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Anew lattice Boltzmannmethod to simulate open channel flows
with complex geometry described by a conservative form
of Saint-Venant equations is developed. The Saint-Venant
equations include an original treatment of the momentum
equation source term. Concrete hydrostatic pressure thrust
expressions are provided for rectangular, trapezoidal and
irregular cross-section shapes. A D1Q3 lattice arrangement is
adopted. External forces, such as bed friction and the static
term, are discretized with a centred scheme. Bounce back and
imposed boundary conditions are considered. To verify the
proposed model, four cases are carried out: tidal flow over
a regular bed in a rectangular cross-section, steady flow in a
channel with horizontal and vertical contractions, steady flow
over a bump in a trapezoidal channel and steady flow in a
non-prismatic channel with friction. Results indicate that
the proposed scheme is simple and can provide accurate
predictions for open channel flows.

1. Introduction
Numerical modelling of one-dimensional (1D) open channel flows
described by a conservative form of Saint-Venant equations [1–4] is
a central topic in hydraulic and hydrologic research. Conventional
computational schemes mainly focus on the discretization of
partial differential equations. For instance, Moussa & Bocquillon [5]
investigated the parameter ranges of the finite difference method.
Liang & Marche [6] proposed a well-balanced numerical scheme to
simulate shallow frictional flows involving wetting and drying by
using a Godunov-type scheme. Chang et al. [7] presented a
mesh-less numerical model based on smoothed particle
hydrodynamics to simulate 1D open channel flows. Murillo &
García-Navarro [8] solved Saint-Venant equations by applying the
energy balanced property.
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The lattice Boltzmann (LB) method is a relatively new discrete numerical approach that has elicited

increasing attention recently. The method is characterized by simple calculation, parallel process and
easy implementation of boundary conditions, and is very efficient and flexible to simulate different
flows within complex/varying geometries. It is these features that make the LB method a very
promising computational method in different areas. In the area of simulating the open channel flows
described by Saint-Venant equations, the LB method is suitable for subcritical flows, which are the most
common scenarios in coastal areas, estuaries and rivers. It suffers from a numerical instability when the
LB method is used to solve the supercritical flows. The LB method involves streaming and collision
steps. The advantages of the LB method, such as simplicity, efficiency and easy treatment of boundary
conditions, in simulating fluid flows have been demonstrated [9,10]. Unlike conventional numerical
methods, the LB method describes macroscopic fluid flows from the microscopic flow behaviour
through particle distribution functions. The LB method was first derived based on the lattice gas
automata [11]. The Bhatnagar–Gross–Krook (BGK) scheme has made the LB method simple and
efficient [12]. Salmon [13] and Zhou [10] developed LB method theories for modelling shallow water
flows. Mayer et al. [14] carried out the simulations of a subchannel of a rod bundle with triangular rod
arrangement using the LB method. Rasin et al. [15] and Peng et al. [16] solved the advection–diffusion
equation with a multi-relaxation lattice kinetic method. Fernandino et al. [17] proposed an LB method in
conjunction with the Smagorinsky subgrid scale (SGS) model to simulate the turbulent open duct flow.
Van Thang et al. [18] discussed the accuracy and stability of the LB method on a D1Q3 lattice and
applied the method to a canal network with various hydraulic interconnection structures. Considering
the vegetation elements as solid boundaries in flows, Gac [19] presented a 3D lattice model and
computed the vertical velocity profile in an open channel flow. Liu et al. [20] proposed an LB model to
solve the 1D non-conservative form of Saint-Venant equations under the assumption that the width
change of river cross-sections is inconspicuous along the stream-wise direction.

An LBmodelwith aD1Q3 lattice arrangementwas developed in this study to solve a conservative form
of Saint-Venant equations (LBCSVE). Compared with the former LB models to solve the Saint-Venant
equations [19,20], the LBCSVE applied the conservative form of Saint-Venant equations for the first
time and the Gauss–Legendre numerical integration method was used to solve the hydrostatic pressure
thrust in the LB model first. The model was verified in four cases: tidal flow over a regular bed in a
rectangular cross-section, steady flow in a channel with horizontal and vertical contractions, steady flow
over a bump in a trapezoidal channel and steady flow in a non-prismatic channel with friction.

The rest of this paper is organized as follows. Section 2 presents the governing equations and
computing methods of the hydrostatic pressure thrust term for regular and irregular cross-section
shapes, and the constructed LB model. Section 3 presents an evaluation of the scheme’s performance
in four cases. Section 4 provides the conclusions.
2. Material and methods
2.1. Governing equations
The conservative form of 1D Saint-Venant equations describes shallow water flows in natural rivers and
channels. That is
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nd I1 ¼
ðhz
0
(hz � hi)bðx, hiÞdhi, ð2:3Þ

where t is time; x is the stream-wise coordinate; A is the wetted cross-sectional area; Q is discharge; g is
gravitational acceleration; �z is a constant water level [21]; b(x, hi) is the channel width on the water
surface, zi = zb + hi (figure 1); I1 is the hydrostatic pressure thrust resulting from longitudinal width
variation; and Sf is a friction term modelled by Manning’s formula and is expressed as

Sf ¼ n2QjQj
R4=3A2 ; R ¼ A

P
, ð2:4Þ

where n is the roughness coefficient, R is the hydraulic radius and P is the wetted perimeter.
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Figure 1. Cross-section shape and variable definition.

Table 1. Calculation formulae of the hydrostatic pressure thrust I1.

cross-section shape I1

rectangular cross-section Bh 2
z =2

trapezoidal cross-section dh 2
z =2þ mh 3

z =3

irregular cross-section ðhz=2Þ
Pnl

l¼1 Cl f ððhz=2ÞhGl þ hz=2Þ

v2 v0 v1

Figure 2. D1Q3 lattice arrangement.
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2.2. Calculation of the integral I1
I1 represents hydrostatic pressure thrust through integration on the wetted cross-section in consideration
of the distance of each infinitesimal area element with respect to the water surface. Table 1 shows the
calculation formulae of I1 for channels with rectangular and trapezoidal cross-section shapes and
natural rivers with irregular cross-section shapes. The Gauss–Legendre numerical integration method
is applied for irregular cross-section shapes (see appendix A).

2.3. Lattice Boltzmann model
We considered the LB method to solve the conservative form of 1D Saint-Venant equations on a D1Q3
lattice arrangement (shown in figure 2). The discrete velocities [18,20] are

va ¼
0 a ¼ 0
v a ¼ 1
�v a ¼ 2,

8<
: ð2:5Þ

where a is the link in a lattice; v ¼ Dx=Dt denotes the velocity along a lattice link, with Dx being the lattice
and Dt being the time step. In D1Q3 lattice arrangement, each lattice has two links (v1 and v2) to its
neighbours. v0 indicates that the particle stays at its original lattice without movement.

The LB method involves two steps: streaming and collision. In the streaming step, the particles move
to the neighbouring lattice points in their directions and at their velocities governed by

faðxþ vaDt, tþ DtÞ ¼ f 0aðx, tÞ þ wa
Dt
c2s

vaF, ð2:6Þ

where fa denotes the distribution function of particles, f 0a is the value before the streaming step, c2s is a
constant and equal to v2=3, F is the external force and wa represents the weight factor determined by
the pattern of the lattice, which is

w0 ¼ 2
3
; w1 ¼ w2 ¼ 1

6
: ð2:7Þ
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In the collision step, f 0a(x, t) is expressed as

f 0aðx, tÞ ¼ faðx, tÞ þVaðfaðx, tÞÞ, ð2:8Þ

where Va is the collision operator. The BGK model is used due to its simplicity and efficiency

VaðfaÞ ¼ � 1
t
ðfa � feqa Þ, ð2:9Þ

where t is the single relaxation time and feqa denotes the local equilibrium distribution function.
Equations (2.6), (2.8) and (2.9) are combined to obtain the evolution equation with single-relaxation

time as follows:

faðxþ vaDt, tþ DtÞ ¼ faðx, tÞ � 1
t
ðfa � feqa Þ þ wa

Dt
c2s

vaF: ð2:10Þ

The local equilibrium distribution plays an essential role in the LB method. It decides what flow
equations are to be solved. feqa must satisfy the following three conditions, namely, mass, momentum
conservation and momentum tensor in equations (2.1) and (2.2)

X
a

feqa ¼ A, ð2:11Þ

X
a

vafeqa ¼ Q ð2:12Þ

and
X
a

v2af
eq
a ¼ Q2

A
þ gI1: ð2:13Þ

For the D1Q3 lattice arrangement, the local equilibrium distributions can be expressed as (see
appendix B)

feq0 ¼ A� gII
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Av2
, ð2:14Þ
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The macroscopic variables are defined as

A ¼
X
a

fa, Q ¼
X
a

vafa: ð2:17Þ

External force F in equation (2.6) is the source term in the momentum equation in equations (2.1)–(2.2)
and is expressed as

F ¼ �gASf þ g
@I1
@x

jz: ð2:18Þ

The centred scheme proposed by Zhou [10] was applied in this study. The scheme has second order
in space and time. The external force term was evaluated at the mid-point between the lattice point and
its neighbouring lattice point as

Fa ¼ Fa xþ 1
2
vaDt

� �
: ð2:19Þ
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Figure 3. Distribution function at the inlet and outlet boundaries.
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Substitution of equation (2.18) into equation (2.19) leads to

Fa ¼ �gAðxÞSf ðxÞ, ð2:20Þ

F1 ¼ �gA1 S f1 þ g
I1ðxþ vDtÞ � I1ðxÞ

Dx

� �
z
, ð2:21Þ

A1 ¼ Aðxþ vDtÞ þ AðxÞ
2

, S f1 ¼
Sf ðxþ vDtÞ þ Sf ðxÞ

2
, ð2:22Þ

F2 ¼ �gA2 S f2 þ g
I1ðxÞ � I1ðx� vDtÞ

Dx

� �
z

ð2:23Þ

and A2 ¼ Aðx� vDtÞ þ AðxÞ
2

, S f2 ¼
Sf ðx� vDtÞ þ Sf ðxÞ

2
: ð2:24Þ

2.3.1. Boundary conditions

As shown in figure 3, f2 and f0, at the inlet boundary can be obtained after the streaming step. Unknown
distribution function f1 (shown as a dashed line) cannot be determined from the internal lattice nodes.
Also, at the outlet boundary, f2 (shown as a dashed line) is unknown. Proper boundary conditions are
necessary to determine the unknown distribution functions.

Bounce-back boundary condition. The basic idea of the bounce-back condition is that an incoming
particle towards the boundary bounces back into the fluid. At the inlet boundary, incoming unknown
distribution function f1 is equal to f2. Similarly, unknown distribution function f2 is equal to f1 at the
outlet boundary.

Imposed boundary condition. Specific variable values are commonly applied at boundaries. For
example, constant discharge Qin and fixed water level zout are imposed at inlet and outlet boundaries,
respectively. For the inlet boundary, the treatment involves three steps. In the first step, a
zero-gradient condition for water level z is set, and wetted area A (2.1) is calculated

zð1Þ ¼ zð2Þ: ð2:25Þ
Second, the velocity is calculated as

uð1Þ ¼ Qin

Að1Þ : ð2:26Þ

Third, the distribution function f1 is calculated as

f1 ¼ feq1 þ f2 � feq2 : ð2:27Þ

feq1 is computed based on the macroscopic variables obtained in the first and second steps.
Unknown distribution function f2 at the outlet boundary can be calculated through the same steps.

First, a zero-gradient condition for discharge Q is set

QðNÞ ¼ QðN � 1Þ: ð2:28Þ
Second, wetted area A(N ) is calculated with fixed water level zout. The velocity is

uðNÞ ¼ QðNÞ
AðNÞ : ð2:29Þ

Third, f2 is determined as

f2 ¼ feq2 þ f1 � feq1 : ð2:30Þ

2.3.2. Stability conditions

The magnitude of the resultant velocity is smaller than velocity v along a lattice link and celerity [10]

u2

v2
, 1 ð2:31Þ
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using the equations (2.18)–(2.24)

calculate the hydrostatic
pressure thrust term using
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Figure 4. Flowchart showing the basic steps of the LBCSVE model.
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The essential procedures of the LBCSVE model are summarized in figure 4.
3. Numerical tests
The LBCSVE model was validated through four benchmark tests.

3.1. Tidal flow over a regular bed
We considered the test proposed by Bermudez & Vazquez [22] used to verify an upwind discretization of
bed slope source terms. Bed elevation is defined as (figure 5a)

zbðxÞ ¼ 10þ 40x
L

þ 10 sin p
4x
L
� 0:5

� �� �
, ð3:1Þ
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where L = 14 000 m is the channel length. The initial condition is

zðx, 0Þ ¼ 60:5 m

and Qðx, 0Þ ¼ 0:0m3 s�1,

)
ð3:2Þ
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and the inlet and outlet boundary conditions are

zð0, tÞ ¼ 64:5� 4:0 sin p
4t

86,400
þ 0:5

� �� �

and QðL, tÞ ¼ 0:0:

9>=
>; ð3:3Þ

In the computations, the rectangular and frictionless channel width is 1.0 m, with Dx = 17.8 m and
Dt = 0.3 s. The relaxation time t = 0.6. Figure 5 presents a comparison of the numerical results and the
asymptotic analytical solution at t = 9, 117.5 s. Good agreements were observed.
3.2. Steady flow in a channel with horizontal and vertical contractions
For this case [23], the channel is frictionless and 3 m long. Simulation was undertaken to reproduce
steady flows with varying breadth and topography. Channel breadth (shown in figure 6) and
topography are provided by

zbðxÞ ¼ 0:1 cos2 [pðx� 1:5Þ] if jx� 1:5j , 0:5
0 otherwise

�
ð3:4Þ

and

bðxÞ ¼ 1� 0:1 cos2[pðx� 1:5Þ] if jx� 1:5j , 0:5
1 otherwise:

�
ð3:5Þ

A unit discharge of q = 1.566 m2 s−1 was imposed at the inflow, and a depth of 1 m was fixed for the
outflow. In the computation, the number of lattice nodes was 100, and the lattice speed was v = 6 m s−1.
The relaxation time t = 0.9. A steady-state solution was obtained (shown in figure 7). The predicted
surface profile in figure 7a matches the analytical one perfectly. The value of discharge predicted with
the proposed LBCSVE model is equal to exactly 1.566 m2 s−1. Figure 7b shows that the LBCSVE model
offers a better solution than the model proposed by Alias et al. [23] based on the finite-volume
Godunov-type framework with a slight oscillatory behaviour near the bump.
3.3. Steady flow over a bump in a trapezoidal channel
The steady flow over a bump is a classical test problem used as a benchmark test case for numerical
methods by many researchers [24–26]. The channel is 25 m long, and topography is defined as

zb ¼ 0:2� 0:05ðx� 10Þ2 if 8 , x , 12
0 otherwise:

�
ð3:6Þ
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The trapezoidal cross-section (shown in figure 8) was adopted in this test case. The channel width d(x)
was 1.0 m. The relaxation time t = 1.0. Several values of the slope coefficient (m = 0.1, 0.5, 1) were selected.
The cell size of Δx = 0.1 m was used for both LBCSVE and Godunov-type models with v = 10 m s−1.
A comparison of the results of the finite-volume Godunov-type framework with Harten, Lax and van
Leer approximate Riemann solvers [6,27,28] is plotted in figure 9. Good agreement was observed. The
quantitative comparison indicates that the maximum relative error for water level is smaller than
0.34% for the three slope coefficients.

3.4. Steady flow in a non-prismatic channel with friction
This test case was developed by MacDonald [29]. The analytical solution of steady flows in a non-
prismatic channel with friction exists when channel width and water depth are given. The Manning
coefficient, n, is 0.03 m s−1/3. The channel length is 400 m with a trapezoidal cross-section. The slope
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coefficient, m, is equal to 2. At the inlet, the discharge is 20 m3 s−1, and a fixed downstream depth of
0.904094 m is provided. The channel width is (shown in figure 10)

bðxÞ ¼ 10� 5 exp �50
x
400

� 1
3

� �2
 !

� 5 exp �50
x
400

� 2
3

� �2
 !

: ð3:7Þ

Figure 11 shows the bed slope defined by bed width b, Manning coefficient n, slope coefficient m,
discharge Q and water depth h

S0 ¼ 1� Q2ðbþ 2mhÞ
gh3ðbþmhÞ3

 !
@h
@x

þQ2n2
ðbþ 2h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

p Þ4=3

h10=3ðbþmhÞ10=3
� Q2ð@b=@xÞ
gh2ðbþmhÞ3 , ð3:8Þ

where grid size Δx is 2 m and time step Δt is 0.1 s. The relaxation time t = 0.6. Figure 12 proves that the
LBCSVE model can predict the water level and velocity accurately.
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4. Conclusion
In this study, a new LB model with a D1Q3 lattice (LBCSVE) was developed to solve a conservative form
of Saint-Venant equations. The LBCSVE model can provide accurate predictions for 1D frictional open
channel flows with various cross-section shapes.

The general mathematical formulation proposed in this paper encourages the application to other
case studies.
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Appendix A
No exact expression of I1 is available for natural rivers with irregular cross-section shapes. The Gauss–
Legendre numerical integration method is thus presented. The Legendre polynomial Ln(x) is expressed as

LnlðxÞ ¼
1

2nln!
dnl

dxnl
[(x2 � 1)

nl ]: ðA 1Þ

The Gauss–Legendre integration formula is presented asð1
�1

f ðxÞdx �
Xnl
l¼1

Clf ðxlÞ ðA 2Þ

and

Cl ¼
ð1
�1

LnlðxÞ
ðx� xlÞL0nlðxÞ

dx ðl ¼ 1, 2 � � � nlÞ, ðA 3Þ

where nl is the number of integration points and Cl is the integration coefficient.

https://dx.doi.org/10.5061/dryad.dj5g9v3
https://dx.doi.org/10.5061/dryad.dj5g9v3
https://dx.doi.org/10.5061/dryad.dj5g9v3
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For I1, we define

f ðhiÞ ¼ ðhz � hiÞbðx,hiÞ ðA 4Þ
and

hi ¼ hz
2
(hG þ 1): ðA 5Þ

By applying equations (A 4) and (A 5), I1 becomes

I1 ¼
ðhz
0
(hz � hi)bðx, hiÞdhi

¼ hz
2

ð1
�1

f
hz
2
hG þ hz

2

� �
dhG

� hz
2

Xnl
l¼1

Clf
hz
2
hGl þ

hz
2

� �
:

ðA 6Þ

Appendix B
The local equilibrium distribution plays an essential role in the LB method. It decides what flow
equations are to be solved. For the D1Q3 lattice arrangement, feqa is assumed to be a polynomial [31],
that is

feqa ¼ Aa þ Bavauþ Cau2: ðB 1Þ

Where Aa, Ba and Ca are the coefficients to calculate and u is macroscopic velocity equal to Q/A.
Given that the local equilibrium distribution has the same symmetry as the lattice (figure 2), we have

A1 ¼ A2 ¼ �A
B1 ¼ B2 ¼ �B
C1 ¼ C2 ¼ �C: ðB 2Þ

feqa must satisfy the following three conditions, namely, mass, momentum conservation and
momentum tensor in equations (2.1) and (2.2)X

a

feqa ¼ A, ðB 3Þ
X
a

vafeqa ¼ Q ðB 4Þ

and
X
a

v2af
eq
a ¼ Q2

A
þ gI1: ðB 5Þ

Substitution of equation (B 1) into equations (B 3)–(B 5) results in

A0 þ 2 �Aþ ðC0 þ 2 �CÞu2 ¼ A, ðB 6Þ
2�Bv2u ¼ Q ðB 7Þ

and 2v2 �Aþ 2 �Cv2u2 ¼ Q2

A
þ gII : ðB 8Þ

From equation (B 7), we obtain

B1 ¼ B2 ¼ �B ¼ Q
2v2u

: ðB 9Þ

After evaluating the terms in equations (B 6) and (B 7) and equating the coefficients of A and u2,
respectively, we have

A0 þ 2 �A ¼ A, ðB 10Þ
C0 þ 2 �C ¼ 0, ðB 11Þ
2v2 �A ¼ gII ðB 12Þ

and 2 �Cv2u2 ¼ Q2

A
: ðB 13Þ
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The solutions of equations (B 10)–(B 13) result in

A0 ¼ A� gII
v2

, ðB 14Þ

C0 ¼ � Q2

Av2u2
, ðB 15Þ

A1 ¼ A2 ¼ �A ¼ gII
2v2

ðB 16Þ

and C1 ¼ C2 ¼ �C ¼ Q2

2Av2u2
: ðB 17Þ

Substitutions of equations (B 9) and (B 14)–(B 17) into equation (B 1) lead to the local equilibrium
distribution

feq0 ¼ A� gII
v2

� Q2

Av2
, ðB 18Þ

feq1 ¼ gII
2v2

þ Q
2v

þ Q2

2Av2
ðB 19Þ

and feq2 ¼ gII
2v2

� Q
2v

þ Q2

2Av2
: ðB 20Þ
39
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