO 1

DEOS=WR(I)

IJ=I

1 CONTINUE

OMEGA=WI(IJ)

OMEGA=DABS (OMEGA)

RETURN

END

C

SUBROUTINE LINEAR(K1,K2,XD,AA11 ,AA12,AA13,AA14,AA21,

& AA22,AA23,AA24,BB1,BB2,A,TL)

C

C FORMS THE LINEARIZED MATRIX A (time delay 1st order approximation

C

IMPLICIT DOUBLE PRECISION (A-H.O-Z)

DOUBLE PRECISION K1.K2

DIMENSION A (4, 4)

A(l,l)=O.ODO

A(1,2)=0.0D0

A(1,3)=1.0D0

A(l,4)=O.ODO

A(2,1)=AA11+BB1*K1-BB1*K1*TL/XD

A (2 , 2) =AA12-BB1*K1*TL/XD

A(2,3)=AA13+BB1*K2

A(2,4)=AA14+BB1*K1/XD

A(3,1)=AA21+BB2*K1-BB2*K1*TL/XD

A(3 , 2) =AA22-BB2*K1*TL/XD

A(3,3)=AA23+BB2*K2

A(3,4)=AA24+BB2*K1/XD

A(4,l)=1.0DO

A(4,2)=1.0DO

A(4,3)=0.0D0

A(4,4)=0.0D0

RETURN

END
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C PROGRAM THESIS2.F0R (Time Delay-2nd Order Approx T2)

C BIFURCATION ANALYSIS

C

PROGRAM THESIS2

IMPLICIT DOUBLE PRECISION (A-H.O-Z)

DOUBLE PRECISION Kl ,K2,L,NR,NV,NDELTA,NPSI,NY,IZ,MASS,

& NRDOT.NVDOT

DIMENSION A(4,4) ,FV1(4) ,IV1(4) ,ZZZ(4,4) ,WR(4) ,WI(4)

OPEN (11,FILE='BIF1.RES')

OPEN (12,FILE='BIF2.RES')

OPEN (13,FILE='BIF3.RES')

open (15,f ile='eig.resl')

c

c Vehicle Paramete:

IZ =0.0

L =528

RHO =1.94

XG =0.0

MASS =0 . 0088

U = 1.0

c

YRDOT = 0.00000

YVDOT =-0.00912

YR =+0.00456

YV =-0.01434

YPSI = 0.01400

YY = 0.02000

YDELTA= 0.00278

NRDOT =-0.00115

NVDOT = 0.00000

NR =-0.00296

NV =-0.00460

NPSI = 0.01000

NY =-0.00250

NDELTA=-0.00139

WRITE (*,1001)

READ (*,*) WNMIN,WNMAX,IWN

WRITE (*,1002)

READ (*,*) XDMIN,XDMAX,IXD

WRITE 0,1003)
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READ (*,*) ZETA

WRITE (*, 1100)

READ (*,*) TL

TL=TL*U/L

DVR = (IZ-NRDOT)* (MASS-YVDOT)

-

& (MASS*XG-YRDOT)*(MASS*XG-NVDOT)

AA11= ( ( IZ-NRDOT) *YPSI- (MASS*XG-YRDOT) *NPSI) /DVR

AA12= ( (IZ-NRDOT) *YV- (MASS*XG-YRDOT) *NV) /DVR

AA21= ( (NVDOT-MASS*XG) *YPSI+ (MASS-YVDOT) *NPSI) /DVR

AA22= ( (MASS-YVDOT) *NV- (MASS*XG-NVDOT) *YV) /DVR

AA13= ( (IZ-NRDOT) * (YR-MASS)

+

& (YRDOT-MASS*XG) * (NR-MASS*XG) ) /DVR

AA23= ( (NVDOT-MASS*XG) * (YR-MASS)

+

& (MASS-YVDOT) *(NR-MASS*XG) ) /DVR

AA14= ( (IZ-NRDOT) *YY+(YRDOT-MASS*XG) *NY) /DVR

AA24= ( (NVDOT-MASS*XG) *YY+ (MASS-YVDOT) *NY) /DVR

BB1 = ( (IZ-NRDOT) *YDELTA- (MASS*XG-YRDOT) *NDELTA) /DVR

BB2 = ( (MASS-YVDOT) *NDELTA- (MASS*XG-NVDOT) *YDELTA) /DVR

AN0M=AA23

BN0M=BB2

CN0M=AA21

EPS =l.D-5

ILMAX=1500

DO 1 I=1,IWN

WRITE (*,2001) I.IWN

WN=WNMIN+(I-1)*(WNMAX-WNMIN)/(IWN-1)

Kl=- (WN**2 . DO/BNOM) - (CNOM/BNOM)

K2=- (ANOM+2 . DO*ZETA*WN) /BNOM

DO 2 J=1,IXD

XD=XDMIN+(J-1)*(XDMAX-XDMIN)/(IXD-1)

CALL LINEAR(K1,K2,XD,AA11,AA12,AA13,AA14,AA21,AA22,AA23,

& AA24,BB1,BB2,A,TL)

CALL RG(4,4,A,WR,WI,0,ZZZ,IV1,FV1,IERH)

CALL DSTABL(DEOS,WR,WI,FREQ)

write ( 15 ,*)DEOS,XD,WN

IF (J.GT.l) GO TO 10

DEOSOO=DEOS

XDOO =XD
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LL=0

GO TO 2

10 DEOSNN=DEOS

XDNN =XD

PR=DEOSNN*DEOSOO

IF (PR.GT.O.DO) GO TO 3

LL=LL+1

IF (LL.GT.3) STOP 1000

IL=0

XDO=XDOO

XDN=XDNN

DEOSO=DEOSOO

DEOSN=DEOSNN

6 XDL=XDO

XDR=XDN

DEOSL=DEOSO

DEOSR=DEOSN

XD=(XDL+XDR)/2.D0

CALL LINEAR(K1,K2,XD,AA11 ) AA12,AA13,AA14,AA21,

& AA22,AA23,AA24,BB1,BB2,A,TL)

CALL RG(4,4,A,WR,WI,0,ZZZ,IV1,FV1,IERR)

CALL DSTABL(DEOS,WR,WI,FREQ)

DEOSM=DEOS

XDM=XD

PRL=DEOSL*DEOSM

PRR=DEOSR*DEOSM

IF (PRL.GT.O.DO) GO TO 5

XDO=XDL

XDN=XDM

DEOSO=DEOSL

DEOSN=DEOSM

IL=IL+1

IF (IL.GT.ILMAX) STOP 3100

DIF=DABS(XDL-XDM)

IF (DIF.GT.EPS) GO TO 6

XD=XDM

GO TO 4

5 IF (PRR.GT.O.DO) STOP 3200

XDO=XDM

XDN=XDR

DEOSO=DEOSM

DEOSN=DEOSR

IL=IL+1

IF (IL.GT.ILMAX) STOP 3100

DIF=DABS(XDM-XDR)

IF (DIF.GT.EPS) GO TO 6

XD=XDM
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4 LLL=10+LL

WRITE (LLL,*) XD.WN

3 XDOO=XDNN

DE0S0O=DEOSNN

2 CONTINUE

1 CONTINUE

C

1001 FORMAT (' ENTER MIN, MAX, AND INCREMENTS OF WN (dimensionless) '

)

1002 FORMAT (' ENTER MIN, MAX, AND INCREMENTS OF XD (dimensionless) '

)

1003 FORMAT (' ENTER DAMPING RATIO')

1100 FORMAT (' ENTER TIME LAG TL (dimensional)')

2001 FORMAT (215)

END

C

SUBROUTINE DSTABL (DEOS , WR , tfI , OMEGA)

C

C EVALUATES THE EIGENVALUE WITH THE MAXIMUM REAL PART

C

IMPLICIT DOUBLE PRECISION (A-H.O-Z)

DIMENSION WR(4),WI(4)

DE0S=-1.0D+20

DO 1 1=1,4

IF (WR(I).LT.DEOS) GO TO 1

DEOS=WR(I)

IJ=I

1 CONTINUE

OMEGA=WI(IJ)

OMEGA=DABS (OMEGA)

RETURN

END

C

SUBROUTINE LINEAR(K1 ,K2,XD,AA11 ,AA12,AA13,AA14,AA21,

& AA22,AA23,AA24,BB1,BB2,A,TL)

C

C FORMS THE LINEARIZED MATRIX A (time delay 1st order approximation)

C

IMPLICIT DOUBLE PRECISION (A-H.O-Z)

DOUBLE PRECISION K1.K2

DIMENSION A (4, 4)

A(1,1)=0.0D0

A(1,2)=0.0D0

A(1,3)=1.0D0

A(1,4)=0.0D0

A(2 , 1) = (AA11*XD+BB1*K1*XD-BB1*K1*TL) / (XD-0 . 50D0*BB1*K1*TL*TL)

A(2,2)=(AA12*XD-BB1*K1*TL)/(XD-0.50D0*BB1*K1*TL*TL)

A(2,3)=(AA13*XD+BB1*K2*XD+0.50D0*BB1*K1*TL*TL)/

& (XD-0.50D0*BB1*K1*TL*TL)

A(2,4)=(AA14*XD+BB1*K1)/(XD-0.50D0*BB1*K1*TL*TL)
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A (3 , 1) =AA21+BB2*K1-BB2*K1*TL/XD+ (BB2*K1*TL*TL/ (2 . ODO*XD) ) *A(2 , 1)

A(3,2)=AA22-BB2*K1*TL/XD+(BB2*K1*TL*TL/(2.0D0*XD))*A(2,2)

A (3 , 3) =AA23+BB2*K2+ (BB2*K1 *TL*TL/ (2 . ODO*XD) )

+

k (BB2*K1*TL*TL/(2.0*XD))* A (2, 3)

A (3 , 4) =AA24+BB2*K1/XD+ (BB2*K1*TL*TL/ (2 . ODO*XD) ) *A(2 , 4)

A(4,l)=i.0D0

A(4,2)=1.0D0

A(4,3)=0.0D0

A(4,4)=0.0D0

RETURN

END
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C PROGRAM THESIS3.F0R (Time Delay-3rd Order Approx T2)

C BIFURCATION ANALYSIS

C

IMPLICIT DOUBLE PRECISION (A-H.O-Z)

DOUBLE PRECISION Kl ,K2,L,NR,NV,IZ,MASS,NDELTA,NPSI ,NY,

& NRDOT , NVDOT

DIMENSION A(5,5) ,B(5,5) ,FV1(5) ,IV1(5) ,ZZZ(5,5) ,ALFR(5)

,

& ALFI(5),BETA(5),WR(5),WI(5)

C

OPEN (11,FILE='BIF1.RES')

OPEN (12,FILE='BIF2.RES')

OPEN (13,FILE='BIF3.RES')

c

c Vehicle Parame

IZ =0.0

L =528

RHO = 1.94

XG =0.0

MASS =0.0088

U = 1.0

YRDOT = 0.00000

YVDOT =-0.00912

YR =+0.00456

YV =-0.01434

YPSI = 0.01400

YY = 0.02000

YDELTA= 0.00278

NRDOT =-0.00115

NVDOT = 0.00000

NR =-0.00296

NV =-0.00460

NPSI = 0.01000

NY =-0.00250

NDELTA=-0.00139

WRITE (*,1001)

READ (*,*) WNMIN,WNMAX,IWN

WRITE (*,1002)

READ (*,*) XDMIN,XDMAX,IXD

WRITE 0,1003)
READ (*,*) ZETA

WRITEO.1100)
READ (*,*) TL

TL=TL*U/L

DVR =(IZ-NRDOT)*(MASS-YVDOT)-

l (MASS*XG-YRDOT)*(MASS*XG-NVDOT)
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AM 1= ( ( IZ-NRDOT) *YPSI- (MASS*XG-YRDOT) *NPSI) /DVR

AA12= ( (IZ-NRDOT) *YV- (MASS*XG-YRDOT) *NV) /DVR

AA21= ( (NVDOT-MASS*XG) *YPSI+ (MASS-YVDOT) *NPSI) /DVR

AA22= ( (MASS-YVDOT) *NV- (MASS*XG-NVDOT) *YV) /DVR

AA13= ( (IZ-NRDOT) * (YR-MASS)

+

& (YRDOT-MASS*XG) * (NR-MASS*XG) ) /DVR

AA23=( (NVDOT-MASS*XG) * (YR-MASS)

+

& (MASS-YVDOT) * (NR-MASS*XG) ) /DVR

AA14= ( (IZ-NRDOT) *YY+ (YRDOT-MASS+XG) *NY) /DVR

AA24= ( (NVDOT-MASS*XG) *YY+ (MASS-YVDOT) *NY) /DVR

BB1 = ( (IZ-NRDOT) *YDELTA- (MASS*XG-YRDOT) *NDELTA) /DVR

BB2 = ( (MASS-YVDOT) *NDELTA- (MASS*XG-NVDOT) *YDELTA) /DVR

AN0M=AA23

BN0M=BB2

CN0M=AA21

EPS -l.D-5

ILMAX=1500

DO 1 1=1, IWN

WRITE (*,2001) I, IWN

WN=WNMIN+(I-1)*(WNMAX-WNMIN)/(IWN-1)

Kl=- (WN**2 . DO/BNOM) - (CNOM/BNOM)

K2=- (ANOM+2 . DO*ZETA*WN) /BNOM

DO 2 J=1,IXD

XD=XDMIN+( J-l) * (XDMAX-XDMIN) / (IXD-1)

CALL LINEAR(K1,K2,XD,AA11,AA12,AA13,AA14,

& AA21,AA22,AA23,AA24,BB1,BB2,A,B,TL)

CALL RGG (5 , 5 , A , B , ALFR , ALFI , BETA , , ZZZ , IERR)

DO 11 IJE-1,5

WR(IJE)=ALFR(IJE)/BETA(IJE)

WI(IJE)=ALFI(IJE)/BETA(IJE)

11 CONTINUE

CALL DSTABL(DEOS,WR,WI,FREQ)

IF (J.GT.l) GO TO 10

DEOSOO=DEOS

XDOO =XD

LL=0

GO TO 2

10 DEOSNN=DEOS

XDNN =XD

PR=DEOSNN*DEOSOO

IF (PR.GT.O.DO) GO TO 3

LL=LL+1
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IF (LL.GT.3) STOP 1000

IL=0

XDO=XDOO

XDN=XDNN

DE0S0=DE0S00

DEOSN=DEOSNN

6 XDL=XDO

XDR=XDN

DE0SL=DE0S0

DEOSR=DEOSN

XD=(XDL+XDR)/2.D0

CALL LINEAR(K1,K2,XD,AA11,AA12,AA13,AA14,AA21,AA22,

& AA23,AA24,BB1,BB2,A,B,TL)

CALL RGG (5 , 5 , A , B , ALFR , ALFI , BETA , , ZZZ , IERR)

DO 12 IJE=1,5

WR ( IJE) =ALFR ( IJE) /BETA ( IJE)

WI ( IJE) =ALFI( IJE) /BETA (IJE)

12 CONTINUE

CALL DSTABL(DEOS,WR,WI,FREQ)

DEOSM=DEOS

XDM=XD

PRL=DEOSL*DEOSM

PRR=DEOSR*DEOSM

IF (PRL.GT.O.DO) GO TO 5

XDO=XDL

XDN=XDM

DEOSO=DEOSL

DEOSN=DEOSM

IL=IL+1

IF (IL.GT.ILMAX) STOP 3100

DIF=DABS (XDL-XDM)

IF (DIF.GT.EPS) GO TO 6

XD=XDM

GO TO 4

5 IF (PRR.GT.O.DO) STOP 3200

XDO=XDM

XDN=XDR

DEOSO=DEOSM

DEOSN=DEOSR

IL=IL+1

IF (IL.GT.ILMAX) STOP 3100

DIF=DABS(XDM-XDR)

IF (DIF.GT.EPS) GO TO 6

XD=XDM

4 LLL=10+LL

WRITE (LLL,*) XD.WN
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3 XDOO=XDNN

DEOSOODEOSNN
2 CONTINUE

1 CONTINUE

1001 FORMAT (

1002 FORMAT (

1003 FORMAT (

1100 FORMAT (
:

2001 FORMAT (215)

END

ENTER MIN, MAX, AND INCREMENTS OF WN (dimensionless) '

)

ENTER MIN, MAX, AND INCREMENTS OF XD (dimensionless)')

ENTER DAMPING RATIO')

ENTER TIME LAG TL (dimensional)')

SUBROUTINE DSTABL (DEOS , WR , WI , OMEGA)

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

DIMENSION WR(5),WI(5)

DE0S=-1.0D+20

DO 1 1=1,5

IF (WR(I).LT.DEOS) GO TO 1

DEOS=WR(I)

IJ=I

L CONTINUE

OMEGA=WI(IJ)

OMEGA=DABS (OMEGA)

RETURN

END

SUBROUTINE LINEAR(K1 ,K2,XD,AA11 ,AA12,AA13,AA14,AA21,AA22,AA23, AA24

& ,BB1,BB2,A,B,TL)

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

DOUBLE PRECISION K1,K2

DIMENSION A(5,5),B(5,5)

A(1,1)=0.0D0

A(1,2)=0.0D0

A(1,3)=1.0D0

A(1,4)=0.0D0

A(1,5)=0.0D0

A(2,1)=0.0D0

A(2,2)=0.0D0

A(2,3)=0.0D0

A(2,4)=0.0D0

A(2,5)=1.0D0

A(3,1)=AA11-(BB1*K1*TL/XD)+BB1*K1

A(3,2)=AA12-BB1*K1*TL/XD

A (3 , 3) =AA13+BB1*K2+ (BB1*K1*TL*TL/ (2 . DO*XD)

)

A(3,4)=AA14+BB1*K1/XD

A(3,5)=-1.D0+(BB1*K1*TL*TL/(2.D0*XD))

A(4,1)=1.0D0
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A A ,2 )=1.0D0

A A ,3 )=0.0D0

A A ,4 )=0.0D0

A A ,5 >=0.0D0

A [s ,1 >=AA21+BB2*K1-BB2*K1* fL/XD

A :5 2 )=AA22-BB2*K1*TL/XD

A :5 ,3 ) =AA23+BB2*K2+ (BB2*K1*TL*TL/ (2 . DO*XD) )

A [5 4 )=AA24+BB2*K1/XD

A :5 5 >=(BB2*K1*TL*TL/(2.D0 *XD))

B ;i i:)=1.0D0

B<;i 2]1=0. ODO

B<:i 3: I =0 . ODO

B(;i 4:1=0. ODO

B(:i 5:1=0. ODO

B( 2 i:1=0. ODO

B( 2 2]1=1. ODO

B([2 3]1=0. ODO

B( 2 4:»=0.0D0

B( 2 5:1=0. ODO

B( 3 i: =0 . ODO

B( 3 2] =0 . ODO

B( 3 3: =(BBl*Kl*TL*TL*TL/(6 .DO*XD))

B( 3 4; =0 . ODO

B( 3 5; =(BBl*Kl*TL*TL*TL/(6 .DO*XD))

B( 4 1: =0.0D0

B( 4 2; =0 . ODO

B( 4 3; =0 . ODO

B( 4 4; =1.0D0

B( 4 5; =0 . ODO

B( 5 1: =0 . ODO

B( 5 2; =0 . ODO

B( 5 3; =1.0D0+(BB2*K1*TL*TL>*TL/(6.D0*XD))

B( 5 4; =0 . ODO

B([5 5: = (BB2*K1*TL*TL*TL/ (6 .DO*XD))

RI:turiI

ElfD
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C PROGRAM THESIS4.F0R (Time Delay-lst Order Approx in delta ,T1)

C BIFURCATION ANALYSIS

C

IMPLICIT DOUBLE PRECISION (A-H.O-Z)

DOUBLE PRECISION Kl ,K2,L,NR,NV,IZ,MASS ,NDELTA,NPSI ,NY,

& NRDOT.NVDOT

DIMENSION A(4,4),B(4,4) ,FV1(4) , IV1(4) ,ZZZ(4,4) , ALFR(4)

,

& ALFI(4),BETA(4),WR(4),WI(4)

C

OPEN (11,FILE= , BIF1.RES')

OPEN (12,FILE='BIF2.RES')

OPEN (13,FILE='BIF3.RES')

C

C Vehicle Parameters:

IZ =0.0

L =528

RHO =1.94

C G =32.2

XG =0.0

MASS =0.0088

U =3.0

YRDOT = 0.00000

YVDOT =-0.00912

YR =+0.00456

YV =-0.01434

YPSI = 0.01400

YY = 0.02000

YDELTA= 0.00278

NRDOT =-0.00115

NVDOT = 0.00000

NR =-0.00296

NV =-0.00460

NPSI = 0.01000

NY = -0.00250

NDELTA=-0. 00139

WRITE (* 1001)

READ (* *)

WRITE (* 1002)

READ (* *)

WRITE (* 1003)

WNMIN,WNMAX,IWN

XDMIN.XDMAX.IXD

60



READ (*,*) ZETA

WRITE(*,1100)

READ (*,*) TL

TL=TL*U/L

DVR = (IZ-NRDOT)* (MASS-YVDOT)

-

& (MASS*XG-YRDOT)*(MASS*XG-NVDOT)

AA11= ( (IZ-NRDOT) *YPSI- (MASS*XG-YRDOT) *NPSI) /DVR

AA12= ( (IZ-NRDOT) *YV- (MASS*XG-YRDOT) *NV) /DVR

AA21= ( (NVDOT-MASS*XG) *YPSI+ (MASS-YVDOT) *NPSI ) /DVR

AA22= ( (MASS-YVDOT) *NV- (MASS*XG-NVDOT) *YV) /DVR

AA13=( (IZ-NRDOT) * (YR-MASS)

+

& (YRDOT-MASS*XG) * (NR-MASS*XG) ) /DVR

AA23= ( (NVDOT-MASS*XG) * (YR-MASS)

+

& (MASS-YVDOT) * (NR-MASS*XG)) /DVR

AA14=( (IZ-NRDOT) *YY+(YRDOT-MASS*XG) *NY) /DVR

AA24= ( (NVDOT-MASS*XG) *YY+ (MASS-YVDOT) *NY) /DVR

BB1 =( (IZ-NRDOT) *YDELTA- (MASS*XG-YRDOT) *NDELTA) /DVR

BB2 =( (MASS-YVDOT) *NDELTA- (MASS*XG-NVDOT) *YDELTA) /DVR

AN0M=AA23

BN0M=BB2

EPS =l.D-5

ILMAX=1500

DO 1 1=1, IWN

WRITE (*,2001) I, IWN

WN=WNMIN+(I-1)*(WNMAX-WNMIN)/(IWN-1)

K1=-WN**2.D0/BN0M

K2=- (AN0M+2 . DO*ZETA*WN) /BNOM

DO 2 J=1,IXD

XD=XDMIN+(J-1)*(XDMAX-XDMIN)/(IXD-1)

CALL LINEAR(K1,K2,XD,AA11,AA12,AA13,AA14,

& AA21,AA22,AA23,AA24,BB1,BB2,A,B,TL)

CALL RGG (4 , 4 , A , B , ALFR , ALFI , BETA , , ZZZ , IERR)

DO 11 IJB-1,4

WR ( IJE) =ALFR ( I JE) /BETA ( I JE)

WI(IJE)=ALFI(IJE)/BETA(IJE)

11 CONTINUE

CALL DSTABL(DEOS,WR,WI,FREQ)

IF (J.GT.l) GO TO 10

DEOSOO=DEOS

XDOO =XD
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LL=0

GO TO 2

10 DEOSNN=DEOS

XDNN =XD

PR=DEOSNN*DEOSOO

IF (PR.GT.O.DO) GO TO 3

LL=LL+1

IF (LL.GT.3) STOP 1000

IL=0

XDO=XDOO

XDN=XDNN

DEOSO=DEOSOO

DEOSN=DEOSNN

6 XDL=XDO

XDR=XDN

DEOSL=DEOSO

DEOSR=DEOSN

XD=(XDL+XDR)/2.D0

CALL LINEAR(K1,K2,XD,AA11,AA12,AA13,AA14,AA21,AA22,

& AA23,AA24,BB1,BB2,A,B,TL)

CALL RGG (4 , 4 , A , B , ALFR , ALFI , BETA , , ZZZ , IERR)

DO 12 IJE-1,4

WR(IJE)=ALFR(IJE)/BETA(IJE)

WI(IJE)=ALFI(IJE)/BETA(IJE)

12 CONTINUE

CALL DSTABL(DEOS,WR,WI,FREQ)

DEOSM=DEOS

XDM=XD

PRL=DEOSL*DEOSM

PRR=DEOSR*DEOSM

IF (PRL.GT.O.DO) GO TO 5

XDO=XDL

XDN=XDM

DEOSO=DEOSL

DEOSN=DEOSM

IL=IL+1

IF (IL.GT.ILMAX) STOP 3100

DIF=DABS(XDL-XDM)

IF (DIF.GT.EPS) GO TO 6

XD=XDM

GO TO 4

5 IF (PRR.GT.O.DO) STOP 3200

XDO=XDM

XDN=XDR

DEOSO=DEOSM

DEOSN=DEOSR
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IL=IL+1

IF (IL.GT.ILMAX) STOP 3100

DIF=DABS(XDM-XDR)

IF (DIF.GT.EPS) GO TO 6

XD=XDM

LLL=10+LL

WRITE CLLL,*) XD.WN

XD00=XDNN

DEOSOO=DEOSNN

CONTINUE

CONTINUE

1001 FORMAT (' ENTER MIN, MAX, AND INCREMENTS OF WN (dimensionless) '

)

1002 FORMAT (' ENTER MIN, MAX, AND INCREMENTS OF XD (dimensionless)')

1003 FORMAT (' ENTER DAMPING RATIO')

1100 FORMAT (' ENTER TIME LAG TL (dimensional)')

2001 FORMAT (215)

END

SUBROUTINE DSTABL(DEOS,WR,WI , OMEGA)

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

DIMENSION WR(4),WI(4)

DE0S=-1.0D+20

DO 1 1=1,4

IF (WR(I).LT.DEOS) GO TO 1

DEOS=WR(I)

IJ=I

1 CONTINUE

OMEGA=WI(IJ)

OMEGA=DABS(OMEGA)

RETURN

END

SUBROUTINE LINEAR (K1,K2,XD,AA 11 ,AA12,AA13,AA14,AA21, AA22,AA23,AA24

& ,BB1,BB2,A,B,TL)

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

DOUBLE PRECISION K1,K2

DIMENSION A(4,4) ,B(4,4)

A(1,1)=O.ODO

A(l,2)=0.OD0

A(1,3)=1.0D0

A(1,4)=0.0D0

A(2,1)=AA11+BB1*K1-BB1*K1*TL/XD

A(2 , 2) =AA12-BB1*K1*TL/XD

A(2,3)=AA13+BB1*K2-BB1*K1*TL

A(2 , 4) =AA14+BB1*K1/XD
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3,1

3,2

3,3

3,4

4,1

4,2

4,3

4,4

1,1

1,2

1,3

1,4

2,1

2,2

2,3

2,4

3,1

3,2

3,3

3,4

4,1

4,2

4,3

4,4

=AA21+BB2*K1-BB2*K1*TL/XD

=AA22-BB2*K1*TL/XD

=AA23+BB2*K2-BB2*K1*TL

=AA24+BB2*K1/XD

=1.0D0

=1.0D0

=0 . 0D0

=0 . ODO

=1.0D0

=0.0D0

=0.0D0

=0 . ODO

=0 . ODO

=1.0D0

=BB1*K2*TL
=0 . ODO

=0 . ODO

=0 . ODO

=1.0D0+(BB2*K2*TL)

=0 . ODO

=0.0D0

=0 . ODO

=0.0D0

=1.0D0

RETURN

END
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C PROGRAM THESIS5.F0R (Time Delay-lst Order Approx in delta & y ie. in Tl & T2))

C BIFURCATION ANALYSIS

C

IMPLICIT DOUBLE PRECISION (A-H.O-Z)

DOUBLE PRECISION Kl ,K2,L,NR,NV, IZ.MASS.NDELTA.NPSI ,NY,

& NRDOT.NVDOT

DIMENSION A(4,4) ,B(4,4) ,FV1(4) ,IV1(4) ,ZZZ(4,4) ,ALFR(4)

,

& ALFI(4),BETA(4),WR(4),WI(4)

C

OPEN (11,FILE='BIF1.RES')

OPEN ( 12, FILE- 'BIF2. RES')

OPEN (13,FILE='BIF3.RES')

C

C VehicLe Parame

IZ =0.0

L =528

RHO = 1.94

c G =32.2

XG =0.0

MASS =0.0088

U =3.0

YRDOT = 0.00000

YVDOT =-0.00912

YR =+0.00456

YV =-0.01434

YPSI = 0.01400

YY = 0.02000

YDELTA= 0.00278

NRDOT =-0.00115

NVDOT = 0.00000

NR =-0.00296

NV =-0.00460

NPSI = 0.01000

NY = -0.00250

NDELTA= -0.00139

WRITE (*,1001)

READ (*,*) WNMIN,WNMAX,IWN

WRITE (*,1002)

READ (*,*) XDMIN,XDMAX,IXD

WRITE 0,1003)
READ (*,*) ZETA
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WRITE (*, 1100)

READ (*,*) TL1

TL1=TL1*U/L

WRITE(*,1101)

READ (*,*) TL2

TL2=TL2*U/L

DVR =( IZ-NRDOT)* (MASS-YVDOT)

-

& (MASS*XG-YRD0T) * (MASS*XG-NVD0T)

AA11=( (IZ-NRDOT) *YPSI-(MASS*XG-YRDOT)*NPSI) /DVR

AA12= ( ( IZ-NRDOT) *YV- (MASS*XG-YRDOT) *NV) /DVR

AA21= ( (NVDOT-MASS*XG) *YPSI+ (MASS-YVDOT) *NPSI) /DVR

AA22= ( (MASS-YVDOT) *NV- (MASS*XG-NVDOT) *YV) /DVR

AA13=( (IZ-NRDOT) * (YR-MASS)

+

& (YRDOT-MASS*XG) * (NR-MASS*XG) ) /DVR

AA23= ( (NVDOT-MASS*XG) * (YR-MASS)

+

& (MASS-YVDOT) *(NR-MASS*XG)) /DVR

AA14= ( (IZ-NRDOT) *YY+ (YRDOT-MASS*XG) *NY) /DVR

AA24= ( (NVDOT-MASS*XG) *YY+ (MASS-YVDOT) *NY) /DVR

BB1 =( (IZ-NRDOT) *YDELTA- (MASS*XG-YRDOT) *NDELTA) /DVR

BB2 = ( (MASS-YVDOT) *NDELTA- (MASS*XG-NVDOT) *YDELTA) /DVR

AN0M=AA23

BN0M=BB2

CN0M=AA21

EPS =l.D-5

ILMAX=1500

DO 1 1=1, IWN

WRITE (*,2001) I, IWN

WN=WNMIN+(I-1)*(WNMAX-WNMIN)/(IWN-1)

Kl=- (WN**2 . DO/BNOM) - (CNOM/BNOM)

K2=- (ANOM+2 . DO*ZETA*WN) /BNOM

DO 2 J=1,IXD

XD=XDMIN+(J-1)*(XDMAX-XDMIN)/(IXD-1)

CALL LINEAR(K1,K2,XD,AA11,AA12,AA13,AA14,

& AA21,AA22,AA23,AA24,BB1,BB2,A,B,TL1,TL2)

CALL RGG (4 , 4 , A , B , ALFR , ALFI , BETA , , ZZZ , IERR)

DO 11 IJE=1,4

WR(IJE)=ALFR(IJE)/BETA(IJE)

WI(IJE)=ALFI(IJE)/BETA(IJE)

11 CONTINUE

CALL DSTABL(DEOS,WR,WI,FREQ)
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IF (J.GT.l) GO TO 10

DEOSOO=DEOS

XDOO =XD

LL=0

GO TO 2

10 DEOSNN=DEOS

XDNN =XD

PR=DEOSNN*DEOSOO

IF (PR.GT.O.DO) GO TO 3

LL=LL+1

IF (LL.GT.3) STOP 1000

IL=0

XDO=XDOO

XDN=XDNN

DEOSO=DEOSOO

DEOSN=DEOSNN

6 XDL=XDO

XDR=XDN

DEOSL=DEOSO

DEOSR=DEOSN

XD=(XDL+XDR)/2.D0

CALL LINEAR(K1,K2,XD,AA11,AA12,AA13,AA14,AA21,AA22,

& AA23,AA24,BB1,BB2,A,B,TL1,TL2)

CALL RGG(4 ,4 , A ,B , ALFR, ALFI ,BETA ,0 , ZZZ, IERR)

DO 12 IJE=1,4

WR(IJE)=ALFR(IJE)/BETA(IJE)

WI(IJE)=ALFI(IJE)/BETA(IJE)

12 CONTINUE

CALL DSTABL(DEOS,WR,WI,FREQ)

DEOSM=DEOS

XDM=XD

PRL=DEOSL*DEOSM

PRR=DEOSR*DEOSM

IF (PRL.GT.O.DO) GO TO 5

XDO=XDL

XDN=XDM

DEOSO=DEOSL

DEOSN=DEOSM

IL=IL+1

IF (IL.GT.ILMAX) STOP 3100

DIF=DABS (XDL-XDM)

IF (DIF.GT.EPS) GO TO 6

XD=XDM

GO TO 4

5 IF (PRR.GT.O.DO) STOP 3200

XDO=XDM
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XDN=XDR

DEOSO=DEOSM

DEOSN=DEOSR

IL=IL+1

IF (IL.GT.ILMAX) STOP 3100

DIF=DABS (XDM-XDR)

IF (DIF.GT.EPS) GO TO 6

XD=XDM

4 LLL=10+LL

WRITE (LLL,*) XD,WN

3 XDOO=XDNN

DEOSOO=DEOSNN

2 CONTINUE

1 CONTINUE

1001 FORMAT (' ENTER MIN, MAX, AND INCREMENTS OF WN (dimensionless) '

)

1002 FORMAT (' ENTER MIN, MAX, AND INCREMENTS OF XD (dimensionless)')

1003 FORMAT (' ENTER DAMPING RATIO')

1100 FORMAT (' ENTER TIME LAG TL1 (dimensional)')

1101 FORMAT (' ENTER TIME LAG TL2 (dimensional)')

2001 FORMAT (215)

END

SUBROUTINE DSTABL(DEOS,WR,WI , OMEGA)

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

DIMENSION WR(4),WI(4)

DE0S=-1.0D+20

DO 1 1=1,4

IF (WR(I) .LT.DEOS) GO TO 1

DEOS=WR(I)

IJ=I

1 CONTINUE

OMEGA=WI(IJ)

OMEGA=DABS( OMEGA)

RETURN

END

SUBROUTINE LINEAR(K1 ,K2,XD,AA11 ,AA12,AA13,AA14,AA21,AA22,AA23, AA24

& ,BB1,BB2,A,B,TL1,TL2)

IMPLICIT DOUBLE PRECISION (A-H.O-Z)

DOUBLE PRECISION K1,K2

DIMENSION A(4,4),B(4,4)

A(1,1)=0.0D0

A(1,2)=0.0D0

A(1,3)=1.0D0

A(1,4)=0.0D0
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A(2,l

A(2,2

A(2,3

A(2,4

AC3.1

A(3,2

A(3,3

A(3,4

A(4,l

A(4,2

A(4,3

A(4,4

B(l,l

B(l,2

B(l,3

B(l,4

B(2,l

B(2,2

B(2,3

B(2,4

B(3,l

B(3,2

B(3,3

B(3,4

B(4,l

B(4,2

B(4,3

B(4,4

=AA11+BB1*K1-BB1*K1*TL2/XD-BB1*K1*TL1/XD

=AA12-BB1*K1*TL2/XD-BB1*K1*TL1/XD

=AA13+BB1*K2-BB1*K1*TL1+BB1*K1*TL1*TL2/XD

=AA14+BB1*K1/XD

=AA21+BB2*K1-BB2*K1*TL2/XD-BB2*K1*TL1/XD

=AA22-BB2*K1*TL2/XD-BB2*K1*TL1/XD

=AA23+BB2*K2-BB2*K1*TL1+BB2*K1*TL1*TL2/XD

=AA24+BB2*K1/XD

=1.0D0

=1.0D0

=0 . 0D0

=0.0D0

=1.0D0

=0.0D0

=0 . ODO

=0 . ODO

=0.0D0

=1 . ODO- (BB1*K1*TL1*TL2/XD)

=BB1*K2*TL1

=0 . ODO

=0 . ODO

=-BB2*Kl*TLl*TL2/XD

=1.0D0+(BB2*K2*TL1)

=0.0D0

=0.0D0

=0.0D0

=0 . ODO

=1.0D0

RETURN

END
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C PROGRAM HOPF.FOR

C

C Hopf Bifurcation Analysis

C

C Third Order Expansions: First Order Approximation

C

IMPLICIT DOUBLE PRECISION (A-H.O-Z)

DOUBLE PRECISION Kl ,K2,K3,L,NR,NV,NDELTA,NPSI ,NY,IZ,MASS,

& NRDOT , NVDOT , KIP , K2P ,NWV , NVRR , NRVV , NYYY , NPPP

DOUBLE PRECISION Mil ,M12,M13,M14,M21 ,M22,M23 ,M24,

1 M31,M32,M33,M34,M41,M42,M43,M44,

2 N11,N12,N13,N14,N21,N22,N23,N24,

3 N31,N32,N33,N34,N41,N42,N43,N44,

4 L21,L22,L23,L24,L31,L32,L33,L34,

5 L41.L42.L43.L44

C

DIMENSION A(4,4) ,T(4,4) ,TINV(4,4) ,FV1(4) , IV 1 (4) ,ZZZ(4,4)

DIMENSION WR(4) ,WI(4) ,TSAVE(4,4) ,TLUD(4,4) , IVLUD(4) ,SVLUD(4)

DIMENSION ASAVE(4,4)

OPEN (11,FILE='BIF1.RES')

OPEN ( 15, FILE=' HOPF. RES')

c

c Vehicle Paramet<

IZ =0.0

L =528

RHO =1.94

G =32.2

XG =0.0

MASS =0.0088

U =1.0

c

YRDOT = 0.00000

YVDOT =-0.00912

YR =+0.00456

YV =-0.01434

YVW =-0.15391

YVRR =-0.05476

YRW = 0.04608

YYYY = 0.46800

YPPP = 0.00000

YPSI = 0.01400

YY = 0.02000

YDELTA=+0 . 00278
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NRDOT =-0.00115

NVDOT = 0.00000

NR =-0.00296

NV =-0.00460

NVW =-0.00336

NVRR = 0.00759

NRVV =-0.05160

NYYY = 0.00000

NPPP = 0.00000

NPSI = 0.01000

NY =-0.00250

NDELTA=-0.00139

WRITE (*,1003)

READ (*,*) :

WRITE

(

>,1100)

READ (:*,*)

TL=TL*U/L

WRITE (*,1006)

READ (*,*) ]

ZETA

TL

DO

DVR = (IZ-NRDOT)* (MASS-YVDOT)

-

& (MASS*XG-YRDOT)*(MASS*XG-NVDOT)

AA11=( (IZ-NRDOT) *YPSI- (MASS*XG-YRDOT) *NPSI) /DVR

AA12=( (IZ-NRDOT) *YV- (MASS*XG-YRDOT) *NV) /DVR

AA21= ( (NVDOT-MASS*XG) *YPSI+ (MASS-YVDOT) *NPSI ) /DVR

AA22= ( (MASS-YVDOT) *NV- (MASS*XG-NVDOT) *YV) /DVR

AA13=( (IZ-NRDOT) * (YR-MASS)

+

& (YRDOT-MASS*XG) * (NR-MASS*XG) ) /DVR

AA23= ( (NVDOT-MASS*XG) * (YR-MASS)

+

& (MASS-YVDOT) *(NR-MASS*XG) ) /DVR

AA14= ( (IZ-NRDOT) *YY+ (YRDOT-MASS*XG) *NY) /DVR

AA24= ( (NVDOT-MASS*XG) *YY+ (MASS-YVDOT) *NY) /DVR

BB1 =( (IZ-NRDOT) *YDELTA-(MASS*XG-YRDOT)*NDELTA) /DVR

BB2 = ( (MASS-YVDOT) *NDELTA- (MASS*XG-NVDOT) *YDELTA) /DVR

AN0M=AA23

BN0M=BB2

CN0M=AA21

EPS =l.D-5

ILMAX=1500

IWN=1000
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DO 1 11=1, IWN

WRITE (*,2001) II

READ(11,*) XD,WN

Kl=- (WN**2 . DO/BNOM) - (CNOM/BNOM)

K2=- (ANOM+2 . DO*ZETA*WN) /BNOM

K3=K2

C Start Hopf Bifurcation Analysis

C

C Evaluate Nonlinear Rudder Expansion Coefficients

C

K2=0 . 0D0

K1P=K1-K1*TL*U/XD

K2P=K2-K1*TL/XD

C

DPPV=- ( 1 . DO/ (3 . D0*D0**2) ) *3 . D0*K1P*K1P*K2P

& + 0.5D0*K1*TL/XD + 3.D0*K1*(TL*U) **3/(3 .D0*XD**3)

DPVV=- ( 1 . DO/ (3 . D0*D0**2) ) *3 . D0*K1P*K2P*K2P

& + 3.D0*U*TL*TL*TL*K1/(3.D0*XD**3)

DPPR=- (1 . DO/ (3 . D0*D0**2) ) *3 . D0*K1P*K1P*K3

DPRR=- (1 . DO/ (3 . D0*D0**2) ) *3 . D0*K1P*K3*K3

DPPY=- (1 . DO/ (3 . D0*D0**2) ) *3 . D0*K1P*K1P*K1/XD

& - 3.D0*TL*TL*U*U*K1/(3.D0*XD**3)

DPYY=- (1 .DO/ (3 . D0*D0**2) ) *3 . D0*K1P*K1*K1/ (XD**2)

& + 3.D0*TL*U*K1/(3.D0*XD**3)

DVVR=- ( 1 . DO/ (3 . D0*D0**2) ) *3 . D0*K2P*K2P*K3

DVRR=- ( 1 . DO/ (3 . D0*D0**2) ) *3 . D0*K2P*K3*K3

DVVY=- ( 1 . DO/ (3 . D0*D0**2) ) *3 . DO*K 1*K2P*K2P/XD

& - 3.D0*K1*TL*TL/(3.D0*XD**3)

DVYY=- ( 1 . DO/ (3 . D0*D0**2) ) *3 . D0*K1*K1*K2P/ (XD**2)

& + 3.D0*TL*K1/(3.D0*XD**3)

DRRY=- ( 1 . DO/ (3 . D0*D0**2) ) *3 . D0*K1*K3*K3/XD

DRYY=- (1 . DO/ (3 . D0*D0**2) ) *3 . D0*K1*K1*K3/ (XD**2)

DPVR=- (1 . DO/ (3 . D0*D0**2) ) *6 . D0*K1P*K2P*K3

DPVY=- (1 . DO/ (3 . D0*D0**2) ) *6 . D0*K1P*K1*K2P/XD

& - 6.D0*TL*TL*U*K1/(3.D0*XD**3)

DPRY=- ( 1 . DO/ (3 . D0*D0**2) ) *6 . D0*K1P*K1*K3/XD

DVRY=- ( 1 . DO/ (3 . D0*D0**2) ) *6 . DO*Kl *K2P*K3/XD

DPPP=- ( 1 . DO/ (3 . D0*D0**2) ) *1 . D0*K1P*K1P*K1P

& + K1*TL*U/(6.D0*XD) + (K1*(TL*U)**3)/(3.D0*XD**3)

DVVV=- ( 1 . DO/ (3 . D0*D0**2) ) *1 . D0*K2P*K2P*K2P

& + K1*(TL**3)/(3.D0*XD**3)

DRRR=- ( 1 . DO/ (3 . D0*D0**2) ) *1 . D0*K3*K3*K3

DYYY=- (1.D0/(3.D0*D0**2))*(K1/XD)**3-K1/(3.D0*XD**3)

& - K1/(3.D0*XD**3)

C

C Evaluate Transformation Matrix of Eigenvectors

C
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CALL LINEAR (Kl ,K3,XD,AA11 ,AA12,AA13,AA14,AA21 ,AA22,AA23

,

& AA24,BB1,BB2,A,TL)

DO 11 1=1,4

DO 12 J=l,4

ASAVE(I,J)=A(I,J)

12 CONTINUE

11 CONTINUE

CALL RG(4,4,A,WR,WI,1,ZZZ,IV1,FV1,IERR)

CALL DSOMEG ( IEV , WR , WI , OMEGA , CHECK

)

OMEGAO=OMEGA

DO 50 1=1,4

T(I,1)= ZZZ(I.IEV)

T(I,2)=-ZZZ(I,IEV+1)

50 CONTINUE

IF (IEV.EQ.l) GO TO 13

IF (IEV.EQ.2) GO TO 14

IF (IEV.EQ.3) GO TO 15

STOP 3004

14 DO 60 1=1,4

T(I,3)=ZZZ(I,1)

T(I,4)=ZZZ(I,4)

60 CONTINUE

GO TO 17

15 DO 70 1=1,4

T(I,3)=ZZZ(I,1)

T(I,4)=ZZZ(I,2)

70 CONTINUE

GO TO 17

13 DO 16 1=1,4

T(I,3)=ZZZ(I,3)

T(I,4)=ZZZ(I,4)

16 CONTINUE

17 CONTINUE

C

C Normalization of the Critical Eigenvector

C

CALL NORMAL (T)

C

C Definition of Mij

C

M11=T(1,1)

M21=T(2,1)

M31=T(3,1)

M41=T(4,1)

M12=T(1,2)

M22=T(2,2)
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M32=T(3,2)

M42=T(4,2)

M13=T(1,3)

M23=T(2,3)

M33=T(3,3)

M43=T(4,3)

M14=T(1,4)

M24=T(2,4)

M34=T(3,4)

M44=T(4,4)

c

c Definition of Lij

c

L21= DPPV*M11*M11*M21

& + DPRR*M11*M31*M31

& + DVVR*M21*M21*M31

& + DVYY*M21*M41*M41

& + DPVR*M11*M21*M31

& + DVRY*M21*M41*M31

& + DRRR*M31*M31*M31

+ DPVV*M11*M21*M21 + DPPR*M11*M11*M31
+ DPPY*M11*M11*M41 + DPYY*M11*M41*M41

+ DVRR*M21*M31*M31 + DVVY*M21*M21*M41

+ DRRY*M31*M31*M41 + DRYY*M31*M41*M41

+ DPVY*M11*M21*M41 + DPRY*M11*M41*M31
+ DPPP*M11*M11*M11 + DVVV*M21*M21*M21

+ DYYY*M41*M41*M41

PPV = M11*M11*M22 + 2.0*M11*M12*M21

PVV = M12*M21*M21 + 2.0*M11*M21*M22

PPR = M11*M11*M32 + 2.0*M11*M12*M31

PRR = M12*M31*M31 + 2.0*M11*M31*M32

PPY = M11*M11*M42 + 2.0*M11*M12*M41

PYY = M41*M41*M12 + 2.0*M11*M41*M42

WR = M21*M21*M32 + 2.0*M31*M21*M22

VRR = M22*M31*M31 + 2.0*M31*M32*M21

VVY = M21*M21*M42 + 2. 0*M41*M21*M22

VYY = M22*M41*M41 + 2. 0*M41*M42*M21

RRY = M31*M31*M42 + 2. 0*M41*M31*M32

RYY = M32*M41*M41 + 2. 0*M41*M42*M31

PVR = M11*M21*M32+M31*(M11*M22+M12*M21)

PVY = M11*M21*M42+M41*(M11*M22+M12*M21)

PRY = M11*M41*M32+M31*(M11*M42+M12*M41)

VRY = M21*M41*M32+M31*(M21*M42+M22*M41)

PPP = 3.0*M11*M11*M12

VVV = 3.0*M21*M21*M22

RRR = 3.0*M31*M31*M32

YYY = 3.0*M41*M41*M42

L22=DPPV*PPV+DPVV*PW+DPPR*PPR+DPRR*PRR+DPPY*PPY+DPYY*PYY

+DVVR*VVR+DVRR*VRR+DVVY*VVY+DVYY*VYY+DRRY*RRY+DRYY*RYY

+DPVR*PVR+DPVY*PVY+DPRY*PRY+DVRY*VRY+DPPP*PPP+DVW*VVV

+DRRR*RRR+DYYY*YYY

PPV = M12*M12*M21 + 2.0*M11*M12*M22
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PVV = M11*M22*M22 + 2. 0*M12*M21*M22

PPR = M12*M12*M31 + 2.0*M11*M12*M32

PRR = M11*M32*M32 + 2.0*M12*M31*M32

PPY = M12*M12*M41 + 2.0*M11*M12*M42

PYY = M11*M42*M42 + 2. 0*M12*M41*M42

WR = M22*M22*M31 + 2. 0*M21*M22*M32

VRR = M21*M32*M32 + 2. 0*M22*M31*M32

VVY = M22*M22*M41 + 2. 0*M21*M22*M42

VYY = M21*M42*M42 + 2. 0*M22*M41*M42

RRY = M32*M32*M41 + 2. 0*M31*M32*M42

RYY = M31*M42*M42 + 2.0*M32*M41*M42

PVR = M12*M22*M31 + M32*(M11*M22+M12*M21)

PVY = M12*M22*M41 + M42* (M11*M22+M12*M21)

PRY = M12*M42*M31 + M32*(M11*M42+M12*M41)

VRY = M22*M42*M31 + M32*(M21*M42+M22*M41)

PPP = 3.0*M11*M12*M12

WV = 3.0*M21*M22*M22

RRR = 3.0*M31*M32*M32

YYY = 3.0*M41*M42*M42

L23=DPPV*PPV+DPVV*PW+DPPR*PPR+DPRR*PRR+DPPY*PPY+DPYY*PYY

& +DWR*VVR+DVRR*VRR+DVVY*WY+DVYY*VYY+DRRY*RRY+DRYY*RYY

& +DPVR*PVR+DPVY*PVY+DPRY*PRY+DVRY*VRY+DPPP*PPP+DVW*VVV

& +DRRR*RRR+DYYY*YYY

L24= DPPV*M12*M12*M22 + DPVV*M12*M22*M22 + DPPR*M12*M12*M32

& + DPRR*M12*M32*M32 + DPPY*M12*M12*M42 + DPYY*M12*M42*M42

& + DVVR*M22*M22*M32 + DVRR*M22*M32*M32 + DVVY*M22*M22*M42

& + DVYY*M22*M42*M42 + DRRY*M32*M32*M42 + DRYY*M32*M42*M42

& + DPVR*M12*M22*M32 + DPVY*M12*M22*M42 + DPRY*M12*M42*M32

& + DVRY*M22*M42*M32 + DPPP*M12*M12*M12 + DVVV*M22*M22*M22

& + DRRR*M32*M32*M32 + DYYY*M42*M42*M42

L31=L21

L32=L22

L33=L23

L34=L24

L21=L21*BB1*U*U

L22=L22*BB1*U*U

L23=L23*BB1*U*U

L24=L24*BB1*U*U

L31=L31*BB2*U*U

L32=L32*BB2*U*U

L33=L33*BB2*U*U

L34=L34*BB2*U*U

L41=-0 . 5*M11*M11* (M21+U*Mll/3 . 0)

L42=-M11* (M12*M21+0 . 5*Mll*M22+0 . 5*U*M12*M11)
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L43=-M12* (Ml l*M22+0 . 5*M12*M21+0 . 5*U*M1 1*M12)

L44=-0 . 5*M12*M12* (M22+U*M12/3 . 0)

C11=(1/6.0)*YVW*(M21*M21*M21)+0.5*YVRR*(M31*M31*M21) +

& . 5*YRVV*M21*M21*M31+ ( 1/6 . 0) *YPPP*Mll*Mll*Mll+(l/6 . 0) *YYYY*M41*M41*M41

C12= (1/6 . 0) *YVW* (3*M21*M21*M22)+0 . 5*YVRR* (M31*M31*

& M22+2*M31*M32*M21)+0.5*YRVV*(M21*M21*M32+2*M31*M21*M22)+(1/6.0)*YPPP*3*M11*M11*M12

& +(1/6.0)*YYYY*3*M41*M41*M42

C13= ( 1/6 . 0) *YVW* (3*M21*M22*M22)+0 . 5*YVRR* (M21*M32*

& M32+2*M31*M32*M22)+0.5*YRVV*(M22*M22*M31+2*M32*M21*M22)+(1/6.0)*YPPP*3*M11*M12*M12

& +(1/6.0)*YYYY*3*M41*M42*M42

C14= (1/6.0) *YVW* (M22*M22*M22) +0 . 5*YVRR* (M32*M32*M22) +

& . 5*YRVV*M22*M22*M32+ (1/6.0) *YPPP*M12*M12*M12+ (1/6.0) *YYYY*M42*M42*M42

C21=(1/6.0)*NVVV*(M21*M21*M21)+0.5*(NVRR*M31*M31*M21)+

& 0.5*NRVV*M21*M21*M31+(1/6.0)*NPPP*M11*M11*M11+(1/6.0)*NYYY*M41*M41*M41

C22= ( 1/6 . 0) *NVW* (3*M21*M21*M22)+0 . 5*NVRR* (M31*M31*

& M22+2*M31*M32*M21)+0 . 5*NRVV* (M21*M21*M32+2*M31*M21*M22) + (1/6 . 0) *NPPP*3*M11*M11*M12

& +(1/6.0)*NYYY*3*M41*M41*M42

C23= (1/6 . 0) *NVW* (3*M21*M22*M22)+0 . 5*NVRR* (M21*M32*

& M32+2*M31*M32*M22)+0.5*NRVV*(M22*M22*M31+2*M32*M21*M22)+(1/6.0)*NPPP*3*M11*M12*M12

& +(1/6.0)*NYYY*3*M41*M42*M42

C24= (1/6.0) *NVW* (M22*M22*M22) +0 . 5*NVRR*M32*M32*M22+

& . 5*NRVV*M22*M22*M32+ (1/6.0) *NPPP*M12*M12*M12+ (1/6.0) *NYYY*M42*M42*M42

D11=(C11*(IZ-NRD0T)+C21*(YRD0T-M*XG))/DVR

D12= (C12* (IZ-NRDOT) +C22* (YRDOT-M*XG) ) /DVR

D13= (C13* (IZ-NRDOT) +C23* (YRDOT-M*XG) ) /DVR

D14= (C14* (IZ-NRDOT) +C24* (YRDOT-M*XG) ) /DVR

D21= (CI 1* (NVDOT-M*XG) +C21* (M-YVDOT) ) /DVR

D22= (C12* (NVDOT-M*XG) +C22* (M-YVDOT) ) /DVR

D23= (C13* (NVDOT-M*XG) +C23* (M-YVDOT) ) /DVR

D24= (C14* (NVDOT-M*XG) +C24* (M-YVDOT) ) /DVR

C

C Invert Transformation Matrix

C

DO 20 1=1,4

DO 30 J=l,4
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TINV(I,J)=0.0

TSAVE(I,J)=T(I,J)

30 CONTINUE

20 CONTINUE

CALL DLUD(4,4,TSAVE,4,TLUD,IVLUD)

DO 40 1=1,4

IF (IVLUD(I).EQ.O) STOP 3003

40 CONTINUE

CALL DILU(4,4,TLUD,IVLUD,SVLUD)

DO 80 1=1,4

DO 90 J=l,4

TINV(I,J)=TLUD(I,J)

90 CONTINUE

80 CONTINUE

C

C Check Inv(T)*A*T

C

IMULT=2

IF (IMULT.EQ.l) CALL MULT(TINV,ASAVE,T)

IF (IMULT.EQ.O) STOP

C

C Definition of Nij

C

N11=TINV(1,1)

N21=TINV(2,1)

N31=TINV(3,1)

N41=TINV(4,1)

N12=TINV(1,2)

N22=TINV(2,2)

N32=TINV(3,2)

N42=TINV(4,2)

N13=TINV(1,3)

N23=TINV(2,3)

N33=TINV(3,3)

N43=TINV(4,3)

N14=TINV(1,4)

N24=TINV(2,4)

N34=TINV(3,4)

N44=TINV(4,4)

C

R11=N12*L21+N13*L31+N14*L41+N12*D11+N13*D21

R12=N12*L22+N13*L32+N14*L42+N12*D12+N13*D22

R13=N12*L23+N13*L33+N14*L43+N12*D13+N13*D23

R14=N12*L24+N13*L34+N14*L44+N12*D14+N13*D24

R21=N22*L21+N23*L31+N24*L41+N22*D11+N23*D21

R22=N22*L22+N23*L32+N24*L42+N22*D12+N23*D22

R23=N22*L23+N23*L33+N24*L43+N22*D13+N23*D23

R24=N22*L24+N23*L34+N24*L44+N22*D14+N23*D24
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c

C Evaluate Alpha' and Omega'

C

DINC=0.001

XDR =XD+DINC

XDL =XD-DINC

XD =XDR

CALL LINEAR(K1,K3,XD,AA11,AA12,AA13,AA14,AA21,AA22,AA23,

& AA24,BB1,BB2,A,TL)

CALL RG(4,4,A,WR,WI,0,ZZZ,IV1,FV1,IERR)

CALL DSTABL(DEOS,WR,WI,FREQ)

ALPHR=DEOS

OMEGR=FREQ

XD=XDL

C

CALL LINEAR (K1,K3,XD,AA11,AA12,AA13,AA14,AA21,AA22,AA23,

& AA24,BB1,BB2,A,TL)

CALL RG(4,4,A,WR,WI,0,ZZZ,IV1,FV1,IERR)

CALL DSTABL(DEOS,WR,WI,FREQ)

ALPHL=DEOS

OMEGL=FREQ

C

DALPHA= (ALPHR-ALPHL) / (XDR-XDL)

DOMEGA= (OMEGR-OMEGL) / (XDR-XDL)

C

C Evaluation of Hopf Bifurcation Coefficients

C

C0EF1=3 . 0*R1 1+R13+R22+3 . 0*R24

C0EF2=3 . 0*R2 1+R23-R12-3 . 0*R14

AMU2 =-C0EFl/(8.0*DALPHA)

BETA2=0.25*C0EF1

TAU2 =- (C0EF2-D0MEGA*C0EF1/DALPHA) / (8 . 0*0MEGA0)

PER =2.0*3. 1415927/0MEGA0

PER =PER*U/L

C

WRITE (15,2002) XD , WN , COEF 1 , DALPHA , PER

1 CONTINUE

1001 FORMAT (' ENTER MIN, MAX, AND INCREMENTS OF WN (dimensionless) '

)

1002 FORMAT (' ENTER MIN, MAX, AND INCREMENTS OF XD (dimensionless)')

1003 FORMAT (' ENTER DAMPING RATIO')
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1006 FORMAT (' ENTER DSAT ')

1100 FORMAT (' ENTER TIME LAG TL (dimensional) ')

2001 FORMAT (215)

2002 FORMAT (5E15.5)

END

SUBROUTINE DSTABL(DEOS,WR,WI , OMEGA)

C

C EVALUATES THE EIGENVALUE WITH THE MAXIMUM REAL PART

C

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

DIMENSION WR(4),WI(4)

DE0S=-1.0D+20

DO 1 1=1,4

IF (WR(I).LT.DEOS) GO TO 1

DEOS=WR(I)

IJ=I

1 CONTINUE

OMEGA=WI(IJ)

OMEGA=DABS (OMEGA)

RETURN

END

C

SUBROUTINE LINEAR(K1,K2,XD,AA11 ,AA12,AA13,AA14,AA21,

& AA22,AA23,AA24,BB1,BB2,A,TL)

C

C FORMS THE LINEARIZED MATRIX A (time delay 1st order approximation

IMPLICIT DOUBLE PRECISION (A-H.O-Z)

DOUBLE PRECISION K1,K2

DIMENSION A(4,4)

A(1,1)=0.0D0

A(1,2)=0.0D0

A(1,3)=1.0D0

A(1,4)=0.0D0

A(2, 1)=AA11+BB1*K1-BB1*K1*TL/XD

A(2,2)=AA12-BB1*K1*TL/XD

A(2,3)=AA13+BB1*K2

A(2,4)=AA14+BB1*K1/XD

A(3 , 1) =AA21+BB2*K1-BB2*K1*TL/XD

A(3 , 2) =AA22-BB2*K1*TL/XD

A(3,3)=AA23+BB2*K2

A(3,4)=AA24+BB2*K1/XD

A(4,1)=1.0D0

A(4,2)=1.0D0
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A(4,3)=0.0D0

A(4,4)=0.0D0

RETURN

END

SUBROUTINE DSOMEG ( I JK , WR , WI , OMEGA , CHECK)

IMPLICIT DOUBLE PRECISION (A-H.O-Z)

DIMENSION WR(4),WI(4)

CHECK"-i.OD+25

DO 1 1=1,4

IF (WR(I) .LT. CHECK) GO TO 1

CHECK=WR(I)

IJ=I

CONTINUE

OMEGA=DABS(WI(IJ))

IF (WI(IJ) .GT.O.DO) IJK=IJ

IF (WI(IJ) .LT.O.DO) IJK=IJ-1

RETURN

END

SUBROUTINE NORMAL (T)

IMPLICIT DOUBLE PRECISION (A-H.O-Z)

DIMENSION T(4,4) ,TNOR(4,4)

CFAC=T(1,1)**2+T(1,2)**2

IF (DABS(CFAC).LE.(l.D-lO)) STOP 4001

TN0R(1,1)=1.D0

TN0R(2,1)=(T(1,1)*T(2,1)+T(2,2)*T(1,2))/CFAC

TN0R(3,1)=(T(1,1)*T(3,1)+T(3,2)*T(1,2))/CFAC

TN0R(4,1)=(T(1,1)*T(4,1)+T(4,2)*T(1,2))/CFAC

TN0R(1,2)=0.D0

TN0R(2,2)=(T(2,2)*T(1,1)-T(2,1)*T(1,2))/CFAC

TN0R(3,2)=(T(3,2)*T(1,1)-T(3,1)*T(1,2))/CFAC

TN0R(4,2)=(T(4,2)*T(1,1)-T(4,1)*T(1,2))/CFAC

DO 1 1=1,4

DO 2 J=l,2

T(I,J)=TNOR(I,J)

2 CONTINUE

1 CONTINUE

RETURN
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END

c======================================================:

SUBROUTINE MULT(TINV,A,T)

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

DIMENSION TINV(4,4) ,A(4,4) ,T(4,4) ,A1(4,4) ,A2(4,4)

DO 1 1=1,4

DO 2 J=l,4

Al(I,J)=O.DO

A2(I,J)=0.D0

2 CONTINUE

1 CONTINUE

DO 3 1=1,4

DO 4 J=l,4

DO 5 K=l,4

A1(I,J)=A(I,K)*T(K,J)+A1(I,J)

5 CONTINUE

4 CONTINUE

3 CONTINUE

DO 6 1=1,4

DO 7 J=l,4

DO 8 K=l,4

A2(I,J)=TINV(I,K)*A1(K,J)+A2(I,J)

8 CONTINUE

7 CONTINUE

6 CONTINUE

DO 11 1=1,4

C WRITE (*,101) (A(I,J) ,J=1,4)

11 CONTINUE

DO 12 1=1,4

C WRITE (*,101) (T(I,J),J=1,4)

12 CONTINUE

DO 10 1=1,4

WRITE (*,101) (A2(I,J),J=1,4)

10 CONTINUE

C WRITE (*,101) A2(l,l)

RETURN

101 FORMAT (4E15.5)

END
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