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PREFACE

The editor was very honoured and delighted to receive the invita-

tion of the Office of Naval Research to edit the collected edition of Sir

Thomas Havelock's hydrodynamical papers. Since his first introduction

to hydrodynamical research many years ago, the editor has always re-

garded Professor Havelock's work with the greatest admiration and re-

spect. And, for nearly forty years, after making personal acquaintance

with Professor Havelock, the editor has received much very kind advice

and assistance from him, which he is very glad to acknowledge here.

Nearly all the mathematical analysis in these papers has been re-

worked, and a number of minor misprints have been found. In one or two

papers more serious changes have been made, either by Professor Have-

lock himself, or with his agreement. The papers are arranged in chrono-

logical order, without reference to their content. The subject receiving

the most attention in the papers is the development of the mathematical

theory of wave resistance and wave formation for a moving body. The

papers in the following list deal with this and show the development of

the theory from elementary methods to a complete solution for any body,

subject only to the assumption of small wave height, that is, of a lin-

earised potential.

Paper Nos. Pages in this Collection

1 to 4 1 to 80

6 94 to 104

7 & 8 105 to 131

10 146 to 157

15 to 27 192 to 329

29 to 36 347 to 428

44 500 to 511

46 to 52 520 to 582

59 615 to 616

Paper No. 20 (pages 249 to 264), Paper No. 32 (pages 377 to 389),

and paper 51 (pages 563 to 574) give a summary of the practical results

to be deduced from the theory at their respective dates 1925, 1934, and

1951).

All but five of the remaining papers deal with various motions of a

ship by similar methods, i.e., with rolling, pitch and heave, motion in

a seaway, etc., and their individual subjects are sufficiently specified

in their titles in the List of Contents.



The remaining five papers, numbers 5, 9, 12, 13 and 28 deal with cer-

tain mathematical questions which arise in hydrodynamical analysis.

Finally the editor's thanks are due to Professor Lunde of Trondheim

for his kind advice on one difficult question, and also to Dr. T. Francis

Ogilvie and to Dr. J. N. Newman, both of the David Taylor Model Basin,

for their kindness in verifying some of the references to American papers.

Flat 103

6, Charterhouse Square

LONDON E.C.I

C: WIGLEY

11th March, 1963
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[Reprinted from the Proceedings of the Eoyal Society, A. "Vol. 81]

The Propagation of Groups of Waves in Dispersive Media, with

Application to Waves on Water produced by a Travellhig

Disturbance.

By T. H. Havelock, M.A., D.Sc, Fellow of St. John's College, Cambridge
;

Lecturer in Applied Mathematics, Armstrong College, Newcastle-on-Tyne.

(Communicated by Prof. J. Larmor, Sec. R.S. Eeceived August 26,—Read
November 19, 1908.)
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§ 1. Introduction.

The object of this paper is to illustrate the main features of wave propa-

gation in dispersive media. In the case of surface waves on deep water it

has been remarked that the earlier investigators considered the more difficult

problem of the propagation of an arbitrary initial disturbance as expressed

by a Fourier integral, ignoring the simpler theory developed subsequently by
considering the propagation of a single element of their integrals, namely,
an unending train of simple harmonic waves. The point of view on which
stress is laid here consists of a return to the Fourier integral, with the idea

that the element of disturbance is not a simple harmonic wave-train, but a
simple group, an aggregate of simple wave-trains clustering around a given
central period. In many cases it is then possible to select from the integral
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the few simple groups that are important, and hence to isolate the chief

regular features, if any, in the phenomena.

In certain of the following sections well-known results appear ; the aim

has been to develop these from the present point of view, and so illustrate

the dependence of the phenomena upon the character of the velocity function.

In the other sections it is hoped that progress has been made in the theory

of the propagation of an arbitrary initial group of waves, and also of the

character of the wave pattern diverging from a point impulse travelling on

the surface.

§ 2. Definition of Simple Group.

We have to consider the transmission of disturbances in a medium for

which the velocity of propagation of homogeneous simple harmonic wave-

trains is a definite function of the wave-length. The kinematically simplest

group of waves is composed of only two simple trains, of wave-lengths X, V,

differing by an infinitesimal amount dX ; then with the usual approximation

we have for the combined effect

y:=^Acos—(x-Yt)+ Acos^{x-Y't)

= 2Acos^(a;-U0cos?^(a;-V0, '

(1)
A- A,

where U = V-X^. (2>

The expression (1) may be regarded as representing at any instant a train

of wave-length X, whose amplitude varies slowly with x according to the first

cosine factor. Thus it does not represent a form which moves forward

unchanged ; but it has a certain periodic quality, for the form at any given

instant is repeated after equal intervals of time X/(V— U), being displaced

forward through equal distances Xir/(V— U). The ratio of these quantities,

namely U, is called the group-velocity. It has also the following significance

:

in the neighbourhood of an observer travelling with velocity U the disturb-

ance continues to be approxipiately a train of simple harmonic waves of

length X.

The most general simple, or elementary, group may be defined in the

following manner. Let the central form be a simple harmonic wave of length

2ir/Ko, and let the other members be similar waves whose amplitude, wave-

length, and velocity differ but slightly from the central type; then, with

similar approximation, we have

y = SA cos {k (x—Yt) + a}

= 'S.AndOS {Ko{x—YQt)+(x— 'Uot) BKn+a}. (3)
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The range of values of k being infinitesimal, the group as a whole may be

written, as in the previous case, in the form

2/ = (/)(«- UoO cos {«o(«-VoO + /9}, (4)

where is a slowly varying function ; and the group-velocity Uo is given by

Uo = A(.„y„).
(5)

The group, to an observer travelling with velocity Uo, appears as consisting

of approximately simple waves of length 2Tr/«:o. The simple group is, in fact,

propagated as an approximately homogeneous simple wave-train ; the impor-

tance of the group-velocity lies in the fact that any slight departure from

homogeneity on a simple wave-train, due to local variation of amplitude or

phase, is propagated with the velocity U.

§ 3. The Fourier Integral regarded as a Collection of Groups.

An arbitrary disturbance can, in general, be analysed by Fourier's method
into a collection of simple wave-trains ranging over all possible values of k

;

thus after a time t the disturbance will be given by an expression of the type

<l>{K)(iQBK{x— Yt+ a)dK, (6)
Jo

where V is a given function of k.

The method adopted with these integrals is based on Lord Kelvin's* treat-

ment of the case, in which the amplitude factor ^ («) is a constant, so that

y cos K (x—Yt) dK.
Jo

An integral solution of this kind is constructed to represent the subsequent

effect of an initial disturbance which is infinitely intense, and concentrated in

a line through the origin ; Lord Kelvin's process gives an approximate

evaluation suitable for times and places such that x—Yt is large, and the

argument may be stated in the following manner :

—

In the dispersive medium the wave-trains included in each differential

element of the varying period are mutually destructive, except when they are

in the same phase and so cumulative for the time under consideration, this

being when the argument of the undulation is stationary in value. Thus
each differential element as regards period, in the Fourier integral, represents

a disturbance which is very shght except around a certain point which itself

changes with the time.

Now if we apply this method to the more general integral (6), we obtain an

* Sir W. Thomaon, ' Roy. Soc. Proc.,' vol. 42, p. 80 (1887).
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expression for the total disturbance, attending only to its prominent features

and neglecting the rest, provided we assume the change of the amplitude

factor ^ (k) to be gradual. On this hypothesis the resulting expression

contains the amplitude of the component trains simply as a factor ; and in

this way the trains for which it is a maximum show predominantly in the

formula, which exhibits the main features of the disturbance as they arise

from place to place through cumulation of synchronous component trains.

The argument shows that in some respects the integral (6) may be more

conveniently regarded as a collection of travelling groups instead of simple

wave-trains ; when <p (k) is a slowly varying function, the groups will be

simple groups of the type (3). The limitations within which this is the case

will appear from the subsequent analysis ; one method of procedure would be

graphical : to take a graph of the fluctuating factor and see that the other

factor, which is taken constant, does not vary much within the range that is

important for the integral.

In the cases we shall examine, the effect is due to a limited initial

disturbance, and the salient features are due to the circumstance that <(> («)

has well-defined maxima; thus the prominent part of the effect can be

expressed in the form of simple groups belonging to the neighbourhood of the

maxima.

Before considering in detail special cases with assigned forms of the velocity

function V, two illustrations of interest may be mentioned.

(a) Damped harmonic wave-train.—If / (x) is a function satisfying the

conditions for the Fourier transformation, we have

f(x)=~\ dA /(ci))cosK (co—a;)d(o.
TtJo J -to

For an even function of x, this gives

2 r rf(x)~—\ (j) (k) COS KX dx, where ^(/c) = I f{co)cosK(odeo. (7)
TT Jo Jo

Now let f{x) be an even function of x, defined for all values, and such

that it is equal to e"''^ cos k'x for x positive ; then we find

Consider this function / (x) as the initial value of a disturbance y which

occurs in a dispersive medium ; then the value of y at any time can be

expressed, in general, by

fee
-00

<p (k) cos K (x— Yt) (f« -F B <J){k) cos k(x+ Yt) dx, (9)
Jo
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where A, B are constants which need not be specified further in the present

connection.

These integrals are of the type (6), and represent infinite wave-trains

travelling in tlie positive and negative directions respectively. We see ironi

(8) that when fi is small, the amplitude factor ^ {k) consists practically of a

single well-defined peak in the neighbourhood of the value «'. Hence, when
the damping coefficient /x is small, the wave-trains in question may be

considered as travelling in the form of a group «' of unchanging waves of

this specified structure.

This example serves to illustrate the propagation of a very long train o.f

simple harmonic waves subsiding as they travel owing to a small damping

coefficient, and is of interest in connection with Lord Eayleigh's general

proof that the group-velocity U is the velocity with which energy is being

propagated.* A small damping coefficient /x is introduced by him, so that

the energy transmitted is determined by the energy dissipated ; the argument,

which of course loses its meaning if yu. is actually zero, shows that when jx is

diminished indefinitely the rate of transmission of energy approaches U as a

limiting value. Similarly, although the Fourier transformation is inapplicable

when fi is actually zero, we infer from the above analysis that when /i is

diminished indefinitely, the disturbance is representable as a simple group of

unchanging waves of definite structure.

(b) Interrupted simple wave-train.— Consider an initial disturbance

defined by

f(x) = 0, { —d<x<cl)

= c"''^ sin K (x— d), {x > d),

= —e'^^smK'{x+ d), (x < —d).

Then the disturbance is given by an expression of the form (9), in which

2<^(K) = 2/"e-M"sinK'(«-^) cos k<o do,
d

{k-\-k') cos ic d— fjL sin k d ^ (k —k) cos k d—jx sin k d ,-,^^

Now suppose /x and d very small, so that the initial disturbance approxi-

mates to an infinite simple harmonic form with a narrow range of

discontinuity ; we see that the graph of the amplitude factor (^ (k) is then

reduced to a single peak in the vicinity of the value k'. We infer from this

example that a very long simple harmonic wave-train which is interrupted

for a short interval is kinematically equivalent to a group of unchanging

waves, of definite structure ranging round the value 27r/«' of the wave-

length.

* Lord Rayleigh, ' Proo. Lond. Math. Soc.,' vol. 9, p. 24 (1877).
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§ 4. Feattires of the Integrals Involved.

The integrals we have to consider in such problems are of the type

= U (m) cos {/(m)} du. (11)

All such integrals we can treat in the same manner, adopting the method

employed by Lord Kelvin for the particular case referred to above (§ 3).

This method consists in supposing that/(w) is large, so that the cosine factor

is a rapidly varying quantity compared with the first factor ; thus, much as in

the Fresnel discussion of the diffraction of light waves, the prominent part of

the graph of the integral is contained within a small range of u for which

f{u) is stationary in value, so that the elements are then cumulative. In

other words, we select from (11) the group or groups of terms ranging round

values Mo of m which make
y'(«o) = o. (12)

In such a group of terms we may put

/(«) =/(«o)+ i(w-Wo)V"(«o).

Then if we write a^ for ^(w— mq)/" (^o). the contribution of the group to the

value of (11) is given by

yo = \j7Tj:^.Y <j) (mo) cos {/(mo)+ ff^} d(x, (13)

where the limits of the integral may be in general extended, as in diffraction

theory, to + oo
,
provided uo does not coincide with either limit of the integral

(11), and also provided that/"(Mo) is not zero.

Thus we have, from (13),

=
l/^l^'^^"") t'^^" {/(Mo)} -sin {/(Mo)}]

This is the sum of the contributions of the constituents of each group

around a central value uo given by (12), provided the value mo comes within

the range of values of u in the integral (11).

If /"(Mo) is negative, the corresponding result may be written

2^» =
\ -/^7m,)T"'^^"°^°°^

{/(«o)-i7r}. (15)

We write down for reference the similar pair of results for a group of terms

from the integral

y =U(u) sin {f{u)}du. (16)

2/0
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Tf /" (Mo) is positive,

2/0=1 .„T \ 4> (mo) cos {/(mo)- Itt} ; (17)

and if/" (mo) is negative,

y" = {-/>o) }*'^^''°'' '°' {/(»o)+ i7r}. (18)

The chief form in which such integrals occur is

y — \ if) (k) cos K (x—Yt) dK, where V =/(«). (19)

The principal groups are given by the values ko such that

A^{^ix-Yt)}=0, or | = A(«V) = U. (20)

The aggregate value of the group can be written down from one of the

previous forms ; if 3U/3«: is negative, we should have

{9 ~\ i

-tBlJ/d>cJ ^ ^'^"^ ^°^ ^'^'^ {x-Yt)+l'ir}. (21)

As an illustrative example we may suppose a disturbance y to be given at

time t by the expression*

2/= [ cos K{x-Yt)dK. (22)
Jo

When x—Yt is large, the elementary waves given by (22) reinforce each

other only for the simple groups given by values kq for which the argument

of the cosine is stationary, so that

x-Vt = 0. (23)

This equation (23) defines a velocity U such that to an observer starting

from the origin and travelling with this velocity the complex disturbance has

the appearance of simple waves of length 27r//<:o. Or again, we may regard

(23) as giving the predominant value of kq at any position and time in terms

of X and t. The features of the disturbance will depend on the form of the

velocity function V ; we proceed to consider some special forms.

§ 5. Initial Line Displacement on Deep Water.

We consider surface waves on an unlimited sheet of deep water, the only

bodily forces being those due to gravity. Let the «-axis be in the undisturbed

horizontal surface, and the y-axis be drawn vertically upwards. Let tj be the

elevation of surface waves of small amplitude with parallel crests and troughs

perpendicular to the a;y-plane. It can be shown that for an initial displace-

* Lord Kelvin, loc. cit. ante.
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ment given by 7/ = cos kx, without initial velocity, the surface form at any

subsequent time is given by

ri = cos K Yt cos KX = ^ {cos K {x—Yt) + cos k (.-c+ V^)},

where V = (glicf. (24)

Let f{x) be any even function of x which can be analysed by Fourier's

integral theorem. Then, corresponding to an initial surface displacement /(a;),

without initial velocity, there is a surface form given at any subsequent

time by

If" 1 r"
1? = ,5— 4^{K)cosK{x—Yt)dK+ —~\ cl){ic) cos K{a;+ Yt)dK, (25)

where (/>(a:) =
j
/(&>) cos/ctu f?&). (26)

If we suppose the initial elevation to be limited practically to a line

through the origin and assume that /(«) dx = 1, so that cp (k) = 1, we can

use, as an illustration of the procedure, the form

,; = -i f cosK(x—Yt)dK + -^{ cosK{x+ Yt)dK. (27)

We select from these integrals the groups which give the chief regular

features at large distances from the original disturbance. This cumulative

group from the first integral is given for a given position and time by the

value of K for which k (x—Yt) is stationary, where V = \/{glic), so that

,
1=" = *%/!^

and, similarly' from the second integral by

Thus there are symmetrical groups of waves proceeding in the two directions

from the origin ; for x positive we need only consider the first integral in

(27), and for x negative the second integral. Thus the predominant wave-

length at a point x at time t is given by

K = gty^xl (28)

Evaluating this predominant group by means of expression (21), we obtain

the known result

At a given position, far enough from the source for the train to be taken
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as unlimited, this indicates oscillations succeeding each other with continually-

increasing frequency and amplitude ; also if we follow a group of waves with

given value of k the amplitude varies inversely as fi, or inversely as the

square root of x*

§ 6. Initial Displacement of Finite Breadth.

If I is the range within which the initial displacement is sensible, the

previous results hold with Ijx small ; further, as Cauchy showed, gtHjAx^

must he small if the function 4>{k) of (26) is to be taken as constant.

Prof. Burnsidet has obtained approximate equations for the surface form due

to certain limited initial displacements not confined to an indefinitely

narrow strip. From the present point of view, such results can be recovered

simply by selecting from the integrals the more important groups of waves.

(a) Let the initial displacement be given by

f(x) = ca7(«2+^), (30)

where a may be supposed small.

Then 4> («) = f" 'J^^^dco = ncae-^\

Hence from (25) the surface form is

77 = ica e-'"'Q,o?,K{x—yt)dK+ \ca.[e-'^cosK{x+ Yt)dK. (31)
Jo Jo

For points at some distance from the range in which the original

disturbance was sensible, e""" varies slowly compared with the cosine term
;

thus we may consider the integrals as made up of simple groups. For x

positive we need only consider the first integral.

The predominant value of k is thus connected with x and t by the same

equation (28) as before. Since the greater amplitudes are associated with

the smaller values of k and these have the greater values of U, it is clear

that, at a particular point, the disturbance dies away from its maximum at a

slower rate than its growth up to it. Using the previous results we can

write down the disturbance involved in the main group form as

^ = ,,^ig^,-^^,03^g_i^^.
(32)

The following results can he deduced. The cosine term varies rapidly

compared with the other factors, hence we may obtain the maximum by

considering the latter alone ; it is easily seen that this occurs when

* Lamb, 'Proc. Lond. Math. Soc' (2), vol. 2, p. 371 (1904).

t W. Burnaide, 'Proc. Lond. Math. Soc.,' vol. 20, p. 22 (1888).
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Thus the maximum is propagated out with uniform velocity ; and we see

that in its neighbourhood the predominant wave-length is 47ra.

(b) Let the initial displacement have a constant value A over a range of

hreadth 2c, and be zero at all other points : then we have

K

Hence the surface elevation is

Af sin_«£^^^^^^_y^^^^^_^Ar suw^c
^^^ ^ ,

_^ ^ ^^_ ,^^

ttJo H, 7I"Jo k

With the same argument as before, we consider the value of ?? at a point

as due to the most important of a succession of simple groups, that one,

namely, for which the argument is there stationary so that the components

reinlorce over a considerable range of k ; and we can write down, from the

])revious results, an expression for this group which is valid at least in the

vicinity of the travelling maxima of the disturbance. We have

corresponding to Burnside's result in the paper already cited.

Here we have a succession of maxima given by those of (x/gt^)^ sin {gt^j'ki?),

that is, at times given by tan 6 = 26, where 6 — gt^c/4z^.

The period of the group that is thus cumulative is different for different

localities, and for different times at the same locality ; but the accumulation

is very prominent only for those times and localities which give a maximum
value to the amplitude, which has been graphed for the next example in

fig. 1.

The maxima here diminish continually in value, and are propagated each

with uniform velocity, namely, the group-velocity corresponding to the

predominant wave-length in the neighbourhood.

§ 7. Limited Train of Simple Oscillations.

Another interesting example is the case of an initial displacement consisting

of a limited length of simple harmonic oscillations. If/ (x) is symmetrical

with respect to the origin, and is zero except for a range of ('2n + ^) wave-

lengths within which it is A cos k'x, we have

,, , oTT*'"^''' ^ „ ,. COs(2«+ i)7r/c/«' .orv
<P(k) = Z \ A cos K a cos KQ) do) = 2k A ^^

—

,„ .,
—'—

.

iod)
Jo K~— K''

/(27i+ J)V,'

Hence, from (25), we have the surface elevation ?;, of which we write down

10
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only tlie integral necessary for propagation in the direction of x positive,

that is,

^ ^ ^rcos(2»+i),r^/.-
,,3„(^_v,),;^ (36)

If n is very large, the main feature consists of the component waves round

the value k' ; but in general it is to be noticed that a series of subsidiary

components appears whose effects may be of sufficient magnitude to be

appreciable. But the component waves are cumulative only for values of x
and t such that

which is the value corresponding to a stationary argument of the cosine ; thus

the prominent effect at time t, of any group of parameter k, will be at localities

where k has the value «', or, else, a value belonging to one of the subsidiary

maxima. The result may be evaluated in the same manner as before

;

we find

We can obtain the prominent travelling groups above referred to, which

this involves, by evaluating the maxima of the amplitude function

-p-^4 274
"^os (2» + i) ;^ . (38)

Ida; ^z^—gH*' 4a:V
The form of this function is shown by fig. 1 ; it is obtained by plotting the

curve

2/ = ^^CDs|7r«2, (39)

where a is proportional to t, and, fuither, a equal to 1 corresponds to k equal

to k' .

The curve represents the variation of the disturbance at a given point with

the time, neglecting the local variations of the last cosine factor in (37) ; it

shows the grouped propagation of an initial displacement consisting of

4^- complete wave-lengths of a simple cosine wave of wave-length 277-/a;',

or \'.

The main undulatury disturbance appears as a simple group around the

predomhiant wave-length \'
, moving forward with the corresponding group-

velocity ls/{glK') or |V. But in advcma: of this maiii group of undulations

there are two or three subsidiary groups of sensible magnitude with wave-

lengths in the neighbourhood of 9X/2, 9X/4, 9A./6, moving with corresponding

group-velocities of 3V/2v/2, 3V/4, 3V/2^6. Thus in advance of the main
group we have slighter groups of larger wave-lengths moving with group-

velocities which may be larger than the wave-velocity of the original dis-

11
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turbance if it were unlimited. In the rear of the main group we have also

a series of alternating groups, following each other much more quickly and

with their wave-lengths and velocities less separated out than in the front of

the main group. Hence the disturbance in the rear, especially at distances

from the origin not very great, may be expected to consist of small, more

y

Fig. 1.

irregular, motion resulting from the superposition of this latter system of

groups, thus there will be a more distinctive rear of disturbance moving

forward with velocity ^V. These inferences may be compared with some

results given in Lord Kelvin's later papers. Starting from a solution of the

equations for an initial elevation in the form of a single crest, the results were

combined graphically so as to show in a series of figures the propagation of

12
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an initial disturbance consisting of five crests and four hollows of approxi-

mately sinusoidal shape
;
the following remarlvs are made :—* " Immediately

after the water is left free, the disturbance begins analysing itself into two

groups of waves, seen travelling in contrary directions from the middle line

of the diagram. The perceptible fronts of these two groups extend rightwards

and leftwards from the end of the initial static group far beyond the ' hypo-

thetical fronts,' supposed to travel at half the wave-velocity, which (according

to the dynamics of Osborne Reynolds and Eayleigh, in their important and

interesting fonsideration of the work required to feed a uniform procession of

water-waves) would be the actual fronts if the free groups remained uniform.

How far this if is from being realised is illustrated by the diagrams of iig. 35,

which show a great extension outwards in each direction far beyond distances

travelled at half the ' wave-velocity.' While there is this great extension of

the fronts outward from the middle, we see that the two groups, after

emergence from coexistence in tlie middle, travel with their rears leaving a

widening space between them of water not perceptibly disturbed, but with

very minute wavelets in ever augmenting number following slower and slower

in the rear of each group. The extreme perceptible rear travels at a speed

closely corresponding to the ' half wave-velocity.' .... Thus the per-

ceptible front travels at speed actually higher than the wave-velocity, and

this perceptible front becomes more and more important relatively to the

whole group with the advance of time . . . ."

This extract will serve to emphasise the importance of strict definition and

use of the word " group." A simple group, of whatever structure, has asso-

ciated with it a definite velocity depending only on the wave-length, but not

so an arbitrary limited displacement. In various eases we have found it

convenient to analyse such into its important elero-cntary groups, each with

definite velocity ; in special cases the disturbance may be equivalent practi-

cally to one simple group.

§ 8. Initial Impulse on Deep Water.

Suppose that initially the surface is horizontal, but that given impulses

are ap^ilied to it. Then for any given symmetrical distribution of impulse

f (x), suitable for Fourier analysis, with no initial elevation, the surface

elevation at any subsequent time is given by
-co «a)

•^9PV = h «^<^ («) sin K (x—yt) dK-ii KY(f> (k) sin k (x+ Yt) dK, (40)
Jo Ju

where ^ («) = I /(o)) cos Km dia.

J —CO

* Lord Kelvin, ' Phil. Mag.,' vol. 13, p. 11 (1907).

13



411 Dr. T. H. Havelock. The Propagation of [Aug. 26,

If we assume 4> («) equal to 1, so that it is confined to an indefinitely narrow-

strip of impulse (c/. § 5), we obtain the result corresponding to (29) for

initial displacement by multiplying that expression by the value of «V ; thus

we find

For comparison with the previous results, suppose that

2

CL -y Ji.

Then we find the surface form as an aggregate of groups, each of them

cumulative and so prominent only in a limited region, given by

For a given place the maxima are given by

^{th-o-^'"-!'-') = Q, that is, by ?=V(^«)-

Thus the maximum moves with velocity ^ ^^^{ga), and consists of nearly

simple waves of wave-length 27ra. Comparing with the result in § G for an

initial displacement of the same character, we see that the maximum is pro-

pagated outwards with slower velocity, the wave-length at the maximum

being one-half the corresponding value in the former case.

§ 9. Moving Line Impulse on Deep Water.

Suppose that the line impulse of the previous section is moving over the

surface of deep water at right angles to its length with uniform velocity c,

having started at some time practically infinitely remote. Then we may

regard the effect at («, t) as the summation of the effects due to all the con-

secutive elements of impulse, and we can obtain an expression by modifying

(40) and integrating with respect to the time. We measure x from a fixed

origin which the line impulse passes at zero time ; then we substitute x—cta

for X and t— tn for t in (40), and integrate with respect to <o for all the time

the impulse has been moving. Thus we obtain

irgpr) = \\ dt(,\ kV sin/K {x—ctii— Y{t— ta)] die

J -co Jo

— \ dtA «V sin/c {a;— c(!o-|-V(i!— i!o)} c?/c

J _oo Jo

fOO

/.GO

du\ «:Vsin /c {ci + (c— V)i<} (Zk

Jo

— ^["rfwf /<:Vsin/c{riT + (c4-V)M}(i/e, (4.3)

Jo Jo

14
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where xss = x—ct, and represents distance in advance of the present position
of the impulse. We proceed to obtain now the important regular features of

the disturbance represented by these integrals.

With the notation of (19) and (20) we have in the first integral

/(«) = c-V = e-^(^/«),

Hence the required predominant value of k, which corresponds to a stationary

argument, is given by

c-uA = --, or « = ay-'
, .44.V K u 4(cM+ nr)2

^^>

Thus the first integral in (43) gives

^-^'3'
f"r^ ^°^ lI7^^ + i-l ^- (45)
Jo(!!T + Cm)i L4(5T + CM) * J ^ '

We choose again the principal groups of oscillations by the condition

d r qv?
1 1 AT i A

/'
. 'x

+ t''" r = 0, or cu = — 2nT.
dii L4(ct + «() J

Now % must be positive to come within the range of the integral (45)

;

hence if nr is positive we obtain no contribution towards a regular undulatory
disturbance. If m is negative we obtain a series of travelling waves which
we can evaluate from (45).

We have

^ f ff'^^ *'} = -&+ |7r y = — -^, when cu= —2c

Hence, using expression (18), we obtain the value of the chief group from (45),

namely,

2irg . gm
"^''°^'

(46)

which holds when ro is negative.

As regards the second integral in (43), we easily see by taking the principal

group in k that ts + cu must be negative : thus nr must be negative and cu

between zero and m numerically. Then taking the chief group in u, we have
cu equal to 2ct numerically. Hence there is no resulting group of waves
falling in the range, and the second integral contributes nothing to the regular

disturbance.

We have then the well-known result that in front of the travelling impulse
there is no regular disturbance, while in the rear there is a train of regular

waves, proportional to (46), with wave-length suitable to the velocity c.

15
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The same method can be used for waves oa water of depth h, due to a

travelling impulse system. For in the integrals (43) we should have

/(k) =c-Y = c- A^ii- tanh Kh\

.

(47)

The group with respect to /c would give a term proportional to

cos{M/<:y'(K) + i7r}, (48)

where k has the value given by

-r./u=f(K)+ K/\K). (49)

We then select the group with respect to u by

|-{««y'(«)} = o. (50)

Using (49) we find this leads to*

/(.) = 0, or V =0 = ^(^7.) Vf-^). (51)

Since tanh Kh/xh diminishes continually from 1 to as kJi increases from

to X , there is only a real solution of (51) when c^ is less than gh. In this

case we have regular waves of length suitable to velocity c following in the

rear of the impulse ; when c is greater than the maximum wave-velocity there

is no regular wave form.

§ 10. Capillary Surface Waves.

In order to illustrate the propagation of an element of the Fourier

expression as a limited travelling group of undulations, we consider another

form of velocity function. If waves are propagated over the surface of a

liquid of density p under the action of the surface tension T, it can be shown

that the velocity of simple waves of length 2ir\K is

V = ^/(T«/p). (52)

Hence in this case the group-velocity is

U = |v/(T«/p) = tV;

thus the group-velocity is greater than the wave-velocity, and we shall see

how this affects some of the previous results.

(a) Initial elevation consisting of (2n-'r\') simple oscillations of ivave-length

2ir/K'.—If we consider the same problem as in § 7 we have

^ A f""°^
^^'\+ ^^ '^"1"'

cos K {x-Yt)dK. (53)
Jo IC'-K^

* Cf. Lord Eajleigh, 'Phil. Mag.,' vol. 10, p. 407 (1905).

16
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The predominant value of «, for given time and place, is given by

K = 4:px^/9Tt^ (54)

The chief groups, each with approximately constant amplitude, are given by

" = ^'8lfvl?^^-(2.+J)l^,cos(^-i.). (55)

At a given place the maxima of amplitude are those of

rig. 2 represents the curve

where a is proportional to the time and a equal to 1 corresponds to k equal

to k'.

9

Fig. 2.

Comparing this with § 7 we draw the inference that in this case the

perceptible front of the advancing train is more clearly marked than the rear

and advances with the half-wave-velocity corresponding to k , in agreement

with simple observation.

(b) Moving line impulse.—A line impulse at rest leads to

Consequently a moving line impulse will give

17
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Then we choose u so that

i- Xl^±£^"l = 0, or u{m-2m-){m +mf = Q.

du V. u^ )

The value giving a regular wave pattern is the positive root

cu = 2sT, for c7 positive.

Hence in this case we have a regular train of waves of length suitable to

the velocity c in advance of the moving pressure system, with no regular

pattern in the rear.

§ 11. Water Waves due to Gravity and Capillarity.

If we take account of gravity and the surface tension together, we have the

velocity function

V = (T«+^/«)*. (59)

Hence u =
_^^

(,V) = ^^|gi±^,

.

(60,

We have not here a simple ratio U/V, independent of k. The velocity V
has a minimum c^ for a certain value k^, equal to (gf/T)*, and for this value

U is equal to V— as in fact follows from the definition of U. For K<Km, U

is less than V, tending ultimately to ^V ; while for «> a;™, U is greater than

V and approaches as a limit fV.

If we consider a travelling line impulse, the whole problem of finding the

principal groups is contained in the equations

m + CU ^ Tj = ^T/<:^+^

« , 2(T«3+y«)ij^_
^61)

C = V = (T/<:+ ^//<:)i

Hence c^«^ = -.
^

, « = hyf >

where the positive sign is taken for rs positive (in advance of the impulse),

and the negative sign for vs negative (in the rear). Thus there is no wave

pattern unless c is greater than the minimum wave-velocity c^
;
and if so

there are regular trains both in advance and in the rear, the smaller wave-

lengths being in advance. With the ratio c/c,a large, the results approximate

to very small waves in front and waves in the rear with k equal to g/c".

§ 12. Surface Waves in two Dimensions.

Suppose that the initial data instead of being symmetrical about a

transverse straight line are symmetrical around the origin. Let the axes of

18
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x,j/ be in the undisturbed surface and the axis of z vertical^ upwards; we
write m for ^(x^+y^). Then, corresponding to (25), the surface elevation ?
due to an initial displacement f(m), set free without initial velocity, is
given by

,00

?= Jo (Km) COS (KYt)<f)(K)icdK, (62)

^ («) = /(«) Jo (iccc) a.doL. (63)
Jo

For an initial point-elevation we may take for simplicity ^(/c) equal to
'^I'iir; then we have

1 r°°

f = 2~ Jo {f^^) cos («V<) KdK

J
rir/2 r"

= Z2 M^ COS («nr cos ;Sj cos («¥;!) KdK^ Jo JO

1 r'^ f"= 2—» I ^/3 cos /«; (ii7 cos ^—Yt) KdK

"*"

2^ J
'^^

J
cos a: (t3 cos /S+VO «<f/c. (64)

For deep water we separate a real principal group from the first integral,
with respect to k, around the value of k given by

OT cos/3

t

This is replaced by the equivalent foim

= i\/l-

- Considering now the range for /3, we can again select the principal group of

oscillations from (65) ; it occurs at /3 equal to zero, so we take one-half the

result given by the expression (14) and obtain the known result

Similarly, for an initial point impulse we have, instead of (64), the

expression

?= 1
J-V2 f"

d^ A:V{sinK(5rcos;8-V0-sin«(BTCOS/3-|-V0}A:(^«:, (67)
Jo Jo

leading in the same way to the result

f=-2l^''°£- w

19
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§ 13. Point Impulse Travelling over Deep Water.

Let the impulse be moving along Ox with constant velocity c ; let B be

the position at time t, A at any previous time to, and suppose the system to

have been moving for an indefinitely long time.

a -x

Fig. 3.

We have OA = do; OB=ct;,

VB = m={{ct-xy+ r/}i;

cos a = {ct— x)lij5.

Then in (67) we have to substitute {s^- 2cu>{t-t^cos a+c^{t- ^^q) j

for c5,t-tQ for (!,and integrate with respect to t^ from -ooto ^; we obtain

f = -\ d^ \ du
\
KY[shiK{eo3^ {vs^—2cumcosa+ (^u^}i—Yu)

^99"^ io Jo Jo

— sin«(cosyS {T!s^—2cumcoaa. + (^u''}i+ Yu)']KdK. (69)

With V = {gJKf, we select the group around the value of k given by

«- 1 = 4 cos2 /3 (ct2_ 2ciim cos a+ ch(?)lgu\ (70)

By using the formula (17) we find

16p7riJ„ Jo COS'

7<* (^/3

/3 (bj^— 2CMCT COS a + C^M^)«

"""^
l.4cos/3(<^2_2c„j^cosa+ c2«2)i+iV • C^'^)

Selecting from this the chief group which occurs near /3 equal to zero, we

find
gW

2'7rp
J ji

{Ts^—2cum cos a+ A^)^ 4 {m^—2cum cos a+ c'v?)^

'

Finally we choose the chief groups of terms in u from the condition

Igw' (xs^—2curs cos a.+ chi?)'^ = ;

du

(72)

(73)

20
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that is, from A^— Scmct cos a. + 2m^ = 0, (74)

or CM = inT{3cosa±(9cos2a-8)i}, (75)

We have then different cases to consider according to the nature of these

values for cm, remembering that cu gives a position of the moving impulse, at

time u previously, for which the waves sent out reinforce each other at the

point (cr, a.) at time t.

(i) In the region where 9 cos^ « < 8, both roots are imaginary ; thus the

previous position is non-existent, and there is no principal group in the

integral (72). Hence all the regular wave pattern is contained within two

straight lines radiating from the point impulse, each making with the line of

motion an angle cos~^ 2^2/3, or approximately 19° 28'.

(ii) When 9cos^a<8, there are two different real roots for cu. Thus we

have two chief groups in the integral (72), corresponding to two regular

wave systems superposed on each other.

At any point P within the two bounding radii the disturbance consists of

two parts : one part sent out from A at time Ui previously, where

OA = -inr{3cosa-|-(9cos2a-8)i} and Mi = OA/c
; (76)

and another part sent ont from B at time ?<2 before, where

0B = |tiT{3cosa-(9cos2a-8)i} and M2 = OB/c. (77)

Fig. 4.

We have then two wave systems, which may be called the transverse

waves and the diverging waves ; we shall examine them separately.

(a) The transverse wave system.—Taking the larger value of cm in (76)

we find

tis^— 2a<nrcosa+ e^M^ = -^ns^ {3 cos^a— 2+ cosa(9cos^a— 8)*},

/(M) = gv?^ (jT^^I 18 cos^a— 8 + 6 cos a. (9 cos^«— 8)^

4(5j2-2cMroC0Sa+ c2w2)4 16^ {3 cos2a-2 + cos a (9 cos^ a-8)4*"

(78)
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Further, when /' (m) is zero, we have

f"(u) = ^^Cm(2cm— 3nr C0Sa)/(i3^— 2cMnr COSa + C^M^)'. (79)

Using the formula (17) we obtain the particular group of terms from the

integral (72) as

r = |^ycos{/(«)-i7r}, (80)
2^-17p (bt^— 2cu-G5 cos a+ <?i>Ff

in which the special value of ti must be substituted.

Evaluating this expression we obtain

^ _ __jI_ {3cos« + (9cos^«-8)°}' ^~ 2'Vpc3 5y*(9cos2a-8)^ {3 cos2a-2 + cosa (9 cos2 a-8)*}^

cos |2^^ {3cOS« + (9cOS''a-8)'P ,_\ ,gj.

1 16c2 {3cos2a-2 + cosa(9cos2«-8)^}^ J

This represents a system of transverse waves travelling with the

originating impulse ; the amplitude for a given azimuth a. diminishes as m~^.

On the central line, where a is zero, this reduces to

?=-|^.cos(f-i^), (82)
irpcfjss^ \<r I

corresponding to simple line waves of length suitable to velocity c on deep

water, but with the amplitude factor m~^.

Following the crest of a transverse wave we have

9W^ {3cos« + (9cos^a-8)^}''
, ^ (2«+l)7r (83)

16c2 {3cos2a-2 + cosa(9cos2a-8)*}*

where n is a positive integer. The crests cut the axis in points given by

^ = c\2ii+ \)irlg, (84)

and cut the radial boundaries given by a = + cos 2^/2/3, in the points

m = 2c\2n+ ^)'Klg^Z. (85)

Consider the variation of amplitude following a crest ; we substitute for cr

from (83) in (82) and obtain

y_ const. {3 cos g+ (9 cos^ a— 8)^}^ ,oa\
^ ~

(271+ f)* (9 cos2 a-8)*{3 cos2 a-2 + cos a (9 cos2 a-8)*}5

This becomes infinite at the outer boundary, when a is approximately

19° 28' ; this is due to the failure of the method of approximation and we

shall consider it later. For the present the following table of values and

curve show that the approximation holds up to angles very near the limit.
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? = relative amplitude, along the same crest at different azimuths.
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The law of amplitude along the same crest is given by

o_ const. {3 cos ct— (9cos^«— 8)-}^ .oq\

(2n+ f)*(9cos2a-8)^{3cos2«-2-cos«(9cos2a-8)*}'"

In this case, and for the same reason as for the transverse waves, the

expression for the amplitude tends to infinity at the outer end of each

diverging crest ; we shall find an approximation in the next section. But

(89) becomes infinitely large for small values of a. From (88) we see that

m also becomes small, so that the approximation fails ; further, we should

expect the expression to become infinite near the impulse on account of its

special character. We can show how the infinity disappears if we remove

this cause. Consider, as an example, a finite impulse, of constant intensity

over a circular area of radius d lound the origin, and of zero value outside

this circle. Then, as we see from (63), we shall have the same expressions as

before, with a new factor given by

^ («) = /{.") Jo {l^"-) « da.

Jo

1= C ['' Jo («a) ccdoL = G dic-^Ji {k d).

J

Now in the final group for the diverging system we have

g {3 cos g— (9 cos^ a— 8)?}^

8c2 3 cos-' a— 2— cos a (9 cos- a— 8)=

"

K =

Hence the additional factor due to <p (k) is proportional to

3 cos^«-2-cos« (9 cos'^a— 8)^
J f gd {3 eos a— {9 cos^a- 8)i}

{3 cos a-(9 cos- a-8)'}2 ' I8c^ {'.i C0s2a-2-C0S a (9 COS^ a-8)J}

(90)

When « approaches zero, the argument of the Bessel's function increases

indefinitely and we may use the asymptotic expansion ; then (90) is

proportional to

{3c0S^a— 2— C0Sa(9 COS-a— 8£]^ /qin

{3coSa-(9cos-a-8)^}-*

If now we multiply (89) by (91) we obtain a limiting value of the

amplitude of the diverging system near the axis ; it is proportional to

(2/1+ i)-^ {3 cos a-y(9 cos2 «-8)}5-,

and the infinity near the axis has disappeared.

(c) The line of cusps.—We shall consider now the infinity which occurs

at the outer boundary of the two wave systems, when a. is cos"' 2^2/3. At
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any point P the lines of constant phase in the two wave patterns cross at an
angle (/>, which is easily seen to be given by

tan<^ = ^coseca(9cos^a— 8)2. (92)

As P approaches eitlier radial boundary the two waves ultimately have the

same direction, and they will also have the same phase when they meet

;

consequently an abnormal elevation is to be expected along the two outer

boundaries, where the two systems unite in lines of cusps. As we see from

(75), the two points A, B coincide lor a point P on the line of cusps ; and it

is on account of this fact that the previous approximations fail for both

systems. We have in fact a double root of the equation for finding the

chief groups of the integral (72).

Consider the integral

y={j) {u) sin {/(rtt)} du, (93)

when Mo is such that

/'(Mo) = 0; /"(«o) = 0.

Following the previous method, we have

/(«)=/(«o) + H''-«o)V"'(«o);

and provided /'" (uq) is not small, we can write the value of the group for

the double root as

= \/"' (,i„)J
"^ ("«) sin/(«-u) coso-^'rfo-.

Now at the line of cusps the integral (72) becomes

2^^/^ Jo (^'-^cM^^2 + 6-^«2)2'''"4 (ni^—̂ am^2 + c2M2)r
^^^^

And we find that cv^^ — ^^2
makes /'(„^)^0; /"(«„) = 0;

/(uo ) = aT^s/Zjli?
;

^"'
(uo) = Zgc^%l2m-^

Also we have cos a^f^o- = |7r/r(§).
J —00

Hence, substitutiijg these values, we have
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We notice first the difference of phase of \ir between this and the

expressions for tlie separate systems where they cut the outer boundaries

;

this is analogous to the change of phase along an optical ray in passing a

focus. We saw that the separate transverse and diverging crests converged

towards points of equal phase on the outer boundaries given by

t^ = 2c2(27i+ |)7r/<7x/3,

but with the i-esult given in (96) we see that the actual crests on the line of

cusps are given by

^ = 2c2(27i+ |)7r/V3. (97)

The amplitude of the cusped waves diminishes at a slower rate than the

transverse waves, so that their size becomes relatively more marked towards

the rear of the disturbance. The amplitude of successive crests is given by

(96) and (97) as

f„„ = -, ? ^ JL
. (98)

2*r(f)(2«+f)McV

The amplitude of successive crests of the transverse waves where they cut

the axis are given by (82) and (84), and we find

2-^ '

Taking the ratio of these two quantities we have an expression for the

magnitude of the crests at the cusps compared with the transverse crests on

the axis ; approximately

The following table and curve show how the successive crests at the axis

and outer line diminish, and exhibit their relative magnitudes for different

values of n*

* On August 3, 1887, Lord Kelvin delivered a lecture " On Ship Waves " before the

Institution of Mechanical Engineers at Edinbui'gh, in which he appears to have shown a

model to scale of the theoretical wave pattern produced by a ship. Only a diagram of

the crest curves has been published (' Popular Lectures,' vol. 3, p. 482) ; the form of the

crests agrees with that deduced above, e.\cept of course near the disturbance or the

radial boundaries. It has, in fact, been verified that on substituting his expressions for

X, y in terms of a parameter xo in the present equations, the latter are satisfied identically.

The law of amplitude along the waves is not stated by Lord Kelvin : as Prof. Lamb
conjectures, his result seems to have been obtained by an application of the idea of group-

velocity (H. Lamb, 'Hydrodynamics,' 1932 edn. pp. 406/7.)
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Table II.
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with wave front through P at right angles to AP, and each system can be

expressed in the form

^ = F(5r, a) cos {ic{TS^—2cum COS a + cVJi-^-e),

with cu and k as functions of ro and a.

Suppose the medium is such that the group-velocity bears a constant ratio

to the wave-velocity, that is, suppose

U=K^ + 1)V, (104)

where n is independent of k.

Then the equations (102) and (103) lead to a quadratic for cu, namely,

(l-7i)c2«2-f-(?i,-3)c?mcosa-t-2Bj2 = 0. (105)

Hence we have the roots

-[(3-7i)cosa±v/{(3-«)2cos3a-8(l-/i)}]. (106)
2(l-«)

We shall examine some special cases,

(a) 0<M<1.—There are two positive values of cu which are real, provided

cos2a>8(l-7i)/(3-?0^.

Thus there are two wave systems, transverse and diverging, with a line of

cusps corresponding to the double roots, and the whole wave pattern is

included within an angle

2cos-i{8(l-n)}V(3-w). (107)

which increases with n.

The previous section on deep-water waves is the case of n zero.

Q}) n=\. This is a critical case, implying coincidence of wave-velocity

with group-velocity, and consequently no dispersion.

(c) n = 2. This is the case of capillary surface waves. We see that there

is only one positive root of the quadratic, and it is real for all values of a
;

the root is

CM = ltiT{(cOs2a-f-8)=-COSa}. (108)

There is only one wave system, but it extends over the whole surface

;

along the line of motion k is zero in the rear, while in advance of the

impulse it is of value suitable to simple waves moving with velocity c.

{d) n = 3. This holds for flexural waves on a plate ; there is one system

of waves extending over the surface, corresponding to the root cu — ts.

The crests, and other lines of equal phase, are given by the curves

oj sin^ -^a = constant.

(e) Gravity and capillarity comlined.—The relation between U and V is
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not a constant ratio in this case; we had in §11 the expressions for the two

velocities as functions of k. It can be shown that in certain cases the

equations for cu lead to four possible roots, giving four wave-branches through

the point.

§ 15. Point Impulse moving on Water of Finite Depth.

With the same problem we have now, if the water is of depth h,

Y = (^tanhKhY

2Kh
u = *( ^tann /c/i) IJ. +—

^\K r\ si:

If we write

U = iftanh4(l +^^V (109)

JJ = iin+l)Y,

n varies between and 1, being dependent upon the value of k. We use the

notation

oh tanh«74 2Kh nM^\

Then m and n are monotonic functions of k with the following limiting

values

:

/c = ; 771 = 1 ; % = 1.

/c = 00 ; m = ; 71 = 0.

The two equations for cu and k become

{pm)i. (112)

cu

cu— xs cos a

(ra^— 2cum cos a+ cV)*

From these we obtain

> {l—^pni{l+n)Y . /nQ\cos- a =—-*—;— .-, X ,.-,'—^, (11^)
1— 4pm(l+?i)(3—?0

cu =^_ [(3-«)cos«±{(3-n)2cos2a-8(l-?i)}4]. (114)

Combining the last two we have the values of cu as

cu = ^{l-\pm{l + n){Z-n))^, (115)

or cM=cr/{l-ipm(l + M)(3-«)P. (Ho)

We have two cases to consider according as ^ > or < 1.

(a) c<^i(}h); p>l.—From (114) we see that the equal values of cu,
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defining the lines of cusps within which the wave pattern lies, are given by

such values of k that

, 8(1— n) /iif7\

Whatever the value of k, n can only lie between 1 and ; hence a can

only lie between cos'^-l^'Ij?, and 77/2, or between 19° 28' and 90°. The

smaller value is the limiting angle for deep water, when n is considered zero

for all values of k.

We see from (115) and (116) that the equal values of cu occur when

1- liwi (1 + «) (3- 9i) = i (1- n),

or when ?n(3— n) = 21p.

The greatest possible value of m (3— «) is 2 ; hence we have the limitation

p>l. Only in this case is there a double wave system with a line of cusps.

As p decreases to 1, that is as the velocity c approaches the critical value

\/{gh), m and n at the line of cusps both approach their limiting value 1

;

and at the same time the cusp angle widens out, approaching a right angle.

Further, along the axis we have

•pm =1, m = Ijp = c^jgh. '

Hence on the axis the transverse waves are the simple waves travelling

with velocity c on water of depth h. As p decreases to 1, the wave-length

increases indefinitely ; m, and consequently n, approach unity on the axis.

Now if n is 1, the group-velocity U equals the wave-velocity V, and the

medium is non-dispersive. Thus at the critical velocity c, equal to \/{gh),

we have a source emitting disturbances and travelling at the rate of propa-

gation of the disturbances ; we see that the whole effect is practically concen-

trated into a line through the source at right angles to the direction of

motion. This agrees with observations of ship waves when approaching

shallow water at the critical velocity.*

(&) c>y/{gh)\ p<l.—We may now have the greatest value, unity, of m;

it is easily seen that for less values of m and n the values of a given by (113)

become smaller.

At the outer limit we have

cos^ a = 1 —p, sin^ a = p = gh/(^. (118)

Consequently the wave pattern is contained within two lines making witli

the axis an angle which diminishes as c increases.

* 'Trans. Inst. Nav. Arch.,' vol. 47, p. 353 (1905). Compare also the motion of an

electron with the velocity of radiation.
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Further, since equal values of cii are given by

to(3-w) = 2Ip,
we see that there are no cusps, for the left-hand side cannot be greater than 2.

The values of m given in (115) and (116) correspond to the transverse and
diverging waves respectively. If we substitute (116) in equations (111)
and (112) we find that they are satisfied identically ; hence there is always a

diverging wave system. On the other hand, if we substitute (115) we find we
must have

^" = ^^43^(3^)' ""' -(2-«)=^-

But the greatest possible value of the left-hand side is unity.

Hence there can be a transverse wave system only so long as p is greater
than 1 ;

when c exceeds ^/(^rA), the transverse waves disappear.

At the outer line given by

sin^a = p, ^i — ^ — i^

we have, for the diverging waves,

cu = OT (1—pyi = m sec «.

Hence the outer line forms a wave front of the diverging wave system.
We see also that the other wave fronts (lines of equal phase) are now concavet
to the axis, instead of being convex as when ^ > 1. There is no definite inner
limit to the system

;
as the axis is approached, the wave fronts become more

nearly parallel to the axis, and the wave-length diminishes indefinitely.

Finally, as the velocity c is increased, the angle a diminishes, and the regular
waves are contained within a narrower angle radiating from the centre of
disturbance.

The following tables ^:ill) and (IV) and the curve in fig. 8 show how the
angle a varies as the velocity c is increased up to and beyond the critical

velocity.

Table III.

Kh at cusps.
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Table IV.

p-
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With the help of these results, sketches are given in fig. 9 to represent

the change in the wave pattern, as the critical velocity is approached and

passed.

lEditorial Note [The shapes of these wave-fronts have been recalculated by
Inui (Physico Mathematical Society of Japan, Vol. 18, pt. 2 [l936]) who
does not agree that they are concave to the axis.]

Haebison and Sons, Printers iu Ordinary to His Majesty, St. Martin's Lane.
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§ 1. Introduction and Summary.

The theoretical investigation of the total resistance to the forward motion

of a ship is usually simplified by regarding it as the sum of certain

independent terms such as the frictional, wave-making, and eddy-making

resistances. The experimental study of frictional resistance leads to a

formula of the type
E.-/SV™, (1)

where S is the wetted surface, V the speed,/ a frictional coefficient, and m

an index whose value is about 1"83.

After deducting from the total resistance the frictional part calculated from

a suitable formula of this kind, the remainder is called the residuary resist-

ance. Of this the wave-making resistance is the most important part ;
the

present paper is limited to the study of wave-making resistance, and chiefly

its variation with the speed of the sliip. The hydrodynamical theory as it

stands at present may be stated briefly.

Simplify the problem first by having no diverging waves ; that is, suppose

the motion to be " in two dimensions in space," the crests and troughs being

in infinite parallel lines at right angles to the direction of motion. Further,

suppose that the motion was started at some remote period and has been

maintained uniform. We know that, except very near to the travelling

disturbance, the surface motion in the rear consists practically of simple

periodic waves of length suitable to the velocity v of the disturbance. Let
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The Wave-making Resistance of Ships. 277

a be the amplitude of the waves, and w the weight of unit volume of water

;

then the mean energy of the wave motion per unit area of the water surface

is ^wa^. Imagine a fixed vertical plane in the rear of the disturbance
; the

space in front of this plane is gaining energy at the rate ^wa^v per unit time.

But on account of the fluid motion, energy is supplied through the imaginary
fixed plane to the space in front, and it can be shown that the rate of supply
is ^waH, where u is the group-velocity corresponding to the wave-velocity v.

The nett rate of gain of energy is \wa^{v—u), and this represents the part of

the power of the ship which is needed, at uniform velocity, to feed the
procession of regular waves in its rear. An equivalent method of stating

this argument is to regard the whole procession of regular waves from the
beginning of the motion as a simple group ; then the rear moves forward
with velocity u while tlie head advances with velocity v, and the whole
procession lengthens at the rate v— u. If we write E» for the rate at which
energy must be supplied by the ship, we call E the wave-making resistance,

and we have

U = ^wa^{v—u)/v.
(2)

We notice that R is the wave-making resistance in uniform motion ; it is

only different from zero because ti, differs from v, that is, because the velocity

of propagation depends upon the wave-length.

In deep water, u is hv, so that E is ^wal In the application of this to

a ship at sea, it is assumed that the transverse waves have a certain average
uniform breadth and height, and, further, that the diverging waves may be

considered separately and as having crests of uniform height inclined at

a certain angle to the Hue of motion ; if the amplitude is taken to vary as

the square of the velocity, it follows that E varies as v\ Several formulfe

of the type E = Av\ or E = Av^+ Bv% have been proposed ; although these

may be of use practically by embodying the results of sets of experiments,

they are not successful from a theoretical point of view. Eecently many
such cases have been analysed graphically by Prof. Hovgaard ;* the general

result is that a fair agreement may be made for lower, velocities with an
average experimental curve neglecting the humps and hollows due to the

interference of bow and stern wave systems, but at higher velocities the

experimental curve falls away very considerably from the empirical curve.

The method used here consists in considering the ship, in regard to its

wave-making properties, as equivalent to a transverse linear pressure

distribution travelling uniformly over the surface of the water. Taking
a simple form of diffused pressure system and making some necessary

* W. Hovgaard, ' lust. Nav. Arch. Trans.,' vol. 50, p. 205, 1908.
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assumptions, we obtain an expression for the amplitude of the transverse

waves thus originated, and for the resistance E, in which the velocity enters

in the form e""/"''; this function is seen to have the general character of the

experimental curves. Adding on a similar term for the waves diverging

from bow and stern, and, finally, in the manner of W. Froude, an oscillating

factor for the interference of these bow and stern waves, we find a formula

for the wave-making resistance of the type

E = ae-""'+ 13 {1-y cos (m/iP)} e-"'"^.

In this expression there are six adjustable constants; we proceed to reduce

the number of these after transforming into units which utilise Froude's law

of comparison. We use the quantity c, defined as

(speed in knots)/ ^/(length of ship in feet),

and we express the resistance in lbs. per ton displacement of the ship. An
inspection of experimental curves, and other considerations suggest that the

quantities I, vi, n may be treated as universal constants ; with this assumption,

a three-constant formula is obtained, viz.,

E = ae-2-5,3/9c2 -h /3 { ] —y cos (10-2/c2)} e-^ss^^ (3)

where the constants a, /3, y depend upon the form of the ship.

We then treat (3) as a semi-empirical formula of which the form has been

suggested by the preceding theoretical considerations ; several experimental

model curves are examined, and numerical calculations are given which show

tliat these can be expressed very well by a formula of the above type.

Since the constant a is found to be small compared with /3, it is not

allowable to press too closely the theoretical interpretation of the first term,

especially as the experimental curves include certain small elements in

addition to wave-making resistance. If we limit the comparison to values

of c from about 0'9 ujiwards, it is possible to fit the curves with an

alternative formula of the type

E = /? (1 -7 cos (l0-2/c2)} c-'-'o',

and some examples of tliis are given.

The effect of finite depth of water is considered, and a modification of the

formula is obtained to express this effect as far as possible. Starting from

an experimental curve ibr deep water, curves are drawn, from the formula,

for the transverse wave resistance of the same model with different depths

;

although certain simplifications have to be made, the curves show the

character of the effect, and allow an estimate of the stage at which it becomes

appreciable.

In the last section the question <»f other types of pressure distribution is
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discussed, and one is given in illustration of the wave-making resistance of

an entirely submerged vessel.

§2. Pressure System travclliTig over Deep Water.

It is known that a line pressure-disturbance travelling over the surface

of water with uniform velocity v at right angles to its length gives rise to a

regular wave-train in its rear of equal wave-velocity.* Take the axis of x
in the direction of motion and let the pressure system be symmetrical with

respect to the origin and given by p=/(if); suppose that /(a;) vanishes

for all but small values of x, for which it becomes infinite so that

f{x) dx — P. The regular part of the surface depression tj due to tliis

integral pressure P practically concentrated on a line is given by

(4)V = -^sin2-5,

The part of the surface effect which is neglected in this expression consists

of a local disturbance symmetrical with respect to the origin and practically

confined to its neighbourhood.

If we suppose P constant, the amplitude in the regular wave-train and
the consequent drain of energy due to its maintenance diminish with the

velocity.

To obtain results in any way comparable with practical conditions it is

necessary to suppose the pressure system diffused over a strip which is not

infinitely narrow.

An illustration is afforded by taking

p=f(x) = l^^, (5)
TT a''+ a^ ^ '

where a is small compared with the distances at which the regular surface

effects are estimated. This type of pressure distribution is shown in fig. 1.

* For a discussion of the wave pattern, see Lamb, ' Hydrodynamics,' § 241 et

;

Havelock, 'Eoy. Soc. Proc.,' A, vol. 81, p. 398, 1908.
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The effect of thus diffusing the pressure system is expressed by the

introduction of a factor {k) into the amplitude of the regular waves, where

27r//c is the wave-length and

<f>M = /(») cos Km da. (6)
J — en

Using (5) in (6), we find

^ (k) = Fe-<^ = Pe-'v/"'.

Hence the amplitude of the waves is given by

a = ?2|e-aj/«^ (7)
wir

Further, since k = v^/g, the group velocity u = d (Kv)/dK = ^v. Hence

the wave-making resistance K is given by

E = 2!^%-2-J/"'. (8)

We have to examine the variation of these quantities with the velocity v

under the supposition that the pressure system is due to the motion of a

body either floating on the surface or wholly immersed in the water. The

pressures concerned being the vertical components of the excess or defect

due to the motion, it seems possible to assume as a first approximation that

P varies as v^ ; this is the case in the ordinary hydrodynamical theory of

a solid in an infinite perfect fluid, and a similar assumption is also made

in the theory of Froude's law of comparison. This being assumed, we find

a = Ae-'sl"', E = Bc-2«?/"'. (9)

We see that both the amplitude and the resistance increase steadily from

zero up to limiting values.

If we draw the curve representing this relation between E and v, there is

a point of inflection when

55=0, or v^ = ^!J^. (10)
dv'

Writing v' for this velocity, we see that dB,/dv increases as the velocity

rises to v' and then falls off in value as the velocity is further increased.

We can write the relation now in the form

E = Be-JC'/")'. (11)

The character of this relation is shown by the curve in fig. 2, which

represents the case

E = 3156-5(26W (12)

E being in tons, and V in knots.
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The values of the constants in (12) have been chosen for comparison witli

an experimental curve of residuary resistance given by E. E. Froude ;* it

was obtained from model experiments and by means of the law of

corresponding speeds and dimensions the results were given for a ship

(model A) of 4090 tons displacement and 400 feet length. The actual curve

is given in fig. 4 and is disciissed more fully later ; we neglect for the

present the undulations which are known to be due to the interference of

the bow and stern wave systems, and we consider a fairly drawn mean
experimental curve denoted by E'. Table I shows a comparison of the

values of E' with those of E calculated from the formula (12).

Table I.

T.
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begins to fall off. This effect is general in residuary resistance curves ; we

see that it is really an interference effect, the character of the curve being

due to the mutual interference of the wave-making elements of the pressure

system. Superposed on the mean curve we have a further interference effect

due to the combination of two systems, the bow and stern systems.

From Table I we infer that the mean curve agrees well with the calculated

values E from about 18 knots upwards, but at the lower speeds the values of

E are much too small ; this suggests the addition of a term to represent the

effect of the diverging waves.

§ 3. Diverging Wave System.

In the example considered above, the calculated values of E are much too

small at the lower velocities. This might have been expected ; for we

obtained (12) by the consideration of line-waves on the surface, that is waves

with crests of uniform height along parallel infinite lines. But the model

experiments correspond more to a point disturbance travelling over the

surface, with the formation of diverging waves as well as transverse waves.

In fact, W. Froude* infers from his experimental curves that the residuary

resistance at the lower velocities is chiefly due to the diverging wave system,

on account of the absence of undulations ; for the latter signify interference

of the transverse systems initiated by the bow and stern, and these become

very important at the higher velocities.

We have to add to (12) a term representing the diverging waves; the

comparison in Table I suggests for this a term of the same type, e-i(^"/^'',

with V" much smaller than the corresponding velocity V for the transverse

waves. With the data at our disposal we might then determine the various

constants so as to obtain the closest fit possible ; however, we can make the

process appear less artificial by the following considerations. We know that

the wave pattern produced by a travelling point source consists of a system

of transverse waves and a system of diverging waves, the whole pattern

being contained with two radial lines making angles of about 19° 28' with

the direction of motion ; a fuller investigation of the effects produced by

a diffused source must be left over at present. In applying energy con-

siderations as in the previous sections, the usual method is to suppose that

the transverse waves form on the average a regular wave-train of uniform

amplitude and uniform breadth ; using the same approximation for the

diverging waves we suppose that these form on the average a regular wave-

train on each side, with the crests inclined at some angle 6 to the direction

* W. Froude, ' Inst. Nav. Arch. Trans.,' vol. 18, p. 86, 1877.
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of motion of the disturbance. Then the velocity of the diverging wave-
trains normally to their crests is V sin 0. Now the same features of the

ship are responsible for the character of both transverse and diverging

waves
; then if V is the velocity at which there is a point of inflection in

the resistance curve for the transverse waves, the suggestion is that V sin 6
is the corresponding velocity for the diverging waves. Taking as a first

approximation the angle given above, viz., 19° 28' or sin^iJ-, we test now
a formula of the type

E = Ae-5(V'/3V)^^Bg-5(vw
^^3^

For the particular example already used (Froude, Ship A) we take V
equal to 26 knots, and determine A, B from two values of V. We obtain

thus

E = 4-5e-? (2f5/3V)'+ 297e-i <26/vp
^^^^

With this formula we find as good an agreement as before at the higher

velocities, and we have now at lower velocities the comparison in Table II :

Table II.

V.
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§ 4. Interference of Bow and Stern Wave-trains.

The cause of the undulations in the resistance curves was shown by

W. Proude to be interference of the wave system produced by the bow (or

entrance) with that arising at the stern (or run). His experiments on the

effect of introducing a parallel middle body between entrance and run

confirmed his theory, which may be stated briefly. Let the wave-making

features of the bow produce transverse waves which would have at

a breadth & an amplitude a ; owing to the spreading out of the transverse

waves they will be equivalent to simple waves at the stern of smaller

amplitude 1m, at the same breadth h. Let a' be the amplitude there of the

waves produced by the stern. Then in the rear of the ship we suppose there

are simple waves of amplitude ka superposed upon others of equal wave-

length of amplitude «'. At certain velocities the crests of the two systems

coincide in position, giving rise to a hump on the resistance curve ; and at

intermediate velocities there are hollows on the curve owing to the crests of

one system coinciding with the troughs of the other.

In developing a form for the resistance, subsequent writers have generally

taken R proportional to an expression of the form a^+ a"^ -f- llzaa! cos (nngLli?\

where L is the length of the ship. This means that the bow is supposed to

initiate a system of waves with a first crest at a short distance behind the

bow, and that similarly the stern waves have their first crest shortly after

the stern ; the length inL is the distance between these two crests, and is

called the wave-making length of tlie ship. The determination of a value

for m appears to be doubtful, but from interference effects it is said to vary

for different ships between the values 1 and 1"2.

It has seemed desirable here to follow more closely the point of view in

W. Froude's original paper already quoted.* We regard the entrance of the

ship as forming transverse waves with their first crest shortly aft of the bow,

and the run of the ship as forming waves with their first trough in the

vicinity of the middle of the run. It is suggested that this distance between

first crest and first trough, in practice found to be about 0'9L, should be

taken as the "wave-making distance"; the cosine term in the fornmla

is then prefixed by a minus sign instead of a positive sign. We return to

this point later ; wo first work out a definite simple illustration in " two-

dimensional waves," and then build up a more complete formula for

comparison with experiment. With the same notation as in § 1, let the

pressure system be given by

^
- ^^"^ = -. l«^+(.-^0-

"
^H(.+i/)-l

• ^'^^

* W. Fioude, Inc. cit. ante, p. 83.
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This indicates two pressure systems, one of excess and the other of defect

of pressure
; each distribution is of the type already used, and their centres

are separated by a distance I. Fig. 3 shows the character of the disturbance.

Fig. 3

In the rear of the whole disturbance there is interference between the
regular wave-trains due to the two parts. With the same methods as before
we find that the resulting waves are given by

wv^
- «./"= sin ff(^-¥)_M.^ ^-,,/„= sm^J^±Ml

= ^^-'''' {(P.-P.)cos|,sin5-(P,+ P.) sin|,cos5}. (16)

Hence the average energy per unit area is proportional to

^-4g-2ay/.= {PiH P2^-2PiP2 cos (ffl/v')}.

Now, assuming as before that Pi and P2 vary as v^, we find that as regards
variation with the velocity the effective resistance E, which is the expression
of the energy required to feed the wave-trains, is given in the form

E = {A2 -I- B2- 2AB cos (gl/v^)} e'^'"''. (17)

A more general expression might have been obtained by taking two
quantities ai and ag in (15), corresponding to some difference in wave-making
properties of entrance and run ; this would have led to different exponential
factors being attached to the bow and stern waves. However, we find (17),
with a common exponential factor, sufficiently adjustable for present
purposes.

In Froude's experiments in 1877 the effect of inserting different lengths
of parallel middle body between the same entrance and run was examined

;

it was found that a hump in the residuary resistance curve corresponded to

a trough of the bow waves being in the vicinity of the middle of the run
and a hollow to a crest being in that position.
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For the model, Ship A, we have : Length = L = 400 feet ; entrance =
run = 80 feet.

Hence, in this case we may take, in formula (17), I as approximately

360 feet. We notice that this gives I = 0-9L ; and in subsequent com-

parisons, instead of leaving I to be adjusted to fit the experimental curve,

we find there is sulficient agreement if we fix it beforehand as 0-9 of the

length of the ship on the water-line.

Compare, now, the length I with the ordinary " wave-making length " of

the ship ; the latter is written as niL and is defined as the distance between

the first regular bow crest and the first regular stern crest. From the present

point of view (17) gives

mL=Z-f-i\ or to = 0-9-|- i\/L, (18)

where \ is the wave-length in feet of deep-sea waves of velocity v ft./sec.

Calculating from this formula for Ship A, and writing V for velocity in knots

(6080 feet per hour), we obtain Table III.

We see that the statement that vi lies between 1 and about 1-2 would

hold for this ship if it were measured for ordinary speeds between about

14 and 22 knots.

Table III.
'

V.
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error are not known. The interrupted curve is a curve E = AV* sketched in

for comparison.

Table IV.

V.
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of fineness or the curve of sectional areas, or in other ways ; we are concerned

with the form of E as a function of c, and the constants are chosen in each

case to make the best fit possible.

First, as regards the exponential factor, we had c-»(V'/v)"^ with V giving

a point of inflection on the resistance curve ; in the case of Ship A we had

V = 26, L = 400, so that c = 1-3. Now, it is just about this value of c

that there is a falling off in most experimental curves, so that we try first

c' = 1-3 for the point of inflection on the E, c curve. Then the exponential

factor becomes e~i '''/"'>'', or e-^'ss/c'.

Secondly, as regards the cosine term which gives the undulations, we had

cos {gljv^) ; we have decided to put I = 0'9L, so that we have

.l?=0.9,L/(|evY
10-2

, approximately.
V' -

I V3600 / c^

Hence the previous relation for E reduces to the following general form

:

E = M-^-o»^+ i3{l-y cos 10-2/c2)e-2-53/<;^ (20)

where E is in lbs. per ton displacement, and a, /3, y depend upon the form of

the model.

There are humps on the curve when 10'2c~^ is an odd multiple of tt,

hollows when it is an even multiple, and mean values when it is an odd

multiple of ^tt. For facilitating calculation, some of these positions are given

in Table V ; and, for the same reason, values of the exponentials and the

cosine factor are given in Table VI.
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We examine, now, some examples of experimental curves, comparing them

with the formula (20) ; several of the curves and other data, in particular

for II, III, and V, have been taken from the collection in Prof. Hovgaard's

paper already referred to, in which he essays to fit formulae involving V* or

V" with the experimental curves.

I. B. E. Froude, 1881, Ship A.

Displacement = 4090 tons ; length = 400 feet ; cylindrical

coefficient = 0'694.

This is the case we have examined in the previous sections, so that we

have only to change tlie numerical factors in (19) to cause R to be given in

lbs. per ton displacement. We find the result is formula (20) with

a = 2-46; ;S = 162-6; 7 = 012.

II. W. Froude, 1877.

Displacement = 3804 tons ; length = 340 feet ; cylindrical

coefficient = 0-787.

The last two data include the cylindrical middle body. The curve is

given in fig. 5 ; it was constructed by Hovgaard from the data of Froude's

12 5

10

7 5

(fl

c

25
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experiments, and these were such that it was possible to make a mean

residuary resistance curve, the effects of bow and stern interference being

eliminated. The curve is given as total residuary resistance in tons on a

base of V in knots. If we work in lbs. per ton, we find there is a very fair

agreement with formula (20) if we take

a = 2-24; /3= 279-7; 7=0.

Probably a closer agreement could be obtained by further slight adjustment

of a and /3. Fig. 5 shows a comparison of values of the total residuary

resistance for the ship (in tons) ; the calculated values are indicated by small

circles.

III. D. W. Taylor, 1000 lis. Model.

Length on water line = 20ol feet; cyl. coeff. = 0'680.

The experimental curve in this case is given as residuary resistance for

the model in lbs. on a base of V in knots. With the same notation as before

we find

a = 2
;

yS = 136-6
; 7 = 0-14.

Putting these values in (20), we can calculate R in lbs. per ton, and hence

El in lbs. for the model ; fig. 6 shows the comparison between Ei and the

corresponding values on the curve ; the calculated values Ei are indicated by

dots.

37 s
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IV. D. W. Taylor, Model No. 892.*

Displacement = 500 lbs.
; length on water line = 20-512 feet; longitudinal

coeff. = 0-68 ; midship section coeff. = 0-70.

In this case the experimental curve is given as lbs. per ton displacement
(R') on a base of speed-length ratio (c). In the same manner as before, fig. 7
shows the comparison with the formula (20) wlien we take

a z= 2
;

/S = 82-5
; 7 = 0-14.

Since the constant a is small compared with yS, one is not able to lay
much stress on the meaning of the first term. For as the velocity functions

60
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V. /. /. Yates, Destroyer Model G*

[Apr. 1,

Displacement = 575 lbs. ; length = 20 feet ; cyl. coeff. = 0-529.

The experimental curve is given in lbs. for the model on a base of V in

knots, and is a total resistance curve, that is, it includes the frictional

resistance. The curve is reproduced in fig. 8.
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consideration the depth of water in the tank is not known. The deepest
experimental tank appears to be the U.S. Government tank at Washington,
which has a maximum depth of about 147 feet. Now in that tank, with
a 20-foot model, there would be a "critical" condition near the value
c = 2-9

;
before and up to that point the residuary resistance curve would

rise sharply and abnormally. This effect is discussed more fully in the next
section, and curves are given in fig. 11, with which fig. 8 may be compared.
It appears, then, as far as one is able to judge, that it is possible the
resistance curve in fig. 8 is complicated by the effect of finite depth of the
tank.

§ 6. The Effect of Shallow Water.

We saw in the first section that the wave-making resistance E can be
written in the form

E = ^wa^{v—u)/v,

where u is the group-velocity corresponding to wave-velocity v. For deep
water u = ^v, and the formulas are comparatively simple. But for water of
finite depth h the relation between u and v depends upon the wave-length
{2ttI k). We have

«= ^(^tanh/c^V

^ = ^ {fcv) =lv{l + 2A:A/sinh 2Kh).

Consequently we find

*
\ sinh2«A/ y^^>

As V increases from zero to ^{gh), E diminishes from >«2 to 0, provided
the ampKtude remains constant. But as Prof. Lamb remarks,* the
amplitude due to a disturbance of given character will also vary with the
velocity. It is the variation of this factor that we have to examine in
the manner used in the previous sections for deep water.

If a symmetrical line-pressure system F(,-k), suitable for Fourier analysis,
is moving uniformly with velocity v over the surface of water, the surface
disturbance -q is given by

TTWr, = ij dt^ KY<l)(K)smK{x+ (v-Y)t}dK

~ ^
J
^J "^"^ ^"^ ^^° ic{x+ (v + Y)t} dK, (22)

/too

where 4>{k)= F (&>) cos kw dm.

*H. Lamb, 'Hydrodynamics,' (1932 edn. p. 415).
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The method of evaluating these integrals approximately so as to give the

regular wave-trains has been discussed in a previous paper and it is foUovsred

now in the case of finite depth.* We take, under certain limitations, the

value of an integral such as

y = \<^{u) sin {g {%)} du

to be the value of its principal group, viz.,

2/0 = {^^)}V («o) cos {g {u,)-\'^), (22a)

where i(o is such that g' (hq) = 0.

Now in the integrals in (22) we have to find successively two principal

groups, first with regard to k and then in the variable t ; and thus we may

evaluate the amplitude factor in the resulting regular wave-trains.

For water of depth h we may write

/(.) = .-V = .- ^[l tanh kIi

The group with respect to « gives a term proportional to

where k has the value given by

/(«)+ «/'(«) =-|. (23)

From (22a), this introduces into the amplitude a factor

l/v/[< {2/' («)+ ,./" («)}]. (24)

Further, the group with respect to t occurs for

|{<«rW} = or /(/c)=0.

Also we have in these circumstances

dl

Hence from (22a), (24), and (25) the selection of the two groups adds to

the amplitude a factor I/k/^k), where

/(/c) = = V— \/ 1 -tank Kh\.

* navelock, 'Eoy. Soc. Proc.,' A, vol. 81, p. 411, 1908.
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Also if u is the group-velocity for wave-length 2Tr//c and wave-velocity V,
we have, in this case,

Hence, since in the final value /(«) = 0, we have «/(«) equal to i;-t6. Thus
if K is the wave-length of the regular wave-trains in the rear of the

disturbance, we find that they are given by

, Kvd) (k) .

t} = const. X — r v /
gi

v— u
sin KX, (26)

2Khwhere v= a/( -2. tanh kA )

,

u—lv(l+
^ \« / M 8inh2/cA

Hence for the amplitude a we have

/ \ sinh 2Kh/

Substituting now in (21) we obtain for the wave-making resistance, 11

proportional to

2/c7i
K^<}>{^)Y- 1

sinh 2a:/i

If we take the same distribution of pressure in the travelling disturbance,
namely, ¥ (x) = Fu/7r(u^+ x'), we have <^(/c) = Pc--; further, we may
again assume that the pressure P varies as i^^, so that we have the resistance
in the form

E = A/cVe-^«/(l 2Kh

sinh 2Kh/
'

^j(;j^
tanh kJi _ v^

ich gh

'

(27)

Considering E given as a function of v by these two equations, we see
that E increases slowly at first and then rapidly up to a limiting value at
the critical velocity ^{gh); after this point E is zero, for there is no value of

K satisfying the second equation with v^jgh, > 1.

Further, the limiting value of E at the critical velocity is finite, for we
have

Lim- '^ =1-5
« = (1— 2«:A/sinh 2«^)

We see that the E, v curve given by (27) is of the type sketched in fig. 9.

We may compare this with some of the curves given by Scott Eussell for
canal boats. The continuous curve in fig. 10 is an experimental curve of
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total resistance,* and the dotted curve is a parabolic curve inserted here to

represent approximately the frictional resistance ; the difference between the

two curves represents the residuary resistance, and is clearly of the same

type as the theoretical curve in fig. 9.

Fic.9

We can obtain a better estimate of equation (27) by taking an experi-

mental curve for a model in deep water, and then building up curves for

different deptlis. We must first put (27) into a form suitable for com-

parison with deep water results.

Limiting the problem to one of transverse waves only, the formula (27)

must reduce to E = Ae"^'^^''''', for h infinite and c = (speed in knots)/^(length

in feet).

Writing v' for vl^{(jli) we find c^ = ll'3v'%/L; thus although the actual

critical velocity does not depend upon the length of the sliip but only on the

depth of water, the speed-length ratio (c) has a critical value which is

proportional to the square root of the ratio (depth of water)/(length of ship).

In (27) we cannot fix any value of -y or c and then calculate E directly
;

we must work through the intermediate variable kIi. The equations may

now be written as

E = A {Khyv'*c-f"'>'/{l-2Khlsmh. 2Kh), (28)

i;'2 = (tanh «A)/«^
; /3' = 0-218L/A, ; c^ = U-3v'%/L.

With h infinite this reduces to the previous form for deep water with the

same constant A, so that a direct comparison is possible. As the velocity v

increases from to ^/igh), k diminishes from oo to ; we select certain

values of Kh, calculate the values from tables of hyperbolic functions, and

thus obtain the set of values in Table VII, writing m for

{Khyv'*/{1- 2Kh/Bmh 2«A).

* J. Scott RuBsell, ' Edin. Phil. Trans.,' vol. 14, p. 48, 1840.
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Table VII.
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Table TX.

A/L.



1909.] The Wave-making Resistance of Ships. 299

velocity-the resistance being zero after that point. In practice, we know
that there are no such discontinuities in the resistance curves, and there are
certain considerations which go to account for this difference. First, as
regards the transverse waves alone, the preceding formulae show that 'the
amplitude tends to become infinite at the critical velocity, although the
corresponding resistance at uniform velocity remains finite ; but, even'' apart
from the effects of viscosity, there is a highest possible wave with a velocity
depending partly upon the amphtude. Secondly, we have left out of
consideration the diverging waves; but these must become more importantm the neighbourhood of the critical velocity, for we may regard the two
systems as coalescing into one solitary wave in the limit as the critical
velocity is reached. After this point the diverging waves persist, so that
the effect of these would be of the order of halving the drop in the resistance
as the critical velocity is passed.

Finally, we must consider the frictional resistance, which increases steadily
with the velocity; so that the fall is finally a smaller percentage of the total
resistance than might appear at first. The curves given in fig. 11 give
an estimate of a maximum effect of this kind, considering only the transverse
wave system.

§7. Further Types of Pressitre Distrihutmi.

The preceding formula have been built up on the effect of a travelling
pressure disturbance of simple type; we consider now another type which
we may use as an illustration.

Let the pressure system be given by

The type of distribution is graphed in fig. 12.

Proceeding as in §2, we have

("00 7 2 2

<^ (k) = 2A
J^ ^

^a~",^, co3 Kco dco = 7rA«e-«*. (30)
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Hence the amplitude of the regular wave-trains formed on deep water in

the rear of this disturbance is proportional to /c^Ae"*'', and the effective

wave-making resistance is proportional to /c^A^e"^"*. We make the same

assumption as before, viz., A proportional to v^, and write k = gfv^ ; then the

resistance is given by
E = Gv-^e-^shlv\ (31)

We use this expression to show how R varies with the constant h of the

pressure system. Let i? = 10 ft./sec, and let E = 1 for /j = ; then we find

the following relative values

:

A.



( Excerpt bom the Proceedings of the

University of Durham Philosophical Society,

Vol. in., Part 4.)

Ship-Reststance : A Numerical Analysis of the

Distribution of Effective Horse Power.

By T. H. Havelock, M.A., D.Sc.

[Read January 24th, 1910.]

Introduction.—The following- paper contains, in its second

part, a numerical study of the distribution of effective horse-

power at different speeds. The data are taken from some

recent experiments on models by D. W. Taylor, and are

expressed for a ship of 400 tons displacement and 250 feet

length. A theoretical formula is found to fit the experimental

results, and from it the different terms in the E.H.P. are

calculated for much higher speeds. In addition to the

general analysis, attention is directed to the changes in the

proportion of power which goes in wave-making, and also to

the variation of the ratio E.H.P./(speed)^ with the speed; in

the latter case a curve is drawn and may be compared with

the type of curve obtained from high-speed motor boats.

In the first part, an outline is given of the general theory

of ship resistance ; it is developed so as to lead to the introduc-

tion of a type of expression which exhibits the variation of the

wave-making resistance with, the speed, but for details of the

mathematical analysis reference is made to previous papers.*

One obtains a general formula which is based on theory in so

far as it depends upon the speed, and with co-efficients which

should depend upon the form of the ship but whose values

are at present empirical. No attempt bas been made to

tabulate values suitable for different types of vessels, for

without further information, it is uncertain whether the

results would repay the labour; meantime, as already

indicated, the formula has been used to analyse experimental

* Proceedings of the Royal Society, A, vol. 81, p. 398 (1908) ; A, vol. 82,

p. 276 (1909).
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results and to extend them to the region where more accurate

data are needed.

General Theory.—We obtain a clearer view of the problem

to be solved if we pass over the idea of resistance and fix our

attention directly upon the transformations of energy which

accompany the motion of a ship. Imagine a ship which is

moving at constant speed and whose engines are developing

energy effectively at a certain rate. None of the energy

supplied goes into the motion of the ship, for its speed re-

mains the same ; clearly all the energy goes into the water.

If we could calculate completely the motion of the water we

should know the rate at which energy must be supplied from

the ship and consequently the effective horsepower necessary

to maintain a given speed. Naturally the problem has

proved too difficult to solve as a whole. All that can be done

is to classify the motions of the water into groups which seem

more or less independent ; the results of the separate calcula-

tions are then added together and the sum compared with

the total effect in actual experiments. For a first attempt we

consider the following groups of motions:—surface waves;

wake and large eddies ; smaller eddies of turbulent motion
;

rotations and heat-motions of the particles of water. Since

the rate of supply of energy is equivalent to some resistance

multiplied by the speed of the ship, we may express the

results of calculations in terms of effective resistance obtained

in this way. The latter groups in the above scheme are

usually taken together, and their effect is expressed as a

frictional resistance calculated from an empirical formula

based on experiment. It has been found that a suitable ex-

pression is /SV°, where V is the speed and S is the area of the

wetted surface of the ship ; the numerical values of /"and n are

taken from tables of experimental results. After this part has

been deducted from the total effective resistance, the re-

mainder is called the residuary resistance ; following the

usual custom, we assume that this is associated almost en-

tirely with the surface waves, and we proceed to estimate

the rate at which energy goes into the wave motion.

60



3

The well-known wave pattern which accompanies a

moving ship is complicated, as it consists of both diverging
waves and transverse waves. We begin with the simpler
wave formation which is obtained by drawing a long rod
over the surface at a steady speed in a direction at right

angles to the rod ; we observe that the water surface behind
the rod is undulating, with parallel ridges and hollows suc-

ceeding each other regularly. The distance between conse-

cutive ridges is called the wave-length ; it is found that the
waves have definite wave length and a definite height
(a feet) above the mean water level for a given speed (v)

of the rod. It can be proved that over the range where
there are regular waves the mean energy of the wave motion
is ^wa'^ foot-pounds per square foot of the surface, where
w pounds is the weight of a cubic foot of water.

What is the length of the train of regular waves behind
the rod at any time ? Its front is at the rod, and so moves
forward with velocity v ; its rear depends upon how and when
the rod was started. Suppose the motion has been steady
for a considerable time, so that the range of regular waves is

large compared with the initial disturbances in getting up
speed

; it can be shown that the rear of the train of waves
moves forward at a certain speed (w) less than v. This
velocity of the rear is called the "group velocity"; if we
observe a group of waves advancing into still water we may
notice the crests moving forward relatively to the group,
so that the wave velocity is greater than the. group velocity.

The result in the present connection is that the wave-train
is increasing constantly in length at a certain speed (v-u);

hence the energy in the wave motion is increasing at the

rate ^wa^ (v-u) per foot-length of the rod. Energy must be
supplied at this rate in order to maintain the constant speed
V of the rod. If we write the rate of supply as Uv, then R
is a force per foot of the rod and is called the wave-making
resistance. We have then

—

n=^wa^(v-u)li' ... (1)
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Some mteiresting conclnmoiis imaj be iaken from tihis

ifflft. E is zero if «r- ©umals w, amd tlsis is in iEact ap-

pmEomaiEly iiJie case in sla.ailow-waftr ; the wiole gxtrap of

tramevEirse wa^w^ comsisiiis tliem «f a limiMp wliieli acoompamies

itlae 'ghiip ai iis own. speed (v), and in consequence, once tlae

disitmuribafflce is :£anned, no fnrHier supply of ener^j is n^ded.

Xn deep mra^r, it can he shown iJiiat nis ^wz we limit onr

coMsid@3lion lieie ixt ^lai« case.

We most; esamine now ilie TaxiatiDn of the height {a}

of the wares with the speed. The motion of tlie ship Twal^es

di&zeme^ of flnid pre^sme in its neighbomh.ood, so w^e

niaj consider the problem as eqniiraLlent dynaTwicaTly io a

piesBiue dietuirbance moving over the surface of the water;

the eSeds wiU depend both npon the speed and upon Hie

^laiacter of tJie dsstmbance.

As zegaids 'Oie velocity, the diSerences of ppessme in-

crease with the speed, and probably they are proportional to

its sq[aa2e.

The distribntion of pressme in the disturbance depends

npon the farm of the ship. To take an extreme case, if the

ship were an in&iife raft moving over an infinite sea, the

pre^nre wonld be constant over the surface and there would

be no waves ; on the other hand, if the lines of tbe ship are

abrupt the pressure changes may be sudden and concen-

trated and the height of the waves greater. A detailed

analysis confirms the impression ^lat in general the height

of the waves is dinninished by diffusing the pressure system.

But an increase of speed is eqniv^ent to a diffusion of the

pressure ; hence we have a two-fold effect, increase of speed

increases the magnitude of the pressures, and is at Qie same

time equivalent to diffusing them over a greater area.

Thus, there appear to be two opposing tendencies, and we
infer that the height of the waves should not increase

indeSnitely with ihe speed of the ship, for the two effects

may tend to balance at high speeds.

For a simple type of pressure distribution, a mathemati-

cal an^ilysis shows that the wave-making resistance varies
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willi tlie velocity according to a certain exponential func-
tion, namely,

R= Afl 'W/, • • • • (2)

where A and 7;' ore constants as regards v.

Before examining this relation we change the variables in

a certain nuuiner. Instead of the speed v, we use the speed-

length ratio c dotined as (speed of ship in knots)/N/(length in

feet); further, the resistance II is expressed in lbs. per ton

displacemeni of the ship. The advantages of these changes
are found in calculating from the results of model experi-

ments similar (juantities for a ship of any dimensions on the
same lines as the model ; R is the same for equal values of c

in the two cases.

S-SC

^\cFig. 1 represents the type of curve given by R=A^
The slope of the curve increases up to the value c\ and

then falls off for higher values of c. \i increases continu-
ally with c, and approaches a limiting value equal to the

coefficient A. If we compare Fig. 1 with any experimental
curve of residuary resistance we find that the general
features are the same, but if we wish to obtain a close agree-

ment over a large range of values of c there are two ways in

which the formula must be extended.
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In the first place, in an actual sliip tliere are two chief

pressure systeiiis, one associated with the entrance at the

bow and the other with the run at. the stern. The undula-

tions caused by these are superposed upon each other, and

the result is that the resistance curve is sometimes above

and sometimes below a mean «urve, according as the crests

of one group coincide with the crests or with the troughs

of the other group of waves. It appears probable that the

variations from a mean value R can be represented by an

additional term 611 cos {vlc^), where h and n do not involve

c but depend upon the form and dimensions of the ship.

In the second place, in addition to the transverse waves

which we have considered alone so far, there are waves

diverging from the bow and stern. Regarding these as

wave-trains inclined to the direction of motion, certain

considerations suggest a similar form for the resistance as

before, but with a value of c^ one-third its value for the

transverse waves. This term is found to have a small value

compared with the others, and is only of importance

relatively at lower speeds.

Summing up the various terms we obtain a general

formula of the type

R=ae Vac/ +^(i_.ycosJV ^\c)_
. (3)

An inspection of experimental results shows that some

of the coefficients in this formula may be given fixed values

provisionally, that is, they are practically the same for

ordinary types of vessels; thus we find ci = l'3, 7; = 10'2, and

')' = 014 approximately. A good agreement can be obtained

at values of c greater than 1 by using only the second term

in (3), but if we wish to cover the whole range by one

formula we must include all the terms.* For present pur-

poses we use (3) in the form

_2-53 _2-53

R=a« ^'^
-l-;8 (1-0-14 cos ^)« ''

. . (4)

* Loc. cit. ante, p. 215.
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A Numerical Analysis.—In a paper by D. W. Taylort
a residuary resistance curve is given for a certain model
(No. 892) from the result of tank experiments up to a value

of c of 1'8. This is given almost exactly by (4) with a =2
and /3 = 82'5. All the results are now calculated in terms
of effective horsepower for a ship on the same lines as the

model. In the following table the column headed Ex-
perimental E.H.P. was obtained in this way from the

residuary resistance curve, while the calculated E.H.P.
was found from (4) with the above values of a. and /S

; in

both cases the total E.H.P. was obtained by adding a suit-

able frictional part OOOSOT/'SV^-sa.

The data for the ship on the lines of the model are:
Displacement=400 tons; length = 250 feet; wetted surface
= 5,000 square feet; longitudinal coefBcient= 0-68; midship
section coefficient =070; frictional coefficient= -00897.

Table I.

—

Effective Hosse Power.

0.
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2,380 at c= l-6 and 3,400 at c=l-8: but for higher values

it increases very rapidly, and gives 15,700 at c= 3 and 37,250

at c= 4.

In the last column in Table I. the values of E.H.P./V^
are given ; these were obtained from the calculated total

power in each case, and the results are graphed in Fig. 2

on a base of V/n/L. The curve is of the same type as one

which has been deduced from the performances of high-

speed motor boats.*

Column 5 in Table I. gives the percentage which the

wave horsepower is of the total horsepower. It attains

a maximum in this case of nearly 50 per cent at about

c = l'8. After this value the ratio diminishes, for the wave

resistance begins to approach its limiting value while the

frictional resistance continues increasing as V^'*^. If we

suppose the total power to vary as V" in the neighbourhood

of any given value of V, we can find how the index n varies

with the percentage (p) which the wave power is of the total

power (E). For we have

E=F+iooE=ii^,cv-3,

where C is some constant.

Since n = V(rfE/rfV)./E, we find

* R. E. Froude, Tran-s. Nav. Arch., vol. 48, p. 102 (1906).
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The index n begins at the value 283, increases with in

creasing values of p, then decreases to a minimum, and finally

increases again to a limiting value of 283 ; the position of

the minimum index is not the place where the wave power is

a maximum proportion {dpjd\ =Q) but at some velocity

3-

lc,3(e.//.7?)

3-

V/VL

c^sv If
4h

~1
greater than this value. Since the equivalent index n is

given by d (log 'E)ld (log V), its changes may be exhibited by
graphing log E upon a base log V; the slope of this curve
gives the corresponding value of n. This has been done for

the ship under discussion, and the result is shown in Fig. 3.
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The scale is not sufficient to show the variations in the

first part of the curve, but one may notice the short interval

between c= 2 and c= 3 for which n drops to values in the

vicinity of 2; after this the index rises again. The region

of low values of n depends upon the relation of wave power

to frictional horsepower ; hence it will vary not only with

the lines of the ship but also with its absolute dimensions.

This, together with other points mentioned in the previous

study, must be left to a more detailed analysis and com-

parison of experimental results for models of different types.
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[Reprinted from the Proceedings of the Royal Society, A. Vol. 84]

Tlie Wave-making Resistance of Ships : a Study of Certain

Series of Model Experiments.

Ey T. H. Havelock, M.A., D.Sc, Armstrong College, Newcastle-on-Tyne.

(Communicated by Prof. Sir Joseph Larmor, Sec. R.S. Received June 7,

—

Read June 23, 1910.)

1. In a previous communication* I proposed a formula for the wave-

making resistance of ships, and showed that it expressed certain general

qualities of expei'imental results ; further, notwithstanding the limitations of

theory and the difficulty of interpretation of experimental data, a good

numerical agreement was found in several cases with the published results of

tank experiments on models when suitable numerical values were given to

the coefficients in the formula.

This paper records the results of a more systematic study of the

numerical values of some of tlie coefficients, the data being taken from certain

recent series of experiments ; for the present the discussion is limited to

those types of model whose resistance-speed curves show clearly the humps

and hollows which are attributed to interference of wave-systems originating

at the bow and stern. It has been remarked that although the mode of

disturbance is different, the action of the bows of a ship may be roughly

compared to that of a travelling pressure-point, and further, that the stern

may be regarded in the same way as a negative piessure-point.f This point

of view originated in the well-known paper of W. Froudel on the effect of

the length of parallel middle body, and the theory was developed in a later

paper by E. E. Froude§ ; from an inspeciion of experimental results it was

seen that the variations in magnitude and position of the oscillations were in

directions which agreed with the above interpretation. On account of the

lack of an adequate formula, the available data have not yet been examined

numerically in any detail ; the present investigation aims at supplying this in

some measure. Section 2 is theoretical, with some necessary repetition of

previous work ; Sections 3 and 4 contain a numerical analysis of some avail-

able experimental curves. lu Section 5 an attempt is made to estimate the

effective horse-power of the " Turbinia," in order to illustrate certain points
;

while in Section 6 the liniitations of the interference theory, in the

*'Roy. Soc. Proc.,' 1909, A, vol. 82, p. 276.

tn. Lamb, 'Hydrodynamics,' 1932 edn. p. 438.

tw. Froude, 'Trans. Inst. Nav. Arch.,' 1877, vol. 18.

§R. E. Froude, 'Trans. Inst. Nav. Arcfi.,' 1881, vol. 22.
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conventional use of the term, are discussed in connection witli the residuary

resistance curves of finer-ended models.

2. A transverse pressure disturbance travelling over tlie surface of water at

ri"lit angles to its axis leaves in its rear a procession of regular waves ; on

account of the supply of energy needed to maintain this system, tliere is an

effective resistance which may be called the wave-making resistance of the

given disturbance. An illustration of a simple type of disturbance,

symmetrical fore and aft witli respect to its axis, is afforded by the function

p/(p2^^2^^ wliere Ox is in the direction of motion. The length p may be

used to define the distribution of pressure to tins extent : when ^9 is decreased,

the changes are more concentrated and abrupt, and conversely ; we may, as a

convention, call 2p the effective width h of the disturljance. If the dis-

turbance is made to move with uniform velocity v at right angles to its axis,

the height of the waves can be calculated, and thence, from considerations of

energy, the corresponding wave-resistance E. If the quantity P which defines

the magnitude of the disturbance is supposed an absolute constant, the

calculation of E as a function of v gives an expression which rises to a

maximum and then diminishes ultimately to zero with increasing values of

the velocity.* But if the pressure disturbance is associated with a moving

ship, it seems reasonable to suppose that P depends upon the velocity, and in

fact the assumption is that P varies as the square of the speed.

In this way we obtain the result

E = Be-W"'. (1)

where B is independent of v. According to this expression, E increases from

zero up to a limiting value B ; at any given speed E is a certain fraction of

the value B, and if the quantity h were increased the same value of E would

only be reached at some higher speed. Further if we have a second

expression Ei with constants Bi, h, greater than B, b, respectively, the curve

for El will intersect the curve for E at a certain velocity ; at lower speeds

El < E, while at higher values Ei > E.

Suppose now that a similar negative pressure system, with a different

coefficient P, but with the same width b, is situated behind the first system,

with a fixed distance I between the two axes. The wave-making resistance

of the combined system is given by an expression yS(l — 'ycosgl/v^)e~''9l'''',

where /3 and 7 are independent of v. In applying this result to the case of a

ship, we can of course only expect agreement if the type of model is such that we

may imagine distinct, but mutually interfering, wave-systems originating at

the bow and stern ; it is, in fact, an attempt to describe the wave-making

* Cf. Lord Kelvin, ' M;itli. ami Phys. Papers,' vol. 4, p. 390.
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properties of a ship in terms of the eoefficients of a simple equivalent pressure

distribution of the type specified. Another point which must be noted is that

the previous expression is obtained by considering two-dimensional motion

only ; but the bow and stern of a ship act more like point disturbances than

as transverse line systems, hence there are diverging, as well as transverse,

waves. In default of a fuller analysis, I have suggested for certain reasons

the addition to 11 of a term ae"*;'/*' ; it is retained for the present, because it

indicates the necessity for some expression of the diverging waves and it

agrees with certain general properties of them, and also in several cases it

allows us to obtain better numerical agreement at lower speeds.

We suppose that R is expressed in pounds per ton displacement of the ship,

also V is the speed in knots, L the length of the ship on the water line in

feet, and c is equal to V/^L ; then we have

111 I \ ™
E = ac~9c^-|-/3( 1— 7C0S w/c^je~c^lbs. per ton, (2)

where m = IVoh/L and n — 1V'31/L.

In the following examples attention is directed chiefly to the variations of

^ and m, and incidentally to those of 7 and ?i. The length h cannot be taken

directly as the length of the entrance or run of the ship, for it will depend also

on the lines of the model ; but one may expect the ratio 6/L to decrease as

the slope of the model at the bow is increased, and conversely ; similarly the

number n will vary in a direction which may be predicted. In the previous

paper sufficient agreement was found when m and n were assigned fixed

values ; in many cases the mean curve of residuary resistance appeared to

have a point of inflection near c = 1"3, and for this we had m = 2'53
; further,

the humps and hollows agreed with n = 10"2 for the angle ji/c^ in radians, or

71 = 584 for the angle in degrees. With none of the coefficients fixed before-

hand, it is necessary to adopt some method of approximation. Drawing the

experimental curve of residuary resistance on a suitable scale, a fair mean

curve was sketched in and an equation R = Ae""/''^ was found, generally by

graphical methods, to fit this as closely as possible ; in fact it was the original

intention to limit the study to the two leading coefficients A and m so deter-

mined. The value of m is now fixed, and from the intersections of the mean

curve with the actual oscillating curve one could assign a value to n with

sufficient accuracy. Finally the three remaining quantities were found from

three points on the actual curve, for example, at c = 0'6, 1"2, 1-8, if the curve

extended so far. In practice the lowest point determines a, for the term in /3

is negligible there ; for the same reason the values of /3 and 7 are more satis-

factory when fairly high values of c are available. In all cases the
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approximation was not carried further than the circumstances seemed to

warrant ; the values of the coefficients are given generally in round numbers,

and the theoretical curves were calculated throughout their range from

the formulae so obtained.

3. The first series is taken from a paper by D. W. Taylor* on the influence

of the shape of midship-section upon the resistance of ships ; . from the

curves in that paper I have taken four, which form a series having the same

midship-section coefficient, but with different displacements. The data and

the results are given in the following table" :

—
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The index m of the exponential increases slightly with the displacement,

that is, with increasing beam and draft ; this variation is in the direction

V^ M 06 M M 12 1-4 16 20 22 2-4 26 2-8 30

one might anticipate, as it indicates a greater diffusion of the pressure

changes. In regard to the coefficients specifying the interference between
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the bow and stern systems, 7 is larger at tlie higlier displacements, v/hile n

is less ; both variations are consistent with a diminution of the distance

between the axes of the simple equivalent pressure distributions.

To illustrate the smaller changes which are possible at the same displace-

ment, three models are taken from the same paper, having different midship-

section coefficients with the same area of midship-section ; thus smaller

coefficients are associated with greater beam and draft. One of these three

is No. 1 of Table I : midship-section coefficient = 0'9, /9 = 81, m = 2'7.

Another of the set I had already used in my previous paper with the results

:

midship-section coefficient = 07, /3 = 82-5, m = 2-53. For the third of the

series the same coefficient is 1"1, and there is a good agreement by taking

/3 = 79-5, m = 2-87.

4. The next sets of experimental results are taken from a paper by

D. W. Taylor* on the influence of length of parallel middle body. One must

notice that the problem investigated is not quite the same as in the paper

by "W. Froude referred to above. In the latter case the bow and stern of

the model were unaltered, but varying lengths of parallel middle body were

inserted between them, so that the special effect was isolated as far as

possible. In Taylor's experiments the models have constant length and

displacement, but varying proportions of the length are occupied by a

parallel middle body, and, of course, the bow and stern vary in form so as to

keep the displacement constant ; the effect is thus more complex theoretically.

We may anticipate the direction of variation of some of the coefficients

with increasing percentage of parallel middle body under these conditions.

Since the ratio of the length of entrance and run to the length of the ship

becomes less, the index wi should decrease ; also the effective distance apart

of the bow and stern systems becomes greater, so at the same time j should

decrease and n increase.

Table II.—Models V to VIII.
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Table II contains the results for a set of four models of 1000 lbs. displace-

ment, together with other data
; the corresponding curves are shown in fig. 2

in the same manner as before.

z-z 2-6 30

From the curves in fig. 2, it will be seen that the calculated curves express

the general variations in the manner anticipated above. The numerical

agreement is best throughout the range for Model V, while for the other

curves the agreement at lower values of c is not so good ; this appears to be
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associated with the change in shape of the ends of the model. Although for

the whole length of each model the cylindrical coeflicient is 074, on account

of increasing proportion of parallel middle body tlie ends become finer ; this

is indicated in the third column of Table II. The formula (2), in its present

form, gives best numerical agreement for models with fuller ends, that is,

with fairly high cylindrical coefficients ; this point is examined further

below.

The same remarks apply to a second set of four models, taken from the

same paper, having a displacement of 1500 lbs. The results arc given in

Table III and the curves in fig. 3. For Curve XII, a point in connection with

the interference-coefficients 7 and n may be noticed. Whatever value of n

is used, if the simple theory is to be adequate, there must be certain relations

between the values of c at which the humps and hollows occur ; beginning

with the highest values and working down to lower speeds, the successive

values of c at which hollows, humps, and mean values occur must be

proportional to the reciprocals of the sequence

x/O, \/0^, \/l, \/r5, V2, \/2r5,

In all the curves given here the graphs have been extended to c = 3, so as

to include, in most cases, the highest mean value, corresponding to the second

term in the above series. In most cases it was possible to choose n so that

this relation was approximately satisfied, but the difficulty increases apparently

at higher displacements, such as in Model XII. The mean curve shown for

this case in fig. 3 represents the curve E = 2556^-'^'"'; determining the value

of n from the intersections of this with the actual curve, the numbers

obtained from the higher positions are larger than those from the lower

speeds. In consequence, the circles showing the theoretical continuation

of the curve have been calculated with 7 = 015 and n = 610, without

attempting a fit over the whole curve.

Table III.—Models IX to XII.

No.
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5. The curves in the previous sections have been examined chiefly from a

theoretical point of view, that is, with the object of testing in these cases

the general adequacy of a certain type of simple equivalent pressure

distribution. One might try also to classify the coefficients of the formula,

so as to obtain empirical expressions for them in relation to the form of
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the model. The latter is frequently specified by various coefficients of

fineness, which of course give only an approximate estimate of form, and

in any case do not make a set of independent variables ; no attempt is

made here beyond giving all the available data for each model. With the

results given above and in tlie previous paper, one can find an approximate

estimate of the leading coefficient /3, at least for forms similar to those already

examined. It was noticed that, other things being equal, /S was proportional

to the displacement-length coefficient ; also for given values of the latter

/S appears to be approximately proportional to the ratio of beam to draft.

This seems reasonable, since wave-making is largely a surface effect ; that is,

for a disturbance travelling below the surface the wave-making falls off

rapidly with its depth. In several of the cases already examined, it

happens that /3 is numerically only slightly larger than the product of the

two ratios mentioned, that is, /3 is a little greater than (B/H) x D/(L/100)^,

with all the quantities in the units specified above. This result is used now

to make an approximate estimate of total effective horse-power for a

certain ship, as it affords opportunity for introducing other points of

interest. The data for the ship are those of the " Turbinia," as far as

they are available from the published record of trials.*

Turbinia.—Displacement = 44|- tons ; length = 100 feet; beam = 9 feet;

draft = 3 feet; cylindrical coefficient = 0'66 ; speed = 31 knots.

The displacement-length coefficient is 44'5, while the ratio of beam to

draft is 3 ; since the cylindrical coefficient is less than those already

examined, we take /3 as about 5 per cent, greater than the product of these

two ratios, that is, /3 = 140. Following out the indications of the previous

cases, m should be nearly 3 ; as we shall calculate quantities for c = 3"1

the exponential e"™/'^ only varies slowly with m, so that m — 3, with suffi-

cient approximation. Under the same conditions we take n/c'' = 60° and

7 = 0'15, also a = 2. Calculating from formula (2) with these values, we

obtain an estimate of 410 for the effective horse-power of the ship at 31 knots

due to wave-making, with the possibility of this being slightly in defect

;

any of the usual approximate formula;, with simple powers of the speed, when

extended to this high value of c give possibly twice this estimate, a result

which is much too high. If we take the area of wetted surface (S) as

970 square feet and the frictional coefficient (/) as 0'0095, we may calculate

the frictional effective horse-power from the expression 000307/SV^'*^; it is

470 at 31 knots. We obtain thus an approximate estimate of 880 for the

total effective horse-power of the ship at 31 knots. It is stated in the record

referred to above that the tolal effective horse-power at 31 knots is 946,

* C. A. Parsons, ' Trans. Inst. Nav. Arch.,' 1897, voJ. 38, p. 2.32.
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obtained by Fronde's method from tank experiments on a model of the ship

;

no details of the calculation are given. Although the estimate above is only

approximate, anotlier possible factor should be noted ; this is the influence of

the finite depth of the tank. It has been stated that, from recorded experi-

mental data, this effect becomes appreciable when the length of the waves

exceeds twice the depth ; this means approximately when c>l-9//./L, h being

the depth of water and L the lengtli of the model. This appears to agree

with the curves of fig. 11 of my previous paper, which were obtained from

theoretical considerations. The effect of shallow water is an excessive

increase in the resistance for a considerable range, but if the speed is made

high enough the resistance may become even less than in deep water at the

same speed. It seems possible tliat the tank experiments quoted above come

within the range of excess of transverse wave-making resistance. It is stated

that, assuming a propulsive coefficient of 60 per cent., the value of 946 means

a corresponding indicated horse-power of 1576 ; it may be noted that the

estimate of 880 corresponds to the same indicated horse-power with an efficiency

of about 56 per cent. In this connection the following remark maybe quoted

from a recent discussion :
" Is it possible that this is one contributing cause

to the large propulsive coefficients obtained by torpedo craft compared with

those obtained in full-sized vessels, viz., that the tank effective horse-power of

torpedo craft models is over-rated, because of excessive transverse wave-

making resistance in the ' shoal water ' of the tank " ?*

6. It must be noted that all the preceding calculations refer to rather full-

ended models, that is, with a cylindrical coefficient of about 0-68 and

upwards. It was upon such a type that the original experiments of Froude

were performed, and it seems that the characteristic interference effects occur

specially in such vessels ; the latter are associated with the idea of two fairly

distinct systems of pressure disturbance at bow and stern respectively. Now

if the ends are made finer it is reasonable to imagine the two systems

coalescing into what could be more accurately interpreted as one pressure

system. This would be more diffused over the length of the ship, so the

equivalent index m should be larger ; further, since for constant displace-

ment finer ends mean larger beam and draft, the limiting coefficient /3 should

be larger. Consequently, for decreasing cylindrical coefficient, at constant

displacement, the curves of residuary resistance should be intersecting curves,

lower at low speeds and then ultimately higher. This is illustrated in the

curves in fig. 4, which have been superposed to show the point in qviestion.

The curves are taken from a series of 1000-lb. models by D. W. Taylor, of

* E. Wilding, 'Tnins. Inst. Nav. Arch.,' 1909, vol. 51, p. 160.
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constant midship-section coefficient 0"926, and with the ratio of beam to draft

ii'923 ; the cylindrical coefficients are 0'68, 0'60, and 0"48.
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(Excerpt from the Proceedings of the

University of Durham Philosophical Society,

Vol. IV., Part 2.)

The Displacement of the Particles in a Case

OP Fluid Motion.

By T. H. HAVEL0CK^ M.A., D.Sc.

[Read March 3rd, 19U.]

The leading features of the motion induced by the passage

of a cylinder through a perfect fluid are well known, but

certain aspects of the permanent displacement of the fluid

particles are less familiar. The following notes on these

were suggested by an unexplained paradox which is men-

tioned in recent treatises, such'as Lanchester's Aero-dynamics

and Taylor's Speed and Power of Ships; it was foujid later

that the same difficulty is mentioned by Maxwell in a paper

on the paths of the particles. The present remarks are

arranged as follows

:

1. From the ordinary theory of the fluid motion is

deduced a simple proof of Rankine's formula for the

radius of curvature of the path of a particle, and the

solution is them completed in terms of elliptic

functions.

2. After drawing paths of particles, curves are obtained

for the subsequent positions 'of lines of particles

which were abreast of the cylinder at certain times.

3. A graphical study of the deformation of a group of

particles as it passes near the cylinder suggests a

difference between the behaviour of an ideally con-

tinuous fluid and one which is molecular.
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4. A (liscnssion of the paradox that the fluid appears to

have a permanent forward displacement ultimately.

The difficulty is shown to arise from the introduction

of infinities without precise definition of conditions.

Analj-fically tlie ambiguity occurs in the form of a

double integral whose value depends upon the order

of performing the integrations.

1.—A circular cylinder of radius a and of infinite length

moves through an infinite fluid with uniform velocity w at

right angles to its axis. The fluid is assumed to be perfectly

continuous, frictionless, and incompressible ; and under

these conditions a certain continuous motion is determined

in the fluid. Let the diagram in Fig. 1 represent a section

at right angles to the axis of the cylinder, the circle with

centre O being a section of the cylinder at anj- instant.

;
FIGURE I-

The fluid at any point Vi^rfi') is moving with velocity

ua" jr'^ in a direction making an angle 26 with Ox, that is

tangentially to a circle through P touching the axis of x at

0. Thus tlie fluid at points on a circle such as OPA is

moving tangentially to the circle at each point at a given

instant, 'i'his solution gives the actual velocity of the fluid

at any point at any time ; it does not follow the motion of a

given particle of the fluid. If we fix attention upon a fluid
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particle at P in Fig. 1, we could trace its path relatively to

the cylinder by superposing on its actual motion a backward
velocity u parallel to O.r. It can be shown that this relative

path is a curve PBC whose equation in terms of y and r is

y(l-^) = '', (1)

where b is the distance of the particle from the axis Ox when
at an infinite distance before or behind the cylinder. These
curves, given by different values of b, would be the actual
paths of the fluid particles if the cylinder were at rest and
the fluid were streaming past it. In the case under con-
sideration the cylinder is moving and the fluid is at rest at
infinity

;
hence the actual path of a particle may be imagined

as the path in (1) referred to axes moving with uniform
velocity u. The equation of the path was first obtained by
liankinei in the form of a relation between the ordinate y
and the radius of curvature p. It can be deduced from
Fig. 1.

We have pd{26)ldt = velocity of particle at P = ua''lr\
By writing down the velocity of P relative to in a direc-
tion at right angles to OP we have

<J6 „ ua" .

From these two equations, with y for rsin(9, we obtain
2py{l + a^jr"-) = a"". But relatively to the cylinder the
particle lies on the curve given by equation (1) above ; hence,
substituting for a^/r^ we find the result

- = a^(y-\b) (2)

As Rankine pointed out, this represents in general a case of
the 'elastic curve

' ; and, in fact, the path of a particle is one
loop of a coiled elastica. We can complete now the solution
of (2). For any given particle, fixed by the value of b, if 6

' W. J. M. Rankine, /'kil. Trniix. A., vol. 154, p. .369 1864 The
result 18 erroneously attributed to Maxwell iu the article on hydromechanics
in the Anci/clopaidia Brilaniuca, 11th ed.
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is the angle bet-ween the tangent to the path and the axis

Ox, we have on integrating (2)

l/
= ^b + ilb^ + i«= + i«- cos 6)5 (3)

We choose the axis Oy so that a; is zero when y is a maximum,

and measure the arc s from this point. Then

where the modulus of the elliptic functions is Jc={l +*=/4a-)-*.

In terms of elliptic integrals which are usually tabulated,

namely F(/c, <^) and E(/c,<^) and the corresponding complete

integrals K and E, we find the following results : the letters

refer to the symmetrical curve in fig. 2.

(i) At the point B. i/ = lb + ajk; p = ^ko.

(ii) At C, the widest part of the loop. !/ = y>+jy{l-k^);

x^lka[{l- ^)F{k, 45°) + ^E(A, 45°)
) ;

(iii) At an end point A. y=b; x = ycayyl — ^JK +-pE
j ;

p = a^l'ib.

These data are generally sufficient for drawing the curve

with considerable accuracy. From the periodicity of the

elliptic functions we can also write down the total length of

the path ABCD ; it is equal to IcKa. As a numerical

example, one finds that the total distance covered by a

particle initially at a distance a from the axis, as the cylinder

. moves from an infinite distance behind to an infinite distance

in front of the particle, is approximately 2a; this is the

curve denoted by I'O in Fig. 2. It need hardly be pointed

out that although the limiting length of path is finite, the

time involved becomes infinite.

In Fig. 2, some curves are drawn for various values of the

ratio of i to a; except in one case, only half of each complete

patli is shown. For h zero, the path is infinite in length and

is given by

x-=a tan h(2«/a) — s\ y =-a .sec h(2.s/«).
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The cross-marks on the curves indicate the spaces covered in

successive equal intervals of time by particles which were
simultaneously at similar points (B) of their paths.

2.—With the help of these curves we can trace the
changes in any line containing always the same particles.

For this purpose we draw the relative stream lines given by
(1), for the same values of 6/a as are shown in Fig. 2. We

superpose this diagram on

Fig. 2, with the axes of x

coinciding, and draw a curve

through the intersections of

corresponding actual and rela-

tive paths ; displacing cue

diagram parallel to the direc-

tion of motion, we mark again

the intersections and obtain

the displaced position of the

same set of particles. For
instance, with the actual

paths as in Fig. 2, we obtain

by this method the successive

positions of a line of par-

ticles which at some instant

nsufE 2 formed a straight line abreast

of the cylinder; these curves are shown for one quadrant in

Fig. 3.

The diagram can also be described in another manner.
The cylinder moves from left to right. At the instant repre-

sented in Fig. 3, AB is a line of particles abreast of the

cylinder; the successive curves to the left are the present

positions of particles which were abreast of the cylinder at

certain equal intervals of time previously. The unit of time
T is that taken by the cylinder to move through one-quarter

of its diameter. Thus the curve C'D'Ei represents the

present position of particles which were abreast of the
cylinder at CDE at a time 5T previously. It^may be
noticed that the circumference of the cylinder forms part,
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in tlie limit, of one of tlie relative stream lines; so tliat the

same particles are always in contact with the cylinder, as

the ordinary ideal theory recj[nires.

'^.—To trace out the deformation of other lines of

particles, it is necessary to adjust first the curves in Fig. 2.

For instance, to obtain curves which have been drawn by

Maxwell, we arrange the paths in Fig. 3 so that the initial

points (A) lie in a straight line perpendicular to 0.«; then

by the same process as before, we obtain the siaccessive forms

of a line of particles which lay in a straight line initially

FIGUKE 3

when at a great distance in front of the cylinder. We could

trace similarly the deformation of groups of particles.

Fig. 4 was obtained by this method ; it illustrates the

extreme deformation which occurs near the cylinder, (.'on-

sider for a moment that the cylinder is at rest and the Huid

streams past it from left to right. The three enclosed areas,

equal in magnitude, are successive positions of the same

group of particles.

It has been mentioned already that the ordinary solution

of this problem assumes that the fluid is infinitely divisible
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into parts retaining the cliaracteristie properties of a fluid.

We introduce other limitations when we regard the fluid as

made up of a large, but finite, number of particles or mole-
cules which retain their identity during the motion. For
such a molecular fluid, it is known that solutions obtained
by continuous analysis imply that the molecules move in

such a way that their order of arrangement does not alter.

Also if we consider a group of molecules forming an element
of volume round some point at any time, the same molecules
will form an element of volume in the neighbourhood of some
other point at any subsequent time ; that is, the deformation
of an element of volume must be infinitesimal. An inspec-
tion of Fig. 4 shows that this condition is not fulfilled in the

FIGUffE 4.

vicinity of the cylinder. One can imagine a curve drawn
round the cylinder, not symmetrical fore and aft, within
which the conditions are certainly not satisfied. These
considerations may help to remove an apparent absurdity.
If we examine curves, as Maxwell's, showing the successive
forms of lines of particles originally straight in advance of
the cylinder, we notice that the cylinder never penetrates
tlirough any such line, all of them being looped always round
the cylinder. Quite apart from other considerations which
enter in the case of an actual fluid, we are relieved from this
conclusion by remembering that, on account of molecular
constitution alone, there is a region round the cylinder
within which the solution obtained by continuous analysis
does not represent the true state of motion.
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4.—We consider now the paradox to which reference has

been made above, returning to the solution of the first two

sections. If we imagine the fluid to be contained within a

fixed vessel it is clear that, as the cylinder is moved forward,

an equal volume of fluid must be displaced backwards. The

same argument should hold continuously as we suppose the

containing vessel increased indefinitely, and hence in the

limit, when we consider motion in an infinite fluid subject to

its being at rest at infinity. Thus there should be a per-

manent displacement of the fluid backwards on the whole.

But, according to the paths drawn in Fig. 2, we find that

every particle comes to rest ultimately at some point D in

advance of its initial position A ; so that there appears to be a

displacement of the liquid forwards. The interest of this

paradox lies partly in its recurrence in various writings.

Lanchester^ states the difficulty and leaves it with the

remark :
" it is evident that some subtle error must exist in

Rankine's argument, the exact nature of which it is difficult

to ascertain." Taylor^ points out how with a finite displace-

ment of the cylinder it can be verified that the fluid is dis-

placed backwards, but with an inflnite displacement one has

ti)e curious result of a permanent forward displacement.

MaxwelP raised the same problem many years ago ; he

admits it as a real difficulty and disposes of it thus :
" It

appears that the final displacement of every particle is in the

forward direction. It follows from this that the condition

fulfilled by the fluid at an infinite distance is not that of

being contained in a fixed vessel ; for in that case there

would have been, on the whole, a displacement backwards

equal to that of the cylinder forwards. The problem actually

solved differs from this only by the application of an

infinitely small forward velocity to the infinite mass of fluid

such as to generate a finite momentum."

The difficulty arises chiefly from a loose use of the idea of

F.W. Lanchester, Aerodynamics, vol. 1, Aerodonetics, p. 20, 1909.

D.W. Taylor, Speed and Power of Ships, p. 10, 1910.

J.C. Maxwell, Scientific Papers, vol. ii., p. 210, 1870.
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infinity as if it implied a definite state or time, rather than
•the limiting value of a process which must be defined

precisely in each case; unless this is done the problem is

really indeterminate. From this point of view, Maxwell's
statement seems inadequate, in that it accepts the forward
displacement as definitely proved; on the other hand it

points to a root of the matter,

namely, the conditions at infinity.

Leaving this till later, we discuss

the previous solution as it stands,

first stating the possibilities in

general terms and then treating

them analytically.

In Fig. 5, is the centre of the

cylinder ; the curved line represents

the particles which were abreast of

the cylinder when the centre was

at 0'. The flow of fluid backwards

is given by the difference between

the areas behind and in front of the

line AO^B. As O'O increases, the

points C move outwards along the

line AO'B ; the dotted curve,

which is entirely in front of AO^B,

shows the ultimate position of the same particles, according

to the paths in Fig. 4, when O'O becomes infinite.

(A) Let X, y be co-ordinates of any point P on the line

AO'B referred to the centre 0. If we fix any value of y,

however large, we can make P be within the range O^C by

making x large enough. This is the argument which leads

to a permanent forward displacement. It clearly lays more
stress on the infinity of extent of liquid fore and aft of the

cylinder.

(B) On the other hand, if we fix x, no matter how large,

we can make the point P be beyond C on the line O^A by
making y large enough. By giving more weight to the

infinity of liquid abreast of the cylinder, this argument

Fl&URE 5.
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denies that the limit of the dotted curve in Fig. 5 can ever be

attained. These two arguments can, of course, be stated

simply in terms of the flow of liquid at any instant across a

line behind the cylinder. If we draw lines OQ, OE at 45° to

the line 00\ then at any time the flow across AO^B is

forwards in the range QO^E, and backwards beyond Q and

R. According to (A), the range QO^R can be made infinite

by taking x large enough ; while the argument (B) points to

the region within lines at 45° and 90° to the axis OO'^.

Analytically, the matter reduces to the evaluation of a

double integral which gives different values according to the

order in which the integrations are performed. We can see

this by writing down an expression for the total momentum
of the whole liquid in the direction of motion of the cylinder.

Referring to Fig. 1, we have iw^r"^ cos 2^ for the component
fluid velocity at any point, or ua^(x^ — y^)/(.c- + y^y in terms

of rectangular coordinates. Thus with s for the density of

the fluid, the total momentum forward is given by

M. = ua-s I -r^, "^TTTndxdy,
-''^ (x- + y-)-

where the integration extends throughout the fluid.

We divide the integration into two parts, writing / for

(2;2 _ y'^)\{x"- + y-y. First, the region abreast of the cylinder,

extending to infinity in both directions, gives without

ambiguity

M, = \ua^ s I dxffdy =—Trsa-u.

For the rest of the fluid, fore and aft of the cylinder, we
have

M.2 = \ua^s rrfdxdy

,

where v ranges from a to oo , and y from to oo

.

The integral Mo has different values according to the

order in which the integrations are performed. We have

Ma =\ua-sj dyJfdx = 2irsa-u.
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This evidently corresponds with argument (A) above.
Adding Mj and M^, we have a total momentum forwards of
irsa^JJ and this agrees with the permanent forward displace-

ment.

On the other hand, we have

Mo = im-sj dxj fdy = 0.
a o

This is the argument (B), and it gives a total momentum
of TTsa^u backwards.

We may write the integral M^ as a limit in the form

Ms = Lira 4:ua^s fdx ffdu.

In this integral with h, c finite and a not zero, the order of
integration may be inverted without changing the value; we
have in either case

M, = 4M«^9Lim ftan" - - tan"'-\
S,c-^»^ C Cj

This form brings out the indeterminafeness of the prob-
lem, for the limit can have any value we please between
t/2 and according to the limiting value of the ratio hjc.

The argument (A) above supposes that h and c are both
infinite in such a way that h is infinitely greafer than c;

while we obtain the result of argument (B) by supposing
clh infinite in the limit. Another special case would be to
suppose h and c to become indefinite in a ratio of equality.
Then Mo is n-m'^u and the total momentum of the fiuid is

zero. In this case we picture the fluid as of equally infinite

extent in and at right angles to the line of motion. Up to
the present we have taken the solution of the fluid motion
without considering the conditions under which it was
obtained. These included the condition that the fluid should
be at rest at infinity, that is, the velocity should become
infinitesimal as the distance from the cylinder increased
indefinitely. If we could imagine the fluid to be contained
in a fixed boundary at infinity, the condition to be satisfied

there would be the vanishing of the normal component of
velocity. At first sight, there would not seem to be much
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difference between the two cases, the latter being included

in the fornaer. But we have se«n that it is necessary to

define conditions more precisely in order to avoid ambiguity.

We may illustrate this by a definite problem in initial

motion for which the solution is known.

Let the fluid be contained within a fixed concentric

cylinder of radius c, and let the inner cylinder be suddenly

started with velocity u. If <i> is the velocity potential of

the initial fluid motion, the boundary condition at the outer

cylinder is that d<^ldr should be zero. The value of <^ is

The second part of <i> represents the fluid motion already

studied, with an additional factor c'^Kc'^— a'^). Superposed

on this there is a uniform flow backwards of amount

ua^l (c^— a^). The total momentum can be found by integ-

rating throughout the liquid as before. In this case there is

no ambiguity and it is easily shown that the second term in 4>

contributes nothing to the momentum. Adding the part due

to the uniform flow, we find the total fluid momentum to be

TTsahi backwards; this result is independent of the radius

of the outer cylinder, and, of course, agrees with elementary

considerations.

Now suppose the radius c to become infinite. The fluid

motion then differs from that studied in the previous sections

only by a superposed uniform flow backwards of infinitesimal

magnitude; but when integrated through the infinite extent

of liquid it gives use to a finite momentum ^rsahi backwards.

Further, in any finite time the additional term makes no

more than an infinitesimal difference to the paths of the

particles ; but if we attempted to extend the solution to

" infinite " time we should be faced with various am.biguities

in making any allowance for the extra term.

The velocity potential 4" for a finite extent of fluid is

determinate when the values of <^ or Sct>l&n are given over

all the boundaries. If the outer boundary becomes infinite
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and (f is said to vanisli at infinity, the solution is indeter-

minate by an infinitesimal amount. Consequently the total

momentiun or flow may be indeterminate to a finite amount.
On the other hand, the total kinetic energy of the fluid

motion, involving a summation of the square of the velocity,

is only indeterminate to an infinitesimal extent.

In conclusion, it appears that the problem is indeter-

minate unless the infinite boundary of fluid can be defined

as the limit of some particular form, and further in that

case the conditions satisfied at the boujidary must also be
considered. At the best the question of what happens in an
infinite fluid after an infinite time leads to unreal diiSculties

;

the above discussion may serve to show in what way these
arise when we attempt to force to this extent ordinary solu-

tions which give consistent results when treated in a

legitimate m^anner.
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[PeprinM from, the Pkoceedings of the Hoyai. Society, A. Vol. 89]

Ship Resistance: The Wave-making Properties of Certain

IravelUng Pressure Disturbances.

By T. H. Havelock, M.A., D.Sc, Armstrong College, Newcastle-on-Tyne.

(Communicated by Sir J. Larmor, F.E.S. Eeceived October 7,—Eead

November 27, 1913.)

1. In previous papers* I have investigated the wave-making resistance

of a ship by comparing it with a certain simple type of pressure disturbance

travelling over the surface of the water. In a recent paperf on the effect

of form and size on the resistance of ships, by Messrs. Baker and Kent of the

National Physical Laboratory, reference is made to this point of view. The

main work of these authors consists in the examination of model results and

the deduction of empirical formulae of practical value. In addition, they

connect the wave-making properties with the pressure distribution and have

obtained graphs of the latter for various ship forms under certain conditions

;

these curves show a range of negative pressure, or defect of pressure, between

the positive humps of excess pressure corresponding to the bow and stern.

The authors remark that this will have an effect upon the wave-making, but

conclude that it is sufficient for their purpose to be able to state that such

pressure disturbances, as they have shown to exist when a ship is in motion,

will produce waves which will vary more or less in accordance with the theory

referred to above.

Under the circumstances it seems advisable to extend the mathematical

* ' Eoy. Soc. Proc.,' 1909, A, vol. 82, p. 276 ; also 1910, A, vol. 84, p. 197 ; also ' Proc.

Univ. Durh. Phil. Soc.,' 1910, vol. 3, p. 215.

t G.S. Baker and J. L. Kent, Trans. Inst. Nav. Arch., vol. 55(ii), p. 37

(1913).
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490 Dr. T. H. Havelock.

theory by working out the wave-making properties of other distributions of

pressure. Altliough no attempt has been made to connect the distribution

directly with ship form, the following examples have been chosen with a view

to general inferences which can be drawn in this respect. In particular, the

distributions graphed by Baker and Kent can be represented, in type at least,

by a mathematical expression for which the corresponding Fourier integral

can be evaluated, so that one can compare the result with that obtained from

simpler forms. Although the expression for the wave-making resistance

becomes more complicated, it is not essentially different from that obtained

previously ; it appears in general to be built up of terms involving the same

type of exponential e'"!^", together with oscillating factors repi'esenting inter-

ference eifects between prominent features of the pressure distribution.

2. We confine our attention to two-dimensional fluid motion. We may

imagine it to be produced in a deep canal of unit breadth, with vertical sides,

by the horizontal motion of a floating pontoon with plane sides fitting closely

to the walls of the canal but without friction. We assume that, as regards

transverse wave-making, this is effectively equivalent to some travelling

distribution of pressure impressed upon the surface of the water.

Let Ox be in the direction of motion of the disturbance, and let y be the

surface elevation of the water. Suppose the distribution of pressure to be

given by

p=f(x). (1)

For a line distribution we may suppose the disturbance to be inappreciable

except near the origin and to be concentrated there in such a manner that the

integral pressure P is finite, where

J — CO

dx. (2)

When this disturbance moves along the surface of water, of density p, with

velocity v, the main part of the surface disturbance consists of a regular train

of waves in the rear given by

gpy = — 2«:Psin/c,x', (3)

where the length X of the waves is

\ =^ = tlt.
K g

We can generalise this result for any form of pressure distribution / (a;),

which is likely to occur, by the Fourier method. We have in general

gpy = -2k [/(f) sin k {x-^) d^ (4)
J —00

= — 2 « (^ sin KX— i|r cos kx), (o)
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Ship Resistance. 491

(6)

(OO j-OO

where 4, = \f{^) cob K^d^, i/r = /(f)sinA:|(^f

Tlie mean energy per unit area of the wave motion given by (5) is

2K\(f)^+ yp-^)/(/p. Now the head of the disturbance advances with velocity v,

while the rate of flow of energy in the train of waves is the group velocity^?;;

hence the net rate of gain of energy per unit area is ^v times the above

expression for the energy. If we equate this product to E?;, then E may be

called the wave-making resistance per unit breadth ; and we have

ll^K'i<j>^+^^)/gp. (7)

We have in each case to evaluate the complex integral

X = cf>+i^lr=^f(^)e<'^dl (8)
J — 00

lu the examples which follow, the integral has a finite, definite value

which can be obtained in Cauchy's manner by integrating round a closed

simple contour in the plane of the complex variable ^. The function /(f)
is such that (i) it has no critical points other than simple poles in the

semi-infinite plane situated above the real axis for f ;
(ii) it has no critical

points on the real axis ; and (iii) its value tends to zero as f becomes infinite.

Further, the quantity k is restricted to real, positive values. Under these

conditions it can be shown* that

[/(^)e*'^^?= 27nSA,

where XA is the sum of the residues of the integrand at the poles of /(f)

situated above the real axis. If a is a pole, A is given by the value of

(f— «)/(f)e;"f when f = «. Alternatively, in the following examples /(f) is

of the form r(f)/G(f), none of the zeros of Gr(f) coinciding with those of

F(f), and A is given by F{a)e''"'/Gr'(a).

3. For the sake of comparison the results which have been obtained

previously may be repeated briefly. If

the poles are at f = +«'«, of which the positive one alone concerns us.

Hence we have

-

—

- = - Ae--". (10)
f-f-ta '(=ia a.

Hence from (7) E = '^k^-^-' = Z!^\.-2W"\t (u)

* Jordan, 'Cours d'Analyse,' vol. 2, § 270.

t C/. Lamb, 'Hydrodynamics,' 1932 edn. p. 415.
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If A is a constant and independent of the speed v, the grapii of E as a
function of u rises to a maximum and then falls slowly but continually to
zero as v increases indefinitely. Thus, for an assigned pressure disturbance
of this type whose magnitude is independent of the speed, there is a certain
speed beyond which the resistance E continually decreases.

On the other hand, if the pressure disturbance is that produced by tne
motion of a floating, or submerged, body, it is clear that it will depend upon
the speed. Since we may suppose the pressures in question to be the excess
or defect of pressure due to the speed, it seems a plausible first approxima-
tion to assume that the distribution is not altered appreciably in type and
that the magnitude is proportional to v\ Thus if in (11) we make A pro-
portional to y^ we obtain

E = const. X e^^W"". q2')

The value of E now tends to a finite limiting value as v increases
indefinitely.

If the quantity A, specifying the magnitude of the pressure disturbance,
varies as v-, then tlie graph of E rises to a maximum for some finite value
of V, provided n is positive and less than 2 ; the nearer n is to 2 the higher
is the speed at which the maximum occurs. For the present we assume
that n is equal to 2 ;

in any case it does not affect the results of a qualitative
comparison of different types of distribution.

The scope of the assumption may be illustrated by a certain case.
Prof. Lamb* has worked out directly the wave-making resistance E due to
a circular cylinder of small radius a, submerged with its centre at a constant
depth /, and moving with uniform velocity v he finds that E varies with
the speed according to the law v-h-^9flv\ jf ^^ attempt to represent the
disturbance approximately by some equivalent surface pressure distribution,
the type which suggests itself naturally is

It can be shownf that this distribution, together with the assumption that
A is proportional to v^, leads to the same law of variation of resistance with
speed.

4. In a certain sense the generalisation from a line disturbance to any
diffused distribution of pressure may be regarded analytically as a case of
interference

;
the final result is due to the mutual interference of the line

elements into which we may analyse the given distribution. However, the
idea of interference iu ship waves has usually been associated, after the work

* H. Lamb, ' Ann. di Matematica,' vol. 21, Ser. 3, p. 237.
+ ' Roy. Soc. Proc.,' A, vol. 82, p. 300.
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Ship Reaistance. 493

of W. Froudo, with the superposition of bow and stern wave-systems, that

is, when the whole system may be separated into two fairly distinct parts.

I have represented this previously by a positive pressure system of type (9)

associated with the bow, followed by a similar negative system associated

with the middle of the run. Thus if I is the distance between the centres of

the two systems we have in the present notation

^ — ^1 ^2 ns^

Substituting in (8) and evaluating the integrals we find

^ = (Ai— A2)«~'"'cosi/c/, i/r = (Ai + A2)e~'"sin|KZ.

Hence from (7)

gp?^ = a:2(Ai2+ A22-2AiA2Cos«0c~^". (14)

The graph of E is a mean curve similar to (12) with oscillations super-

posed upon it, humps and hollows corresponding to minima and maxima of

cos kI or cos (jjil/v^).

It is of interest to note that if Ai and A2 are equal, we have

E = const. X e~^" sin^ ^kI. (15)

Thus, in a hollow, E would be actually zero if the two pressure systems

were equal in magnitude. This, of course, follows at once from general

principles ; if we have a pressure system followed at a fixed distance by an

equal and similar system, then there are certain wave-lengths and corre-

sponding speeds for' which the main regular waves due to the two systems

cancel each other out exactly. A moving body which would produce such

a state of affairs would be, in Lord Kelvin's phrase, a waveless pontoon.

Of course, this does not occur in ship forms, and there are several reasons

why it could not be expected to do so. In fact we have in general to suppose

A2 much less than Ai in (13). However, it is conceivable that some change

of form might give more effective interference effects of this kind and so

deepen the hollows in the resistance curve, though possibly as a practical

suggestion it may be subject to the same limitation as in other cases, namely,

even if the wave-making resistance were lessened in this way probably the

alterations would so increase frictional and other resistances that there might

be no gain on the whole.

5. Baker and Kent have pointed out that in certain cases the pressure

distribution at the entrance of a ship form is not simply a liump of excess

pressure, but is a hump followed by a hollow of negative pressure. They

assign to the interference of these two parts a certain subsidiary interference

effect in the resistance which may become important when it coincides with
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one due to the bow and stern systems. This follows on general grounds, and

might be represented analytically as in §4, but it is worth while examining

other distributions with this character.

In the first place consider one which does not give the desired interference

effect, namely,

The grapli has been drawn for certain numerical values of the constants

and is curve A in fig. 1.

We have -[
A|, >i'(

.f+«'
d^ = i-n-Ae

Hence, from (7) and (8),

<^ = ; i/r = ttAc-"
;

gpR = TrVA^e-a". (17)

We have here the same form for E as a function of v as in (11) for the single

hump of positive pressure ; we do not get the interference effect which might

have been expected. This may be explained by remarking that the pressure

falls away from the maximum only slowly ; in other words, the hump and

hollow are not sufficiently pronounced for their* individuality to show

directly in the final formula. In the previous section, where the distribu-

tion is l/(|^+a*) instead of f/(P+ a^), the maximum and minimum are more

pronounced and we get a typical oscillating term in the final result. This

view may be confirmed by another example.

6. Consider
At:

(18)
Ag

This distribution is graphed in curve B of fig. 1, arranged so as to have the

same minimum and maximum as for (16) ; the curves A and B illustrate
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clearly the difference in question. Numerically, if ^o is the position of

the maximum, at 3£j the value of p from (16) has fallen to 3/5 of the

maximum, while from (18) it has fallen to 1/7 of the same value.

The poles of the function in (18) are +(l±i)a ; thus from (8) we have

;y;
= 27ri

+2«

^7^

{H«(i-0}{H«(i+0}{f-«(i-^)}

{|-«(l + z)} {|+ a(l+i)} {|_a(l_i)}

a(l+.-)

-.(l-i)

= 7—5 e « Sin UK.
2a^

The wave-making resistance, E, is given by

4^/3a*E = /c^Ti^A^e-^" sin2 ««. (19)

We have now the oscillating factor sin^a/c. There will be, for instance, a

hump on the resistance curve when 2a/e = tt, that is, when the half wave-

length is equal to 2a. It may be noticed that this is nearly, but not exactly,

the distance between the maximiun and minimum of p ; from (18) it follows

that the latter distance is 2a^(4/3), or approximately 215a.

We also have E exactly zero in the hollows in the resistance curve, a result

which follows from the numerical equality of the positive and negative

pressures at equal distances from the origin. We can make the negative

pressures less by considering an unsymmetrical distribution.

7. Let the pressure be

p = ^
. (20)

In this case the graph would be as in fig. 1, with the curve B for positive f

and the curve C for negative values.

If the poles of (20) are a\ + ihi and 03+ 1162, we have

«!+ «a = 0,

aiHV+ a2^ -1-63^-1- 4aia2 = 0,

2 {ai(«3H622)-l-a3(aiHV)} = /8,

(«iHV)(«2^-HV) = 4«*.

In forming the function )(^ .by the previous method we have two parts.

The part for the pole a\ + ibi is

I

(21)

2iri
|g«f

{^-{ai-ibi)} {^-{a2+ ih)\ {^-(a2-ib2)} flj+tft

-Kb,
•JT («! -1- ihi) e"

hi
'
(«! — a^f— (61^— ^2^)+ 2 ibi («i— 0-2)

'

(22)
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^

There is also a similar expression corresponding to the pole ag + tij ; from
(21) we see that the result can be written in the form

X = (Ai + iBi)e''<"'c-'''i-(A2 + zB2)e-""i«-''\

Hence for the resistance we have, from (7),

(JP'^Ik'^ = (Ai2+ Bl2)e-2V + (A22+B22)g-2V

-2 {(AiAs+ BiBj) cos 2«iA:-(A2Bi-AiB3)sin 2«i/c} e-(*.+''-.)«. (23)

We notice how the presence of the smaller negative pressure complicates
the mathematical expressions. On the other hand, all the terms are of the
same type as in simpler cases; we have three terms involving the same
exponential function, the third having an oscillating factor co°s(2«ai + 6),
where

tan e = (A2Bi-AiB2)/(AiA2+ BiB2). (24)
The humps and hollows on the curve for R Will not coincide exactly with

those obtained by graphing

e-2«(''.+;'.)cos(2ai« + 6), with >c = ff/v\

but the agreement will be sufficiently close for present purposes.
Accordingly, the maxima for E will be near speeds for which

2aiK+ e = n7r; n = 1, 3, 5, ...

.

The corresponding speeds and wave-lengths are given by

^2 _ 2gai
. -^ _ 47rffli

mr— e' mr— e'
^^^^

In the previous case of symmetry, with the result in (19), the humps
occur at wave-lengths 4a/«, that is when the wave-length is equal to or an
odd sub-multiple of a certain length

; a similar statement in terms of velocity
brings in the series 1, 1/^/3, 1/^5, etc. In the present case we see from
(24) that this arrangement is somewhat disturbed by the presence of the phase
6, a quantity which may possibly be small compared with tt. A complete
algebraical study might be made, but possibly a simpler way would be to
start from a graph of the pressure curve and carry out the integrations
involved in (8) by graphical methods. We can also obtain information by
working out some numerical examples ; one may suffice at present, namely,

^ ^*-180^-F2419' (^^)

The pressure curve is of the form BC, shown in fig. 1, with

h/R = 0-541

;

/ = 10-66.

Further, with the previous notation,

«i = -aj =5, 6j = 4, b2 = v/34.
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Working out the numerical values from (22) we obtain for the resistance,

omitting a constant factor,

R = 516e-8« + 353e-"-66<_857cos(10«:-6)e-9'8^ (27)

with K = gli:^. tan e = 0-017.

We verify that in this case e is, in fact, very small, consequently the simple

relation between speeds at which there are humps is not appreciably altered.

The absolute position of these humps on the K,?; curve may be sliglilly dis-

placed. For instance, the final hump occurs when lO/c is equal to v, that is

when the half wave-length is equal to 10 ; on the other hand, the distance I

between the maximum and minimum on the pressure curve is 1066 units.

8. We turn now to more complicated distributions of pressure similar to

those obtained by Baker and Kent, to which reference has already been made.

We can build up a rational algebraic fraction which has at least the salient

features of these curves ; for instance, the graph of fig. 2 is represented by

2f _X2-^2
P (28)

r*-(XH/x^)f-fH^H/^*)'

where X and /j, are constants. We have, on the curve,

OA = X, OB = A/Cie^' + Z^')]. OC = ^, AE = CD = 2/{ix.^-\%

Fi o. 2.

With different values of X and fi, one could obtain variations in the

relative prominence of OF compared with CD, and in other features.

If the roots of the denominator in (28) are + (a+ ib), we have

2(a='-J2) =x2+ yLi2,

2(a2 + &2)2=x*-f-/i*;}

Using these relations in evaluating the integral t^, we obtain

2(fa-ft2-F&^)e"^
X = 27ri

+ 2Tri

{^-(a-ib)} {^+ (a+ ib)} {^+(a-ib)}

2(g^-ft^+ &^)

{^-{a+ ib)} {^-(a-ib)} {^+(a + ib)} -a + ib

(29)
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On simplification this leads to

X = 2'jTe~'"' {hco5 Ka— asm Ka)l{a'^+ 1/^).

Hence from (7) the corresponding resistance is given by

(«2+ i=')y/)K = 47rVc-2'< sin2(«a-e), (30)

with tan e = hja.

We have in (30) a form very similar to those we have already studied.

The phase e means a bodily displacement of the series of humps and hollows

;

but, again, e is small under the usual circumstances, when the difference

between fi and X is small compared with either.

Further, because of the symmetry of the distribution fore and aft, there are

values of k, with corresponding speeds, for which E is zero ; we have seen
that to avoid this result we must suppose the magnitude of the pressure p to

be less in the vicinity of the run than at the entrance. We could introduce

this want of symmetry by considering

_ f2— c^

In the expressioTi for the integral x we should have a part corresponding
to each of the poles ai + ii, and Ui+ ibi; in consequence, the resistance E
would be similar in form to the expression in (23).

From (30) we notice that the wave-lengths corresponding to humps on the
resistance curve are submultiples of 2a ; also when X and ^l are nearly equal,
2ffi IS of the order 2^, the distance between the two positive pressure humps.
The typical interference effects in this example are due to the interference of
the bow and stern systems

;
in order to get a secondary interference effect

between the positive and negative parts at the bow these must have separate
individuality to a greater degree, as we saw in § 5. For instance, we could
consider two distributions like (20), one associated with the entrance, the
other reversed and associated with the run ; we should then have a very
general type of distribution represented by

It is unnecessary to graph this or to put down expressions for x and E.
We should obtain a sum of expressions like (23) involving sines and cosines
of 2/ca, and of 2/<:rt2, and, in addition, of kI. There would be in general
various possibilities of subsidiary interference effects ; the main one would be
the bow and stern interference represented by d, and the next in importance
that between the positive and negative paits at the bow represented by 2«:ai.

There would also be the possibility of these two effects adding together at
certain speeds.
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9. One could obtain more maxima, or increased waviness, in the pressure

curve by introducing higher powers of ^ into the fractions we have used.

With the same general method for evaluating the integral
x^

it follows that

we should obtain expressions of the same type, only more complicated

in form.

The various examples which have been studied cover a wide range of

distributions of the type which one would expect to be associated with the

motion of a ship, in respect to the formation of transverse waves. It may be

said that the corresponding resistance curves do not differ essentially from

those obtained from a simple distribution, only with the introduction of

additional coefficients there is possible a wider range of variation.

Harhison and Sons, Printers in Ordinary to His Majesty, St. Martin's Lane,
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The hiitial Wave Resistance of a Moving Surface Pressure.

By T. H. Hayelock, F.R.S., Professor of Applied Mathematics

in the University of Durham.

(Received January 18, 1917.)

1. The study of the water waves produced by the motion of an assigned

pressure distribution over the surface has hitherto been limited to the steady

state attained when the system has been moving with uniform velocity for a

very long time. In his latest series of papers on water waves. Lord Kelvin*

made an elaborate graphical and numerical study of cognate problems, and

expressed the hope of applying his methods to calculate the initiation and

continued growth of canal ship-waves due to the sudden commencement and

continued application of a moving, steady surface pressure.

In the following paper, I have not attempted any analysis of the surface

elevation itself, but I have proceeded directly to the calculation of the corre-

sponding wave resistance. At present the wave resistance is known only

for the steady state for certain localised pressure systems in uniform motion,

and it seems desirable to attempt some estimate of the time taken to attain

this state when we take into account the beginnings of the motion. One

might examine the effect of initial acceleration, but I have limited the

problem by considering only the case of a system which is suddenly

established, and is at the same instant set in motion with uniform velocity.

* Kelvin, ' Math, and Phys. Papers,' vol. 4, p. 456 (1906).
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The work is arranged in the following order : a general expression for the

wave resistance as a function of the time, an exact solution for a certain

waveless system, a comparison of this solution and the group approximation,

and an approximate solution for certain systems which leave regular waves

in their rear.

2. Consider, first, the effect of a single impulse applied to the surface of

deep water, with no initial displacement of the surface. Take the axis of y

vertically upwards, the axis of x horizontal, and the origin in the undisturbed

surface. If the impulse is given by F(2;), and if the Fourier method is

applicable, the elevation at any time t is given by

—rrgpy =^Ky?,m{KYt)dK[ r(a)e"'(^-'')c?a, (1)

where V = ((//k)^, and the real part of the integral is to be taken. The

effect of a pressure system, whether stationary or moving, can be obtained by

integrating (1) suitably with respect to the time. For the pressure system

may be considered as a succession of impulses ; to each impulse there

corresponds a fluid motion with definite velocity potential, and the velocity

potential of the fluid motion at any instaut is the sum of the velocity

potentials due to all the previous impulses. Similarly, the corresponding

surface elevations are simply superposed, and we obtain the required solution

by an integration.

For a pressure system moving with uniform velocity c, we have to

substitute x+ d for x in (1) and then integrate with respect to t between

the limits and i. But the solution so obtained is indeterminate to a

certain extent, for we can superpose on it any infinite train of waves of

wave velocity c. The so-called practical solution is found by choosing the

amplitude of this train so as to annul the main regular waves in front of

the travelling system. The integrals are, in fact, indeterminate, and are

evaluated by taking their principal value, in Cauchy's sense of the term.

Another way of avoiding this difficulty is to introduce small frictional terms

proportional to the velocity. The integrals are then determinate, though

more complicated in form ; however, the final results, after the analysis is

completed, can be simplified by taking the frictional coefficient as small as

we please. We shall use this method, and it is sufficient for our purpose to

write, instead of (1),

fOO
poo

g-^ct^Vsin(«;V<)'^« F(a)e"(^-»'(ia,

where, ultimately,
fj.

is to be considered small*

* Compare Lamb, 'Hydrodynamics,' 1932 edn. p. 348.

(2)
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Consider, then, a pressure system

p = F(.^), (3)

which is suddenly established, and is at the same instant set in motion with
uniform velocity c along the axis of x.

Putting x = m + ct, the surface elevation at any time t after the start is

given by

—n-gpy = j e-'-'^'^du /<;V6'''(='+'=">sin («Vm) cIk [" F («) e-"»rZa. (4)

For simplicity, we shall confine ourselves to pressure systems which are

symmetrical with respect to the origin
; so that

(at) = F (a) e-'"^da = 2 pF (a) COS Ko. da. (5)

Also we shall use only localised distributions for which the integrals are

finite and determinate ; the systems will be finite and continuous and such

that the integral pressure is finite, that is, the integral
\

F(a)dx
J —CO

convergent. Carrying out the integration with respect to u, we obtain

-27rffpy = r«V,^(/c)e--| J; . + \ . \dK
Jo (_k{\ +C) + lflC K(V—c)— lfJ.cJ

Jo Lk {\ -i- C) + tflC K(V—c)—lfMCj ^ '

The first integral represents the steady state, while the second gives the

deviation from it when we take into account the beginning of the motion.

3. From the first integral in (6) we have, with k^ = g/c^,

T f Kd>(K)e'"^dK
-Trg py = KoUm] ^\^ :. (7)

The integral is to be evaluated first, before we make /x zero, otherwise it is

indeterminate. The interpretation for certain types of localised pressure

system is well known ; in such cases the solution takes the form

y = /M> ^>o,
o

1/= —(f>(Ko)smKom+/(— m), bi < 0. (8)

This solution represents an infinite train of regular waves in the rear

of the moving system, together with a disturbance symmetrical fore and aft

which becomes negligible at a distance depending upon the concentration and
the velocity. For our present purpose, all the examples we use are included

under the case

tj) (k) = K^e-"', w > 0, a > 0. (9)
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To verify the soiuiiou (8) in this case, regard k in (7) as a complex variable

For ns positive, integrate round a sector of radius E bounded by the lines

^ = ynd 6 = (0</3<-^7r). Under the specified conditions, it can be

shown that the integral along the arc r = R tends to zero as E is made

infinite. In this way the integral (7) is transformed into an integral, along

the line ^ = /3, in which we can make /a zero.

For ni negative, integrate round a sector of radius E bounded by the lines

^ = and 6 = 0, with — tan""i2/A//fo>'/8> — Jtt. We get a similar result,

except that the integrand has now a simple pole within the sector at the

point Ko— 2fii approximately. The residue at this pole gives the term in (8)

which represents the regular train of waves in the rear of the system. It can

also be verified that in this case y and dy/dm are finite and continuous

throughout.

Eeturning to the general expression (6), the second integral represents the

deviation from the steady state. It contains exp {i«(rir + rf) } as a factor, and

we see from its form that it represents the effect at time i of a certain initial

distribution of velocity and displacement. To illustrate this point, consider

a stationary pressure system which is suddenly established at a given instant

and maintained constant. The effect is the same as if there had been in

existence up to the given instant two equal and opposite systems with their

ultimate static effect upon the water surface fully established, the negative

system being then suddenly annulled. Thus the subsequent effect is the

steady state of the positive system combined with the effect of an initial

displacement equal to the steady state of an equal negative system. In the

same way, for a pressure system which is suddenly established and started in

uniform motion, the effect is the superposition of the steady state of this

system and the disturbance due to initial conditions given by the steady state

of an equal negative system in uniform motion. We shall find this principle

of use in a later section.

4. The wave resistance Ei in the steady .state is usually obtained from

energy principles applied to the regular waves. The front of the train

advances with velocity c, while the rate of flow of energy across any fixed

vertical plane in the rear is the corresponding group velocity ^c ; from the

amplitude of the regular waves in (8), by equating the net rate of gain of

fluid energy to Eic, it follows that

ii, = >coH4>{ico)y/ffp. (10)

Some consideration is necessary before we can apply this method to the

motion before the steady state has been attained.
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Begin with a case in which there is no ambiguity, namely, when the waves
are produced by a rigid body moving horizontally througli the liquid. We
can apply the general hydrodynamical principle that the rate of increase of
total energy of the fluid is equal to the activity of the pressure taken over all

the bounding surfaces. If we equate the rate of increase of energy to the
product of a force E and the velocity of the rigid body, it follows "that E is

simply the total fluid pressure on the moving body resolved horizontally. This
result can easily be verified by direct calculation for the steady state, whether
the waves are produced by the motion of a rigid Ijody or by the motion of an
assigned surface pressure ; in fact, the two cases are identical in the steady
state, for we can imagine the surface pressure to be applied by a rigid cover
which fits the water surface everywhere.

Consider now the problem before the steady state has been established. If
the waves are caused by a moving rigid body, we can use either definition for

the wave resistance
; we can calculate it from the rate of increase of fluid

energy or from the total horizontal pressure on the body. We are not
discussing this case, simply because so far the analysis has proved too
complicated to allow of suitable reduction. We replace this problem by that
of the motion of an assigned surface pressure. Now we can calculate the rate
of increase of the total energy of the fluid when the pressure system is in
motion. But it would not be satisfactory to divide this quantity by the
velocity of the pressure system and define the quotient as the wave resistance,
for part of the increase of fluid energy is independent of the motion of the
pressure system. For instance, if a stationary pressure system is suddenly
established and maintained steady, the activity of the surface pressure is not zero
immediately after the initial instant; there is a subsequent flow of energy,
whose rate ultimately subsides to zero. From these considerations it seems
that we should get results more comparable with the wave resistance of a
rigid body by adopting the alternative method of calculation. In what
foUows we shall therefore calculate for any instant the total horizontal
component of the surface pressure regarded as applied normally to the surface
of the water

; and we shall define this to be the wave resistance.

With the usual limitation that the slope of the surface is everywhere
small, we have from this definition

^=-\y^-^i'-- (11)

We can verify that this gives the same result (10) for the steady state.

For instance, taking the expressions in (8), the part which is symmetrical
with respect to the origin gives no contribution to E, and we obtain
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5'pEi = 2 F(bj) . Ka^cf> (ko) cos Kam dm = a:o^{(/) (ko)}^

or if we work directly from the integral (7), we have

.,pE, = «o Lnn
J^ ,(,,_^V^_2^,,

. (12)

where the real part is to be taken. Under the general conditions specified

for
<f)

{k), or, in particular, for the case given in (9), it can be shown that this

leads to the same expression (10). The wave resistance in general is the

sum of two parts, the steady value Ei, as given by (10), and the deviation Eg.

Using the definition (11) with the second integral in (6), we find

-2.gpR. = Lim e-^- ^ -=V{^(«)}^[^^^^3^p- +
-^^^^^^.J...

(13)

5. Consider first a special case in which the pressure system is such that

there are no regular waves left in the rear, a type which Kelvin called a

waveless system. It follows from (10), (12), and (13), that this is the case

when the system is such that ^{ic) is of the form (K— Ko)yfr(K), where >}r(K)

remains finite. We have then

F (m) cos Km dm =
(f>

(^k) = (k— Ko) yjr (k). (14)

If this system is made to travel with the velocity c, for which 27r/«o is the

free wave-length, there will be no regular train of waves in the rear. The

integrals (12) and (13) now remain finite and determinate with fi zero; we

can thus simplify the expressions by making /* zero. The integral (12)

vanishes, as does also the equivalent expression (10). Then, taking the real

part of (13), we find for the total wave resistance of this system at any

tim.e t

—'n-gp'R = K(fi\ K(K—Ko){->}r(K)y

X {«* sin KVt cos Kct— Ka^ cos xYt sin Kct} die. (15)

It is of interest to examine this solution when the integral can be evaluated

exactly in finite terms. Burnside* suggested some years ago a method of

building up exact solutions of certain wave problems, and similar forms

have been analysed in detail by Kelvin, after obtaining the solutions by a

different method. The cases in which we can carry out the integrations in

(15) lead to similar functions ; we obtain them by taking

•«/r(«) = /cie-™, r>0. (16)

* W. Burnside, ' Proc. Lond. Math. Soc.,' vol. 20, p. 31 (1888).
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This case is the simplest of the type which allows of exact evaluation of (15),

and for which the integral pressure is finite. To derive the corresponding

pressure system, we make use of Euler's integrals of the form

„«-ig-A.cosa(>og(x,Ksina)f;« = A.-T(w.)cos?ia, (17)

X>0, 11 >Q, _i-7r<a<i,r.

Using the Fourier integral theorem, combined with (16) and (17), we find

ttY {x) = {k— Ko)K^e-''' Gos Ko: die

= r (f) (r2 + x2)-9/s cos (f tan-la;/r)-«or (f) (r2+ a;2)-5/8 cos (| tan-i x/r).

(18)

The two terms of this expression are easily graphed when expressed in

terms of the angle ta.n''^ (x/r); two numerical cases are shown later.

"We can now find the resistance E for the system (18), travelling with velocity

'^ = >/(5'/«o). Substituting (17) in (15), and writing k = u^,gH = q, d — p,
we have

— i -irrjpE = — a:o {v?— kqU*) e-^'"' sin pu^ cos qu du

+ KoM (u''— Koic^) e'^''"" cos pu^ sin qu du. (19)

The integrals involved can all be derived, by dififerentiatiou with respect to

the parameters, from

/•OO

g-ip-ip),.' cos qu du = ^ [-Tr/ip-ip)]^ e-5'M(P-'W (20)

Carrying out these operations, we obtain finally

^[KoH-ii^Asm{:^e-<i>) + \^q^A.Hin{^e-4>)-^^q^AHm{i^e-4,)

+ ^j«A*sin(-Vi0-<^)} + «o3/2{|sin(|^-0)-|22Asin(|0-</.)

+ -iV2*A2 s,in{^e-^)}+i^ qA' cos (f ^- <^) -i^q^A'^ cos {^6-<j>)

+ Uq'A'cos(ild+ cf>)-T^q^A'cos(Ji^d-4>)

+ «o{-¥?Acos(|0-,^) + |.^3A2cos(|0-</,)-^56A3cos(V^-0)}],

where

q=gH; A = {4:r'+ cH^yi e = ta.n-\ct/2r)
; cj, = gdyi{4:7-^ + c^e-).

6. Before working out numerical examples, it is convenient to record the
asymptotic expansion suitable for large values of ct/2r. From (21), by
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writing 6 — ^tt— tan~i (2r/c<), and expanding the various terms, we get, up

to and including terms in {2r/cty/^.

+ ^^3c-i5/2r3/2{374.^(18y3_75)}g-^cos(^i;/4c-|7r), (22)

where Xo = 2'irc^lg and /3 = Trr/Xo. If the pressure system has moved

through n wave-lengths, we have ct = ?i\o. and the ratio of the amplitudes

of the two terms in (22) is

an expression which gives some estimate of the approximation obtained by

using only the iirst term of (22). It depends not only upon the distance

travelled, but also upon the ratio of the effective breadth of the system to

the free wave-length for the assigned velocity.

Compare this approximation with that obtained by applying Kelvin's

group method directly to the integral expression for the wave resistance.

Under certain conditions,* an approximate value of an integral of the form

f F («)«'>' Wc?/c

is given by

the upper or lower sign being taken in the exponential according as/" (a) is

positive or negative, and a being a root of/' (a) = 0. It is assumed that the

circular function in the integral goes through a large number of periods

within the range of integration, while F (/c) changes comparatively slowly ; in

addition, the quotient/"' («)/{/" {a)Y''^ must be small.

Apply this to the form for F given in (13). The second term within the

square brackets contributes nothing to the approximation; from the first

term we have, with ct = )i\o,

/(«) = -K{Y-c)t= -gHK^ + cU.

Hence

a = !j/4c^
;

/" («) = 2^t/ff ;
/'" («)/{/' {^)V" = ^Is/iirn).

From (13) and (24) the group value of R is

R = _ 1 Lun .-- Vm yg^^'^("))^ ^^^'-'•'^. (25)
2Trgp ^-,a ^ Wtlg^l^a^l^— coL— ific

Taking the real part of this expression and putting
fj,

zero, we obtain

^=-2^^i^g^cos(,./4.-,M (26)

* Lamb, 'Hydrodynamics,' 1932 edn. p. 395.
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It should be noted that for a pressure system which leaves regular waves
in its rear, we cannot take (26) as an approximation for the limiting value

of (13) when n-*0, except under certain further limitations. For the

present this difficulty does not arise, as we are considering a waveless system

with ^ («) of the form {k—k^) -^(k); we have seen that in this case the

integrals (12) and (13) remain finite and determinate with fi zero.

In particular, for the forms (16) and CIS), the group formula (26)
reduces to

—n-'l'gpn = T|«.9*c-i7/2rV2c-'"-/^cos(^</4c+ |7r), (27)

which, from (22), agrees with the first term in the asymptotic expansion of

the exact solution for this case.

Instead of expressing E as a function of the time t, we can use the

distance travelled, or again the number n of free wave-lengths Xo through
which the system has moved ; in the last case the circular function in (27)
becomes cos l{2n+l) tt. The form of (27) agrees with the definition of the

wave resistance as the resolved total pressure. For after a sufficient time,

the surface in the neighbourhood of the moving origin consists chiefly of the
simple waves whose group velocity is the velocity c of the pressure system

;

thus the wave-length there is 4\o-

7. Consider now two numerical examples of the exact solution (21) with
different values of the ratio r/\o.

In the first place, we shall adopt units used by Kelvin, for comparison and
for simplicity of calculation.

Casei: ^ = 4 ; r = 1 ; Xo = 2 ; ko = -rr ; c = 2/v^7r.

From (18) the pressure system F (x) can be obtained by graphing

47r cos V« ^ cos
-f-
— 5 cos */* d cos | 0,

where = tan -> (x/r). The graph is shown in curve (1) of fig. 1 ; the
curve has maxima near x= ± 0-2, though they are almost inappreciable on
the diagram.

It is convenient to graph the resistance curve upon a base f = ct/2r; in
this particular case | is also the number of wave-lengths X^ through which
the system has moved. The angles of the formula (21) are now

= tan--i|; ; (j> = 7rP/2(l + f).

It is unnecessary to repeat the expression (21) with these values ; each of
the 14 terms can be easily calculated for any given value of f. The results

are shown in curve (l)of fig. 2; to obtain the curve 15 points were calculated
by the formula (21).

The wave resistance decreases ultimately to zero, as it should for a waveless
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system, but it approaches the steady state very slowly. This is explained

when we examine the graph of the pressure system in this case. The

waveless character is due to the mutual interference effects produced by

the peaks of the pressure graph, and fig. 1 shows how inappreciable the peaks
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are in this case. Hence the slowness with which the steady state is attained
and the probable lack of stability of the steady state.

To compare the group approximation with the exact solution, we have
from (27)

-TT^I^gpV. = 9 X 2->5/2;r%-V2e-V2 cos ^{2n + l)7r. (28)

The following is a comparison of the values of lOM^/jE, as given by (28)
and the exact formula (21):

n.
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driven at any other steady velocity ; it will have a steady resistance, which

we can calculate from the formula (10) ; in this case it is

gpB. = K^I\K-0-08ye-^, k = g/Y". (29)

This steady wave resistance has a maximum at a velocity of about

5'25 ft./sec, and the value o( gpB. is then 16'4x 10"^. Hence the maximum
resistance due to the sudden starting of the system at its waveless speed is

about one-half the maximum steady resistance at any uniform speed.

8. We have been able to obtain an exact solution for a special type of

waveless system ; we leave this now to consider more generally a symmetrical

localised pressure system, which is suddenly established and set in motion.

We have seen that the surface elevation at any time is found by super-

posing the steady state of the system and the effect due to initial conditions

given by the steady state of an equal negative system in uniform motion.

Apply this to a case in which the steady state consists of an infinite train of

regular waves in rear of the system, together with a localised displacement

symmetrical with respect to the moving origin. Let be the fixed origin

and starting point, and C the position at time t. The deviation from the

ultimate steady state consists of the effect due to a certain initial distribution

of displacement and velocity localised round 0, together with the subsequent

state of a semi-infinite train of regular waves, which at the initial instant

had a definite front at the point 0. We may describe the latter part in

general terms as a regular train with a front, more or less definite according

to the time, at a point G corresponding to the group velocity, and in

advance of G a disturbance which may be called the forerunner. If OC is

sufficiently large, and if we require the surface elevation only at points

sufficiently far in advance of G, the forerunner is given with considerable

accuracy by Kelvin's group method of approximation. The argument is

represented diagrammatically in fig. 3, tlie continuous line showing the

elevation and the dotted line the travelling pressure system.

Fig 3

The wave resistance being defined as the total horizontal component of the

pressure system, we divide it into two parts. The first part is the final

steady value /co^{^(«o)}^/^p as given in (10), and the second is the deviation

given by the integral in (13). The latter represents the resolved pressure
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system as if the surface elevation were that due to the stoppage of a negative
system, as represented in fig. 3.

For a concentrated pressure system, the value of the integral (13) will be
given approximately by the Kelvin group method, if the time is sufficiently
large

;
that is, if C is sufficiently far in advance of G for us to neglect tlie

contribution of the applied pressure acting on the surface to the rear of G.
Without attempting to specify these conditions more precisely, we shall

apply the method to the type of system used in the previous sections ; from
the previous exact solution we have been able to estimate somewhat the
degree of accuracy of the group approximation.

The group value of (13) is given in (26). Hence the wave resistance, for
sufficiently large values of t, is given by

^ =
f, (HI)}"-«B^' "'<''/4..W (30,

9. Apply this to the pressure distribution

ttF (x) = r (I)
(,'2+ a.2)-9/B cos {| tan-i (x/r)}, (31)

for which 4>(>c) = /cV*^-, with « = r//cl The graph of this distribution is

shown in curve (3) of fig. 1.

We have

pB = ^.-"^-z-'-
^^g^j',^^^^^^^ .-.W2c^cos(^</4c+ x^).

(32)

The value of E oscillates about the final steady value. The relative
deviation is given by the ratio of the two terms, namely,

2-i6/2^-i„-i/2g3WA„eos
I (2m+ l)7r,

where 7^ is the wave-length of the regular train and d = A^n , We may
obtain numerical values by using the two cases of the previous sections.

For Case i we have r = 1, Tw = 2, and we find the following comparison
between Ei, the final steady resistance, and Eg, the deviation given by the
second term of (32) :

—

n.
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In Case ii, r = 2 and Xo = 257r. We find that when ii = 9, the deviation

is already less than 0'06 per cent.

10. Consider now a simpler type of localised pressure distribution, namely,

7rF(x)=r/{r^+ x^). (33)

This type leads to a steady wave resistance whose variation with the

velocity is more like that of a ship model. We have (^(k) = e"''", and (30)

gives

pl> =
I

e-'^9rlc' -
^J,^,,,^,,,

e-9ri^^^ COS {gtjAc + I-tt). (34)

The relative deviation is now 32 times as large as in the previous case, since

icos ^(2re+l)7r.
Ks _ e^''""/^

With r = 1, \o= 2, the value of E2/E1 is about 0-5 for n = 100. We
should have to take n of the order 10,000 before bringing the deviation from

the steady value below 5 per cent.

On the other hand, with r = 2, Xo = 257r, the deviation is under 2 per cent,

when n = 9, or at about 35 seconds after the beginning of the motion ; it is

less than 2 per cent, when ji = 4, or after a travel of rather more than

300 feet.

11. The waves produced by the horizontal motion of a circular cylinder of

small radius travelling at a considerable depth h below the surface may be

compared with those produced by the surface pressure

ttF (x) = Ac^ {h^-^)l{h^+ a?f. (3.5)

We assume that the intensity of the system is proportional to the square

of the velocity. It appears that the steady wave resistance is then the

same function of the velocity as in the motion of the cylinder ;* for we have

(/> (k) = Ac2«;e-'*,

and hence

pE =^ c~^-9"l'' - Q^^Xv,^y^
'"'"'^^ '°' ^^^/*' + ^ '^^- ^^'^^

As a numerical example, take the case when the velocity is such that

the steady resistance Ei has its maximum value ; that is, when c^ = gh.

Then we have
T?_ /,3/2

cosi(2m+l)7r. (37)
E2 e^l^

El 2"/Vwi/2

The value of the ratio means a deviation from the steady value of about

0-8 per cent, when n = 3|, that is, when the system has travelled through a

distance 77rA.

*Lamb, 'Hydrodynamics,' 1932 edn. p. 410.
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Some Cases of Wave Motion due to a Submerged Obstacle.

By T. H. Havelock, F.E.S.

(Eeceived May 14, 1917.)

1. As far as I am aware, only one case of wave motion caused by a

submerged obstacle has been worked out in any detail, namely the two-

dimensional motion due to a circular cylinder ; for this case. Prof. Lamb has

given a solution applicable when the cylinder is of small radius and is at a

considerable depth.* The method can be extended to bodies of different

shape, and my object in this paper is to work out the simplest three-

dimensional case, the motion of a submerged sphere.

The problem I have considered specially is the wave resistance of the

submerged body. In the two-dimensional case, this is calculated by considera-

tions of energy and work applied to the train of regular waves. But for a

moving sphere the wave system is more complicated, like the well-known

wave pattern for a moving point disturbance, and similar methods are not so

easily applied ; I have therefore calculated directly the horizontal resultant

of the fluid pressure on the sphere. Before working out this case, the

analysis for the circular cylinder is repeated, because it is necessary to carry

the approximation a stage further than in Prof. Lamb's solution in order to

verify that the resultant horizontal pressure on the cylinder is the same as

the wave resistance obtained by the method of energy.

The stages in approximating to the velocity potential may be described in

terms of successive images ; the first stage ^i is the image of a uniform

stream in the submerged body, the second stage ^2 is the image of ^1 in the

free surface, the third ^3 is the image of <^2 in the submerged body, and so

on. In order to keep the integrals convergent, a small frictional coefficient is

introduced in the usual manner ; after the calculations have been carried out,

the coefficient is made zero. Further, the solution for uniform motion is

built up so that expressions can be found for the velocity potential at any

time after the starting of the motion, although only the final steady state has

been studied in detail. The wave resistance of a sphere is found to have the

form const, x a?l^e~'^l^ Wi, 1 (a), in which a is 2gf/c^, with / the depth of the

sphere and c its velocity ; Wi, 1 (a) is a confluent hypergeometric function.

In order to graph the wave resistance as a function of the velocity,

expansions have been found for this particular variety of the function

* H. Lamb, 'Ann. di Matematica,' vol. 21, p. 237; also 'Hydrodynamics,'
6th edn. (1932) p. 410.
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Wt, m {«) ; it belongs to the logarithmic case for which a general expansion is

not available.

In general form the graph of the resistance is very similar to that of the

circular cylinder.

Circular Cylinder.

2. The steady state for uniform motion of the cylinder may be attacked

directly, as in Prof. Lamb's solution, but we shall adopt his suggestion of

building it up from simple oscillations. Take the axis of x in the free

surface of the water, and the axis of y vertically upwards. A circular

cylinder, of radius a, is making small oscillations parallel to Oa; with velocity

c cos a-t, the axis of the cylinder being horizontal and perpendicular to Ox,

and tlie mean position of the centre being the point (0, —/). A first

appproximation when the depth / is sufficiently large is found by ignoring

the surface effect altogether and putting

= Ca3(^|,.2)gi<rt. ,.3^3;2_^(2/+ /)2. (1)

This satisfies the boundary condition at the surface of the cylinder. For the

next step, add a term Xi to the velocity potential so as to satisfy the

conditions at the free surface, but ignoring meantime the disturbance

produced thereby at the surface of the cylinder. The term Xi must be a

potential function and it must satisfy the condition for deep water, namely,

dXi/dy = for 2/ = — 00 ; these conditions are fulfilled by

Xi
J

00

a{K)e"-'siaKxdK, (2)

where a is a function of « to be determined. This form is chosen because we

can satisfy the conditions at the free surface by using an equivalent form

for (1), since

x/^-^ = \
e-'''-y-^-fHinKxdK; y+f>0. (3)

Jo

The sui'face elevation is expressed similarly by

I poo

7] = e''^' /3 (k) sin kx dK. (4)
Jo

In order to keep the various integrals convergent, we assume that the

liquid has a slight amount of friction proportional to velocity ; in the sequel

the results are simplified by making the frictional coefficient /t tend to zero.

In these circumstances the pressure equation is

Hence the conditions at the free surface are, neglecting the square of the

velocity,

d4>/dt— gy+ ii4>= const.; —d(l>/dy = dr]/dt.
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Here is the velocity potential after (2) has been added to (1) ; thus the
equations for a and /3 are

ca^Ke-'^—Ku = iaB 1

la-cah-'f+iaa— f/^+ fica^e-'f+fia = Oj

From these we obtain the expressions for Xi and rj, namely

Xi = mV>*
f"

.y^+'^-W ^_.<^_„ 3i^ ^^

^

^
Jo ffK— a-'+ i/MO- *> ''

Jo fflc— (7''+ ^fla ^ ^

The expression for Xi can be divided into two parts

Xi = -caV'* re-'(f-y) sin kx ^«- 2caV>* f"
^«^-"^-^'sin «a^^/c

Jo Jo cr'^—i/u.(T—(/K '

If we regard Xj as the image of the oscillating cylinder in the free

surface, we see from the form of the first integral in (9) that part of the
image is a negative doublet at the image point (0,/). We obtain next the
velocity potential of the motion produced by a sudden small displacement of

the cylinder, and we take this to be equivalent to a momentary doublet of

constant strength. Supgose then that at a time t a doublet is suddenly
created, maintained constant for a time St, and then annihilated. The
velocity potential at any subsequent time t is given by a Fourier synthesis of

the preceding results for an oscillating cylinder, and we have

<^ = -^|/'"<'-''[</']^<^. (10)

where [0] is the sum of (1) and (9), omitting the factor e'"*.

Carrying out this integration for the value of ^ in (1) and for the first part
of (9) gives simply the momentary doublet at the centre of the cylinder and
the negative doublet at the image point. These doublets last for a short
time It

;
the subsequent fluid motion is contributed by the second part of

(9). For this we have to evaluate the real part of

foo
gw(i— t)

"We obtain the value by contour integration ; further we simplify the
result by neglecting jj?. We shall make fi zero ultimately, but we must
retain it sufficiently to keep the integrals convergent ; however, at one or

two stages, superfluous terms may be omitted when it is clear that the final

limiting values will not be affected. We find for (11) the value

_^e-»^<'-^)sin{KV(;;-T)UV
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writing V for y/igJK) whenever it serves to simplify the notation. Hence

the velocity potential of the subsequent fluid motion after the cylinder has

been given a small displacement at time t is

= 2caaST(!-i''(*-^) r«Ve-«(-^-5'> sin«a;sin kY {t-T)dK. (12)

Finally we obtain the velocity potential for a cylinder in uniform motion

by substituting x-\-c{t— T) for x, noting that hereafter x will refer to a

moving origin immediately over the centre of the cylinder ; we then

integrate with respect to t from the start of the motion up to the instant in

question. "We could in this way obtain results for any stage of the motion,

but we limit the discussion to the final steady state ; for this we take — oo as

the lower limit in integrating with respect to t. Before writing down the

result, we must remember to introduce the integrated effect of the original

momentary doublet in (1) and its negative image, which were not included in

(11) ; these clearly add up to steady doublets. Hence we find for the steady

state

^ = D—Di + 2ca2rg-«(/-3')(AsinKa; + Bcos«a;)(^«, (13)

where D represents the doublet caPxjr^ at the point (0, —/), Di an equal

doublet at the point (0,/), and

2A - /^V(V + '^)
I

ic^YiY-c)

/c2(V+ c)2+ i;a2 K\Y-cy+ \^^'

4B - /^^^ M'^^ (U\

.3. Before proceeding further we may obtain the surface elevation from (13)

for comparison. The surface condition is now

—d(j)/di/ = drj/dt = —cdtj/dx.

Hence we have

r) = 2a^fl{3?+f)-2a^ [" {A. cos kx-^ sin Kx)e-'^dK, (15)

in which «o = gl(?- Further, since yu, is to be small, we may omit irrelevant

terms and put

A = —Ka{K— Ka)/{tc—{Ko+ i/i/c)}{K—(Ko—iiJ./c)},

B = Ko(fJ./c)/{K— (Ko+ i/l/c)}{K— (Ko— ifJL/c)}. (16)

The integral in (15) can then be written as

(•00 r p—ixx />t«i ~i

\i -T + '-—^j-lc-^fdK. (17)
Jo L«— «o—W^ /c— «o+ */i/cJ
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We transform these integrals by contour integration in the plane of a

complex variable k, treating separately the cases of x positive and x negative

;

after making fi zero in the final results we obtain

2a^f , , , , .
, n „ r'"??icosm/— «:osin?n/ „^ , „

V = ) . \c, + 4:Trw^Ko e " •''f sin kqX+ 2a?kq ^„
,

" ^ e"^ dvi; a; < 0,
a?+J^ Jo m?+ K.l

2a?f „ ,
{'^ m cos mf— kq sin m/ ^„ , . ., „.

ar+/2 Jo wr + A:^
'

These agree with Lamb's results for the circular cylinder in a uniform stream.

The wave resistance E is derived from the regular waves in the rear, by

considering the rate of increase of energy and taking into account the

propagation of energy in a regular train ; we have

E = \gp (amplitude)^ = ^n^(jpa^K,?e-^'''>i. (19)

4. We have now to obtain the resistance E by direct summation of the

horizontal component of fluid pressure on the cylinder. It is clearly

necessary to proceed to a further stage with the velocity potential, since we
have assumed so far that the surface effect is negligible in the neighbourhood

of the cylinder. If we write (13) as

</> = D + Xi, (20)

the doublet D is the first approximation, satisfying the boundary conditions

on the cylinder ; Xi is the image of the doublet in the free surface, found by

satisfying the conditions there. The next step is to find X2, the image of Xi
in the cylinder, ignoring then the effect of X2 at the free surface. It follows

that X2 is the image of Xi in the cylinder, found as if the cylinder were at

rest in a field defined by Xi. Taking polar co-ordinates with the origin at the

centre of the circular section of the cylinder, we have

a; = rcos^; ?/+/ = r sin ^ ; (21)

also the conditions for Xj are that it should be a potential function, the

components of velocity must vanish as r becomes infinite, and

3(Xi + X2)/3r = 0, forr = a. (22)

But from (13), Xi consists of a summation of terms of the form

<» cos
e"^ . KX.
sm

We obtain Xg by replacing each term by the expressions

e-«/g«a'6ine/,cos / 2cos (9/r),
sm ^ ' "

and the above conditions for X2 are then satisfied. This process amounts

simply to inversion ; we may think of Xi as due to a line distribution of
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sources and Xa is then a circle of sources on the inverse of this line with

respect to the cylinder. We have now for the velocity potential to this stage

(f>
= D + 2ca2j e-'''f-y'> {{A-^)8'm KX+B cos Kx}dK

Jo

+ 2cft2 re-/+"^'y/'-'
{ (A- ^) sin (/cA/^)+B cos (m'^x/j-") } d>c. (23)

We have put A— | for A so as to include under the integral sign the

doublet previously denoted by Di.

The method could theoretically be carried on step by step ; however, we
stop at this stage because it is sufficient for obtaining the wave resistance

E from the pressure equation to the same approximation as by the energy

method.

We have R = ap cos 0d0; (24)

p/p = -cd4>/dx-gy+ ^(j)-^q\ (25)

If we write (23) as ^ = D + Xi + Xa, and omit terms which obviously

contribute nothing to the value of R, we have, when r = a,

P- ,. 3 /-Y _i_Y \_i_ /Y^lYN l3D9(Xi + X2)

= {2c/a)8hidd(Xi+ X2)/de+ fi(Xi + X2), (26)

where we have used (22) and the value of D. From (23), omitting the

doublets D and Di, which will from symmetry give no contribution to R when

/M is zero, we have

p = 4ca^ f e-2'/+"'»'"»{2«cAsin0sin(</)-6')+ /xAsin(^

+ 2A:cBsin^cos((^-(9)+ /iBcos^}r^/<:, (27)

where (j) = Ka cos 0. Substituting in (24) we have an expression for R. We
may now change the order of integration and take first that witli respect

to ^ ; we can carry this out, after some transformation, by means of the

integrals

\
e^""'^ cos (h sine-nd)d0 = -n-h"/F {71 +1),

JO

r 6* ™= « cos (A sin + 710) d0 ^0, (28)

where % is a positive, odd integer. In fact the integration with respect to

gives simply 7r«a(/tcB+/AA); hence we have

R = iirpca* { K(KcB + fj,A)e-^''JdK, (29)

124



Wave Motion due to a Submerged Obstacle. 526

where A and B are given by (14), or by (16) since we suppose ^ small. Thus
we have

f.-»0 Jo {>C-(Ko+ lfM/c)} {K-{Ko-ifl/c)}

= 47rpca* Lim ^ {'l-KWe'^'of
J 2i (^/,)+ finite quantity}

which is the same as the previous expression (19).

Sphere.

5 A sphere of radius a is at depth /below the^Wface and is moving with
umform velocity c parallel to the axis of ^. The origin is in the free surface
the axis of z bemg drawn vertically upwards. As before, the first approxi-
mation is a doublet D given by

4> = ca?xl2r^
; r^ = a?-Vif+ {z +/)'. (31)

Tor the purpose of satisfying the conditions at the free surface we have

This suggests at once suitable forms for the next approximation and for the
tree surface; the equations are similar to (6) of the previous case, and we
obtain in the same way

^ = D-Di + Xi, (33-)

where Di is a doublet at the image point (0, 0,/) and

^^=-'^'a^jo^/(^'^)^-""-'^-j/-*-Jo[V{(^+ c«)Hy^}]sin(«Vz0^t..

The corresponding surface elevation is

^ = a?^^ e-^Jo{V(^+2/'))«^«

-o^^ v/M«-"//.r^«jVi- Jo[V{(x+;^.)H2/n]sin(«V«)^^. (35)

The first term represents the effect of the doublets D and D, It can be
verified by approximate methods that the second term includes a main part
like the well-known wave pattern for ship waves. Since the expression in
(35) gives fimte and continuous values for the surface elevation, it mioht be
of interest to examine some points in detail ; for instance, the elevation near^e Imes corresponding to the Hnes of cusps for a moving point disturbance.
However, we pass now to the calculation of the resultant horizontal pressure
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on the sphere. We have to find Xa the image of Xi in the sphere ; for this

we first put Xi into a different form by using

7rJo[«{(a;+ cw)2+ 2/2}i] = cos{/<:(a;+ c?i)cos^} cos(/c?/sin^)(:?^. (36)

From (36) and (34), after carrying out the integration with respect to u,

we obtain

ttXi = ca^ c- «<''"-') KdK {A sin {kx cos (^)+ B cos {kx cos ^) }

X cos (/cy sin 0) cos ^ d^, (37)

where A and B are given by (14) after writing c cos ^ for c.

For convenience in the following analysis, we transfer the origin to the

centre of the sphere, noting that in (37) we shall have exp. (
— 2k/+a:2) in

place of exp. (— K/4-K2). Also we use polar co-ordinates

X = r cos a
; 2/ = '" sin a cos /3 ; « = r sin « sin /3.

The conditions for X2 are that it must be a potential function, the

disturbance due to it must ultimately vanish as we recede from the sphere,

and on the sphere

a(Xi + X2)/&r = 0. (38)

To avoid repetition of expressions like (37), we take out of it a typical term

and write

Xi = e"' sin (kx cos 0) cos (/ty sin <^). (39)

We know that the function

.y-\f,Ka.Hir'- gJQ (^ica^x COS ^ j1^) COS {kcv^ij slu ^/r^) (40)

satisfies the first two conditions for X2, but we find it does not fulfil (38).

An additional term is required, and it can be found in the following way.

Suppose that on the sphere we have

e" sin {kx cos ^) cos (/cy sin ^) = SAmYm (a, /3), (41)

where the right-hand side is an expansion in surface spherical harmonics.

Then for the term (39), all the conditions for X2 are satisfied by

fl(,,-ig.av/.-2 sin {ko'x cos ^/r^) cos{Kuhj sin ^/r^)— Sa"'+iATOYm/(m-h l)r"'+i.

(42)

Suppose, similarly, that on the sphere we have

e" cos {kx cos 0) cos {Ky sin ^) = % BmY„, (a, /3). (43)
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Then the complete expression for Xg is

TrXa = ca^ e'^'f kcIk
j

ar-'e""'^/'-' cos (Ka^y sin ^/r^) cos
<f>

X {A sin (Ka'^x cos (f)/r'^)+ B cos {Ka'x cos <^/»^) } <i(^

-oa^j^ e-^'fKdK
1^2 (AA^ + BB„)(7ft+ l)-i(a/r)'»+iY„ cos <^ d<f>.

(44)We have now
= D-Di + Xi + X2 = D + X, (45)

and the pressure equation is

p/p = -cd4>ldx-gz+ fi<j>-lq'. (46)

The wave resistance, or the resultant horizontal pressure on the sphere, is

/it r2ir

E = da.\ a?Tp sin a cos a (£/S. (47)

Omitting terms which, from symmetry, will give no contribution to K, we
have

^ = -C^^+«X-^^-i^^-_L_§P^ (A.9K\

P "3^ ^ dr dr r^dadoL ?-3 sin" « 9/3 3^

'

^ >

But when r = a, we have

3D/a/3 = ; BD/aa = -^ra sin a ; dXjdr = 0,

hence ^/p = (3c/2a) sin a DX/Ba + /iX. (49)

We must now substitute (49) in (47) and use the value of X given by the
sum of (37) and (44) on the sphere ; it is clear that we may omit the doublet

Di as it will not affect the limiting value of E when /t is zero.

6. Consider, in the fiist place, the contribution of the first term in the
value of p given in (49). In the repeated integrals which are obtained, we
may change the order of integration, and we shall carry out first the summa-
tion over the surface of the sphere. We notice that, when r = a, the first

term in the value of Xz in (44) is equal to the value of Xi ; the additional

part of Xs is the term involving the expansions in spherical surface

harmonics. Choose a typical term from the latter part, and we find we have
to evaluate

J|sin a cos a (9Y„/3a) d&, (50)

taken over the surface of unit sphere.

But this integral is equal to

-3JP2(cosa)Y„(«,/3)(^S. (51)

Hence, the only term which has a value different from zero is the term in

Ya, the surface harmonic of the second order. From the manner in which
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the expansions were introduced, in (41) and (43), it follows that the contri-

bution of the second term in (44) is one-third of that of the first term

;

hence, summing up the result so far as the first term of (49) is concerned, we

have
poo fir pir rw

ttE' = —5c^a'*^p\ c-'^'J'KdK
\
COS (j) dcf) \

d^
\

sin a Pg (cos a) «'"'='"' "'''"P

Jo Jo Jo Jo

X cos (ku sin a cos /3 sin (j>)

X {A sin (ko, cos « cos <^) + B cos («« cos a cos <^) } da. (52)

Taking the integration with respect to 0, we find it is equal to

i'
iicasinacos ^ COS (/ca sin a sin cj) sin /9) d0 = 27rIo (ica sin a cos

(f>), (53)

where lo (x) is the Bessel function Ju (ix), a result which may be obtained by

direct expansion and integration term by term. For the integration with

respect to a the term in A in (52) obviously gives zero, and we are left with

27r lo (««. cos
(f>

sin a) cos (tea cos
(f>

cos «) P2 (cos a) sin a da. (54)
Jo

Here also we may expand in powers of «a and integrate term by term
;

it can be shown that the integral of the coefficient of (aa)" vanishes except

for the single term k^o,^ ; thus we find that (54) reduces to

-(27r/5)A2cos2<^.

7. We have now to consider the term fiX. in the value for p in (49). We
might omit this term, on general grounds, as giving no contribution to K
ultimately when /x vanishes ; for X is the velocity potential for a sphere at

rest in a given field Xi. However, it may be left in, and we have a similar

calculation. Taking the second integral in (44), we find it is now only the

term in Yi which counts ; hence the contribution of this part is one-half of

that of the first integral in (44). Further, it is the term involving A which

gives a value different from zero when integrating with respect to a, and

instead of (54) we have

27r lo (Ktt cos (j) sin a) sin (xa cos d> cos a) Pi (cos a) sin a da,
Jo

which reduces to (4:ir/3) Ka cos <p.

8. Collecoing the various results, we have now

poo rjT

E= 2caV e-2'/K2rf/f (/cc B cos ^ -f /aA) cos^ ^ (i0, (55)

a form which may be compared with the corresponding expression for the

cylinder in (29).
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Wave Motion due to a Submerged Obstacle. 530

A and B are given by (14) when we replace c by ccos^; putting these

values in (55), we see that we may change the order of integration. Further,

as we make yu. vanish ultimately, we may use simplified forms of A and B
corresponding to (16). These give

E = 4.oW,^J^ secV#
J^ (.-.osec^./,)^ + (^/.)^sec-0

•

To obtain the limiting value for fi zero we may treat this like the similar

expressions in (30); or, alternatively, we may put {/j,/c)sec(f) = 1/n, and use

the general result

Lim
[
-

n-* CO J a -*
72=9 {/(«-0)+/(a + 0)}.

-\-n^{z— af 2

The apparent difficulty with regard to values of ^ near 7r/2 is overcome by

noticing that with the particular functions involved in E no extra contribu-

tion arises from such terms near the upper limits of the variables. Carrying

out the integration in k in this way, and changing the remaining variable by

putting tan </>=<, we obtain

E = ^Trg*pa^c-^e-'^/l'' f"(l + t^)mc-^gfm dt. (56)

The remaining integral can be expressed in terms of known functions.

Possibly the simplest method is to use the confluent hypergeometric

function* defined, for real positive values of a and for real values of k and m
for which k—m— ^-^Q, by

Wt,,n(«) = -p/i "r", \\ U-''-i +'"{l+u/oif-i + "'e-''du. (57)
1 \2

— /c+ m^jo

We have now the wave resistance of the sphere given by

E = i7r3/3^/3a«/-3a3/ae-«/2Wi,i (a)

;

a = 2gf/c^ (58)

8. For purposes of calculation, we require expansions of Wi,i(a). This

function belongs to the logarithmic type of confluent hypergeometric function,

and general expansions are not available in this case ; however, they can be

obtained without difficulty for "W"i,i. In the first place, the differential

equation satisfied byWm is

f^2y / 11 3

We use the ordinary methods for solving by means of power series. The

roots of the indicial equation are f and — | ; hence one of the fundamental

* E. T. Wiittaker, ' Bull. Amer. Math. Soc.,' vol. 10, p. 125 ; also Whittaker and
Watson, ' Modern Analysis,' Chap. XVI.
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solutions will contain logarithms. Calculating the coefficients step by step,

we obtain as a fundamental system

2/3 = 2/ll0ga+ a-3/2(-f-|a+ |«3-^^a^+...)J

We know thatWi.i is a linear function of yi and 2/2; however, it is simpler to

obtain an expansion directly and use (60) to verify it. For this purpose we

use the equivalent contour integral for the confluent hypergeometric function,

_^V:a^pi T^,-)Y{-s-h-m+\)T(-s-h +m + \)
"^*""-

2-Ki ]_^i T{-h-m+ \)T{-k + m + \)
"'*'' ^''^>

where the contour has loops if necessary, so that the poles of V (s) and those

of T {—s—k—m+ \)T {—s—k+m + \) are on opposite sides of it. The

integral can be evaluated by the method of residues. Wiien k = m = \, the

poles at which the residues have to be found are simple poles at s = — |, — f,

together with double poles at s = ^, f, f, .... The latter series gives rise to

logarithmic residues. Carrying out the calculation, we obtain

4|.^(.-21og2-|)4-i.^| ,(^^g+g^J , (62)

where 7 is Euler's constant 0'5772.... The coefficients may be put into

alternative forms more suited for calculation ; for instance

dpV(p+\)V{p + Z)

1.3.5...(2jo-l)7ri f „, .,
,
^ 1 nn\

For numerical calculation we have

-(7-Mog^)(l +^+ 3^,«^ + jJ-2«H-) (63)

The expansion may be confirmed bj' comparison with the fundamental

solutions of the differential equation given in (60) ; we find that

(8/3)7riWi,i = (21og2-7-i)2/i-y2.

For large values of a the general asymptotic expansion of W*, m is available

;

and in this case we have

W„.^«e-^^(l + |i + ll,-^J,4-...). (64)
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9. With (63) and (64) we can now calculate the resistance E from (58).

For a given depth/, the variation of the resistance with the velocity is shown

in the following curve, for which E has been calculated for various values of

The curve is very similar in form to the two-dimensional case of a circular

cylinder. For small velocities, that is a large, if we take the first term of the

asymptotic expansion (64), we have

E = v/(27r3^V/) .
pa'>c-^e-''sf/c\

which may be compared with (30) for the cylinder. It is of interest to

notice the similar law of variation of wave resistance with speed for the few

cases of rigid bodies which have been worked out. The method adopted here

can be applied to bodies of different forms, and it is hoped to illustrate later

some interference effects.
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Periodic Irrotational Waves of Finite Height.

By T. H. Havelock, F.E.S.

(Received May 21, 1918.)

1. The method of Stokes for waves of finite height on deep water consists in

working upwards hy successive steps from the infinitesimal wave towards the

highest possible wave. Although lacking formal proof of convergence, it is

generally accepted that the method is valid, but that it does not include the

highest possible wave when the crests form wedges of 120°.

For the highest wave itself we have Michell's analysis by a distinct method,

also involving an infinite series whose convergence has to be assumed.*

The theoretical position of Stokes' method has been stated concisely by

Prof. Burnside in a recent criticismf :

—

" The complete result would be to express the co-ordinates x and y in terms

of ^ and y^r in the form
CO

x= — </)+&«''' sin ^ + 2&"P„(&)e'"'' sin w^,
2

y= —(/r+ Je* cos <^+ i 6"Q„ (&)«'"'' cos ?i^, (1)
a

where P„ (h), Q„ (h) are power series in h.

" These results have a meaning and can be used for actual approximate

calculation only, if P„, Q„ are convergent power series when h does not exceed

some value, say ha, while for suitable values of h and for real negative values

of 1^, the series for x and y are convergent.

" Until the form of the power series P„ and Q„ have been determined, it is

impossible to deal with their convergence. Assuming that they are

convergent, it is clear from physical considerations that there must be an

* J. H. Michell, ' Phil. Mag.,' Ser. 5, vol. 36, p. 430 (1893).

t W. Burnside, ' Lond. Math. Soc. Proc.,' Ser, 2, vol. 15, p. 26 (1916).
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upper limit V for h in order that the series 'for x and y may be convergent for

negative values of -v/r, and there are no means of determining V."

Prof. Burnside concludes that Stokes' method cannot be used for numerical

calculation as it is not known whether tlie corresponding value of b is less

than the above value V.

In the following notes a general method ia suggested, which includes waves

of all possible heights, ranging from the highest wave down to the simple

iufinitesimal wave. The method consists of a simple and direct extension of

Michell's analysis for the highest wave. The advantage is a theoretical one

wliich may be expressed in this form : the parameter does not Iiave, as in

Stokes' series, an undetermined upper limit, but it enters in the form

e~^», where a may have any positive value, including zero.

It sliould be stated that here, again, we have infinite processes for which no
formal proof of convergence is given: we have to rely meantime upon a

numerical study of the series. However, in addition, we can compare the

method with that of Stokes for waves short of the highest ; in this case

numerical results obtained by the two methods are the same, as might be

expected.

Extending this comparison to the highest possible wave, we get a value for

the quantity V referred to previously, that is, the value of the parameter for

which Stokes' series for the elevation become divergent. We obtain b' as

i—5i, where b\ has the value 0-0414 approximately, or we have V = 0-291...,

the value for Ji being slightly less than the true value.

The discussion is arranged in the following order : Michell's form for the

highest wave, its generalisation by means of the surface condition, method of

approximation for the coefficients, calculation for the highest wave, the values

when e~2a _ 3.^ comparison with Stokes' series, determination of V, further

numerical examples and remarks upon the values of the coefficients.

2. It was shown by Stokes that the highest possible wave, under constant

pressure at the free surface, has crests in the form of wedges of 120°. It

follows directly from his argument, as a simple extension, that the crests

will meet at the same angle for the highest possible wave under any assigned

surface pressure provided the pressure is stationary in value over the crests.

Consider any assigned surface pressure of this character which is finite,

continuous and periodic. To determine the form of the highest possible

periodic wave, we may follow Michell's analysis for the case of constant

pressure up to the stage at which the coefficients are determined from the

given surface condition.

"We might then begin with the form given in (5) below, but we may
recall briefly Michell's argument. Take Ox horizontal, Oy vertical and
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Periodic Irrotational Waves of Finite Height. 40

downwards, with at a crest. Let the successive crests be given \>y

^ = +mr, n integral ; and let the upper surface be i|r = 0. If ^ be the

inclination of the wave line to the horizontal at a point tf>, assume

riff—- = fflo+ «! cos
2(f)+ a2 cos 4<^+ . . .. (2)

d(p

This isequivalent to assuming that under the given conditions for the surface

pressure, the ratio of the curvature of the wave line to the velocity is finit-e

and continuous throughout a wave-length ; in that case dd/d(j} can be expanded

in a uniformly convergent Fourier series. In the numerical calculations

which are needed later, the practical success of the method of approximation

depends upon ai, a2, . . ., being small compared with ao, and, in fact, upon the

series converging rapidly.

With the notation, w = (p-t-iyfr, a = a; + ty, U = log (dz/dw), Michell showed

that

^-i(ao+ ai «2-+ a^ei.- +...), (3)aw

is a function which is real over the surface i|f = 0, and possesses only

simple poles, which are at the wave crests.

Suppose that near a crest, say w = 0, we have dz/dw = Aw", then

2^ = const. X r"^"/'"'*'*), where q is fluid velocity and r is distance from the

summit. But, since the pressure is constant in the neighbourhood of the

crests, we have q^ = 2gy, and hence n = —\. It follows that the function

(3) differs by only a constant from the quantity —^S(w— ?i7r)~^. Hence,

after adjusting the constants and integrating, we find for dz/dw the form

d?
-p = (-isinM;)-V3g-«"'/3(i+cje2™ + C2e*'"'+...), (4)

the real root of {— isinw)~^l^ being taken along tf) — 0. The units are such

that the wave velocity V, or the velocity at i^ = oo , and the wave-length L
are given by

V = 2-V3
; L = tt/V = 21/V.

It is convenient to invert (4) and write

^ = (-isin w)i/3e™/3(l-f 6i62'«'-t-&2e«'"-f-&3e''"'+ ...). (5)

3. The coefficients hi, 62, ..., are now to be determined by the pressure

condition at the free surface. So far, we have stipulated only that the

pressure at t/t = shall be finite, continuous, periodic, and stationary at the

points
(f)
= niT. For our present purpose we shall leave this pressure

distribution undetermined, except for these conditions. We shall assume
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41 Prof. T. H. Havelock.

that it is possible for some assigned stream-line below the surface, say the

line -^ = a, to be a line of constant pressure. Thus we shall determine

bi, &2, ••, directly by applying the condition for constant pressure to (5) when

\jr = a. The surface yjr = ex. will then be a possible free wave surface, and

free waves will be given by assigning any value to a in the range zero to

infinity ; thus, by working down from the highest possible wave, we include

in one scheme free waves of any permissible height.

The condition that the pressure is constant for i/r = a is

q^ = 25ry+ constant. (6)

It is convenient to use an equivalent form obtained by differentiating (6)

with respect to
<f),

namely

| = ^'|- <'>

This has to be used when

^= {-isin(rf, + ta)}V3g'(*+.»)/3(i+^jg2.* + ^2e^'* + ...), (8)
dz

where /3i = 616"^", ^2 = he'^", ....

Multiplying by the conjugate complex and squaring, we obtain

2* = e-*"/^ (sinh2 a + sin^ (f>yi3 (J)^+ 2Di cos 2<^ + 2D2 cos 40+ . . .), (9)

where

Do = l + 4/3i2+(2/92+ /3i2)^+ (2/33+2/3i/32)H...,

Di = 2/3i + 2/3i(2/32+^i2)+ (2y82+A')(2/S3 + 2/3i/32)+...,

D2 = 2/32 +A'

+

2^1 (2^83+ 2/Siy82) + (2/32 + A') (2/34+ ^2' + 2^1/33)+ . . .,

D3 = 2/33+ 2/3i/32+2/3i(2/34+/92^+2/3i/33)+...,

Differentiating (9) with respect to 0, we can take out a factor

(sinh^a+ sin^t^)"!/^^ and can collect the other terms into a sine series in

even multiples of
(f).

However, we take out also the common factor sin
<f),

because we then have dq^/d<j> in a form which reduces directly to the proper

form for the highest wave (a = 0), and, in addition, we find that the

numerical calculations converge more rapidly. After some reduction, we
obtain in this way

JL= |e-W3sin0(sinh2a + sin2 0)-V3(Aicos0 + A3COs30+...), (10)
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where

Ai = D„+ fD.i + 6D2+ 3(3D3+ 4D4+...)-3(Da + 2D2+3D3+...)cosh2«,

A3 = |Di + 4D2+ 3(3D3+ 4D4 + ...)-3(2D2+ 3D3+...)cosh2a,

As = 4D2+ Jf I)3+ 3(4D4 + 5D5 + ...)-3(3D3+ 4D4+...)cosh2a,

A, =: -y-D3 + 7D4 + 3(5D5 + ...)-3(4D4+...)cosh2a,

For the other side of equation (7), using I to denote the imaginary part Q
of a complex quantity P+ iQ, we have

^ = -Ie-«/3 (sinh2 «+ sin2 ^ft^e-Ofi-m ^ /3^«2n*_ (n)

where E«'* = cos ^ sinh a—i sin ^ cosh a.

To expand this in a form similar to (10), we notice that

g-i(fl-<j>)/3 _ n — e~2og2i,(i\l/6n — e-2ag-2ii(i\-l/6

(sinhaa+ sin2^)i/2 = |e»(l_e-2'c2.<(,)i/2(^i_g-2«g-2i,i,)i/2_

Hence we have

^= -IJeW3(sinh2a + sin2^)-V3 I /3^(i_e-2''c^'(')2/3(i_fi-2ae-2.,).)i/3g2W*_
oy r =

(12)

We now expand the two binomial factors after the sign of summation in

series valid for the whole range of ^ and for all positive values of a. We
can then write down the coefficient of f^n'*^ and so obtain d(f)/By, involving a

series of sines of even multiples of ^ ; as before, we take out a common

factor sin ^, and obtain the result

^ = ie-*°/3sin</,(sinh2a + sin2^)-V3(BiCOS(|)+ B3Cos3(/. + ...), (13)
dy

where the B's are linear functions of the /3's, with coefficients which are

functions of e~^\ In practice, these can be obtained directly from (12) to

any required degree of approximation
;
general expressions can be put in the

following exact forms

B2n+1 = Bo,2n+l+/3lBi,2n+l+ ... +^rBr,2ji+l+ •••,

00 00

Br,2n+1 = 2 C-2s— S C2s,
s=n+r+l 5 = n—r+1

Ca. = 3
~^^~^+ ^^---^~^+ ^~^^e-2(^-i)''r(-i, -1 + 3,5+ 1,0-^°),

C-2s= 3 ~i(~^+ ^)-"(~^+ ^~^) e-2(^-i)-F(—i.+ g,-|,s+i,e-4a)^

Co=3e2"'F(-i,-f,l,e-n (14)

where F represents the hypergeometrie series.
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We can now apply the surface condition (7) by substituting the expansions
(10) and (13) and equating coefficients of cos^, cos3(^, ....

We obtain, as in Stokes' method, an infinite series of equations of the
form A2„+i = ^B2„+i, from which the quantities g, ^,, ^2, /Ss, ..., are to bo
obtained in practice by successive approximation from the equations taken in
order.

Up to terms of the third order the equations are

1 + 5y3i + 12y82+ 10/3i2 + 28A/32+ 5y8iH 18/33

- 6 (A + 2/32+ /3i2+ 5/3i/32+ ^i'

+

3^) cosh 2a
= 5- (Boi + /SiBn + /32B21 + /33B31),

5A + 8A+4A^+28A/32+ 5A«+18/33-6(2/32+A^+3/3i^2+ 3^3)cosh2«
= ff (Bo3+ /S1B13+ /32B23+ /33B33),

8A+ 4/3i2+ 1 l/3i^2+ llA- 18 (/3i/32

+

/3s) cosh 2a

= ff (Bo5+ AB15+ /32B25+ y83B35),

ll/33+ll/3i/32 =^(Bo7+ABl7+ /32B27+ /S3B37).
(15)

It might appear, from the quantity cosh 2a on the left, and from the
factor e2« in the expressions for the B's in (14), that there are terms in these
equations which become infinitely large as a increases indefinitely. But we
have /3i = 6:e-^ ^, = b^-*', fis = he-<^^, ..., therefore, if we write the
equations (15) as a set of equations for the coefficients bi, h, ..., this
difficulty disappears. In this connection we may recall the initial assump-
tion that the series in (5), namely, l + Sjc^^+ ft^e*--!-..., is absolutely
convergent, otherwise the analysis has no meaning.
The infinite set of equations, given to the third order in (15), has to be

treated by Stokes' method; that is, assuming the process to be convergent,
the equations taken in succession yield approximations to g, /3i, ^2,..., for any
assigned numerical value of a. But there is a difference 'between these
equations and the corresponding set in Stokes' analysis. In the latter, the
first coefficient, say b, is arbitrary, and the successive equations have their
lowest terms of order zero, one, two, and so on, respectively ; thus g and the
remaining coefficients are found as power series in h. But in (15), we have
a term independent of the ^'s on the right-hand side of each equation

; thus
the solution, if practicable, leads to a set of numerical values of g, ^i ^^
for a definite numerical value of a. We may notice, in passing, that 'for a fi'rst

rough approximation ^-Boi = 1 ; and as Boi does not differ much from unity
for any value of a, the coefficients A, ^2, ..., are of the order of magnitude of
Bo3, Bo5, . . ., respectively.

4. The method of approximation used in the following calculations may
be described by considering first the simplest form of the equations, namelj-,
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when a = 0. The hypergeometric series in (14) can be summed in this case

and we find

^ _ 18v^3 6r+l
,^f..B„,„,, -__

9(2,,+ l)2_(6.+ l)^
(1^)

The equations (15) reduce to

l-/3i + 4^i^-2A/32-/3i« = /^(i- 4VA-tW/32- 3^/33),

5/31-4/93-2/31=^+ 10/31/33 + 5/313 = k{i^+ ^\j3,-^^,-^^,),

8/33+4A='-7/3i/33-7yS3 = H^^+^^^ + ^iB^-^^i^^z),,

llA/32+ 11/93 = /^(TiTr+Tri^/3i + ^/32+i|/33), (17)

with h = ISff^S/ir.

These are Michell's equations for the highest wave. Without specifying

any definite method of approximation, Michell states that sufficiently close

values are given by

g = 0-832, j3i = 0-0397, /Ss = 0-0094, /Sg = 0-002. (18)

In order to compare results for different values of a, it is desirable to adopt

some consistent scheme of approximation.

In general, in the equations (15), we substitute

/32 = 52/8i'+ &3/3iH...,

i83 = C3/3l3+ C4/3i^+...,

(19)

For a first approximation, write down the first two equations up to terms

in /3i, and we get two equations from which to determine ki and /Si. The

first of these equations is, in fact, independent of /8i on account of the form

of (19).

For a second approximation, retain the value of ki so determined, and

write down the first three equations of (15) up to the terms in /3i^, the first

of the three being again independent of ^i ; from these, we determine

ka, ^2, and a second approximation to /3i. For the third stage, using the

values of ki, ^-2, and 62 already found, and writing down the first four equa-

tions of (15) up to the terms in /Si^, we determine kg, hs, C3, and a third

approximation to /3i. Using (19) we obtain the corresponding values of

ff, ^2, ^3, ; at any stage. The wth approximation to /3i is given by an

equation of the nth degree in /81 ; but there is no difficulty in practice as to

the particular root since we follow it through from the first approximation.

The method is simple in plan, if somewhat tedious in practice ; so it is

not necessary to give the details of the following calculations.
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Taking the particular case (17), we may write down one set of equa-

tions to illustrate the type. After the first two stages, we obtain

hi = 0-4, ^3 = 7'6, Sa = 4-67 : using these values we find for the next stage

the equations
7>;3-0-65&3-0-432c3 = 118^

A'(0-l/(;3+ 2-82Z'3-0-543c3-44-25) + 17-745ySi^-3-21A + 0-l =

A'(0-036/u3-6-14&3+ 5-88c3+ 41-68)-34-68/9i'+ 0-332/9i-0-036 =

j8i3(0-018/u3+0-38&3-91c3-53-77)+ 215/3i2+ 0-15;Si+ 0-018 =
(20)

Eliminating k^, hz, cs, we get a cubic for ySi, of which the required root is

0'0407, the previous stages having given the values 0'0311, 0*039. Also

from (20) we find hz — 30, J3 = 35, C3 = 40. Collecting the results to this

stage, we find

g = 0-833, A = 0'0407, ^2 = 0-0106, /Sa = 0-0027. (21)

These values are rather higher than those given by Michell (18). In

order to determine /3i more closely, the approximation has been carried to

the fourth stage, with the result

(J
= 0-833, A = 0-0414, ^2 = 0-0114, ^83 = 0-0042, ^ = 0-0014. (22)

With these values, the ratio of h, the height of the wave, to L, the wave-

length, is given by

/i/L = (velocity at trough)^/25rL

= (l_/3i + i82-/33+/34)V2*'V = 0-1418. (23)

An interesting point about the series l+/3ie^"l' + ^2e'^^'^+ .-- for the highest

wave is the smallness of all the coefficients /3i, /32, ..., compared with the

first term, namely, unity ; on the other hand, the numerical values obtained

do not suggest a rapid convergence of the series after the first term. It

appears, from the method of approximation, and from the fact that all the

quantities Boi, B03, . . ., are positive, that successive approximations will increase

the values of the coefficients. A test for the sum of the series, compared

with the value of g, is obtained by considering the velocity near a crest.

Near ^ = 0, we have dw/dz = (f)^l^e-'''''^(l+^i + ^2+)
Therefore q^ = <p"^l+0i + 02+ ...f and z = \^^l^e^l^l{l + ^1 + ^2+ .) ;

and since (f = 2gy, it follows that we should have {l+l3i + ^2+ Y/ff = 1'5.

But with the values given in (22), this expression has the value 1-42. This

is perhaps a severe test ; a simpler criterion is to write down the successive

convergents to any one coefficient; for example, those for the leading

coefficient ^ are 0-0311, 0-0390, 0-0407, and 0-0414.
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5. Eeturning to the general equations (15), we consider a wave short

of the highest and we select the case e"^" = |. We shall find that this

corresponds to a value of about \ for Stokes' parameter h.

The coefficients '&r,2n+\ have to be calculated from the relations (14)

;

the hypergeometric series are, of course, convergent, and the values can

be obtained to any required degree of accuracy. Substituting the numerical

values in (15) we obtain the equations

l-l-25/8i-0-5;83+ 3-75A'-3-25/3i;S2-l-25A^-0-75/33

= g (1-081- 2-584/3i- l-SS^Sa- 1-281/33),

5/3i -4-5/32- 2-25/3i2 + 9-25;Si/33+ 5/31^- 0-75/83

= ^(00166 + 2-133A- 2-322y32- 1-429^3),

8^2+4/3i2-7-75A/32-7-75/33 = ^(-0-0157 + 0-2767/3i+ 2-237;82-2-274/33)

ll/33+llAy92 = ^(-0-0125 + 0-0865/9i + 0-3243/32 4- 2-254/83).

(24)

"We carry out now the successive approximations described in the previous

section. At the third stage, we find

g = 0-9246, /3i = 0-00273, ^82 = -0-0034, A = -0-0013. (25)

Comparing these values with those for the highest wave given in (21),

we see that the /8's are much smaller ; on the other hand, there may be

greater difficulty in obtaining their values accurately, because of the later

stage at which the /S's begin to diminish steadily in absolute value. We
shall find this impression confirmed later when we try smaller values

of e-^\

To find the ratio A/L for this wave, we have

(velocity at crest)^ = 2-^l^(\-c-^^yi^{l+^, + ^2+ ^3+ ...f,

(velocity at trough)^ = 2-^l^{l-\-e-^-flHl-l3^ + ^2-^z+ ...f.

Taking the difference, and dividing by 2g, we find /;- ; and since L = 2^/V,

we have A/L = 0898. Stokes' parameter h is, to a first approximation,

ttA/L ; hence this wave corresponds to h equal to ^ nearly.

6. We have now two methods for a wave of finite height, namely, that

described above and Stokes' method. The two can be shown to be in

agreement in any particular case.

From (8), we have, on the wave surface 1^ = a,

2-1/3i! = (l_e-2<'e2'*)-'/3(i + ^ic2'*+ /32e«*+ .
..)-!. (26)

dw

For any wave below the highest possible, that is provided a is not zero,

the first factor on the right of (26) can be expanded in a series valid for
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all values of
(f>;

hence, under these conditions, we have on the surface yjr = a,

dz2"'/'^ = 1 + Aie2i* + A2e'''*+A3e«=*+ ..., (27)

where

Now Stokes' method gives z, and dz/dw, in the form of a series like (27)

;

write this as

cz=l + Cie^i* + Cae*'*+ 0^6^^ +.... (28)

Prom Stokes' equations, C2, C3, ..., are obtained as power series in Ci;
these have been carried up to the tenth order by Wilton,* whose results
we quote now—in so far as they are needed here

—

-Ci = b,

Ca = J2+ 0-55*+ 2-417&«+ 15-597S8+64-086K'

-C3 = 1-5&3+1-58355+8-215J7+ 55-0169,

C4 = 2-6676*+ 4-347&«+ 24-0168+166-2&i<>,

-C5 = 5-2086Hll-53JH67'40J^

O 3

-^ = l + &2+3-56*+ 19-086«+154-768+12975io.
(29)

With the units adopted here, the last expression corresponds to 1/g.
Further, in Stokes' investigations the wave-length was taken as 27r, while
in the above work we have used tt ; the result is that in comparing the two
methods by means of (27) and (29), C„ C2, C3, C4, ..., correspond respectively
to Ai, JA2, ^A3, iAi

For the numerical calculations in the case e-2« = |, we use the values of

A. A, and ySs given in (25) ; then from (27) we obtain

Ai = 0-24727
; ^As = 0-06385

; ^Aa = 0-0249
;

iA4 = 0-0115; ^A5= 0-0058; (30)
On the other hand, if we take b equal to Ai, we get from this series

in (29)

-Ci = 0-24727
; Ca = 0-06382

; -C3 = 0-0248

;

C4= 0-0114; -C5 = 0-0058;
(31)

* J. R. WUton, 'Phil. Mag.,' Ser. 6, vol. 27, p. 385 (1914).
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It is unnecessary to carry the calculation further to show the numerical

agreement between the two methods for waves short of the highest. It

may be noticed that in the above comparison we have gone up to the

coefficient /Ss of the present method ; to obtain the agreement shown above,

we have had to use the Stokes' series as far as the tenth order in the

parameter.

7. From the comparison between (27) and (28), we see that, for waves

lower than the highest, we are in effect dealing with a Stokes' series whose

parameter has the value -\e~^'^—^i. If we applied Stokes' method directly

to (27), we should obtain A3, A3, ..., in the usual way as power series in this

parameter, and the quantity e"^" would be a superfluous arbitrary parameter.

On the other hand, the present method gives a definite value of ySi for an

assigned value of a, or theoretically gives a functional relation between

/3i and a. The method definitely connects a wave of any height with the

highest possible wave, and any possible wave-form is given as one of a family

whose limiting curve has crests consisting of wedges of 120°.

Consider the expansion from the form (26) to the corresponding Stokes'

form (27) or (28). Assuming the convergence of the series with the

/3-coefficients, the expansion is valid over the whole range of ^ for all

positiv-e values of a, excluding zero ; it is also valid for a zero, with the

exception of the points <^ = n-ir, n integral. In other words, the comparison

confirms the view that Stokes' series for the elevation is valid throughout,

with the exception of the actual crests of the highest possible wave.

We can now estimate the limiting value of the Stokes' parameter b for

convergence at the crests. To do this, we compare the series (27) for the

highest wave with a Stokes' series, for points other than the crests.

For the highest wave a = 0, we found

/3i = 0-0414, /32 = 0-0114, /Sg = 0-0042, A = 0-0014.

Hence the expansion should be a Stokes' series with the parameter

^—0-0414, or say 0-2919. Making the comparison between (27) and (29)

with these values, we find

Ai = 0-2919
; |Aa = 0-0993 ;

lAg = 00523
;

-Ci = 0-2919
; Ca = 0-0914

; -C3 = 00429. (32)

The agreement is sufficient to justify the comparison, when we remember

that the yS-coefficients have only been determined to the fourth stage, and

further, that the Stokes' series (29) for the C-coeffieients presumably converge

slowly in this extreme case.

It should be remarked that we do not gain information from this com-

parison about the convergence of the Stokes' series for the separate coefficients
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for higher values of the parameter; the result concerns the series for the

elevation. We find that Stokes' series for tlie elevation becomes divergent

at the crests when the parameter has the value 0'291..., so far as the

numerical calculation has been carried.

In this connection reference may be made to Wilton,* who concluded that

the Stokes' series certainly diverge for a parameter greater than 1/c, and

who estimated the limiting value to be in the neighbourhood of ^.

Wilton works out in detail a numerical cxanqilo with the parameter

h = 0'316, for comj)arison with tlie liighest wave. According to the present

analysis, this is beyond the limiting value for b ; the series should be

divergent at the crest. This may well be the case, notwithstanding that the

coefficients C, as calculated by Wilton, diminish steadily as far as the order

shown ; since the series is supposed to be divergent only at the crests, one

might expect the divergence to become evident numerically only after

calculating a large number of terms. The example may serve as an illustra-

tion of Prof. Burnside's criticism, that it is necessary to know the limiting

value of b before Stokes' seiies can be used with confidence for numerical

calculation.

8. We may examine brietiy the present method for waves of small height.

It is of interest first to consider the exact expression

^ = 2-V3(i_e'!™)i/3 (33)

We can integrate dzjdw and so obtain the equation of the stream-lines

in finite form, and also exact expressions for the variations of pressure along

any stream-line. To find how far (33) satisfies the condition for a free wave

under constant pressure at a stream line -\|r = a, it is simpler to expand first

before integrating ; we can then express q^ and y as cosine series. In this

way we find at the wave surface yfr = a, writing down the variable part only.

Const. x(q'-2gy) = {i^6-2«-(^e-^»- J^e-6«-^|^e-8»_...)}cos2</.

+ {2^5'«-'^"-(A«~'"-TWe~'"''--)}cos6.^

+

(34)

Hence, if we tnke y~' = l + ic~^«, the pressure is constant up to,

and including, terms in e"*"; and the next term is the small quantity

—
-2T3 e"^" cos 60. This value for 1/g is Stokes' expression 1 + b^, the

* J. E. Wilton, loo cit. ante.
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parameter h having the value ifi"^" to this order. It is, of course, impossible

to make the right-hand side of (34) zero for all values of ^ merely by

choosing g a suitable function of a. However, the fact that (33) satisfies

approximately, to the order shown above, the conditions for a free wave of

any height, explains the smallness of the coefficients /3i, ^2,... even for the

highest wave when a is zero.

Returning to the general equations (15), for a numerical example of a

wave of moderate height we take e'^"- = 3/10. In this case we shall only

carry the approximation to the second stage, to illustrate the character of

the coefficients. We have the following numerical values :

Boi = 1-008
;

Bo3 = - 0-002
;

Bo5 = -0-004

;

B, -8-24:

Bi3 = 2-056
;

Bi5 = 0-082

;

B2i= -7-336;

B23= -8-3;

B25 = 2-1.

From these we obtain /3i = -0-0018
; /S^ = -0-00066. Making the com-

parison with a Stokes' series, as in the previous sections, we find

Ai = -Ci = 01018, iA2 = C2 = 00104, ^Ag = -C3 = 00016.

The numerical values confirm the impression that while the yS-coefficients

diminish indefinitely as the height of the wave becomes smaller, it is more

difficult to obtain their values by the method of successive approximation

used in dealing with the infinite set of equations for them.

The behaviour of the /S-coefficients is made clearer by studying the leading

terms Boi, B03, ..., on the right-hand side of equations (15). Over the whole

range for a, from zero to infinity, Boi only varies from about 1-24 to 1

;

consequently, from the first equation, g is never much different from unity.

From the remaining equations, we see that ySi, ^2,^3, , form a parallel

series to B03, Bos, B07 taken in order.

It is only for the highest wave (a= 0) that all the terms of the latter series

are positive and decrease steadily to zero from the first term ; for other

values, the series is not quite so simple in form, although in all cases the

terms converge ultimately to zero. The character of these terms is best

illustrated by numerical examples, such as are given in the following Table :

e-^.
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The quantities Bo,2;:+i, and, in fact, all the coefficients B„2„+,, can be
studied algebraically from the relations (14). The algebraic solution of

equations (15), together with a formal study of convergence, would be of

great interest
;
meantime the numerical illustrations given in the foregoing

discussion may serve to show the possibility of a geaeral scheme which
includes waves of any permissible height.

Harbison and Sons, Printers in Ordinary to Hia Majesty, St. Martin's Lane.
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Wave Resistance : Some Cases of Three-dimensional Fluid

Motion.

By T. H. Havelock, F.R.S.

(Eeceived November 27, 1918.)

1. Calculations of wave resistance, corresponding to a pressure system

travelling over the surface, have hitherto been limited to two-dimensional

fluid motion ; in those cases, the distribution of pressure on the surface is

one-dimensional, and the regular waves produced have straight, parallel

crests. The object of the following paper is to work out some cases when

the surface pressure is two-dimensional and the wave pattern is like that

produced by a ship. A certain pressure system symmetrical about a point is

first examined, and more general distributions are obtained by superposition.

By combining two simple systems of equal magnitude, one in rear of the

other, we obtain results which show interesting interference effects. In

similar calculations with line pressure systems, at certain speeds the waves

due to one system cancel out those due to the other, and the wave resistance

is zero ; the corresponding ideal form of ship has been called a wave-free

pontoon. Such cases of perfect interference do not occur in three-dimensional

problems ; the graph showing the variation of wave resistance with velocity

has the humps and hollows which are characteristic of the resistance curves

of ship models.

Although the main object is to show how to calculate the wave resistance

for assigned surface pressures of considerable generality, it is of interest to

interpret some of the results in terms of a certain related problem. With

certain limitations, the waves produced by a travelling surface pressure are

such as would be caused by a submerged body of suitable form. The expres-

sion for the wave resistance of a submerged sphere, given in a previous

paper, is confirmed by the following analysis. It is also shown how to extend

the method to a submerged body whose form is derived from stream lines

obtained by combining sources and sinks with a uniform stream ; in par-

ticular, an expression is given for the. wave resistance of a prolate spheroid

moving in the direction of its axis.

2. Take axes Ox and Oy in the undisturbed horizontal surface of deep

water, and Oz vertically upwards, and let f be the surface elevation. For an

initial impulse symmetrical about the origin, that is for initial data

p,/.o = F(^); r=0;
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where t^' = x^ + i/, the velocity potential of the subsequent fluid motion, and
the surface elevation are given by*

1 f"= - /(«) e" Jo (kjh) cos (xYt) KdK, (1)

?=- — ["/ («) Jo (/ccy) sin (/cVO K^YdK, (2)
i'/' Jo

where V^ = g/x, and

/(«) =
j

r(a)Jo(/ca)ar^a. (3)

We have assumed that it is permissible to use the integral theorem

pCO (•00

r(iir)= Jo(Krs)KdA F (oc) Jo (ka) ci da. (4)

We obtain the effect of a pressure system moving over the surface with

uniform velocity c in the direction Ox by integrating (1) and (2) after

suitable modifications. We replace t by t— r and x by x—ct, and integrate

with respect to t over the time during which the system has been in motion.

We shall limit the present discussion to the case when the system has been
in motion for a long time, so that if we take an origin moving with the

system a steady relative condition has been attained. In this case, with a

moving origin 0, we replace x by x+ cu and t by u in (1) and (2), and obtain

the required resultsf

p<f>
= f

e-i'^''du {f(>c)e'^Jo[K^{{x+ cuf+ y^}]cQs(KYu)KdK, (5)

9P^^ -fe-^''"'^" r/(«)Jo[«v/{(x+ «i)'+ 2/2}]sin(«VM)«2V^«, (6)

where /(«) is obtained from the assigned pressure distribution ^ = F(5i) by
means of (3).

The introduction of the factor exp(—/iu/2) is familiar in these problems

and needs only a brief explanation. It may be regarded as an artifice to

keep the integrals determinate, it being understood that ultimately /j. is to be

made infinitesimal. Or, again, it ensures that the solution is the fluid motion

which would establish itself eventually under the action of dissipative forces,

however small.

In the steady motion with which we are concerned, we may imagine a

rigid cover fitting the water surface everywhere and moving forward with

uniform velocity c. The assigned pressure system FCnr) is applied to the

*Lamb, 'Hydrodynamics,' 6th edn. (1932), p. 432.
T'Roy. Soc. Proc.,' A, vol. 81, p. 417 (1908).
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water surface by means of this cover ; hence the corresponding wave resist-

ance is simply the total resolved pressure in the direction Ox* With the

usual limitation that the slope of the surface is everywhere small, this leads

to

E = \F(.)£dS. (7)

taken over the whole surface.

The evaluation of the steady wave resistance for an assigned pressure

F (cj) is to be carried out by means of (3), (5), (6), and (7). However, we

may obtain simpler expressions before applying them to particular cases.

3. For this purpose we analyse the wave disturbance (5) into simple con-

stituents, in fact into oue-dimensional disturbances ranged at all possible

angles round Ox, the line of advance. We have

TT Jo [«{(a;-f cw.)2+ 2^2}i/2] — rg«(^+"')cos<(. cqs (xy sin
<f))

d(j>. (8)

Substitute in (6) and we can now carry out the integration with respect to u;

for we have

/•OO

J^u g«c«co3* gin (^icYu) du

= {KCcos<f>+ KY-\-ifii)-^— (Kccos(])—KY + kiJ.i)~^. (9)

We simplify this expression further by using the fact that /x was

introduced only to keep the integrals determinate, and is eventually to be

made infinitesimal ; we can therefore reject terms in /x which are super-

fluous for this purpose. The process receives its justification in the course of

the analysis. This being understood, we can use, instead of the right-hand

side of (9), the expression

-2(V/c'^)sec^<f>/{K-Kosec''(P + i{^/c)sec(j>}, (10)

where ko = ff/c^- Using these results in (6), and making a slight trans-

formation, we can express the surface elevation in the form

K = 7^ sec 'i,d^ KfU) \
—

2Trgp]^„l2 ^Ju -^ Ik— Ko sec? <j) + i {/J,/c)seo<j}

£j
— IK (x COS <^+ ^ sin (^)

+
K—Kosec^<f)— i{fji/c)sec <p

'XdK. (11)

In (11) we have the surface elevation analysed into plane wave con-

stituents, each element moving in a Hne making an angle
(f>

with Ox. Carry-

ing out the integi'ation with respect to k, we can express each constituent

* ' Roy. Soc. Proc.,' A, vol. 93, p. 244 (1917).
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in terms of a simple harmonic wave in rear of the line x cos
<f>+ y 6m <f>

= 0,

together with a disturbance symmetrical with respect to this line. We
might continue the discussion for general types of pressure distribution,

provided the functions are such that certain transformations may be used

;

however, it is simpler to study in detail a few cases for which the conditions

are all satisfied.

4. At this stage it is convenient to specify the system

p = -F{m) = Af/{P + r^y^ '

(12)

where A and/ are constants. Using (3) for this case, we have/(«) = Ae ""''.

Eeturning to the expression (11) for the elevation, we consider the element

making an angle ^ with Ox. We change to axes Ox', Oy' given by

x'=. X cos(/)+ 2/ sin ^,y' = y cos ^—x sin ^. The integral with respect to k

then becomes

Q
\^K— Ko sec' (fi + 1 (fz/c) sec <}> k— ko sec' cp—t{fi/ c) sec <l>J

This integral can be transformed by contour integration; as it is of a

type familiar in plane wave problems* we write down the results when these

have been simplified by making /x zero after the transformation has been

carried out. We have for the value of (13),

i-TTKuA SeC^ ^g-«o/sec2*
gij^ („^^' gQ(j2 ^^

^ 2^ r^osec^,/,cos/m+ msin> ^^ ^^^. ^,^^,
Jo W+ Ko sec* (j)

„, r°'«:osec^(f)COs/?;H-msin/7?; _„. , . , r\ /^A\2A —
^i '^, T-; — e ""^ vidm, for x > 0. (14)

Jo m^ +V sec* (/>

From (11) and (14) we could now write down the elevation ^ as the sum

of the constituents for all values of in the range from — 7r/2 to 7r/2. The

first term in (14) represents simple waves in the rear of the corresponding

wave front x cos
<f> + y sin ^ = ; hence the integration of this term

would only extend over elements for which the assigned point {x, y) was in

the rear of the wave front. The other terms in (14) represent a disturbance

symmetrical with respect to the wave front, and diminishing with increasing

distance from it. We shall not write down the expressions, as we do not

intend to examine the wave pattern in detail. From the definition in (7),

it follows that we can evaluate the wave resistance E by considering first a

simple constituent of the elevation and then summing with respect to 0.

Since the pressure system is symmetrical with respect to the origin, the

symmetrical local disturbance in (14) gives no resultant contribution to E

;

* Compare, for example, ' Roy. Soc. Proo.,' A, vol. 93, p. 524 (1917).
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also the part due to the regular waves in rear of the wave front

X cos
<f>
+ y sin <p = is given by

c ,j. f" , , f A/cos(/co«' sec^(f>) , ,

47r^o''A sec^ .^e-o/"-' *

J
_/?/

J l^'2_^_\/2+f2y,f
<^^

= 47r2AWsec3,^e-2«o/«'=='* (15)

Collecting these results we have, from (11) and (15),

E = (4:-n-/gp) A^/co^ T "sec^ </>e-2«o/>ieo=* g^^ (16)

We may express E in terms of known functions in two convenient forms.

If WA,m(a) is the confluent hypergeometric function defined, under certain

conditions, by*

and if K„ (a) is the Bessel function for whichf

K„ (a) = (- 1)"
[

«-»"='> '(' cosh nyjr dylr, (18)

we find, after some reduction, that

E = {7Til^l4:gpp) A?cfilh--I^y^^, 1 (a) (19)

= (7r/8<7p/3)AV.-»/2{Ko(«/2)-(l + l/a)Ki(«/2)}, (20)

where a = 2 «(/ = ^gfjc^.

In a previous paper,:J: the same function of velocity, except for the con-

stant factors, was found for the wave resistance of a submerged sphere ; the

result was given in the form (19), and a graph was drawn to show E as a

function of c. The resistance rises to a maximum in the neighbourhood of

c = ^{gf), and then falls asymptotically to zero.

Although there are few tables available for the functions K„ in general,' Ko

and Ki are given in ' Funktionentafeln ' (.Jahnke u. Emde) under the form of

(i7r/2)Ho("(ia;) and (7r/2) HiW(ta;) respectively.

5. Eeference has been made to the wave resistance of a sphere submerged

at a depth /, large compared with the radius a ; this was calculated directly

as the resultant horizontal pressure on the sphere. The connection with the

present analysis is easily shown.

In the paper referred to, the approximate solution for a submerged body

was found directly, following Prof. Lamb's method for a cylinder. It is con-

* Whittaker and Watson, ' Modern Analysis,' p. 334.

t Grey and Mathews, ' Bessel Functions,' p. 90.

X
' Roy. Soc. Proc.,' A, vol. 93, p. 530 (1917).

(Note by Editor: These functions have now been tabulated in G. N. Watson,

Theory of Bessel Functions (pub. C.U.P., 1922).
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venient to repeat here the expressions for the velocity potential and surface

elevation due to a cylinder and to a sphere, putting them into the same

notation for purposes of comparison. We have, for a cylinder

4> = ca?x ca?z

0(?+ {z+ ff x'+ iz+ff
rcxi Too

+ 2ca2 c-'"''2^M e~'^J'—-HmK(x+ cu)sm{KYu)KYdK, (21)

f = 2a?fl{x^+P)-2d' rc-'"''2rfM r e-'f (io& K{x-\-cu)sm{HNu) kY dK, (22)

and for a sphere

</>
= ca^x

2{3?-irif+ {z+ffYI^ 2{a?+ if+ {z-ffYI^

d
-ea^^^c-'^"-i^dit rc-'(-'--)Jo[A:v/{(a;+ «0^+ /}]sin(«VM)/cV(^A:, (23)

-ft3 j" e-''''l-^duVe-^:^^{ic^{{x+ cuf+ y^)]sm{K\v?)K^YdK. (24)

These expressions satisfy the conditions at the free surface, namely,

€B<j)/Sx+gi^ = and dcj}/dz = cd^fdx, when /j, is made infinitesimal. Oppor-

tunity has been taken to correct an obvious mistake in sign in the expres-

sions for the sphere ; in the former paper, the last terms in (23) and (24)

were given as positive instead of negative.

Eeturning to the comparison with § 4, consider the expression (24) for the

surface elevation due to a submerged sphere. The first part represents a

disturbance symmetrical about the origin, due to a doublet at the centre of

the sphere, together with an equal opposite doublet at a point a height/

above the free surface. Compare now the second terra in (24) with the

surface elevation given by (6) when the pressure system is (12), so that

/(k) — Ae-'-f. The two expressions are identical, with a suitable relation

between the constants ; we must have a^ = ^l9P> or the corresponding

moment of the doublet is Ac/2gp. We have then two related problems.

For the submerged sphere the pressure is constant at the free surface, and

the surface elevation consists of the two parts in (24) ; the wave resistance

depends upon the supply of energy needed to maintain the waves contained

in the second part of (24), and this energy is supplied through the work of

the pressure at the surface of the sphere. On the other hand, for the travel-

ling surface pressure,

P = ffpciV/if'+ ^'f", (25)
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the surface elevation is the same as the second part of (24) ; hence the same

supply of energy is needed, and is obtained in this case from the work of the

applied pressure. Thus we may assume that the wave resistance is the same

in the two problems.

From (19) and (25) we have

E = i iT^I-'gpf-hi^a^lh-'^I^^Nx, i (a), (26)

which agrees with the value for the sphere given in the previous paper. The

connection between the wave patterns of a submerged body and of a certain

surface pressure has been pointed out by Dr, G. Green in a recent paper,* in

which the correspondence is developed from a different point of view. In the

following analysis we deal only with combinations of simple pressure systeins

(12), and the corresponding submerged body can be found from a similar

combination of doublets, as in the preceding case.

6. The foregoing results can be generalised for other symmetrical forms of

local pressure distribution, provided transformations such as are used in (4)

and (14) are applicable. Assuming this, it appears, from the analysis of § 3

and § 4, that for a pressure system p = F {m) we have

R = (4 irjgp) Ko^
f
" 'sec^ {/(/co sec^ cj>) }^ d(t>, (27)

Jo

where/(/c) is given by (3).

7. Some points of interest in the theory of wave resistance can be

illustrated by combinations of the simple type (12). We consider first two

equal systems, at a distance 2 h apart, and advancing in the direction of the

line of centres ; that is,

p = Aflif+ Wf"+ A//(/^+ r,ifl\ (28)

where roi^ = {x—hy+ i/ and jss2^ — {x + hy+ y^.

Writing, for the moment, p\ and p2 for the two component systems, and

^1, ^2 for the surface elevations which would be caused by these systems

acting separately, the waves due to the combination are given by fi+ ^2, since

we neglect, as usual, the squares of the fluid velocities. It follows from the

definition in (7) that the wave resistance is the sum of four parts, Ej, E2, E12,

and E21. Here Ei is the resistance due to the pressure p^ acting on the waves

produced by pi, E12 is that due to ^1 operating on the waves caused by p^, and

similarly for E2 and E21.

It follows from §4, that

El = E2 = {i-n-/ffp)AW r sec5^e-2'a/sec=«^^^ (29)

* G. Greeu, ' Phil. Mag.,' vol. 36, p. 48 (1918).
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Cases of Three-dimensional Fluid Motion. 361

The terms R]2 and E21 represent the interference effects. Let Bi and B2

be the centres of the two systems pi and p2. To calculate E21, consider a

constituent plane wave-front through Bi ; take this line as a new axis O'y',

and a perpendicular line through B2 for the axis O'x', as in fig. 1.

JT

Then, corresponding to the expression (15) in § 4, we have as an element of

E21 the quantity

^ J-« -^ J-»{(a;'-l-2^cos(^)2+ 2/'2+/^}3/2' ^ '

The similar element in the value of E12 is the expression (30) when we
have replaced a;' + 2Acos(/) by ,r'— 2Acos^. Adding the two elements and
carrying out the integration with respect to y', we have, as an element of

E12+ E21,

"^ ^ ]-^{x' + 2h con ^f+f
= SttWA^ sec^ ^(;-2«»/sec=* pos (2Koh sec <^). (31)

Eeplacing from (11) the proper factor and integrating with respect to
(f),

we have

E12+ E12 = (87r/5rp)«;o=*AM sec5^e-2«o/sec2./.cos(2«o7i-see<^)(^(^. (32)

Finally, from (29) and (32), the total wave resistance E is given by

|",r/2

E = (IQ-Tr/gp)AW sec^ ^e-^"'^^'^'-''''' cos^ (kqA sec
(f>)

d^. (33)

We can express E in series of known functions by expanding cos(2«oA sec <j))

either in powers of Kah, or in Bessel functions J„(2/<:o/i); however, as these

series involve either Wk,m{2Kof) or K„(/co/)>t they are of no use for numerical

calculations.

It is not difficult to calculate numerical values directly from the integral

(33) for given values of the constants. To obtain a graph showing the

I See note by Editor on page 150.
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variation of the resistance II with the velocity c, the loUowing method is

sufficiently accurate, at least for illustrating the main features.

Take as a definite example, h = 2/; then, writing a for 2gf/c^, we require

rwi2

to calculate the value of a^ \ see^^e '^'^"'^''l' cos^ {a. sec ^) dcf) for various values
Jo

of a.

The integrand can be obtained without much trouble, and it was found

sufficient to calculate its value at intervals of 10° throughout the range from

to 7r/2 ; the mean value was found from half the sum of the initial and

final values together with the sum of the intermediate ones. In the course of

these calculations, we have material for obtaining the value of

''I

/2

by the same method ; but this integral is equal to

..„3e-«/2|Ko(a/2)-(l + l/«)Ki(a/2)},

and we can find its value also from the tables of Kq and Ki mentioned in § 4.

By comparing results we obtain some idea of the accuracy of this method of

numerical integration. The calculations can be lightened for present

purposes by choosing, from general principles, values of a which correspond

to important points on the graph.

By this method we obtain values of E for different values of c, for this

particular case. The result is shown in the full curve in fig. 2 ; the scale for

K is arbitrary, the unit for c is the velocity \/ {gf ). The dotted curve is a

mean curve, and is equal to Ei + E2 in the notation of this section ; that is

it represents the sum of the resistances due to the two systems, ignoring any

interference effects.

FIG 2

The graph is of interest in its exhibition of the typical humps and

hollows, occurring in general when 27rc^/^ is a sub-multiple of 2h. The
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promiueuce of Uie iuteii'ei'euce eCfecls depeuds upon the relative iiiaguitudes

of the constants /and /i ; the example we have chosen shows a pronounced

efifect due to the final maximum of interference being near the maximum of

the mean curve.

8. We may note brieHy the interpretation in terms of a submerged body

The surface of the body is one formed of stream-lines due to the two equal

doublets in a uniform stream ; the axes of the doublets are in the same

horizontal line at a depth /, which must be large compared with, at least

the vertical dimensions of the body. For instance, with suitable relations

between the constants, the result would give the wave resistance of two

small bodies, of nearly spherical shape, one behind the other at a distance

large compared with their dimensions.

9. By combining simple symmetrical pressure systems, we may generalise

the previous results ; this seems an easier process than the direct discussion

of unsymraetrical systems. We shall assume that the component simple

systems are all of the type (12) and have the constant / of the same value,

and that the centres of the systems all lie on the axis Ox.

In the first place we must extend the analysis of §8 to two components of

unequal magnitudes A and B, with their centres at the points {h, 0) and

{k, 0) respectively. From the argument expressed in (29)-(32), it is easily

shown that the value (33) for the wave resistance must be altered by replacing

A^ cos^ («:o''' sec ^) by

^[A2+ B2+ 2ABcos{«o(A-'^')sec^}]. (34)

Suppose further that the pressure system is given as a continuous line

distribution of components along Ox in a range from h\ to A2, the magnitude

of the element with its centre at {x, 0) being proportional to some function

i/r {x) ; in other words, suppose the surface pressure is given by

^'^kM^-W+f +/'}"" ^ ^

the fimction i|r (h) being such that the transformations used in the preceding

analysis are permissible. For the system (35) we have to sum (34) for all

possible pairs of elements ; this is performed by taking the double summation

A ylr(h)dh\ ^(k)cos {Ko(h—k) sec ^} dk. (36)
Ja, Ja,

The wave resistance for the system (32) can be completed now from (33)

and (36) ; we have

R = (47r/^p) Ko^A^

f V (/(,) dh f
'^p•{k) dk [" "sec^ (/>c-2'"-/^«<=''* cos {ko (h-k) sec </>} d^. (37)

J A, J A, Jo
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10. Consider as au example the case wl\eii yjr (Ji) is constant, so that the

surface pressure is

J + /..2 , r2\(^„ , J,v2 , „.2 , ^211/2- V^°'
{f+P) {{x-hY+ y'+PYI' 0/+n {{X+ hf+f +/2} v^-

This may be regarded as the combination of two equal systems of opposite

sign, with their centres at the points (A, 0) and (—'A, 0) but not symmetrical

round these points.

In this case, after carrying out the integrations with respect to h and k

(37) gives

E = {\&iTlgp)^?K<, r sec3 0e-2'o/««<='*sin2(A:o/isec^)c?(f). (39)
Jo

The integral may be treated similarly to (33). One of the main differences

lies in the factor sin^ (/co^sec^) instead of cos^ (/«oA sec ^) ; this is because

we have now two equal positive and negative systems instead of two positive

systems, and in consequence the series of humps and hollows on the resistance

curve will be interchanged.

We have chosen this case partly because of the corresponding problem in

the motion of a submerged body at depth /. Integrating a line of doublets

of constant strength results in a simple source at one end of the line and an

equal sink at the other. Hence, the submerged body is one of the oval-

shaped surfaces of revolution formed by combining a source and sink with a

uniform stream ; it follows that, as in § 5, the strength of the source is

Ac/2gp. It may be noted that the coefficient A in (39) has different

dimensions from that in (33), agreeing with its introduction in (38). By

making h small in (39) we regain the former result for a sphere.

11. If a prolate spheroid of semi-axis a and eccentricity e is moving in an

infinite liquid with velocity c in the direction of its axis of symmetry, it can

be shown that the velocity potential may be written in the form

P -
^' J _„, {(^_/,)2+ y2+ ,2|3/2. (^^)

where A = l/[4e/(l— e^)— 21og {(l-|-€)/(l— c)}], and where we have, for the

moment, taken Ox along the axis of symmetry of the spheroid. This

expresses
(f>

as due to a line of doublets ranged along the axis between the two

foci. Hence the surface pressure corresponding to the motion of the spheroid

with its axis at depth /is

o ^A r (ah^-¥)dh ,.,,
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reverting to axes with the origin in the free surface. It should be noticed

that, as in § 5, the surface pressure (41) does not give the same surface

elevation as the moving spheroid ; the surface condition in the latter case is

that the pressure should be constant at the free surface. But (41) does give

the same wave formation as the spheroid, and that is the part of the surface

effect upon which the wave resistance depends. The complete surface eleva-

tion can be easily written down by direct methods as in the case of the

submerged sphere.

Using (41) now as an example of (35), we find the wave resistance of the

spheroid from (37) ; after integrating with respect to h and h, the result is

E = 128 TT^gpah^A^ [' 'sec^ ^g-2«o/sec"-.(,
| j^^^ (^^.^g gee ^)f defy. (42)

It can be verified that this gives the result for the sphere by making e zero.

For a given relation between/ and ae, the value of R can be obtained

approximately by the numerical methods used in the previous examples
;

judging from rough calculations, it appears that the resistance curve does not

show prominent humps and hollows. This might be anticipated from the

surface pressure (41), which can be evaluated in simple form ; if we repre-

sent the pressure distribution by a surface with p, x, and y as co-ordinates,

then (41) gives a single oval-shaped peak with its longer axis in the direction

Qx. On the other hand, the pressure distribution (28) represents two

distinct peaks. We may compare in this respect the behaviour of ships'

models ; it depends upon the shape of bow and stern, and the relation

between them, whether the resistance curve has marked interference effects

or is a contiauously ascending curve.

12. We have limited the previous cases to combinations of simple pressure

systems ranged along the axis Ox. The method can obviously be extended

to systems with their centres on Oy ; or again, for systems situated in the

plane xy, a four-fold summation in the manner of (36) would give further

generality. For the corresponding problem of the motion of a submerged

body, one could obtain the wave resistance of any body whose surface is

formed of stream lines due to the combination of sources and sinks with a

uniform stream.
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TURBULENT FLUID 3I0TI0N AND SKIN FRICTION.

By Professor T. H. Havelock, F.R.S.

[Read at the Spring Meetings of the Sixty-first Session of the Institution of Naval Architects,

March 26, 1920.1

Introduction.

1. It is generally admitted that our knowledge of the laws of skin friction for a

solid moving through a fluid is not very satisfactorj'. This may be ascribed to two main
reasons: in the first place the inherent difficulties of the theory of turbulent fluid motion are

great even in the simplest cases, and in the second place most of the experimental data

which are available have been gathered, not with the primary object of building up a

consistent theory, but with more immediately practical aims in view.

Although no general investigation is attempted in the following notes, it is hoped that

they may be of interest as a critical discussion of certain aspects of the problem. The
work may be summarized briefly as follows :

—

(1) An examination of experimental results with a view to defining or estimating the

(apparent) velocity of slip of a fluid in turbulent motion past a solid.

(2) The expression of the frictional force per unit area at anj^ point of a plane surface

in the form k p v~, where v is the relative velocity at the point ; determination

of the value of k from experimental results.

(3) The calculation of the total frictional resistance in the case of a plank for which

the distribution of velocity is known ; remarks on the distribution of velocity

for a long plank.

(4) Two numerical calculations to illustrate the assumptions involved in applying a

similar method to curved surfaces.

(5) Connection with the law of similarity ; the effect of the ratio of bread tli to length

in the case of planks ; remarks on the extension to long planks and high

velocities
;
general problem of ship resistance.

Relative Surface Velocity.

2. When a liquid flows in steady turbulent motion through a pipe it is usual to

express the resistance of the wall in terms of the mean velocity over the cross-section,

because it can be defined ^^recisely and measured accurately. Further, in any theoretical

study of the motion, it seems necessary to assume that the fluid velocity at the wall

is zero, there being no slipping of the layer actuallj' in contact with the wall. However,

in many cases it is found that the velocitj' varies little over a large part of the cross-

section and is an appreciable fraction of the mean velocity at points very near the wall
;

this occurs when the turbulent regime is well established, either because of high velocities

or of large diameter of the pipe. It may be then, for some purposes, a matter of prac-

tical convenience to treat the motion as if there were a velocity of slip at the wall. The
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2 TUEBULENT FLUID MOTION AND SKIN PEICTION.

magnitudes involved may be illustrated by some numerical cases. Taking indirect calcula-

tions first, we may quote an instance from Lamb's Hydrodynamics (6th edn., p. 666).

Assume that the resistance per unit area of the wall of the pipe is given by « p u^,

where p is the density and v^ the mean velocity of the liquid. Also suppose the velocity

to be approximately v„ over the cross-section, except in a thin layer of thickness I

in which there is laminar flow. In order to obtain the same resistance per unit area,

we must have n Vg/l = k p v~, or I = v/k v^, where /x is the viscosity and v the kine-

matical viscosity. For water moving with a mean velocity of 300 cm. /sec, this gives

I = 0024 cm.

For the cognate problem of the motion of a solid through a liquid, take an example

from Froude's data for planks. The resistance of a 2-ft. plank at 600 ft./min. is given

as 0-41 lb. per sq. ft. ; the thickness of the equivalent layer for laminar motion giving

the same resistance is found from ixvjl = 0'41, or Z=0'007 in., approximately.

But these are indirect estimates, and we turn now to experimental determinations

of the velocity. Here the velocity is obtained by means of a Pitot tube, and it is obvious

that the nearest point to the wall at which an experimental value can be found depends

upon the dimensions of the Pitot tube. For the motion of a plank through water we
have Calvert's measurements of frictional wake.* In this case the Pitot tube was one-eighth of

an inch in diameter. It was found that the relative velocity at the surface of the plank

decreased from full speed at the front end to about half that speed at the aft end of

a 28-ft. plank moving at about 400 ft./min. For turbulent flow through pipes, passing

over the earlier work of Bazin and others, we may take an example from measurements

by Stanton. t The Pitot tube was of rectangular section, the external dimension in the

direction of the radius of the pipe being 0-33 mm. With a smooth pipe of 2-465 cm.

radius, the velocity at the axis being 1,525 cm. /sec, the velocity at 0'025 cm. from the

wall is given as 592 cm./sec. Further, the mean velocity is about 0-81 of the velocity

at the axis. J Hence we may deduce that the (apparent) velocitj^ at the wall is 0'475 of

the mean velocity. A similar result is obtained from other cases given in the papers

quoted, the value of V djv being in the neighbourhood of 50,000.

We shall assume that we can refer to a relative surface velocity which is sufficiently

definite for certain purposes, the limitations being indicated by the numerical examples

which have been given.

Plane Stjefaces.

3. We wish to see if the frictional force per unit area on any plane element of surface

can be expressed by k p v^, where v is the relative velocity of the fluid and wall at the

point, p is the density of the fluid, and k is a non-dimensional coefficient of roughness.

One of the earliest attempts to analyse turbulent fluid motion, by Boussinesq, involved

a surface friction of this kind, together with a constant effective coefficient of eddy
viscosity, or of mechanical viscosity as it was called by Osborne Reynolds. Experimental

results on flow through pipes can be fitted more or less by a scheme of this kind, but

it is generally recognized now as only an approximate statement. In the first place the

mean friction on the walls is not simply proportional to (velocity)^, but depends also on
the diameter ; so that the friction on an element of the wall may include a term involving

its curvature. Further, the effective eddy viscosity is not found to be constant over the

cross-section, though it varies little except near the walls. A similar theory has been

applied recently by G. I. Taylor to the turbulent motion of the atmosphere and the skin

friction of the wind on the earth's surface.

Rankine, in his method of augmented surface, assumed a skin friction proportional

* C. A. Calvert, Trans. I.N.A., Vol. XXXIV., p. 61, 1893.

t T. E. Stanton, Proc. Roy. Soc, A, 85, p. 366, 1911.

J Stanton and PanneU, Phil. Trans.. A, 214, p. 205, 1914.
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to (velocity)^ ; but the working out of the idea involved various assumptions which
are no longer regarded as legitimate.

In these notes, the scope is much more limited. The method is appHed, in the first

instance, only to plane surfaces ; and, without further theoretical elaboration, some experi-

mental results are examined from this point of view.

To obtain a value of the coefficient k for smooth surfaces, take first some of the
earlier data : Bazin's results for water flowing in open smooth canals of great breadth
compared with the depth. These have been expressed in various empirical formulae ; we
shall quote one numerical case.* If R is the skin friction per unit area, V the mean
velocity, v^ the velocity at the open surface and v the (apparent) velocity at the bottom
of the canal, we are given

t^„ = V(l +1-81V^); ^ = V(l-3-62V0
where ^ = 2 R//j V^. With a mean velocity V = 142-9 cm./sec, and ^ = -0044, this gives

R = 0-0022 pV^ = 0-0038 pv^

However, we have a more accurate expression of recent work in Lees' formula for turbulent flow

in smooth pipes,! namely :

—

R = p V2{ 0-0009 + 0-0765 (v/V df^^}

This formula includes the results of Stanton and Pannell quoted in the previous section ;

we may therefore use for the relation between the velocity v at the wall and the mean
velocity V the equation w = 0-475 V. Further, if we assume the formula to hold when
the diameter d of the pipe is made very large, we deduce an expression for a plane
surface in the required form, namely :

—

R = 0-004:pv"

We shall use this expression to estimate the frictional resistance of a smooth plane surface, v

being the relative velocity at the surface.

4. In order to apply this method, it is necessary to know the distribution of velocity

over the surface. Unfortunately there are very few determinations available for this

purpose, although no doubt others may have been made in recent years. The only
direct observations which have been published appear to be those of Calvert, given in

his paper on the measurement of wake currents to which reference has already been made.
A plank, 28 ft. long and coated with black varnish, was drawn along the surface

of water and measurements were made with (Pitot) tubes projecting beneath the underside

of the plank. " The speeds recorded at distances of 1 ft., 7 ft., 14 ft., 21 ft., and 28 ft.

from the leading end were respectively 16 per cent., 37 per cent., 45 per cent., 48 per

cent., and 50 per cent, of the velocity of the plank ; and these proportions appear to be
maintained at all speeds between 200 and 400 ft. per minute, the latter being the highest

speed that the arrangements would allow."

The relative velocities at these points are thus, respectively, 0-84, 0-63, 0-55, 0-52, and
0-5 of the velocity of the plank. The width of the plank is not stated, and we must
assume the effect of the finite width upon the distribution of velocity to be small.

Summing up the friction along the plank, supposed of unit width, we have :

—

28

Total skin friction = (o-OOi pv^d I

Jo

From Calvert's observations we may draw a fair curve showing the variation of t)^/V*

along the plank, where V is the velocity of the plank ; it is shown in curve A of Fig. 1.

* Data from Von Mises, Elem. der Tech. Hydromech., teil 1, p. 97.

tc.H. Lees, Proc. Roy, Soc, A, 91, p. 49, 1914.
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The integral can now be evaluated approximately from the graph ; applying Simpson's

rule with intervals of 1 ft., the integral of v-/V^ along the plank comes to 10' 2. With

a velocity V = 400 ft./min., this gives a total resistance of 3 '51 lb.

The resistance of the plank was not measured by Calvert. However, we may obtain

another estimate from W. Froude's results (Brit. Assoc. Reports, 1874). Using Plate II.

of that report, we can read off from the curves the resistance of a 28-ft. varnished

plank at 400 ft./min.; it is 3 '51 lb., as nearly as can be estimated. Naturally one

need attach no importance to the coincidence ; except that with a constant coefficient

K = 0'004 and taking account of the actual distribution of surface velocity, the value

of the total friction is in agreement with direct measurements in similar cases.

5. It must not be supposed that this method means that the total skin friction is

proportional to the square of the velocity V of the body. From the theory of physical

dimensions applied to similar bodies we have :

—

R = pVV(VZM
On the present statement, the only difference is that it is the relative surface velocity

which is some undetermined function ; for instance, in the graph of Fig. 1, if x is the

distance from the leading end the graph must satisfy an equation of the form :

—

^2yv2 = Y [X/I, V l/v)

After integrating along the plank, we obtain then R in the general functional form given

above.

6. Assuming the value 0-004 for k for smooth planks we may deduce some informa-

tion as to the fall of surface velocity, for the mean resistance per unit area divided by

K p gives the average value of v~ over the surface.

Taking Zahm's experiments * on varnished planks in air, using a suitable value of

p and taking the results as they are given in the table for the resistance of planks of

various lengths at 10 ft./sec, we obtain the following :

—

Length 2 4 8 12 16

Average v^V^ .. .. 0-574 0-543 0-516 0-497 0-49

From the similar tables of W. Froude for planks in water at 10 ft./sec, we find

—

Length 2 8 20 50

Average v^/V^ .. .. 0-529 0-419 0-359 0-316

There is a much quicker fall in water than in air, but of course the V Ijv values do not

correspond in the two sets. Froude gives a column which is said to be the resistance

per square foot of the last foot of plank ; this is, one may suppose, obtained as the

difference in resistance of two planks differing in length by 1 ft., and it obviously

assumes that the addition of 1 ft. to the rear of a plank does not alter appreciably

the distribution of velocity over the rest of the plank. Taking the figures as they stand,

we may deduce the average value of v^ over the last foot of plank for various lengths
;

they give :

—

Length 2 8 20 50

Average 0-503 0-340 0-309 0-291

the second row being the average value of v^/Y^ over the last foot. Taking the square

root, we may estimate the relative velocity at the end of a 50-ft. plank moving at 10

ft./sec. as about 0-54 of the velocity of the plank; and this estimate will be on the high

side. It may be compared with the value 0-475 which we found for the similar ratio

in flow through pipes when the steady state has been reached.

* A. F. Zahm, Phil. Mag., 8, p. 58, 1904.
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Curved Surfaces.

7. If a body is moving through a liquid we may suppose the force on an element

d S oi the surface to be resolved into a normal pressure and a frictional force R cZ S
;

the latter will be in a direction opposite to the relative velocity and, if we suppose it

to make an angle 9 with the direction of motion of the body, we may define the skin

friction as iRtiScos^, taken over the wetted surface.

For plane surfaces we have shown that there is some justification for taking R equal

to K p V", where v is the relative velocity ; in the general case one would probably have

an additional term involving the curvature of each point. Consider first the case of " two-

dimensional " flow, when the longitudinal cross-section of the body is of ship-shape form.

Here each element is curved in the line of motion, and if the curvature is small and we
assume R = k p v^, the effect of the curvature is to be found in the distribution of velocity.

The effect of this kind of curvature has been discussed by Mr. G. S. Baker by estimating

the distribution of velocity in stream-line motion. It should be noted that it is not the

same as the effect of the shape of midship section, for there the curvature is at right

angles to the line of flow. Naturally in three-dimensional flow both effects are superposed,

and cannot be disentangled. No experimental determinations of surface velocity appear to

have been published, at least for ship forms in water. The extension from plane to

curved surfaces is thus to a large extent speculative : however, as the extension has been

made already in other methods, two numerical examples are given here to illustrate the

various assiimptions.

8. For two-dimensional motion, suppose that the model is 28 ft. long, as for Calvert's

plank, with a longitudinal section shown, as to the upper half only, in model C of Fig. 1.

This is a form for which Baker and Kent * have calculated the pressure distribution in

stream-line motion ; from the curves given in that paper we can draw a curve of the

distribution of v'^/Y^ in stream-line motion, v being the relative surface velocity and V
the velocity of the model. Now, as an arbitrary assumption, suppose that in turbulent

flow v^ diminishes for the model according to the same law as for the 28-ft. plank

;

that is, we take a reduction factor at each point from the curve A of Fig. 1. We obtain

thus the curve C of Fig. 1 as an estimated distribution of relative velocity, or rather it

* G. S. Baker and J. L. Kent, Trans. I.N.A., Vol. L., Pt. II., p. 37, 1913.
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6 TUEBULENT FLUID MOTION AND SKIN FRICTION.

shows the values of v^/V^ for the model. Also the total skin friction, per unit breadth

= In d S cos 6 = ^K pv^d I

taken along the straight axis of the model. Estimating the area under the curve C, and

the curved length of Model C, we can calculate the mean resistance per unit area. It

appears that the model has a mean resistance per unit area about 1 1 per cent, greater than that

of a plank of the same length.

9. For a three-dimensional case we take similar preliminary data from a paper by
Mr. D. W. Taylor * on solid stream forms. We carry out the same process as in the

previous section, and it is unnecessary to reproduce the corresponding curves. The only

difference arises from the fact that the solid is one of revolution with pointed ends ; con-

sequently the element of area approaches zero at the two ends. If y is the ordinate of

the ship form at any point on the axis, we have to graph the values of y v^ on the

straight axis of symmetry as a base, instead of simply v^ as in the two-dimensional

problem. As far as the numerical approximation has been carried, it appears that the

mean resistance per unit area for this model is about equal to, or slightly less than, that

of a plank of the same length.

10. The resistance of a small appendage on the surface of a ship must depend chiefly upon
the relative surface velocity in its neighbourhood. It is appropriate to refer here to some
experiments by Mr. Baker t to determine the added resistance due to local roughness

of a model. If the rough area were small enough relatively so as not to ^affect appreci-

ably the flow over the rest of the model, and if the slope of the surface and the direction

of flow were known, it might be possible to deduce information about the velocity distri-

bution ; however, one cannot analyse in this way the results to which reference has been

made.

In regard to skin friction for curved surfaces especially, one may venture to quote

and endorse a remark made by Professor Lees f :
" It is of prime importance that further

measurements should be made on bodies which lend themselves to simple theoretical

treatment in order to build up a satisfactory theory."

Law of Similarity foe Planks.

11. The law of similarity in its usual form :

—

R = pVV(VZ/v)

applies to bodies which are geometrically similar in form, and are similar as regards

scale of roughness. In experiments with planks we may perhaps neglect the thickness

and suppose the motion to be in two dimensions only ; but the planks will not be similar

unless the ratio of breadth to length is constant. In other words, the general formula

from physical dimensions is :

—

R = pY^f(b/l, VZ/v)

where the undetermined function depends upon two quantities, the ratios b/l and V l/v-

In most experiments the ratio b/l has not been kept constant, but the planks have
been of constant breadth and varying length. Consider, for example, Zahm's results,

§

which he expressed in the empirical formula :

—

R = k 1-°°^ Vi'85

* D. W. Taylor, Trans. I.N.A.. Vol. XXXVI.. p. 234, 1895.

t G. S. Baker, Trans. North-East Coast Inst., Vol. XXXII., p. 50, 1915.

I C. H. Lees, Trans. I.N.A., Vol. LVIIL. p. 64, 1916.

§ Zahm, loc. cit.
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It is usual, following Lord Rayleigh, to correct this to satisfy the law of similarity

and to write :

—

R = Const. X pY^ (v/V If^^

It is probably true that the experiments are not sufficient to decide between these two

forms. The present point is that without altering the empirical law as regards I and V,

the formula can be made to satisfy the dimensional equation by writing it, for instance,

in the form :

—

R = Const. X /> V^ X (i/6)0"« X (v/Vlf^'

Similar remarks may be applied to Froude's experiments with planks in water. For instance,

with planks coated with fine, medium, or coarse sand the resistance is proportional to the

square of the speed. Hence in these cases the quantity R/p V^ is a function of the ratio

bfl and of the coefficient k, which may be called the ratio of roughness ; but it is not

possible to separate the two effects in the results.

12. Consider the distribution of relative surface velocity from front to rear of a long

plank. Neglecting the disturbance of the edges, we may divide the distribution roughly

into three stages ; firstly, one in which the

velocity falls rather rapidly, then a long

stretch in which it is practically constant,

and finally a relatively short stage in which

the influence of the end is appreciable. For

a very long plank in which the middle

stage predominates, the mean resistance per

unit area will approximate to k p v^, where

V is the steady value of the surface

velocity. On the other hand, for shorter

planks a two-term formula may be

sufficient, which may possibly be of the type

pY'{A +B(v/Yir}.
Again, if the breadth is taken into accoimt such a formula would be incomplete.

Here in the extreme case of a long plank of finite breadth, the analogy of steadj^ flow

through a pipe is suggested ; and the mean resistance should approximate to a two-term

formula of the type just given, with the length I replaced by the breadth d. This is

the argument which has been worked out by Professor Lees in the paper * already quoted
;

in that analysis d is taken as the diameter of an equivalent circular cylinder and deduced

by a certain method from the dimensions of the jjlank.

13. On the analogy of the law of similarity for flow in pipes, Mr. Baker f has collected

results on planks and models into one diagram in which R/p Y^ is graphed on a base

V Z/i/. We have seen that certain reservations are necessary in grouping the data from

planks in this way ; but the general trend of the curves obtained is very suggestive. Fig. 2

shows the main points in a diagrammatic sketch, not drawn to scale, but based on the

paper quoted.

The stage A B represents simple viscous fluid motion when R is proportional to V.

B C is an unstable condition when the flow may be partly simple and partly turbulent
;

after C the latter regime becomes permanently established. If the resistance R is repre-

sented by a single-term formula / V", it is clear that the best single power is V^ in the

neighbourhood of the points B and C. It may be noted that Froude gives V' for short

smooth planks of 2 ft. in length, and it may be presumed that the region near C was

then under observation. As the length is increased, the best single power decreases to, say,

V^*^ near D, if we take this point to represent the limit of available data. Froude's

* C. H. Lees, loc. cit.

t Gr- S. Baker, Trans. North-East Coast Inst., loc. cit.
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8 TUEBULENT FLUID MOTION AND SKIN FEICTION.

extension to very long planks is equivalent to extending the curve beyond D so that

it approaches the base-line ultimately. On the other hand, the analogy with the problem
of flow through pipes suggests that the curve approximates ultimately to a line at a

finite distance above the base-line. In the latter case, the best single power must
increase again at some stage and ultimately approach V^ again. However, it is generally

recognized that all that can be said is that any reasonable extension of the curve beyond
D must lie within certain limits, that in fact being the statement made by W. Froude*
in this respect ; we are not able yet to decide between alternative methods.

14. In conclusion a few remarks may be made on the general problem of ship resist-

ance. It is usual to divide up the total resistance into three parts : frictional, eddy-
making, and wave-making resistance. An alternative method is to think of the direct

action upon each element of the wetted surface ; this action may be resolved into a

normal pressure p and a tangential force R at each point. The integrated effect of R
gives the total skin friction, while the resultant of the pressure distribution may be called

the body or form resistance. In the ship problem it is assumed that the latter corre-

sponds in the main to the wave resistance, together with that due to eddy-making of

the more obvious kind ; however, in general, the distribution of normal pressure and of

tangential force will be interdependent and will each be affected by all the circumstances

of the motion. It would be of interest to have some case analysed in this way, wdth the

pressure distribution determined experimentally. This method has been adopted in the
corresponding problem in aeronautics, which is simpler in some respects. For an airship

envelope, in the form of a surface of revolution, the pressure distribution can be found
experimentally ; the difference between the resultant and the total resistance then gives

the skin friction. f If there were, for the same case, experimental determinations of the

distribution of velocity over the envelope, it would be possible to compare the total skin

friction with the resultant of a distribution of tangential force k pv'' taken over the surface.

Results for submerged bodies in water might be deduced from those in air by the law

of similarity ; but it would be preferable if direct results could be obtained, experimentally,

for the distributions of normal pressure and of velocity for simple forms intermediate

between the plank and the ordinary type of ship model.

* W. Froude, Brit. Assoc. Reports, 1874, p. 255.

j" Cf. L. Bairstow, Applied Aerodynamics, p. 357.
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The Stability of Fluid Motion,

By T. H. Havelock, F.E.S.

(Received January 31, 1921.)

1. The following notes on the stability of fluid motion arose from a desire

to use the energy method, introduced by Reynolds and modified by Orr, as a

measure of the comparative degree of stability of various types of flow under

different boundary conditions. A few examples are worked out to illustrate

this point of view : in § 5 a case which resembles the flow of a stream with a

free surface ; in § 7 flow which approximates to a uniform stream between

fixed walls without slipping at the walls ; in §§ 6, 8 motion with other

boundary conditions. Before proceeding to these, it seems desirable to give a

short account of the method in the form in which it is used later, together

with some remarks on its relation to the classical method of small vibrations.

2. We shall consider only two-dimensional motion of an incompressible

viscous fluid limited by the planes y = +a. Let the steady state under an

assigned forcive and given boundary conditions be specified by a velocity, U,

parallel to the axis of x. Let the disturbed state have velocity components

(U + u, v) and let the additional pressure be p. Then, by taking the difference

of the two sets of hydrodynamical equations for the two states and neglecting

squares and products of the additional velocities, we have

ot ox ay pox p

dt^ dx pdy^p^ ' ^^

together with the equation of continuity.

It is convenient to introduce non-dimensional variables given by

X = a^; y = arj ; ar = Vt

;

where U is the mean velocity over the cross-section in the steady state.

Further, we write UU instead of U, and take the current function of the

additional velocity to be Uai|r. Himinating ^; from the two equations (1), we

obtain

where U" is written for d^XJ/dr)^, and E is Reynolds' number 2aJ5jv. There

are in addition the appropriate boundary conditions for tlie disturbing

function, <|f. The classical method of examining the stability of a given
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distribution U consists in assuming a solution of (2) of the form

e-x]).{i{nT+p^)}fn{r})- For any arbitrary real value of p, the corresponding

possible forms of /„(77) and values of n are found from (2) together with the

boundary conditions. The distribution U may be said to be thoroughly

stable if every possible value of n has a positive imaginary part, and if this

holds for all positive values of 11.

The usual boundary conditions, which we shall assume in the first place,

are m = 0, v = 0, or

«|r = 0; c)f/d7, = 0: 7?=±1. (3)

From the work of Kelvin, Rayleigh, Orr, Hopf, and others, it may be taken

that the simple shearing motion, U = 1 +77, is thoroughly stable in this sense
;

and probably a similar conclusion holds for motion under a constant force or

pressure gradient, namely U = ^(1 — 7)").

There are various possible explanations of the well-known divergence

between these results and the behaviour of actual fluids. In the first place, it

is obvious that the physical properties, whether of the fluid or of the walls, are

inadequately specified in the mathematical statement of the problem. But,

apart from this, the disturbances have been supposed small, and second order

terms neglected. Again, in a system of this type, a disturbance may be

small initially and may converge ultimately to zero, but may be very large at

intermediate times, and may thus give rise to practical instability.

The energy method of Eeynolds is in a different category from these in

that it takes the mathematical problem as it stands and does not necessarily

involve the actual magnitude of the disturbance ; in fact, it forms a new

criterion or measure of degree of stability. The energy of the disturbance

being defined by _ cC ndylr\^ /^^lrV^
E = ip.^U^|j{(|)+0}^?^., (4)

we have from (2) and (3), after integrating by parts,

f = ^;.0^[EJ|u'|^i?rf,-2||(v^^)^^?i,]. (5)

Here d^/dt means the rate of increase of E in a region whose end boundaries

move with the steady velocity U. We may replace this by M/dt for a region

with fixed ends, and we shall then have additional terms on the right of (5)

denoting flux of energy across these ends. The latter terms may be omitted

under conditions which cover the usual cases : namely, either the disturbance

is periodic in f, or it is limited or localised so that y]r and its derivatives

converge sufficiently rapidly to zero for ^ = ± 00 . We shall assume such

conditions to hold in what follows, and references to boundary conditions

mean those which hold at the planes 1? = +1.
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Eeynolds' method of using (5) to determine a criterion of stability

consisted in assuming a suitable form for ^ and finding the least value of E
for which the right-hand side of (5) is zero. It is usually stated that this

method assumes turbulent motion to be already in existence, and it then

gives a criterion to show whether the turbulence is increasing or decreasing

momentarily; but this is somewhat misleading without defining what is

meant by turbulent motion. Equation (5), as stated above, applies to any

small arbitrary disturbance, neglecting terms of the second order, as in the

ordinary method of small vibrations ; further, U is a laminar fluid motion

satisfying the usual hydrodynaniical equations under the given conditions.

On the other hand, Eeynolds defined U as the mean velocity at each

point, taken over a small region or during a short time, and this principal or

mean motion need not satisfy the ordinary equations. The e.xtra velocities

M and V then play a double part, in that they specify the disturbance, and at

the same time give a measure of the turbulence ; they must satisfy certain

conditions as to their mean values, and then equation (5) holds in the same

form when mean values are used. However, in applying it to find the

criterion for flow under a constant pressure gradient, Eeynolds, and Sharpe

following him, did, in fact, take U to be the usual form, C {a^—y^), for steady

laminar flow. But in turbulent flow, although the variations of velocity at

any point are small, yet they may cause the gradient of the mean velocity to

differ appreciably from its value in laminar flow, as is obvious from a com-

parison of the curves of distribution of velocity across a pipe in regular and

in turbulent flow.

However, it is unnecessary to dwell on this distinction, as it has been

pointed out clearly by Lorentz* and other writers ; further, we shall

consider here only small disturbances.

3. Under these circumstances, the energy method has been given a precise

and definite meaning by Orrf from the following considerations :

—

If the right-hand side of (5) is positive, the energy of the disturbance is

momentarily increasing. But, for a given velocity distribution, U, it may be

impossible to find any function, -vlr, satisfying the boundary conditions, such

that that expression is positive, unless E exceeds a certain value. If such be

the case, this least value of E is a critical value of definite significance. The

corresponding critical disturbance is found by taking the variation of the

equation
jj jj^'^^ cl^ ^'^~ ^

fj
^^'^^' '^^ ^'' = ^' ^^^

subject to 8E = 0.

* H. A. Lorentz, ' Abhandlungen iiber Theor. Pliy.s.,' vol. ], p. 43.

+ W. McF. Orr, ' Proc. Eoy. Irisli Acad.,' vol. 27, p. 9 (1907).
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Carrying out the variation, and using the boundary conditions (3), we

obtain

4vV +2RU'U + EU"^^ = 0. (7)

To find the critical vahie of R, wc assume first that f occurs in i|r as a

factor exp. ip^, and then solve (7) ; using the boundary conditions, we have

an equation from which we can find the least value of 11 for a given value

of jo, and finally we take the minimum value of R with respect to p.

The process has been expressed in a different form by Hamel.* Using the

corresponding Green's function for the equation V'l/r = 0, the equation (7)

may be replaced by a linear integral equation for i|r, of which the required

value of R is the lowest characteristic number.

Returning to equation (5), if dE/di is positive for any assigned initial

disturbance, it does not follow that the motion is unstable in the ordinary

sense. But, if there exists an absolute minimum for R in the manner

explained above, it follows that, when R is less than this value, dEijdt is

negative for every initial disturbance, and must always remain negative.

Thus the system has at least a much higher degree of stability for such

values of R compared with those greater than the critical minimum.

Obviously, this method does not produce any new information which is

not implicit in the ordinary equations, such as equations (2) and (3) ; but it

presents part of that information in a different form, so that the critical

minimum of R may be used as a measure of the degree of stability of various

distributions of velocity under different boundary conditions.

4. It is convenient to classify the boundary conditions under which the

energy equation (5) is valid. For this purpose we use an alternative form

derived directly from equations (1), with the ordinary notation

^..= -p+2^^; ^,^ = ;.^g_f-j; p,^=-p + 2^^^, (8)

We have

-^ = {u{lpxr+'>np:^)-irv {Ip^^+ nipyy)] ds—p[\uv -j-dxdy

where ds is a line element of the boundary and (I, m) the normal.

We have specified the conditions at the end boundaries, and we are con-

cerned now with the planes y = + «. It follows that we get the energy

* G. Hamel, 'Gott. Nachr., Math. Phys. Klasse,' 1911, p. 261.
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equation (5), without any surface integrals expressing transfer of energy across

the boundaries, with the following combinations:

(i)u = 0,v=0; (ii) ti = 0, p,jy = ; (iii) v = 0, j-^q, = ; (iv) p^y = 0, pyy — 0.

We may also verify that, under these conditions, the variation of (6) leads

to the same differential equation (7).

5. Most of the fluid motions whose stability has been examined, come under

case (i) of the above. A different case of special interest is a stream with a

free upper surface, the conditions at the upper surface being as in (iv). These

conditions, however, do not lead to simple expressions in terms of the

disturbing function, A/r ; moreover it is not permissible to regard the upper

free surface as rigorously plane. We therefore, following Kelvin,* replace

the problem by one which is very nearly the same but is more easily

specified; it may be described as a broad river flowing over a perfectly

smooth inclined plane bed, the upper surface being fitted by a parallel plane

cover moving with the water in contact with it. The conditions at the

upper surface then come under case (iii) of the previous section.

We take the origin in the upper surface in this case, so that a is the depth

of the stream and E is aV/v. The steady state is given by

U = 1(1-7,2). (10)

Using this in (7) and assuming ^fr to be proportional to e'?^, the differential

equation becomes

where a = pij, and k = 3zE/2p^.

The boundary conditions are u = 0, v = at the bed of the stream, and

V = 0, p;ry = at the upper surface ; these reduce to

i/f = 0, d^y^rlda^ = ; a = ;

i/r = 0, dy^jdoi. = ; a=p. (12)

Equation (11) was solved by Orr for flow between two fixed planes with u

and V zero at both boundaries, and it was found necessary to consider only

solutions in even powers of a. We shall require here the corresponding

solutions in odd powers. Writing a solution in the form

^ = % A„a.''/n !

we have the sequence relation

A„+4-2A„+2+{l-(2n+l)A}A„ = 0. (13)

* Kelvin, ' Math, and Phys. Papers,' vol. 4, p. 330.
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Denoting by if-o, yjri, -^2, -^s the solutions beginning with 1, «, a?, a^

respectively, it follows from (12) that the boundary conditions lead to

sjridyjrs/da— yjrsdyln/da = (14)

where a has to be replaced by p.

Calculating the coefficients far enough to give sufficient accuracy for our

purpose, we have

-./ri = a+ 2«3/3 ! + (3 + 3/0 aV5 ! + (4+ 20A) aV? !

+ (5 +70^-+ 33/^2)^9/9! + (6 + 180/t; + 366^2)al7ll!

+ (7 + 385/c + 2029F + 627A;3)ai3/l3! + (8 + 728/i;+ 7832;fc2+9672F)ai5/i5!

+ (9 + 1260/fc+ 24030/^2+ 73500/^3+ 16929/.-*) ai717
! + ...,

f3= a3/3! + 2aV5!+ (3 + 7/c)a77!+(4+ 36;;)a79!

+ (5 + llO/c + 105/;2) ai711 !+ (6 + 260^•+ 894P) a^yiS !

+ (7+ 525/;+ 4213P+ 2415/(;3)ai7l5! + (8 + 952yfc+14552yfc2

+ 28968F)ai7l7!+ ...

Forming equation (14) we have

2/3 ! +8//5!+ 32j9V7! +128^79! + (512 + 192/i;2)//ll!

+ (2048 + 2244^)^1713 ! + (S192 + 19456^-2)pl715

!

+ (32768 + 139264/>;2)^i7l7! + (131072 + 901120/^

+ 129024^-*)2^l719! + ... = 0. (15)

Only even powers of k appear in this equation, thus giving a check iipon

the arithmetic ; further, the terms independent of k may be summed. Taking

the least root of (15) as an equation for P, we have approximately

R3 ^ sinh2p-2p , .

g J192 2244^2 19456p* 139264/ 901120/ V ^
^

^lll! 13! 15! "^ 17! 19! /

Instead of forming an equation for the minimum value of E, it is simpler

to find it by trial. We find, with sufficient accuracy, that it occurs near

^ = 11, and then, approximately,

E = 96. (17)

The corresponding value, found by Orr, for flow under similar conditions

but with a fixed plane at the upper surface, is 117. We conclude then that

How in an open canal has a lower degree of stability than flow between fixed

planes.

Turning to experimental results, the number usually quoted for flow

through a tube is 2000 approximately. This was obtained chiefly from
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experiments with smooth glass tubes ; a much lower number, of the order of

400, has been found from metal tubes. The only available direct results for

flow in an open stream ajipear to be those given by Hopf,* who found R to

be of the order of 300. These results agree in character with the theoretical

calculations, which is all that could be expected.

It is of interest to note that this appears to contradict a statement by

Eeynoldsf in one of Ins earlier papers. He classes separately circumstances

conducive to steady motion and those conducive to unsteady motion : among

the former a free surface, ami in the latter solid bounding walls. However,

this opinion seems to be based on visual observation of eddies caused by the

wind beneath the oiled surface of water. "At a sufficient distance from

the windward edge of an oil-calmed surface there are always eddies beneath

the surface, even wlien tlie wind is light. . . . Without oil I was unable

to perceive any indication of eddies."

This introduces a difTerent property of a boundary surface, namely, that of

initiating disturbances. The mathematical statement ignores this property

and specifies only control of the velocity functions : the disturbances are

supposed to be initiated by some extraneous ageiicy, and it is tacitly assumed

that all types of disturbance are equally probable. It may be, for instance,

that the thooreticnl results for flow through pipes should be compared with

experiments on rough pipes rather than those with perfectly smooth walls.

However, we may conclude tliat a solid boundary is conducive to stability in

so far as it ensures that there is no slipping of the fluid in contact with it.

6. In determining the minimum value of R from the difl'erential equation (7),

there are only two factors : the distribution of steady velocity, U, and the

boundary conditions for the disturbance. The comparison in the previous

section, between an open stream and flow between fi.\ed walls, involved

changes in both these factors. We may separate the effect of the boundary

conditions by assuming the same value of U as in (10), but expressing the

property of the supposed moving plane in contact with the upper surface by

% = 0, -y = 0, instead of by v = 0, fiy = 0. To anticipate the argument of

the next sections, we should expect a value of E intermediate between 96

and 117.

We have the same equation (11) for i/r, together with 1/^ = 0, dyfr/du =
at a = 0, and u = p. It follows that only the solutions i/ra and 1/^3 are

involved, and we have

^}r2df3/da-^fr3df2/da = 0, (18)

* L. Hopf, ' Ann. der Phys.,' vol. 32, p. 777 (1910).

t O. Reynolds, 'Scientific Papers,' vol. 2, pp. 57, 59. See also A. H. Gibson, 'Phil.

Mag.,' vol. 25, p. 81 (1913).
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when a = jh Tlie series for i/r,, is given in §5 ; also we have

+ (5 + 90A+ G5P)aio/10!4(6 + 220/.-+ 606P)ai7l2!

+ (7 + 455^+ 3037F+ 1365F) a"/ 14 ! + (8 + 840/(;+ 10968P

+ 17880F)ai«/16!+ ....

The boundary equation (18) leads to

2/4! + 8;?V6! + 32^V8!+12V/10:+ (512 + 280P);>712!

+ (2048 + 3136P) pi7l4! + (8J92 + 25216/1^)/7I6!

+ (32768 + 174080P)j5i7l8!+... = 0. (19)

The minimum value of E seems to occur for about p^ = 12, though it is

not a sliarply defined minimum ; hov?ever, with a similar ajjproximation as

in previous cases, we find the critical minimum of E to be 110.

7. It is well known that, when fluid motion through a tube has changed

fiom laminar to turbulent flow, the distribution of mean velocity over the

cross-section alters so that the velocity becomes more nearly uniform over

the greater part of the section, while falling to zero at the walls. This

suggests a study of the comparative stability when the distribution of

velocity alters in this manner, the boundary conditions being unchanged.

However, it must be noted that we assume the distribution to be a steady

state which has been acquired under a. law of force, which may be deter-

mined from the hydrodynamical equations, so as to give the required form

forU.

A simple form, which illustrates the points in question, is

U = (l + l/2«)(l-,;2''). (20)

As n is made larger, the velocity approximates more closely to the mean
velocity, U, over the greater part of the cross-section, while remaining zero at

the walls. The corresponding law of force is, in the usual notation,

X = j/(4?2,2_l)(U/a2)^2«-2_ ^21)

The greater the value of n, the more is the field of force concentrated near

the walls, quite apart from the value of the viscosity. The flow approxi-

mates to a uniform stream, but retaining the condition of zero velocity at

the walls.

The usual case of flow under a uniform field of force is given by w = 1.

It is sufficient for comparison to work out another numerical case, say n — 2.

We have then

U = |(l-V). (22)
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The Stability of Fluid Motion. 436

Equation (7) becomes

/_^ iy^_2fcf2«3^+ 3«2i|r^ = 0, (23)
xdar I \ da /

where k = biH/Sp^.

The boundary conditions are

i/r = ; d-\}r/da. = ; a = +p.

Solving (23) by a power series SA^a"/?! !, we have.

An+6 = 2An+i-A„+2 + 2k{7i + l)(n+ 2){2n+3)A„. (24)

As in the simpler cases, it is sufficient to choose fundamental solutions

involving only ev3n powers of a. ; denoting these by yjrn and 1^2 we have

-fo = l + aV2! + «V4! + (l + 12/c)«V6! + (l + 192/(;)^78!

+ (1 + 1032/c) aW/10 ! + (1 + 3552^'+ 20160/i;2) ai712 ! + (1 + 9492A;

+ 696960P)aiV14! + (l + 21504/."-|-8162256P)«'V16!+...

-^2 = «72 ! + 2aV4 ! + 3aV6 ! + (4 + 168/>;) a78 ! + (5 + U5Gk} oc^'>/ 10 !

+ (6 + 8184A))«i712!+ (7 + 28392^+ 574560P)ai7l4!

+ (8 + 78960/>; + 11204352F) ««/ 1 6 !+ (9 + 188496/t

+ 102266496A;2)ai8/18 !+....

From the boundary condition

^odylrz/da— yfrzdyfro/da = 0,

we obtain the equation

p4.2^73!+ 8//5!+32//7! + 128^79 ! + 5122jiVll!

+ (2048+ 1290247c2) ^1713! +(8192 + 3280896F)pi715!

+ (32768 + 7753296F)pi7l7! + ... = 0. (25)

Using this as an equation for E, we find by trial that the minimum value

occurs near p^ = 3 ; and the critical minimum value of R is 280 approximately.

The corresponding value for the ordinary parabolic distribution (« = 1) is

117. Thus, the critical value of E increases as the How approximates inore

closely to a uniform stream, without slipping at the walls ; and, in this sense,

the motion becomes increasingly stable.

8. It has been stated that, under the boundary conditions ?t = 0, v = 0,

there is thorough stability, in the ordinary sense, for simple shearing motion

and probably also fof laminar flow between fixed planes. In view of the

behaviour of actual fluids in similar conditions, another suggestion has been

put forward by Hopf.* He proposes to express the influence of a wall by

making the extra normal pressure, due to the disturbance, constant at the

* L. Hopf, 'Ann. der Phys.,' vol. 59, p. 538 (1919).
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wall, together with no tangential slipping; in fact, his boundary conditions

come under case (ii) of § 4, namely w = 0, p^y = 0. With these assumptions,

he applies the method of small vibrations to simple shearing motion between

a fixed plane and a parallel moving plane. It appears that the motion is

unstable for disturbances whose wave-length exceeds a certain value; for

smaller wave-lengths it is stable or unstable according to the value of R.

Thus the motion is not thoroughly stable. Without discussing liow far these

assumptions express the behaviour of actual fluids and boundaries, we may
see how tliey affect the energy method.

We shall take the case of laminar flow between fixed planes, for which the

previous calculations are available.

The stream function y^r satisfies equation (11), and the boundary conditions

are

M = ; —p+ 2fjb dvjdy — 0.

From the equations (1), these are equivalent to

M = ; pvdV/dy-^c^u/d2/ = 0,

or, in the present notation,

dyfr/doi. = ; d^ylr/da.^— 2k0iy}r = ; a = ±p. (26)

Using the solutions yjro and >|r2, these give

to' (ta'"

-

2Jcpfi)-f2 ifo"- ikpfo) = 0, (27)

where accents denote differentiation with respect to a.

From the previous work, this equation involves odd powers of Jc. But k is

H'R/ip^ and we have to determine E in terms of p from (27). It follows that

in this case there is no real solution of the problem of finding the critical

minimum of E.

It seems probable that it is only those motions which are completely stable

in the ordinary theory which lead also to a real minimum for E. The suggestion

may be stated in this manner : if a fluid motion is thoroughly stable when

considered by the method of small vibrations applied to equation (2) and the

boundary conditions, then it also possesses a real minimum value of E found

from equation (7) and the boundary conditions. It has been pointed out

that the latter equation is derived directly from the former, and it may be

presumed that the minimum value of E depends in some manner upon the

rates of decay of elementary vibrations and so may be used as a measure of

the degree of stability of the system.

Habbison and Sons, Ltd., Printers in Ordinary to His Majesty, St. Martin's Lane,
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From the Philosophical Magazine, vol. xlii. November J921.

The Solution of an Integral Rjuation occurring in certain

ProUeins of Viscous Fluid Motion. By T. H. Havklock,
F.R.S.

1. ^^HERE are a few well-known solutions of problems of

A viscous fluid motion in which a solid body starts

from rest and moves through the fluid under the action of

given forces : for example, the fall of a sphere under gravity

when the square of the fluid velocity is neglected, or the

corresponding simplified problem of the fall of a plane in

which this limitation does not arise. These problems lead

to integral equations which have been solved by an applica-

tion of Abel's theorem |. In these cases the fluid was

X Bogn-io, Rend. d. Accad. d. Lincei, xvi. pp. 613, 730 (1907) ; Basset,

Quart. Joum. of Math. xli. p. 309 (1910) ; Haj'leigh, riiil. Mag. xxi.

p. 697 C1911).
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Prof. T. H. Havelock 621

supposed to be of infinite extent, and it seemed to be of

interest to solve similar cases of motion wlien the fluid has

a fixed outer boundary. In the following paper considera-

tion has been limited to the motion of a plane between fixed

parallel planes and to similar problems with cylinders, the

ordinary hydrodynamical equations for non-turbulent motion
not involving terms of the second order in such conditions.

The results are perhaps not of practical importance, but,

apart from the particular problems, the method of solution

may be of interest. Stating the problem as in the cases to

which reference has been made, we are led <o an integral

equation of Poisson's type in which the nucleus is an infinite

series of exponentials. This equation can be solved by fol-

lowing a method suggested by Whittaker * ; the solving

function is obtained as an infinite series of exponentials, the

exponents being the roots of a certain equation. It seems
that examples of this method have not been given hitherto,

though equations of this type should arise naturally in

various physical problems. The particular cases worked
out in detail are the fall of a thin material plane in a liquid

bounded by two fixed parallel walls, and the motion of a

cylindrical shell filled with liquid and acted on by a constant

couple. The same method gives the solution when the force

is an assigned function of the time, for instance an alter-

nating force which is suddenly applied. Motion in an
infinite fluid may be included in the scheme by replacing

the infinite series of exponentials by corresponding infinite

integrals. The case of systems with a natural period of

oscillation will be considered in a subsequent paper.

It will be clear, from the examples, that the method of

solution could be formulated in general rules for obtaining
the solving function. This has not been attempted here, as

an examination of convergence would be necessary to estab-

lish any general theorem. A knowledge of the differential

equations and the boundary and initial conditions enables us
to verify the results which are given ; in these circumstances,
of course, they can be obtained by other methods without
difficulty. However, there are probably other physical
problems, in which the conditions are not so completely
known, whose statement leads to an integral equation of

the same type, and its solution can be obtained in the same
manner.

2. Consider laminar fluid motion between two fixed planes
x=+h, the fluid velocity being parallel to Oy. Let the

*E.T. Whittaker, Proc. Royal Socy. A, vol. 94 (1918), p. 367.
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622 Prof. T. H. Havelock on an Integral Equation

plane of yz be a thin rigid barrier which is made to move
parallel to 0^ with a velocity V(i).

Since the equation of fluid motion is

B^=''B^-
^^^

with the boundary conditions tj= for x^h and v= Y(t) for

x= 0, we may write down the solution as in a similar problem
in the conduction of heat ; we have, for x>0 and ^>0,

v= i ?^e-"=-^^«*'sin^'f V(T)e''=-M*^(^T, . (2)
n=\ I'- "Jo

The frictional force, per unit area, on the plane of yz is

the value of 2/x(Bf/B'^) for .i;= 0, counting both sides of the

p'ane ; if we suppose the plane to start from rest, so that

V(0) — 0, this gives, after integrating by parts,

(2^/0JJV (T){l + 2Xe-"''''''('-^^'*°-l^T. . . (3)

In the class of problems we are considering, V(<) is the

function to be determined and it is the forces on the plane

wliicli are given. As a first example, consider motion under

gravity. Suppose that the plane oi yz is vertical and that it

hag a mass cr per unit area ; we require the motion of the

plane as it falls under gravity, starting from rest and having

fised parallel walls at a distance /( on eitlier side. Using (3),

tiie equation of motion of the plane can be put at once into

the form

V'(0 + (2/tMO

r

V'(t){1 + 2%e- --"-'(«-)/*=}(Zt= <7. (4)
Jo 1

This is an integral equation of Poisson's type, which can be

solved for V'(<) in the following manner.

3. In the paper already quoted, Whittaker considers an

equation

^[x)+\ <f>{s)K{a—s)ds= f{x), ... (5)
Jo

in which the nucleus is the sum of /•. exponentials, or

K{x)=Ve>"+Qei''+ +Vc«. ... (6)

The solution is obtained as

cfy[x)^f(w)-^J{s)K{.v-s)ds, ... (7)

where the solving function is also a sum of p. exponentials, oi

KW=Ae'«-+B£'^^+ .... +N<>«. . . . (8)
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in certain Problems oj Visemts Fluid Motion. 623

It is shown that ^(.'B) = K(,r) and /(.r) = «(.);) satisfy (5) ;

hence by substitutii)f>; and equating coefficients of similar

exponentials, it is found that a, /3, 7, ... v are the roots of the

algebraic ecjuation

P . Q V
+ + ....+ + 1=0,x—p x— q x— v

while the coefficients in K(a?) satisfy the equations

A . B . N

(9)

a—p p—p
+ +

-P
+ 1 =

>• (10)

A B N , ^+ -5— + + +1 =
a— V p— V V— V

The solution of (10) leads to

''^*^-
C«-^)(«-7)...(a-v)' ••••

_ {v—p\v— q)... (v—v)
(11)

Before proceeding, we may note alternative forms of these

results which are of use later. If we write

F{.x) = {x-p)^ix-q)'^...{x-vy, . . (12)

the equation for the new exponents a, /3, 7 ... is

F'{x)+F{x)=0 (13)

Further, if we put

f{x) = {x-c.){x-^)...{x-v)

and (^ (x) = {x—p) {x — q) ... {x— v),

the coefficients in (11) are — (f)(a)/J'(a), where a is a root

of (13).

Whittaker remarks that if the number of exponential

terms in (6) is supposed to increase indefinite]}', a theorem
appeals to be indicated, namely, that in the solution of a

Foisson's integral equation whose imcleus is expressible as

a Dirichlet series, the solving function is also expressible

as a Dirichlet series, but with a different set of exponents
for the exponentials.

4. Returning now to equation (4), we see that it is an
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624 Prof. T. H. Uavelock on an Integral Equation

exaniple of such a theorem; without attempting any discns-

S'oii of Ihe general theorsm, we proceed to solve (4) directly

oil tlie lines indicated in equations (9)-Q3). In the nota-

tion of these equations, we have tVoni (4)

p = 0, g=-Tr'^v/P, r=-2Vv/h', ... ;

Y= 2fMJah, Q=R= =ifj,ja-h.

Equation (9) becomes a transcendental equation, namely

^.coth^Vl = (14)

The roots of this equiition are negative, and it is convenient

to write x= —v\^/h', then the values of X are the positive

roots of the equation

XtanX= 2p]i/(7 (15)

Using Ai, A2, ... for the coefficients of the solving function,

equation.s (10) become

A| Ag A3 _Z-n nfi^

where k = 0, 1, 2, ... and Xi,X2,... are the positive roots

of (15).

Assuming that a function f(x) can be expanded, in the

range — 1<«<1, in a series

f(x) = l,G cosX.r,

we have

0=r ~ \^'f(x)cosXxdx, . . (17)
\ + sin\cosXj_i-'^ ^

' ^ ^

where X is a root of (15). Taking /'(.t) = cos »i7ra;, wc obtain

the set of expansions

-, _n'^ X'sinXcosX ns,\~ "" (X + sin X cos X)(X^- nV) '
' ' ^ ^

Hence the solution of the set of equations in (16) is

. _ 2i'X,.^ sin X,cosX,. _ 4/i X,^ /ion
''

h\Xr + smX,.co!iXr)~'^iX,?+k(l + k)' ^ '

where k = 2ph/a. These results can also be derived directly

by extending tlie forms (12) anil (13) to include infinite

products.
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hi certain Problems of Viscous Fluid Motion. 625

Substituting in (7), we liave

^t ^2

~~^
^^^ThT+T)' C20)

the terms independent of t cancelling out on summation. •

ine velocity at any time is given by

It can be verified by summation that the limiting steadv
velocity has the value <;cr/./2;.. The fluid velocity at any
point can be obtained by substituting V from (21) in (Aand i-educing the expressions, but it is, of course, simpler to
insert suitable functions of x directly in (21) ; we obtain

v=S^(]_-'l\- ^EPf y sin{X(l-a^/7t)jg- .A^^/i2

In this particul,-,r problem the result can also be obtainedtromthe d.fferentuil equation together with the boundaryand initial conditions, by assuming the existence of alimiting steady state. In the p?ecedino- analysis the
existence of a final steady state is associated%vithi^£ occur!rence of zero as one of the exponents in the nucleus of theintegral equation (4).

flnfd Vr''
^'^/,"'""'^^'"g

*^ ^^^^^^ the motion in an infinite

R«-l TkJ ''.u''"'^'- .
^" '°l^^"^ff this case directly,Kayleigh obtains the equation of motion as

dN JLpv^^^'{T)dT
dt +

<x,rOo ViP^) =9 (23)

Applying Abel's theorem, this is reduced to an ordinary
differential equation whose solution is given as

"

^TTiiJ-pY I gcT= ipviti- TT'cT -f 2(1 e*"'""''- i e -"-dii. (24)

Ilue'^sincV'^^
^'°" ^'^ ^^ ^^"'"S '^' °"^^«"« "« li-it-g

Lim (2^/<r/.)_i .-VM^-.)/*. = (gp^V-^) f ".-«=<-^)rf«.
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626 ProE. T. H. Havelock on an Integral Equation

In the same way, the solving function has a limiting form
which follows directly from (15) and (19), namely

da.

Using this value as before, we obtain the same result (24).

6. It is clear that the same procedure is sufficient when
the applied force is any assigned function of the time.

For example, if the accelerative force is a cospt and the

motion starts from rest, we have

'^ =acos2}t- facospr . tAe-'^'^'-'y'" dr, . (25)
at Jo

where the summation extends over the roots of the same
equation (15), and the coefficients are given by (19) The

solution follows on completing the integrations ; it consists

of a periodic motion in different phase from the applied

force, too'ether with the disturbance due to taking into
1 1 • •

account the initial conditions.

7. A final example may be taken from cylindrical motion

when there is no limiting steiidy velocity. Suppose the

motion to be symmetrical round an axis; then if ? is dis-

tance from the axis and v is the fluid velocity, supposed

perpendicular to the radius vector, we have

Consider the motion of a hollow cylinder, of radius a, filled

with the liquid. Suppose the motion to start from rest and

let tlie velocity of tlie cylinder be il(t). Then it may be

shown that the angular velocity of the fluid at any time is

given by

.=£n'(T) [l + 22^^47S^.--^<'-)'-}rfT, (27)

where the summation extends over the positive roots of

Ji(/)) = 0.

Let the cylindrical shell start from rest under the iiction

of a constant couple N, and let I be its moment of inertia,

both quantities being for unit length along the axis. The

retarding couple due to fluid friction is the value of

2Trfir^'d(i>/'dr when r~a. Hence the equation of motion

of the cylinder is

n'(0 + (47ryxaVI) ^' n'{r)%e"'P"-^'-'y'-\lT= 'N jl, (28)
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in certain Problems of Viscous Fluid Motion. C27

whore the summation extends over the positive roots of

^J)(/')=0. (29)

The equation for the exponents of the solving function is

i-TT/xa*/ 1 1 \

~T-[l^^T^- + ^^^^T^+----)+^=o. (30)

Writing a:^-vX^ja\ equation (30) reduces to

kJ,{\)+X.J^{\) = 0, (31)

wliere k= 2Trpayi. The equation can bo deduced from (29),
by logarithmic differentiation, as indicated in (12) and (13).
The equations for the coefficients of the solving function

become

K
+

Xi^—/V V—^v
+ .

V-;'2'
^ + ^.=

a
. (32)

where i?„ ^2, ... are the roots of (29), and \,X,,... the roots
of (31).

To solve these equations, we may adopt the same plan as
before. Assuming that a function /(?•) can be expanded, in
the range 0<r<l, in the series

/(r)= 2BJ,(Xr),

the Summation extending over the positive roots of (31)
we have

^=
{X^ + k(k + A)}J,XX)

]/^'-^'^^~^^'>'^'--
• (33)

Now take f(r) = 3i{pr), where p is a positive root of (29) ;

after obtaining the expansion and putting r— 1, we arrive at
the result

.^^ 2/;X^

X{x-'-^k{k + i)}{X'-py •
(34)

p being any one root of (29) and the sununation being wilh
respect to the roots of (31).
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Comparing with (32) it follows that

A,= 2^^V/a2{X/ + ^(A+ 4)}. . . . (35)

With this expression for the solving function, (28) gives

rffl _ N 2kvN T' \3e--^^(«-T)/a2

"5r-T~~S^j/x» + /;(A->-4)'^^- • •
(^^)

By expanding r^ by (33) and putting r=l, it can be
shown that

2(A+ 4)
^ ^XM^I(I+1) ^^^^

Carrying out the integration in (36) and using (37), we
find

dn,_ N 2^N^ e-^"/"'

rf< "I + iTT/aa^"*" I ^\' + ;fc(/fc + 4)" • • ^ ''

The angular acceleration has a finite limiting value in this

case, the same as if the cylinder and enclosed liquid were
rotating like a rigid body. We notice that in this case zero

is excluded from the roots of the equation (29) for the

exponents of the nucleus.

Integrating (38) we obtain the angular velocity of the

cylinder at any time ; then, using the differential equation

(2(5), we may complete the solution by writing down the

angular velocity of the liquid. It is found to be given by

N [ r" k + 6 -]

l + iTrpa*l Sv 12(^-+ 4)J

2/,-N y a^Ji(Xr/a)e--^''/'''

VrX2{x2+;(-(yt + 4)}Ji(X)"
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From the PHFLOSormCAL Maoaztme, vol. xlii. Noivmher 1921,

On the Decay of Oscillation ofa Solid Body in a Viscous

Fluid. By T. H. Havelock, F.R.S.

1. rr^HE decay of rotational osciliation of a cylinder

1 or a sphere in a viscous liquid is a well-known

problem in Hydrodynamics ; among more recent researches,

reference may be "made to the work of Verschaffelt t,

Coster X, and others. In those papers it is remarked that

t G. E. Verscliaffelt, Amsterdam Proc. xviii. p. 840 (1916); also

Comm. Leiden, cli. (1917).

X D. Coster, Pliil. Mag. xxxvii. p. 587 (1919).
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629 Prof. T. H. Havelock on the Decay of Oscillation

tho ordinary solution of a damped harmonic vibration requires

modification when the initial conditions are taken into

account, but no explicit solution of this nature seems to have

been given ; in certain experimental refinements, the dis-

turbance may be of some importance. In the following

notes, I have worked out in detail first the simpler ease of a

plane oscillating between two fixed planes. The problem

can be solved by various methods : by normal functions, or,

more readily, by operational methods. I have chosen to use

it as an example of a type of integral equation, for which
reference may be made to a previous paper*. In this case

the equation of motion is an integro-differential equation of

Volterra's type, and it can be solved by a repeated appli-

cation of Whittaker's method which was used in the simpler

cases ; the solution may be of interest apart from the parti-

cular problem. The results are then verified by using

Bromwich's method of complex integration. Finally, the

solution is indicated for a sphere oscillating within a fixed

outer sphere, and the results are discussed in connexion

with the experiments to which reference has already been

made.
2. Suppose that a viscous liquid can move in laminar

motion between two fixed planes a;= +A. Let the plane of

vz be a thin rigid barrier of mass a per unit area, and let it

be acted on by an elastic force parallel to Oy such that, if the

liquid were absent, the plane would vibrate with a natural

period 2ttIp. Further, suppose the motion starts from rest

with the plane displaced a distance a from its equilibrium

position. The equation of motion of the plane is

'.¥-^''(s^°'"*=''-
«

where v is the fluid velocity.

Now if the plane of yz has a velocity V(<), the fluid

velocity may be written in the form

^^ 2 1nw ^_,„,,,,/,. gj^
mr^ PY (,r)e-'"''"l''\lr . . (2)

h I h ''Jo

Taking the value of ^v/'^ci! for x=0, integrating by parts

and noting that in this problem V(0)==0, equation (1) gives

S + ^j;g{n-2l.-—/-}.^.+i>V=0. (3)

* Supra, p. 620.
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of a Sol.id Bodi/ in a Viscous Fluid. G30

Consider the integral equation

m + \ <i>i^)<t-r)dT=m,
Jo

where the niiolcusis the sum of n exponentials

P t

Whittaker's solution* is given as

/c(0 = SP,.A' (5)
1

<^(0=/(0-£/(T)K«-T)iT, . . . (G)

the solving function being also the sum of n exponentials

[v(0=2A,«°'''' (7)

The indices a are the roots of the equation

P P P
' +^^!-^+ ...+-^+1 = 0. . . (8)

(9)

x—p-^ x—pi x—p
Further, if we form the functions

it may be shown that the coefficients of the solving function

are given by

where a is a root of (8) . It should be noted that if 2)i is

zero, and wo write i/<"(.-t;) =a'(1— a-/ji->2) . . . (1— *'//.'„), then

A=-^(«)/P,0'(a) (11)

We shall assume that these results hold in the limit when
the number of exponential terms becomes infinite. Equation

(3) then comes under this form, except that it is an integro-

ditferential equation. Equation (8) for the exponents of the

solving function gives, on summation,

-=f^coth^-^+l= (12)
av^x v

Also wo have
\^{x') — (ylx^-lh) sinh {hx'=jvi),

^(j-) =cosh (hx'/vi) + {avW'/2/j,) sinh (hx'^/vi)

* E. T. Wliittakcv, Proe. Roy. Soc. A, xciv. p. 367 (1018i
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Tl)e method of formation of 6{x) is clear from the equa-

tions for a finite number of terms ; multiply the left-hand

side of (12) by -^{x) and a factor to make the value unity

for a; zero. From (11) and (12), we have

l2/u./h^ ah a^h^u\ ,^r,\

Writing the roots of (12) as a= —vX'jh^ and collecting

the results from (6), (12), and (13), the first step in the

solution of (3) gives

-J =py- TA Jo^^^^^x^nciTi)'^"' •
^^^^

where the summation extends over the positive roots of

\tan\^2phla= li (15)

Following the method of reduction for tiiis type of equa-

tion*, iiifegrate (14) with respect to t from to 6, using

Dirichlet's formula to transform the order of integration

of the last term. Since the initial value of dyldt is zero, this

leads to

Integrate (16), in the same manner, with respect to 6
from to T ; finally, for convenience, replace T by t and
t by T, respectivel}-, in the result. Then we obtain

^»-J>[i?- dT=a. (17)

The solution of (17) can be completed by means of (6),

(8), and (11). The new exponents are yiven l)y

cfh 4/xp^A3 ^ 1
. i_n {\K\

w
"^

a-/' '-'\'{K' + k(l + k)}(x + v\yh')'^ ^ '

Resolving the summation into one of simple partial frac-

tions and using the properties of the roots of (15), this

equation can be reduced to

„ 2jOiirl
,
,/'.»'

, o n na\x^ + — coth

—

r-^p'— O. . . . (19)
a V'

* VoHcrra, ' Lemons sur les Equations Intt^grales,' p. 140.
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In the previous notation, we have

, , . / , luci avixi . , hxi\
\Jr(a:) = a:l cosh—j- H—?^— siuh —p I,

„, , / vi , v\xl\ . , hx^ 2u..x , lix^

^{^)-\ 7—i "I 97 jsinh^- H 57 cosh —

p

the formation of the l.itter being clearly indicnted in the

reduction from (18) to (19). The coefBcients of tlie solving

function can now be formed by (11). Finally, substituting

in (6) and carrying out the integration, we arrive at the

result

y
^fxp'a ae"

all ~a^- {2fj,l(Th) (1 + 2p/i/o-)*3 + 2p-'oc^ + Gfip^u/ah + p*

'

. . . (21)

the summation extending over the roots of (19).

3. We may verify the result by other methods which are

available in this case. We choose Bromwich's inethod of

complex integration*, referring to his paper for the general

principles, and writing down the results briefly for the

present problem.

Suppose the fluid velocity and the displacement of the

plane to be given by

"=2^]"^"''^"' 3/=2^-j'?«"*'^«;
• . (22)

where u and tj are functions of a, and the paths of integration

are in the ])lane of a complex variable a and enclose all the

poles of these functions. The differential equation of fluid

motion, Bt'/B<= >'B^t'/9*'^» with the conditions m= for x=h
and u=.d7]jdt for .t-= 0, gives the solution, for so positive,

_dTi) ?,\\M^^(h— x)lvi} .

"
dt sinh(a*/(/vi) • • •

(.'^•5)

From the boundary condition (1), after introducing terms
due to the initial conditions y— a and dy/dt— for t— 0, and
using (23), we obtain

2 , V'*^ lU "^^^
, 2 / 2yu,ai ,, aSA\ .„.,o-a^7;+ -S— 7;C0th—r + Q-/)'''? = ( era + -R- coth—i la. (24)

Hence we have

_ J^ ra{o(+ (2/taVo-i/^) coth {hix^jvi)\e'^^ da. . .

^~2-irij a^ + {2fi^^ I
avi)cothlhJ^^)+p^ " " ^ -^

Forming the residues of the integrand at the zeros of the

* T. J. I'A. Bromwich, Proc. Lond. Math. Soc. xv. p. 401 (1916).
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denominator, we obtiiin tlie same solution (21). The com-
parison brings out the connexion between the method of

solution of the particular form of integral equation and the

use of normal functions in dynamical problems. The latter

methods would not be available if we had not a complete

knowledge of the differential equations of the problem : for

instance, if it were stated directly as an integro-differential

equation like (3) in some problem of "^ heredity.'

4. The nature of the roots of (19) may be studied most
easily by graphical methods, or by using the form (18) or

equivalent expansions. It appears that, leaving aside the

possibility of multiple roots, there is an infinite series of

real negative roots and, in addition, a pair of roots which
may be complex, or real and negative. In the latter case

the motion is aperiodic ; in the former, the two complex
roots give the damped harmonic vibration while the re-

maining roots complete the solution according to (21) for

the given initial conditions. In the theory of determinations

of viscosity by oscillating cylinders or spheres it is usual to

assume a damped harmonic vibration, neglecting all the other

terms.

VersehafFelt remarks that for a motion that is not purely

damped harmonic, the proportionality of the resistance to

the velocity no longer exists, and that it would then probably

be impossible to establish a general differential equation for

the motion. We have seen, however, that it may be ex-

pressed by an integro-differential equation as in (3). It

seems that in experiments under usual conditions, the final

state of a damped harmonic motion is practically reached

after a comparjitively short time (a few minutes).

With numerical values of the usual order, it is easy to see

that the lowest real negative root of (191 is much larger

numerically than the real (negative) part of the complex

roots. The matter would require closer examination if the

motion were ent rely aperiodic,* as in some expei-iments.

In the case of a sphere making oscillations of finite ampli-

tude, Verschaffelt has studied small damping effects due to

approximations involving the quadratic terms in the hydro-

dynamical equations ; this introduces damping coefficients

oi' three or five times tl>e first approximation, and it may be

that in such cases the purely aperiodic terras in the solution

should also be taken into account.

5. It may be of interest to record the complete solution,

neglecting quadratic terms, for a sphere oscillating in a

liquid enclosed within a fixed concentric shell.

Let 0) bo the angular velocity in the liquid, the angular
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displacement of the splicre, a its radius and 1 its moment

of inertia ; and let b be the radius of the fixed outer sphere.

Then the equation o£ motion of the rotating sphere is

df ~ 3
^7ra^(^)^+/I^= 0, . . . (26)

M=-5 —
r

vi'ith = 0Q and dd/dt= ior t= 0.

In the fluid we have

dt \dr- rdrj

with &>= r=h, and o)= d6/dt for 7-= a.

Usi'ng the metliod of § 3, we write

a,= J^(ue-'da; e=^.{ve^'da. . . (28)

Then equation (27) gives the solution

a^tW h'h-r) cosh {k[h-r)\ + {kn,r-\)^m\\ {k{h-r)}

it kih -a) cosh {k(lj- a)} + (Pba- I) ii^x^[l{kl^b-a)y

(29)

where k= a^/vK

Modifying (26) so as to take account of the initial con-

ditions, we have for tj the equation

^/(«) = F(«), (30)

where

/(«) = I«2 + SfiTra^a + Ip2 + fvrpa-^a^

bk cosh A-(/>— a)— sinh k{b—a)
^ k{b-a} cosh k(b-a)+ [k-ab—l) sinh k[b-a)

'

Y(a) = la + Sfi-n-a.^ + |7r/3a^a

Mcosh k(b— a) —sinh k{b— a)

^ k(b-a) cosh k[b-a) + {Pab-l) sinh k(b-a)

'

The angular displacement of the sphere is then

where the summation extends over the roots of/(a) = 0, and

it is assumed that these are all simple roots.

In practice we may usually separate the roots into two

classes : first a pair of roots which may be either complex or

real and negative, then a series of real negative roots in the

neighbourhood of -7rV/(i' — a)S —iir-v/ib-aY and so on.

In deducing the form of (31) for a splicre in an infinite

liquid the sum of the terms from the latter series of roots

must bo replaced by a corresponding infinite integral.
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The Effect of Shallow Water on Wave Resistance,

By T. H. Hatelock, F.E.S,

(Received October 28, 1921.)

1. The general character of experimental results dealing with the effect of

shallow water on ship resistance may be stated briefly as follows :—At low

velocities the resistance in shallow water is greater than in deep water, the

speed at which the excess is first appreciable varying with the type of vessel.

As the speed increases, the excess resistance increases up to a maximum at a

certain critical velocity, and then diminishes. With still further increase of

speed, the resistance in shallow water ultimately becomes, and remains, less

than that in deep water at the same speed. The maximum effect is the more

pronounced the shallower the water. For further details and references one

may refer to standard treatises, but one quotation may be made in regard to

the critical velocity :
" This maximum appears to be at about a speed such

that a trochoidal wave travelling at this speed in water of the same depth is

about IJ times as long as the vessel. ... It was at one time supposed

that the speed for maximum increase in resistance was that of the wave of

translation. This, however, holds only for water whose depth is less than

0'2 times the length of the vessel. For greater depths the speed of the

wave of translation rapidly becomes greater than the speed of maximum

increase of resistance."* In a recent analysis of the data, H. M. Weitbrechtf

expresses a similar conclusion by stating that for each depth of water there is

a critical velocity, but that the critical velocity does not vary as the square

root of the corresponding depth.

It should be noted that experimental results are for the total resistance.

If we assume that this can be separated into three terms, which are simply

additive, namely, eddy, frictional, and wave-making resistance, it must be

admitted that probably all are affected by limited depth of water. However,

the main differences are due to the altered wave-making, and the general

explanation is to be found in the fact that there is a limiting velocity, \/{gh)

for simple straight-crested waves on water of depth h.

Leaving aside the difficult problem of a solid body towed or driven through

the water, we may study the allied problem of a given distribution of surface

pressure and the associated wave resistance. Previous calculations of wave

resistance have been limited to a line distribution of pressure, involvhig

*D.W. Taylor, 'Speed and Power of Ships,' vol. 1, p. 114; also G.S. Baker,
'Ship Form, Resistance and Screw Propulsion,' p. 134.

tn.M. Weitbrecht, ' Jahrbuch d. Schiffbautech. Gesell.,' vol. 22, p. 122 (1921).
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therefore, only straight-crested parallel waves and so emphasising the connec-

tion between the critical velocity and that of the wave of translation. In

the present paper I obtain an expression for the wave resistance of a surface

pressure symmetrical about a point, and moving over water of finite depth.

The result is in the form of a definite integral, which has been evailuated by

numerical and graphical methods so as to give graphs of the variation of

wave resistance with speed for different values of the ratio of the depth of

water to the length associated with the pressure distribution. The graphs

are of special interest in the cases intermediate between the two extremes of

deep 'water and shallow water. They show the double effect of limited

depth, in lowering the normal wave-making speed of the ship and in

increasing the magnitude of the effect as the speed approaches that of the

wave of translation. The results are discussed in their bearing upon the

experimental results which have just been described.

2. In a previous paper* I worked out the case of a symmetrical surface

pressure moving over deep water. The present analysis is on exactly similar

lines, except for suitable changes in the expressions ; it may be sufficient,

therefore, to set forth the calculation briefly, referring to the previous paper

for further detail in the argument.

Take axes Ox, Oy in the undisturbed horizontal surface of water of depth h

and Os vertically upwards. For an initial impulse symmetrical about the

origin, that is if the initial data are

p4>o = ¥(r^), r=0, (1)

where m^ = a^+ y^, the velocity potential and surface elevation in the

subsequent fluid motion are given by
poo

p(j} = \ f (ic) cosh K{z+ h) sech ich Jo (kw) cos (/cV<) k cIk,

Jo

gp^ = - {"/ (k) Jo (ktu) sin («V0 k^YcIk, (2)

where V^ = (g/K) tanh xh,

f (k) = Tf («) Jo (/f«) « dec. (3)

"We obtain the effect of a travelling pressure system by integrating with

respect to the time. We shall suppose that the system has been moving for

a long time with uniform velocity, c, in the direction of Ox. Transferring

to a moving origin at the centre of the system, we replace x in (2) by x+ d,

and we find for the surface elevation

gp^ = - re-i/2^« dt {"/(k) Jo [k { {x+ df + y^y^] sin (xYt) k^ YcIk, (4)

* 'Roy. Soc. Proc.,' A, vol. 95, p. 354 (1919).
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where /(«) is found from the assigned pressure distribution, jo = F (ra), by

means of (3). The factor exp. (— |/u,i) serves to keep the integrals deter-

minate, so that they give a solution which corresponds to the main part of the

surface waves trailing aft from the moving disturbance. It is to be noted

that ultimately /u. is made zero in the final results, and it is only retained in

the intermediate analysis to a degree sufficient to attain its chief purpose. It

should be stated also that all the analysis is subject to the usual limitation

that the slope of the surface is supposed to be always small.

We take the wave resistance to be the resolved part of the pressure system

in the direction of motion, or

E = JF(a.)|^S, (5)

taken over the whole surface.

The disturbance (4) may be analysed into plane waves ranged at all

possible angles to Ox. Substituting

7rJo[A:{0«+ cO^ + 2/2}'^^] = r6'''(^+=«>'=°^*cos(«ysin(^)(^(^, (6)

we can integrate with respect to t, and obtain, after rejecting superfluous

terms in jx,

r"g-l/2n«gi««ooB.Jigi,j/^yA^(; ^^^ 'P
. (7)

Jo Kc^—9 sec^ tauh kIi + i/tic sec </>'

Using this in (4), the surface elevation can be expressed in the form

p7r/J poo r glK (3:C03(f)+^siU((>)

2TrpK— .sec^dxM K f (ic){,An\\ kIi < —5 t-t-,—r—r-r^ 7
J_„/2

^
J J l^/cr— (/ sec'c^ tanh/cA + i/icsec^

+ ; y lIk (8)
K(?—(j sec^ ^ tanh Kh— %yuC sec ^j

3. We simplify the calculations by specifying the surface distribution of

pressure as

^ = F(t5) = A^/(/2+t^3)3/2^ (9)

where A and I are constants. It follows from (3) that /(«) = Ae""'. Now
in (8) consider an element making an angle <^ with the axis Ox. Change to

axes Ox' , Oy'
,
given by a;' =xcoB^ + y sin (j),

y' = ycos(f)—x sin
(f).

Then the

integral with respect to k becomes

/ce~"' tanh Kh < -

Jo l"KC^—g sec^ <j) tanh Kh+ ifj,c sec <^

+
Kc'—g sec^

<f)
tanh Kh—ific sec

(f>

T dK. (10)
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As in similar plane wave problems, this integral can be modified by inte-

grating round a suitable contour in the plane of a complex variable ; the

expressions then divide into two types according as the integrand has or has

not a pole within the contour. The surface disturbance corresponding to (10)

is seen then to consist, in general, of a surface elevation symmetrical with

respect to tne line x cos + ?/ sin ^ = 0, together with a regular train of waves

in the rear of this line; but the latter part only occurs if c^cos^^<gh. In

evaluating the wave resistance by (5) for the symmetrical distribution (9),

we see that we need only consider the regular train of waves. By calculating

the residue of the integrand in (10), collecting the results and finally making

/M zero, we find that the regular waves, when they occur, are given by

AirAc^K^e-"^ sin {kx') .h,s

g sec^ (^ (c^ — gh see^ ^)+ kVJi

where k is the root of

KC^—g sec^<j) tanh ich = ; gh sec^
(f>
> <?. (12)

From (5) and (11), the contribution of this element to the wave resistance is

47rAc^/t^e-'''cos^ (""
^^_, fo A^ cos {kx!)

,

poo fO

g set^" 4>{c^-gh sec' ^)+ ic'c% }_J }.^(x'^+ y'^ + Pf'^

^ 47r^AV/t3g-2Wcos0

gsec^(f>(c^—ghseG^(j))+ K^c*h'

Summing for the different elements, from (13) and (7), we have finally for

the wave resistance

p _ 47rAV f'/^ K^e-^'i sec d4>

~
P j^^ gsec^<f>{c^—gJisec^(f>) + K^c%' ^ '

where k satisfies «c^ = g sec- (/> tanh kTi, and the lower limit 0o is given by

^0 = 0, for (?<gli; (po = arc cos (gh/c^y^''', for c^>gh. (15)

4. We may notice, in the first place, that (14) reduces to the expression given

previously for deep water ; making h-*oo , we find

/lr/2

E = {4:-wg^A?lpc^) r sec6^e-2to'/<'')^e<='*c^0

Jo

where x = gl/c^, and the result is expressed in terms of Bessel functions of

which Tables are available. For finite values of the ratio h/l, the value of E

for given values of c can only be obtained from (14) by numerical and

graphical methods. After some preliminary trial, the following plan was
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adopted. With p = hjl, and a. = kJi, using the relation between k and <^, (14)

can be put in the form

47rA2a;i/2 f/^ a'/^g-W? coth 1/2 «
R

,1/2 j-,r/2 ^7/2

d^, (17)
gpl^p^l'^

) 4„ a* + a COth a — a^ ooth^ a

with a coth a = px sec^ ^. (18)

For a given value of p, the integrand of (17), which we may denote by /(a),

was calculated for values of a ranging from zero to 3 at intervals of 0'2, and

in certain cases also at unit intervals up to the value 10. Taking next an

assigned value of x, the value of corresponding to each value of a. was found

from (18). The integrand /(«) was then graphed on a base of 0, giving a

curve for each value of x ; the area of the curve was taken by an Amsler

radial planimeter, and then the value of (17) was obtained. The calculations

are rather lengthy and it is unnecessary to repeat them here.

The process was carried out for f = 2, 1'43, 1, 0'75, with about a dozen

values of x in each case ; some estimates were also made for p = 05, to

confirm the general deductions. Further, the values for ^ = 00 were

calculated from (16). The results are shown in the figure, where the unit for

R is AirA^/ffpP, and for c is \/{gl).

1
1

—

-0.211
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simple transverse waves is about 2-^1 ; this may be called the principal wave-

making length of the disturbance, to use a term from the theory of ship

resistance. Taking next the curve for _p = 2, we can see indications of two

maxima. The first occurs at about the point 0"97 on the velocity scale ; it

clearly corresponds to the deep water maximum, and cdmes lower down the

scale, because waves of given length occur at a lower velocity as the depth

diminishes. There is also a second maximum at a velocity of about 1'25
;

this is due to the other factor in the resistance, namely, the increased effect

as the velocity approaches the velocity \/{gh) of the so-called wave of

translation, which in this case is at the point 1"41 on the velocity scale.

From the next curves, p = 1"43 and p = 1, we see the increasing

importance of the latter effect as the depth becomes less. For the curve

p = 1'43, there is a maximum near the velocity I'l, the corresponding value

of \/(gh) on the scale being 1'2. There is no other actual maximum, but

there is an enhanced resistance at about 0"92, followed by a flattening of the

curve between that point and the point 1'05
; we may take the increased

effect at 0"92 to correspond to the deep water maximum in the lower

curves. Similarly for the curve ^ = 1, the corresponding values are :

increased effect at about 0-81, diminished slope of curve between 0'82

and 0'9, maximum at 097, velocity of wave of translation I'O. The last

curve, p = 0-75, shows that, as the depth becomes small, the second effect

becomes the predominant feature ; the excess- resistance increases rapidly in

magnitude, and occurs practically at the velocity \/(gh)- This effect is still

more pronounced for p = 0'5, but the results are not shown in the figure.

It is obvious that, as the ratio of h/l diminishes, the disturbance becomes

more like that due to a line disturbance ; in simple calculations on the latter

assumption, the resistance increases indefinitely at the velocity y{gh), and

falls suddenly to zero above that velocity. It will be seen from the figure

that in all cases the resistance falls after the velocity ^/igli), as, in fact, may

be deduced directly from the expression (17).

In a comparison between these results and the experimental curves of

ship resistance described in § 1, it is advisable to consider in each case the

difference between the resistance in water of a given depth and that in deep

water; in this sense the results agree in character. Thus the first effect of

finite depth may be regarded as due to the lowering of the chief wave-

making velocity ; it is only when the depth of water becomes of the same

order as the beam of the ship that the critical velocity is practically that of

the wave of translation.

In describing the experimental curves, it was stated that the excess

resistance has a maximum value at a certain critical velocity. But there is
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one exceptional set of curves, obtained at the United States Model Basin,*

which shows two maxima : a phenomenon which has not received explana-

tion. It is conceivable that this may be a case in which the two maxima

indicated in the intermediate curves of the present paper have become

prominent through some unusual features of the model. In this con-

nection, it must be remembered that the present calculations are based

upon a surface pressure of specially simple type, one symmetrical round a

point ; one could extend the calculations by integration, as in the previous

results for deep water, so as to apply to a pressure distribution, giving

a better analogy with ship form. It may be anticipated that the results

would be of the same character in general, though no doubt better agree-

ment could be obtained in certain details.

* D. W. Taylor, loc. ciL, p. 115.

HAEKI30N AND SoNS, Ltd., Printers in Ordinary to His Majesty, St. Martin's Lane,
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Studies in Wave Resistance : Influence of the Form of the

Water-plane Section of the Ship.

T. H. Havelock, F.E.S.

(Received April 5, 1923.)

Introduction.

1. The problem which is investigated in some detail in the following paper

is the wave resistance of a vertical post in a uniform stream. The horizontal

section of the post is of ship-shape form and the lines are varied in a certain

manner while keeping the area of the section constant.

A direct study of ship waves as a three-dimensional problem for a ship

of finite dimensions has not yet been accomplished. From one point

of view the problem has been attacked by the method of an equivalent

distribution of pressure on the surface of the water. Some advance has also

been made in the case of submerged bodies ; I have shown previously how to

calculate the wave resistance of a body whose form is derived by combining

the stream-lines of a uniform current with certain distributions of sources and

sinks, under the limitation that the dimensions of the body are small

compared with its depth. On the other hand Michell,]: in an extremely

X J. H. Michell, ' Phil. Mag.,' vol. 4.5, p. 106 (1898).
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interesting paper, gave a general expression for wave resistance ; but it

suffers from a serious limitation, in that the surface of the ship must be

everywhere inclined at only a small angle to its vertical median plane.

In § 2 a short synopsis of Michell's theory is given.

In § 3 this is applied to the case of a submerged body and the result

compared with the work to which reference has been made ; the two methods

are quite different and have different limitations, but it appears that the

results agree when these conditions overlap and are common to both.

The main problem is treated by an application of Michell's analysis in

circumstances in winch its limitations are not of serious importance, namely,

when the body is a vertical post of infinite depth and of small beam compared

with its length. We may regard this as a ship in which the effect of the

vertical sides will be exaggerated, and we may study the changes produced in

the resistance curves by varying the form of the level lines. The practical

problems which have been kept in view in devising special cases are such as

the effect of straight or hollow lines at the bow, the effect of finer entrance

and increased beam while displacement remains constant, and similar

questions.

In § 4 a set of parabolic curves for the level lines is specified so as to

illustrate these points, and the corresponding value of the wave resistance

obtained in general form as a function of the velocity. Certain new types of

integral which occur in the analysis are examined in § 5 ; they can be

expressed in terms of the second Bessel functions Yo and Yi together with the

integral of Yo, and are evaluated numerically by means of recent tables of

Struve's functions.

In §§ 6-10, four types of model are examined, and the wave resistance

calculated for various velocities in each case. The chief results are shown in

the resistance- curves of fig. 2. For comparison with experimental curves

from ship models, the base is the quantity V/^L, where V is tfie speed in

knots and L the length in feet. The models with finer entrance, or with

hollow lines, have smaller resistance up to V/y^L = I'l or 1'2 ; but above

this speed the models with fuller ends liave the less resistance. These, and

other results of some interest agree with deductions from the corresponding

practical study of ship resistance ; in § 11 a summary of these deductions is

given and a comparison is made with the results of the present calculations.

General Analysis.

2. Take Ox, Oy in the undisturbed surface of the water and O2 vertically

downwards; and suppose the ship to be symmetrical with respect to the

plane y = 0. Assummg the ship to be at rest, and the water at a great
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S

distance to have a uniform velocity c in the negative direction of Ox, the

velocity potential is taken as cx+ tf); the squares of the velocity due to the

disturbance ^ are to be neglected. At the surface z = 0, the kinematical

condition is

d« ax

where ^ is the surface depression.

The condition for constant pressure at 2 = gives cd(p/dx—g^ = 0, or

—^ = ^ (2)
gda? dz'

At the bottom of the water d^jdz = ; in what follows we shall assume

the water to be of infinite depth. The remaining boundary condition is that

d(j)fdy = when y = 0, except over the surface of the ship ; in the latter case,

with V as the normal,

^{cx+ <j>) = 0.
ov

If the inclination of the ship's surface to the plane 3/ = is everywhere

small, the latter condition reduces to

where -q = f{x, z) is the equation to the ship's surface ; to the same order the

condition (3) may be taken to hold at 2/ = over the median plane of the

ship.

A potential function to satisfy these conditions may be built up by a

summation of simple harmonic terms in the co-ordinates ; it is sufficient here

to state Michell's expression, namely,

2c /""("" [""p
f,^

cos (nz— e) cos (n^—e)_ _2c
[ { { { j:' (t f^

cos(wg-e)cos(?i

cos {m {^-x) }«-3/ ('»'+"=)'' d^ d^dm dn

2c3 r rr ^,^^, »ie-'»''^'(^+«/^

sin {7n{x— ^)+ my (mV/^^— l)'/^ } d^ d^dm

cos {m {^^x) } e-™y
(i-™''^%')i/2 d^ dl^dm, (4)

where tan e = —chn^jgn.

It may be verified directly that each term in (4) is a potential function and
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satisfies all the above conditions except (3) ; and further that (3) is satisfied

by the complete expression on account of the expansion

^ Jo Jo Jo J -M

cos(?i0— e)cos (5if— e) cos m{^—x) d^ d^dm dn

I
(.w

c»
^to

- f {^,^)mh-'='^'"''''^S>lscosvi{^-x)d^d^dm. (5)
Jo Jo J —»

2c2
+

An expansion which may be verified without difficulty, e having the value

given in (4) ; it is assumed that the function /'(a;, z) is such that the various

integrals are convergent.

The expression (4) holds for y positive. The first and third integrals

represent local symmetrical disturbances, while the second integral represents

the waves which follow the ship if we imagine it to be advancing into still

water.

If ?>p is the increase of fluid pressure due to the disturbance ^, the wave

resistance is given by

the integration extending over the vertical median plane of the ship.

The first and third terms in (4) contribute nothing to E, and we have

^ =4IX\JAJ ^'' '^^ ^^' ^^ KoV,-i)V^
cos ?ft (ic— ^) dx dzd^ d^ dm

where ^~ f (x,z)e''^'-'''^'^lscosmxdxdz

Jo J — oo

fOO
<.QD

/ (a;, z) e-^'^^'^'s sin mx dx dz. (7)
J -a,

This is Michell's expression for the wave resistance. We shall take the

origin at the midship section and assume the ship to be symmetrical fore and

aft ; in these circumstances, 1=0.

Subvurged Spheroid.

3. The application of (7) is limilfed by the assumption involved in (3), that

the inclination of the surface of the ship to the median plane y = is always

small. To illustrate this limitation we may consider a particular case in
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which we cau compare the result by another method. In a previous paper*

I have shown how to find the wave resistance of submerged bodies of various

forms. Apart from the usual simplification of neglecting the square of the

fluid velocity in the wave disturbance, the specific limitation in that analysis

was that the dimensions of the submerged body should be small compared

with the depth at which it moves ; but on the other hand, the kinematical

condition at the surface of the body was taken in its exact form. In

particular, if the body is a prolate spheroid of semi-axis a, eccentricity e,

moving with velocity c in the direction of its axis and at a depth /, the wave

resistance was found to be

E = 1287r2^/3a3g3^2 r sec2 0g-2-o^>i«=^0
I
J3^2 (^,ae sec <^) fc^, (8)

Jo

where Ko = r^/c^ and A = [4e/(l-6=')-2 log {(1 +e)/(l-e)}]-'.

The limitation in (8) is that a is small compared with /, but there is no

direct limitation on the form, for example the expression includes the case of

the sphere with e = 0. Now, if we apply Michell's formula (7) to this case,

we shall obtain a result in which there is no limitation of the ratio of a to/;

but on the other hand the inclination of the surface must be small, so the

expression will only hold in the limit as e approaches unity.

The equation of the spheroid being

we have

^/dx =/' {x, z) = -b^x/a {b^a^-aP)-a^{z-ffyiK (9)

Thus from (7)

J = _ _ e-»*y/.
11 ^^,^^,^'J^'l'^^,^,^,,,

sin mx dx dt (10)

where we have put ^ = z—f, and the integration extends over the ellipse

xya^+^/iP= 1.

Integrating with respect to x first, we have

x sin mx dx ira ma

where p has been used for a (1— ^^/b^yi^.

Hence we obtain

* 1 Roy. Soc. Proc.,' A, vol. 95, p. 354 (1919).
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If we use only the first term in this expansion in powers of b, we have

J = -(27rVmay/2 62e-''*W?J3/2(ma). (12)

With this value (7) gives

f
{ J3/2 {ma) }2 e-2-==W^

, ,/?2 ,,1^ "
i/a I -.--

^" '/^
'^"''"'''

^
'' " ^«A*/«2_ 1 V/2

= STT^^pftS (1 -6^)2 r sec^^
e-3K./Betf ,(,

{ jg^^ (K^a sec ^) j^ c?0. (13)

With e nearly equal to unity, it is easily verified that (13) agrees with (8).

On the one hand, the result (8) includes the sphere (e = 0), under the

restriction that /is large; on the other hand (7) and (11) give a formal

solution for any depth /, but only serve for e nearly unity. The two methods

are very different, and it is of interest that the results agree under conditions

in which the two approximations overlap.

Formulce for General Type of Model.

4. The limitations of Michell's formula do not admit of its application to

actual ship forms ; for although the sides of a ship may be at small angles to

the median vertical plane, the bottom of the ship does not fulfil this condition.

It is proposed to use the method here in such conditions that this objection

does not hold, by supposing the ship to be of infinite draught. In other words,

we consider the wave resistance of a post extending vertically downwards

through the water from the surface, its section by a horizontal plane being

the same at all depths and having its breadth small compared with its length.

This enables us to elucidate certain points of interest in ship resistance.

We suppose the ship to be symmetrical fore and aft, and we take the

origin at the mid-ship section. Then since in {^),f{x, z) is independent of s,

we have

4ffp r J^ dm
^'-

-TT j,/,.«r(mV/^^- 1)1/2' ^^V

where J = if (x) sin mx dx, (15)

the integration covering the length of the ship, and the equation to the half-

section being y — f{x).

We wish to study the effect of altering the form of the section while

keeping the length and the total displacement unaltered, the beam varying

slightly according to the curvature of the lines. These conditions can be

satisfied by taking the form of the water-plane section, for y positive and x

ranging between +1, to be
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Here 21 is the constant length, and \hl the constant area of horizontal
section of the ship ; the beam is

2b{l-PIW')l{l-PIM^). (17)

The points of inflection in the curve are at a; = +rf. For rf = co., we have
the ordinary parabolic form with beam 2b. With d ^ I the bow ind stern
lines are still straight, but the ship has a finer entrance and a slightly larger
beam. With d<:l, the lines at bow and stern are hollow, that is, the sides
are concave outwards. We shall study in detail later four values of Ijd,

namely, 0, 1, 1-25 and 1-5.

From (15) and (16) we have

J = ~P {1-PIM^)\o^'^~ 3^^/'^^) sill '«^ ^«-

Evaluating and putting in (14) we obtain

],,. Km 3^+ rfv) "''''''^-W-dL^+dk?) '^" "'4

We shall use the notation

B = l/d; L = 2l; p = gh/c^

Altering the variable in (18) and expanding the terms, it can be expressed in
the form

^ = "

^(l-iS^)v lo U'°' '^ |(l-l^')'+p(l + 28^-ia*)cos^<^

+ ^6^COS*0 + ^S*COS«.^ J+1C0S3,/>|(1-1S3)2

-p (1 - 6 S^ +fS *)cos^ </.-^ S2 (1 - 2S2) cos*

-^ ^* cos8

./.J.

cos(^sec</,)-cos50 |-(1-AS2+ |S*)C0S,^

+ p-^'(l-§^^)cos30 + ^S*cos5^1. sin (^j sec <^)1 i^^. (19^

5. The integrals in (19) which do not seem to have been studied explicitly
are of the following forms

fir/2
cos'^''

cf>
sin {p sec

(f>) d<f>, (20)

fT/2
P2n+i(p) = (-1)"+! eoa^"*^

(f,
COS {p sec (f)) d<j), (21)
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with n a positive integer. The cases which occur in (19) could be tabulated

directly by means of convergent series and asymptotic series. They can,

however, be derived by repeated integration of the second Bessel function, and

can be expressed in terms of functions of which Tables are now available.

The functions satisfy the relations

nFn=p(P,-i + ¥„-,)-{n-l)-p„-2. (22)

Further, in reducing a function of positive order n by this relation, (22)

holds as far as

2P2=p(Pi + P-i)-Po,

Pi=2j(Po + P_2). (23)

Now we have

Po = sin {p sec
(f})

d6 = —^ Yo{p)dp, (24)
Jo ^ Ju

where Yq is the second Bessel function defined by

2 fWa
Yo = sac ch cos {'p sec d>) dd>. (25)

TT Jo

We shall use the notation

Since we have

Yo-'^{''Yo{p)dp. (26)
Jo

P-i = -| Yo ; P-2 = -f Yo' =
J

Yi. (27)

it follows that by using (22) and (23), we may express the unknown integrals

in (19) in terms of Yo"^ Yo and Yi.

Some numerical values of Yo~^ have been published recently by G-. N.

Watson ; these are not sufficient for our purpose, but Watson also gives

Tables of Struve's functions Ho and Hi ranging from to 16. In terms of

these functions

Yo-i = i^Yo-J p (YoHi- YiHo). (28)*

Watson's Tables of Struve's functions and of Yo and Yi have been used in

the calculations that follow.

6. Eeturning to (19) we evaluate the simple integrals and reduce the

others in the manner indicated in the previous section ; omitting the algebraic

reductions, the final result is

* G. N. Watson, ' Treatise on Bessel Functions,' p. 752 (1923).
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2 tUo 315 "+1620^; ^'+15 210^+1890^

+ A6_32 16g,\l 512 ,, 1 i6384Sn Y^ll5 2l''^35''^j+35 ^ ^^ "V ~3irpj^\ (29)

This, with p = rjLjc^, gives the wave resistance as a function of the
velocity.

For large values of p it is simpler to calculate directly from an asymptotic
expansion. This may be obtained directly from the integral expression for

E, or by substituting in (29) the asymptotic expansions of Yo, Yi and Yq-i.

The latter method gives a check for the coefficients in (29), since the positive
powers of p must disappear from the expansion ; in this way the first few
terms of the expansion are found to be

f

We shall consider now four cases numerically.

Calculations for Four Models.

7. In model A we take S = ; so that the level lines of the ship are the
parabolic curves

y= h{l-a?IP).

The expression for the wave resistance reduces to

-I(^'"+^)--I(^^"-^m1|i)v.}. (31)
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with the asymptotic expansion

TTf

ri i6^_/^y/2 {|sin(,.-|)+ l|ieos(,.-j)} (32)

Por small values of f, (31) is not satisfactory as the quantity within large

brackets is the small difference between large numbers ; it is better then to

use an ascending series in f wliich can be found by substituting expansions of

Yo~\ Yo and Yi. The first few terms are

^ = '-^^"^^4(114^- ~P«+-)log(f-y

737
^576^ 230400 f^. •}• (33)

where 7 is Euler's constant, 0'57722.

Prom thest3 expressions the values in Table I have been calculated.

Table I.—Kesistance of Model A.

p-
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E = SmgphH

+

-4
, 128 1 512 1 16384 1

.27 45 p^ 35 i?* 315 /'
TT / 31 3

'2 1,2835^

1^
»+ ^%n-i-'^/ 31 «2, 46 256 1 8192 1\

315^+ 5^)^" 2l2835^+r89 + '63'p+3lF?7/' °P

16384 1tt/ 31 122 512 1

2^2835^ 2835^ 315y 315 jj^

The corresponding asymptotic expansion is

p 800r/p&2/p4 128 1 /7rV/2 r2 . / 7r\ 17^
^L27+45-?-M i9^^n^^-4)-36

17 1 / TT
- COS ?:*

2} V 4

(34)

(35)

The general course of R is similar to that for Model A except that the

values are less for velocities below about Q-o6^y{gL) and higher for velocities

above that value ; for example, at j> = 6 the resistance of B is 482 units, and

at p = 1 it is 2546 units, while the corresponding values for A are 406 and

2050 respectively.

9. The third case is Model C with S = 1'25. We have then

R
131072 ffpbH r_529_ 2543 1^, 160 1 8000 1

r^ 16912 720 2^'' 7 ^j* 63 ^/ilTT 2^

IT I 23959
"
2 12903040

3, 2641 ^,275 1\ , TT

^ +64512^ + 512^7/ "
~2

23959
p'+

63373

^

220 1 4000 1

63 p^ 63 ^*
V ,

TT / 23959 ,^3^ 47443
2 V2903040^ 1451520^

2903040^ ' 483840

111 1

560^?

560 1
,
8000 1

and for large values of p,

R 131072 ffp&^Z p 529
^

6c

2543 1 / TT
\i/a r 529

12l7r ]j' L6912 720 p^ 2p '14608

ir

sin \p)

63 p^

4/

.}, (36)

28865 1

36864 p'^°T~4
(37)

The remaining example, Model D, is a more pronounced variation from the

standard form A. With S — 1-5, the forward paint of inflection in the water-

plane curve is at one-sixth of the length of the ship from the bow.

We have in this case

E = 204800 .9p62/ r 1
,
61 1

I2I7 2^ 148 + 15 2;^
+
1152 1 9216 1 TT

35 2^* o5 ]fi 2

+ 6720^+l60pj ^'
2

-r ^\„^„^^ ^3360

37 2 ,
29

,

6720^ 672

6720

4608 1

35 p
Yo

2 U72O'
p- J^ 1

'21^3'

1152 1 9216 1
1 *

35 p^ 35 p^
Yx] (38)
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For small velocities the appropriate expansion is

p 204800 (7P&2; r 1 , 61 1 /-n-V/s f 1 . /

177 1 I IT
(39)

A study of the numerical coefficients in these various formulae gives some

indication of the manner in -whicli the resistance varies with the form, and

this is confirmed by actual calculations which have been made in each case

as in Table I for Model A. The general variation of the resistance is the

same, but the differences noted between Models A and B become more

pronounced for C and D ; the resistances are less at low velocities and

greater at higli velocities as we progress from A to D. The results may
now be collected and examined graphically.

10. Fig. 1 shows the lines of models A and D, the curves being one-

quarter of the water-plane section in each case. In the comparison we

have in view with ship models the ratio of beam to length is of the order

of 1 to 10. In order to make the diagram show the difference on a .small

scale, the ratio of beam to length in fig. 1 is 1 to 5. Further, only the

extreme models A and D are shown; the lines for B and C would fall

between those of A and D.

The variations in form are summarised in Table II.

Table II.—Models of Constant Length and Displacement.

Model.
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we use as a J)ase the quantity \j^h, where V is tlie speed in knots and

L is the length in feet ; thus we have, in the previous notation,

i' = ^ = 11"594
Y2'

approx. (40)

The range for Yj^h, which is of special interest, is from about 075

to 1'25. Fig. 2 shows the curves of wave resistance for the four models,

obtained by calculating R from the expressions (31) to (39).
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The first point to be noticed is the prominent hump on the resistance

curves in the neighbourhood of V/^L = 1. This is a well-knovm feature

of ship resistance ; it has been stated as an empirical rule that this hump

occurs at V = l-OSy/L, or again that it occurs at V = 1'34y/(PL) where P

is the prismatic coefficient. In fig. 2 the values of Y/\/L for the more

normal models A and B are 1-04 and I'OS respectively, while for the more

extreme forms C and D with hollow lines they are about 1'02 and 0-98 ; the

model D has obviously lines which are unusually fine at the bow.

In the figure the humps and hollows are, in general, more pronounced

than in experimental curves. The familiar pattern of ship waves is usually

described as made up of transverse waves and diverging waves, the former

being the chief factor in the wave resistance ; there is also a tendency to

associate the transverse waves with the stream-lines which travel along the

bottom of the ship and the diverging waves with the action of the vertical

sides of the ship at the bow, but this is misleading. In the present calcula-

tions we have models in which none of the stream-lines can go underneath

the ship ; they are all forced sideways from tlie bow. It appears that the

effect of the flat bottom of the ship, and of its finite draught, may be rather

to smooth out the oscillations in the resistance curve. A general feature

of the curves which is in agreement with experiment is that the oscillations

become progressively less prominent as we take the models in the order

A, E, C, D ; this is especially noticeable in models C and D, which have

hollow lines.

The most interesting and important characteristic of the set of curves is

their intersection in pairs at values of V/y^L ranging from 112 to llS.

Compare, for instance, models C and A. At low speeds C, with its finer

entrance, lias a decided advantage ; at US the resistances are equal, while

above this speed the advantage remains with model A, with blunter ends

but with less beam. It has been remarked that one cannot make exact

comparison with experimental results from ship models, but a general

survey of the data bears out these calculations. Without going into detail,

it may suffice to give a few references to standard treatises on ship resistance

where the results are summarised.

G. S. Baker remarks :
" In the section dealing with the relative merits of

hollow versus straight lines, and elsewhere, it has been shown that for vessels

of fine form intended to work at speeds in the neighbourhood of V = ^/L

there is a decided gain in working the level lines with some hollow in them.

It has also been known that for such fine forms at very high speeds the

hollow should be reduced to get the best effect."*

* G.S. Baker, 'Ship Form Resistance and Screw Propulsion,' p. 87, 2nd edn.

1920.
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D. W. Taylor,* referring to a series of experiments with models of tlie

same displacement and of varying, midship section coefficients, states that

the models with full midship-section coefficients drive a little easier up to

Vh-^L = I'l to 1'2, and the models with fine coefficients have a shade the

best of it at higher speeds. Again, the same author analyses the results of

another set of experiments thus :
" Fig. 67 shows curves of residuary

resistance for five pairs of 400-foot ships, each pair having the same dis-

placement and derived from the same parent lines, but differing in midship

section area or longitudinal coefficient. It is seen that at 21 knots No. 10

with 0-G4 longitudinal coefficient has 2-;^ times the residuary resistance of

its mate No. 9 with 0'56 longitudinal coefficient. But at 24J knots they

have the same resistance. Again, No. 4 of 0-64 coefficient at 21 knots has

nearly twice the residuary resistance of No. 3 of 0'56 coefficient. At

25| knots they have the same residuary resistance, and at higher speeds

No. 4 has the best of it, having but 0-9 of the residuary resistance of No. 3

at 35 knots.

" These results, which are thoroughly typical, are susceptible of a very

simple qualitative explanation. A small longitudinal coefficient means large

area of midship-section and fine ends. A large longitudinal coefficient

means small area of midship-section and full ends."

It will be noticed that the experimental curves referred to in this extract

intersect in the neighbourhood of the point V/^L = 1-2. The curves of

fig. 2 also intersect near tliis point. The lines of the models A, B and C
were chosen to be of suitable form, limited by the necessity for a simple

mathematical expression which led to integrals that could be evaluated. It

may be claimed that the curves so obtained agree with experimental data,

and, further, that they repay detailed study, in that the variations in

resistance are connected definitely with a precise variation in the form of

the model.

* D. W. Taylor, ' Speed and Power of Ships,' pp. 96 and 97.

HAEeison and Sons, Ltd., Printers in Ordinary to His Majesty, St. Martin's Lane.
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Studies in Wave Resistance : the Effect of Parallel Middle Body.

By T. H. Havelock, F.R.S.

(Received February 20, 1925.)

Introduction and Summary.

1. If a ship is altered by inserting different lengths of parallel middle body

between the same bow and stern, the main features of the variation in the

wave resistance may be inferred from the principle of wave interference, and

may be expressed in terms of a certain length, sometimes called the wave-

making length of the ship. The problem proposed for examination is the

alteration in this length with varying length of parallel middle body at the

same speed, and, further, its variation for a given ship at different speeds.

Recent discussions have attracted renewed attention to this problem. It

may be said that there are two approximations based on experimental results

of various kinds obtained from ship models. On the one hand the wave-making

length is supposed to be approximately independent of speed for a given ship,

and to increase directly with the increase of parallel middle body ; on the other

hand, an empirical formula which agrees with experimental results over a

certain range makes the length increase with velocity, the increase being one-

quarter of the increase in the wave-length of regular transverse waves.

The following contribution to the solution of this problem is mathematical,

and necessarily deals with a simplified form of ship. It is true that one caimot

compare absolute values of the wave resistance with those of actual ship models
;

but it has been shown in former studies of the dependence of wave resistance

on ship form that one obtains a rather remarkable agreement, at least in the

character of the results and in the positions at which changes occur. Leaving

detailed discussion of the present extension till later, it may be stated that

as regards the two approximate formulae mentioned above the results are

intermediate ; after an initial decrease the wave-making length increases with

velocity, but not so rapidly as in the quarter wave-length formula.

In §2 an expression is developed for the wave motion due to any distribution

of doublets in a vertical plane in a uniform stream, and in §3 this is associated

with the form of the ship's surface. Applying the formulee to a ship of infinite

draught, with parabolic curves for the entrance and run and with parallel middle

body, we obtain a general expression for the wave resistance (§4). After com-

putation of the functions involved (§5), a detailed numerical study is made for
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a ship with entrance and run each of 80 feet and with parallel middle body

increased from zero up to 340 feet, as in W. Froude's well-known experiments

(§6). Fig. 2 shows the curves of wave resistance for five different velocities,

the base being the length of parallel middle body. A short account of model

results and of recent discussions is given in §7, and the present calculations are

reviewed in the remaining sections. The information from the curves of fig. 2

is extended by an equation whose roots give the complete series of maxima

and minima (§8). The roots are foxmd numerically for three series. With both

the length of the ship and the speed varying, we obtain the roots for the maxima

for which on a simple theory the wave-making length is equal to one and a half

wave-lengths ; Table III shows the actual variation of this length. Then two

series of roots are found for a ship of constant length at varying velocities,

one for a ship of 160 feet without parallel middle body, and the other when

240 feet of parallel middle body have been inserted ; these are given with

other quantities in Tables IV and V, and the results are discussed in relation to

experimental data.

Expressions for Wave Resistance.

2. A uniform stream of deep water moves with velocity c in the negative

direction of Ox, the axes Ox, Oy being in the undisturbed surface, and the

axis Oz vertically upwards. Suppose there is a doublet of moment M in the

liquid at the point {h, 0, — /) with its axis parallel to Ox. With the usual

limitation of assuming the additional fluid velocity at the sxiiface to be small

compared with c, one can svrite down complete expressions for the velocity

potential, and so deduce the wave disturbance and the corresponding wave

resistance. It is convenient to begin here by quoting from a previous paper*

the wave resistance, altered to the present notation, as

R = IGTr/pM^c-* r sec^ cf,e-''^"'^
"'''''>

d<}>. (1)

Jo

In the same paper it was also shown how to generalize this expression,

first, for any two doublets at given points in the plane y = and then for any

continuous distribution in the same plane. Equation (37) of that paper

gives the result for a continuous line distribution of doublets along the line

y =: 0, z ^ —/ ; an obvious extension gives now

R = i67:^*pc-« Cdf fdf r dh r dh' r ^ [h, /) ^ {h', /)
Jo Jo J— 00 J — oo Jo

X sec^ ^e-{5</+/')Mseo=* cos [{g {h-h')lc-} sec ^] defy, (2)

* ' Koy. Soc. Proo.,' A, vol. 95, p. 358 (1919).
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for a distribution of doublets in the plane y = 0, the momeiit per.unit area

being i]; {h, f) and the integrations extending over the whole distribution. The

function vj; must be such that the integrals are convergent, as well as the

corresponding expressions for the velocity potential and the surface disturbance.

We now integrate (2) by parts with respect to h and h', and as we shall deal

with distributions which are of finite extent in the x co-ordinate, we obtain

E = 167r/pc-* fdf Cdf r dh\ dh'Vd ^jdh . 3 i^'jdh' . sec^ <{>

Jo Jo J —00 J -00 Jo

X e-{^</+/'H=«=* cos [{g {h-h')/c^} sec <^] 3^. (3)

The fluid motion is symmetrical with respect to the plane y = ; we may

therefore confine our attention to the fluid on one side of this plane and we may

interpret (3) in terms of the distribution of normal fluid velocity over the plane

y =0. For, from the definition of ij;, the normal fluid velocity at the point

{h, 0,/) is 2nd. |/3A. Substituting in (3) we should then have the wave resistance

for a given distribution of normal fluid velocity over the plane y = 0. From the

latter point of view the solution can also be obtained by methods of harmonic

analysis ; the expression for the wave resistance, used in a former paper,*

agrees with (3) found by the method of sources and sinks.

3. In the application to ship waves the same assumptions are made as in the

paper just quoted. The plane y = is the fore and aft median plane of the

ship, and the inclination of the ship's surface to this plane is supposed small.

The ship is then replaced by an equivalent distribution of normal fluid velocity

over its section by the plane y = 0, namely the component of the stream velocity

c over the actual surface of the ship ; thus if

y = ¥{x,z) (4)

is the equation of the ship's surface, we use in (3)

2tc ^ = c ^. (5)
on ox

A difficulty which may arise in the general solution should be mentioned, but

need not be considered further in the present applications. A mathematical

infinity may occur in some of the expressions ; this may be removed by intro-

ducing a suitable factor to ensure convergency, but in any case it only occurs

in those parts of the velocity potential and surface disturbance which represent

the local symmetrical disturbance. The integrals for the wave disturbance,

and consequently expression (3) for the wave resistance, remain finite.

* ' Roy. Soo. Proc.,' A, vol. 103, p. 574 (1923).
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4. Suppose the ship to be symmetrical fore and aft, and take the origin

at the midship section. To simplify the calculations we assume, as in previous

studies, the ship to be of infinite draught and to be of constant horizontal

section, as shown in fig. 1.

- -^ -2k -J»c I - -

The length of parallel middle body is 2k, and I is the length of entrance or

run ; the cm'ved surface is of parabolic form, the equation of AB being

y = h{l-{x-kflP}. (6)

Substitute from (5) and (6) in (3). Since the normal velocity is zero over the

parallel middle body, and since the ship is symmetrical, the integrations in

h and h' simplify considerably ; also, we may carry out the integrations in

/ and /' and so obtain

R ^ 4pc-7r ^ J" cos <j) d<f),

where

J = -^ ^sin
]
^(A+ ^)sec^^ dh.

P Jo ^<r }

Evaluating J, we find aft.er some reduction

''=^'©7:[*--*+,-.-"*^jr"*^'sin (^sec^

(7)

C 5

g'P
^cosf^sec^|+J(cos^^— -greCos^ ^jcosj ^^

^
^ sec^l

, cos* A sin ]
"

„
—

- sec(f>\ + — cos* A sm \^—-J^' seed)

}

ql { c^ J ql ^ { c^ ^)9l

+ -^ cos^
(f)
cos -j

——2^ sec ^
J-

— I -^2 cos^ ^ cos f ^^-sec ^ ) dtfi. (8)
9'P ip

I2qk
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Using the notation

7^{V) = (-!)" ['cos2"9isin(^sec.^)i<^,
Jo

2n^iip) = (-1)"^' ['cos2"+i,^cos(2Jsec^)#,
Jo

(9)

we have

_ MgpbH/cJr jl _c^ Jgl\ _^ (gl

+iP3 iPl) - -^ P4 (^'l) +4 ^^2
P5 (Pl)+ \ P4 {P2)

^,P5fe)+4^-iPsW+i-^.Ps^i's)], (10)

where

f^=g{2h+'U)lc\ p2=g{2k+l)lc^ p^ = 2gklc^.

Tabulation of Functions.

5. In order to obtain the curves we require, we have to evaluate (10) for a

large number of values of k, and in each case for several values of c ; it was

necessary to prepare tables and graphs of the P functions. Yq and Yj being

Bessel functions of the second kind and Yq"^ being defined by

Yo-^=?'Yo{p)dp, (11)
Jo

we have, from sequence relations given previously,*

7s = -^{{p'-^p)Yo-'+p'Yo-{p^-ip)Y^}

P, = - ^ {(234-6/+9) Yo-i+(/-9jo) Yo-(p*-7/) Yi}
4:0

P5= --^{(/_10^3+45^)Yo-i+ (p4-13/)Yo-(/-11^3+64^)Yi}.(i2)

The values of Yq and Y^ and of Struve's Fimctions Hq and H^, given in G. N.

Watson's " Treatise on Bessel Fvmctions," were used to calculate values of

Yq"-' from the formula

Yo-^ = :pYo-|yj(YoHi-YiHo), (13)

* ' Roy. Soo. Proc.,' A, vol. 103, p. 578 (1923).
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and then values of the P functions were found from (12). With increasing

values oip, the multiphers in (12) become large and this method loses accuracy

unless the Bessel functions are known to a large number of places. It is then
preferable, and sufficiently accurate for the present purpose, to calculate from
a few terms of asymptotic expansions. These can be found independently,

or derived from those of the Bessel Functions ; they are

V-f 1065 1^

128 f
-, lUUU J. 269-7

^4
sm (j3— -

A./^ fA _1569 1

^ 2p \\ 128 / ^

_l^

/17
1_ _ 42-964 1980\

p3 pS jP

527-3

cos Ip
-i)}'

p'

/21.1

8 p
+ (^

cos [p—

73-608
, 4353

pi +
P&

sm [p

P,^ A/iL|fi_2i6_9I
2p\\ 128 /

933-2

P*
sm [p

25 1

8 p

115-97
, 8554

cos [p
4/j

(14)pi po

Although systematic computation of these functions has not been attempted
to any high degree of accuracy, it was found necessary to calculate a large

number of values from p zero up to p equal to 40. Some of these are recorded

in Table I.
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of the three functions over the range from to 40, the scale for f being 1 iach

for iinity and the scale for the ordinates being 10 inches for unity ; these gave

the required accuracy, supplemented at critical points by numerical calcula-

tion. The graphs are not reproduced here, as they lose their practical value

unless on a very large scale ; they are, of course, similar in character to graphs

of the Bessel functions—oscillating curves diminishing in absolute value with

increasing argument.

Resistance Curves.

6. We can now make a numerical study of the wave resistance given by

(10). We might adopt dimensionless variables, such as gljc^ and hjl, but the

calculations were begun with the intention of comparing the results with

W. Froude's curves ; we take therefore

> (15)

I = length of entrance = length of run = 80 feet'

2 /c = length of parallel middle body,

with 2 k increased from zero up to 340 feet. For an assigned velocity c, the

values of R were found for every 20 feet of parallel middle body ; as a rule,

intermediate values were also calculated so as to define the maxima and minima

with sufficient accuracy.

Two examples of the work may suffice. With

^/c2 = 0-045; c= 26-75 ft./sec; V = 15-83 knots; (16)

we have, from (10),

R == 5g^X 10-974 x[0-5026 + (iP3-^P4+2^2^5){0-09A+7-2}

+ (3^6P^-l2V6^^)^«-«^^+^-^^+2-5^^^^«-H-(l^)

The notation { } denotes the argument of the P frmctions in the preceding

bracket.

For increments of 10 in the value of k, the P functions were required at

intervals of • 9 from zero up to 22 - 5. Again, with

glc' = 0-02; c = 40-13 ft./sec. ; V = 23 • 76 knots, (18)

we have

K=2^Xl25x
8tc

0-2344+(iP3-j^P4+^2^5){0-04A;+3-2}

+ (f6^*"2^^^)'^'^*^+^''^^+^^^^°'°^^^-
(19)
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In this case the arguments of the P functions increase by intervals of 0-8

from zero up to 10.

It may be noticed from (17) and (19) how the relative importance of the

oscillating terms alters with the velocity.

This process was carried out for nine different velocities, namely :

g/d' = 0-l, 0-0625, 0-05, 0-045, 0-04125, 0-0375,

0-03125, 0-02, 0-0075. (20)

Five of the curves are shown in fig. 2, which gives the quantity SnU/gphH
on a base 2 k representing the length of parallel middle body ; the curves for

higher speeds are not reproduced, as the scale would obscure the effects, but the

data are used in the discussion.

Approximate Formulw.

7. It is convenient to summarise now the experimental data and empirical

formulae derived from them.

The investigation of W. Froude* was the first direct study of interference

of bow and stern waves made by testing models with the same bow and stern,

but with increasing lengths of parallel middle body. We associate with this work
the subsequent paper by E. E. Froude,t who applied the principle of interference

to the resistance of a given model at different speeds. Founded on this work,

the approximate theory has been developed : the bow produces a wave system

beginning, so far as regular transverse waves are concerned, with a crest

slightly aft of the bow, while the stern originates a system beginning with a

trough a little aft of the after-body shoulder. Assume that this wave-making
length, say Z, is approximately independent of speed, and further assume that

the wave resistance is chiefly due to the transverse waves. If, then, X is the

wave-length of regular transverse waves for velocity c, the so-called humps
and hoUows on the resistance curve occur at speeds for which Z is an odd or

even multiple of iX. Or, if we assume an approximate formula

n = A-Bcos(gZlc\ (21)

where A and B are undetermined functions of velocity, the humps and hollows

correspond to the maxima and minima of the cosine factor ; hence we have

the sequence

^' 7^' 73' 74' ^^^^

* W. Froude, 'Trans. Nav. Arch.,' vol. 18, p. 77 (1877).

t K. E. Froude, ' Trans. Nav. Arch.,' vol. 22, p. 220 (1881).
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for the ratios of the velocities at which these occur, beginning with the final

hump on the curve of R plotted on a velocity base.

This was the sequence verified experimentally by R. E. Froude. It should

be noted, however, that these points are not actual maxima or minima on the

resistance-velocity curve ; although their approximate position is fairly obvious

from inspection, they cannot be defined accurately without a knowledge of the

mean resistance curve.

Turning to W. Froude's work, it is obvious we should have similar phenomena
if the effect of introducing parallel middle body is simply an addition to the

wave-making length. This is the case if we consider any curve of R on a base

of parallel middle body for a given speed. Here we are dealing with actual

maxima and minima
; and Froude's curves show that, within experimental

error, the separation between consecutive maxima is approximately equal

to the wave-length X. On this theory the quantity Z derived from each curve

should be the same for all velocities, but Froude did not examine that point.

The second approximate theory, which we shall consider now, asserts in fact

that Z is not constant in these curves.

From a study of various model results, a formula connecting Z with ship

form was given by G. S. Baker and J. L. Kent* ; the formula was later asso-

ciated with direct observation of wave profiles in certain cases. For a recent

critical account of this formula, reference should also be made to two papers

by J. Tutinf and to the discussions published in connection with them.

The formula is equivalent to defining the wave-making length Z by the

equation

Z = PL+ iX == PL+to2/2^, (23)

where L is the total length of the ship, and P is the prismatic coefficient of

form. Since P is the ratio of the volume of the ship to the volume of a prism

of the same length and with section equal to the midship section of the ship,

we have in the present notation

PL = 2k+2-p;, (24)

where P, is the coefficient for the entrance or run ; and at any given speed

there is a similar relation between R and 2k as on the previous theory. The
chief interest of (23) lies in the second term, which makes Z increase with the

* G. S. Baker and J. L. Kent, 'Trans. Nav. Arch.,' vol. 55, Pt. II, p. 37 (1913) ; also

J. L. Kent, 'Trans. Nav. Arch.,' vol. 57, p. 154 (1615).

t J. Tutin, ' Trans. Nav. Arch.,' vol. 66, p. 240 (1924) ; also ' Trans. N. E. Coast Inst.

Eng. and Ship.,' vol. 41 (1925).
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velocity, in contrast to R. E. Fronde's results. The expression for R corre-

sponding to (21) is now

E = A+B sin {gT?L/c~), (25)

and instead of the sequence (22) we have

for the ratios of the significant velocities.

The authors of this formula based it upon observations over a certain inter-

mediate range of velocities. If we omit the first two or three terms in the

sequences (22) and (26), there is a range in which the ratios do not differ very

much ; further, if we are considering a resistance-velocity curve, the points

in question are not defiiied with precision. However, these remarks do not

apply to the final hump on such a curve, and in that case the available evidence

seems to favour the first sequence (22).

It is different when we turn to .resistance curves, such as those given by

W. Froude and by Baker and Kent, in which the base line is length of parallel

middle body. In these curves we may follow the position of a certain maximum

as the velocity is increased. If the wave-making length Z is constant, it follows

from (21) that if X is the wave-length and 2k the length of parallel middle body

at which the maximum occurs, we should have

?^^ 7.-21 = constant

;

(27)
z

while, on the other hand, from (23) and (25) we should have

^^^^ X-2Z; = constant, (28)
4

where n is zero or an assigned positive integer.

It is certainly the case that over the range which has been examined the

second relation (28) fits the data very well. For comparison with present

calculations we may take one example from the results of Baker and Kent.

The figures are given by Kent, in a recent discussion already quoted, for the

case n = 2. They relate to models ranging in length from 11-2 feet to 20 • 5 feet

by the insertion of parallel middle body ; and the velocities vary from 290

to 370 feet per minute. We transform the results to apply to ships with entrance

and run equal to 160 feet by multiplying all lengths, including wave-lengths,

by the factor 160/11-2. In the present notation we obtain thus Table II.
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Table II.
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9. It is not necessary to graph a large range of resistance curves at each

speed to find the positions of the maxima or minima. Turning to the general

expression (10) for the wave resistance, we require the roots of the equation

dn/dk = 0. (29)

Since P'„+i = P^, we find that this reduces tb

m
+

But we have

and if we write

gl 2
J

' ^ ^^^-
f¥^'IV g'r

(2gh\

pPo ip) = 4P3 ip) -pP4 (p) +5P5 ip),

0. (30)

(31)

X = gl/c' = 2ti:?/X ; y = ^gk/c^ = iizklX = ^kxjl, (32)

the equation (30) becomes, in terms of functions which have been tabulated

here,

y
xy-^2x" 2x2

Pi +
22/+4a;

Po {2/+ 2^}

+ (lP3-
\x

^.P.) {.+-}+ 2i.P^W=0- (33)

The problem is the determination of pairs of positive values of x and y

satisfying this equation. The approximate formulae (27) and (28) are equivalent

to arranging these in series in linear relationships. For a numerical study of

the roots of (33), we have to use the tables and graphs of the P-functions to

which reference was made in §5. Starting with some value of x, we find the

corresponding value of y from (33), and it is not difficult when we take another

value of X to decide which is the corresponding root in y ; the preliminary

survey of the curves in fig. 2 enables us to follow out any required sequence.

We choose here the series corresponding to w = 1—that is, the series of crests

which includes those marked A3 in fig. 2. It was found that with the large-

scale graphs of the P-functions, the value of the left-hand side of (33) could

be calculated with sufiicient accuracy for a graphical method to give the

required root ; except that for high velocities—that is, low values of x—the

graphs had to be supplemented by direct calculations.

Omitting the details of the work, the following pairs of roots were obtained :—

X



90 T. H. Havelock.

On the scale used for fig. 2, we have I = 80 ft. ; from these values of x and y
we get from (32) the values of X and 2A and so the results collected in Table III.
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The roots correspond to the series of humps and hollows on the resistance

curve. The third row shows the wave-making length Z, and in the "last row

are the values of Yls/L, where V is in knots and L is the length of the ship

in feet. The velocities which would be assigned from an inspection of the

actual resistance curve would naturally be a little higher than those found

from (34), especially where the mean resistance curve rises rapidly. We have

already considered the increase of Z from moderate to higher velocities ; we

notice here that it is not sufficient to affect appreciably the value of Y|^yL for

the position of the final hump. Table IV. brings out a new point, namely,

the increase of Z with decreasing velocity. It is easy to see how this arises.

We may express it in this way : the particular model has straight lines at bow^

and stern, including a finite angle, and as the velocity decreases there is an

increase in the relative importance of the wave-making properties of the ends

compared with the parts where the change of curvature is gradual ; or, analy-

tically from (34), when x is large we can use the asymptotic values of the P
functions, and the roots approximate to those of P4 (2a;) = and succeed

each other at intervals of 7^/2. It has not been found possible to analyse

experimental curves to see if this effect occurs ; the interference at low velo-

cities is small and unimportant in practice, and the curves are not sufficiently

accurate for the purpose. One reference may, however, be given where this

effect seems to have been observed.

In a contribution to a recent discussion quoted in § 7, G. Kempf describes

some experiments made at the Hamburg Experimental Tank. The model

was of cylindrical form with a hemispherical entrance and a run formed by

the rotation of a sine curve ; it is stated that Z was not constant at all speeds,

but that the value of ^yz increased 10 per cent, with decreasing speed from

V3 to V7. It may be noted, as a coincidence, that in Table IV., Z increases

from 126 at V3 to 145 at V7, and this is an increase of 7 per cent, in ^/Z.

To show the effect of parallel middle body, we consider finally a ship of

400 ft., with the same entrance and run as before, but with 240 ft. of parallel

middle body.

Since y = 3x, equation (33) becomes in this case

(35)

Table V gives the roots and the similar quantities deduced from them.
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Table V.
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Wave Resistance: the Effect of Varying Draught.

By T. H. Havelock, F.E.S.

(Received June 5, 1925.)

]. In previous studies in the theory of wave resistance, while the water-

plane section of the model was of a reasonably ship-like form, the draught

was assumed to be infinite. In the following paper the model has the same

simple lines and has vertical sides, but the draught is finite. The investi-

gation shows how the resistance at different speeds depends on the draught,

but it was undertaken specially for other reasons. In view of certain applica-

tions, it was important to find how the interference effects due to bow and

stern waves are affected by varying draught. It is shown now that these

become less prominent with diminishing draught, but the maxima and minima

occur at practically the same positions. Further, when the ratio of draught

to length is of the order of the values in actual ship models, one is in a position

to attempt a comparison between the absolute values of theoretical and

experimental results.
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Curves are shown in fig. 2 (p. 590) for the variation of resistance with velocity

in three cases—when the draught is infinite, and when it is one-tenth and one-

twentieth of the length of the model. The latter values cover approximately
the usual ratios in practice. On the same diagram are reproduced experi-

mental curves for three models of different types, the data being reduced to

the same non-dimensional co-ordinates. Making allowance for the differences

of form between these models and for the simplified form for which the calcula-

tions have been made, the results show that the calculated values are of the
right order of magnitude over a considerable range of velocity. Differences

in the two sets of curves, such as the greater prominence of interference effects

in the theoretical curves, are discussed.

The first sections of the paper deal with the mathematical expressions for

the resistance, and their transformation into forms suitable for calculation

;

graphs of certain integrals are given in fig. 1 (p. 586).

2. Take axes Ox, Oy in the undisturbed surface of a stream flowing with
uniform velocity c in the negative direction of Ox, and take Oz vertically

upwards. If there is a distribution of doublets in the liquid in the plane y = 0,

with axes parallel to Ox, and of moment ^i Qi, 0,/) per unit area, the corre-

sponding wave resistance is given by*

K = IGTr/pc-^ r dj (" df r dh r dh' \"~ a ^/BA . a ^1,73^'
. sec^ d>

Jo Jo J-co J-00 Jo

Over the plane ?/ = the normal fluid velocity at the point {h, 0,/) is 27r3tJ;/3A.

Taking «/ = as the fore-and-aft median plane of the ship, we assume the

action of the ship to be equivalent to a distribution of normal velocity over
its section by this plane, the distribution being such that if y = F {x, z) is

the equation of the ship's surface, we substitute in (1)

To simplify the calculations as far as possible, we shall assume the ship

to be symmetrical fore and aft, and to have vertical sides so as to be of constant

horizontal section. The water-plane section is taken to be of parabolic form,

the equation for y positive being

y = l{l~ x^P).
(3)

The length of the ship is 21, its beam 26, and it is of constant draught d.

* ' Roy. Soo. Proc.,' A, vol. 108, p. 79 (1925).
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We substitute from (2) and (3) in (1). Carrying out the integrations in

/, /', h and h', we obtain, after some reductions,

E = ?^^rf Td - e—'*)^ {cos^ ^ + i cos^ ^
T^f Jo F

+ ( cos^ ^ 7, cos^ (^ ) cos (p sec (^) — - cos* ^ sin (^ sec ^)} (i^, (4)"Ip- '

' ' ' f

where p = 2^//c2, and a = gdjc^.

3. In reducing this expression to a form suitable for calculation, we take

first the terms which are non-oscillating regarded as functions of c.

A typical integral is

pcos^<^e-^=^'='*df (5)

Changing the variable, this becomes

e-^ r {\ + t")-U-f'''dt = iTT^pe-^^ W_.3^ _, (p), (6)

Jo
2' 5

where W is a confluent hypergeometric function. We can obtain an expansion

by using the contour integral for the general hypergeometric function of this

type. In this case we obtain

the contour separating the poles of V {s) from those of F (— s+ i) T (— s+ i).

We have, therefore, to evaluate the residue of the integrand at the simple

poles s = \, f, -J, and at the series of double poles s = -Z-, |, '^-, .... The

lattet residues give logarithmic terms. Carrying out the calculation, we

obtain the expansion

_ s
r(7t+i/2)ff-^

s"+^^^fiogj:YB+2 i: — i;--Vi^l, (8)
„t,T{n+\)T(n-2V \

^^^^^
j, = i2^-l t? T W-*

with log Y = 0-57722 ... .

We obtain thus

r" cos^ <he-^
^^'='* c^A = 1 e-P

f 1_ 1 p + 1 fts^^ (33+ JM
Jo

^ 15 I 4^ 16^ 192^ 3075

^4

3072

J63_ 5 /5_ 3 35_ 4 _G3_ ,_^ \j 1 p\ ^g^

20480 '^ ^ ^ \32 '^ 256 '^ 1024 '^ ^ / ^4'^J
^'
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A similar integral which we require in (4) can be derived by differentiation,

and we have

Jo
^ 3 I

2*^ 16*^ 96*^ 3072^

683

30720 p^+--(-8p^"+Sp^+^p^+ip^+->«^r4(^«)

For large values of p, asymptotic expansions can be found in the usual

manner by transforming the integrals. They are

1
(11)

+ £2^5^-...). (12)

r'^ 5 A -fisec'i jj. 1 i«-^ -e/i 7 1,189 1 3465 1

Jo
^ 2 ^ \ 4 p 32 p2 128 p^'

I

315315 1

2048 p

r'^ 3JL -Ssec'iJJL 1 -^-i-ff/l 5 1 . 105 1 4725 1
cos'' 06 P=^'^<= *rf0^-7c»S *e P 1 -—

lo
^ 2 ^ \ 4 |3 32 p2 384 p3

363825 1

6144 p

On applying the expression (4) to numerical cases of interest, it was found

that the integrals we have just considered were required over a range inter-

mediate between those suitable for the series given in (9)-(12). It was.

therefore, necessary to calculate the values of integrals such as (5) directly

by numerical methods. It was sufficiently accurate to evaluate the integrand,

for each value of p, at intervals of five degrees throughout the range of

integration, and then to use Simpson's rule. The series given above were

used for checking and supplementing the values so obtained.

For the purposes of expression (4) the results were collected in tables and

graphs of the integrals

I. = r'(l - e-°«^<='*)2 cos^ <!> dcf,. (14)
Jo

The graphs are shown, on a as base, in fig. 1.

It can be seen from (4) how the mean resistance, apart from superposed

interference effects, depends upon the integrals I3 and I5 ; and since a is

gd/c^, the curves in fig. 1 show how the effect of finite draught becomes

appreciable when the wave-length is comparable with the draught, the ordinates

falling off rapidly in value after that as a becomes smaller.
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4. We have now to consider the remaining terms in (4), namely, the last

three terms under the integral sign.

-0-6
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where

(17)
."Q(y) ^x

The integrand in (17) is expanded in ascending powers of l/p and then

integrated term by term, using the formula

fi'-U-'v-'Xc^^ = r(r + i)S • +ie"- + ni*«;

Jo

S=(l+r)-h cot6 = Y. (18)

The expression was carried out completely to include all terms of order

p~^, and the leading terms in p~^ were also determined so as to check the order

of numerical approximation. Leaving out the intermediate expansions, it

may suffice to record the final result ; we find

Q (y) - SM*^ + Ui8i eJ*" - — S'e?*" - - ySh^'A-

I 2 \ 128 2 ' / 64
'f 128

'

if

I 2 \2 ' 32 /

,15/21 . 2933\j.,i,, 105/1 o. 355 \ .. .<„

8 \ 2 ' 128 / 16 \2
'

64 V

_ 16065 oguyi, _ 3465 38? gViol 1 , ,,qx

Collecting these results, we have now reduced (4) to the form

(7r/2^)^ e*^ {Q (.0) - 2e-^''Q (2p) + e'^^^Q (4p)}], (20)

where the integrals I are defined in (13), (14) and graphed in fig. 1, and the

asymptotic expansion of Q as a function of p is given in (19).

5. Numerical calcidations from (18) and (19) are tedious, and we have

chosen the parameters so that we require the numerical values of the coefficients
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in (19) for four values of y, namely, 0, 0-1, 0-2, 0-4. Omitting the details

of the work, we have in these cases

p f"
p''

Q(0•l)^0^74+0^669^-^•^^^-l•^^-l•6QW•916^^

P P'

_ 3-87-4-13i

f
+

Q (0-2) ^ 0-766+ 0-628i- li2iI:l:263^_ r634+ 0:47i

P P
, Ov571+ 6j;46i

,

P'

Q(0-4)^0-798+0-54H- -^'^^^~-^'^^^' - ^'^^^~'^"^^^' + .... (21)

P P

6. We proceed now to calculate and graph the wave resistance as a function

of the velocity for three different draughts. The curves are shown in fig. 2

(p. 590) in non-dimensional co-ordinates, the ordinates being 'R/gpbH and the

abscissae V/-y/L. In the notation used, we have 26 = beam, 21 = length,

d = draught, V = velocity in knots and L = length in feet ; thus

V/-y/L = \/(ll-59i/p), approximately.

The first case is that of infinite draught, for which p = dj'2l = oo . Here (20)

reduces to

This case has been calculated previously* from more complete formulae

;

the use of (22) now serves to check the range of the asymptotic formulae for Q.

The second case is for the draught one-tenth of the length, or p = 0-1, so

that

(23)+ Eeal i^^J e*" (Q (0) - 26-^" Q (0 2) + e-i" Q (0 • 4)}

Finally, for the draught one-twentieth of the length, or (3 = 0-05, we have

Kp'^

25Qgpm

f

+ Eeal (^"j e*" {Q (0) - 26-^-" Q (0 • 1) + e'^^ Q (0 • 2)}]. (24)

'^li)^)+|^=(^^

\2fl

* ' Roy. Soc. Pioc.,' A, vol. 103, p. 579 (1923).
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With the use of the graphs in fig. 1 and the expressions in (21), calculations

were made from (22), (23) and (24) for about fifteen vahies of f in each case.

The results are shown in the continuous curves of fig. 2, the curves being marked
with the corresponding value of p.

7. The curves show the increasing influence of smaller draught at the higher
velocities. Although, from the differences in the expressions for the resistance,

the maxima and minima due to interference of bow and stern systems probably
do not occur at exactly the same positions, it is important to notice that
the digerences in this respect are inappreciable. This agrees with a similar

phenomenon which has been observed experimentally in the resistance of a
submerged model at different depths ; although the magnitude of the interference

effects varies with the depth, the positions of the maxima and minima are

practically unaltered. Another point to note in the theoretical curves of fig. 2
is that at the smaller draughts the eSect of interference is less pronounced.
But the chief purpose of the calculations was to find whether, with a draught

similar to that of actual ship models, the calculated resistance was in reasonable
agreement with experimental results.

The values which have been chosen for the ratio of draught to length, namely,
one-twentieth and one-tenth, cover ar proximately the usual range in practice.

It must, of course, be remembered that the calculated results correspond to a
model with vertical sides and constant horizontal cross-section ; therefore one
cannot expect more than agreemrnt in order of magnitude. Three examples of

experimental curves have beer selected and are shown in the discontinuous
curves of fig. 2.

The curves marked 0-0475 and 0-0385 have been drawn from results given by
E. E. Froude* for the residuary resistance of two models of the same length
and beam and having the given ratios of mean draught to length. The results

were given as the resistance in tons for a ship of 400 ft. length, and have been
recalculated here in the non-dimensional co-ordinates of fig. 2 ; the two cases are

Froude's ship A with displacement 5,390 and 4,090 tons respectively. In
both cases there was a certain amount of parallel middle body.

The third curve, marked 0-083 in fig. 2, has been obtained by similar reduc-
tions from experimental results given by J. L. Kentf; it refers to his model
112K, which had no parallel middle body, but had hollow lines at the bow.
The curve has been filled in approximately from a smaller number of points

than in the previous cases
; one can, however, observe the efiect of the hollow lines

* R. E. Froude, ' Trans. Inst. Nav. Ai-ch.,' vol. 22, p. 220 (1881).

t J. L. Kent, ' Trans. Inst. Nav. Arch.,' vol. 57, p. 154 (1915).
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in the general form of the curve. The efiect of differences of form, other than

the ratio of draught to length, is, of course, important, and the three curves

reproduced in fig. 2 have been chosen so that this should not be overlooked

in the comparison between the various curves.

We note first the differences between the two sets of curves in fig. 2. The

theoretical curves have much more prominent humps and hollows, due to inter-

ference between bow and stern waves, especially at the lower velocities. This

may be inherent in the approximations made in replacing the ship by a certain

doublet distribution over the median plane. But the effect is probably due

in part to the simplified form with constant horizontal section ; however, this

point must be left for future examination. It is hardly necessary to remark

that, when one reaches the stage of comparing absolute values, the influence of

viscosity and turbulence must eventually be taken into account. Further,

this consideration applies not only to the theoretical curves but also to those

we have called experimental ; for the latter are derived from actual measure-

ments of total resistance by deducting the frictional resistance calculated

according to an empirical formula, the residuary resistance so obtained being

chiefly due to wave-making. It may be that the effect of fluid friction on

the wave-making could be expressed by a slight alteration of the equivalent

wave-making form of the ship. The curves of fig. 2 show also small

diiJerences in the positions of the interference maxima, but this is, of course,

due to the different lines of the various models.

When every allowance has been made for differences of form and other

considerations, the curves of fig. 2 show over a large range ol velocity a general

agreement between theory and observation, which is very interesting and

suggestive. Further approach to ship-like form may enable us to remove

some of the remaining differences, a,nd should in any case be of service

in the interpretation of experimental results.

Harrison and Sons, Ltd., Printers in Ordinary to His Majesty, St. Martin's Lane.
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Wave Resistance : Some Oases of Unsymmetrical Forms.

By T. H. Havelock, F.R.S.

(Received November 14, 1925.)

1. One of the chief features of interest in curves showing the variation of wave

resistance with velocity is the occurrence of oscillations about a mean curve,

which may be regarded as due to interference between the waves produced by

the front and rear portions of the model. In various comparisons made between

theoretical curves and such suitable experimental results as are available, the

greatest divergence is perhaps in the magnitude of these oscillations, the theore-

tical curves showing effects many times greater than similar experimental results.

There are, no doubt, many approximations in the hydro-dynamical theory

which preclude too close a comparison between theoretical and experimental

results in any particular case, but it seems fairly certain that the divergence

in question must be largely due to neglecting the effects of fluid friction. For

Several reasons it is useless to attempt at present a direct introduction of vis-

cosity into the mathematical problem, but a consideration of its general effect

suggests one or two calculations which may be of interest The direct effect

of viscosity upon waves already formed may be assumed to be relatively small

;

the important influence is one which makes the rear portion of the model

less effective in generating waves than the front portion. We may imagine

this as due to the skin friction decreasing the general relative velocity of model

and surrounding water as we pass from the fore end to the aft end ; or we may

picture the so-called friction belt surrounding the model, and may consider

the general effect as equivalent to a smoothing out of the curve of the rear portion

of the model. Without pursuing these speculations further, they suggest

calculations which can be made for models in frictionless liquid when the form

of the model is unsymmetrical in this manner ; and the particular point to be

examined is the effect of such modification upon the magnitude of the inter-

ference phenomena.

The first sections compare, in this respect, two bodies entirely submerged in the

liquid. The form in each case is a surface of revolution ; one is symmetrical

fore and aft and has sharp pointed ends, while in the other the rear portion is

cut away so as to come to a fine point. By inspection of the expressions for the

wave resistance it is seen that the oscillating terms are of a lower order of

magnitude in the latter than in the former case.
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The remaining sections deal with the similar problem for a model of infinite

draught and constant horizontal cross-section ; the forms of the section for

the two cases are shown in fig. 1. Here, with the help of tables and graphs

available from previous studies, the expressions for the wave resistance have been

graphed and the curves are shown in fig. 2. The result of smoothing the lines

of the rear portion is very marked. It makes the curve like experimental

ones in this respect at least, that the curve is a continually ascending one in

the range shown ; the superposed oscillations are not large enough to make actual

maxima and minima. A more complete study of the progressive effect of

small changes in the rear haK of the model would involve very lengthy calcu-

lations ; the examples given have been chosen for the comparatively simple

form of the mathematical expressions. It is to be understood that they are

not intended as a direct representation of the actual effects of fluid friction
;

but they show the great difference in interference effects which are produced

by an asymmetry of the general nature suggested by them.

2. The fluid motion produced by a body entirely submerged in a imiform

stream may be investigated by the method of successive images. The first

approximation consists of the distribution of sources and sinks which is the

image of the uniform stream in the surface of the body ; the second is the

image of these sources and sinks in the upper free surface of the stream, and the

process could be carried on by successive images in the surface of the body and

the free surface of the stream. After the second stage the expressions become

very complicated, as the image of a single source in the upper free surface is a

distribution of infinite extent along a horizontal line at a height above the free

surface equal to the depth of the source. It would be of interest to carry the

process further in some simple cases, but at present the second stage must

suffice ; it can be seen that, in general, this impUes that the ratio of the maxi-

mum vertical diameter of the body to its depth below the surface must be

small.

For the first stage of the approximation, instead of finding the image system

for a given form in a uniform stream, it is more convenient to begin with a

given distribution of sources and sinks and deduce the form of the body. As

we shall deal only with surfaces of revolution, we assume a line distribution of

finite extent along a line parallel to the stream. Writing down Stokes'

current function, the form of the body may be found by graphical methods

devised by Rankine and apphed to shipUke forms by D. W. Taylor and other

writers.

Let the stream, of velocity c, be parallel to Ox., and let there be a source
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distribution of strength / {x) along portion of the axis of x ; then, with co as

distance from Ox, the velodty potential and stream function are given by

, , f f{h)dj, ...

Tlie form of the solid is obtained from the equation 6 = 0. The graphical

method is first to graph the integral in (2) upon d> as a base for given values

of X, obtaining a famity of c\irves each corresponding to a constant value of

•x; then on the same diagram the parabola 6 = ^ow'- is drawn. The inter-

sections of the parabola with the family of ciirves give pairs of corresponding

values of x and <5 on the zero stream liae.

It is obvious that if /(/i) is finite, not zero, at an eud of the range of sources

then the body has a blimt end ; and fmther, the length of the body is greater

than the length of the range. If / (/i) is zero at both ends, the bod}^ has a

sharp point at both ends and its length is equal to the length of the range

;

if, in addition,/ ' (h) is zero at an end, the sharp point at that end is one of zero

angle.

3. In considering the second approximation, namely, the image of the

distribution f(h) in the upper free surface of the stream, it is more convenient

to use as the elementary system a doublet with its axis parallel to the stream.

As we are dealing with soUd bodies of finite size, we can in general replace the

line of sourees and sinks by an equivalent line of doublets ; thus instead of (1)

we have

\ {(x— h)- + oi-}^'^

provided i' (h) =/(/(), and i (h) is zero at both limits. Consider now a soUd

of revolution with its axis horizontal and at a depth/ below the surface, the

form being such that the image of the miiform stream in it is a line of doublets

of moment v!/ (/»). The image of this system in the free surface can be shown

to be a certain distribution of doublets of infinite extent along a line at a height

/above the surface. For the present purpose we shall quote the expression for

the wave resistance*

E = 16.T/pc-« U (h) dh U (h') dh' r^sec^ ^

X cos i{g (/*— h'l'cr} sec 6] c-'^aT/-^' ^'*d^. (-t)

* -lioy. iioe. Proc.,' A, vol. Q.\ p. 363 (1919).
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We shall consider two cases, one a sharp-ended form which is symmetrical fore

and aft, while in the second case the aft end is cmved to a fine point.

4. For the first case we take a spindle-shaped body which has been used for

experimental work at the National Physical Laboratory ; for this form the

source distribution is

f{h)=a{(hll)-(hllf}; -l<h<l. (5)

The shape of the surface for this case has been given by Perring.* It is sufficient

to state here that it is a surface of revolution symmetrical about the middle

cross-section and having pointed ends with finite angle of entrance ; it can be

made to have any required ratio of breadth to length.

We can, in this case, carry out the integration in (2) and obtain the equation

of the longitudinal section. It is found that with 26 as the breadth of the

model, 21 its length, and S the ratio of b to I, then the constant a of (5) is equal

to |-a&c, where

a=S/[l(l+s2)i(3-|-2S2)+s2(l-fls2)Iog(S/!l-|-(l-f-S2)%. (6)

The equivalent distribution of doublets, given by the conditions stated in

(3), is

ii{h)=-lal{l^h^lPf. (7)

Substituting in (4) we obtain the wave resistance

R = ing^plVc-^ r" 12 sec^ ^e"'^"^'
'''^'

* d,f>, (8)
Jo

where

I = (1 — M^)^ cos {glulc^ cos ^) du. (9)

After evaluating (9), the expression (8) can be reduced to standard form as

^ 2567igpbHar r'^F , , 12 , , ,
144 , ,R = ^i cos ^ + — cos^ <^ +^ cos^ 4>

— f cos j> g cos^ j> H J cos^ ^j cos {f sec ^)

+ 12 (^-^ii _ i^^) 3in (^ sec 0)] e-^^-=* c?^, (10)

where p =//?, -p = 2gllc^, and a is given in (6).

An asymptotic expansion suitable for large values of -p could be obtained,

but calculation from it is very tedious ; the particular point under consideration

can be made by comparison with the similar expression for the second case.

*W.G. A. Perring, 'Trans. Inst. Nav. Arch.,' vol. 67, p. 95 (1925).
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5. For comparison we require a solid of revolution of which the front end

is a sharp point of finite angle while the rear end is cut away to a point of zero

angle ; there will, of course, be a point of inflection in the curve of the rear

portion.

This is obtained by taking the source distribution to be

f{h) = ah (21 - h) {SI + hf ; -Bl<x< 21. (II)

The equivalent doublet distribution over the same range is

i,{h) = - 1 a (2^ - hf {U + hf. (12)

The outline of the model was found by the graphical methods described in

§ 2 ; the work is not reproduced here as it was only carried out with sufficient

accuracy to verify that the curve was of the required type. A similar cuxve is

shown later in fig. 1. The model has now a length 51, and it is not symmetrical

fore and aft of the maximum cross-section.

From (4) we find the wave resistance

Jo

where

I + a = [ {21 - A)- (31 + hf e^^'^'-'^^l-dh. (14)
J -31

Evaluating (14) and substituting in (13), the terms can be collected in the

same form as in (10) ; if we write, with 26 as the maximum breadth of the

model,

a = oLbcjUbl*
, p=5gllc^, (3 = 2//5Z, (15)

we obtain ultimately

-P 3207igpbHoL^ r'" r ,
,

18 3 , ,
432 5 , , 7200 7 ,K = ^ cos H—- cos"^ d> -] COS'' H H- cos' 6

f Jo L "^ j)^ / /
„ /I o , 128 4 , ,

1200
(, ,\ , ,\— b I

- cos" — —3- cos* + —— cos" 01 sm (p sec 0)

- 6 (^ cos^ <!> -^ cos^ -^ +^ cos^^ cos (p sec <^)] e-^^'^^'U^,.

(16)

We may now compare (10) and (16) as regards the matter under discussion.

We imagine the resistance graphed as a function of the velocity, and we com-

pare the relative magnitude of the oscillations superposed upon the mean

curve. The terms in (10) and (16) which give rise to these oscillations are the
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terms factored by sin {p sec ^) or cos (p sec
<f)).

For large values of p, we

have an asymptotic expansion of any of these terms in the form

r cos" <j> . e'^"^'"* - ^*'«-='='*(Z ^- p-^e'" {ao + a^p'^ + aip'^ +...)• (17)

Moreover, in practice, the interference effects concerned are prominent for

larger values of p, say, for the range 10 to 40. Now from (10) we see that

the expansion of the oscillatory terms would begin with a term of order p^^,

while from (16) the lowest term is of order p"^. It follows, therefore, that the

interference effects have been largely eliminated by the alteration made in the

form of the model. It may be noted that the alteration is rather extreme if

considered as an illustration of practical conditions, in that the after end of

the model is cut away completely to zero angle ; this accounts for the complete

absence of the term in p~* in the expression for the second case.

6. To examine the matter graphically, it is easier to consider a model of

infinite draught, and of small ratio of beam to length, in the manner used in

previous papers. The model is assumed to be symmetrical about a longi-

tudinal vertical plane. Take Oa; horizontally in this plane, and let Oy be also

horizontal. The form of the horizontal cross-section of the model is constant

;

if its equation is

2/ = F {X), (18)

for positive values of y, the approximation consists in taking the doublet

distribution of (4) so that

^Tz^ldx = cd^jdx. (19)

Integrating (4) by parts with respect to h and h', substituting from (19), and

also integrating with respect to / and /', we have

E ^^ [i? dh \^^ dh' r cos {3J^ sec 4 cos #. (20)

We wish to contrast two models which have the front haK the same, but with

the rear end smoothed off to a finer point in one case than in the other. We
shaU take the section of unsymmetrical form to be given by

y = (bjiP) (l-x) {2l + xf; -2l< X < I. (21)

For the symmetrical model we shall take the front portion to be given by (21)

for X positive and by the corresponding expression for x negative. The model

in one case is of length 21 and in the other of length 31. The cros.s-sections by

a horizontal plane are shown in fig. 1.
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Fig. 1.

where

(22)

(23)

7. Taking the symmetrical case first, we obtain from (20),

R = 9p6V-7i ^ Poos
<f>

d<j),

Jo

J = (2m + u^) sin {glujc^ cos ^) (?m.

From these we have, after reduction, and writing p for 2gllc", .

,
256 1 „ n N 256

dp y ^.
P. ai')}

,

(24)

with the notation

ij,,
(?))
= (- 1)" T'cos"-" 4, sin (p sec ^) rf^,

Jo

P2„+i (p)=^ {- 1)""*"' pcos2"+i <^ cos (p sec ,4) (^<^.

Jo

Using sequence relations for the P functions, we reduce (24) to a form

involving only P3, P4 and P5 ; tabulated values of these have been given

previously,* and in addition large-scale graphs of the three functions were

available over the range of p from zero to 40. These graphs have been used

also in the present calculations ; the reduced form of (24) from which these

have been made is

J^^32^^f2^0_9482^9::p^^^^2^^p^(^)\3 p" P p-

,
2-2-p, n , 24-04-0 n \+ ^P3(Jp)--^P.(l?)

8-466 _2_4;4\ ,, ^
(25)

* 'Roy. Soc. Proc.,' A, vol. 108, p. 82 (1925).
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The graph is shown in curve A of fig. 2, the base being cj\/ {2gl).

8. For the unsymmetrical model of fig. 1, we have

R = (9p6V/47r)
{'"

(P + J2) cos cf> d^,,

Jo

1+ iJ = r (2m + M^)
grVu/o=cos* ^„_

where

In this case the reductions lead to,

j^ ^2_187^61^|2 64
1^ + 1152 ^ _±

(
^
_ 28

^

where p is now Sgljc^.

For purposes of calculation this is put in the form

^ _ 2187ffp6^; f2 64 1 1152 1 96 , .

^-~4V" t3 + r5p^+^^/~V ^

The graph of (29) is shown in curve B of fig. 2.

(26)

(27)

(28)

(29)

1 1

-0-25
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The difference in the magnitude of the interference effects is sufficiently

obvious from these curves. The variation in the form of the models shown in

fig. 1 is considerable, and it would have been of interest to compare forms

intermediate between those shown for the rear part of the model ; but equa-

tions for such curves led to expressions for the wave resistance which were too

complicated for numerical calculation. However, it may be inferred that for

any case in which the lines of the model are smoothed out in this manner

there will be a very considerable reduction in the magnitude of the interference

effects.

Harbison and Sons, Ltd., Printers in Ordinary to Hie Majesty, St. Martin's Lane.
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SOME ASPECTS OF THE THEORY OF SHIP
WAVES AND WAVE RESISTANCE

By PROF. T. H. HAVELOCK, F.R.S.

The Paper gives a general survey without detailed calculations, of

attempts made during recent years to develop the mathematical theory

of wave resistance. The first section is a short statement of the general

problem from the theoretical point of view, while the two remaird7ig

sections describe some results which have been obtained by indirect

attacks. It is shown first how calculations with travelling pressure

disturbances illustrate such problems as the variation of wave resistance

with speed, the interference of bow and stern waves, and the effect of

shallow water. In the last section the ship is regarded as equivalent

to a certain distribution of sources and sinks in the fluiid; problems
discussed briefly in this section are the effect of the form of the water-

plane section, of the length of parallel middle body, and of varying
draught. Curves are reproduced which show the results of these

calculations, and some mathematical notes and further references are
given in an appendix.

nyrEARLY forty years ago Lord Kelvin delivered to the Institution

_L^ of Mechanical Engineers a lecture on ship waves which is

familiar to all students of this subject. I may venture to appropriate a
paragraph from that lecture and to quote it now in addressing this

society: " I must premise that, when I was asked by the Council to

give this lecture, I made it a condition that no practical results were
to be expected from it. I explained that I could not say one word
to enlighten you on practical subjects, and that I could not add one
jot or tittle to what had been done by Scott Russell, by Rankine, and
by the Froudes, father and son, and by practical men like the Dennys,
W. H. White, and others: who have taken up the science and worked
it out in practice."

My object is to discuss the wave resistance of ships as a problem
in hydrodynamics. It is, of course, impossible to do so adequately
without the use of mathematical analysis which would be unsuitable
for a general lecture. I must therefore be content to give a mere
outline sketch, aiming at giving some idea of the theoretical point of
view and of the sort of contribution which mathematical theory can
make to the scientific discussion of our problem. Such an outline suffers
inevitably from two drawbacks : on the one hand we can only glance
at the various practical problems which are suf^gested, and on the
other we are not able to do justice to the mathematical interest of
the theoretical treatment. It may, however, serve in some measure
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its main purpose of being a general account which may be of value

to the student of this aspect of the science and at the same time be of

interest to those who have not the opportunity of studying the

mathematical theory for themselves.

Some formulje and references will be found in notes appended to

this lecture, and I am indebted to the Royal Society for permission

to reproduce the diagrams.

The General Problem.

We wish to know completely the fluid motion produced in the water

when a ship is towed along at constant speed, and the first step is

to see what information is necessary before we can attempt to find a

solution. We can group this under three heads : (1) the laws of motion

of the fluid, (2) the forces acting throughout, and (3) the conditions

at the boundaries of the fluid. We are faced at the outset with the

difficulty of saying what are the laws of motion of an actual liquid

such as water. We know that water is viscous and we can write down

equations taking the viscosity into account; and we can also solve the

equations in simple cases if the velocities are not too large. But we

also know, unfortunately, that those solutions break down completely

when the motion becomes eddying or turbulent. It is not my intention

to discuss here whether the difficulties arise because the solutions of

the equations of viscous motion are inadequate or because the equations

themselves are incomplete; in either case the inclusion of fluid friction

in our problem would complicate it so much as to make progress

almost impossible at present.

We are therefore compelled to assume the liquid to be frictionless.

This is no doubt a serious limitation, but perhaps not so important

if we confine ourselves meantime to qualitative and comparative con-

clusions from our results. Moreover the direct influence of viscosity

upon the wave motion is comparatively small, and indirect effects might

possibly be allowed for later by some adjustment of the effective form

of the ship. However that may be, we can only make any advance

by separating frictional resistance from wave resistance, and we there-

fore assume the information required under the first head to be the

laws of motion of a frictionless liquid; these are equations connecting

pressure, velocity, and acting forces, and their rates of change

throughout the liquid. We may dispose of the second head by simply

taking the acting forces to be those due to gravity. Under the third

head, the conditions at the boundaries are of two kinds ; at the free

upper surface of the water the pressure must be the atmospheric

pressure, while at the wetted surface of the ship the condition is simply

that the water must remain in contact with the ship or that the com-

ponent velocity of the water at right angles to the wetted surface must

equal at each point the component of the ship's velocity in that

direction.
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Our problem is now stated in a form in which we know, from

general theory, that we have all the information necessary for a complete

solution; this solution would give us the velocity and pressure at every

point of the water, the form of the free surface or the wave pattern,

and moreover the resultant of the fluid pressures on the surface of the

ship would give the wave resistance.

It is instructive to bear in mind the general problem so stated,

but it must be confessed at once that the direct attack leads to

calculations which have hitherto proved far too complicated for the

mathematical methods available. Even if we replace the ship's surface

by simple geometrical forms, the problem is extremely difficult ; in fact

the only direct solutions obtained so far, and they are approximate, are

for spheres and other bodies of simple form entirely submerged at

some distance below the surface.

It might appear that we have not gained much from our rigorous

formulation of the problem, and no doubt it is not often the case

that a practical problem admits of a direct and complete theoretical

solution. But theory is usually built up by devising and solving

simple cases ; these often give in themselves valuable suggestions, and

we may then endeavour to approximate more and more closely to the

actual problem. The preliminary survey is necessary to guide this

process along lines which are likely to prove useful.

My main task is to describe now some indirect attacks which have

been made, and I shall consider these in two groups. In one case

the leading idea is the pressure between the water and each element

of the wetted surface of the ship, while in the other we fix our

attention more upon the horizontal velocity produced in the water by

the motion of the ship through it.

Travelling Pressure Disturbance.

When the ship is in steady motion there is a definite normal pressure

at each element of the wetted surface. From a dynamical point of

view, that is the function of the ship. We could imagine those pressures

to be supplied by any means we please, for instance by jets of air

properly adjusted, and the motion of the water would be exactly the

same. We have now removed the ship and have applied to the surface

of the water a definite distribution of pressure, definite for each

velocity be it noted. The solution of this problem would give us the

form taken by the surface of the water ; one part of this would

necessarily be a depression of the same form as the ship, while the

rest would be the accompanying wave pattern. Now this is merely

the general problem over again, with the complication that the pressure

distribution depends upon the speed. But it suggests that we should

study the wave patterns produced by simple distributions of pressure

applied normally to the water surface.

•^
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6 THEORY OF SHIP WAVES AND WAVE RESISTANCE.

Localized Pressure.—To begin with the simplest type we may picture

a fine jet of air impinging on the water surface; we could call this

in the extreme case a point pressure system, or more generally a

distribution of surface pressure symmetrical round a vertical axis.

We may imagine the jet to move horizontally with constant speed, or

we may study the equivalent problem of a stationary jet of air directed

down on to the surface of a uniform stream. Everyone is familiar

with the simple and beautiful wave pattern produced in this way, and

we are encouraged to proceed with this line of attack by the fact that

the pattern is so similar in its main features to the waves produced

by a ship.

The mathematical solution of this problem can be obtained com-

pletely, provided the surface waves are not too large ; the wave pattern

shows the well-known transverse and diverging waves contained within

lines making angles of about 19° 28' on either side of the line of

motion of the system. Leaving on one side the discussion of the wave

Fio. 1.

system let us consider what is perhaps less familiar, the corresponding

wave resistance. We are considering a pressure system applied to

the water surface and moving horizontally with constant velocity

;

accompanying the system there is a steady wave pattern. Suppose

now that we place over the whole surface of the water a smooth rigid

cover exactly fitting the surface at every point, and let this cover move

horizontally with the same velocity. We could now remove the jet, or

other means by which we applied the pressure system, for this function

will now be performed by the rigid cover ; and the fluid motion will

be exactly the same as before. Moreover, at all those outlying parts

where the surface pressure is the same as atmospheric pressure, the

cover could obviously be cut away ; and we are left with what corres-

ponds to the ship in this problem. Let me repeat that in the actual

ship problem we are given an assigned depression in the water surface,

namely, the surface of the ship ; we have replaced this by a problem

in which the pressure distribution is assigned and the ship is, so to

speak, made to fit the surface disturbance. The reason for doing this

f!-
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is simply that the latter problem can be solved mathematically in
certain cases.

It is clear that the wave resistance is the resultant of the surface
pressures when resolved in a direction opposite to that of the motion.
These calculations have been carried out {Note 1), but we shall only
consider here the graphical form of the results

Fig. 1 shows the variation of wave resistance R with the velocity.
The pressure system is of a certain localized type, symmetrical round
a centre which moves over the surface with constant velocity c ; the
quantity / is a length which may be called the effective radius of the
applied pressure system. There are various points of interest in this
curve, but I shall only mention one or two which have their analogues
in ship resistance. Notice that the wave resistance is very small at
low speeds. Then it begins to increase rapidly and reaches a maximum

Fib. 2.

when the speed c is about equal to s/ {gf) ; this means that the wave
resistance is a maximum when the length of the transverse waves
produced is of the same order as the length of the pressure system.
After this stage the resistance deareases gradually to zero. A little

consideration will show that this last result might have been anticipated

;

it may be described as a sort of planing or smoothing action of the
pressure system when the velocity becomes very large.

Shallow Water.—Beiore, we leave this elementary pressure system
we may use it in another interesting problem. We have assumed
so far that the water is very deep, but we can examine the effect of
shallow water by adding the condition that at the bottom of the water
Ihe vertical velocity must vanish. The work becomes more difficult
but formal solutions can be obtained and calculations made from them
{Note 2). We know that on water of depth h the speed of transverse
waves cannot exceed the value J{cfh), which is the speed of the so-called

253



8 THEORY OF SHIP WAVES AND WAVE RESISTANCE.

wave of translation. The waves produced by our travelling pressure

system agree in character with this fact. Below the speed Jigh) the

wave pattern is similar to that in deep water, the heights of the waves

being increased ; but at higher speeds the transverse waves have

disappeared and the pattern is made up of diverging waves only.

Here are some curves, in Fig. 2, which show the corresponding

changes in the wave resistance. The numbers marking the different

curves are the ratios of the depth of water h to the length / which

measures the linear dimensions of the applied pressure system ; each

curve gives the variation of wave resistance with velocity for a given

depth of water. The curve marked oo is the curve for deep water

which we have already discussed. The progressive changes in the curves

as the depth is diminished should be noted ; but consider in particular

the curve marked 0'75. Notice the greatly increased resistance com-

pared with deep water so long as the speed is less than a certain value,

and the rapid fall after that point with the resistance ultimately

becoming less than in deep water. The velocity at which the change

takes place in this case is, from the graph, about 086 V(^/); and,

as the depth h is 0'75 J{gf), this velocity is practically equal to v/ {gh),

the speed of the wave of translation. This result is in general agree-

ment with various recorded experiments on the effect of shallow water

on the wave resistance of ships.

Interference Effects.—Returning to the easier case of deep water,

we can illustrate the interference of bow and stern wave systems. We
shall call a system in which the applied pressures exceed atmospheric

pressure a positive pressure system, and one in which they are less than

atmospheric pressure a negative system. Let the travelling system

consist of a positive system of the kind we have been considering

together with an equal negative system at a fixed distance to the rear

of the positive one. The combined wave pattern is obtained simply

by superposing the waves due to the two systems separately, and an

expression for the wave resistance can also be obtained {Note 3). The

resistance is not the sum of the resistances due to the two systems

separately, otherwise there would be none of the so-called interference
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effects; the combined effect oscillates about the mean sum according
to the positions of the crests and troughs of one wave system relative

to those of the other system. Fig. 3 shows a graph of the wave
resistance calculated for a certain case of this combination; it shows
the typical humps and hollows, and the mean curve.

It may be asked why we illustrate the wave-making action of bow
and stern by positive and negative pressure systems respectively, instead
of by two positive systems or two negative ones. The best answer to
this question seems to be that we find that this combination gives the
humps and hollows on the resistance curve in the same sort of sequence
as for a ship. Another way of expressing it is this: we know from
observation that the bow and stern produce wave patterns which are
similar in character except that where there are crests in one pattern
there are troughs in the same relative positions in the other pattern,
and vice versa; the simplest combination of pressure systems which
gives the same effect is obviously the one we have used, one system
being positive and the other negative.

General Pressure System.—We might now attempt similar calcula-
tions for a continuous distribution of pressure such as would be
sissociated with the motion of a ship. So far these have only been
carried out in certain cases of two-dimensional fluid motion, that is

when the wave motion consists only of straight-crested transverse waves

;

we need not consider these in detail here {Note 4). One point should
be mentioned to avoid possible confusion. We have already remarked
that the action of bow and stern is similar to that of positive and
negative pressure systems. But the actual continuous distribution of
pressure round a ship is different; it is symmetrical fore and aft of
the midship section as far as its general character is concerned. The
excess pressure begins by being positive near the bow, it then decreases
rapidly to a negative value, remains more or less constant over the
middle length of the ship, and then increatss rapidly to a positive
value again near the stern. Now a little consideration shows that the
places which give the main part of the wave effect of the whole system
are not the regions where the pressure is uniform, whether it is positive
or negative, but those places where the pressure is changing rapidly.
Here we have near the bow a rapid change from positive to negative,
while at the stern the change is from negative to positive; the nett
result is that in the wave patterns arising from bow and stern respec-
tively the relative positions of crest and trough are interchanged.

One recognizes that the results which have been reviewed in this
section are necessarily only illustrative of the actual ship problem.
They are nevertheless interesting and suggestive, and students of ihe
subject will be familiar with the use that has been made by various
writers of the notion of pressure distribution in interpreting curves of
wave resistance obtained from experiments with ship models.
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Distributions op Sources and Sinks.

Let us consider now another method of treating the wave-making

action of a ship. It is obvious that the bow and entrance of the ship

produce in the water an outwards horizontal velocity on either side,

while the run and stern give rise to component velocities inwards. We
can also see that the same sort of efiect will be produced if we remove

the ship and replace it by some apparatus which supplies water where

the velocities are outwards and removes it where they are inwards.

This picture suggests one of the most fruitful devices in hydrodynamics,

the study of the motion produced in a fluid by the presence of sources

and sinks, that is points at which fluid is introduced or withdrawn at

a uniform rate symmetrically round each point. Just as in the

previous section we might begin with simple cases, for example a source

travelling at uniform speed at a constant depth below the surface and

followed at a fixed distance by an equal sink. The wave motion

produced by this combination can be calculated ; and we can generalize

the results, with certain limitations, for any distribution of sources

and sinks. We need not delay over the simpler cases, but let us see

now how we may use this idea in the ship problem.

Fig. 4.

Consider the vertical section of the ship by the median plane

running from bow to stern. We replace the ship by a distribution

of sources and sinks over this vertical section, so arranged that the

horizontal velocity outwards or inwards at each point is equal to the

same component of the velocity of the corresponding element of the

ship's surface at right angles to itself. This is, of course, an approxi-

mation ; the chief limitation is that we must assume the lines of the

ship to be fine, so that the angle between the ship's surface and the

vertical median plane is small.

Without going into the details of any one problem, I shall describe

now some results obtained from three sets of calculations made on

these general assumptions.

Form of Water-plane Section.—Suppose that we wish to examine

the relative effect of making the lines at the bow finer and increasing

the beam of the ship, the displacement being constant. We shall

simplify the work by assuming the draught to be infinite, which means

simply that it is large compared with the wave length at the highest

speed ; we are not concerned with absolute values of resistance, and
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this assumption is not likely to affect much the comparative values.

We imagine the ship to have vertical sides and constant horizontal

section ; and we consider a series of models in which the length is

constant, the beam and the lines altering in such a way that the area

of the water-plane section is unaltered. Calculations have been made

for four models in which the lines can be expressed by simple mathe-

matical formulae so that these conditions are satisfied {Note 5). Fig. 4

shows a quarter of the water-plane section for the two extreme models

of the set and the Table gives some further details.

Models of Constant Length and Displacement.

Model.
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calculations corresponds to a simplified form of certain well-known

sets of experiments with ship models, into the details of which we

need not enter. It may be sufficient to quote one example, which is

typical of the results. D. W. Taylor, referring to a series of experi-

ments with models of the same displacement and of varying midship-

section coefficients, states that the models with full midship-section

coefficients drive a little easier up to V/ ^L equal to I'l to r2, and

-2k

Fig. 6

the models with fine coefficients have a shade the best of it at higher

speeds. The agreement with the intersections of the curves in Fig. 5

is rather striking.

Parallel Middle Body.—Take now the simple form of model A and

insert varying lengths of parallel middle body between bow and stern,

so that the water-plane section is like Fig. 6.

1 1
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be 80 feet; these lengths were chosen simply because they were those

adopted by W. Froude in recording the results of his original experi-

ments on this effect. The number marking each curve is the wave-length

of transverse waves at the speed for that curve.

We shall only compare these curves with experimental results in one
respect, namely the positions of the maxima and minima, a matter
about which there has been considerable discussion recently. There
have been two interpretations of the experimental results put forward.
On both of them the bow wave system is supposed to begin with a
crest and the stern system with a trough, positive and negative systems
as we have called them; therefore there will be a maximum on a
resistance curve when there is an odd number of half wave-lengths
between this crest and this trough. The difference between the two
views is that in one case this distance between first bow crest and first

stern trough is supposed to be constant for all speeds, while in the
other it is said to increase with the speed in such a way that the
increase in this distance is equal to one quarter of the increase in the
corresponding wave-length. Let us follow some particular maximum
on the curves of Fig. 7, say A3; on both views this corresponds to three
half wave-lengths between the first bow crest and the first stern trough.
On one theory the quantity |A.-2/l- should be independent of the speed,
while on the other it should increase at the same rate as J- X and
therefore the quantity fX-2i should be constant; A is the wave-
length for a given speed and 2h is the length of parallel middle body
at which the maximum A3 occurs at that speed. Taking the values
from Fig. 7, and adding other results obtained by further calculations,
we get the following table :

—

2k
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this is an effect which we find more pronounced if we follow a higher

order of maximum such as Ag or A^. After a range over which the

wave separation is approximately constant, it ultimately increases with

the speed but at a slower rate than that required by the quarter

wave-length theory. Such are the results for the simplified form of

model we have used ; it is quite possible, of course, that different rates

of variation might be obtained if the calculations could be made for

forms more like actual ship models. A similar remark may be made
at the same time about empirical formulae derived from experimental

results; it is not as a rule justifiable to extend these formulae beyond

the range from which they were obtained.
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curves with experimental results to Bee whether absolute values aro

reasonably of the right order of magnitude; we cannot expect more
when we remember the simplified form of the model and the other

limitations of the theory.

The three dotted curves in Fig. 8 are experimental curves of

residuary resistance, the number marking each curve being the ratio

of draught to length. The curves 0'0475 and 0-0385 have been drawn,
on the scales used in Fig. 8, from those given by R. E. Froude for

ships of 400 feet length of 5,390 and 4,090 tons displacement respec-

tively; while the curve 0'083 has been deduced from some results given
by J. L. Kent. We notice at once how much more prominent the

interference effects are on the theoretical curves; this is probably due
chiefly to the neglect of fluid friction, whose indirect effect may be
equivalent to an altered distribution of velocity in the present calcula-

tions. The effect of differences of form, other than that expressed by
the ratio of draught to length, is also obvious from the dotted curves.

When we remember that the calculated curve, say that marked 0'05,

is for a simple form not specially fitted to any actual model, the
general agreement of order of magnitude over a considerable range of

velocity is sufficient at least to justify the fundamental assumptions of

the theory.

It is perhaps needless to add that we are very far indeed from
being able to predict or to calculate in advance the wave resistance of
an actual ship. Nevertheless our chief aim will have been achieved
if we have gained more insight into the nature of the problem; for
in this respect at least, the pursuit of theoretical investigations, even
if apparently remote from practical requirements, is essential to a
complete and scientific solution of the various problems of ship .motion.

NOTES AND REFKRENCES.

1.—The effect of a travelling surface pre.=!sure can be obtained by regarding it as a
succession of applied impulses and by integrating suitably the expressions for the effect
of a single impulse. Take axes Ox and Oy in the undisturbed water surface and Oz
vertically upwards

; let f be the surface elevation and let move with uniform velocity
c in the direction O.r. If the pressure distribution is symmetrical round and is

given by

p = F [r), r" = x^ + y^,

tlie surface elevation can be obtained in the form
(I)

OPZ- - e i/^"A( /(k) Jo '<s/{{--e + cu)'+
y^l

1 sin{KVu)K'dK, . . (2)

where f- is to be made zero after the integrals have been evaluated ; further V' = nl^, and

/(k) = E (a) Jd (xa) ada
(3)

^ o

Jo being the Bessel Function of zero order.
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From the definition o£ wave resistance given in tlie text, assuming the slope of the

surface to be small, we have

R=yFM^rfS, (4)

the integral being taken over the whole surface. The particular case for which the

calculations have been made is

p = F(r)=Af/{f' + r^y (5)

A and /being constants. It is found that the integral (4) reduces to

-R = {4-!rg'A^lpc^)] sec^cpe'''^'^^-^'""'^^''''^ d4> . . . .(6)

^ =
2gp/3

{'H»M- -^ H,M|, . . .(7)

This integral can be expressed in terms of Bessel functions, of which tables are avail-

able, in the form

where p= gfjc^^ This is the expression whose graph is given in Fig. 1. [Proc. Roy.

Soc. A, 95, p. 354. (1919).

2.—With the same notation, and wilh h as the depth of water, instead of (6) we

now have
ir

47rA'c° r~i K'e'^'^f sec 4>d<j>

~p

J
(7sec2<^(c2-yAsec2<^) + KV/( '^'

where k satisfies the equation

Kc- = g sec" <f)
tanh kA.

The lower limit <ii„ is to be taken zero if c'- < gh, and to be the value of are

cos '^ghjc- if c" > gh. The integral (8) was evaluated by graphical methods, the

integrand being graphed on a certain base and areas taken by an Amsler plauimeter.

The process was carried out for the different values of the ratio hi/ shown in Fig. 2.

{Proc. Roy. Soc. A., 100, p. 499. 1922.)

3.—With h as the distance between the centres of tlie two pressure systems, the

integral for the wave resistance is

TT

li = {IGTrg^A-jpc')
j

^
see'' e

" -<''//<=') ^«c= 4> cos^j {ghjc") sec <p \ d^, . . (9)

The particular case shown in Fig. 3 is for h = 2/, the integral being evaluated by

numerical methods. (Reference as in Note 1.)

4.—For a study of some cases, with further references, see Proc. Roy. Soc. A., 89,

p. 489. 1914.

5.—The general expression for any distribution of sources and sinks is found by

beginning with a doublet of given moment at a given depth in the liquid, with its axis

parallel to 0.r. The results are generalized by Integration for any continuous dis.

tribution of such doublets in the plane ;/ = 0, the moment per unit area in this plane

being di{x, z) ; this gives for the wave resistance the expi-i;ssion

TT

R = le-n-g'pc
-

'

di dz' dx d.i

J — CO •' — CO •^— CO J — oo

X sec>4^'' + ''"'"'
1
''''^

^«^ r { 'Ax - ^')/^^
]

sec .^

"I

d0 .. . (10)

262



THEORY OP SHIP WAVES AND WAVE RESISTANCE. 17

This distribution of doublets gives over the plane y == a normal distribution of
velocity of amount 2r,Si/'/5j:. Taking the plane y = as the median fore and aft
plane of the ship, nnd taking the ship's surface to be given by y =: F(x, :), we have
with the assumptions in the text, to substitute 27rSi/f/Si; = cSF/Sx in (10) to obtain the
wave resistance. The curves of Fig. 4 for the form of the water.plaue section are
particular cases of the equation

1-^) n.-W^(l-J)i^w['~ i^j \' -*"'{'- wn • • • . (11)

Here 21 is the constant length of the ship and ilbl the constant area of the
water-plane section ; the beam is 26(1 - id'Wl - Id') The four models are the cases
d = 0,l, 1-25 and 1-5 respectively. Evaluating as far as possible the integrals in (10)
for the form given in (II) we obtain

^ = ^nS^W [ *<' - '''''^' + ^'^' + 2rf» - -'''^^

d' d* , I)

+ Vr^ + ^F ^ + iCl - M^)' V, - ±(1 - |rf« + id^)V,

+ J(l - ^d^ + i^SP. -~d\l - W)P. - |id»(l- 2d=)P,

^ 128d* 256rf« 1
+ -^^Ps + ~pr-^>\ (12)

where p = 2gljc' and the functions P are defined by

P-'n (P) = ( - 1) cos-^" <p sin (p see <t>)d(h

Jo

w

Pi^+l (?>) = (- 1)"
+

' ^ 003^"+'
(^ cos {p sec ct>)d<p.

Jo

After preliminary computation of these new functions, it was possible to calculate

R from (12) for the four given values of d and for sutficient values of p in each case to

give the curves of Fig. 5. {Proc. Boy. Soc. A., 103, p. 571. 1923.)

6.—The equation of AB in Fig. 6 is

y = &
I

1 - (x - k)^jl'

In this case the integrals of (10) give, with the same notation,

„ 512 gf>bH r

,

12 4

(13)

lip)

+ i Pa (ft) - I P4 (Pi) t -, P. (ft) + I P4 (P,)

~ y^sip,) + J2'PAP,)1, (14)

where p = 2gl/c^, pi = g{2k+2l)/c^, Pz = g{2k + l)/c'i, p^ = 2gk/c^.

The curves of Fig. 7 were obtained from this formula, with ? = 80, for the oases

ff/c^-O-l, 00625, 0-05, 0-045, 0-04125 respectively. [Proc. Roy. Soc. A., 108, p. 77.

1925).
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7. The general expression (10) now gives, with p=2gl/c^, a= od/c^
0=d/2l.

+ ^oos'</)--jCoa»0jcos Usec(/)j cos^^sii: /'psec <^Hd^, . (15)

After certain transformations, this expression was evaluated by
approximate methods to give the curves of Fig. 8 for the cases /8 = oo, O'l and 005.
{Proc. Jioy. Soc. A., 108, p. 582. 1925.)

264



[Reprintedfrom the Proceedings of the Royal Society, A, Vol. 115.]

The Method of Images in Some Problems of Surface Waves.

By T. H. Havelock, F.R.S.

(Received May 26, 1926.)

Introduction.

1. When a circular cylinder is submerged in a uniform stream, the surface

elevation may be calculated, to a first approximation, by a method due originally

to Lamb for this case, and later extended to bodies of more general form : the

method consists in replacing the cylinder by the eqtiivalent doublet at its

centre and then finding the fluid motion due to this doublet. In discussing

the problem some years ago,* I remarked that if the solution so obtained were

interpreted in terms of an image system of sources, we should then be able to

proceed to further approximations by the method pf successive images, taking

images alternately in the surface of the submerged body and in the free surface

of the stream. This is effected in the following paper for two-dimensional fluid

motion, and the method is applied to the circular cylinder. It provides, theoreti-

cally at least, a process for obtaining any required degree of approximation,

but, of course, the expressions soon become very complicated. It is, however,

of interest to examine some cases numerically so as to obtain some idea of the

degree of approximation of the first stage.

An expression is first obtained for the velocity potential of the fluid motion

due to a doublet at a given depth below the surface of a stream, the doublet

being of given magnitude with its axis in any direction. A transformation of this

expression then gives a simple interpretation in terms of an image system.

This system consists of a certain isolated doublet at the image point above the

free surface, together with a Une distribution of doublets on a horizontal line

to the rear of this point ; the moment per unit length of the line distribution

is constant, but the direction of the axis rotates as we pass along the line, the

period of a revolution being equal to the wave-length of surface waves for the

velocity of the stream. The contribution of each part of the image system to

the surface disturbance is indicated.

Before proceeding to the circular cylinder, two cases are worked out in soma

detail, namely, a horizontal doublet and a vertical doublet. To a first approxi-

mation these give the surface disturbance of a stream of finite depth with an

obstruction in the bed of the stream ; in the first case the bed of the stream is

plane with a semi-circular ridge, and in the second case it has a more com-

* ' Roy. Soc. Proc.,' A, vol. 93, p. 524 (1917).

265



269 T. H. Havelock.

plicated form. Numerical calculations are made for both these cases, and

graphs of the surface elevation are shown in figs. 1 and 2.

The second approximation for the circular cylinder is then investigated.

The first stage is the surface effect due to a doublet at the centre, and the second

is that due to a distribution of doublets on a certain semicircle. Expressions

can be obtained for the complete surface elevation, but the calculations are

limited to that part which consists of regular waves to the rear of the cylinder.

The integrals are investigated and reduced to a form which permits of numerical

evaluation. Calculations are carried out for various velocities for two different

cases, namely, when the depth of the centre is twice, and three times, the radius.

The results are tabulated for comparison, and one may estimate from these

rather extreme cases the degree of approximation of the first stage. The effect

of the second stage is to alter both the amplitude and the phase of the regular

waves. The amplitude of the first-stage waves has a maximum for the velocity

\/{gf), where / is the depth of the centre. It appears that the second stage

increases the amplitude of the waves for velocities less than \/{gf) and decreases

it for velocities above this value ; further, the crests of the waves are moved

slightly to the rear by an amount which varies with the speed. Some other

possible applications of the method of images may be mentioned. For a

doublet in a stream of finite depth, we can take successive images in the bed

of the stream and in the free surface, and so build up the image system of a

doubly infinite series of isolated doublets and of line distributions of doublets
;

this solution may be compared with the direct solution in finite terms which

may be obtained in this case. Further, similar methods may be used for the

three-dimensional fluid motion due to a doublet in a stream, and application

made to the corresponding problem of a submerged sphere.

Image of Doublet in Stream.

2. We may either consider the doublet to be at rest in a uniform stream or to

be mo\ang with uniform velocity in a fluid otherwise at rest ; we choose the

latter alternative. Take Ox horizontal and in the imdisturbed surface of the

liquid, and Oy vertically upwards. Let the axes be moving with imiform

velocity c in the direction of Ox, and let there be a two-dimensional doublet

of moment IVI at the point (0, — /) with its axis making an angle a with the

positive direction of Ox. The velocity potential of the doublet is given by the

real part of

Me-
(J)

x + i(y +f)
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In order to keep the various integrals convergent and so to obtain a definite

result, we adopt the usual device of a small frictional force proportional to

velocity and in the limit make the frictional coefficient [x' tend to zero ; further,

we neglect the square of the fluid velocity at the free surface.

If 7) is the surface elevation, the pressure equation gives the condition at the

free surface,

dJ>
, , ,^ — gn + [J- 9 = const., (2)

we have also, at the free surface,

dt dy-
^'^>

And as we are dealing with the fluid motion which has attained a steady state

relative to the moving axes, these conditions give, in terms of the velocity

potential,

to be satisfied at 2/ = 0. Here we have put kq = gjc^ and ^ = [^'/c.

We now assume the solut on to be given by

^=-*Me'"f e''='"'^^+^dK+[ F(/c)e*'^+'<^eZ^.
Jo Jo

(5)

The first term represents the doublet (1) in an equivalent form, valid for

y + /> 0. The function F [k) can now be determined by means of (4), and
this gives

F {k) = im^ (l +—?^V^) «'"'•
(6)

\ K — Kq -\- III/

Hence the velocity potential of the image system is

iMe" e'''='-''^f-^'dK+2iKoMe'^ — -dK. (7)
Jo Jo K — Ko + iy.

By comparison with (1) and the first term in (5), it is easily seen that the

first term in (7) is the velocity potential in the liquid due to an isolated doublet

at the image point (0, /), of moment M with its axis making an angle n — a
with Ox.

To interpret the second term in (7) we put

?__^=
[ e-'"'+'"-'«'^(Zp, (x>0. (8)K — Ko + lll Jo

"^
^ '
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We then interchange the order of integration with regard to k and p, and

integrate first with respect to k. The second term of (7) thus becomes

2i«oMe- ^' .,, -dp, (9)

Jo x+p + t{f-y)

with/— 2/ > 0.

By a comparison with (1), we see that the real part of (9) is the velocity

potential of a line distribution of doublets along the line y = f, extending over

the negative half of that Hne. The magnitude of the moment per unit length

at the point {—p, f) is 2/coMe~'"', and the axis at that point makes with Ox

an angle K^p — a — \-n.

It is necessary to retain the quantity \x while manipulating the integrals,

but we may put it zero ultimately and we have the following result :—The

image system of the doublet M at an angle a to Oa; and at depth/ below the sur-

face consists of a doublet M at the image point at height/ above the surface with

the axis making an angle tt — a with Ox, together with a line distribution of

doublets to the rear of the image point of constant line density 2koM and with

the axis at a distance p in the rear making a positive angle K^p — a with the

downward-drawn vertical.

It is of interest to note how the parts of the image system contribute to the

surface elevation. From the preceding equations we obtain

2M (/ cos « — a; sin a) , „ -Mf uC e^'"''' j ,^(.\
cr\ = '-^—

o , -o + 2/coMe*'' —^cIk, (10)
X^+r Jo K — Ko + m

where the real part of the second term is to be taken.

The integral in (10) is transformed by contour integration, treating x positive

and X negative separately ; when ji, is made zero ultimately, the complete

expressions are

^ 2M(/co3a— a:sina)
_^2koM f ^ co^ (wt/—a)— kq sin (m/— a) ^-m^^^

x^+f °
Jo m^ + KQ^

for X > ; and

2M ( f cos a — a; sin a) , - ,, _,„/ • / , v

crt = ^-^—„
, -,

' + 47tK:oMe "' sm (kox + a)

x^+f-

m cos (m/ 4- g) — xq sin (w/+ a
) ^mx^^ q j\

for a; < 0.

The first term in each case represents that part of the local surface disturb-

ance due to the doublet and the isolated image doublet. The remaining terms

+ 2/<oM {
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are due to the semi-infinite train of doublets behind the image point. Part of

the effect is the train of regular waves to the rear of the origia, evidently associ-

ated with the periodicity in the direction of the doublets along the line

distribution
;
and there is also a further contribution to the local surface dis-

turbance, which we may regard as arising from the fact that the line distribution

is semi-infinite and has a definite front.

Horizontal and Vertical Doublets.

3. With the axis of the doublet horizontal, we have the well-known first

approximation to the submerged circular cylinder of radius a, if we take
M = (xt?. From (11), the surface elevation can be expressed in the form

2a^f
^ ^

a;2
I
^-2 + ^a^/^oP + i-KKoah-'"' sin kqX, a; < 0, (12)

where P is the real part, for a; > 0, of the integral

dm. '

(13)
Jo «wJo »J f-lKo

Taking the axis of the doublet to be vertically upwards, we have a = 7i:/2

in the general formulae ; and, puttmg M = m^ in this case also, we obtain

n = ~^2rpy-2 - ^''^'^oQ, a; > 0,

2a^x
^ "" ~

x^ + P
~'~ 2a^KoQ + inKoa^e~'"'^cosKoX, x <0, (14)

where Q is the imaginary part of the integral (13). This integral may be
expressed formally in terms of li{e'-'^), where K denotes the logarithmic
integral, and may be expanded in various forms. For the numerical calcula-

tions which follow, it was found simplest to use the series

i
— du = —(A + iB) e-'P-*"',

u -\- i

00 -.»

A = Y + log r + S -^ cos nQ,
1 n !

B = 7t - 6 - S ^ sin nO, (15)
1 w !

^ '

where

r = (a^ + p2)i^
^^jj Q _ ^^p^ ^^^ ^ ^ 0-57721.
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The series is sufficiently simple for calculation, though in some of the cases it

was necessary to take a large number of terms.

For both the horizontal and vertical doublets we take

M f=2a, «o/=4. (16)

This means that we take the velocity to be such that the wave-length of the

regular waves is ^tt/. We are assuming, in each case, a given doublet at depth

/ below the surface of deep water. The only restrictions so far are the general

ones due to neglecting the square of the fluid velocit}^ at the free sm-face, and

the consequent limitation to waves of small height. From this point of view

the data of (16) are rather extreme ; but, this being understood, it may be

permissible to use them for a comparison of the two cases. With the values

in (16), the calculations are comparatively simple, and lead to graphs which can

be drawn suitably on the same scale throughout ; these are shown in figs. 1

and 2, where the unit of length is the quantity a.

In fig. 1, there is a horizontal doublet at C ; the arrow shows the direction
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Fig. 2 shows the corresponding curves for a vertical doublet, calculated from

(14) for the case (16) ; the doublet is at the point C. Here, again, the broken

curve shows the cosine term of the solution to which the disturbance

approximates.

We may also regard this as an approximate solution for the flow of a stream

Fig. 2.

over a bed of a certain form. This is obtained by taking the zero stream-line

for the combination of the uniform stream and a vertical doublet at C under the

conditions given in (16) ; the equation of this curve is

{y + 2a) (cc2 + (2/ + 2af} + a^x = 0, (17)

and its form is shown in the figure. Fig. 2 may be compared with a graph given

by Wien* for the Qxse of a sudden small rise in the bed of a stream.

It is interesting to note the general similarity of the surface elevation in the

two cases shown in figs. 1 and 2 : although the regular waves are given by a sine

curve in one case and a cosine curve in the other, that is only because of the

different position of the origin relative to the general form of the obstacle.

Second Approximation for Circular Cylinder.

4. We may now carry out further approximations for a circular cylinder in

a uniform stream by the method of successive images. Reference may be
made to fig. 3, which is not drawn exactly to scale.

The image of the stream in the circle is a horizontal doublet M at the centre

C. The image of M in the free surface is a doublet — M at the image point Ci

* W. Wion, ' Hydrodynamik,' p. 206.
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Fig. 3.

together with a trail of doublets to the rear of Cj. The image of this system in

the circle gives a doublet — Ma^/4/^ at Cj, together with a certain line distribu-

tion of doublets on the semicircle on CCg.

So the process could be carried on, but we

shall stop at this stage.

From the results already given, we could

build up complete expressions for the velocity

potential and surface elevation for each

stage. It would be of interest to work

these out graphically to compare with fig. 1

;

but the expressions soon become complicated

and their evaluation difficult, especially for

the immediate vicinity of the origin. We
shall therefore limit the study to the regular

waves established in the rear of the cylinder. We have seen that the regular

waves of the first approximation, due to the doublet c<^ at C, are given by

7) = iTT/coa^e^""^ siu KqX ; a;<0. (18)

We take the next stage in two parts. First we have an isolated horizontal

doublet of moment — ca*/4/- at C,, whose co-ordinates are (0, — /+«^/2/).

From (11) it follows that the contribution of this doublet to the regular waves

is

V] = - TZKoa^f-h-"-^^-"'!^^^ sin >coX ; a;<0. (19)

Next we consider the line distribution of doublets to the rear of Cj and its

image in the circle. Referring to the results, in § 2, there is at the point i—p,f)

an elementary doublet of moment 2Koca^dp, with its axis making an angle

K(,p — -|Tt with the positive direction of Oa;. The image of this in the circle is a

doublet at the point whose co-ordinates are

a^p

f + 4/^
-/+ 2a!/-

f + ^P'
(20)

the moment of the doublet is 2«'oca* dp/ip^+ 4/^), and its axis makes with

Ox the angle

2 tan-i {pl2f) - K^p + 1-.

From (11) we can now write down the waves due to this doublet,

be noted that the expression will hold for

(21)

It should

x + a^p

f + ¥
<o.

272



Images in Some Problems of Surface Waves 276

If, therefore, we wish to obtain the complete expression for this part of the

surface elevation at a point in the range — a^/if <x <0, we should have to

integrate with respect to p between appropriate variable limits. We shall

consider only points to the rear of this range, so that the limits forp are and oo .

This being understood, the distribution of doublets on the semicircle CC;,

contributes to the regular waves a part given by

1*00 2U^Knf C I 2 \

7] = 87t/fo'a*e~"°^

J

c ^Tircos |/co [x + ^T^^

Putting f = 2/ tan 16, this becomes

7) = 27i:/co2aV-ie-''»-f+'»'''/*/(A cos k^x - B sin k^x), (23)

A = re"™'" cos (6 + A sin 6 - /i; tan \%) dQ,
JO

B = r e*"'" sin (0 + ;i sin 6 - ^ tan P) dQ,
Jo

with h --= Kou^jif and k = 2«o/.

5. In the applications to be made, h and k are positive, h is less than unity

and is usually a small fraction. In these circumstances, the integrals may be

evaluated by expansion in power series of h. It can be shown, after a little

reduction, that we have

A = 2f5w,; B = 2|^M„,.; (24)

where

L, = cos {2r(f> — k tan ^) d(f>
Jo

where

M2
M, = sin (2r(j> — k tan

(f>)
d4>.

Jn
. . (25)

The quantities L and M may be evaluated in terms of known functions by a

reduction formula. It can readily be shown that

{r + 1) L,+i = klar" - k-L; + rL„ (26)

the accents denoting differentiation with respect iok] or denoting this opera-

tion by D, we have

r\l^ = {kW-kT)+r-l)(kW-k'D+r-2) ... {kW-~hV))U. (27)

The quantity M satisfies similar relations.
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Further, we have

Lo = cos {k tan
<f))

dij} = hie
Jo

Mo = - [" sin {h tan ^) (^,4 = - \ [e-Hi {/) — eHi (e"*)}. (28)
Jo

We shall find it necessary to go as far as the sixth term in numerical calcula'

tion of A and B ; we therefore record to this order explicit expressions for L and

M obtained from (27) and (28).

Lj = TJce"^,

Lj = — ttA; (1 — k) e~*,

L3 = Ink (3 - Qh + 2F) e-*,

L4 = - Ink (3 - 9A; + 6^2 _ p) e-^

L5 = ^7r^ (15 - 60^ + QOB — 20F + 2/fc*) e^^

Le = - is-^k (45 - 12bk + 300F _ 15OP + 30A* — 2k^) e'",

Ml = - ke-Hi (e*^) + 1,

Ma = ^ (1 - yfc) e-"^Zi [e'') + it,

M3 = - p (3 - 6A; + 2F) e-m (e*^) + 1 (1 — 4/fc + 2Z;2),

M4 = p (3 - 9^ + 6F - F) e-*Z?: (e*^) + ijt (5 - 5ifc + F),

M5 = - 1-V^ (15 - 60^ + 60^2 _ 20B + 2A*) e-'^Zi (e*)

+ -tV (3 - 28A + 44F - 18F + 2F),

Me = T^-t (45 - 225A; + 300F - 150F + 30F — 2F) e'Hi {e'')

+ i^k (93 — 198A- + 124F - 28F + 2/i;*).

6. The first case we shall examine is that already discussed in § 3, a cylinder

whose centre is at a depth of twice the radius. It has been remarked that this

is an extreme case, but it has the advantage, as far as the calculations are con-

cerned, of magnifying the difference between the first and second approxima-

tions and so of lightening the numerical work involved. In the notation of the

previous sections, we have

f=2a; k = 2Kof = 47r//Xo ; h = Koa-/if = ^/32. (29)

Collecting the terms in (18), (19) and (23), the regular waves established to

the rear of the cylinder are given by

-/]/« = Tzke^-'' sin kqX — ~Tzke~'^'' sin kqX

+ JgTrFg-i^fc (A. cos Kox — B sin kqx). (30)

The first term is the first approximation, and the amplitude in this case has

a maximum at k = 2, or when the velocity is such that the wave-length is 271:/.
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We shall calculate the value of (30) for k equal to 10, 8, 6, 4, 2,.l and 0-5,

given in order of increasing velocity. Omitting the intermediary steps for the

numerical values of the L and M functions, the following table gives the values

of A and B, calculated from (24), for these values of k and with h = k/Z2 in

each case.

k
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The amplitude C has a maximum at the speed ^/{^ga) ; and it appears from

the table that the second approximation- increases the amplitude below this

velocity and diminishes it at higher velocities. It seems that thd rearward

displacement, given by E, also has a maximum, amounting to about two-thirds

of the radius of the cylinder.

7. It is clear, from the form of the expressions for the surface elevation, that

the accuracy of the first approximation increases rapidly as the depth of the

cylinder is increased or as we take relatively smaller velocities. Without

pursuing the calculations in this direction, we shall take one other case which is

not quite so extreme as in the previous section. We take the depth of the

centre to be three times the radius ; the data are now

/ = 3a ; k = 2Kof; h = K^^jA:f = ^-/72.

In this case, instead of (30), we have

ri/a = fTzke ** sin kqX — -^-^-nke-"'^ sm kqX

+ -sV^^^e"^'* (A cos kqX — B sin K^yc).

(33)

(34)

The following table shows the values of A and B, with h = kj12, calculated

for convenience at the same values of k as before :

—

k
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The calculations were made for the same values of k ; and as we have taken
Viga) as the unit of velocity, we get a different set of velocities, but they cover
much the same range. We notice that the decrease of the ratio a/f from l to i

has diminished considerably the difference between C and D, and also the dis^-

placement E. The results have the same general character as we noted in
the previous case.

In any given case there are two significant quantities involved : one is the
ratio of the radius to the depth and the other is the ratio of the wave-length
to the depth. It would require a more elaborate numerical study than has been
attempted here to enable us to state precisely the degree of accuracy of the
first approximation for given values of these ratios.

Habrison and Sons, Ltd., Printers in Ordinary to His Majesty, St. Martin's Lane.
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Wave Resistance.

By T. H. Havelock, F.R.S.

(Received December 15, 1927.)

Introduction.

1. The object of this paper is to give more direct proofs of certain expressions

for wave resistance which have been used in previous calculations ; further,

in view of other possible applications, the expressions are generalised so that one

can obtain the wave resistance for any set of doublets in any positions or

directions in a uniform stream, or for any continuous distribution of doublets

or equivalent sources and sinks. The only limitation is the usual one that the

additional velocities at the surface are small compared with the velocity of the

stream. One might take a simple source as the unit, but to avoid certain

minor difficulties it would be necessary to assume an equal sink at some other

point. The possible applications are to bodies either wholly, or with certain

limitations partially, submerged. The image system in such a case consists of

a distribution of sources and sinks of zero aggregate strength, and so may be

replaced by an equivalent distribution of doublets. Hence it is simpler to

use the doublet as the unit from the beginning.

The wave resistance of a submerged sphere was obtained previously both by

direct calculation of pressures on the sphere and by an analogy with the effect

of a certain surface distribution of pressure. The latter method was then

generalised to give the wave resistance of any distribution of horizontal doublets

in a vertical plane parallel to the direction of the stream. In a recent paper

Lamb* has supplied a method for calculating wave resistance which avoids the

* H. Lamb, ' Roy. Soo. Proo.,' A, vol. Ill, p. 14 (1926).
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25 T. H. Havelock.

comparison with an equivalent surface pressure
; it consists in calculating the

rate of dissipation of energy by a certain integral taken over the free surface
when, as is usual in these ])To})lcms, a small frictional force has ])ecn introduced
into the equations of motion of the fluid. Lamh, however, deals only with a
single doublet, to which a suluuerged ])ody is equivalent to a first approxima-
tion, and so does not obtain the interference effects which arise from an extended
distribution of doublets

;
further, he carries out the necessary calculation by

analysing first the surface distribution of velocity potential, or in effect analysing
the wave pattern. In the following paper it is shown that this intermediate
analysis may be avoided by a direct application of the Fourier double integral
theorem in two dimensions. This step simplifies the extension of the calcula-
tion to any distribution of doublets in any positions and directions

; various
cases, which it is hoped to use later, are given, in some detail for deep water,
and one case of a single doublet in a stream of finite depth.

Two-dimensional Motion.

2. The results for a two-dimensional doublet are well-known, but there are
one or two points of interest in the calculation. We shall suppose the liquid
to be at rest, and the doublet to be moving with uniform velocity c. Let the
doublet be of moment M, with its axis horizontal, at a depth /. Take the origin
in the free surface, with Ox in the direction of motion and O2 vertically upwards.
If C is the surface elevation, and if there is a frictional force proportional to
velocity, the pressure condition at the free surface gives

3(^ ^ , , ,

-K-.
— .9Q + f^ 9 = constant, H)

4> being the velocity potential. Since, at the free surface d^jdt = -
d.f>ldz,

we have for the steady motion relative to the moving axes,

to be satisfied at z = 0, with k^ = gjc^ and [x = pt'/c. The conditions of the
problem are satisfied by

where the real part is to be taken,
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Wave Resistance. 26

If E. is the equivalent wave resistance, Re is equal to the rate of dissipation

of energy ; this gives, following Lamb,

R = _f^[^|i,?S, (4)
c J on

taken over the free surface. Thus in the two-dimensional case we have

R = Lim (xp </)-r- dx, (5)

M->0 J -00 oz

with z ^ 0.

The siirface values of
<f)
and 3^/3s can be obtained from (3) ; after applying

well-known transformations we obtain, at 2 = 0,

<^ = 2,.oM|
" (tn + fx) sin ni.f+ k„ cos mf ^-mx^,^^^

(m + |j.)2 + K„^

9^ = - ^W _ 2.„M r (!l±j4^212^^^£<L£iE^„,e— dm,
dz (x^+ff °

Jo {m+^f + Ko^

for * > ; and

cj} = inK^Me"''-"'' cos (kqX -f [x/)

2k,M
[
Ji

' (»t — y.) sin wt/ — k„ cos wj/ ^^a,
^^^^^

(m — (i,)2 + /f (,2

-5^ = 4Tc«:oMe'''^~'"'^{A:oCOS (koX + (j./) + [x sin (k-oX + jx/)}
oz

mx^ -^ r (//i,-^x)cosm/-^KoSin»i/,^^^^...
^j ^^^

for a; < 0.

These expressions are continuous at a; ^ 0. It is easily seen that the only

terms which give any contribution to (5) in the limit are the first terms in the

expressions for cj) and dcfyjdz when x is negative. These are the terms which

arise from the train of regular waves established in the rear of the moving doublet

and so this method is connected with the alternative calculation of wave

resistance by means of group velocity. The dissipation of energy when there

is a frictional term is represented in the limit, when jx is made zero, by the propa-

gation of energy away from the system in the train of regular waves. To com-

plete the calculation from (5) and (G) we have

R = Lim txp 16TrVo3M2e2^^--'">-^cosVoa' dx
J — oo

= 47i2p/Co3M2e-2«o/ (7)
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27 T. H. Havelock.

We may obtain this result without analysing the expressions for ^ and 8^/83.

We obtain from (3) the following complete expressions in real terms, at z = 0,

^ = 2koM [" ^ '°' "; - ^\- ''^\'^ '-^
c-Uk, (8)

Jo (k — K^f + [J,2

1^ = 2M
f"

t^'<o COS KX -{k(k- k,) + ^n sin kx
^_,,^ ^^_ ^^^

To carry out the integration of the product over the surface, we use the follow-

ing theorem : if

f[x)= (Ai cos KX + B^ sin kx) (Ik,

Jo

']' (x) = (A2 COS KX + Bg sin kx) (Ik,

Jo

where A^ k^, Bj, Bg are functions of k, then

f{x)^ {x) dx = -K\ (Ai A2 + Bi B2) (Zk. (10)
' -» Jo

This theorem is derived from the Fourier double integral

(j,{x) =~\ rf/c ^ (a) cos a: (ic — a) afa, (11)
7T Jo J _<„

and is subject to the same conditions.

In the present case, comparing (8) and (11) we have

J —00
) COS Koo dtf. =

Hence we have

r <I>P dx =. i.K„M^ W
'<''-'''

dK,
J-0. 32 Jo (k~K„)^+ U?

,.2„-2Kf

(p (a) sai k7. do: = ^ ^ . (12)

E = Lim 4u,CoM2p(x 11_^ Jk
M-*o Jo («: — Kg)^ -f- ji.2

= 47T:2p,fo3M2e-2'o/
^^g)
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Horizontal Doublet.

3. To consider tliree-dimensional fluid motion, take fiist a horizontal doublet

of moment M at tlie point (0, 0, — /). Assume that the velocity potential can

be expressed in the form

27r J_„Jo"

+ r [ kF (9, k) e-« (/-') + <' (-^ cos fl+y sin e)gog Q ^0 ^^_ (14)

where real parts are to be taken, and where the first term is the velocity potential

of the given doublet in a form valid for z + / > 0-

The surface condition is equation (2) as before ; applying this, we obtain

n, ,Q V JM. K -\- Kff sec^ 6 4- i\i- sec 6 ,,_,
r \K), K) — — r—

I

:
-

.

^ioj
ztt /c — ktq sec' <3 -\- i\i sec

Hence from (14) and (15) the surface values of <j) and d(f>jdz are

^ = -^-
2fl ,

. r/csec ed0i/c, 16
7t J_„Jo K — /<o sec' D + ^u. sec D<Q sec^ 6 + i[i. sec G

a<^ iMr p- g-./+.V(^cos.+ysma)
;r-^ = — r-T : r- K^ U + Zli, SeC 6) COS 6 (10 a/c. (17)
02 7^ J-^Jo K — K'o sec' U + ijj, sec o

Taking real parts of these expressions we obtain

^ = (Fj (6, k) cos (kx cos 6) cos (/ct/ sin 6)

+ Fg (6, k) sin (/ere cos 6) cos (wry sin 6)} k (Ik d%, (18)

and a similar form for 3^/33 with G instead of F, with

Fi = M^oiie-'^sec-^e./D

Fa = - Mato (k - «(, sec2 G) e''^' sec G./D

Gj = M(XKoKe""'^sec- Q./D

Ga =: — M [k (k — /<o
sec- G) + [i^ sec^ G) Ke'^' cos G./D

D = 7c {(«: - /<o
sec2 6)^ + ^^ sec^ G}. (19)

We now apply a theorem in two dimensions corresponding to that given in (10).

The Fourier integral theorem is

1
/•OO p«) /«> -00

F (x, y) = — da \ dv \ F (5: cos w (x — 5) cos v{y — t) ds dt.

4:7r J— 33 J— 00 J— ooJ— 00
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29 T. H. Havelock.

Putting u = K cos d, V = K sill 6, this may be written

^ (^i y) = \
(^Q (Fi cos {kx cos 6) cos {Ky sin 6)

J -IT Jo

+ Fg sin {kx cos 6) cos (Ky sin 6) + F3 cos {kx cos 6) sin {Ky sin 6)

+ F4 sin {kx cos 6) sin {Ky sin 6)} k (Ik, (20)

where

1 r°° r""

Fi = -- F (s, cos (ks cos G) cos {kI sin 0) ds dt, (21)
471:2 J -00 J -00

with similar expressions for Fg, Fj, F4.

If G {x, y) is another function given as a double integral in the form (20), it

follows as in the one-dimensional case that'

f \
^{x,y)Q [x, y) dx dy = in^ T ^6 flFiGi+F^G^+FaGg+F^GJ KdK.

J —00 J —00 J— 71- Jo

(22)

It is assumed that the various integrals are convergent.

For the particular case given in (18) and (19), we find that F-^G^ + FgGg

reduces to a simple expression, and we obtain

R --= Lim y.p
\

(j)~dxdy

^^0 '^ " ^Jo Jo (k-^o sec2 0)2+fi2 sec2 9

= 16Tcp/<:u''M2 r sec^ 6-^"'^ '^'''
' dQ

Jo

= 4up,CoW e-»»/ |Ko {kJ) + (1 + -1^) Ki (;.o/) }, (23)

where K„ is the Bessel Function defined by

K„ (x) = [ e-^ ™"^
" cosh nu du.

Jo

Horizontal Doublets in Vertical Plane.

4. This method allows easily an extension to any distribution of doublets.

Consider first two horizontal doublets M and M' at the points {h, 0, — f) and

{h'l 0, —/') respectively. The surface value of <j) is now given by (16) with
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X — h instead of x, together with a similar expression in M' and x — h'. Taking

the real part we have

Tt J _„ J (k — Kq sec^ 0f + p? sec^ 6

P = [i, sec 6 [Me"'-^ cos {i< (x — h) cos 6} + M'e"'-^' cos {k {x — h') cos 6}]

— (K—Kg sec2 0) [Me""-^ sin {k (x—h) cos ej+M's""-'" sin {k {x—h') cos 6}]

(24)

There is a similar expression for the surface value of d<l>ldz. We now write both

these in the form (18), omitting terms which from symmetry give zero when

integrated with respect to 0. We find again that we have only to form the

quantity FjOj + FgGg and that this simplifies considerably ; the wave resist-

ance, after this reduction, is given by

^ T- ,^ r/2,„rM2e-2''/+M'2e-2''^'+2MM'e-''<-^+^''cos{/c(A-/i')cos 0} 3 ,

R = L.m
16p.„,J^

^0j^ (.-.„sec^0)^+ ,^sec^e
^'^

Jo

+ 2MM'e-''»<^+^''
'^"^

' cos {/<„ (h - li) sec 0}] sec^ 1?0. (25)

The first two terms give the resistance due to the two doublets separately,

while the third term represents the interference effects. This expression was

obtained formerly from the analogy between the waves produced by a sub-

merged sphere and those due to a certain surface distribution of pressure ; it

was then generalised for any distribution of horizontal doublets in the vertical

plane y = 0.* The method given here can also obviously be extended by

integration for any such continuous distribution, and confirms the general

expression used in previous calculations ; if M {h, f) is the moment per imit

area at the point (h, 0, — /), then (25) generalises to give

R = 167ipK„*
f
" df r df [ dh [

dh' r''M {h, f) M (A', n X
Jo Jo J —CO J— OO J(l

e-«o{/+/') seo' e gog 1^^ (^ _ ^;) sec 0} sec^ dQ. (26)

General Distribution.

5. We can use the same method for doublets with their axes in any directions,

for we can always obtain the surface values of <j) and S^/Bz in the form (20)

and so can integrate over the surface by means of (24). Beginning with a single

* ' Roy. Soc. Proo.,' A, vol. 95, p. 363 (1919) ; also A, vol. 108, p. 78 (1925).
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31 T. H. Havelock.

doublet at the point (0, 0, — /), let the direction cosines of its axis be {I, m, n).

By the same process as for the horizontal doublet in (16) and (17), the surface

values of (j) and 9^/3z are found to be

, _ 'CqM r ,„ C (il cos G + im sin G — n) sec^ ^
c\ fi

TT J-„ Jo K — /cp sec^ + i(jL sec G

9^ M f" ,o r" K (il cos G + im sin G — w) {k-\- i\L sec G) ,. , ,27\

dz n]-^ Jo /<: — Kg sec^ G + i[i. sec 6

with Q = £-«/+»'< ('^'^osflj-y sin e)_

With the same notation as before,

f1 = '^0 {\>-^ ~" " ('<^ ^ '^0 sec^ G)} D sec^ G,

F3 =
F. =

k:,) {(x/i- sec G + Z (k — /Cy sec^ G) cos 6} D sec^ G,

K^m (k — ;cq sec^ 0) D sin sec- G,

Kf)[i7nD sin G sec^ G,

G-j^ = ftr [[jl/Cq I sec^ 6 — n{K (k — /Cy sec'^ 6) + [x^ sec^ G}] D,

G2 = — k[1{k (k — Kg sec^ G) + (J-'^ sec^ G} cos G + jx/iwry sec^ G] D,

63^ — Ktn {k (k — Kq sec^ G) + y.^ sec^ G} D sin G,

64= — (j,mK„«:D sin G sec^ G,

D = (M/k) e-'f/iiK - Kg sec2 G)^ + yj^ sec^ G}. (28)

We find that S FG simplifies very much even if we take the expressions as they

stand ; since we are only concerned ultimately with [x zero, we could further

simplify the work by omitting superfluous terms. The expression for R
reduces to the limit of an integral of the same type as in (23), and the result is

R = UnpKo^M.^ r (l^ cos2 G + m^ sin^ G + n^) e-~'''f""''^ sec^ G dQ
Jo

= inpK.m^e-' [P |k„ (a) + (1 + ^) Kj (a)}

m,'^

+ '^\KM + {1 + 1)ka^-)}

+ «Mil+;i)K„(.) + (l+|; + ^,)K.(4 (29)

where a = «„/ = gf/c^.

6. The only fiurther stage to which we need carry the calculation is for two

doublets in any positions : M at the point (h, k, — /) with its axis in the direction
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Wave Resistance. 32

[l, m, n), and M' at Qi', k', — f) in the direction {V, m', n'). We have simply

to put the surface vakies of ^ and dcj^jdz in the standard form, and evaluate

the quantity 2 FG. The redaction need not bo reproduced here ; omitting

terms in (j. which make no contribution in the limit, we obtain

TT^S FG . {{k - K^ sec2 0)2 + (x2sec2 0}/ko/<2 sec^

= [(I cos 6 sin P cos Q + ?n sin 6 cos P sin Q — n cos P cos Q) Me""-''

+ (r cos sin P' cos Q' + m' sin cos P' sin Q'— n cos P' cos Q') M'e""-^']^

+ [{I cos cos P cos Q — m sin sin P sin Q + n sin P cos Q) M e^'^

+ (I' cos COS P' cos Q'— m' sin sin P' sin Q' + n' sin P' cos Q') U'e^'^'f

+ [{I cos sin P sin Q — ni sin sin cos P cos Q — n cos P sin Q) Me"*-'^

+ (I' cos sin P' sin Q'— m' sin cos P' cos Q'— n' cos P' sin Q') We-''^^

+ [{I cos 6 cos P sin Q + m sin sin P cos Q + w sin P sin Q) M e"*-^

+ (Z'cos cosP' sinQ'4- w'sin0sinP'cosQ'+?i'sinP'sinQ')M'e~''-'"]2,

(30)

where P = kJi cos Q, Q = kIc sin 0, and similarly P' and Q'. Carrying out the

rest of the calculation for R, the wave resistance is given by

R= 16-rzpKo^ r Up cos2 + m2 sin^ + n^) M2e-2'o/sec= e

+ (l'^ cos2 + m'2 sin2 + n'^) M'2e-2««/'s«o'«

+ 2 {{W cos^ -|- mm' sin^ -f tin') cos A cos B
— {Im' -\- I'm) sin cos sin A sin B + (wm' — n'tn) sin 6 cos A sin B

+ (nV — n'l) cos 6 sin A cos B} MM'e-'«(^+^'^=^'^°«1 sec^ M, (31)

where A = Kq (^ — li) sec 0, B = Kq (^ — k') sin sec^ 0. The various terms

represent the contribiitions of the three components of each doublet and their

mutual interference in pairs.

Water of Finite Depth.

7. For water of finite depth h, we shall consider only the simplest case of a

horizontal doublet of moment M at depth /. It is clear that the same surface

integral can be used for evaluating the wave resistance.

We now assume the velocity potential in the form

J, = _i!!f cos QdQ {e-"^+ g-«(2/,-/)i g-«2+i«(^cose+j,sine)^^^

"in }-„ Jo

iM T" C"

+ ^\ cos 0(^0 F(0, k) cosh K (3 + ^)e"<^™^ "+!"'" ^>Krf/<. (32)
"t^J-w Jo
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33 Wave Resistance.

This satisfies the condition 3<^/32 = at 2; = — A ; we note that the first term

represents the original doublet and its image in the bed in an analytical form

valid for z+/ > 0, and therefore suitable for applying the boundary con-

dition (2) at the free surface. This yields

p -Q ,
26-"" cosh K(h~f) K + K„ sec^ Q + iji sec 6

^^^^
cosh Kh K — Kq sec^ 6 tanh Kh + i^i. sec 6

'

consequently the required surface values are given by the real parts of

^ = !^I ["
sec <^e

f

' ^-^'cosh{.(A-/)i(l+tanh-M)^...
^ ^^^

n J_^ io K — ktq sec^ 6 tanh Kh-{-i[i sec 6

ai ^ m r ^^^ ^ ^^
r e-'^cosh(>c(fe-/)}(l+tanhKfe) (K-+t(xsec 6) ^,v,. ^2^^^ (34)

Sz n ]-.„ Jo K — kq see- G tanh k^ + t(j. sec

where ci = a; cos Q -\- y sin 8.

Comparing these with the corresponding values for deep water given in (16)

and (17), we can write down the expression for the wave resistance as

^^0 ^° '^Jo '0 (/c-zco sec2 tanhKA)2+,z2 sec2 61

(35)

There are two points to notice in evaluating this limit. The result is only

different from zero when
K — Kfy sec'^ 6 tanh kJi = (36)

has a real positive root ; and this occurs only for kJi sec^ 6 > 1 . Further we

must introduce in the denominator rf . (/c — Kq sec^ 6 tanh Kh)jdK. We may sum

up the result in this form

R = 16.p.,M^
p.3,-2..cosh2U(A--/)!(l-htanhKA)2

^^^^ ^
'^ "

jg^ 1—kqA sec2 d sech2 kA

where k is the positive root of (3 6) ; further, the lower limit 60, is given by

6^ = 0, for Kgh^ 1, or c^ Kgh,

60 = arc cos -\/ (kqA), for c^ > gh.

We may note that the change in the lower limit occurs at the so-called critical

velocity -\/ (gh) for the given depth. From (37), R may be graphed as a function

of the velocity for various ratios of / to h ; the calculations may be carried

out by numerical and graphical methods. A similar expression in the case of

a certain distribution of surface pressure was examined in detail in a previous

paper,* and it may be anticipated that (37) would give somewhat similar

curves.
* ' Roy. Soo. Proc.,' A, vol. 100, p. 503 (1922).
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[Reprintedfrom the Proceedings op the Eoyal Society, A, Vol. 121.]

The Wave Pattern of a Doublet in a Stream.

By T. H. Havelock, F.R.S.

(Keccivcd September 18, 1928.)

1. The following paper is a study of the .surface waves caused by a doublet

in a uniform stream, and in particular the variation in the pattern with the

velocity of the stream or the depth of the doublet. In most recent work on

this subject attention has been directed more to the wave resistance, which

can be evaluated with less difficulty than is involved in a detailed study of the

waves ; in fact, it would seem that it is not necessary for that purpose to know

the surface elevation completely, but only certain significant terms at large

distances from the disturbance. Recent experimental work has shown con-

siderable agreement between theoretical expressions for wave resistance and

results for ship models of simple form, and attempts have been made at a

similar comparison for the surface elevation in the neighbourhood of the ship.

In the latter respect it may be necessary to examine expressions for the surface

elevation with more care, as they are not quite determinate ; any suitable

free disturbance may be superposed upon the forced waves. For instance, it

is well known that in a frictionless liquid a possible solution is one which gives

waves in advance as well as in the rear of the ship, and the practical solution

is obtained by superposing free waves which annul those in advance, or by some

equivalent artifice. This process is simple and definite for an ideal point

disturbance, but for a body of finite size or a distributed disturbance the

complete surface elevation in the neighbourhood of the body requires more

careful specification as regards the local part due to each element. It

had been intended to consider some expressions specially from this point of

view, but as the matter stands at present it would entail a very great amount

of numerical calculation, and the present paper is limited to a much simpler

problem although also involving considerable computation.

A horizontal doublet of given moment is at a depth / below the surface of

a stream of velocity c ; the surface efiect may be described as a local dis-

turbance symmetrical fore and aft of the doublet together with waves to the

rear. Two points are made in the following work. One is the variation of the

local disturbance with the depth of the doublet, or rather with its relation to

the velocity. Roughly, it may be said that the local surface effect changes

from a depression to an elevation at a certain speed, which we might have

288



516 T. H. Havelock.

anticipated, to be somewhere about the speed ^^{gf). A line doublet is first

examined, and the surface elevation immediately over the doublet is calcu-

lated ; it is found to be zero at approximately a speed 0-86 \/(gf)- To illus-

trate the difference for speeds greater or less than this value, curves are shown

in fig. 1 for the complete surface elevation when gf/c^ has the values 4 and 0'5.

A three-dimensional doublet is then considered and a similar calculation for

the surface elevation immediately over the doublet gives a critical speed of

about • 84 V(af)-

The second point is the variation of the wave pattern. We may compare

it with the pattern due to an ideal point disturbance of the surface of the

stream. In that case the approximate evaluation of the integrals by the

method of stationary phase gives the system of transverse and diverging waves

established in the rear. But in our case there is a variable amplitude factor for

the constituent harmonic terms of the integrals, and we notice that the velocity

y/igf) has here also a special significance ; for the amplitude factor itself

possesses an additional stationary value, a maximum, when the velocity

exceeds \/(gf). The difference this makes in the wave pattern is examined

;

roughly, at lower speeds the pattern consists chiefly of transverse waves, while

at higher speeds the diverging waves become of increasing relative importance.

4 direct numerical study has been made of the integral for this part of the

surface elevation for two values of gf/c^, namely, 4 and 0-5
;
graphs are given

in figs. 3 and 4 for the surface elevation along various radial lines from the

origin, including some outside the limits of the ideal wave pattern.

2. Take Oa; in the undisturbed surface of the stream, and Oy vertically

upwards, and let the velocity of the stream be c in the negative direction of Oa;.

Let there be a two-dimensional horizontal doublet of moment M at the point

(0, —/). The solution of the problem is familiar as the first approximation for

the effect of a submerged cylinder of. radius a, if we take M = ca^. We quote

here the complete expression for the surface elevation y] in the form used in

previous calculations*

^ 2Mf . 2/foM r m cos mf — Kq sin mf ^^^x ^^ r^)

'^ cix'+py c Jo m? + K^^

for a; > 0, and

— 2M/ , 2/CoM r" m cos mf — Kq sin mf ^„x ^^
'^~c(x'+f^) c Jo m^ + Ko^

+ (47i;/coM/c) e-'^f sin K^p, (2)

for a; < 0, with kt^ = gjc^.

* ' Roy. Soc. Proo.,' A, vol. 115, p. 271 (1927).
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Wave Pattern of a Doublet in a Stream. 517

The last term ia (2) gives the regular waves to the rear, and the remaining

terms the local disturbance which is symmetrical before and behind the origin.

The integral in (1) is the real part of

^
.

du, (3)
Jo U -\- I

where a = k^x, [i = k^J. Asymptotic expansions may be obtained for large

values of the parameters, or the integral may easily be evaluated directly by

numerical methods when a. is not small. For small or moderate values of a

and j3, (3) may be calculated from

— (A + 16)6-'^-'"',

A = Y + log r + S cos w9,
1 n . n\

B = 7T — — S sin mG,
1 n . n !

j- = (a2+p2)5, tane=a/p, y = 0-5772. (4)

Consider the surface elevation at the origin [t = 0). Since we have

f"" u cos Bit — sin P>u , -b t / s\ /ex— ^ du = — e P h (e^, 5)
Jo 1 + «f^

for p > 0, where li is the logarithmic integral, we have at the origin

v) = ?M{i_pe-Mi(e^)}. (6)

Using tables of these functions, we find that v; is zero when p is approximately

1 • 35, or when c = • ^i&y^igf) ; when c is less, the value of (6) is negative,

while at greater speeds it is positive. To illustrate this point, the surface

elevation has been calculated from the complete expressions (1) and (2) for

two different cases, K^^f= 4 and Kgf— 0-5. The graphs are shown in

fig. 1, A being for the smaller value of /cq/ and B for the larger.

The ordinates are to tlie same scale assuming M and / constant and c to be

the variable ; the abscissae are in wave-lengths, or more strictly the values of

KqX.

3. Consider now the thrce-dimensidnn.l problem. Take Ox and Oy in the

surface of the stream, the current being in the negative direction of Ox. and

take Oz vertically upwards. For a horizontal doublet of moment M at the
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Fig. 1.

point (0, 0, —/), we take the velocity potential from a previous paper in the

form*

iM
ex

271

with

r [ Ke- " '^+^' + '"'=' cos 6(^6 cZ/c

J - TT J

+ —\ kF(Q,k) e-«(^- ^' + '"^ cos e dQ dic,

27t; J _ ^ J

-p, ,Q , _ K -\- K^ sec^ 6 -f- ^t^''
spc 9

;<: — ktq sec' U + tji, sec U

CT = a; cos 6 + «/ sin 6. (7)

The real part of the expression is to be taken, and further the limiting value

as [i.
^- 0. The surface elevation is obtained from

dx dz

After some reduction, ^ is obtained in the form

2M/
c{x^ + y'+Pf" TO

"-"-f'" sec^ec^e I i

Jo V — Kg

+

sec^ 6 + i|j. sec 6

Xe-'^^KdK. (8)
K — Kg sec^ 6 — i[L sec 6J

Transforming the integral with respect to k in (8), and taking the limiting

value, we obtain

„ f"" Kn sec^ 6 cos mf + ni sin mf _„,„ , r -., n
2 " ^

—

ie ""^ mdm, for ct > ;

Jo ?w^ + /Cj^ sec*

* ' Roy. Soo. Proc.,' A, vol. 118, p. 28 (1928).

(9)
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4ffK(, sec2 6 6-""^ '"'''' sin (ftr„c7 sec^ e)

_^ 2 r >Co sec^ e cos m/+m sin m/ ^^^ ^^^^ ^^^ ^ ^ q_ ^^^^
Jo m^ + «^o^

s^c* ^

We have now to integrate with respect to 6, subject to the conditions in (9)

and (10). The form of the surface is symmetrical with respect to Ox, so we

may write down only the expressions for y positive ; and we shall put

X ^ r cos 6', y = r sin 6'. (11)

We find that the value of X, can be given by one expression, valid for <^ 6' -^tt,

namely,

^ c(r2+/2f/2

^ 2^ r^" gg^2 Q ^Q
r KpSec^ecosmZ+ msinm/ ^_„„ , eos (»-(,')

i ^ ^,^
n-c J_^ Jo wi^ + Ko^sec^e

/f„ 2"|Vr f9'-47r

+ !!£o£!: sec4 ee-''--^''''^' « sm {k^t cos (
- 6') sec^ 6} ^6. (12)

c J-J^

This expression is exact, apart from the usual limitation that, at the surface

of the stream, we neglect the squares of the additional fluid velocities.

4. The first two terms in (12) represent the local effect which is only of

importance in the neighbourhood of the origin. A few preliminary calculations

show that, as in the two-dimensional case, it changes from a depression to an

elevation about the value k^J ^= 1. Considering the elevation at the origin,

we have from (12) with r = 0,

„ 2M
I

^kM. fa" „ Q ,Q r°° « cos ^« + M sin M , ,, „>

^n =— + —S_ sec^ e d% i- —-i

—

ti du, (13)
^° cP^ to/ Jo Jo f-\-u^

where p = Kgfsec^ 6 = p sec^ 0. »

The integration with respect to u can be expressed in terms of the logarithmic

integral, and we obtain finally

4M
^0

7z I
+ j'"p {1 - pe-ni(e*)} c?0]. (14)

The integral in (14) was evaluated approximatdy for certain values of kq/

ranging between 1 and 2. The integrand was calculated in each case for a

sufficient number of values of p and was then graphed on a base of ; the

value was found by taking values from the graph and using Simpson's rule.

In this way it was estimated that ^g is zero at about Kq/ = 1-4,

or c = 0-84^(gf). It was also verified that at lower speeds Z,^ is negative,
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and at higher speeds positive. For comparison of the maximum local efiect

with the rest of the surface elevation in two cases discussed later, it may be

noted that

W^'f'Xji^ = - 1-346, for kJ=4:
= _1_ 0-860, for «:o/= 0-5. (15)

The local effect at points other than the origin was not calculated, although

rough estimates were made for the central line, 6' = 0, from (12) to verify

that it falls off in much the same way as in the two-dimensional case
;

for this

purpose the second term in (12) was put into the form

(4/CoM/7rc/) (

"
J sec2 6 dQ, (16)

Jo

J ^ r p cos M + M sin M g-.„/v(pj,) ^ ^^
Jo f + u^

= t- pe-" [P cos Wipl^)} - Q sin {«V(p/P)}]>

P = Y + log p + S —i—-, cos rKf,,

Q = u — ^ — S —2— sin nih
;

(17)
1 n . nl

with p2 = p2 + ya^/p, tan^ = a/v'(Pp), o(. = KqT, p = Kofsec^d, ?> = Kof.

5. Consider now the third term in (12). For computation, we alter the form

slightly. We take 6' = tt — ^, so that ^ is the angle the radius vector makes

with the negative axis of x, and further we put

i' = cot ^ ; t = tan 6. (18)

Then this part of the surface elevation, which we may denote by (^ — J^; is

given by

r _
j;^
= _WM g-p[''

(1 ^ ^2) e-^'' sin [« {f - t) |(1 + t^)l{l + n}^ dt.

C J -00

(19)

In this form a, or KqT, is a positive quantity, / being the distance from the

origin. The axis of x in front of the disturbance is given hj t' = — oo
, and

(19) is then zero ; for the axis of x in the rear of the origin t' = + co
. The

usual first approximation to the integral in (19) consists in assuming a large

enough so that the only appreciable contributions come from the groups of

terms near the positions of stationary phase of the harmonic constituents
;

this leads to the familiar pattern of transverse and diverging waves contained

within radial lines making angles of about 19° 26' on either side of the negative
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axis of X, or lines for whicli i' = ± 2y'2. Witiin the range cc > i' > 2\/2,

there are two values of t for which the phase is stationary, namely, the roots of

2f2-rt + l=0, (20)

the smaller root corresponding to the transverse wave and the larger to the

divergiag wave at each poiat. In the elementary ideal case the constituent

harmonic waves have equal amplitudes, but in (19) we have the amplitude

factor (1 + 1^) e~^'\ If p > 1, this function has a maximum at t = 0, and

diminishes steadily to zero as t increases. But if p < 1, there is a minimum

at < = and a maximum at < = {(1 — P)/P}*- We may expect then a difference

in the wave pattern according as c^ is greater or less than gf.
When P > 1

and a has moderate values, the main part of (19) comes from small values of t ;

further, when « is large and the typical wave pattern should be developed,

we see that the diverging waves will be relatively small. On the other hand,

when P < 1, there is increasing importance of the diverging waves ; and in

particular, there will be a value of t', that is a certain radial line, for which

the maximum of the amplitude factor coincides with the greater root of (20)

for which the phase is stationary. As we are not calculating the wave pattern

at large distances we need not put down the general first approximations to

(19) by the stationary phase method ; we may, however, note the particular

cases for t' = co and t' = 2\/2, that is for radial lines along the rearward axis

and along the line of cusps of the so-called isopbasal lines. For these cases

(19) gives, by the usual methods,

{kotY c \ " 4/

for t' = aa
, and

(V) I (s) c

for t' = 2-y/2. We note here the additional factor e'^'"^ in the second case,

so far as variation of the amplitude with the depth is concerned ; we see that

the relative prominence of the so-called cusp waves is only a feature of the

limiting oase of a point surface disturbance.

6. Returning to the exact integral (19) for this part of the surface elevation,

it seemed of interest to make some numerical calculations directly from the

integral for points near to the origin, or for moderate values of a. Instead of

following the isophasal lines, which are not significant in this region, we have

calculated the Surface elevation from (19) along certain radial lines. We take

in turn the values i' = oo , 3, 2\/2, 2, 1 and zero ; these are shown in fig. 2

as A, B, C, D, E and F respectively.
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For a given value of I', the value of (19) was found for about a dozen values

of a, so that the graph could be obtained with sufficient accuracy for our

Fig. 2.

purpose over a range of a, that is of /<(,r, extending from to 18. In each case

the value of (19) was obtamed by evaluatuig the integrand at uitervals of 0-]

for t for a sufficient range of t until, by reason of the exponential factor, the

remaining terms became negligible. Sets of calculations were made for two

values of p, that is of kq/, namely, 4-0 and 0-5
; in the latter case it was

necessary to take 40 or more values of the integrand in each case, but a smaller

number sufficed in the former case. The value of the integral was obtamed

finally by using Simpson's rule. The collected results are shown in the graphs

of figs. 3 and 4, the curves being lettered in agreement with the radial lines

of fig. 2.

Fio. 3.

Fig. 3 is for K(,/= 4, or c = iVioD- Consider first the radial lines within

the limits of the ideal wave pattern, namely, A, B, C. In this case, though

B and C were calculated separately, there was not sufficient difference to show

on the graph without confusion and so B has been omitted ;
A is the central

line and C, at an angle of 19° 26', would be the cusp line of the simple theory.

We may picture the waves in the present case as chiefly transverse waves.
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slightly curved, and diminishing in height from the central line outwards.

The remaining curves are for radial lines outside the usual pattern and show

how the wave disturbance is continued in this region. D is for an angle of

about 26° 26' with the rearward central line ; it shows an appreciable wave

effect, but there are indications that it decreases more rapidly with distance

from the origin than for the previous curves. A similar effect, more pronounced,

is shown in E and F, for radial lines at 45° and 90° respectively.



[Reprintedfrom the Proceedings of the Royal Society, A, Vol. 122.]

The Vertical Force on a Cylinder Suhnerged in a Uniform Stream.

By T. H. Havelock, F.R.S.

(Received November 28, 1928.)

1. The horizontal force on a circular cylinder immersed in a stream is

familiar as an example of wave resistance. The following note supplies a
similar calculation for the resultant vertical force. The problem was sug-
gested in a consideration of the forces on a floating body in motion, the hori-
zontal and vertical forces and the turning moment ; but the case of a partially
immersed body presents great difficulties. It seemed, however, of sufficient
interest to compare the resultant horizontal and vertical forces for a simple
case of complete immersion for wHch the calculations can be carried out.
The horizontal force, or wave resistance, has usually been obtained indirectly
from considerations of energy, but a different method is adopted here for both
components of force and the turning moment. In a former paper the method
of successive images was appUed to the problem of the circular cylinder, taking
images alternately in the surface of the cylinder and in the free surface of the
stream. Using these results to the required stage of approximation, the com-
plete force on the cyUnder is now obtained as the resultant of forces between
the sources and sinks within the cylinder and those external to it. The same
method can be appHed to any submerged body for which the image sytems are
k-nown, and the resultant force and couple calculated in the same manner.
The proposition used in this method is that for a body in a fluid, the motion

of which is due to given sources and sinks, the resultant force and couple on
the body are the same as if the sources and their images attract in pairs accord-
ing to a simple law of force, inverse distance for the two-dimensional case and
mverse square of the distance for point sources. This fairly obvious proposition
follows directly from a contour integration in the two-dimensional case ; and,
in view of the appHcation, the extension is given in § 2 when the flow is due to
a distribution of doublets. In § 3 the horizontal and vertical force on a
circular cyHnder are obtained by this method, the former agreeing with the
usual expression for the wave resistance. The different variation of the two
components with velocity is of interest, and the expressions are graphed on the
same scale. The additional vertical force due to velocity changes direction at
a certain speed, and is clearly associated more with the surface elevation
immediately over the centre of the cylinder. In § 4 reference is made to the
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couple on the cylinder. This should, of course, be zero for a complete solution ;

it is verified that the method used here gives zero moment up to the stage of

approximation in terms of the ratio of the radius of the cylinder to the depth

of its centre.

2. Consider steady two-dimensional flow of a liquid of density p past a

solid body, the motion being irrotational and there being no field of force. The

motion being specified in the usual manner by a function w of the complex

variable x + iy, the resultant force (X, Y) on the solid and the moment M
about the origin are given by

X-^Y = ^p^^(^Jdz, (1)

M.-i.|.(g)V m

where in (2) the real part is to be taken. In each case the integration is taken

round the contour of the rigid body, or indeed round any contour enclosing

the body but excluding any external sources and sinks.

Now suppose the motion to be given by

w = — S m, log (z — 2r)
— S m^ log (z — z,), (3)

where the suffix s refers to the given distribution in the liquid, and r to the

image system within the surface of the body, m, and m^ being real.

Forming {dwldz)^, we see that this quantity has simple poles at the points

z, within the contour of integration ; and we obtain at once from the theory

of residues

X-tY^-27rpS3£k, (4)
z — z
r i

the summation extending over the external and internal sources taken in

pairs. Hence we obtain

X = 27rp 2 OT,ms (a;, — ar^j/R,/,

Y = 27r? Sm,»«, {y, — y,)IRJ. (5)

It follows that the resultant force is the same as if each pair of external and

internal sources attracted each other with a force 27cpmrm,/R„, where R„

is the distance between them.

It may easily be verified in the same way from (2) that the moment M is

accounted for by the same forces acting at the internal sources. It is con-

venient to have a similar analysis for doublets, If M is the moment of a
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Vertical Force on Cylinder Submerged in Uniform Stream. 389

doublet making an angle a with the axis of x, we have with the same notation

as before,

m; = S ^^^ + S ^^ . (6)
z — z, z —z,

Forming (dw/dz)^ we see that again the only terms which give any contribution

to the integral (1) are the product terms in r and s, and for a typical term we

have

r dz ini

Thus we obtain

X-^Y = -4xpS'»i—-, (8)

and the contribution to the total force due to M, and M^ is

X,, = — 47TpM;\I, cos (a, + a, — 36,,) /R,/,

Y„ = 47rpM,M, sin (a, + a, - 3e„) /R„^ (9)

6„ being the angle between Ox and the vector R„ drawn from the doublet

(r) to the doublet (s). Further, calculating the total moment M from (2),

the product terms M^, are the only terms which give any value, and the

corresponding contour integral is

f
^-^ = 2ni "- + "'

. (10)

Hence we obtain

M = — 27tpiSM^/(-+»'' (2, + z,) (z, — 2,)-3, (11)

the real part to be taken.

On reduction it is seen that this consists of the sum of the moments of the

forces given by (9) acting at the internal doublets, together with a couple for

each pair of internal and external doublets of amount

27rpM,M, sin (a, + a, - 20,,) . /R,/. (12)

The contribution to the forces and moment on the body when the external

field includes also a uniform flow can easily be obtained in the same manner.

3. We now apply these expressions to a circular cylinder of radius a sub-

merged in a uniform stream. Take Ox in the undisturbed surface of the stream,

Oy vertically upwards ; and let the stream velocity be c in the negative direction

of Ox. Let the centre C of the circle be at the point (0, — /)• Then the image

of the stream in the circle is a horizontal doublet at C of moment ca*. The
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image system of this doublet in the free surface of the stream consists of a

horizontal doublet of moment —co? at C^ the image point (0,/), together with

a continuous line distribution of doublets along a horizontal line through Cj

in the negative direction of O2;. At a point (

—

f, f) on this line the moment

of an elementary doublet is 2KfflaHp, where k^ = gjc^, and the axis of the

doublet makes an angle kqP — in with the positive direction of Oa;.* We may

stop at this stage meantime.

In the notation of the previous section the external system (s) consists of

the imiform stream and the image system just specified ; the internal system

(r) is the doublet ca^ at the point (0, —/).

For the wave resistance R, we have from (9)

R = _X = 8npK,c^a' C ^os {k,p - ^n -3Q) ^
^ ° Jo (p^ + ^Pf"

^

where

sin 6 = 2fl{f + 4/2)^ ; • cos 6 = - 'pUf + if)K

This gives

p o ,, . rPJP' - W) sin Kop+2/(3p^ - ^P) cos Kop
R = -87rpKoc'a*

j^ (^2 + 4/2)3 "^P- (14)

p sin /cop + 2/cos /cpp
,

dp = TTe "', (^ 1 fi^

p2 + 4/2
^

^ '

by differentiating twice with respect to / ; and we obtain

R = iTi^p/CoVe--""-^, (16)

in agreement with other methods.

Turning to the vertical force, if we calculate it from the expressions in (9)

we shall obtain the hydrodynamic part depending upon the velocity. There

is also the hydrostatic part gpna^, arising from the term gpy in the expression

for the pressure ; and in addition there is the weight of the cylinder itself.

We may assume the cylinder to be of the same density as the liquid, and then

the calculation will give the total vertical force.

Measui'ing Y vertically upwards, the contribution of the two finite doublets

at C and Cj is, from (9),

-TTpc^a*l2p, (17)

*'Roy. Soc. Proc.; A, vol. 115, p. 271 (1927).
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The part arising from the interaction of the line distribution of doublets and

the doublet at C is

(18)
Jo (r + *jT"

which reduces to

^°'
Jo ip^ + ipr ^'

Sttp^ocV rP(f-^P) cos x^P - 2/(3p^-4/^) 3in>c,p^^_
^^^^

Jo (p2 + 4/2)3

This integral may be evaluated by differentiating twice with respect to / the

integral

r pcosKop-2fsmKoJJ
^p _ _ g-2,„/ 1- (e2

. o
/), (go)

Jo p^ + ip

where U is the logarithmic integral.

Collecting the terms from (17) and (19) we obtain finally

2/3
(1 + 2kJ + iK.^P - SK.^Pe-'-'^m (e^'"/)}. (21)

This vertical force changes from upwards to downwards at a certain velocity.

For when c is small, that is K^f large, using the asymptotic expansion of the

logarithmic integral we find that Y approximates to T:pc^a*l2f^ ; on the other

hand, when c is large, Y is approximately — 7ipc2a*/2/3. The value of (21)

can be calculated readUy from tables and it is of interest to compare the

relative values of R and Y and their variation with velocity.

The figure shows R and Y graphed on the same scale on abase of c/V(g/).

R is very small at low velocities and then increases rapidly to its maximum at
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about c = \/(sf)- ^^ *^^ other hand Y is relatively large at lower velocities,

and changes sign at about c = 0-84 y^igj)- The wave resistance arises from

the flow of energy in the regular waves to the rear of the cylinder, while the

vertical force is associated more vdih the surface elevation near the cylinder.

The surface elevation immediately above the centre of the cylinder is given by*

Tj = {2aVf) {1 - Ko/e-''"/ li (e-o/) }, (22)

and for comparison this is shown on the figure with an arbitrary scale for the

ordinates. Doubtless the variation in the vertical force with the velocity

is connected with the mean curvature of the lines of flow in the neighbourhood

of the cylinder. It may be noted that the usual approximation for the pressure

condition at the free surface involves neglecting the square of the slope of the

surface ; this would ngt affect the present approximation but would come into

the next stage involving higher powers of the ratio ajf.

i. Obviously in a complete solution the fluid pressures on the cylinder

cannot give rise to any couple. As the method of successive images amounts

to an expansion of the solution in ascending powers of ajf, it is worth while

verifying that the couple is zero at each stage of the approximation. With the

images specified up to the present the couple comes from the interaction of the

doublet at C with the line distribution to the rear of Cj^. Using the result (12),

this gives a moment / l
sin (^Kop --^- 26

j
47rKopc2aM „

, .., dp,
Jo P + 4/

(23)

which, on substituting for 6, gives

, , r 4p/sin Kop - (p^ - iP) cos Kop
477Kopc^a^J^

(7+4f^)^
* (24)

This can be evaluated, and its value is not zero. But it can be seen that we

shall get a contribution of the same order, in the radius a, from the next stage

of successive images. The next set of images is internal to the cylinder and

consists of a horizontal doublet of moment —ca*/4/^ at the inverse point C*

whose co-ordinates are (0, —/+ o"/2/), together with a continuous distribu-

tion of doublets on a semi-circle described on CCg as diameter. At a point

on this semi-circle whose co-ordinates are

a'p _r. 2ay
2' / ' .p2 + 4/2' ' p2 + 4/2

*'Rov. Soc. Proc' A, vol. 121, p. 517 (1928).
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the moment of an elementary doublet is 2KQca'^d'pj{'p^ -{- 4/^), and its axis

makes with Oa; an angle

2tan-i(p/2/)-/foJ) + i7r.

Now at this stage the only additional terms of order a* for the turning moment

arise from the interaction of the external uniform stream and the semi-circular

distribution of doublets just described.

It can easily be seen that the amount due to the uniform stream and an

internal doublet of moment M^ at an angle a, to Ox is

— 27TcpMr sin a,.

Therefore the additional couple of the specified order is

' sin {2 tan~^ JVl^f) — Kop-\-n/2}

On reduction (25) comes to precisely the expression (24) with a minus sign

and therefore the couple on the cyhnder is zero to the order specified.

-.00

47r/<:opcV
Jo

2 # (26)

Harrison and Sons, Ltd., Printers in Ordinary to His Majesty, St. Martin's Lane,
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From the Philosophical Magazine, vol. viii. October 1929.

Forced Surface- Waves on Water.

By T. H. Havelock, F.R.S.

1. T
I
"^HE tbllowing notes deal with some problems of forced

X waves on the surface of water, the waves beino;

forced in that the normal fluid velocity has an assigned

value at every point of a given vertical surface ; the problems

treated here are the elementary cases when the given

surface is an infinite plane or a circular cylinder. The
motion of the water surface consists in general of travelling

waves together with a local disturbance, and the type of

solution is one which may have possible application to the

waves produced in water by the small oscillations of a solid

body.

2. Consider first deep water, and take the origin in the

free surface with Ox horizontally and Oz vertically down-
wards. The velocity potential satisfies

B!^ + 9L^=o (1)

Neglecting the square of the fluid velocity at the free

surface, and omitting the effect of capillarity, the condition

at the free surface is

W-^Tz ^'
^^^

and the surface elevation f is given by

^-Mh. ••«
For simple harmonic motion we assume a time-factor

e^"', and (2) gives

«o<^+|^=0, at^= 0, .... (4)

with Kij— a-lg.

Suppose now that we are also given

-|^=/W.-',at^= 0, .... (5)
ox

where f {z) is given for all positive values of z ; and we
require a solution of (1), (4) and (8) suitable for positive

values of x.
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The solution can be obtained by various methods ;
for

example, by combining suitable elementary solutions of (1)

and (4). The usual solution for free progressive waves is

found from
0_^-^o^-i«„x (6)

There is also another elementary solution,

tji = e~'"'(KCos Kz— K(. sin Kz), .... (7)

where *: may have any real positive value.

We can generalize these solutions by means of the

following integral theorem, which may easily be verified :

2 f" C" // . (kcoskz— kq sin kz) {k cos ku — tfp sin xa)
^^ ^^^

-^Jo Jo -^ '^' + «o'

+ 2«:oe-''^i f {^')e-'">'^ doc (8)

Jo

Here f(z) is given for all positive values of z, and it should

be remarked that the proof involves the Fourier integral

theorem, and that/(s) is subject to suitable limitations.

We may now write down a solution which satisfies the

condition (5). It is clear that, on the forced vibrations so

obtained, we may superpose any free oscillations for which

B</>/9« is zero over the plane «= ; we shall choose the

latter so that the complete solution represents waves

travelling outwards for large positive values of x. This

solution is given by

C" 2
^= 2£'-''o-3in [at — /Co*') I f {KJe-'^'-da + - cosat x

Jo '
"

[k cos KZ — Kq sin kz) x

This gives a normal velocity /(s) cos o-< over the plane

A-=0, and reduces to a positive wave for large positive values

of x. The corresponding surface elevation is

9 r'^

f = — cos(o-4— /<;o«) 1 f{a)e-'""'da
9 Jo

2cr . r" r°° , , , « cos Ka— /Co sin/ta ^, , ,,„,- -^ sin ai /(«) -^—5^ e-'-dK dec. (10)
"^9 Jo Jo « +«o

The first term of (10) is a plane progressive wave of the

Jo Jo
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same wave-length as the free wave of the same frequency,

while the second term may be called the local oscillation.

If we take /(z)= «~''»^, the second term in (9) and (10)
vanishes, and we regain the expressions for a simple

progressive wave.
If we take, more generally,

f{z)=Ae-P' (11)

over the whole range for z, the second integral in (10) can

be evaluated explicitly in terms of Cosine and Sine integrals,

and we obtain

. 2(tA , , 2a-A sin at
c= ooa(at— KQX)~ —7 X

X \_Gi{px) cosp.x— Gi{K^x) co3KQX + Si(pj:) sinp.v

— Si{Ki)X) a'lnKfjX— ^ (siapx— sin Kox)"]. . (12)

As we make p smaller we approach the limiting case of

constant normal velocity over the whole of the plane .r= 0.

It is of interest to note that the amplitude of the travelling

wave remains finite in the limit, but that the amplitude of

the local oscillation becomes logarithmically infinite atx= 0.

3. A problem of some interest is the decay of the vertical

oscillations of a floating body due to the propagation of

waves outwards from it, but a direct attack upon the

problem is difficult. We may perhaps obtain a rough

estimate by applying the preceding analysis to a simplified

form of the problem. Imagine a log of rectangular section

floating in water with the sides vertical ; left be the breadth

and d the depth immersed. Now suppose the log made to

execute small vertical oscillations of amplitude a and

frequency a. Let one of the sides of the log lie in the

plane a7= ; then the disturbance in the water on that side

may be regarded as due to a certain oscillating distribution

of normal fluid velocity over the plane .t'= from z = dio
z^co . If we make the assumption that this is of the form

f{£)(i03at, (13)

then, from continuity of flow, we have

2 y f[z)dz=aah (14)

Without attempting to solve the actual problem, let us

assume
f{^z) = ke-v'; (15)
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then from (14) we have

k= ^aabpe''^ (16)

From (10) we find that the amplitude of the waves
travelling out on either side of the log would be

9 Jdd

a abp

A large value of p would correspond to a concentration

of the outward flow round the lower edges of the log ;

hence this estimate gives, as an upper limit for the amplitude,

{a''ablg)e-''^ls (18)

4. If, in the general problem of §2, the normal velocity

at ,2;= is a function of y as well as of z, the solution of the

three-dimensional motion can be obtained by an additional

Fourier synthesis.

Assume first that is proportional to cos «'(_?/— /3), then
the potential equation is

||+|t-^-*=0 09)

The time entering as a simple harmonic factor, the
boundary condition at ^= is given by (4).

We have now the following elementary solutions, omitting
the factors in y and t :

^^^-*„^-irC«o=--r'2)i^ for «'<«(,;

^= e-^('''+«''>^(«cosA:3-KoSin/cs). . . (20)

The theorem (8) may be generalized, with suitable

limitations on the function /(y, r), to

2«o _— e

TT'

/'ao ^QO /^co

»M dA d^\ f{a,^)e-'''>-cosK'(y-IS)dK'
Jo i'-" Jo

A du\ dK] d^\ /(«,/S)x
Jo Jo J-00 Jo

{k COS KZ

—

Kq sin Kz) X

X (k cos Ka— Kn sin KOt) ,, ^v , , ,„,
"^ «2,,2 ° ' COS >c'{y-/3)dK'. (21)
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Suppose that at j:= we are given

-'^^f(y,z)cosat (22)

Then from (20) and (21) we obtain an expression for <j)^

7ali(] for positive values of x, and adjusted so that it

represents progressive waves at large values of x ; we find

,^='^%-''o4 iaf d8 rV(«> /3) sin i<Tt-x \/kq^-k-') x
" Jo J-" Jo

Jo Jo J-« Jo

(/Kcos «? — Kosin Ks) (a; cos Ka— ATosin/ea) , , ('9Q\
""

(«^+ «o^)(«» + «'^)i
''''•

•

^'^^^

A particular case which would illustrate the spreading of

plane waves emerging from a canal into an infinite sea is

obtained by taking

f(y,z)= (gaKo/a-)e-'<''cosaf, . . . (24)

over the whole range for s and between the limits + b for i/,

the function being zero outside these limits for y. Substi-

tuting in (23), the third term disappears, and also the

integrations with respect to /3 can be effected in the

remaining terms. We find that the surface elevation for

this case is given by

y_2Koa C'" sin K'b cos K'y cos {at— x(Ko^— K'^y} ,

^~^rjo «'(«o^-«'^)^
'"'

r"sin«'6cos/«:Ve-^'^'=-'o=)^
, ,

The form of the surface could be studied by approximate
evaluation of these integrals as in similar diffraction

problems.

5. We return to plane waves, and suppose now that the

water is of finite depth h. We have the additional condition

2Koa

M_
B^

= 0, for2= A (25)
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The corresponding elementary solutions are

^_g.(a^-«„^)cosh«:o(2-A), .... (26)

where Kq is the real positive root of

^/<otanh «oA=o'^; (27)

and

(f)
= ei'"-<''' cos K{z— h), .... (28)

where k is any real positive root of

^a: tan A;7i + 0-2= (29)

This equation has an infinite sequence o£ real roots,

together with an imaginary root zkq. W© assume then the

possibility of expanding a function /(s) in the range

0<2'<A, in the form

f [z)=:A cosh kq{z— K)-\-'1.Q cos K[z— h), . (30)

where the summation extends over the real positive roots

of the equation (29). We find that the coefficients are

given by

4koA =

B =

2A;(,/i f sinh 2K(ih

4«

I f {a) cosh Kiy[a.— h) da,

Jo

9~7 i f {a) cos K [a— h)du. . . (31)

f{z) COS at, .... (32)

2ich + sin i

If at j;= we are given

then the velocity potential for positive values of x, such

that the motion at a distance is a plane progressive wave,

is given by

(ji-=AKf)~^ coshKiy(z— h) sin {crt— ifQa:)

+ SB«:~'e-''^cos«:(5— 7i) cosfff. . (33)

Suppose, for instance, that one end of a long tank is

made to execute simple harmonic vibrations of small

amplitude a, then we have/(s)= oa. The values of A and B
follow from (31), and from (33) we deduce the surface

elevation in this case :

2o-2a sinh 2K(,k , , ,

K= 7^—

;

. ,

"—T- cos{ at— K^)
^«o(2«o/i + sinh 2ko/i)

.s^ 2o-W"''^sin 2/cA ,^..— sin o-fZ— , , , , „ ;> . . • (34)
gK{2Kh + sin 2k/i)
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6. The same analysis may be applied to circular waves,

and we limit consideration here to symmetry round the

origin. The normal fluid velocity is supposed to l>e assigned

over a vertical cylindrical surface ; for example, we take

—^ =/(r) cos cri, for r= a. . . . (35)

The velocity potential satisfies

|lf+l|_^+^t=0 (36)
dr' r or oz

The condition at the free surface is the same as before, and
we assume the water to be deep. Elementary solutions of

the required form are found in terms of suitable Bessel

functions. The solution

(^= e""-'">^Ho^=)(/fo'-) (37)

represents diverging waves for large values of r ; while in

the solution

(f)
= e''^'(K cos KZ— KQsia Ks)Kti(Kr), . . (38)

Ko(«r) tends exponentially to zero for large distances from
the origin.

Generalizing as before, we obtain the solution

H:'^'(«o«)Jo ^^ ^
X

{k cos Kz— /Co sin icz) x

C" C" r/ -s
Ko(/i;r) x(/<:cos/<:a— Kosin/ca) , , ,„„,

X 1 1 / «) TZ u \ — 2";—^ dicda, (39)
Jo Jo

' KK<i'[Ka) K^ + K^-

where the real part is to be taken.

The surface elevation at a great distance from the origin

is given by

K I i-r, ^ ^TTT n1 f{o,) €->'"'' da, (40^
g Vir/for/ Jo(A:oa)-tYo'(«oa) jo '

v
/

or, in real terms, this gives

/(a)e-''o"dax

Jo '('^o'^) sin {at-KQT+-^ 77-)-|-

+Yo'(Koa) cos (g^-Kpr+^ff) ,^-^.

^
Jo'2(/<o«)+Yo'H-'<o«)
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This expression mioht be used, as in §3, to give an
estimate for the energy propagated outwards from a circular
cyhnder immersed to a given depth, and making small
vertical oscillations of given frequency.

311



[Reprinted frotn the Proceedings of the RoyaL Society, A, Vol. 131.]

The Wave Resistance of a Spheroid.

By T. H. Havelock, F.R.S.

(Received February 20, 1931.)

1. A method which has been used to calculate the wave resistance of a

submerged solid is to replace the solid by a distribution of sources and sinks,

or of doublets, the distribution being the image system for the solid in a uniform

stream. The cases which have been solved hitherto have been limited to

those in which the image system is either a single doublet or a distribution of

doublets lying in a vertical plane parallel to the direction of motion. It is

shown here how to obtain the solution for an ellipsoid moving horizontally

at given depth below the surface of the water, and with its axes in any assigned

directions. The present paper deals specially with prolate and oblate spheroids

moving end-on and broadside-on, the general case of an ellipsoid with unequal

axes being left for a subsequent paper.

In § 2 it is shown that the image system for an ellipsoid in a uniform stream

is a certain surface distribution of parallel doublets over the elliptic focal

conic, the direction of the doublets being in general inclined to the direction

of motion ; if the motion is parallel to a principal axis, the doublets are in the

same direction. For a spheroid the image system reduces to either a line

distribution or to a surface distribution over a certain circle ; explicit expres-

sions are given in § 3 for prolate and oblate spheroids when moving either in

the direction of the axis of symmetry or at right angles to that axis.

The calculation of the wave resistance is considered in § 4. An expression

has been given previously for the wave resistance associated with two doublets

at any points in the liquid with their axes in any assigned directions ; this can

be generalised to cover continuous line, surface or volume distributions of

doublets. Incidentally, it is shown how by integration we may pass from

a three-dimensional doublet, corresponding to a submerged sphere, to a two-

dimensional doublet, corresponding to a circular cylinder. In § 5 expressions

for the wave resistance are developed for the particular cases of moving

spheroids of § 3. In the final section these results are illustrated by numerical

and graphical calculations for certain series of models. In each case the

axis of the spheroid is supposed horizontal, and to make the calculations

definite the depth of the axis is taken to be twice the radius of the central

circular section. The models consist of a sphere, radius b ; an oblate spheroid
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276 T. H. Havelock.

with semi-axis a = 46/5 ; and prolate spheroids with a = 5b/i, 56/2 and 56

respectively. Graphs are given for the variation of wave resistance with

velocity for these five models (i) when moving in the direction of the axis of

revolution, (ii) when moving at right angles to that axis ; these illustrate

respectively the effect of increased length, and the effect of increased beam and

area of cross-section. It is of interest to note that increase of length gives

diminished resistance at low speeds, with a subsequent rapid increase ; while

increasing beam in the second series gives increased resistance at all speeds.

2. Consider the motion of a solid boimded by the. ellipsoid

a^ ¥ c^

in an infinite liquid, the velocity being u parallel to Oa;.

It is well known that if V is the gravitational potential of a uniform solid of

unit density bounded by (1), then the velocity potential of the fluid motion is

given by

^
27t; (2 - ao) dx' ^

'

where

Since

ahc f" -,
^

. (3)

dx' dy' dz'

\\\ {(a; _ a;')2 + (y _ yy ^ (^ _ ^'^sj:1/2- (4)

taken throughout the ellipsoid, it follows from (2) and (4) that the velocity

potential of the fluid motion is that due to a uniform volume distribution of

doublets throughout the ellipsoid, with their axes parallel to Ox, and of moment

per unit volume equal to m/2tc(2 — ag).

Similarly for motion parallel to Oy or O2 we have a Uke result with a corre-

sponding quantity Pq or y^ taking the place of a.^. For motion in any other

direction we resolve the velocity along the three axes and combine the

component doublet systems.

The gravitational potentials of two solid homogeneous elHpsoids, bounded

by confocals, at any point external to both are proportional to their masses.

Hence in the hydrodynamical problem we may replace the distribution of

doublets throughout the ellipsoid (1) by a uniform distribution through any

interior confocal, increasing the moment per unit volume by the factor

ahc
I^ {{a? + X) (62 + X) (c^ -f X)}, (5)

where X is the parameter of the confocal.
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Wave Resistance of a Spheroid. 277

la particular, we obtain tlie simplest system by taking the confocal which

reduces in the hmit to the elUptic focal conic

^ = ; -^^ + ij^ = 1' (6)
a^ — c^ 6^ — c^

with a^ b^ c. In this case the volume distribution of doublets reduces

to a surface distribution over the plane area bounded externally by (6). The

moment per unit area is found by putting X^ ^ — c^ + S and taking limiting

values as S -> 0, taking into account the factor (5) and the limiting thickness

of the confocal at each point. We may refer to the distribution found in this

way as the image system for an ellipsoid in a uniform stream.

If the motion is parallel to Ox, the doublets are parallel to Ox and are

distributed over (6) with a moment per unit area given by

ahcu /, _ x^ ^__Y^ CYx

Ti: (2 - ao) (a2 - 0^'^ {b^ - c^Y'^ \ a^ — c^ b'' — cV '
^>

There are similar expressions for motion parallel to Oy, Oz with Pq, Yq

respectively in place of ag.

3. We shall specify now the particular results for spheroids, using the known

values of ag, Pq, Yq. We take Oa; to be the axis of symmetry, with c = 6

;

and consider first motion parallel to the axis of symmetry.

For a prolate spheroid, the focal conic reduces to the line joining the foci

of the generating ellipse. The image system reduces to a line distribution

along Oa;, from x= — ae to a; = ae, of moment per unit length

Am (aV _ a;2)^ (7)

where
A-i = 4e/(l - e2) _ 2 bg {(1 + e)/(l - e)}, (8)

with e^ = 1 - 6Va2.

For an oblate spheroid under the same conditions, the system is a surface

distribution of doublets parallel to Ox, over the circle

a; = 0; 2/2 + 22 = 6V2, (9)

where e'^ = 1 — a^/6^ ; and the moment per unit area is

Bm (6V2 -if- z-fl-, (10)

with

B-i=2ff(sin-i e'-eWl-e'2). (11)

For motion at right angles to the axis of symmetry, we take Oy as the direction
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278 T. H. Havelock.

of motion. For a prolate spheroid the system is a line distribution along Ox
between a; = ± «e, with axes parallel to Oy, and of moment per unit length

k'u (aV _ x"^), (12)
where

A'-i = 2e (2e2 - 1)/(1 - e^) + log {(1 + e)/(l _ e)}. (13)

For an oblate spheroid the system consists of doublets parallel to Oy, over the

circle

x = 0; 2/2H-3- = 6V2, (U)

and of moment per unit area

B'u (6V2 — y^~- z^f, (15)
where

B'-i = TT {e' (1 + e'2)/(l - e'2)i/2 _ sin-i e'}. (16)

For e = 0, all these distributions reduce to the finite doublet at the origin

appropriate to the motion of a sphere.

4. Consider now the wave resistance when an ellipsoid is wholly immersed

at some depth in water and is moving with constant horizontal velocitv ; we

obtain the first approximation for the resistance by replacing the elhpsoid

by the image system which was discussed in the preceding section. The

resistance is derived from the doublet system by expressions which have been

given previously
; in particular, reference may be made to an expression for

the wave resistance corresponding to two doublets at any points in the water

with their axes in any given directions.* We shall not quote the general

result, as we require here only the case in which the doublets have their axes

parallel to the direction of motion. Take the origin in the free surface of

the water, Oz vertically upwards ; for a doublet of moment M at the point

(h, h, —/) and a doublet M' at Qi' , k', —/'), both axes being parallel to Ox, the

direction of motion, the wave resistance is given by

R = IGTrp^o* f {We-^^'i'""'' + M'^e-^""^'
=•=<='

«

Jo

+ 2MM' e-^'^'+f'^ ^""'^ cos A cos B} sec^ dQ, (17)

with

K(, = g/u^ ; A = (Co (7i — h') sec 6 ; B = Ko(k—k') sin sec^ 0.

This can easily be extended to continuous distributions. For distributions

' ' Proc. Roy. Soe.,' A, vol. 118, p. 32 (1928).
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Wave Resistance of a Sjiheroid. 279

in a vertical plane parallel to the direction of motion, to which previous work

has been limited, we have

R = 167rp/<:o'* Td/ ^df r dh T dh' [""m {h,f)M{h',f)
Jo Jo J-oo J-oo Jo

X e-"' (/ +f"> ""''
" cos {kq {h-h') sec 6} sec^ % dQ, (18)

where we have taken 2/
= as the plane of distribution. This expression can

be written as

R

where

167vp/Co*r (P2 + Q') sec^ e c^e, (19)
Jo

V + iQ= rdf rdh . M {h,f) .
e-«./s«e^«+'''.*«<=«. (20)

Jo J-w

When the distribution is in a plane perpendicular to the direction of motion,

say the plane a; — 0, it is easily seen that we have the same expression (19)

for R, but now

f 00

tQ = df
Jo

dk . M {k,f). c-'./ sec" e+t«.i sine sec" 9_ (21)

If the doublets are distributed along a line, the suitable forms for R may

readily be deduced from these expressions.

Before proceeding to apply these results to spheroids, we may notice a simple

case of (21). The first problem in wave resistance to be solved was that of a

two-dimensional doublet corresponding to the motion of a circular cylinder

with its axis horizontal and moving at right angles to the axis ; the next

problem was the three-dimensional doublet for the motion of a sphere. By

means of (19) and (21) we may pass from the second problem to the first by

integration.

Write down tlie velocity potential of a uniform distribution of three-dimen-

sional doublets of moment M per unit length over a straight line of finite length,

the axes of the doublets being at right angles to this line ; evaluate the expres-

sion in the limit when the length of the distribution becomes infinite, and we

obtain the velocity potential of a two-dimensional doublet of moment 2M.

Consider now the expression for the wave resistance for the same process
;

if 21 is the length of the distribution, (21) gives

P + -iQ=j Me-'»-^ *'-^'=' + ;«.A siD e 3ec= s ^^_ (22

)
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280 T. H. Havelock.

Evaluating the integral and using (19) we have

R = MnpK.m^r sm^ {x,l sin 6 sec^ 6) ^ _ ,„^, ,,,. , ^^
Jo sin^ 6 cos 6

The wave resistance for the corresponding two-dimensional doublet is for

unit length perpendicular to the plane of motion, and should be given by
lim (R/2Z) as ? -> CO . From (23), this is

Lim 327rp/Co2 M2 e-^'"/
f°°

sin^ {k^u VIT^A") e-^""^""/'" u-'Wl+u^lPdu
'-*« Jo

= leTtVo^MSe-S"', (24)

and this is the known expression for the wave resistance of a two-dimensional

doublet of the corresponding moment 2M.

5. We proceed now to the wave resistance of a submerged spheroid, taking

in each case the axis of the spheroid to be horizontal and at a depth / below

the surface of the water.

Prolate Spheroid in Direction of Axis.—From (7) and (20) we have

(P + iQ)lkue-'"f""''- ' = (aV - h^) e'"-*
^^-^

« dh
^ —ae

= (8Tza^e?/Ko^ sec^ 6)1/2
j^^^ (^^^.g gg^. q^^ ^25)

where J denotes the usual Bessel function. Hence from (19),

R = USn^gpah^A^ T '
e"-"-^'

«^='
' {J^,^ (k^ ae sec e)}^ sec^ 6^6, (26)

Jo

a result which was obtained previously by a different method.* For purposes

of numerical calculation it is convenient to change the variable in the integration

from 6 to tan 6 ; we then have

R = USn^gpah^'Ah-"
J

e'^'' {J^/^ (K^ae Vf+l")}' dt, (27)

where p = ^Kq/ = 2gf/u^, and A is given in (8).

Oblate Spheroid in Direction of Axis.—Here we have a surface distribution

given by (10), and remembering that the centre of the circular distribution is

at a depth/, (21) gives

(P -f iQ)/Bue-'"f ''"'
» =

I" I

(6V2 - y^ — z^fl^ e"''
''"' «+^''«3' ^™ « »^<==

« dy dz, (28)

taken over the circle y"^ ^ z^ = We!'^.

* ' Proc. Roy. Soc.,' A, vol. 95. p. 365 (1919).
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Taking the integration with respect to y first, we obtain, after integratioti

by parts,

r(b'e"-z'fi'

{kq sin 6 sec^ 6)~^
I y {b^e'^ — y^ — 2^)""^'^ sin {K^y sin 6 sec^ 6) dy
J -(6'e"-z»)V'

= a h^ Ji («o V6V2 - 22 sin e sec2 6). (29)
Kf^ sm 6 sec^ t) ^ ^ "

The integration with respect to z now becomes

f
(62g'2_ ^2)1/2 e«r sec

«J^(^^ ^62g'2 _ ^2 gj^ SBC^ 0) dz, (30)

and this is equivalent to evaluating

/•'r/2

2 cosh (a cos ^) Jj (P sin 0) sin^ <^d^, (31)
Jo

where a = Kjie' sec^ 6. P = ^o^*^' ^'^i ^ ^^^^ ^
The integral (31) may be evaluated as a special case of Sonine's integral, or

by expanding cosh(a cos ^) in powers of cos <j>, integrating term by term, and

summing the resulting series. The latter expression for (31)- is found to be

Noting that in the present problem, a ^ p, the value of (32), or of the integral

(31), is

2(fr(^;r:^i3/2{(a^-P^)n (33)

where the Bessel function is given by

l3/2(-) = (-r(cosh.-!2i£). (34)
\-KXl \ X I

Collecting these results, we obtain

(P + tQ)/BM e-'-'f
''"'

' ==2{-KWe'^l2Ko^ sec^ Q)^^ I3/2 {Kobe' sec 6). (36)

Finally, from (19) we find

R=32 K^pKobh'^B^u^ r ^ e-2-./«ec- e
^j^^^ (^^j^/ gg^, Q)p ^^2 q ^q (gg)

•'0

or in the same form as (27),

R=32 K^gpb^e'^B^e-"
\ e'^^ {I3/2 [K^be' ^/\T¥)f dt, (37)

where B is given in (11).
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Prolate Spheroid at Right Angles to its Axis.—The distribution is given in

(12), and in this case we use (21) instead of (20) ; apart from this, the calcu-

lation follows the same course and we obtain finally

E = USn^gpah^A'^ g-2«./sec= e
g^^^ (^^^^ gj^ q g^^a

e)j2 ^qs 6 dQ/sin^ 6
Jo

poo

= USn^gpah^A'^e-^
J
^ e'^'' {J^,^ {k, act VTT^f t'^ dt, (38)

with A' given in (13).

Oblate Spheroid at Right Angles to its Axis.—The distribution given in (15)

lies in a plane parallel to the direction of motion, so we now use (20) ; the

integrals are, however, of the same type as those akeady discussed and the

analysis need not be given in detail. Using (15), (19) and (20), we obtain

after some reduction

R = 32nigpbh'm'^e-''
\

e""'- {I3/, (K.be'i VTT^)f r^ dt. (39)
•^

where B' is given in (16).

Sphere.—It may easily be verified that in the limit when e, or e', becomes
zero, all these expressions (27), (37), (38) and (39), reduce to the known result

for a sphere, namely

R = ingpK^^b^e-" T (1 + ty/^e-'"' dt

= ngpK,^¥e-i^ \k, (ip) + (l + i) K^ i^) } , (40)

where K„ is the Bessel function defined by

K„ {x) = [" e-^ ""^b « cosh nu du. (41)
Jo

6. The resistances for prolate and oblate spheroids have been worked out

independently in the preceding section. It is of interest to note that the

results have the same analytical form and may, in fact, be deduced from each

other by taking the eccentricity to be imaginary instead of real. For the

prolate spheroid, e^ = I — b^/a^ ; while for the oblate spheroid, e'^ = 1 — a^/b^.

It may be verified that if in (27) we write e = ie'b/a, the expression transforms

precisely into (37) ; and the same relation holds between (38) and (39).

7. The integrals in the various expressions can be transformed into alter-

native forms, or expressed in infinite series in several ways ; but either the

series do not converge rapidly enough for the values of the parameters which
are of interest, or else the functions involved have not been tabulated. It
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Ylave Resistance of a Spheroid. 283

has been found simpler to make num.erical calculations directly from the

integrals as given, although a considerable amount of work is involved in any

case.

The calculations have been carried out for a set of five spheroids, including

the sphere, the radius b of the central circular section being supposed constant

and the semi-axis a varied. The following are the data for the series :—A,

oblate, a = 46/5, e' = • 6 ; B, sphere, a = b ; C, prolate, a = 56/4, e = • 6 ;

D, prolate, a = 56/2, e = 0-9165 ; E, prolate, a = 56, e = 0-9798. The axial

sections of these forms are shown in fig. 1, drawn to scale, the diagram

showing one quarter of the section in each case.

Fio. 1.

We suppose the axis horizontal in each case and at the same depth/ below

the free surface. To make a definite case for mmierical calculation we take

f=2b, (42)

that is, the depth twice the radius of the central circular section. We consider

the models in two series, (i) with the axis in the direction of motion, (ii) with

the axis at right angles to the motion. Our object is to show the variation of

wave-resistance with velocity for each model, and to see how the graph varies,

in (i) with increasing length, and in (ii) with increasing beam. To give one

example of the calculations, when a = 56/2, (27) gives

R = 22-70Tzgpbh-'' r e-^'^{j3/2(0-5728 p ^K+t^)Y dt. (43)

For velocities which are of special interest, the parameter f ranges from about

1 to 8. A graph of the Bessel function J3/2 was drawn on a large scale and

values were taken from it, except for small values of the argument when they

were calculated from tables of Jj/2 ^"^^ J-i/2- Values of the integrand were

calculated for values. of t at intervals of 0-1, and the numerical integration

carried out by the usual methods. Owing to the exponential factor, it was

unnecessary to go beyond i = 2 in any case ; and for the larger values of f,

a smaller range of t was sufficient. This process was carried oat for seven or

eight values of f, and so a graph could be drawn for the variation of R with f,

that is, with velocity u.
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A similar mettod was used for the integrals in (37) and (38). For (39),

the Bessel function was expanded in powers of (1 + t^), and integration carried

out term-by-term ; the integrals involved are then of the form

I 2ra+l

(1 + fi)
a e~P'' dt, (44)

which can be expressed in terms of the Bessel function K„ defined in (41).

By recurrence formulae, the terms can be reduced to expressions involving

Kq and Kj, and tables of these fimctions are available. In all these calcula-

tions no attempt was made to obtain any high degree of numerical accuracy
;

the object was to obtain sufficient values to enable graphs to be drawn showing

the nature of the results and the main differences between the two series.

The graphs are shown in figs. 2 and 3 ; the scale is the same throughout, the

ordinates being R/ngph^, and the abscissae u/\/{gf).

The nature of the results is obvious from the graphs. Fig. 2 shows the

curves for the end-on motion. The curve B, which is the same in both
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Wave Resistance of a Spheroid. 285

speeds were found in the calculations for curve E, but could not be shown on the

scale of the diagram.

The graphs in fig. 3 for the broadside motion are ia striking contrast to those

in fig. 2. Here we have increased resistance at all velocities as we go up the

series of models ; the values for E were calculated, but could not be shown on

•12

•08

•04
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The Wave Resistance of an Ellipsoid.

By T. H. Havelock, F.R.S.

(Received May 9, 1931.)

1. In a recent paper* it was shown how to obtain, to the usual approximation,

the wave resistance of a solid of ellipsoidal form submerged at a constant depth

below the surface of water and moving horizontally with any orientation of

the axes ; and expUcit calculations were made for prolate and oblate spheroids

moving end-on and broadside-on. The present note is a brief study of an

ellipsoid with unequal axes, moving in the direction of the longest axis. It had

been intended to examine numerically in some detail the effect of different

ratios of the axes upon the resistance-velocity curve ; but the necessary

computations would have been lengthy, and the main results of interest may

be seen from the form of the expressions obtained for the wave resistance.

In the discussion attention is directed specially to cases in which the ratios

of the axes are similar to the corresponding ratios for a ship.

2. It is convenient first to evaluate some integrals which occur in the

analysis.

Consider the integral

taken over the ellipse

1 — —
-2 \l/2

COS oix cos Py dx dy, (1)

— -1-^ = 1.

Putting a; = m sin ^ cos Q, y = n cos (j>, we obtain

A = mn I sin^ ^ sin^ 6 cos (ma sui ^ cos 6) cos (n^ cos i^) dQ dcj).

Jo Jo

Integrating first with respect to 6, this gives

J'"
cos (wp cos

(f>)
J^ (ma sin cf>) sin^ ^ d^

_ /27i:%3py/2 f/a

(2)

(3)

V a '^

Jj^ (ma sin (/>) J-^/g (n^ cos
<f))

sin- </i cos^''- ^ d(j). (4)

* • Proa. Koy. Soc-,,' A, vol. 131, p. 27.5 (1931).
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This is a particular case of Sonine's integral,* and we obtain finally

A similar integral which we require is

B = f f
(l - - - ^y'%'^^ cos 7.x dx dy, (6)

J J V m^ 'n?/

taken over the eUipse (2).

This may be evaluated iu the same manner. To avoid possible ambiguity

we distinguish between various cases according to the relative magnitude of

mx and n^. We find

B = 2^'V^mn ^i"-' J^ ' >
, ma > n^

;

01/2 3/2 I3/2 {(«^P^ - mV)i/2} . „

= |7imw, ma = wp
; (7)

where I denotes the usual modified Bcssel function.

3. Consider a solid bounded by the ellipsoid

-^ + S + § = 1' (8)
a- o'- c"

moving with uniform speed u in the direction of Ox, the axis Oa; being hori-

zontal and at a depth / below the surface of the water, while the axis Oy is

vertical.

We shall consider first the case a > 6 > c.

The image of a uniform stream ia the eUipsoid is a distribution of doublets

over the plane area bounded by the elliptic focal conic

, .>
, ,, ,-l> z = 0; (9)

«"= — c 0- — C"

the axes of the doublets are parallel to Oa;, and the moment per unit area is

abcu /, x'^ y^ V^^

TT (2 - ao) {a^ - c2)i/2 (62 _ c^'^ [
~ a' ^ c''~ ¥ - cV '

where
r°° du

°'° "" "
Jo (a^ + uf^ (b^ + m)i/2 (c2 + m)i/2' ^

'

For numerical calculation ao may be expressed in terms of eUiptic integrals.

* G.N. Watson, "Bessel Functions," p. 376 (1st edn., 1922).
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From (12) of the previous paper, the wave resistance is given by

R = leTipV r'"p2 sec5 6^0, (11)
Jo

afcct.e--/-^ rr/ _x^ _ y Ji/%,„,,ec..

71: (2 — ao) (a^ - cY^ {b^ — c^^ J J V a^ — c^ W>— (?l

X cos (/Cga; sec 6) dx dy, (12)

the integral for P being taken over the ellipse (9), and /Cq = gju^.

Comparing with (6) and (7), we obtain for the integral in the expression for

P the value

{2;^ {a^ - c^) (b^ - c^)r =^^^/±llZlg ~ "1 ~ Z ~
!!!

"'!g . (13)
3/4^^3/2 sec 3/26 {a2 — c^ — (6^ - c^) sec^ 6}'

when cos 6 > ^/{{b'^ — 0^)1(0^ — c^)}, and a similar expression when cos 6

is less than this value. Collecting these expressions, and for comparison with

previous results, putting tan = i, we obtain finally

(2 - «n)2 (gg - 62)3/2 e^'"-^

32Ti^gpa^bV

"^
[ J3/2W («^ - b^) (1 + t^) (1 - a%^)}i^^]='

'fi'dt

Jo (l-a2£2)3/2

where 0? = (62 - c^)l{a^ — b\
This expression is for an ellipsoid moving horizontally in the direction of the

longest axis, and having the least axis horizontal and the mean axis vertical

;

or, we may say, with the beam less than the draught.

4. "We consider now the case when the beam is greater than the draught

;

that is, keeping the axes Occ, Oy, Oz as before, we have a > c > 6. The

elliptic focal conic is now in the horizontal plane and is given by

z2

^F36i + ,T36i = l'
^ = 0- (15)

The doublet system is distributed over the area bounded by (15), the axes being

parallel to Occ and the moment per imit area being given by

^'^'^'
7t (2 -a„)(a2- 62)1/2 (c2_ 62)1/2 \^ a2_52 JZTy •

( ^
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483 T. H. Havelock.

For a distribution of this type the expression* for the wave resistance of

any two doublets generalises into

Jo

where

P2 = ("n
j

M (x, 2) M(x',2') cos{kq {x — x') sec 6}cos{/Co (z — z') sin sec^ 6}

dxdzdx'dz'. (18)

From the symmetry of the distribution specified in (15) and (16) we see that

P = M (a;, z) cos (K^fC sec 6) cos (ko^ sin 6 sec* 6) dx dz, (19)

where M is given in (16) and the integration extends over the ellipse (15).

Comparing with (1) and (5), we obtain

p _ (2nyi^ abcu Jg/., [kq sec 6 {a^ -b^+ (c* - 6^) tan* 6}'^^] ,„„>

2-ao /co3/2sec3/2e{a2-62 + (c2-6*)tan2ef*
*

^
'

From (17), after putting tan Q = t, we deduce

d2Ti^gpa^bh^

where a^ = (c* — b'^)j{a? — 6*).

The cases c < 6 and c > 6 have been worked out separately ; however, on

comparing (14) and (21), we see that the results could both be included in the

same formal expression with a suitable interpretation of the integrand when

a* and 1 + olH^ are negative.

5. A numerical examination of these results could be made for different

ratios of the axes a, b, c ; certain points of interest may, however, be seen

from the form of the expressions, keeping in view the analogy with the wave

resistance of a ship. We note in the fiist place that the exponential factor

exp. {—2KQft^) in the integrand means in practice that the greater part of the

value of the iategrals arises from small values of the variable t.

An interesting feature of curves of wave resistance and velocity is the

occuirence of so-caUed humps and hollows which, on a simple theory, arise

from interference between bow and stem wave systems. In (14) and (21)

* ' Proc. Boy. Soc.,' A. vol. 118. p. 32 (1928).
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these oscillations are due to the Bessel function J in the integrands, the

modified Bessel function I being non-oscillatory ; and one might trace the

relative importance and positions of these humps and hollows with variation

of the quantity a^, that is, (b^ — G^)l(a^ — b'^). For instance, in (14) the second

integral is non-oscillatory ; and, as one would expect, it becomes of less

relative importance as the ratio of a to 6 is increased. Or, again, consider the

positions of the humps and hollows. The maxima on the resistance-velocity

curve will be in the neighbourhood of the maxima and minima o^

J3/2 (xoVa^ — b^),

while the minima will be near the zeros of this function. Suppose, as an example,

we take a = 5b and compare ellipsoids with different ratios of c to b. When
c hes between zero and b, the factor (1 — a¥) in the integrand of (14) lies

between 1 — -^y^ and imity ; further, if in (21) we take c as much as 26, the

correspondmg factor is 1 + ^fi. It is clear, without further calculation, that

the positions of the interference maxima and minima will be altered only

very slightly by such a variation in beam when the ratio of length to draught

is five or more. It appears in fact, that when the beam and draught are of

the same order of magnitude and the length is of the order of 10 times either

of these quantities, the form of the resistance-velocity curve is comparatively

insensitive to changes in beam. This consideration may, perhaps, account

partly for the measure of agreement which has been obtained between calcu-

lated values of the wave resistance of ship models and experimental results
;

the theory, of course, fails in many details, but the agreement in general

character is better than might have been anticipated in view of the simplify-

ing assumptions which have to be made.

6. The calculations for ship models are usually made from Michell's formula

for the wave resistance. That expression holds for a model with a longitudinal

vertical plane of symmetry, and is derived from an assigned distribution of

horizontal velocity at right angles to that plane ; it is, in fact, the same a^ can

be obtained from a distribution of sources and sinks, or of horizontal doublets,

in the vertical plane. In applying the expression to a ship there are two

approximations, which probably involve the same limitation ; one is in

extending the distribution right up to the surface of the water, and the other

is in obtaining the equivalent distribution from the slope of the ship's surface.

The latter approximation could, of course, be examined quite independently

of the wave phenomena, but it is of interest to compare the expressions for the
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wave resistance in one or two definite cases. In a former paper* the com-

parison was made for a submerged prolate spheroid, and from the formulae

given then numerical calculations were made later by Wigleyf in connection

with an experimental investigation. We may make now a similar comparison

for a flat ellipsoid moving in the direction of the greatest axis, that is, for the

case a > b > c worked out in § 3 above ; it has, moreover, been found possible

to put all the expressions into the same analytical form, and we can see from

inspection the difEerence between them.

Michell's formula for wave resistance is

^ ^ipu^r /pa _^ Q2)
f>fdm

,22)

where

P + iQ = {[^e-"''^'«l^+^'^dxdy. (23)

The integration ia (23) is taken over the vertical longitudinal section of the

model, that is, ^in the present notation, over the section by tne xy-'plnne;

and dzjdx is derived from the equation to the surface. Applying this to the

model specified by (8), with Oa; at a depth/ beloW the surface, and putting the

expressions into the form used in § 3, we obtain after some reduction

R = in-^gpKQ^u' p A2 g-^'o/^'^'^'^ sec^ 6 dQ, (24)

Jo

y2\V2
3_ \ g,.!/ sec' e

jjQg (^^^ ggg Q) gj. ^y^ (25)

the integration in (25) being extended over the area of the ellipse

Carrying out the integrations in (25), we obtain finally

where j8=J) '4aF—b^.
(26)

* ' Proo. Roy. Soc.,' A, vol. 103, p. 574 (1923).

t W. C. S. Wigley, 'Trans. Inst. Nav. Arch.,' vol. 68, p. 131 (1926).

328



Wave Resistance of an Ellipsoid. 486

Comparing (14) and (26), we see how the latter approximates to the former

when b and c are small compared with a. We have, for instance, a difference

which is independent of the velocity in that the factor (2 — o(.(,f{a^ — 62)3/2 ^
(14) is replaced by ia^ in (26) ; this makes the value of E calculated from (14)

greater than that foimd from (26) in a certain ratio. To give a few nimierical

examples .-—When a = 5b, c = b, the ratio is 1-2 ; when a = 56, c = \b, it

is 1-12 ; while for a = 106, c = 6, it is about 1-05. Again, comparing the

integrals in (14) and (26) the quantity a= V!(&2 — c2)/(a2_ 52)jis re-

placed by ^=6 yja'2 — b2. From the considerations given in § 5, it

appears that this difference would have only a slight effect upon the

character of the resistance-velocity curve for a body with proportions

like those of a ship.

7. For a ship model with fine ends and the usual ratios of length to beam
and draught, experimental results have shown that the theoretical expressions

form at least a good first approximation. A more exact solution of the

theoretical problem for a surface ship of simple form moving in a frictionless

liquid is desirable, but it presents considerable difficulties. As regards com-
parison with experimental results, such a solution would probably not improve

the present position appreciably, on account of the effects of fluid friction in

the actual problem. So far as the ship problem is concerned, it seems that the

approximate theory might be supplemented by semi-empirical assumptions of

a suitable nature, possibly as regards the effective distribution equivalent

to a ship under actual conditions.
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From the Philosophical Magazine, vol. xi. Suppl. February 1931.

The Stability of Motion of Rectilinear Vortices in Ring
Formation. By T. H. Havelock, F.R.S.

Introduction and Summary.

1. nnHE siability of the two-dimensional motion of an

X infinite system of vortices arranged in a single row,

or in double ro-ws has been worked out in detail in recent

years, but not much attention has been given to cases in
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Prof. T. H. Havelock 618

which the miniber of vortices is finite. The obvious analogous
problems arise when the vortices are eqiially spaced round
the circumference of one or more concentric rings ; the

problems are not perhaps of special importance, but they
are of some interest, and, further, one may obtain the

infinite straight rows as limiting cases of ring formation.

We examine first the motion of a single ring of vortices,

a problem which attracted attention many years ago in

connexion with the vortex tlieorj' of atoms. Kelvin * worked
out the case of three vortices, but failed to obtain a sohitiou

for a larger number; it was in this connexion that he drew
attention to the now well-known experiments of Mayer with
floating magnets. Shortly afterwards the problem was
attacked by J.J. Thomson t, and it is usually stated that
he proved tlie configuration to be stable if, and only if, the

number of vortices does not exceed six. He, in fact, worked
out the small oscillations for the particular cases of three,

fonr, five, six, and seven vortices, obtaining an instability in

the last case. It appeal's that the equations for the general
case are capable of a simple explicit solution, and this is given
in § 2 ; a ring of seven vortices is neutral for small displace-

ments, with less than seven it is completely stable, and for

more than seven unstable. In § 3 the effect of an assigned

velocity field in addition to that of the vortices is examined
briefly.

In the next two sections we work out tlie effect of a

concentric circular boundary upon the stability of a single

ring, the boundary being either internal or external to the

ring. In both cases tlie stabilit}^ is diminished, seven or

more vortices being unstable whatever Ihe radius of the

bonndary. For a smaller number theie is a limiting ratio

-of the radius of the ring to the radius of the boundary for

stability in each case. For an external boundary the motion
is unstable in any case if the radius of the boundarj- is less

than about twice the radius of the ring, and there is a similar

result for an internal boundary. The effect of the boundary,
estimated in this way, seeins larger than might have been
anticipated.

In the remaining sections we examine the motion of two
concentric rings of vortices, of opposite rotations, the vortices

being spaced alternatel}-. A steady state is possible in which
ihe rings rotate and retain their relative positions unaltered,

but there are always modes of disturbance which give rise

* Kelviii, Math, iuid Pliys. Papers, iv. p. 13.t (1878).

t J. J. Thomson, ' Treatise on Vortex Rings,' p. 94 (1883).
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619 Prof. T. H. Havelock on the Stability of

to instability. By suitable choice of the relative strengths

o£ the vortices in the tvco rings it is possible to limit the

instability to only one special mode of disturbance; it is this

particular configuration which becomes in the limit the

stable Karman vortex street, when we make the radius of a

ring and the number of vortices both infinite, keeping their

ratio finite.

Single Ring of Vortices.

2. Let there be n equal vortices, each oE strength k,

equally' spaced round tlie circumference of a ringoE radius a.

In steady motion the ring rotates with a certain angular

velocity w. Let the vortices be slightly displaced, and

suppose the disturbed positions to be given in polar co-

ordinates by

a+nxi, 2s-Kln-\-mt-'t-ds+i, .... (1)

where s= 0, 1, .. . n — 1, and r,9 are small radial and angular

displacements from the steady state. Consider the motion

of one of the vortices, say that at the point (a + Tj, a>t + 6{) ;

its velocity is due to the other vortices, and the radial

component is

K.
»-i {a + r^+i) sin {2siTln + e,+i — d{) ,„,

27^.?! C^ ' •
^'

while the transverse component is

K "z}{a+ rs+T.)cos{2sTr/n+ 0,4-,i
— Oi)— (a+ ri) , .

~Y7r3i D^ ' ^-

where

D^= (a + r,+,)' +(« + ''!)'

— 2{a+rs+i){a + r{)cos(2s'7r/n + 9s+i— 0})-

We expand these expressions to the first order terms in

r and 6, and so get the equations of motion of the vortex under

consideration. After some reduction we obtain

'"1-
47ra t 1-Cs '

where Cs= cos(2s7r/7!)-

The steady state is given by o}=^(n— l)K/4:ira^, and since

71-1 1 I

2 S 2
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Rectilinear Vortices in Ring Foinnation. 620

equations (4) give

71-1

I

n-l
(47ra7«)^i=Bri— 2 a,rs+i, .... (5)

1

where

A=l{n'-1); B=g(n-l)(n-ll); a,= l/(l-a).

There are similar equations for each vortex, giving altogether
a system of 2n equations.

The simplest method of treating the equations is to examine
a possible simple solution of the form

r-,+ i
= ae2*»"'/''; 6',+]^e2*«"7% . ... (6)

where k= 0, 1, 2, ... n— 1.

It may be proved that under the conditions stated

w—

1

fl2ksiriin 1

s=i l— cos{ZsTr/nj 6 ^ '^

Hence, from (5)^ we find that the equations for a, /3 reduce to

(47ra/«)«=^(n— A)y8,

(47raV«)i3={A(n-A)-2(n-l)}a. ... (8)

Finally, taking a and /3 to be proportional to e^^, these
give

It follows thilt in (6), (8), and (!)) we have, in general,
2n independent solutions of the equations of the system, and
that we can build up the complete solution for any arbitrary
small initial displacements of the vortices.

An alternative method of solution may be noticed briefly,

namely, the method used by previous writers for particular
cases ; it may be extended to give the general results, though
not quite so simply as in (6)-(9). In the 2n equations (5)
we assume each coordinate to be proportional to e''*, and
form the determinantal equation for X. The determinant
can be reduced to one of order n in \^, and it can be shown
that it is of the type known as a circulant, and can be
factorized in tei-ms of the nth roots of unity ; alter some
reduction we obtain (9) again, and can deduce the corre-
sponding simple solutions given by (6).
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From (9), when k— we have \= 0. If we examine this

case we find that the displacement consists of a rotation of

the ring combined with a small change in its radius ; the

result is a new steady state with a corresponding small

change in the angular velocity. The condition for stability

is that X^ must be negative for all the other values of k,

namely, 1, 2, ... n— 1. Hence, from (9), the steady state is

stable if

k(n-k)-2(n-l) (10)

is negative for all the values of /c, and this is the case if it is

negative for k= hi when n is even, or ^{n+ 1) when n is odd.

It follows at once that the steady state is completely stable

when n < 7. When n=7 the expression (10) is zero for

/;= 3 or 4 ; while for n > 1 there are always some values

of k for which A,^ is positive, and hence the system is

unstable.

Whatever the value of n there are always two modes of

possible small oscillations, namely, those given by ^=1 and
k= 2.

When A=2 we have

while for k = l

We notice that in the latter case the period of the small

oscillation is the siime as the period of rotation of the ring

in the steady state ; this motion was worked out for the

particular case of three vortices by Kelvin in the paper
already quoted, and it is illustrated in a characteristic manner
by the description of a working model to show the motion
of the vortices.

The single infinite straight row of vortices may be obtained

by making both 7i and a become infinite, with the ratio n/2Tra

finite and becoming in the limit equal to the distance between
consecutive vortices ; the usual results then follow from (6)
and (9).

Single Ring in assigned Field.

3. We have so far considered the vortices to be moving
solely under their mutual actions. Suppose now that there

is an assigned velocity field which is maintained indepen-

dently ; for simplicity we suppose the flow to be in circles
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Rectilinear Vortices in Ring Formation. 622

round the origin the angular velocity being n(r\ and the
transverse fluid velocity at a distance r being rd.

Then, referring to equations (4) for the mo'tion of a typical
vortex in the ring, the only difference is that we have to add

an(a) + ri{r2(a) + an'(a)}

on the right-hand side of the second equation. The angular
velocity of tlie ring in the steady state is now

(«-l>/47j-a2 + 0(a).

Following the same procedure, we obtain, instead of (i)
the equations '^

(4:Tra/K)ii= k{n— k)0,

(47raV«)^= {k(n -k)-2(n - 1) + (4,ra'/«)fl'(a)}, (13)
and hence we have

'^'= k(n-k){k(n-k)-2{n-l) + (4:-7rayK)n'{a)}, (14)
with^-= 0, 1, ... n— l.

It follows that the steady state can be stabilized for any
value of M, provided n'(a) is negative and sufficiently laro/Iwo special cases may be noted. First, if the" fluid isrotating like a rigid body-that is, if X2(r) is constant-the
conditions for stability are uoafEected. In the second place
suppose there IS .n assigne.i vortex fixed at the origin, so'
that fl .)= «72,r.^ ; ther. i.^ .' is of the same sign as%, wecan m.-.ke the steady state stable for any value of n by taking
K large enough. "^ °

Single King loith Outer Boundary.

4. Suppose the liquid is contained within a circular
boundary of radius ?>, the vertices being in the steady stateon a concentric circle of radius a (< h). The motion in the
liquid IS due to the given vortices and their images in the
circular boundary.

• Zt'^^ *!."' «^^^,^y state first, the radius of the image ring
IS b la, the strength of each image vortex beina -« Writingdown the velocity at any vortex in the given rhig, the angular
velocity m the steady state is given by

..,= (!Li:i)5^_^ V ihVa)G-a

where C= co3(2s7r/nj.
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We shall have occasion to use the following summations,
which can easily he proved :

"< 1-p^ _ 2n 2

"-1 1-pC n 1

y (i+p^)C-> _ jiy^ i_ ..

i,[i-2pc+p^f-{i-ry [.i-pr ^

with < p < 1.

Writing p= a^lb^, we find from (1$)

aa,= -^(-^-n-lV . . . (17)
47ra\i— p" /

'

For small displacements from the steady state we have
for each vortex «: at S point

a + Ts+i, &jt + 2s7r/rt + ^5+i,

aa image vortex — /c at the point

a\ a )

Considering the motion of the vortex given by s= 0, we
have for the radial velocity the expression (2), together with

K "-'(6Va)(l—J's+i/ajsinc^

and for the transverse velocity we have (3), together with

K ".^^ (fc7a)(l -r,+i/a)cos<^— (g+ ri) .

i^io E^ '
^^

where

(;b= 2s7r/M + ^«+i — 1^1,

and

The steps in the reduction of the equations of motion need

not be reproduced here ; making use of the summations

given in (16), and writing

p= a76^ S= sin(2«7r/n) ; C= cos(2«7r/n), . (20)
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we obtain eventually the equations

^^,= |!^+2(„-l)+ 2ny

_ ^!^ 2(2;t7'-3;^ + 2) 1 n

_V 2p(l-p^)S .

.=i(l-2^C+j.^)^^^+^ (21)

There are 2n equations of this type, and we examine now
a possible solution of the form

r,+i/a=ae2*^W". e,+i=^e^'^^i^^ . . . (22)
with k= 0, 1, ...,n— 1.

On substituting these expressions we obtain two equations
ID « and /?. In simplifying the various coefficients we use
the tollowing summations, whose proof need not be oiven
here :

—

*

"^^ (l-jP^)cos(2,^^7r/w) _ nfy^+^n-i) ^

"2 (l-JoC) cos (2^Wn) _ n(p*+i»"-^) 1
1 i-2pG+p' ~ 2(1 -^») ~r^
"2 ^ ( 1 + Z'^) C— 2;? f cos (2;?'.97r/n)_ w/t (p*- 1— »»-*-!)

1 ii-2pc+pr 2(1-^")

—

«y-i(pi_p-*) ^ 1

valid for < jo < 1, and ^= 1, 2, ..., n-1.
We obtain after some reduction the equations

(47ra7/<:)a= P/3_ma,

(47ra7«)^=Qa_iR^,
. . . (£4)
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where

^ ' 1—jD" (\—p"-Y

Q = kin -k) + 2{n + l)+ ^^ _^^ ^ +
^^^ ^^_^^f ,

We may check these expi'essions by deducing the equations
for the corresponding disturbance oi: an infinite double
symmetrical row of vortices. If d is the distance between
consecutive vortices in each row, and h the distance between
the two rows, we have, in the limit,

2'naln=^d; 2A7r/n= ^ ;

/)={l + 27r/t/no')-i.

With these (17) gives the limiting value of the linear

velocity of the vortices, namely,

K ., Trh

further, the quantities n^P/2Tr^, n^Q/2'n^, and ti^R/Stt^ become
respectively the quantities A + C, A— C, and B in the

notation of Lamb's 'Hydrodynamics,' (5th ed. p. 221).

Returning to equations (24), we take a and /S proportional

to

„KM/irra'i

and obtain

\=-2R + (PQ)-J (26)

For complete stability the product PQ must be negative,

or zero possibly, for all the values of k. To prove instability

it is sufficient to show that PQ is positive for one value at

least of k. From the form of the expressions in (25) we see

that P and Q are symmetrical in k and n— k, and that the

critical mode to examine is k= \n for n even, or k= \(n+ 1)

for n odd.

For n even we have

P(in)= in2-nV^''/(l+i3^")2, . . . (27)

"which is always positive. Further,

Q(in)= in2+2(« +l)_^„ + ^^^, . (28)
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and this is positive if

+ n^-8n + 8 > 0, . . (29)
where x = pi"={albY.
The left-hand side of (29) is always positive for « > 8.-brom simuar expressions ^vhen n is odd we find that there

IS always a positive value of Q forn= 7. Hence we conclude
that the motion of the ring is unstable when the number of
vortices is equal to or greater than seven, whatever the radius
ot the outer boundary. For ,j < 7 we shall see that the
motion IS stable provided the ratio of the radius of the ring
to that ot the boundary is less than a certain value in each
ease. We shall examine the cases briefly, noting that in
each case the mode ^-= means simplv aneutral displacement
or the ring.

" ^

For n=2, k= l, we find from the previous expressions
that Q ,s neoative if p < 0-2137

; and as P is positive, it
follows that the circular motion of the two vortices is stable
it a/6 < 0-462.

For n= Z k=l or 2, Q is negative for jo < 0322, and the
motion IS stable for a/6 < 0-567.

Similarly for n= 4 we find the critical value of ajb to be
about 0-5/5

; for n= 5 it is 0588, and for n= 6 it is 0-547.
When n= l, which is the critical neutral case when there isno boundary, the efifect of an outer boundary of any radius
is to cause instability.

Single Ring with Inner Boundary.

_
5. Suppose now that the fluid is bounded internally by a

circular barrier (r= 6), and that a ring of n vortices is
rotating in circular motion in a ring of radius ai>b). The
image of a vortex k at r^a is a vortex -k at r^h'^la
together with a vortex « at ,- = ; this combination makes
tbe circnlation zero for a circuit enclosing the boundary
without including any of the actual vortices
We find the equations of motion of a given vortex, s=

inthe previous notation, just as in § 4. The only differences
arise (1.) trom the additional image vortex nn: at the origin
and (u.) in evaluating the various summations, as hla is now
less than unity instead of a/6. For the steady state we have

477a ^27ra 2-7Ta,t^ l-2qQ + q^' ' ^'^">

where q= h'^la^ and C= cos (2s7r/n).
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This gives

«"=if«(^"-'-Tl^.)- •
<='>

We shall merely state now the results for the general

equations of disturbed motion. The equations for fi and 0^

are the same as in (21), with the following alterations:

—

(i.) write q ior p in the coefficients, (ii.) change the sign of

the last term in eacli equation, the coefficients of r^+i and

0S+1 respectively, from — to + ,
(iii.) change the coefficient

of Ti in the second equntion to

1 4m(7" 2ri2o" 2o
_(„._l)_2(.-l) + j-^ +^^,+^.

Taking a simple solution of type (22), and proceeding as

in (24), (25), we obtain, instead of (26), the result

\=iR' + (P'Q')n (32)

where

4nr/" nV'^l'l— 9*)^

C^' = k(n-k-)-2(n-l)+±-L.+ \il^,.)f
^

+ l~g-

1-9" (l-'/T
^

As before, it appears that stability depends upon there

being values of q less tlian unity for whicii Q' is negative for

all the values of k. It is easily seen that there is no such

value of q when n>l, and therefore the steady state is

unstable when there are seven or more vortices in the ring.

Examining the expressions numerically for smaller values

of n, we find that the steady state is stable under the

following conditions :—«= 2, ft/a<0"386 ; n= 3, A/a<0"522 ;

n= 4, t/a< 0-556 ; 7i=5, t/a< 0-579 ; n=6, i/a< 0-544.
_

These values are slightly less than the corresponding

limits when the ring is within the circular boundary, but

there is little difference in the general conclusions.
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Double Alternate Rings.

.ff^;/" ?' previous sections we have been considering in

of. r n^ ?K
^^"""^'"'^^l ""8-> in which the motions of

fhLT^r7t 'T^f
ring—are constrained in accordance with

t^o tlir' °f
"" '' •'^"''^^' symmetrical ring, and pro3eed

to two alternate rings lu an unlimited liquid
Let there be tz positive vortices, each of strength «, equally

sTeih"' ' n"''
"^ 1"'^'"^ "^^ ^"^ " "«g^*i^« --tiles o^strength « equally spaced round a concentric circle of radius

Th,f«1f Ir ^"•f."«-^"'ent of tl'e vortices being alternate.IHus It the vortices m the inner ring are given by polar
coordinates a,2sn/n, those of the outefring fre given by"
2(* + i)7r/»i, with 5z=0. 1, ..., n-1. -^ '

Examine first .he possibility of a steady state with thetwo rings rotating with equal angular velocity, the relative
configuration remaining unchanged. The radial velocity ofany vortex IS zero. The transverse velocity of a vortex inthe inner ring is given by

iira "^
27r,r; l''^ + a^-2abG" ' ' ^"^^^

and in the outer ring by

_ (n-iy
__ _« "-1 aC'-6

iwb 2ir,^^a^+b^-2abQ" '
" ^^^)

^^^^C'=cos{2(.+ i),r/7i}.

p^a/b<Y^^
'"^*^'''''® *^^ following summations, with

"-' l-pQi
2 .

1— 2pC'+jo2 T+p^'

(l-2pC'+jB2j2 - (XTp^- • • (^^)

the?L'c"omef"
^"' "^"^ '"^^''' "'^"'^''^ "^ ^^'^ '^' "°'^^

('^-^)^-l^^^'=^.-(-%V. . (37)

It can be seen tiiat for a given ratio of «' to « we obtain
trom this equation a corresponding value of p less than unity.
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and hence a possible steady state. Consider now the general

equations for the disturbed motion. Let the positions oi; the

vortices in the inner ring be given by polar coordinates

a(l + rs+i), 2i7r/n + (Bt + ^j+i,

and those in the outer ring by

6(l + p,+i), 2(« + i)7r/n + a)(; + <^,+i.

We form the equations of motion as in the previous

sections. We choose a typical vortex, s= 0, in the inner

ring-, and to simplify the notation we take the vortex s= n—

1

in the outer ring. Expanding the components of velocity to

first order terms, and reducing the coefficients by means of

(36), we obtain the equations for these two vortices :

w;, = .{-J(n-i)--^,}^.

+ '' ^ T^2 P'+'^^
L'

W^...{J„«-l,-2(,.-l)+i2t_J=V}
+ J0" (1+/)")^

n-l 2p{\-p^)^'— K 2 T=j2 <Ps+l5

{1
2jl2iy" J

+ « 2 m '"+1
-"-^

C 1 4n 2n''c'' ")

+^'' (1+^9") 2

+ K 2, . _Q +« i ^2 '^»+l

-i 2/>(l-;.'')S' ^ „.

JJ
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Bectiiinear Vortices in Ring Formation. 630
where

C - cos (2.7r/«)
; C = cos {2 (. + i)7r/n}

;

S' =sin {2(«-+i)7r/n}
; D = l_2pO'+^2_

We now assume a simple solution of the form

a.id,^further, suppose that «, /?, «', ;3' involve the time as a

'^""'"''''

(40)
In simplifyino^ the coefficients we use the following

summations, valid for k= l, 2, ..., n-1, which may beproved without difficulty

:

> , en may oe

^ 1— 2pC'+/7= i+p"-

7 (i~2pO+py- rf]^'

>u \ 2 )

where E=:e"*'*+2'"''/".

The 4jz equations of the sjstem now reduce to

X/3 =P2«+RV-Q'/3',
Xa'=P/«' + Qa+Ry3,

X^'^P/a'+Ra-Q^,
(42)

where

2wV
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Rectilinear Vortices in Ring Formation. 632

further, there is always an instability associated with the
mode ^=0.

8. It remains to be seen whether we can obtain a greater
degree of stability by a suitable choice ol: the ratio of // to «,

thiit is. with vortices of different strengths in the two rings.

To avoid complicating the discussion we shall assume n even.

Then the previous discussion suggests that we make the

central mode stable, that is, we fix k' by the condition that

Pi=:Pi' ut k=^n. From (43) this gives

i«-(-rf;^.«'=o^«-ii'^«'- • • (47)

The ratio of k to k and the value ot" p are now determined
by equations (37) and (47).

Without examining the expressions in general a numerical

example will show the nature of the results.

Taking n=10, the appropriate roots of (37) and (47) are,

approximately,

;?=0-8406j a:7«:=0-897 (48)

The following table shows the values of QQ' and RR' and
of X2 for all the modes, calculated from (43) and (45) ; the

values for k=&, 7, 8, 9 are omitted, as they are the same as

for yfc=4, 3, 2, 1.

k. QQ'. KR'. \K

1

2

3

4

5

We see that the motion is stable in all the possible modes
with the exception of A=0. Reverting to (40), we find that

«\/47ra2=27rX/6'3T approximately where T is the period of

rotation of the rings in the steady state ; thus the periods

of the small oscillations in the stable modes range from about
two-thirds to one-quarter of the period of rotation.

It is easily verified that X^=0 in the mode ^=0 corre-

sponds to a neutral displacement of the system, consisting

of a rotation and dilatation of the rings without alteration of

the ratio of their radii. On the other hand, the root

A,2=85 in this mode gives rise to definite instability.
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9. The Karman vortex street may be obtained as a limiting

case of the present problem. We make the radius a and
the number of vortices n both become infinite, their ratio

remaining finite. If the limiting value o£ 2'jTajn is d, the

distance between consecutive vortices in each row, and if Ji

is the distance between the rows, we may put

p= {l + 2-n}ilndy^ ; (49)

p approaches unity, while the limiting value of p" is
g-^f*/''.

We see from equations (37) and (47) that the ratio k'jk

approaches unity, and (47) gives at once, in the limit, the

Karman condition

cosh'('7r^/<^)=2 (50)

Further, if from (42) and (45) we write down the

expressions for X^ when A=0, we find that for the positive

root, KKjiiTTa? is of order n~'i ; thus, as the limit is approached

the instability in this mode merges with the neutral state in

the same mode. It is only in this particular limiting case

that we obtain a system which is completely stable.
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Ship Waves : the Calculation of Wave Profiles.

By T. H. Havelock, F.K.S.

(Received August 20, 1931.)

1. The surface disturbance produced by a ship is usually analysed into two

parts : one is called the local disturbance and the other forms the wave pattern,

the supply of energy required for the second part giving rise to the wave

resistance of the ship. For a direct comparison between observed and

theoretical sxirface elevation it is necessary to calculate both parts of the

disturbance. This has been carried out recently for a ceitain case by Mr.

W. C. S. Wigley,* working at the WilUam Froude Laboratory. The model

was of uniform horizontal section and sufficiently deep to be treated as

theoretically of infinite draught, while the section consisted of a triangular

bow and stern connected by a straight middle body ; the surface elevation

along the side of the model was observed at various speeds, and compared

with the theoretical calculations.

The following paper deals with the calculation of the surface elevation in

cases of this type. The theory is developed here from the velocity potential

of a doublet at any given depth below the free surface of the water ; this has

the advantage of bemg capable of wide generalisation, and, moreover, the

introduction of a small frictional term, which is ultimately made to vanish,

keeps the expressions determinate throughout the analysis.

We examine first a uniform distribution of doublets on a vertical line, and

then a similar distribution of finite length in the direction of motion
;
graphs

* W. C. S. Wigley, ' Trans. N.E. Coast Inst. Engineers and Sliipbuilders,' vol. 47, p. 153

(1931).
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2 T. H. Havelock.

are given of the surface elevation along the line of motion. A similar analysis

is given for the distribution corresponding to the model described above, and

the connection between the distribution and the model is indicated.

Finally, the results are generalised to give the central surface elevation for a

model, of infinite draught, of any sectional form. The general expressions

are of simple character and some deductions can be made from their form.

In addition, they are suitable for the numerical or graphical calculation of the

profile for any required model of this type. A brief analysis of a paraboUc

model is made to illustrate the general results.

2. Consider a doublet of moment M at t., depth / below the surface of water

and moving horizontally with constant velocity u. For the present applica-

tions we need only the expressions when the axis of the doublet is horizontal

and in the direction of motion ; further, we take moving axes with Ox in the

direction of motion, in the free surface, O2 vertically upwards, so that the

position of the doublet is the point (0, 0, —/). The velocity potential of

the fluid motion is given by*

^^_iMr
cosedere-"<^+^)+"=/c(^/c

27r J _„ Jo

+ !^r cose^ef " +
:°f"'^
—-e-«'/-)+^-.<^., (1)

27t J _„ Jo K — Kq sec^ + i[x sec 6

where rrr = a;cos 6 + ?/sin 6 and KQ=:gju^. The real part of (1) is to be

taken. The first term expresses the velocity potential of the given doublet in

a form valid for z + /> 0, that is for points above the doublet. In the second

term [x is a small positive constant which is ultimately made zero. The surface

elevation ^ is given ^y

This gives

(: = Lim— dQ\ ^^^—
: -dK. (3)

M->n7TMj_„ Jo K —^ ArgSec^ 6 + i[i,sec 6

In this form Z, is finite and continuous, and the expression may be generalised

by summation or integration for a distribution of doublets. We shall consider

here the distribution to be in the vertical plane ?/ = 0. If M{h,f) is the moment

per unit area at the point {h, 0, —/) we have

^ = -\
\

M{h,f) dh df\ dd\ \ -dK, (4)

mtJ-<x,Jo J-,r J(, /c — Kosec^e + ifxsec e

* ' Proc. Boy. Soc.,' A, vol. 121, p. 518 (192S).
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where oj' = (a; — h) cos 6 + «/ sin G. We have omitted here the symbol for

the limiting value as \j. is made to vanish, but that is always to be understood.

It is assumed that the integrals are convergent. From a physical point of

view it is easily seen that divergent or indeterminate integrals may arise if

the distribution contains finite sources or sinks which extend up to the free

surface of the water. From the method of obtaining the velocity potential

(1), we see that the appropriate form of (4) in such cases will be found by taking

the integration with respect to the depth/to extend from a positive quantity

(I to infinity and then considering the limiting value as d is made to vanish.

We may note another form for (4) which is obtained by integratmg by parts

with respect to 1i. Provided M is continuous in this variable and is zero at

the two limits, we have

„• (-co (-co ;5i\T (-IT |-a> .-k/(-jkB'

^ = - -
\ -w'^^'^f\ sec ecze '—-—; ^dK. (5)

TtMj-ooJo o/t J_^ Jo KT — K-Qsec^ 6 + ^[i.sec

Further, the normal component of fluid velocity at any point of the vertical

plane y = is equal to

2tz dM/dh. (6)

Hence from (5) we may obtain the surface elevation for any assigned dis-

tribution of normal fluid velocity over this plane.

3. Consider first a simple line distribution of constant moment M per unit

length on the z-axis, extending from the free surface to an infinite depth.

Here we shall have to suppose first that the distribution extends up to a depth

d below the surface, and then take the limit as d is made small.

Integrating with respect to /, we obtain

i=^\' d^r—'^^^^ -d..
7t;mJ_„ Jo k — 'fflSec'^ 6 H- ^[Asec 6

In the integrand we write

K
1 J Kg sec^ 6

K~ Kq sec^ e + t[x sec 6 k — kq sec^ -|- i^i sec 6

'

(7)

(8)

omitting terms which will give no contribution in the limit when [i is made
zero. The integrations in 6 and k in (7) corresponding to the first term on the

right of (8) give the value 2Tz/Ko(d^ + x^ + y^-)K Hence, puttmg d = Q, the

contribution of this part to the surface elevation is 2Mlu{x^ -\-
y^f. Taking

the second part of (8), the corresponding integral in (7) remains convergent
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4 T. H. Havelock.

when we put d = 0, provided nj is not zero. Hence we obtain, for all points

other than the origin,

K = f" ,, +^ r -c^ e ^e f"
'^^ —d.. (9)

u{x^-\-y^Y Tiu j -„ Jo /c — Kpsec^ 6 + i[i,sec 6

We shall limit consideration at present to the surface elevation along the line

of motion, that is for ?/ = ; we have

^=——-+-^~i sec^ecZe —-— -dK, (10)
u\x\ TCM Jo Jn K — K-QSec' D 4" ^[jI- sec D

noting that we require the limiting value of the real part as y. is made zero.

The integration in k may be transformed by regarding k for the moment as

a complex variable and considering a contour integral taken round a suitable

path according as x is positive or negative. In this process it is the residue

at the pole of the integrand which gives the expression for the waves in the

rear of the system. The result, when [i has been made zero, is

f" cos (Kf. mx sec 6) , . ^ „—^ dm, for X > ;

Jo 1 +m
„ . , o\ 1 f" cos (Knmx sec 6) , , ^ r, ,-, , x

27r sm (Kna; sec 6) + ^—^ -dm, for x < 0. (11)
Jo 1 + m

For the integration with respect to 6, A^e require the following results

sec* 6 sin (k^x sec 6) rfO = — - Yj {kqX), (12)
2

Jo Jo 1+m 2Ja 1+m
= l^ + J^rhiHoHEldm

2koX^2kox}(, (1 + mf

= -T^ + y JHi {K,x) - Y, {k,x) - ^}. (13)
2KqX 4 1 TZJ

In this J and Y denote Bessel functions, and H is Struve's function, the

notation being that of G. N. Watson's " Treatise on Bessel Functions." Col-

lecting these results and putting in (10) we obtain the surface elevation on the

line y = 0. To avoid any possible ambiguity in signs, we shaU find it con-

venient to write x' for —x and so restrict x and x' to positive values ; x is

thus distance in front, and x' distance behind the moving system. We obtain

^=1^!^\}1^{^^x)-Y,(k,x)-^; x>Q

^ = Z^^ J H, (.„a-') - Y, (.„.') - 2| + iZE^ y^ (,^^') ; ^' > q- (14)

J
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The quantity H^ — Y^ is monotonic and decreases to an asymptotic value

2/7C. The symmetrical terms in (14) represent the local disturbance, becoming

infinite near the origin like x~^. The last term in (14) represents the wave

disturbance in the rear. The expressions are easily calculated from tables

of the functions, and fig. 1 shows the two parts of the disturbance.

rio. 1.

It wiU be seen that there is discontinuity at the origin, but that arises from

extending this particular distribution right up to the free surface. If we

retain the quantity d used at the beginning of this section, it is easily seen that

the discontinuity is associated with the last term of (14) ; for any finite value

of d, this part of the disturbance is zero at the origin.

4. Consider now a imiform distribution over a finite length of the vertical

plane y = 0, extending over the range —IKxKl- This might be deduced

from the previous section by integrating with suitable precautions to allow

for the discontinuities in those expressions ; but we shall use the general

formida (4). Suppose in the first place that the distribution extends from a

depth d to an infinite depth ; then we have

TtMj-i Jd J-:r Jo K — KoS(

tf+ inTS'

CqScc^ 8 + t[isec 9

For the elevation along the line e/ = 0, this gives

4iM r'^ r. J/^ r e-"^ le'"
'*-^' ""^ * — e*''

^'^+^' ™' ^1 ,
I spp. HrtH I i ^dK.l^^n^i secede

KU Jo Jo K ~ Kq s&c? e + i[i. sec e

(15)

(16)

We may put c? = in (16). Further, the disturbance separates into equal

and opposite disturbances associated with the front and rear of the system,

or, as we may call them, into bow and stern systems. Writing q-^ for x — I,

we have to evaluate the real part of

iir/2

/•«

secede -
Jo K

piKQi cos 6

KjSec^ e + i[xsec 6
-dK. (17)

351



6 T. H. Havelock.

We transform this as in the previous section, and also make use of the following

evaluations
7r/2

rr/2

sec

sec 6 cos {K^q-^ sec 6) d6 — Yq {K^q^).

Q^Q r sin Km?, sec 6) ^^^^Tu ^ JoiMlE) dm
Jo 1+m 2Jo l+m

= ^{HoMi)-Y„Kgi)}. (18)

Using, as before, q^ for distance in front of the bow and jj' for distance behind

the bow, we find that the bow system is given by

C =— {Ho (Kuqi) — Yo (/<ro?i)} ; ?i >

^ = -— (Ho {K,q,') - Yo iK,q,')} - ^^ Yo (^o?!') ; 'A' > 0. (19)
u u

There are similar expressions for the stern system with q,^ = x -\-l, all the

signs being changed. These results are easily calculated from tables, and

curves for the local disturbance and the waves for both bow and stern are

shown in fig. 2.

The complete disturbance is the sum of all the curves shown in the figure.

The distribution of doublets is equivalent to a vertical line of sources at the bow

and a vertical line of sinks at the stern. It may be noticed that the elevation

Fig. 2.

becomes logarithmically infinite at bow and stem, and the discontinuities

there arise as described in the previous section. The local disturbance is

symmetrical fore and aft when taken as a whole, but is anti-symmetrical for

bow or stern separately. If the complete disturbance associated with the bow

is called a positive system, the stern generates an equal negative system.
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5. The system we have just considered may be supposed to correspond to

a ship with bluff bow and stern. We may examine the efEect of pointing the

ends by the following distribution ; the moment per unit area

= M, for — a < a; < a

= M (i — x)l{l — a), for a < a; < Z

= M (i + x)l{l — a), for — Z < a; < — a, (20)

where M is a constant. The moment is zer6 outside the range specified in

(20).

If we replace M in (20) by m6/2tc, in accordance with (6), we see that if bjl

is small the corresponding form of ship is that examined by Wigley in the paper

already quoted. Wigley has worked out the surface elevation along the line

y = from Michell's formulae, giving suitable interpretations to the indeter-

minate integrals involved in those formulae. Here we shall use the general

form (5). We may take the distribution to extend right up to the free surface,

as it appears that the resulting expressions are finite and continuous through-

out.

From (5) and (20), after carrying out the integration with respect to/and h,

the surface elevation for y = Ois given by

^ = iM 1"^''

sec^ QddT ^ :
dK, (21)

TIM (t — a) J

y

Jo K (k — Kq sec^ 6 4- *M- sec 6)

where
"Vr __. gi>c (x+a) cos e „i/c {x + l) cos 6 Ak (x— Z) cos 6 i Ak (x—a) cos d ('99^

We notice from the form of N that the singularity at /c = in the integral

with respect to k is only apparent. On the other hand, the integral as it

stands caimot be separated directly into four parts associated with the points

±a, ±il respectively ; this may, however, be effected by a slight alteration

which does not affect the iinal result for the complete system.

If we write

^ {q) = —^L— sec2 e dQ i 1- ;
dK

Tzu {I — a) Ju Ju K^ {« — KqSQC^ 6 + i(jisec 0)

TZU (l — a)

then we have

l = ^{x^l)~^{x^a)-^{x + a) + ^{x + l). (24)

The integrals m (23) may be transformed in the usual way to separate out the
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two parts of the disturbance in each case. We require also the following

results

sin (ko? sec 6) dO = -M Y„ {t) dt = ?„ {K^q), (25)
Jo ^ Jo

where the P functions, which have been used previously in wave analysis, are

defined by

P,^ (j9) = (_ 1)" r cos2" e sin (p sec 6) ^6
Jo

2n
Jo

W2
Pa^+i iT) = (- 1)""^^ r cos2«+i 6 cos {f sec 6) d%. (26)

Jo

We have also

/•ir/2 (•» 1

Jo Jo

cos (Kg mq sec 6)
^_^^^

m {I -\-m)

2 Jo Jo 1-

t2 r»o?

^"^dm

=
I £' {H„ (0 - Yo (t)} d« = ^ Qo (K,q), (27)

using the notation introduced by Wigley for this part of the disturbance.

Retaining q for points in front and q' for points behind the origin of a dis-

turbance, so that q' = — q and q, q' are both positive, we find after collecting

these results that

I" (?) = -^ Qo K?). ?>o

= -^ Qo Kq') + — Po ix.l'), i' > 0. (28)

The complete surface elevation may now be found from (23), (24) and (28).

The Q terms represent a local disturbance which is symmetrical fore and aft

for the system as a whole, while the P terms give the wave disturbance in the

rear of each of the points :±:a, ±1.

If M is put equal to ubj2Tz, these results will be found to agree with those

for the model examined by Wigley in the paper quoted above, and reference

may be made to it for a detailed comparison with experimental results.

It should be noted that the method used in (23) and (24) for separating the

disturbance into four parts is reflected in the artificial character of the local

disturbance associated by (28) with an isolated point q = ; the fimction

Qo is zero at its origin and increases indefinitely with distance from it. The
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local disturbance decreases with increasing distance when we sum for the

system as a whole. The localisation of the disturbance into parts associated

with special points is in general no more than a convenient help for purposes

of calculation and description.

6. The previous section gives a surface elevation which is finite and con-

tinuous throughout, and it is simple to extend the method to cover any form of

distribution.

We begin, for simplicity, by considering any limited distribution of which

the graph is made up of straight lines.

The general expression (5) gives, for infinite depth of distribution, the

elevation along the line of motion as

K = r ^dh r secGc^e r

—

J_a, a/l J_„ Jo f — K,

J.K (a:— A) COS e

osec^ 6 + ifjisec 6
dK. (29)

Take the integration with respect to h along two parts of the range meeting

at a junction A,j, and we obtain, associated with this junction

/coos 6 dh\

-iKk,a COS 9
(30)

where the coefficient in straight brackets is the increase in slope of the M, h

graph in the positive direction, or tan
(fj^
— tan ^, in terms of the slopes of

the adjacent parts of the graph. It should be noted that the positive direction

of h, and of x, is taken here in the direction of motion, that is, from stem to

bow.

It is clear that for any limited distribution which is zero outside a certain

range in h, we have from (29) and (30) the complete surface elevation in the

form

^ dM

1 sec'
7TM J-,r

dh

gtK(x— A^j) COS (

K {k — Kg sec^ 6 + i[i. sec 6)

(31)

where the summation extends to all the junctions, including the bow and stem.

Further, the algebraic sum of all the changes of slope is zero ; hence we may
separate out the calculation for each jimction by writing (31) in the form

7 J — JT

t
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where F is the function specified by (28) for positive and negative values of the

argument.

We may now complete the expressions to include a distribution in which

there are ranges of continuous change of gradient. It is obvious from the

preceding argument that the complete expression is

AW
TIM |_

m
dh

¥(x-Ks) + ^^F{x-h)dh}p (33)

where the summation covers aU points of sudden change of slope and all ranges

of continuous variation.

The function F can easily be tabulated and graphed by means of Qq and Pq.

In summing and integrating in (33) it is to be noticed that the Qq terms are

symmetrical before and behind each element, while Pq only exists in the rear

of each element. When the distribution M is a sum of integral powers of h,

it appears that (33) can be expressed in terms of the P functions defined in

(26), for the wave disturbance, together with a similar series of Q fimctions

for the local distinrbance. But even if M is not given in sinaple analytical

form, the elevation could be calculated directly from (33) by numerical or

graphical methods of integration.

7. We have been discussing the fluid motion due to a given distribution of

doublets, the surface elevation we have calculated being one of the stream lines.

It would be of interest to trace, if possible, other stream hnes so as to exhibit

the form of a subm^ged solid to which the given distribution is equivalent

;

but the calculations would be lengthy, even in the simplest cases we have

considered in the previous sections. For a ship model we have already men-

tioned the usual approximation for the equivalent distribution of doublets

when the ratio of beam to length is small enough. For a model of infinite

draught, whose horizontal half-section is given by y =f(h), we have

^^ = f/'W- (34)
dh 2tz

Hence (33) gives

;; = i S
{ I

/' (A)
i:
F (0. - A„) + \f" {h) ¥(x-h) dh^y (35)

We note that the magnitude of the contribution due to an angular point on

the model is directly proportional to the change of slope that occurs there.

8. We may illustrate the general result by considering briefly a model with
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parabolic lines. We take the origin at the bow, and let the form of the half-

section for y positive be given by

y = b{l-(h + Ifm ;
- 2? < A < 0. (36)

The discontinuities of /'(A) at the bow and stern are both positive, and equal

to 26/i ; while /"(/t) is constant throughout the fange and equal to —2hjl^.

Hence from (28) and (35) we have, from the discontinuity at the bow,

26
^, = --^Oo(koX), a;.>0

TZKqI

^^
Qo('<o^') + -^Po('^oA

TZKqI KKqI
x'> 0. (37)

There is an equal system for the discontinuity at the stern.

Consider now the contribution due to the curved portion and take fkst the

wave terms. For a pomt behind the stern {x' > 21) we have

86 '"'

KKqP
V,{K,{x'-h')}dh'. (38)

Wc have, in a notation already used,

rP„(M)dM=l+Pl(M)
JlJ

= Pu"^ (m), say. (39)

Thus from (38) and (36) the complete wave disturbance at a point behind the

stern is given by

86

tzkqI
Po {k,x') + Po{ko {x' - 21)}- i- {P.7^ {K,x') - P,7^ {kox' - 21)] (40)

Taking a point between the bow and stern (0 < a;' < 21), it is easily verified

that (40) gives the wave elevation for all points with the convention that the

functions Pq and PiT^ are to be taken zero for negative values of their arguments.

It may be noted that as these functions are zero for zero values of their argu-

ments, the expression is continuous throughout.

Similarly, if we consider the local disturbance and take first a point in

front of the bow (x > 0), we readily obtain from (28) and (35)

^^
^Qo ('<o^^) + Qo (-^0 (^ +m + —, (Qi ('^0^^) - Qi K^ + 2^)}

where

nK^l kJ,

f"

Qi (m) = Qo (w) '^"•

, (41)

(42)
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By taking points between the bow and stern and behind the stern, it may be

verified that (41) gives this part of the elevation for all points on the under-

standing that each function Qq is symmetrical about the zero of its argument

while each function Q^ is anti-symmetrical, that is Qq (— m) = Qq (m) and

Qi (- w) = - Qi («)•

In (40) and (42) we have the total elevation expressed in terms localised

at the bow and stern, and in functions which are easily calculated and tabulated.

The quantities have been calculated, without attempting any great degree of

accuracy, but sufficiently to show the character of the curves. These are shown

in fig. 3 in relation to the length of the model for the velocity given by

Fig. 3. •

The total elevation is the sum of the four curves which are shown in fig. 3.

One curve, symmetrical fore and aft, is the complete local disturbance given

by the sum of all the Q terms. Then there are two equal curves, one starting

at the bowand the other at the stern, for the wave terms due to the discontinuity

in slope at the bow and stem. The fourth curve is the total contribution of

the curved surface to the wave part of the elevation.

9. Another case of interest, which will only be mentioned here, is an un-

symmetrical model whose wave resistance has been discussed previously

;

its form is given by
y=-ah(h + lf, -l<h<0. (43)

Here there is only one discontinuity in/' (h), namely, at the bow, and/" {h) is a

linear function of h throughout the range. It wUl be found that the wave

elevation requires the first three terms Pq, Pj, Pg in the series of P functions,

while the local disturbance can be expressed in terms of Qq, Qi, Qg of a similar

series of Q functions.

To return to the general expression (35), it will be seen from the examples

that the localisation of the disturbance at special points is largely a matter of
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suitable integration. Consider, for instance, the usual form of model which
consists of a parallel nuddle body w:th a curved entrance extendmg from the
ore-shoulder to the bow and a curved run extendmg from the aft-shoulder to
the stern. In the sense in which the term has been used here, the total eleva-
tion can always be separated into parts localised at these four points, the bow
and stern and the shoulders. This can readily be expressed analytically by
smtable manipulation of (28) and (35) ; but it is hardly worth while pursum.
he general analysis f,u:ther, as it is simpler to work out the results directl^

tor any particular form of model.
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Ship Waves : their Variation loith certain Systematic Changes

of Form.

By T. H. Havelock, F.R.S.

(Received February 24, 1932.)

1. The following paper is an examination, by analysis and by curves, of a

single definite problem in wave profiles. Consider a ship model, of great

draught, in which at some point in the form, at bow, stern or shoulders, for

example, there is a sharp corner giving a sudden change of slope of the hori-

zontal lines of the model. What is the effect on the wave profile of replacing

this sudden change by a gradual change of slope of the same total amount,

but distributed uniformly over any given length of the ship's form ? Apart

from direct applications, the problem is suggested by certain other considera-

tions. In comparing theoretical and experimental resistance curves, I sug-

gested some years ago* an indirect effect of the friction belt along the sides

of the ship in that it may be equivalent to smoothing out the lines of the model,

especially towards the stern. From an examination of interference effects

with experimental models, it has been estimated that the effective length of

the model is roughly 8 per cent, greater than the actual length, and this may

probably be ascribed to some such frictional effect. The present paper deals

with wave profiles since measurements of surface elevation are now becoming

available, though the main results so far are for a simple model with straight

lines and sharp corners ; such a form simplifies the calculations but no doubt

introduces other complications in practice, and a small correction for the

smoothuig effect of a friction belt would not be likely to account for the remain-

ing differences between calculation and observation. It must be noted,

moreover, that there are other approximations in the theory, apart from the

neglect of fluid friction, but these need not be discussed here.

For these reasons no attempt has been made to apply the results of the

present paper directly to experimental data, but it is hoped that the progressive

series of curves will be of interest in showing the changes in profile due to

successive changes of form of a definite kind.

2. The general analysis will be quoted from a recent paper,t to which refer-

ence may be made for further detail, and the expressions will then be adapted

to the particular problem.

* ' Proc. Roy. Soc.,' A, vol. 110, p. 233 (1926).

t
' Proc. Roy. Soc.,' A, vol. 135, p. 1 (1932).
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466 T. H. Havelock.

Take in the free surface, with Oa; in the direction of motion aiid Oz verti-

cally upwards ; and let u be the velocity of the model. We consider first

a distribution of horizontal doubl(;ts in the piano y = 0, extending from the

free surface down to a great depth, and we take the moment M per unit area

to be a function of x only. Further, we suppose that the distribution of M
is confuied to a finite range in x, is continuous within this range, and is zero

at the two limits of the range.

The surface elevation along the median line y = is given by

;; = A S -'
I MW^I I* "R ("x — -r- 1 -I- I AT" IJA W/t — h\ Ah\

TIU

-
I

M' {x)
I'
F (x - xr,) +

I

M" (//.) F (x - h) dhS, (1)

where the summation covers all points of sudden change in the gradient of M,

and the integrals extend over the ranges of coiatmuous variation of gradient.

The function F is defined for positive and negative values of its argu,ment by

2/Co

F (-?) = - ^ Qo {x,l) + - Po ('^0?)=

(2)

with ? > 0, and k^ = gju^.

We have also, for positive values of -p.

^ Jo

Qo(^)-^r{Ho(p)-Yo(^)}#
I Jo

(3)

in the usual notation for Struve and Bessel fvmctions.

One of the approximations of the theory lies in the connection between the

form of the ship and the equivalent distribution of doublets in the median

plane y = 0. For a ship model, of infinite draught, whose horizontal half-

section is given by y ^f{x), the usual approximation amounts to taking

W{x) = {ul2n)f{x). (4)

With this relation, the siirface elevation along y = is given by

^ = ^^ { I

/' (^) 1^ ^ (^ - ^rs) + \f" W F (^ - h) dh^ . (5)

Here a;, and h, are positive in the direction from stern to bow, a;„ beiag the

position of any sharp corner in the form of the model. With this convention
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Ship Waves. 467

the discontinuities in f'{x) at stern and bow are both positive ; at an inter-

mediate sharp corner, say, at a shoulder, the discontinuity woidd usually

be negative. Along the curved lines of the model /"(/«) is negative, except for

hollow lines where the form is concave outwards and where /"(A) is positive.

Thus, knowing the character of the function F, the expression (5) gives a

general idea of the contributions of the various parts of the form. These

possibilities are illustrated in fig. 1, which represents a half section of a model

by a horizontal plane ; or, to Dc more exact, the diagram gives the distribution

/IX)

stern Bow

Fig. 1.

of doublets which is approximately equivalent to a model of this form. The

figure also indicates the conventions for direction which are adopted throughout

this paper.

3. We now isolate one particular feature for examination separately. It

Bhould, however, be noted that the function Q defined in (3) increases without

limit as its argument becomes greater, though the expression (5) for the mode^

as a whole remains finite everywhere. Therefore there is a certain artificiality,

as regards that part of the disturbance, in applying the expressions to an

isolated element of the form ; but that may be allowed for, and in any case

the method gives the differences made by changes in any particular element.

Consider a point on the model, given by x = x^, where the lines of the model

are straight lines meeting at a finite angle, for example, P, Q, or R in fig. 1.

Let C be the discontinuity in/' (a;) at that point ; that is, C is the difference

of slope of the lines forward and aft of that point. Then, from (2) and (5),

the contribution of this clement to the surface elevation is

X,, = '^-?{x-x,)

= (4C/™o) {- iQo (^„^7i) + Po (/^o?'!)}. (6)

where ?! = ic — x-^ and q ^ = x-^ — x. Further, we may use (6) for all values

of X with the convention that Pq is to bo taken zero for negative values of its

argument, and that Qq (— f) = Qp (yi). Now suppose that the same change of

slope is carried out uniformly in a given range ; that is, suppose the sharp
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corner replaced by a parabolic arc cxteiuling from x = x^ to x = x^, the point

a-j lying within this range. Considering the effect of this by itself apart from

any other changes, we sec from (5) that the corresponding contribution to the

surface elevation is now

^23 = ^~ : F-(j; - h) dh. (7)
'^ 1^3 ''2) •'xj

We shall use the notation

Qiip}=\''Qoil')dp, (8)
Jo

Po"' ip) = 1 + Pi (?) = r Po (p) dp. (9)
Jo

After evaluating (7) for points in advance of x^, between x^ and x^, and in the

rear of X2, we find that wc may express (7) in a single expression for all values

of X, namely

4C
^23 =

^^^2 (-g^_ .J.
)

^- iQl ('^0^2) + sQl ('^0?3) - Po"' ('^o!?'2) + Po"' ('<02'3)}.

(10)

with ^2 = a; — rcg = — q'^, q^ = x — x^=— q\, and with the convention that

Pq"^ is zero for negative values of its argument, while Q^ is anti-symmetrical

So that

Qi {-p) = - Qi (;^).

The expression (6) is, of course, the limiting value of (10) when x^ — x^ is

small and the points x^ and x^ ultimately coincide with the point cc^.

Numerical values of the fmictions may be calculated from their definitions

as integrals, or from suitable series ; for example, using the expansion of Hq
as a power series, we have

Q. (p) - P. (p) + 1' - j-rl^ + p 33'" 5. 6
- - <")

Q. ,rt ^ p.-w V
f-^

^ p^^i^ + ..3,";^^ - ... . (12)

4. The special object in view is a comparison of the relative values of (6)

and (10). The quantity C may be either positive or negative, and x^ may be

at any point between x^ and x^. But to make the problem definite in the first

place, we suppose C negative and take x^ = x^ and x<2,<x-^; thiLS we are

considering a sharp-angled shoulder on the model, such as Q or R in fig. 1,

with the smoothing out entirely to the rear of that point. This process, if
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carried out on an actual model, would no doubt involve other changes which

would have to be considered in a theory capable of taking exact account of

actual dunensions ; but meantime we may isolate the eSect of this particular

change.

For convenience we consider separately the eSect on the local disturbance

and on the wave motion to the rear. Taking the former, we see from (6)

and (10) that the difference amounts to replaciug j Qq (kq^^) by

^Kfl (?2 - ^i)
{Qi ('<o?2) - Qi (^o?!)}- (13)

This can be shown in a form applicable to various velocities and to various

ranges of x^ — x-^ by graphing the quantity

on a base p, for several values of Ic. These curves are shown in fig. 2.

(14)

-3-2-1
I Z

Fig. 2.—Curves of {Q {j) -\- h) — Qi {p)}j4:k for different values of k.

In applying these curves to actual distances along the ship model, we note

that p = KqX = gxju^, where u is the velocity ; and similarly h = gdju^,

where d is the range over which the original sudden change in slope has been

distributed. Thus the relative importance of the effects depends upon the

ratio gd/u^, or upon the ratio of d to X, the wave-length of straight water waves

for velocity u. In the diagram, k = denotes the curve for the sharp corner
;

the bow of the model is to the right of the diagram and the stern to the left.

Apart from the general smoothing effect, the chief point to notice in these

curves is the raising of the profile forward of the point in question and a lower-

ing to the rear of it. This is due to takuig the range d entirely to the rear of

the original sharp corner. If, on the other hand, the comer is taken at the

middle of the range d in each case, by a suitable relative displacement of the

curves, it is easily seen that the smoothing of the corner does not make any

appreciable difference to the local disturbance except within the range d

itself.
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Turning now to the wave portion of the «urface elevation, the change from

(6) to (10) consists in replacing — PoIko^'i) by

^ (/ ,'.
{^0-' {x,l\) - Po-^ K?'i)}- (15)

In iig. 3 curves have been drawn for the quantity

{Po-Mi^->t)-P„-i(^)}/i, (16)

on a base p, for several values of h.

There are several points of interest in these curves. Since h = d/2Ttl, the

relative effect of smoothing out a sharp comer over a given range is less the

98765432
I

Fig. 3.—Curves of {P„--i {p - h) - 'P„-^(p)}lk for different values of k.

smaller the ratio of d to X, as might be expected. In the curves for the smaller

values of k, although there is some diminution of amplitude, the more notice-

able effect is the displacing of the troughs and crests to the rear, an effect

which would increase the apparent interference length of the model. For the
larger values of h, from about h = 2, there is a pronounced lessening of the

amplitudes.

On the convention abeady described, in calculating these curves from (16)

the first term is zero until after f = k, and hence within the range k, the curve
is simply the value of - V^'^ip) . jk. This quantity has a first maximum
numerically, at about ^ = 2-54, and this may be observed in the curves for

k = 3.i, 5, 6. Further, in the curves for the higher values, the effect of later

maxima of the same quantity may be noticed ; for instance, with yfc = 6 the
range of continuous variation of slope is practically equal to the effective wave-
length, and so subsidiary interference phenomena of this nature are obtained.
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By displacing the curves to right or left we could examine the case when the

smoothing of the lines takes place partly in front of the corner ; and for a

positive discontinuity the curves may be inverted. We may thus obtain, for

example, some idea of the efEect of smoothing out the lines of a sharp-angled

stern, whether actually or by the cqiuvalent (effect of a friction belt.

Summary.

An examination, by analysis and by curves, of the changes in wave profile

produced by replacing a sudden change of slope in the lines of a model by a

continuous variation of the same total amount uniformly distributed over a

given length of the model.

Harrison and Sons, Ltd., Printers, .'<»
. Maiiin's ],aiu.', London, W.C.2.
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The Theory of Wave Resistance.

By T. H. Havelock, F.E.S.

(Received August 6, 1932.)

Introduction.

1. In the following paper general expressions are obtained or tlie wave

resistance of a continuous distribution "f sources and sinks over a surface within

the liquid, and also for a similar distribution of normal doublets. These

expressions follow directly from rerults given previously,* and may be applied

to give the wave resistance of a -ly solid for which a suitable distribution of

sources or doublets over its surface can be found.

The opportunity is taken to give, for comparison, the similar results for a

distribution of pressure over the surface of the liquid, using the same notation

and the same general method of calculating the wave resistance.

The various results are discussed briefly in relation to the ship problem.

Certain interpolation formulae, of a semi-empirical nature, have been proposed,

recently in attempting to extend the range of existing expressions for the wave

resistance of a ship ; these are shown to have their interpretation as particular

cases of source distributions of the nature considered here.

Source Distribution.

2. We begin with a simple point source of strength m at a depth/ below the

free surface of the liquid, and suppose the source to be moving horizontally in

the direction Ox with uniform velocity c. Take the origin in the free surface

with O2 vertically upwards, the souilce being at the point (0, 0, —/) referred to

* ' Proc. RoJ^ Soc.,' A, vol. 118, p. 24 (1928).
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moving axes. Let Z, be the surface elevation, and assume a frictional force in

the liquid proportional to velocity, the frictional coefficient being ultimately

made zero.

The pressure condition at the free surface is

-^ — g^+ fj.'^
= constant, (1)

at

and this gives

at 2 = 0, with Kq = gjc^ and [x = \i'/c. Assume for the velocity potential

27tJ_„ Jo

+ r dQ r F (k, 6)
6"^+"° dK, (3)

where ct = a; cos 6 + 2/ ^i^ ^' ^^^ ^^^ ^^^^ P^^^ °^ ^^^ expression is to be

taken. The first term in (3) gives the velocity potential of the given source,

namely m/ri, in a form valid for z +/> 0. From the surface condition (2)

we obtain

p (^^ 0) = - - '^ + '^0 ^^^^ ^ + '^^ ^'^" ^
e-'A (4)

2ii K — Kg sec^ 6 + i[i sec 6

(5)

Hence we may write the solution in the form

9 = -^—
\ sec'^ 6 dQ -. dK,

Ti fg 71 J _^ Jo K — KgSec^ 6 + t[i.sec

where

T,^ = x^ + y^+[z +ff ; ri = x^ + 2/2 + (2 -ff.

It is to be imderstood that the limiting value of (5) is taken for jx -> 0.

We may now generalise by integration. We replace x and yhjx — h and

y — h respectively, and take ct to be the surface density of source at a point

{Ji, k, —/) on a surface S within the liquid. Thus the velocity potential is

given by

, = f(i-i),.s

- -« CT(?S sec2 U 6
:

-dK, (6)
71 J J_^ Jo /c — KflSec^ 6 + i[xsec 6
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with

r^^ = {x- hf + (2/
- kf ^ [z +ff

ri =(x- hf + {y- kf + (s -ff .

CT = (a; — j^) cos 6 + («/ — k) sin 6.

It is assumed that the distribution is such that the various integrals are

convergent.

3. To calculate the wave resistance E we use the method of the previous

paper to which reference has already been made. With the inclusion of the

frictional term in the equations of fluid motion, energy is dissipated at a rate

equal to 2 a' times the total kinetic energy of the liquid and this must be equal

to the product Re. As [x' is made to approach zero the quantity so calculated

approaches a finite limiting value, and its physical interpretation in the limit

when there is no fluid friction is the rate at which energy is propagated out-

wards in the wave motion.

The rate of dissipation of energy is given by

-[x'pj^^icZS, (7)

taken over the boundaries of the liquid. As we require only the limiting value,

we have the wave resistance given by

poo TOO O J

R = Lim (xp
<f>
-^dx dy, (8)

/x->0 J_oo J_oo OZ

taken over the free surface z = 0.

Referring to (6), and putting the first two terms in the same integral form as

the third, we obtain, at z = 0,

4> = -''-^[adE[
TC J J-,r

sec2 6 d% " dK,
Jo K — Kq sec^ % -\- i]j. sec 6
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F2 = -

F4 = -

Fi = - {{« — Kq sec^ 0) P^ — txQ, sec 6} D

{{k - /<:„ sec2 6) Q, + !J,P, secG} D

{{k — Kq sec^ 6) Qo — [iPp sec 0} D

{(k — /Cq scc^ 0) Pg + jaQg sec 0} D

D = /<(, sec2 Q/hk {(k - Kq sec^ 0)2 + y.^ sec^ 0}, (12)

and the quantities P, Q are given in terms of the source distribution by

P^ = c7e~'^cos {kJi cos 0) cos {kJc sin 0) d8

Pq = ae^'^sin {kH cos 0) sin (Kk sin 0) dS

Qg = Ge~'Hm. {kTi cos 6) cos {kU sin 0) cZS

Qo = cje~"^cos {kIi cos 6) sin {Kk sin 0) tZS. (13)

Similarly from (10), 3^/32 is obtained in the same integral form as in (11),

with quantities G instead of F given by the same expressions as in (12) but

with

D = kIt.{{k - Kq scc2 0)2 + [J.2 sec2 0}.

The expressions for the surface values of ^ and d(f)jdz are now in a form to

which we may apply a theorem derived from the Fourier integral theorem in

two variables ; namely, we have, with the above notation

r r ^ M dx dy = 47^2 r ^^O [" (FjGi + Y.G^+ F3G3 + F4G4) K dK. (14)
J -00 J -00 cz J —IT Jo

Using (8), this reduces readily to

E = LimKpJ'' ,,c-%dQr'i^l±^l±^l±^dK
M^o J _„ Jo {k — Kq sec- 0)- + \i/- sec-

= 167r,C„2p - (P/ + P„2 + Q^2 ^ Q^2) sec3 fZ6, (15)

where in (15) the quantities P and Q have the values given by (13) when k has

been replaced by k-q sec2 0.
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This result may also be put in the form

E = Stoo^p [^ (P2 + Q2) sec3 6 d%, (16)

with

^1 = f CT e'«^
^^='

"
^°^

{/Co (x cos e + 2/ sin 6) sec^ 6} d^. (17)

QJ J sm

In (17), the co-ordinates iji, k, —f) have been replaced by current co-

ordinates (x, y, 2) ; since the sources are within the liquid, z is negative over

the surface S.

Doublet Distribution.

4. A surface distribution of normal doublets could be obtained by general-

ising an expression for any two doublets, but it can be deduced directly from

(16) and (17). We have simply to regard the surface S in (17) as a double

sheet with source densities a and —g respectively, and then proceed to the

limit in the usual manner. The required result is obtained by applying the

operator

, 9 , d . d
l-^ -\-in-—\-n-^,
ox oy dz

to the expressions in (17), [l, m, n) being the direction of the normal to the

surface. If M is the doublet moment per unit area, the axes being everywhere

normal to the surface S, we obtain, in this way, the wave resistance

in which

R = Stt/Cq^p [' (P" + Q2) sec' e dQ, (18)

P = j" M e"""'"^'" {— {I cos e + m sin Q) sin (k^ ct sec^ 6)

+ n cos {kq ts sec^ 6)} d%

Q = j" M e'«"'='=° " {(Z cos e -f m sin 6) cos (k^ts sec^ 6)

+ n sin (kquT sec^ 6)} tZS, (19)

with CT = re cos 6 + ?/ sin 6.

These expressions may be put into various alternative forms, and, of course,

may be simplified when the surface distribution is symmetrical with respect

to the co-ordinate planes. It may be remarked that an expression given

previously for the wave resistance of any two finite doublets in given positions

may be deduced as a particular case of these results.
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Pressure Distribution.

5. The wave resistance for a travelling distribution of pressure applied to

the upper surface of the liquid has been worked out by various methods, but

not by that used in the previous sections. It is convenient, for comparison,

to have the general case set out in the same way and using the same principle

for the calculation of the resistance.

We begin by assuming a possible form for the velocity potential and finding

the surface pressure to which it corresponds.

We take

^ = sec t) at) —^
;

K cIk,

J-,r Jq K — fCosec^ 6 + t[xsec 6
(20)

with S = a; cos 6 + «/ sin 6.

Prom the kinematical condition at 2: = 0, the surface elevation is given by

K = --\ sec-QdQ\ \'
.

-KdK. (21)
c J _„ J K — "^0 sec- -|- ifi. sec t)

The pressure at the surface (z = 0) is found from

^
= -og-,^+,'f (22)

Using (20) and (21), this reduces to

;p = — icp r d^r k¥ [k) e'"
<^ '°' " + » ''" «> dK

J-TT Jo

= — 2Tipci r k¥ (k) Jo (Kr) d.K, (23)
Jo

where r- = x- -\- y^. Since we may write

poo roo

p{r) = J() (kt) k dK \ p (a) Jq (ko.) a da., (24)
Jo Jo

we see that

^ = ^- f sec dd r IMe'^-^'"'
^ ^j^^ ^25)

27rcp J _„ Jo K — Kq sec- 6 + iy. sec 6

represents the solution for a surface pressure 2J{r), symmetrical round the moving

origin, with

f{K)=rp{a)J,{Kc)a.do:. (26)
Jo

To generalise this, we first suppose the pressure concentrated round the origin

and of integrated amount P, so that/(K) in (25) is replaced by 7j2n. Then for
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any continuous distribution of pressure f{x, y), we obtain by integration

^=.J—[j,{h,h)d^ [ sec e c^e
f

*
^^^^^^- -« X ^xr (27)

where now we have w = (a; — Ji) cos % -\- {y — h) sin^6.

6. We obtain the corresponding wave resistance from the rate of dissipation

of energy exactly as in the previous sections, and we use the formula (8).

The surface values of
<f>
and d<f>ldz are put into the form (11) and the calculation

carried out as in (14). From the similarity of the forms for
<f)

in the two cases,

the result may be written down. We obtain

R = Lim -f-- r sec^ 6 ^6 (" '^^ (P.^ + Pq^ + Q.^ + Qo^) ,,
H.->Q^TT^c^p]-r Jo (/< — wtq sec- 6)2 + [X- sec^

=^ f

""
(P.' + Po' + Q/ + Qo') sec^ e d0, (28)

TO-p Jo

where the quantities P and Q are as in (13) with /zero and a replaced by p.

We may also write this in the form

R = -^ [*"
(P2 + Q2) sec5 d%, (29)

2TO2p J _i„

with

QJ

the latter integrations extending over the given surface distribution of pressure.

We may obtain an alternative form by integrating with respect to x in (30)

;

provided the pressure distribution is continuous and is zero at its outer

boundaries, we then have

R =-!-[*'' (P2 + Q2^ sec3 e cZe, (31)
27rc2p J_j^

with

q}
=

I ^ sm ''"' (^ cos + 2/ sin 6) sec^ 6) cZS. (32)

We may compare (31) and (32) with the expressions (16) and (17) for a dis-

tribution of sources on a surface within the liquid. Suppose we may neglect

the depth of this latter surface at every point ; then without considering the

actual surface elevation, which would require a closer examination, we may

say that the wave resistance for the two cases would be the same with the

connection between the source density and the pressure distribution given by

47r^pCT = c dpjdx.

^^ - \p {x> y) 2a {'^0 {^ cos e + 2/ sin 6) sec2 0} d^, (30)
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Moving Solid.

7. An obvious application of tliese results is to the uniform motion of a sub-

merged solid when we replace the solid by a distribution of sources or doublets

over its surface ; for a first approximation we may take the distribution to be

that appropriate to the motion of the solid in an infinite liquid. This will, of

course, give the same result as if we had used the system of sources and sinks

which is the image of a uniform stream in the solid, or, in fact, any equivalent

surface or volume distribution on or within the surface of the solid. Simple

forms, such as the sphere or ellipsoid, for which the wave resistance has already

been found, have been calculated from the known image system. For instance,

the sphere was replaced by a doublet at the centre ; it can be verified, after

some reduction of integrals, that the expressions (16) and (17) with the proper

value of a over the surface of the sphere, lead to the same result for the wave

resistance. In general, the expressions (16) and (17) allow the wave resistance

to be calculated for solids for which an image system is not known, but for

which the distribution of surface density can be determined by known methods

of approximation.

Consider now an open plane distribution of sources and sinks over the

vertical zx-plane. In this case the normal fluid velocity at a point on either

side is 2-Ka, where cr is the source density at the point. For a ship of slender

form, and small beam, symmetrical about the sa;-plane, the normal velocity

is taken to be approximately c dy/dx if the surface of the ship is given by an

equation y =f{z, x). From (16) and (17), the usual expression for the wave

resistance follows :

R = ?^ (""
(P2 + Q2) sec3 e dQ, (33)

q}
=

j[ I e«»--' " l^
{k,x sec 6) dx dz, (34)

the latter integrations being taken over the vertical longitudinal section.

For the other extreme case, a ship of flat form and small draught, comparison

is usually made with a suitable distribution of pressure applied to the surface

of the water, with the wave resistance given by, say, (31) and (32).

The similarity between the expressions for the resistance m these two extreme

forms has been remarked upon by Weinblum,* and more recently by Hogner.f

In an attempt to cover both cases by a single expression, Hogner has proposed

*G. Weinblum, 'Z.A.M.M.,' vol. 10, p. 458 (1930).

tE. Hogner, 'Jahrb. Schiffbautech. Ges.' (1932).
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a so-called interpolation formula which, when put into the notation of the

present paper, is

E =^ f" (P2 + Q2) sec3 d%, (35)

J\ = f
f ^ e"""''^'^

"^"^
{^0 {x cos + 2/ sin 8) sec^ 0} dx dy. (36)

QJ J J 3a; sm

In (36) the integrations are taken over the section of the ship by the water

surface, and the surface of the ship is given by an equation z = F (x, y). It

may be noted that if dSy and dS^ are the projections of an element of the

surface upon the zx-plane and the xy-Tplane respectively, we have

{dzjdx)dS, = {dyldx)dBy.

In the limit y^O, (36) becomes equivalent to (34) under the conditions for a

ship of small beam. On the other hand, in the limit z -* 0, (36) reduces to the

expression (31) for a pressure distribution with the assumption p = gp^.

Without discussing this argument, it may be remarked that (36) is a particular

case of the expressions in (16) and (17) for a distribution of sources over

the surface of the ship. In the one extreme case, the narrow ship, we

take G = {c/2n) dyjdx, the sources forming in the limit a plane distribution.

For the other extreme, the flat ship, a similar approximation would be

(J = (cl2n) dz/dx. But it is only in these cases, when the source distribution

approximates to a plane, that the normal fluid velocity can be expressed

simply in terms of the source density ; these expressions do not hold when

the distribution is on a curved surface or, in other words, when the finite beam

of the ship is taken into account.

It has been remarked that formulae in use at present are in effect special

cases of the general expressions (16) and (17), with simple approximations to

the density of the source distribution. If we think of the distribution, appro-

priate to motion in an infinite liquid, as a suitable first approximation, it might

be suggested that this should be used over the curved surface of the ship

instead of the present simple expressions over the vertical longitudinal plane.

In one sense this would be an improvement, but it is not likely that it would

give any better agreement with experimental results ; for the more we depart

from the simple narrow ship the more necessary it is to take into account the

effect of the wave motion upon the distribution of fluid velocity round the

ship.

Instead of attempting to assign in advance a distribution of sources or

doublets over the surface of the ship, it might be left to be determined, from
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suitable integral equations, so that all the conditions of the problem should be

satisfied. This, in itself, would not amount to more than a formulation of the

general problem in different terms and would not advance its practical solution,

unless possibly such a form of statement should lead to improved methods of

approximation for the equivalent distribution.

Haekisok and Sons, Ltd., Printers, St. Martin's Lane, London, W.C.2.
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WAVE PATTERNS AND WAVE RESISTANCE.

By Professor T. H. Havelock, F.R.S.

[Read at the Summer Meetings of the Seventy-fifth Session of the Institution of Naval Architects,

July 12, 1934.]

Introduction.

1. It is not my intention to discuss in this paper practical problems of ship resistance,

but rather to review briefly certain points in the mathematical theory of ship waves and

wave resistance. In doing so, I shall not attempt to give the derivation of formulae or

any mathematical analysis of them; my main object is to give a descriptive or qualitative

account of some of the mathematical expressions and to show how in some cases deductions

may be drawn from an inspection of them.

The wave pattern made by a ship is familiar both from observation and as a subject

of mathematical study, and it is equally fascinating from both points of view. Perhaps the

earUest theoretical account is that given by Kelvin in 1887 in his well-known lecture on

ship waves to the Institution of Mechanical Engineers. That lecture was based on mathe-

matical work of which a later improved version was published by Kelvin in 1904,* and

it is this later work which is usually quoted now in the text-books. The ship, in that

work, is idealized to a point disturbance traveUing over the water and at the same time

sending out groups of waves which combine in such a way as to produce the characteristic

pattern of transverse and diverging waves. The early history of this idea of wave groups

and group velocity is also of some interest. In a letter written to Stokes in 1873, William

Froude describes the motion of a group of waves, how the group as a whole advances with

a less velocity than that of the waves composing it, wave crests advancing through the

group in its motion and appearing to die away at the front while new ones are formed

at the rear; he writes, in his letter from Torquay, " In my long experimental tank or

canal here, I have frequent opportunity of noticing this in the propagation of artificially

generated waves. I have not, indeed, yet investigated it quantitatively, because my hands

are full: but at a later date when experiments on the oscillation of models will be the work
in hand, I shaU have to estabhsh regular apphances for the generation of waves, and the

investigation to which I refer will be comparatively easy." It was in 1876 that Stokes

gave the kinematical explanation of group velocity, a more general account being given

shortly after by Rayleigh. This was followed in 1877 by Osborne Reynolds' d3mamical

theory of group velocity, connecting the flow of energy and the rate of work of the fluid

pressure in a train of waves; it is this latter point of view which is of fundamental

importance in the theory of wave resistance.

Much work has been done since then, both on the detailed structure of wave patterns

* Edin. Roy. Soc. Proc, Vol. XXV. (i), " On Deep Water Two-dimensional Waves produced by any-

given Initiating Disturbance"; "On the Front and Rear of a Free Procession of Waves in Deep Water";
and "Deep Water Ship Waves,"
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2 WAVE PATTERNS AND WAVE RESISTANCE.

and on the calculation of wave resistance, and more recently on the comparison of calculated

results with experiment; but the fundamental principles remain the same, and it is these

which I wish specially to keep in view in the following notes. We begin by considering

freely moving wave patterns; that is, not forced waves produced by the motion of a ship,

but waves moving freely and steadily over the surface of the water under the action of

gravity alone. We imagine the pattern to be produced by the mutual interference of

simple plane waves moving freely in all directions, their phases and velocities being suitably

adjusted; the elementary properties of the pattern are described from this point of view.

Then, considering the waves produced by a ship, we see that these must approximate,

at a sufficient distance to the rear of the ship, to such a freely moving pattern; this is

illustrated by calculations made for certain ship models. Finally, it is shown how the

wave resistance can be obtained from considerations of energy when we know the structure

of the wave pattern formed at a great distance in the rear of the ship.

Free Wave Patterns.

2. The simplest form of free waves on the siu-face of water consists of simple harmonic

waves with straight parallel crests, the procession of waves extending over the whole surface.

If the velocity of the waves is c, the wave-length is 2 tt c~/g for deep water; so that if

we take an origin O in the surface and take O x in the direction of propagation, the waves
might be represented by

^ = sin^„(a;-c«) (1)

where ^ is the surface elevation, and we have taken the waves to be of unit amplitude.

Suppose now that the waves are travelling in a direction making an angle d with x,

and that the wave velocity is c cos 9 ; then, with y in the surface and perpendicular to

X, the waves are now represented by

^ = sin {/c sec^ 6 {x cos 6 -\- y sin6 — ct cos ^)} .... (2)

where we have written k = gjc-.

An equal procession of waves moving in a direction making a negative angle 6 with

CK is given by
^ = sin ^a: sec^ d (x cos 9 — y sin 9 — ct cos 0)} .... (3)

Superpose these two sets of plane waves, and we have a wave pattern given by the

sura of (2) and (3), or

^ = 2 cos (/<: y sin 9 sec- 6) sin ^k {x — c t) sec 0} . . . . (4)

These have sometimes been called corrugated waves. We may get a rough idea of the

result by drawing parallel straight hues to represent the positions of the crests and troughs

of the component systems at a given instant; and so we get the picture of a diamond-
shaped pattern, covering the whole siurface and moving steadily in the direction x with

velocity c.

We now generalize by supposing that we have simple straight-crested waves like (2)

travelling forward in aU directions included within 90° on either side of O x. Superposing

these component plane waves wiU give a surface elevation

^ = sin ^K sec^ 9 [x cos 9 ~\- y sin 9 — ct cos 9)'^ d9 . . . (5)
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and this will represent a free wave jiattern of some form travelling steadily parallel to O x

with velocity c.

We may again obtain a rough pictm'e of the result by simple graphical methods.

Sujipose we represent a component plane wave of (5) by parallel straight lines showing the

crests and troughs at, say, the instant i = 0, in the manner shown in Fig. 1, the full lines

representing crests and the broken lines troughs.

Now draw similar lines on the same diagram for a large number of values of & in the

range from — 90° to + 90°. It is instructive to take, for instance, intervals of 10° and to

Fig. 1.

draw 19 sets of lines as in Fig. 1. Such a diagram is not given here, as there is too much
detail for reproduction on a small scale; but it is interesting to see the picture of a famiUar

wave pattern emerging from such a diagram. The curves which we see in process of

formation are shown in Fig. 2.

These curves are, of course, the envelopes of the lines of constant phase of the com-

ponent waves, and their mathematical equations are most easily obtained by expressing

Fig. 2.

that fact. When we look into the formation of the curves we see that they represent places

where component crests, or troughs as the case may be, combine together to give prominent

features of the pattern; on the other hand, we may say that at points at some distance

outside the region covered by these curves the component crests and troughs tend to cancel

each other out on the average. We arrive in this way at the picture of a wave pattern of

transverse and diverging waves, with a focus point 0, and extending in advance of this point

as well as to the rear; the whole forms a freely moving pattern travelling forward with

steady velocity. It need hardly be said that this description of the pattern represented
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4 WAVE PATTERNS AND WAVE RESISTANCE.

by (5) is only a first approximation; detailed mathematical analysis is necessary for a more
correct and intimate knowledge of the surface elevation.

Examine more closely one of the curves of Fig. 2, say the portion A B which is

shown in Fig. 3 along with the crest lines of the component plane waves.

We find that the transverse part A B is made up from those plane waves whose

direction angles range from zero up to an angle 0^, which is such that cos^ 6^^ = f, or

0j = 35° 16' approximately; the diverging part OA comes from the plane waves whose

directions range from 6^^ to 90°. The angle between the crest hne A and the central

line B is 19° 28', nearly. To complete our picture we require some information about

the height of the waves in the pattern defined by the expression (5). AU that need be

said here is that, following a curve such as B A 0, the height is fairly constant over the

central portion of the transverse wave, increases in the neighbourhood of a crest point A
and then decreases along the diverging wave to zero at the point 0.

It may also be noted that the wave-length A of a component plane wave being

(2 77 c^/g) cos^ d, these wave-lengths range from 2 n c^jg to zero.

3. Consider for a moment the difference in these general results if the water, instead

of being very deep, is of given finite depth h. The relation between velocity and wave-

length for a simple plane wave is different, and, moreover, there can be no plane wave

Fig. 3.

whose velocity is greater than "y'
(g h). Suppose we build up a pattern like (5) when the

velocity c of the pattern is less than this critical value -y/ (g h). We could trace the envelope

curves in the same way and obtain a wave pattern similar to Fig. 2. The chief difference

is that the wave pattern widens out; the angle of the cusp line is greater than the value

19° 28' for deep water and it increases with the velocity c. In addition, the transverse

waves become less curved, the angle 6-^ of Fig. 3 being less than the value 35" for deep

water and becoming less as the velocity c is increased.

If the velocity c is made greater than the critical value -y/ [g h), we see at once that

we must omit a central portion of the integration in (5), because the component plane waves

can only begin to exist at such an inclination 9 that their wave velocity c cos 6 is equal

to -s/ {gh). On working out the wave pattern in more detail, it is found that it consists

then of only diverging waves.

4. We return to the expression (5) for deep water. The origin was taken at a fixed

point, but it is more convenient to take a moving origin for the co-ordinates at the focus

point of the wave pattern ; so in what follows we shall write x instead oi x — c t. Further,

for brevity we shall write

{x, y) = K sec- 6 {x cos 6 -\- t/ sin 9) (6)

We may caU the surface elevation given by

a simple sine pattern.

^ = sin {x, y) < (7)
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We could also have used a form
IT

C = \ COS {x, y) d 9 (8)

which may be called a simple cosine jDattern. The general form of the pattern is the same
in both cases, with the necessary changes in wave heights due to the interchange of crests

and troughs. It would be of interest to have a more detailed mathematical and numerical

analysis of these two simple forms.

In (7) and (8) the amplitudes of the component plane waves are taken to be the same
for all directions. We may now proceed to a final generalization by supposing that in each

case there is an amplitude factor depending upon the direction of each component; adding

the two forms, we arrive at a general expression for a freely moving wave pattern, namely

IT TT

'2

^ = / (0) sin {X, y)de +\f {9) cos {x, y) dd . . . . (9)

It is true that the amplitude factors may alter considerably our picture of the pattern,

especially if they have pronounced maxima or minima; however, we shall see that most
cases which have been calculated for ship models can be reduced to terms like (9) with

simple amplitude factors.

Ship Waves.

5. We have been dealing so far with a free wave pattern; that is, we have supposed

the system to be completely in existence at some instant, and then afterwards it moves
freely and steadily forward.

Consider now the disturbance produced, in a frictionless hquid, by a moving ship or

by a disturbing pressure system moving steadily forward. At some distance in advance

of the ship there can be no appreciable disturbance, as we suppose it moving forward into

still water. In the immediate neighbourhood of the ship the disturbance will be of a

eompHcated character. But as we go further and further to the rear, the surface distiu-bance

must approximate more and more to some freely moving wave pattern following on with the

same speed as the ship.

For instance, if a long cylindrical log is moved with steady velocity c at right angles

to its length, the disturbance at a great distance in the rear must approximate to a simple

plane wave of velocity c, whose wave-length is therefore 2 n c^jg. It could be expressed

by (1), taking some suitable point as the origin 0, and including some definite amplitude

factor; this amphtude factor would be the important thing left to be determined from the

form of the cross-section of the cylinder and its velocity. Similarly for an ordinary ship

form, the waves at a great distance in the rear must approximate to some freely moving
wave pattern such as we have been considering; and for some suitable origin 0, in or near

the ship, they must therefore be expressible in the form (9), with amplitude factors / (d)

and F {9) depending ui3on the form of the ship and the speed. Without going into the

details of calculating these expressions we shall now examine a few cases in order to illustrate

the types of wave pattern which occur in such problems.

Point Disturbance and Sphere.

6. On account of its historical interest we may mention first the travelling point
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6 WAVE PATTERNS AND WAVE RESISTANCE.

disturbance examined by Kelvin in the paper to which reference has abeady been made.
In this case the waves in the rear approximate to the form

^ = A sec- 6 sin {x, y) dd (10)

where A is a constant, and we use the notation specified in section 4.

We may describe this as a sine pattern with an amplitude factor sec^ 9, which varies

from unity at 9 = 0° to infinity a,t 9 = 90°. We have seen, in section 2, that the transverse

waves of the pattern come from the range 0° to 35° approximately, while the diverging

waves come from the rest of the range 35° to 90°, taking one side of the central line x.

Thus we should expect the diverging waves in this case (10) to be increased in magnitude
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and diverging waves for different depths or for different speeds. We see that the effect of

increasing depth, at the same speed, is to diminish relatively the diverging waves.

But these are perhaps details of purely theoretical interest, and we turn now to some

cases of ship models.

Models of Great Draught.

7. We consider first a model of great draught, of uniform horizontal cross-section

throughout and with paraboHc lines; this is a model which has been investigated by

Mr. W. C. S. Wigley, working at the William I'roude Laboratory. Fig. 5 shows the hori-

zontal section.

Taking the origin at the mid-point, the equation of the curve ACB is y = b (I — x^jl^).

Fig. 5.

the beam being 2 b and the length 2 I. It can be shown that, on the usual mathematical

theory, the waves in the rear of the model approximate to

8&
^k: I cos {k I sec 9) — cos 6 sin {k I sec d)^ sin {x, y) dd . (12)

This might be regarded as a sine pattern with a somewhat complicated amplitude

factor; but fortunately we can dissect it into simpler components, for it is identically

equal to

sin {x hy) + —J
sin {x + I, y)

9 *

g- 1^ g^ V'

l,y)\de (13)

Here the pattern is seen to be the combined result of superposing foiir simple patterns,

two focussed at the bow and two at the stern. The first two are simple sine patterns,

with constant amplitude factors at a given speed; they may, in fact, be attributed directly

to the finite angle of the model at the bow A and at the stern B respectively. The other

two terms in (13) are cosine patterns, with an amphtude factor cos in each case; although

one is focussed at the bow and the other at the stern, it is more appropriate to regard

these two terms together as representing the resultant effect of the curved sides ACB and
A D B of the model.

A matter of great interest is the mutual interference of these four patterns according to

the speed, the extent to which it is possible to make the crests of one pattern coincide

with the troughs of another and the speeds at which maximum effects of this kind occur;

however, these points are better considered in connection with the corresponding wave
resistance.
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8 WAVE PATTERNS AND WAVE RESISTANCE.

Notice first the magnitudes of the terms in (13). The bow and stern systems are

factored by c^jg I, while the effect of the curved sides has the factor c^/g^ P. Hence at

low speeds the bow and stern provide the greater part of the wave system, but as the

speed increases their relative importance becomes less. Then we have the effect of the

amplitude factor cos 9 in the last two terms of (13). Remembering the distinction between
transverse waves and diverging waves in a simple pattern, and that cos 6 diminishes from
unity at 0° to about 0-8 at 35° and then to zero at 90°, we may describe the result in

general terms : the effect of the gradual change of slope along the curved sides of the model
compared with the finite angle at bow and stern is to diminish the relative importance of

the diverging waves. This point is ampHfied further in the following model.

8. In this model one end, say the stern, is drawn out to a fine point. The model is

again of great draught and is of uniform horizontal section throughout. Fig. 6 shows the

form of the horizontal section. .. .

Fig. 6.

Taking the origin at the bow, as in the diagram, the equation of the curved side

OCB is

y =
27 b

x{x + 1)^ (14)

The maximum beam 2 b occurs at one-third of the length from the bow.
The wave pattern in the rear is given, in our abbreviated notation, by

^ =
27 6

- sin (x, 2/)
^ 4 ( —

J
cos d cos {x, y) — &( — \ cos- d sin {x, y)

2 (
—

j cos cos {x + l,y) + &{~ \ cos^ 6 sin {x -f I, y) Yd 6 (15)

Here we have five simple patterns, the first three focussed at the bow and the last

two at the stern. The first term in (15) is the simple sine pattern due to the fijiite angle

of the model at the bow; we notice there is no similar term for the stern because the angle

has been smoothed away completely at the stern. The last four terms of (15) taken together

represent the resultant effect of the curved sides OCB and O D B of the model. The
general inferences are the same as for the previous model; but we notice that we have

now, in (15), patterns with an amplitude factor cos^ 5, and for such the relative importance

of the diverging waves is still further diminished.

Effect of Dkaught.

9. Another point about which we may make some broad deductions from the formulae

for the wave patterns is the effect of the draught of the model. In the previous cases
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we have supposed this to be very large, or theoretically infinite. Let us suppose now that

the model is of uniform horizontal section down to a depth d below the surface and is then

cut off by a horizontal plane. For our present descriptive purpose, we may make some

simphfying assumptions in deducing the formulae for the wave system, but these need not

be investigated here; it is sufficient to state the general result. The effect of making the

model of draught d, instead of infinite draught, is simply to introduce into each of the

terrils for the component patterns, in say (13) or (15), an additional ampUtude factor,

namely

1
-Kd 8ec2 e

(16)

Since Kd = g djc^, the value of this factor depends upon the speed. Fig. 7 shows

curves of this quantity (16), for different values of Kd, for the half range of values of

e from 0° to 90°.

From inspection of this diagram we see at once that, for a given speed, if the draught

is diminished the transverse waves of the pattern become less important. We may put

too

•75
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all this work we are assuming the Hquid to be frictionless ; or, rather, we suppose that

frictional resistance and the effects of viscosity have been treated separately and so eUminated
from the wave problem in order to make it more amenable to calculation. It is true that

the most direct idea of wave resistance is to regard it as what it is in fact, namely, the

combined backward resultant of the fluid pressures taken over the hull of the ship; but this

is by no means the simplest method for purposes of calculation.

On the other hand, by a direct application of the method of energy and work, we
shall see that we only need to know the wave pattern at a great distance in the rear

of the ship.

Denote by S the position of the ship at any instant, by A and B two infinite vertical

planes in given fixed positions at right angles to the direction of motion of the ship, the

plane A being in advance of the ship and the plane B to the rear.

Consider the rate of increase of the energy of the fluid in the region between the

surface of the ship and these two planes, and consider also the forces operating at the

boundaries of this portion of fluid. The fluid possesses kinetic energy due to its motion
and potential energy arising from alterations in the surface elevation. Calculate the rate

at which total energy, kinetic and potential, is flowing into the region in question across the

plane B and call this E (B). A similar calculation would give E (A) for the rate at which
total energy is flowing out of this region across the plane A. At any point of the plane B
let p be the fluid pressuLre and u the component fluid velocity inwards at right angles to

this plane. The fluid to the left of B is doing work on the fluid to the right at a rate p u
per unit area at each point of the plane; summing up for the whole plane, we call W (B)

the rate at which work is being done on the fluid in question across the plane B. Similarly,

— W (A), calculated in the same way for the plane A, is the rate of work across that plane

upon the fluid between the two planes. Finally, if R is the resultant resistance to the

motion of the ship and c its velocity, the ship is doing work on the fluid at a rate R c.

Hence, equating the total rate of work upon this portion of fluid to the rate of increase

of its total energy, we deduce a general expression for R,

R c = E (B) - W (B) - {E (A) - W (A)} .... (17)

This holds for any two fixed planes, one in advance of the ship and the other to the

rear. If we take plane A further and further in advance, the quantities E (A) and W (A)

approximate to zero, since the ship is advancing into still water. And if we take B further

and further to the rear, the disturbance approximates to a free wave pattern such as we
have considered in the previous sections and we can calculate the quantities E and W for

any plane of that free wave pattern. Thus we have finally

Rc = E-W (18)

where E and W are calculated from the free wave pattern to which the disturbance approxi-
mates at a great distance in the rear of the ship.

11. This method is familiar in its apphcation to plane waves with straight parallel

crests. It is probable that the first calculations of wave resistance were those made in this

way for plane waves, the argument being usually expressed in terms of group velocity.

For simple harmonic waves of height h the average total energy is \ g p h^ per unit area of
sxirface; thus the quantity E of (18) is hgph^c per unit length parallel to the crests.

The quantity W is exactly one-half of this amount; or, as it is usually expressed, the group
velocity is one-half the wave velocity. Hence from (18) we have B. = Ig ph"^, where R is

the wave resistance per unit length of the cylindrical body to whose motion the waves
are due.

It is rather curious that this method has not been used for obtaining the wave resistance

from the wave pattern produced by ordinary ship forms. The formulae in use at present

have been developed by other methods. In some cases they have been found from the
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WAVE PATTERNS AND WAVE RESISTANCE. 11

resultant fluid pressure on the ship. Another method is to introduce an artificial kind of

fluid resistance, calculate the rate of dissipation of energy, and so ultimately arrive at

expressions for the wave resistance. All these methods must lead to the same results

if carried out correctly; but perhaps the most natural method is that outhned above and

embodied in the general expression (18).

It has been shown recently that the necessary calculations can readily be extended to

wave patterns of the general type which occur in ship waves.* The results may be given

here, without going into the detailed analysis.

Suppose first that we have a free wave pattern given by

^^\f(d)sm{x,y)de (19)

and suppose that the amplitude factor f {9) is an even function of 9, so that (19) is

equivalent to

^ = 2\f{9) sin {k X sec 6) cos {k y sin d sec^ 9) dd ... (20)

We can write down the velocity potential of the fluid motion for the wave form (19) and

so obtain the pressure and velocity at any point of the fluid. The quantities E and W
of (18) can then be calculated, with suitable limitations on the function f {9) which amount

to ensuring that E and W are in fact finite and calculable. Under these conditions it is

found that E — W for the pattern (19) is given by a remarkably simple expression, namely.

E — W = 77 p C'
3

{f {9)}^ cos^ 9 d9 (21)

Hence the wave resistance of a body moving with velocity c and leaving in its rear

a pattern (19) would be given by

R = TT p c2 {/ (9)Y cos^ 9dd (22)

12. Suppose, for illustration, that the amplitude factor is independent of 9 and that

we have
IT

I = h \ sin {x, y) d9 (23)

~2

a simple sine pattern, with h possibly a function of the velocity c. This is certainly a

hypothetical case; (23) is like the first term of (13) or (15), so presumably the sort of

body which would produce this wave pattern would be the bow of a ship of great draught,

but without any sides or stern. However, without inquiring any further into that, if the

wave pattern is (23), then from (22) the corresponding wave resistance would be

R = 77 p c2 A2 cos3 9 d9 ^ I IT p d'
h"'

(24)

* Proc. Roy. Soc. A., 144, p. 514, 1934.
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12 WAVE PATTERNS AND WAVE RESISTANCE.

We might even carry this calculation a step further and divide the integration into two
parts: (i) from e = to 6/ = 35° 16', (ii)from 6 = 35° 16' to 61 = 90°; and we might associate

the first part of R so calculated with the transverse waves of the pattern, and the second
part with the diverging waves. On that basis we easily find that for (23) the transverse

waves account for about 77 per cent, of the wave resistance, and the diverging waves for

the remaining 23 per cent.

The formula for R given in (22) was for a sine pattern (19), but the same expression

holds for a similar cosine pattern. For instance, to compare with (23) we may take the case

r
^ = A cos 6 cos [x,y)d6 (24a)

which is hke a term of (13) or (15) giving the effect of the curved sides of the model. For
this pattern the corresponding wave resistance is

R = 77 /3 C2 AM C0S5 dde = ^TTpC^h^ (25)

If we make a similar division into transverse waves and diverging waves we find that

the former now account for a greater proportion of the total resistance, about 86 per cent.

However, this is, no doubt, carrying the dissection too far; the wave pattern as a whole
should be treated as a single system.

13. As an example of (22) we may consider the model with parabohc lines for which
the wave pattern was given in the expression (12). We have at once the wave resistance

given by

„ 64 62 p c^ r r -,R = —

—

^ „ ^K I cos {k I sec 9) — cos 6 sin {k I sec 6)}^ cos^ 6 d6 . (26)

On expanding this expression we have

32 J2 „ g2
J

"

R = TTT- {k2 P + cos2 e + kH^ cos (2 K I sec 6)
TT K^ t*

'-

And this leads to

'2/'

2 kIcosB sin (2 k I sec 6) + cos^ 9 cos (2 k I sec 9)} cos^ 9 dd (27)

32 /3
62 c2

,Kjl) +Yk7l) +^0{eos3.eos(2.Zsec.).^

- 2 ^— j cos^ 9 sin (2 k I sec 9) d9 - (—J cos^ 9 cos (2 k I sec 61) dd (28)

The result has been put into this form for direct comparison with the expression for

the waves given in (13), where they are analysed into four simple patterns, one for the

bow, one for the stern, and two for the combined effects of the curved sides of the model.

From this, and the calculations of the previous section, we can now identify the origin of

each of the terms in the expression (28). The first term is the resistance due to the bow

and stern patterns as if each existed alone, while the second term is similarly due to the

curved sides calculated separately. The last three terms of (28) have been left in the form

388
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of integrals; these integrals have been tabulated for numerical work, but we are only con-

sidering here some general inferences. These three terms represent the mutual interference

of the four simple patterns contained in (13), and it is obvious from the power of the factor

(c^lg I) whence they arise. The first of these represents the interference of bow and stern

patterns, the second the interference of bow or stern with entrance or run, and the last

term the mutual interference of the two patterns from the curved sides or, as one may say,

the interference of entrance and run. It is these last three terms in (28) which have
oscillating values, and so give rise to the well-known humps and hollows on the curve of

wave resistance.

14. We have seen that the wave pattern left behind by a ship can in general be put
into the form given in (9); we have described this as sine and cosine patterns with known
amplitude factors. The calculation of the quantity E — W can readily be extended to this

general form and we obtain then the wave resistance for aay general case.

We first put (9) into the equivalent form

^ = I (Fj sin A cos B + Pg cos A sin B -f Fg cos A cos B -|- F^ sin A sin B) dO (29)

where A = k x sec 6, B = Ky sin 6 sec^ 9, and the F's are functions of d, in general, and of
the form of the ship and its speed. The calculation of R follows as in the simpler case

of (19), and leads to the general result

77

n = i7TpcA (Fi2 + F^a + F32 -1- F,2) cos^ede . . . (30)

The determination of the functions F is, of course, another matter. Approximate
methods in use at present amount to replacing the ship by some equivalent distribution of

sources and sinks; the functions F then usually appear as integrals taken over the surface

of the ship, or over its longitudinal section for a first approximation. One of the out-

standing problems of ship wave resistance is the improvement of methods for determining
these functions; the hne of attack open at present would seem to be by further steps of

mathematical and numerical approximation, assisted and corrected by comparison with
experimental results.

The object of the present paper was to recall some of the elementary properties of

wave patterns and their production by the mutual interference of simple plane waves, to

illustrate these by examples from ship models, and further to emphasize the direct connection
between the wave pattern and the wave resistance.
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The Calculation of Wave Resistance.

By T. H. Havelock, F.R.S.

(Received January 25, 1934.)

1. The wave resistance of a body moving in a frictionless liquid has been

calculated by various methods. In a few cases it has been found directly as

the resultant of the fluid pressures on the surface of the body. Another

method, which has been more generally useful, involves the introduction of

a certain type of fluid friction into the equations of motion. The wave

resistance is then found by calculating the rate of dissipation of energy and

taking the limiting value when the frictional coefficient is made vanishingly

small. This method has certain important analj'tical advantages, nevertheless

it is highly artificial. A third method, dealing directly with a frictionless

liquid, consists in examining the flow of energy in the wave motion ; this has

hitherto been used only for two-dimensional problems when the wave motion

consists of simple waves with straight parallel crests, the usual theory of

group velocity being directly applicable.

In the following note this method is extended to tliree-dimensional fluid

motion. Although no new special results are obtained so far as expressions

for wave resistance are concerned, it seemed of sufficient interest to obtain

them by this direct method, namely, by considering the flow of energy and the

rate of work across planes far in advance and far in the rear of the moving

body.

These quantities are examined first for a free wave pattern of simple type.

Then a general expression is given for wave resistance in terms of the velocity

potential of the free wave pattern to which the disturbance approximates at

a great distance in the rear, and this is applied to a general form of wave pattern

and to some special cases. Finally, a similar examination is made of a certain

problem when the water is of finite depth.

2. With the origin in the free surface of deep water, and Oz vertically

upwards, the siurface condition is

|f-,|?^0, .^0, (1,

where ^ is the velocity potential and ^ the surface elevation. For a wave
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615 T. H. Havelock.

pattern advancing steadily with velocity c in the direction Ox, we may write

(1) in the form

g + -.|^ = «, . = «, m
with Kg = g/c^-

A simple plane wave advancing in a direction making an angle 6 with Ox

is given by

^ = a sin {kq sec^ 6 {x cos 6 + y sin 6 — cf cos 6)} ~]

(j) ^ ac cos 6e'°^
^''°' * cos {k^ sec^ 6 (x cos 6 + y sin 6 — c< cos 9)} J

We may generalize this to obtain a free wave pattern made up of plane waves

advancing in all directions, so that the pattern itself moves steadily with

velocity c in the direction Ox ; we have then

K=\' /(e) sin {ko sec2 6 (a; cos 6 + ?/ sin 6 - c< cos 6)} dQ. (4)
J — il7

We shall suppose in the first place that the pattern is symmetrical with respect

to Ox, so that we have

/•in-

^ = 2 I / (6) sin {kq x' sec 6) cos («:„ y sin 6 sec^ 6) dQ
Jo

cf>
= 2c \ / (6) e'»"'^'^ " cos (Kga;' sec 6) cos (/>:„ 2/ sin 6 sec^ 6) cos 6

Jo

>, (5)

with x' = X — ct.

Consider a fixed vertical plane x = constant. The rate of flow of total

energy across this plane is given by

The variable part of the fluid pressure being pd<l)jdt, or — pcdc/j/dx, the rate at

which work is being done across the same plane is

We shall assume that the wave pattern is such that these quantities are finite

and determinate.

To evaluate these expressions with the values (5) for
(f>

and ^ we use the

following theorem :

391



(8)

Calculation of Wave Resistance. 616

If
roo

^1 (y) — (^1 ^^^ y^ + ^1 ^^^ y^) '^"'

Jo

Fa iy) = (Aa cos 2/M + Bg sin yw) (iw,

Jo

A, B, being functions of u, then

r Fi (2/) Fa (2/) fZy = 71 r (AiAa + BiBa) dw, (9)

J -00 .'O

assuming that the integrals are convergent.

To take one of the integrals in (6) as an example, we have

dx
- 2/CoC

f "V (0) e'"""' " sin («o^' sec 6) cos (K^y sin 6 sec^ 6) rfS. (10)
Jo

To put this into the form (8), we write m = Kq sin 6 sec^ 6, then carry out

the process (9) and finally replace the variable u in terms of 6 ; it is clear

that we shall have to introduce into the integral in the final form a factor

dQjdu ; that is, a factor cos^ Q/k^ (1 + sin^ 6). Thus we have

= inK,c^ j° dz j"'
{/ (6)}^ e-^'""-'" sin^ (k^' sec 6) ^^^4^

= 2nc^
{'"

{/ (6)}^ sin^ {k,x' sec 6)
""^^ ^ f, . (11)

Jo 1 + sm^ "

From (6) we find in this way that the rate of flow of total energy across the

vertical plane is

fin-npc^ \ '{f{Q)y {(3 - sin2 6) sin" (k^x' sec 0)

Jo

+ (1 + sin2 6) cos2 (k,x' sec 6)}-^^^^ , (12)
1 + sm'^ G

and that the rate at which work is being done across this plane is

27Tpc' {/ (6)}^ sin^ (k,x' sec 9)j^~^ (13)

It is the difference of these two quantities that is significant for our purpose
;

it is, as would be expected, independent of the time and of the position of the
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617 T. H. Havelock.

plane. Subtracting (13) from (12), we find that the rate at which energy is

being propagated less the rate of work reduces to the simple expression

T^pc' r"{/(e)PcosS0(i0. (14)
Jo

It may be noted that if we take mean values of (12) and (13) we have as the

mean rate of flow of energy

2npc'^['\f{Q)f-^±-dQ. (16)
Jo l+sm^e

and as the mean rate of work

The connection indicated in (15) and (16) is a generaUzation of the well-known

result for simple plane waves that the mean rate of work is half the mean

rate of flow of energy.

3. Consider now the forced wave pattern produced by a body moving through

the Uquid, or by a locahzed pressure disturbance. The complete surface

elevation may be separated into a local disturbance and a wave pattern. In a

frictionless liquid a possible solution is one in which the wave pattern extends

to an infinite distance in advance of the body as well as in the rear. The

determinate practical solution is that for which the wave pattern vanishes at

a great distance in advance, and we may suppose this obtained by superposing

over the whole surface a suitable free wave pattern. In that case, considering

the flow of energy and rate of work across two fixed vertical planes, one far in

advance and the other far in the rear, we see that (14) is equal to Re, where R
is the wave resistance. Hence we have

R = 7rpc2 ^{/(e)}^ cos3 dQ, (17)
Jo

when the wave pattern at a great distance to the rear approximates to the form

(4).

For example, the forced wave pattern produced by a submerged sphere, or

more precisely by a horizontal doublet of moment M at depth /, approximates

at a great distance behind the disturbance, to the free wave pattern

^ = WM: [*"
sec* 6-"'^'^''

" sin {/Co («' cos + y sin 0) sec" 0} dQ. (18)
c J-i^
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wave resistance is

R = 167tp/<:o*M2 [ %ec* e e-'^'o^"'"' " dQ, (19)
Jo

which is the known result for this case.

4. Before generalizing these results we may put (6) and (7) into an expHcit

form for the wave resistance.

The kinetic energy of the hquid in a strip between two parallel vertical

planes at a distance 8x apart is

Transform (23) into the equivalent form of a surface integral over the boundaries

of this portion of fluid, assuming the wave pattern to be such that the various

integrals are convergent. Thus we obtain the rate of flow of kinetic energy

across a vertical plane as

Further, we may transform the other terms in (6) and- (7) by using the surface

condition (2) together with gl^ = — cd(f>/dx at z = 0.

Finally, equating the difference between (6) and (7) to Re, we obtain for the

wave resistance

«

=

kLm - ^ g}„. ^. - *.L -i:im - * si *
(25)

In this expression <^ is the velocity potential of the free wave pattern to which

the disturbance approximates at a great distance in the rear. Considering the

disturbance produced by a body of any form, it appears that this free wave

pattern must be expressible, in general, in the form

K= {' / (6) sin {ko sec2 6 {x' coaQ + y sin Q)}dQ

+ [

" F (6) cos (ko sec2 6 (x cos 6 + y sin Q)}dd, (26)
J -in

that is, in the form

K=
\

(Pi sin A cos B + Pg cos A sin B + P, cos A cos B + P4 sin A sin B) dQ,
Jo

(27)

where A = k^^x' sec 6, B = K^y sin 9 sec* 9.
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518 T. H. Havelock.

The corresponding velocity potential is

<f>
= o\ (Pi

Jo

COS A cos B — Pj sin A sin B — P3 sin A cos B

+ P4 COS A sin B) e"'''"'' cos 6 dQ. (28)

With this value of <^ in (25), we use (8) and (9) to evaluate the integrations

with respect to y as in § 2 ; and we obtain readily the general result

R = J:i:pc2 (P^a + P^a + Pg^ + P/) cos^ 6 dQ. (29)
Jo

The actual calculation of the quantities P for a body of given form is, of

course, another problem. Methods in use at present amount to replacing the

body by some approximately equivalent, system of sources and sinks ; the

functions P then appear, in general, in the form of integrals taken over the

surface of the body. We need not consider these here as the expressions for

R given above lead to the same results as those obtained previously by different

methods.

5. It is of interest to examine a similar problem when the water is of finite

depth h. It is clear from the derivation of (25) that we may use it in this case

also, taking the lower limit of integration with respect to z to be —h instead

of — 00.

For the simple symmetrical type of free wave pattern given by (4), the corre-

sponding velocity potential is

^ = 2c rV (6)
cosh 'c {z + h)

^^g ^^^, ^^g Q^ ^^g ^^^ gj^ Q^ ^^^ Q ^g^ ^g^^
J sinh kA

the relation between k and 6 being

K — Kq sec^ 6 tanh kH ^= 0. (31)

We shall assume first Kgh ]> 1, that is c* <^ gh, so that (31) as an equation for

K has one real root for each value of 6 in the range of integration. In evaluating

(25) we carry out the integrations with respect to y by means of (8) and (9).

For this we have to change from an integration in 6 to one in a variable u

given by
M = K sin 6, (32)

together with (31). The corresponding factor dQ/du has now the value

cos^ 6 (coth Kh — Kh cosech^ kJi)

/cq (1 + sin^ 6 — Kf^ sech^ kA)
(33)
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We have, for example,

pO roo

i-h J-o

J -h Jo Kn smh-' Kfl

cosh^ AT (z + A) (coth /cA — kH cosech* kJi)

(1 + sin^ 6 — Kf,h sech^ kH)

X sin" (/ca;' cos 6) k^ cos'' 6 rfO

= 2to* {/ (9); 7 sm" (kx cos 6) k cos' 6 rfO.

Jo Kq (1 + sin" 6 — KqH sech" kA)

(34)

Evaluating the remaining terms in (25), we obtain after a little reduction the

result

R = Tcpc" [

"
(/ ( 6)}" (coth Kh - Kh cosech" Kh) cos^ dQ, (35)

Jo

with K given in terms of 6 by (31).

This may be compared with (17) for the similar wave pattern in deep water.

For a horizontal doublet M at depth/ in water of depth h, an expression for

the complete surface elevation can be derived from results given previolisly.*

We have

^ = H r dQ r cosh.(A-/)e'-(-'-^^^-"-^)
^,^^_ (3g)

Tire J _„ Jo cosh Kh {k — Kq sec" 6 tanh /cA + i\L sec 0)

where we take the limiting value of the real part for [x ->• 0.

From this we may easily deduce the free wave pattern to which the dis-

turbance approximates at a great distance in the rear. It is given by

y 4:K(?M f*" cosh K (h — f) tanh" Kh sec^ 6 t , , o , oo jq
I^ = —2

—

i 1^ — ——
. sm [k (x cos 6 + m sm 6)} dQ.

c J_i„cosh kA (1 — Kflffisec" e sech"K-«j

(37)

From (35) this gives

R = 16upK„M"
{'' k3 cose cosh" K (A-/)

^Q ^33^
Jo cosh" Kh(l — Kgh sec" 6 sech" Kh)

It will be found that this agrees with the result obtained by a difierent

method in the paper just quoted, when the previous expression is corrected

for an obvious slip ; in formula (37) of that paper 32 should be replaced by 16

and tanh Kh (1 + tanh Kh) by (1 + tanh «:A)".

*'Proc. Roy. Soc.,' A., vol. 118, p. 33 (1928). [This paper is No. 22 of this

collection and the error mentioned above has been corrected.—Editor.]
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When Koh < 1, that is c^ ^gh, the equation (31) for k has a real root only
for a more limited range of values of 6, the lower limit being % = cos"V(«o^)
instead of zero. It is readilj- seen that the expression for R will be as in (38)
with Op as the lower limit of the integral.

Summary.

An examination is made of the transfer of energy in a free wave pattern,

and expressions for wave resistance are deduced. These are applied to certain

cases both for deep water and for water of finite depth.

397



417

Ship Waves : The Relative Efficiency of Bow and Stern

By T. H. Havelock, F.R.S.

{Received January 11, 1935)

1. It seems fairly certain that one of the main causes of differences

between theoretical and experimental results is the neglect of fluid friction

in the calculation of ship waves, and further that the influence of fluid

friction may be regarded chiefly as one which makes the rear portion of

the ship less eff"ective in generating waves than the front portion. The

process may be pictured, possibly, in terms of a friction belt or boundary

layer whose more important effect is equivalent to smoothing the lines

of the model towards the rear. Some calculations were made from this

point of view in a previous paper, * the purpose then being to show how

such an asymmetry, fore and aft, reduced the magnitude of interference

effects between bow and stern waves. We may also describe the frictional

effect as a diminution in the effective relative velocity of the model and

the surrounding water as we pass from bow to stern. This is not very

satisfactory from a theoretical point of view; but, on the other hand, it

leads to a comparatively simple modification of expressions for the

waves produced by the model. From a formal point of view, we may

regard the modification as an empirical introduction of a reducing factor

to allow for decrease in efficiency of the elements of the ship's surface

as we pass from bow to stern.

There are now available experimental results, for wave profiles as

well as for wave resistance, which make it possible to attempt such a

comparison. The following work is limited to a few simple cases, and

the assumptions are made in as simple a form as possible for the purpose

of the calculations ; these deal with the wave profile and wave resistance

of a model of symmetrical form, and also with the difference between

motion bow first and motion stern first for a simple asymmetrical model.

2. Take the origin O in the undisturbed free surface of the water, with

Ox horizontal and Oz vertically upwards ; and let the origin O be moving

with uniform velocity c in the direction Ox. We suppose that there is a

given distribution of sources and sinks over the zx-plane, or, alternatively,

that the normal fluid velocity is given over this plane ; let it be F {h, f) at

'Proc. Roy. Soc.,' A, vol. 110, p. 233 (1926).
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the point (//, 0, —/). Then the surface elevation Z, due to this travelling

distribution is given by

^=-^\ \^ih,f)dhdf[ secO^e "" ' /?
J.

(1)

where rrr = (x — /z) cos 6 + j sin G, and the limiting value is to be

l::ken as the positive quantity \l tends to zero.

If the form of the ship is given by j^ as a function of h and/, the usual

approximation is to take F {h, f) as equal to c dy/dh. We modify this

now by supposing that the effective value of c in this expression for

F (h, f) dimirushes from bow to stern ; we introduce what may be called a

reducing factor /(/?), so that we shall use in (1)

¥{h,f) = cf{h)^^. (2)

We have assumed that the reducing factor is independent of the depth.

It will, no doubt, depend upon the velocity and form of the model, and

in particular upon the value of the Reynolds number; but, meantime,

we shall neglect any such considerations. It may even be that, in

certain circumstances, the factor should a:Uow for an increase of

apparent efficiency near the bow of the model. However, it appears

from such experimental evidence as is available that the wave profile

near the bow agrees fairly well, for simple models, with calculations made
without any allowance for frictional effects ; so that the chief effect of the

latter appears to be a reduction in efficiency over the rear portion of the

model. In view of these considerations, and also to lighten the numerical

calculations, very simple expressions have been used in the following

work. Calculations are made for two cases, and in both we assume the

reducing factor to be constant and less than unity over the rear portion

;

in one case the factor is taken as constant and equal to unity over the front

portion, while in the other, to avoid possible discontinuities, it is assumed

to diminish uniformly from the bow to the value which it has for the rear

portion.

We shall consider only models of great draught and of uniform horizontal

section ; for such, (1) and (2) give for the surface elevation

^=-s-J>> !<* sec 6 JO
^'" ^'^

(3)
« — kq sec^ 6 + i\L sec 6

3. We consider a model of length 11 and beam lb, and of symmetrical

parabolic lines given by

y = b{\-h^jF). (4)
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The reduction factor f{h) is to mean a diminution of effective velocity

from the value c at the bow to a smaller value pc at the stern. In order

to allow the calculations to be made in terms of known functions, we

shall suppose the diminution to take place uniformly over the front half

of the model ; thus we assume

/(A)= P + (l- p)/2//, 0</2</
= p, - / < /i < 0. (5)

Using (5) and (4) in (3) and carrying out the integration with respect to

h, we obtain

sec^ e d%
Mk

^^^
,
k^{k — kq sec^ Q + i[J- sec 6)'

where

A = (2 (1 — p) sec2 e + (2 - p) ikI sec 6 — k^I^} e<«[(^-0cose+y9m«]

2 (1 B) SeC^ giKC-'t'ose+ ysinS)

— (/Pk/sCC + P/c2/2)g.«[(3.+0co59+ysin9]_
'

(7)

This expression gives finite and continuous values for the surface elevation.

It is convenient, for purposes of calculation, to separate it into finite

and continuous expressions associated respectively with the bow {x = /),

amidships (x = 0), and the stern (x — — I). Further, for points on the

central line j = 0, we can express these in terms of known functions.

Writing

G{q) = i\ secO^e ~^ir^. S'
^^^

J_^ Jo AT — Kg sec^ + i[A sec D

Go {q) = [
G {cD dq, Gi {q) = [ Go {q) dq, (9)

Jo Jo

and so on, it can readily be shown that (6) gives, for the wave profile

along >' = 0,

^= - ;^3(^'Go(.v - /) + (2 - p)/Gi(x - /) + 2(1 - p)G2(.v - /)

- 2 (1 - p) G^ (x) + pP Go (x + /) - p/ Gi (X + /)}. (10)

In the limit, when we take [i zero, we have*

G{q)=n^{^J,K^q)-Yj,^^q)l q>0
= -n'^{B^{K^q)-Y^{K^q)yirr%{K,q), q <0. dD

* ' Proc. Roy. Soc.,' A, vol. 135, p. 5 (1932).
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In the notation used in previous work, we have

Qo(M) = ^jjHo(«)-YoOO}^«,

Qi (") = Qo (") du, Q2 («) = Qi (") dii,

Jo '0

Po 00 = -
^ I'Yo (w) ^«,

\ (12)

Po"' («) =
f
Po («) ^« = 1 + Pi (")>

Jo

P„-2 („) = ("p„-i
(„) Jm = M + Pa (m).

Jo

Summing up these results, we obtain finally for the wave profile

K Vp P" P

_ 20^) F^ (,^^^) +
I
Fo (k„?3) - ^^

F, (.o?3)|, (13)

with /Co = g/c^ 77 = K,l, q^ = x-l,g, = x,q, = x + l. Also we have

Fo (m) = Qo ("), " >
= Qo(-«)-4Po(-"), "<0,

Fi(w) = Qi(m), u>0
= - Qi (-") + 4Po-^ (-w), " < 0,

F2 (") = Q2 (ti), w >

} (14)

Using tables and graphs of the various P and Q functions, the wave

profile can now be found, for any speed, for any assigned value of p.

We have chosen the value (3 = 0-6, and calculations have been made for

a sufficient number of values of x to give the wave profile for two different

speeds ; the speeds are those for which k^I = 6 and kJ = 3, or for

c/V(g/) equal to 0-408 and 0-577 respectively. The wave profile has

also been calculated at these speeds for the value (3=1, that is for the

usual theory without any allowance for frictional effects. The four

curves are shown in fig. 1, the full curves being for (3 = 1 and the dotted

curves for (3 = 0-6.

These curves may be compared with some given recently by Wigley*

in a comparison of experimental and calculated wave profiles.

* ' Proc. Roy. Soc.,' A, vol. 144, p. 144 (1934).
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Ship Waves 421

In fig. 2 of that paper, the full curves are calculated from the usual

theory, that is, for P = 1 in the notation of the present paper; while

the dotted curves are observed values. It may be concluded that the

value p = 0-6 is of the right order of magnitude to bring the calculated

values into better agreement with observed values, at least for medium
values of c/Vfe/). It should be noted that Wigley's model is slightly

different from that of the present calculation, in that it has a certain

amount of parallel middle body inserted between the parabohc ends.

1-2

0-6-

12 -

0-6-

~



422 T. H. Havelock

where we have used the abbreviation

(^, y) = kq sec2 e (^ cos e + j; sin 6).

In (15) the wave pattern is analysed into simple constituents associated

with the bow, amidships, and the stern; putting the expression into the

form

j; = ["'^Ai sin {koX sec 0) + Aj cos (k^x sec 6)}

cos (k„j; sin e sec^ 0) ^6, (16)

the wave resistance is given by*

n=\-p„c' fiA.'+X,') cos' 9 dO. (17)

Carrying out the reduction we obtain

„ 16pftV 1 2 (1 + P^) , m' ,

128 (1-P)^ + 2p p ^2p)

+ 2MizJ) p^ (2;,)
- 2Ji3^ p^ (2;,)- iMl_P) P, (2;,)

p^ P P

_4(1_^) p^ (^)
+1IL^) p. ip) - '-^^ P, (.)} (18)

In terms of P functions which have been tabulated this becomes, for

the particular case p = 0-6,

^ I6pb'c' J2-72 ,
0-384 20^48 ^1^2 _ 0:32\ p ^2^^

2-88 ^J^)VA2P) + '^PA2P) + ^§PAP)

This is to be compared with the value for the same model without any

reducing factor, that is, with (18) when p = 1, or

^^ 16j^«j^+ _^ + l^P.p,,_i,P.p,) + |p,(2ri}. (20)

The curves are given in fig. 2, and show the variation of R/c^ with the

quantity c/V(^0; in addition to the smaller value of the resistance from

(19) compared with (20), there is also a relative decrease in interference

effects
* ' Proc. Roy. Soc.,' A, vol. 144, p. 519 (1934).
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5. The wave resistance of a ship model in a frictionless liquid is the

same whether it is moving bow first or stern first, even when the model

is not symmetrical fore and aft. If, however, we introduce a reducing

factor to represent the effect of fluid friction, it is clear that we shall

obtain a difference between the two cases, and it is also easy to foresee

the general character of the result. Suppose that the bow is finer than

the stern, and assume that the reducing factor is the same whether going

ahead or astern. Then it is obvious that the resistance will be less when
going bow first than when going stern first ; and further, that interference

effects between bow and stern waves will be relatively more marked in the

former case than in the latter.

08

7tR

16pZ)2c2
OO'l

We shall now work out a particular case, a model of great draught

with parabolic ends and with some parallel middle body. The lines of

the horizontal section are given by

= b.

h'n

= -^^ih^ + lh).

o<;?</

- 1/ < A <

-l<h< ¥ (21)

In this model the change of gradient at the stern is twice that at the

bow.

In order to simplify the calculations, we shall assume that the reducing

factor is constant and equal to unity over the front half of the model,

and has a constant value p over the rear half; there will be only a small

difference between the results so obtained and those with a more natural

form of reducing factor, because in any case the middle portion of this
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424 T. H. Havelock

model does not contribute much to the wave-making. We shall not
examine the wave profile in this case. For the wave resistance we have

R = (4p/7T) r''(A2 + B^) cos 6 dQ, (22)

where

A - /B = - 1^ r^\2h + I) e-i-'.'-ec e
^/,

-^ he-'^'^'^'-'dh. (23)
' Jo

This leads to the result

R = 16P^V /2 (1 + 4p^) 16(1 + 16p^)
, 4p p ._

-^P4(2p) + ^P,(2p) + |p,(|;,)-^P,(|;,)

- ^^V^^ P. (.) + ^^i^) Pa.) - ^P P. (i.)

+ ^^M)p^ (.,)}. (24)

This expression may be written as

R = Ro + pRi + p^R^. (25)

The form (25), with p a positive quantity less than unity, applies to the

model when going bow first. It is easily seen that the corresponding
result for motion stern first, assuming the same reduction factor p, is

R = p2Ro + pRi + R^. (26)

Numerical calculations have been made from these expressions for

P = • 6, and from these curves have been drawn showing the variation

of R/c2 with speed, on a base of c/V(g/) ; these are given in fig. 3.

The curve A in fig. 3 is for motion bow first, the curve B for motion
stern first. The curve C is for (24) with p = 1, that is, it is the resistance

curve for motion in either direction when no allowance is made for

frictional effects. There are few experimental data available for com-
parison

; but in any case it should be noted that, apart from other simpli-

fying assumptions, the preceding calculations are for a model of very
great draught. However, reference should be made to some experimental
curves given by Wigley ;* in fig. 3 of his paper there are three resistance

* ' Trans. Inst. Nav. Arch.,' vol. 72, p. 216 (1930).
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curves which correspond to curves A, B and C of fig. 3 below, and the

mutual relations of the three curves in the two cases have much in common.
6. In the preceding work, the reducing factor has been given specially

simple forms in order that the calculations might be made in terms of

functions which have already been tabulated. However, for the wave
resistance of a model of ordinary form and draught, the calculations are

usually made by numerical and graphical methods for the particular

case ; the introduction of a reducing factor of suitable form would not

add any great compUcation. The usefulness of such a factor would

depend largely upon whether it proved to be sufficiently independent of

speed and of variation of form of the model.

Summary

The main effect of fluid friction in regard to the production of waves

by a ship may be described as a decreasing efficiency of elements of the

ship's surface with increasing distance from the bow. A reducing factor,
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of a semi-empirical nature, is introduced into the theory of ship waves to
represent this effect. With certain assumptions, calculations are made
for the wave profile for a simple model, and curves are also given ; these
are compared with available experimental data. It appears that, as a
a rough estimate for such forms at moderate speeds, the efficiency of
the stern is of the order of 60% of that of the bow. Curves are also
drawn to show the corresponding change in the wave resistance. The
introduction of the reducing tactor leads to different wave resistances for
a model going ahead and going astern, when the model is not symmetrical
fore and aft; this is illustrated by calculations and curves for a particular
case.

Reprintedfrom ' Proceedings nf the Royal Society nf London
'

Series A No. 868 vol. i^g pp. 41^-^6 April 79^5

Harrison and Sons, Ltd., Printers, St. Martin's Lane, London, W.C.2
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Wave Resistance: the Mutual Action of Two Bodies

By T. H. Havelock, F.R.S.

{Received March 27, 1936)

1—Methods of calculating wave resistance which depend upon energy

considerations are appropriate for a single body or a single system for

which we require the total resistance. There are, however, certain prob-

lems in which there are two or more bodies and we wish to calculate

the resistance of each separately, or more generally the resultant force

on each body in any required direction. For instance, the effect of the

walls of a tank upon the resistance of a model might be calculated from

the resistance of one model among a series of models abreast of each

other. Another problem is suggested by experiments made by Barrillon.*

Two or more models were towed in various relative positions and the

resistances measured separately; the results for a model in the waves

produced by other models in advance of it were considered to show

interference effects due to both the transverse and the diverging waves

from the leading models. Without attempting to deal with these actual

problems at present, the following paper contains a method of calcu-

lating wave resistance which seems suitable for the purpose. It depends

upon obtaining the force on a body as the resultant of certain forces on

the sources and sinks to which it is equivalent hydrodynamically. A
general discussion is given first and then a simple case is worked out in

some detail ; this may be described as two equal small spheres at the

same depth, first with one directly behind the other, then with the two

abreast of each other, and finally in any given relative positions.

2—Consider a solid body held at rest in a liquid in steady irrotational

motion. We shall suppose the motion to be due to a uniform stream

together with given sources and sinks in the region outside the body,

and we suppose the effect of the body to be equivalent to a certain dis-

tribution of sources and sinks within the surface of the body ; the latter

may be called the internal sources. It is known that the resultant forces

and couples on the body may be calculated from forces on the internal

sources due to attractions or repulsions between the external and internal

sources taken in pairs ; the fictitious force between two sources m, m' is

Anpmm'jr- and is an attraction when jn and m' are of like sign. Another

way of expressing this theorem is that if m is a typical internal source, the

* ' C.R. Acad. Sci. Paris,' vol. 182, p. 46 (1926).
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461 T. H. Havelock

force on it may be taken as the vector — A-n^mq, where q is the resultant

fluid velocity at that point due to all the other sources, in which the remain-
ing internal sources may be included as their actions and reactions do
not affect the final result.

It is true that for a solid of given form an important and difficult part
of the problem is the complete determination of the internal sources so
as to satisfy all the required conditions. However, assuming this has
been done, we can proceed to calculate the resultant forces. Further,

in certain problems results of some value may be obtained by using dis-

tributions of internal sources which satisfy the conditions approximately.

3—Take the origin O in the free surface of deep water which is stream-
ing with uniform velocity c in the negative direction of Ox, and take Oz
vertically upwards. Let there be a source of strength m in the fluid at

the point (0, 0, —/). The velocity potential of the fluid motion is given*
by

<p = cx+ 0_ sec-Ot/e ciK (I)
ri r^ TT J_, lo x-x^ sec2 G + fji sec 6 '

^^

where the limit is to be taken as the positive quantity \l tends to zero,

and

/i^ = x^ + ;;2 + (z +ff ri = A-2 + f- + {z - ff

;

CT = X cos 6 + J sin ; Kg = gjc^.

The second term on the right of (1) is the given source, the third term
represents an equal sink at the image point above the free surface, while
the last term could be interpreted as a certain continuous distribution

of sources lying in the plane z -/= 0. The expression (1) may be
generalized by summation and integration for the velocity potential of
any given distribution of sources in the liquid. We shall assume that
this distribution is such that it represents a solid body in the stream, the
total source strength being therefore zero.

-Consider in the first place a continuous distribution over a finite

part of the vertical plane y = 0, the surface density of source strength
being a at a point (h, 0, —/). The velocity potential is

-^\\.dl,df\- sec^erfef-
--';-"'-

J,, (2)^ JJ j-n J I)
/c
— /cq sec- + i [J, sec 6

* Havelock, ' Proc. Roy. Soc.,' A, vol. 138, p. 340 (1932),
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where
^^2 = (x-/2)2 + / + (z+/)3

r,^=^(x-hf + y^ + (z-ff

rs = {x — h) cos 6 + J sin G.

Using the theorem given in § 2, we may write down the total wave resis-

tance for the body which is represented by the given distribution. It is

given by

R = 47rp
[

[ a (/?',/') u dh' df\ (3)

taken over the distribution, u being the x-component of fluid velocity at

the point {h', 0, -/').

Consider the contribution of the various terms in (2) to the value of u

in (3). We may omit the uniform stream c since the total source strength

is zero, and also any contribution from the internal sources. Further, it

is easily seen that there is no total horizontal force on the internal sources

due to the image system represented in (2) by the term involving r^.

Thus the only part of u which gives any integrated effect from (3) comes

from the x-derivative of the last term in (2). Thus we obtain the expres-

sion

R = 4/Cop/
(

[ a' dh' df'\{a dh dfi" sec ^0

r8 „-«(/+/') +i«(fc'-A) COS 8

X K dK. (4)
Jo K — Kq sec^ + i[L sec

The integrations in and k may be written as

^U {h'—h) L-os 6

sec d% -
Jo vf /cq sec^ + 'V sec 6

p—iK {h'—h) cos d

K — kq sec^ 6 — i[i sec I
£-«(/+/') ^^^. (5)

Regarding « as a complex variable we may transform the integrals by

taking as contour an appropriate quadrant bounded by the positive half

of the real axis and the positive or negative half of the imaginary axis

according to the sign of /;' ~ /;. Reducing the expressions and finally

putting (i. zero, the integral with respect to k in (5) is equivalent to

.

2/ P '^0 sec- sin m (f+f) - m cos in (f+f ')
^_,„ („._ j, ,„3 ,

^^^ ^^^^^

for h' - h>0, (6)

poo

'Jo m^ + Kn^sec^O
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and

fa

Jo

/<o sec^ e sin in (f+ f) - m cos in (f+ f) ^,„ ,;,-_,) ^os e^^ ^^
m^ + K^ sec* G

- Atzk^ i sec2 ee-''»(^+-f')-"='^'» cos {ko (/?' - h) sec 6},

for h' - h<:0, (7)

the function defined by (6) and (7) being continuous at It' — h = 0.

Writing —iF(h',f', h,f, 6) for this function, we have

R = 8/coP
[
f a' dh' df'iia dh df^ F (/?',/', h,f, 6) sec dQ. (8)

It is obvious from (6) and (7) that the part of F from the integrals in m
will give zero result when integrated twice over the distribution; and
we are left with

R = SIttko^p
[f

(j' ^/z' ^'
f
[

(j dh df

X r sec» %e-'''>^f+i">""'' » cos {k^ Qi' - h) sec 6} d%, (9)
Jo

with h' — h <C_ 0, the integrand being zero for h' — hy- 0.

This is the wave resistance expressed in a form which brings out more
clearly than the usual forms the fact that the solution we require is one

in which the regular waves trail aft from each element of the distribution.

It is easily seen that the limitation /?' — A < in (9) is equivalent to

taking one-half the result of the repeated integration over the distribution

without this limitation. Hence we obtain the result

R= 16

with
Jo

P + jQ = [[ ere"'''
^'^'^ 9-«./sec» e

^Ij jj- ^jqj

This agrees with the general result obtained from energy considerations

in the paper already quoted, where the distribution was not necessarily

confined to the plane y = Q. There is no difficulty in extending the

present method to more general cases, but that is left over until occasion

arises for applying the results to some particular problem.

5—To proceed to the case of two bodies, it is only necessary to suppose

that the distribution of sources is divisible into two parts, each contained
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within a distinct closed surface. For convenience, we shall limit the

discussion to a distribution in the vertical plane y = 0. We suppose that

the total distribution a of the previous section can be divided into two
distributions a^^, dg, each representing a solid body and one being aft

of the other. The resistance for either body is' given by the same general

expression (3), the integration being taken over the corresponding partial

distribution. For instance, for the resistance R^ of the body g^, the

velocity u at any element of ctj wiU be that due to the rest of ct^ and to a 2,

and the integration is to be taken over a^. The velocity potential is given

by (2) with g = g^ + g^. It is convenient to regard (2) as made up from

the following parts : the uniform stream c, the given distributions g^ and
G2, distributions — ct^ and — (jg over image positions above the free surface,

and finally a part represented by a certain integral taken over the dis-

tribution CTj + G2.

Consider the contributions of these parts to the value of R^. The
uniform stream gives no resultant eifect as we suppose the integrated

source strength of g^ to be zero. We have now a resultant force from the

mutual actions between a^ and Og, given numerically by

the sign depending upon whether gi is in advance of G2 or to the rear of

it. It may be noted in passing that this corresponds to the apparent

repulsion between two bodies, one behind the other, in a uniform stream

of infinite extent. There is also a similar resultant due to the actions

between — cg and g-^, given numerically by

4.,
11

,. ... ,A
fI

., ^^. #,
,,,^ _ ,;v"(i'+m« <'^'

Finally we have the part due to the last term in (2) for the velocity poten-

tial, and this will be given in the notation of (8) by

8«oP [|
a'l dh\ df\

f

j" K diH dA + <^^dh2 df^) p F sec 6 d%, (13)

where F is given by (6) and (7).

The terms in F represented by the integrals in m will give a resultant

effect different from zero when summed over the partial distribution a^,

arising from the part due to ag when summed over g^. From the term in

(7) representing the regular waves, the part due to g^ when summed over

uj will give the wave resistance of a^ as if existing alone ; the part due to
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<T2 will give no effect over g^ if ag is aft of CTi, but the full interference effect

of the two systems will be added to Ri if g^ is aft of g^.

Summing up this general discussion, we see that the total resistance

of each system consists of various parts : the resistance of each as if exist-

ing alone, mutual actions between the two systems which are equal and
opposite and may be classed as due to local disturbances, and wave inter-

ference acting on that system which is to the rear of the other. It may
be noted again that in this analysis we are assuming the source distri-

butions to be given. It has been shown how the various terms in the

resistances can be calculated when the two systems are in one and the same
vertical plane. A similar analysis could be made for more general cases

;

but we shall consider in some detail a simple distribution consisting of two
isolated doublets.

6—Suppose that there are two equal horizontal doublets A, B each of

moment M in the Uquid at the points (0, 0, -/) and (-/, 0, -/) respec-

tively
; thus A is directly in advance of B. If the points are sufBciently

far apart, the corresponding bodies would be, approximately, spheres each
of radius b given by M = ^b^c. However, all we shall assume meantime
is that the doublets are far enough apart to represent two distinct bodies,

one enclosing each doublet, whatever their actual shapes may be.

The velocity potential is given by

<^ = ex + <^^ + ^B, (14)
where

9a = —3- — — 3- + —2— sec 6 dQ — — K dK,
fi ^2 TT j_„ j^ K — kq sec^ 6 + /[x sec

(15)

and 4>B is a similar expression with x + I instead of x, the notation being
the same as in (1).

The form which (3) takes for an isolated doublet is

R=-4-pMg, (16)

where in d^rf^/dx^ we must omit the term in ^ due to the doublet at the
point in question. Thus we may calculate the resistances R^ and Rg
separately. In the process we have to evaluate the expression

- lim / cos 6 dQ
p—2Kf+iKX CO3

K^dK. (17)
K — kq sec^ 6 + /(A sec
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By the method already described, this is transformed into

4 TcOS e^e r "0 ^"^' Q ^^" ^^-^- ^ ^"^ 2m/^_„„eos, ^3 ^,„^
Jo Jo wr + ATo^sec^e

forx>0, (18)

- 4 f'^'cos e ^6 f"
'<osec^9sin2m/-^;7cos2m/ „., , ^^^

Jo Ju m^ + K^Hec^Q

—
87T/<ro^ SeC° ee-2«./sec-9 (,Qg ^^^^ ggj, Q^ ^Q^

forx<0, (19)

the two expressions having the same limiting value as x tends to zero.

Writing Rq for the resistance of either doublet if existing alone, and

•using these expressions in (16), we get at once the known result

Ro = 167up/co* M2 ['" sec^ Qg--'"^"'''' dQ. (20)
Jo

Considering R^^, the contribution from the doublet M at B and the image

doublet —M is easily found to be — R' where

R' = 24.pM^ {i -
lf_^-^g, ]

. (21)

It may be noted that if we put M = ^b^c, the first term in (21) gives

6npb^ c^ll*, which is the usual approximate value of the repulsion between

two equal spheres moving in the line of their centres in an infinite liquid.

Finally, for R^, there is the term which comes from (18) and (16); we
denote this by — R", with

R"= 16K„pM4'''cose^0 r "'> ^""' ^
f"

^^(-
^"f

°^ 2mf^_,„,,,,,^, ^
"^

Jo Jo m^ + y^o'seCe

(22)

If we calculate Rb, remembering that A is in advance of B, the forces R'

and R" are reversed, and we have in addition the effect of the second term

in (19). We obtain finally

R^ = Ro-R'-R"
^

(23)

R^ = R„ + R' + R" + 327rp/co«M2
["''

sec^ Qe--''f'''''> cos («ro/ sec 6) dQ.
Jo

(24)

The sum of R^ and Rg is the result which would be given by energy

methods for the two parts regarded as one system. In (23) and (24)

we have the separate resistances with the wave-interference part assigned
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to the rear system. In addition we have the terms R' and R", which may
be regarded as a local action and reaction, their magnitudes diminishing

rapidly with increasing distance. It may be noted that with M pro-

portional to the velocity c, R' increases as the square of the velocity ; this

may be associated with the fact that, although the regular wave system

diminishes to zero ultimately with increasing velocity, there is a permanent

local surface elevation.

7—Suppose now that the two doublets are abreast of each other at a

distance 2k apart, that is, suppose equal doublets A and B at the points

(0, 0, —/) and (0, 2k, —f) respectively. The velocity potential is

4> = CX+ cf>j,+ <^B, (25)

with (f)^ given by (15), and <f)^ by a similar expression with y — 2k instead

of y.

We have

R.^-4,pM(^ + i^), (26)

evaluated at the point A and omitting from ^^ the term representing the

doublet at A.

It is clear from the symmetry of the arrangement, that the local terms

give no effect; reducing the remaining terms we obtain the result

R^ = Ro + 16TcpKo*M2 r" sec^ Qe--''f''"='' cos (2Kok sin e sec^ 6) d% (27)
Jo

with Ro given by (20).

Taking M = ^b^c, we may regard this as the resistance of a small

sphere at depth / in a stream and at a distance k from a vertical wall

parallel to the stream; it is of some interest to estimate the influence

of the wall upon the resistance. Rq has been expressed previously in

terms of Bessel functions ; it is given by (using the notation of Watson's

Treatise on Bessel Functions)

Ro =^^ e-^ |k„ (a) + (l + 1) Ki (a)}
, (28)

with a.= K^f= gfjc^.

The integral in (27) is equal to ^d^X/da"^, where, with ^=KQk,

X = f
"
sec ee-2«^=«=^» cos (2p sin 6 sec^ 6) dQ

Jo

(-co

g-2a cosh' « cos ( (3 sinh 2m) du = i^- Ko Wo? + p^). (29)
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Using these results in (27), we obtain

468

R
TZ pg'^b^ 1 2a2 + p2

Ko («) + (1 + 2^JKi (a) + 2T^jr^) K„ (V«^ + P^)

i(«!-^i+ {(a2 + p2)l/2 +
(<^2 ^ p2)3/2/

Ki (Va' + P") (30)

with « = g/-/c2, p = gA:/c2.

Values have been calculated from this, using tables of Bessel functions,

and graphs are shown in fig. 1.

The ordinates are values of Rf^l-Kgpb^, while the abscissae are those of

(^lV(sf)- The curves are for different values of the ratio klf; the curve

0-8

5s 06-

n
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Carrying out the calculation as before, we find

-m,pW r sin 6 ^0 r '^o sec^ 6 sin 2mf- m cos 2m/^_,„,,,,, ^3^^
'

""^
Jo Jo m^ + Ko^seCO

- l6npKo*M^ [" sin 6 sec« eg--""-^
="=<='" cos (iK^k sin 8 sec^ 0) dQ. (32)

Jo

Here again with M = ^b^c, the first term is the usual approximation for

the attraction between two spheres moving abreast in an infinite liquid

at a distance 2k apart.

9—When one sphere is directly behind the other, the oscillating part of

its resistance is due to the transverse waves in the pattern made by the

leading sphere. When the two spheres are abreast of each other, there

are no similar oscillating terms. We shall now consider the more general

case of any relative positions, when in suitable circumstances we can

distinguish between interference due to transverse waves and diverging

waves.

With the same notation, we take the doublets A and B to be at the

points (0, 0, —/) and (— /, k, —/) respectively ; thus, with / and k positive,

B is a distance / to the rear of A and a distance k to one side. The

velocity potential is

4> = ex + (f>j^+ (t>s, (33)

with <^A given by (15), and ^b a similar expression with x -\- I instead of

X and y — k instead of y. Each resistance is given by the expression in

(26), evaluated at A or B in the manner already explained, and the calcu-

lation of the various terms follows the same lines.

For the term corresponding to R' in (21) we now obtain

The remaining terms are more complicated than in the previous simpler

cases ; for their contribution to Rj^ we have to evaluate an expression

fir rco ^iK{lcosd—k£in6)

i cos 6 dQ — e-'-'f K^ dK. (35)
J -^ J u K — /Co sec^ 6 + i [i. sec 6

We first reduce the integration in 6 to the range to \-k. Then the

various integrals in k are transformed by contour integration, the form of

the results depending upon the sign of / cos 6 — A; sin 6 ; this involves
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dividing the integration in 6 into the ranges to a and a to Jtt, where

tan a = l/k. Reducing the various expressions we find that the part

corresponding to R" in (22) is now given by

r>// o A,io f"" a JO r" Kr, sec- 6 sin 2mf— m cos 2mfR =8.„pM-J_^cose^eJ^-i^
„.^ + .isec^e

y^
g-™acose+tsin9),„3^„j_ (35)

The remaining terms give contributions to both R^^ and Rg. It is found

that the complete resuhs for the two resistances can be put into the form

Ra = Ro ~ R' " R"

+ \6t:^k^^M- [""
sec'' 6e-2''»/'^'^^''cos{/<-oSec2e(/cos O+Arsin b)]d%,

(37)

Rb = Ro + R' + R"

+ \6-K<?K^^W r'%ec-' ee-2'./=<=<:=''cos{KoSec2 e(/cos e+A:sin 6)} ^6,
J —a

(38)

where Rq is given by (20), R' by (34), R" by (36), and tan a = Ifk.

The previous resuUs for A and B in fine, and for A and B abreast, are

particular cases of these expressions with a = \t: and a = respectively.

The sum of (37) and (38) could have been obtained from expressions

given previously for the total resistance of A and B considered as one

system. Perhaps the most interesting difterence between R^^^ and Rg,

compared with simpler cases, occurs in the last terms in (37) and (38).

It might appear that both A and B experience effects of wave-interference,

in the usual meaning of that term, although A is in advance of B.

However, this is not so, and this can be seen most easily if we suppose

'<oVO~ + ^^) to be large and apply the Kelvin method of approximation

to the integrals in question. According to this, the important parts of

the integral come from narrow ranges of in the neighbourhood of the

stationary values of / sec 6 + /: sec 6 tan 6, that is, near values of 6

given by
tan e = - i tan a ± ^ VCtan^ a - 8). (39)

Such values only exist if tan^ a > 8 ; moreover, even if they do exist, they

do not contribute to the value of the integral unless the values of 6 given

by (39) lie within the range of integration. It is easily seen that they do

not come within the range for the integral in (37) ; hence the resistance of

the leading sphere does not exhibit any characteristic interference effects.
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471 Wave Resistance

On the other hand, there are such effects for the other sphere if tan- a > 8,

that is, if ^ — a < 19° 28' approximately. Thus the interference effects

occur if this sphere lies within the wave pattern left by the leading sphere;

and the two prominent terms in the evaluation of the integral correspond
respecti\ ely to the transverse waves and the diverging waves of the pattern.

Summary

A new method is given for calculating wave resistance directly from the

source distribution equivalent to the body producing the waves. The
method can be applied to two source systems representing two distinct

bodies in any relative positions, giving the resistance of each separately.

It can also be used to obtain the resultant force in any direction, or the

resultant couples.

Results are obtained for a simple case representing two small spheres in

various relative positions. With the two spheres in the line of motion,

the resistances differ by certain forces of action and reaction and also by
the wave-interference effects, which are assigned entirely to the following

sphere.

Taking the two spheres abreast, the results are interpreted as showing
the effect of a vertical wall upon the resistance of a sphere ; the expressions

are given in terms of Bessel functions and curves show the magnitude of
the influence of the wall for various distances and velocities. An expres-

sion is also given for tlie force towards the wall.

Finally, with the spheres in any relative positions, it is shown that

effects of wave interference occur when the following sphere lies within

the wave pattern produced by the leading sphere, and arise from both

the transverse waves and the diverging waves.

Reprintedfrom ' Proceedings of the Royal Society of London

Series A Ko. 88G vol. 755 /;/;. ^60-4"]! July igj6
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The Forces on a Circular Cylinder Submerged in a

Uniform Stream

By T. H. Havelock, F.R.S.

{Received 18 August, 1936)

1—Although many investigations have been made on the v/ave resistance

of submerged bodies, no case has been solved completely in the sense of

taking fully into account the condition of zero normal velocity at the

surface of the body. The simplest case is that of the two-dimensional

motion produced by a long circular cylinder, with its axis horizontal and

perpendicular to the stream, submerged at a certain depth below the

upper free surface. This problem was propounded many years ago by

Kelvin, and it was solved later, as regards a first approximation, by

Lamb; in that solution the cylinder was replaced by a doublet, and the

effect of the disturbance at the surface of the cylinder was neglected.

Applying the method of images, I examined a second approximation,!

and also by the same method obtained a first approximation for the

vertical force on the cylinder. J

Although the problem is not in itself of practical importance, it seems

of sufficient interest to obtain a more complete analytical solution, and

this is given in the present paper. The solution contains an infinite

series, whose coefficients are given by an infinite set of linear equations

;

expansions are given for the coefficients in terms of a certain parameter,

and corresponding expressions obtained for both the wave resistance and

the vertical force. Numerical calculations have been made from these

for various velocities and for different ratios of the radius of the cylinder

to the depth of its axis. These confirm the general impression that the

first approximation is a good one over a considerable range. The effect

of the complete expressions appears in an increase in the wave resistance

at lower velocities and a slight decrease at high velocities; this may be

described as due largely to a shifting of the maximum of resistance

towards the lower velocities, an effect which might have been anticipated.

The similar three-dimensional problems of the submerged sphere, or

spheroid, are of more practical interest, as the first approximations which

I have given for these cases have had certain applications in ship resis-

t ' Proc. Roy. Soc.,' A, vol. 115, p. 268 (1926).

X 'Proc. Roy. Soc.,' A, vol. 122, p. 387 (1928).
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527 T. H. Havelock

tance; the corresponding extension of the solutions would require more
complicated analysis than for the two-dimensional case, but it seems
probable that the general deductions on the range of applicability of the
approximate formulae would be of a similar character.
2—Consider the two-dimensional fluid motion due to a fixed circular

cylinder, of radius a, placed in a uniform stream of great depth the axis
of the cylinder being at a depth /below the undisturbed surface of the
stream. Take the origin at the centre of the circular section, with Ojc
horizontal and Oj vertically upwards, and suppose the stream to be of
velocity c in the negative direction of Ox. We write the velocity potential
of the motion as

<i>
= cx+ 4,0. (1)

To obtain a solution which gives regular waves to the rear of the cylinder
we adopt the hypothesis of a frictional force proportional to the deviation
of the fluid velocity from the uniform flow c, thus introducing a coeflicient
[x' which is made zero after the various analytical calculations have been
effected. The pressure is then given byf

-4/72
f
= const - ^j -f- [x'^o-k' (2)

If 7] is the surface elevation and we make the usual approximation for
small surface disturbances, we have

'Tx--Ty' y=f- (3)

Hence, from (2), the condition to be satisfied at the free surface is

^ + '^»^-f^^" = 0' y=f^ (4)

where k^ = g/c^ and [i = y.'/c.

We may regard <^o as made up of two parts, one part having singu-
larities within the circle r = a, and the other having singularities in the
region of the plane for which y >/ The first part is the potential of a
system of sources and sinks, of total strength zero, within the circle
and can clearly be expressed by the real part of a series

1 " ' (5)

TLamb, "Hydrodynamics," 6th ed., p. 399.
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where z = a' + iy, and the coefficients are complex. Now we have

poo

K"-ie'«^«, >;>0. (6)
(«— 1)! Jo

Hence, in order to satisfy (4), we write ^o in the form

^0 = [" F {k) e'"''"^ dK-\- r G (k) e'''*+" (J'-^Z) dK, (7)
Jo Jo

where the real part is to be taken, and

F (/c) = S (- iy A„ «"-!/(« - 1) !• (8)
1

Putting (7) in (4), we obtain

G (k) = - '^ + '^o + ?> p (^)_ (^9)
K — Kg + Z[X

With this value in (7) the surface condition is satisfied. Further, we may
change the sign of i throughout the second term of (7), and we obtain

0„=rFW e'- dK-^S
''^'"'~'^

Y*{K)e-''^^'^'y-^f>d^, (10)

where the real part is to be taken, and the asterisk denotes the conjugate

complex quantity. It may be noted that this method of satisfying the

condition at the free surface is quite general, and independent of the

form of the submerged body.

It is convenient for the present problem to alter the notation slightly

from (8), and we write

F (^) = - icaYix)
1

f(x) = bo + bA'<c) + ^^(xar + '^,{Kar + ... r ^^^^

Further, the expression (10) is a function of the complex variable z;

hence we have for the complex potential function w, or ^ + i<^.

/(k) e'" JK-^ca2
''^''°~ ^

/*(/<) e-'^^'^^^K, (12)
•^0 '<-'<o-^f^

this being in a form valid in the liquid in the region ;; > 0, it also being

noted that ultimately [i is to be made zero.

3—We have now to determine the function /(«) so as to satisfy the

condition 9^/9/- = for r = a. For this we turn the second term in
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(12) back to the form (5); it gives, with tiie form (11) for /(*c), the
series

CO

^ caH/a)«-i Z)„_i z-«. (13)

Further, the last term in (12) represents the potential of image sources
and smks m the region of the plane for which ;; >2A and hence it can be
expanded m the neighbourhood of the circle

|
z

|
= a in a series of

ascending powers of z. Thus we obtain w in the form

n

w = const + cz + Sca^ (/a)n-i ^ , z-" + S B ^"

1

t^ r " + '^" ~ '>
K« e-2«//* (;c) dK. (14)

'! Jo *< — w^o — '(Ji-
^ '^

V \ )

With the potential in the form

CO

w = const + 2 (C„z" + D„z-"), (15)

the condition of zero normal velocity on the circle
1
z |
= a is satisfied

provided
'

D„ = «^"CV (16)

Hence, from (14) we obtain the equations

These relations, with (11), may be expressed in the form of an integral
equation satisfied by the function/ (/<:«); it is easily found to be

.*/(.) = ,._
jj lt\X% e--'^'^ uY(u) I, (2 VJ^) du, (18)

where y = K^a, l^ is the modified Bessel function, and the limit of the
integral is to be taken as the positive quantity, (x approaches zero.
For purposes of calculation, we use (17) as a set of linear equations for

the coefficients b^, b^, ... . We write

'-i™oj::44^^— »"</«. (.9,
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Substituting the power series (11) for/(K) on the right of (17), we obtain

the infinite set of equations

(JiT qa
bo (1 + 9iT^) + g2Y'b, + 'i^b, + ^l-b,+ 1

\

2 !

^o + ^^ + 2 !

bi +
2!2!

62 + 2!3! 3+- "
}. (20)

^^o + ^%. + (l+2^)^ +
3 ! 3 ! 3

^ =

= 0;

From the integral expression for q^ given in (19), and also the fact

that a//< 1, it can readily be shown that the infinite determinant formed

by the coefficients of b^, b^, ..., on the left of (20) is convergent.

Evaluating the expression (19) and putting

we find
9r, IS,

s = 27te~°,

+ 1-
a

li{e')Y

(21)

(22)

where « = iK^f, and // denotes the logarithmic integral.

For any given values of a,/, and c, we have in (20) a set of equations for

the b's with complex numerical coefficients.

Although expansions in terms of other parameters may be more suit-

able for special ranges, it is convenient to assume that the coefficients b

can be expanded in power series of the quantity y, that is Kf^a. These

expansions will be of the form

*0 = 1 + 602Y' + ^047* + ^06/ + -

*2 = 624T* + *26Y'' + ^28Y' + -
(23)

Substituting in (21) and collecting the various powers of y, the new
coefficients may be found to any required stage. For the calculations

which follow, it was found sufficient to obtain the results

:

*o2 = — 9l

*o4 = qi

bo6 ^= ^^2 9l

•^08 = qi* - q^qi + A ^^
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531 T. H. Havelock

*i5 = iqi^s

bn = T?a?3 — iqi^q2

*i9 = - i?2' + ki'?2 - igiq^qs + ^qzqi
bill = -i q^q^^ + Wq^qz - l?i*?2 + ^^i^a^* - A^i^a^* + si^^i?^

*24 = — i?3

*26 =i?1^3

*28 = - i^i^?3 + lV^294

*35 = - ihqi

bz7 = ^qiqi

bm = — xio^s- (24)

4—Consider now the forces acting on the cylinder per unit length. The
pressure is given by

pl9 = const — gy — iq\ (25)

The term in gy gives the usual buoyancy, equal to the weight of displaced
liquid, as part of the vertical force on the cylinder. Apart from this
term, let X, Y be the resultant horizontal and vertical forces on the
cylinder in the positive directions of Ox, O;;. Then, by the Blasius
formula, we have

X-,-Y^ip,- ,},(*;&, (26)

taken round the circle
\
z

\
= a.

We note that —X will be the force known as the wave resistance,
while Y is the addition to the upward force of buoyancy arising from the
fluid motion. The value of the integral in (26) is 2ni times the residue
of the integrand; with w given in the form (15), and, using (16), this
gives

^-^•Y = 2.p|^i^)D„DV. (27)

Using (14), we have the result

+ n(n+l)b„_,b*„+ ...}. (28)

This may be expanded in powers of y, that is of K^a, by substituting from
(23) and (24), the results given there being sufficient to include the term
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in y"- Using the notation cf (21), and separating out the real and

imaginary parts, we obtain, after some reduction,

- X = 4Tr2pc2a {K^af e~^''^ [I - Ir^ (K^af - {r^ - 3ri' + s^){Koay

- (4r,^ - ri - 2r^r^ -i-\r^- Ar^s'~ + 5^) {K^af

+ {5/-1* - 3r^ri - 3r^% +W + ir^' + Ws + ir^r, - ^ r,

- (lOz-i^ - 3r, - 3r^ + J^^) s' + s*} {Koaf + ...], (29)

Y = 4npc^a (K^af [-Ir^ + r^r. (K^af + ^{r^r^ - 3ri^r^ + r.s') {K^aY

+ (2/-i«r2 - ^ri - r^r^r^ + ^V r^r^ + ^r^s'' - Ir^r^s'') {k^af

+ {iriri — f/-1V2 - iA-aZ-g^ + ^r^hoj^ - ^r^r^ - \r-^r^r^ + i^ r^r^,

~r,s'}(K,ar+ ..], (30)

with /„, s given by (22).

The first term in (29) is the expression for the wave resistance of a

circular cylinder which was obtained by Lamb. The first term in (30) is,

after putting in the value of /-g from (22), the first approximation for the

vertical force which I obtained by the method of images in the paper

already quoted.

5—It is of interest to obtain the wave resistance, which should be'equal

to —X, from considerations of energy applied to the regular waves

behind the cylinder. The current function
'l>

is given by the imaginary

part of the expression (12). Putting }' =f+ "q, we obtain at once the

complete expression for the surface elevation as

y) = ia^ rf{K) e<«-«^ dK + ia- [" '^ + "" ~ '^ /* (k) e-*'^-'' cIk, (31)
Jo Jo ^^ — "'o — if^

where the imaginary part is to be taken, /(k) is given by (11), and \i is to

be made zero ultimately. This expression separates into two parts, a

local disturbance 7)1 which decreases with increasing distance from the

cylinder, and a system of regular waves 752 to the rear, that is, for negative

values of x. The latter part is found, by methods familiar in these

problems, to be given by

/)2 = - 47ZK,aY* (xo) e-'^'^-'f, (32)

the imaginary part to be taken.

If /z is the amplitude of the regular waves at a great distance behind the

cylinder, the wave resistance R is given by

R = ^gph\ (33)
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Hence from (32) we have

R= 4;7V'<o'«VUo)r('<o)e-^'^< (34)

With

fixo) = bo + bi (koo) + 27 (xoaf + ...,

and with the equations (20), it could presumably be shown that (34) is

the same as the real part, with sign changed, of the expression (28).

However, it has been used here simply to verify the previous expansion

;

substituting from (23) and (24) we obtain from (34) the same result as is

given in (29).

6—We may now examine the expressions (29) and (30) numerically.

It is easily seen that if the ratio a,//" is small, the first term in each case

gives a close approximation at all velocities. Further, the ratio of the

second term to the first in (29) and in (30) is —Ir-^K^c?, that is

-i|:{l+2a-2a2e-«//(e«)}, (35)

with a = 1kJ= 2gflc~.

The quantity in brackets in (35) approaches the value — 1 as c becomes

zero and the value + 1 as c becomes infinite. It has a maximum negative

value of —2-57 at a = 4-5 approximately, and a maximum positive

value of 1 -9 at about a = 0-6. Hence the effect of the second approxi-

mation in (29) is to increase the wave resistance at low velocities and to

give a rather smaller value at high speeds.

Taking fl//= i, as a moderate value of this ratio, and calculating the

resistance from (29), it is found that the value does not differ by more

than about 9% of the value of the first approximation at any velocity.

As an example of the numerical values in this case, for a = 6, that is for

c = 0-58 \/{gf), the following are the values of the successive terms in

the expansion in square brackets in (29):

1 + 0-0746 + 0-0134 + 0-0015 + 0-0001.

Another case which has been worked out in some detail is aif= \, this

being definitely outside the range of the first approximation for the most

part. Numerical values were calculated for both X and Y for a = 8, 6,

5, 4, 3, 2-5, 2, and 1. On account of slower convergence of the series at

the higher values of a, an estimate was made of the next term beyond

those shown in (29) and (30). The results are shown in fig. 1.

The curves R and Y are the wave resistance and vertical force calculated

from (29) and (30) ; Ri, Y^ are the curves given by the first approximations,
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that is by the first term in (29) or (30). The unit of force in each case is

TT^pfl^ that is the weight of hquid displaced by thecyhnder per unit length.

It should be noted also that, in addition to the vertical force Y, there is the

usual hydrostatic buoyancy. The curves for the wave resistance show

clearly the increased values at lower velocities and also the displacement

of the position of maximum resistance, the latter occurring at a lower

speed than the value \/(gf) given by the first approximation.
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The Resistance of a Ship among Waves

By T. H. Havelock, F.R.S.

{Received 25 March 1937)

1—Thewave resistance ofa ship advancing in still water may be calculated
under certain assumptions, which amount to supposing the forced wave
motion to be small so that squares of the fluid velocity may be neglected;
moreover, the ship is supposed to advance with constant velocity in a
horizontal hne. It does not appear to have been noticed that we may super-
pose on the solution so obtained free surface waves of small amphtude, and
that the addition to the resistance may be calculated, to a similar degree of
approximation, as the horizontal resultant of the additional fluid pressures
due to the free surface waves; this additional resistance, which may be
negative, depends upon the position of the ship among the free waves.
Various calculations are now made from this point of view. We consider
first transverse following waves moving at the same speed as the ship, and
then a ship moving in the waves left by another ship in advance moving at
the same speed; finally, we examine the more general case of a ship moving
through free transverse waves ofany wave-length. All the cases are discussed
with reference to such experimental results as are available.

2—We treat the problem first as one of steady motion with the ship at
rest in a uniform stream of velocity c in the negative direction of Ox; we
take the origin in the undisturbed water surface, and Oz vertically
upwards. The velocity potential is given by

(j) = CX + (j)^, (1)

where (j>^ represents the disturbance due to the ship. This, on the usual
approximations, may be regarded as due to a source distribution over the
longitudinal section of the ship; the source strength per unit area is
(c/27r) dyjdx, with y = f(x, z) as the equation of the surface of the ship, and
it is to be noted that dyjdx is assumed to be small.

We now take
(f,

=. cx + (j)^ + ^',

^' = hce''o^cos{KQX~/i),
(2)

where k^ = g/c^. The additional term represents standing surface waves of
elevation hsm{K^x-fi). We should, of course, require further terms in
order to satisfy exactly the condition at the surface of the ship; but such

[ 299 ]
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terms would be of a smaller order of magnitude, and of a similar order to

those which have already been neglected in obtaining an expression for ^j .

on the assumption that the angle between the tangent plane and the2a;-plane

is always small. The pressure equation is now

Wp = const.-^^-c^^-c^; (3)

and the wave resistance is given by

B = -2{L^dxdz, (4)

taken over the longitudinal section of the ship.

The term in (fi^ in (3) gives from (4) the expression for the wave resistance

for the ship advancing into still water; we shall denote this by iJ^. We give,

for reference later, the expression for Ri in terms of the equivalent surface

distribution (Tj^, namely,

R^ = IGttkIp
ri"

(Pl + Ql)sGc^ddd,

(5)where P^ + iQi = ria-ie*'-"^
«<=<=' »+"»^^e''*cZa;rfz.

The term in <p' in (3) gives from (4) the additional resistance R' due to the

standing waves; we have

= - 2gph l-^e""^ siniK^x - fi) dx dz. (6)

3—Consider a simple form of model, of uniform draft d and length 21,

whose surface for 2/ > is given by

y = b{l-z^ld^){l-x^lP). (7)

From (&) we obtain, after carrying out the integrations.

The factor eosy? in (8) shows how R' varies with the position of the ship

among the waves; for y? = or yff = tt, the surface elevation is anti-sym-

metrical with respect to the mid-section of the ship. Further, the factor

{siriKgl — K(,l cos KJ)I(Kgl)^ (9)
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Resistance of a Ship among Waves 301

gives the variation of 22' with the ratio of the length of the model to the

wave-length. It is obvious that the greatest positive values of R' will occur

when there is a crest near the bow and a trough near the stern, and con-

versely for negative values of R' . The stationary values of (9) give the

corresponding values of kJ,, or ^ttIJX; one such value gives A/2? = 0-55

approximately, and for this velocity R' is negative ii fi = and positive if

yff = 7r.

4—For numerical calculations we shall consider a model for which theo-

retical and experimental values of the wave resistance in still water are

known; this is Model 1302 investigated by Wigley at the National Physical

Laboratory, the results being given in these Proceedings (Wigley 1934).

The form of the model is given by the following:

From z = to z = —\d,

y = b{l-{x + afll% y = b, y = b{l-(x~a)^IP}

for X ranging from —I — a to —a, —a to a, a to l + a respectively;

From z = —^d to z = —d,

- y = ^{l-z^ld^){l-(x + aril% y = ^b{l-z^ld%

y = ib{l~z^ld^){l-{x-a)^IP}

for the respective ranges for x of

— l — ato —a, —atoa, atol + a. (10)

The dimensions, all in feet, were a = 0-5, b — 0-484, I = 7-5 and d = 2.

Carrying out the integrations of (6) over the longitudinal section of the

model, we obtain

KlP \ SVod^KldY 3\Kad^Kldy j

x{sinKQ{l + a) — KqI cos Kq(1 + a) — sin KqO} cos /}. (11)

We shall take yff = so as to obtain maximum effects as far as the position

of the model relative to the waves is concerned. In the following table values

of R'jc^h are shown for several different velocities, R' being in lb. with c in

ft./sec. and h in ft. The column -Bi/c^ gives the corresponding theoretical

values for the wave resistance in still water, taken from fig. 6 of Wigley's

paper.

R^ has maxima and minima according to the interference of bow and

stern waves; while R' oscillates between positive and negative values in
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302 T. H. Havelock

accordance with tlie factor in (11) which involves the quantity k^I. One

method of expressing these results is to find what height h of the imposed

waves would give R' the same numerical value as R^ at each velocity,

regardless of whether R' is positive or negative. This is given in the last

column of the table as hjX, the ratio of amplitude to wave-length such that

R' is numerically equal to R^^. In comparing these figures with values from

observation or experiment, it should be noted that usually the height of

a sea wave is measured from trough to crest, and is equal to 2h of these

calculations. The point made now is that for quite ordinary values of the

ratio of wave-height to wave-length the additional resistance, positive or

negative, is of the same order as the wave resistance of the model in still

water.
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Resistance of a Ship among Waves 303

The resistances R^, R^ of the two models when far apart are given by (5)

with Pj + iQi in terms of cr^ and Pg + iQ^ in terms of a^.

In addition the rear model experiences a resistance R^^. which, from (7)

and (13) of the paper just quoted, is given by

Pi2 = 3277-/C5/9 crjda;i(^z^ {a^dx^dz^

X e''o'-^^+'^-^^^''">cos{K^{x^~x^)^ecd}sQc^ddd, (13)

the integrations extending over the two distributions. This may be put into
a form involving the same quantities Pj, Q^, P^, Q^ as are required for R^
and R^, namely,

Pi2 = ^2TTKlp\'\p^P,+ Q^Q^)Bec^dde. (14)

We now simplify the problem by supposing the two models to be similar
in all respects; then if k is the distance from the bow of the leading model to
the bow of the rear model, we have

Pa + iQ^ = (Pi + iQ^) e««ft =«« ».
(15)

This gives R^^ = ^2nKlp {PI+ Qf ) cos(A:oi sec 6) sec^ Odd. (16)

Finally, we carry out the integrations for a model of great draft and of
uniform horizontal cross-section given by

y = b{l-x^/P}. (17)

The results may be expressed in terms of P functions used in previous
investigations and defined by

PiAp) = (-1)™! "''cos2»6isin(^sec6')di9,
Jo

P2n+iiP) = (-!)"+'[ ''cos2»+i^cos(^sec6')(Z^. (18)

(I ara indebted to the Superintendent ofThe William Froude Lalioratory
for graphs of the first nine of this series of functions.) We obtain then for
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the resistance R^ of the leading model and for the resistance R^ + R^^ o^ ^^^

rear model the expressions

^1 = ^2 = ^^'{A +M?^ + /ceZ2P3(2A-o^)-2/Co?P,(2/CoZ) + P5(2^oZ)}, (19)
TTKq i

+ K,l{P,{Koh)-Pi{'<oh)}

+ hP,{K,k,) - P,{Koh) + iP,{>Coh)l (20)

where k^ = k-2l, k^ = k + 2l.

6—Before making numerical calculations we may refer to experiments

made by BarrOlon on models in tandem and other formations (Barrillon

1926). In a classical series of experiments W. Froude examined the inter-

ference between the bow and stern waves of a ship by introducing into the

model varying lengths of parallel middle body between the same bow and

stern. Barrillon made an interesting variation by running two models in

tandem at the same speed and measuring the resistance of each model. The

results were similar in character to those outlined in the previous section;

for instance, the resistance of the rear model was found to be an oscillating

function of its distance from the leading model, in general agreement with

what would be expected from its position relative to the waves left by the

leading model. We noted also that the action between the two models is

made up of a mutual action and reaction due to local effects together with

a wave effect upon the rear model; and the former has been neglected in the

present calculations. Barrillon found, for his models at a certain speed,

that the action upon the leading model was insensible if the distance apart

exceeded 1 m., while the action upon the rear model was appreciable iip to a

distance of 14 m.; and further that, apart from its oscillations, the action

upon the rear model only diminished slowly with the distance.

With a view to making corresponding calculations from (19) and (20) we
notice in particular two measurements. (I am indebted to Professor

BarriUon for these and other details of his investigations.) The velocity of

the two models was 2 m./sec. and the length of the rear model was 2-2 m.

Turning the results into the present notation, with k = 13-47 m. and

16-19 m. the experimental values of the ratio i?;^2/Pi were —0-224 and —0-2

respectively; these two values of k gave consecutive positions of maximum
reduction of resistance of the rear model, the relative reduction being of the

order of 20 %.
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Resistance of a Ship among Waves 305

We now use these measurements solely in order to take a corresponding

velocity and corresponding distances in the expressions (19) and (20) and
so to calculate the ratio R^^jRy

We have k^I = gljc^ = 2-7. For the two values of k, the corresponding

values of acq^ are 33-07, 39-74 respectively. With these we obtain from (19)

and (20) the values - 0-24, - 0-3 respectively for the ratio R12IR1, a relative

reduction of resistance of between 20 and 30 %.

7—We have considered so far only wave motion which is stationary

relative to the ship, and we examine now a ship advancing through free

transverse waves which are moving with the velocity appropriate to their

wave-length.

Suppose first that the waves are moving in the same direction as the ship.

With a fixed origin we now have, instead of (2),

^ = ^^{x-ct,y,z)+hVe''^cosK{x-Vt), (21)

where F^ = gJK, and the additional surface elevation due to the free waves
is hsinK(x—Vt).

The variable part of the pressure is p d<pjdt, or

-pc-^+ gphe''''smK{x-Vt). (22)

To calculate R from (4) and (22), transfer to an origin moving with the

ship. Then the first term in (22) gives the same expression for R^ as in (5),

while for the additional resistance due to the second term we have

R' = - 2gph U^ e« sin(/cx -K{V-c)t} dxdz. (23)

This is the same as in (6) for relatively stationary waves, except that k^,

c are replaced by k, V respectively, and that the phase /i has now the

varying value k{V — c) t.

For transverse waves h sin k{x + Vt) moving in the opposite direction

(21) is replaced by

(j) = ^i(.r -ct,y,z)~ hVe"' cos k{x +Vt), (24)

and it is easily seen that we get the same result as before with the phase /?

equal to —k{V -\-c)t.

The result is that the additional resistance depends only upon the in-

stantaneous position of the ship relative to the waves. This might have been
anticipated from the various approximations which have been made. We
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306 T. H. Havelock

have assumed the free waves to be small, the corresponding quantities being

of the same order as those of the forced waves due to the ship ; moreover, we
have neglected any direct disturbance of the free waves by the surface of

the ship for the same reason as for omitting terms of a like order in obtaining

expressions for the forced waves. The additional pressures are therefore

simply those due to the free waves, and the additional resistance is the

horizontal resultant of these pressures acting upon the ship's surface. Taking

as an example the model described in (10), the resistance is given by R^ + 11',

where i?^ is the resistance in still water, and

8p6F^| 4M J_\ 8M 1
p-KCl

X {sin k{1 + ff ) — kI cos{k + a) — sin Ka] cos /?, (25)

where F^ = gJK, fi
= k{c± V) t = 277</T.

In this expression, T is the period of encounter of the ship with the wavers.

In experiments on models in artificially produced waves, a critical con-

dition occurs when the wave-length is about equal to the length of the model.

We take therefore as a numerical example X = 27tIk = 2(l + a), and

V^ = gA/2Tr = g(l + a)l7T.

Putting in the numerical values for this model, we get from (25)

R' = 89-lhcos{2ntlT), (26)

R' being in lb. with the amplitude h in ft.

In experiments a usual assumption is a wave-height of ft. for a wave of

length 400 ft. ; this ratio gives for the wave-length 16 ft. the value h = 0-12 ft.

In tliat case we have

R' = 10-7 cos(27TtIT) Ih. (27)

Values of R^ for this model are known. For instance, for model speeds of

7-08, 9-22, 11-04 ft./sec. we have R^ = 4-9, 13, 29 lb. respectively; the total

resistance, wave-making and frictional, at these speeds was 14-54, 30-11,

52-15lb. respectively. We see that, for quite a moderate ratio ofwave-height

to wave-length, R' represents an alternating force of relatively large ampli-

tude. It should be noted, however, that this is for the particular case when
the wave-length of the free waves is equal to the length of the model.

8—It is necessary to emphasize the basis of the present calculations. It is

assumed that the model is maintained in the same relation to the un-
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Resistance of a Ship among Waves 307

disturbed water surface and that it is driven forward horizontally at constant

speed.

In experiments on models in waves, such as those made by Kent at The

National Physical Laboratory (Kent 1922), the conditions are different,

being naturally designed to reproduce to some extent conditions for ships

at sea. In these experiments the model is free to pitch, and obviously an

important factor is the relation of the pitching period to the period of

encounter with the waves. Moreover, the model can move fore and aft

within certain limits under the influence of the waves. Thus Kent makes the

statement : '

' When the model was towed through a regular series ofadvancing

waves, it experienced periodic fluctuations in its resistance as it met each

succeeding wave. Each fluctuation in resistance was partially absorbed by

the inertia of the model, but a portion of it was recorded by the resistance

pen. The fluctuations were of small amplitude when the waves were of short

length in comparison with the length of the model, but became much larger

when the wave-length was increased." The actual results given were for a

certain mean resistance over the whole experiment in each case. The precise

relation between this mean resistance and the horizontal forces acting on the

model at each instant would require a detailed examination of the conditions

of the experiment and of the recording apparatus. However that may be,

the present calculations serve to estimate some of these forces and indicate

how large the fluctuating part of the resistance due to them may be under

certain conditions.

A point which arises is the dependence of the amplitude of the fluctuations

upon the ratio of the wave-length to the length of the model. This is given,

for the model considered here, by the factor of (25) which involves kL Taking

the simpler case of that model wdth no parallel middle body, that is with

a = 0, the factor concerned is

{sinu — u cos u)lu^, (28)

where u = ttLjX, with L the total length of the model, and A the wave-

length.

An interesting result is that there are certain values of the ratio XjL for

which (28) is zero; for these, the additional resultant horizontal force due

to the waves is zero independently of the position of the model among the

waves. For this particular model, these values are given by the roots of the

equation tani^ = u\ the corresponding values of A/L are 0-7, 0-41, 0-29, ....

Intermediate values of the ratio give maximum values for the amplitude of

the fluctuations in resistance.
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Summary

The wave resistance of a ship in. still water can be calculated to a certain

degree of approximation after making various assumptions. Similar

calculations are now made for a ship among free surface waves of small

height; the additional resistance, which may be negative, is considered as,

to a similar degree of approximation, the horizontal resultant of the

additional pressures due to the free surface waves.

The cases considered are (i) when the waves are stationary relative to the

model, free transverse waves moving at the same speed, and also the case

of a model on thewaves left by another model in advance and moving at the

same speed, (Li) a model, not free to pitch, in transverse waves moving with

the speed appropriate to their wave-length.

It is shown that the additional horizontal forces may be of the same order

as the wave resistance in stiU water even when the ratio of wave-height to

wave-length has only a moderate value.

The various cases are discussed in relation to available experimental

results.
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The lift and moment on a flat plate in a stream

of finite width

By T. H. Havelock, F.R.S.

(Received 8 February 1938)

1

.

The problem of the Uft on a flat plate in a stream between parallel rigid

walls has been solved in an exact form, by using a suitable conformal trans-

formation, by Tomotika (1934), who also gives an expansion for the lift

in the particular case when the mid-point of the plate is midway between the

walls; a similar solution for the moment on the plate does not seem to have

been given. The method used m the following paper is quite different and

is, perhaps, of sufficient interest to justify further examination of the

problem. The flat plate is treated as the limiting case of an elliptic cyHnder,

and the method of solution leads directly to expansions for the hft and for the

moment suitable for any position of the plate subject to the parameters

being within the range necessary for convergence. Moreover, by a simple

modification, expansions for lift and moment are obtained when the stream

is bounded by parallel free surfaces, taking the boundary condition in an

approximate form; and a further modification gives the corresponding

results when one surface is rigid and the other free. A brief examination is

also made of the moment for an elhptic cylinder.

General expressions

2. Consider the two-dimensional motion due to a cylinder placed in a

uniform stream bounded by plane parallel walls, including circulation

round the cyhnder. Let C be the contour of the cross-section of the cylinder,

and take the origin so that the parallel walls are given hy y = a, and

y = —b, respectively. To simplify the argument, we assume that a position

can be found for such that a circle can be drawn, with centre 0, entirely

in the liquid and enclosing the contour C.

With w for the complex potential function, we take

dw „t"+iw,!^,„ du\

Tz-'^^-^^^^-di- (^)

In (1), c is the velocity of the stream, in the negative direction of Ox,

the series is a suitable expansion for the singularities of the potential

[ 178 ]
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The lift and moment on a flat plate 179

function within the contour C, and the last term is to be determined so as

to satisfy the boundary conditions on the walls. These conditions are

I — = 0; z = x + ia, z = x — tb, (2)

where I denotes the imaginary part.

To satisfy these conditions we replace the series in ( 1 ) by

/,
F{k) e'^^d/f , for 2 = a: + ia,

— F{ — k) e~'-'^^dK, for z = x— ib,

Jo

where F(k) = J^A^k"^. (3)

We may build up an expression for dwjdz by successive images. Taking the

expressions in (3), a single reflexion at a plane wall changes F{k) into the

conjugate complex F*{k); if the reflexion is at the upper wall {y = a) the

contribution to dwjdz valid in the liquid is

Jo

j;'*(^)g-fe-2.a(jf^.^
(4)

while if the reflexion is at the lower wall (y = —b), the corresponding form is

_ r"i?'*(_^)e'«-2'^-6(ZAc. (5)

Taking successive reflexions at the two walls, the contributions of the

infinite sets of image systems may be summed, and we obtain finally

dw „i™+in!J,

dz
^^?" 2»+l

,
' F*(k) e-«2-2*« -F*(-k) e'"^-^"'' ,

j:

= F( - k) e-^"^-^"'^ - F(k) ei''-2-2<'i

/, 1-e-
dK, (6)

where d = a + b, and F{k) = Z^^/c™.

It may easily be verified directly, by using (4) and (5), that (6) satisfies

the boundary conditions (2).
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180 T. H. Havelock

3. We now calculate the forces on the cyHnder from the expression

We write (6) in the form

where B„ =
::^-^
—

^

'- —dK

f* CO

Jo

{{-i)'^F{-K)-i'^F(K)}e-^'"^ K-^

From (7) and (8), we obtain

X-iY = -27Tp(icAo + Zi''+^nlA^BJ. (10)

If r is the circulation round the cylinder, we have F = 27tAq; further,

using (9), we easily obtain X = 0, and

Y ^ pcF+ 2.pj;
^(-) ^^(-)

^"Tj!:;^
^*^ ~ ^^

^""
d.. m)

For the moment about the origin we have

M = -lpBlz('^Ydz (12)

= 27TpRi{cA, + Zi-{n+ l)\A,+,B,}, (13)

where R denotes the real part.

Using (9), this may be expressed in the form

M

_^^{F'i.)Fi-.)-ri-^.)Fi.)}e-^^^^;^_
(U)

To complete the solution of the problem in any given case we have to

determine the function F{k) so that the boundary condition of zero normal

velocity is satisfied over the contour C.
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Elliptic cylinder

4. We take the contour C to be an ellipse, of semi-axes a' and b' , with its

major axis making an acute angle 6 with the positive direction of Ox, and

we take the origin at the centre of the ellipse.

In terms of a complex variable ^{ = £, + 171), we take

2=^e'Scosh^, (15)

and the contour C is given by

£, = g^;'pcosh.E,o = a';'psmhify = b'. (16)

We now write

-^ = c^e^^sinh^+ ^ ^i"b^e-'^^+pe^^smh.l^-~, (17)

the second and third terms being in a suitable form in the eUiptic co-

ordinates; to obtain F(k) in terms of the new coefficients 6„ we have to

compare these two terms with the series in (6), noting that

dzjd^ = jpe'* sinh ^.

For this purpose we put the series in (6) into the form in (3) valid for the

upper surface; under the same condition it can be shown that

ir_

2n
- Ei-^ 6„ e-«? = pe^'^ sinh C f

"
(^ Mxp^'") + ^^K J-A'^pe}^')] e'''^ ^k. (18)

Hence, by comparison, we obtain

F{K) = ^;_MKpe^'^) + iEbJ„{Kpei% (19)

and -jT^r = cpe^" sinh ^+- Zr™ 6„ e-'^?

n . ,
^/*"i^*(Ac)e-«'-'''«-i^*(-/c)e''^--2'^''

,

+:pe'«smh^J^^ :^-^ '- dK

-23e'«smh^J^ ^^ ^_^JJ ^ dK. (20)

We now express this in the form

^=T{C„e"i + D,e-^), (21)
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182 T. H. Havelock

by substituting in (20) the expansions

^pgie f.±iKz sinh ^ = 22 ( ± ^)""^ nJn{Kpe}^) sinh nt„ (22)

We obtain, for n>l,

cLkC =
Jo 1^^^ -^— ^"('^^^^

^

Jo l-e-^^^
'"'^^^"^^ >1^

Dn = - ^^b.n
-J

^
^-^^

i_g-2.^
^

''^niKpe-^')-

+ J „

-^-^
i_V2.d

^^^ ^J/^^e^^)-

,

(24)

while for ri = 1, C^ has the additional term \cpe^^ and D^ the additional term
— \cpe^^.

The boundary condition on the contour C is that the real part of dwjd^
should be zero for £, = i^; this gives

Z>*=-e2«S„(7„. (25)

Using this in (23) and (24) we obtain an infinite set of equations for the

coefficients 6„; these are, for n>l.

_ C"
H(k) dK

H{k) = {nq'^FiK) JjKpe-'^) + ( - 1 )™ nF*{K) Jn{Kp&-^)} e-^™

+ {( - 1 )« nq"-F{ - /f ) J^(Kpe-i») + nF*{ - /c) J„(/c^e''»)} e-^'^''

-n[{5»ii^*( -/c) + ( - irq^F*{K)]J^(Kpe-i9)

+ {{-l)^F{- k) + F{k)} J„(/cpe^«)] e-^*^*^, (26)

with a similar expression for ib-^ including an additional term

— \cpe^^ + ^cpqe^^^,

and with q = e^^o.

By using (19), these results may be combined into an integral equation
for the function F(k); it is

r
2tt

j:

_ p {F*{ -v)G^ + F{- V) G, + F(v) Gs + F*iv) G,} e-^^^ dv

^1
' {F{v) G^ + F*{v) gj 6-2'-'° + {F*{ -v)Gs + F{- v) gj e-^"" dv

1 - e-^'"^ V

1-e-
-> (27)
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with G-^ = Enq"J^{vpe-^^)J^{Kpe^'>),

G^ = E{- 1)« nJ^{vpei<^) JjKpe-^%

G4 = E(-l)''nq''J„(vpe-'^)JjKpe^^).

Flat plate between parallel walls

5. We consider the limiting case obtained by making £,g zero, that is,

by putting g' = 1 in the previous results. The cyhnder reduces to a flat plate

of width 2p, at an angle 6 to the direction of the stream, and with its mid-

point at distances a, b from the upper and lower boundaries, respectively.

We write F = 2nkcp sin 6; F{k) = cp sin df(K). (29)

The equation for/(/f) is

/(«) = kJf,(Kpe'^) — iJ^{Kpe^^)

'im G, +/*(«) G2}e-2- + {/*(_ v)G,+fi-v)G,}e-^-'> dv

^fo
' {/*(- V) Gi +/( - V) G2+m Gz +/*(«) G^ e-^"" dv

l-e^a „ . (30)

G^, (?2, G^, G^ being given by (28) with q = i.

We approximate to /(k) by successive substitution of approximations

for/(/c) in the integrals of (30), repeating the process as far as may be desired.

Our object is to obtain the various quantities ultimately in power series in

pid, or alternatively in pja ovpjh, assuming these ratios to be less than unity.

The expansion for /(/c) is most readily obtained by replacing the Bessel-

functions in (30) by their power series as far as necessary so as to give all

terms up to a required order in the final results. We shall develop these

expansions up to terms of order (pjdY; except for the length of the expres-

sions, the expansions could readily be taken to a higher order. It is sufficient,

for the present purpose, to take as the first approximation

f{v) = lc-\ivpe^^-\kv^p^e^'-» + ^iv^p^e^io + -i^kv^p'^e^^'>. (31)

Further, to this order, it is sufficient to replace G^ by

Gx = \Kpe}^{\vpe-^^ -^v^pH-^'^)

+ i/c2j92e2i«(iv2^2e-2t«) _ ^i^p^e^iei^^vpe-i^), (32)

and Gg, <?3, G4 by similar expressions.
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We now obtain the result of putting in tlie integrals of (30) a typical term
yupngine Qp j^ynj^ngind instead of/(v); we then apply these results to each of

the terms in (31) and repeat the process until we have obtained all the terms

of the required order. For the integrations with respect to v which occur

in the process we use the notation

•oo g—2ta / ]^\n g—2d6

'0

-2vd

v'^dv.

v^^dv, (33)

-2vd (34)

n not being zero in the second case; these integrals may be evaluated in

finite form.

We now give the result of this process; we obtain

f{K) = k- \iKpB^ e'« - Ik^p^B^ e^'* + ^iK^p^B^ e^'^ + ^K^p^B^ e*'« + . .
. , (35)

with £^ = 1 + JcprQ sin + Ip^r^^ - 2r{ cos 26) \

+ i^p^r^i-i: sin3 d - sin 6) + 4ro(ri - 2r[ cos 26) sin 6}

- iP^^a cos 2(9 - 2r's cos 4(9- 2(ri - 2r[ cos 26)^} +...,

B2==k-lkp^(rj^-2r[)cos26+ ip%sin6+...,
''

^ '

£3= 1 +A:^?-Qsin^+ ...,

B^ = k+....

6. We consider in particular the case in which the circulation is such that

the fluid velocity remains finite at the rear edge of the plate; the condition

for this in an infinite stream is

r = 27Tcpsm6, or k = 1.

Returning to the expression (21) for the elliptic cyhnder, the condition

requires that the imaginary part of dw/d^ should be zero for ^ = £,fj
+ m.

This gives, after putting ^0 = for the flat plate,

^+2'(-l)-(C„-C*) = 0. (37)

From (23) we obtain

r(-l)™C„ = --ic^e»«

p r °° i"-if*(/c) e-g"-" - ( - ^)"-l F*{ - k) e-

i:

2Kb

nJ„{K2Je^'
dK

)

—
a:

,

^ {in-^F{~K)-(-i)-^F(K)]e-^>'^ dK
(38)
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Hence, writing A^ = J^iKpe''^) + iJi(Kpe'^)A

this gives

Hence the equation for k, to give the required circulation 27Tkcpsind, is

^" = 1 + /«e'^
_jJ_±j

^ 1^^^^
'_

j^^

with A^, A^ given by (39).

We substitute (35) in (41) and also use the power series for A-^ and A./,

carrying out the integrations and using the same notation as before, we find

k=l+ kpro sin d + lp\j^{k cos 20 + B^) -p'^r[{k + B^) cos 26

- lp%(k sin 3d + B^ sin d-B^ sin 6)

-^p\(k cos 4(9 + 25i cos 20 + 2B.^ + B^ cos 20)

+ \ph'^{k + 2B^ + 2B, + B^)co&'^0+ .... (42)

Finally we substitute from (36) and solve the equation for k\ we obtain

k = l-|^a^p + a^p'' + a^p'^-\-a^p*+ ...,

«! = rgsin^,

a^ = rl sin2 (9 + r^ cos^ - 2r[ cos 20,

a^ = rgsin3 6' + 2rorisin(9cos-^— Jr2sin3(9— 4?-Qrisin(9cos2^, I i-^^)

a^ — rl sin* 6 + 3rlr^ sin^ cos^ 6 — hr^r^ sin sinW
+ irf (3 - 6 sin2 + 4. sin-* (9) - ^3^^3(2 + 3 cos 20 + cos 4(9)

- 6rg ri sin2 6 cos 2(9 - 3i\ r{ cos^ ^ cos 20 + Sr^^ cos^ 2^ + frg cos 4^. J

7. We may now obtain the lift from (11) and we express it in terms of

the corresponding lift in an infinite stream; that is, we write

Y = L; Fg = jLq = 277/9c^j3 sin ^.
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Using (35) in (11) we obtain

LjL^ = h + k^pro sin 6 + kp^Bj^ sin^ - lphz(2kB^ cos 26 - B\) sin 6

- lp%{kB^ sin Zd - 251^2 sin ^) sin ^ + . . . . (44)

Substituting from (36) and (43) and collecting the terms we obtain

LIL^= l + b^p + b^p^ + b^p^ + b^p*+...,

6j = 2?-Qsin^,

62 = 3rg sin2 d + r-^^- 2r[ cos 2(9,

63 = 4/-g sin' 6 + 2ror^{2 sin d - sin^ (9) - r^ sin 61 cos 2(9 - Sr,,?-; sin (9 cos 26,

64 = 5r^sin«(9+3r2r^(3sin2 6'-2sin«^) + |/-2-|r3Cos2^

- iror2(7 sin2 e* - 12 sin* (9) - 1 Srg r; sin2 (9 cos 2^ - 3rir; cos 2(9

+ 3r;2cos2 2(9 + |r3Cos4(9.

(45)

The integrals given in (33) and (34) give for the coefficients,

ro = ^tana,

tana,

-(f.)'
sec^ a(sec2 a + 2 tan^ a)

24^' ^^ 2i0di'

(46)

with a = 7T(b — a)j2d.

We may derive limiting cases from (45). If we make 6 and d infinite, we
have a semi-infinite stream bounded by an upper plane wall; the limiting

values of the coefficients are then

2a' 4a2 '''~4a^'
'^

8a*'
r[ = rs = 0. (47)
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With these values we obtain

+^ (^)%in 6 + Z sin3 G)--^ (^)*(^ ~ ^ ^ ^^"^ ^ " ^^ ^''^* ^) + . . .

.

(48)

This agrees with the expansion which may be found by the same method
apphed directly to this case. If we make a and d infinite, the stream is

bounded by a lower plane wall. In this case the coefficients have the same
numerical values, but r^ and r^ are now negative, and we see that the result

is the same as (48) but with the terms in the odd powers of 2pja negative.

Another si^ecial case is when the mid-point of the plate is midway be-

tween the walls, ov a = b = \d. In this case

ro = 0; /i= 772/4(^2; r^ = 0; r^ = n*jU''-

r[ = 772/24(^2. ^^ _ 77V240(i*, (49)

and we obtain

(50)

This agrees with the expansion given by Tomotika (1934) for this parti-

cular case.

In general, calculations may be made from (45) and (46), and the variation

in lift examined as the plate is moved across the channel. The following

values illustrate this for one particular case:
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(54)

Substituting from (36) and (43), and collecting the various terms, we

obtain

M/Mo= 1 + Cip + C2p^ + Csp^ + C^p*+..., (53)

^1 = 2rgsin(9,

Ca = 3rl sin2 6 + h\( 1 + 4 sin^ 6) - r{,

C3 = 4rg sin^ 6 + r^Tj^iS sin (9 + 2 sin^ d)

-ir^(smd-8shi^e)-2ror[(3sind-4:sm^d),

C4 = 5r* sin* 6 + ^rlr^ sin^ d- 2r^r^{sm^ 6-3 sin* 6)

+ irf(l + 14 sin2 ^ - 12 sin* ^) - ir3( 1 - 8 sin* (9)

-3r2ri(5sin2 6'-Ssili*6')-r-iri(l + 10sin2/9-20sin*6')

+ r;2(l + 6sin2 6'-16sin*l9) + ir3(l-4sin2^).

When b and d are made infinite, this reduces to the expression for a semi-

infinite stream with an upper plane boundary, namely

-47T(^)%in6' + 4sin3(9)--^(^V(l-14sin2 6»-40sin*(9)+.... (55)
128\ a / 512\ a /

+

There is also a similar reduction for a lower plane boundary.

With a = b = jd, the mid-point of the plate being midway between the

walls, we have, from (49),

iJf/ilfo =l+5(f)V + 6sin2^)

For the general case, we have (54) with the coefficients given by (46).

As a numerical example, we obtain the follo\ving values:
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resultant velocity is constant; we shall take the usual approximate form of

this condition which amounts to assuming the deformation of the free

surface to be small and making the tangential component of the fluid

velocity constant.

Thus, instead of (2), we have the boundary conditions

Ji^^ = c; z = x+ia; z = x—ib.
dz

(57)

Following out the same process as in § 2, the appropriate form is now

dw
c + S-

^11+1 =-J

F*{k) e-'-^^^-^m _ j^*( _ /^)
gi

1-e

° F( - k) e-i"--""'^ - F{k) ei"^-^"'^

dK

1-e -2/crf
dK, (58)

and it may be verified directly that this form satisfies the boundary con

ditions (57).

It follows that the expressions for the lift and moment are now

° F(k) F*(k) e-2™ -F{- k) F*{ - k) e-^"

(0

Y = pcr-27Tpr

M = 2npRi\ cA^-

-dK,
1 - e-^'"^

F'iK) F*(k) e-2™ -F'{- k) F*{ - K) e-^'<'

(59)

-i;

1 _ Q-2Kd

' {F'(k) F{ -K)-F'{~K)F(K)}e-^'"i

dK

dK^.1-e- "-J-
^''^

It is clear that we may write down the expansions from those in the

previous sections by replacing each coefficient r„ by — r„, and leaving the

coefficients r^^ unaltered in sign.

Hence, instead of (45) we have,

i/io= l+b^p + b,^p^ + bsP^ + b,p*+.... (61)

&! = — 2rQ sin 6,

b„ = 3/-5sin2^-ri-2?-;cos2(9,

63 = - 4r3 sin^ 6 + ^r^r^i^ sin 6 - sin^ d)

+ r^ sin 6 cosW + Sr,, r[ sin d cos 20,

64 = 5rl sin* 6 - 3r2ri(3 sin^ d-2 sin* 6) + |rf + frg cos 20

- l^oTiil sin2 - 12 sin* 6) - ISrgr; sin^ cos 20

+ Sr^r; cos 20 + Sr^^ cos^ 20 + frg cos 4(9.

(62)
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With b and d infinite, this gives, for a semi -infinite stream with an upper

free surface.

LIL,= \ m) sin(
1 I2p

16\ a
(l-3sin2^)

+
32\a j
„_, ,

(3sin^-5sin3 6i) + -|-(^| (6-41sin2(9 + 46sin*(9)+.... (63)
32\ a / 512\ a j

With a = 6 = jd, we obtain

+ ^(^V(64-97sin2^ + 66sin*^) + .... (64)

For numerical comparison, we take the same case as before, and obtain

the following:

d = 10°; 2pld = 0-2

ajd 0-3 0-4 0-5 0-6

0-924 0-951 0-969 0-983

0-7

0-994

(65)

(66)

Similarly, for the moment, we have

c^ = — 2rQ sin d,

Cg = 37-2 sin2 (9 _ |ri( 1 + 4 sin^ d)-r[,

C3 = - 4r3 sin» d + r^r^{Z sin fi" + 2 sin^ 6)

f ^r2(sin^-8sin3(9) + 2ror;(3sin^-4sin3(9),

c^ = 5r* sin* B - i^-rl r^ sin^ (9 - 2ro r2(sin2 (9-3 sin* ^)

+ ^?-|(l + 14sin2(9- 12sin*6')-|-^r3(l - 8sin*^)

- 3rgri(5 sin^ (9-8 sin* 6) + r^r^i 1 + 10 sin^ (9-20 sin* (9)

-|-ri2(l-|-6sin2(9-16sin*^) + ir3(l-4sin2^).

With 6 and d infinite, we obtain

^/^o=i-K¥)^^^'42(ip^--^«-^^)+ii8(ir('^-^-^2--'^)
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and with a = b = ^d, we have

Jf/Jf„=l-g(^)V + 3sin^^)

+j^(5)^2 + 237 sin^ 6 - 395 sin* 6) + .... (68)

For numerical comparison with previous sections, we take the same

numerical case:

e = 10°; 2pld = 0-2

a/d 0-3 0-4 0-5 0-6 0-7

MjMa 0-938 0-965 0-982 0-998 1-011

Plane bottndary and free stjkface

10. Although the problem is not, perhaps, of practical interest, we may
note that the same method can be extended to the case when one boundary,

say the lower, is a rigid plane while the other, upper, boundary is a free

surface; we note, again, that for a free surface the boundary condition is

taken here in an approximate form.

Considering, as in § 2, the image systems formed by successive reflexions

in the two surfaces, we see that these infinite series of images now consist

of terms of alternate signs; summing these series we obtain

dw „ i™+i n\A^ f" F*{k) e-'"^-^"" + F*{-k) e'"^-^"''

^dw
R-r- = c; 2 = x + ia,

dz

/-— = 0; 2 = x — ib.
dz

It may be verified directly that (69) satisfies the boundary conditions

(70)

The expressions for the hft and the moment are

r = per- 2.,r ^(^)^*(^)e-+i^(-;)i^*(-^)e--,,_
(,,)

Jo ^ + ^

M = 2npRi\^A^-^^ -^ ^^^J/ ^ dK

r- {F'(K)F(-K)-F'(-K)F{K)}e-^'i 1

Jo l + e-2<<i J- ^ '
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We use the notation

T. H. Havelock

^"=Io

' + (-l)«en o—2tib

1 + e-
-2vd

v^dv,

-2vd

+ e-
-2vd

v^'-dv.

(73)

By comparison with the expressions for the flat plate between two rigid

boundaries, it is easily seen that we may write down the corresponding

results by replacing the coefficients r„ by — s^ and r^ by —s^.

Thus we obtain, making these changes in (45),

6i
= — 2sg sin 6,

b.2 = 3s5 sin2 (9 - s^ + 2s[ cos 26,

63 = — 4s^sin^^ + 2soS^(2sin^ — sin^^) + 52sin(9cos2^— 8so5Jsin0cos2(9,

64 = 55^ sin* e - 3sgsi(3 sin^ 6-2 sin* 6) + fsf + fsg cos 26

-isgs^il sin2/9- 12sin*^) + ISsgsJsin^^ cos 26-3s-^s[ cos 26

+ 3s'i^cos^ 26-^83 cos 46.

Similarly, for the moment,

M/Mq = l + Cip + C2P^ + C3P^ + CiP*+...,

c^ = — 2sq sin 6,

C2 = 3s2 sin2 (9- isi( 1 + 4 sin^ ^) + s^,

C3 = - 4sg sin^ (9 + So«i(3 sin (9 + 2 sin^ (9)

+ Js2(sin 6-8 sinS ^) - 2so5i(3 sin 6" - 4 sin^ (9),

C4 = 5s* sin* 6* - ^i-s^Sj^ sin^ (9 - 2soS2(sin2 6-3 sin* (9)

+ isf(l + 14sin2 6'-12sin*6') + is3(l-8sin*<9)

+ 3s2s;(5sin2^-8sin*^)-Sis;(l + 10sin2(9-20sin*(9)

+ s[^(l + 6 sin2 (9-16 sin* (9) - is3( 1 - 4 sin^ ^).

(74)

(75)
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From (73), the coefficients are given by

Sg = —^seca; *i = |kjI ^^<^ °'- ^^^ <^'

Sg = 1^1 seca(sec^a + tan^a),

S3 = I x^ I secatana{5sec^a + tan'^a)

s[ = 7r2/48d2; s^ = 77rVl920#,

with a = Tr(b — a)/'2d.

It may be verified that if we make b and d infinite, or a and d infinite,

these expressions reduce to the former results for a semi-infinite stream

bounded, respectively, by an upjier free surface or by a lower rigid plane.

For the particular case, a=b= \d, we obtain

n*

1228801 d

2p\*
-^\ (ll + S32sin2(9-3712sin4^)+..., (77)

and ^/^o = 1 - 1 (f) sin 6^ +-^2 (f )V + 36 sin^ 0)

77* I2p\*
368640 (1)^

(ll + 936sin2&-12800sin*e)-|-. (78)

The following numerical values may be compared with those in the

previous sections:

6=10°; 2pld = 0-2

a/d 0-3 0-4 0-5 0-6 0-7

L/Lo 0-924 0-942 0-953 0-956 0-960

M/Mo 0-928 0-943 0-949 0-951 0-948

In this case tlie relative variation near the middle of the channel is much

less than when the boundaries are of the same kind.
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Elliptic cylinder

11. The expressions for a flat plate have been obtained as hmiting cases

of those for an elliptic cyUnder. We shall consider now the general case

when the cyhnder is in a stream between plane parallel walls, and we shall

examine the moment of the forces; further, in order to simphfy the calcu-

lations, we assume in this case that there is no circulation.

Referring to § 4, we have to determine F{k) from (27) and (28) with
r = o.

The process of approximation is carried out as before, and we record the
result up to terms necessary to give the moment to the required approxi-

mation. We obtain

F{k) = -\cp{^KpB^eio + ^K^p^B^e^i^ -^K^p^B^e^ie

-iiK*p*B^e*^o + ^K'p^B,e'i» + ...), (79)

£j = e'« - qe-^o + lp%(2qe"^ - g^e-** - e"'*)

- ^p%(e^'^ - qei<^ - ge-^i" + g2g-iff)

- T2P%{M&-'' + e3'») - ( 1 + g2) (£'» + e-3«)}

+ r6i'M{(l + 3?')e'«-g(3 + 52)e-i«}

+ ii>%?-;{4ge3^'« - (1 + 3^2) (ei-e + e-^'*) + 2g( 1 + q^) e-'"}
(g^)

+ ii5%%e-3'» - g2e-3'« + q[\+ q^) g-''' - 2g3e'" + qe^^" - e^^*}

+ l'P%{qe.^^''^ + (fe-'^^i- qe?io -h e^'*) + . . .

.

^3 = e'^-ge-'^-h...,

B^ = e}<'-qe-^^^ ....

B^ and ^4 are of order p'^ and do not contribute to the value of the moment
up to terms in _p*.

Using (79) and (80) in (14), we obtain, after some reduction,

Ml-npc^p'^ sin 6 cos 6 = 1+ p^{iqri + r[{q~2 cos 2d)}

+ reP^rli 1 + 3?') -F r^i 1 -F g^ _ 4 cos 26) + 4/-i r[{l + 3q^ - 8 cos 2d)

+ 4r[^3 + 3g2 - 8q cos 26+6 cos i6) + 2/-^(3 + q^-8q cos 261+6 cos 4^)) -f . . .

.

(81)

In this expression, 6 is the angle the major axis makes with the direction

of the stream, a, b are the distances of the centre of the elUpse from the two
walls, and the coefficients r are given in (46); further, if a', b' are the semi-
axes of the ellipse, we have p~ = a'^ - b'"- and q = {a' + b')/{a' - b').
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The moment for a flat plate in a stream between plane walls, and without

circulation, has been obtained, by conformal transformation, by Tomotika

(1933), who also gives an expansion for the case a = b = \d; it is

M/ilfo=l+g(^)V + 2sin2^)

If in the general result (81) we put ? = 1 and use the values of the coeffi-

cients given in (46) and (49) we obtain again this particular result.

We shall use (81 ) to illustrate one point, namely the change in the moment

when a flat plate is replaced by an elliptic cyUnder whose major axis is of

length equal to the width of the plate; thus we examine the effect ofrounding

the edges of the plate and giving it a finite thickness.

To simphfy the calculation, we take the cyhnder in the position given by

a = b = ^d. Then (81) gives

Mlnpc^a'^sindcoad = A^l+'^(^Y{2q-coa26)

+ 2^^(^){99+168g2-(300 + 44j)cos2^+33cos4^}+... , (83)

where A = l-6'>'2, q = (a' + b')l(a' -b').

We begin with a flat plate of width 2a', and then keeping a' constant we

increase b'; to simphfy the calculations we have taken the position given

by ^ = 45° and the foUowing table shows the result of the calculation for

various values of the ratio a'jd.

a'jd
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before decreasing to zero; with decreasing width of the channel, this maxi-

mum increases in amount and occurs at a higher value of the ratio b'ja'.

Summary

The paper gives a new treatment of the problem of a flat plate in a stream

bounded by plane parallel walls, including circulation round the plate. The

plate is considered as the hmiting case of the elliptic cylinder; an integral

equation is obtained, whose solution by continued approximation leads to

expansions for the lift and moment on the plate. The solution is modified

to give similar results when the stream is bounded by parallel free surfaces,

taking the condition at a free surface in an approximate form ; and a further

modification gives the case when one boundary of the stream is a-plane wall

and the other is a free surface. The problem of the elliptic cylinder in general

is also considered with reference to the moment of the forces when the

stream is bounded by plane walls and when there is no circulation.
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Note on the sinkage of a ship at low speeds.
By T. H. Have lock in Newcastle-on-Tyne.

Zusammenfassung. Um einen Anhalt fiir die Zunahme des Tiefganges eines Schiffes

bei geniigend kleinen Geschwindigkeiten zii haben, ersetzt Verf. den eintauchenden Teil des
Schiffes durch ein Halbellipsoid, dessen ebene Grenzilache mit den Halbaclisen a und 6 in

der Hohe des Wasserspiegels liegt. Um diesen Korper nimmt er eine PotentialstrOmung an,

fiir die die Wasseroberflache eben bleibt. Aus dieser wird die Abnahme Q des Druckes nach
oben bereclinet und die Zunahme h des Einsinkens mittels der Gleichung Q = ahn q g -h
bestimmt. Die so gefundenen numerischen Resultate stimmen mit denen aus einer empirischen
Formel von Horn fiir wirkliche Schiffskorper der GrolJenordnung nach gut tiberein. Weiter
geht Verf. auf eine andere Hornsche Naherungsformel ein, die es eriaubt, aus dem Einsinken
die Zunahme des Reibungswiderstandes eines Modelles, verglichen mit dem einer ebenen
Platte, abzuschatzen.

1. The general problem of the position of relative equilibrium of a ship in uniform
motion is a complicated one. and the following note deals only with a simplified form of the

problem suitable for low speeds. It is generally assumed that at sufficiently low speeds

the fluid motion approximates to the stream-line flow round the ship, neglecting the distur-

bance of the surface of the water; the sinkage is then due to the defect of vertical pressure

caused by the fluid motion and should be proportional to the square of the speed. There do

not seem to have been any calculations made to test whether these assumptions lead to results

of the right order of magnitude. Such calculations might be carried out numerically for

ordinary ship forms, but it is sufficient for the present purpose to take a simple form. We
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assume the submerged part of the ship to be ellipsoidal. The solution of the corresponding

potential problem is well-known, and an exact expression can easily be found for the total

defect of vertical pressure, and hence we obtain a certain equivalent sinkage.

The problem is of some interest since Professor Horn') has proposed to estimate the

so-called form effect upon resistance by an approximate formula involving the sinkage at low
speeds. The expressions obtained here for ellipsoidal forms are compared numerically with

these results and with other experimental data.

2. A solid, whose surface is given by

^ + |f+^=1; a>b>c (1);

is moving through an infinite liquid with velocity U parallel to the axis Ox, The velocity

potential of the fluid motion is given by

a 6 c f dX

;.

in which (x, y, z) are given in terms of orthogonal coordinates (A,>(, »•) by

„ (a= + I] (a' + iLi] [a' + v)
^

(a= — 6=] (a= — c=J

with similar expressions for y and s.

In these coordinates the. ellipsoid (1) is given by A = 0; and we have also

_ f dX '2ahc
o,-abc\^

(a= + lf<' [V + 1]'!' (e= + If"
"

[a' - ¥] (a' - c=)"=
'"^~ ^^

-

(4).

F, E being elliptic integrals with parameters given by

sin a = {ir — Ir)
j
{a- — c-)}' ' ; sinx = (a^ — c-f ja (5).

The fluid pressure is given by

clip 1 —6 q> 1

If (7, m, ti) are the direction-cosines of the normal at any point of the ellipsoid, the required

total defect of resolved pressure Q is given by

U^+^q^ndS (7),

the integral being taken over the half surface of the ellipsoid lying on one side of the a;7/-plane.

Using well-known properties of the coordinates X,/i,v (as given, for example, in Lamb's.
Hydrodynamics, p. 149), it can be shown that, on the ellipsoid .1 = 0, we have

d X~ 2 - a„ 1"° ~ (tt= - 6=) (o' - c=) fivf'

and

f
. ^ I^Y _,_ I^Y ^ g, b'c'{a' + /,){cr+ y

(8).

d xj \3 yl [a'— 6=) («,-' — c°) /t v

I

/ g, y Tj, (
(fe° + /t)(c° + /<) ,

(6' + v)c= + >-)
\
a'(a-+!i]{a--\-v)

^ \2 -aj U' (a' + /') (/< -y^v (a' + v) (v - ^)| {a= - 6=) [a'- —c^)

Further, we also have

je 1 J (ii-v){v-a) \^^^
, ^

') Horn, Intern. Tagg. der Leiter der Schleppversuchsanstalteii, 1937, S. 20.
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Hence we obtain

abglP
{K-c^)(6=-c=)}

62 —a'

jj^\d/.l\^dv

- 62
is^M)

+ a„ V a' (a' + fx) {a' + v)
f
jb' + /') (c'' + /x)

2 j (o= — 6-') (a'' — c=) /^ r

(6= + v) (c= + v)

2 - aJ 2 (a^ - 6=) {a' - c') \u {a' + /<) (/^ - >) v (o= + v) {v - fx)

{/I — v) (r — /x)
1/2

(10).

Carrying out the integrations, and writing

Q = ng gabh (11),

we obtain, for a > b > c,

gh "n ! + «„ be'

2

2 (2 - a„) (ft + 6) (a° - c=) ' \2-aJ 2(a + b){a'-c'

a(a''+ ab — c")

ab c'

(2-n,Y{a'-cT'{h'-c')KITS
log

6 (a= — c')"-' + a (6° ~ c')"^

c(a=-c'-)"=+c (6= -c'yi'-

(12).

3. We require also the corresponding expression for an ellipsoid with a > c > 6. This

may be deduced directly from (12); or, alternatively, we may proceed as in the previous

section but replacing ndS in (7) by nidS, given by

m dS-T'^'iw^ c') (6= a') (a' 4 /^) («= + '') (c= + fi) (c= + v)|
«/'«'' (13).

After carrying out the integrations, we interchange b and c so that we may express the

result by means of (11).

We obtain, for a > c > b

gh _ a„ 2 + a„ be'- _^ ( a„ y a{a- + ab — c')

U' 2-ff„ ' 2(2-a„)(a + 6)(a=

2 a b e
(2-«„)=(a=-c7"=(c=-6=)"

In this case, instead of (4) and (5), we have

2 re 6 c

arctan

a„ y re (re'

2^^j 2(^!. + 6)(a=-c")

{(a'-c')(c'-6')}'"

re 6+ c=

(14).

°~((r — c=)(re= — 6=)'"

sin a = {(re= - c=)/(re= - &=)>"=

{F-E),

sin z = : („= _ //)">

(15).

4. The prolate spheroid may be considered separately, or may be deduced from the

two previous cases. Taking limiting values, both (12) and (14) reduce to the expression for

this case.

For re > 6 ; 6 = c , we obtain

gh_ a„ 2 + a„

U' 2-n, 2{2-n„)(a + by'^\2-aJ 2 (re + 6)
1+

n„ ya(re+ 2 6)

and in this we have

2(l-e=)/l, 1 + e
e° = 1— b'ja'

(16)

(17).

5. To apply these results to the problem under consideration we imagine a ship for

which the immersed portion is ellipsoidal, the x y-plane being the water surface and the sides of

the ship above warter being vertical. Owing to the defect of buoyancy, which has been

denoted by Q, the ship will sink in the water. Tliis will, of course, alter the fluid motion;

but for approximate comparison with experimental results, we define the equivalent sinkage

h so that Q is equal to the weight of a volume of water of height h and of cross section

equal to the section of the ship by the water surface; that is, h is defined by (11).
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If the length, beam and draft of the ship are L, B, D respectively, then i = 2a,
B= 2b, D^c; for B >, <, = 2 Dwe use the expressions (12), (14) and (16) respectively. The
numerical values shown in Table I have been calculated from these formulae.

Table I. Values of ghjU\

BjD LID = 10

0.0253

.0453

.0612

.0735

LID = 16

0.0138

.0231

.0318

.0397

6. The measured sinkage of ship models at low speeds has been analysed by Horn'),
who has given an empirical formula derived as an average from available data for many
different forms of model. His expression for the sinkage is, in the present notation

^=gij(0.35 + P){-l(ll.25-§)V2.5)(l.3-j^)| (18),

where L, B, D are length, beam and draft respectively, and P is the prismatic coefficient of

the form ; the formula is valid, as an average, for suitable ranges of these parameters.
It should be noted that this formula is for actual measured sinkage, and is probably

derived from velocities rather higher than those for which the preceding simple calculation

is valid; nwreover, the ellipsoid is not one of the ship forms included in the data. However
we may use it to test the order of magnitude of the results. If^we apply (18) to an

ellipsoidal form with LIB = 8 and BID = 2, we obtain fe= 0.0283 CF^/gr; this compares with

the value 0.0231 U'lg for this case given in Table I.

Horn') has suggested using the sinkage at low speeds to estimate the increased
frictional drag for a model compared with a flat plate; his formula for the percentage increase
in the resistance B is

100 A RjR= 200 ghjU' (19).

For the prolate spheroid with LIB ^8, the value of h in Table I gives, according to the
formula (19), an increase of 4.6 per cent in the resistance.

Amtsberg^) has recently determined the resistance of a submerged prolate spheroid
experimentally; he gives two values for the increase, namely 5.2 per cent and 3.7 per cent,

the smaller value being obtained after applying certain corrections. Amtsberg also

investigated certain other surfaces of revolution, for which the velocity potential is given by
a source distribution along the axis. He gives numerical values of the ordinates of the
surface and of the theoretical distribution of velocity along the contour; from these, it is

possible to evaluate numerically the integral we have denoted by Q in the preceding sections.

Taking, for example, the values given by Amtsberg for his model i? 1257, we obtain

approximately Q = 0.0284 g U^ (area of section). This gives an equivalent sinkage of 0.0284 U'lg
and, according to (19), an increase of resistance of about 5.7 per cent; the values deduced by
Amtsberg from his experimental results are 7.3 and 4.9 per cent, the latter being the

corrected value.

It is well-known that in models of this type the measured distribution of pressure over
the surface only differs appreciably from the theoretical value near the rear end of the model.
Hence the effect of this divergence upon the resolved vertical pressure will only be a small
correction; taking, for example, model ii! 1257 and using Amtsberg's measured values of
the pressure instead of the theoretical values, a rough approximation gives a factor of 0.0288
instead of 0.0284.

7. Summary. The sinkage of a model at sufficiently low speeds is assumed to be due
to stream line fluid motion round the submerged part of the model, neglecting the disturbance
of the water surface. Taking an ellipsoidal form for the submerged part, exact expressions
are found for the total defect of vertical pressure and hence for a certain equivalent sinkage.
The results are compared numerically with available data and are found to be of the right

order of magnitude. Further, reference is made to Horn's approximate formula connecting
the sinkage with the increase of resistance of the model compared with that of a flat plate.

949

=) Amtsberg, .Tahrb. der Schiffsbauteehn. Gesellsch., Bd. 38, 1037, S. 177.
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From the Philosophical Magazine, Ser. 7, vol. xxix. p. 407,

April 1940.

Waves produced by the Rolling of a Ship.

By T. H. Havelock, F.R.S.

1. The first part of the following paper deals with the surface waves

produced by an elliptic cylinder, or a fiat plate, submerged in water

and performing small linear or rotational oscillations. The second

part contains a short discussion of the energy dissipated in wave motion

by a rolling ship, together with an estimate of the magnitude of this

effect obtained from the preceding results.

Submerged Elliptic Cylinder.

2. The method adopted is to replace the oscillating body by some

suitable distribution of sources and smks or of doublets. Although

the analysis could be extended to three-dimensional problems, we limit

consideration at present to two-dimensional motion in a frictionless

liquid. We begin with the solution for a horizontal doublet wliich was

obtained for an oscillating circular cylinder (Havelock, 1917). Take

the origin in the free surface of deep water, Ox horizontal and Oy
vertically upwards. Let there be a horizontal doublet of oscillating

moment M cos at at the point (0, —/) in the liquid. The velocity potential

(ji is given by

^^ Mf ei°t+Me'-' f ^''^°l~'.^'% -''^^-'>^smKxdK, . . (1)
r^^ Jo gK—a-+iiJ,a

with ri^=a;2+(2/+/)"- The real part of the expression is to be taken,

and, further, the limiting value when the positive quantity fx.' tends to

zero ; this latter j^rocess ensures that, at great distances from the origin,

the motion will reduce to waves travelling outwards on either side. We
may write (1) in the form

with 7'2^=a;^+ {f
— yY and ^i^^'a/g, K^=a'^/g.

The integral in (2) may be transformed by taking k to be a complex
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variable and integrating round suitable contours according as x is positive

or negative. We obtain, taking the real part and making ju, zero,

(])= —s-cos at +_-cos a<=F2K„77-Me~ "'^'•^'^''cosiat^ k^x)
' 1 2

-_„ T,r . r Kncos K(f—y)-\-K sin K(f—y) -j-_, ,„,
^2koM. cos at

\

-5 ^-^—fx^ —^e'^'^'^dK, (3)
Jo '^ \'^o

the upper or lower signs to be taken according as x is positive or negative.

The corresponding surface elevation tj is given by

v=T — e-'^^sin (at^KgX) —-—sin at

g g x''+j-

± ^H^ sin at f
"°"°^ "f+^r "^e^^dK. (4)

g Jo K^+V
The first term represents the regular waves, while the other two terms

give a local oscillation whose magnitude diminishes with increasing

distance from the centre of disturbance.

Similar expressions may be obtained for a source of oscillating mag-

nitude, or for a doublet with its axis in any direction. It may be remarked

that for a doublet at a given point in the liquid, so far as the regular

waves are concerned the direction of the axis affects only the phase of

the waves and not their amplitude.

3. Consider the motion produced by an elliptic cylinder moving through

an infinite liquid. If the motion of the cylinder is one of translation,

it is well known that the fluid motion is that due to a certain distribution

of doublets along the line joining the foci of the elhptic section of the

cyhnder ; a similar proposition may also be readily jiroved when the

motion is one of rotation.

In particular, let the cylinder be moving with velocity V parallel

to the minor axis of the section ; let S, S' be the foci of the section and

h the distance of a point on SS' from the centre C. The moment per

unit length of the doublet distribution is

aV(aV-F)V77(a-6), (5)

in the usual notation, the axes of the doublets being perpendicular to SS'.

If the cylinder is rotating round C with angular velocity co, the moment
per unit length along SS' is

oi{a+b)h{a^e^-h^)^l27T{a-b), (6)

the axes being perpendicular to SS'.

Combining (5) and (6) with a suitable value of V, we may obtain the

distribution when the cylinder is rotating about any point on the major

axis.
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4. Suppose that the cyhnder is wholly immersed in liquid with the

axis of the cyhnder horizontal and at a depth / below the free surface

of the liquid, and let the cylinder be making small rotational oscillations

about its axis. Let the angle 6 between the major axis of the section and
the vertical be given by

e=0osin at, (7)

where 6^ is small.

For a first approximation we neglect the effect of the free surface.

The angular velocity of the cyhnder is ad^ cos at, and the velocity potential

is that due to a certain distribution of doublets along the instantaneous

position of the major axis. We shall make a further ajjproximation for

small oscillations and assume that this distribution is along the mean
position of the major axis, that is, the vertical through the centre of the

ellipse. Thus we consider the motion to be due to a distribution of

horizontal doublets of oscillating magnitude along the line between the

foci of the ellipse in its mean position. From (6), the moment per unit

length at a distance h from the centre of the elhpse is

'^^^^%^a^e^.-r')icosat, (8)
2Tr(a— o)

the limits for h being ^t:^^-

We replace M in (3) by this expression, write f-\-h for/, and integrate

with respect to ^ ; we obtain then the velocity potential for the given

distribution when the condition at the free surface is satisfied. Similarly,

from (4) we may obtain complete expressions for the corresponding

surface elevation. This consists of a local oscillation whose amplitude

diminishes rapidly with distance from the cylinder, together with regular

waves travelling out on either side. We shall examine here only the

amplitude of these regular waves ; from (4) and (8) the amplitude A of

these waves, that is, the coefficient of sin (at—K^x) for positive values of x,

is given by
n-i-h r"^

-6j_

= -K^W{a^—b^){a-\r^)^^^e-''°f {'sin^ 6 cos 6 6'''°'^ ""^ ^d9. . . (9)

This may be exjoressed in terms of the modified Bessel function I„(.t),

and we obtain

^='^^^^{'<,c^eUK,ae)-2UK,ae)}e-^f. . . . (10)

If K^ae is small, that is, if the wave-length is large compared with the

linear dimensions of the cylinder, the first term in the expansion of (10)

gives, as an approximation,

A=^(a-6)(a+6)3Ko='6loe-'^^ (11)
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Consider a cylinder of given vertical dimension 2a, with varying breadth

26. Naturally, for the circular cylinder {b=a) the disturbance is zero.

It is of interest to note that for the approximation (11) the maximum
wave amplitude occurs for b= la, its value being then nearly twice the

value for the limiting case of the flat plate (6=0).

Suppose that the cylinder has its major axis vertical, and is making

hnear horizontal oscillations in which the displacement is d sin at. Then

from (4) and (5) the amplitude of the regular waves is

A= H^^ r (aV-/i2)ie-''"('+«(^A

=2nK^ad(^y I,(Koae)e-'^f. ...... (12)

If KgUe is small, this gives, approximately,

A=TTKla{a+ b)de-'^^. ....... (13)

Finally, combining (10) and (12) with d^aO^, we obtain the amplitude

for an elliptic cylinder with its major axis vertical in its mean position,

and making small angular oscillations given by 6^9q sin at about the

upper end of its major axis ; in this case we obtain

s+6\i
. {K-oae(a+6)Io(Koae)— 2(a-f 6+Kua2)i^(^^^g)|g-K„/ ^24^

For Kffle small, the first term in the expansion is the same as (13) with

d=adQ.

In all these cases the expressions take simpler forms in the limiting

case of the flat plate, for which we made 6 zero ; Ijut it should be noted

that the ideal solution then implies infinite fluid velocity at the edges

of the plate. In particular, consider a plate of height 2a, making small

oscillations about its upper edge, the centre of the plate being at a depth/.

If K^a is small, the first term in the expansion of (14) gives

A=TTKQ^aWoe-'^f (15)

This, na.turally, is equivalent to replacing the oscillating plate by a single

doublet at its centre. If, in addition, KqJ is small, we may take iTK^a^Of^

as a first approximation for the amplitude of the regular waves. A
similar approximation could be made for a cylinder of any cross-section,

using the corres]3onding inertia coefficient for hnear motion and the mean
horizontal velocity of the cylinder.

Rolling Ship.

5. The expressions given in the previous section are approximations

suitable for wholly submerged bodies ; it is not permissible, in general,

to apply them to the oscillations of floating bodies. The approximation
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used for the doublet distribution loses accuracy with diminishing depth
of submergence of the body ; moreover, when the surface of the body
cuts the free surface some of the expressions for the surface elevation may
take infinite values. It may be noted, however, that such infinities

generally occur in the local part of the disturbance, the expressions for

the amplitude of the regular waves at a distance from the body remaining

finite.

For the rolling ship the period is such that the wave-length of the

corresponding waves is large compared with the draught of the ship . Thus
if we consider the analogous problem of the oscillating plate with its upper
edge in the surface, the quantity K^a of the previous section is small,

in most cases about 0-1. In these circumstances, treating the motion
as two-dimensional, we propose to regard the ship as a single oscillating

doublet at a depth which is small compared with the wave-length
;

thus, from (4), we take 2TTKgaM.lg as a first approximation for the amplitude

of the waves at a distance from the ship. Further, as we cannot expect

more than an estimate of the order of magnitude from this assumption,

we shall regard the ship as a plank, of length L and draft D, oscillating

about the water-line through an angle 6g on either side of the vertical
;

using the result given at the end of § 4 and writing T for the complete

period of rolhng, this gives for the height of the regular waves

^=^^0 (16)

It should be noted that the wave-height, as the term is commonly used,

is measured from trough to crest and is twice the amplitude.

6. Before applying this result, we may review briefly calculations which
have been made from a different point of view.

The part played by wave propagation in causing resistance to rolling

was first recognized by W. Froude (1872) and was advocated by him in

a series of pajiers. Froude showed that the energy propagated outwards

in the wave motion corresponds to a resisting couple proportional to the

angular velocity of rolling, and also that the energy actually dissipated

in rolling, or a large part of it, could be accounted for by waves ot

extremely small height ; in one case, for example, his calculation gave

a height of Ij inches for waves 320 ft. long. The same method has been

applied by other writers subsequently, and it may be worth while repeating

the argument in a somewhat different form from that in which it is usually

given.

Suppose the ship to be rolling about a horizontal axis through its

centre of gravity, and take the equation of motion in its simplest form as

ie+m+Wnid=o (i?)
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where I is the moment of inertia, W the weight, m the metacentric height,

and N^ the resisting couple.

The exact solution of (17) gives damped oscillations with a damping

coefficient /i=N/2I, and the rate of dissipation of energy is 'Nd^. Suppose
now that the dissipation is small and assume an undamped motion

0=6q sin at, holding approximately for a sufficient time, with

C72=Wm/I=47r2/T2.

With this assumption, the average rate of dissipation of energy

= i'NuWo^=Wmheo\

In the usual notation for the rolling of ships, aOg is the decrement of rolling

angle for one swing ; hence a=ihT. Thus the average rate of dissipation

of energy is 2Wma9Q^jT. Assume, with Froude, that when the ship

is rolling, regular straight-crested waves are sent out on either side, the

breadth of each train being approximately equal to the length L of the

ship ; further, let A be the amplitude of the waves, A the wave-length,

T the period, with A=gfT-/27r. In each train energy is propagated out-

wards at half the wave velocity V, that is, at an average rate IgpAWh
on each side. Hence, equatmg the average rate of dissipation of energy

to the average rate of propagation of energy outwards in the waves
on both sides, we have

2W7naeo^lT=ypAWX,
or

Wma6'o2=i^pA2AL (18)

This is, in effect, the equation given by Froude and used by later writers,

the left-hand side of (18) being the loss of energy in one swing ; the other

side of Froude's equation was, however, twice that given in (18), owing
apparently to neglect of the difference between group velocity and
wave velocity. The statement given here, besides including this correc-

tion, shows the various assumptions and brings the argument into line

with the usual method of approximating to the damping coefficient in

isochronous damped oscillations when the damping is sufficiently small.

Froude recognized that his solution was not in any sense rigorous and
hoped that it would be supplemented by some direct estimate, even if with

no greater exactness, of the wave-making property of a ship when rolling
;

it is also of interest that he proposed to attempt direct observation of the

waves produced by the rolling of models of simple form. However,
nothing further seems to have been done on this particular aspect of the

problem since that time. Other writers have used Froude's expressions

to estimate the wave height, and it appears to be accepted that wave
motion accounts for a large part of the dissipation of energy in rolling,

that due to fluid friction or eddy-making being relatively small apart
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413 Waves produced by the Rolling of a Ship.

from exceptional resistance due to bilge keels ; it has been remarked,

for instance, that no reasonable values of head resistance and skin friction

coeificient account for more than one-third of the actual decrement

obtained by experiment, and in one case such a calculation gave only

one-seventeenth of it (Baker, 1914). Nevertheless, no attempt appears

to have been made to compute the wave resistance to rolling from the

characteristics of the ship.

7. We shall now compare wave heights calculated from (16) with

various cases to which Froude's energy method has been applied.

In the case examined in Froude's first paper already quoted, the data

are T=8 sec. ; ^q=5-65°. The draught of the ship was not stated, but

we may assume D=15 ft. With these values, (16) gives h=l-2 inch.

Froude's estimate from energy dissipation was a wave height of IJ inch.

Other writers who have used the same formula assume that that part of the

resisting couple which is proportional to the angular velocity of rolling

may be attributed to the loss of energy in surface-waves. Thus

Sir W. White (1895), for the rolling of H.M.S.' Revenge ' without bilge

keels, deduced a wave height of about 1| inch. In this case T= 15-5 sec.
;

^0=13° ; D=27 ft. ; and these give from (16) a wave height of just over

1 inch.

L. Spears (1898), from the rolling of U.S. S. ' Oregon,' deduced a wave
height of 0-62 inch. Here T=15-2 sec. ; 6lo=12° ; D=23 ft. ; and (16)

gives a wave height of 0-67 inch.

It should be remarked that in all these cases Froude's formula was used
;

according to the argument given in § 6 and expressed in equation (18),

these estimates of wave height should be increased by a factor V2.
A final example is taken from a recent paper by G. S. Baker (1939)

on the rolling of ships under way. We take the data for model R 8(a),

for rolling at zero speed ahead, given in Tables 1 and 3 of the paper
;

in the notation already used

W=10,150ton; m==4-4 ft. ; T=ll-52 sec.
;

A=680 ft.
;

L=400 ft. ; D=23-2 ft.
;

a=0-022.

In this case we shall use equation (18) to see what height of waves would

sufiice to account for the whole of the dissipation of energy, neglecting

for the moment any due to friction or eddy making. With the given

values we find from (18), A=2A=2-65 inch. Again, using the values

of D and T in (16), we find y^=l-58 inch.

It should be noted that (16) was derived by regarding the ship as a thin

plank. The formula could be modified in an empirical manner to take

into account the displaced volume and the inertia coefficient of the ship
;

this might be represented by multiplying (16) by a factor whose probable
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value would lie between 1 and 2, but the modification is not worth while

at this stage.

Both the energy method and the present calculation are no more than

first approximations, and therefore we may not attach any great

accuracy to the estimates by either method ; nevertheless, it is interesting

that both methods give results of the same order of magnitude. On the

theoretical side the problem should be treated as three-dimensional,

and also the boundary conditions at the surface of the ship satisfied

mcffe closely ; in addition, the actual motion of the ship and its axis

of rotation are important factors in a more detailed investigation. On
the other hand, it would be desirable to have experiments on models

of suitable form designed to provide better estimates of frictional and
eddy-making resistance to rolling, and so to afford more reliable knowledge

of the amount left to be accounted for by wave propagation.

Summary.

Expressions are obtained for the surface disturbance produced by a

cylinder, of elliptic cross-section, submerged in water and making small

oscillations. A simple form of these results is used as a first approxi-

mation for the height of the waves, supposed two-dimensional, sent out

on either side by a rolhng ship. Numerical calculations are made
for cases for which a similar estimate has been made by an energy method
due to W. Froude ; the results by the two methods are of the same order

of magnitude.
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The pressure of water waves upon a fixed obstacle

By T. H. Havelock, F.R.S.

(Received 29 March 1940)

The diffraction of plane water waves by a stationary obstacle with vertical

sides is examined, in particular the variation of amplitude along the sides

and the average steady pressure due to the wave motion. Results similar

to those in other diffraction problems are obtained for an infinite plane and
for cylinders of circular or parabolic section, and approximations are made
for sections of ship form. The examination was made in view of possible

appHcations in the problem of a ship advancing through a train of waves,

and the results are discussed in relation to the average additional resistance

in such circumstances. It appears that the mean pressure obtained on

diffraction theory from the second order terms can only account, in general,

for a small proportion of the observed effect; the motions of the ship,

and in particular its oscillations, are essential factors in the problem.

1. The problem to be considered is the resultant fluid pressure upon an

obstacle held in position in a train ofplane waves advancing over the surface

of the water. In a previous paper (1937) I considered the additional

resistance on a ship moving through waves, the work being restricted to the

first order effect, a purely periodic force which may have an ampKtude

comparable with the resistance to the ship in still water; further, for the

type of ship considered, the usual approximations were made and these

included neglecting the effect of reflected or scattered waves as being of the

Vol. 175. A. (18 July 1940)
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second order. One purpose of the present work is to examine that assump-

tion; the approximate method is extended in a certain case to give the

variation in ampHtude of the surface oscillation along the side of the ship.

The view has been put forward recently that the mean extra resistance

to a ship advancing through waves is due to tlie reflexion of the waves by

the sides of the ship, being in fact analogous to the pressure of radiation:

it has been stated, for instance, that the resultant ampHtude at the bow is

about one-third greater, and that at the stern one-third less, than the

ampHtude of the incident waves, and empiiical formulae for the pressure

have been constructed on that basis. The problem requires, however,

a consideration of second order terms which does not appear to have been

made for water waves even in simple cases. We consider total reflexion,

normal or oblique, by a plane wall, and diifraction by a cylinder of circular

or parabolic section, together with approximations for a section of ship

form: the results are discussed in relation to the ship problem.

^Diffraction of water waves

2. Consider a fixed cyHndrical obstacle in the water, the sides vertical

and extending down to an infinite depth; let G be the contour of any hori-

zontal cross-section. We suppose plane waves ofampHtude h to be travelling

in the negative direction of Ox; the origin is in the free surface and Oz

is vertically upwards. The velocity potential of the fluid motion is of the

form

The pressure condition at the free surface is satisfied, to the usual first order

terms, by cr- = qk. Further, we have

and d(pldv = on the contour C. The potential may be expressed in terms

of a source distribution over the surface of the cyHnder, but that is, in

general, merely a restatement of the problem. We are concerned meantime

with an approximate solution when the contour C is of ship form; that is,

we assume C to be a contour of small breadth compared with its length.

We take Ox in the direction of the length and to be an axis of symmetry
of the contour. The approximation is the same as that used in determining

the waves produced by a moving ship. We take the source strength at any
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point to be determined by the horizontal fluid velocity in the primary

motion and by the gradient of the surface at the point. We then replace the

obstacle by a plane distribution of sources over the vertical section by the

zx-plane. The primary fluid motion in the present case is that of the plane

waves. Thus, if {£,, 0, -/) is a point on the vertical section, and if dyjd^

is the gradient at the corresponding point on the contour, the required

distribution of sources over the vertical section is of strength per unit area

given by
iKqhdy ,,,,,.

£ i g l{(Tt+Kg)-Kf 13 \

'Incr dE,
'

Consider now a point source mcoscrt in the liquid at the point (0, 0, -/).

The velocity potential was obtained by Lamb (1922) and we use his result

with a shght change of notation. The surface elevation ^ is given by
gr^ = dcpjdt with 3 = 0; we have

^ = 'y^^'"{(7^ -in<e'<fHfiKr)

_2^pp .sin/. + .cos/. ^_„,„3,,,^^^^l

where r^ = x'^ + y-, k = a^jg, Hf^ = Jg- iF,,, and the real part of the expres-

sion is to be taken.

Let there be a vertical line source extending from the origin downwards,

the source strength per unit length at depth / being me^"*. We substitute

this value for m in (4) and integrate with respect to/ from to 00. For the

last term in (4) this integration gives

TTJo Jo K^ + V- 77J,, K~ + V'

(•CO „-Ki

Hence the terms in (4) which represent the local oscillations disappear

from the integrated result for this particular vertical source distribution;

and we obtain the simple result

g g Jo

representing circular waves diverging from the origin. Returning to (3)
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we see that the source distribution is made up of vertical line sources of this

type, and we obtain for the complete surface elevation

Jj^^Hat+KX) _ Xii^^-Jifi^i'U®(/cr)|fe'-«(i/c. (7)

In (7), the first term represents the incident waves; further, r'^={x — E)'^ + y^,

and the integration ejctends over the axial length of the form. It should be

noted that this result is comparatively simple because we have taken the

obstacle to be of infinite di'aft; for a ship of finite draft there would be terms

representing a local surface elevation in addition to the diverging waves

from each element. Further, the result is only an approximation and

assumes, in fact, that the additional surface elevation is relatively small.

3. We shall apply (7) to one case only, so as to estimate the magnitude

of the effect due to the scattering of waves by a narrow ship of great draft

and of form similar to those for which previous calculations of wave

resistance have been made.

The model is of symmetrical form with straight sides, of total length 21,

beam 26, and with a parallel middle body of length 2a; the bow and stern

are equal wedges of axial length I— a and of semi-angle a, where

tana = bj(l — a). We take the origin at the centre of the axis, with the

positive direction of Ox from stern to bow. Thus we have

dy/d^ = a, for —l<£,< —a

= 0, for —a<£,<a

= —a, for a<E,<l. (8)

From (7), the surface elevation at any point (x,y) is given by

^ = i/ie«°-'+'---^)- UKhaei"'
j

"^Hf{Kr) e^'-'S dE, + ^iKhccei'^'
j
H'i^Kr) e^"^ dg. (9)

J ~l J a

We shall use this only for the elevation along the axis y = 0, as in the

corresponding calculation of wave profiles for a ship. We note that in these

expressions the quantity r is essentially positive. As an example, for a point

in the bow wedge, that is for a<x<l, we have

^e-M = i/te'"-^- liKhoc
j

"^

Hf{K(:x - E,)] e'"'* dg

+ IJKha VHf{K{x - E,)} e"--' dE, + \iKha \ H'§\k{E, - x)} e< dE,. ( 1 0)
J a J X
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These expressions may be evaluated in terms of two integrals which may
be shown to have the following values

:

J, 77

(''Hf^u) e'" du = 2}e^P{H'i>{i)) - iHf\2))] - '
.

Jo ^

We shall write (11) as iQj) + 2/7r, and (12) as Mij}) - iln. We also put

iKh K{l + a); p^ = K{l-a); p^

[ID

(12)

(13)

We select five points at which to make the calculations, the bow, stern,

shoulders and amidsliips; and, in the notation indicated, we have

ai) = i/ie'(-'+^-"[l - ioci^L(p,) - L{p.^ - L(p,) -
^1
J

,

C(a) = iAe'(-'+™)[l - hocl^Lip,) - L(p,) - iM{p,) +
^|]

,

^(0) = ihe'-'[l-ioc{L{hpO-L{ip^-3I{ip^ + M(^p^)^] (14)

a-a) = //te'(-'-->[l - |a[i(iJ3) +^h) - ^Ih) +
^)]

.

a-l) = //(e«-'-''-''ri - IocImIp^) + 31{j}^) - M[p.^ - 4] .

We apply these results to Model No. 1144 of the National Physical

Laboratory. This was a model of the given form used b}^ Wigley (1931)

in comparmg calculated and observed wave profiles along the sides of the

model when advancing through stUl water. For the present jjm'pose we

suppose the model held at rest while regular plane waves of amphtude h

and wave-length 'IttIk are moving past it. The dimensions of the model were

?=8ft.; « = 2-19 ft.; 6 = 0-75 ft. (15)

We calculate only one case, namely, when the wave-length is equal to the

total length of the model. Thus, in the notation of (13) we have

Ih 6-28; p.^ = 4-0; p^ = 2-28; p, = 1-72. (16)

We have also a = 0-129. Using tables of Bessel functions, ^ may be calcu-

lated from (14). We are not concerned with the phase of the total oscillation

at each point, but only with its amplitude. We find the ratio ofthe amphtude
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to that of the incident waves at the points x = I, a, 0, —a, — Z to be 1-05,

1-08, 1-09, 0-99 and 0-95 respectively.

The alteration in amphtude at bow and stern would be greater for a fuller

model, and especially for a bluff-ended form. Nevertheless, these approxi-

mate calculations confirm the view that for a fine model the modification

caused by the reflexion of the incident waves may be treated as a second

order correction. It should also be noted that these results are for a model

of infinite draft; it may be jDresumed that the effect would be much smaller

for one whose draft is small compared with the wave-length.

4. For a vertical obstacle of infinite draft, we may readily transfer

results from other diffraction problems. The effect of a cylinder of elliptic

section would be of special interest, but the analytical solution does not

lend itself to computation when the wave-length is of the same order as

the length of the axis. It is, however, worth while examining briefly two

other cases from the present point of view.

Let the cylinder be circular, its water plane section being the circle r = a.

For plane waves of amphtude h moving in the negative direction of Ox,

the complete solution is given by

^ = {ghja) e^'''+Mjg(Kr) + 2 ^{"J^^Kr) cos nd

- (ghja) e''^+'<4boH^o^\Kr) -F 2 2 i«b^Hf{Kr) cos nd\ , (17)

where cr- = gK, and 6„ = J'^{Ka)jH''^'{Ka).

Putting r = a in the expression for the surface elevation, and reducing by
means of relations for the Bessel functions, we obtain on the cylinder

^= —{Go + 2j:i''C^cosnd\, (18)

where C'„ = l/fi«>'(/ca.).

Computation from this expression, which involves tabulation of J'^^+ Y'^^,

can be carried out without much difficulty except when Ka is large. A detailed

study might be of interest, but for the present purpose the following results

suffice to show the variation of amphtude round the cylinder. The numbers

in table 1 give the ratio of the amphtude at each point to the amphtude of

the incident waves; 6 = 0° corresponds to the bow and 6 = 180° to the

stern.
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Table 1
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These may be compared with the corresponding values at ^ = for the
circular cyHnder. When ku is smaU, we obtain from (23) the approximate
value 1 + (TTKal2)i for the ratio of the amphtude to that of the incident waves.
We may, possibly, use this to give an upper limit for the resultant amphtude
at the bow of a ship if we regard the front half of the ship as a parabola with
Its vertex at the bow. For instance, consider the model examined in § 3.
Instead of a wedge-shaped bow, suppose it is rounded off into a parabola
with Its vertex at the bow and joining on to the paraUel middle body at
a distance of 5-81 ft. from the bow, the beam at that point being 1-5 ft.
With these data, and taking the same wave-length of 16 ft., we find that
Ka = 0-019. From the approximate formula, this gives a relative amphtude
at the bow of M7. Comparing with the previous calculations, this seems
a reasonable estimate, in spite of the various assumptions; the ratio would,
of course, be greater for smaller wave-lengths.

The pressure of water waves

6. For the resultant pressure upon the obstacle, the first order effect
IS a purely periodic force with zero mean value; this was the effect considered
in the previous paper (1937) and apphed to a ship among waves. To obtain a
steady mean force different from zero we have to proceed to second order
terms; although much work was done at one time on the pressure of vibra-
tions, water waves do not seem to have been considered in this connexion.
We begin mth plane waves, and the only general result we need is that

given by Rayleigh (1915), that the usual first order expression for the
velocity potential is also correct to the second order, the next term being
of the thh-d order; this was shown to be the case both for progressive waves
and for stationary osciUations. There are, however, second order terms in
the surface elevation.

Consider plane waves incident directly upon the plane a; = as a fixed
boundary. We take

4> = {2ghIa) e"^ COS. Kx sin. at, (24)

^=2h cos Kx cos (Tt + 2Kh^ cos 2kx cos^ at, (25)

with a^ = gK. We have d<p/dx = at a: = 0; for the pressure we have

It may be verified that, with

P = - ^gpKM cos 2at - gpz + 2gphe'= cos kx cos at - 2gpKh\^''^ sin^ at, (27)
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The pressure of water waves upon a fixed obstacle 417

the pressure conditions at 2 = ^, given by (25), are satisfied to the second

order, namely ^ = and
op 9^ dp 9^ dp

dt dx dx dz dz

To the first order, (24) and (25) represent j^lane waves of ampHtude h

reflected at the plane x = 0. We may now evaluate the additional pressure

upon this plane per unit width. We put a; = in (27) and integrate with

respect to z from —00 to ^. The first order term is the periodic force

{2gphJK) cos crt; for the additional quadratic terms we obtain

- hgp^^ + 2gph^ cos at - gph^ sin^ at, (28)

the second term in (28) coming from the expansion of e'^'f. We put in the

value of ^ from (25), noting that we only need this to the first order; and we

obtain for the additional steady force P per unit width of the plane, taking

mean values,

P = ijph\ (29)

where h is the ampHtude of the incident waves.

It may be remarked that instead of using the fact that the second order

term in the expansion of (p is zero, it would have sufficed for the present

purpose to assume
(f>

to be purely periodic, an assumption made by Larmor

(1920) in the corresponding calculation for sound waves. It is well known

that waves of finite amphtude possess linear momentum in the direction

of propagation; the average amount, to second order terms, is nphW per

wave length, V being the wave velocity. On the other hand, if we calculate

the rate of transfer of Hnear momentum across a vertical plane, we obtain

an average rate of Igph^', this gives in one period one-half the average

momentum in one wave-length. The average pressure P given by (29) may
be regarded as due to the reversal of this flow of momentum. We notice

also that P is equal to one-half the average density of energy in the standing

oscillations, and this may again be connected with the fact that the group

velocity for water waves is one-half the wave velocity. For plane waves of

amplitude h incident upon the plane x = at an angle a to the plane, we

may take
6 = i'lghla) e^'' cos {kx sin a) sin {at — tcy cos a),]

(30)

^ = 2A cos {kx sin a) cos {at — Ky cos cc). j

We obtain now, instead of (28), the quadratic terms for the additional

pressure as

— ^gp£,~ + 2gph^ cos {at — Ky cos a)

— gph^{(ios^ a. cos^ {at — Ky cos a.) + sin- {at — Ky cos a)}. (31)
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Taking mean values, this gives

P = igph^sin^cc. (32)

7. We proceed similarly for any fixed cyHnder of infinite draft with
vertical sides; it is not necessary to examine the second order terms for the
surface elevation, and we assume that the velocity potential is correct up
to that order, or at least that any second order term is purely periodic.

Consider the solution for the circular cylinder which was given in § 4.
We write it as

^ = {gh/cr)e''''{Lcosat-M sinat),}

C= -MLsin at +M cos at),
J

where L, M are functions of r, 6 which may be obtained from (17).
At any point on the cylinder we have

p = F{t) - gpz - gphe'^'^iL sin at +M cos at)

- (p/2a2) e^'^-^{K^a^{L cos at-M sin at)^ + {U cos at - M' sin at)^}, (34)

with r = a, and the^accent denoting djdd.

We integrate with respect to z from - oo to ^ and expand to second order
terms; then for the resultant force we multiply hj aco&ddd and integrate
round the circle.

It is readily seen that the first order term in the additional force is a
periodic effect of amount

4gM J[{Ka) sin at+Y[ cos at

K^ J'^'{Ka)+Y[^{Ka) ' (35)

From the quadratic terms we get, after taking mean values, the steady
additional force

B = igph^aj^ ji^ +m-'-~ {L'^ + M'^)\ cos dd6,

where ^+ '"^ = ^(^o + Sp^cos^^),

(36)

(37)

and 6„ = i''JH^^y(Ka).

We have

J,

J,

' 4. to

{L^ + M'-) COS 6dd = -^^(b 6* ,+6*6 ]

^ 4 CO

^{L-~ + M'^)cos0d6 = -^^Xn{n+l)(b^hU, + btb^^,),

(38)
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where the asterisk denotes the conjugate complex. Putting in the value

of 6„ and using properties of the Bessel functions, these expressions may be

reduced to a simple form; we obtain finally

the argument of the Bessel functions being Ka.

The series in (39) occurs also in an expression given by Nicholson (1912)

in a similar problem for electromagnetic waves. Some values had been

calculated before this reference was known, and with Nicholson's values

for the series we have the results in table 3.
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In general, for any form of the front portion of the model, we have

R = hgph- sin^ ady = igph^B sin^ a. (43)

In (43), a is the angle the tangent to the form makes Avith Ox, and the bar

denotes the mean value of sin^ a with respect to the beam of the ship.

Suppose, for instance, that the section of the model is the ellipse

a;2
/(jz -1- 2/2/62 = 1 . It is easily shown that in this case

s"^ ^ a2_^2|5^(a2_62) b )

This would be a fuU form of model. Ifwe take a = 86, as an average ratio of

length to beam, we find from (44) that the mean value of sin2a is 0-17.

The mean value is less for models with moderate bow angle; probably an

average value would be about 0-1, with stiU smaller values for models with

iine hnes.

In a recent paper Kreitner (1939) has put forward the proposition that

the extra resistance to a ship among waves is nothing else than the radiation

pressure of the ocean waves. The semi-empkical formula given by Kreitner

for this force upon a ship at rest in a train of waves is

R = gph^B^noL, i^^)

in the present notation, in which h is the amphtude of the incident waves;

the last factor is a mean value for the angle of entrance not clearly defined.

The derivation of this formula is not clear, but it appears to be based upon

an estimate of the difference of resultant amphtude at bow and stern, and

upon taking the mean value of the hydrostatic pressure due to the surface

elevation. This latter assumption is incorrect; and further, we found in (43),

that the last factor should be the meanvalue of sin2 ataken across the beam.

Numericahy, for usual ship forms, these differences result in (43) giving

about one-fifth of the value from (45).

For a certain model, a ship with fuU Unes, the relevant data are

B = 69-2 ft. L = 530 ft., h = 2,1 ft. If we assumed the fore half of the ship

to be an ellipse and used (44), we should have 0-175 as the mean value of

sin^a; but this is certainly too large and we take a smaller value, say 0-12.

With these values, (43) gives a force of 0-6 ton. This is, moreover, an upper

hmit and also assumes the ship to have vertical sides and to be of great

draft. The recorded extra resistance for this ship is given as about 2-8 tons;

but this was for a model advancing through the waves.

The steady pressures we have been considering will certainly be increased

if the ship is itself in steady motion through the waves, but the problem
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then becomes complicated and, in practice, many other factors must be

taken into account. The wave resistance of the ship, as calculated for

uniform motion through still water, is probably altered; moreover, the

motion of the ship, and in particular its pitching and other oscillations,

must have an important influence. It may well be that interactions between

first order effects which in themselves are purely periodic may, through

phase differences, give rise to steady additional resistances.

The calculations which have been made here refer to a model held at

rest in a train of waves. The only reference to experiments of this nature

appears to be in a paper by Kent and Cutland (1935). The model was

No. 1255 of the National Physical Laboratory, and the dimensions were:

length = 16 ft., beam = 1-92 ft., draft = 0-52 ft. For this model the mean
value of sin^a was probably not more than 0-1. If we suppose the wave
amphtude, that is half the wave height, to be 2 in. for waves, say, 5 ft. in

length, then (43) gives as an upper hmit a force of 0-17 lb. The experimental

results were not pubhshed, no doubt because this particular experiment

was only incidental to the main investigation ; but it may be taken that the

calculated value obtained here is of the order of one-half the measured

value for waves of the given height and length. Here, again, although the

model is said to be at rest, it has necessarily a certain small amount of

freedom for oscillatory motion. While such motion might be expected to

diminish the magnitude of the pressures we have been considering, it may
also bring other effects into operation. Further experiments of this nature,

with more detailed measurements, would be of great interest.

The immediate object of the present work was to examine, in cases

amenable to calculation, the magnitude of the mean force obtainable on

the analogy of radiation pressure. The general conclusion is that while such

a force exists as a contributory cause, it is insufficient to account for the

extra resistance observed in a ship advancing through waves; in those

circumstances the total effect is probably the result of several factors of

approximately equal importance.
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From the Philosophical Magazine, Ser. 7, vol. xxxiii. p. 467,

June 1942.

The Drifting Force on a Ship among Waves.

By T. H. Havelock, F.R.S.

1. When a ship is advancing through a train of waves it experiences

an average steady resistance greater than that at the same speed in

smooth water. There are no doubt several factors operative in producing

this result ; one, for instance, may be described as wave pressure due

to the reflexion or scattering of the ocean waves by the surface of the

ship (Kreitner, 1939). This miist certainly be taken into account in a

complete theory, but investigation of it involves second-order terms in

the hydrodjmamical equations and a satisfactory solution of the jsroblem

would be difficult. Certain calculations which I have given recentlj^

(1940) seem to show that this cause is not likely to account for more
than a small' fraction of the observed results. Experiment shows that

the effect is most prominent when the period of encounter of the ship

with the waves is near the natural periods of the ship's oscillations
;

whether directly or indirectly, the phenomenon is clearly associated with

the heaving and pitching motions of the ship. In the paper already

quoted (1940) it was suggested that it may well be that interactions

between first-order effects which in themselves are purely periodic may,
through phase differences, give rise to steady additional resistances.

The object of the present note is to give some tentative calculations

amplifying and illustrating this suggestion. For this purpose we fall

back on the approximate theory which neglects the disturbing effect of

the ship's surface upon the wave motion. In suitable cases we may
perhaps regard the necessary additions for the reflected waves to be

small corrections, as, for instance, for a long narrow ship (1937). This

assumption was the basis of the theory developed by W. Froude in his

work on the rolling of a ship among waves, in which case the wave-

length is assumed large compared with the beam of the ship. It was
also used exphcitly by Kriloff in his well-linown analysis of the heaving

and pitching of a ship among waves. This latter work dealt only with

the oscillations of the ship, and not with the extra resistance to motion

which is now under consideration. It is true that the problem involves,

in some form at least, second-order terms, and any partial separate

examination of such terms is unsatisfactorv ; the following calculations
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are therefore subject to correction by a more complete analysis, bat

they may serve to bring out a new point of view.

2. It is interesting to recall the development of the similar problem

in rolling. Some years ago Suyehiro (1924), experimenting with a small

model, announced the discovery of a drifting force sideways upon a ship

when rolling in waves. This interesting result does not seem to have

been studied by other workers, and either confirmed or disproved. The

effect is small and probably needs suitable conditions of forced rolling

in resonance with the natural period of roll. Suyehiro himself ascribed

the force to reflexion of the waves by the side of the ship and supported

this view by observation of the motion of the fluid particles near the ship.

No calculation was made of the reflexion or scattering of the waves by
the ship, and this is a problem which still awaits solution. Here, again,

no doubt this form of wave pressure contributes to the result, but there

is no reason to suppose it adequate in itself ; moreover, the experiments

showed a close association of the drifting force with the rolling of the

ship. Recently an alternative theory has been put forward by Watanab6

(1938). Starting from the Kriloff equations, Watanabe deduced an

expression for the drifting force involving the angle of roll and the phase

lag between the roll and the actuating moment ; applied to Suyehiro's

model, this expression gave a force of rather more than half the observed

value.

In the following sections we derive similar expressions for the drifting

force due to heaving and pitching when the ship is head-on to the waves
;

we assume throughout the usual theory of irrotational waves of small

height.

3. Take the origin O in the undistvirbed surface of the water, Ox
horizontal and perpendicular to the wave crests and in the direction of

the ship from stem to bow, Oy horizontal and Oz vertically upwards.

We shall suppose first that the ship has no forward motion or, more

precisely, we may suppose it constrained so that it is free to make small

vertical oscillations and free also to make small rotational oscillations

about a horizontal axis parallel to Oy through some point G. We consider

plane waves of small amplitude h and of wave-length ^jk moving in the

negative direction of Ox. To the first order the velocity potential is

given by

<f,
= (ghla)e'^ sin {at-\'Kx), (1)

with a^ =gK, and the pressure by

P=Po—9PZ+P-^^ (2)

^Po—gpz+gphe" cos ((7t+Kx), (3)

Pq being the pressure at the free surface.
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A complete solution would include an addition to (1) necessary to

satisfy the boundary condition at the surface of the ship in its actual

motion and also the condition of constant pressure over the free surface

of the water. We are, meantime, neglecting this additional term, and

assuming the conditions such that for a first approximation we may
calculate the resultant forces from the pressure given by (3). The

resultant horizontal force backwards is given by

F =jjpldS, (4)

taken over the immersed surface of the ship in any position, {I, m, n)

being the direction-cosines of the outward drawn normal at any point.

This may be transformed into a volume integral taken throughout the

immersed volume V of the ship, and using (3) we have

=—gpKhHje"' sin (at+Kx)dV (5)

Let Sq, Vfl be the immersed surface and volume, respectively, when the

ship is in its equilibrium position in smooth water. If the ship is held in

this position in the waves, the corresponding force Fq calculated from (5)

is a purely periodic force with mean value zero (1937). Suppose now the

ship to be in a slightly displaced position S due to heaving and pitching.

The additional horizontal force is given by (6) integrated throughout the

volume between So and S. If 8v is the distance from any point of Sq

normally outwards to S, we have dV=SvdSo. Let the pitch be measured

by a small angle 6 of rotation round an axis through a point G on Oz

at a height c above 0, taking 6 to be positive with the bow up ; and let

the heave be given by a small vertical displacement ^ upwards. Then,

to the first order in ^ and 6, we have

Sv=nl+{nx-l{z-c))e (6)

Hence the horizontal force backwards in the new position is given by

F=Fo—gpKhljje'" sin (at+Kx)ndSo

—gpKhd \\ e" sin {at+Kx){nz—l{z—c)}dSQ, . (7)

where the integrals are taken over the equilibrium position of the ship's

surface.

Calculations may be made directly from this expression, but we put

it into another form to show that it leads to an average steady force

backwards.

Let B be the extra buoyancy for the ship in its .equilibrium position

due to the wave motion, that is, the additional force upwards arising from
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the term pd(j}jdt in (2). Similarly, let P be the additional moment of

this pressure about the axis through G in the direction of d increasing.

Then we have

^= —gph\[e''^cos,{at-\-Kx)ndSQ, (8)

V=gph{{e''^Goa(at+Kx){l{z—c)—nx}dEf,. . , (9)

Hence we may write (7) as

The usual approximate equations for the motion of the ship are obtained

by taking into account also the hydrostatic buoyancy and moment arising

from the term gpz in (3). With M, I as effective mass and moment of

inertia, respectively, and assuming a simple law of damping in each case,

the equations are

M^+Nt+?pAC=B, (11)

M+N'6l+srpmVo6l=P, (12)

A being the area of the water plane section and m the metacentric height

for pitching.

When calculated from (8) and (9), B and P are of the form

B=Bo sin {ot+a.) ; P=Po sin (at-\-a.'), .... (13)

Bq, Pfl, a, a' depending upon the wave-length and the form of the ship.

To obtain from (10) quadratic terms giving a mean value different

from zero, we need consider only the forced oscillations in t, and d. These
are given by

^=A;Bo sin (a<+a— /S)

^=fc'P„ sin (a<+a'-^')''
^^*^

h, k' being the usual magnification factors, and (3, |3' the corresponding

phase lags, obtained by solving (11) and (12) for the forced oscillations.

Using (13) and (14) in (10) and taking mean values of the quadratic

terms, we obtain for the mean backward force

R= ^KA;Bo2sin^+i/cifc'Po2sin,8', (15)

an expression which is essentially positive.

With ^Q and d(, the ampKtude of the forced heaving and pitching,

respectively, and B^, Pq the ampKtudes of the buoyancy and pitching

moment as in (13), we have from (15)

R= ^/cBo^oSini3+iKPoeoSin;8' (16)

4. We have only used equations (11) and (12) to show that the average

steady force is a resistance. In attempting comparison with experi-

mental results one cannot rely upon calculations from these equations.
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except for general descriptive purposes. Among other reasons, there is

a lack of precise information about the damping of natural heaving and

pitching. A common statement is that the damping in both cases is

large, the natural oscillations in uniform waves diminishing rapidly and
the motion reducing to the forced oscillations. On the other hand, this

is difficult to reconcile with certain experimental results when the period

of encounter with the waves is near a natural period ; in such cases the

amplitude of the resultant oscillation has a slow periodic variation from

a minimum to a maximum in a manner suggesting the superposition of

natural and forced oscillations of nearly equal period. The only pubUshed

estimate from experimental results appears to be that given by Horn
(1936), who states that the damping of heaving and pitching is of the

same order of magnitude ; his estimate gives a logarithmic decrement of

about 1-4, an extremely large value compared, for instance, with the

damping of rolling.

We have assvimed the ship to have no forward motion, but, so far as

the present approximation goes, we may suppose it moving with uniform

speed ; the onbT difference is that the quantity a- in (13) is such that

27r/a is the period of encounter of the ship with the waves.

We may make a rough estimate of the order of magnitude of the extra

resistance given by (16). For a cargo boat of 400 ft. in waves of 500 ft.

in wave-length and of height 6 ft., the amphtude Pq of the pitching

moment may be about 80,000 ft.-tons while the amplitude Bq of the

buoyancy might be, say, 300 tons. Hence from (16) we should have

R= l-9CoSini3+5O2 0oSm^' (17)

If the period of encounter is not near a natural period we might assume
a total heave of 4 ft. and a pitch of 3°

; whence

U= 3-8sinj8-|-13sin-j3'. ...... (18)

A value of 15° for the phase lags ^, /3' would not be unreasonable. This

would give R= 4-4 tons, of which three-quarters would be associated

with pitching and one-quarter with heaving.

5. For a more detailed analysis, we consider a simple form of wall-

sided model of uniform draft d, with a rectangular middle body of length

2a and beam 26, and with entrance and run each of length I and of

parabohc form. Thus with at the centre of the parallel middle body,

the equation of the contour from x=a to x=l-\-a is

y=b{l-{x-aflP] (19)

at all depths, from z= —d to z= ; and there is a similar equation for

the run at the stern from x= ~{l-\-a) to x= ~a.
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The model is symmetrical fore and aft, and for simplicity we assume
G, the position of the axis of rotation, to be at ; thus we take c= in

(9). The integrations in (8) and (9) over the sides and keel of this model
are readily carried out, and we obtain eventually

-r,
Sgpbh

^ = —7;j-^ ^{^^iP+Pi)~P (ios {p+pi)~smp.^} cos at. . . (20)Kp

P=^^[{(i^'+i'i-3) sm (^+^^)_(p^+3i)) cos {p^p^)

+ 3sinjJi—^1 cos_pi}e-«4-(l—e-«—^e-«){sin(p+^i)

—p cos (29+jjj)— sin j^J] sin at, • (21)

where p=kI, p^^Ka, q= Kd.

In (21) under usual conditions, the second part is small compared with
the part which is factored by e"* ; if this latter factor be also neglected,

the expression is simply the conventional pitching moment obtained

from the hydrostatic pressure due to the wave elevation integrated over

the water-plane section of the ship. This form of model is not quite

suitable for the approximations on which the calculations have been

made, but there are no experimental results available for simple

symmetrical models of small beam.
From experiments, carried out at the National Physical Laboratory,

on a model of a single-screw cargo ship, Kent and Outland (1941) have
obtamed some very interesting results. We give the relevant data for

the ship : length 400 ft., beam 55 ft., draught 24 ft., and displacement

11,332 tons. The natural pitching and heaving periods are given as

6-2 and 7-42 sec. respectively. Measurements were made of pitch and
heave, of resistance and of other quantities, under various conditions in

waves of 175 ft., 350 ft., and 490 ft. In the shortest waves it is probable

that a considerable part of the increased resistance arises from the

reflexion of the waves by the ship. Applying an expression which I

gave recently (1940) for this resistance, Kent and Cutland show that it

accounts for rather more than half the measured resistance for a ship

moored in the waves. That expression gave a limiting value for a ship

of great draught held at rest, assuming total reflexion by the front

portion of the ship. It seems reasonable, therefore, to suppose that the

force arising from reflexion would be much smaller for a ship of usual

form floating on the water, and especially so for the large wave-lengths.

Moreover, in the short waves the pitch and heave are slight and are

irregular in period ; in the medium waves the periods are approximately

equal to the period of encoimter between ship and wave, but the amplitude

changes from a minimum to a maximum in regular cycles : in the long

waves the pitch and heave are approximately uniform. In the present
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calculations the amplitudes in (16) are those of the forced oscillations of
heave and pitch

;
hence we attempt only a comparison with the results

of Kent and Cutland for the 490 ft. wave-length, when presumably the
motions are purely forced vibrations. Another reason for limiting
comparison to waves of length greater than the ship is that the expressions
for the buoyancy and pitching moment are probably better approxima-
tions than for shorter waves. Without attempting any close approxima-
tion to the form of the ship, Me shall simply use the expressions (20) and
(21) with

a= UOft.
; 1= 60 ft. ; d= 20{t.;

6 = 27-5 ft.
;

A= 2-5ft.
; A= 27r/«= 490 ft., . . . (22)

these dimensions giving a ship of about the same displacement and
waves of 490 ft. in length and 5 ft. in height.
With these values (20) and (21) give

B= 345cos(7<; P=— 83880 sin wi, .... (23)

in tons, and ft. -tons respectively.

The numerical factors in (23) are the values of Bo and P„ in (16) The
amplitudes ?„ and 9, we shall take from the observed results, assuming
that these refer to forced vibrations in the period of encounter Theremammg factors are the phase differences, and these are more uncertain
It may be noted that the effect which is under discussion arises from the
damping and the phase lag produced thereby ; if there is no phase lag

Tno.^u
^?"°^0n the simple theory expressed in equations (11)and (12) the phase factor, sin ^ or sin ^', has its maximum value of unity

at resonance and diminishes on either side of this period, the diminution
being more rapid the less the damping. The importance of the phase
of the ships motion in relation to that of the waves from a practical
point of view IS well known, but there are not many precise measurements
suitable for the present purpose. The problem was attacked in an early
paper by Kent (1922), and the recent paper by Kent and Cutland (1941)
gives further detailed observations. They give a diagram showing
positions of wave crest and trough along the ship at maximum pitch
with the bow down, and from this one should be able to deduce the value
of B for use m (16). However, it must be remembered that the modelwas not a simple symmetrical form, with the axis of pitch at the centre
of the water-plane section

;
in. fact, the position of this axis probably

varied durmg the motion. It is also clear that the motion is not ade
quately covered by the theory of equations (11) and (12) For the
authors state: "In general, as the ship's pitching period was not
isochronous owing to the changing resistance to pitch, successive pitches
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showed a periodic movement of the wave crest position, backwards and
forwards along the hull." The diagram given in the paj)er shows the

mean positions. From this diagram, it seems that we may assume there

was no measureable phase lag for the ship moored, with zero speed, in

490 ft. waves. Hence, from (16), the corresponding mean force is

negligible, and this agrees with the observations. For the same wave-

length when the ship had a speed of 8 knots, a rough estimate of the

phase lag from the diagram is about 12-5°, and we take that value for

(6' in (16). As the free periods of heave and pitch are nearly equal, and
the damping probably of the same order, we take the same value for (8

in (16). From the measurements given in the paper for 5 ft. waves, we
have t,Q=2-\ ft., 0q = 1-6°. With these values in (16) we get the extra

resistance for the ship in tons ; expressing the result for the model,

16 ft. long, we obtain from (16) a mean resistance of 0-63 lb. The
measured value was 0-37 lb.

It is not worth while pursuing these tentative calculations further at

present, but at least it seems that one can obtain results of the right

order of magnitude ; m fact, the calculated results are generally too high

.

especially at the peak values under resonance conditions, but that might

have been anticipated. On the theoretical side, the various limitations

and assumptions have already been sufficiently indicated in the course

of the work. On the experimental side, there is a lack of suitable data

obtained under conditions sufficiently approximating to the simplifica-

tions which have to be made before any calcula.tions are possible.

6. In the present work, with the ship head-on to the waves, heaving

and pitching have been considered together ; for if the argument is valid

for one kind of displacement it should also apply to the other. Moreover,

the natural periods of heave and pitch are usually nearly equal and so

resonance effects for the forced vibrations overlap. Reference has been

made to Watanabe's work on the drifting force when rolling, that is,

when the ship is broadside-on to the waves ; in that work, as in Suyehiro's,

the effect of heaving was entirely neglected. The expression (16) given

here for the drifting force in heaving and pitching may also be used for

hea^ning and rolling when the waves are broadside on, with the quantities

in (16) having the appropriate values for those conditions. However,

the natural periods of heave and roll us\ially differ considerably, and

therefore the resonance effects are separated. The data for Suyehiro's

model are not sufficient for these calculations to be made, otherwise one

might compare the drifting forces due to heaving and rolling ; it would

be of interest if experiments could be devised to test whether these

separate effects are observable, and to have experiments made under

conditions suitable for comparison with theory.
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Summary.

The problem considered is the driiting force on a ship when head-on

to a regular train of waves. A satisfactory theory would have to include,

among other factors, the effect of reflexion of the waves by the surface

of the ship ; in the present note this is neglected in order to make

tentative calculations from another point of view which associates the

effect directly with the oscillations of the ship. A steady average

drifting force is obtained depending upon the phase differences between

the heaving and pitching motions and the i)eriodic forces and couples

due to the wave motion. An examination is made of experimental

results and, although available data are not suitable for detailed com-

parison, it appears that the calculations give driftuig forces of the right

order of magnitude.
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From the Philosophical Magazine, Ser. 7, vol. xxxiii. p.

September 1942.

The Damping of the Heaving and Pitching Motion of a Ship.

By T. H. Havelock, F.R.S.

1. In a recent paper (1940) I discussed the damping of the rolling of a

ship in still water due to the radiation of energy in the wave motion set

up by the rolling. The following note is a similar examination of heaving

and pitching oscillations ; an attempt is made to estimate the dissipation

of energy in ware motion and comparison is made with such experimental

results as are available.

The problem may be stated first in relation to heaving motion. Con-

sider a body of mass M floating freely in water, and suppose it is acted

on by a periodic force E cos pt and is making small vertical oscillations
;

let l be the vertical displacement upwards from the equilibrium position.

The equation of motion, for a frictionless liquid, is

M^=X-M5f+Ecos:P<, (1)

where X is the vertical resultant of the fluid pressures on the immersed

surface. For an exact solution we should have to determine the velocity

potential of the fluid motion so as to satisfy the boundary condition at

the moving surface of the solid and the condition of constant pressure

over the free surface of the liquid. Failing such a solution We proceed
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by approximations. One part of the force X-M^ is the additional

hydrostatic buoyancy, gpSi, upwards, assuming the solid to have vertical

sides near the water-line and S to be the area of the water plane section.

Suppose now that the motion of the body is a forced vibration of frequency

p and that the energy radiated is relatively small ; then, as in similar

problems, for instance the scattering of sound waves by a movable
obstacle, it is assumed that the rest of the resultant fluid pressure may
be expressed as the sum of two terms, one proportional to C and the other

to ^. The factor of the first term represents the so-called added mass,

while the second corresponds to the loss of energy by propagation of

waves outwards. In these circumstances, equation (1) is reduced to the

form

Wt+Nt+gpSC=S eoa pt, (2)

where M' is the total effective mass.

2. Various empirical formulae have been devised for the effective mass
of a ship for heaving motion, and for flexural vibrations. Reference may
be made in particular to Lewis (1929) for ship forms, and to Browne,
Moullin and Perkins (1930) for the added mass of prisms floating in

water. The basic assumption in these studies is to neglect the wave
disturbance and to suppose the fluid motion to be that due to a certain

solid moving in an infinite liquid, the sohd being made up of the immersed
part of the fioating body and its reflexion in the free surface of the

water. The experiments of Browne, Moullin and Perkins showed that

this leads to a reasonable value of the added mass, the calculated values

being rather higher than those deduced from the experiments.

It is the second term of equation (2), namely N^, with which the present
paper is specially concerned. Instead of calculating the fluid pressures,

an alternative method is to work out the mean rate of propagation of
energy outwards in the wave motion, and equating this to the mean
value of N^^ we obtain a value for N for the given frequency. This
procedure is permissible under the assumed conditions under which the
motion is a forced simple harmonic vibration and the radiated energy
is smaU. To obtain the corresponding logarithmic decrement for the
damped natural vibrations, these may be taken as approximately of
period 27t/ct, with

am'=gpS
(3)

Then the logarithmic decrement is given by ttN/ctM', with N having its

value for the frequency a. Theie is very little work, theoretical or
experimental, to which reference can be made. Browne, Moullin and
Perkins (1930) measured the damping for prisms vibrating in air and when
immersed in water ; they conclude " The damping added by the water
is neghgible compared with the damping due to the supports, a result

which might not have been expected." But in those experiments the
prisms were not floating freely and the frequency was of the order of
13 per second ; it can readily be estimated that the energy in the wave
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motion would then be very small. However, the experiments show that

damping by fluid friction and eddies was also negligible. Reference

may be made specially to work by Schuler (1936) with a vibrating prism

of rectangular section, in which direct measurement was made of the

amplitude of the waves. The logarithmic decrement was also measured,

and it was concluded from the dimensional form of the results that the

damping was due to wave motion, viscous and other damping being

negligible in comparison. Schuler gives no theoretical calculation of the

damping, and unfortunately the data necessary for making a comparison

with theory are not recorded, such as the effective mass and restoring

force and the free or forced nature of the vibrations.

Coming to the ship problem, as far as published work is concerned

there is practically no accurate information about the damping of

natural heaving. It is usually stated to be very large, any natural

vibrations dying out very quickly. The only numerical estimate appears

to be that given by Horn (1936) and said to be an average result derived

from a large number of models ; his estimate gives a logarithmic decre-

ment for natural heaving of about 1-45. This is very large, and would

mean that the amphtude is reduced by about one-half in each swing.

It is also stated that the decrement for natural pitching oscillations is

of the same order of magnitude.

3. We now examine the waves produced by m oscillating body, and

we adopt the method of replacing it by some suitable distribution of

alternating sources.

We consider first two-dimensional fluid motion, and we take the origin

in the free surface. Ox horizontal, and Oz vertically upwards. If

there is a source of strength m cos pt per unit length at a depth /, that

is at the point (0, —/), the velocity potential is given by

<h=-m^^' ]og!i +2me^^' f
^"'^"^"" ''"^ '''^

dK, ... (4)

?'a Jo K—K^-{-in

where p^^gx^, >•^2=a;^-f(^+/)^ r^^=x^+{z-ff ; and we take the

limiting value of the real part of the expression as fx is made zero.

This leads to a surface elevation given by

„ 2Timp ^t , . 2»i« . f°°/< cos /c/— K^sin /c/ T-^=—-^e-^»^eos(2><T'^o^) /smad -^—-^^ '-e^^dk, (5)

where the upper or lower signs are taken according as x is positive or

negative.

The first term in (5) gives the regular waves propagated outwards on

either side ; if A is the amphtude of these waves and E the mean rate

of propagation of energy outwards per unit length, we have, taking

account of both sides of the origin,

E=gppA^I2Ko=^'^m^Ppe'"-'^f (6)

By summation, or integration, we can obtain the corresponding expression

for any given distribution of periodic sources in the liquid.
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4. Consider a long prism, of rectangular cross-section and of breadth

26, immersed in water to a depth / and made to perform small vertical

oscillations a sin jot. For an approximate solution we suppose the

motion to be two-dimensional and to be that due to a uniform distribution

of sources, of density (paji-n) cos pt, over the immersed base of the prism

at its mean depth /. The regular waves on the side x>0 are given,

from (5), by
rb

l=^piajg)e-'"'n cos {pt-K^(x-h)}dh

= 2ae~^''^ Bin (Kjb) cos (pt—K^x) (7)

Hence, for the mean rate of radiation of energy per unit length of the

prism, we have

^={2gppa^JK,)e--^'''f Bm^ (K,h) (8)

If the wave-length 'Ittjk^ is large compared with the breadth of the prism,

we have the simpler forms

l,= 2K^abe-'^f (9)

^=2gppK^a^b'^e-^'^f (10)

In the experiments by Sehuler (1936) a rectangular prism was used

and the amplitude of the waves and other quantities measui'ed directly.

Sehuler obtained the expression (7) by an indirect energy method sug-

gested by Prandtl, and it was contrasted with the source theory of the

effect ; however, we have seen that it follows from assuming a uniform

distribution of sources over the base of the prism. The interesting point

is that the experimental results agree reasonably well with the expression

(7) for periods such that the wave-length 27t//Co is greater than the breadth

26 of the prism.

5. We now apply these results to the heaving of a ship in stiU water.

We may, as in similar cases, treat the motion as two-dimensional in the

first instance, an approximation which may be supported by the experi-

ments of Browne, Moulhn and Perkins. These authors also give an

approximate formula for the added mass of a ship of normal form in

vertical heaving motion ; this is given as 0-95p6^Z, where p is the density

of water, 26 the maximum beam and I the total length of the ship.

We take an example from recent work by Kent and Cutland (1941),

carried out on models at the National Physical Laboratory. The data

for the corresponding ship are ; length 400 ft., beam 55 ft., draught

24 ft., displacement 11,332 tons, natural heaving period 7-42 sec. From
the formula just given the added mass comes out as 8200 tons ; thus

the total effective mass M' in equation (2) is about 20,000 tons. It is

of interest to check this result in a different way. If 2mja is the period

when damping is neglected, we have the relation given in (3). The
change in period due to damping is relatively small, so we may use the

recorded period ; further, estimating the water plane area S as 17,600

sq. ft., we obtain from (3) a value for M' of about 20,000 tons.

495



e^O Prof. T. H. Haveiock on the Damping of the

Suppose now that the heaving motion is given by {=a sin at. The
wave-length for a period of 7-42 sec. is about five times the beam of the

ship. It is thus permissible to take a simple distribution, namely a

uniform line source, of strength m cos at per unit length, extending over

the length L of the ship at some suitable mean depth /. We take the

value of m to correspond to the rate of alteration in displaced volume

of the ship, which is S^ or Soa cos at. Hence we take

m=Saal^L (11)

We put this value of m in (6) and, using

^Nff2aa=EL, (12)

we obtain 'N={paS^IL)e-^f (13)

For the corresponding logarithmic decrement we have

S^J^^^Zffe-^'f" (14)
<tM' M'L ^ '

Putting in the values already given for this case and taking /=20 ft.

as a mean depth, (14) gives the value S=l-4. The agreement with

Horn's estimate is, of course, merely a coincidence. Clearly, this large

value of 8 goes beyond the assumption on which N has been calculated,

namely that the damping is small enough to allow approximately simple

harmonic waves to be estabMshed. Nevertheless the calculation is

sufficient to show that wave motion is quite adequate to account for the

large damping which has been observed in practice.

6. There does not seem to have been any experimental work on cases

of three-dimensional fluid motion. We shall examine the corresponding

theory, as it will aUow of more detailed calculation for other source dis-

tributions and also of application to pitching. Consider a point source

of alternating strength m cos pt at a depth / below the surface, that is,

with the source at the point (0, 0, —/). In this case the surface elevation

is given by

^ipm iptj
1 2ko (* r°° K sin kJ—k^ cos «/

^~
g \{r'+P)' - Jo Jo K^-\-K

-i77/Coe-'^^o<''('Co'-)}, (15)

where r'^=x^-\-y^, p^=gKQ, Ho'2'=Jo— iYq, and the real part of the

expression is to be taken. There is a corresponding expression for the

velocity potential. The first two terms in (15) represent local standing

oscillations of the surface, and the third term the symmetrical circular

waves propagated outwards. For the present purpose we only require

the wave motion at a great distance, and the first term in the asymptotic

expansion of the Bessel functions is sufficient ; hence, for thi6 part of

the velocity potential and surface elevation, we obtain

^~27TKom{~ye-'^f+''"sin(pt+^^-Kor\ . . . (16)
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The rate of transmission of energy outwards is obtained from the rate

of work of the fluid pressure over the surface of a vertical cylinder of

radius r, that is, from
'•0 d6 d(h

4i'-'-'^
(i«)

Using (1(3), we obtain for E, the mean rate of transmission of energy

outwards,

E= 47rVo25«i^e-2''»-'^ (19)

This result may be generalized to cover any given distribution over a

surface S in the liquid. Let m cos pt be the source strength per unit area

at a point (x'
,
y' , z') on this surface ; we have to substitute for r in (15)

the quantity

[r^—2rx' cosd—2ry' sinO-^x'^+y'^f, . . . (20)

and then integrate over the distribution.

It is readily seen that we only need the approximation for r large,

namely

^^YS.pVeXoJp sinL«+^-Kor) +Q ooXpt^'^^-^^'^, (21)

where P+iQ- |'[m(;i'', i/', c')e''»^'+^'''''<^''=°^»+^'''"'«>(ZS. . . . (22)

From these expressions, we obtain for the mean rate of outflow of

energy

E= 277p/co^ {Y'+q^)de (23)
J

7. Consider a circular cylinder, of radius b, immersed with its axis

vertical to a depth / and making forced vertical oscillations given by
a sin pt. As in the two-dimensional problem, if 2TTglp^ is larger than the

diameter of the cyhnder, we may assume the wave motion to be due to

an alternating source m cos^3< at a depth /, with iiTm^Trb'^pa. Hence,

from (19). we have

E=^6%Ve-^'''^'^ (24)

Assuming that this may be used to evaluate N for the natural damped
vibrations when the cyhnder is floating freely, we obtain

N=^6Ve-2"'/to (25)
2g

Froui the usual hydrostatic theory, (j"=glf. Without attempting to

evaluate the effective mass in this case, we writeM'= ( 1 -|-^)M= ( 1 -{-fi)TTpb^f.

Hence, with these values, the logarithmic decrement is

- 77N TT-'b-'e--'- .

^^^'=(-14^^ (2^)

For instance, with /= 46 and neglecting /x we should have §= 0-04.
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S. We may now attempt to apply t.hese results to the pitching motion

of a ship. For a long narrow ship the appropriate source distribution

could be taken over the longitudinal vertical section of the ship as in

the theory of wave resistance for such forms. On the other hand, the

keel of the ship may play a large part in wave production in pitching.

As a suitable example for calculation, we choose a rectangular form with

vertical sides, of length 21 and beam 2h. and floating immersed to a

depth / ; such a form will clearly exaggerate the wave-making effects

of bow and stern. We suppose the form to have an angular pitching

oscillation given by ^=^0 sin pt. We neglect the effect of the vertical

ends and consider only the flat base. With the present procedure, we

take the source strength at each point such that 4^m cos pt is equal to

the normal velocity, that is, equal to x'6 in the notation of (22). Hence,

from (22), we have in this case

p_j_iQ=^(" dx' i
;^'e-W+iKo(r!-'cos6 + !/'sin9)^^'

(27)
47r .) _i J _i,

ipdn sin (Kn b sin 9) ^ . , , „, , „ , , /im K„f=
o

° ~- Ism {kJ, cos 9)—kqI cos d cos {kJ cos d)}e~'"'^.

ttkq sm a COS" u

.... (28)

From (23) this gives

IT

j,_ 8py'y g-2K„/ f' sm-^(Ko6smg)
fsin(;,^/cos^)-/<o^cos0cos(/co; cos0)P(Z^.

TT/fp* Jo Sin- t/ cos*

.... (29)

For the pitching of a ship, as for heaving, K^b is a moderately small

quantity
; (29) then reduces to a simpler form, which might have been

derived directly by assuming a line distribution of sources and sinks.

We have then

E= ^it!^ e-^^'"'f r [sin {kJ cos e)-KJ cos d cos [kJ, cos d)Y-^ •

7TK„'* Jo COS''

.... (30)

For pitching oscillations of a ship, the usual equation for natural

pitching in still water is

ie^m-^gpY'mB=0, (31)

where I is the total effective moment of inertia of the ship, V the displaced

volume, and m the longitudinal metacentric height. As before, we

estimate N by equating the mean value of W^ to the value of E given by

(30), with p equal to the natural frequency a. There do not seem to be

any direct determinations or calculations for the added moment of

inertia. We shall therefore derive the effective value of I from the

relation

an^gpVjn (»2)
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with 27r/a fclie natural period of pitching wlien damping js neglected.

With this relation, the logarithmic decrement is given by

^ ttN tto-N

(33)
ctI gpVm

'

Collecting these results, and expressing the integrand in (30) in terms
of Bessel functions, we find

To obtain a numerical result we take a case from an early paper by
Kent (1922). The relevant data for the ship are ; length 400 ft., beam
52 ft., draught 22 ft., displacement 10,000 tons, longitudinal metacentric

height 458 ft., natural pitching period 6-11 sec.

In (34) we take the distribution of the same length as the ship, that is

Z=200 ft. ; we assume a mean beam of 40 ft., and we take /=20 ft.

These values suffice for a rough approximation. The integral in (34)

was computed from tables of Bessel functions ; and we obtain finally

the result S=l-6. The same general remarks apply to the limitations

of this calculation as in the case of heaving motion ; however, it is

interesting that the decrement § comes out at about the same value in

the two cases.

9. Summary.—Using expressions for the wave motion due to alternating

sources in a liquid, application is made to the heaving and pitching

motions of a ship, and, in particular, to estimating the damping from the

rate of propagation of energy outwards in the wave motion. This

method of approximation assumes the damping to be small, and the results

obtained are too large for much importance to be attributed to the

actual numerical values. Nevertheless, it may be concluded that the

wave motion gives rise to large damping for both heaving and pitching,

and that the decrements are probably comparable with those obtained

experimentally.
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THE APPROXIMATE CALCULATION OF WAVE
RESISTANCE AT HIGH SPEED

By T. H. Havelock, F.R.S.

Synopsis.—The main purpose of the paper is to explore the possibility of
applying the present theory of wave resistance to models whose lines are not
given by mathematical equations. A brief survey of the wave theory is given and
this leads to a sub-division of the ship and the corresponding source distribu-

tion ; the determination of the latter is based on sectional areas and local pris-

matic coefficients. For low speeds a large number of divisions is necessary for
reasonable approximation and the calculations become too laborious, but results

have been obtainedfor speeds higher than a Froude number \/{v/gL) of about 0-4.

These approximations are applied first to experimental models with mathematical
lines, and the results compared with those calculated from the usual integrals

and with the measured resistances. Finally the method is applied to two models
with non-mathematical lines, the necessary data being obtained from the plans
and the results compared with measured resistances.

Introduction

1. TN recent years the comparison of calculated and measured wave
* resistance has been the subject of much research and considerable

success has been achieved ; but the work has necessarily been limited

to relatively simple forms of model whose lines can be expressed by
mathematical equations. The chief desideratum at the present stage would
seem to be an extension of this comparison to a wider range of types and
to more normal forms of model ; this would, no doubt, disclose defic-

iencies in the present theory of wave resistance but would provide a
basis for further development and improvement. These considerations

suggest an examination of the application of the present theory to models
with non-mathematical lines, with a view to seeing whether the diffi-

culties of the calculations can be avoided by approximations giving

reasonable accuracy and consistency, even if only over some limited

range of speed. The present paper is the record of an attempt to make
such calculations ; whether the particular method prove useful or not,

it is hoped that the general statement will stimulate interest in the problem
and lead to further investigation, both experimental and mathematical.

From one point of view the problem is quite simple. If we assume the

well-known integral expressions for wave resistance (4, 6), the matter is one
of approximate integration over the ship's surface. The main difficulty arises

from the double computation ; intermediate integrals have to be evaluated
not only for a sufficient number of stations on the ship but also for a sufficient

number of values of a parameter so that the final resistance integral may be
computed. The labour involved has prevented any direct calculation on these

lines. It is proposed here to examine the problem differently by returning to

first principles of the theory of wave resistance, beginning with the simplest

possible expressions and trying to find how far it is necessary to go before we
get results of sufficient accuracy.

2. We consider a ship moving steadily through the water, and we neglect

meantime any effects due to fluid friction. The motion of the water must
satisfy the laws of fluid dynamics, together with the necessary conditions at the

surface of the ship and at the free surface of the water. Although the problem
can be stated thus precisely, and formulated in mathematical terms, it has
not been possible to obtain an exact solution for even the simplest form of
floating body ; we have therefore to approximate to a solution by successive
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Steps. The first step is to neglect the wave motion and consider the fluid

motion produced by the ship assuming the water surface to remain plane ;

the next step is to obtain the wave disturbance produced by this fluid motion
while ignoring the presence of the ship. A third step would then be to evaluate

the influence of the ship on the waves so calculated, and so on by successive

steps. Meantime the theory has not in fact proceeded further than the first

two steps.

Equivalent Source Distribution

3. The first step in the process may be expressed in another form. Consider

a double ship formed of the immersed volume of the ship and its inverted

reflection in the water plane, and suppose this complete solid entirely immersed
in water and moving forward with uniform velocity v. Over the fore part of

the ship the water is moving forwards and outwards, and over the after part

it flows in to follow the motion of the ship. This fluid motion can be repre-

sented completely by a definite continuous distribution of sources and sinks

over the surface of the ship at each instant and moving with the ship. Let a

be the source strength per unit area at any point of the ship's surface, a being

positive over the fore part and negative over the after part for a normal form.

(The notation used in this paper is that if m is the strength of a point source,

4nm is the volume of liquid flowing out in unit time). It is clear that, since

the total \olume of water is unaltered, the integrated value of a over the whole
surface is zero, or the sum of the positive sources is equal to the sum of the

negative sources. On the other hand, if x is the distance of any point from
some transverse reference plane, say the mid-ship section, the integrated value

of ax taken over the whole surface is a definite amount and is the moment M of

the distribution. A simple expression for M can be derived from general

principles without knowing the actual distribution. It can be shown that

M={l + k)Vvl4n (1)

In this expression V is the volume of the body, and k is the inertia coefficient

for longitudinal motion ; that is, gpk V is the added mass due to the motion
of the water.

If D„ is the component of the velocity v normally outwards at any point

of the ship's surface, it is convenient to write the corresponding source distri-

bution in the form a = (1 + A:^)u„/4tc. In general, k^ varies from point to

point, but for an ellipsoid it is constant and equal to k. The added mass for

longitudinal motion is not very important in ship problems and there are few
estimates of its value. It is of interest to note that W. Froude investigated

this effect in his well-known experiments on H.M.S. Greyhound. He made
two sets of experiments, one with retarded motion and the other with accelera-

tion ; the former gave a coefficient of about 20% and the latter of about 7 %,
and on experimental grounds Froude attached more value to the larger esti-

mate. Whatever may be the interpretation of experimental results, we are

concerned here with the theoretical coefficient for non-viscous fluid motion
;

and there is reason to regard the lower value as more appropriate for normal
ship forms. Although this correction should be noted for future examination,
we may meantime regard it as relatively small, at least for the so-called narrow
models to which the wave theory has so far been limited. The usual approxi-

mation amounts, in fact, to neglecting the inertia coeflficient k for longitudinal

motion ; and, in what follows, we take the source strength per unit area to

be given by a = v„I4ti. We can easily verify the total moment M of the distri-

bution in this case. Imagine a horizontal cylinder of small cross section cutting

the midship section in an area dS, and cutting out an area dS^ at a point Pj
on the fore part of the ship's surface and an area dS^ at a point P^ on the after

part. Then we have

(J
I dSi = v„ dSiJAiz = vdSjAn /-,x

(Ja dS^ = - vdSI4r: ' ^ '

Hence

M = jvP^p^dSjAn = vVI4n (3)
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the integral being taken over the midship section, and V being the immersed
volume.

To sum up, with this approximation, the source distribution on the ship's

surface is specified as follows : the total source strength on any portion of

the surface is given by v/An times the area of the projection of that portion

on to the midship section, with an obvious rule for determining the sign of the

projected area.

Formula for Wave Resistance

4. We give now expressions which will be used for the calculation of wave
resistance ; for general formulae for any distribution of sources reference

may be made to Roy. Soc. Proc. A. 138, p. 339 (1932). We take the origin O
on the centre line of the form and in the water plane. Ox in the direction of

motion, Oz vertically downwards, and Oy horizontally at right angles to the

other two axes. We shall be concerned here with sources only in the longi-

tudinal zx-plane. If we have any distribution of which a typical source is

of strength /«r at the point (xr, o, z,), the corresponding wave resistance is

given by

foo
^ (,F + y^) cosh^ udu (4)

where

/ = L»j,e- *Zr cosh^a sjn (;txr cosh u)

J = ^rrire- ^^r cosh^u cos (kx, cosh «)

where k = g/v^ and the summation extends over the given system of sources.

If we make the assumptions for a narrow ship, outlined in the previous sections

from a somewhat different point of view, it can easily be verified that these

expressions lead to the usual integrals for the wave resistance. We have the

same form for i? with

1=-^ \\ {dy/dx) sin {hx cosh u)e~^' cosh 2 u dQ^d^

c rr
... (6)

J=-^ Jj (dy/dx) cos (kx cosh «)e"''2 cosh 2 u ^xdz

The integrals are taken over the longitudinal section of the ship, and (py/<^x)

is taken from the equation of the surface of the ship.

First Approximations

5. After this preliminary survey we proceed to the immediate problem,

namely dividing the ship into a finite number of sub-divisions. Although of

no practical value, we begin with the most extreme simplification to illustrate

the point of view of the present study. We have seen that the total moment
of the source distribution is Vvj4-k where V is the immersed volume and v the

speed. We now suppose this moment to be concentrated at a point as a source

and sink doublet with its axis in the direction of motion. The longitudinal

location of this doublet is immaterial so far as the resistance formula is con-

cerned and we may suppose it to be in the midship section. For its depth

we use here, and throughout the work, the principle that for a first approxi-

mation we replace any system of sources by a source of the total strength placed

at the centroid of the system. Since the source strength on any element of

the ship's surface is proportional to the projection of that element on the mid-

ship section, it follows at once that the depth of the centroid of the distribution

is the depth /; of the centroid of the midship section. Thus the fiffst approxi-

mation is a horizontal doublet of moment Vv/4n at a depth h. Putting these

values into the expression for the wave resistance of a doublet, which may
be deduced from (4), (5), we obtain

R = (g-p/7r) k' K^l^ e - ^'^'^ cosh^u cosh* udu (7)
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This integral can be expressed in terms of Bessel functions, and its value obtained

readily from tables of these functions.

It is clear that this extreme simplification can only be an ideal limit for very

high speeds, and it is no use comparing it with experimental results. It is,

however, of interest as the limit towards v^hich the usual complete theoretical

expressions should tend. Consider, for instance, the simplest type of experi-

mental model with parabolic lines, the surface being specified by

J'
= 6 (1 - z-jd"-) (1 - x"-jP) (8)

Calculations, meantime unpublished, from the complete integrals (4) and (6)

have been made recently for very high speeds by Mr. W. C. S. Wigley, who

has placed his results at my disposal. Taking the Froude number/= v/yigL),

the highest value for which calculations were made was/= 1-77. With length

= L = 2/ = 16 ft., beam = 2b = 1-5 ft., draught = d= 1 ft., at this value

of/ the complete formula gives a wave resistance of 31 -8 lb. Calculating from

(7) with K= lOJ cub. ft., h = f ft., we obtain a resistance of about"40 lb. The

comparison is not so far out as might have been anticipated, and to that extent

it may be taken as confirming the argument by which the simple formula was

obtained.

6. The next simplest dissection of the ship is to divide it into two by the

midship section. We consider the fore and aft parts separately, replacing

each part by a single source at the centroid of the distribution in each case.

For the positive sources on the fore part of the ship we have seen that ifM is

the area, of the midship section the total source strength is Mv/4r.. From the

argument in the previous sections it is readily seen that the moment of the

distribution with reference to the midship section is Ki vj4t., where V\ is the

volume of the fore part ; hence the centroid is at a distance V^'M, orpJi, ahead

of the midship section, where /i is the length of the fore part and Pi its prismatic

coefficient. Similarly the controid of the negative sources on the after part

is at a distance P2/2 astern of the midship section, where /, is the length of the

after part and p^ its prismatic coefficient. Thus we have a pair of sources,

positive and negative, each of numerical strength Afi'/4-, at the depth h of the

centroid of the midship section, and at a distance pL apart, where L is the

length of the ship and p its prismatic coefficient. Applying the formute (4),

(5) to this combination, we obtain for the wave resistance

R = (4gp/Tt) kM-\'^ e
" ^kh-cosh'u ^^^2 (i ^^^ cosh 11) cosh=tt du (9)

This is an interesting expression from a theoretical point of view, as it brings

in factors which are admittedly of the first importance in wave resistance : the

area of the midship section and the depth of its centroid, or roughly the depth

of the centre of buoyancy of the ship, the length of the form and its prismatic

coefficient. But it will clearly exaggerate, in general, the interference between

bow and stern systems ; and it is too simplified for practical purposes, except

possibly for special types of model over a limited range of speed.

General Siib-di\ision of the Ship

1. The total moment of the ship is distributed in a continuous source

distribution over the surface of the ship : distributed in length, in depth, and

in beam. The last of these is neglected in the usual theory and we leave it on

one side meantime, noting the possibility of including it in further developments.

Of the other two, the distribution in length is specially important. We now
divide the ship by taking transverse sections at any required number of stations

;

for simplicity at first we consider complete sections, leaving subdivision in

depth till later. Let ^i, 5, be the areas of any two transverse sections, say

in the fore part of the ship with S, > S^. The total source strength on the

ship's surface between these stations is

(52 - 5i) vlAi^ ..." (10)

The ship being symmetrical with respect to the vertical longitudinal section,

the centroid of the distribution lies on this median plane. Its depth is the
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depth of the centroid of the area between the corresponding traces of the sec-

tions on the body plan of the ship. The longitudinal location of the centroid
may be specified by a kind of local prismatic coefficient for the increase in

volume in relation to the increase in cross-sectional area. It is readily seen,

from the argument in the previous sections, that if x is the distance of the
centroid ahead of the station S2, Xi^ the distance between the stations and K12
the volume between them, we have

x=(V,,-SrX,MS2-S{) (11)

The same construction holds if we take horizontal sections in addition, and
subdivide in depth as well as in length. We replace each subdivision so formed
by a single source at a certain point ; the strength of the source and its location

are easily derived from the usual data for the ship, for example the curves of
sectional areas and volumes, the body plan and principal dimensions. We may
exhibit this information in the form of a diagram representing the longitudinal

section of the ship divided into compartments ; in each compartment is placed

a number for the strength of the source at a given point in that compartment.
The diagram gives quantitative information about the wave-making quality

of the ship, and may be useful even if we do not carry out the subsequent calcu-

lation for the wave resistance. It may be noted that we have tacitly assumed
a normal form of ship, with the sources all positive on the fore part and all

negative on the after part. For a bulbous bow, for instance, we should have
a superposed source and sink combination which could be calculated by the

same procedure. Of course, if we pursue this process far enough to arrive

at very small subdivisions, we are back at the original problem of approximate
evaluation of the complete theoretical integrals ; in particular, the precise

location of the elementary source within its compartment would lose signi-

ficance. It remains to be seen whether, with the particular method described

above, a relatively sm.all number of subdivisions will give any accuracy in calcu-

lation. It is obvious in advance that high speeds will give conditions most
suitable for comparison ; roughly speaking, the deciding factor is the relation

between the distance between stations and the predominant wave length, and as

we come down to lower speeds it will be necessary to increase the number
of stations.

Comparison with Experimental Models

8. Before applying the method to models with non-mathematical lines, we
test it by comparison with experimental models of simple form. We take

first the parabolic form, the equation of whose surface has been given in (8).

Extensive calculations have been made for this form from the usual complete
integrals and tables of the various integrals have been given by Wigley in a
recent paper.* We shall take, at first, complete transverse sections at

.V = 0, ± -V/, ± il. The sections are all similar and their centroids, and there-

fore those of their differences, are all at the same depth ft/. The sectional area

is given by 5" = M (\ — x-jl-). Using the formulae (10) and (11), we obtain

sources of strengths, omitting the common factor dM/4tu,

15 7 .;

at X = i/,m 11/ . .' (12)

respectively. The model being symmetrical fore and aft, and neglecting vis-

cosity, there are corresponding negative sources at similar negative values of x.

Referring to (4) and (5), the cosine terms cancel out, and we are left with

R = (.gplTi)kM^\'^ r- cosh- It du, (13)

/ = 2e
-ikdco%h.h,{.2^

gj^ (.333 j-icosh u)

+ -3125 sin (-633 kl cosh u) + -4375 sin (-881 kl cosh u)) . . (14)

"Calculated and Measured Wave Resistance of a Series of Forms defined Algebraically, the Prismatic Coeffici-

ent and Angle of Entrance being Varied independently," by W. G. S. Wiglev, M.A. I.N.A. Vol. 84, p. 52,

1942.
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Calculations have been made for the standard model with length = 16 ft.,

beam, = 1-5 ft., draught = 1 ft. We note that k = gjv'^ = Xjf^L, where /is
Froude's number. The integral was evaluated by direct quadrature, and
no attempt was made to attain any high degree of accuracy in the numerical
values as the work is regarded mainly as an exploration of possibilities ; if

necessary, more systematic methods of computation could be devised, but
meantime it is hoped there are no errors serious enough to invalidate the general

deductions.

For a given value of/, the sines in (14) were calculated for values of u in-

creasing by 0-2, or in some cases by OT ; it was not found necessary to go beyond
tt = 4, because of the decrease in the exponential factor. The integrand in (13)

was then calculated for these values and graphed as a function of u, so that

additional values could be inserted where needed ; finally the value of the
integral was obtained by the usual rules for the area under the graph. In
Table 1, the wave resistance in lb. calculated in this way from (13).and (14) is

denoted by Ra ; the corresponding values Re have been obtained from the

tables given by Wigley, using the complete theoretical integrals and omitting
any correction for viscosity.
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Model 1,970 B. This is specified by

fl2 = -4375 ; a, = - -4375

2/ = 1.6 ft. ; 2& = 1-5 ft. ; rf = 1 ft.

For comparison with the previous case we take the same subdivision : no
horizontal section, and transverse sections at x = o, ± ^l, ± f/. The approxi-

mate source distribution could be shown on a diagram of the longitudinal

section of the model ; it is given here in Table 2, with the divisions not drawn
to scale.

TABLE 2

- -485
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The sources are at depth -gd, and the longitudinal positions are x/l = ± -327,

± "627, ± -869. Making calculations with this plan it was found that the
values at the lower speeds tended to be too large. This is probably due to

the large source strength in the middle compartments compared with the
previous cases, and possibly to the shallower draught. It was decided to

take additional transverse sections so as to divide each middle compartment
into two of equal strength ; this can be calculated from the general formula:

(10) and (11). Thus the scheme finally adopted is - -314, - -342, - -172,
— -172, -172, -172, -342, -314, with the longitudinal positions given by
xll= ± -111, ± -418, ± -627, ± -869. The depth is the same as before.

The consequence is that we have now four sine terms to evaluate. The results

are shown in Fig. 1, the curves being reproduced from Wigley's paper and
the values from the present approximation denoted by crosses.

TABLE 5

- -314
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The midship section area is 0-4306 sq. ft., so the source strengths are the

numbers in Table 4 multiplied by 4306i'/47i:, with v in ft./sec. For the depths of

the sources, those in the upper row range between -094 ft. and 1 -43 ft., while in

the lower row they range from -3 ft. to -32 ft. Instead of using all these depths,

giving separate exponential factors for the terms in the formulae, we shall use

a mean depth for each row. It is obvious from the construction that the mean
depth in each case is the depth of the centroid of the corresponding half of the

midship section ; these depths are -107 ft. and -302 ft. respectively. For the

horizontal positions of the sources we carry out the calculations required

by (11) ; with x measured forward from the midship section, we obtain, with

X in ft.,

X (upper) : - 6-218, - 4-869, - 2-806, 2-782, 4-804, 6-157

X (lower) : - 5-16, - 2-635, 2-778, 5-586.

Since the model is not symmetrical fore and aft, we have to consider both

sine and cosine series in (5). The expressions for / and / can now be written

down ; each of them contains ten terms, but we simplify them further for

approximate computation. We group the terms in pairs for corresponding com-
partments fore and aft of the midship section. For instance, in the upper

row we have the pairs.

-183 sin (2-782 q) + -110 sin (2-806 q) in /,

and
-183 cos (2-782 q) - -110 cos (2-806 q) in /,

where we have written q for (g/v-) cosh u. We replace these by -293 sin (2-794 q)

and -073 cos (2-794 q) respectively, the difference so made being unimportant.

Making a similar change for all the pairs of terms, we find that the cosine

terms are small compared with the sine terms ; further, their contributions to

the resistance integral are proportional to their squares, and we propose to

neglect the cosine terms. It has, however, been verified by approximate calcu-

lation at one or two speeds that the cosine terms would not add more than

about one per cent, to the resistance. Finally, we are left with

I=e~ '^^''P
{ -293 sin (2-794 q) + -299 sin (4-83 q)

+ -624 sin (6-187?)}

+ e~ '^°-P {-271 sin (2-706 q) + -513 sin (5-373 q))
(1^)

where p = (g/v^) cosh^ u, q = (g/v^) cosh u.

With (16) and (4), the wave resistance has been calculated for six speeds

ranging from/= -352 to f = -749. The results are shown in the dotted curve

of Fig. 4 as values of R/b-v-, where 2b = beam. The experimental curve has

been obtained in the usual way, the residuary resistance being the actual measured
resistance less the skin friction calculated from the wetted surface at rest and
the appropriate Froude coefficient. The difference bet->veen experimental and
calculated values is much the same as for the previous cases. The falling off in

calculated value at very high speeds is rather more than usual ; this may be due
in part to the approximation, but most of it could be accounted for by the

effect of sinkage and trim.

Model B. The body plan and other data are shown in Fig. 3. This model
has the same displacement, length and beam as Model A, but has greater

draught.

With the same sections as before, the corresponding source distribution

is shown in Table 7.

10

TABLE 7

5
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The midship section are is 0-4671 sq. ft., and the depths of the centroids

of the upper and lower portions are 0-113 ft. and 0-334 ft. respectively. For the

horizontal distances, in ft. we obtain

X (upper) : - 6-11, - 4-89, - 3-09, 2-71, 4-763, 6-11

X (lower) : - 4-6, - 3-53, 2-42, 5-355

Comparing with the scheme for Model A, we see that there is a greater

degree of dissymmetry between the positive and negative distributions ; this

makes the calculations more troublesome, as we cannot neglect the cosine
terms altogether. Grouping the terms in pairs as before, we neglect the cosine

terms for the lower row of sources as unimportant, and we obtain

/= e-"l'3/'{ -314 sin (2-9^)+ -38 sin (4-826 ?) + -515 sin (6-11 q)]

+ e~ '^^'^P
I
-4 sin (2-975 q) + -391 sin (4-978 q)],

J = g- -1137) |.jg4 j,os (2-9 q) - -027 cos (4-826 q)
- -137 cos (6-11 q)) (17)

The resistances have been calculated from (17) and (4) ; it was found that

in this case the cosine terms add about six per cent, to the final values. The
calculated and experimental curves are shown in Fig. 4 ; the calculated values

are in general rather higher than might have been anticipated. For both these

models, the calculated values at the lower speeds could probably be improved
by a more suitable subdivision and more detailed computation.

General Remarks

II. A few notes may be added on matters left over for further investigation.

Beam. In addition to subdivision in length and depth, we might also take
longitudinal sections ; for instance, suppose we take a section through the

median vertical plane. Then instead of a distribution of sources in one plane,

we have a space distribution which could be specified and located by the

same methods ; and expressions for the wave resistance could be obtained from
the general formulae. The effect might be examined theoretically in some simple
case ; but it is only likely to be of importance at low speeds where several

other factors also affect the results.

Viscous Effects. One effect of viscosity is that the frictional belt round
the ship makes the run and stern less effective in wave-making. This can be
represented, somewhat empirically, by a reduction factor for the after part of the
ship. This reduction factor, if obtained from comparison between calculated

and measured resistances, will include othei" effects of viscosity than that just

mentioned ; in fact, it will also probably include in some cases effects for

non-viscous -flow which have been left out of account meantime—for instance,

what might be called a screening effect of the bow for models with broad beam.
However that may be, any empirical factor could be used in the present scheme
by making the necessary reduction in the numerical magnitudes of the negative

sources for the after part ; this would mean including the cosine series in the
formulcB ; otherwise the calculations would be the same. At sufficiently

low speeds, if we assume that—for one reason or another—the stem contri-

butes little to the wave-making, then the same number of sections as were
necessary for the whole length of the ship might, if concentrated over the effective

length of the bow, give a sufficiently fine subdivision for approximate calculation.

Location of Sections. Probably the best method of locating the transverse

sections would be one which was to some extent related to the type of model
;

there are some indications to that effect in the present work. For convenience
in a first survey the sections have been taken at fixed stations, both th^ strengths

of the sources and their positions varying from model to model. Another
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plan would be to take sections giving equal diflferences of sectional area, and
this would lighten the numerical work to some extent. On the other hand, it

would be possible to locate the sections so that the sources were for the most part

in fixed positions relative to the length of the model, and such a scheme would
have the great advantage of allowing of tabulation of the sine and cosine terms

in advance. Obviously any scheme which permits tabulation and systematic

procedure in the computation would not only give greater accuracy in the

calculations but would make it possible to extend their range of application.

As a general conclusion from the present work it may be said that, although

the method needs further testing and systematizing, it indicates a possibility

of calculating wave resistance from the plans of the model, at least for high

speeds ; and that the results so obtained would agree fairly well with those

that could be calculated from the usual integrals if the lines of the model were
given by mathematical equations. If this should prove to be the case, it would
be possible to have a greater variety of form in experimental models, so pro-

viding more material for comparison between theory and experiment and
giving ultimately a better basis for application of the calculations ia practice.

Fig. 1

—

see next page.

Fig. 1—Model A. 13-57' x 1-28' X 0-434'.

Displt. 259-4 lb. M.S. coeflft. 0-775. Prism, coeffl. 0711.

Pig_ 3—Model B. 13-57' X 1-28' x 0-455'.

Displt. 259-4 lb. M.S. coeflft. 0-802. Prism, coeflft. 0-656.
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NOTES ON THE THEORY OF HEAVING AND PITCHING

By Professor T. H. Havelock, M.A., D.Sc, F.R.S., Honorary Member.*

Summary

The main points in the paper are (i) a calculation of the
damping of heaving and pitching due to the waves produced
by the motion of the ship, (ii) an examination of the extra
resistance caused by the reflection of a regular train of waves
by the ship's surface, (iii) a suggested theory which gives an
extra resistance more closely associated with the heaving and
pitching motions.

No attempt is made to formulate a complete theory; the

work is based, in the main, on the usual approximate first-

order equations of motion and the hydrodynamical theory is

that of potential fluid motion under gravity and neglecting
viscosity. Details of mathematical analysis are given in an
appendix, and the paper gives an account of the work together

with numerical calculations and comparison with experi-

mental data.

Oscillations in Smooth Water

The usual approximate equations for heaving and
pitching in smooth water are

Mt+N, C+gpS^ = . . . (1)

I ^' + N2 ^ + W w = . . . (2)

In these equations ^ = upward displacement of the

centre of gravity G, 6 = angle of pitch about the trans-

verse axis through G measured positive with bows up,

S = area of water plane section, W = g p V = displace-

ment in the equilibrium position, m = longitudinal

metacentric height. Further, it is assumed that the ship

has a simple symmetrical form so that there is no
coupling between heaving and pitching so far as first-

order equations are concerned. Ni and N2 are coef-

ficients which are considered later.

Effective Mass and Moment of Inertia.—It has been
observed that the periods of heave and pitch in still

water are approximately equal, and it is easily seen
how this arises. Suppose at first that we neglect the

damping terms in (1) and (2), and also ignore the effect

of the inertia of the surrounding water. Then (1) gives

for the period of heaving 2 77 \fd/g), where d = V/s =

mean uniform draught. Turning to equation (2), the

longitudinal metacentric height is of the order of the

length of the ship and a usual first approximation is

to take

w = GM = BM = S ytVV = k^d
where k is the radius of gyration of the water plane
section about the transverse axis.

If K is the radius of gyration of the ship about the
transverse axis for pitching it can be seen that, at least

for uniform loading, K^ differs from k^ by a quantity
of the order of the square of the ratio of draught to

* Professor of Mathematics, King's College, Newcastle-on-Tyne.

length; thus, except for special types of form or mass
distribution, we may take K^ as approximately equal
to k^. Hence in (2), we have I = W k^g and in = k^d,
and the result is the same approximate period 2 n V(dlg)
for pitching as for heaving.

For mean uniform draught ranging from 20 ft. to

30 ft., this means a period of from 5 sec. to 6 sec. The
natural periods for usual types of cargo ship generally

range from 6 sec. to 7 sec. The difference arises from
two causes, damping and the inertia of the water. Even
with large damping the effect on the period is com-
paratively small, and practically all the difference is due
to the inertia of the surrounding water.

The calculation of added mass for heaving usually

proceeds on the assumption that we may replace the

immersed volume of the ship by a double ship wholly

immersed in an infinite liquid; this underlies the work of
F. M. Lewis (R. 1 f) and of Browne, MouUin and Perkins

(R.2). There do not seem to be any similar calculations for

rotation, or any with direct application to ship forms.

One remark may be made about such calculations for

a floating body. A complete solution, satisfying the

condition of constant pressure at the free surface of the

water, would include wave motion of the water. Neg-
lecting gravity there are two alternative assumptions for

the surface condition, that it is either a rigid plane surface

or an open surface of constant pressure. We might take

the condition at the free surface to be zero normal

velocity or zero tangential velocity. The calculations on
added mass have, taken the latter condition. It is of

interest to note that the former condition, of a rigid

plane boundary, has been used by Brard (R.3) in work on
the corresponding inertia effects in the rolling of a ship.

In my view, the choice of appropriate boundary con-

dition depends not only on the mode of motion of the

ship, but also upon whether its oscillations are of short

period or of long period. However that may be, the

inertia coefficients in the present problems are generally

estimated by indirect methods, or in effect by comparing

observed periods with those calculated without allowing

for the inertia of the water. The only difficulty that

arises is that often the stated periods have not been

directly observed, but have themselves been deduced

indirectly. There is, however, general agreement that

a normal value for the added mass for heaving would be

from 80 to 100 per cent of the displacement, with even

more for broad, shallow forms; while for pitching the

added moment of inertia might be normally 40 to 50 per

cent of the moment of inertia of the ship—reference may

t References at end of paper.
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be made, for instance, to G. S. Baker (R.4). We may
examine this in a few cases from the point of view of

the same approximate basic period 2 -n V{d/g) for both

heaving and pitching.

With data from Kent andCutland(R.5) for a cargo ship

of 400 ft. X 55 ft. X 24 ft., we take the mean uniform

draught as 21 -5 ft. This gives a basic period of 5-13 sec.

The natural resisted periods of pitch and heave are given

as 6-20 and 7-42 sec. respectively; taking the ratio of

each of these to the basic period and squaring, we get

the corresponding added moment of inertia and added
mass, namely about 46 per cent and 100 per cent

respectively.

Similarly, from the details given for the motor ship

San Francisco (R.6) with a mean draught of 22 ft. the

basic period is 5- 19 sec. The observed periods of pitch

and heave are given as 6 • 5 1 and 7 • 34 sec. ; and we deduce

corresponding inertia increments of 57 and 100 per cent.

For a diflferent type, a fast ship 400 ft. X 48 ft. x 13 ft.,

we have data taken from Kent and Cutland (R.7). The
mean uniform draught of 10-5 ft. gives a basic period

of 3-59 sec. From resonance effects in rough water
the natural resisted periods of pitching and heaving were

assumed to be approximately 5 4 and 5 8 sec. Accepting

these values, we get an increase of moment of inertia of

about 125 per cent, and of mass of about 160 per cent.

These values seem too high, though increased values

would naturally be expected from the greater ratio of

beam to draught.

Leaving aside the approximation in using the same
basic period for both pitching and heaving, the total

effective mass and moment of inertia can, of course, be

calculated if we know the requisite data and the observed

periods; for from (1) and (2) we have M = g- p S T^/4 rr^

and I = OT W T2/4 ttI

Damping.—We consider now the second term in

equations (1) and (2), representing the damping of the

natural oscillations. This arises partly from frictional

effects and partly from energy lost in the wave motion
produced by the oscillation. In order to evaluate the

latter contribution we ignore for the present all effects

due to viscosity. In the problem of rolling the associa-

tion of damping with wave motion has been famihar

since the time of W. Froude. Some recent calcula-

tions (R.8) have shown that it is certainly capable of

accounting for a large proportion of the observed

damping for a ship with zero speed of advance. The
rolling problem is simpler than that of heaving and
pitching in that the damping is small; on the other hand,

it is more difficult to calculate the wave motion directly

in terms of the form of the ship.

For damping due to heaving, reference may be made
to some small-scale experimental studies. In particular,

Schuler (R.9) examined the waves produced by a prism

making vertical oscillations, and, among other results,

deduced that the damping was due to wave motion,

viscous and other damping being neghgible in com-
parison. In the application to ship motion, Kreitner (R.IO)

has emphasized the importance of this kind of damping
in heaving and pitching.

Calculations of the magnitude of this effect have been

given in a recent paper (R.l 1), and also in the Appendix
to the present notes.

Suppose the ship is acted on by a periodic force,

say HqCos/)?, so that it is making forced heaving of

period 2 n/p. We could write the equation of motion
in the form

M^+ gpSi^ = X + Hocosp? (3)

where we consider X as the vertical resultant of the

additional fluid pressures due to the wave motion. The
assumption is that if X could be calculated it would be

a resistance proportional to the velocity t and could be

transferred to the other side of the equation and be the

term Nj t, as in equation (1). Meantime we can only

evaluate Nj by indirect methods. The impressed force

Ho cosp t does work at a rate just sufficient to maintain

the forced oscillations; if the latter are of amplitude t,Q,

this mean rate of work is i/'^Ni Q,. This is equated

to the mean rate at which energy is propagated outwards

in the wave motion, and so we obtain an expression

for Nj. To determine the wave motion we replace the

ship by a suitable distribution of alternating sources

over its surface and hence deduce an expression for the

mean rate of outflow of energy (A.l and 2).* The same
argument applies to the pitching motion with reference

to the forced oscillations, and we derive an expression

for the corresponding factor N2. Calculations have been

made for a simplified form of ship; wall-sided, of

length L, beam B, of constant draught d, the horizontal

sections being the same and elliptical in shape. The
expressions for Nj and N2 are given in A>. 5, 6, 10 and 11.

For numerical values we take L = 400 ft., B = 55 ft.,

d = 20 ft.; these dimensions giving a rough corre-

spondence with a cargo ship of about 10,000 tons dis-

placement. Calculations for Nj from A. 5 and 6 have

been made for six different values of the period T = 2 Tr/p

and the results are shown in Table I in Ib.-ft.-sec. units,

the lb. being the unit of force.

TABLE I

T
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ment of 1-41. This is a very high degree of damping
compared, for instance, with rolling. It seems probable
that any numerical estimates have been deduced from
resonance curves under forced heaving. The only
published estimate appears to be that given by Horn (R.6).

It is stated that the result of observations on various
models gave an average value of 0-45 for the quantity
N T/2 77 M, in the present notation, or a logarithmic
decrement of 1 -41 ; it is also stated that the corresponding
damping coefficient for pitching was of the same order.

For pitching, calculations for the same model from
A. 10 and 1 1 are shown in Table II.

TABLE II

T
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eflfects. On Fig. 1 are also shown values extracted from

model results given by Kent and Cutland (R.5); these

results were for wave-lengths of 175, 350 and 490 ft.,

in waves of 5 ft. in height. It should be noted that no

attempt has been made to fit this model beyond taking

the main dimensions and displacement about the same.

The points marked by a cross are for zero speed of

advance, and they fit fairly well into the calculated curve.

Points marked by a circle are for a speed of 8 knots.

In the calculated curve for 8 knots we have used the

same natural pitching period as for zero speed. There

seems to be some evidence that the effective natural

period increases with the speed. The large divergence
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dynamical theory has been examined in a recent paper

(R. 1 5) to which reference may be made for details of the

analysis. The ship problem is the reflection of the

wave train by the ship, which is itself free to move and

does take part to some extent in the motion of the

surrounding water; it is in fact the dynamical problem

of the motion of the complete system of ship and water.

Leaving this on one side we consider the forces on a fixed

obstacle in waves. The fundamental case is that of a

regular train of waves incident normally upon a fixed

vertical plane, which we may take of infinite draught.

There is perfect reflection of the waves; if r is the ampli-

tude (half wave height) of the incident train, there is an

oscillation of amplitude 2 r at the plane. The usual

first order theory for waves of small height gives a

periodic force of (g p r A/tt) cos p t for the additional

force per unit width of the plane, A being the wave-

length and 2 Trjp the corresponding period. Carrying

the theory to second-order terms, the result of the

analysis is to give an additional average steady force on

the plane amounting to \g p r^ per unit width. If the

waves are incident at an angle a to the plane, the cor-

responding average force is | g p r^ sin^ a per unit

width. An interesting problem would be the reflection

of waves by a vertical cylinder of elliptical cross section,

like the model used in the previous calculations of this

paper; it is possible to obtain an analytical solution,

but the functions involved have not been tabulated

sufficiently to allow of numerical results. The correspond-

ing work has been carried out for a vertical cylinder of

circular cross-section, giving the variation of amplitude

round the cylinder and the resultant steady force and
the dependence of both these quantities on the wave-

length. When the wave-length is small compared with

the diameter of the cylinder, the resultant steady force

approximates to the value | g p p- a, where a is the

radius. An interesting result shown by these calcula-

tions is that this limiting value is practically attained so

long as the wave-length is not greater than the diameter.

We may obtain this limiting value by making an extreme

assumption. Imagine the waves to be completely

reflected by the front half of the cylinder, leaving smooth
undisturbed water round the rear half. Then treat each

element of the front half as if it were part of an infinite

plane upon which the waves are incident at an angle a.

On this assumption we should have for the resultant force

R = isgpP' sin- a dy (7)

taken over the transverse diameter of the cylinder; and
this gives the result %g pp- a.

This suggests a similar expression for a vertical

cylinder of any horizontal cross-section. With the

extreme assumption of reflection round the front half

and smooth water round the rest, it appears that the

steady average force due to wave reflection should not
exceed the amount

R = * g P'-^ B sin^ a ..... (8)

where B is the maximum beam, and the last factor is

the mean value of sin'^ a with respect to the beam,

a being the angle which the tangent at any point makes
with the fore- and aft- central axis.

Kreitner (R.IO) gives an expression which, in the

present notation, is

R = g p /^ B sin a .... (9)

In deriving this, it is apparently assumed that the

average pressure on a plane can be calculated from the

instantaneous value of the hydrostatic pressure due to

the elevation of the water surface. When numerical

values are obtained for ship forms, the general result is

that the expression (8) gives about one-quarter or

one-fifth of the value given by (9).

If we take the elliptical model used in the previous

sections, an expression for the mean value of sin^ a can

be readily obtained; with L = 400 ft., B = 55 ft., the

value of this factor is 0-183. In waves of 5 ft. in height,

(8) then gives an extra resistance of about 0-9 ton.

With a normal ship form with moderate bow angle, the

mean value of sin^ a would be about 0-1, reducing the

extra resistance by this calculation to about \ ton. The
observed extra resistance for a ship of that type would be,

on the average, about 2\ tons.

It should be noted again that the expression (8) is put

forward only as an outside limit for a fixed obstacle of

great draught. In the actual problem the ship is free

to respond to the wave motion; further, unless the

wave-length is very much less than the length of the ship,

the finite draught of the ship seems likely to reduce the

amount of the reflection effect. The general conclusion,

so far as the present calculations go, is that, while wave
reflection is a true contributory cause and must be in-

cluded in a complete theory, it is only capable of

accounting for a fraction of the observed extra resistance;

we must, however, add the reservation that forward

motion of the ship through the waves might modify

that conclusion.

A possible application of the formula (8) would be to

determine the mean puU on the mooring rope of a ship

subjected to waves which are short in comparison with

the length of the ship. This has been investigated by

Kent and Cutland (R.5) and details of the comparison

with model results will be found in that paper. The
experimental conditions most nearly approximating to

the theoretical assumptions were for a 16-ft. model
moored in waves of 7 ft. in length; the height of the

waves was given values ranging from 0-12 ft. to 0-32 ft.

It was found that, on the average, the value calculated

from (8) was about 56 per cent of the observed mean pull.

Resistance associated with Heaving and Pitching.—
Another possibility is suggested by the consideration that

first-order effects which in themselves are purely periodic

may, through phase differences, give rise to a steady

additional resistance. Such a theory would associate

the resistance directly with the oscillations of surging

heaving and pitching—though it is probable that the

first of these plays only a minor part. There are different

views of the extent to which the resistance depends upon
the heaving and pitching motions; but the effect is
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certainly most prominent when the period of encounter

is near one of the natural periods and, directly or

indirectly, the phenomena are closely associated. The

problem involves to some extent second-order terms

and the analysis is therefore subject to correction by a

more complete theory; but meantime we ignore the

disturbance of the wave train by reflection and use the

approximate equations for heaving and pitching as in

the previous sections. The analysis is given in detail

elsewhere (R.16) and a short account in the Appendix

to the present paper.

We calculate the force on the ship from the pressure in

the undisturbed wave train; but, instead of taking the

equilibrium position of the ship, we make the calculation

for a displaced position, with a vertical displacement ^

due to heave and a rotation 6 due to pitch. To the first

order in { and 6, the resultant force backwards is found

to be (A.25)

277, 3H 27r^Z)P

In this, 2 tt/p is the period of encounter with the waves

and also the period of the forced oscillations; H and P
are the buoyancy and pitching moment and are also of

period 2 Tr/p. The first term Fo is the purely periodic

horizontal force to which reference has been made earlier.

Taking average values of the quadratic terms in the rest

of (10) we obtain for the average steady resistance

R = (77/A) Ho ^0 sin ,8, + (77/A) Po 6I0 sin P2 (1

with Ho and Po the amplitudes of the buoyancy and
pitching moment, ^0 and ^0 the amplitudes of the forced

heaving and pitching, and ^i and P2 the phase lags of

the oscillations.

It is of interest to recall the history of the similar

problem in rolling. In 1924 Suyehiro (R.17), experi-

menting with a small model, measured a drifting force

sideways on a ship when rolling in waves. The effect is

small and probably is only appreciable in suitable con-

ditions of forced rolling in resonance with the natural

period of roU. Suyehiro himself ascribed the force to

reflection of the waves by the side of the ship; however

no calculations have been made of the magnitude of

such an effect. In 1938 an alternative theory was put

forward by Watanabe (R.18). Starting from the Kriloff

equations, Watanabe deduced an expression for the

drifting force involving the angle of roll and the phase

lag between the roll and the actuating moment; applied

to Suyehiro's model, this expression gave a force of

rather more than half the observed value.

Returning to (11), consider the various factors when
making numerical comparison with observed results.

The values of Ho and Po have to be taken from such

calculations of buoyancy and pitching moment as can

be made for any given form. The amplitudes ^0 and ^0

we shall take from observed results, assuming, as is

necessary, that these are for forced oscillations. The
most uncertain factors are the phase lags. It will be

noticed that these are important in that on the present

view the extra resistance arises from the damping and

the phase lags produced thereby; if there is no phase lag,

there is no resultant steady force. Reference has been

made to the diagram given by Kent and Cutland (R.5)

from which the phase lag for pitching might be deduced.

It is not suitable for the present purpose, however the

attempt may be made so as to obtain some idea of the

magnitude of the resistance given by (11).

If we take the results in waves of 490 ft. in length, the

diagram shows that for zero speed of the model there

was no appreciable phase lag. Hence, according to (11)

there should be no resistance; and, in fact, the measured
resistance under those conditions was very small.

Incidentally the observed results also confirm the view

that resistance due to wave reflection must be very small

when the wave-length becomes greater than the length

of the ship.

If we take next the same wave-length with a speed of

8 knots for the ship, a rough estimate from the position

of the wave trough gives a phase lag for pitching of

about 12-5 deg. We shall assume the same value for

heaving, and we take Pi = ^2= 12-5 deg. For Ho and

Po we take the waU-sided ship with elliptical horizontal

section which has been used in the earlier calculations.

With L = 400 ft., B = 55 ft., d = 20 ft., A = 490 ft.,

and in waves of height 2 r = 5 ft., we obtain from

A. 16 and 18

Hq=358 tons; Pq= 67,633 ft.-tons

The observed measurements in 5-ft. waves give

So = 2-1 ft. and 60= 1-6 deg., approximately. With
these values we get from (1 1) a resistance R = 3 -66 tons,

of which about I ton comes from the term in the heaving

motion. From the given results in the same paper, the

measured resistance for the 16-ft. model was 0-37 lb.

or a resistance of 2 • 58 tons for the full-sized ship. The

measure of agreement is perhaps as much as could be

expected considering the uncertainty of the data and

also that no special attempt has been made to calculate

values for the particular model used in the experiments.

It is not worth while adding further similar calculations

at the present stage; but it may be said that the suggested

theory is capable of giving results of the right order

of magnitude.

On the theoretical side, it is hoped that the various

limitations and assumptions have been sufficiently

indicated. On the experimental side, there is a lack of

suitable data obtained under conditions approximating

to the simplifications which have to be made before any

calculations are possible; such experimental results

would be a valuable and, indeed, essential aid in develop-

ing and modifying any tentative theory of such a

complex problem.

Appendix

(1) Damping in Smooth Water.—If a ship is making forced

oscillations of heaving or pitching, we may calculate the wave

motion by supposing each element of the ship's surface to be

the seat of an alternating source, say of strength m cos p t

per unit area. Knowing the velocity potential of the distribu-
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tion of sources, it is possible to calculate the average rate at

which energy is being propagated outwards in the wave
motion. It has been shown (R.ll) that this mean rate of
outflow of energy is given by

E = 2 77 p (p^lg) (P^ + Q^)de (1)

where

P + / Q = m (X, V, Z) eP°-IS U -i tx cosh + ty sin 0) ^ s (2)

the integral in (2) being taken over the immersed surface of
the ship in its equilibrium position. The axis O x is taken
along the longitudinal axis of the water plane section with
the positive direction from stern to bow, O y transversely at

the midship section, and O z vertically upwards. We shall

assume the source strength at each point to be such that 4 tt m
is the amplitude of the normal component of velocity of the

ship's surface at each point, this being a reasonable approxima-
tion in view of usual ship dimensions. A further simplification

may be made by neglecting the distribution in the transverse

axis O y, since the length 2 tt g/p^ is usually several times as

large as the beam of the ship.

Suppose the ship to be wall-sided, of uniform draught d,

and with the horizontal sections ellipses of axes L and B.

Let the ship be making forced heaving oscillations of
amplitude ^^ and period 2 ir/p. The source strength over the

flat bottom is of amplitude p IjA tt per unit area; and we
treat it as a line distribution at constant depth d along the

central line, with strength proportional to the beam at each
point. Hence from (2) we have

Att

.iL

Ax\i

{-W £< p' x/s <:'>s (/ X

-iL

= ipCoBLe-P'dlsJ^(qcose}l(qcoie) . (3)

where q = p^ L/2 g.

Hence from (1) the mean rate of propagation of energy
outwards is given by

^B2L2^2p5e-2p=rf/j
rnjl

j,(,cose)y^^

q cos J

(4)

We now equate this to the mean value of Nj tp-, namely

ip2 N, t,'^, and we obtain

N, = (tt plA g) B2 L2 ;)3 e- 2?=* F, (5)

where Fj has been written for the integral in (4).

This integral may be evaluated by quadrature using tables

of Bessel functions. It was, however, found more satisfactory

to calculate it from an equiva lent series. It can be shown that

(-l)" (2rn)! {2m + 2y.
(6)

Similarly, if the ship is making forced pitching oscillations of

angular amplitude d^ and period 2 ttIp we have

P + / Q
Att

x\\ ~ —j\ e'p'^ls-cosfiijx (7)

-ii

in which we have neglected the contribution of the vertical

sides of the ship compared with the effect of the flat bottom.

The integral in (7) may be expressed in terms of Bessel func-

tions, and we find

P + iQ = l-pdgBL^e~^p'dlsJ^(q cos e)l(g cos 6) (8)

Thus for pitching motion we have

^B2L''6l2/7Se-2p=d/J
q cos a J

Equating this to ^ /j2 Nj 61, we obtain

Nj = (77 p/16 g) B2 L*pi e - 2p2* F2 . . (10)

where F2 is the integral in (9). This may be evaluated from
the series

77y (-l)»-(2m + 2)!(2m + 4)!

^ 8Zjm!/(m+ l)!(/w + 2)!V{'«-f-4)!^^^^
^

(2) Buoyancy and Pitching Moment in Waves.—Suppose at

first that the ship has zero speed of advance, and that the

waves are moving directly towards it. The velocity potential

of the fluid motion ij

<f>
= (g rip) e''' sin ipt + kx) . . . (12)

with p^ = g k; this corresponds to waves of elevation given by

C = r cos (pt + kx) . . . . (13)

the amplitude r being one-half the height measured from

trough to crest, and the wave-length A being 2 tt/A:. The
pressure p at any point is

p=Po-gpz + p— (14)

The second term is the hydrostatic pressure whose effect is

included in the equations of motion of the ship in smooth
water. The third term

p -~ =' g p r e'^^ cos (p t + k x) .

at
(15)

is the additional pressure due to the undisturbed wave system.

The resultant forces and couples are obtained, to this approxi-

mation, by integrating this pressure, and its moment, over the

immersed surface of the ship in its equilibrium position.

With the same simplified model, we have for the additional

buoyancy H,

f 4a:2\*
B n - —y j co%{pt ^ kx)dx

-iL

where

H = g pre-'"'

Hq cos p I,

H.
P
- ig-p/-BAe-2^<'MJi(77L/A) (16)

There is also a resultant horizontal force from the pressures

on the vertical sides; measured in the negative direction of

O X, from bow to stern, it is

rf zU g p (• B e*J cos (;) ? + i /c L cos 0) COS 9 (/

-d Jo

= igp/-BA(l - e-2'^<'/^)J, (77L/A)sinp/ . (17)

This force might be used as a similar first approximation in

regard to the surging motion of the ship. By comparison
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with (16), it can be seen that in general it is only a fraction

of the corresponding vertical force.

In evaluating the pitching moment we take moments about

the transverse axis O .v, assuming for simplicity that the

centre of gravity G of the ship coincides with O. The

pressures on the vertical sides will contribute to the total

moment; but this part will be of the order of the horizontal

force F multiplied by some fraction of the draught, and it

can be seen to be negligible compared with the moment of the

pressures on the flat bottom,

moment
We have then for the pitching

where

P = gprBe-'"'

Pq sin p I,

('-
4x\^
L2

cos (p I + k x) d X

Po = i^p /• B L A e-^^-'AJz (tt L/A) (18)

For a ship advancing through the waves, we have the same

expressions, so far as this approximation goes, with 2 n/p

the relative period of encounter; thus if A is the wave-length

and V the corresponding wave velocity, and V is the speed

of the ship, then 2 trip = Xjiv + V).

On this theory, the equations for heaving and pitching on
waves are, for this symmetrical model

M^"-|-N,^' + ^pS^ = HoCOS/;r . . (19)

1(9+ NzS + W/He= - Posin/)/ . . (20)

The forced oscillations are

C = Co cos {p t - ^i); (9 = - ^0 sin (p / - ^2)
with

Co = Ho/M{(/>2 - p2)2 + k\pi}'-, k, = N,/M;

^0 = Po/I {(Pl - P^)' + ^i />'}*; ^2 = N2/I;

tan jSi = /ti pKpj - p2); tan ^2 = I<2PI(pI - P^) (2')

the natural periods of unresisted heaving and pitching being

2 ttIpi and 2 ttIpj respectively.

(3) Resistance in Waves.—Let (/, m, n) be the direction-

cosines of the outward-drawn normal at any point of the

immersed surface of the ship. Then with the pressure in the

undisturbed wave motion given as in (14), the resultant

horizontal force backwards

F = pldS- gpkr el' ^sinip t + kx)dy (22)

the latter integral being taken throughout the immersed
volume of the ship at any instant.

If we calculate this for the immersed volume Vq when the

ship is held in its equilibrium position we obtain a purely

periodic force Fq, such as was found in (17). Let the ship

be in a sUghtly displaced position due to heaving and pitching,

with the centre of gravity G raised a distance C and with a

pitch d about a transverse axis through G; we shall suppose

G to be on the axis O z at a height c above O. Then, to the

first order in £ and 9, it can be shown (R.16) that the horizontal

force backwards in the displaced position is

F=Fn gfkrl e*2 sin {p t + k x)ndS

gpkrd ei'^smipt -hkx){nx- l(z- c)}dS (23)

where the integrals are taken over the equilibrium position

of the immersed surface.

The additional buoyancy and pitching moment, which were

calculated for a special case in (16) and (18), are given in this

more general form by

H = — g pr e*^cos(p / + kx)ndS

g pr e*^ cos (p t ^- k x) {_l {i — c) — n x} dS,

Hence we may write the backward force as

F=Fo
/c . SH _ ^ „ 3P
!> Yi p it

(24)

(25)

When calculated for any form of ship, H and P are in general

of the form Hg sin (p t + a,) and P^, sin (/? t + aj) respectively.

The corresponding forced oscillations of heaving and pitching

are then given by equations such as

C-= fXi Ho sin (p/ + a, -^1)

9 = ;Li2 Pq sin (p r + aj - 182) (26)

p,^ and p.2 being positive factors.

Putting these expressions in (25) and taking mean values,

of the quadratic terms, we obtam a mean backward force

on the ship

R = -U/i, H2sin;8| + i/r;tt2Pgsin^2
• (27)

This is an essentially positive expression, so that this force is

always a resistance.

With Co and ^q 'he amplitudes of forced heaving and

pitching respectively, this expression is equivalent to

R = (77/A) Ho Co sin
j9i + (tt/A) Po ^o sin ^2 • (28)

where jSi and jSj are the phase lags of the forced heaving and

pitching behind the buoyancy and pitching moment

respectively.
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SOME CALCULATIONS OF SHIP TRIM
AT HIGH SPEEDS

By T. H. HAVELOCK

(Presented to the International Congress of Applied Mechanics, at

Paris, 194.6. The Proceedings of this Congress have never been

published)

SUMMARY

Although much work has been done on the theory of wave resistance, that

is on the horizontal resultant of the pressure system round a ship, there do

not seem to have been any calculations of the resultant moment of the pres-

sures about the transverse axis.

The present note records some work on this problem and a comparison of

the results with measured trim in experimental models. Assuming the

usual approximate theory of the pressure system, the effective part of the

pressure for a symmetrical model is put into a suitable form and an expres-

sion is obtained for the moment for a certain series of models, used at

Teddington, for which experimental results are available. Numerical cal-

culations have been made for three models of this series over a consider-

able range of speed and curves are given showing the comparison between
calculated and measured trim. The agreement is reasonably good, especially

at the higher speeds, and in general the order of agreement is much the same
as between calculated and measured wave resistance.

1. The pressure changes established by the forward motion of a

ship may be considered in two parts: (i) those associated with the

so-called local disturbance, (ii) those due to the wave motion trailing

aft from the ship. In the usual approximate theory of wave resistance,

neglecting viscosity, the pressures from (i) give no resultant hori-

zontal force on the ship as a whole and we only need to calculate the

resultant of these from (ii). If we wished to examine the sinkage of

the ship, we should require the vertical resultant of the total pres-

sure system and such calculations would be too laborious in general;

though we may estimate the effect at low speeds by ignoring the sur-

face disturbance of the water [1]. On the other hand, if we limit con-

sideration to a model which is symmetrical fore and aft, the moment
of the pressure system about the transverse axis will only involve

the pressures from the wave system (ii). As this calculation does

not seem to have been carried out hitherto, it was thought of interest

to see how the results so obtained compare with the measured trim of

experimental models.
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The part of the pressure system which is effective for this purpose

is first put into a suitable form, and an expression is obtained for the

moment for a certain type of model whose form is given by an equation

involving one parameter. This moment is then turned into an equiv-

alent angle of trim for the ship, using the ordinary righting moment

as if in still water. Finally, numerical calculations are made for

three models of this series, with different values of the parameter,

for which experimental results are available. Curves are given show-

ing the calculated and measured trim for these three models.

2. We take the origin in the undisturbed free surface of the

water. Ox in the direction of motion, Oz vertically upwards and Oy

transversely, v being the velocity. If there is a source of strength

m at the point (A, o, -/), the velocity potential is given by [2]

(.'" /-" --<(/-z)+iK-5J

^^HL.IL.Is^l sec-'dddl
'- ^--. -dK, (1)

~7T

with

/ 2
cJ=(x-h)cos6 + ysm9 K^^g/v .

The pressure p, other than the hydrostatic pressure, is given by

P = -pv^- (2)

We require the part of the pressure due to the waves trailing aft from

the source. From (1) and (2), taking the limit for fi-o, we find this

effective pressure at a point (x, o, z) due to the given source at

(A, 0, -/) is

p^^pK^vm\ e"''o(^-^'^«^^cos{Ko(;r-A)sec9}sec30<^e, (3)

for a; - A < o; and ;» = o for a; - A > o.

For a ship form given by y = ±F (a;,z), we have the usual approxima-

tion of a source distribution over the section by the plane y = o, the

source strength per unit area being

_JL^. (4)
2n dx

For a model of length 2Z, draft d, with at the midship section, we

obtain:—
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J .d 77/ 2

'j'f^'/V

y, cos^K ^{x - h) sec d^sec^ dd

.

(5)

The horizontal component of this pressure integrated over the surface

of the ship gives the wave resistance; it may be noted that, with the

usual approximation, we evaluate the pressure not at the actual sur-

face of the ship but over the plane y = o. We use this expression

similarly for evaluating the moment of the pressure about the trans-

verse axis Oy. Consider the total moment in two parts. First, for

the horizontal component of the pressure, the moment will be of the

order of the wave resistance multiplied by some fraction of the draft;

it is found that this part is small compared with the moment of the

vertical component and we neglect it meantime. However, when com-

paring calculated and experimental results we allow for this correc-

tion by estimating the moment of the total resistance of the model.

For the moment of the vertical component of the pressure we have

=/>
M =

I
ixf dx dy

, (6)

taken over the water plane section of the ship, with p given by (5).

3. We confine the calculations to a simple type of symmetrical

model used at Teddington, for which experimental results are avail-

able, and for which the numerical calculations are not unduly labori-

ous. This set of models is defined by

y-l>(l-f){l,a,^)[l-^) (7)

For this form, we have

J

f{x,z) =-pVK^b\ m -a^)
j2 + 2^2 jt}^^ ^

X
I
[i-^]au e

'<o(/--)sec85
^

X cos|Kg(a;-A) sec 0}sec^0<f^
, (8)
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and

/

^^~^[h^V~¥) (^^ ^2 jP) Pice, b) dxdz (9)

Carrying out the integrations and, for convenience in computation
changing the variable from Q to u with sec = cosh u, we obtain
CilG rGsult

l^^hn] ^i(^)^2(/3)^3(«)sech3^z., (10)

with ^ = /CgcJcosh^M; a = K^Zcoshw;

^^4-|-+(l-J-)«in2a.(i-J-jcos2a,

i_ii_16 , /o 64^ 192\ .

/16 150 96\ „ ]

+ a2r2 3_ 96 720 / 74 768 1440\ . „

^ /12 291 1344 720\ „ 1

^^-¥-l^ + -^-^jcos2a|.

The moment ^ given by (10) will, if positive, tend to give a trim of
angle 6 which is positive with bow up and stern down. In comparing
with model results, we note that the model is towed, the point of
attachment of the tow-line being at the water level in the midship
section; it /? is the total resistance, we have therefore a reversemoment Rd

,
where d' is some fraction of the draft d of the model.

Ihe effective positive moment \s M - Rd'.
We have also the restoring moment due to the hydrostatic pressure

and for this we take, as a sufficient approximation for the present
purpose, gpAk-'e, where Ak"" is the moment of inertia of the area of
the water plane section about Oy. For the models defined by (7)
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Ak'=m^^^+^a^]. (11)

With these assumptions we turn the calculated moment into an equiv

alent trim d given by

„ M-Rd'
gpAk^

(12)

calculating values from (10) and (11), and using the measured total

resistance for R and an estimated value of d'\ the actual value of d
is not important as in any case Rd' is found to be a small fraction of

the value of M.

4. Numerical calculations were made in the first place for two

Teddington models of this type, with extreme values of the parameter

a^: namely

Model 1805A, with a^ = -0.6

Model 1846A, with a^ = 0.&

For each model we have

length = L = 2Z = 16 ft;

beam = 26 = 1.5 ft;

draft = c? = 1 ft.

Further details of the models, and measured values of the trim are

given by Wigley [3].

For these models d' was taken to be 5 inches. The integral in

(10) was computed by quadrature, the value of the integrand being

calculated for values of u differing by 0.1; it was not generally neces-

sary to go beyond about 3.6 for the upper limit of u. This process

was carried out for six values of the Froude speed ratio / in the

range 0.32 to 0.54, / being equal to v/\J{gL). Finally the results

were expressed as trim by the stern in inches for the 16-foot model,

that is by 1920 the experimental results for these models 'being

recorded in that form.

As an example of numerical values, at a speed ratio / = 0.5, the

calculated trim for model 1805A is 6.45 inches, while the measured

value was 6.0 inches; of the calculated value, the moment M of (10)

gave 6.72 inches and the term — Rd' reduced this by 0.27 inches.

Similarly for Model 1846A at / = 0.5, the calculated trim is 4.82

inches, the measured value being 4.7 inches.

The results for the two models are shown in Fig. 1. The full

curves are the measured values, and the broken curves show the

values obtained from the present calculations.
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a,
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A third example of this series was also examined, because it has

a larger beam and only half the draft: namely Model 2038C, with

a^ = -0.5; length = 2Z = 16 ft; beam = 2& = 1.75 ft; draft = d = 0.5 ft.

Further details with the measured trim, may be found in Wigley's

paper [4].

In this case for the small correction Rd' , the value of d' was
taken to be 2.5 inches. The calculated trim at / = 0.5 was found to

be 4.75 inches, the measured value being 4.37 inches. The com-

plete results are shown in Fig. 2, the full curve being the measured
values and the broken curve those found by calculation.

Considering the three cases together, the general measure of agree-

ment between calculated and experimental curves is perhaps as good

as could be expected from a first-order theory with the various ap-

proximations involved and including the neglect of viscosity effects.

The order of agreement is much the same as that between calculated

and measured curves of wave resistance, the greater discrepancies

in trim occurring at speeds at which there are corresponding differ-

ences between calculated and measured resistances. It may be said

that the present calculations afford further confirmation of the ap-

proximate theory of wave resistance.

REFERENCES

1. T. H. Havelock, Zeit. f. Ang. Math. Mech., 19, p. 202 (1939).

2. T.H. Havelock, Proc. Roy. Soc. A, 138, p. 340 (1932).

3. W.C.S. Wigley, Cong, intern. Ing. Navals, Liege, p. 174 (1939).

4. W.C.S. Wigley, Trans, Inst. Nav. Arch. 84, p. 52 (1942).

526



CALCULATIONS OF SHIP TRIM AT HIGH SPEEDS



CALCULATIONS ILLUSTRATING THE EFFECT OF BOUNDARY LAYER ON
WAVE RESISTANCE

By Professor T. H. Havelock, M.A., D.Sc, F.R.S., Honorary Member (Associate Member of Council)

Summary

The main object of the paper is to examine the possible

effect of the boundary layer in producing a virtual modifi-

cation of the lines of the ship near the stern. This is re-

garded as a deflection of the streamlines due to increased

displacement thickness of the boundary layer in this

region. By superposing a source distribution to produce

this additional deflection, expressions can be obtained

for the modified wave resistance. No attempt is made to

attack the problem directly for actual ship forms. Instead,

an indirect method is taken of considering some ideal

simple forms and assuming small modifications of the

lines near the stern such as might reasonably be ascribed

to boundary layer effects. It is shown that such variations

suffice to eliminate the humps and hollows on resistance

curves at low speeds while making relatively much less

difference at high speeds, a result which would improve

the general comparison between calculated and measured

wave resistances. The paper also includes some remarks

on experiments with plank-like forms which are not wholly

submerged, and an attempt is made to assess numerically

the wave-making resistance in such experiments on skin

friction.

Introduction

The tiieory of wave resistance in a frictionless liquid

leads to a resistance curve Mich oscillates rapidly and

excessively at low speeds, and such oscillations do not

occur in resistance curves derived from experimental

results. This is commonly ascribed to the wave making
at low speeds being mainly due to the bow of the ship

;

and an obvious explanation is that the effect of viscosity

has been to render the stern relatively ineffective in wave
production at low speeds. Some years ago' the author

considered the matter from the point of view that the

effect of the friction belt surrounding the ship is equiva-

lent to smoothing out the lines in the rear portion and
some calculations were made to show that this would lead

to a diminution of interference effects at low speeds;

however, the calculations were too complicated to pursue

in any detail at that time. Later^ the direct assumption

of a reduction factor for the rear half of the model was

made; the assumption was as simple as possible so as to

make calculations practicable, the wave-making proper-

ties of the whole of the rear half being reduced by an

arbitrary factor less than unity. Subsequently this idea

of a reduction factor was largely extended and examined

in detail by Wigley.' In particular, Wigley compared
theoretical and experimental resistance curves for a

large number of models, deducing the necessary re-

duction factor to give reasonable agreement and obtain-

ing an empirical formula for the variation of the factor

with the speed. In this work also the factor was applied

to the whole of the rear halfof the model and it was found

to vary in value from zero at the lowest speeds, where

only the front half is effective, to unity at the highest

speeds, where front and rear are equally effective. This

extension and analysis by Wigley is very useful in giving

a practicable way of modifying theoretical resistance

curves, but, admittedly, it leaves much to be desired from

a theoretical point of view. In particular, the variation

of the factor from zero to unity seems rather para-

doxical; no doubt viscous effects vary with the velocity,

but not to such an extent as is implied by that range of

values. I believe an explanation can be found in the

fact that boundary layer effects on wave formation are

appreciable over only a small length of the model near

the stern ; just as one has a similar comparison between

actual normal pressures and those calculated for a

frictionless liquid. It is well known that for a friction-

less liquid the wave-making effect of bow and stem

angles is predominant at low speeds, while at high speeds

this is not the case. Hence if the modification of the

form is confined to a region near the stem, and even if

that modification does not vary much with the speed, it

will automatically have greater effect at the lower speeds

than at the higher. The present paper is an attempt to

find out how far this is the case.

The general point of view so far as the friction belt is

concerned has been well expressed by Baker"* in the

remark: "In the after body two things take place, first

the contraction of the virtual body, round which the free

flow is taking place, which includes the slow-moving

portion of the friction belt—a rather indefinite extension

of the real form—causes an expansion of all the stream

tubes and of the frictional belt, and second expanding

stream lines are never very stable and do not adhere

to the form from midships to stern post." It must be

admitted that this "rather indefinite extension" of the

form still remains undefined. In principle, if we know
the thickness of the boundary layer and can deduce its

displacement thickness, we know by how much the

streamlines of the outer flow are deflected. We can

then, in theory, superpose on the original form a source

distribution which would produce the required extra

deflection and hence calculate the modified wave re-

sistance. It may be said at once that the necessary data

are not available, and in any case the calculation would
be almost impracticable. The scope of the present paper

is much less ambitious, and the work may be described
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as an illustration of the possible effect of boundary
layer on wave resistance. The problem is attacked in-

directly by taking a simple form and making small modi-

fications of the lines near the stern so as to obtain the

required kind of change in the calculated resistance

curve; one may then consider whether such modifica-

tions can reasonably be ascribed to boundary layer

displacement. We consider first the ideal case of a

thin plank, with some incidental remarks on wave-
making in experiments with planks. Then we consider

a form with simple parabolic lines and with vertical

sides: in the first place of infinite draught, and then
of finite draught. Finally calculations are made for a
form which is unsymmetrical fore and aft, in order to

show the difference in resistance between motion with

bow leading and motion with stern leading.

Wave Resistance of Planks

We begin with the ideal case of a plank of negligible

thickness. Assuming the boundary layer to be turbulent,

we take for its thickness S at a distance x from the leading

edge the expression

h = Q-2,1 {v xlv)-^ X . . . . (1)

where v is the velocity. In the present problem it is the

displacement thickness 8j with which we are concerned,

as this gives a measure of the outward deflection of the

streamlines; in general, 8, is defined by

"i ^1 =/(^i ~ ") dy (2)

where u is the fluid velocity at a point in the boundary

layer, M] the velocity at the outer limit of the layer, and

the integral is taken along a normal through the layer."

Assuming the usual velocity distribution we have

S, = J 8. At the rear end of a plank of length L, the

displacement thickness 8, has a value& given by

0-04625 R-*L (3)

R being Reynolds number. Some values for a plank

16 ft. long are given in the following table for various

values of the Froude number /= w/Vfe L) ; taking

V = 1-228 X 10~', and with b in inches, we have

/
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Computation was made for a plank 16 ft. long, with a
draught of I ft. at a speed of 8 ft. per sec, or a value of
/= 0-3535. Further, b as given by (3) was taken to be
0-03 ft. The result was R = 0-003 lb., compared with
the usual skin friction of about 5 - 86 lb. The point of
this calculation is simply to confirm that the effect of
the plank boundary layer may be taken as inappreciable.

It will be still less relatively when we consider a form of
finite beam with any appreciable wave resistance. When
we deal with such forms we shall therefore simplify the

work by neglecting that part of the boundary layer

which is the same as that for a plank, and shall consider

only the region near the stem where the boundary layer

becomes appreciably and rapidly thicker on account of
the curvature of the form.

Before proceeding, a few remarks may be made on
skin friction experiments with planks. Actual planks
have thickness and form, and if the upper edge is above
the free surface there will be wave disturbance due to

the form, modified to some extent by the boundary layer.

Reference has often been made to the possibility of wave
resistance being included in some measurements of skin

friction, but usually only in the form of a caution; there

do not seem to have been any attempts to give a numerical
estimate of its value. Perring* refers to the possibility

of having to make allowance for wave-making in experi-

ments with plank-like forms, and Schoenherr,' in re-

ferring to his experiments with 3-ft. planks, remarks that

the speed should not exceed about 2-7 ft./sec. on account
of appreciable wave-making; it may be noted that this

is a Froude number /of about 0-27, but other experi-

ments with partially submerged planks have been made
up to /= • 4 or even higher.

Knowing the form of the plank it would be possible to

calculate the wave resistance from the usual formulae,

but such results would be of doubtful value at low speeds

because of the viscous effects which are now under dis-

cussion. However, wave resistance theory suggests

another line of attack. According to the formulae, for

models with the same mathematical lines and with con-

stant length and draught, the wave resistance varies as

the square of the beam. This relation was examined by
Wigley^ for a series of three models satisfying these con-

ditions. The residuary resistance, deduced from the

total resistance by the usual method, did not quite obey
this law; but the divergence was attributed to the neglect

of form effect in estimating the skin friction, and small

increases in this part of the resistance would give a wave
resistance approximately obeying the theoretical relation.

It may be remarked in passing that form effect is not
easy to estimate for these narrow models because it is

not sufficiently greater than the possible experimental

errors in measuring resistance and velocity at low speeds,

where in addition there may be the complication of
laminar flow. For a general discussion of the relevant

data for form effect reference may be made to Todd.'
For our present purpose we choose Model 1970B, an
experimental model used at the N.P.L. by Wigley.'"

The model lines are given by

y = b (-?)(
JC2 X*\ ( z2\

witha2 = 0-4375; a.

(11)

16 ft.;-0-4375;length = 2/
beam = 2b = 1 5 ft. ; draught = rf = 1 ft.

The skin friction has now been calculated from the

standard plank formula corrected for temperature."
Form effect has been allowed for by adding a constant

amount 0-05 to the corresponding (C) values, which is

equivalent to increasing the skin friction by an amoxmt
ranging from 5% to 6%. The skin friction so increased

was subtracted from the total measured resistance, and
the residue was taken to be pure wave resistance. We
now reduce these values according to the square of the

beam for a plank-like form, with lines given by (11),

length 16 ft., draught 1 ft., and beam 3 in.; this value

of the beam gives an angle of entrance (to the middle
line) of 1-75°. The wave resistance for this plank-like

form, so estimated, is given as R^ in the following Table;

Kf is the skin friction derived from the standard plank

formula.

/
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Hence from (7) and (8)

4 pb^iP
R = iP + P)cosdde .

with

where

I + «• J = - 2 ie'f^d^

(13)

(14)

y = 70 sec ^; yo = fo ' = ? l/v^

Using P functions, which are defined for integral values

of « by
-it/2

P2;,(/') = (-l)" cos^ d sin (p sec 6)d9

P2„+.(P) = (-1)'' + '

we obtain

.Tr/2

cos^" + ' COS (p sec (I)d6

Ml 5)

R 32pr2 8 1 „ ,^ .

^^4(270) + VsCSyo) (16)

This has been graphed on a base/in curve A of Fig. 1,

corresponding to the form section A in the same diagram.

Suppose this form has, say, a length of 16 ft. and a

beam of 1-5 ft., and consider the virtual modifications

which might be ascribed to boundary layer effect. Let

B M S be one side of the contour of the model. The
wave resistance formulae are, in fact, derived by follow-

ing the streamline which starts from the bow B, follows

the contour B M S to the stern S, and then goes off

along the central line. Suppose we know the displace-

ment thickness of the boundary layer at each point and

set it off to form a new curve B M' S' ; we propose to

take this as the virtual streamline form and to apply

wave resistance theory to this line instead of the original

curve B M S. This new line starts from the bow B,

deviates slightly from the model except possibly near the

stern, and we shall suppose that it becomes parallel to

the central line at a point S' somewhat to the rear of

the stern S and possibly at some small distance from the

central line. In default of sufficient information about

the boundary layer in such cases, we shall make some
arbitrary assumptions and see what effect is produced on

the wave resistance.

We shall neglect the displacement thickness calculated

as if for a plank, as we have seen already that this has

no appreciable effect; this simplifies the work consider-

ably, as it enables us to follow the actual form from the

bow to some point near the stern. We suppose that the
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new streamline then leaves the form tangentially, and
gradually becomes parallel to the central line at some
small distance to the rear of the stem. It may be noted

that this departure of the virtual streamline from the

form does not necessarily mean separation of flow in the

usual sense; the latter phenomenon might be represented

on this scheme by the new line leaving at an angle to the

form. We shall take two examples and in both we shall

suppose the new curve to reach the central line at its

rear end; we are then dealing effectively with closed

forms and this simplifies the work, though it could be

extended to include a permanent wake to the rear.

First, considering a 16 ft. model, we take the point of

departure to be 1 ft. before the stern and suppose the

new line to close in at a point 2 ft. behind the stern. If

this new curve is given by

IJ = flo + fli ^ + «2 ^^ + «3 ^^

the conditions are

15

64' d^ 4'
'O'" ?

8

r? = 0; dt 0; for I = -

These determine the coefficients in (17) and we get

n =
1075

144 flH-^f + f*.

(17)

(18)

(19)

This curve is shown starting from the point B on the

section in Fig. 1. It passes the stem at a transverse dis-

tance 5 bjll from it, and represents little more than

smoothing out the stern angle of the model.

We now have instead of (14)

l + ii-4ie'-'^d^
i

+
f'35

k2 fi.ff>' v5rf| . (20)

From (13) this gives the result

^^ 16 pH1 2128 1 32768 \_

3'^T35"^"'' "315"^
J2
3yo

P^iPx)

Zl (A 1

62 64 32

320 2048 1
+ 3^/'«(/'3)-9y4^7(P3)J • • (21)

where p, = 15 yo/8; J?2 = 9 yoM; Py= 3 yo/8

This is graphed in curve B of Fig. 1. It shows how
this small modification practically eliminates the humps

and hollows at very low speeds and reduces them con-

siderably up to about/= 0-24.

To make a rather larger change, we suppose next that

the point of departure is 2 ft. before the stem, the line

closing in as before at 2 ft. behind the stem. The
coefficients in (17) are now determined from

7 d-,

'?
=

16' d^ 2
= ~\ for| =

, = 0;^=0;forf=-^
(22)

These give the curve

2:

16 ' 16

25 15 _, 3,- „
(23)

The curve is shown starting from C on the section in

Fig. 1. It passes the stem of the model at a transverse

distance J b from it. In this case, we have

1 + jj= -2
-i

+ (j|-3|-3f^)e-^rff (24)

and hence we obtain

R _16pr2 73J. 288^ 1. p ( \

^^ ~ ^Ylb ^ 15 yg
+ 35 yS

2y/''^P'^

19

To Vo J
(25)

where Pi = 7 yo/4; />2 = 9 yo/4; Pi = yo/2

This is graphed in curve C of Fig. 1. Here the dif-

ference from curve A for the original model is very

marked, and the modification is probably more than is

needed so far as low and medium speeds are concemed.

It remains to be seen what difference is made at high

speeds, but a model of infinite draught is not suitable

owing to the exaggerated values obtained at high speeds.

Parabolic Model of Finite Draught

We turn now to a model of the same form, with

vertical sides, and of draught d. We shall take the

draught d to be one-twentieth of the length 2 /, because

this ratio was used in some previous work'^ and the

results given there can be used to check the present work.

For the model itself, we have from (7) and (8)
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r-^n

1 + cos 2 y

line at 1 ft. to the rear, assuming a model length of 1 6 ft.

Hence the conditions are

2 1

- sm 2 y + ^ (1 — cos 2 y) cos^ede . (26)

with

Yo = g iy> Po = g dlv^; y = yo sec 9; ^ = ^o sec^ 6

In this, and similar integrals, it has been found more
convenient for computation to change the variable from

io u given by cos 6 = sech u. The integral was then

evaluated by direct quadrature, together with an asymp-
totic expansion for low speeds when the parameter yo is

large. The curve is shown as D in Fig; 2.

\5 d^i 1 7
'' = 64' rf? = 4'f'''^=-8

d-n ^ . . 9

^^ = 0;for|=-3
(28)

These give the curve

569 63 7

''=128 + ¥^ + 2^ (29)

which is shown starting from the point E of the section

in Fig. 2. It passes the stem at a transverse distance

DC
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and this leads to
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THE WAVE RESISTANCE OF A CYLINDER
STARTED FROM REST

By T. H. HAVELOCK (King's College, Newcastle-on-Tyne)

[Received 13 August 1948]

SUMMARY
A method of obtaining expressions for wave resistance in accelerated motion is

given, but the particular problem examined is the motion due to a circular cylinder

submerged at a given depth below the free surface, the cyhnder being suddenly

started from rest and made to move with uniform velocity. The surface elevation

at any time is discussed, and expressions obtained for the finite wave resistance

at any time after the start. Numerical calculations have been made for three

different speeds, and curves are given showing how the resistance rises initially

and oscillates about the steady value for each speed.

1. Introduction

Calctjlations of wave resistance have hitherto been made only for a body

moving with constant velocity, the problem being treated directly as one

of a steady state when referred to axes moving with the bod}\ The case

of non-uniform motion is of interest in itself, and also has possible applica-

tions. For instance, in measuring the resistance of ship models, the question

arises how long it is before the effect of the starting conditions becomes

inappreciable. As a matter of fact, measured resistance curves always

show oscillations about the steady value for a given speed, but these are

no doubt mainly due to the natural period of the measuring apparatus;

however, it would be of interest to have some examination of the approach

to the steady resistance after the initial stage of accelerated motion.

Expressions for -wave resistance in accelerated motion have been given

by Sretensky (1), wlio obtained them by transforming the hydrodynamical

equations to a form suitable for axes moving with acceleration, but the

formulae are too complicated for numerical calculations in general;

Sretensky has, it is understood, made some calculations more recently for

a particular law of acceleration, but the results are not available.

In some early work (2), instead of assuming the steady state as estab-

lished, I used an alternative method for uniform motion. This may be

described as finding the disturbance due to an infinitesimal step in the

motion of the body and then integrating. It was pointed out at the time

that the method could be applied to motion with variable velocity. It is

shown now that this method leads directly to expressions equivalent to

those obtained otherwise by Sretensky. However, the present note deals

mainly with one particular problem, namely, a circular cylinder submerged

[Quart. Journ. Mcch. and Applied Math., Vol. II, Pt. 3 (1949)]
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T. H. HAVELOCK 326

in water at a given depth, suddenly started from rest with a given velocity
and maintained at that speed. It has been found possible to make numerical
calculations in this case, and the results illustrate various points of interest.

2. Circular cylinder

Take the origin at the centre of the circular section, of radius a, at
a depth / below the free surface, with Ox horizontal and Oy vertically

upwards. If the cylinder is given a small horizontal displacement c Sr, from
rest to rest, the velocity potential of the subsequent fluid motion is given
by

j> = 2caY St
J

e-''<-^f-vhm{Kx)sm{gHKi}Ki dK. (1)

This is equation (12) of the paper already quoted (2), obtained there by
a Fourier integral method; it can also be derived in the manner given later

by Lamb (3) for the three-dimensional case.

The velocity potential for continuous motion with variable velocity can
be found by a direct integration. We consider first the simple case when
the cylinder is suddenly started at time t = and made to move with
uniform velocity c. We obtam, notmg that the origin is at the centre of
the moving cyhnder,

, ca^x ca?x
9 =

t CO

+2caV
J
dr

J
e--<2/-J')sin{/c(a;+c<-CT)}sin{^M(<-T)}/ci dK. (2)

Deriving the surface elevation j} from the relation

we obtain

Hence we have

I CO

77 = 2ca2
J
dr

J
e-'<fs,m{K{x-\-ct~CT)}co&{giK^(t-r)}K dK. (4)

n n

)ha^

CO

where k^ = g/c'^, and the prmcipal values of the integrals are to be taken.
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Tlie first two terms in (5) give

uu

K„ sin kJ— K cos /</
e'^^dK (x > 0),

'^i
=

21 f 2
+ 277/foa'^e"^°^sin<fo:g-

— 2/coa2
_o J. _ Le'"'dK (.r < 0). (6)

The expressions for rj^ represent a steady state relative to the moving

cyHnder and symmetrical fore and aft of it. With x-\-ct = i = distance

from a fixed origin at the starting-point, the last two terms in (5) represent

the surface elevation at any time due to an initial displacement and velocity

which is the negative of that given by (6); this must be the case in the

present problem and it can be directly verified. With a change of variable,

and with vl = Kg, the last two tenns in (5) are given by the real part of

n,= —2a~ ^ u^e-'"" dii—4a^ \ uH-l"' du. (7)
J W— Mo J -M+ Wfl

— X n

The limiting value of rj.2 as t becomes infinite is derived from the principal

value of the first integral in (7); taking the real part, we find that

T]2-^2TrKga^e~''°fsmK(,x as i->-foo. (S)

Turning to (6), we see that ultimately (S) cancels out the regular waves

in advance of the cylinder and doubles the amplitude of those in the rear.

Without examining the surface elevation in detail, we may specify more

closely the part which at any time consists of a regular train of waves

accompanying the moving cylinder. It is clear from the form ofthe integrals

in (7) that the only contribution to such a train comes from the first

integral, or from ^
r (,i(^ii--</-iio

-•2a-ul e-l>'-du, (!))

and is due to the pole at u = Uq. Regarding u as a complex variable, the

path is along the real axis indented at u = u^. There is a saddle-point at

;(, = g^tl2$. First suppose ^ > 0. The path of integration may be rotated

round the saddle-pomt to the line of steepest descent, namely, the line

u = g-tj'I^+re^'^, the contribution of the circular arcs required to complete

the closed contour being; zero in the limit. We have also to take account
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of the indentation at Uf, according as m^ > or < gH/2^, that is, according

as ^ > or < ^ct. In this manner, it is found that as far as the regular

waves are concerned, (9) gives

— 2nKoa^e-''°fsmKoX (^ < |c<). (10)

Similarly if |^ < the hne of steepest descent is the line u = gH/2^-\-re'^'^

and the corresponding contribution is — 27r/<:oa^e~''°'sinK:oa;.

Summing up this outline of an analysis, the surface elevation at any

time is made up of three parts: (i) the local symmetrical disturbance

travelling with the cyhnder given by the first and third terms in (6);

(ii) a regular train of waves 4TrKga^e-'^'>f sinKgX behind the cylinder extend-

ing from a; = to a; = — |c<; (iii) the part given by the remaining integrals,

representing a disturbance which spreads out in both directions and

diminishes in magnitude as time goes on.

The second part agrees with the general description using the idea of

group velocity. The third part has not been examined in detail, but an

asymptotic expansion suitable for large values of ^ and t may be found

from the transformed integrals indicated in the previous discussion. For

large positive values of ^ and (gri</2^^)— Mq^*, the first term in such an

expansion is ,1/21/2 ^2,,2 ,^ ,

For ^ = ct, that is, at a point over the centre of the moving cylinder,

this reduces to

„2/!I^Ue-i'^»/cosi(7r-KoCi5), (12)

a result which can be obtained directly from the integrals in (7) by using

the method of stationary phase. After a sufficient time, (12) gives approxi-

mately the departure of the motion over the cyhnder from the quasi-

steady state consisting of the local symmetrical disturbance and the regular

train of waves to the rear. If A^ (= ^tt/kq) is the wave-length in the regular

train, the wave-length of the disturbance near the cylinder is 4Ag, the wave-

length for which c is the group velocity. The usual direct solution for motion

with uniform velocity leads to the surface elevation (6) with regular waves

in advance as well as to the rear. The so-called practical solution is then

obtained by superposing a free infinite wave train cancelling out those in

advance and doubling the amphtude to the rear. Another well-known

method of obtaining this practical solution directly is to use the frictional

coefficient introduced by Rayleigh. In the present analysis we have not

used this frictional coefficient, the values of the integrals being interpreted
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as principal values wherever necessary. The chief point of the discussion

is that there is no ambiguity when the motion starts from rest. The motion

which is gradually established as time goes on is the practical solution for

the steady state, with regular waves only to the rear of the cylinder; this

result is in fact associated with the group velocity being less than the wave

velocity.

3. The Wave Resistance (Revised, 1959).

The velocity potential (2) is sufficient for the surface elevation to

the usual approximation; but, in order to calculate the forces on the

cylinder from the fluid pressure, it is necessary to add a further ap-

proximation so as to satisfy the correct boundary condition on the

surface of the cylinder with z = x + iy and V = {g/xiY^'^, the complex
potential of which (2) is the real part is given by

ca^ cap- 2 r . r

We may expand this in the neighbourhood of the cylinder in the form

~^^ A z^ . (14)

Hence the required form for the complex potential is

"2^^=•^ + 24 3" + X^!j1zl1 (15)

valid near the cylinder, the asterisk denoting the conjugate complex
quality.

If X and y are the horizontal and vertical forces on the cylinder,

we have from

2

the integrals being taken round a small contour surrounding the origin

From (14) and (15) we get, to the first order in the co-efficients A

X -iy ^ /^npca^A^-lnpa} ^ A-^ (17)

EDITOR'S NOTE: In preparing this 1959 revision of Section 3, pages 329, 331, and 332 of
the original paper were modified and page 330 was deleted completely.
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with

Jg-i k(c-V) it-r)_g -iK(.c + V) U-tK. g -2 k /^3/2 ^^

,2

(18)

_ifa:_ 1 2 1/2 r .
f

Jg -i ;c (c -K ) («-T)_g -i K (c + K ) (« -T)|g -2 K /^ 5/2 ^^

Taking the real part of (16) and integrating with respect to r, we
obtain for the wave resistance

Putting K = KgM^ = gu^/c^ this becomes

/? = 4;rypK„^a'^
r°° rsin{a^(u-l)! ^ sin{(Xt.(u+l)i1 -;3,.^4^„ (20)^'^o)m-1 w+1

with a = Kf^ct, /3 = 2/<g/.

For suitable values of the parameters a,^ the integrals in (20) may
be computed by direct quadrature, or from convergent and asymptotic

expansions which may readily be deduced. In particular, the limiting

value as t becomes infinite follows directly from the first term in the

integrand and is

ft=4;rVp'<o'^*^"''"'^ (21)

the wave resistance for uniform motion. The next approximation for

t large is of order t~^^^ and can be obtained from the same integral by

the method of stationary phase. This gives, as i -» o"

Thus ultimately the resistance oscillates about the steady value,

the amplitude of the oscillations diminishing slowly with the distance

travelled and the period being roughly 4Aq, corresponding to the per-

turbation of the wave motion given in (12).
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4. Three-dimensional motion

Turning to the general problem, we take the origin in the free surface,

with Oz vertically upwards. Suppose a point source of strength m is

suddenly created at the point (0, 0, —/) and maintained for a short time

St. To satisfy the condition at the free surface for the initial motion, we
take

^0 = ---, (23)

with r\ = a;2+2/2+(2+/)2; r\ = x^+y^+{z-f)\
The initial surface velocity found from (23) acting for a time St gives

a surface elevation which can be put in the form

IT C30

i:o = -8T ( de ( e-'<fcos(KVT)KdK, (24)

— 77

with TO- = xcos9-\-ysm6.

The velocity potential of the fluid motion at any subsequent time t due

to this initial displacement without velocity is

n CO

<f>
= '^g^hT

j
dd e-'>^'<-cos{K7!T)sm{gHK^)K^dK. (25)

-IT

Consider now a source moving parallel to Ox at constant depth /, the

strength m being a function of the time. Let x be measured from a moving
origin vertically over the source, ^ from a fixed origin at the starting-point;

and let s, be the ^-coordinate of the source at any time t. Then we obtain,

from (25),

-^
(26)

with ID-' = (^—sjcos^+ysin^.

We may generahze this result for a solid body moving through the liquid.

If the solid moves through an infinite liquid with unit velocity, we may
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take the fluid motion to be that due to a certain distribution of sources

and sinks over its surface and of amount o- per unit area at each point. We
assume this distribution in the present problem in order to obtain the wave

motion to the first approximation. Thus in (26) we replace m by ac{t),

where c is the velocity at time t; if (h, k, —/) is a point on the surface of

the body we also put x—h for x,y—k for y, and

m' = {^—h—s^)cos9+{y—k)smd,

and the required velocity potential is obtained by integrating over the

surface of the body.

We shall not carry the general problem further meantime, but consider

the case of a slender ship form. Here the usual approximation is to take

cr = — {8y/8h)/2TT, where the surface of the form is given as an equation

for y in terms of h and /; further, the source distribution is taken to be in

the longitudinal section of the form by the plane y = 0. We obtain, in

this case,

t 77 00

~2 \\%^^^f {c{r)dr r dd { e-<f+'<'co&{Km')sm{giKi{t-T)}KidK,
27t2

-77 (27)

with TO-' = (^—/i— s^)cos^+2/sin0. This result is equivalent to that

obtained by Sretensky by a different method.

The pressure at any point is given by p d^ldt, neglecting the square of the

fluid velocity; and the resistance is found from

ie = - 2

JJ
j>Qt\ 0, -/') ^, dh'dr, (28)

taken over the longitudinal vertical section. Hence, from (27) and (28),

we find

ii; = ^ I I
^gLdh'df X

JJ[{(A'-;i)2+(/'+/)2}-i-{(/i'-A)2+(/'+/)2}*]gc^Arf/+

( 77

—77
CO

e-K(/+/')cos(«:tD-')cos{g'iK^(«— t)]kc?/c, (29)

27r

X

X

withxcr' = {h!—A+S;— s^)cos^
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334 WAVE RESISTANCE OF A CYLINDER

The coefficient of c is an effective mass for this particular problem,

taking account of the free surface and assuming no wave formation and

noting that the square of the fluid velocity has been neglected.

As a special case, suppose the model to be started from rest with a

velocity c which is then maintained constant. The finite resistance at any

time after the start is given by the second term of (29), with c a constant

^^•^
'ut' = {h'~h+c{t-T)}cose.

The result can be reduced to the form

t TT CO

B =^ ( dr ( de ( (P+r~)eos{Kc(t-T)cose}cos{g^KHt-T)}K dK,

(30)

with I+iJ = ( [ ^e-'<f+i'<''''°'^dhdf. (31)

Integrating with respect to t, this gives

2gpc
( dd ( {P+J^R =^ I dOi (n^.n sin{(/<rc cos 0—g^K'^)t} sin((«:c cos d-\-g^-K^)t]'

KdK.
KC cos 9—g-K- KC cos 6-\-g-K-

(32)

It can be verified readily that the limiting value to which this tends as

t becomes infinite is

R = ^!^^ r {Il+Jl)sec'>9 de, (33)

where lo+iJo is given by (31) with k replaced by ftrgsec^^.

This result (33) is the known expression for the steady resistance at

constant speed.
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THE RESISTANCE OF A SUBMERGED CYLINDER

IN ACCELERATED MOTION

By T. H. HAVELOCK [King's College, Newcastle-on-Tyne)

[Received 8 March 1949]

SUMMARY
The problem considered is the resistance to motion of a circular cylinder at a

constant depth below the free surface, in particular when the motion starts from

rest and has uniform acceleration. The resistance is expressed as the sum of two
terms ; one corresponds to the wave resistance for uniform velocity, and the other

may be taken as giving an effective inertia coefficient, the variation of which during

the motion is of special interest. The expressions are carried to the second order

of approximation and have been reduced to forms suitable for numerical computa-

tion. Curves are given showing the variation of both parts of the resistance during

the motion, for various values of the acceleration.

1 . Foe the steady motion of a submerged body with velocity c parallel to

Ox, the condition at the free surface of the water is

c^B^/dx^+g 8cf>l8y = 0,

where
(f>

is the velocity potential, Ox is horizontal, and Oy upwards. For

small values of c this becomes formally equivalent to d(f>/8y = 0, while for

large velocities the corresponding hmit may be taken as (^ = 0. The same

effect may be seen if we consider the expressions for, say, a moving point

source at a given depth below the surface; it is easily seen that in the Hmit

the image system becomes a point source for small velocities, while it

approximates to a sink for large velocities. Some discussion has arisen as

to the appropriate surface condition to use when estimating the effective

inertia of submerged or floating bodies; but any argument based on steady

motion assumes a state which has been uniform for a long time, and
cannot be apphed directly to accelerated motion or motion started at a

given instant. In a previous paper (1 ) expressions were given for resistance

in accelerated motion, but no case has hitherto been worked out. It can

be seen from equation (30) of that paper that, if we proceed only as far

as the first approximation, the total resistance separates into two parts,

the wave resistance and the inertia resistance; further, the latter part is,

to that approximation, the same as for motion under a free surface

neglecting gravity and thus corresponding to the surface condition ^ = 0.

To obtain a more accurate result it is necessary to proceed further in

the approximation to the solution. In the present paper we consider the

problem of the circular cyhnder moving at constant depth below the

surface, examining, in particular, motion with uniform acceleration starting

[Quart. Joum. Mech. and Applied Math., Vol. II, Pt. 4 (1949)]
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420 T. H. HAVELOCK

from rest; the solution is carried to the second order of approximation.

It has been foimd possible in this case to reduce the expressions to forms

which are not too difficult for numerical computation, and curves have

been drawn to show the influence of the acceleration upon the resistance

and upon the effective inertia coefficient.

2. We shall construct the expressions by the method used in the

previous paper. With the origin at a depth / below the free surface,

Ox horizontal and Oy upwards, suppose a singularity of ordep n created

at the origin at time i = 0, maintained for a short time St and then

annihilated. To satisfy the condition at the free surface during this

impulsive motion, we have for the complex potential function

w, = P„^-"-P*(^_2^/)-^ (1)

where P^ may be complex, and P* denotes the conjugate complex

quantity.

To obtain the surface elevation in a convenient form we write (1) as

00 CO

The result of the initial A^ertical velocity acting for a time §t is to leave

the free surface with an elevation -q given by
00

(n-1)!

where Re denotes the real part.

The potential function for the subsequent fluid motion due to this

initial surface elevation, without velocity, is

w = ^^^P*§T r/<:"-*e-«--2'^/sm(c^l</<l)(Z/f. (4)

We now consider this to be a continuous process occurring as the origin

moves parallel to Ox with a velocity c, with c and P„ functions of the time.

Let 5; be the distance travelled by the origin from the starting-point; then

in (4) we replace t by t—T, and z by z— (s^— s^), so that z is now referred

to the moving origin. Integrating from the start up to the instant t, we

obtain for the complex potential

t 00

_ IjM—i^—?i;:!V r p*,.
i

r i^-uz-^Kf^n-i ^^. (5)

z" (z-2i/)" (w-l)! } ""^ ' ]

with L — e-'^^'^^t-ST)-g^Khi-r)) _^-i{K[.s,-ST)+g^Kh-T))
_ (6)
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RESISTANCE OF A SUBMERGED CYLINDER 421

This result may be confirmed by using the pressure condition at the free
surface, when the axes are moving parallel to Ox with velocity c and
acceleration c. For these relative coordinates we have

__1 8(1) cd<f>

The condition that p is constant on the free surface leads to the condition

It may be verified by direct substitution that (5) satisfies this condition.

3. Suppose a circular cylinder, of radius a, centre at the origin, is

moving horizontaUy with velocity c. We assume that the potential can
be expressed as an infinite series of terms hke (5) for integral values of w;
and the quantities P„ are to be determined from the boundary condition
on the circle \z\ = a. If we write

F{K,t) =
I

{-i)np^(t)K»-ll^n-l)\, (10)

we have the general expression

OO

^ = 1 ^„(<)z-"-
J
F*{k, t)e~i-^-^"f dK~

t 00

-ig^
J
F*{k, t) dr

J
Le-^«^-^'<fKi dK. (11)

We may expand the second and third terms in positive powers of s in the
neighbourhood of the circular boundary, and we get w in the form

^ = 2(-P™2-»+e„2»), (12)
with

00

Qn = ~~r f
F*{K,t)K^e-^'<fdK+

t 00

f F*{k,t) dr r LK^+h-^-f dK. (13)

t

The boundary condition on the circle gives

P, = ca^+a^Ql, P^ = a^nQ^. (U)
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422 T. H. HAVELOCK

Hence, for the quantities P^ we have the infinite set of equations

CO. i CXJ

P^{t) = ca^—ia^
J

F{K,t)Ke-'^'<f dK-g^a^
J
F{k,t) dr

J
L*Kh-^'<f dK,

CO

pjt) = --^ F{K,t)K^e-^'<JdK+
t oo

+ ^-
""'^^["''"

{ F{K,T)dT { L*K^+ie~'^'<f dK. (15)

4. We shall only attempt an approximate solution of these equations

as far as the second order, that is, up to w = 2. It may be noted that the

condition at the free surface is satisfied exactly, but the condition on the

circular boundary is only satisfied approximately to the order indicated.

For the forces {X, Y) on the cyUnder we use the general expression suitable

for axes moving with the cyhnder (2), which is in this case

X-iY = Ipi r i^Xdz+irpa^-pij r w* dz*. (16)

We shall find it convenient to take the corresponding resistance in two

parts; thus, to the present order,

i?, = Re{-|p^•
J

i^^^dz^ = _^Re{P,P*} (17)

i?2 = —TTpaH-\-'Re[pi- f iv* dzA = —jTpaH+2Trp'Re\jP^]. (18)

Further, from (15), P^ and P.^ are given by,

t 00

^1 = C«'-^2^1-f-!^2-^'^' J
{-iP^{T)-KP^{T)} dr

I
L*Kh-^-'fdK

(19)

t 00

P, = - |!p,_^P-li^a"
J

{-iP^{r)-KP,{r)} dr
J
L*.«e-W dK.

(20)

If we neglect gravity, we have approximately

P^ = ca^{l-a^l4.p); P^ = -ica^/sp. (21)

From (17) and (18), P^ is zero and

P2 = 77pa2c(l-a2/2/2), (22)

the coefficient of -npa^c being, to this order, the effective inertia coefficient

for a free surface, neglecting gravity. The next step is to use these first

approximations for Pj and Pg in the integrals in (19) and (20) and so

obtain the next approximation.
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RESISTANCE OF A SUBMERGED CYLINDER 423

5. Before proceeding, we may confirm this process by applying the
method to the case of uniform velocity c, for which the results have
previously been obtained by direct consideration of steady motion. We
require the Hmiting values of the integrals in (19) and (20) for t becoming
infinite, the quantities P being constant. Putting in the appropriate form
for L from (6), we have, for instance, the integral

t 00

Integrating with respect to t and taking the limiting value of the
integral in k for < ^co, it is readily found that (23) has the hmiting value

2gri,coC-2[77e-«+i{a-i-e-'«Ei(a;)}], . (24)

where k^ = g/c^, a. = 2ko f, and Ei is the exponential mtegral. The similar

integral with /c* in place of k^ converges to

2giKl C-2[77e-«+i{a;-2-|-Q:-l_e-o=Ei(a;)}]. (25)

The integral with a factor k^ is not required at this stage; being factored

by P^, it clearly does not enter into the second-order approximation.

Hence, to this order, (19) and (20), give, for uniform velocity,

Pi = ca^-~Pi+2iKlcai[7Te-°'+i{oc-^-e-^Ei{oc)}],

Pi= -»^i\-'fga*Pi[77e-°'+i{a-2+Q:-i-e-°^Ei(a)}]. (26)

The resistance R^ is zero in this case; and from (17) and (26) we obtain

i?i = 477Vc2K§a*e-'^[l-2/cga2|^-2_^2Q;-i-2e-«Ei(a)}]. (27)

This result agrees, to the second order, with the more general expressions
obtained previously for the wave resistance at uniform velocity (3).

6. Returnmg to the general expressions (19) and (20), we shall examme,
in particular, motion with uniform acceleration y, starting from rest; thus
we have c = yt,s = \yt'^. The first approximation to P^ is yaH{l-~a^/4p),
and it is sufficient for the next stage to put P^ = yo^r in the integrals in

(19) and (20). Hence, to the required order, we have

^1

t oo

0/74 /» /»

P^= ~^^Pl-\g^a^Y \TdT\ L*Kh-^'<fdK,

where L* = e'(*'<->'°(''-^''-»*'<*('--r)>— e^'(i'^''(''-'-')+ff*«*«--^)>

(28)

(29)
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424 T. H. HAVELOCK

We now reduce the integrals to a more convenient form. The integration

with respect to t can be expressed in terms of Fresnel integrals ; after some

reduction we obtain the result

t

-p-^ei(P'^^^qP{pt+q}-qP{q)-lie-'i'}, (30)

where 2p^ = Ky, q^ = g/2y;

u

and P{u) = C[u)-iS{u) =
J

e-^^' du.

For the integration with respect to k, we change the variable from k to v,

given by K = 4gv^JyH^; and we obtain finally

jrdr
f
L*Kh-^'<f dK = A^+iB^ = k^g-H-^

J
(A+iBye-^P^' dv, (31)

i CO CO

\ rdr \ L*Kh-^'<fdK = A^+iB^ = B^g-H-^ | {A+iB)vh-^?^' dv, (32)

with

k^ = 2g/y; ^ = gflyH^\ p^ = Hv-\); p^ = k{v+\);

A = C{p^)cospl+S{pi)s\npl+C{p,)co5pl-{-S{p^)mip\-\-

-\-{C{\k)-k-'^smlk^]{cospl-cospl)+
^ISim^k-^coslk^smpl-smpl); (33)

B = C(py)smp\—8{p^)(io%p\-^C{p^)sm.pl—S{p)z)cos.pl—

—{8{\k)-\-k-'^ cos \k'^}{coBp\— cos pI)-\-

-ir{C{\k)-k-^smlk%s\npl-smpl). (34)

7. For the resistance, we consider first the part R^ . This could be obtained

to the second approximation, but it was thought sufficient meantime to

examine only the first approximation. The general effect of the second

approximation is known in the case of uniform velocity; it consists in

increasing the value somewhat at lower speeds and diminishing it sKghtly

at higher speeds. From some rough calculations it appears that the effect

in the present case would be similar; but for a general idea of the effect of

acceleration upon R^, which reduces to the wave resistance for uniform

velocity, it is sufficient to take the first approximation. From (17) and

(28), we have
00

i?i = 27TpygiaHA^ = 1287Tgpa^'P'-(a^/f^)
J

Av*e-»^^' dv, (35)

in the notation given in (33).
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RESISTANCE OF A SUBMERGED CYLINDER 425

For the second part of the resistance we include second-order terms:
from (18) and (28) we have

i?2 = -TTpa^y+27rpa^y{l-a^/if^)-2Trpygia^8Bj8t. (36)

From (31) and (33), this leads to

-fig = TTpa^yp,

with p = i-(l^S2kp%){a^/f^),

00

b = j {-S+ lQ^v^yBe-^P^' dv. (37)

Numerical computations have been made for the integrals in (35) and
(37). The quantities A and B depend only upon the acceleration, while
the instantaneous value of the velocity enters through /S. The integrals
were calculated for two different accelerations, and for about a dozen
values of /3 in each case—rangmg from ^ to 40. For small values of ^ it

was necessary to go as far as ?; = 4-0 or further, but subdivisions of 0-1

for V were usually sufficient. For large values of j3 the necessary range
for V was less, but subdivisions of 0-02 had to be taken, especially for the
larger values of k. For various reasons it was difficult to obtaua any high
degree of accuracy in the final results; but it is considered that the
calculations are sufficient to show the general character of the effect of
acceleration upon the resistance.

8. Some of the results are sho-mi in the curves of resistance. These
curves show the resistance for a particular value of the ratio of the radius
of the cyhnder to the depth of its centre, namely the value given by
a7/2 ==0-1. We have chosen to graph the curves on a base of velocity c,

or yt, the abscissae being c/{gf)K This was partly so as to bring into the
diagram the wave resistance curve for uniform velocity; this curve is

shown as R^ in the diagram.

Taking the resistance R^^ first, the curve A^ shows its value for k^ = 977/2,

or for y/g = 0-1418; while the curve B^ is for k^ = 77/2, or for y/g = 1-276.

The effect of greater acceleration is shown in the lower maximum wave
resistance and the higher velocity at which it occurs compared with the
curve i?o for uniform velocity. It should be noted that if we had graphed
the curves on a time base, the abscissae for curve 5^ would be reduced
to one-ninth compared with those for ^j.
We turn now to the resistance R^, which is of greater interest. In

general, the relative magnitudes of R^ and R^ depend upon the two ratios

y/g and a/f. In the diagram, the curve A^ shows the resistance R^ for the
case y/g = 0-1418, and a^/p = 0-1; the total resistance m that case is
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426 T. H. HAVELOCK

given by A-^+A^. It is seen, from (35) and (37), that the part of the total

resistance which is simply proportional to the acceleration is

If we define the effective mass as the coefficient of y in this term, then

the inertia coefficient is the same as for a free surface neglecting gravity.

We could, on the other hand, divide the total resistance by y and so define

0-1S
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of 0-975 near c/(gr/)i = 1, falls to a minimum of 0-91 near cligf)i = 2-5,

and then rises graduaUy towards 0-95. It is of special interest to notice
that while the coefficient begins with the free surface value its rise towards
the rigid surface value occurs before the wave resistance E^ has become
appreciable. A few calculations were also made for a very small accelera-
tion, with y/g = 0-035, to confirm the general trend of the variation; in
this case, the coefficient^ has risen to a value of 1-05 at about cj{gf)i = 0-2.

Referring to (37), some of the approximate values found in these
calculations are given for reference.

Fory/gr = 0-1418, the quantity 32^-^2^ has the value -0-52, -1-2, —1-1,
0-92, 1-66, 0-4 for ^ equal to 40, 10, 4, 1, 0-5, 0-25 respectively. For
yjg = 1-276, the values of 32^^^^ are —0-04, —0-24, 0-3, 0-4 for ^ equal to-

10, 1, 0-25, 0-125 respectively.

The motion which has been examined in detail is uniform acceleration
starting from rest. Similar calculations could be made for other cases of
variable velocity, in particular for motion with uniform acceleration with
a given initial velocity. In the latter case the results are not Hkely to be
much different m general character; it appears that in any case the initial

value of i?2 would be the inertia resistance for a free surface without
gravity, and its subsequent variation would be similar to that shown by
the present calculations.
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The forces on a submerged spheroid moving

in a circular path
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Expressions are obtained for the tangential and radial forces on a sphere moving in a circular

path at constant depth ; similar calculations are made for a prolate spheroid, including in this

case the couple acting on the spheroid. Numerical computations have been made, and curves

are given to show the effect of curvature of the path upon the wave resistance.

1. The forces on a ship moving in a curved path are, no doubt, affected to some

extent by the wave motion produced, but it is not easy to estimate the magnitude

or nature of this influence. In the following paper an approach is made to some

aspects of this problem by considering some cases of a submerged body moving in

a circular path, namely, a sphere and a prolate spheroid. The motion of a sphere has

been examined recently by Sretensky (1946), but the results given by him are in-

correct. In the present work a different method is adopted; it is one which can be

used for bodies of other forms, and also for non-uniform motion.

2. We may derive first expressions for the ideal case of a simple source moving in

any manner at constant depth / below the free surface of the water. We take fixed

axes with in the free surface, Oz vertically upwards, and we use cyHndrical co-

ordinates {m,d,z). If at time t the strength of the source is m and its horizontal

distance from is Wqi ^^'^ velocity potential due to an infinitesimal step in the motion

is given, as in equation (27) of a previous paper (Havelock 1949), by

^ = 2mgfi5T Jo(A:c7o)e-'''^-^'sin{sri/c*(<-T)}/cid/c. (1)

We may regard the effect due to a point source, varjdng in strength and moving in

any manner, as made up of the superposition of small steps of this nature. In

particular, for the present problem, we suppose the source of constant strength and

to be moving in a circle of radius h; further, we take the motion to start at < = and

the angular velocity to have a constant value Q. Hence we obtain the velocity

potential at any time t as

^ =
-I-

2mgri cLt Jo{k^o) e'"^'''^ sin {g^Ki(t - t)} k^ dK, (2)
'"i '2 Jo Jo

(3)

where r\ = w^ + }fi- 2wh cos {6 - Qt) + (z +ff,

rl= w^ + h?- 2vyh cos [6 - Qi) + (2 -ff,

wl = w^ + h^- 2wh cos (6 - Q.T).

For the relative steady state which is ultimately established we require the hmiting

form of (2) as i->oo. We substitute in (2)

Joi'^'^o) = ^('<^^) M>^^) + 22 Jni'^'^) Jnif^^) COS n{6 - Q.T). (4)
I
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T. H. Havelock 298

VVe then integrate with respect to t term by term and obtain the hmiting form of the

resulting integrals in /c as i->oo. This process readily gives the result

^ = ---+4mSP J(Km)JjKh)cosn{d-Qt)dt
'1 '2 1 J '^ ~ "' ^^ ly

d-nmO^ °°

—^n^J^{n^n^Tnlg)JJn^Q^hlg)ex^[-n^Q.^f-z)lg]sinn{d-Q.t), (5)
9 1

where P denotes the principal value of the integral. It may be verified directly that

this solution satisfies the conditions for the quasi-steady state.

3. If a sphere, of radius a, is moving uniformly in a circle we may, as a first

approximation, take it as equivalent to a doublet of moment M equal to ^a^hQ.

It is easily seen that the velocity potential for this doublet can be derived from (5)

by taking dcpjdt and replacing mhD, by M. Thus we obtain

, Mm sin (6 -D.t) Mm sin [d-Qt)
9 =

:§ zs
'1

4:M °° r°° Ke-"'^^^^
+ -^S-P)^ ^^—

^^^^?iJ„(/cro)J„(ffA)smw((9-Q«)dAc

4:7tMD.^ "
+ r— S nU^{n^Q}mlg) J^(n^Q.%lg) exp [

- n^Q.\J-z)}g] cos n{d - D.t). (6)
9"' 1

It may be noted that the second term in (6) is equivalent to

We may deduce the wave resistance from the energy propagated outwards through

a cyhndrical surface, namely,
•0 r^n 3^90

2Mms\n {6-0.1) 4.MQ? ^ p - q-'^'J-^)

rl gh 1 Jo K-n^Q.^lg'

- dz\
J-oo Jo pft^'^''- («)

Taking the cyhnder of large radius, we require the first terms in the expansion of

(6), which are seen to be of order m~^. One such term comes from the integral in (7).

Referring to (4), since we are concerned with large values of m, we may replace

Jn,{<^) in the expansion by H'-^{Km) and take the real part. Thus we have to evaluate

the real part of ^^^-.u-z)
P\ H''^'>{Km)J„(Kh)dK {m>h;z<0), (9)
Jo f^ — K^n

where we have put /«„ = n^Q^jg. Regarding ac as a complex variable, we may change

the path of integration to the positive half of the imaginary axis; taking account of

the indentation at /c = Ar„, we obtain for (9)

' m sinm{f—z) + /c„ cos m{f— z)2 p ™ 2 , ^2
• Kni'^m) I^(hm) dm

III -T Ajj

- "^nil^n^) Jnil^n^) exp [ - /f„(/- Z)]. (10)

Collecting the results from (6), (7) and (10), and using the asymptotic expansions

for J„ and F„, we obtain, for m large,

i> ^(—
)

^n^Jni'^„h)exp[-Kjf-z)]cos{n(d-Qt-^7T) + K„m-in}. (11)
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With this value of
(f)

in (8) we obtain the rate of propagation of energy outwards,

and this must be equal to RhQ. with R the steady wave resistance. Finally, replacing

M by \a^h, we obtain for the wave resistance of the sphere

R = ^^P^£ n'JKnm^hjg) exp [ - 2n^ClYlg]. (12)
9"- 1

It is of interest to examine the limiting form of this expression as A->-oo, Q-»0,

hQ-^c. The series then becomes an integral, and by using appropriate asymptotic

expansions for Bessel functions of large order and large argument, it is found that

(12) reduces to ciir

R = inpa^i^c^ sec5;g expC-2/Co/secVJ^A, (13)

with /Cq = gjc^, and this is the wave resistance for a sphere in steady rectilinear motion

with velocity c.

4. Returning to the general expression (6) we may evaluate the resultant fluid

pressure on the sphere and so obtain both the radial force and the tangential force

or wave resistance. The effective part of the pressure comes from pdipjdt, and we

notice from (6) that the terms divide into two groups, (i) those symmetrical in the

angle d—Qt, (ii) those anti-sjmimetrical in that angle. Obviously the resultant

radial force on the sphere comes from the terms in group (i), while the tangential

force is due to those in group (ii). It is necessary to note that, in using this method,

the expression for the velocity potential must be carried to a further degree of

approximation, because the boundary condition at the surface of the sphere must

be satisfied to the same stage. Let (r,a,fi) be spherical polar co-ordinates referred

to the centre of the sphere so that

mcos{6—Clt) = h + rsina cos/9,1

msm{d— Qt) = r sia a sin J3, V (14)

z = —f+rcosa. J

The first term in (6) is the doubletD giving the correct normal velocity at the surface

of the sphere. The remaining terms in (6) may be expanded in the neighbourhood of

the sphere in spherical harmonics so that we have (6) in the form

</> = D + i{rlarSJoc,/i). (15)
1

The required extension is then

Taking the tangential resultant force, the effective terms in pd^jdt from (6) are

{2TTpa?D?lg) S n^Wc^^w) Uk^Ji) exp [ - k^-z)] sin n{d - ^t). (17)

1

In this, we put

JjAf^w) exp [ - /c„(/- z)] sin w((9 - QO
{-if

-exp[-A:J/-z)] exY}[iKnTncos(6-0.t-u)]smnudu

• exp [ - 2/c„/] exp [i/c„ r(sin a cos /? cos m + sin a sin ;ff sin m - 1 cos a)

277

(-iy

277

— iK„hcosu]amnudu. (18)
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The forces on a submerged spheroid moving in a circular path 300

Expanding under the integral sign, we obtain the required expression in terms of

spherical harmonics. Obtaining the resultant force involves multiplying the pressure

by a surface harmonic of the first order and integrating over the sphere. Thus we

only need the first-order term from (18), which is

( — i)" T"
i/c„a exp [ — 2/c„/] (sin a cos ji cos m + sin a sin y? sin m — i cos a)

^TT J —It

exp[ — tA:„AcosM]sinnMdw. (19)

In accordance with (16), this must be multipUed by f to get the correct operative

value of the pressure. We insert these results in (17), multiply by sin a sin^ and

integrate over the surface of the sphere. It is easily verified that this process gives

the same expression (12) for the tangential resistance.

5. For the resultant radial force outwards, we carry out the same process on the

pressure derived from the first thi'ee terms of (6), noting that in accordance with

(16), the first-order surface harmonic from the second and third terms of (6) must

be multipHed by f . We then multiply by sin a cos/? and integrate over the surface

of the sphere. The details of the calculation need not be given; after some reduction,

we find for the resultant radial force outwards the expression

This expression does not lend itself readily to numerical computation. We notice,

however, that the first term in (20) represents an effective mass ^npa?{l — ^a^jlQf^),

which is the first approximation for a sphere under a free surface, neglecting gravity.

On the other hand, when the angular velocity is small the last term in (20) approxi-

mates to \TTpa^D?IP, since l.nV„(Kh) J'j^(Kh) = J/cA. Thus for small velocity, the

effective mass approximates to ^7rpa^(l+3a^ll&P), as for a sphere under a rigid

surface.

It is of some interest to make calculations from (12), so as to obtain some idea of

the nature and magnitude of the effect of curvature of the path upon the wave

resistance. Curves showing the results are given in figure 1. The abscissae are values

of hQ.j^{gf), so as to include rectilinear motion for comparison; the ordinates are

values of RjM'g{ajff, where M' is the mass displaced by the sphere. Curve A is

for steady rectilinear motion, that is, for the limiting case hjf-^oo, and calculated

from (13). Curve B is for h = f. Even in this case the mean curve approximates to A
,

but it is of interest to note the hump and hollows due to wave interference when the

sphere is making complete circles. For curve C we have taken h = 4/; it shows how

with increasing radius of the circular path these interference effects disappear and

the wave resistance approximates quite closely to that for straight-line motion at

the same linear speed.

6. We consider now a prolate spheroid with its axis at a constant depth /below

the surface, its centre C describing a horizontal circle of radius h with constant

angular velocity Q, the axis of the spheroid remaining at right angles to the rotating

radius through C. We use the same fixed axes as before, with cylindrical co-ordinates

0{v7, 6, z) ; and, when required, we use rotating axes C{x, y, z) with Cx along the axis

of the spheroid in the direction of motion and Cz vertically upwards.
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301 T. H. Havelock

M'gialSf

The motion of the spheroid is made up of a linear velocity hO. parallel to Cx and

a rotation D. about Cz. In terms of spheroidal co-ordinates given by

x = aeii^, 2/
= ae(l-/*2)i(S'-l)*cosw, 2 = ae(l-/i2)i(^2^ l)4sinw, (21)

the known solution for this motion in an infinite liquid is (Lamb 1932)

95 = 2AaehQAP^{lx) Q^{Q - ^Ba^emPUfi) QUO cos w, (22)

with ^-i = 2e/(l-e2)-log{(l + e)/(l-e)},
|

B-i = {3(2-e2)/e2}log{(l + e)/(l-e)}-2(6-7e2)/e(l-e2).J

It is well known that the hnear motion can be expressed in terms of a certain source

distribution along the axis of the spheroid, and it can easily be shown that the angular

motion can be ascribed to a doublet distribution along the axis. In fact, (22) is

equivalent to

4> = AhQ.
1:

kdk
BQ.y^

k.{ah^-k^)dk
(24)

^^{(x-kr + if + z^}i ^j_^{{x-kf + y^ + z^}^-

We may now obtain the required solution by integration of the expression for a

source given in (6). For the first term in (24) we have to replace a typical factor

JniKh) cos n(6 - Qt) in (6) by JJ^Ki^^+ ^^)*} cos n{d -D.t- a), where tan a = kjh; and,

taking account of the integration in k, this may be replaced by

Jn{K{h^ + k^)^} sin no, sin n{6 - Qt).

Further, so far as the co-ordinates x, y, z are concerned, the second term in (24) may

be derived by taking djdy of the first term; and when the expressions are put in terms

of the fixed co-ordinates this is equivalent to operating by didh. Also we have

^[JX/i2 + P)i}sinna]

= i/c[J„_i{/c(;i2 + ^2)i} sin (w - 1 ) a- Jn+i{K(h^ + k^)^} sin (w + 1 ) a]. (25)
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The forces on a submerged spheroid moving in a circular path 302

Carrying out these operations we obtain for the rotating spheroid at depth /, its

centre describing a circle of radius h,

roe

^= {AhQ.kF + Bak{ah^-k^)G}dk, (26)
J — oe

with

F = + 2^ Jni'^^) Jnlf^ni^^ + -t^)*} s"! na siu n{d-Q.t)dK
^1 ''2 1 Jo f^~ l^n

+ (477fl2/^) V n^j,(K^ w) J^{Kjh^ + k^)i} exp [ - Kjf- z)] sin noc cos ?i(^- Q«), (27)
1

A — tiT cos ((9 — t}<) A — TiJ cos (^ — Q<)
Cr =

rl rl

rl = {wsm.{d-Q.t)-kf + {h-wcos{d-Q.t)Y+{z+ff,]

rl = {w sin {d - Q.t) -kf + {h-w cos {d - D.t)f+ (z -ff
(29)

1 Jo K — l^n

- Jn-i{K{h^ + k^)^} sin (n - 1 ) a] sin n(d-Q.t)dK

277-Q4 "o

+—i- 2 w*'4('^«^) K+ii/^nC^' + ^')-} sin (ri + 1) a

-'4-iK(^^ + ^^)^}sin(w-l)a]exp[-/c„(/-3)]cosTO((9-Q<). (28)

In this K^ = n^Q.^lg, tana = kjh,.and

^':'
"::}

By comparison with § 3, we see that for m large we have

^ ~ 2^"'(^)* S {2ri^i:„ + v?B{D?lgh) M^}

exp [ - /c„(/- z)] cos {m(6i - Qi - \tt) + /c„ti7 - Itt}, (30)
("oe

with -^71= A;J„{/c„(A2 + A;^)*}sinna(i&,
J -oe

/•oe

Jf„ = kia^e' - k^) [J-„+iK(A2 + fc2)i} sin (71 + 1 ) a
J — ae

- 4-iK(A' + ^')*} sin (71 - 1 ) a] rf^.
j

Using this in (8) we obtain the rate of propagation of energy outwards; if i? is the

tangential resistance and G the couple required to maintain the uniform motion,

this leads to

Bha + GQ = ^^^^^^^^n42AL^ +B^h^mX ex^[-2n^Q.Ylg]. (32)

7. We may obtain the resistance, the couple and the radial force by calculating

the resultant fluid pressure on the spheroid. For the wave resistance the only part of

the pressure which gives a resultant is the term pd^jdt, and we have

R= \LldS = pa^l-e^)r C^'^^d/ido), (33)
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in terms of the co-ordinates (21), with ^ = ^^ = 1/c on the spheroid. Taking from

(26) the terms which contribute to the resultant tangential force, we have

^=1'^ {AhQkFi + BD.k{a^e^-k^)Gi}dk, (34)
ot J —at

with
477-O^ «>

F^ = i:wV„(/c„ti7) J>J/i2 + p)i|exp[-/c„(/-z)]sin7ia sinw(^-Q<), (35)
Q 1

and a similar expression for G-^, derived from (28). If (34) is expanded in the form

^= S S (^?cossw + S^sinsw)P?(/<)P?(0, (36)
01 r=\ s=0

we must add a similar expression with Q\{X>) in place oiP%{^) so as to maintain the

boundary condition at the surface of the spheroid; for this part of ^ this is 9^/3^ =
for t, = ^Q. Hence on the spheroid we have

^=S SC^(4?coss« + B?sin5w)P»(gP?(/.),

with C? = 1 - P?'(Co) Q'AQIPUQ Q'r'iQ- (37)

We now expand (34) in the form (36), noting that for the value of i? we only require

the term in Pi(fi). For this purpose we have

J„(/c„ T!7)exp K(/-2)] smn(d~Qt)

(
— i)" /""

= —-— exp[ — 2/c„/+/f„z] exp[i/c„(.'csinM — 2/cosM)-|-iV„AcosM]sinwwrfw,

(38)

with the origin now at the centre ofthe spherqid. Substituting from (21), we multiply

by /id/id(o and integrate over the surface of the spheroid. It can be shown that

/id^\ exp [i/c„{a/t sin u — b{l— /<^)* (cos u cos o) + i sin co)] d(o

= 47ri(7r/2/c„ae^)*sin~iMJj(/c„aesinw). (39)

Using (39) in (38), we have, so far as this t3rpical term is concerned, the integral

4:7ri(nl2K^ae^)^ I ex^p[iKJ^hcosu]J^{K„ae3m.u)sm-^usinnudu. (40)

It is ofinterest to find that (40) can be put in the form (in^la^e^)^ »"-^n> ^^ ^^^ notation

of (31). Collecting these results and including the factor CJ from (37), we obtain for

the wave resistance

It = A^n?Lj2AL^ + B^nm^jexT?[-2n^njlg]. (41)
9

We could obtain the couple G by similar calculations; or, using (32), we have

G = ^^^^^ B^n^Mj2AL^ + B^n^M^]ex-p[-2nmYlgl (42)
S' 1 \ 9"' /
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The radial force can be obtained by the same method from the remaining terms in

the velocity potential; but the expressions are lengthy and not suitable for numerical

computation.

If we take limiting values asA->oo, Q->0,AQ-»c, the couple G becomes zero and

R reduces to the wave resistance given previously (Havelock 1931) for the linear

motion of a spheroid. On the other hand, if we take A = 0, we find that jL„ = 0,

^2n+i — 0' ^^d "^^ obtain the couple for pure rotation as

p;l 27T2/o^6a6 CD

G = ^ Q*£2 ^ n^pi,, exp [ - Sn^Oy/^],
6' 1

with Pin= \
{l-u^)J.in{'^n'^^^aeujg)du. (43)

8. For numerical computation the integrals for L, M can be expanded in various

forms; for instance, one which proved useful can be derived from the expansion

Jni-Pi 1 + w^)*} sin [n tan-i u) = (/„_! + J^^.^) {^pu)

" {'^n-3 + 3=4-1 + •^'4+1 + "Ai+s) ^^"gj I" (44)

the Bessel functions having the argument p. For some values of the parameters it

was found more convenient to evaluate the integrals by direct quadrature.

016r

012

R 0-08

0-04

0-8 I'O 1-2

ha/^{gf)

FlGTJIlE 2

As a particular case we take a spheroid for which 2a = 56, so that e = 0-9165; and

for the depth we take/ = 26. This was one of the cases for which calculations were

made previously for rectihiiear motion. To bring out the effect of curvature we take

for the radius of the path h = 5b. The results for the wave resistance are shown in

figure 2. The ordinates are values of Rjngpb^, and the abscissae are hQ,^{gf). The

curve A is for linear motion and is taken from the paper already quoted (Havelock
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305 The forces on a submerged spheroid moving in a circular path

193 1 ). Curve B shows the effect of circular motion in this particular case; the

difference between the two curves is quite small even in this rather extreme case.

A curve is not given for the couple G, as the quantities M are rather difficult to

evaluate with sufficient accuracy for this purpose; however, approximate computa-

tions were made and the maximum value appears to be at about hD.I^{gf) = 1-25

with a value of Gjngpb* of about 0-026. It might be expected that the couple would

be small for a solid of revolution in this particular case; it would probably be larger

for a flat elhpsoid, for which similar calculations could be made by the methods used

in the present work, the appropriate source and doublet distributions being then

over the plane area enclosed bj^ the elliptic focal conic.
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Wave Resistance Theory and Its

Application to Ship Problems
By T. H. Havelock, Visitor^

It is now just over fifty years since the first

mathematical analysis was made of the wave re-

sistance of a ship form, and during the latter half

of that period there has been a considerable out-

put of work, both theoretical and experimental.

It is impossible to give any adequate survey of

this work here, and fortunately it is unnecessary

to make the attempt; there are excellent sum-
maries which have been published from time to

time, and in particular I would refer, for a com-
prehensive account with references, to Wigley's

recent paper, "The Present Position of the Cal-

culation of Wave Resistance" (L'Association

Technique Maritime et Aeronautique, Paris,

1949).

In the following notes I deal first with a solid

body which is completely submerged; a short

descriptive account of one method of developing

the mathematical theory is followed by some re-

cent results on motion in a curved path and on ac-

celerated motion. The second section deals with

floating bodies, or surface ships. Reference is

made to the need for improving the approximate
theory for models of fine form and extending its

range of application; and a short account is

given of some attempts, dealing in particular with

Cl) models of fuller form, (2) models of non-

mathematical form and methods of approximate
calculation, (3) the inclusion of the effects of vis-

cosity and the possible interaction between fric-

tional resistance and wave resistance.

Submerged Bodies. Consider a solid body
wholly submerged in water and moving in a hori-

zontal line with given velocity. Assuming the

water to be frictionless, the fluid motion is speci-

fied by a velocity potential <l> satisfying given

boundary conditions: (1) the normal fluid veloc-

ity on the solid is equal to the normal velocity of

the solid at each point, (2) the pressure is con-

' Paoer presented at meetings of the New England Section, August
28, 1950, and of the Chesapeake Section, September 7, 1950.

' Kings College, Durham University, Newcastle-upon-Tyne.

stant at the free surface of the water, (3) for deep
water the velocity diminishes to zero with in-

creasing depth. We may also impose a condition

for the motion far in advance of the solid, such
as, for instance, to insure that in the usual phrase
the solid is advancing into still water. In gen-
eral, this problem has only been attacked by some
method of continued approximation. We may
suppose that the wave motion at the surface is a
relatively small effect, and we take </>o for the

velocity potential as if the solid were moving in

an infinite liquid, and satisfying condition (1).

We then add a correcting potential </>! so that </>» -)-

01 satisfies condition (2) at the free surface; and
then a potential 4>2 to maintain condition (Ij, and
so on. Thus we may picture the solution

<t> as an
infinite series (jx, + 4>i + 4>2 + .... We may as-

sume this process to be convergent; but the ex-

pression of it in any particular mathematical form
would involve consideration of convergence and
of the uniqueness of the solution so obtained. It

has only been possible to carry out this process in

any detail for sohds of simple form, such as a cir-

cular cylinder, sphere, or spheroid. In fact, for

most cases it has not been carried further than
the first three terms; while for bodies of ship-

shape form nearly all the results have meantime
been built up on the first two terms—denoted
here by 0o + <^). Assume now that we know the

first function </)o, giving the solution if we neglect

the wave motion completely, and consider the

determination of the next function 0i. There
are various methods available ; the one I wish to

outHne may not be the best from a mathematical
point of view, but it has some advantages for de-

scriptive purposes. The method is one which was
used long ago by Kelvin for the waves produced
by a pressure disturbance traveling over the sur-

face of the water. Consider for a moment the

classical problem of the traveling pressure point.

Instead of treating this directly as a continuous

process, we may regard the motion as the limit of
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14 WAVE RESISTANCE THEORY AND APPLICATION

a succession of small steps, at each step an impulse

being applied to the surface of the water. Each
impulse starts a series of ring-waves traveling

out in all directions; and to get the total effect

at any time we have simply to sum up the effects

due to all the previous elementary steps, the well-

known wave pattern emerging from the mutual

interference of these elementary ring-waves. The
process can be expressed mathematically to give

the complete solution of this problem.

Returning to the submerged soUd, we regard

the continuous motion as the limit of elementary

steps and examine what happens at any given

step. We picture the solid as suddenly started

from rest with a given velocity and then stopped

after a short interval of time. For this impulsive

motion <j>o is the potential as if the solid were

started from rest in an infinite liquid. But the

form of the surface condition for this step is that

there shall be no impulse at the free surface and

we must add the appropriate function <^i. This

may be written down directly as a reflected po-

tential, but we may picture it in this way. Sup-

pose the water continued above the free surface

and place in it the image of the given solid. When
the solid is moved through its elementary step,

we move the image suddenly through an equal

small step in the opposite direction. The poten-

tial for these two motions in an infinite liquid

gives the required approximation <^o + <#>i- We may
notice, in passing, that gravity does not come into

play during this impulsive motion. We now cal-

culate the vertical velocity of the free surface,

and the result of the step from rest to rest is that

the free surface is left with a known elevation.

The subsequent motion due to this elevation can

be worked out, the elevation spreading out in all

directions in the form of free gravity waves.

Finally, for any continuous motion of the solid

we sum up the total effect of all the previous ele-

mentary steps in the motion. The process can be

set out in mathematical form, and so we obtain

the first approximations for the assigned motion

;

it may be remarked that further approximations

are possible by generahzing this process. An in-

teresting point is that this formulation of the

problem automatically leads to the so-called prac-

tical solution with the solid advancing into still

water, and with the main wave pattern to the

rear. This result is connected with the fact that

for water waves the group velocity is less than the

wave velocity; if the contrary had been the case,

we should have arrived at a steady state with the

solid pushing the wave pattern in advance in-

stead of leaving it to the rear. It will be seen

also from this description that this impulse

method can be applied equally well to nonuniform

motion or to motion of any kind in a curved path.

Although not necessary, it is convenient often

to introduce the idea of sources and sinks. The
potential (po due to the motion of the solid as if in

an infinite liquid can be regarded as due to a dis-

tribution of sources and sinks, or other singulari-

ties, on or within the boundary of the solid, and
an elementary step in the motion corresponds to

establishing this distribution for a short interval

of time. Consider in Fig. 1, a point source of

strength m established at time r at the point (0, 0,

—/) in the liquid, where we have taken the origin

in the free surface with OZ vertically up-

wards. During the short interval of time 6t we
have the velocity potential

fi

Fig. 1

with

r,2 = .^2 + y + (j + /)2; r,' = X' + y' + {z - fY

The initial elevation left by the elementary step is

X COS [kix COS 9 -t- y sin 8)]k dk

and the motion at any subsequent time t due to

this elevation is given by

X cos [k{x COS 9 +y sin fl)] sin [g'A*V2(i - r)]*'A dk

In particular, suppose the source starts from rest

at time t = 0, \s of constant magnitude, and

moves with uniform velocity c in a horizontal line

parallel to OX. The velocity potential at time

t is given by

Wg'/i

* = - - ' r dr f" de f " e-M/-) X
Jo J -IT Jo

+ i^^^-"
I dr \ de \ e-

ri rj IT Jo J —TT Jo
cos [k{{x + a - ct) cose + y sin 6} ] X

sin [g'AiV2(/ - T)W/^dk
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WAVE RESISTANCE THEORY AND APPLICATION 15

The limiting form as i —> <» gives the steady state

which is ultimately established for uniform mo-
tion in a straight line ; namely,

ri Ti c I

' ' e-«:o(/-rt»oc29 sin (/bosec e)x

X cos (*oy sin S sec2 9) sec' 6 d9
K̂C^

J
sec 2 edB \

JO

e '(/ 2) cos (^x cos 9) cos (/fey sin e)

k — kn sec' 9
d/fe

where ^o = g/c^, and the origin is now a moving
origin vertically over the source.

Calculating the surface elevation from this ex-

pression, it is found that the wave pattern at a

great distance to the rear approximates to the

form

C J-»-/2

cos [^0 sec' 9 (x cos 6 -\- y sin sec' 9 (i9

From these results for a single source we can

derive expressions for other singularities, or for

any distribution of sources and sinks. Knowing
the wave pattern at a great distance to the rear,

we can, from energy considerations, write down
the corresponding wave resistance of the solid

body which is represented by the given distribu-

tion. It may be remarked that the forces and
moments on the submerged body can be calcu-

lated as the resultant of the fluid pressures on its

surface, but in that case the approximation must
be carried to the next stage, that is, to the stage

</>o + <^i + </'2 in the notation used here; this is

necessary in order to satisfy the condition at the

surface of the solid to the required degree of ap-

proximation and it is a point which has sometimes
been overlooked.

We leave this brief description of fundamental
theory with the remark that nearly all the work
on such problems has been limited to uniform mo-
tion in a straight line. More recently, Sretensky

has given some formulae for accelerated motion;

and Brard has examined the motion of a source in

a straight line, the strength of the source being

subject to periodic variation, with a view to ap-

plying the results to the interesting problem of

the pitching of a ship under way.

Using the integration method outlined in the

foregoing, I have worked out the case of a sphere

moving with uniform velocity in a circular path

at constant depth below the surface. If a is the

radius of the sphere, h the radius of the circular

path, / the depth of the center of the sphere, and
c the linear velocity in the path, the wave resistance

is given by

R 4jrVo8(;«

Jn denoting the Bessel function.

If we make h tend to infinity, keeping c con-

stant, this reduces to the known result for a sphere'

in linear motion with uniform velocity c, namely

Xir/2 g-2to/»eo2^ sec' ;3 dp

These expressions can be evaluated numeri-

cally, and Fig. 2 shows some results.
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WAVE RESISTANCE THEORY AND APPLICATION 17

cal problem which presents interesting difficulties,

worthy of serious work for anyone who may care

to undertake it."

It may be added that such work would give a

better idea of what has been neglected in the pres-

ent approximate theory, and might lead to a fresh

approach to the problem of the ship with more
usual values of the ratio of beam to length.

The approximate solution for a slender ship

form was given more than fifty years ago by
Michell in a classical paper, which unfortunately

was overlooked and forgotten for many years.

Michell's approach was different from that out-

lined in the previous section. He considered a

semi-infinite uniform stream of water with a free

upper surface and bounded by a vertical plane

parallel to the stream; and he solved the prob-

lem of the motion due to a given distribution of

normal velocity over this vertical plane. A ship

of narrow beam placed in the stream was pictured

as producing a normal velocity outwards on both

sides of amount given approximately by the prod-

uct of the stream velocity and the horizontal

gradient of the level lines of the form; finally, this

was treated as a given distribution of horizontal

velocity outwards on the two sides of the longi-

tudinal vertical section of the ship. Such a dis-

continuity of normal velocity is equivalent, of

course, to a corresponding distribution of sources

and sinks over this vertical plane; and so we ar-

rive at Michell's results as a particular case of

the source distributions we have considered in the

previous section. In particular, we may quote

for reference the well-known resistance integrals.

With one-half of the submerged form given by

y = j{x, s) we have

T Jo C^

with

/-f U =//[g g — fcoz sec2 Q + ikax 3eo Q ^^ ^r.

taken over the longitudinal vertical section of the

ship.

Although, as might be expected, this formula

does not enable us to predict with certainty the

resistance of a given model at a given speed, it

proved to be near enough to the general run of

the resistance-velocity curve to give much in-

teresting qualitative information: in particular,

in the changes produced by small variations in

the form of the model and the general explanation

of such changes.

Fig. 5 shows the resistance curve A for the

simple parabolic model given by y = b{l — x^/P)

(1 — z^/dP), for the case with the draft one-

>
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18 WAVE RESISTANCE THEORY AND APPLICATION

1.7

1.6

1.5

1.4

;? 1.3

:g 1.2

o
S I.I

^o 1.0

@ 0.9

X)

g 0.8

Q0.7

@ 0.6

I 0.5

0.4

0.3

0.2

0.1

"~i \ 1 \ \ \

—
\

—
\ \

—
\

—
\

—
\

—
\

—
\

—
\

—
r~

. Comparison of Calculated.Wave Resistance wifh Residuary Resistance
Derived from Experiments for Model 1846 B and Model N43

The RelationoftheOuantity(c)totheResistanceisasfollows

„ _, Tr = Resistanceof Modelin Lbs.
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one time thought permissible. Recently Wigley
and Lunde have worked with forms of fuller mid-

section and Fig. 6 shows some of their results.

The original fine form was altered by adding a

bulge which widened the form amidships as indi-

cated, and the resistance curves for the two models
are shown. The comparison is made in a more
striking manner in Fig. 7, which shows the differ-

ence between the two models, with calculated and
observed values.

The models were tested in different tanks

(Teddington and Trondheim) and the lack of

agreement at very high speed is probably a depth

effect due to the difference in depth of the two

tanks. As the authors remark, the presence of a

full mid-section, and therefore of a rather flat

bottom, does not cause more discrepancies be-

tween calculation and fact than occur with finer

mid-sections.

It is desirable to be able to calculate results for

non-mathematical forms or for ordinary ship

models. In essence the object is to replace the

continuous distribution which represents the ship

by a finite number of elements; these elements

must be such that their super-position gives an
approximation to the form of the model, and the

elements must be of a simple character so that

the necessary functions for each element can
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WAVE RESISTANCE THEORY AND APPLICATION 19

be calculated and tabulated in sufficient detail.

The element proposed by Guilloton is a semi-

infinite wedge ; or, if we prefer, we may think of it

as a certain semi-infinite source distribution.

Guilloton has tabulated many of the necessary

functions and has had noteworthy success in cal-

culating wave profiles and so forth; and the ap-

plication of the method to a survey of stream

lines around a fine hull promises results of great

value, especially if it can be carried out for models

for which experimental results are available.

Another method, proposed for approximate cal-

culation at high speeds, is to replace the continu-

ous source distribution over the longitudinal ver-

tical plane by a finite number of sources and sinks

of suitable magnitudes and positions; it is ob-

+ 0.6

0.35 0.4 0.45

Scale of Froude's Number=v/v'gL

Fig. 7
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20 WAVE RESISTANCE THEORY AND APPLICATION

vious that this method would not be worth while

for low speeds, as the number of elements would

be too large and other methods of calculation,

such as that used by Weinblum, would be less

laborious. However, one possible extension is of

some interest; we may subdivide the ship into

compartments also by longitudinal vertical planes,

so that the sources are not just located in one

plane but are distributed in space. This repre-

sents an attempt to extend the theory to models

of fuller form than can be represented adequately

by a plane distribution ; although the method is

rather crude, it might give some better idea of the

effect of finite beam. I reproduce some diagrams

to show the sort of results which have been ob-

tained by these methods.

Fig. 8 shows calculated and observed wave pro-

file for a certain model. The calculations were
made both by the wedge method and by the

source method, and there is not much difference

in the first approximation; it should be added
that Guilloton has considered various second

order corrections by his method, and his cor-

rected curve in this diagram shows extremely good

agreement with the observed profile.

15.0

12.5

Profilsde Vague calcule's etmesure's

Model 755 Equation r^=(l
Longeur: 4.876 m. Largeur:0.6iOm. Profondeur 0.310m
Vitesse: c=3.5l m/s. NumbredeFroude: 0/^^=0.505

Prof i I mesure
Calcul de Guilloton
Calcul de Guilloton avec correction
Calcul par la methode des Sources

Valeurs de ^
Fig. 8
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WAVE RESISTANCE THEORY AND APPLICATION 21

Fig. 9 is from Guilloton's work on stream lines.

Fig. 10 shows resistance curves for two models,

the calculations being made by the source method.

The forms were not experimental models but

were actual ships, of high-speed form and not sym-
metrical fore and aft. The models were divided

into ten compartments and the strengths and
positions of the sources determined directly from
the plans of the model, the chief point of the work
being to show that the calculations can be carried

out in such cases.

Finally, I reproduce in Fig. 11a diagram from
Lunde's recent paper in which he examined the

effect of placing sources and sinks off the longi-

tudinal vertical section. Here the model was of

destroyer type, but it is unnecessary to enter into

details of the comparison except to note that some
improvement was obtained by the space distribu-

tion of the sources.
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WAVE RESISTANCE THEORY AND APPLICATION 23

In regard to the effect of viscosity upon wave-
making, some attempts have been made to allow

for this, but no adequate theory has yet been pro-

vided. It is well known that at low speeds we do
not observe the oscillations in the resistance curve

indicated by theory for a frictionless liquid and
due to interference between bow and stern waves;

in fact, the wave resistance is due very largely to

the bow and entrance only, the effect of viscosity

being to reduce the wave-making properties of

the stern. We may begin then simply by intro-

ducing an empirical reduction factor into the

calculations, and for simplicity this factor was
taken as constant and operative over the whole

of the rear half of the model. This idea was im-

proved by Wigley and made more useful from a

practical point of view; comparing calculated

and observed results for a large number of models,

Wigley deduced a simple expression for such a re-

duction factor and for its dependence upon veloc-

ity. When we remember other considerations

which have not been taken into account, it must
be admitted that this viscosity correction prob-

ably includes other effects than those due to

viscosity alone ; nevertheless it serves a very use-

ful purpose. The difference made by this correc-

tion can be seen in the curves of Figs. G and 7.

The latter diagram illustrates a promising field of

application of the theory as it stands at present;

although it is not possible to give with sufficient

certainty absolute values of the resistance, yet it

is within reach to forecast differences made in the

resistance curves for two models of a series with

small variations in form. However, for a satis-

factory account of viscous effects it will be neces-

sary to hnk up wave theory and boundary layer

theory. Starting with a much simplified concep-

tion, consider a ship of streamline form with its

boundary layer over the surface and becoming
of any appreciable thickness only near the stern.

The displacement thickness of the layer gives

some measure of the amount by which the stream

lines of the flow are displaced outwards ; suppose

then that we take the effective form of the ship

for wave-making as the actual form increased by
the displacement thickness of the boundary layer.

Some calculations were made on these lines

recently; but, needless to say, it was not possible

to deal with actual boundary-layer structure.

What was done was to make small modifications

of the lines near the stern such as might reason-

ably be ascribed to boundary layer effect, the

main point being that these modifications were

confined to quite a small region near the stern.

The purpose of the calculations was to illustrate

the possible effect of such boundary-layer modi-

fications of the form and to see if they were suf-

ficient to eliminate the excessive resistance oscilla-

tions at low speed given by theory for a friction-

less liquid, while at the same time not materially

affecting values at high speeds.

Figs. 12 and 13 show some of the results, with
the modified forms and the corresponding re-

sistance curves. They agree fairly well with the

anticipated effect, except that the hollow at a

Froude number of about 0.34 still remains too

pronounced; but the latter is a persistent dis-

agreement between calculated and observed re-

sults for which some other explanation must be

found.
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24 WAVE RESISTANCE THEORY AND APPLICATION

This inadequate survey of wave-resistance

theory and its applications may be concluded by
indicating briefly some directions in which further

work would be specially useful. Even with the

theory as it stands at present, much could be done

to extend its range of application: for instance,

by a systematic study of methods of approxima-

mation and by the computation of necessary

tables of functions, so that numerical calculations

could be carried out more readily. But the two
main problems, broadly speaking, are those of

the ship of finite beam and of the eff'ects of vis-

cosity. It may well be that in both cases it may
only prove possible to advance by successive

stages of approximation to a solution : but the

former problem, leaving viscosity out of account,

is essentially a mathematical one for which a new
approach is much to be desired. On the other

hand, our knowledge of boundary-layer condi-

tions is insufficient and the latter problem is pre-

eminently one for combined theoretical and ex-

perimental investigation. Indeed the whole sub-

ject calls for a close association between mathe-

matical and experimental work, especially if we
keep in view its practical application to ship

problems.

Note: The illustrations are from the following

sources

:

Figs. 2 and 3 : T. H. Havelock, Proceedings

of the Royal Society, (A), Volume 201, page 297

(1950).

Fig. 4: T. H. Havelock, Quarterly Journal of

Mechanics and Applied Mathematics, Volume 2,

page 419 (1949).

Figs. 6 and 7: W. C. S. Wigley and 'J. K.
Lunde, Transactions of the Institution of Naval
Architects, Volume 90, page 92 (1948).

Fig. S: W. C. S. Wigley, Bulletin, L'Associa-

tion Technique Maritime et Aeronautique, Vol-

ume, 48, page 533 (1949).

Fig. 9: R. S. Guilloton, Transactions of the

Institution of Naval Architects, Volume 90, page

48 (1949).

Fig. 10: T. H. Havelock, Traiisactions of the

North East Coast Institution of Engineers and
Shipbuilders, Volume 60, page 47 (1943).

Fig. 11: J. K. Lunde, Transactions of the

Institution of Naval Architects, Volume 91, page

182 (1949).

Figs. 12 and 13: T. H. Havelock, Transactions

of the Institution of Naval Architects, Volume

90, page 259 (1948).
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THE MOMENT ON A SUBMERGED SOLID OF
REVOLUTION MOVING HORIZONTALLY

By T. H. HAVELOCK [King's College, Newcastle upon Tyne)

[Received 20 February 1951]

SUMMARY
The moment, due to surface waves, on a submerged solid of revolution moving

axially at constant depth below the surface of the water is examined in detail.

1. A SUBMERGED soHd of revolution moves axiaUy with uniform velocity
and with its axis at a constant depth below the surface of the water. If the
solid is such that the motion in an infinite Mquid can be represented by a
known source-sink distribution along the axis, the horizontal and vertical
forces on the soHd due to the wave motion can readily be obtained to the
usual approximation; however, for the moment about a transverse hori-
zontal axis it is necessary to obtain the velocity potential to a higher degree
of approximation, a point which was noticed in an early paper on the
circular cylinder (1) but which has sometimes been overlooked. In the
present note we consider a prolate spheroid, for which this extension can
be carried out; the form of the additional term in the moment in
this case suggests an approximation apphcable to other elongated solids
of revolution, such as a Rankine ovoid, generated by an axial source
distribution.

2. We suppose the spheroid to be held at rest in a uniform stream of
velocity c in the negative direction of Ox, the axis being at a depth/ below
the free surface of the water. We take at the centre of the spheroid,
Ox along the axis, Oy transversely, and Oz vertically upwards. Using the
known axial distribution for motion in an infinite Mquid, the velocity
potential is given by

(j) = cx-\-Ac
hdh

{y2j^Z^J^{x-kff

ae 7T CO

-^ { kdk{de{ xjtlo^^
e-.(2/-.)+«„ ^^ n

.

-ae

ae

cW-j-ifMSecd
— (AC — 77 U

where

A-'- = 2e/(l-e2)-log{(l+e)/(l-e)|, ^ = (x~k)cose+ysine,

f^o = 9'/c^, and the limit is taken as /x^ 0.

[Quart. Journ. Mech. and Applied Math., Vol. V, Pt. 2 (1952)1
5092.18
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130 T. H. HAVELOCK

The first two terms in (1) satisfy the condition at the surface of the solid.

The third term, which we shall denote by ^3, is the first approximation to

the wave motion; its form is determined so as to ensure that the three

terms together satisfy the condition at the free surface of the water (2).

The second term in (1), which is the velocity potential for the axial

motion of a prolate spheroid, is usually given (3) as 2AcaeP^(fi)Q^{t,) in

terms of coordinates specified by x = ae^ll,, y = ae(l— |Lt-)i(^-— 1)- cosoj,

z = ae(l— /x-)*(^-— l)*sinaj; it can readily be verified that the two forms

are equivalent. This equivalence is a particular case of a general relation

which does not seem to have been stated explicitly, and the opportunity

is taken of recording it here in view of its use in problems dealing with the

motion of a spheroid. The relation expresses prolate spheroidal harmonics

in terms of axial distributions of poles or multi-poles. Using the appropriate

form of the known general expansion of reciprocal distance (4), it follows

at once that „g

— ae

For the general case, forming the corresponding expansion for the potential

of a multi-pole, it can be shown that

K^:^-'^ih^^i^K:^::i^^'
We use the theorem that the forces on the solid can be obtained as the

resultant of forces on the internal sources, the force on a typical source m
being — 477-yow(q, where q is the fluid velocity at the point other than that

due to the source itself; in fact, we may omit the part of the velocity due

to all the other internal sources and sinks. Thus for the horizontal force,

or wave resistance R, we have

ae-

E=~47Tp
f

Acx{8cl>Jdx)dx, (2)

— ac

taken along the axis 2/ = s = 0.

Taking ^3 from ( 1 ) and omitting terms which, on account of the integra-

tions in X and /,-, give no contribution to the final result, this reduces to

ac (Tc Att CO

C C C C „-2Kf+iK(x—k)cosa

R=-iep.lc^A^
J

.rf.
J ^-^^^J

secB^cf^J —--^^^^^-—^d.,
— ae —ae

(3)

where the imaginary part is to be taken.
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MOMENT ON A SUBMERGED SOLID OF REVOLUTION 131

The integration in k may be transformed in the usual manner by treating

/< as a complex variable and integrating round a suitable quadrant accord-

ing as x—fc > or < 0. Finally we obtain

R = 32-n^gpa'>e^A^
J
secW Jl{K,ae sec e)e-^~^'''''"-^ dd, (4)

which is the known expression for the wave resistance.

The vertical force, Y, apart from that due to buoyancy, can be obtained

similarly from ae

r = 477P J
Acxidcjijdz) dx. (5)

— ae

This involves the real part of the contour integrals in k referred to above,

and leads to double integrals; the expression for Y can easily be written

down, but it is not very suitable for numerical computation.

3. The moment of the forces about Oy requires more consideration, and

we shall take it in two parts.

We calculate first the moment on the initial source distribution arising

from the vertical component of the velocity derived from the term 9^3

in (1); we denote this part by G^. Thus

ae

G^ = 4:TTp
I

Acx^8cf>j8z) dx, (6)

taken along the axis.

But we have to proceed to a further approximation to the velocity

potential, because the uniform stream produces on this second approxi-

mation a contribution to the moment of the same order as G^; we denote

this second part by (?,. Let 4,^ be the term to be added to (1) for the next

approximation. This term represents some distribution of sources and smks

within the spheroid; if Jf is the total moment of this distribution resolved

parallel to Oz, then we have

G^ = -inpcM, (7)

and the total moment on the solid to this stage is G^+ G^.

4. From (6) and (1), we have

G, = -4p^V ^ x^dx ^
Jcdk

J
de

J

-
JJ/o+i.seoe ''

-Tt

^g-2K/+i/cU-fc)C039 (^^_ (8)
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132 T. H. HAVELOCK

Treating the integration in k as before, and carrying out the integrations

in X and h, this leads, after some reduction, to

G^ = 64npah^A^{c^"/Ko)
|
sec e(^^^- cosp\ x

X (psinp+ 2cosp—2^^^^\e-^'"'f^<"'"^de, (9)

with p = KQae sec 9.

We now determine the next approximation to ^ so as to satisfy the

condition at the surface of the spheroid, namely that the normal component

of velocity from ^3+^4 must be zero over the spheroid.

We use coordinates ^i, ^, cu given by

X — acfj.^, y = ae(l—ij.^)^-{l^—iy- sin CO, z = ae(l—/x-)*(^2— l)icosa),

(10)

the spheroid being given by ^ = ^q = 1/e.

If, in the neighbourhood of the spheroid, (^3 is expressed in the form

<f>3
= l i{A',cossw+ B^,smsco)P',{i^)P',a), (H)

r=l s =

then the required next approximation is given by

^4 = - y y ^^AA^r<^ossco+ B^,smsco)P%i^)Q%0. (12)

By considering the behaviour of the tesms in ^4 as ^ ^- 00, we see that

the only one which contributes to the moment M referred to in (7) is the

terminPJ(/Li)QJ(Ocosa); this latter quantity approximates to —2a^h/3r''

as ^ ^ 00. Alternatively, we may get the same result from the expression

of this term as a line distribution of doublets parallel to Oz along the axis

of the spheroid between the two foci. Hence, putting in the value of the

factor Pl'(U)/QYi^o), we have

M = ^ah^BAl, (13)

with 5-1 = ilog{(l+e)/(l-e)}+e(2e2-l)/(l-e2).

To. determine A\we take from the expression for i;i3 in (1) the term in the

integrand involving the coordinates, namely

exp K{z-\-ix cos d-\-iy sin 6),

and expand the value of this on the spheroid in the form

f J_(C'reossoj+D'rSmsw)Pf{ix). (14)
i'=0 s= l
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MOMENT ON A SUBMERGED SOLID OF REVOLUTION 133

The coefficient CJ is then given by

~Cl =
J

(1-^1^)^ dfj. j exp{Kb{l~fM^)i{cos OJ+ i sin CO sine)+-1

-^iKajx cos ^}cos ca dui. (15)
The integrations can be reduced to known forms, and we obtain

C\= 3{TT/2Kah3)^bsecWJ^{Kaecose). (ig)

Hence, from (11), the corresponding term in the integral for J
J is

3iTr/2Kae)iseciej^(Kaecose).
(17)

Using (7) and (17) in (1) we obtain the expression for G„ which may be
written in the form

G^2= Upaec^AB f k dk ( sec^9 d9 f i)/®^- cos g)e-2K/-«* cose
^^^

~ae

where the real part is to be taken, and
^^^^

q = Kae cose, D = {K+ K,seeW)/K{K~K,secW+if^sece).
After carrying out the integrations in k and k this leads to

in

G, = -64npah^AB{cy.,)
J (^^

^ ^ospj e-^'<' f ^eo^e,^, g ^^^ (19^

with p = K^ae sec e.

For computation it is convenient to express these results in terms of the
so-called spherical Bessel functions, of which tables are available If we
write

A = j Siip)S^{p)e-^'<of sec'-8 gQ^tg

^2 = J Sl{p)e-^'<''f^<^'^'0sec^ede,

we have
B == 64TTgpKoa*e*A%,

(?i = 647r9'/3a*eM2(;coae/i-2/2),

(?2 = ~Q'i:TTgpa*e*ABl2.
(20)

5. These results may be checked, to some extent, by taking the limiting
case of a sphere. In the first place we may calculate directly the case for
the sphere by the same method. For a sphere of radius a, we obtain

G^ = 47ryoc2aVg r sec5^e-2'^»/^'='==« de. (21)
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134 T. H. HAVELOCK

For G^ we expand the corresponding term <^3 in spherical harmonics, and

we find that G^ reduces to the same expression (21) with a negative sign;

thus the total moment is zero, as should be the case. Turning to the

expressions in (9) and (19) for the prolate spheroid, we find their hmiting

values for e -> reduce to the correct values for the sphere.

6. Returning to the spheroid, we notice that (?]. may be positive or

negative according to the speed; on the other hand, G^ is essentially

negative. Further, from (20) we have

(?2 = -BR/koA. (22)

If kj^ and k^ are the inertia coefficients for axial motion and transverse

motion respectively, we have 2e^A = {l—e^)(l-\^ki) and a similar relation

between B and k2. Hence (22) may be put in the convenient form

G2=-{l+k2)RlK,(l+ k^). (23)

The ratio (l-|-A;2)/(l+^i) is unity for a sphere, and approximates to two

for a spheroid of large length-beam ratio. When c-^ oo, or kq-^ 0, the

integrals in the expressions for R, G^, and G2 aU reduce to the integral

given in (21), which can be expressed in terms of Bessel functions; hence

we may find the limiting values of these quantities as the speed increases

indefinitely. It appears that as c -> 00, i? becomes zero of order c~^; on the

other hand G^ and G2 approach fijiite hmiting values, with

G, ^ ^^gpa^e^A^/f ^ G,^ - ^ngpa^e^A B/f \ (24)

Thus the moment G approaches the hmiting value

G = G^+G^^ -l7rgpa^b^{l+k,)(k^-k,)lf, (25)

and this is negative for a prolate spheroid.

Some numerical values have been calculated from (20) for a spheroid of

a length-beam ratio of 10. The moment at low speeds may be positive or

negative and is small numerically; after a Froude number, c/-^J{2ga), of

more than about 0-4 the moment remains negative and increases rapidly

towards its limiting value.

It may seem unexpected, as compared with surface ships, to find the

moment remaining negative at high speeds. The model of a surface ship

is usually allowed to trim and at high speeds it takes up a position with

bow up and stern down, corresponding to a positive moment; the attitude

of the model is then roughly parallel to the mean line of the water surface

in its vicinity. But the submerged spheroid we have been considering has

its axis maintained horizontal; so we may describe it roughly as being in

a stream whose effective direction in the vicinity of the spheroid is inchned

to the axis and this provides a moment tending to increase this angle, that

is, a negative moment. For a numerical case take a spheroid with a = 106
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MOMENT ON A SUBMERGED SOLID OF REVOLUTION 135

and immersed to a depth / = 2-56; we calculate the part G^ of the
moment for a Froude number 0-5. For a spheroid in a uniform stream at
a small ^angle S to the axis the moment^ tending to increase this angle is

%7rpab''c~{k^-~k.^)h. Comparing these two^moments in this particular case,
we find that G^ would be accounted for in this way by an angle S of about
0-03, which seems not unreasonable. However, this comparison cannot be
pressed far; it is only intended to indicate a possible physical explanation
of the negative moment at high speeds.

7. Consider now any solid of revolution which, so far as axial motion in
an infinite Uquid is concerned, can be specified by a known axial source
distribution. The part G^ of the moment can be obtained at once by the
method used in the previous sections; but it is not possible, in general, to
calculate the part G^. Turning to the connexion between G. and R for the
spheroid given in (23), it is proposed now to use this as a suitable approxi-
mation for any solid of revolution, and in particular for one of large ratio
of length to beam. The inertia coefficient k^ can be calculated; ifM is the
total moment of the given axial source distribution and V is the volume
of the solid, we have 4,rif = (l+k,)V. It is not possible, in general, to
calculate k._. However, for a long slender solid, k^ is small; on the other
hand, k._ approximates to the value unity which it has for the transverse
motion of a circular cyhnder. Thus, in such a case, it is sufficient for a
fairly close approximation to take

(?2 = ~2R/k^, (26)

where E is the wave resistance of the submerged solid. The simplest case
IS that of the solid specified by a single source and sink. Ifm is the strength
of the source or sink, 2h the distance apart, 21 the axial length of the solid,
and 26 the maximum beam, we have

imlh = c{l^-h2)2. 4^^ ^ cb^h'~+b^)K (27)

Taking the axis at depth/, the velocity potential can be written down
to the same approximation as for the spheroid in (1). The process of
determining R and the part G, of the moment is the same as before, and
the details need not be given. Using (27) to express m in terms of the
dimensions, we obtain

Jtt-

R = 2TTgpKob*{l+b^/h^)
J {l-cos(2^o^sece)}e-2''o/^«<^=«sec36' ri^, (28)

(?i
= 2TTgpKohb*{l+b^/h^)

J
sin{2Kghsec e)e-^'<of ^eo'-e ^^f^ig ^g_ (ggx
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136 MOMENT ON A SUBMERGED SOLID OF REVOLUTION

For (?2 w6 should work out the next approximation for the velocity

potential, as in the case of the spheroid; but this does not seem feasible

for the given solid. Meantime, as already indicated, we shall take (26) as

giving a sufficient approximation and thus we assume

Jtj-

(?2 = -4:7rgpb*{l+b^/h'-) j {l-cos{2Kghsece)}e-^'''f^''<''-^secW dd. (30)

Computation of the total moment G can be made from the integrals in

1 1
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SHIP VIBRATIONS: THE VIRTUAL INERTIA OF A SPHEROID IN SHALLOW WATER

By Professor Sir Thomas H. Havelock, M.A., D.Sc, F.R.S. (Honorary Member and Associate Member of Council)

Summary

It is known that certain motions of the surface of a spheroid expressed by spheroidal

harmonics are similar to flexural 2- and 3-node vibrations, and can be used to obtain

virtual inertia coefficients for motion in an infinite liquid. These calculations are now
extended so as to include the effect of a plane boundary, and are given in a general form

which includes translation and rotation as well as the flexural vibrations.

Consideration is given, in particular, to the vertical and horizontal vibrations of a float-

ing spheroid, half-immersed, in water of given depth. Graphs are obtained for the variation

of the relative increase of inertia coefficient with the depth of water. These show how
the variation depends upon the type of vibration, and a result of special interest is the

striking difference between horizontal and vertical vibrations; the relative increase is less for

the horizontal vibrations, and decreases much more rapidly with increasing depth of water.

PART I

1 . In this part we give a general account of the work,

leaving details of the analysis to Part IL

In calculating the frequencies of the natural flexural

vibrations of a ship, allowance has to be made for the

added inertia due to the surrounding water. This is

usually carried out by a two-dimensional strip method
which consists in obtaining a suitable expression for an

elementary transverse section and integrating longitudi-

nally; an empirical factor is then added to allow for the

fact that the motion of the water is three-dimensional.

The only direct three-dimensional calculations which

have been made are for a prolate spheroid deeply im-

mersed, or in an infinite liquid. It was shown by

Lewis,'" and about the same time independently by

Lockwood Taylor,'^' that certain motions of the surface

of the spheroid expressible by spheroidal harmonics are

approximately the same as for the 2-node and 3-node

flexural vibrations, and so can be used to give an esti-

mate of the increase of kinetic energy due to the

surrounding water.

Recently the influence of depth of water upon the

added inertia has become of interest. Here, again, the cal-

culations have been made by the two-dimensional method
extended to allow for finite depth of water; reference

may be made, in particular, to work by Prohaska.*^^

In the present paper no attempt is made to examine

afresh the general theory of the natural vibrations of a

solid which is partially, or wholly, immersed in water,

although a more complete theory is much to be desired

;

nor is any attempt made to deal explicitly with solids of

ship form. Although the analysis may have wider

applications, the main object of the paper is to carry

out three-dimensional calculations for a prolate spheroid

so as to include the effect of finite depth of water, and,

in particular, to examine the vertical and horizontal

vibtations of a spheroid floating in water of finite depth.

2. After a brief summary of the analysis for a spheroid

in an infinite liquid (§ 6), we proceed to the case of

finite depth of water. We consider a prolate spheroid,

major axis 2 a and transverse axis 2 b, wholly immersed

in water with its axis horizontal and at a height / above

the bed; in the first place we suppose the water deep

enough so that we can ignore any effect of the upper

free surface. The surface of the spheroid is given a

prescribed motion and we calculate the kinetic energy of

the resulting fluid motion. Naturally, an exact solution

is not obtained, and the degree of approximation may
be indicated by reference to known simple cases. If a

circular cylinder is moved transversely to its length,

either parallel to the boundary or at right angles to it,

the approximate relative increase in the virtual inertia

coefiicient is b^jlf^. For a three-dimensional case, the

only known result appears to be the similar approxima-

tion given by Stokes for a sphere; if the motion is

parallel to the boundary the relative increase is 3 b^/l6f^,

while for motion at right angles to the boundary it is

3 b^/Sf^. We obtain the corresponding approximation

for a prolate spheroid. The analysis is given in general

form for motion of the spheroid specified by a harmonic

of order n, for motion both parallel to the boundary

and at right angles to it; particular cases of the solution

include translation and rotation of the spheroid and also

2- and 3-node vibrations.

3. We turn next to the more interesting problem of a

floating spheroid, which we suppose to be half immersed

in the water. For a complete theory we should include

the surface waves produced by the vibrations, but we
neglect these meantime; having in view application to

ship vibrations we adopt what seems to be the appro-

priate simplification, the so-called free surface condition

neglecting gravity. A modification of the previous

section gives expressions for the relative increase in

inertia coefficient for the various types of motion and in

§ 1 1 we consider the vertical vibrations of the, floating
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spheroid. Numerical computations have been made for

a spheroid whose length 2 a is just over 10 times the

beam 2 b, and the results are shown in Fig. 1 ; the com-
putations were troublesome, and a high degree of

accuracy was not attempted.

40

Fig. 1.

—

Relative increase of virtual inertia coefficient ((Jt/tq)

FOR ratio of depth OF WATER TO DRAFT (//A), VERTICAL VIBRATIONS
(K), HORIZONTAL VIBRATIONS (H).

The ordinates are the relative increase in inertia

coefficient, that is the ratio of the increase to the value

in deep water; the abscissae are the values off/b, or the

ratio of depth of water to the maximum draught. The
curves in question are those marked V. Those marked
V and 1 V are for translation and rotation respec-

tively; but we may regard the set of curves as repre-

senting vertical vibrations specified by the number of

nodes, 0, 1, 2, 3, respectively. From this point of view,

it is of interest to note the varying influence of depth
according to the type of vibration; it is clear, for

instance, that using values derived from pure translation

would give misleading results for 2- or 3-node vibrations.

The curves V in Fig. 1 were obtained from the general

results given in equation (35). These expressions have
simple approximate forms when the spheroid is very

long; the values are 0-658, 0-470, 0-439, 0-429 times

P/f^ for M = 1, 2, 3, 4 respectively. In the present

case, for which the length-beam ratio is 10, the curves

approximate fairly closely to these values for small depth
of water. As regards actual measurements, there are

no experimental results which are strictly comparable.
Prohaska*'' has given a formula 2 C^ d^f^, where C^ is

the block coefficient and d is the mean draught. As the

form indicates, this is based on two-dimensional theory,

with the coefficient chosen to agree as well as possible with
results from actual ship forms. The prolate spheroid

is not a normal ship form, nevertheless it is of interest to

note that this formula gives 0-466 6^/^ which may
be compared with the approximate values given above.

4. The remaining sections of the work are devoted to

the similar horizontal vibrations of the floating spheroid,

dealing first with deep water. It is generally known that

if inertia coefficients for horizontal motions are calcu-

lated using the free surface condition, the values are

much less than if the rigid surface condition had been

used. If a circular cylinder, half immersed, is oscillating

horizontally at right angles to its axis the inertia coeffi-

cient is 4/77^ compared with the usual value unity. For a

log of square cross-section, Wendel'*' has calculated that

the value for horizontal motion is about • 337 of the value

for vertical motion; for a general account of virtual

inertia coefficients reference may be made here to a

recent paper by Weinblum.'" Calculations for three-

dimensional motion do not seem to have been published,

though no doubt the general nature of the results is

known. We give in § 12, general expressions for a

prolate spheroid, half immersed, from which the inertia

coefficients could be found for the various types of

horizontal motion we have been considering; these

include translation, rotation, and 2-node and 3-node

vibrations. Approximate calculations have been made
for the particular case of a length-beam ratio of 10, and

these indicate that the values are of the order of 0-4 of

the values for a deeply submerged spheroid.

5. The last section deals with the same problem for

water of finite depth. Here the mathematical difficulties

are such as to preclude a general form of solution for

the various types of vibration. However, taking the

simplest type n = 1, an approximation is obtained in

(53) for the relative increase in inertia coefficient due to

the finite depth of water; it is considered that this

approximation is sufficient to show the essential character

of the effect of depth of water. Taking the same
particular case of a length/beam ratio of 10, numerical

computations have been made from this expression and
the results are shown in the curve labelled OH in Fig. 1.

The two curves to be compared are the curves OV and

OH; they are both for the same type of vibration, the

former being vertical and the latter horizontal. The
point of special interest is the remarkable difference

between vertical and horizontal vibrations as regards

the influence of shallow water. This difference is

expressed simply if we take the approximate values for

a long spheroid ; in that case, it is easily shown that the

expression (53) for horizontal motion is of the order of

(*//)*, while we have already seen that for vertical

motion the approximation is of order (b/f)^. This may
be confirmed by working out a simple two-dimensional

case, a circular cylinder half-immersed. In this case the

conditions of the problem may be satisfied to any

required degree of accuracy in the ratio b/f; it may be

sufficient to state the results here. If the motion is

vertical, the inertia coefficient in deep water is unity; the

relative increase in shallow water is given by

0-8225(6//)2 + 0-3382(6//)" + 0- 139I(6//)« + . . .
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If the motion is horizontal the inertia coefficient in deep

water is 4/7t^, and the relative increase in shallow water

is given by 0-6314(6//)" - 0-2190(6//)' + . . . If we
graph these two expressions we obtain curves of the

same character as the curves OV and OH in Fig. 1

.

As regards observed results for actual ship vibrations,

it has been stated that there is no measurable change of

frequency of horizontal vibrations in shallow water, in

striking contrast to the observations on vertical vibra-

tions. If that should prove to be the case, it would
confirm the assumptions underlying the present analysis

;

however, it would be of value to have a direct examina-

tion of the problem under conditions which would allow

both of theoretical calculation and of precise experi-

mental determination.

PART n

Infinite Liquid

6. Consider a prolate spheroid, of semi-axes a, b and
eccentricity e, in an infinite liquid. We take axes with O
at the centre, Ox along the axis of the spheroid, Oy
transversely, and Oz vertically downwards. We shall

use non-dimensional space-co-ordinates, giving the ratio

of any distance to the length ae. We have then

spheroidal co-ordinates (/x, ^, oj) with

x = i^; y = {\- li^m^ - If cos a.;

z = (1 - ix^)^^^ - l)i sin w . (1)

The spheroid is given in these co-ordinates by ^ = ^o

= 1/e. Consider the fluid motion given by the velocity

potential

^ = C P»Qi(0 sin CO cos af . . (2)

This motion would be produced by a distribution of

normal velocity over the surface of the spheroid given by

- m-iv = - {Clae){{\ - e^m - eY)]^

P»Qi(So) sin oj cos ar . (3)

where the dot denotes differentiation, a notation we
shall use throughout. We make the usual approxima-

tion for vibrations of the spheroid of small amplitude,

assuming this to be equivalent to a distribution of normal
velocity given over the spheroid in its mean position.

It is well known that, with suitable values of the

constant C, for n = I or « = 2 the fluid motion given

by (2) can be produced by motion of the spheroid as a

rigid body; if n = 1, this motion is translation parallel

to Oz, while if « = 2 it is rotation round Oy (e.g.

Lamb, Hydrodynamics, p. 141). For higher orders of

harmonics, deformation of the spheroid is necessary

The present application is, chiefly, to the transverse

flexural vibrations of a spheroid of large ratio of length

to beam. We may then regard the deformation as a

simple shear of transverse sections of the spheroid. It

can be shown that the normal velocity (3) is produced

by such a transverse motion with the velocity distribution

along the axis proportional to P„{xfa). For .instance.

with « = 3 the nodes of the vibration are given by
x/a = ± j\/'5, while for n = 4 we have a 3-node
vibration with nodes at x/a = 0, ± V'577- It is

possible to improve this approximation to the natural

vibrations, as pointed out by Lewis'" and by Lockwood
Taylor,'^' by taking combinations of spheroidal harmonics
or by other refinements. But the additional complica-
tion is not worth while for the present purpose; we are

concerned not so much with the absolute value of the

inertia coefficient as with its relative increase in shallow

water.

From (2) and (3) we obtain the kinetic energy of the

fluid by integrating over the surface of the spheroid; and
we have

T = -ip\4>0><t>f'!>v)dS ... (4)

= -TTpail - e^ye. [n (n + 1)1(2 n + 1)]

C^Qi(QQi&)cos^<^/ . (5)

The kinetic energy of the spheroid can be obtained from
the corresponding velocity distribution in the solid, and
hence the virtual inertia coefficient; but these results are

already known.

Semi-Infinite Liquid, with Rigid Boundary

7. Let the axis of the spheroid be parallel to a plane

rigid boundary given by z =//a e. If Tq is the kinetic

energy of the fluid for a given type of motion when the

spheroid is in an infinite liquid, and 8 T is the increase

in kinetic energy due to the boundary, we are concerned

with the ratio 8 T/Tq, which is, of course, the relative

increase in the corresponding virtual inertia coefficient.

If we imagine this quantity expressed in powers of the

ratio b/f, the approximation at which we aim is the

leading term in such an expression. This can be

obtained in the following way. Let
<f>o

give the motion
in an infinite liquid with the given normal velocity over

the spheroid. Let <^i be the image of this in the

boundary, giving zero normal velocity over the boundary

;

and let
(f>2

be the image of (^, in the spheroid, so that the

normal velocity over the spheroid is unaltered. Then,

using (j>(, + <f>i + (j>2 in the usual surface integral for the

kinetic energy, we obtain this approximation.

It is convenient to give here some formulae which are

used throughout the analysis.

We require the expansion of the inverse distance

between two points whose spheroidal co-ordinates are

(pi. ^ w) and (/x, ^1 CO,); this is (Hobson<*>)

/-' = i(2n + 1) P„ (^,) Q„ (Q P„ (f) /'„(0

+ 2E(2« + 1) 2 (-1)5
(n-s)\

l(n+sy.

K (;^i) Q^ (Si) P^„ (^) P^ (0 cos s (CO, - CO) (6)

an expansion which is valid for {, > ?.

We also need the relation

PUOQ^„(0-P^„(OQi(0
= (-l)^+'[(n + 5)!/(«-5)!]/(C^ 1) (7)
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Another relation, given by the present writer'" is largely

the basis of the following calculations; it is, in ;he

present notation,

P^„ (m) Q;. (0 e"" = K^ + '

Yz)

(1 -hY'KWdh
[(X - hf + y^ + z^Y

(8)

This result expresses the spheroidal harmonic as a line

distribution of multi-poles along the axis of the spheroid

between the two foci.

Transverse Motion at Right Angles to the Boundary

8. We begin with the form for an infinite liquid,

^0 = PiW Qi (0 sin a. ... (9)

For convenience, we omit the time factor and the con-

stant C. Take parallel axes 0'{x', y' , z') with the

origin O' at the point x = 0, y = 0, z = Ifja e; and let

fx', ^', a>' be spheroidal co-ordinates referred to these new
axes. It is easily seen that to maintain zero normal

velocity over the plane z = f/a e, we must take

<^, = - Pi (f.') Qi (D sin a>' . . (10)

To obtain
(f>2

we expand (10) in the neighbourhood of

the spheroid ^ = ^q in the form

- i; i (A'„cossco + W„ sin s co) P^„ (/x) P^„ (0 (1 1)
n= ,v=

Then i^j 's given by

^2 =
2 S (A^ cos 5 a; + B;, sin s w) P^„ (^l.) Q;, (0 P^ ao)IQn (U)

(12)

General expressions for the coefficients could be obtained

;

but it is easily seen that in order to calculate the kinetic

energy we only need the coefficient Bj, noting that the

normal velocity on the spheroid is unaltered and also

using the orthogonal properties of the functions. From
(8) we have

-1

Pi(f*')Qi(nsina.' =
1 J_
2 s7

1 ^
2 Vq

(1 -k^fP\(k)dk
[(x' - kf + y'^ + z'2]i

(1 -k^fV\(k)dk
{{x-kf+y^+^z-qf]''

... (13)

with q = Iffa e. If the point {x y z) is (/a ^ w) and the

point {k o q) is
{jj-x Ci u>i) in the same spheroidal co-

ordinates, we have in (6) the expansion of the inverse

distance between these two points, with

k = t^,ii; = (1 -/x?)i(^?-l)icos^,;

9 = (l -p?)*(Si-l)^sinco,

Further, the expansion is valid in the neighbourhood of

the spheroid, since ^i > Co-

We substitute this expansion for the denominator in

(13), and Bj is the coefficient of the term Pi (/a) Pi(0 sin u>.

Hence, from (6) and (13) we have

Bl =
2n + I _J_

n^ (n + \f Vq

(1 -A-2)i Pi (A:) Pi (M,) Qi iU) sin o>,dk (14)

We may put this into a symmetrical form by noting that

Pi (Fi) Qi (^i) sin a>, is the value of this spheroidal

harmonic at the point {k o q)\ hence, from (8)

-I

Pi (Ml) Qi (^i) sin CO,

This gives -

2 « + 1 S^

1 ^
2 Vq

(1 - h^)i Pljh) d h

[ik - hf + 9^]i (15)

B.
1 _

n^{n + \Y dq^

(1 -h^)H\ -fe^)tPi(/i)Pi(fc)

[(k - hf + q^]i
dhdk (16)

To calculate the kinetic energy, we see that S0/5^ on

the spheroid is Pi (;tx) Qi (^o) sin a>; and from (9), (11),

(12) the corresponding term in the value of <j> on the

spheroid is

[Qi (^o) - Bi Pi (^o) + Bi Pi iU) Qimi
Qi (So) • Pi (m) sin CO

or using (7)

[1 -n{n + 1) B'Ml - 1) Qi (?«) Qi (So)]

Qi (Co) Pi (/^) sin CO . (17)

It is obvious that the kinetic energy is increased by the

factor within square brackets in (17); hence from (16)

and (17), the relative increase in kinetic energy, or in

the inertia coefficient is given by

ST/To= -(2« + l)D„/

2«(« + l)(Cg-l)Qi(So)Qi(Co)

with

,1 ^1

(1

D„
h^)m-k^)iV\(h)K{k)

[{k - hf + q^]i

• (18)

dhdk

(19)

Transverse Motion Parallel to the Boundary

9. When the vibrations are parallel to the boundary, we

begin with

<^o
= Pi(f^)Qi(Ocosco . . . (20)
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In this case, we have

= -i lim -— (1 - k'^y PUk) dk

[(x-kf + iy-py + iz-qfY
(21)

Using the expansion (6) in (21), with the point (k p q)

being (i^i {| co,) in spheroidal co-ordinates, we obtain

the coefficient of Pi (/x) P'„ (Q cos oj as

., 2n + 1 a

n^in + Ifip

(1 - ^-2)i Pi (k) Pi (/x,) QJ (^,) cos a., dk (22)
-1

Further, we have

(1 - h^) Pi (h) dh

{(k-hY+p^+q']''
(23)

Taking the limit of S^/Sp^ as /J-^O, this leads to a

fractional increase of kinetic energy, or of the inertia

coefficient, given by

8 T/To =
- (2 « + 1) E„/2 «(« + !) ill - 1) QJ (?o) Qi (^ (24)

with

(1 -/^^(l -/c2)iPi(A)PU^)

[(k - hf + ?2]3/2
-dhdk (25)

These integrals can, of course, be evaluated explicitly in

closed expressions for any given value of n. However,

the expressions become very lengthy for the higher

orders and we shall not reproduce them here in general.

For numerical computation it proved somewhat better

to express the double integrals in terms of subsidiary

single integrals. Also one can obtain, either from the

double integrals or from the explicit expressions, approxi-

mate forms suitable for q large or q small.

10. We give now the results for some special cases.

« = 1 . For motion at right angles to the boundary,

(18) and (19) give

8 T/To = -i D/(a - 1) Q! (W Ql (y (26)

with

D

.1 -1

(1 _ h^) (1 _ k^)
dh dk

Yk - hf + 92]i

= \\0g{[2 + {A + q^yq)
+ if (12 q-^ - 41 - 19 9^ _ 2 q"-) (4 + 9^)-*

+ ¥9 + ft?' (27)

For motion parallel to the boundary, (24) and (25) give

S T/To = -* E/(^5 - 1) Ql (^o) Ql (So) • (28)

with

«i

E =

_i

(1 _ /,2) (1 _ ^2)
dhdk

[{k - hf + 92]V2

= -f{log[2 + (4 + ^2)i]/?}

+ 2(A?-2^if + A9')(4 + 9^)i

(29)

It is readily verified that as ^ ^ oo, or e ^^ 0, we recover

the known results for a sphere, namely 3 b^j'&p and
3b^/l6f'^ respectively. We may also find the limiting

values for a long spheroid with bja small, by making
e -> 1, a -> 00, while retaining b^ = a^ (I — e^). The
limiting values are the same for the two types of motion,

as is the case for a circular cylinder; but the value of

the ratio is Ib^Sf-^ instead of b^llp. Thus in this respect

the circular cylinder is not the limit of a long spheroid.

This value can also be obtained directly by the two-

dimensional strip method. For this purpose we con-

sider a circular section of the spheroid of radius y ; take

its contribution to the kinetic energy of the fluid motion

as proportional to y^ (1 + y^lf^), and integrate along

the axis of the spheroid.

n = 1. Considering only motion in a vertical plane

(18) and (19) give

8 T/To = - 15 A/4 {Q - 1) Qi {U) Ql (W
with

J 9^

(l-/,2)(l_^2);,^

n = 3. For a 2-node vertical vibration

§ T/To = -21 A/32 {Q - 1) Q> (Q Q.\ iU)

with

(1 - h^) (5 h^ - 1) (1 - /c2) (5 /c2 - 1)

[{k - hf + g2]i

(31)

n = A. For a 3-node vertical vibration,

8 T/To = -45 A/32 (^ - 1) Qj (Q Qi (So)

with

A =

-1 pi

(1 -h^) (7 /i3-3 /;) (1 -fc^) (7 A:3-3 fc)

[(fc - hf + q'Y
dhdk

(32)

For a long spheroid the limiting values of these expres-

sions are f, -h, If b'^lP for « = 2, 3, 4 respectively.

These can also be obtained by the two-dimensional strip

method, taking into account the distribution of trans-

verse velocity along the axis of the spheroid.
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Vertical Oscillations of a Floating Spheroid

1

1

. We suppose the spheroid to be floating with one-

half immersed. As before, Ois at the centre of the

spheroid, and Oz vertically downwards; the free surface

of the water is the plane z = 0, while the bed is the plane

z = f/a e. We have now to consider the condition at

the free surface. For simple harmonic motion of

frequency a we have the usual linearized condition

<f>+(gla^) 3 ^/i) z = 0. Using this condition we should

have to take into account the wave motion of the free

surface, but that is beyond the scope of the present

work. There are two limiting simplifications which may
be made according to the conditions of the particular

problem; we may take <(> = Q, the free surface condition

neglecting gravity, or we may take 3 </>/i) z = 0, the rigid

surface condition. Taking into account the frequency

of ship vibrations, the appropriate alternative seems to be

^ = ; the measure of agreement between calculated and

observed frequencies justifies this assumption as a working

hypothesis.

The conditions for the velocity potential are now
(i) the given normal velocity over the submerged half of

the spheroid, (ii) 3 <^/3 z = for z = fja e, (i") ^ =
for z = 0. This is the same as considering the complete

spheroid in water contained between two parallel planes

z= ±flae, with the normal velocity given over the

whole surface. For a vertical vibration we begin, as

before, with

4>o
= fUt^)QUOsinw . . . (33)

In order to satisfy conditions (ii) and (iii) we now have

an infinite series of image systems alternatively positive

and negative, associated with the points z = ± 2 sf/a e.

Hence we have

<^, = -2 £ (- 1)-' Pi (;>.,) Qi (O sin a., (34)

We have obtained in the previous sections, the value of

<f>2
for any one of these image systems, and also its

contribution to S T/Tq. Hence for the vertical vibra-

tions we have

8T/To= -(2n + l)l(-\y-'DJ
r

n{,i + l)ia-l)QUlo)Ql,ao) • (35)

with D„j given by (19) with q = 2 sf/a e.

For instance, for « = 1,8 T/Tq is given by (26) with

D = 2S(- 1)^-'D, (36)

with Dj given by (27) with 9 = 2 sf/a e.

The limiting form of this result for a long spheroid is

(2Pl5p)I,(- lY-^s'\ or 7THy30f\
For any given case, having computed and graphed the

double integral involved as a function of the parameter q,

it is a simple matter to obtain from the graph the

summation with respect to 5.

Horizontal Vibrations of Floating Splieroid

12. Deep water. If we retain the same condition at

the free surface, the horizontal vibrations are a more
difficult problem. With the given normal velocity on
the immersed half of the spheroid, the conditions are

now

a
<j>ol'!) ^ = Pi (/x) cos w; ^ = {o; < o) < TT

<^o
= 0; aj = . . . . (37)

This is equivalent to considering the complete spheroid
in an infinite liquid with the conditions

a <j>ol'd ^ = Pi(/x) cos a>; < CLi < 7T

3 (^o/3 C = — Pi (A') cos (o ; — 7T < CO <
<^o = 0; co = . . . . (38)

To satisfy these conditions, we express the value of

3 </>ol^ ^ in a suitable infinite series of Legendre functions,

of the form

SSA^P;„(;t.)sin^ai (39)

Forming the series by the usual methods, it is seen

that J must be even, and the coefficients are given by

2n (m+sy.
' - ij ,"2«-M(^-.)!--.^-ij:r(^)P-('^)'^'^ (^o>

It follows that if n is even, the coefficients are only

different from zero if m is odd; while if n is odd, m
must be even. The velocity potential is then given by

^0 = 2 S AUQ^ (« . P:, (/x) Q^ (0 sin 5 a> (41)
m s

This form of solution gives the assigned normal velocity

on the spheroid for all points other than those for which to

is actually zero, that is for points not actually on the water

line. There is, in fact, a discontinuity in the normal

velocity on crossing the water line; there will be a

corresponding infinity in the tangential velocity at these

points. However, as in similar problems involving

what is effectively ffow round a sharp edge, the usual

surface integrals for the kinetic energy lead to a finite

result.

From (38) and (41) we may obtain the kinetic energy,

and if we introduce the suitable factor according to the

motion of the solid, the corresponding inertia coefficient

can be calculated.

13. iVater of Finite Depth.—If the water is of finite

depth we should have, as in § 11, an infinite series of

image systems in subsidiary spheroidal co-ordinates, each

system being an infinite series of terms. Further,

expanding any one term so as to obtain the image in the

spheroid would involve infinite series. Finally, in con-

trast to the conditions for vertical motion, from the

form of the conditions all the terms in the series con-

tribute to the kinetic energy. Thus, in general, the

method becomes much too complicated.

However, when we form the expression for the kinetic

energy for cases with which we are dealing, it appears

that the first few terms of the series account for much
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the greater part, and a useful approximation is obtained

by taking only one or two terms. For instance, if we
take the simplest case n = 1, representing a transverse

vibration with no node, we have, omitting the time

factor and any constant multiplier

00 = MIQI iU) Pi (/^) Qi (0 sin 2 w

+ A|/QI (So) . Pi (m) Q^ (0 sin 2 a> + . . . (42)

the coefficients being given by (40) with n = 1. This

gives A| = 5/16, A^ = 1/64, . . .

For the kinetic energy for the complete spheroid in

an infinite liquid, we have the usual surface integral (4),

in which i)(^/5{= ± P} (/x) cos co according as co is

positive or negative. We obtain

T=-i77p«(l -e'ye.l^iQliQI

Ql (Q + af4 Q.' iQIQl ao) +] (43)

For the case we have been using for numerical com-

putation, a e = 10 6, the terms in the square brackets in

(43) are 0-9375 + 0-0195 + . . . Although the rest of

the series converges rather slowly, much the greater part

is given by the first term.

Consider now the same problem in water of depth /.

To avoid prohibitive complications, we shall take only

the first term. Although this leaves somewhat uncertain

the degree of approximation, yet, as we are concerned

more with relative increase than with absolute value, we
may expect to get at least the main character of the

variation with depth of water. Omitting unnecessary

factors, we begin, in the notation of previous sections,

with

0o = PiWQl(Osin2a, (44)

and suppose the bed to be given by z = f/a e.

We now have an infinite series of image systems

associated with the points z = ± 2 sf/a e, and we have

^,= -2 1: (- 1)-' ?l (^,) Q^ (Q sin 2 a., (45)

To expand a typical system associated with z = q, ^e,

have, from (8),

H if^s) Ql (Q sin 2 CO,

'iy'd z

= lim-—

^

[(X - kf + / + (Z - qf]i
-1

(1 -k^)Vl(k)dk
{l,x - kf + {y - pf + {z - qf]i

with

? = (1

. . . (46)

/c = /x, ^i; p = (\ - ix\f {i\ - If cos w^\

" Ml)* (Si
~ I)* sin CO,; we select the required

term using the expansion (6), giving for the coefficient of

Pj (/x) Q2 (0 sin 2 CO the expression

y
288 ^p'bq.

Further we have

(1 - k^) Pi {k) Pi (/.,) Ql (?,) sin 2m,dk
'

• • • (47)

P^ (/^i) Ql ill) sin 2 CO, =
'ip'iq

(1 ^h^)Pl(h)dh

[{k - hf +p^ + q'Y

... (48)

Putting this into (46), and taking the limit as p ^0, the

contribution from a typical term may be written as

- fi B„ with

B,
(1 -//^)^(1 -k^dhd-k

iq' [^k-hf + q']i

and the required term in the expansion is

Ai:(-l)^-'B,Pl(M)Pi(0sin2cc

(49)

(50)

to which, in order to maintain the normal velocity on

the spheroid, we add

- A i; (- 1)^-' B, Pi (Co)/Qi (So) - PiM Qi (D sin 2 co

1

. . . (51)

Finally, after using (7), the value of ^ on the spheroid,

to this approximation, is

Qi(^o)[l-15S(-l)-'B,/

2 ai - 1) Qi (So) Qi (So)] Pi if^) sin 2 CO (52)

Since the value of 3 <f>/i t, on the spheroid is unaltered,

the kinetic energy is increased by the factor in square

brackets in (52). Hence the relative increase in kinetic

energy, or in the inertia coefficient is given by

8 T/To = - 15 S (- 1)-' B,/2 (So" - 1) Q? (So) Q^ (So)

. . . (53)

with Bj given by (49) in which q = 2 sf/a e.
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Part I. MOTION NORMAL TO THE WAVE CRESTS

Summary

A theoretical investigation of tlie forces and moments on a submerged spfieroid moving
close to the surface under waves. Expressions are obtained for the surging force, heaving
force and pitching moment taking into account the speed of advance and also the disturbance

of the wave train by the solid; graphs are given to show the variation of these quantities with

the speed of advance and with the wavelength.

1. Introduction

The theory of the forces on a submerged spheroid

moving through smooth water was examined in a

previous paper (Ref. 1), and has been discussed in detail

recently by Wigley in these Transactions (Ref. 2). An
interesting and important extension is the same problem

when the spheroid is moving steadily either with or

against a regular train of transverse waves. In con-

sidering the similar problem for a surface ship it is usual

to assume the pressure on the ship to be that due to

the undisturbed wave train, as, for example, in the

so-called "Smith effect" or as in the classical theory of

the motion of ships among waves as developed by

Froude, Kriloff and others; broadly speaking, this is

equivalent to neglecting the various virtual inertia

coefficients of the ship. Moreover, the effect of the

speed of advance of the ship is assumed to be simply

an alteration of the frequency of encounter with the

waves. A more adequate theory for surface ships

presents great difficulties; however, for various reasons,

it is possible to carry the theory further for a wholly

submerged body under certain conditions, and the

present paper deals with the motion of a submerged
prolate spheroid. The mathematical analysis is given

in Sections 2, 3, 4, and the notation and main results

are summarized in Section 5. General remarks are made
in Section 6, together with graphs for the force and the

moment coefficients; a point of special interest is the

effect of speed of advance and the difference between

moving against the waves or with the waves.

2. Velocity Potential

A prolate spheroid, of major axis 2 a and eccentricity e,

is moving axially under water with velocity V parallel

to the surface and there is a regular train of transverse

waves, of wavelength 2 tt/k and wave velocity c, moving
in the opposite direction ; the axis is at a depth d below

the surface. It is convenient to reduce the spheroid to

relative rest by superposing a uniform stream V in the

opposite direction. We now take fixed axes with the

origin O at the centre of the spheroid, O x axially.

O;' transversely, and O z vertically upwards. We begin

with the velocity potential for a spheroid in a uniform

stream (as given for instance in Ref. 3),

<^ = Vx-aeVPi(/x)Qi(0/Qi(Co) (1)

when the dot denotes differentiation, and the spheroidal

co-ordinates i, M, <^ are given by

X = a e
fj.

t,\

y = ae(l - /Li2)i (^z _ i)i sin co;

z = a e {I - iJi2)i {^2 - i)i cos w . . (2)

In these co-ordinates the spheroid is given by

t = ^0 = 1/^- ^^ ^'^^ ^^^ velocity potential cj>i giving

the assigned train of waves moving in the negative

direction of O x on the surface of the stream; it is easily

verified that

,f>i
=. — hce-'"' + '"cos{K X + at + a) . (3)

with a an arbitrary phase angle, gives a wave train on

the surface with elevation

provided

7) = /! sin (k X + CT r -f a)

a = K (V + c); c2 = gJK

(4)

We now take

^ = V:c-aeVPi(/^)Qi(D/Qi(Co) + <^i + <^2 • (5)

with
<f)i

given by (3). ^2 represents the disturbance of

the wave-train by the spheroid, and is to be determined

so that the normal fluid velocity is zero over the spheroid

;

thus we must have

S i4>i + <^2)/S ^ = 0; S = ^0 . (6)

We should also add a further term to (5) to represent

the steady wave pattern produced by the spheroid

itself, which would be determined as in Ref. 1 for motion

through smooth water; to a first approximation the forces

due to the transverse waves would be simply additive.

Meantime we shall assume the conditions to be such

that the former forces are small compared with the

latter, an assumption which can be checked by calcula-

tion from the results given here in Section 5 and those

given in Refs. 1 and 2.
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To determine
<f)2

we have to expand ^i in a suitable

series of spheroidal harmonics so that condition (6)

may be used. We shall take ^i in the form

,^1 = _/,c £-"' + ''^ + '<'•* + "' + «>
. . (7)

where the real part is to be taken.

We first expand exp (k z + i k x) on the surface of

the spheroid in spherical harmonics. On ^ = ^o = l/^,

we have .\- = a /x, z = 6 (1 — /x^)* cos ai, and we assume

exp [k i (1 — IJ-^)'' cos cti + i K a fji\

= 2 2 A^„ P^ (/x) cos 5 oj . (8)
n s

By the usual process for determining the coefficients

we have

,,_ 2« + l {n - sy.

2 7T {n+sy.

2t: ,1

cos s CO d a>
,x2)icos<o + ;«a^p. C^)^^ . (9)

noting that A„ is given by (9) with 5 = 0, but with a

factor \.

Taking the integration in a> first, we have

.271

exp [k 6 (1 — /x2)i cos oj] cos s CO d CO

= 2 7rl[Kb{[-lx2)i] . (10)

where I^ is the Bessel function of that type.

It can also be shown that

= (2 Try (0"-^ n (^o) J„+i (k a e)l{K a e)i

J denoting the ordinary Bessel function.

(11)

Hence we have

A^„ = (2 Try {if-' (2 n + 1)

(n-sy
'{n +sy

Pf,ao):Sn+i{xae)l{Kaey . (12)

A„ being given by 5 = 0, with a factor ^.

Hence the required expansion is

exp (k z + / K X) = S S AJ PJ (,x) F^iOlK Uo) cos s oj

27r\i'

n s

oo n in~sy
\KaeJ„^as=o '(n + sy

J„+i(«ae)P^(/Li)P^(Ocos.ya. . (13)

with a factor ^ for the terms with s = 0.

To satisfy (6) we take for (^2 a similar series with the

typical term

- A^„ PJ (;tx) QJ (0 [P^ a^Wniio) Q'n (^o)] COS S OJ (14)

Hence ^i + ^2 is given by the real part of

K.V. ..,.,w ^ Q,'(^o)P^(0-P;(Co)Q^,(0SS A^P^(fi) \n^(r\ cossoj . (15)

with the coefficients A given by (12).

3. Pressure Equation

The variable part of the pressure, omitting the

buoyancy term, is given by

P^P^<j>l^t^^p{ql+ql + ql) . (16)

with (75> 9iJ. ?u for component velocities in the three

corresponding directions. On the spheroid, the normal

velocity q^ is zero. Also the tangential component q^
comes only from (/>! + 1^2 and is of the first order, and

as usual in wave-theory we neglect qi,. So we have only

to consider the tangential component q^,, which is given

on the spheroid, using (5), by

{(\-p?yiaeai-
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4. Resultant Forces

If p is the fluid pressure at any point of the spheroid;

(/, m, n) the direction-cosines of the normal ; (X, Z) the

resultant forces in the directions Ox, Oz; M the

resultant moment round O y, we have

X=-JJ/7/(/S; Z=-JJ/)nrfS;

M= -JJp(/z-nx)^.S . (23)

taken over the surface of the spheroid. In the spheroidal

co-ordiriates (2) we have

/=^(C^-l)i/(?5-/.¥;

ciS = a^eHQ~])iai^l,^)id,xclaj . (24)

Hence we have

Z=-a^-eHo ai - 1)^

p Pi (n) d fj.
d oj;

-'-1

2- 1

COS oi pP\ (jx) d IX d oj;

iaieHQ - l)i cosoj \pP\(fi)dfj.dcjM

.... (25)

For the horizontal force X, taking account of the

integration in the angular co-ordinate w, we see that

we only need the terms in B independent of w; and for

the general term from the second part of (22) we require

the value of the integral

[(l-F^)/(?g-/^^)]Pi(/x)P„(/.)rf;t. . (26)

It is easily seen that (26) is zero if n is odd ; and if « is

even, and equal to 2 m, it can be shown that the value

of (26) is

-2al-\)Q„„ao) . (27)

Hence from (21) and (25) we have

X = (2 77)3/2 ^2 g2 (^2 _ 1) p /, c (,c a f)"* e"'"'

['^hiMl ~ 1) Qi (So) - (1 + -t,) (V/a e2)

S (- 1)"' (4 m + 1) J2„, ^] e'<-' +-)
. (28)

m=l

the argument of the Bessel functions being k a e.

From the properties of these functions, the sum of

the series in (28) is simply — (k a e) J^n (x " ^)-

Using properties of the spheroidal harmonics such

as (20) it can be deduced from (19) that

l+ki=-eiai-\)Qiao) . (29)

Thus the quantity in square brackets in (28) reduces to

e-'[~a(l+ki) + Ky(l+ki)]hi2i'<ae) . (30)

Noting that a = /c (V + c), this simplifies further; and
we obtain, taking the real part,

X = - (2 77)3/2 gpb^h e-'"' (1 + ki) (k a e3)-i

Jjyj (k a e) cos {a t + a.) . (31)

From the expression for the vertical force in (25), we
have to evaluate for the general term the integral

1

[(I - ^2)/(^2 _ ^2)] pj (^) p,_ (^) ^^ (32)
-1

This integral is zero if n is odd. If n is even and equal

to 2 m, it can be shown to have the value

(2/^o) (?g - 1)"^ QL (So) . . . (33)

From (21) and (25) we obtain

Z = (2 77)3/2 ab(Ka e)-i phc e"'"'

[2 i a hiMl - 1) Ql + i V (fl e)-' (1 + A:i) (S^ - \f

2(-l)'"(4w+I)J2„ + i]e'("' + »>
. . . (34)

the argument of the J functions being k a e, and that

of Q being {o-

The series in (33) sums as in the previous case; further

if A'z is the virtual inertia coefficient for transverse

motion of the spheroid, we have

k2=-lo Ql aoWl - 1) Ql (So) . (35)

from which we can deduce

(il
- l)i (1 + ^2) = 2/(^2 _ 1) Q, (^^) (36)

Thus the quantity in square brackets in (34) has 13^2 ^s

a factor, and another factor is

(l+/t2)(V + c)-(l +A-,)V

Collecting these results we obtain finally

Z = (2 77)3/2 gpb^h e-"' {k a e3)-i

[\+k2 + {k2- ki)yic] J3/2(/cae) sin (at + a) . (37)

Similarly, for the moment M from (21) and (25) we
have to evaluate the integral

I

[(1 - ^2)/(q _ ^2)] p, (^)
pi

(^) ^ ^ . (38)

-I

In this case, (38) is zero when n is even. When n is

odd and equal to 2 w + 1 it has the value

6 (S? - I)^'^ QL-n (So) . . . (39)

for all values of in except w = 0; when m = 0, (38) has

the special value

6(S?-l)^'^Ql(So)-8 . . . (40)

With these values in (21) and (25) we have

M = (2 77)3/2 ^3 gj (^ g ^)-i (^2 _ ,-)i ,j ^ g-.d

{2 o- J5/2/(So
-

[-4J3/2/(S^ -DQl

S(- 1)" (4 m

(1 +ki){\lae2)

' (Ss - 1)^

3)J2. + 3/2]}^''"" + "'
•

(41)

The series of Bessel functions has the sum «: a e J+ (k a e).

Also we substitute from (36) for Q[ in terms of ^2- We
may also introduce the virtual inertia coefficient for

rotation ; k' is defined as the relative increase in moment

of inertia of the spheroid rotating like a solid of density p.

It can be shown that

/t' = - Qi (So)/ So al - 1) (2 S5 - 1) Q\ (So) (42)

Using (20) and the expressions for P^ and P^ we deduce

2/(S^ - DQH So (il - 1)^1 + (2 S^ - D' k'] (43)
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We also replace 13^2 in (41) in terms of J|/2 ^^'^ J5/2

and after some reduction we obtain, after putting

cr = KT (V + c), the form

M = (2 v-yi^ gpab^h e-"'' {k a e)"*

/
1 +

(|32_l) '^'J-
5/2 ' + (ft^)'

i (1 + k{) (1 + k2) J5/2 + i (1 + kx)

(1—2 ki) J,p M cos (cr f + a (44)

where the argument of the J functions is k a e, and

;8 = length-beam ratio = ajb.

5. Summary of Notation and Results

We may express these results more conveniently in the

following notation, in which we also define suitable force

and moment coefficients.

L = Length of spheroid = 2 a.

e = Eccentricity = (1 — b'^ja^)'^.

;S = Length-beam ratio = ajb.

D = Displacement = f tt g p a b^. <

ki, kz, k' = Axial, transverse, rotational virtual inertia

coefficients, as defined and evaluated, for

instance, in Ref. 3.

V = Speed of advance (positive against the waves).

/= Froude number = V/(^ L)-.

d = Depth of axis below the surface.

h = Amplitude of waves = half wave height.

A = Wavelength = 2 ttJk.

c = Wave velocity = (^/k:)*.

2 tt/ct = Period of encounter.

CT = K (V + c).

B = 1 TT {hjX) e~^"''l^ = Maximum effective wave
slope at depth of axis.

X, Z = Resultant forces in directions O x, O z.

M = Resultant moment about O y.

Cx = Surging force coefficient = X (max)/D d.

Q = Heaving force coefficient = Z (max)/D 6.

Cyy = Pitching moment coefficient

= M (max)/D L d.

In this notation, the results obtained are

X = - D C, cos ((7 f + a); Z = - D eQ sin (a ? + a);

M = D L 61 C^^ cos ((T ? + a) . . (45)

l+^2+/(-^) (fc2-/c,)J

'77 e L\

a =
2 77 e5/2

(l)
J3/2(-^).(47)

^•^^ ~ 4 77 e"2

3V2 /An 3/2

-i{\+k{){\+k2)^hli(^)

+ I (1 + fci) (1 - 2 k2) hn (^)} }
• (48)

6. General Discussion

The phase relations between the waves and the forces

can be seen from a comparison of (4) with (45). It is

of interest that these relations are unaltered by the

improved theory: there is, for instance, a difference of

phase of 90 deg. between the heaving force and the

pitching moment. It is also confirmed that the period

of the forces and moment is the period of encounter

with the waves.

From (46) we have the unexpected result that the

surging force coefficient is independent of the speed of

advance. The coefficient is small and oscillating in

value for small values of A/L; for a long spheroid, the

highest zero position is at about A/L = 0-7. The graph

of Cx, except for a scale-factor, is the same as the curve

labelled / = in Fig. 1 . For large values of A/L, the

surging force X approximates to

- (1 + A:i) D 9 cos {at + a)

assuming the wave slope to be kept constant.

Similarly from (47), the heaving force Z approximates

to —(1 + fci) D sin {a t + a) for large values of A/L.

In general C. varies with the speed of advance due to

the difference between ^1 and kz. We take for illustra-

tion the case of a long spheroid with e approximately

unity and ki, kz approximately 0, 1 respectively. Fig. 1

shows Cj on a base of A/L for zero speed and for

/= 0-5 and — 0-5; we note that/positive is for motion

against the waves and / negative for motion with the

waves.

2-0

0-5

'0-6 0-8 10 1-2 1-4 1-6 1-8 20 2-2 2-4

Fio. 1.

—

Heaving force coEFnciENX for varying A/L; /positive

AGAINST waves, NEGATIVE WITH WAVES

There are several points of interest in the pitching

moment coefficient (48). In passing, it may be remarked
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that it reduces to zero for a sphere, as should be the

case. The variation with the length-beam ratio is shown

by the quantity in square brackets in (48); for instance,

taking the corresponding values of the inertia coefficients

this quantity reduces to

1-823 J5/2 + (2 TT L/A)V(0-485 J5/2 - 0-279 Jj^); ^ = 5

1-883 J5/2 + (27r L/A)i/(0-549 J5/2- 0-313 Jj/j); ;8= 10

2 J5/2 + (2 77 L/A)i/(0-666 J5/2 - 0-333 J1,2); ^ ^ 00

We choose the last case for numerical calculation; that

is, we consider a long solid of revolution for which

ki, kz, k' are approximately 0, 1, 1 respectively, and

we obtain Cyy from (48) with these values. It is inter-

esting that there are values of A/L for which the pitching

moment is independent of the speed of advance; for

this case, these are the roots of the equation

• • (49)

0-53

2J5/2(7rL/A)-J„2(77L/A) =

The two highest roots are approximately A/L

and A/L = 1-51.

This point is brought out in Fig. 2, which shows

Cyy on a base A/L for zero speed and for /=0-5,
/= — 0-5; the curves show how the effect of speed of

40

-35

Fig. 2.

—

Pitching moment coefhcient for varying A/L;
/POSrriVE AGAINST WAVES, NEGATIVE WITH WAVES

advance on the pitching moment, with or against the

waves, differs according to the value of A/L. The same
result is also shown in Fig. 3, which gives C^y on a

base/for given wavelengths. As this is a linear relation,

the graphs are straight lines; those for A/L = 0-53, 1-15

are parallel to the base line.

0-5

0-4

0-3

0-2

0-1

o

-0-1
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THE FORCES ON A SUBMERGED BODY MOVING UNDER WAVES

giving a surface elevation

q = h sin [k (x cos y + y sin y) + a t + a] . (2)

provided a = k (V cos y + c); c^ = gJK . . (3)

To obtain (^2 we have now to expand

exp K [z -\- i (x cos y + y sin y)]

in a series of spheroidal harmonics. It is found that

instead of 1(10) we require the two integrals

6(1 — ti')Kcostu + /sinYSincj) cos S CO d CDd,

(6)

= 27rC,h[Kb{l -^^)icosy] . (4)

and the same integral with sin s w for cos 5 w, equal to

SJ,[Kb{\ -i,^)icosy] ... (5)

in which

Q = i [(1 + sin yY
S. = i [(1 + sin yy

Proceeding as in I Section 2, the only alteration required

is to replace k a e by k a e cos y and A^ cos s co by

A^ (Cj cos 5 o) + / Sj sin 5 w).

Thus, as in I Section 3, we have for the effective part

of the pressure

p = (
)
phce~

\K ae cos y/

- (1 — sin yyj/cos^ y

(1 — sin y)^]/coS'' y

I e cos y/

/ctB
(1 +fci)V(l -/x2) SB-

pi(o'+a)
(7)

with

B = S S (2 « + 1) (/)"-'
,
J„+i(/caecosy)

(^^-1)0^ (Co)

P^ (/x) (Q cos s w + iSs sin j oi) . (8)

with a factor \ for the terms with s = Q.

The forces X, Z and the pitching moment M are

given by 1(25); and, owing to the presence of terms in

sin s w, we have a swaying force Y and a yawing

moment M' given by

Y =

M'

^0(^5-1)^

±a^eHll-\)i

sm ai

sin o)

p P] (ix) d fi d a>

-1

1

p P| (/x) d [J, d a)

.... (9)

The evaluation of the forces and moments follows as

in I Section 4, noting that we must introduce the

appropriate values of the coefficients given in (6) and
also that o- = k (V cos y + c).

2. We add to the notation specified in I Section 5

C^ = swaying force coefficient = Y (max)/D 6

C,^ = yawing moment coefficient = M' (max)/D L

The components are given by

X = - DeC;,cos(c7/ + a);

Y= - Dec^cos(cr? + a);

Z= - Dec, sin (cT? + a);

M = D L C^j, cos ((7 t + a);

M' = DLec,jSin(cr;+;x) . . . (10)

These relations give the connection between the phases

of the components and the phase of the surface waves;

if in varying the angle of attack y from deg. to 180 deg.

any coefficient C passes through zero and changes sign,

the corresponding force or moment changes in phase

by 180 deg.

The force and moment coefficients are given by

(cW (l)
0+^0J3/4^cosy)

c,-

2 -TT e3/2

Q sin y

3V2
\L cos y/2 TT e"^ VL cos y.

<27rL\i/27rL\'^ /TreL \
l+k2 + [-^) /cos y {ki - ki) Jjp [-^ cos yj

c„

, sm y

3^/2

(c^r{['-(^A:
y

4 7re"nLcosy/ IL ^V|32

/77 e L \ /2 TT L\*
J5/2 (,~^ '^os y) + (.^r J -^

'^'^

/B^ + 1\^ 1 /TreL \

l +(^^) ^'-Kl+^-i)(l+'<:2)J J5/2(-^cosy)

+ i(l+^i)(l-2^2)J,/2(^cosy)|}

.... (II)

3. We note that the surging force is independent of

the speed of advance except, of course, for the alteration

in the period. Except for the surging force, all the

components can be derived from the expressions in

I Section 5 by replacing the wavelength A by A/cos y
and the speed / by /cos y. Further, the coefficients

C,, and C.. differ from C. and C,,,, respectively only by

a factor sin y. Putting 180 deg. — y for y in the expres-

sions (60), we see that at zero speed C^ and C^ are

symmetrical about the middle position y = 90 deg.,

while C^., Cy^ and C^^ are anti-symmetrical. Taking

account of the speed of advance removes this element

of symmetry, for the effect is different according as the

waves are from ahead or from astern.

When y = 90 deg. the solid is moving parallel to the

wave crests and this case is of some interest. The results

can be obtained by taking the limiting values of (11)

as y is made equal to 90 deg., or can be worked out

independently.

We have for y = 90 deg.

C^ = 0; C^ = C, = 1 + A:2

C,, = Q, = {2^'fi^ + ^0 (1 - 2 ^2) . (12)

In this position the forces are independent of the speed

of advance. As might be expected, the moments are

zero at zero speed; but it is specially interesting that

pitching and yawing moments are developed when the

solid is advancing parallel to the wave crests. No doubt
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this arises because when account is taken of the speed,

the pressure distribution on the solid is altered and is

no longer symmetrical fore and aft.

The general character of the results in (11) can be

shown best by diagrams, and for this purpose we take

the case of a fairly long spheroid for which we assume

the approximate values e = 1, A:i = 0, kj = k' = \. Figs.

4, 5, and 6 show curves of the coefficients of heaving

force, pitching moment, and yawing moment for the

waves at any angle to the direction of advance. In each

case the results are shown for three diflFerent ratios

of A/L. The continuous curves are for zero speed; and,

in order to bring out the difference, the dotted curves

are for a speed of advance given by the Froude number

/ = 0-5. The curves give some indication of the manner
in which these quantities depend upon the ratio A/L,

upon the speed and direction of attack, and upon
whether the waves are from ahead or from astern.

"1—I—

r

"T r

40 60 80 90 too 120 140 160 180

Fig. 4.

—

Heaving force coefficient for A/L = 0-5, 10, 1-5;

AT zero speed, AT SPEED /= • 5

-0-4

"1—i—

r

j-o \/ '

I ° I I I
I L

O 20 40 60 80 90 lOO 120 140 160 180

Fig. 5.

—

Pitching moment coefficient for A/L = 0-5, 1-0, 2-0;

AT ZERO speed, AT SPEED /= 0-5

-0-1

1 1 r

-0-4 _L I III \ L
O 20 40 60 SO 90 100 120 140 160 ISO

Fig. 6.

—

Yawing moment coefficient for A/L = 0-5, 1-0, 2-0;

at zero speed, AT SPEED /= 0-5
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THE COUPLING OF HEAVE AND PITCH DUE TO SPEED OF ADVANCE

By Professor Sir Thomas H. Havelock, M.A., D.Sc, F.R.S. {Honorary Member and Associate

Member of Council)

Summary

The object of the note is to discuss a particular type of couphng and to estimate its

probable magnitude. The coupling effect is isolated by considering a specially simplified

problem, namely a spheroid floating half-submerged in a uniform stream with surface

conditions which preclude wave formation and without damping. This problem is solved

completely; numerical calculations indicate that the alteration in resonance frequencies due

to the coupling is likely to be negligible in ship problems.

1. The chief cause of coupling between heave and

pitch is lack of symmetry of the ship fore and aft, as

for instance in the well-known hydrostatic coupling or

in that due to damping. There is one type, which may
be called hydrodynamic coupling due to speed of

advance, which seems to exist even if the ship is sym-

metrical fore and aft. This effect was introduced into

the equations of motion of the ship by Haskind.*" In

that work Haskind replaced the ship by the approxima-

tion used in wave resistance theory, namely a source

di.stribution over the longitudinal vertical section;

further, the expressions were left in a complicated form

and no indication was given of the relative importance

of the terms in the equations. Recently Stoker and

Peters*^' have made a systematic study of the general

problem of the motion of a ship in a seaway, developing

the equations in terms of a single parameter, namely the

ratio of beam to length. In the equations of motion

to the first order, they do not obtain any coupling terms

of the type in question for a symmetrical ship. This

might be expected as in their work the ratio of beam to

draught is also supposed small; in fact their model
approximates to a thin flat disc. Haskind's work is also

criticized as implying damped oscillations since the

coupling terms occur as first order derivatives; but we
shall see later that this criticism is unfounded as far as

the coupling terms are concerned. This type of coupling

has been the subject of discussion recently, for instance

Weinblum,'^' and it seemed of sufficient interest to

attempt to estimate its importance or otherwise. It is

easy to see on general grounds that the coupling exists.

If a floating solid, symmetrical fore and aft, is made to

oscillate vertically in a uniform stream, the alteration in

pressure is anti-symmetrical and so we get a couple

acting on the solid; if it is given pitching oscillations

the alteration in pressure is symmetrical and we get a

heaving force. It also seems likely that the effect will

be small, and that is confirmed by the present calcula-

tions.

In the theory of wave resistance for a ship advancing

steadily in still water, a first approximatiofi based on

the linearized free surface condition is in general a good

approximation for ships of small beam/length ratio, and

this remark applies even when the beam/draught ratio

is not also small. But in attempting further approxima-

tions it is difficult to know how far one may go without

amending the free surface condition by including some
approximation to finite wave theory.

On the other hand, consider heaving and pitching of a

ship at zero speed of advance. Here we do not need

to restrict the relative dimensions of the ship, either the

beam/length or the beam/draught ratio; the linearized

free surface condition is adequate for a good first

approximation, except no doubt for exceptionally large

motions.

Turning to heaving and pitching in waves with the

ship advancing, one can see the difficulty of combining

the general problem in a single calculation which will

give useful results for the ship problem. The present

unsatisfactory theory consists more or less in simply

superposing the two sets of calculations ; or if it is rather

better than that, we are still left in doubt as to the

validity and relative importance of the various terms in

the equations of motion. On the other hand, if we limit

ourselves to a rigorous development based on, say, a

thin disc form, we may miss the important effects for

the ship problem as regards heaving and pitching.

However, the present note makes no attempt whatever

on the general problem. The object is to isolate the

particular type of coupling and if possible to estimate

its importance. For this purpose we consider a specially

simplified problem. It may be regarded as the opposite

of the work just referred to; instead of taking a thin

disc and including the wave motion, we consider a form

more like a ship but we exclude the wave motion com-

pletely. The conditions may be visualized in this way.

Imagine a solid floating in water and suppose the free

water surface covered by a smooth rigid plane; the solid

being assumed free to heave and pitch in a hole in this

plane, the periods can be calculated. If there is a

longitudinal uniform stream in the water, the oscilla-

tions are coupled and the periods can be obtained. The
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results may be comparable with those for a ship

advancing at slow speed; but in any case it seems likely

that the coupling effects in the actual problem will be
less than in this simplified case. The form of solid we
consider is a prolate spheroid floating half-submerged;

for this case the problem can be solved completely and
the analysis is given in the Appendix.

2. If h is the heave and i/> the pitch, and U the stream

velocity parallel to the axis of the spheroid, the equa-

tions of motion for free oscillations are obtained in the

form (25),

(I -{-ki)Mh ~ pU\J 4, +gpS,h^Q
(I -)-^•')I^ + ^M Uh+-Mgm>}j=0

The first and third terms are in the usual notation for

uncoupled heave and pitch; the second terms give the

coupling effect, kj and k' are the virtual inertia coeffi-

cients under the assumed water surface condition.

ki, k', p and q are positive numerical coefl^cients depend-
ing only upon the length/beam ratio of the spheroid;
explicit expressions are given in (18), (20), (22), and (23),

from which numerical values can be calculated.

If we write these equations in the form

/;' ^ a U </> + n2, /) =
'>p+ PV ii + n^-2 (/r =

n\ and ni are the frequencies for uncoupled heaving and
pitching, taking into account the virtual inertia. If we
assume a periodic coupled oscillation of frequency p,
we have

p^ - {n] + nl + oi^ U^) p'- + n\ni = Q

Both roots of this equation in p- are real and positive,

and we have two simple undamped oscillations of, say,

frequencies p^ and pi. In each mode the heave and
pitch differ in phase by 90 deg., and the motion alter-

nates between heaving and pitching. Further, if /7i < ni

and Pi < pj, then we have pi < m and pz > nz; thus
the coupling increases the separation between the reso-

nance frequencies. This is a general effect of coupling
terms; incidentally it may be remarked that for the
coupling caused by damping, Korvin-Kroukovsky and
Lewis'"^ observed that the resonance period for heaving
was increased while that for pitching was diminished.

3. To estimate the magnitude of the effect we take a

numerical example. We choose a spheroid of length/

beam ratio equal to 10. The numerical values of the
various coefficients were calculated with sufficient

approximation for the present purpose. From (18) we
find ki = 2-42. This means an increase of about
80 per cent in the heaving period as found without the
added mass; no doubt this is rather large, but we have
taken the extreme condition of a rigid water surface.

Similarly from (20) we find k' =15, giving a corre-
sponding increase of about 60 per cent over the basic
pitching period. From (22) and (23) we obtain, approxi-
mately, /7= 116, ,7 = 0-57. With ./' as the Froude
number, we have \J=f(2gay-; and taking a 16-ft.

model as a definite example, that is, a = 8 ft., the

equations of motion are

h -7-7/4, + 17-657/7=0

^4-0-404//; + 30-187 </-=0

and the frequency equation is

(47-844 + 3-lll/2)/72 + 533.01

The periods of uncoupled heave and pitch are

1-495 sec. and 1-144 sec. respectively. For /= 0-2,

the coupled periods are 1 -503 sec. and 1-138 sec. Even
at a high speed /= 0-5, the periods are only altered to

1-537 sec. and 1-112 sec. The curves in Fig. I show
the variation in the coupled periods with increasing

speed. At zero speed, the upper curve gives the period

of uncoupled heave and the lower curve that of un-

coupled pitch. The variation with increasing speed only

becomes appreciable at very high speeds.

'o 2 .4
f -6 .8 1.0 u

Fig. 1

—

Variat[ON of resonance periods with speed

4. Although the surface condition 3 (/i/S z = is a

severe limitation as regards application to the ship

problem, it was thought preferable to work out the

simplified problem consistently on this basis. In the

last section of the Appendix comparison is made with

the work of Haskind. It appears that if we use tenta-

tively rather mixed conditions with the oscillation

potentials satisfying the condition </> = at the surface,

then the coefficients of the coupling terms approach

numerical equality for a long spheroid for which b/a is

small; the coupling terms approximate to the values

— 2" M U i/i and + M U /;. For another numerical

example, take ^'2 and k' at their limiting values of unity

for this surface condition and the equations (29) approxi-

mate to

IMli -l-MV 4j +gpSh =
21 4i + i M \J I'l + M g m >p =

For the 16-ft. model of the previous calculations these

give a frequency equation

p^ - (67-92 + 2-514/2) p2 + ] 139 =

For/= 0, the uncoupled periods of heave and pitch
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are 1-144 sec. and 1 -023 sec. respectively. For/= 0-2,

the coupled periods are 1151 sec. and 1 017 sec; while

for/= 0-5, they are 1
• 181 sec. and 0-991 sec.

5. To sum up the discussion, it seems that the coupling

terms are of the form — p M V i/j and + q M V h, with

p and q numerical coefficients approximately between

unity and one-half From the numerical examples, we
may conclude that the alteration in resonance frequencies

is negligible. It would be of interest to examine forced

oscillations; for instance, with an impressed heaving

force the response involves pitching as well as heaving,

and similarly, with an impressed pitching moment. An
effect of this sort seems to have been observed by Grim.'^'

It is, of course, possible that even a small coupling effect

might be magnified into something appreciable at or

near resonance. However, any satisfactory examination

of this would involve introducing suitable damping terms

and that is beyond the scope of the present note, the

purpose of which was to isolate the coupling effect in

its simplest form, together with the consequent change

in the resonance frequencies.

Appendix

6. We take the origin O at the centre of the spheroid,

O X along the axis, O z vertically downwards and O y trans-

versely. We use spheroidal co-ordinates given by

X = a e
fj, ^; y = a e (\ — jU^)i (p — l)i cos w;

z = a e (\ - ix^)i (^^ - l)i sin w . (I)

The spheroid is given by ^ = Co = '/^^ ^"^ for the sub-

merged half oj ranges from to n. The spheroid floats

half immersed in water, and there is a uniform stream U in

the negative direction of Ox; the solid makes small oscilla-

tions, in which the heaving velocity at any instant is h upwards,

and the angular pitching velocity is ip in the positive direction

round O y. If (/> is the velocity potential, we assume the

condition 5 (/>/3 z = at the upper surface of the water.

For small oscillations we assume the condition at the

immersed surface of the solid to hold at the mean equilibrium

position ; thus, in the subsequent work, we neglect the square
of the fluid velocity due to the oscillations.

We take for the velocity potential

^ = Ux-aeUP, (jtt)Q, (0/Q|(Co)

- A Fi (fj., C, oj) + ^ F2 (/x, C, cu) . (2)

(3)

with F, = 2 2 A^P^(^)Q^(Ocos.yaj

F2= S S B^„P;,{fi)Qf,(Qcossco
I„=0j=0 J

The expression (2) satisfies the condition 5 ^/J z = at the

upper surface of the water. The first two terms represent

the spheroid in a uniform stream and give zero normal
velocity over the immersed surface; hence, as for instance in

Lamb's Hydrodynamics, p. 142, we must have

S F,/3 ^ = aeCoa^- !)-* P| (jm) sin co
|

dF2lil = ia^e^Q-\)-iP\{fj.)s\nojj- ' '"^^

for C = Co; < f" < ^

Putting the expressions (3) in (4) and determining the

coefficients in the usual way.

Ai= -

Bf, =

2ae Co 2n + l(n -s)\ CJ

TTiCl^Di S2-1 („+,)! Q.(^^)

2a2e2 2n + l(n-sy. DJ
3 77(^2 - \)i s^~l (n

with the factors C, D given by

,1 ^1

P}(/Li)P;; (f^)dfi; DJ,= P{{fj.)Pf,(fj.)dfx

(5)

(6)

(7)

It should be noted that in the summations in (4) with (5)

and (6) terms with s = must be taken with a factor i.

Further, s is even throughout, while n is even in (5) and is

odd in (6); this follows from the fact that the integrals in (7)

are only different from zero under these conditions.

7. The pressure is given by

p =gpz +pi<j>lit + ip\J^ -ipq^. . (8)

with q^ = (S <j>li s,J^ + (3 0/3 s-)^ + (3 0/3 sj^ . (9)

On the spheroid the last two terms in (9) come only from

the last two terms of
<f>

in (2) and are of the second order.

Further, on the spheroid, we have the first two terms of </>

in (2) given by

a\Jp[l -eQ, (Co)/Q, iXo)] =aV(l +k,)p. .. (10)

where Ar, is the virtual inertia coefficient for axial motion of

the spheroid; also, on the spheroid,

3 0/3 s,, = [(1 - iJ.^)ila e {^ - f^2)i]3 0/3 p. . (11)

Hence, to first order terms in h and 0, we have on the

spheroid

1 -p
cfieHll^P^)

^Ta^U^d +Ar|)2 -2aU(l +A:,)
2. — \tJ.\*-

{- hiFJip + >f,iF2lip)] . (12)

If — Z is the upward resultant of the ffuid pressures, and

M is the moment about O v, we have

p n dS

sin CO d w pP\(p)dfi . (13)

M {I z — n x) p d S

ia'eHrs^ l)i sin a> d w pP\(p)diJi . (14)

8. We shall consider separately the contributions of the

various terms in the pressure defined by (8) and (12). The

term g p z gives the hydrostatic vertical force, and moment,

leading to the usual expressions for the restoring force pro-

portional to the heaving displacement h, and restoring

moment proportional to the pitching angle ip. Then there

is a steady vertical force arising from the terms in U^, and

corresponding to the bodily sinkage of a ship in motion.

We obtain this by using for p in (13) the terms
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ipV^ -ipVU\ +k^)H\ ^ f^^yieH^l- 1^^) . (15)

The integrals can be evaluated, and the result for this vertical

force can be reduced to the simple form

inpabV^[(\ + k,)^aia + 2b)l{a + b)^ - \] . (16)

This result was given in an equivalent form in a previous

paper/*' which dealt with the sinkage of a general ellipsoidal

form at low speeds. To estimate the magnitude of this

effect we may equate (15) to ngpabs, and call i the

equivalent sinkage. If, for instance, ajb = 10, we find

s = 0-0157 UV.? = 0-314/2/), with /as the Froude number.

The effect in the present problem means simply an alteration

of the origin O; but, as it is small except for high speeds,

we shall neglect it in what follows.

9. Turning now to the term p 3 (/i/ci t in the pressure, it

is easily seen from the various expressions which have been

given, that the term from F2 gives no contribution to the

vertical force; and we have for this part of the vertical force

r" r'

a2 e2 ^^ (^2 _ j)i p h sin CO (/cu Pj (p.) F, {p. ^q. «-") ^^i"

-'0 -^-1

.... (17)

Substituting for F, from (3) and carrying out the integrations

we can express this vertical force upwards as — kj^i h,

where M = ^ tt p a b^ = mass of spheroid and

6 _„ 2n + l (n-.j)! (3^„(^o)
^2 ~~

ZZTZ, 2 Zj (Cff-
^^^tf (^^-1P(«+^)!(52_,)QJ(J^) "

.... (18)

This expression is essentially positive, and A^2 's the virtual

inertia coefficient for broadside motion of the submerged

spheroid under the assumed condition of a rigid water

surface.

Similarly, putting the pressure term pi c^/t) t in (14), we

find that F, gives no contribution to the moment, and we

have for this part of the moment

ipa^eHi:i-l)i'P sin ui d CO PHp)F2(f^>io''^)dp

.... (19)

The moment of inertia of the spheroid about Oy is

1 = -A- -77 p a 6^ (a^ + /,2). We find that (19) can be ex-

pressed as — k' I ij), with

k' = - lOa^e2 ^3

;SS
2/1 + 1 (n - j)!

3 7r2 (a2 + 62) ^ ^ (^2 - 1)2 („ + ,)!

Qf. (Co)

(a-i)QJ(Co)'
(D£)2 . (20)

k' is the virtual inertia coefficient for rotation about O;'

under the assumed surface condition.

10. Lastly, from (8) and (12), the remaining terms in the

pressure are

- pa{\ +Ar|)U
1

a2e2(^2_^2)
(- /I^F|/^/Lt + i/iiF2/5/x)

.... (21)

With this in (13) and (14), it is seen that the only contribu-

tion- to Z comes from the term in F,, and the only con-

tribution to M from the term in F,. Putting in the

expressions for F, and F2 and carrying out the integrations,

the results can be expressed as an upward vertical force

p M U ijj with

2(1 +k,) ^ " 2«+ 1 (n-sV.

(a-')Q^(Co)

and a moment — q M V h, with

2(1 + A:,) ^ " 2n + I (n - s)l

(22)

2 S^^e „f2,fo(s2 - l)2(«+.s)!

Q"(Co) (^ipi

(a-i)Qj(Co)
"

"

(23)

where we have written

.1

a^f-

\~p^

-,P|(^)P^(^)rf^;

a-f-
2n(H-)nii^)dt^. (24)

Summing up these results we get the equations of motion
of the spheroid, with in as the metacentric height.

(1 +k2)Mh-pMV^ + TTgpabli =

(1 + k')l ijj + q M V li + M g ni ip ==
(25)

where A-2, k', p, q are positive coefficients given by (18), (20),

(22), and (23). It should be noted again that in these

expressions s is even, the terms in .y = having a factor \\

further, in expressions involving the coefficients C and F,

n is even, in those with D and E, n is odd.

1 1 . In the coupling terms in (25) the coefficients p and q
are, in general, of unequal value numerically, but in the

corresponding terms in Haskind's equations they are equal.

Haskind denotes these terms by — c U i/i and -\- c\J h,

with c defined by a double surface integral. On examination

it appears that this expression for c does not involve the

wave motion, but involves only the velocity potential due to

the oscillations determined as if the free surface condition

were <j> = 0. Further, it is based on replacing the solid by

a source distribution over the surface of density o- where

4 77 £7 equals the normal surface velocity, and this is then

contracted to a distribution over the vertical plane section;

this is a simplification which is appropriate when the form

approximates to a thin disc.

Turning to equation (2) the functions F, and F2 were

determined to satisfy the surface condition i) <f>li> z = 0.

Suppose, for a moment, that we determine F, and F2 from

the surface condition ^ = 0; then we should have

<l>
= V.x -aeVP,(p)Qi (D/Qi (Co)

<a - i)i Qi (Co)

a? e2 t/i

Pj (/^) Qi (0 sin CO

pi(;u)Qi(Osinco . (26)

3(Cg-i)*Ql(Co)

To make this velocity potential consistent and satisfying.
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THE COUPLING OF HEAVE AND PITCH DUE TO SPEED OF ADVANCE

say, the linearized free surface condition, there would be

additional terms expressing the effect of the surface dis-

turbance. Meantime we shall simply assume that these

terms are small, or at least that they do not affect appreciably

the coupling effect which is under consideration. Taking

(26) as it stands and calculating Z and M as in the previous

sections, the values of kj and k' will now be the usual values

as if for motions in an infinite liquid. For the coupling

terms, using (21) with (26), the vertical force upwards is

-^7rpa^e(\+k,)\J^ [Qi (QIQ\ (l^)]

.1

V\(tL)V\(yi)d^

= -j77joa3e2(l +^,)U^(r2- l)3Qi(Q
. (27)

Similarly for the additional moment we obtain the result

-\^pa^e(\+k,)\J h[Q\ (^o)/Ql (lo)\

1

mij.)p[(.f^)dfi

[3(^2-l)JQj(Q-4Qi(g/Qi(^o)] (28)

In general, the coefficients of U i/i and U h in (27) and (28)

are not equal numerically. For the case ajb = 10, they are

nearly equal. It can easily be shown that as ^q

have

ai - \)i Qi ^ - ai - 1)

(^ - 1)3(q-l)iQ|(?o)-4Qj(Co)/Qi(eo)-

Thus for a long spheroid, with bja small, the equations

approximate to

(1 + ^2) M '^' - i (1 + At,) M U iA + S-p S /! =

(I +fc')lf+i(l +k^)U\Jh + Ugm4> = Q
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Waves due to a floating sphere making periodic

heaving oscillations

By Sir Thomas Havelock, F.R.S.

{Received 19 February 1955)

The paper gives a discussion of the fluid motion due to a sphere, floating half-immersed in

water, which is made to describe small heaving oscillations. The velocity potential is obtained

as a series for which the unkno^vn coefficients are given by an iniinite set of equations. These

are solved approximately so as to obtain curves showing the variation with frequency of the

virtual inertia coefficient and of the equivalent damping parameter.

1. When a floating solid i.s made to describe periodic oscillations wave motion is

produced, and it is required to determine the resultant pressure on the solid and the

energy radiated outwards in the wave motion. The problem has been studied in

general form by John (1950), especially as regards the necessary conditions for the

uniqueness of the solution of the potential problem. The only cases which, to my
knowledge, have been worked out in any detail are two-dimensional problems. In

particular, Ursell {1949, 1953) has examined fully the heaving motion of a circular

cylinder half-immersed in water. Similar work has been carried out by Grim (1953)

for cylinders with various forms of cross-section, more especially with a view to

application to ship problems in estimating virtual inertia and damping coefficients

for heaving motion. In all these cases the virtual inertia coefficient approaches an

infinite value as the frequency becomes small ; this is no doubt connected with the

fact that the condition at the free-water surface then approximates to that for

a rigid boundary, and the two-dimensional potential problem with that boundary

condition is indetermina;te. This does not arise for three-dimensional motion; the

general case approximates to determinate potential problems in the two limits as

the frequency approaches zero or infinity. The point of special interest is the

variation of the virtual inertia coefficient with frequency between these hmiting

values. The general character of the variation has been surmised, but there do not

seem to have been any actual calculations. In this paper we consider the simplest

case, a sphere half-immersed and making small vertical oscillations. The calcula-

tions show that the virtual inertia coefficient rises to a maximum with increasing

frequency, falls to a minimum and then presumably rises gradually to its final

limiting value. The variation of the equivalent damping coefficient is also obtained.

A solid of ship form would come between the two extremes of an infinite cylinder

and a sphere, and could be represented better by, say, a spheroid. The limiting

values of the virtual inertia coefficient for a spheroid can readily be calculated,

but the general solution for any frequency leads to expressions too comphcated for

computation.

2. We take the origin O in the undisturbed water surface, with Oz vertically

downwards. The water is assumed incompressible and frictionless and the motion is
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Sir Thomas Havelock 2

symmetrical with respect to Oz. For periodic motion of frequency cr, the linearized

condition for the velocity potential at the free surface is

/Co54 +/ = 0; 2 = 0, (1)
oz

with Kq = a-'^jg. If there is a periodic singularity of order n at the point (0, 0,/) in

the water, we have the known solution

^"(Ai)„.„^. ,(-1)

rj*+l "- J 1^— '^0

t\ -VV„
Jo K-Kq

COS at + - p-cosf7< -''/cV„(^tz7)e-^fc+''d^-. (2)

valid for z +/> 0. The principal value of the integral in (2) is to be taken, and we

have put r^ = x^ + y'^+{z—Jf' = ^^ + (2—/)2, and/t^ = (z—f)jr-^. li r^. H2 are polar

co-ordinates referred to the image point (0, 0, —/), the solution (2) can be expanded

in the form

coscri r"+i r'^^'^ \n r^
'"

n\ r^)

n\ Jo K-Ko
The principal value of the integral in (3) is

,,„ 2 r°°/Cn cos Ar(2 + /) + /< sin /<-(2 + /') ^^ , ,,
-7r7o(/CoZZ7)e-o<-+/'-- J ^ i', '-^^'Ko(Km)dK, (4)

with the usual notation for the Bessel functions. We superpose on the motion given

by (3) free symmetrical oscillations of frequency a so that as w^oo the motion

approximates to circular waves travelUng outwards. For this purpose we add to

(3) the term
2^—j^7)-A:y+iJo(AroTO)e-'^o(2+/)sino-<. (5)

The motion as cj^oo then approximates to

( _ \)n / 2 \ 2

6^27TKJi+^-—pi-
1 sin(o-«-;cnTi7 4-i77-).

n\ XttkqTuJ
(6)

In general as Ti7->aD, ^ is of order vj-^; but from the expressions given in (2) and (3)

it is possible to construct solutions in which <j) is of order w^ or of higher order.

These combinations of periodic singularities might be called wave-free singularities.

They are given by

For instance, taking n= \, the singularity {\Kf^ri'^P-^{[i-^)+r^^P2{lii)}coscrt at the

point (0,0,/) gives a surface elevation proportional to {w'^ ~2P) sin atj{n}^-\-P)i.

For the particular application which is in view at present, we require the results

when /is made zero. Thus from (7) we have wave-free solutions given by

\2n r^^ j-an+i
j

'

with the origin in the free surface.
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3. We suppose a sphere, half-immersed in water, to be given small periodic

oscillations, the velocity of the centre being cos crt. We take the boundary condition

on the sphere to be satisfied at the mean position; thus, for all t,

--$- = PA ii) cos, at {r = a; O^d^in). (9)
or

We shall assume that the velocity potential can be expressed in terms of a series of

functions (8) together with a suitable periodic source at the origin. Hence we take

,
. f 1 _-

, , 2/Cn ['° K sin KZ + Kn COS Ar2 _ , , . ]

^ = «' - -77KoI^K^)e-^«^--^ -^—^ K,{kw)Ak\

X (C COS crt + D sin at) + nKQa^Jg(KQ-uj) e^^o^ {C sin at —D cos at)

+ i:«"'+^(g%^ + ^)(^«coscri + £„sincrO. (10)

This expression satisfies the boundary condition (1) and also reduces to outward

circular waves as t(7->oo. After some reduction, we obtain (9) in the form

L{C cos at + D sin at) + M(C sin at-D cos at)

+ Z{/3P2n-M + i2n+^)P2nif)}iAn0osat + B,^sinat) = P,{,i)co^at, (11)
1

for all t and for 0^6 ^In. In (11) we have put fi
= K^a =^ o-^ajg, and

L = 1 - 77/?2{cos 6Yo(^ sin ^) + sin dY^i /? sin 6)} e-^ "^^^ *

2^r°°2Msin(ygMcos(9) + (l-M2)cos(^wcos6')
j^ , „ . „., .,„.

-Vjo (TT^^T
K,i/ius^ne)du, (12)

M = 7r^2|cos^j^(^sm^) + sin(9Ji(/?sin(9)}e-Aco3e (13)

The coeflficients C, D, A^, B„ are to be determined from (11). The functions defined

by (8) are not orthogonal, but it turns out to be convenient to follow the usual

procedure with (11) to give an infinite set of equations for the coefficients. Thus we

multiply both sides of ( 1 1 ) by I^P^m-iW + (2m + 1 ) P^J^f'') and integrate with respect

to II from to I ; we take P^iii) for the case m = 0.

We use the notation, with L given by (12),

L, = f id/., X,„ = \\l^P^„,_,{fi)^{2m+\)P^^[ii)}Ldii, (14)
Jo Jo

with a similar notation for M,„ derived from (13). Taking the terms in coscr^ and

sin at separately, we obtain in this way a set of equations ofwhich the first eight are

(15)

L,C~M,D + yA,-\pA^ + ^fiA^ + ... =h '

Li(7-ifiZ) + (f +|A+iA^)A +ilA^2-^M3 + - =f +iA
L^C-M,D + ^liA, + (^ +^J + \p^)A^ +^JA, + ... = -A,
L^C-M^D-^JA^ + ^liA^ + (^ +^J+^fi^)A^ + ... =-^.

(Similar equations in D, —C, B^, B^,, ... =0.) (16)
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Waves due to a floating sphere making heaving oscillations 4

It may be noted that it is only the second equation in ( 15) which includes a term in

/? on the right.

4. For large values of the frequency parameter, that is /S->co, we may expect

the solution to approach that appropriate to the free surface condition <p = 0, namely,

-ln^?M cosat. (17)

The equations (15) are consistent with this if C, Z) approximate to zero, ^j, ^3, ...

being of order //"^ and /Mj approximating to unity. However, there are difficulties

in evaluating some of the integrals involved for large values of /?, due partly to

having taken a concentrated point source at the origin instead of a distributed source.

We shall therefoi'e limit the calculations to moderate values of/?. For large values

the problem is better treated separately, possibly by the method used by Ursell

(1953) for the similar two-dimensional case.

For small values of /?, the free surface condition approximates to d(f>ldz = and

the solution is then

<P
= \v2-+I'^:2^AnP2nWjCOSCTt, (18)

This is given by ( 15) and (16) with /? = 0, the coefficient Lq being then unity and the

other L and M coefficients being zero. The series in (18) is convergent. We shall

assume, in the general case, the convergence ofthe solution in ( 10) with the unknown
coefficients derived from (15) and (16).

5. The expression for L given in (12) may be put into a more suitable form for

computation. If we write / for the integral in (12) we have

3 r=°«sin(/5'MCOs6') + cos(/?MCOse) .

'^pjo T+^ Ko(^usin6)du. (20)

•n .M- -r ^ V r"M sin (|jw) + cos(pm) „
, ^, ,„,^Further, if we put X =

\
^^4-^—r

—

^-^—^ AJqu)du, (21)
Jo 1+u^

X reduces to l7T^{Hg{q) — ^0(0')} for ^ = 0, g > 0, where H is the Struve function. Also

we have
dX C^ n I

^ + Z=J^ Uqu)ooHjn.)du=^^^^-^^. (22)

From this we deduce for the integral in (20) the form

i772{ia'o(;5sin(9)-7o(/?sin6i)}e-/"=o89+i7^e-^'^™»
j

{ts.-n^e + t^)-^e^'''°^tdt. (23)

Using (23) and (20), we find, after some reduction,

L = l+/?2-i7r/?2e-^<'°««[{iZo(Asin(9)+ro(/?sinl9)}cos^

-l-{//,(;6'sin^)+yi(/?sin6')}sin^]-/52cos(9e-^'=o«''(^+/?Scos(9), (24)
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with the notation

A =
\

{tSin^d + t^)-iefi"">^odt., B =
\

(tsin^0 + t^)ie^"'°^o dt. (25)
Jo Jo

The integrals A andB can readily be computed, either by quadrature or by expansion

in powers of/?. For d = 0, L reduces to 1 +/3-fi^e-^Ei{/]).

For any given /?, values of L were computed from (24) at intervals of 18° from

to 90°; then by numerical or graphical interpolation intermediate values were

obtained. These were then used to compute the quantities from (14) by numerical

quadrature. Expressions suitable for small values of /? can be obtained. We find

from (24)

L= l+/6' + ^2(i_cos^)+^3(icos2(9-f sin2(9 + 2sin(9cosfi)

-(y?2cos^-/?3cos2(9)log{i/?7(l+cos(9)}-/?2sin2 6ilog(i/?ysini9) + ..., (26)

withlny = 0-57712. Using this in (14) we obtain expansions for the coefficients Z^.

The coefficients M,^ were computed either by quadrature or from a power series

in /? which can be found from the expansion

re=l
5 (-l)"7^^i'j^»(/*){/^A,„-i(A) + (2m+l)P,„.(/.)}d/f. (27)
1=1 [n—i)ijo

Returning to (15) and (16), once the L and 31 coefficients have been calculated, the

equations are in suitable form for approximate solution to any required degree of

accuracy, at least for moderate values of/?.

Accurate computation has not been attempted, but a somewhat crude approxima-

tion is sufficient to bring out the general character of the results. Calculations were

carried out for /? = 0-1, 0-2, 0-4, 0-6, 0-8, 1-0, 2-0 and 3-0. As an example of the

numerical values, we find for /? = 0-4,

Lq = 1-4707, Li = 0-2391, L^ = - 0-0582, Lg = - 0-0547,

Mg = 0-2464, M-^ = 0-1400, M^ = - 0-0428, ifg = 0-0262.

With these values we solve the first four equations from (15) and from (16) for

eight unknowns, neglecting the unknowns of higher order; this gives

C = 0-3029, B = - 0-0486, A^ = 0-2012, A^ = - 0-0352,

^3 = 0-0193, ^1 = -0-0146, 5, = 0-0039, ^3 = -0-0027.

These may be compared with the corresponding values for the hmiting case

P = 0, namely,

C = 0-5, D = 0, .4i = 0-2083, ^^2= -0-0375, .^3 = 0-0145, .42,, = 0, 5„ = 0.

6. The resultant hydrodynamic pressure on the sphere is given by

Z = -2npa4 "^sin^cos6id^. (28)
Jo ot
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Waves due to a floating sphere making heaving oscillations 6

On the sphere we have

4> = aL' {C cos at +D sin at) + n^aJoi /ism 6) e-l^''°^''(G sin o-t-D cos at)

+ i;

«

{inP2n-M) + P2nW] (^« ^os at + B, sin at), (29)

where, after using (21), (23) and (25),

L' = l-i77yJe-/'«°««{/fo(yffsin^) + 7o(yffsin5)}-/?^e-Acos9.

We obtain Z in the form

Z = ^npa^ka sin at — ^7Tpa^2ha cos at,

with ^k = L[C-7r/]M[D + {^/3 + ^)A^-igA^ + ^As-...,

§h = L[D + 7T^M[C+ {^/i + l)B,^^B, + j^B,-....

In (32) and (33) we have put

L[=rL'P^(/i)dju,, M[ = ( Jo{^sine)e-^'=°^^P^(/i)d/i. (34)

Jo Jo

The velocity of the sphere being cos at, the first term in (31 ) represents an addition

to the eflFective mass, the virtual inertia coefficient being k as given by (32), The

(30)

(31)

(32)

(33)

0-8-

FiOTTBE 1. Variation of virtual inertia coeflRcient k and damping

parameter 2/i with frequency

second term in (30) being proportional to the velocity, the quantity h as given by

(33) may be caUed a damping parameter; it gives some estimate of the damping

factor if the motion were unforced damped periodic motion. We may obtain an
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7 Waves due. to a floating sphere making heaving oscillations

alternative expression for h from energy considerations. The motion as 737 ->qo is

given by

/ 2 \J
6 -^ 7TKr.a^ e-^o^ {G sin (trt— /CqTu + In) —D cos {crt— k^v}+ \ti)}

\nK^xn]
(35)

The average rate of flow of energy outwards is 7T^p(xa^(<J^ + D^) ; equating this to

inpaa^h we have
^ ^ 3^^^^, ^ ^,^ ^3^^

For numerical evaluation, the L' and M' quantities were computed by methods

similar to those used for theL andM quantities in § 5. As an example, from the values

given above for /? = 0-4, we find k = 0-656; from (33) we obtain h = 0'174, while

(36) gives h = 0-177. It wiU be appreciated that the values for the B coefficients are

more liable to error than for the A coefficients; however, the two values for h were

in fair agreement. Although the numerical computations for k and h were only made

approximately the results were sufficiently consistent to be represented by smooth

curves; these are shown in figure 1. The virtual inertia coefficient k begins from a

limiting value of 0-828, rises to a maximum of about 0-88, falls to a minimum of 0-38

and it then, presumably, rises slowly to the Hmiting value of 0-5. In order to use the

same ordinate scale, the damping parameter 2h is shown in figure 1; this rises to

a maximum of about 0-35, the largest values of the damping parameter occurring

in the frequency range in which the virtual inertia coefficient varies most rapidly.
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A Note on Form Friction and Tank Boundary Effect

Sir Thomas Havelock

The following remarks are concerned with a suggestion

made by Professor Horn many years ago for estimating form

friction by means of the sinkage of the model, and with the

possible application of this method to motion in restricted

water.

The influence of the walls and bed of the tank can, in usual

circumstances, be conveniently separated into wave effect and

frictional effect. The underlying theory of the wave effect is

well known; the bed contributes the so-called shallow water

effect, while the walls may give rise to interference effects due

to the waves reflected from them. It is true that the actual cal-

culations are beset with difficulties, such as occur in wave

theory generally; but at least it may be said that the funda-

mental causes can be specified reasonably. The theoretical

aspect of the frictional effect seems to me to be less clear. The

point in question is the difference between the ship form and

a plank. A thorough analysis, theoretical and experimental,

seems impracticable in general; though useful and important

results are available for completely submerged solids of

revolution. Assuming the form friction to be small, the usual

practical method is to use the idea of effective equivalent

velocity; that is, the actual frictional resistance of the ship

at a given speed is taken as equal to that of a plank at some

slightly higher speed. Failing a complete analysis of the actual

flow, we can only make some reasonable assumption for defin-

ing this equivalent effective speed.

Horn [1] proposed to use the measured sinkage of the model

for this purpose. If v is the velocity, and h is the sinkage,

he gives for the required effective mean velocity v^ the ex-

pression

v„= (v^ + 2gh)'/s (1)

or if Vm = V + 6v, the relative increase in velocity is

8v/v = (1 + 2 g h/v2) '/=^ 1

.

(2)

If the frictional resistance R is proportional to v", the r' lative

increase in resistance, or the form friction, is given by 6R/R

= n 8v/v. It was shown from model data that this gave reason-

able values for the form friction, of the order of 8 per cent.

In a short paper a few years later [2] , I examined the theore-

tical solution for a particular form, namely the general ellip-

soid, including the case of a spheroid. The problem was treated

as the motion of a double model, that is, a complete ellipsoid

moving axially in an infinite liquid : a problem which can be

solved exactly.

Taking the motion along a horizontal axis Ox with the trans-

verse axis Oy horizontal and with Oz vertical, an expression

was obtained for the resultant vertical fluid pressure on one-

half of the surface of the ellipsoid with respect to the xy-plane.

If we now suppose the ellipsoid to be floating half immersed

and if the velocity is small so that we may neglect the surface

disturbance of the water, we can define an equivalent sinkage.

If Z is this defect of vertical pressure and S is the area of

the water plane section, we take h = Z/gpS. The results

were compared numerically with Horn's value and also with those

obtained by Amtsberg [3] for totally submerged spheroids. The

analytical expressions for the general ellipsoid were given in

terms of ellipsoidal coordinates; I quote now the special case

of a prolate spheroid, where the result can be put into a

simple form.

The value of Z is given by

Z = ijiQabv^ (1 +ki)2^-^^-t^— Inpabv^ (3)

(a + b)2

and the sinkage, as defined, ish = Z/iiQabg.

In this, 2 a is the length of the spheroid, 2 b the equatorial

diameter, and k, the virtual inertia coefficient of the spheroid

for axial motion. If, for example, we take a length-beam ratio

of 8, we find h = 0.029 v'/g; and assuming n = 1.825, we
get an increase in frictional resistance of 5.3 per cent, agreeing

fairly well with Amtsberg's values.
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Comparing (3) with Horn's definition of the mean velocity

we see that in this case

v^ = V (1 + ki) [a (a + 2b)]'/= / (a + b)

.

(4)

For most cases of interest, a/b is fairly large, say 8 or more,

and we have approximately

v^ = V (1 + ki)

.

(5)

Hence we have the simple, and interesting approximation

8v/v = ki ; 6R/R = nkj. (6)

For example, the virtual inertia coefficient for a spheroid

of length/beam ratio of 8 is 0.029, and 8R/R = 0.053. It

might be going too far to apply this to ship forms, where the

inertia coefficient is itself subject to uncertainty; however,

assuming an effective virtual coefficient of 5 per cent would

give a form friction of about 9 per cent.

Of course for a spheroid the velocity distribution is known
exactly and we might take some other suitable definition of

the mean velocity. For instance, it might be obtained from

the mean of the square of the tangential velocity per unit area

of surface. It can easily be shown that this leads to the same
approximation (5) when a/b is large. The point of Horn's

definition is that the sinkage can be determined experimentally.

Coming now to the corresponding problem in restricted water,

the tank boundary effect or the so-called blockage effect has

become important in view of the need for greater accuracy

and certainty in interpreting experimental model results.

Reference may be made, for instance, to two recent papers:

the B. S. R. A. experiments on the Lucy Ashton [4] (Conn,

Lackenby and Walker), and the scale effect in Victory ships

and models [5] (van Lammeren, van Manen and Lap) . In the

discussion on the former paper. Professor Horn referred to

his method of using measured sinkages to estimate form fric-

tion and suggested that it might be used to determine the

necessary correction due to the boundaries of the tank. How-
ever it seems that, at least for the Lucy Ashton, the differences

in sinkage were too small to be determined experimentally with

slifficent accuracy. It might be of interest to extend my previous

calculations to the similar problem in restricted water. Consider

a spheroid half-immersed and moving along a tank of breadth

B and depth H. With the same limitations as for unrestricted

water, we consider the motion of the complete spheroid in an

enclosed rectangular channel filled with water, B being the

distance between the side walls and 2 H that between the upper

and lower walls. We require to calculate the quantity Z of (3),

that is the resultant vertical force on the lower half of the

spheroid. It is possible to obtain analytical expressions in a

series of terms involving spheroidal harmonics; but they become

very complicated and it is difficult to assess the degree of

approximation numerically. The particular case of a sphere

can be worked out in more detail, but the spheroid is com-

plicated by the additional parameter of the length-beam ratio.

Taking only the first step in the approximation I give now
the result obtained for the quantity Z; it is

,a(a + 2b)

If we write

Z = ijtgabv- (l+ki) =

1 + (1 + ki)

(a + b)=

ab= 1

a >

-b^)''= )

— 1

n2 = l'm2R2(m^B^ + 4n2H2)/(a2— b2)

P = i[q+ (q=-+-4)'/'],

the coefficient a is given by

ZZi^
p + 1

p-1
(8)

where the double summation is taken over all positive and
negative integral values of m and n, excluding the pair

m = 0, n = 0. This summation arises from the doubly infinite

series of images involved in the solution. This result may be

subject to correction if the analysis is carried to a further stage,

and the range of applicability is uncertain on that account. As
before, we may simplify the result if b/a is small; we have

approximately,

V (1 + ki) 1 + ^ (1 + ki) a (9)

a^

and, instead of (6) for unrestricted water, we have

b=
ki + (1 +ki)2a (10)

(•?)

Numerical computation has been made for a few cases for

the spheroid with a = 8 b . We have taken B = 2 H as a usual

tank ratio and it also simplifies the computation. For B/2b

equal to 12, 8, 4|/2 the approximate values of the coefficient

a are 0.065, 0.160, 0.392 respectively. If we define the

blockage coefficient as the ratio of the maximum cross section

of the half-spheriod to the sectional area of the tank, this

coefficient is 0.005, 0.012, 0.024. From (10) the percentage

form resistances at these values are 5.46, 5.84 and 6.93

respectively, the value for unrestricted water being 5.29.

The differences are negligible for small values of the

blockage coefficient. It is not worth while attempting any direct

comparison with model results meantime. The calculations

were made for a spheroid under the limitations specified

;

moreover they refer only to the effect on form friction and

take no account of surface disturbance or wave effects.
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THE DAMPING OF HEAVE AND PITCH: A COMPARISON OF TWO-DIMENSIONAL AND
THREE-DIMENSIONAL CALCULATIONS

By Professor Sir Thomas H. Havelock, M.A., D.Sc, F.R.S. (Honorary Member and Associate Member of Council)

1. Damping coefficients for heave and pitcti are usually derived

by calculating the mean rate at which energy travels outwards

in the wave motion produced by the oscillations. The calcula-

tion is based upon approximate solutions for the two-dimensional

motion due to heaving oscillations of a long cylindrical floating

solid; the application to heaving and pitching for a ship then

proceeds by the so-called strip method. Each thin section of the

ship is treated as part of an infinite cylinder of the cross-

section at that point, sending out two-dimensional waves on

either side. The coefficients for the ship are obtained by inte-

grating along the length of the ship. Reference may be made to

Weinblum and St. Denis (2) for a detailed exposition with cal-

culations. In the Afork of those authors no allowance was made

for the difference between the assumed flow and the actual

three-dimensional flow; this may be justified to some extent in

that results in practical cases seem to give reasonable agree-

ment for heaving, but the application to pitching requires more

consideration.

In discussing this point, Korvin-Kroukovsky and Lewis*''

remark that the damping coefficient for heaving may be assumed

ti be correctly represented by the two-dimensional calculation,

but they adopt an empirical reduction factor of one-half for the

similar calculations for pitching.

In a recent paper Korvin-Kroukovksy*"*' discusses the matter

in considerable detail, and expresses the opinion that an important

effect of three-dimensional flow may exist. He estimated the

validity of the two-dimensional calculations by comparing the

data with results from towing-tank experiments on two models.

It was found that, at the natural frequencies of the models, the

results were in substantial agreement both for heaving and for

pitching within the limits of experimental error, which were

admittedly rather wide limits. However, for more extended

ranges of frequencies, it was found necessary to introduce

empirical correction factors, in one case, for instance, reducing

the damping coefficient for pitching to 75 per cent of the cal-

culated value. Korvin-Kroukovsky remarks: "In the case of

damping in heave, most of the force comes from the middle part

of the body where the flow hardly differs from the assumed two-

dimensional one. The good agreement in regard to damping in

heave was therefore not surprising. The close agreement in the

damping in pitch was not expected, however, and in fact was later

not confirmed in the application of the calculations to the entire

set of model motions. Most of the contribution to the moment
coefficient comes from the ends of the ship, where one logically

should expect a large change from the assumed two-dimensional

flow to the actual three-dimensional flow." It is clear that the

matter is not in a very satisfactory state, especially as the use of

an inclusive empirical factor may hinder recognition of the true

cause of the discrepancy.

2. The present work is intended, not as a solution of the

problem, but as a contribution towards elucidating the particular

point of the difference between two- and three-dimensional

calculations. Of course the only really satisfactory method would

be to work out the problem for a floating solid. It is not difficult

to formulate the mathematical equations; but even for a simple

form, such as a spheroid half immersed, the expressions soon

become very complicated and numerical computation of pro-

hibitive length. In this paper we deal with the simpler problem

of a solid which is wholly immersed in the water, and we obtain

the damping coefficients by the two methods: strip-method and

three-dimensional. Although the separate results would not be

applicable to a surface ship, it is thought that the ratios of the

coefficients obtained by the two methods should at least give a

useful indication of the sort of difference that might be expected.

The calculations are given in the Appendix, comprising the basic

theory, application to a submerged spheroid, approximate

expressions for any elongated solid of revolution, and some
remarks on the general ellipsoid with unequal axes.

3. We consider now some numerical results for a spheroid

submerged in water with its axis horizontal. The spheroid is

made to describe (i) heaving oscillations, (ii) pitching oscillations.

Efj is the rate of energy loss for heaving calculated from three-

dimensiortal flow, E^^g from the strip method. The corresponding

damping coefficients in the equations of motion of the solid are

directly proportional to the energy loss; thus E^/Ehs 'S the ratio

of the coefficients by the two methods. Similarly, for pitching

Ep/Eps is the required ratio. The general formulae are given

in (23) and (24). We take a spheroid with a length-beam

ratio of 8, as a fair value for comparison with ship models; in

this case e = 0-996, /cj = 0-945, k' =0-84. With these values

(23) and (24) were computed for integral values of Kq a, that is

of cr^alg, up to 10. The results are shown in Fig. 1 on a base

1

2
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THE DAMPING OF HEAVE AND PITCH

might, for practical purposes, be talcen as unity if a^ L/g exceeds

about 8.

In addition to thiis approximation to unity above these

respective values of a^ L/?, a specially interesting feature of the

curves is the rapid fall in both ratios for smaller values of the

parameter.

It has already been remarked that these results can only be

taken as suggestive when applied to surface ships ; however, it is

of interest to see what are the relevant ranges of the parameter

in such cases, referring in particular to work in which the damping
coefficients have been calculated by the strip method over a

range of frequencies.

For free oscillations at the natural frequencies, there are data

in the paper by St. Denis'^' for a ship of length 600 ft. and beam
81 ft. The values of a for free oscillations are given as 0-706

and 0-821 for heaving and pitching respectively. The corre-

sponding values of cr^ L/^ are 10 and 12-6 and these both lie

within the ranges given above where no correction factor is

needed. A similar remark would, no doubt, apply to the experi-

ments with 5 ft. models used by Korvin-Kroukovsky,*'" although

the natural frequencies do not seem to be given in the paper.

However, the present work may be taken to confirm his experi-

mental result that for natural oscillations the two-dimensional

calculation does not require any appreciable correcting factor

either for heaving or for pitching.

For forced oscillations we have a wider range of frequencies.

In work for which data are available, the heaving and pitching

are produced by driving the model at given speed through

regular waves of given wavelength. For instance, from St.

Denis,*^' for a 600-ft. ship moving against waves with A/L =1-25,

CT ranges from 0-518 at zero speed to 0-77 at 30 knots; thus

a^ hjg ranges from 5 to 11. From the curves in Fig. 1, heaving

may be said to require no correcting factor; but for pitching, the

lower values are well within the critical range where a large

correction is needed and where it changes rapidly.

There are similar data from Korvin-Kroukovsky*'" for 5-ft.

models. With one model and A/L = 1 the parameter ranges

from 6 - 3 to 20, and with another model and A/L = 1 - 5, it ranges

from 4-3 to 12-5. Here again the pitching calculation seems to

require considerable correction at the lower speeds.

It should be noted again that one can only expect general

indications in applying the present results to surface ships. For

one thing, a spheroid is not a normal ship form. A more
important point is that the flow round a completely submerged

solid may differ considerably from that round a floating body.

However, it is possible that the strip method and the three-

dimensional calculation might be affected in much the same way;

if so, the ratios for the two methods may not be so far astray.

Finally, in all calculations for forced oscillations due to

advancing through waves, it is assumed that the only effect of

the speed is to alter the frequency of encounter. But a satis-

factory theory of heaving and pitching including the effect of

speed of advance, for anything like a normal ship form, is one

of the main outstanding problems. The corresponding theory

for a wholly submerged body might prove more tractable, and

it may be possible later to extend the present work to a sub-

merged spheroid which is moving forward while making heaving

and pitching oscillations.

APPENDIX

1. The underlying theory was given in a previous paper*'' for

a source distribution; it is convenient to give now explicit

expressions for a distribution of vertical dipoles.

Take the origin O in the free surface of the water, with O x

and O y horizontal and O r vertically downwards. If there is

a vertical dipole of moment M cos ct r at the point (h, k, f) in

the water, the velocity potential of the fluid motion is given by

^ = M cos a t

where

-73 ;:^+2''o e-Ki^+flKd^

— 2 TTK-g M Jq (kq "i') e-K'i'^'+f'i sln a t (1)

r\ = {.X-hf-+{y- /C)2 + (z -/)2 = J5'2 + (z -/)2

~l2- „2/| = o)-^ -hU +/J-; a^=gKo

The motion as co' -> oo is given by

c/i -> - 2 77 Kg M (2/77 Kfl
a5')"2e-'foCz+/) sin {a t - k^w + 77/4)

.... (2)

representing circular waves travelling outwards. For a given

distribution of vertical dipoles all at the same depth /, we obtain

the velocity potential from (1) or from (2) by integrating with

respect to h and k over the given distribution. The rate of flow

of energy outwards through a vertical cylindrical surface of

radius aj is given by the rate of work of the fluid pressure over

this surface, namely

CO 27T

^-^ ^-L<" do .dz
() t <)co

(3)

Taking the radius of the cyUnder large, we only need ^ to the

order cu~"2 as oi = 00.

If in (2) we put

X = w cos B\ y = CO sin 8;

oj'2 = ai2 -2hwCosd - Ikws'md + h^ + k'^

then, to the required order, (2) gives

/ 2 \ '/2

<A^> - 277/cgM( -) e-'^o(-'+/)
^ " \77 fCg Co/

sin
(

CT / — '^0 "^ + J '\' xo^ cos 8 + Kgk sin 8j (4)

Hence, for a given distribution, we shall have

^_> oj-\l2 e-KoU+f) A sin (at — KgCx} +x)

+ B cos (at— Kgw + -tA (5)

with A, B known functions of 6.

Putting this form into (3) and taking the mean value with

respect to the time, we get for the mean rate of flow of energy

outwards

E = J/)a(A2 + B2) (6)

Finally, inserting the forms for A and B obtained by integrating

(4) over the given distribution,

.271

'E = 2TTp(JK^e - Kof iP^ + Q^)de

with P + ,-Q= rr M(h,k)e'K<><-'"'<'^o + '<^'"'»dlidk

(7)

(8)

In the present work, we shall not need any more general expres-

sions, but an obvious extension would give similar results for any

distribution of dipoles not necessarily in a horizontal plane.

2. Consider now a spheroid, of length 2 a and equatorial

diameter 2 b, immersed with its axis horizontal and at a depth/

below the free surface. Suppose the spheroid made to describe

small vertical oscillations, the velocity at any instant being

V cos a t. It would be possible, theoretically, to proceed step-

612



THE DAMPING OF HEAVE AND PITCH

by-step with successive approximations to a solution satisfying

both the condition on the surface of the spheroid and that on
the free surface of the water. We could then, at any stage,

obtain the fluid pressure on the spheroid and hence the resultant

vertical force. Of this force, the part in phase with the accelera-

tion represents a change in virtual inertia, the part in phase with

the velocity is connected directly with the loss of energy in the

wave motion. At present we are concerned only with the latter

part of the force, and we adopt the simpler procedure of obtaining

directly the energy loss, taking only two terms in a successive

approximation to the velocity potential.

For the first term we take the exact solution cj)^ for the motion
of the spheroid in an infinite liquid. Taking, momentarily, the

origin O at the centre of the spheroid, and the usual spheroidal

co-ordinates

X = a e jj. I,; y = a e{\ — /x^)"2(^2 _ j~)i/2 ^os cd;

z =ae{\ - /a2)1/2 (^2 _ 1)1/2 sin co

we have the known solution, as given in Lamb's Hydrodynamics,

p. 142, with a slight change of notation.

^o=-iflV(q-l)(l+/c2)P}(;u)Q{(Osincocosar . (9)

where ^q = ^~' = (o^ ~ 6^)"^ "2, and k^ is the virtual inertia

coefficient for motion perpendicular to the axis. For the next

step we add a potential <j)y such that c^g + ^| satisfies the con-

dition at the free surface. For this purpose it is convenient to

express <^q as the potential of an equivalent dipole distribution.

Using the general formula

P^(/x)Q;,(Oe'
1 / S c)

\s

H^ + VzJ [(a;_A)2+y2+Z2]l/2
dh

... (10)

and taking the particular case in (9), we see that <j>q is the potential

of a line distribution of vertical dipoles along the axis of the

spheroid between the two foci and of moment per unit length

1 1

4
~ -d -I- /cj) (a2 e2 „ /,2) V cos 0- / (11)

We could now obtain ^, by integrating (1) with respect to h.

For our purpose we proceed directly to the energy loss from
(7) and (8). We require the integral

(c2e2 _ /,2-,^;/c„AcosS(//,
(12)

and this has the value

4 a^ e3 (-\
"^ J3/2 ('^0 a e cos B)

\l) {KoaecoseW '
'

'

Collecting th^ various factors from (7), (8), (11), and (13), we
obtain the energy loss for heaving, which we shall denote by a
suffix H, namely

--12

EH=477-2pcr«:3a2 54(i j^ k^2\2e-lK„f 3Jl2{KQaecos0) ^^
(k-q a e cos dy

~o .... (14)

3. Suppose the spheroid to be making rotational oscillations
about the transverse axis with angular velocity Q cos a t. The
velocity potential for an infinite liquid is

il PUju.) Qi (0 sin CO cos CT r . (15)

in which k' is the virtual inertia coefficient for rotation. Using

(10), we find that
<f>Q

is the potential of a line distribution of
vertical dipoles along the axis between the foci and of moment
per unit length

I/4Co(^g- 1)[1 +{2l2^iyk']Q.h{a'^e^-h^)cosal . (16)

For (8) we require the integral

hia^e"^ - /i2)e'«oAcosOrf/,

and this has the value

4^^(f)
TT^^P

. 3^12 (kqO e cos 6)

(ko a e cos 6)^'^

(17)

(18)

From (7), (8), (16), and (18) we obtain the energy loss for pitching,

which we denote by a suffix P,

Ep = 4 TT^ p cr kI a'* M e2

[1 -f (2^2- l)2/t'Pe-2A.-o/D2

^7T/2

(kq a e cos dP
"0

.... (19)

4. We obtain now the corresponding expressions by the two-

dimensional strip method, denoting them by an additional

suffix S.

For a circular cylinder of radius r with its axis at depth /,

making heaving oscillations V cos a t, we have the known
expression for the energy loss to the same approximation,

E = 2772jOCT/<2/-4 V2e-2/fo/ . . . (20)

per unit length of the cylinder.

For the spheroid, this result is assumed to hold for each thin

disc of width dh\ in fact, we might picture the method by
assuming thin partitions transverse to the axis, separating the

elementary discs and making the fluid motion purely two-
dimensional for each disc. Integrating along the axis, we obtain

by this method

Ejjs = 2 7r2 p CT k:2 V 2 e-2 ftTo/

32

15

M(l -h2la2)2dh

a

TT2paK2ab*V2e-2Kof -
(21)

For pitching oscillations by this method, we simply substitute

h D for V; hence

2tt2

32

T05

p a K^ Q2 £ -2/Co/- b*h2{l -h2la2)2dh

a

TT^paK2a3b'^n2e-2Ko/ .... (22)

5. The particular point in question is the ratio of the damping
coeflScients obtained by the two methods, which we take as equal

to the ratio of the corresponding energy loss.

From (14) and (21) we have for heaving

I" =^«oa(l+A-2)2

nl2

Hi2 (xo a 6 COS 6) ^
I ml—""
(k-q a e cos By

(23)

105

From (19) and (22) we have for pitching

^rtl2

Jji2(j<oaecos6)
^ g

(kq a e cos 8)^

"o .... (24)

As the length of the spheroid is increased, with a given breadth,

Koae^[l +(2q-l)2A:'P
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THE DAMPING OF HEAVE AND PITCH

both e and k^ approximate to unity, further, it can be shown

that the asymptotic value of the integral in (23) is 2/15 /cq a e.

Hence, as one would expect, the ratio (23) approaches unity for

a sufficiently long narrow spheroid. Under the same conditions,

k' approaches unity and the asymptotic value of the integral

in (24) is lIlOSK^ae; hence the ratio (24) approaches unity

under these limiting conditions.

For numerical computation we can obtain power series for

the integrals by substituting the known expression for the square

of a Bessel function and integrating term-by-term: thus we have

.71/2

J3/2 ("'o o '' COS 6) sec^ Odd

_ " (- l)'"(m + l)!(/<:oae)2'" + 3

~
„?o (2m + l)(2m + 3)(m!)2(m + 3)!

rt/2

J^l2 (k-q a e cos 6) sec' Odd

(- l)™ (w + 2) (kq a e)2"'+5

2S
'0(2 m + 3) (2 m + 5) m! (m + 5)!

(25)

(26)

The series can be computed readily for values oi KqO e up to

about 6. For higher values, the integrals were computed by

direct quadrature, using intervals of 5 deg. throughout the range.

Owing to the lack of suitable tables, the Bessel functions had

to be evaluated separately in each case; however Kf^a e was not

taken larger than 10 as, with the degree of accuracy attempted,

there was no appreciable difference then from the asymptotic

value.

6. We may extend the method to give approximate formulae

for any long solid of revolution which is completely immersed.

There is a well-known approximate solution for the transverse

motion of a long solid of revolution in an infinite liquid, in which

the flow is treated as two-dimensional; it consists of taking a

distribution along the axis of two-dimensional dipoles of

moment S/tt per unit length per unit velocity, where S is the

cross-sectional area at any point.

We have seen in (11) that the transverse motion of a spheroid

is given by a line distribution of three-dimensional dipoles along

the axis from — a e lo -f a <?, of moment per unit length per

unit velocity

44^(1 +-^2) («'^'-/'')
• • • (27)

4 flZ ^3

For a long spheroid, for which e is nearly unity, (27) is approxi-

mately (1 -I- Atj) S/4 77; and to the same order we may take the

distribution as extending over the whole of the axis. This

suggests that for any elongated solid of revolution we might

assume a distribution of three-dimensional dipoles along the

axis of moment (1 + k) S/4 -n per unit length. Thus for heaving

oscillations V cos ct / of such a solid with its axis at depth /,

we may apply (7) and (8). If 2 / is the length of the solid, and
we take the origin at the centre of the axis, we have

with

-pa Kli\ -\- /t)2V2-e-2fo/

P + ( Q =

(P2 4- Q2) rf 6' (28)

%(h)eiK«i"^°^^dh . . . (29)

Similarly, for pitching oscillations to the same approximation

Ep =^— pa/<3(l j^ky-Q.'^e-^Kof
8 77

(p2 + Q2) rf (30)

with P -i- / Q /iS(/i)e"^»'"=°^9rfA (31)

It may be noted that k and k' are the virtual inertia coefficients

for the solid as a whole; though, under the given condition

they both approximate to unity.

7. All the foregoing calculations are for a solid of revolution.

With a view to removing this limitation, expressions were

obtained for a general ellipsoidal form.

For an ellipsoid with unequal axes, a > b > c, and with the

a, b axes horizontal, the dipole distribution is in a horizontal

plane and extends over the area enclosed by the elliptic focal

conic. Application of (7) and (8) leads to expressions for the

energy loss.

If the larger transverse axis is vertical, c > b, the distribution

lies in a vertical plane, and within the elliptic focal conic; a

simple modification of (7) and (8) gives the required results.

It was decided eventually that it was not worth while carrying

out computations; the expressions are of the same type as for

a spheroid, though more complicated. It appeared that if the

transverse axes b, c do not differ greatly, the main difference in

the results as compared with a spheroid is a scale factor arising

from the different values of the virtual inertia coefficients.
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A Note on Wave Resistance Theory:

transverse and diverging waves

Sir Thomas Havelock, Newcastle

I wish to associate myself with this tribute to Professor

Weinblum for his distinguished work in Ship Hydrodynamics,

and I should like to add also that I am greatly indebted to

him personally. This is my excuse for a few remarks on a

certain aspect of wave resistance theory, though I have nothing

new to add ; the particular point is no doubt chiefly of theore-

tical interest, but it happens to have come to my notice again

recently.

Considering an ideal frictionless liquid, the only resistance

to the motion of a solid is the wave resistance, and it is

obviously the horizontal resultant of the fluid pressures on the

solid. Another method is to calculate the propagation of

energy outwards in the wave motion, and so deduce the cor-

responding resistance. These two methods give the same
result, provided the calculations are made to the same degree

of approximation in each case. It may be noted that, in gene-

ral, this involves obtaining the velocity potential to a higher

Schiffstechnik Bd. 4 — 1957 — Heft 20 - 64

Stage of approximation for the resultant pressure calculation

than for the wave-energy method. The energy method was
used at first only for two-dimensional problems, as for

instance the motion of a submerged circular cylinder; this

was because there was available the well-known connection

between energy transfer and group velocity for straight-

crested plane waves. For three-dimensional problems, such as

a submerged sphere, the resistance was found at first by the

resultant pressure method. Subsequently I gave a theorem

for the energy transfer in a ship wave pattern and its appli-

cation to the calculation of wave resistance (Proc. Roy. Soc. A,

1932). This was done by considering control planes at great

distances before and behind the moving solid, and calculat-

ing the rate of work and the transfer of energy across these

planes. If Ox is in the direction of motion of the solid, being

a moving origin, we assume that the surface elevation
X,

at

a great distance to the rear approximates to a form which

can be expressed by

615



^ = J"
f (§) sin {ko sec^ ^ (x cos ft + y sin ft) } dft

+ X F(ft) cos {ko sec- ft (x cos ft + y sin ft) } dft
,

where c is the velocity of the solid, and ko = g/c- . It

shown that the wave resistance is given by

R = ingots {m' + H- + F(ft)- + F{— ft)2}cos3ftdft.

The wave pattern can be considered as made up of elemen-

tary plane waves travelling in all directions. From our know-

ledge of the ship wave pattern it appears that the transverse

waves are made up of plane waves making angles with Ox

ranging from zero to a certain angle (3, while the remaining

plane waves from |3 to 90° make up the diverging waves. The

angle |3 is given by sin- (3 = s , and is about 35 16'. With

this in mind I suggested (I.N. A., 1934) that one might pos-

sibly divide up the wave resistance integral similarly; thus

the value of the integral in the range to (3 would represent

the part due to the transverse waves, and the part from P to

90° that due to the diverging waves. Of course this, as it

stands, is no more than a fairly plausible assumption. I have

been examining the possibility of putting it on a better basis

by a different analytical approach; however I leave that mean-

time with the remark that I think it can be justified as a

fairly reasonable assumption, which can be used to give some

interesting results. Taking some simple cases, consider a

sphere with its centre at a depth f ; the total resistance is

R = 4jtgeko'a'' J
sec=fte-2l<ofsec=«d{j

We see by inspection that for low speeds the greater part

of the integral comes from the range to (5, while for high

speeds the greater part comes from the range p to 90 ; a

direct calculation shows that at c / l/(gf) = 2 , the diverging

waves account for about 80 per cent, of the total resistance.

From another point of view, this illustrates the fact that

diminishing draft increases the relative importance of the

diverging waves, and vice versa.

We may illustrate interference effects by taking a system

of a source and sink each of numerical strength mc, at a depth

f, and at a distance I apart. The total resistance is given by

R= 32;tem2ko2c2j'{l-cos(2kolsecft)}e-2kofsec'»se(.3^j^_

Consider the oscillating part of the integral due to the

factor cos ( 2 ko I sec ft) in the two parts of the range of inte-

gration. Approximately, the last hump on the resistance curve

in each case will be near a value of ko 1 given by 2 ko I sec ft

= 31 . For the range to P, sec ft is not much different from

unity; so the last hump on the transverse wave resistance

curve will be near kol = n/2, or a Froude number F = 0.56.

On the other hand, on the range P to 90° we may take sec ft

as about 2 to give the maximum result; so the last hump on

the diverging wave resistance curve will be near ko' = Jt/4,

or F = 0.78. The interference effects due to the superposition

of two sets of transverse waves is a familiar idea; it is not

so well-known that we may have interference of the diverging

waves of two systems.

In conclusion I may refer to some calculations which have

been made for simple ship forms on this assumption for

separating the contributions of the transverse and diverging

waves.

Wigley (I.N.A. 1942) has given numerical results for a

simple parabolic model with two ratios of length to draft and

up to a Froude number of 0.6. Inui (Intl. Conf. Ship Hydro

1954) refers to some similar unpublished calculations by him-

self, and gives an interesting diagram for water of finite

depth : in which case there are only diverging waves above a

critical speed. Finally, I would refer in particular to Lunde

(S.N.A.M.E., 1951) who gives a diagram of curves of trans-

verse and diverging wave resistance for a parabolic model.

These curves are very interesting, bringing out clearly the

humps and hollows on the two curves; for instance, the last

hump on the transverse wave curve is at about F = 0.45, while

that for the diverging waves is at some value greater than

F = 0.6, outside the range shown on the diagram. It might be

of interest to have calculations for other models, to show how

the various elements of form affect the relative importance

of the transverse and diverging waves.
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THE EFFECT OF SPEED OF ADVANCE UPON THE DAMPING OF HEAVE AND PITCH

By Professor Sir Thomas H. Havelock, M.A., D.Sc, F.R.S. (Honorary Member and Associate Member of Council).

Summary

Calculations are made for the damping coefficient for a specially simple case which may be

taken to correspond approximately to a long narrow plank moving forward with velocity c and
making forced pitching oscillations of frequency p. Curves are given for the variation of the

damping moment with frequency at various speeds, the chief aim being fo illustrate the effect

of the critical condition when the parameter p cjg has the value i. The results are discussed in

reference to recent experimental work and the possibility of a steep rise and fall in the curve

of damping near this critical point.

The damping of the heave or pitch of a floating solid is mainly
due to the energy lost in the wave motion produced by the

oscillations. If the solid is at rest, apart from the oscillations,

the problem can be formulated satisfactorily as a potential

problem with the usual linearized condition at the free surface

of the water. If the complete solution could be found in any
given case, it could no doubt be also expressed in terms of some
source distribution over the immersed surface of the solid.

However, what is usually known as the source method of solution

is an approximation which begins by assuming some simple

source distribution and then adding the wave motion due to these

pulsating sources; the method has obvious limitations on its

application in general, but it has served to give interesting and
useful results. If, in addition to the oscillations, the solid is

moving forward with a constant speed of advance, the formula-

tion as a potential problem with the linearized free surface con-

dition is not satisfactory except in the limiting case when the solid

is like a thin disc moving in its own plane. However, some pro-

gress has been made by the approximate method of assuming
some source distribution, and the calculations then require the

wave motion due to a pulsating source advancing at constant

speed. This problem has been examined by various writers and
reference may be made in particular to Haskind,''^ Brard,*-^' and
Hanaoka.*^' If ;> is the circular frequency of the pulsation and
c the velocity of advance, it is known that the wave motion changes
in character when the parameter p cjg = i. It does not seem
to have been pointed out explicitly that in fact some of the terms

in the solution become infinite at this particular point. The
object of the present paper is to examine this matter in some
detail for a special case so as to see the effect of this mathematical

infinity upon the damping for lower and higher values of the

parameter. Consider for a moment a two-dimensional case, for

instance a submerged circular cylinder making heaving oscilla-

tions of frequency p and advancing with velocity c. At zero

speed, there are two wave trains, one on each side of the cylinder.

At speed c, if /> cjg < i, it can be shown that there are four wave
trains, one in advance and three to the rear, the wave train in

advance being that for which the group velocity is greater than
the speed of advance. If the speed is increased, the amplitudes

of two of these trains become infinite at the critical point when
P cig = i; and for higher values of the speed these two trains

disappear, leaving only two wave trains both to the rear of the

cylinder. The behaviour at the critical point clearly arises from
a special, and interesting, case of resonance; and, as usual, the

infinity could only be removed from the solution by introducing

some frictional or other kind of dissipation.

Turning to the three-dimensional case of a point source, one

might hope that the infinity would disappear through integra-

tion, but this is not the case; the solution contains integrals

which are finite in general, but they become infinite at the critical

value of the parameter.

Calculations have been made by Haskind and by Hanaoka for

the damping of a Michell-type of model with the source distribu-

tion assumed to be in the vertical longitudinal plane; this assump-

tion is the well-known approximation for wave resistance, and
although it is of doubtful validity in general as regards the

heaving or pitching oscillations it gives useful indications for

simplified forms. Although the integrals used by Haskind

become divergent at the critical value of the parameter, his ciu'ves

do not show any infinity; possibly the range does not include the

critical point. Hanaoka also gives a ciu^e for the damping at

various speeds; but the whole curve is explicitly for the value

p cig = 0-6 and so is well beyond the critical point.

Some recent experimental work by Golovato'*' is of special

interest. A model was made to perform heaving oscillations of

given frequency while moving forward at some constant speed,

and the forces and moment on the model were measured. In

Fig. 13 of that paper the damping moment is shown in curves

on a base p (B/^)i for various values of the Froude number.

A striking feature is the pronounced peaks at low values of the

parameter. Golovato remarks: "The steep rise at low fre-

quencies appears to coincide with a velocity-wave celerity ratio

of i where the character of the waves generated by the oscillating

body is known to change markedly." This ratio is what we have

denoted here by p cjg. It is curious that the curves for heaving

do not seem to show the same effect, though one would expect

the same cause to be operative for both heaving and pitching.

The present calculations are for a simple line distribution of

pulsating sources, but we can relate them to a possible physical

problem. Suppose a long narrow plank, in a vertical plane,

moving forward and at the same time making small pitching

oscUlations. Such a form, with pointed ends, is the most suitable

for comparing wave resistance theory with experiment, and it

might also be used similarly to test the approximate linear theory

of heaving and pitching. However, even if it is not a practicable

method experimentally, it is an appropriate form for the present

state of theory. We may separate out the efiects of the forward

motion and the pitching; and we may assimie the latter to be due

to a simple source distribution over the flat submerged base of

the plank, or for small enough beam to a distribution along the

central line of the base. As nimierical computation is rather

lengthy in any case, we omit the pointed ends and reduce the

617



THE EFFECT OF SPEED OF ADVANCE UPON THE DAMPING OF HEAVE AND PITCH

form to a long plank, of length L and beam B, submerged to a

draught d, moving forward with velocity c and making small

pitching oscillations with angular velocity Q sinp t.

The theoretical work is given in the Appendix. It begins with

a different derivation of the fluid motion due to a moving
pulsating source. Then by integration of an assumed source

distribution we obtain the velocity potential for the plank. The
fluid pressure is obtained for any point of the base and hence the

moment of this pressure. Dealing only with the moment due to

the pitching motion, the periodic part will be of the form

Mi sinp / + M2 cos p t. The second term is in phase with the

angular acceleration and can be considered as giving a Virtual

addition to the moment of inertia. The first term is in phase

with the angular velocity and gives the corresponding damping
coefficient; this is the only term which is examined here, and
expressions for Mj are given in equations (13), (14), and (15).

For numerical computation we have taken L/B = 20 and
rf/B = 2. These ratios do not allow any direct comparison with

the usual models ; they were chosen partly to lessen computation

and partly so as to bring out certain points. Fig. 1 shows curves
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spending positive square roots of these values. There are four

such zeros in all and they are given by

K,, K2 = iKo sec2 e[l + 2 /3 cos e ± (1 + 4 j8 cos ff)'']

(4)
K3, K^ = iKo sec2 [1 - 2 ;8 COS ± (1 - 4 ^ cos 6)*]

where kq = gjc^, ^ = p cjg, and k^, k^ only exist if cos 6 < 1/4 ;S.

The integrals in equation (3) involving a factor of the form
cos [«/(k)]//(/<:) tend to zero as « -> co, interpreting the inte-

grals where necessary as principal value integrals. For the

integrals in equation (3) of the form

J
¥{K)sm[uf{K)\lf{K).dk (5)

where /(«) has simple zeros, the contribution of each such zero,

say Ki, to the limiting value is 77 F (k-j)/!/' (k{)\. All the relevant

zeros are included in the four values given in equation ,(4).

After carrying out these operations, we obtain

4- ,(l-i)sisin/i /

Img
n/2

dQ

30

r sin («

\_{k c coi

X cos 6 + pi)

cos Q — p)^ — g K

sin {k X cos 6 — p t)

(k c cos 6 + p)^ — g K
cos (k y sin 6) Ke"''^'''^'' d K

,"/2

+ 2m

-2m

-2m

-2m

where

Ki e -Ki(d-z)

(I+4^cos6l)i

^7t/2

(1 +4(8 COS ©^
I

.71/2

(l-4(3cos0)i
ei

,71/2

/C4 e -Kid-

2

(l-4;8cose)i

cos (kt) X COS 6 -\-p i) cos (/ci y sin 5) rfS

cos (/<'2 X cos ^ +p /) COS (k:2 y sin ^) rf

cos (/<:3 X cos 6 —pt) cos (/cj jc sin ^) rf

cos(«r4jccos0— /) r) cos (K4>'sin d) dd

.... (6)

9, = if 4 ^ < 1

9i = cos-'(l/4;8)if4^>l

the pitching motion can be derived from a source distribution

over the flat base of the plank; further, we assume the source

strength per unit area at a distance x from the mid-point is

1/4 77 times the normal velocity at that point, and for a sufficiently

thin plank we take this as equivalent to a line distribution of

amount (B/4 tt) xQ. sin p t. These are rather drastic simplifying

assumptions, especially for pitching; but perhaps they are not

too far amiss under the specified conditions for illustrating the

particular point under consideration. To reduce the computa-

tion we extend the integration only to cover the rectangular part

of the base, omitting the supposed short pointed ends. The
velocity potential due to the forward motion could be obtained

in the usual way by a source distribution over the curved sides at

the two ends of the plank; as this does not enter into the present

calculation we omit this part of the velocity potential.

Returning to equation (6) we obtain the required result by sub-

stituting X — h for X, multiplying by h B/4 77 and integrating

between the limits ± / for /;, where L = 2 /. All the integrals

can be evaluated explicitly, but to avoid lengthy expressions we
write F {x, y, z) for the contribution of the first term in equation

(6). We obtain thus

<j) = (B Q.I4 77) F (x, y, z) sin p t

+ ^30 (PI2 773)i \dB\ (k sec g)* Jj (/c /cos B)

cos {k X cos 9 -{- p t)

... (7)

In the last two integrals in equation (6) the integrand becomes
infinite at the lower limit 6,, but the integrals remain finite in

general; however, they become divergent in the limiting case

when 4 (8 = 1 and ^, = 0.

The wave pattern at a great distance from the source need not

be discussed here; it is obtained by combining the last four

terms in equation (6) with the suitable contribution from the double
integral in equation (6). Broadly speaking, the pattern at a great

distance in advance is associated with the K4 value while at the

rear it comes from the w,, kj and k^ terms. Finally, it can be
verified that for c = 0, the expressions reduce to the known form
for a stationary pulsating source emitting circular waves at a
great distance.

Consider now a long thin plank, of length L and beam B
and with short pointed ends, floating vertically in water and
immersed to a draught d. The plank moves forward with

velocity c and makes small pitching oscillations with angular
velocity Q. sin p t. We assume that the velocity potential due to

{k c cos 6 — p)^ — g K

cos (k X cos 6 — p t)

{k c cos d -\- p)^ — g k_

^'t/2

(kt] sec d)iP \i

+ ="fo) (l+4j8cos9)i

cos (fc 7 sin 6) e-'ft'' '^ d k

Jj (fc, / cos 6) sin (k, X cos 9

+ p cos (kj y sin 6) g-fi(''-z) d 6

-f similar terms in K2, kj, k^

where J denotes the ordinary Bessel Function.

The pressure on the base is given by

/i<^ drp\

^-^PiTl-'j-x)

(8)

(9>

and the moment M of the pressure about the axis O y is given by

M =
[ [

pxdxdy .... (10)

taken over the base. Or, to the present approxtihation.

M = pB
\ 5 / ^ xJ

(11)

with y = and z = —dm equation (8).

On examination of the various terms in equation (8) it is easily

seen that the only contribution to the terms in sin p t in equa-

tion (11) comes from the last four terms in equation (8). From
the first of these -terms, for instance, the contribution to this

part of M is found to be

n/2

p'R-PQ.impt
(1 +4/3cose>-t

J3/2 ('^\ lcose)e-^'<,d secddd

.... (12)

For computation we change from the Bessel Function J to the

Spherical Bessel Function given by S (x) = (77/2 x)^ J (x).
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because extensive tables of these functions are available. With
F = c/(^L)i, and with Mj sinp f being the required part of

the moment, we obtain finally

TT MJp Bigih*Cl = i (B/L)i F-3

dAi

L-'o

+

A.Bisec^e /^ \

(l+4;8cos0)i^3'H4F2'^'^y'

2 sec" t/ /A2 „^fl\ -^«c2e ./,

I

,7t/2

A3 B3 sec' d

de

A2 B2 sec' d

^2

dA,.

(1 -4i3cos0)i"H4F2
Si/2(^sec0)e-4Fl-^Ve

+
A4 B4 sec' 6> / A4 \ -^sec2t) ,0

(l-4^cos)ei ^3/H4F^^^^> '^^ ^^ (13)

with ^1 given by equation (7), ^ = p cjg, and

Ai, A2 = 1 + 2 j8 cos ± (1 + 4 /3 cos ff)i

Bi, B2 = (1 + 4 ;8 cos ^i ± 1

A3, A4 = 1 - 2 iS cos 61 ± (1 - 4 13 cos d)^

B3, B4 = 1 ± (1 - 4 iS cos ^i (14)

If we write q = p (B/g)^, it can be verified that when c = 0,

equation (13) reduces to the result for this case which can be
obtained directly, namely

.71/2

7TMilpgiBiUa = q^e-^ ?2d/B
^1/'

^1 L
<2 B

?'cos ') dd (15)
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SUBJECT INDEX
All references are to pages in the collected edition.

ATTRACTION

BOUNDARY
LAYER

CAPILLERY
WAVES

CIRCULAR
CYLINDER

DOUBLETS

DRIFTING FORCE

ELLIPSOID
^GENERAL)

due to wavemaking between two

spheres moving parallel 416

effect on wave resistance, suggested
approximation to 528

see WAVE PATTERNS 16

in infinite perfect fluid, certain math-
ematical ambiguities 81-93

wave resistance of, starting from rest 118
wave resistance of, in steady motion 119-125
wave profile in a stream, second ap-

proximation 274-280
vertical force on, submerged in a

stream 297-303
complete solution for, submerged in

stream with accurate boundary condi-

tion 420-428
wave resistance starting from rest. . . . 535-544
wave resistance in accelerationmotion 545-553

two dimensional, wave pattern in a

stream, axis horizontal 288
three dimensional, wave pattern in a

stream, axis horizontal 290
two dimensional, wave profile in

stream, axis vertical or horizontal. ... 265
three dimensional horizontal, wave
resistance 282
assembly of horizontal doublets in

vertical plane, wave resistance 283
two doublets, with different axes, at

any two points, resistance 285
general distribution of, wave resist-

ance 371

of ship among waves 483
comparison with experimental result .

.

490

submerged, wave resistance of 323-329
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ELLIPTIC lift and moment, moving between two
CYLINDER parallel walls, no circulation 455

rolling, waves generated by 462

FLAT PLATES lift and moment, moving between two
parallel walls, with circulation 439-449

moving between two free surfaces,

with circulation 449-452

moving between one wall and one free

surface, with circulation 452-454

FORCED SURFACE due to assigned distribution of veloc-

WAVES ity over a vertical plane in one or two
dimensions, deep water 304-308

one dimensional distribution in shallow

water 308-311

FORCES ON moving in a circular path, due to wave
SUBMERGED motion 554-562

SPHEROID

FORM FRICTION and tank boundary effect 609

HEAVING AND notes on theory 512
PITCHING oscillations in smooth water compared

with results of experiment 512

oscillations among waves compared
with experiment results 514

resistance of a ship among waves com-

pared with experimental results 515

damping in two and three dimensions
compared 611

effect of speed on damping 617

damping due to wave motion 492

compared with measured values 499

coupling of heave and pitch due to

speed of advance, without wave mo-

tion, for a spheroid 597

MICHELL, J. H. his integral compared with method
using sources 202

MOVING general, wave resistance, compared
SUBMERGED with approximations, such as that due
SOLID toHogner 374

of revolution, wave resistances of

symmetrical and unsymmetrical bodies

compared 240

622



SUBJECT INDEX

MOVING
SUBMERGED
SOLID (Continued)

OSCILLATIONS IN
A VISCOUS FLUID

PITCHING

PRESSURE OF
WATER WAVES

ROLLING SHIP

SHALLOW WATER

SHIP AMONG
WAVES

SHIP VIBRATIONS

SKIN FRICTION

SINKAGE

SOURCES

moving horizontaUy, moment on due to

wave motion 575

of solid body 185

See HEAVING AND PITCHING

against fixed ohstahle 470
comparison with wave force on floating

model at rest 482

waves generated by 462

waves due to impulse moving on 29
variation of wave resistance with
speed for surface pressure disturbance
moving on .... 51

effect on wavemaking resistance of

symmetrical surface disturbance 192
resistance of a three dimensional hor-

izontal doublet submerged in 286
forced surface waves on, due to as-

signed one dimensional velocity dis-

tribution 308
free wave patterns in 380

resistance of, waves stationary with

respect to ship 429
waves left by another moving at same
speed 432
advancing through free transverse

waves 435

virtual inertia for, spheroid 583
with rigid boundary transverse to vi-

brations , 586
parallel to vibrations 576
floating spheroid horizontal vibrations

and vertical vibrations 588

and turbulent fluid oto^zoti, general dis-

cussion 158

of a ship at low speed 459

general distribution of, wave resistance 3 67
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SPHERES

SPHEROID

STABILITY

TRIM OF SHIP

TANK BOUNDARY
EFFECT

TURBULENT
FLUID MOTION

VERTICAL POSTS

wave resistance of a submerged 125
of two in series 413
two in parallel, (also of one near wall) 416
two in any position 417
attraction between two moving parallel 416
floating and making heaving oscilla-

tions waves generated by, virtual in-

ertia and damping 602

submerged, frolate, wave resistance

moving parallel to axis 156,317
compared with result from Michell's

Integral 202

moving at right angles to axis 319

oblate, moving parallel to axis 317
at right angles to axis 319

prolate, moment on when moving hori-

zontally parallel to axis 580
see also under SHIP VIBRATIONS.

of fluid motion, viscous fluid, two
dimensions 196

rectilinear vortices in ring formation.

,

330

calculations at high speed, compared
with measured trim 520

and form friction 609

and Skin friction 158

wave profiles of 347
infinite draught, full ended 353

wedge shaped 354

parabolic 357
general, any waterline 356

wave resistance, infinite draught,

various waterplane sections 204

with insertion of varying length of

parallel body 214
comparison of symmetrical with un-

symmetrical water lines 245

finite draught, effect of varying draught 230
see also 256-261
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VIBRATION

VISCOUS FLUID
MOTION

VORTICES

WAVE PATTERNS

WAVE PROFILES

WAVE
RESISTANCE

see SHIP VIBRATIONS

some problems solved by use of inte-

gral equation, examples, plane moving
between two parallel plane bound-

aries, rotating hollow cylinder filled

with fluid 176

rectilinear in ring formation, stability

of motion 330

initial line disturbance 7

initial disturbance of finite breadth .

.

9

limited train of simple oscillations ... 10

initial disturbance on deep water 13

moving line impulse on deep water ... 14

capillary waves, limited train of simple

oscillations 16

moving line impulse 17

combination of capillary and gravity

waves, moving line impulse

initial point elevation in two dimen-

sions 18

point impulse moving over deep water 20

point impulse moving over water of

finite depth 29

two-dimensional doublet in stream. . .

.

296

free wave patterns 378

of ship waves, point disturbance and

sphere 381

vertical posts of infinite draught 383

effect of finite draught 384

vertical posts of infinite draught,

wedge-shaped waterlines 354

parabolic 357

full-ended 353

general for any waterline 356

effect of rounding angles in waterLine 360

Simple systems of travelling pressure

disturbance 34-80

variation with speed compared with

model results deep water 47-51,65

and 72-77

shallow water 51-57
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WAVE with ship results 80

RESISTANCE more complicated pressure systems. .

.

94-104

(Continued) moving surface pressure system, start-

ing from rest 105

circular cylinder, starting from rest. .

.

118

in steady motion 119

of a submerged body equal to that of a

certain travelling pressure distribution 146

sphere 125

two in series 413

in parallel 415

in any relative position 416
general ellipsoid 323

vertical posts, of great draught, vary-

ing waterplane sections 204

with insertion of parallel body 214

of finite draught, effect of varying

draught 230

of great draught comparison of a sym-

metrical with an unsym metrical
waterline 245,256

parabolic waterplane 388

derived from wave patterns 385-389

derived by energy method from wave
pattern deep and shallow water 390-397

of unsymmetrical forms used to esti-

mate wave resistance in a viscous

fluid 398-407

Mutual action of two bodies 408-418

general theory 403

two spheres in series 413

in parallel, (also one sphere near wall) 415

in any relative position 417

approximate calculation at high speed 500-511

comparison with complete calculation

and with experimental results for a

form with an algebraic equation 511

Comparison with experiments for two

models of ships 511

Effect of shallow water 192

51-57

three dimensional doublet in shallow

water 286
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WAVES

SUBJECT INDEX

two dimensional in deep water, hori-

zontal 2Yg
three dimensional horizontal 282
assembly in vertical plane 283
assembly with axe in any direction in

vertical plane 284
two doublets, different axes, at any
two points 285
of general source distribution 367
of general doublet distribution 371
moving solid in general, comparison
with approximate methods, reference
to Hogner's expression 374

of finite height 132
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